]> git.saurik.com Git - bison.git/blame - doc/bison.texi
package: bump to 2015
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
957255b8
PE
4@documentencoding UTF-8
5@documentlanguage en
df1af54c
JT
6@include version.texi
7@settitle Bison @value{VERSION}
bfa74976
RS
8@setchapternewpage odd
9
5378c3e7 10@finalout
5378c3e7 11
13863333 12@c SMALL BOOK version
bfa74976 13@c This edition has been formatted so that you can format and print it in
13863333 14@c the smallbook format.
bfa74976
RS
15@c @smallbook
16
91d2c560
PE
17@c Set following if you want to document %default-prec and %no-default-prec.
18@c This feature is experimental and may change in future Bison versions.
19@c @set defaultprec
20
8c5b881d 21@ifnotinfo
bfa74976
RS
22@syncodeindex fn cp
23@syncodeindex vr cp
24@syncodeindex tp cp
8c5b881d 25@end ifnotinfo
bfa74976
RS
26@ifinfo
27@synindex fn cp
28@synindex vr cp
29@synindex tp cp
30@end ifinfo
31@comment %**end of header
32
fae437e8 33@copying
bd773d73 34
8a4281b9
JD
35This manual (@value{UPDATED}) is for GNU Bison (version
36@value{VERSION}), the GNU parser generator.
fae437e8 37
3209eb1c 38Copyright @copyright{} 1988-1993, 1995, 1998-2015 Free Software
575619af 39Foundation, Inc.
fae437e8
AD
40
41@quotation
42Permission is granted to copy, distribute and/or modify this document
8a4281b9 43under the terms of the GNU Free Documentation License,
804e83b2 44Version 1.3 or any later version published by the Free Software
c827f760 45Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 46being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 47(a) below. A copy of the license is included in the section entitled
8a4281b9 48``GNU Free Documentation License.''
c827f760 49
389c8cfd 50(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
51modify this GNU manual. Buying copies from the FSF
52supports it in developing GNU and promoting software
389c8cfd 53freedom.''
fae437e8
AD
54@end quotation
55@end copying
56
e62f1a89 57@dircategory Software development
fae437e8 58@direntry
8a4281b9 59* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 60@end direntry
bfa74976 61
bfa74976
RS
62@titlepage
63@title Bison
c827f760 64@subtitle The Yacc-compatible Parser Generator
df1af54c 65@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
66
67@author by Charles Donnelly and Richard Stallman
68
69@page
70@vskip 0pt plus 1filll
fae437e8 71@insertcopying
bfa74976
RS
72@sp 2
73Published by the Free Software Foundation @*
0fb669f9
PE
7451 Franklin Street, Fifth Floor @*
75Boston, MA 02110-1301 USA @*
9ecbd125 76Printed copies are available from the Free Software Foundation.@*
8a4281b9 77ISBN 1-882114-44-2
bfa74976
RS
78@sp 2
79Cover art by Etienne Suvasa.
80@end titlepage
d5796688
JT
81
82@contents
bfa74976 83
342b8b6e
AD
84@ifnottex
85@node Top
86@top Bison
fae437e8 87@insertcopying
342b8b6e 88@end ifnottex
bfa74976
RS
89
90@menu
13863333
AD
91* Introduction::
92* Conditions::
8a4281b9 93* Copying:: The GNU General Public License says
f5f419de 94 how you can copy and share Bison.
bfa74976
RS
95
96Tutorial sections:
f5f419de
DJ
97* Concepts:: Basic concepts for understanding Bison.
98* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
99
100Reference sections:
f5f419de
DJ
101* Grammar File:: Writing Bison declarations and rules.
102* Interface:: C-language interface to the parser function @code{yyparse}.
103* Algorithm:: How the Bison parser works at run-time.
104* Error Recovery:: Writing rules for error recovery.
bfa74976 105* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
106 messy for Bison to handle straightforwardly.
107* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 108* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
109* Other Languages:: Creating C++ and Java parsers.
110* FAQ:: Frequently Asked Questions
111* Table of Symbols:: All the keywords of the Bison language are explained.
112* Glossary:: Basic concepts are explained.
113* Copying This Manual:: License for copying this manual.
5e528941 114* Bibliography:: Publications cited in this manual.
f9b86351 115* Index of Terms:: Cross-references to the text.
bfa74976 116
93dd49ab
PE
117@detailmenu
118 --- The Detailed Node Listing ---
bfa74976
RS
119
120The Concepts of Bison
121
f5f419de
DJ
122* Language and Grammar:: Languages and context-free grammars,
123 as mathematical ideas.
124* Grammar in Bison:: How we represent grammars for Bison's sake.
125* Semantic Values:: Each token or syntactic grouping can have
126 a semantic value (the value of an integer,
127 the name of an identifier, etc.).
128* Semantic Actions:: Each rule can have an action containing C code.
129* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 130* Locations:: Overview of location tracking.
f5f419de
DJ
131* Bison Parser:: What are Bison's input and output,
132 how is the output used?
133* Stages:: Stages in writing and running Bison grammars.
134* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 135
8a4281b9 136Writing GLR Parsers
fa7e68c3 137
8a4281b9
JD
138* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
139* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 140* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 141* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 142* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 143
bfa74976
RS
144Examples
145
f5f419de
DJ
146* RPN Calc:: Reverse polish notation calculator;
147 a first example with no operator precedence.
148* Infix Calc:: Infix (algebraic) notation calculator.
149 Operator precedence is introduced.
bfa74976 150* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 151* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
152* Multi-function Calc:: Calculator with memory and trig functions.
153 It uses multiple data-types for semantic values.
154* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
155
156Reverse Polish Notation Calculator
157
f5f419de
DJ
158* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
159* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
160* Rpcalc Lexer:: The lexical analyzer.
161* Rpcalc Main:: The controlling function.
162* Rpcalc Error:: The error reporting function.
163* Rpcalc Generate:: Running Bison on the grammar file.
164* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
165
166Grammar Rules for @code{rpcalc}
167
24ec0837
AD
168* Rpcalc Input:: Explanation of the @code{input} nonterminal
169* Rpcalc Line:: Explanation of the @code{line} nonterminal
170* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 171
342b8b6e
AD
172Location Tracking Calculator: @code{ltcalc}
173
f5f419de
DJ
174* Ltcalc Declarations:: Bison and C declarations for ltcalc.
175* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
176* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 177
bfa74976
RS
178Multi-Function Calculator: @code{mfcalc}
179
f5f419de
DJ
180* Mfcalc Declarations:: Bison declarations for multi-function calculator.
181* Mfcalc Rules:: Grammar rules for the calculator.
182* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
183* Mfcalc Lexer:: The lexical analyzer.
184* Mfcalc Main:: The controlling function.
bfa74976
RS
185
186Bison Grammar Files
187
303834cc
JD
188* Grammar Outline:: Overall layout of the grammar file.
189* Symbols:: Terminal and nonterminal symbols.
190* Rules:: How to write grammar rules.
303834cc
JD
191* Semantics:: Semantic values and actions.
192* Tracking Locations:: Locations and actions.
193* Named References:: Using named references in actions.
194* Declarations:: All kinds of Bison declarations are described here.
195* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
196
197Outline of a Bison Grammar
198
f5f419de 199* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 200* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
201* Bison Declarations:: Syntax and usage of the Bison declarations section.
202* Grammar Rules:: Syntax and usage of the grammar rules section.
203* Epilogue:: Syntax and usage of the epilogue.
bfa74976 204
09add9c2
AD
205Grammar Rules
206
207* Rules Syntax:: Syntax of the rules.
208* Empty Rules:: Symbols that can match the empty string.
209* Recursion:: Writing recursive rules.
210
211
bfa74976
RS
212Defining Language Semantics
213
214* Value Type:: Specifying one data type for all semantic values.
215* Multiple Types:: Specifying several alternative data types.
90b89dad 216* Type Generation:: Generating the semantic value type.
e4d49586
AD
217* Union Decl:: Declaring the set of all semantic value types.
218* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
219* Actions:: An action is the semantic definition of a grammar rule.
220* Action Types:: Specifying data types for actions to operate on.
221* Mid-Rule Actions:: Most actions go at the end of a rule.
222 This says when, why and how to use the exceptional
223 action in the middle of a rule.
224
be22823e
AD
225Actions in Mid-Rule
226
227* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
228* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
229* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
230
93dd49ab
PE
231Tracking Locations
232
233* Location Type:: Specifying a data type for locations.
234* Actions and Locations:: Using locations in actions.
235* Location Default Action:: Defining a general way to compute locations.
236
bfa74976
RS
237Bison Declarations
238
b50d2359 239* Require Decl:: Requiring a Bison version.
bfa74976
RS
240* Token Decl:: Declaring terminal symbols.
241* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 242* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 243* Initial Action Decl:: Code run before parsing starts.
72f889cc 244* Destructor Decl:: Declaring how symbols are freed.
93c150b6 245* Printer Decl:: Declaring how symbol values are displayed.
d6328241 246* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
247* Start Decl:: Specifying the start symbol.
248* Pure Decl:: Requesting a reentrant parser.
9987d1b3 249* Push Decl:: Requesting a push parser.
bfa74976 250* Decl Summary:: Table of all Bison declarations.
35c1e5f0 251* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 252* %code Summary:: Inserting code into the parser source.
bfa74976
RS
253
254Parser C-Language Interface
255
f5f419de
DJ
256* Parser Function:: How to call @code{yyparse} and what it returns.
257* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
258* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
259* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
260* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
261* Lexical:: You must supply a function @code{yylex}
262 which reads tokens.
263* Error Reporting:: You must supply a function @code{yyerror}.
264* Action Features:: Special features for use in actions.
265* Internationalization:: How to let the parser speak in the user's
266 native language.
bfa74976
RS
267
268The Lexical Analyzer Function @code{yylex}
269
270* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
271* Token Values:: How @code{yylex} must return the semantic value
272 of the token it has read.
273* Token Locations:: How @code{yylex} must return the text location
274 (line number, etc.) of the token, if the
275 actions want that.
276* Pure Calling:: How the calling convention differs in a pure parser
277 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 278
13863333 279The Bison Parser Algorithm
bfa74976 280
742e4900 281* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
282* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
283* Precedence:: Operator precedence works by resolving conflicts.
284* Contextual Precedence:: When an operator's precedence depends on context.
285* Parser States:: The parser is a finite-state-machine with stack.
286* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 287* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 288* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 289* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 290* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
291
292Operator Precedence
293
294* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
295* Using Precedence:: How to specify precedence and associativity.
296* Precedence Only:: How to specify precedence only.
bfa74976
RS
297* Precedence Examples:: How these features are used in the previous example.
298* How Precedence:: How they work.
c28cd5dc 299* Non Operators:: Using precedence for general conflicts.
bfa74976 300
7fceb615
JD
301Tuning LR
302
303* LR Table Construction:: Choose a different construction algorithm.
304* Default Reductions:: Disable default reductions.
305* LAC:: Correct lookahead sets in the parser states.
306* Unreachable States:: Keep unreachable parser states for debugging.
307
bfa74976
RS
308Handling Context Dependencies
309
310* Semantic Tokens:: Token parsing can depend on the semantic context.
311* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
312* Tie-in Recovery:: Lexical tie-ins have implications for how
313 error recovery rules must be written.
314
93dd49ab 315Debugging Your Parser
ec3bc396
AD
316
317* Understanding:: Understanding the structure of your parser.
fc4fdd62 318* Graphviz:: Getting a visual representation of the parser.
9c16d399 319* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
320* Tracing:: Tracing the execution of your parser.
321
93c150b6
AD
322Tracing Your Parser
323
324* Enabling Traces:: Activating run-time trace support
325* Mfcalc Traces:: Extending @code{mfcalc} to support traces
326* The YYPRINT Macro:: Obsolete interface for semantic value reports
327
bfa74976
RS
328Invoking Bison
329
13863333 330* Bison Options:: All the options described in detail,
c827f760 331 in alphabetical order by short options.
bfa74976 332* Option Cross Key:: Alphabetical list of long options.
93dd49ab 333* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 334
8405b70c 335Parsers Written In Other Languages
12545799
AD
336
337* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 338* Java Parsers:: The interface to generate Java parser classes
12545799
AD
339
340C++ Parsers
341
342* C++ Bison Interface:: Asking for C++ parser generation
343* C++ Semantic Values:: %union vs. C++
344* C++ Location Values:: The position and location classes
345* C++ Parser Interface:: Instantiating and running the parser
346* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 347* A Complete C++ Example:: Demonstrating their use
12545799 348
936c88d1
AD
349C++ Location Values
350
351* C++ position:: One point in the source file
352* C++ location:: Two points in the source file
db8ab2be 353* User Defined Location Type:: Required interface for locations
936c88d1 354
12545799
AD
355A Complete C++ Example
356
357* Calc++ --- C++ Calculator:: The specifications
358* Calc++ Parsing Driver:: An active parsing context
359* Calc++ Parser:: A parser class
360* Calc++ Scanner:: A pure C++ Flex scanner
361* Calc++ Top Level:: Conducting the band
362
8405b70c
PB
363Java Parsers
364
f5f419de
DJ
365* Java Bison Interface:: Asking for Java parser generation
366* Java Semantic Values:: %type and %token vs. Java
367* Java Location Values:: The position and location classes
368* Java Parser Interface:: Instantiating and running the parser
369* Java Scanner Interface:: Specifying the scanner for the parser
370* Java Action Features:: Special features for use in actions
aa94def1 371* Java Push Parser Interface:: Instantiating and running the a push parser
f5f419de
DJ
372* Java Differences:: Differences between C/C++ and Java Grammars
373* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 374
d1a1114f
AD
375Frequently Asked Questions
376
f5f419de
DJ
377* Memory Exhausted:: Breaking the Stack Limits
378* How Can I Reset the Parser:: @code{yyparse} Keeps some State
379* Strings are Destroyed:: @code{yylval} Loses Track of Strings
380* Implementing Gotos/Loops:: Control Flow in the Calculator
381* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 382* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
383* I can't build Bison:: Troubleshooting
384* Where can I find help?:: Troubleshouting
385* Bug Reports:: Troublereporting
386* More Languages:: Parsers in C++, Java, and so on
387* Beta Testing:: Experimenting development versions
388* Mailing Lists:: Meeting other Bison users
d1a1114f 389
f2b5126e
PB
390Copying This Manual
391
f5f419de 392* Copying This Manual:: License for copying this manual.
f2b5126e 393
342b8b6e 394@end detailmenu
bfa74976
RS
395@end menu
396
342b8b6e 397@node Introduction
bfa74976
RS
398@unnumbered Introduction
399@cindex introduction
400
6077da58 401@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
402annotated context-free grammar into a deterministic LR or generalized
403LR (GLR) parser employing LALR(1) parser tables. As an experimental
404feature, Bison can also generate IELR(1) or canonical LR(1) parser
405tables. Once you are proficient with Bison, you can use it to develop
406a wide range of language parsers, from those used in simple desk
407calculators to complex programming languages.
408
409Bison is upward compatible with Yacc: all properly-written Yacc
410grammars ought to work with Bison with no change. Anyone familiar
411with Yacc should be able to use Bison with little trouble. You need
412to be fluent in C or C++ programming in order to use Bison or to
413understand this manual. Java is also supported as an experimental
414feature.
415
416We begin with tutorial chapters that explain the basic concepts of
417using Bison and show three explained examples, each building on the
418last. If you don't know Bison or Yacc, start by reading these
419chapters. Reference chapters follow, which describe specific aspects
420of Bison in detail.
bfa74976 421
679e9935
JD
422Bison was written originally by Robert Corbett. Richard Stallman made
423it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
424added multi-character string literals and other features. Since then,
425Bison has grown more robust and evolved many other new features thanks
426to the hard work of a long list of volunteers. For details, see the
427@file{THANKS} and @file{ChangeLog} files included in the Bison
428distribution.
931c7513 429
df1af54c 430This edition corresponds to version @value{VERSION} of Bison.
bfa74976 431
342b8b6e 432@node Conditions
bfa74976
RS
433@unnumbered Conditions for Using Bison
434
193d7c70
PE
435The distribution terms for Bison-generated parsers permit using the
436parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 437permissions applied only when Bison was generating LALR(1)
193d7c70 438parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 439parsers could be used only in programs that were free software.
a31239f1 440
8a4281b9 441The other GNU programming tools, such as the GNU C
c827f760 442compiler, have never
9ecbd125 443had such a requirement. They could always be used for nonfree
a31239f1
RS
444software. The reason Bison was different was not due to a special
445policy decision; it resulted from applying the usual General Public
446License to all of the Bison source code.
447
ff7571c0
JD
448The main output of the Bison utility---the Bison parser implementation
449file---contains a verbatim copy of a sizable piece of Bison, which is
450the code for the parser's implementation. (The actions from your
451grammar are inserted into this implementation at one point, but most
452of the rest of the implementation is not changed.) When we applied
453the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
454the effect was to restrict the use of Bison output to free software.
455
456We didn't change the terms because of sympathy for people who want to
457make software proprietary. @strong{Software should be free.} But we
458concluded that limiting Bison's use to free software was doing little to
459encourage people to make other software free. So we decided to make the
460practical conditions for using Bison match the practical conditions for
8a4281b9 461using the other GNU tools.
bfa74976 462
193d7c70
PE
463This exception applies when Bison is generating code for a parser.
464You can tell whether the exception applies to a Bison output file by
465inspecting the file for text beginning with ``As a special
466exception@dots{}''. The text spells out the exact terms of the
467exception.
262aa8dd 468
f16b0819
PE
469@node Copying
470@unnumbered GNU GENERAL PUBLIC LICENSE
471@include gpl-3.0.texi
bfa74976 472
342b8b6e 473@node Concepts
bfa74976
RS
474@chapter The Concepts of Bison
475
476This chapter introduces many of the basic concepts without which the
477details of Bison will not make sense. If you do not already know how to
478use Bison or Yacc, we suggest you start by reading this chapter carefully.
479
480@menu
f5f419de
DJ
481* Language and Grammar:: Languages and context-free grammars,
482 as mathematical ideas.
483* Grammar in Bison:: How we represent grammars for Bison's sake.
484* Semantic Values:: Each token or syntactic grouping can have
485 a semantic value (the value of an integer,
486 the name of an identifier, etc.).
487* Semantic Actions:: Each rule can have an action containing C code.
488* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 489* Locations:: Overview of location tracking.
f5f419de
DJ
490* Bison Parser:: What are Bison's input and output,
491 how is the output used?
492* Stages:: Stages in writing and running Bison grammars.
493* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
494@end menu
495
342b8b6e 496@node Language and Grammar
bfa74976
RS
497@section Languages and Context-Free Grammars
498
bfa74976
RS
499@cindex context-free grammar
500@cindex grammar, context-free
501In order for Bison to parse a language, it must be described by a
502@dfn{context-free grammar}. This means that you specify one or more
503@dfn{syntactic groupings} and give rules for constructing them from their
504parts. For example, in the C language, one kind of grouping is called an
505`expression'. One rule for making an expression might be, ``An expression
506can be made of a minus sign and another expression''. Another would be,
507``An expression can be an integer''. As you can see, rules are often
508recursive, but there must be at least one rule which leads out of the
509recursion.
510
8a4281b9 511@cindex BNF
bfa74976
RS
512@cindex Backus-Naur form
513The most common formal system for presenting such rules for humans to read
8a4281b9 514is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 515order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
516BNF is a context-free grammar. The input to Bison is
517essentially machine-readable BNF.
bfa74976 518
7fceb615
JD
519@cindex LALR grammars
520@cindex IELR grammars
521@cindex LR grammars
522There are various important subclasses of context-free grammars. Although
523it can handle almost all context-free grammars, Bison is optimized for what
524are called LR(1) grammars. In brief, in these grammars, it must be possible
525to tell how to parse any portion of an input string with just a single token
526of lookahead. For historical reasons, Bison by default is limited by the
527additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
528@xref{Mysterious Conflicts}, for more information on this. As an
529experimental feature, you can escape these additional restrictions by
530requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
531Construction}, to learn how.
bfa74976 532
8a4281b9
JD
533@cindex GLR parsing
534@cindex generalized LR (GLR) parsing
676385e2 535@cindex ambiguous grammars
9d9b8b70 536@cindex nondeterministic parsing
9501dc6e 537
8a4281b9 538Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
539roughly that the next grammar rule to apply at any point in the input is
540uniquely determined by the preceding input and a fixed, finite portion
742e4900 541(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 542grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 543apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 544grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 545lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 546With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
547general context-free grammars, using a technique known as GLR
548parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
549are able to handle any context-free grammar for which the number of
550possible parses of any given string is finite.
676385e2 551
bfa74976
RS
552@cindex symbols (abstract)
553@cindex token
554@cindex syntactic grouping
555@cindex grouping, syntactic
9501dc6e
AD
556In the formal grammatical rules for a language, each kind of syntactic
557unit or grouping is named by a @dfn{symbol}. Those which are built by
558grouping smaller constructs according to grammatical rules are called
bfa74976
RS
559@dfn{nonterminal symbols}; those which can't be subdivided are called
560@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
561corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 562corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
563
564We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
565nonterminal, mean. The tokens of C are identifiers, constants (numeric
566and string), and the various keywords, arithmetic operators and
567punctuation marks. So the terminal symbols of a grammar for C include
568`identifier', `number', `string', plus one symbol for each keyword,
569operator or punctuation mark: `if', `return', `const', `static', `int',
570`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
571(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
572lexicography, not grammar.)
573
574Here is a simple C function subdivided into tokens:
575
9edcd895
AD
576@example
577int /* @r{keyword `int'} */
14d4662b 578square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
579 @r{identifier, close-paren} */
580@{ /* @r{open-brace} */
aa08666d
AD
581 return x * x; /* @r{keyword `return', identifier, asterisk,}
582 @r{identifier, semicolon} */
9edcd895
AD
583@} /* @r{close-brace} */
584@end example
bfa74976
RS
585
586The syntactic groupings of C include the expression, the statement, the
587declaration, and the function definition. These are represented in the
588grammar of C by nonterminal symbols `expression', `statement',
589`declaration' and `function definition'. The full grammar uses dozens of
590additional language constructs, each with its own nonterminal symbol, in
591order to express the meanings of these four. The example above is a
592function definition; it contains one declaration, and one statement. In
593the statement, each @samp{x} is an expression and so is @samp{x * x}.
594
595Each nonterminal symbol must have grammatical rules showing how it is made
596out of simpler constructs. For example, one kind of C statement is the
597@code{return} statement; this would be described with a grammar rule which
598reads informally as follows:
599
600@quotation
601A `statement' can be made of a `return' keyword, an `expression' and a
602`semicolon'.
603@end quotation
604
605@noindent
606There would be many other rules for `statement', one for each kind of
607statement in C.
608
609@cindex start symbol
610One nonterminal symbol must be distinguished as the special one which
611defines a complete utterance in the language. It is called the @dfn{start
612symbol}. In a compiler, this means a complete input program. In the C
613language, the nonterminal symbol `sequence of definitions and declarations'
614plays this role.
615
616For example, @samp{1 + 2} is a valid C expression---a valid part of a C
617program---but it is not valid as an @emph{entire} C program. In the
618context-free grammar of C, this follows from the fact that `expression' is
619not the start symbol.
620
621The Bison parser reads a sequence of tokens as its input, and groups the
622tokens using the grammar rules. If the input is valid, the end result is
623that the entire token sequence reduces to a single grouping whose symbol is
624the grammar's start symbol. If we use a grammar for C, the entire input
625must be a `sequence of definitions and declarations'. If not, the parser
626reports a syntax error.
627
342b8b6e 628@node Grammar in Bison
bfa74976
RS
629@section From Formal Rules to Bison Input
630@cindex Bison grammar
631@cindex grammar, Bison
632@cindex formal grammar
633
634A formal grammar is a mathematical construct. To define the language
635for Bison, you must write a file expressing the grammar in Bison syntax:
636a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
637
638A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 639as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
640in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
641
642The Bison representation for a terminal symbol is also called a @dfn{token
643type}. Token types as well can be represented as C-like identifiers. By
644convention, these identifiers should be upper case to distinguish them from
645nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
646@code{RETURN}. A terminal symbol that stands for a particular keyword in
647the language should be named after that keyword converted to upper case.
648The terminal symbol @code{error} is reserved for error recovery.
931c7513 649@xref{Symbols}.
bfa74976
RS
650
651A terminal symbol can also be represented as a character literal, just like
652a C character constant. You should do this whenever a token is just a
653single character (parenthesis, plus-sign, etc.): use that same character in
654a literal as the terminal symbol for that token.
655
931c7513
RS
656A third way to represent a terminal symbol is with a C string constant
657containing several characters. @xref{Symbols}, for more information.
658
bfa74976
RS
659The grammar rules also have an expression in Bison syntax. For example,
660here is the Bison rule for a C @code{return} statement. The semicolon in
661quotes is a literal character token, representing part of the C syntax for
662the statement; the naked semicolon, and the colon, are Bison punctuation
663used in every rule.
664
665@example
5e9b6624 666stmt: RETURN expr ';' ;
bfa74976
RS
667@end example
668
669@noindent
670@xref{Rules, ,Syntax of Grammar Rules}.
671
342b8b6e 672@node Semantic Values
bfa74976
RS
673@section Semantic Values
674@cindex semantic value
675@cindex value, semantic
676
677A formal grammar selects tokens only by their classifications: for example,
678if a rule mentions the terminal symbol `integer constant', it means that
679@emph{any} integer constant is grammatically valid in that position. The
680precise value of the constant is irrelevant to how to parse the input: if
681@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 682grammatical.
bfa74976
RS
683
684But the precise value is very important for what the input means once it is
685parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6863989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
687has both a token type and a @dfn{semantic value}. @xref{Semantics,
688,Defining Language Semantics},
bfa74976
RS
689for details.
690
691The token type is a terminal symbol defined in the grammar, such as
692@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
693you need to know to decide where the token may validly appear and how to
694group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 695except their types.
bfa74976
RS
696
697The semantic value has all the rest of the information about the
698meaning of the token, such as the value of an integer, or the name of an
699identifier. (A token such as @code{','} which is just punctuation doesn't
700need to have any semantic value.)
701
702For example, an input token might be classified as token type
703@code{INTEGER} and have the semantic value 4. Another input token might
704have the same token type @code{INTEGER} but value 3989. When a grammar
705rule says that @code{INTEGER} is allowed, either of these tokens is
706acceptable because each is an @code{INTEGER}. When the parser accepts the
707token, it keeps track of the token's semantic value.
708
709Each grouping can also have a semantic value as well as its nonterminal
710symbol. For example, in a calculator, an expression typically has a
711semantic value that is a number. In a compiler for a programming
712language, an expression typically has a semantic value that is a tree
713structure describing the meaning of the expression.
714
342b8b6e 715@node Semantic Actions
bfa74976
RS
716@section Semantic Actions
717@cindex semantic actions
718@cindex actions, semantic
719
720In order to be useful, a program must do more than parse input; it must
721also produce some output based on the input. In a Bison grammar, a grammar
722rule can have an @dfn{action} made up of C statements. Each time the
723parser recognizes a match for that rule, the action is executed.
724@xref{Actions}.
13863333 725
bfa74976
RS
726Most of the time, the purpose of an action is to compute the semantic value
727of the whole construct from the semantic values of its parts. For example,
728suppose we have a rule which says an expression can be the sum of two
729expressions. When the parser recognizes such a sum, each of the
730subexpressions has a semantic value which describes how it was built up.
731The action for this rule should create a similar sort of value for the
732newly recognized larger expression.
733
734For example, here is a rule that says an expression can be the sum of
735two subexpressions:
736
737@example
5e9b6624 738expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
739@end example
740
741@noindent
742The action says how to produce the semantic value of the sum expression
743from the values of the two subexpressions.
744
676385e2 745@node GLR Parsers
8a4281b9
JD
746@section Writing GLR Parsers
747@cindex GLR parsing
748@cindex generalized LR (GLR) parsing
676385e2
PH
749@findex %glr-parser
750@cindex conflicts
751@cindex shift/reduce conflicts
fa7e68c3 752@cindex reduce/reduce conflicts
676385e2 753
eb45ef3b 754In some grammars, Bison's deterministic
8a4281b9 755LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
756certain grammar rule at a given point. That is, it may not be able to
757decide (on the basis of the input read so far) which of two possible
758reductions (applications of a grammar rule) applies, or whether to apply
759a reduction or read more of the input and apply a reduction later in the
760input. These are known respectively as @dfn{reduce/reduce} conflicts
761(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
762(@pxref{Shift/Reduce}).
763
8a4281b9 764To use a grammar that is not easily modified to be LR(1), a
9501dc6e 765more general parsing algorithm is sometimes necessary. If you include
676385e2 766@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
767(@pxref{Grammar Outline}), the result is a Generalized LR
768(GLR) parser. These parsers handle Bison grammars that
9501dc6e 769contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 770declarations) identically to deterministic parsers. However, when
9501dc6e 771faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 772GLR parsers use the simple expedient of doing both,
9501dc6e
AD
773effectively cloning the parser to follow both possibilities. Each of
774the resulting parsers can again split, so that at any given time, there
775can be any number of possible parses being explored. The parsers
676385e2
PH
776proceed in lockstep; that is, all of them consume (shift) a given input
777symbol before any of them proceed to the next. Each of the cloned
778parsers eventually meets one of two possible fates: either it runs into
779a parsing error, in which case it simply vanishes, or it merges with
780another parser, because the two of them have reduced the input to an
781identical set of symbols.
782
783During the time that there are multiple parsers, semantic actions are
784recorded, but not performed. When a parser disappears, its recorded
785semantic actions disappear as well, and are never performed. When a
786reduction makes two parsers identical, causing them to merge, Bison
787records both sets of semantic actions. Whenever the last two parsers
788merge, reverting to the single-parser case, Bison resolves all the
789outstanding actions either by precedences given to the grammar rules
790involved, or by performing both actions, and then calling a designated
791user-defined function on the resulting values to produce an arbitrary
792merged result.
793
fa7e68c3 794@menu
8a4281b9
JD
795* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
796* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 797* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 798* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 799* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
800@end menu
801
802@node Simple GLR Parsers
8a4281b9
JD
803@subsection Using GLR on Unambiguous Grammars
804@cindex GLR parsing, unambiguous grammars
805@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
806@findex %glr-parser
807@findex %expect-rr
808@cindex conflicts
809@cindex reduce/reduce conflicts
810@cindex shift/reduce conflicts
811
8a4281b9
JD
812In the simplest cases, you can use the GLR algorithm
813to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 814Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
815
816Consider a problem that
817arises in the declaration of enumerated and subrange types in the
818programming language Pascal. Here are some examples:
819
820@example
821type subrange = lo .. hi;
822type enum = (a, b, c);
823@end example
824
825@noindent
826The original language standard allows only numeric
827literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 828and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
82910206) and many other
830Pascal implementations allow arbitrary expressions there. This gives
831rise to the following situation, containing a superfluous pair of
832parentheses:
833
834@example
835type subrange = (a) .. b;
836@end example
837
838@noindent
839Compare this to the following declaration of an enumerated
840type with only one value:
841
842@example
843type enum = (a);
844@end example
845
846@noindent
847(These declarations are contrived, but they are syntactically
848valid, and more-complicated cases can come up in practical programs.)
849
850These two declarations look identical until the @samp{..} token.
8a4281b9 851With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
852possible to decide between the two forms when the identifier
853@samp{a} is parsed. It is, however, desirable
854for a parser to decide this, since in the latter case
855@samp{a} must become a new identifier to represent the enumeration
856value, while in the former case @samp{a} must be evaluated with its
857current meaning, which may be a constant or even a function call.
858
859You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
860to be resolved later, but this typically requires substantial
861contortions in both semantic actions and large parts of the
862grammar, where the parentheses are nested in the recursive rules for
863expressions.
864
865You might think of using the lexer to distinguish between the two
866forms by returning different tokens for currently defined and
867undefined identifiers. But if these declarations occur in a local
868scope, and @samp{a} is defined in an outer scope, then both forms
869are possible---either locally redefining @samp{a}, or using the
870value of @samp{a} from the outer scope. So this approach cannot
871work.
872
e757bb10 873A simple solution to this problem is to declare the parser to
8a4281b9
JD
874use the GLR algorithm.
875When the GLR parser reaches the critical state, it
fa7e68c3
PE
876merely splits into two branches and pursues both syntax rules
877simultaneously. Sooner or later, one of them runs into a parsing
878error. If there is a @samp{..} token before the next
879@samp{;}, the rule for enumerated types fails since it cannot
880accept @samp{..} anywhere; otherwise, the subrange type rule
881fails since it requires a @samp{..} token. So one of the branches
882fails silently, and the other one continues normally, performing
883all the intermediate actions that were postponed during the split.
884
885If the input is syntactically incorrect, both branches fail and the parser
886reports a syntax error as usual.
887
888The effect of all this is that the parser seems to ``guess'' the
889correct branch to take, or in other words, it seems to use more
8a4281b9
JD
890lookahead than the underlying LR(1) algorithm actually allows
891for. In this example, LR(2) would suffice, but also some cases
892that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 893
8a4281b9 894In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
895and the current Bison parser even takes exponential time and space
896for some grammars. In practice, this rarely happens, and for many
897grammars it is possible to prove that it cannot happen.
898The present example contains only one conflict between two
899rules, and the type-declaration context containing the conflict
900cannot be nested. So the number of
901branches that can exist at any time is limited by the constant 2,
902and the parsing time is still linear.
903
904Here is a Bison grammar corresponding to the example above. It
905parses a vastly simplified form of Pascal type declarations.
906
907@example
908%token TYPE DOTDOT ID
909
910@group
911%left '+' '-'
912%left '*' '/'
913@end group
914
915%%
5e9b6624 916type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
917
918@group
5e9b6624
AD
919type:
920 '(' id_list ')'
921| expr DOTDOT expr
922;
fa7e68c3
PE
923@end group
924
925@group
5e9b6624
AD
926id_list:
927 ID
928| id_list ',' ID
929;
fa7e68c3
PE
930@end group
931
932@group
5e9b6624
AD
933expr:
934 '(' expr ')'
935| expr '+' expr
936| expr '-' expr
937| expr '*' expr
938| expr '/' expr
939| ID
940;
fa7e68c3
PE
941@end group
942@end example
943
8a4281b9 944When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
945about one reduce/reduce conflict. In the conflicting situation the
946parser chooses one of the alternatives, arbitrarily the one
947declared first. Therefore the following correct input is not
948recognized:
949
950@example
951type t = (a) .. b;
952@end example
953
8a4281b9 954The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
955to be silent about the one known reduce/reduce conflict, by adding
956these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
957@samp{%%}):
958
959@example
960%glr-parser
961%expect-rr 1
962@end example
963
964@noindent
965No change in the grammar itself is required. Now the
966parser recognizes all valid declarations, according to the
967limited syntax above, transparently. In fact, the user does not even
968notice when the parser splits.
969
8a4281b9 970So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
971almost without disadvantages. Even in simple cases like this, however,
972there are at least two potential problems to beware. First, always
8a4281b9
JD
973analyze the conflicts reported by Bison to make sure that GLR
974splitting is only done where it is intended. A GLR parser
f8e1c9e5 975splitting inadvertently may cause problems less obvious than an
8a4281b9 976LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
977conflict. Second, consider interactions with the lexer (@pxref{Semantic
978Tokens}) with great care. Since a split parser consumes tokens without
979performing any actions during the split, the lexer cannot obtain
980information via parser actions. Some cases of lexer interactions can be
8a4281b9 981eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
982lexer to the parser. You must check the remaining cases for
983correctness.
984
985In our example, it would be safe for the lexer to return tokens based on
986their current meanings in some symbol table, because no new symbols are
987defined in the middle of a type declaration. Though it is possible for
988a parser to define the enumeration constants as they are parsed, before
989the type declaration is completed, it actually makes no difference since
990they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
991
992@node Merging GLR Parses
8a4281b9
JD
993@subsection Using GLR to Resolve Ambiguities
994@cindex GLR parsing, ambiguous grammars
995@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
996@findex %dprec
997@findex %merge
998@cindex conflicts
999@cindex reduce/reduce conflicts
1000
2a8d363a 1001Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
1002
1003@example
1004%@{
38a92d50
PE
1005 #include <stdio.h>
1006 #define YYSTYPE char const *
1007 int yylex (void);
1008 void yyerror (char const *);
676385e2
PH
1009%@}
1010
1011%token TYPENAME ID
1012
1013%right '='
1014%left '+'
1015
1016%glr-parser
1017
1018%%
1019
5e9b6624 1020prog:
6240346a 1021 %empty
5e9b6624
AD
1022| prog stmt @{ printf ("\n"); @}
1023;
676385e2 1024
5e9b6624
AD
1025stmt:
1026 expr ';' %dprec 1
1027| decl %dprec 2
1028;
676385e2 1029
5e9b6624
AD
1030expr:
1031 ID @{ printf ("%s ", $$); @}
1032| TYPENAME '(' expr ')'
1033 @{ printf ("%s <cast> ", $1); @}
1034| expr '+' expr @{ printf ("+ "); @}
1035| expr '=' expr @{ printf ("= "); @}
1036;
676385e2 1037
5e9b6624
AD
1038decl:
1039 TYPENAME declarator ';'
1040 @{ printf ("%s <declare> ", $1); @}
1041| TYPENAME declarator '=' expr ';'
1042 @{ printf ("%s <init-declare> ", $1); @}
1043;
676385e2 1044
5e9b6624
AD
1045declarator:
1046 ID @{ printf ("\"%s\" ", $1); @}
1047| '(' declarator ')'
1048;
676385e2
PH
1049@end example
1050
1051@noindent
1052This models a problematic part of the C++ grammar---the ambiguity between
1053certain declarations and statements. For example,
1054
1055@example
1056T (x) = y+z;
1057@end example
1058
1059@noindent
1060parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1061(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1062@samp{x} as an @code{ID}).
676385e2 1063Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1064@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1065time it encounters @code{x} in the example above. Since this is a
8a4281b9 1066GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1067each choice of resolving the reduce/reduce conflict.
1068Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1069however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1070ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1071the other reduces @code{stmt : decl}, after which both parsers are in an
1072identical state: they've seen @samp{prog stmt} and have the same unprocessed
1073input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1074
8a4281b9 1075At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1076grammar of how to choose between the competing parses.
1077In the example above, the two @code{%dprec}
e757bb10 1078declarations specify that Bison is to give precedence
fa7e68c3 1079to the parse that interprets the example as a
676385e2
PH
1080@code{decl}, which implies that @code{x} is a declarator.
1081The parser therefore prints
1082
1083@example
fae437e8 1084"x" y z + T <init-declare>
676385e2
PH
1085@end example
1086
fa7e68c3
PE
1087The @code{%dprec} declarations only come into play when more than one
1088parse survives. Consider a different input string for this parser:
676385e2
PH
1089
1090@example
1091T (x) + y;
1092@end example
1093
1094@noindent
8a4281b9 1095This is another example of using GLR to parse an unambiguous
fa7e68c3 1096construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1097Here, there is no ambiguity (this cannot be parsed as a declaration).
1098However, at the time the Bison parser encounters @code{x}, it does not
1099have enough information to resolve the reduce/reduce conflict (again,
1100between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1101case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1102into two, one assuming that @code{x} is an @code{expr}, and the other
1103assuming @code{x} is a @code{declarator}. The second of these parsers
1104then vanishes when it sees @code{+}, and the parser prints
1105
1106@example
fae437e8 1107x T <cast> y +
676385e2
PH
1108@end example
1109
1110Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1111the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1112actions of the two possible parsers, rather than choosing one over the
1113other. To do so, you could change the declaration of @code{stmt} as
1114follows:
1115
1116@example
5e9b6624
AD
1117stmt:
1118 expr ';' %merge <stmtMerge>
1119| decl %merge <stmtMerge>
1120;
676385e2
PH
1121@end example
1122
1123@noindent
676385e2
PH
1124and define the @code{stmtMerge} function as:
1125
1126@example
38a92d50
PE
1127static YYSTYPE
1128stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1129@{
1130 printf ("<OR> ");
1131 return "";
1132@}
1133@end example
1134
1135@noindent
1136with an accompanying forward declaration
1137in the C declarations at the beginning of the file:
1138
1139@example
1140%@{
38a92d50 1141 #define YYSTYPE char const *
676385e2
PH
1142 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1143%@}
1144@end example
1145
1146@noindent
fa7e68c3
PE
1147With these declarations, the resulting parser parses the first example
1148as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1149
1150@example
fae437e8 1151"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1152@end example
1153
fa7e68c3 1154Bison requires that all of the
e757bb10 1155productions that participate in any particular merge have identical
fa7e68c3
PE
1156@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1157and the parser will report an error during any parse that results in
1158the offending merge.
9501dc6e 1159
32c29292
JD
1160@node GLR Semantic Actions
1161@subsection GLR Semantic Actions
1162
8a4281b9 1163The nature of GLR parsing and the structure of the generated
20be2f92
PH
1164parsers give rise to certain restrictions on semantic values and actions.
1165
1166@subsubsection Deferred semantic actions
32c29292
JD
1167@cindex deferred semantic actions
1168By definition, a deferred semantic action is not performed at the same time as
1169the associated reduction.
1170This raises caveats for several Bison features you might use in a semantic
8a4281b9 1171action in a GLR parser.
32c29292
JD
1172
1173@vindex yychar
8a4281b9 1174@cindex GLR parsers and @code{yychar}
32c29292 1175@vindex yylval
8a4281b9 1176@cindex GLR parsers and @code{yylval}
32c29292 1177@vindex yylloc
8a4281b9 1178@cindex GLR parsers and @code{yylloc}
32c29292 1179In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1180the lookahead token present at the time of the associated reduction.
32c29292
JD
1181After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1182you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1183lookahead token's semantic value and location, if any.
32c29292
JD
1184In a nondeferred semantic action, you can also modify any of these variables to
1185influence syntax analysis.
742e4900 1186@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1187
1188@findex yyclearin
8a4281b9 1189@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1190In a deferred semantic action, it's too late to influence syntax analysis.
1191In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1192shallow copies of the values they had at the time of the associated reduction.
1193For this reason alone, modifying them is dangerous.
1194Moreover, the result of modifying them is undefined and subject to change with
1195future versions of Bison.
1196For example, if a semantic action might be deferred, you should never write it
1197to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1198memory referenced by @code{yylval}.
1199
20be2f92 1200@subsubsection YYERROR
32c29292 1201@findex YYERROR
8a4281b9 1202@cindex GLR parsers and @code{YYERROR}
32c29292 1203Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1204(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1205initiate error recovery.
8a4281b9 1206During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1207the same as its effect in a deterministic parser.
411614fa
JM
1208The effect in a deferred action is similar, but the precise point of the
1209error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1210selecting an unspecified stack on which to continue with a syntax error.
1211In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1212parsing, @code{YYERROR} silently prunes
1213the parse that invoked the test.
1214
1215@subsubsection Restrictions on semantic values and locations
8a4281b9 1216GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1217semantic values and location types when using the generated parsers as
1218C++ code.
8710fc41 1219
ca2a6d15
PH
1220@node Semantic Predicates
1221@subsection Controlling a Parse with Arbitrary Predicates
1222@findex %?
8a4281b9 1223@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1224
1225In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1226GLR parsers
ca2a6d15
PH
1227allow you to reject parses on the basis of arbitrary computations executed
1228in user code, without having Bison treat this rejection as an error
1229if there are alternative parses. (This feature is experimental and may
1230evolve. We welcome user feedback.) For example,
1231
c93f22fc
AD
1232@example
1233widget:
5e9b6624
AD
1234 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1235| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1236;
c93f22fc 1237@end example
ca2a6d15
PH
1238
1239@noindent
411614fa 1240is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1241widgets. The clause preceded by @code{%?} is treated like an ordinary
1242action, except that its text is treated as an expression and is always
411614fa 1243evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1244expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1245which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1246to die. In a deterministic parser, it acts like YYERROR.
1247
1248As the example shows, predicates otherwise look like semantic actions, and
1249therefore you must be take them into account when determining the numbers
1250to use for denoting the semantic values of right-hand side symbols.
1251Predicate actions, however, have no defined value, and may not be given
1252labels.
1253
1254There is a subtle difference between semantic predicates and ordinary
1255actions in nondeterministic mode, since the latter are deferred.
411614fa 1256For example, we could try to rewrite the previous example as
ca2a6d15 1257
c93f22fc
AD
1258@example
1259widget:
5e9b6624
AD
1260 @{ if (!new_syntax) YYERROR; @}
1261 "widget" id new_args @{ $$ = f($3, $4); @}
1262| @{ if (new_syntax) YYERROR; @}
1263 "widget" id old_args @{ $$ = f($3, $4); @}
1264;
c93f22fc 1265@end example
ca2a6d15
PH
1266
1267@noindent
1268(reversing the sense of the predicate tests to cause an error when they are
1269false). However, this
1270does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1271have overlapping syntax.
411614fa 1272Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1273a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1274for cases where @code{new_args} and @code{old_args} recognize the same string
1275@emph{before} performing the tests of @code{new_syntax}. It therefore
1276reports an error.
1277
1278Finally, be careful in writing predicates: deferred actions have not been
1279evaluated, so that using them in a predicate will have undefined effects.
1280
fa7e68c3 1281@node Compiler Requirements
8a4281b9 1282@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1283@cindex @code{inline}
8a4281b9 1284@cindex GLR parsers and @code{inline}
fa7e68c3 1285
8a4281b9 1286The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1287later. In addition, they use the @code{inline} keyword, which is not
1288C89, but is C99 and is a common extension in pre-C99 compilers. It is
1289up to the user of these parsers to handle
9501dc6e
AD
1290portability issues. For instance, if using Autoconf and the Autoconf
1291macro @code{AC_C_INLINE}, a mere
1292
1293@example
1294%@{
38a92d50 1295 #include <config.h>
9501dc6e
AD
1296%@}
1297@end example
1298
1299@noindent
1300will suffice. Otherwise, we suggest
1301
1302@example
1303%@{
aaaa2aae
AD
1304 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1305 && ! defined inline)
1306 # define inline
38a92d50 1307 #endif
9501dc6e
AD
1308%@}
1309@end example
676385e2 1310
1769eb30 1311@node Locations
847bf1f5
AD
1312@section Locations
1313@cindex location
95923bd6
AD
1314@cindex textual location
1315@cindex location, textual
847bf1f5
AD
1316
1317Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1318and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1319the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1320Bison provides a mechanism for handling these locations.
1321
72d2299c 1322Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1323associated location, but the type of locations is the same for all tokens
1324and groupings. Moreover, the output parser is equipped with a default data
1325structure for storing locations (@pxref{Tracking Locations}, for more
1326details).
847bf1f5
AD
1327
1328Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1329set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1330is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1331@code{@@3}.
1332
1333When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1334of its left hand side (@pxref{Actions}). In the same way, another default
1335action is used for locations. However, the action for locations is general
847bf1f5 1336enough for most cases, meaning there is usually no need to describe for each
72d2299c 1337rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1338grouping, the default behavior of the output parser is to take the beginning
1339of the first symbol, and the end of the last symbol.
1340
342b8b6e 1341@node Bison Parser
ff7571c0 1342@section Bison Output: the Parser Implementation File
bfa74976
RS
1343@cindex Bison parser
1344@cindex Bison utility
1345@cindex lexical analyzer, purpose
1346@cindex parser
1347
ff7571c0
JD
1348When you run Bison, you give it a Bison grammar file as input. The
1349most important output is a C source file that implements a parser for
1350the language described by the grammar. This parser is called a
1351@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1352implementation file}. Keep in mind that the Bison utility and the
1353Bison parser are two distinct programs: the Bison utility is a program
1354whose output is the Bison parser implementation file that becomes part
1355of your program.
bfa74976
RS
1356
1357The job of the Bison parser is to group tokens into groupings according to
1358the grammar rules---for example, to build identifiers and operators into
1359expressions. As it does this, it runs the actions for the grammar rules it
1360uses.
1361
704a47c4
AD
1362The tokens come from a function called the @dfn{lexical analyzer} that
1363you must supply in some fashion (such as by writing it in C). The Bison
1364parser calls the lexical analyzer each time it wants a new token. It
1365doesn't know what is ``inside'' the tokens (though their semantic values
1366may reflect this). Typically the lexical analyzer makes the tokens by
1367parsing characters of text, but Bison does not depend on this.
1368@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1369
ff7571c0
JD
1370The Bison parser implementation file is C code which defines a
1371function named @code{yyparse} which implements that grammar. This
1372function does not make a complete C program: you must supply some
1373additional functions. One is the lexical analyzer. Another is an
1374error-reporting function which the parser calls to report an error.
1375In addition, a complete C program must start with a function called
1376@code{main}; you have to provide this, and arrange for it to call
1377@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1378C-Language Interface}.
bfa74976 1379
f7ab6a50 1380Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1381write, all symbols defined in the Bison parser implementation file
1382itself begin with @samp{yy} or @samp{YY}. This includes interface
1383functions such as the lexical analyzer function @code{yylex}, the
1384error reporting function @code{yyerror} and the parser function
1385@code{yyparse} itself. This also includes numerous identifiers used
1386for internal purposes. Therefore, you should avoid using C
1387identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1388file except for the ones defined in this manual. Also, you should
1389avoid using the C identifiers @samp{malloc} and @samp{free} for
1390anything other than their usual meanings.
1391
1392In some cases the Bison parser implementation file includes system
1393headers, and in those cases your code should respect the identifiers
1394reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1395@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1396included as needed to declare memory allocators and related types.
1397@code{<libintl.h>} is included if message translation is in use
1398(@pxref{Internationalization}). Other system headers may be included
1399if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1400,Tracing Your Parser}).
7093d0f5 1401
342b8b6e 1402@node Stages
bfa74976
RS
1403@section Stages in Using Bison
1404@cindex stages in using Bison
1405@cindex using Bison
1406
1407The actual language-design process using Bison, from grammar specification
1408to a working compiler or interpreter, has these parts:
1409
1410@enumerate
1411@item
1412Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1413(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1414in the language, describe the action that is to be taken when an
1415instance of that rule is recognized. The action is described by a
1416sequence of C statements.
bfa74976
RS
1417
1418@item
704a47c4
AD
1419Write a lexical analyzer to process input and pass tokens to the parser.
1420The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1421Lexical Analyzer Function @code{yylex}}). It could also be produced
1422using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1423
1424@item
1425Write a controlling function that calls the Bison-produced parser.
1426
1427@item
1428Write error-reporting routines.
1429@end enumerate
1430
1431To turn this source code as written into a runnable program, you
1432must follow these steps:
1433
1434@enumerate
1435@item
1436Run Bison on the grammar to produce the parser.
1437
1438@item
1439Compile the code output by Bison, as well as any other source files.
1440
1441@item
1442Link the object files to produce the finished product.
1443@end enumerate
1444
342b8b6e 1445@node Grammar Layout
bfa74976
RS
1446@section The Overall Layout of a Bison Grammar
1447@cindex grammar file
1448@cindex file format
1449@cindex format of grammar file
1450@cindex layout of Bison grammar
1451
1452The input file for the Bison utility is a @dfn{Bison grammar file}. The
1453general form of a Bison grammar file is as follows:
1454
1455@example
1456%@{
08e49d20 1457@var{Prologue}
bfa74976
RS
1458%@}
1459
1460@var{Bison declarations}
1461
1462%%
1463@var{Grammar rules}
1464%%
08e49d20 1465@var{Epilogue}
bfa74976
RS
1466@end example
1467
1468@noindent
1469The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1470in every Bison grammar file to separate the sections.
1471
72d2299c 1472The prologue may define types and variables used in the actions. You can
342b8b6e 1473also use preprocessor commands to define macros used there, and use
bfa74976 1474@code{#include} to include header files that do any of these things.
38a92d50
PE
1475You need to declare the lexical analyzer @code{yylex} and the error
1476printer @code{yyerror} here, along with any other global identifiers
1477used by the actions in the grammar rules.
bfa74976
RS
1478
1479The Bison declarations declare the names of the terminal and nonterminal
1480symbols, and may also describe operator precedence and the data types of
1481semantic values of various symbols.
1482
1483The grammar rules define how to construct each nonterminal symbol from its
1484parts.
1485
38a92d50
PE
1486The epilogue can contain any code you want to use. Often the
1487definitions of functions declared in the prologue go here. In a
1488simple program, all the rest of the program can go here.
bfa74976 1489
342b8b6e 1490@node Examples
bfa74976
RS
1491@chapter Examples
1492@cindex simple examples
1493@cindex examples, simple
1494
aaaa2aae 1495Now we show and explain several sample programs written using Bison: a
bfa74976 1496reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1497calculator --- later extended to track ``locations'' ---
1498and a multi-function calculator. All
1499produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1500
1501These examples are simple, but Bison grammars for real programming
aa08666d
AD
1502languages are written the same way. You can copy these examples into a
1503source file to try them.
bfa74976
RS
1504
1505@menu
f5f419de
DJ
1506* RPN Calc:: Reverse polish notation calculator;
1507 a first example with no operator precedence.
1508* Infix Calc:: Infix (algebraic) notation calculator.
1509 Operator precedence is introduced.
bfa74976 1510* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1511* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1512* Multi-function Calc:: Calculator with memory and trig functions.
1513 It uses multiple data-types for semantic values.
1514* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1515@end menu
1516
342b8b6e 1517@node RPN Calc
bfa74976
RS
1518@section Reverse Polish Notation Calculator
1519@cindex reverse polish notation
1520@cindex polish notation calculator
1521@cindex @code{rpcalc}
1522@cindex calculator, simple
1523
1524The first example is that of a simple double-precision @dfn{reverse polish
1525notation} calculator (a calculator using postfix operators). This example
1526provides a good starting point, since operator precedence is not an issue.
1527The second example will illustrate how operator precedence is handled.
1528
1529The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1530@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1531
1532@menu
f5f419de
DJ
1533* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1534* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1535* Rpcalc Lexer:: The lexical analyzer.
1536* Rpcalc Main:: The controlling function.
1537* Rpcalc Error:: The error reporting function.
1538* Rpcalc Generate:: Running Bison on the grammar file.
1539* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1540@end menu
1541
f5f419de 1542@node Rpcalc Declarations
bfa74976
RS
1543@subsection Declarations for @code{rpcalc}
1544
1545Here are the C and Bison declarations for the reverse polish notation
1546calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1547
24ec0837 1548@comment file: rpcalc.y
bfa74976 1549@example
72d2299c 1550/* Reverse polish notation calculator. */
bfa74976 1551
efbc95a7 1552@group
bfa74976 1553%@{
24ec0837 1554 #include <stdio.h>
38a92d50
PE
1555 #include <math.h>
1556 int yylex (void);
1557 void yyerror (char const *);
bfa74976 1558%@}
efbc95a7 1559@end group
bfa74976 1560
435575cb 1561%define api.value.type @{double@}
bfa74976
RS
1562%token NUM
1563
72d2299c 1564%% /* Grammar rules and actions follow. */
bfa74976
RS
1565@end example
1566
75f5aaea 1567The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1568preprocessor directives and two forward declarations.
bfa74976 1569
bfa74976
RS
1570The @code{#include} directive is used to declare the exponentiation
1571function @code{pow}.
1572
38a92d50
PE
1573The forward declarations for @code{yylex} and @code{yyerror} are
1574needed because the C language requires that functions be declared
1575before they are used. These functions will be defined in the
1576epilogue, but the parser calls them so they must be declared in the
1577prologue.
1578
21e3a2b5
AD
1579The second section, Bison declarations, provides information to Bison about
1580the tokens and their types (@pxref{Bison Declarations, ,The Bison
1581Declarations Section}).
1582
1583The @code{%define} directive defines the variable @code{api.value.type},
1584thus specifying the C data type for semantic values of both tokens and
1585groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The Bison
1586parser will use whatever type @code{api.value.type} is defined as; if you
1587don't define it, @code{int} is the default. Because we specify
435575cb
AD
1588@samp{@{double@}}, each token and each expression has an associated value,
1589which is a floating point number. C code can use @code{YYSTYPE} to refer to
1590the value @code{api.value.type}.
21e3a2b5
AD
1591
1592Each terminal symbol that is not a single-character literal must be
1593declared. (Single-character literals normally don't need to be declared.)
1594In this example, all the arithmetic operators are designated by
1595single-character literals, so the only terminal symbol that needs to be
1596declared is @code{NUM}, the token type for numeric constants.
bfa74976 1597
342b8b6e 1598@node Rpcalc Rules
bfa74976
RS
1599@subsection Grammar Rules for @code{rpcalc}
1600
1601Here are the grammar rules for the reverse polish notation calculator.
1602
24ec0837 1603@comment file: rpcalc.y
bfa74976 1604@example
aaaa2aae 1605@group
5e9b6624 1606input:
6240346a 1607 %empty
5e9b6624 1608| input line
bfa74976 1609;
aaaa2aae 1610@end group
bfa74976 1611
aaaa2aae 1612@group
5e9b6624
AD
1613line:
1614 '\n'
1615| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1616;
aaaa2aae 1617@end group
bfa74976 1618
aaaa2aae 1619@group
5e9b6624
AD
1620exp:
1621 NUM @{ $$ = $1; @}
1622| exp exp '+' @{ $$ = $1 + $2; @}
1623| exp exp '-' @{ $$ = $1 - $2; @}
1624| exp exp '*' @{ $$ = $1 * $2; @}
1625| exp exp '/' @{ $$ = $1 / $2; @}
1626| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1627| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1628;
aaaa2aae 1629@end group
bfa74976
RS
1630%%
1631@end example
1632
1633The groupings of the rpcalc ``language'' defined here are the expression
1634(given the name @code{exp}), the line of input (@code{line}), and the
1635complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1636symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1637which is read as ``or''. The following sections explain what these rules
1638mean.
1639
1640The semantics of the language is determined by the actions taken when a
1641grouping is recognized. The actions are the C code that appears inside
1642braces. @xref{Actions}.
1643
1644You must specify these actions in C, but Bison provides the means for
1645passing semantic values between the rules. In each action, the
1646pseudo-variable @code{$$} stands for the semantic value for the grouping
1647that the rule is going to construct. Assigning a value to @code{$$} is the
1648main job of most actions. The semantic values of the components of the
1649rule are referred to as @code{$1}, @code{$2}, and so on.
1650
1651@menu
24ec0837
AD
1652* Rpcalc Input:: Explanation of the @code{input} nonterminal
1653* Rpcalc Line:: Explanation of the @code{line} nonterminal
1654* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1655@end menu
1656
342b8b6e 1657@node Rpcalc Input
bfa74976
RS
1658@subsubsection Explanation of @code{input}
1659
1660Consider the definition of @code{input}:
1661
1662@example
5e9b6624 1663input:
6240346a 1664 %empty
5e9b6624 1665| input line
bfa74976
RS
1666;
1667@end example
1668
1669This definition reads as follows: ``A complete input is either an empty
1670string, or a complete input followed by an input line''. Notice that
1671``complete input'' is defined in terms of itself. This definition is said
1672to be @dfn{left recursive} since @code{input} appears always as the
1673leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1674
1675The first alternative is empty because there are no symbols between the
1676colon and the first @samp{|}; this means that @code{input} can match an
1677empty string of input (no tokens). We write the rules this way because it
1678is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
6240346a
AD
1679It's conventional to put an empty alternative first and to use the
1680(optional) @code{%empty} directive, or to write the comment @samp{/* empty
1681*/} in it (@pxref{Empty Rules}).
bfa74976
RS
1682
1683The second alternate rule (@code{input line}) handles all nontrivial input.
1684It means, ``After reading any number of lines, read one more line if
1685possible.'' The left recursion makes this rule into a loop. Since the
1686first alternative matches empty input, the loop can be executed zero or
1687more times.
1688
1689The parser function @code{yyparse} continues to process input until a
1690grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1691input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1692
342b8b6e 1693@node Rpcalc Line
bfa74976
RS
1694@subsubsection Explanation of @code{line}
1695
1696Now consider the definition of @code{line}:
1697
1698@example
5e9b6624
AD
1699line:
1700 '\n'
1701| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1702;
1703@end example
1704
1705The first alternative is a token which is a newline character; this means
1706that rpcalc accepts a blank line (and ignores it, since there is no
1707action). The second alternative is an expression followed by a newline.
1708This is the alternative that makes rpcalc useful. The semantic value of
1709the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1710question is the first symbol in the alternative. The action prints this
1711value, which is the result of the computation the user asked for.
1712
1713This action is unusual because it does not assign a value to @code{$$}. As
1714a consequence, the semantic value associated with the @code{line} is
1715uninitialized (its value will be unpredictable). This would be a bug if
1716that value were ever used, but we don't use it: once rpcalc has printed the
1717value of the user's input line, that value is no longer needed.
1718
342b8b6e 1719@node Rpcalc Expr
bfa74976
RS
1720@subsubsection Explanation of @code{expr}
1721
1722The @code{exp} grouping has several rules, one for each kind of expression.
1723The first rule handles the simplest expressions: those that are just numbers.
1724The second handles an addition-expression, which looks like two expressions
1725followed by a plus-sign. The third handles subtraction, and so on.
1726
1727@example
5e9b6624
AD
1728exp:
1729 NUM
1730| exp exp '+' @{ $$ = $1 + $2; @}
1731| exp exp '-' @{ $$ = $1 - $2; @}
1732@dots{}
1733;
bfa74976
RS
1734@end example
1735
1736We have used @samp{|} to join all the rules for @code{exp}, but we could
1737equally well have written them separately:
1738
1739@example
5e9b6624
AD
1740exp: NUM ;
1741exp: exp exp '+' @{ $$ = $1 + $2; @};
1742exp: exp exp '-' @{ $$ = $1 - $2; @};
1743@dots{}
bfa74976
RS
1744@end example
1745
1746Most of the rules have actions that compute the value of the expression in
1747terms of the value of its parts. For example, in the rule for addition,
1748@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1749the second one. The third component, @code{'+'}, has no meaningful
1750associated semantic value, but if it had one you could refer to it as
1751@code{$3}. When @code{yyparse} recognizes a sum expression using this
1752rule, the sum of the two subexpressions' values is produced as the value of
1753the entire expression. @xref{Actions}.
1754
1755You don't have to give an action for every rule. When a rule has no
1756action, Bison by default copies the value of @code{$1} into @code{$$}.
1757This is what happens in the first rule (the one that uses @code{NUM}).
1758
1759The formatting shown here is the recommended convention, but Bison does
72d2299c 1760not require it. You can add or change white space as much as you wish.
bfa74976
RS
1761For example, this:
1762
1763@example
5e9b6624 1764exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1765@end example
1766
1767@noindent
1768means the same thing as this:
1769
1770@example
5e9b6624
AD
1771exp:
1772 NUM
1773| exp exp '+' @{ $$ = $1 + $2; @}
1774| @dots{}
99a9344e 1775;
bfa74976
RS
1776@end example
1777
1778@noindent
1779The latter, however, is much more readable.
1780
342b8b6e 1781@node Rpcalc Lexer
bfa74976
RS
1782@subsection The @code{rpcalc} Lexical Analyzer
1783@cindex writing a lexical analyzer
1784@cindex lexical analyzer, writing
1785
704a47c4
AD
1786The lexical analyzer's job is low-level parsing: converting characters
1787or sequences of characters into tokens. The Bison parser gets its
1788tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1789Analyzer Function @code{yylex}}.
bfa74976 1790
8a4281b9 1791Only a simple lexical analyzer is needed for the RPN
c827f760 1792calculator. This
bfa74976
RS
1793lexical analyzer skips blanks and tabs, then reads in numbers as
1794@code{double} and returns them as @code{NUM} tokens. Any other character
1795that isn't part of a number is a separate token. Note that the token-code
1796for such a single-character token is the character itself.
1797
1798The return value of the lexical analyzer function is a numeric code which
1799represents a token type. The same text used in Bison rules to stand for
1800this token type is also a C expression for the numeric code for the type.
1801This works in two ways. If the token type is a character literal, then its
e966383b 1802numeric code is that of the character; you can use the same
bfa74976
RS
1803character literal in the lexical analyzer to express the number. If the
1804token type is an identifier, that identifier is defined by Bison as a C
1805macro whose definition is the appropriate number. In this example,
1806therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1807
1964ad8c
AD
1808The semantic value of the token (if it has one) is stored into the
1809global variable @code{yylval}, which is where the Bison parser will look
21e3a2b5
AD
1810for it. (The C data type of @code{yylval} is @code{YYSTYPE}, whose value
1811was defined at the beginning of the grammar via @samp{%define api.value.type
435575cb 1812@{double@}}; @pxref{Rpcalc Declarations,,Declarations for @code{rpcalc}}.)
bfa74976 1813
72d2299c
PE
1814A token type code of zero is returned if the end-of-input is encountered.
1815(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1816
1817Here is the code for the lexical analyzer:
1818
24ec0837 1819@comment file: rpcalc.y
bfa74976
RS
1820@example
1821@group
72d2299c 1822/* The lexical analyzer returns a double floating point
e966383b 1823 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1824 of the character read if not a number. It skips all blanks
1825 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1826
1827#include <ctype.h>
1828@end group
1829
1830@group
13863333
AD
1831int
1832yylex (void)
bfa74976
RS
1833@{
1834 int c;
1835
72d2299c 1836 /* Skip white space. */
13863333 1837 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1838 continue;
bfa74976
RS
1839@end group
1840@group
72d2299c 1841 /* Process numbers. */
13863333 1842 if (c == '.' || isdigit (c))
bfa74976
RS
1843 @{
1844 ungetc (c, stdin);
1845 scanf ("%lf", &yylval);
1846 return NUM;
1847 @}
1848@end group
1849@group
72d2299c 1850 /* Return end-of-input. */
13863333 1851 if (c == EOF)
bfa74976 1852 return 0;
72d2299c 1853 /* Return a single char. */
13863333 1854 return c;
bfa74976
RS
1855@}
1856@end group
1857@end example
1858
342b8b6e 1859@node Rpcalc Main
bfa74976
RS
1860@subsection The Controlling Function
1861@cindex controlling function
1862@cindex main function in simple example
1863
1864In keeping with the spirit of this example, the controlling function is
1865kept to the bare minimum. The only requirement is that it call
1866@code{yyparse} to start the process of parsing.
1867
24ec0837 1868@comment file: rpcalc.y
bfa74976
RS
1869@example
1870@group
13863333
AD
1871int
1872main (void)
bfa74976 1873@{
13863333 1874 return yyparse ();
bfa74976
RS
1875@}
1876@end group
1877@end example
1878
342b8b6e 1879@node Rpcalc Error
bfa74976
RS
1880@subsection The Error Reporting Routine
1881@cindex error reporting routine
1882
1883When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1884function @code{yyerror} to print an error message (usually but not
6e649e65 1885always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1886@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1887here is the definition we will use:
bfa74976 1888
24ec0837 1889@comment file: rpcalc.y
bfa74976 1890@example
bfa74976
RS
1891#include <stdio.h>
1892
aaaa2aae 1893@group
38a92d50 1894/* Called by yyparse on error. */
13863333 1895void
38a92d50 1896yyerror (char const *s)
bfa74976 1897@{
4e03e201 1898 fprintf (stderr, "%s\n", s);
bfa74976
RS
1899@}
1900@end group
1901@end example
1902
1903After @code{yyerror} returns, the Bison parser may recover from the error
1904and continue parsing if the grammar contains a suitable error rule
1905(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1906have not written any error rules in this example, so any invalid input will
1907cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1908real calculator, but it is adequate for the first example.
bfa74976 1909
f5f419de 1910@node Rpcalc Generate
bfa74976
RS
1911@subsection Running Bison to Make the Parser
1912@cindex running Bison (introduction)
1913
ceed8467
AD
1914Before running Bison to produce a parser, we need to decide how to
1915arrange all the source code in one or more source files. For such a
ff7571c0
JD
1916simple example, the easiest thing is to put everything in one file,
1917the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1918@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1919(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1920
1921For a large project, you would probably have several source files, and use
1922@code{make} to arrange to recompile them.
1923
ff7571c0
JD
1924With all the source in the grammar file, you use the following command
1925to convert it into a parser implementation file:
bfa74976
RS
1926
1927@example
fa4d969f 1928bison @var{file}.y
bfa74976
RS
1929@end example
1930
1931@noindent
ff7571c0
JD
1932In this example, the grammar file is called @file{rpcalc.y} (for
1933``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1934implementation file named @file{@var{file}.tab.c}, removing the
1935@samp{.y} from the grammar file name. The parser implementation file
1936contains the source code for @code{yyparse}. The additional functions
1937in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1938copied verbatim to the parser implementation file.
bfa74976 1939
342b8b6e 1940@node Rpcalc Compile
ff7571c0 1941@subsection Compiling the Parser Implementation File
bfa74976
RS
1942@cindex compiling the parser
1943
ff7571c0 1944Here is how to compile and run the parser implementation file:
bfa74976
RS
1945
1946@example
1947@group
1948# @r{List files in current directory.}
9edcd895 1949$ @kbd{ls}
bfa74976
RS
1950rpcalc.tab.c rpcalc.y
1951@end group
1952
1953@group
1954# @r{Compile the Bison parser.}
1955# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1956$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1957@end group
1958
1959@group
1960# @r{List files again.}
9edcd895 1961$ @kbd{ls}
bfa74976
RS
1962rpcalc rpcalc.tab.c rpcalc.y
1963@end group
1964@end example
1965
1966The file @file{rpcalc} now contains the executable code. Here is an
1967example session using @code{rpcalc}.
1968
1969@example
9edcd895
AD
1970$ @kbd{rpcalc}
1971@kbd{4 9 +}
24ec0837 1972@result{} 13
9edcd895 1973@kbd{3 7 + 3 4 5 *+-}
24ec0837 1974@result{} -13
9edcd895 1975@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1976@result{} 13
9edcd895 1977@kbd{5 6 / 4 n +}
24ec0837 1978@result{} -3.166666667
9edcd895 1979@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1980@result{} 81
9edcd895
AD
1981@kbd{^D} @r{End-of-file indicator}
1982$
bfa74976
RS
1983@end example
1984
342b8b6e 1985@node Infix Calc
bfa74976
RS
1986@section Infix Notation Calculator: @code{calc}
1987@cindex infix notation calculator
1988@cindex @code{calc}
1989@cindex calculator, infix notation
1990
1991We now modify rpcalc to handle infix operators instead of postfix. Infix
1992notation involves the concept of operator precedence and the need for
1993parentheses nested to arbitrary depth. Here is the Bison code for
1994@file{calc.y}, an infix desk-top calculator.
1995
1996@example
38a92d50 1997/* Infix notation calculator. */
bfa74976 1998
aaaa2aae 1999@group
bfa74976 2000%@{
38a92d50
PE
2001 #include <math.h>
2002 #include <stdio.h>
2003 int yylex (void);
2004 void yyerror (char const *);
bfa74976 2005%@}
aaaa2aae 2006@end group
bfa74976 2007
aaaa2aae 2008@group
38a92d50 2009/* Bison declarations. */
435575cb 2010%define api.value.type @{double@}
bfa74976
RS
2011%token NUM
2012%left '-' '+'
2013%left '*' '/'
d78f0ac9
AD
2014%precedence NEG /* negation--unary minus */
2015%right '^' /* exponentiation */
aaaa2aae 2016@end group
bfa74976 2017
38a92d50 2018%% /* The grammar follows. */
aaaa2aae 2019@group
5e9b6624 2020input:
6240346a 2021 %empty
5e9b6624 2022| input line
bfa74976 2023;
aaaa2aae 2024@end group
bfa74976 2025
aaaa2aae 2026@group
5e9b6624
AD
2027line:
2028 '\n'
2029| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2030;
aaaa2aae 2031@end group
bfa74976 2032
aaaa2aae 2033@group
5e9b6624
AD
2034exp:
2035 NUM @{ $$ = $1; @}
2036| exp '+' exp @{ $$ = $1 + $3; @}
2037| exp '-' exp @{ $$ = $1 - $3; @}
2038| exp '*' exp @{ $$ = $1 * $3; @}
2039| exp '/' exp @{ $$ = $1 / $3; @}
2040| '-' exp %prec NEG @{ $$ = -$2; @}
2041| exp '^' exp @{ $$ = pow ($1, $3); @}
2042| '(' exp ')' @{ $$ = $2; @}
bfa74976 2043;
aaaa2aae 2044@end group
bfa74976
RS
2045%%
2046@end example
2047
2048@noindent
ceed8467
AD
2049The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2050same as before.
bfa74976
RS
2051
2052There are two important new features shown in this code.
2053
2054In the second section (Bison declarations), @code{%left} declares token
2055types and says they are left-associative operators. The declarations
2056@code{%left} and @code{%right} (right associativity) take the place of
2057@code{%token} which is used to declare a token type name without
d78f0ac9 2058associativity/precedence. (These tokens are single-character literals, which
bfa74976 2059ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2060the associativity/precedence.)
bfa74976
RS
2061
2062Operator precedence is determined by the line ordering of the
2063declarations; the higher the line number of the declaration (lower on
2064the page or screen), the higher the precedence. Hence, exponentiation
2065has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2066by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2067only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2068Precedence}.
bfa74976 2069
704a47c4
AD
2070The other important new feature is the @code{%prec} in the grammar
2071section for the unary minus operator. The @code{%prec} simply instructs
2072Bison that the rule @samp{| '-' exp} has the same precedence as
2073@code{NEG}---in this case the next-to-highest. @xref{Contextual
2074Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2075
2076Here is a sample run of @file{calc.y}:
2077
2078@need 500
2079@example
9edcd895
AD
2080$ @kbd{calc}
2081@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20826.880952381
9edcd895 2083@kbd{-56 + 2}
bfa74976 2084-54
9edcd895 2085@kbd{3 ^ 2}
bfa74976
RS
20869
2087@end example
2088
342b8b6e 2089@node Simple Error Recovery
bfa74976
RS
2090@section Simple Error Recovery
2091@cindex error recovery, simple
2092
2093Up to this point, this manual has not addressed the issue of @dfn{error
2094recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2095error. All we have handled is error reporting with @code{yyerror}.
2096Recall that by default @code{yyparse} returns after calling
2097@code{yyerror}. This means that an erroneous input line causes the
2098calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2099
2100The Bison language itself includes the reserved word @code{error}, which
2101may be included in the grammar rules. In the example below it has
2102been added to one of the alternatives for @code{line}:
2103
2104@example
2105@group
5e9b6624
AD
2106line:
2107 '\n'
2108| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2109| error '\n' @{ yyerrok; @}
bfa74976
RS
2110;
2111@end group
2112@end example
2113
ceed8467 2114This addition to the grammar allows for simple error recovery in the
6e649e65 2115event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2116read, the error will be recognized by the third rule for @code{line},
2117and parsing will continue. (The @code{yyerror} function is still called
2118upon to print its message as well.) The action executes the statement
2119@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2120that error recovery is complete (@pxref{Error Recovery}). Note the
2121difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2122misprint.
bfa74976
RS
2123
2124This form of error recovery deals with syntax errors. There are other
2125kinds of errors; for example, division by zero, which raises an exception
2126signal that is normally fatal. A real calculator program must handle this
2127signal and use @code{longjmp} to return to @code{main} and resume parsing
2128input lines; it would also have to discard the rest of the current line of
2129input. We won't discuss this issue further because it is not specific to
2130Bison programs.
2131
342b8b6e
AD
2132@node Location Tracking Calc
2133@section Location Tracking Calculator: @code{ltcalc}
2134@cindex location tracking calculator
2135@cindex @code{ltcalc}
2136@cindex calculator, location tracking
2137
9edcd895
AD
2138This example extends the infix notation calculator with location
2139tracking. This feature will be used to improve the error messages. For
2140the sake of clarity, this example is a simple integer calculator, since
2141most of the work needed to use locations will be done in the lexical
72d2299c 2142analyzer.
342b8b6e
AD
2143
2144@menu
f5f419de
DJ
2145* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2146* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2147* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2148@end menu
2149
f5f419de 2150@node Ltcalc Declarations
342b8b6e
AD
2151@subsection Declarations for @code{ltcalc}
2152
9edcd895
AD
2153The C and Bison declarations for the location tracking calculator are
2154the same as the declarations for the infix notation calculator.
342b8b6e
AD
2155
2156@example
2157/* Location tracking calculator. */
2158
2159%@{
38a92d50
PE
2160 #include <math.h>
2161 int yylex (void);
2162 void yyerror (char const *);
342b8b6e
AD
2163%@}
2164
2165/* Bison declarations. */
aba47f56 2166%define api.value.type @{int@}
342b8b6e
AD
2167%token NUM
2168
2169%left '-' '+'
2170%left '*' '/'
d78f0ac9 2171%precedence NEG
342b8b6e
AD
2172%right '^'
2173
38a92d50 2174%% /* The grammar follows. */
342b8b6e
AD
2175@end example
2176
9edcd895
AD
2177@noindent
2178Note there are no declarations specific to locations. Defining a data
2179type for storing locations is not needed: we will use the type provided
2180by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2181four member structure with the following integer fields:
2182@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2183@code{last_column}. By conventions, and in accordance with the GNU
2184Coding Standards and common practice, the line and column count both
2185start at 1.
342b8b6e
AD
2186
2187@node Ltcalc Rules
2188@subsection Grammar Rules for @code{ltcalc}
2189
9edcd895
AD
2190Whether handling locations or not has no effect on the syntax of your
2191language. Therefore, grammar rules for this example will be very close
2192to those of the previous example: we will only modify them to benefit
2193from the new information.
342b8b6e 2194
9edcd895
AD
2195Here, we will use locations to report divisions by zero, and locate the
2196wrong expressions or subexpressions.
342b8b6e
AD
2197
2198@example
2199@group
5e9b6624 2200input:
6240346a 2201 %empty
5e9b6624 2202| input line
342b8b6e
AD
2203;
2204@end group
2205
2206@group
5e9b6624
AD
2207line:
2208 '\n'
2209| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2210;
2211@end group
2212
2213@group
5e9b6624
AD
2214exp:
2215 NUM @{ $$ = $1; @}
2216| exp '+' exp @{ $$ = $1 + $3; @}
2217| exp '-' exp @{ $$ = $1 - $3; @}
2218| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2219@end group
342b8b6e 2220@group
5e9b6624
AD
2221| exp '/' exp
2222 @{
2223 if ($3)
2224 $$ = $1 / $3;
2225 else
2226 @{
2227 $$ = 1;
2228 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2229 @@3.first_line, @@3.first_column,
2230 @@3.last_line, @@3.last_column);
2231 @}
2232 @}
342b8b6e
AD
2233@end group
2234@group
5e9b6624
AD
2235| '-' exp %prec NEG @{ $$ = -$2; @}
2236| exp '^' exp @{ $$ = pow ($1, $3); @}
2237| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2238@end group
2239@end example
2240
2241This code shows how to reach locations inside of semantic actions, by
2242using the pseudo-variables @code{@@@var{n}} for rule components, and the
2243pseudo-variable @code{@@$} for groupings.
2244
9edcd895
AD
2245We don't need to assign a value to @code{@@$}: the output parser does it
2246automatically. By default, before executing the C code of each action,
2247@code{@@$} is set to range from the beginning of @code{@@1} to the end
2248of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2249can be redefined (@pxref{Location Default Action, , Default Action for
2250Locations}), and for very specific rules, @code{@@$} can be computed by
2251hand.
342b8b6e
AD
2252
2253@node Ltcalc Lexer
2254@subsection The @code{ltcalc} Lexical Analyzer.
2255
9edcd895 2256Until now, we relied on Bison's defaults to enable location
72d2299c 2257tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2258able to feed the parser with the token locations, as it already does for
2259semantic values.
342b8b6e 2260
9edcd895
AD
2261To this end, we must take into account every single character of the
2262input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2263
2264@example
2265@group
2266int
2267yylex (void)
2268@{
2269 int c;
18b519c0 2270@end group
342b8b6e 2271
18b519c0 2272@group
72d2299c 2273 /* Skip white space. */
342b8b6e
AD
2274 while ((c = getchar ()) == ' ' || c == '\t')
2275 ++yylloc.last_column;
18b519c0 2276@end group
342b8b6e 2277
18b519c0 2278@group
72d2299c 2279 /* Step. */
342b8b6e
AD
2280 yylloc.first_line = yylloc.last_line;
2281 yylloc.first_column = yylloc.last_column;
2282@end group
2283
2284@group
72d2299c 2285 /* Process numbers. */
342b8b6e
AD
2286 if (isdigit (c))
2287 @{
2288 yylval = c - '0';
2289 ++yylloc.last_column;
2290 while (isdigit (c = getchar ()))
2291 @{
2292 ++yylloc.last_column;
2293 yylval = yylval * 10 + c - '0';
2294 @}
2295 ungetc (c, stdin);
2296 return NUM;
2297 @}
2298@end group
2299
72d2299c 2300 /* Return end-of-input. */
342b8b6e
AD
2301 if (c == EOF)
2302 return 0;
2303
d4fca427 2304@group
72d2299c 2305 /* Return a single char, and update location. */
342b8b6e
AD
2306 if (c == '\n')
2307 @{
2308 ++yylloc.last_line;
2309 yylloc.last_column = 0;
2310 @}
2311 else
2312 ++yylloc.last_column;
2313 return c;
2314@}
d4fca427 2315@end group
342b8b6e
AD
2316@end example
2317
9edcd895
AD
2318Basically, the lexical analyzer performs the same processing as before:
2319it skips blanks and tabs, and reads numbers or single-character tokens.
2320In addition, it updates @code{yylloc}, the global variable (of type
2321@code{YYLTYPE}) containing the token's location.
342b8b6e 2322
9edcd895 2323Now, each time this function returns a token, the parser has its number
72d2299c 2324as well as its semantic value, and its location in the text. The last
9edcd895
AD
2325needed change is to initialize @code{yylloc}, for example in the
2326controlling function:
342b8b6e
AD
2327
2328@example
9edcd895 2329@group
342b8b6e
AD
2330int
2331main (void)
2332@{
2333 yylloc.first_line = yylloc.last_line = 1;
2334 yylloc.first_column = yylloc.last_column = 0;
2335 return yyparse ();
2336@}
9edcd895 2337@end group
342b8b6e
AD
2338@end example
2339
9edcd895
AD
2340Remember that computing locations is not a matter of syntax. Every
2341character must be associated to a location update, whether it is in
2342valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2343
2344@node Multi-function Calc
bfa74976
RS
2345@section Multi-Function Calculator: @code{mfcalc}
2346@cindex multi-function calculator
2347@cindex @code{mfcalc}
2348@cindex calculator, multi-function
2349
2350Now that the basics of Bison have been discussed, it is time to move on to
2351a more advanced problem. The above calculators provided only five
2352functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2353be nice to have a calculator that provides other mathematical functions such
2354as @code{sin}, @code{cos}, etc.
2355
2356It is easy to add new operators to the infix calculator as long as they are
2357only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2358back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2359adding a new operator. But we want something more flexible: built-in
2360functions whose syntax has this form:
2361
2362@example
2363@var{function_name} (@var{argument})
2364@end example
2365
2366@noindent
2367At the same time, we will add memory to the calculator, by allowing you
2368to create named variables, store values in them, and use them later.
2369Here is a sample session with the multi-function calculator:
2370
2371@example
d4fca427 2372@group
9edcd895
AD
2373$ @kbd{mfcalc}
2374@kbd{pi = 3.141592653589}
f9c75dd0 2375@result{} 3.1415926536
d4fca427
AD
2376@end group
2377@group
9edcd895 2378@kbd{sin(pi)}
f9c75dd0 2379@result{} 0.0000000000
d4fca427 2380@end group
9edcd895 2381@kbd{alpha = beta1 = 2.3}
f9c75dd0 2382@result{} 2.3000000000
9edcd895 2383@kbd{alpha}
f9c75dd0 2384@result{} 2.3000000000
9edcd895 2385@kbd{ln(alpha)}
f9c75dd0 2386@result{} 0.8329091229
9edcd895 2387@kbd{exp(ln(beta1))}
f9c75dd0 2388@result{} 2.3000000000
9edcd895 2389$
bfa74976
RS
2390@end example
2391
2392Note that multiple assignment and nested function calls are permitted.
2393
2394@menu
f5f419de
DJ
2395* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2396* Mfcalc Rules:: Grammar rules for the calculator.
2397* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2398* Mfcalc Lexer:: The lexical analyzer.
2399* Mfcalc Main:: The controlling function.
bfa74976
RS
2400@end menu
2401
f5f419de 2402@node Mfcalc Declarations
bfa74976
RS
2403@subsection Declarations for @code{mfcalc}
2404
2405Here are the C and Bison declarations for the multi-function calculator.
2406
93c150b6 2407@comment file: mfcalc.y: 1
c93f22fc 2408@example
18b519c0 2409@group
bfa74976 2410%@{
f9c75dd0 2411 #include <stdio.h> /* For printf, etc. */
578e3413 2412 #include <math.h> /* For pow, used in the grammar. */
4c9b8f13 2413 #include "calc.h" /* Contains definition of 'symrec'. */
38a92d50
PE
2414 int yylex (void);
2415 void yyerror (char const *);
bfa74976 2416%@}
18b519c0 2417@end group
93c150b6 2418
90b89dad
AD
2419%define api.value.type union /* Generate YYSTYPE from these types: */
2420%token <double> NUM /* Simple double precision number. */
2421%token <symrec*> VAR FNCT /* Symbol table pointer: variable and function. */
2422%type <double> exp
bfa74976 2423
18b519c0 2424@group
e8f7155d 2425%precedence '='
bfa74976
RS
2426%left '-' '+'
2427%left '*' '/'
d78f0ac9
AD
2428%precedence NEG /* negation--unary minus */
2429%right '^' /* exponentiation */
18b519c0 2430@end group
c93f22fc 2431@end example
bfa74976
RS
2432
2433The above grammar introduces only two new features of the Bison language.
2434These features allow semantic values to have various data types
2435(@pxref{Multiple Types, ,More Than One Value Type}).
2436
90b89dad
AD
2437The special @code{union} value assigned to the @code{%define} variable
2438@code{api.value.type} specifies that the symbols are defined with their data
2439types. Bison will generate an appropriate definition of @code{YYSTYPE} to
2440store these values.
bfa74976 2441
90b89dad
AD
2442Since values can now have various types, it is necessary to associate a type
2443with each grammar symbol whose semantic value is used. These symbols are
2444@code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their declarations are
2445augmented with their data type (placed between angle brackets). For
2446instance, values of @code{NUM} are stored in @code{double}.
bfa74976 2447
90b89dad
AD
2448The Bison construct @code{%type} is used for declaring nonterminal symbols,
2449just as @code{%token} is used for declaring token types. Previously we did
2450not use @code{%type} before because nonterminal symbols are normally
2451declared implicitly by the rules that define them. But @code{exp} must be
2452declared explicitly so we can specify its value type. @xref{Type Decl,
2453,Nonterminal Symbols}.
bfa74976 2454
342b8b6e 2455@node Mfcalc Rules
bfa74976
RS
2456@subsection Grammar Rules for @code{mfcalc}
2457
2458Here are the grammar rules for the multi-function calculator.
2459Most of them are copied directly from @code{calc}; three rules,
2460those which mention @code{VAR} or @code{FNCT}, are new.
2461
93c150b6 2462@comment file: mfcalc.y: 3
c93f22fc 2463@example
93c150b6 2464%% /* The grammar follows. */
18b519c0 2465@group
5e9b6624 2466input:
6240346a 2467 %empty
5e9b6624 2468| input line
bfa74976 2469;
18b519c0 2470@end group
bfa74976 2471
18b519c0 2472@group
bfa74976 2473line:
5e9b6624
AD
2474 '\n'
2475| exp '\n' @{ printf ("%.10g\n", $1); @}
2476| error '\n' @{ yyerrok; @}
bfa74976 2477;
18b519c0 2478@end group
bfa74976 2479
18b519c0 2480@group
5e9b6624
AD
2481exp:
2482 NUM @{ $$ = $1; @}
2483| VAR @{ $$ = $1->value.var; @}
2484| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2485| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2486| exp '+' exp @{ $$ = $1 + $3; @}
2487| exp '-' exp @{ $$ = $1 - $3; @}
2488| exp '*' exp @{ $$ = $1 * $3; @}
2489| exp '/' exp @{ $$ = $1 / $3; @}
2490| '-' exp %prec NEG @{ $$ = -$2; @}
2491| exp '^' exp @{ $$ = pow ($1, $3); @}
2492| '(' exp ')' @{ $$ = $2; @}
bfa74976 2493;
18b519c0 2494@end group
38a92d50 2495/* End of grammar. */
bfa74976 2496%%
c93f22fc 2497@end example
bfa74976 2498
f5f419de 2499@node Mfcalc Symbol Table
bfa74976
RS
2500@subsection The @code{mfcalc} Symbol Table
2501@cindex symbol table example
2502
2503The multi-function calculator requires a symbol table to keep track of the
2504names and meanings of variables and functions. This doesn't affect the
2505grammar rules (except for the actions) or the Bison declarations, but it
2506requires some additional C functions for support.
2507
2508The symbol table itself consists of a linked list of records. Its
2509definition, which is kept in the header @file{calc.h}, is as follows. It
2510provides for either functions or variables to be placed in the table.
2511
f9c75dd0 2512@comment file: calc.h
c93f22fc 2513@example
bfa74976 2514@group
38a92d50 2515/* Function type. */
32dfccf8 2516typedef double (*func_t) (double);
72f889cc 2517@end group
32dfccf8 2518
72f889cc 2519@group
38a92d50 2520/* Data type for links in the chain of symbols. */
bfa74976
RS
2521struct symrec
2522@{
38a92d50 2523 char *name; /* name of symbol */
bfa74976 2524 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2525 union
2526 @{
38a92d50
PE
2527 double var; /* value of a VAR */
2528 func_t fnctptr; /* value of a FNCT */
bfa74976 2529 @} value;
38a92d50 2530 struct symrec *next; /* link field */
bfa74976
RS
2531@};
2532@end group
2533
2534@group
2535typedef struct symrec symrec;
2536
4c9b8f13 2537/* The symbol table: a chain of 'struct symrec'. */
bfa74976
RS
2538extern symrec *sym_table;
2539
a730d142 2540symrec *putsym (char const *, int);
38a92d50 2541symrec *getsym (char const *);
bfa74976 2542@end group
c93f22fc 2543@end example
bfa74976 2544
aeb57fb6
AD
2545The new version of @code{main} will call @code{init_table} to initialize
2546the symbol table:
bfa74976 2547
93c150b6 2548@comment file: mfcalc.y: 3
c93f22fc 2549@example
18b519c0 2550@group
bfa74976
RS
2551struct init
2552@{
38a92d50
PE
2553 char const *fname;
2554 double (*fnct) (double);
bfa74976
RS
2555@};
2556@end group
2557
2558@group
38a92d50 2559struct init const arith_fncts[] =
13863333 2560@{
f9c75dd0
AD
2561 @{ "atan", atan @},
2562 @{ "cos", cos @},
2563 @{ "exp", exp @},
2564 @{ "ln", log @},
2565 @{ "sin", sin @},
2566 @{ "sqrt", sqrt @},
2567 @{ 0, 0 @},
13863333 2568@};
18b519c0 2569@end group
bfa74976 2570
18b519c0 2571@group
4c9b8f13 2572/* The symbol table: a chain of 'struct symrec'. */
38a92d50 2573symrec *sym_table;
bfa74976
RS
2574@end group
2575
2576@group
72d2299c 2577/* Put arithmetic functions in table. */
f9c75dd0 2578static
13863333
AD
2579void
2580init_table (void)
bfa74976
RS
2581@{
2582 int i;
bfa74976
RS
2583 for (i = 0; arith_fncts[i].fname != 0; i++)
2584 @{
aaaa2aae 2585 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2586 ptr->value.fnctptr = arith_fncts[i].fnct;
2587 @}
2588@}
2589@end group
c93f22fc 2590@end example
bfa74976
RS
2591
2592By simply editing the initialization list and adding the necessary include
2593files, you can add additional functions to the calculator.
2594
2595Two important functions allow look-up and installation of symbols in the
2596symbol table. The function @code{putsym} is passed a name and the type
2597(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2598linked to the front of the list, and a pointer to the object is returned.
2599The function @code{getsym} is passed the name of the symbol to look up. If
2600found, a pointer to that symbol is returned; otherwise zero is returned.
2601
93c150b6 2602@comment file: mfcalc.y: 3
c93f22fc 2603@example
f9c75dd0
AD
2604#include <stdlib.h> /* malloc. */
2605#include <string.h> /* strlen. */
2606
d4fca427 2607@group
bfa74976 2608symrec *
38a92d50 2609putsym (char const *sym_name, int sym_type)
bfa74976 2610@{
aaaa2aae 2611 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2612 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2613 strcpy (ptr->name,sym_name);
2614 ptr->type = sym_type;
72d2299c 2615 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2616 ptr->next = (struct symrec *)sym_table;
2617 sym_table = ptr;
2618 return ptr;
2619@}
d4fca427 2620@end group
bfa74976 2621
d4fca427 2622@group
bfa74976 2623symrec *
38a92d50 2624getsym (char const *sym_name)
bfa74976
RS
2625@{
2626 symrec *ptr;
2627 for (ptr = sym_table; ptr != (symrec *) 0;
2628 ptr = (symrec *)ptr->next)
f518dbaf 2629 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2630 return ptr;
2631 return 0;
2632@}
d4fca427 2633@end group
c93f22fc 2634@end example
bfa74976 2635
aeb57fb6
AD
2636@node Mfcalc Lexer
2637@subsection The @code{mfcalc} Lexer
2638
bfa74976
RS
2639The function @code{yylex} must now recognize variables, numeric values, and
2640the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2641characters with a leading letter are recognized as either variables or
bfa74976
RS
2642functions depending on what the symbol table says about them.
2643
2644The string is passed to @code{getsym} for look up in the symbol table. If
2645the name appears in the table, a pointer to its location and its type
2646(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2647already in the table, then it is installed as a @code{VAR} using
2648@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2649returned to @code{yyparse}.
bfa74976
RS
2650
2651No change is needed in the handling of numeric values and arithmetic
2652operators in @code{yylex}.
2653
93c150b6 2654@comment file: mfcalc.y: 3
c93f22fc 2655@example
bfa74976 2656#include <ctype.h>
13863333 2657
18b519c0 2658@group
13863333
AD
2659int
2660yylex (void)
bfa74976
RS
2661@{
2662 int c;
2663
72d2299c 2664 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2665 while ((c = getchar ()) == ' ' || c == '\t')
2666 continue;
bfa74976
RS
2667
2668 if (c == EOF)
2669 return 0;
2670@end group
2671
2672@group
2673 /* Char starts a number => parse the number. */
2674 if (c == '.' || isdigit (c))
2675 @{
2676 ungetc (c, stdin);
90b89dad 2677 scanf ("%lf", &yylval.NUM);
bfa74976
RS
2678 return NUM;
2679 @}
2680@end group
90b89dad 2681@end example
bfa74976 2682
90b89dad
AD
2683@noindent
2684Bison generated a definition of @code{YYSTYPE} with a member named
2685@code{NUM} to store value of @code{NUM} symbols.
2686
2687@comment file: mfcalc.y: 3
2688@example
bfa74976
RS
2689@group
2690 /* Char starts an identifier => read the name. */
2691 if (isalpha (c))
2692 @{
aaaa2aae
AD
2693 /* Initially make the buffer long enough
2694 for a 40-character symbol name. */
2695 static size_t length = 40;
bfa74976 2696 static char *symbuf = 0;
aaaa2aae 2697 symrec *s;
bfa74976
RS
2698 int i;
2699@end group
aaaa2aae
AD
2700 if (!symbuf)
2701 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2702
2703 i = 0;
2704 do
bfa74976
RS
2705@group
2706 @{
2707 /* If buffer is full, make it bigger. */
2708 if (i == length)
2709 @{
2710 length *= 2;
18b519c0 2711 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2712 @}
2713 /* Add this character to the buffer. */
2714 symbuf[i++] = c;
2715 /* Get another character. */
2716 c = getchar ();
2717 @}
2718@end group
2719@group
72d2299c 2720 while (isalnum (c));
bfa74976
RS
2721
2722 ungetc (c, stdin);
2723 symbuf[i] = '\0';
2724@end group
2725
2726@group
2727 s = getsym (symbuf);
2728 if (s == 0)
2729 s = putsym (symbuf, VAR);
90b89dad 2730 *((symrec**) &yylval) = s;
bfa74976
RS
2731 return s->type;
2732 @}
2733
2734 /* Any other character is a token by itself. */
2735 return c;
2736@}
2737@end group
c93f22fc 2738@end example
bfa74976 2739
aeb57fb6
AD
2740@node Mfcalc Main
2741@subsection The @code{mfcalc} Main
2742
2743The error reporting function is unchanged, and the new version of
93c150b6
AD
2744@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2745on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2746
93c150b6 2747@comment file: mfcalc.y: 3
c93f22fc 2748@example
aeb57fb6
AD
2749@group
2750/* Called by yyparse on error. */
2751void
2752yyerror (char const *s)
2753@{
2754 fprintf (stderr, "%s\n", s);
2755@}
2756@end group
2757
aaaa2aae 2758@group
aeb57fb6
AD
2759int
2760main (int argc, char const* argv[])
2761@{
93c150b6
AD
2762 int i;
2763 /* Enable parse traces on option -p. */
2764 for (i = 1; i < argc; ++i)
2765 if (!strcmp(argv[i], "-p"))
2766 yydebug = 1;
aeb57fb6
AD
2767 init_table ();
2768 return yyparse ();
2769@}
2770@end group
c93f22fc 2771@end example
aeb57fb6 2772
72d2299c 2773This program is both powerful and flexible. You may easily add new
704a47c4
AD
2774functions, and it is a simple job to modify this code to install
2775predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2776
342b8b6e 2777@node Exercises
bfa74976
RS
2778@section Exercises
2779@cindex exercises
2780
2781@enumerate
2782@item
2783Add some new functions from @file{math.h} to the initialization list.
2784
2785@item
2786Add another array that contains constants and their values. Then
2787modify @code{init_table} to add these constants to the symbol table.
2788It will be easiest to give the constants type @code{VAR}.
2789
2790@item
2791Make the program report an error if the user refers to an
2792uninitialized variable in any way except to store a value in it.
2793@end enumerate
2794
342b8b6e 2795@node Grammar File
bfa74976
RS
2796@chapter Bison Grammar Files
2797
2798Bison takes as input a context-free grammar specification and produces a
2799C-language function that recognizes correct instances of the grammar.
2800
ff7571c0 2801The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2802@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2803
2804@menu
303834cc
JD
2805* Grammar Outline:: Overall layout of the grammar file.
2806* Symbols:: Terminal and nonterminal symbols.
2807* Rules:: How to write grammar rules.
303834cc
JD
2808* Semantics:: Semantic values and actions.
2809* Tracking Locations:: Locations and actions.
2810* Named References:: Using named references in actions.
2811* Declarations:: All kinds of Bison declarations are described here.
2812* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2813@end menu
2814
342b8b6e 2815@node Grammar Outline
bfa74976 2816@section Outline of a Bison Grammar
c949ada3
AD
2817@cindex comment
2818@findex // @dots{}
2819@findex /* @dots{} */
bfa74976
RS
2820
2821A Bison grammar file has four main sections, shown here with the
2822appropriate delimiters:
2823
2824@example
2825%@{
38a92d50 2826 @var{Prologue}
bfa74976
RS
2827%@}
2828
2829@var{Bison declarations}
2830
2831%%
2832@var{Grammar rules}
2833%%
2834
75f5aaea 2835@var{Epilogue}
bfa74976
RS
2836@end example
2837
2838Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2839As a GNU extension, @samp{//} introduces a comment that continues until end
2840of line.
bfa74976
RS
2841
2842@menu
f5f419de 2843* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2844* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2845* Bison Declarations:: Syntax and usage of the Bison declarations section.
2846* Grammar Rules:: Syntax and usage of the grammar rules section.
2847* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2848@end menu
2849
38a92d50 2850@node Prologue
75f5aaea
MA
2851@subsection The prologue
2852@cindex declarations section
2853@cindex Prologue
2854@cindex declarations
bfa74976 2855
f8e1c9e5
AD
2856The @var{Prologue} section contains macro definitions and declarations
2857of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2858rules. These are copied to the beginning of the parser implementation
2859file so that they precede the definition of @code{yyparse}. You can
2860use @samp{#include} to get the declarations from a header file. If
2861you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2862@samp{%@}} delimiters that bracket this section.
bfa74976 2863
9c437126 2864The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2865of @samp{%@}} that is outside a comment, a string literal, or a
2866character constant.
2867
c732d2c6
AD
2868You may have more than one @var{Prologue} section, intermixed with the
2869@var{Bison declarations}. This allows you to have C and Bison
2870declarations that refer to each other. For example, the @code{%union}
2871declaration may use types defined in a header file, and you may wish to
2872prototype functions that take arguments of type @code{YYSTYPE}. This
2873can be done with two @var{Prologue} blocks, one before and one after the
2874@code{%union} declaration.
2875
c93f22fc 2876@example
efbc95a7 2877@group
c732d2c6 2878%@{
aef3da86 2879 #define _GNU_SOURCE
38a92d50
PE
2880 #include <stdio.h>
2881 #include "ptypes.h"
c732d2c6 2882%@}
efbc95a7 2883@end group
c732d2c6 2884
efbc95a7 2885@group
c732d2c6 2886%union @{
779e7ceb 2887 long int n;
c732d2c6
AD
2888 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2889@}
efbc95a7 2890@end group
c732d2c6 2891
efbc95a7 2892@group
c732d2c6 2893%@{
38a92d50
PE
2894 static void print_token_value (FILE *, int, YYSTYPE);
2895 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6 2896%@}
efbc95a7 2897@end group
c732d2c6
AD
2898
2899@dots{}
c93f22fc 2900@end example
c732d2c6 2901
aef3da86
PE
2902When in doubt, it is usually safer to put prologue code before all
2903Bison declarations, rather than after. For example, any definitions
2904of feature test macros like @code{_GNU_SOURCE} or
2905@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2906feature test macros can affect the behavior of Bison-generated
2907@code{#include} directives.
2908
2cbe6b7f
JD
2909@node Prologue Alternatives
2910@subsection Prologue Alternatives
2911@cindex Prologue Alternatives
2912
136a0f76 2913@findex %code
16dc6a9e
JD
2914@findex %code requires
2915@findex %code provides
2916@findex %code top
85894313 2917
2cbe6b7f 2918The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2919inflexible. As an alternative, Bison provides a @code{%code}
2920directive with an explicit qualifier field, which identifies the
2921purpose of the code and thus the location(s) where Bison should
2922generate it. For C/C++, the qualifier can be omitted for the default
2923location, or it can be one of @code{requires}, @code{provides},
e0c07222 2924@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2925
2926Look again at the example of the previous section:
2927
c93f22fc 2928@example
efbc95a7 2929@group
2cbe6b7f
JD
2930%@{
2931 #define _GNU_SOURCE
2932 #include <stdio.h>
2933 #include "ptypes.h"
2934%@}
efbc95a7 2935@end group
2cbe6b7f 2936
efbc95a7 2937@group
2cbe6b7f
JD
2938%union @{
2939 long int n;
2940 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2941@}
efbc95a7 2942@end group
2cbe6b7f 2943
efbc95a7 2944@group
2cbe6b7f
JD
2945%@{
2946 static void print_token_value (FILE *, int, YYSTYPE);
2947 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2948%@}
efbc95a7 2949@end group
2cbe6b7f
JD
2950
2951@dots{}
c93f22fc 2952@end example
2cbe6b7f
JD
2953
2954@noindent
ff7571c0
JD
2955Notice that there are two @var{Prologue} sections here, but there's a
2956subtle distinction between their functionality. For example, if you
2957decide to override Bison's default definition for @code{YYLTYPE}, in
2958which @var{Prologue} section should you write your new definition?
2959You should write it in the first since Bison will insert that code
2960into the parser implementation file @emph{before} the default
2961@code{YYLTYPE} definition. In which @var{Prologue} section should you
2962prototype an internal function, @code{trace_token}, that accepts
2963@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2964prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2965@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2966
2967This distinction in functionality between the two @var{Prologue} sections is
2968established by the appearance of the @code{%union} between them.
a501eca9 2969This behavior raises a few questions.
2cbe6b7f
JD
2970First, why should the position of a @code{%union} affect definitions related to
2971@code{YYLTYPE} and @code{yytokentype}?
2972Second, what if there is no @code{%union}?
2973In that case, the second kind of @var{Prologue} section is not available.
2974This behavior is not intuitive.
2975
8e0a5e9e 2976To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2977@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2978Let's go ahead and add the new @code{YYLTYPE} definition and the
2979@code{trace_token} prototype at the same time:
2980
c93f22fc 2981@example
16dc6a9e 2982%code top @{
2cbe6b7f
JD
2983 #define _GNU_SOURCE
2984 #include <stdio.h>
8e0a5e9e
JD
2985
2986 /* WARNING: The following code really belongs
4c9b8f13 2987 * in a '%code requires'; see below. */
8e0a5e9e 2988
2cbe6b7f
JD
2989 #include "ptypes.h"
2990 #define YYLTYPE YYLTYPE
2991 typedef struct YYLTYPE
2992 @{
2993 int first_line;
2994 int first_column;
2995 int last_line;
2996 int last_column;
2997 char *filename;
2998 @} YYLTYPE;
2999@}
3000
efbc95a7 3001@group
2cbe6b7f
JD
3002%union @{
3003 long int n;
3004 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3005@}
efbc95a7 3006@end group
2cbe6b7f 3007
efbc95a7 3008@group
2cbe6b7f
JD
3009%code @{
3010 static void print_token_value (FILE *, int, YYSTYPE);
3011 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3012 static void trace_token (enum yytokentype token, YYLTYPE loc);
3013@}
efbc95a7 3014@end group
2cbe6b7f
JD
3015
3016@dots{}
c93f22fc 3017@end example
2cbe6b7f
JD
3018
3019@noindent
16dc6a9e
JD
3020In this way, @code{%code top} and the unqualified @code{%code} achieve the same
3021functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 3022explicit which kind you intend.
2cbe6b7f
JD
3023Moreover, both kinds are always available even in the absence of @code{%union}.
3024
ff7571c0
JD
3025The @code{%code top} block above logically contains two parts. The
3026first two lines before the warning need to appear near the top of the
3027parser implementation file. The first line after the warning is
3028required by @code{YYSTYPE} and thus also needs to appear in the parser
3029implementation file. However, if you've instructed Bison to generate
3030a parser header file (@pxref{Decl Summary, ,%defines}), you probably
3031want that line to appear before the @code{YYSTYPE} definition in that
3032header file as well. The @code{YYLTYPE} definition should also appear
3033in the parser header file to override the default @code{YYLTYPE}
3034definition there.
2cbe6b7f 3035
16dc6a9e 3036In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3037lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3038definitions.
16dc6a9e 3039Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3040
c93f22fc 3041@example
d4fca427 3042@group
16dc6a9e 3043%code top @{
2cbe6b7f
JD
3044 #define _GNU_SOURCE
3045 #include <stdio.h>
3046@}
d4fca427 3047@end group
2cbe6b7f 3048
d4fca427 3049@group
16dc6a9e 3050%code requires @{
9bc0dd67
JD
3051 #include "ptypes.h"
3052@}
d4fca427
AD
3053@end group
3054@group
9bc0dd67
JD
3055%union @{
3056 long int n;
3057 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3058@}
d4fca427 3059@end group
9bc0dd67 3060
d4fca427 3061@group
16dc6a9e 3062%code requires @{
2cbe6b7f
JD
3063 #define YYLTYPE YYLTYPE
3064 typedef struct YYLTYPE
3065 @{
3066 int first_line;
3067 int first_column;
3068 int last_line;
3069 int last_column;
3070 char *filename;
3071 @} YYLTYPE;
3072@}
d4fca427 3073@end group
2cbe6b7f 3074
d4fca427 3075@group
136a0f76 3076%code @{
2cbe6b7f
JD
3077 static void print_token_value (FILE *, int, YYSTYPE);
3078 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3079 static void trace_token (enum yytokentype token, YYLTYPE loc);
3080@}
d4fca427 3081@end group
2cbe6b7f
JD
3082
3083@dots{}
c93f22fc 3084@end example
2cbe6b7f
JD
3085
3086@noindent
ff7571c0
JD
3087Now Bison will insert @code{#include "ptypes.h"} and the new
3088@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3089and @code{YYLTYPE} definitions in both the parser implementation file
3090and the parser header file. (By the same reasoning, @code{%code
3091requires} would also be the appropriate place to write your own
3092definition for @code{YYSTYPE}.)
3093
3094When you are writing dependency code for @code{YYSTYPE} and
3095@code{YYLTYPE}, you should prefer @code{%code requires} over
3096@code{%code top} regardless of whether you instruct Bison to generate
3097a parser header file. When you are writing code that you need Bison
3098to insert only into the parser implementation file and that has no
3099special need to appear at the top of that file, you should prefer the
3100unqualified @code{%code} over @code{%code top}. These practices will
3101make the purpose of each block of your code explicit to Bison and to
3102other developers reading your grammar file. Following these
3103practices, we expect the unqualified @code{%code} and @code{%code
3104requires} to be the most important of the four @var{Prologue}
16dc6a9e 3105alternatives.
a501eca9 3106
ff7571c0
JD
3107At some point while developing your parser, you might decide to
3108provide @code{trace_token} to modules that are external to your
3109parser. Thus, you might wish for Bison to insert the prototype into
3110both the parser header file and the parser implementation file. Since
3111this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3112@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3113@code{%code requires}. More importantly, since it depends upon
3114@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3115sufficient. Instead, move its prototype from the unqualified
3116@code{%code} to a @code{%code provides}:
2cbe6b7f 3117
c93f22fc 3118@example
d4fca427 3119@group
16dc6a9e 3120%code top @{
2cbe6b7f 3121 #define _GNU_SOURCE
136a0f76 3122 #include <stdio.h>
2cbe6b7f 3123@}
d4fca427 3124@end group
136a0f76 3125
d4fca427 3126@group
16dc6a9e 3127%code requires @{
2cbe6b7f
JD
3128 #include "ptypes.h"
3129@}
d4fca427
AD
3130@end group
3131@group
2cbe6b7f
JD
3132%union @{
3133 long int n;
3134 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3135@}
d4fca427 3136@end group
2cbe6b7f 3137
d4fca427 3138@group
16dc6a9e 3139%code requires @{
2cbe6b7f
JD
3140 #define YYLTYPE YYLTYPE
3141 typedef struct YYLTYPE
3142 @{
3143 int first_line;
3144 int first_column;
3145 int last_line;
3146 int last_column;
3147 char *filename;
3148 @} YYLTYPE;
3149@}
d4fca427 3150@end group
2cbe6b7f 3151
d4fca427 3152@group
16dc6a9e 3153%code provides @{
2cbe6b7f
JD
3154 void trace_token (enum yytokentype token, YYLTYPE loc);
3155@}
d4fca427 3156@end group
2cbe6b7f 3157
d4fca427 3158@group
2cbe6b7f 3159%code @{
9bc0dd67
JD
3160 static void print_token_value (FILE *, int, YYSTYPE);
3161 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3162@}
d4fca427 3163@end group
9bc0dd67
JD
3164
3165@dots{}
c93f22fc 3166@end example
9bc0dd67 3167
2cbe6b7f 3168@noindent
ff7571c0
JD
3169Bison will insert the @code{trace_token} prototype into both the
3170parser header file and the parser implementation file after the
3171definitions for @code{yytokentype}, @code{YYLTYPE}, and
3172@code{YYSTYPE}.
2cbe6b7f 3173
ff7571c0
JD
3174The above examples are careful to write directives in an order that
3175reflects the layout of the generated parser implementation and header
3176files: @code{%code top}, @code{%code requires}, @code{%code provides},
3177and then @code{%code}. While your grammar files may generally be
3178easier to read if you also follow this order, Bison does not require
3179it. Instead, Bison lets you choose an organization that makes sense
3180to you.
2cbe6b7f 3181
a501eca9 3182You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3183In that case, Bison concatenates the contained code in declaration order.
3184This is the only way in which the position of one of these directives within
3185the grammar file affects its functionality.
3186
3187The result of the previous two properties is greater flexibility in how you may
3188organize your grammar file.
3189For example, you may organize semantic-type-related directives by semantic
3190type:
3191
c93f22fc 3192@example
d4fca427 3193@group
16dc6a9e 3194%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3195%union @{ type1 field1; @}
3196%destructor @{ type1_free ($$); @} <field1>
c5026327 3197%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3198@end group
2cbe6b7f 3199
d4fca427 3200@group
16dc6a9e 3201%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3202%union @{ type2 field2; @}
3203%destructor @{ type2_free ($$); @} <field2>
c5026327 3204%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3205@end group
c93f22fc 3206@end example
2cbe6b7f
JD
3207
3208@noindent
3209You could even place each of the above directive groups in the rules section of
3210the grammar file next to the set of rules that uses the associated semantic
3211type.
61fee93e
JD
3212(In the rules section, you must terminate each of those directives with a
3213semicolon.)
2cbe6b7f
JD
3214And you don't have to worry that some directive (like a @code{%union}) in the
3215definitions section is going to adversely affect their functionality in some
3216counter-intuitive manner just because it comes first.
3217Such an organization is not possible using @var{Prologue} sections.
3218
a501eca9 3219This section has been concerned with explaining the advantages of the four
8e0a5e9e 3220@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3221However, in most cases when using these directives, you shouldn't need to
3222think about all the low-level ordering issues discussed here.
3223Instead, you should simply use these directives to label each block of your
3224code according to its purpose and let Bison handle the ordering.
3225@code{%code} is the most generic label.
16dc6a9e
JD
3226Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3227as needed.
a501eca9 3228
342b8b6e 3229@node Bison Declarations
bfa74976
RS
3230@subsection The Bison Declarations Section
3231@cindex Bison declarations (introduction)
3232@cindex declarations, Bison (introduction)
3233
3234The @var{Bison declarations} section contains declarations that define
3235terminal and nonterminal symbols, specify precedence, and so on.
3236In some simple grammars you may not need any declarations.
3237@xref{Declarations, ,Bison Declarations}.
3238
342b8b6e 3239@node Grammar Rules
bfa74976
RS
3240@subsection The Grammar Rules Section
3241@cindex grammar rules section
3242@cindex rules section for grammar
3243
3244The @dfn{grammar rules} section contains one or more Bison grammar
3245rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3246
3247There must always be at least one grammar rule, and the first
3248@samp{%%} (which precedes the grammar rules) may never be omitted even
3249if it is the first thing in the file.
3250
38a92d50 3251@node Epilogue
75f5aaea 3252@subsection The epilogue
bfa74976 3253@cindex additional C code section
75f5aaea 3254@cindex epilogue
bfa74976
RS
3255@cindex C code, section for additional
3256
ff7571c0
JD
3257The @var{Epilogue} is copied verbatim to the end of the parser
3258implementation file, just as the @var{Prologue} is copied to the
3259beginning. This is the most convenient place to put anything that you
3260want to have in the parser implementation file but which need not come
3261before the definition of @code{yyparse}. For example, the definitions
3262of @code{yylex} and @code{yyerror} often go here. Because C requires
3263functions to be declared before being used, you often need to declare
3264functions like @code{yylex} and @code{yyerror} in the Prologue, even
3265if you define them in the Epilogue. @xref{Interface, ,Parser
3266C-Language Interface}.
bfa74976
RS
3267
3268If the last section is empty, you may omit the @samp{%%} that separates it
3269from the grammar rules.
3270
f8e1c9e5
AD
3271The Bison parser itself contains many macros and identifiers whose names
3272start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3273any such names (except those documented in this manual) in the epilogue
3274of the grammar file.
bfa74976 3275
342b8b6e 3276@node Symbols
bfa74976
RS
3277@section Symbols, Terminal and Nonterminal
3278@cindex nonterminal symbol
3279@cindex terminal symbol
3280@cindex token type
3281@cindex symbol
3282
3283@dfn{Symbols} in Bison grammars represent the grammatical classifications
3284of the language.
3285
3286A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3287class of syntactically equivalent tokens. You use the symbol in grammar
3288rules to mean that a token in that class is allowed. The symbol is
3289represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3290function returns a token type code to indicate what kind of token has
3291been read. You don't need to know what the code value is; you can use
3292the symbol to stand for it.
bfa74976 3293
f8e1c9e5
AD
3294A @dfn{nonterminal symbol} stands for a class of syntactically
3295equivalent groupings. The symbol name is used in writing grammar rules.
3296By convention, it should be all lower case.
bfa74976 3297
82f3355e
JD
3298Symbol names can contain letters, underscores, periods, and non-initial
3299digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3300with POSIX Yacc. Periods and dashes make symbol names less convenient to
3301use with named references, which require brackets around such names
3302(@pxref{Named References}). Terminal symbols that contain periods or dashes
3303make little sense: since they are not valid symbols (in most programming
3304languages) they are not exported as token names.
bfa74976 3305
931c7513 3306There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3307
3308@itemize @bullet
3309@item
3310A @dfn{named token type} is written with an identifier, like an
c827f760 3311identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3312such name must be defined with a Bison declaration such as
3313@code{%token}. @xref{Token Decl, ,Token Type Names}.
3314
3315@item
3316@cindex character token
3317@cindex literal token
3318@cindex single-character literal
931c7513
RS
3319A @dfn{character token type} (or @dfn{literal character token}) is
3320written in the grammar using the same syntax used in C for character
3321constants; for example, @code{'+'} is a character token type. A
3322character token type doesn't need to be declared unless you need to
3323specify its semantic value data type (@pxref{Value Type, ,Data Types of
3324Semantic Values}), associativity, or precedence (@pxref{Precedence,
3325,Operator Precedence}).
bfa74976
RS
3326
3327By convention, a character token type is used only to represent a
3328token that consists of that particular character. Thus, the token
3329type @code{'+'} is used to represent the character @samp{+} as a
3330token. Nothing enforces this convention, but if you depart from it,
3331your program will confuse other readers.
3332
3333All the usual escape sequences used in character literals in C can be
3334used in Bison as well, but you must not use the null character as a
72d2299c
PE
3335character literal because its numeric code, zero, signifies
3336end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3337for @code{yylex}}). Also, unlike standard C, trigraphs have no
3338special meaning in Bison character literals, nor is backslash-newline
3339allowed.
931c7513
RS
3340
3341@item
3342@cindex string token
3343@cindex literal string token
9ecbd125 3344@cindex multicharacter literal
931c7513
RS
3345A @dfn{literal string token} is written like a C string constant; for
3346example, @code{"<="} is a literal string token. A literal string token
3347doesn't need to be declared unless you need to specify its semantic
14ded682 3348value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3349(@pxref{Precedence}).
3350
3351You can associate the literal string token with a symbolic name as an
3352alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3353Declarations}). If you don't do that, the lexical analyzer has to
3354retrieve the token number for the literal string token from the
3355@code{yytname} table (@pxref{Calling Convention}).
3356
c827f760 3357@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3358
3359By convention, a literal string token is used only to represent a token
3360that consists of that particular string. Thus, you should use the token
3361type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3362does not enforce this convention, but if you depart from it, people who
931c7513
RS
3363read your program will be confused.
3364
3365All the escape sequences used in string literals in C can be used in
92ac3705
PE
3366Bison as well, except that you must not use a null character within a
3367string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3368meaning in Bison string literals, nor is backslash-newline allowed. A
3369literal string token must contain two or more characters; for a token
3370containing just one character, use a character token (see above).
bfa74976
RS
3371@end itemize
3372
3373How you choose to write a terminal symbol has no effect on its
3374grammatical meaning. That depends only on where it appears in rules and
3375on when the parser function returns that symbol.
3376
72d2299c
PE
3377The value returned by @code{yylex} is always one of the terminal
3378symbols, except that a zero or negative value signifies end-of-input.
3379Whichever way you write the token type in the grammar rules, you write
3380it the same way in the definition of @code{yylex}. The numeric code
3381for a character token type is simply the positive numeric code of the
3382character, so @code{yylex} can use the identical value to generate the
3383requisite code, though you may need to convert it to @code{unsigned
3384char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3385Each named token type becomes a C macro in the parser implementation
3386file, so @code{yylex} can use the name to stand for the code. (This
3387is why periods don't make sense in terminal symbols.) @xref{Calling
3388Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3389
3390If @code{yylex} is defined in a separate file, you need to arrange for the
3391token-type macro definitions to be available there. Use the @samp{-d}
3392option when you run Bison, so that it will write these macro definitions
3393into a separate header file @file{@var{name}.tab.h} which you can include
3394in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3395
72d2299c 3396If you want to write a grammar that is portable to any Standard C
9d9b8b70 3397host, you must use only nonnull character tokens taken from the basic
c827f760 3398execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3399digits, the 52 lower- and upper-case English letters, and the
3400characters in the following C-language string:
3401
3402@example
3403"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3404@end example
3405
f8e1c9e5
AD
3406The @code{yylex} function and Bison must use a consistent character set
3407and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3408ASCII environment, but then compile and run the resulting
f8e1c9e5 3409program in an environment that uses an incompatible character set like
8a4281b9
JD
3410EBCDIC, the resulting program may not work because the tables
3411generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3412character tokens. It is standard practice for software distributions to
3413contain C source files that were generated by Bison in an
8a4281b9
JD
3414ASCII environment, so installers on platforms that are
3415incompatible with ASCII must rebuild those files before
f8e1c9e5 3416compiling them.
e966383b 3417
bfa74976
RS
3418The symbol @code{error} is a terminal symbol reserved for error recovery
3419(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3420In particular, @code{yylex} should never return this value. The default
3421value of the error token is 256, unless you explicitly assigned 256 to
3422one of your tokens with a @code{%token} declaration.
bfa74976 3423
342b8b6e 3424@node Rules
09add9c2
AD
3425@section Grammar Rules
3426
3427A Bison grammar is a list of rules.
3428
3429@menu
3430* Rules Syntax:: Syntax of the rules.
3431* Empty Rules:: Symbols that can match the empty string.
3432* Recursion:: Writing recursive rules.
3433@end menu
3434
3435@node Rules Syntax
3436@subsection Syntax of Grammar Rules
bfa74976
RS
3437@cindex rule syntax
3438@cindex grammar rule syntax
3439@cindex syntax of grammar rules
3440
3441A Bison grammar rule has the following general form:
3442
3443@example
5e9b6624 3444@var{result}: @var{components}@dots{};
bfa74976
RS
3445@end example
3446
3447@noindent
9ecbd125 3448where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3449and @var{components} are various terminal and nonterminal symbols that
13863333 3450are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3451
3452For example,
3453
3454@example
5e9b6624 3455exp: exp '+' exp;
bfa74976
RS
3456@end example
3457
3458@noindent
3459says that two groupings of type @code{exp}, with a @samp{+} token in between,
3460can be combined into a larger grouping of type @code{exp}.
3461
72d2299c
PE
3462White space in rules is significant only to separate symbols. You can add
3463extra white space as you wish.
bfa74976
RS
3464
3465Scattered among the components can be @var{actions} that determine
3466the semantics of the rule. An action looks like this:
3467
3468@example
3469@{@var{C statements}@}
3470@end example
3471
3472@noindent
287c78f6
PE
3473@cindex braced code
3474This is an example of @dfn{braced code}, that is, C code surrounded by
3475braces, much like a compound statement in C@. Braced code can contain
3476any sequence of C tokens, so long as its braces are balanced. Bison
3477does not check the braced code for correctness directly; it merely
ff7571c0
JD
3478copies the code to the parser implementation file, where the C
3479compiler can check it.
287c78f6
PE
3480
3481Within braced code, the balanced-brace count is not affected by braces
3482within comments, string literals, or character constants, but it is
3483affected by the C digraphs @samp{<%} and @samp{%>} that represent
3484braces. At the top level braced code must be terminated by @samp{@}}
3485and not by a digraph. Bison does not look for trigraphs, so if braced
3486code uses trigraphs you should ensure that they do not affect the
3487nesting of braces or the boundaries of comments, string literals, or
3488character constants.
3489
bfa74976
RS
3490Usually there is only one action and it follows the components.
3491@xref{Actions}.
3492
3493@findex |
3494Multiple rules for the same @var{result} can be written separately or can
3495be joined with the vertical-bar character @samp{|} as follows:
3496
bfa74976
RS
3497@example
3498@group
5e9b6624
AD
3499@var{result}:
3500 @var{rule1-components}@dots{}
3501| @var{rule2-components}@dots{}
3502@dots{}
3503;
bfa74976
RS
3504@end group
3505@end example
bfa74976
RS
3506
3507@noindent
3508They are still considered distinct rules even when joined in this way.
3509
09add9c2
AD
3510@node Empty Rules
3511@subsection Empty Rules
3512@cindex empty rule
3513@cindex rule, empty
3514@findex %empty
3515
3516A rule is said to be @dfn{empty} if its right-hand side (@var{components})
3517is empty. It means that @var{result} can match the empty string. For
3518example, here is how to define an optional semicolon:
3519
3520@example
3521semicolon.opt: | ";";
3522@end example
3523
3524@noindent
3525It is easy not to see an empty rule, especially when @code{|} is used. The
3526@code{%empty} directive allows to make explicit that a rule is empty on
3527purpose:
bfa74976
RS
3528
3529@example
3530@group
09add9c2
AD
3531semicolon.opt:
3532 %empty
3533| ";"
5e9b6624 3534;
bfa74976 3535@end group
09add9c2 3536@end example
bfa74976 3537
09add9c2
AD
3538Flagging a non-empty rule with @code{%empty} is an error. If run with
3539@option{-Wempty-rule}, @command{bison} will report empty rules without
3540@code{%empty}. Using @code{%empty} enables this warning, unless
3541@option{-Wno-empty-rule} was specified.
3542
3543The @code{%empty} directive is a Bison extension, it does not work with
3544Yacc. To remain compatible with POSIX Yacc, it is customary to write a
3545comment @samp{/* empty */} in each rule with no components:
3546
3547@example
bfa74976 3548@group
09add9c2
AD
3549semicolon.opt:
3550 /* empty */
3551| ";"
5e9b6624 3552;
bfa74976
RS
3553@end group
3554@end example
3555
bfa74976 3556
342b8b6e 3557@node Recursion
09add9c2 3558@subsection Recursive Rules
bfa74976 3559@cindex recursive rule
09add9c2 3560@cindex rule, recursive
bfa74976 3561
f8e1c9e5
AD
3562A rule is called @dfn{recursive} when its @var{result} nonterminal
3563appears also on its right hand side. Nearly all Bison grammars need to
3564use recursion, because that is the only way to define a sequence of any
3565number of a particular thing. Consider this recursive definition of a
9ecbd125 3566comma-separated sequence of one or more expressions:
bfa74976
RS
3567
3568@example
3569@group
5e9b6624
AD
3570expseq1:
3571 exp
3572| expseq1 ',' exp
3573;
bfa74976
RS
3574@end group
3575@end example
3576
3577@cindex left recursion
3578@cindex right recursion
3579@noindent
3580Since the recursive use of @code{expseq1} is the leftmost symbol in the
3581right hand side, we call this @dfn{left recursion}. By contrast, here
3582the same construct is defined using @dfn{right recursion}:
3583
3584@example
3585@group
5e9b6624
AD
3586expseq1:
3587 exp
3588| exp ',' expseq1
3589;
bfa74976
RS
3590@end group
3591@end example
3592
3593@noindent
ec3bc396
AD
3594Any kind of sequence can be defined using either left recursion or right
3595recursion, but you should always use left recursion, because it can
3596parse a sequence of any number of elements with bounded stack space.
3597Right recursion uses up space on the Bison stack in proportion to the
3598number of elements in the sequence, because all the elements must be
3599shifted onto the stack before the rule can be applied even once.
3600@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3601of this.
bfa74976
RS
3602
3603@cindex mutual recursion
3604@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3605rule does not appear directly on its right hand side, but does appear
3606in rules for other nonterminals which do appear on its right hand
13863333 3607side.
bfa74976
RS
3608
3609For example:
3610
3611@example
3612@group
5e9b6624
AD
3613expr:
3614 primary
3615| primary '+' primary
3616;
bfa74976
RS
3617@end group
3618
3619@group
5e9b6624
AD
3620primary:
3621 constant
3622| '(' expr ')'
3623;
bfa74976
RS
3624@end group
3625@end example
3626
3627@noindent
3628defines two mutually-recursive nonterminals, since each refers to the
3629other.
3630
342b8b6e 3631@node Semantics
bfa74976
RS
3632@section Defining Language Semantics
3633@cindex defining language semantics
13863333 3634@cindex language semantics, defining
bfa74976
RS
3635
3636The grammar rules for a language determine only the syntax. The semantics
3637are determined by the semantic values associated with various tokens and
3638groupings, and by the actions taken when various groupings are recognized.
3639
3640For example, the calculator calculates properly because the value
3641associated with each expression is the proper number; it adds properly
3642because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3643the numbers associated with @var{x} and @var{y}.
3644
3645@menu
3646* Value Type:: Specifying one data type for all semantic values.
3647* Multiple Types:: Specifying several alternative data types.
90b89dad 3648* Type Generation:: Generating the semantic value type.
e4d49586
AD
3649* Union Decl:: Declaring the set of all semantic value types.
3650* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
3651* Actions:: An action is the semantic definition of a grammar rule.
3652* Action Types:: Specifying data types for actions to operate on.
3653* Mid-Rule Actions:: Most actions go at the end of a rule.
3654 This says when, why and how to use the exceptional
3655 action in the middle of a rule.
3656@end menu
3657
342b8b6e 3658@node Value Type
bfa74976
RS
3659@subsection Data Types of Semantic Values
3660@cindex semantic value type
3661@cindex value type, semantic
3662@cindex data types of semantic values
3663@cindex default data type
3664
3665In a simple program it may be sufficient to use the same data type for
3666the semantic values of all language constructs. This was true in the
8a4281b9 3667RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3668Notation Calculator}).
bfa74976 3669
ddc8ede1
PE
3670Bison normally uses the type @code{int} for semantic values if your
3671program uses the same data type for all language constructs. To
21e3a2b5
AD
3672specify some other type, define the @code{%define} variable
3673@code{api.value.type} like this:
3674
3675@example
435575cb 3676%define api.value.type @{double@}
21e3a2b5
AD
3677@end example
3678
3679@noindent
3680or
3681
3682@example
435575cb 3683%define api.value.type @{struct semantic_type@}
21e3a2b5
AD
3684@end example
3685
3686The value of @code{api.value.type} should be a type name that does not
3687contain parentheses or square brackets.
3688
3689Alternatively, instead of relying of Bison's @code{%define} support, you may
3690rely on the C/C++ preprocessor and define @code{YYSTYPE} as a macro, like
3691this:
bfa74976
RS
3692
3693@example
3694#define YYSTYPE double
3695@end example
3696
3697@noindent
342b8b6e 3698This macro definition must go in the prologue of the grammar file
21e3a2b5
AD
3699(@pxref{Grammar Outline, ,Outline of a Bison Grammar}). If compatibility
3700with POSIX Yacc matters to you, use this. Note however that Bison cannot
3701know @code{YYSTYPE}'s value, not even whether it is defined, so there are
3702services it cannot provide. Besides this works only for languages that have
3703a preprocessor.
bfa74976 3704
342b8b6e 3705@node Multiple Types
bfa74976
RS
3706@subsection More Than One Value Type
3707
3708In most programs, you will need different data types for different kinds
3709of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3710@code{int} or @code{long int}, while a string constant needs type
3711@code{char *}, and an identifier might need a pointer to an entry in the
3712symbol table.
bfa74976
RS
3713
3714To use more than one data type for semantic values in one parser, Bison
3715requires you to do two things:
3716
3717@itemize @bullet
3718@item
e4d49586
AD
3719Specify the entire collection of possible data types. There are several
3720options:
3721@itemize @bullet
90b89dad
AD
3722@item
3723let Bison compute the union type from the tags you assign to symbols;
3724
e4d49586
AD
3725@item
3726use the @code{%union} Bison declaration (@pxref{Union Decl, ,The Union
3727Declaration});
3728
3729@item
3730define the @code{%define} variable @code{api.value.type} to be a union type
3731whose members are the type tags (@pxref{Structured Value Type,, Providing a
3732Structured Semantic Value Type});
3733
3734@item
3735use a @code{typedef} or a @code{#define} to define @code{YYSTYPE} to be a
3736union type whose member names are the type tags.
3737@end itemize
bfa74976
RS
3738
3739@item
14ded682
AD
3740Choose one of those types for each symbol (terminal or nonterminal) for
3741which semantic values are used. This is done for tokens with the
3742@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3743and for groupings with the @code{%type} Bison declaration (@pxref{Type
3744Decl, ,Nonterminal Symbols}).
bfa74976
RS
3745@end itemize
3746
90b89dad
AD
3747@node Type Generation
3748@subsection Generating the Semantic Value Type
3749@cindex declaring value types
3750@cindex value types, declaring
3751@findex %define api.value.type union
3752
3753The special value @code{union} of the @code{%define} variable
3754@code{api.value.type} instructs Bison that the tags used with the
3755@code{%token} and @code{%type} directives are genuine types, not names of
3756members of @code{YYSTYPE}.
3757
3758For example:
3759
3760@example
3761%define api.value.type union
3762%token <int> INT "integer"
3763%token <int> 'n'
3764%type <int> expr
3765%token <char const *> ID "identifier"
3766@end example
3767
3768@noindent
3769generates an appropriate value of @code{YYSTYPE} to support each symbol
3770type. The name of the member of @code{YYSTYPE} for tokens than have a
3771declared identifier @var{id} (such as @code{INT} and @code{ID} above, but
3772not @code{'n'}) is @code{@var{id}}. The other symbols have unspecified
3773names on which you should not depend; instead, relying on C casts to access
3774the semantic value with the appropriate type:
3775
3776@example
3777/* For an "integer". */
3778yylval.INT = 42;
3779return INT;
3780
3781/* For an 'n', also declared as int. */
3782*((int*)&yylval) = 42;
3783return 'n';
3784
3785/* For an "identifier". */
3786yylval.ID = "42";
3787return ID;
3788@end example
3789
3790If the @code{%define} variable @code{api.token.prefix} is defined
3791(@pxref{%define Summary,,api.token.prefix}), then it is also used to prefix
3792the union member names. For instance, with @samp{%define api.token.prefix
630a0218 3793@{TOK_@}}:
90b89dad
AD
3794
3795@example
3796/* For an "integer". */
3797yylval.TOK_INT = 42;
3798return TOK_INT;
3799@end example
3800
1fa19a76
AD
3801This Bison extension cannot work if @code{%yacc} (or
3802@option{-y}/@option{--yacc}) is enabled, as POSIX mandates that Yacc
3803generate tokens as macros (e.g., @samp{#define INT 258}, or @samp{#define
3804TOK_INT 258}).
3805
90b89dad
AD
3806This feature is new, and user feedback would be most welcome.
3807
3808A similar feature is provided for C++ that in addition overcomes C++
3809limitations (that forbid non-trivial objects to be part of a @code{union}):
3810@samp{%define api.value.type variant}, see @ref{C++ Variants}.
3811
e4d49586
AD
3812@node Union Decl
3813@subsection The Union Declaration
3814@cindex declaring value types
3815@cindex value types, declaring
3816@findex %union
3817
3818The @code{%union} declaration specifies the entire collection of possible
3819data types for semantic values. The keyword @code{%union} is followed by
3820braced code containing the same thing that goes inside a @code{union} in C@.
3821
3822For example:
3823
3824@example
3825@group
3826%union @{
3827 double val;
3828 symrec *tptr;
3829@}
3830@end group
3831@end example
3832
3833@noindent
3834This says that the two alternative types are @code{double} and @code{symrec
3835*}. They are given names @code{val} and @code{tptr}; these names are used
3836in the @code{%token} and @code{%type} declarations to pick one of the types
3837for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3838
3839As an extension to POSIX, a tag is allowed after the @code{%union}. For
3840example:
3841
3842@example
3843@group
3844%union value @{
3845 double val;
3846 symrec *tptr;
3847@}
3848@end group
3849@end example
3850
3851@noindent
3852specifies the union tag @code{value}, so the corresponding C type is
3853@code{union value}. If you do not specify a tag, it defaults to
3854@code{YYSTYPE}.
3855
3856As another extension to POSIX, you may specify multiple @code{%union}
3857declarations; their contents are concatenated. However, only the first
3858@code{%union} declaration can specify a tag.
3859
3860Note that, unlike making a @code{union} declaration in C, you need not write
3861a semicolon after the closing brace.
3862
3863@node Structured Value Type
3864@subsection Providing a Structured Semantic Value Type
3865@cindex declaring value types
3866@cindex value types, declaring
3867@findex %union
3868
3869Instead of @code{%union}, you can define and use your own union type
3870@code{YYSTYPE} if your grammar contains at least one @samp{<@var{type}>}
3871tag. For example, you can put the following into a header file
3872@file{parser.h}:
3873
3874@example
3875@group
3876union YYSTYPE @{
3877 double val;
3878 symrec *tptr;
3879@};
3880@end group
3881@end example
3882
3883@noindent
3884and then your grammar can use the following instead of @code{%union}:
3885
3886@example
3887@group
3888%@{
3889#include "parser.h"
3890%@}
aba47f56 3891%define api.value.type @{union YYSTYPE@}
e4d49586
AD
3892%type <val> expr
3893%token <tptr> ID
3894@end group
3895@end example
3896
3897Actually, you may also provide a @code{struct} rather that a @code{union},
3898which may be handy if you want to track information for every symbol (such
3899as preceding comments).
3900
3901The type you provide may even be structured and include pointers, in which
3902case the type tags you provide may be composite, with @samp{.} and @samp{->}
3903operators.
3904
342b8b6e 3905@node Actions
bfa74976
RS
3906@subsection Actions
3907@cindex action
3908@vindex $$
3909@vindex $@var{n}
d013372c
AR
3910@vindex $@var{name}
3911@vindex $[@var{name}]
bfa74976
RS
3912
3913An action accompanies a syntactic rule and contains C code to be executed
3914each time an instance of that rule is recognized. The task of most actions
3915is to compute a semantic value for the grouping built by the rule from the
3916semantic values associated with tokens or smaller groupings.
3917
287c78f6
PE
3918An action consists of braced code containing C statements, and can be
3919placed at any position in the rule;
704a47c4
AD
3920it is executed at that position. Most rules have just one action at the
3921end of the rule, following all the components. Actions in the middle of
3922a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3923Actions, ,Actions in Mid-Rule}).
bfa74976 3924
ff7571c0
JD
3925The C code in an action can refer to the semantic values of the
3926components matched by the rule with the construct @code{$@var{n}},
3927which stands for the value of the @var{n}th component. The semantic
3928value for the grouping being constructed is @code{$$}. In addition,
3929the semantic values of symbols can be accessed with the named
3930references construct @code{$@var{name}} or @code{$[@var{name}]}.
3931Bison translates both of these constructs into expressions of the
3932appropriate type when it copies the actions into the parser
3933implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3934for the current grouping) is translated to a modifiable lvalue, so it
3935can be assigned to.
bfa74976
RS
3936
3937Here is a typical example:
3938
3939@example
3940@group
5e9b6624
AD
3941exp:
3942@dots{}
3943| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3944@end group
3945@end example
3946
d013372c
AR
3947Or, in terms of named references:
3948
3949@example
3950@group
5e9b6624
AD
3951exp[result]:
3952@dots{}
3953| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3954@end group
3955@end example
3956
bfa74976
RS
3957@noindent
3958This rule constructs an @code{exp} from two smaller @code{exp} groupings
3959connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3960(@code{$left} and @code{$right})
bfa74976
RS
3961refer to the semantic values of the two component @code{exp} groupings,
3962which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3963The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3964semantic value of
bfa74976
RS
3965the addition-expression just recognized by the rule. If there were a
3966useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3967referred to as @code{$2}.
bfa74976 3968
a7b15ab9
JD
3969@xref{Named References}, for more information about using the named
3970references construct.
d013372c 3971
3ded9a63
AD
3972Note that the vertical-bar character @samp{|} is really a rule
3973separator, and actions are attached to a single rule. This is a
3974difference with tools like Flex, for which @samp{|} stands for either
3975``or'', or ``the same action as that of the next rule''. In the
3976following example, the action is triggered only when @samp{b} is found:
3977
3978@example
3ded9a63 3979a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3980@end example
3981
bfa74976
RS
3982@cindex default action
3983If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3984@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3985becomes the value of the whole rule. Of course, the default action is
3986valid only if the two data types match. There is no meaningful default
3987action for an empty rule; every empty rule must have an explicit action
3988unless the rule's value does not matter.
bfa74976
RS
3989
3990@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3991to tokens and groupings on the stack @emph{before} those that match the
3992current rule. This is a very risky practice, and to use it reliably
3993you must be certain of the context in which the rule is applied. Here
3994is a case in which you can use this reliably:
3995
3996@example
3997@group
5e9b6624
AD
3998foo:
3999 expr bar '+' expr @{ @dots{} @}
4000| expr bar '-' expr @{ @dots{} @}
4001;
bfa74976
RS
4002@end group
4003
4004@group
5e9b6624 4005bar:
6240346a 4006 %empty @{ previous_expr = $0; @}
5e9b6624 4007;
bfa74976
RS
4008@end group
4009@end example
4010
4011As long as @code{bar} is used only in the fashion shown here, @code{$0}
4012always refers to the @code{expr} which precedes @code{bar} in the
4013definition of @code{foo}.
4014
32c29292 4015@vindex yylval
742e4900 4016It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
4017any, from a semantic action.
4018This semantic value is stored in @code{yylval}.
4019@xref{Action Features, ,Special Features for Use in Actions}.
4020
342b8b6e 4021@node Action Types
bfa74976
RS
4022@subsection Data Types of Values in Actions
4023@cindex action data types
4024@cindex data types in actions
4025
4026If you have chosen a single data type for semantic values, the @code{$$}
4027and @code{$@var{n}} constructs always have that data type.
4028
4029If you have used @code{%union} to specify a variety of data types, then you
4030must declare a choice among these types for each terminal or nonterminal
4031symbol that can have a semantic value. Then each time you use @code{$$} or
4032@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 4033in the rule. In this example,
bfa74976
RS
4034
4035@example
4036@group
5e9b6624
AD
4037exp:
4038 @dots{}
4039| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
4040@end group
4041@end example
4042
4043@noindent
4044@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
4045have the data type declared for the nonterminal symbol @code{exp}. If
4046@code{$2} were used, it would have the data type declared for the
e0c471a9 4047terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
4048
4049Alternatively, you can specify the data type when you refer to the value,
4050by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
4051reference. For example, if you have defined types as shown here:
4052
4053@example
4054@group
4055%union @{
4056 int itype;
4057 double dtype;
4058@}
4059@end group
4060@end example
4061
4062@noindent
4063then you can write @code{$<itype>1} to refer to the first subunit of the
4064rule as an integer, or @code{$<dtype>1} to refer to it as a double.
4065
342b8b6e 4066@node Mid-Rule Actions
bfa74976
RS
4067@subsection Actions in Mid-Rule
4068@cindex actions in mid-rule
4069@cindex mid-rule actions
4070
4071Occasionally it is useful to put an action in the middle of a rule.
4072These actions are written just like usual end-of-rule actions, but they
4073are executed before the parser even recognizes the following components.
4074
be22823e
AD
4075@menu
4076* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
4077* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
4078* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
4079@end menu
4080
4081@node Using Mid-Rule Actions
4082@subsubsection Using Mid-Rule Actions
4083
bfa74976
RS
4084A mid-rule action may refer to the components preceding it using
4085@code{$@var{n}}, but it may not refer to subsequent components because
4086it is run before they are parsed.
4087
4088The mid-rule action itself counts as one of the components of the rule.
4089This makes a difference when there is another action later in the same rule
4090(and usually there is another at the end): you have to count the actions
4091along with the symbols when working out which number @var{n} to use in
4092@code{$@var{n}}.
4093
4094The mid-rule action can also have a semantic value. The action can set
4095its value with an assignment to @code{$$}, and actions later in the rule
4096can refer to the value using @code{$@var{n}}. Since there is no symbol
4097to name the action, there is no way to declare a data type for the value
fdc6758b
MA
4098in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
4099specify a data type each time you refer to this value.
bfa74976
RS
4100
4101There is no way to set the value of the entire rule with a mid-rule
4102action, because assignments to @code{$$} do not have that effect. The
4103only way to set the value for the entire rule is with an ordinary action
4104at the end of the rule.
4105
4106Here is an example from a hypothetical compiler, handling a @code{let}
4107statement that looks like @samp{let (@var{variable}) @var{statement}} and
4108serves to create a variable named @var{variable} temporarily for the
4109duration of @var{statement}. To parse this construct, we must put
4110@var{variable} into the symbol table while @var{statement} is parsed, then
4111remove it afterward. Here is how it is done:
4112
4113@example
4114@group
5e9b6624 4115stmt:
c949ada3
AD
4116 "let" '(' var ')'
4117 @{
4118 $<context>$ = push_context ();
4119 declare_variable ($3);
4120 @}
5e9b6624 4121 stmt
c949ada3
AD
4122 @{
4123 $$ = $6;
4124 pop_context ($<context>5);
4125 @}
bfa74976
RS
4126@end group
4127@end example
4128
4129@noindent
4130As soon as @samp{let (@var{variable})} has been recognized, the first
4131action is run. It saves a copy of the current semantic context (the
4132list of accessible variables) as its semantic value, using alternative
4133@code{context} in the data-type union. Then it calls
4134@code{declare_variable} to add the new variable to that list. Once the
4135first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
4136parsed.
4137
4138Note that the mid-rule action is component number 5, so the @samp{stmt} is
4139component number 6. Named references can be used to improve the readability
4140and maintainability (@pxref{Named References}):
4141
4142@example
4143@group
4144stmt:
4145 "let" '(' var ')'
4146 @{
4147 $<context>let = push_context ();
4148 declare_variable ($3);
4149 @}[let]
4150 stmt
4151 @{
4152 $$ = $6;
4153 pop_context ($<context>let);
4154 @}
4155@end group
4156@end example
bfa74976
RS
4157
4158After the embedded statement is parsed, its semantic value becomes the
4159value of the entire @code{let}-statement. Then the semantic value from the
4160earlier action is used to restore the prior list of variables. This
4161removes the temporary @code{let}-variable from the list so that it won't
4162appear to exist while the rest of the program is parsed.
4163
841a7737
JD
4164@findex %destructor
4165@cindex discarded symbols, mid-rule actions
4166@cindex error recovery, mid-rule actions
4167In the above example, if the parser initiates error recovery (@pxref{Error
4168Recovery}) while parsing the tokens in the embedded statement @code{stmt},
4169it might discard the previous semantic context @code{$<context>5} without
4170restoring it.
4171Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
4172Discarded Symbols}).
ec5479ce
JD
4173However, Bison currently provides no means to declare a destructor specific to
4174a particular mid-rule action's semantic value.
841a7737
JD
4175
4176One solution is to bury the mid-rule action inside a nonterminal symbol and to
4177declare a destructor for that symbol:
4178
4179@example
4180@group
4181%type <context> let
4182%destructor @{ pop_context ($$); @} let
09add9c2 4183@end group
841a7737
JD
4184
4185%%
4186
09add9c2 4187@group
5e9b6624
AD
4188stmt:
4189 let stmt
4190 @{
4191 $$ = $2;
be22823e 4192 pop_context ($let);
5e9b6624 4193 @};
09add9c2 4194@end group
841a7737 4195
09add9c2 4196@group
5e9b6624 4197let:
c949ada3 4198 "let" '(' var ')'
5e9b6624 4199 @{
be22823e 4200 $let = push_context ();
5e9b6624
AD
4201 declare_variable ($3);
4202 @};
841a7737
JD
4203
4204@end group
4205@end example
4206
4207@noindent
4208Note that the action is now at the end of its rule.
4209Any mid-rule action can be converted to an end-of-rule action in this way, and
4210this is what Bison actually does to implement mid-rule actions.
4211
be22823e
AD
4212@node Mid-Rule Action Translation
4213@subsubsection Mid-Rule Action Translation
4214@vindex $@@@var{n}
4215@vindex @@@var{n}
4216
4217As hinted earlier, mid-rule actions are actually transformed into regular
4218rules and actions. The various reports generated by Bison (textual,
4219graphical, etc., see @ref{Understanding, , Understanding Your Parser})
4220reveal this translation, best explained by means of an example. The
4221following rule:
4222
4223@example
4224exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
4225@end example
4226
4227@noindent
4228is translated into:
4229
4230@example
6240346a
AD
4231$@@1: %empty @{ a(); @};
4232$@@2: %empty @{ c(); @};
4233$@@3: %empty @{ d(); @};
be22823e
AD
4234exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
4235@end example
4236
4237@noindent
4238with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
4239
4240A mid-rule action is expected to generate a value if it uses @code{$$}, or
4241the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
4242action. In that case its nonterminal is rather named @code{@@@var{n}}:
4243
4244@example
4245exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4246@end example
4247
4248@noindent
4249is translated into
4250
4251@example
6240346a
AD
4252@@1: %empty @{ a(); @};
4253@@2: %empty @{ $$ = c(); @};
4254$@@3: %empty @{ d(); @};
be22823e
AD
4255exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
4256@end example
4257
4258There are probably two errors in the above example: the first mid-rule
4259action does not generate a value (it does not use @code{$$} although the
4260final action uses it), and the value of the second one is not used (the
4261final action does not use @code{$3}). Bison reports these errors when the
4262@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
4263Bison}):
4264
4265@example
4266$ bison -fcaret -Wmidrule-value mid.y
4267@group
4268mid.y:2.6-13: warning: unset value: $$
4269 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4270 ^^^^^^^^
4271@end group
4272@group
4273mid.y:2.19-31: warning: unused value: $3
4274 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4275 ^^^^^^^^^^^^^
4276@end group
4277@end example
4278
4279
4280@node Mid-Rule Conflicts
4281@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4282Taking action before a rule is completely recognized often leads to
4283conflicts since the parser must commit to a parse in order to execute the
4284action. For example, the following two rules, without mid-rule actions,
4285can coexist in a working parser because the parser can shift the open-brace
4286token and look at what follows before deciding whether there is a
4287declaration or not:
4288
4289@example
4290@group
5e9b6624
AD
4291compound:
4292 '@{' declarations statements '@}'
4293| '@{' statements '@}'
4294;
bfa74976
RS
4295@end group
4296@end example
4297
4298@noindent
4299But when we add a mid-rule action as follows, the rules become nonfunctional:
4300
4301@example
4302@group
5e9b6624
AD
4303compound:
4304 @{ prepare_for_local_variables (); @}
4305 '@{' declarations statements '@}'
bfa74976
RS
4306@end group
4307@group
5e9b6624
AD
4308| '@{' statements '@}'
4309;
bfa74976
RS
4310@end group
4311@end example
4312
4313@noindent
4314Now the parser is forced to decide whether to run the mid-rule action
4315when it has read no farther than the open-brace. In other words, it
4316must commit to using one rule or the other, without sufficient
4317information to do it correctly. (The open-brace token is what is called
742e4900
JD
4318the @dfn{lookahead} token at this time, since the parser is still
4319deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4320
4321You might think that you could correct the problem by putting identical
4322actions into the two rules, like this:
4323
4324@example
4325@group
5e9b6624
AD
4326compound:
4327 @{ prepare_for_local_variables (); @}
4328 '@{' declarations statements '@}'
4329| @{ prepare_for_local_variables (); @}
4330 '@{' statements '@}'
4331;
bfa74976
RS
4332@end group
4333@end example
4334
4335@noindent
4336But this does not help, because Bison does not realize that the two actions
4337are identical. (Bison never tries to understand the C code in an action.)
4338
4339If the grammar is such that a declaration can be distinguished from a
4340statement by the first token (which is true in C), then one solution which
4341does work is to put the action after the open-brace, like this:
4342
4343@example
4344@group
5e9b6624
AD
4345compound:
4346 '@{' @{ prepare_for_local_variables (); @}
4347 declarations statements '@}'
4348| '@{' statements '@}'
4349;
bfa74976
RS
4350@end group
4351@end example
4352
4353@noindent
4354Now the first token of the following declaration or statement,
4355which would in any case tell Bison which rule to use, can still do so.
4356
4357Another solution is to bury the action inside a nonterminal symbol which
4358serves as a subroutine:
4359
4360@example
4361@group
5e9b6624 4362subroutine:
6240346a 4363 %empty @{ prepare_for_local_variables (); @}
5e9b6624 4364;
bfa74976
RS
4365@end group
4366
4367@group
5e9b6624
AD
4368compound:
4369 subroutine '@{' declarations statements '@}'
4370| subroutine '@{' statements '@}'
4371;
bfa74976
RS
4372@end group
4373@end example
4374
4375@noindent
4376Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4377deciding which rule for @code{compound} it will eventually use.
bfa74976 4378
be22823e 4379
303834cc 4380@node Tracking Locations
847bf1f5
AD
4381@section Tracking Locations
4382@cindex location
95923bd6
AD
4383@cindex textual location
4384@cindex location, textual
847bf1f5
AD
4385
4386Though grammar rules and semantic actions are enough to write a fully
72d2299c 4387functional parser, it can be useful to process some additional information,
3e259915
MA
4388especially symbol locations.
4389
704a47c4
AD
4390The way locations are handled is defined by providing a data type, and
4391actions to take when rules are matched.
847bf1f5
AD
4392
4393@menu
4394* Location Type:: Specifying a data type for locations.
4395* Actions and Locations:: Using locations in actions.
4396* Location Default Action:: Defining a general way to compute locations.
4397@end menu
4398
342b8b6e 4399@node Location Type
847bf1f5
AD
4400@subsection Data Type of Locations
4401@cindex data type of locations
4402@cindex default location type
4403
4404Defining a data type for locations is much simpler than for semantic values,
4405since all tokens and groupings always use the same type.
4406
50cce58e
PE
4407You can specify the type of locations by defining a macro called
4408@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4409defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4410When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4411four members:
4412
4413@example
6273355b 4414typedef struct YYLTYPE
847bf1f5
AD
4415@{
4416 int first_line;
4417 int first_column;
4418 int last_line;
4419 int last_column;
6273355b 4420@} YYLTYPE;
847bf1f5
AD
4421@end example
4422
d59e456d
AD
4423When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4424initializes all these fields to 1 for @code{yylloc}. To initialize
4425@code{yylloc} with a custom location type (or to chose a different
4426initialization), use the @code{%initial-action} directive. @xref{Initial
4427Action Decl, , Performing Actions before Parsing}.
cd48d21d 4428
342b8b6e 4429@node Actions and Locations
847bf1f5
AD
4430@subsection Actions and Locations
4431@cindex location actions
4432@cindex actions, location
4433@vindex @@$
4434@vindex @@@var{n}
d013372c
AR
4435@vindex @@@var{name}
4436@vindex @@[@var{name}]
847bf1f5
AD
4437
4438Actions are not only useful for defining language semantics, but also for
4439describing the behavior of the output parser with locations.
4440
4441The most obvious way for building locations of syntactic groupings is very
72d2299c 4442similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4443constructs can be used to access the locations of the elements being matched.
4444The location of the @var{n}th component of the right hand side is
4445@code{@@@var{n}}, while the location of the left hand side grouping is
4446@code{@@$}.
4447
d013372c
AR
4448In addition, the named references construct @code{@@@var{name}} and
4449@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4450@xref{Named References}, for more information about using the named
4451references construct.
d013372c 4452
3e259915 4453Here is a basic example using the default data type for locations:
847bf1f5
AD
4454
4455@example
4456@group
5e9b6624
AD
4457exp:
4458 @dots{}
4459| exp '/' exp
4460 @{
4461 @@$.first_column = @@1.first_column;
4462 @@$.first_line = @@1.first_line;
4463 @@$.last_column = @@3.last_column;
4464 @@$.last_line = @@3.last_line;
4465 if ($3)
4466 $$ = $1 / $3;
4467 else
4468 @{
4469 $$ = 1;
71846502 4470 fprintf (stderr, "%d.%d-%d.%d: division by zero",
5e9b6624
AD
4471 @@3.first_line, @@3.first_column,
4472 @@3.last_line, @@3.last_column);
4473 @}
4474 @}
847bf1f5
AD
4475@end group
4476@end example
4477
3e259915 4478As for semantic values, there is a default action for locations that is
72d2299c 4479run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4480beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4481last symbol.
3e259915 4482
72d2299c 4483With this default action, the location tracking can be fully automatic. The
3e259915
MA
4484example above simply rewrites this way:
4485
4486@example
4487@group
5e9b6624
AD
4488exp:
4489 @dots{}
4490| exp '/' exp
4491 @{
4492 if ($3)
4493 $$ = $1 / $3;
4494 else
4495 @{
4496 $$ = 1;
71846502 4497 fprintf (stderr, "%d.%d-%d.%d: division by zero",
5e9b6624
AD
4498 @@3.first_line, @@3.first_column,
4499 @@3.last_line, @@3.last_column);
4500 @}
4501 @}
3e259915
MA
4502@end group
4503@end example
847bf1f5 4504
32c29292 4505@vindex yylloc
742e4900 4506It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4507from a semantic action.
4508This location is stored in @code{yylloc}.
4509@xref{Action Features, ,Special Features for Use in Actions}.
4510
342b8b6e 4511@node Location Default Action
847bf1f5
AD
4512@subsection Default Action for Locations
4513@vindex YYLLOC_DEFAULT
8a4281b9 4514@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4515
72d2299c 4516Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4517locations are much more general than semantic values, there is room in
4518the output parser to redefine the default action to take for each
72d2299c 4519rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4520matched, before the associated action is run. It is also invoked
4521while processing a syntax error, to compute the error's location.
8a4281b9 4522Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4523parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4524of that ambiguity.
847bf1f5 4525
3e259915 4526Most of the time, this macro is general enough to suppress location
79282c6c 4527dedicated code from semantic actions.
847bf1f5 4528
72d2299c 4529The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4530the location of the grouping (the result of the computation). When a
766de5eb 4531rule is matched, the second parameter identifies locations of
96b93a3d 4532all right hand side elements of the rule being matched, and the third
8710fc41 4533parameter is the size of the rule's right hand side.
8a4281b9 4534When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4535right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4536When processing a syntax error, the second parameter identifies locations
4537of the symbols that were discarded during error processing, and the third
96b93a3d 4538parameter is the number of discarded symbols.
847bf1f5 4539
766de5eb 4540By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4541
c93f22fc
AD
4542@example
4543@group
4544# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4545do \
4546 if (N) \
4547 @{ \
4548 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4549 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4550 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4551 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4552 @} \
4553 else \
4554 @{ \
4555 (Cur).first_line = (Cur).last_line = \
4556 YYRHSLOC(Rhs, 0).last_line; \
4557 (Cur).first_column = (Cur).last_column = \
4558 YYRHSLOC(Rhs, 0).last_column; \
4559 @} \
4560while (0)
4561@end group
4562@end example
676385e2 4563
aaaa2aae 4564@noindent
766de5eb
PE
4565where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4566in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4567just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4568
3e259915 4569When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4570
3e259915 4571@itemize @bullet
79282c6c 4572@item
72d2299c 4573All arguments are free of side-effects. However, only the first one (the
3e259915 4574result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4575
3e259915 4576@item
766de5eb
PE
4577For consistency with semantic actions, valid indexes within the
4578right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4579valid index, and it refers to the symbol just before the reduction.
4580During error processing @var{n} is always positive.
0ae99356
PE
4581
4582@item
4583Your macro should parenthesize its arguments, if need be, since the
4584actual arguments may not be surrounded by parentheses. Also, your
4585macro should expand to something that can be used as a single
4586statement when it is followed by a semicolon.
3e259915 4587@end itemize
847bf1f5 4588
378e917c 4589@node Named References
a7b15ab9 4590@section Named References
378e917c
JD
4591@cindex named references
4592
a40e77eb
JD
4593As described in the preceding sections, the traditional way to refer to any
4594semantic value or location is a @dfn{positional reference}, which takes the
4595form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4596such a reference is not very descriptive. Moreover, if you later decide to
4597insert or remove symbols in the right-hand side of a grammar rule, the need
4598to renumber such references can be tedious and error-prone.
4599
4600To avoid these issues, you can also refer to a semantic value or location
4601using a @dfn{named reference}. First of all, original symbol names may be
4602used as named references. For example:
378e917c
JD
4603
4604@example
4605@group
4606invocation: op '(' args ')'
4607 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4608@end group
4609@end example
4610
4611@noindent
a40e77eb 4612Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4613
4614@example
4615@group
4616invocation: op '(' args ')'
4617 @{ $$ = new_invocation ($op, $args, @@$); @}
4618@end group
4619@end example
4620
4621@noindent
4622However, sometimes regular symbol names are not sufficient due to
4623ambiguities:
4624
4625@example
4626@group
4627exp: exp '/' exp
4628 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4629
4630exp: exp '/' exp
4631 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4632
4633exp: exp '/' exp
4634 @{ $$ = $1 / $3; @} // No error.
4635@end group
4636@end example
4637
4638@noindent
4639When ambiguity occurs, explicitly declared names may be used for values and
4640locations. Explicit names are declared as a bracketed name after a symbol
4641appearance in rule definitions. For example:
4642@example
4643@group
4644exp[result]: exp[left] '/' exp[right]
4645 @{ $result = $left / $right; @}
4646@end group
4647@end example
4648
4649@noindent
a7b15ab9
JD
4650In order to access a semantic value generated by a mid-rule action, an
4651explicit name may also be declared by putting a bracketed name after the
4652closing brace of the mid-rule action code:
378e917c
JD
4653@example
4654@group
4655exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4656 @{ $res = $left + $right; @}
4657@end group
4658@end example
4659
4660@noindent
4661
4662In references, in order to specify names containing dots and dashes, an explicit
4663bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4664@example
4665@group
762caaf6 4666if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4667 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4668@end group
4669@end example
4670
4671It often happens that named references are followed by a dot, dash or other
4672C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4673@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4674@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4675value. In order to force Bison to recognize @samp{name.suffix} in its
4676entirety as the name of a semantic value, the bracketed syntax
4677@samp{$[name.suffix]} must be used.
4678
4679The named references feature is experimental. More user feedback will help
4680to stabilize it.
378e917c 4681
342b8b6e 4682@node Declarations
bfa74976
RS
4683@section Bison Declarations
4684@cindex declarations, Bison
4685@cindex Bison declarations
4686
4687The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4688used in formulating the grammar and the data types of semantic values.
4689@xref{Symbols}.
4690
4691All token type names (but not single-character literal tokens such as
4692@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4693declared if you need to specify which data type to use for the semantic
4694value (@pxref{Multiple Types, ,More Than One Value Type}).
4695
ff7571c0
JD
4696The first rule in the grammar file also specifies the start symbol, by
4697default. If you want some other symbol to be the start symbol, you
4698must declare it explicitly (@pxref{Language and Grammar, ,Languages
4699and Context-Free Grammars}).
bfa74976
RS
4700
4701@menu
b50d2359 4702* Require Decl:: Requiring a Bison version.
bfa74976
RS
4703* Token Decl:: Declaring terminal symbols.
4704* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 4705* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4706* Initial Action Decl:: Code run before parsing starts.
72f889cc 4707* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4708* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4709* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4710* Start Decl:: Specifying the start symbol.
4711* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4712* Push Decl:: Requesting a push parser.
bfa74976 4713* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4714* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4715* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4716@end menu
4717
b50d2359
AD
4718@node Require Decl
4719@subsection Require a Version of Bison
4720@cindex version requirement
4721@cindex requiring a version of Bison
4722@findex %require
4723
4724You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4725the requirement is not met, @command{bison} exits with an error (exit
4726status 63).
b50d2359
AD
4727
4728@example
4729%require "@var{version}"
4730@end example
4731
342b8b6e 4732@node Token Decl
bfa74976
RS
4733@subsection Token Type Names
4734@cindex declaring token type names
4735@cindex token type names, declaring
931c7513 4736@cindex declaring literal string tokens
bfa74976
RS
4737@findex %token
4738
4739The basic way to declare a token type name (terminal symbol) is as follows:
4740
4741@example
4742%token @var{name}
4743@end example
4744
4745Bison will convert this into a @code{#define} directive in
4746the parser, so that the function @code{yylex} (if it is in this file)
4747can use the name @var{name} to stand for this token type's code.
4748
d78f0ac9
AD
4749Alternatively, you can use @code{%left}, @code{%right},
4750@code{%precedence}, or
14ded682
AD
4751@code{%nonassoc} instead of @code{%token}, if you wish to specify
4752associativity and precedence. @xref{Precedence Decl, ,Operator
4753Precedence}.
bfa74976
RS
4754
4755You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4756a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4757following the token name:
bfa74976
RS
4758
4759@example
4760%token NUM 300
1452af69 4761%token XNUM 0x12d // a GNU extension
bfa74976
RS
4762@end example
4763
4764@noindent
4765It is generally best, however, to let Bison choose the numeric codes for
4766all token types. Bison will automatically select codes that don't conflict
e966383b 4767with each other or with normal characters.
bfa74976
RS
4768
4769In the event that the stack type is a union, you must augment the
4770@code{%token} or other token declaration to include the data type
704a47c4
AD
4771alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4772Than One Value Type}).
bfa74976
RS
4773
4774For example:
4775
4776@example
4777@group
4778%union @{ /* define stack type */
4779 double val;
4780 symrec *tptr;
4781@}
4782%token <val> NUM /* define token NUM and its type */
4783@end group
4784@end example
4785
931c7513
RS
4786You can associate a literal string token with a token type name by
4787writing the literal string at the end of a @code{%token}
4788declaration which declares the name. For example:
4789
4790@example
4791%token arrow "=>"
4792@end example
4793
4794@noindent
4795For example, a grammar for the C language might specify these names with
4796equivalent literal string tokens:
4797
4798@example
4799%token <operator> OR "||"
4800%token <operator> LE 134 "<="
4801%left OR "<="
4802@end example
4803
4804@noindent
4805Once you equate the literal string and the token name, you can use them
4806interchangeably in further declarations or the grammar rules. The
4807@code{yylex} function can use the token name or the literal string to
4808obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4809Syntax error messages passed to @code{yyerror} from the parser will reference
4810the literal string instead of the token name.
4811
4812The token numbered as 0 corresponds to end of file; the following line
4813allows for nicer error messages referring to ``end of file'' instead
4814of ``$end'':
4815
4816@example
4817%token END 0 "end of file"
4818@end example
931c7513 4819
342b8b6e 4820@node Precedence Decl
bfa74976
RS
4821@subsection Operator Precedence
4822@cindex precedence declarations
4823@cindex declaring operator precedence
4824@cindex operator precedence, declaring
4825
d78f0ac9
AD
4826Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4827@code{%precedence} declaration to
bfa74976
RS
4828declare a token and specify its precedence and associativity, all at
4829once. These are called @dfn{precedence declarations}.
704a47c4
AD
4830@xref{Precedence, ,Operator Precedence}, for general information on
4831operator precedence.
bfa74976 4832
ab7f29f8 4833The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4834@code{%token}: either
4835
4836@example
4837%left @var{symbols}@dots{}
4838@end example
4839
4840@noindent
4841or
4842
4843@example
4844%left <@var{type}> @var{symbols}@dots{}
4845@end example
4846
4847And indeed any of these declarations serves the purposes of @code{%token}.
4848But in addition, they specify the associativity and relative precedence for
4849all the @var{symbols}:
4850
4851@itemize @bullet
4852@item
4853The associativity of an operator @var{op} determines how repeated uses
4854of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4855@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4856grouping @var{y} with @var{z} first. @code{%left} specifies
4857left-associativity (grouping @var{x} with @var{y} first) and
4858@code{%right} specifies right-associativity (grouping @var{y} with
4859@var{z} first). @code{%nonassoc} specifies no associativity, which
4860means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4861considered a syntax error.
4862
d78f0ac9
AD
4863@code{%precedence} gives only precedence to the @var{symbols}, and
4864defines no associativity at all. Use this to define precedence only,
4865and leave any potential conflict due to associativity enabled.
4866
bfa74976
RS
4867@item
4868The precedence of an operator determines how it nests with other operators.
4869All the tokens declared in a single precedence declaration have equal
4870precedence and nest together according to their associativity.
4871When two tokens declared in different precedence declarations associate,
4872the one declared later has the higher precedence and is grouped first.
4873@end itemize
4874
ab7f29f8
JD
4875For backward compatibility, there is a confusing difference between the
4876argument lists of @code{%token} and precedence declarations.
4877Only a @code{%token} can associate a literal string with a token type name.
4878A precedence declaration always interprets a literal string as a reference to a
4879separate token.
4880For example:
4881
4882@example
4883%left OR "<=" // Does not declare an alias.
4884%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4885@end example
4886
342b8b6e 4887@node Type Decl
bfa74976
RS
4888@subsection Nonterminal Symbols
4889@cindex declaring value types, nonterminals
4890@cindex value types, nonterminals, declaring
4891@findex %type
4892
4893@noindent
4894When you use @code{%union} to specify multiple value types, you must
4895declare the value type of each nonterminal symbol for which values are
4896used. This is done with a @code{%type} declaration, like this:
4897
4898@example
4899%type <@var{type}> @var{nonterminal}@dots{}
4900@end example
4901
4902@noindent
704a47c4
AD
4903Here @var{nonterminal} is the name of a nonterminal symbol, and
4904@var{type} is the name given in the @code{%union} to the alternative
e4d49586 4905that you want (@pxref{Union Decl, ,The Union Declaration}). You
704a47c4
AD
4906can give any number of nonterminal symbols in the same @code{%type}
4907declaration, if they have the same value type. Use spaces to separate
4908the symbol names.
bfa74976 4909
931c7513
RS
4910You can also declare the value type of a terminal symbol. To do this,
4911use the same @code{<@var{type}>} construction in a declaration for the
4912terminal symbol. All kinds of token declarations allow
4913@code{<@var{type}>}.
4914
18d192f0
AD
4915@node Initial Action Decl
4916@subsection Performing Actions before Parsing
4917@findex %initial-action
4918
4919Sometimes your parser needs to perform some initializations before
4920parsing. The @code{%initial-action} directive allows for such arbitrary
4921code.
4922
4923@deffn {Directive} %initial-action @{ @var{code} @}
4924@findex %initial-action
287c78f6 4925Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4926@code{yyparse} is called. The @var{code} may use @code{$$} (or
4927@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4928lookahead --- and the @code{%parse-param}.
18d192f0
AD
4929@end deffn
4930
451364ed
AD
4931For instance, if your locations use a file name, you may use
4932
4933@example
48b16bbc 4934%parse-param @{ char const *file_name @};
451364ed
AD
4935%initial-action
4936@{
4626a15d 4937 @@$.initialize (file_name);
451364ed
AD
4938@};
4939@end example
4940
18d192f0 4941
72f889cc
AD
4942@node Destructor Decl
4943@subsection Freeing Discarded Symbols
4944@cindex freeing discarded symbols
4945@findex %destructor
12e35840 4946@findex <*>
3ebecc24 4947@findex <>
a85284cf
AD
4948During error recovery (@pxref{Error Recovery}), symbols already pushed
4949on the stack and tokens coming from the rest of the file are discarded
4950until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4951or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4952symbols on the stack must be discarded. Even if the parser succeeds, it
4953must discard the start symbol.
258b75ca
PE
4954
4955When discarded symbols convey heap based information, this memory is
4956lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4957in traditional compilers, it is unacceptable for programs like shells or
4958protocol implementations that may parse and execute indefinitely.
258b75ca 4959
a85284cf
AD
4960The @code{%destructor} directive defines code that is called when a
4961symbol is automatically discarded.
72f889cc
AD
4962
4963@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4964@findex %destructor
287c78f6 4965Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4966@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4967designates the semantic value associated with the discarded symbol, and
4968@code{@@$} designates its location. The additional parser parameters are
4969also available (@pxref{Parser Function, , The Parser Function
4970@code{yyparse}}).
ec5479ce 4971
b2a0b7ca
JD
4972When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4973per-symbol @code{%destructor}.
4974You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4975tag among @var{symbols}.
b2a0b7ca 4976In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4977grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4978per-symbol @code{%destructor}.
4979
12e35840 4980Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4981(These default forms are experimental.
4982More user feedback will help to determine whether they should become permanent
4983features.)
3ebecc24 4984You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4985exactly one @code{%destructor} declaration in your grammar file.
4986The parser will invoke the @var{code} associated with one of these whenever it
4987discards any user-defined grammar symbol that has no per-symbol and no per-type
4988@code{%destructor}.
4989The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4990symbol for which you have formally declared a semantic type tag (@code{%type}
4991counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4992The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4993symbol that has no declared semantic type tag.
72f889cc
AD
4994@end deffn
4995
b2a0b7ca 4996@noindent
12e35840 4997For example:
72f889cc 4998
c93f22fc 4999@example
ec5479ce 5000%union @{ char *string; @}
d1a07886
AD
5001%token <string> STRING1 STRING2
5002%type <string> string1 string2
b2a0b7ca
JD
5003%union @{ char character; @}
5004%token <character> CHR
5005%type <character> chr
12e35840
JD
5006%token TAGLESS
5007
b2a0b7ca 5008%destructor @{ @} <character>
12e35840
JD
5009%destructor @{ free ($$); @} <*>
5010%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 5011%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 5012@end example
72f889cc
AD
5013
5014@noindent
b2a0b7ca
JD
5015guarantees that, when the parser discards any user-defined symbol that has a
5016semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 5017to @code{free} by default.
ec5479ce
JD
5018However, when the parser discards a @code{STRING1} or a @code{string1}, it also
5019prints its line number to @code{stdout}.
5020It performs only the second @code{%destructor} in this case, so it invokes
5021@code{free} only once.
12e35840
JD
5022Finally, the parser merely prints a message whenever it discards any symbol,
5023such as @code{TAGLESS}, that has no semantic type tag.
5024
5025A Bison-generated parser invokes the default @code{%destructor}s only for
5026user-defined as opposed to Bison-defined symbols.
5027For example, the parser will not invoke either kind of default
5028@code{%destructor} for the special Bison-defined symbols @code{$accept},
5029@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
5030none of which you can reference in your grammar.
5031It also will not invoke either for the @code{error} token (@pxref{Table of
5032Symbols, ,error}), which is always defined by Bison regardless of whether you
5033reference it in your grammar.
5034However, it may invoke one of them for the end token (token 0) if you
5035redefine it from @code{$end} to, for example, @code{END}:
3508ce36 5036
c93f22fc 5037@example
3508ce36 5038%token END 0
c93f22fc 5039@end example
3508ce36 5040
12e35840
JD
5041@cindex actions in mid-rule
5042@cindex mid-rule actions
5043Finally, Bison will never invoke a @code{%destructor} for an unreferenced
5044mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
5045That is, Bison does not consider a mid-rule to have a semantic value if you
5046do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
5047(where @var{n} is the right-hand side symbol position of the mid-rule) in
5048any later action in that rule. However, if you do reference either, the
5049Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
5050it discards the mid-rule symbol.
12e35840 5051
3508ce36
JD
5052@ignore
5053@noindent
5054In the future, it may be possible to redefine the @code{error} token as a
5055nonterminal that captures the discarded symbols.
5056In that case, the parser will invoke the default destructor for it as well.
5057@end ignore
5058
e757bb10
AD
5059@sp 1
5060
5061@cindex discarded symbols
5062@dfn{Discarded symbols} are the following:
5063
5064@itemize
5065@item
5066stacked symbols popped during the first phase of error recovery,
5067@item
5068incoming terminals during the second phase of error recovery,
5069@item
742e4900 5070the current lookahead and the entire stack (except the current
9d9b8b70 5071right-hand side symbols) when the parser returns immediately, and
258b75ca 5072@item
d3e4409a
AD
5073the current lookahead and the entire stack (including the current right-hand
5074side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
5075@code{parse},
5076@item
258b75ca 5077the start symbol, when the parser succeeds.
e757bb10
AD
5078@end itemize
5079
9d9b8b70
PE
5080The parser can @dfn{return immediately} because of an explicit call to
5081@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
5082exhaustion.
5083
29553547 5084Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
5085error via @code{YYERROR} are not discarded automatically. As a rule
5086of thumb, destructors are invoked only when user actions cannot manage
a85284cf 5087the memory.
e757bb10 5088
93c150b6
AD
5089@node Printer Decl
5090@subsection Printing Semantic Values
5091@cindex printing semantic values
5092@findex %printer
5093@findex <*>
5094@findex <>
5095When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
5096the parser reports its actions, such as reductions. When a symbol involved
5097in an action is reported, only its kind is displayed, as the parser cannot
5098know how semantic values should be formatted.
5099
5100The @code{%printer} directive defines code that is called when a symbol is
5101reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
5102Decl, , Freeing Discarded Symbols}).
5103
5104@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
5105@findex %printer
5106@vindex yyoutput
5107@c This is the same text as for %destructor.
5108Invoke the braced @var{code} whenever the parser displays one of the
5109@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
5110(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
5111@code{$<@var{tag}>$}) designates the semantic value associated with the
5112symbol, and @code{@@$} its location. The additional parser parameters are
5113also available (@pxref{Parser Function, , The Parser Function
5114@code{yyparse}}).
93c150b6
AD
5115
5116The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
5117Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
5118@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
5119typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
5120@samp{<>}).
5121@end deffn
5122
5123@noindent
5124For example:
5125
5126@example
5127%union @{ char *string; @}
d1a07886
AD
5128%token <string> STRING1 STRING2
5129%type <string> string1 string2
93c150b6
AD
5130%union @{ char character; @}
5131%token <character> CHR
5132%type <character> chr
5133%token TAGLESS
5134
5135%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
5136%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
5137%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
5138%printer @{ fprintf (yyoutput, "<>"); @} <>
5139@end example
5140
5141@noindent
5142guarantees that, when the parser print any symbol that has a semantic type
5143tag other than @code{<character>}, it display the address of the semantic
5144value by default. However, when the parser displays a @code{STRING1} or a
5145@code{string1}, it formats it as a string in double quotes. It performs
5146only the second @code{%printer} in this case, so it prints only once.
5147Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
a3c3c6f2
AD
5148that has no semantic type tag. @xref{Mfcalc Traces, ,Enabling Debug Traces
5149for @code{mfcalc}}, for a complete example.
5150
93c150b6
AD
5151
5152
342b8b6e 5153@node Expect Decl
bfa74976
RS
5154@subsection Suppressing Conflict Warnings
5155@cindex suppressing conflict warnings
5156@cindex preventing warnings about conflicts
5157@cindex warnings, preventing
5158@cindex conflicts, suppressing warnings of
5159@findex %expect
d6328241 5160@findex %expect-rr
bfa74976
RS
5161
5162Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
5163(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
5164have harmless shift/reduce conflicts which are resolved in a predictable
5165way and would be difficult to eliminate. It is desirable to suppress
5166the warning about these conflicts unless the number of conflicts
5167changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
5168
5169The declaration looks like this:
5170
5171@example
5172%expect @var{n}
5173@end example
5174
035aa4a0
PE
5175Here @var{n} is a decimal integer. The declaration says there should
5176be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
5177Bison reports an error if the number of shift/reduce conflicts differs
5178from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 5179
eb45ef3b 5180For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 5181serious, and should be eliminated entirely. Bison will always report
8a4281b9 5182reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5183parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5184there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5185also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5186in GLR parsers, using the declaration:
d6328241
PH
5187
5188@example
5189%expect-rr @var{n}
5190@end example
5191
bfa74976
RS
5192In general, using @code{%expect} involves these steps:
5193
5194@itemize @bullet
5195@item
5196Compile your grammar without @code{%expect}. Use the @samp{-v} option
5197to get a verbose list of where the conflicts occur. Bison will also
5198print the number of conflicts.
5199
5200@item
5201Check each of the conflicts to make sure that Bison's default
5202resolution is what you really want. If not, rewrite the grammar and
5203go back to the beginning.
5204
5205@item
5206Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5207number which Bison printed. With GLR parsers, add an
035aa4a0 5208@code{%expect-rr} declaration as well.
bfa74976
RS
5209@end itemize
5210
93d7dde9
JD
5211Now Bison will report an error if you introduce an unexpected conflict,
5212but will keep silent otherwise.
bfa74976 5213
342b8b6e 5214@node Start Decl
bfa74976
RS
5215@subsection The Start-Symbol
5216@cindex declaring the start symbol
5217@cindex start symbol, declaring
5218@cindex default start symbol
5219@findex %start
5220
5221Bison assumes by default that the start symbol for the grammar is the first
5222nonterminal specified in the grammar specification section. The programmer
5223may override this restriction with the @code{%start} declaration as follows:
5224
5225@example
5226%start @var{symbol}
5227@end example
5228
342b8b6e 5229@node Pure Decl
bfa74976
RS
5230@subsection A Pure (Reentrant) Parser
5231@cindex reentrant parser
5232@cindex pure parser
d9df47b6 5233@findex %define api.pure
bfa74976
RS
5234
5235A @dfn{reentrant} program is one which does not alter in the course of
5236execution; in other words, it consists entirely of @dfn{pure} (read-only)
5237code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5238for example, a nonreentrant program may not be safe to call from a signal
5239handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5240program must be called only within interlocks.
5241
70811b85 5242Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5243suitable for most uses, and it permits compatibility with Yacc. (The
5244standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5245statically allocated variables for communication with @code{yylex},
5246including @code{yylval} and @code{yylloc}.)
bfa74976 5247
70811b85 5248Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5249declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5250reentrant. It looks like this:
bfa74976
RS
5251
5252@example
1f1bd572 5253%define api.pure full
bfa74976
RS
5254@end example
5255
70811b85
RS
5256The result is that the communication variables @code{yylval} and
5257@code{yylloc} become local variables in @code{yyparse}, and a different
5258calling convention is used for the lexical analyzer function
5259@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5260Parsers}, for the details of this. The variable @code{yynerrs}
5261becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5262of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5263Reporting Function @code{yyerror}}). The convention for calling
5264@code{yyparse} itself is unchanged.
5265
5266Whether the parser is pure has nothing to do with the grammar rules.
5267You can generate either a pure parser or a nonreentrant parser from any
5268valid grammar.
bfa74976 5269
9987d1b3
JD
5270@node Push Decl
5271@subsection A Push Parser
5272@cindex push parser
5273@cindex push parser
67212941 5274@findex %define api.push-pull
9987d1b3 5275
59da312b
JD
5276(The current push parsing interface is experimental and may evolve.
5277More user feedback will help to stabilize it.)
5278
f4101aa6
AD
5279A pull parser is called once and it takes control until all its input
5280is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5281each time a new token is made available.
5282
f4101aa6 5283A push parser is typically useful when the parser is part of a
9987d1b3 5284main event loop in the client's application. This is typically
f4101aa6
AD
5285a requirement of a GUI, when the main event loop needs to be triggered
5286within a certain time period.
9987d1b3 5287
d782395d
JD
5288Normally, Bison generates a pull parser.
5289The following Bison declaration says that you want the parser to be a push
35c1e5f0 5290parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5291
5292@example
cf499cff 5293%define api.push-pull push
9987d1b3
JD
5294@end example
5295
5296In almost all cases, you want to ensure that your push parser is also
5297a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5298time you should create an impure push parser is to have backwards
9987d1b3
JD
5299compatibility with the impure Yacc pull mode interface. Unless you know
5300what you are doing, your declarations should look like this:
5301
5302@example
1f1bd572 5303%define api.pure full
cf499cff 5304%define api.push-pull push
9987d1b3
JD
5305@end example
5306
f4101aa6
AD
5307There is a major notable functional difference between the pure push parser
5308and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5309many parser instances, of the same type of parser, in memory at the same time.
5310An impure push parser should only use one parser at a time.
5311
5312When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5313the generated parser. @code{yypstate} is a structure that the generated
5314parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5315function that will create a new parser instance. @code{yypstate_delete}
5316will free the resources associated with the corresponding parser instance.
f4101aa6 5317Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5318token is available to provide the parser. A trivial example
5319of using a pure push parser would look like this:
5320
5321@example
5322int status;
5323yypstate *ps = yypstate_new ();
5324do @{
5325 status = yypush_parse (ps, yylex (), NULL);
5326@} while (status == YYPUSH_MORE);
5327yypstate_delete (ps);
5328@end example
5329
5330If the user decided to use an impure push parser, a few things about
f4101aa6 5331the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5332a global variable instead of a variable in the @code{yypush_parse} function.
5333For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5334changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5335example would thus look like this:
5336
5337@example
5338extern int yychar;
5339int status;
5340yypstate *ps = yypstate_new ();
5341do @{
5342 yychar = yylex ();
5343 status = yypush_parse (ps);
5344@} while (status == YYPUSH_MORE);
5345yypstate_delete (ps);
5346@end example
5347
f4101aa6 5348That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5349for use by the next invocation of the @code{yypush_parse} function.
5350
f4101aa6 5351Bison also supports both the push parser interface along with the pull parser
9987d1b3 5352interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5353you should replace the @samp{%define api.push-pull push} declaration with the
5354@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5355the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5356and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5357would be used. However, the user should note that it is implemented in the
d782395d
JD
5358generated parser by calling @code{yypull_parse}.
5359This makes the @code{yyparse} function that is generated with the
cf499cff 5360@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5361@code{yyparse} function. If the user
5362calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5363stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5364and then @code{yypull_parse} the rest of the input stream. If you would like
5365to switch back and forth between between parsing styles, you would have to
5366write your own @code{yypull_parse} function that knows when to quit looking
5367for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5368like this:
5369
5370@example
5371yypstate *ps = yypstate_new ();
5372yypull_parse (ps); /* Will call the lexer */
5373yypstate_delete (ps);
5374@end example
5375
67501061 5376Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5377the generated parser with @samp{%define api.push-pull both} as it did for
5378@samp{%define api.push-pull push}.
9987d1b3 5379
342b8b6e 5380@node Decl Summary
bfa74976
RS
5381@subsection Bison Declaration Summary
5382@cindex Bison declaration summary
5383@cindex declaration summary
5384@cindex summary, Bison declaration
5385
d8988b2f 5386Here is a summary of the declarations used to define a grammar:
bfa74976 5387
18b519c0 5388@deffn {Directive} %union
bfa74976 5389Declare the collection of data types that semantic values may have
e4d49586 5390(@pxref{Union Decl, ,The Union Declaration}).
18b519c0 5391@end deffn
bfa74976 5392
18b519c0 5393@deffn {Directive} %token
bfa74976
RS
5394Declare a terminal symbol (token type name) with no precedence
5395or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5396@end deffn
bfa74976 5397
18b519c0 5398@deffn {Directive} %right
bfa74976
RS
5399Declare a terminal symbol (token type name) that is right-associative
5400(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5401@end deffn
bfa74976 5402
18b519c0 5403@deffn {Directive} %left
bfa74976
RS
5404Declare a terminal symbol (token type name) that is left-associative
5405(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5406@end deffn
bfa74976 5407
18b519c0 5408@deffn {Directive} %nonassoc
bfa74976 5409Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5410(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5411Using it in a way that would be associative is a syntax error.
5412@end deffn
5413
91d2c560 5414@ifset defaultprec
39a06c25 5415@deffn {Directive} %default-prec
22fccf95 5416Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5417(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5418@end deffn
91d2c560 5419@end ifset
bfa74976 5420
18b519c0 5421@deffn {Directive} %type
bfa74976
RS
5422Declare the type of semantic values for a nonterminal symbol
5423(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5424@end deffn
bfa74976 5425
18b519c0 5426@deffn {Directive} %start
89cab50d
AD
5427Specify the grammar's start symbol (@pxref{Start Decl, ,The
5428Start-Symbol}).
18b519c0 5429@end deffn
bfa74976 5430
18b519c0 5431@deffn {Directive} %expect
bfa74976
RS
5432Declare the expected number of shift-reduce conflicts
5433(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5434@end deffn
5435
bfa74976 5436
d8988b2f
AD
5437@sp 1
5438@noindent
5439In order to change the behavior of @command{bison}, use the following
5440directives:
5441
148d66d8 5442@deffn {Directive} %code @{@var{code}@}
e0c07222 5443@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5444@findex %code
e0c07222
JD
5445Insert @var{code} verbatim into the output parser source at the
5446default location or at the location specified by @var{qualifier}.
5447@xref{%code Summary}.
148d66d8
JD
5448@end deffn
5449
18b519c0 5450@deffn {Directive} %debug
60aa04a2 5451Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5452parse.trace}.
ec3bc396 5453@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5454@end deffn
d8988b2f 5455
35c1e5f0
JD
5456@deffn {Directive} %define @var{variable}
5457@deffnx {Directive} %define @var{variable} @var{value}
aba47f56 5458@deffnx {Directive} %define @var{variable} @{@var{value}@}
35c1e5f0
JD
5459@deffnx {Directive} %define @var{variable} "@var{value}"
5460Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5461@end deffn
5462
5463@deffn {Directive} %defines
5464Write a parser header file containing macro definitions for the token
5465type names defined in the grammar as well as a few other declarations.
5466If the parser implementation file is named @file{@var{name}.c} then
5467the parser header file is named @file{@var{name}.h}.
5468
5469For C parsers, the parser header file declares @code{YYSTYPE} unless
5470@code{YYSTYPE} is already defined as a macro or you have used a
5471@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5472you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5473Value Type}) with components that require other definitions, or if you
5474have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5475Type, ,Data Types of Semantic Values}), you need to arrange for these
5476definitions to be propagated to all modules, e.g., by putting them in
5477a prerequisite header that is included both by your parser and by any
5478other module that needs @code{YYSTYPE}.
5479
5480Unless your parser is pure, the parser header file declares
5481@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5482(Reentrant) Parser}.
5483
5484If you have also used locations, the parser header file declares
303834cc
JD
5485@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5486@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5487
5488This parser header file is normally essential if you wish to put the
5489definition of @code{yylex} in a separate source file, because
5490@code{yylex} typically needs to be able to refer to the
5491above-mentioned declarations and to the token type codes. @xref{Token
5492Values, ,Semantic Values of Tokens}.
5493
5494@findex %code requires
5495@findex %code provides
5496If you have declared @code{%code requires} or @code{%code provides}, the output
5497header also contains their code.
5498@xref{%code Summary}.
c9d5bcc9
AD
5499
5500@cindex Header guard
5501The generated header is protected against multiple inclusions with a C
5502preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5503@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5504,Multiple Parsers in the Same Program}) and generated file name turned
5505uppercase, with each series of non alphanumerical characters converted to a
5506single underscore.
5507
aba47f56 5508For instance with @samp{%define api.prefix @{calc@}} and @samp{%defines
c9d5bcc9
AD
5509"lib/parse.h"}, the header will be guarded as follows.
5510@example
5511#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5512# define YY_CALC_LIB_PARSE_H_INCLUDED
5513...
5514#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5515@end example
35c1e5f0
JD
5516@end deffn
5517
5518@deffn {Directive} %defines @var{defines-file}
fe65b144 5519Same as above, but save in the file @file{@var{defines-file}}.
35c1e5f0
JD
5520@end deffn
5521
5522@deffn {Directive} %destructor
5523Specify how the parser should reclaim the memory associated to
5524discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5525@end deffn
5526
5527@deffn {Directive} %file-prefix "@var{prefix}"
5528Specify a prefix to use for all Bison output file names. The names
5529are chosen as if the grammar file were named @file{@var{prefix}.y}.
5530@end deffn
5531
5532@deffn {Directive} %language "@var{language}"
5533Specify the programming language for the generated parser. Currently
5534supported languages include C, C++, and Java.
5535@var{language} is case-insensitive.
5536
35c1e5f0
JD
5537@end deffn
5538
5539@deffn {Directive} %locations
5540Generate the code processing the locations (@pxref{Action Features,
5541,Special Features for Use in Actions}). This mode is enabled as soon as
5542the grammar uses the special @samp{@@@var{n}} tokens, but if your
5543grammar does not use it, using @samp{%locations} allows for more
5544accurate syntax error messages.
5545@end deffn
5546
5547@deffn {Directive} %name-prefix "@var{prefix}"
5548Rename the external symbols used in the parser so that they start with
5549@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5550in C parsers
5551is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5552@code{yylval}, @code{yychar}, @code{yydebug}, and
5553(if locations are used) @code{yylloc}. If you use a push parser,
5554@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5555@code{yypstate_new} and @code{yypstate_delete} will
5556also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5557names become @code{c_parse}, @code{c_lex}, and so on.
5558For C++ parsers, see the @samp{%define api.namespace} documentation in this
5559section.
5560@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5561@end deffn
5562
5563@ifset defaultprec
5564@deffn {Directive} %no-default-prec
5565Do not assign a precedence to rules lacking an explicit @code{%prec}
5566modifier (@pxref{Contextual Precedence, ,Context-Dependent
5567Precedence}).
5568@end deffn
5569@end ifset
5570
5571@deffn {Directive} %no-lines
5572Don't generate any @code{#line} preprocessor commands in the parser
5573implementation file. Ordinarily Bison writes these commands in the
5574parser implementation file so that the C compiler and debuggers will
5575associate errors and object code with your source file (the grammar
5576file). This directive causes them to associate errors with the parser
5577implementation file, treating it as an independent source file in its
5578own right.
5579@end deffn
5580
5581@deffn {Directive} %output "@var{file}"
fe65b144 5582Generate the parser implementation in @file{@var{file}}.
35c1e5f0
JD
5583@end deffn
5584
5585@deffn {Directive} %pure-parser
5586Deprecated version of @samp{%define api.pure} (@pxref{%define
5587Summary,,api.pure}), for which Bison is more careful to warn about
5588unreasonable usage.
5589@end deffn
5590
5591@deffn {Directive} %require "@var{version}"
5592Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5593Require a Version of Bison}.
5594@end deffn
5595
5596@deffn {Directive} %skeleton "@var{file}"
5597Specify the skeleton to use.
5598
5599@c You probably don't need this option unless you are developing Bison.
5600@c You should use @code{%language} if you want to specify the skeleton for a
5601@c different language, because it is clearer and because it will always choose the
5602@c correct skeleton for non-deterministic or push parsers.
5603
5604If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5605file in the Bison installation directory.
5606If it does, @var{file} is an absolute file name or a file name relative to the
5607directory of the grammar file.
5608This is similar to how most shells resolve commands.
5609@end deffn
5610
5611@deffn {Directive} %token-table
5612Generate an array of token names in the parser implementation file.
5613The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5614the name of the token whose internal Bison token code number is
5615@var{i}. The first three elements of @code{yytname} correspond to the
5616predefined tokens @code{"$end"}, @code{"error"}, and
5617@code{"$undefined"}; after these come the symbols defined in the
5618grammar file.
5619
5620The name in the table includes all the characters needed to represent
5621the token in Bison. For single-character literals and literal
5622strings, this includes the surrounding quoting characters and any
5623escape sequences. For example, the Bison single-character literal
5624@code{'+'} corresponds to a three-character name, represented in C as
5625@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5626corresponds to a five-character name, represented in C as
5627@code{"\"\\\\/\""}.
5628
5629When you specify @code{%token-table}, Bison also generates macro
5630definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5631@code{YYNRULES}, and @code{YYNSTATES}:
5632
5633@table @code
5634@item YYNTOKENS
5635The highest token number, plus one.
5636@item YYNNTS
5637The number of nonterminal symbols.
5638@item YYNRULES
5639The number of grammar rules,
5640@item YYNSTATES
5641The number of parser states (@pxref{Parser States}).
5642@end table
5643@end deffn
5644
5645@deffn {Directive} %verbose
5646Write an extra output file containing verbose descriptions of the
5647parser states and what is done for each type of lookahead token in
5648that state. @xref{Understanding, , Understanding Your Parser}, for more
5649information.
5650@end deffn
5651
5652@deffn {Directive} %yacc
5653Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5654including its naming conventions. @xref{Bison Options}, for more.
5655@end deffn
5656
5657
5658@node %define Summary
5659@subsection %define Summary
51151d91
JD
5660
5661There are many features of Bison's behavior that can be controlled by
5662assigning the feature a single value. For historical reasons, some
5663such features are assigned values by dedicated directives, such as
5664@code{%start}, which assigns the start symbol. However, newer such
5665features are associated with variables, which are assigned by the
5666@code{%define} directive:
5667
c1d19e10 5668@deffn {Directive} %define @var{variable}
cf499cff 5669@deffnx {Directive} %define @var{variable} @var{value}
aba47f56 5670@deffnx {Directive} %define @var{variable} @{@var{value}@}
c1d19e10 5671@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5672Define @var{variable} to @var{value}.
9611cfa2 5673
aba47f56
AD
5674The type of the values depend on the syntax. Braces denote value in the
5675target language (e.g., a namespace, a type, etc.). Keyword values (no
5676delimiters) denote finite choice (e.g., a variation of a feature). String
5677values denote remaining cases (e.g., a file name).
9611cfa2 5678
aba47f56
AD
5679It is an error if a @var{variable} is defined by @code{%define} multiple
5680times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
51151d91 5681@end deffn
cf499cff 5682
51151d91
JD
5683The rest of this section summarizes variables and values that
5684@code{%define} accepts.
9611cfa2 5685
51151d91
JD
5686Some @var{variable}s take Boolean values. In this case, Bison will
5687complain if the variable definition does not meet one of the following
5688four conditions:
9611cfa2
JD
5689
5690@enumerate
cf499cff 5691@item @code{@var{value}} is @code{true}
9611cfa2 5692
cf499cff
JD
5693@item @code{@var{value}} is omitted (or @code{""} is specified).
5694This is equivalent to @code{true}.
9611cfa2 5695
cf499cff 5696@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5697
5698@item @var{variable} is never defined.
c6abeab1 5699In this case, Bison selects a default value.
9611cfa2 5700@end enumerate
148d66d8 5701
c6abeab1
JD
5702What @var{variable}s are accepted, as well as their meanings and default
5703values, depend on the selected target language and/or the parser
5704skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5705Summary,,%skeleton}).
5706Unaccepted @var{variable}s produce an error.
dbf3962c 5707Some of the accepted @var{variable}s are described below.
793fbca5 5708
6574576c 5709@c ================================================== api.namespace
eb0e86ac 5710@deffn Directive {%define api.namespace} @{@var{namespace}@}
67501061
AD
5711@itemize
5712@item Languages(s): C++
5713
f1b238df 5714@item Purpose: Specify the namespace for the parser class.
67501061
AD
5715For example, if you specify:
5716
c93f22fc 5717@example
eb0e86ac 5718%define api.namespace @{foo::bar@}
c93f22fc 5719@end example
67501061
AD
5720
5721Bison uses @code{foo::bar} verbatim in references such as:
5722
c93f22fc 5723@example
67501061 5724foo::bar::parser::semantic_type
c93f22fc 5725@end example
67501061
AD
5726
5727However, to open a namespace, Bison removes any leading @code{::} and then
5728splits on any remaining occurrences:
5729
c93f22fc 5730@example
67501061
AD
5731namespace foo @{ namespace bar @{
5732 class position;
5733 class location;
5734@} @}
c93f22fc 5735@end example
67501061
AD
5736
5737@item Accepted Values:
5738Any absolute or relative C++ namespace reference without a trailing
5739@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5740
5741@item Default Value:
5742The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5743This usage of @code{%name-prefix} is for backward compatibility and can
5744be confusing since @code{%name-prefix} also specifies the textual prefix
5745for the lexical analyzer function. Thus, if you specify
5746@code{%name-prefix}, it is best to also specify @samp{%define
5747api.namespace} so that @code{%name-prefix} @emph{only} affects the
5748lexical analyzer function. For example, if you specify:
5749
c93f22fc 5750@example
eb0e86ac 5751%define api.namespace @{foo@}
67501061 5752%name-prefix "bar::"
c93f22fc 5753@end example
67501061
AD
5754
5755The parser namespace is @code{foo} and @code{yylex} is referenced as
5756@code{bar::lex}.
5757@end itemize
dbf3962c
AD
5758@end deffn
5759@c api.namespace
67501061 5760
db8ab2be 5761@c ================================================== api.location.type
aba47f56 5762@deffn {Directive} {%define api.location.type} @{@var{type}@}
db8ab2be
AD
5763
5764@itemize @bullet
7287be84 5765@item Language(s): C++, Java
db8ab2be
AD
5766
5767@item Purpose: Define the location type.
5768@xref{User Defined Location Type}.
5769
5770@item Accepted Values: String
5771
5772@item Default Value: none
5773
a256496a
AD
5774@item History:
5775Introduced in Bison 2.7 for C, C++ and Java. Introduced under the name
5776@code{location_type} for C++ in Bison 2.5 and for Java in Bison 2.4.
db8ab2be 5777@end itemize
dbf3962c 5778@end deffn
67501061 5779
4b3847c3 5780@c ================================================== api.prefix
aba47f56 5781@deffn {Directive} {%define api.prefix} @{@var{prefix}@}
4b3847c3
AD
5782
5783@itemize @bullet
5784@item Language(s): All
5785
db8ab2be 5786@item Purpose: Rename exported symbols.
4b3847c3
AD
5787@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5788
5789@item Accepted Values: String
5790
5791@item Default Value: @code{yy}
e358222b
AD
5792
5793@item History: introduced in Bison 2.6
4b3847c3 5794@end itemize
dbf3962c 5795@end deffn
67501061
AD
5796
5797@c ================================================== api.pure
aba47f56 5798@deffn Directive {%define api.pure} @var{purity}
d9df47b6
JD
5799
5800@itemize @bullet
5801@item Language(s): C
5802
5803@item Purpose: Request a pure (reentrant) parser program.
5804@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5805
1f1bd572
TR
5806@item Accepted Values: @code{true}, @code{false}, @code{full}
5807
5808The value may be omitted: this is equivalent to specifying @code{true}, as is
5809the case for Boolean values.
5810
5811When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5812changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5813@code{yyerror} when the tracking of locations has been activated, as shown
5814below.
1f1bd572
TR
5815
5816The @code{true} value is very similar to the @code{full} value, the only
5817difference is in the signature of @code{yyerror} on Yacc parsers without
5818@code{%parse-param}, for historical reasons.
5819
5820I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5821@code{yyerror} are:
5822
5823@example
c949ada3
AD
5824void yyerror (char const *msg); // Yacc parsers.
5825void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5826@end example
5827
5828But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5829used, then both parsers have the same signature:
5830
5831@example
5832void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5833@end example
5834
5835(@pxref{Error Reporting, ,The Error
5836Reporting Function @code{yyerror}})
d9df47b6 5837
cf499cff 5838@item Default Value: @code{false}
1f1bd572 5839
a256496a
AD
5840@item History:
5841the @code{full} value was introduced in Bison 2.7
d9df47b6 5842@end itemize
dbf3962c 5843@end deffn
71b00ed8 5844@c api.pure
d9df47b6 5845
67501061
AD
5846
5847
5848@c ================================================== api.push-pull
dbf3962c 5849@deffn Directive {%define api.push-pull} @var{kind}
793fbca5
JD
5850
5851@itemize @bullet
eb45ef3b 5852@item Language(s): C (deterministic parsers only)
793fbca5 5853
f1b238df 5854@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5855@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5856(The current push parsing interface is experimental and may evolve.
5857More user feedback will help to stabilize it.)
793fbca5 5858
cf499cff 5859@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5860
cf499cff 5861@item Default Value: @code{pull}
793fbca5 5862@end itemize
dbf3962c 5863@end deffn
67212941 5864@c api.push-pull
71b00ed8 5865
6b5a0de9
AD
5866
5867
e36ec1f4 5868@c ================================================== api.token.constructor
dbf3962c 5869@deffn Directive {%define api.token.constructor}
e36ec1f4
AD
5870
5871@itemize @bullet
5872@item Language(s):
5873C++
5874
5875@item Purpose:
5876When variant-based semantic values are enabled (@pxref{C++ Variants}),
5877request that symbols be handled as a whole (type, value, and possibly
5878location) in the scanner. @xref{Complete Symbols}, for details.
5879
5880@item Accepted Values:
5881Boolean.
5882
5883@item Default Value:
5884@code{false}
5885@item History:
c53b6848 5886introduced in Bison 3.0
e36ec1f4 5887@end itemize
dbf3962c 5888@end deffn
e36ec1f4
AD
5889@c api.token.constructor
5890
5891
2a6b66c5 5892@c ================================================== api.token.prefix
630a0218 5893@deffn Directive {%define api.token.prefix} @{@var{prefix}@}
4c6622c2
AD
5894
5895@itemize
5896@item Languages(s): all
5897
5898@item Purpose:
5899Add a prefix to the token names when generating their definition in the
5900target language. For instance
5901
5902@example
5903%token FILE for ERROR
630a0218 5904%define api.token.prefix @{TOK_@}
4c6622c2
AD
5905%%
5906start: FILE for ERROR;
5907@end example
5908
5909@noindent
5910generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5911and @code{TOK_ERROR} in the generated source files. In particular, the
5912scanner must use these prefixed token names, while the grammar itself
5913may still use the short names (as in the sample rule given above). The
5914generated informational files (@file{*.output}, @file{*.xml},
90b89dad
AD
5915@file{*.dot}) are not modified by this prefix.
5916
5917Bison also prefixes the generated member names of the semantic value union.
5918@xref{Type Generation,, Generating the Semantic Value Type}, for more
5919details.
5920
5921See @ref{Calc++ Parser} and @ref{Calc++ Scanner}, for a complete example.
4c6622c2
AD
5922
5923@item Accepted Values:
5924Any string. Should be a valid identifier prefix in the target language,
5925in other words, it should typically be an identifier itself (sequence of
5926letters, underscores, and ---not at the beginning--- digits).
5927
5928@item Default Value:
5929empty
2a6b66c5 5930@item History:
630a0218 5931introduced in Bison 3.0
4c6622c2 5932@end itemize
dbf3962c 5933@end deffn
2a6b66c5 5934@c api.token.prefix
4c6622c2
AD
5935
5936
ae8880de 5937@c ================================================== api.value.type
6ce4b4ff
AD
5938@deffn Directive {%define api.value.type} @var{support}
5939@deffnx Directive {%define api.value.type} @{@var{type}@}
ae8880de
AD
5940@itemize @bullet
5941@item Language(s):
6574576c 5942all
ae8880de
AD
5943
5944@item Purpose:
6574576c
AD
5945The type for semantic values.
5946
5947@item Accepted Values:
5948@table @asis
6ce4b4ff 5949@item @samp{@{@}}
6574576c
AD
5950This grammar has no semantic value at all. This is not properly supported
5951yet.
6ce4b4ff 5952@item @samp{union-directive} (C, C++)
6574576c
AD
5953The type is defined thanks to the @code{%union} directive. You don't have
5954to define @code{api.value.type} in that case, using @code{%union} suffices.
e4d49586 5955@xref{Union Decl, ,The Union Declaration}.
6574576c
AD
5956For instance:
5957@example
6ce4b4ff 5958%define api.value.type union-directive
6574576c
AD
5959%union
5960@{
5961 int ival;
5962 char *sval;
5963@}
5964%token <ival> INT "integer"
5965%token <sval> STR "string"
5966@end example
5967
6ce4b4ff 5968@item @samp{union} (C, C++)
6574576c
AD
5969The symbols are defined with type names, from which Bison will generate a
5970@code{union}. For instance:
5971@example
6ce4b4ff 5972%define api.value.type union
6574576c
AD
5973%token <int> INT "integer"
5974%token <char *> STR "string"
5975@end example
5976This feature needs user feedback to stabilize. Note that most C++ objects
5977cannot be stored in a @code{union}.
5978
6ce4b4ff 5979@item @samp{variant} (C++)
6574576c
AD
5980This is similar to @code{union}, but special storage techniques are used to
5981allow any kind of C++ object to be used. For instance:
5982@example
6ce4b4ff 5983%define api.value.type variant
6574576c
AD
5984%token <int> INT "integer"
5985%token <std::string> STR "string"
5986@end example
5987This feature needs user feedback to stabilize.
ae8880de
AD
5988@xref{C++ Variants}.
5989
6ce4b4ff
AD
5990@item @samp{@{@var{type}@}}
5991Use this @var{type} as semantic value.
6574576c
AD
5992@example
5993%code requires
5994@{
5995 struct my_value
5996 @{
5997 enum
5998 @{
5999 is_int, is_str
6000 @} kind;
6001 union
6002 @{
6003 int ival;
6004 char *sval;
6005 @} u;
6006 @};
6007@}
6ce4b4ff 6008%define api.value.type @{struct my_value@}
6574576c
AD
6009%token <u.ival> INT "integer"
6010%token <u.sval> STR "string"
6011@end example
6012@end table
6013
dbf3962c 6014@item Default Value:
6574576c
AD
6015@itemize @minus
6016@item
6017@code{%union} if @code{%union} is used, otherwise @dots{}
6018@item
6019@code{int} if type tags are used (i.e., @samp{%token <@var{type}>@dots{}} or
6020@samp{%token <@var{type}>@dots{}} is used), otherwise @dots{}
6021@item
6022@code{""}
6023@end itemize
6024
dbf3962c 6025@item History:
c53b6848 6026introduced in Bison 3.0. Was introduced for Java only in 2.3b as
dbf3962c
AD
6027@code{stype}.
6028@end itemize
6029@end deffn
ae8880de
AD
6030@c api.value.type
6031
a256496a
AD
6032
6033@c ================================================== location_type
dbf3962c 6034@deffn Directive {%define location_type}
a256496a 6035Obsoleted by @code{api.location.type} since Bison 2.7.
dbf3962c 6036@end deffn
a256496a
AD
6037
6038
f3bc3386 6039@c ================================================== lr.default-reduction
6b5a0de9 6040
dbf3962c 6041@deffn Directive {%define lr.default-reduction} @var{when}
eb45ef3b
JD
6042
6043@itemize @bullet
6044@item Language(s): all
6045
fcf834f9 6046@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
6047contain default reductions. @xref{Default Reductions}. (The ability to
6048specify where default reductions should be used is experimental. More user
6049feedback will help to stabilize it.)
eb45ef3b 6050
f0ad1b2f 6051@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
6052@item Default Value:
6053@itemize
cf499cff 6054@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 6055@item @code{most} otherwise.
eb45ef3b 6056@end itemize
f3bc3386 6057@item History:
c53b6848
AD
6058introduced as @code{lr.default-reductions} in 2.5, renamed as
6059@code{lr.default-reduction} in 3.0.
eb45ef3b 6060@end itemize
dbf3962c 6061@end deffn
eb45ef3b 6062
f3bc3386 6063@c ============================================ lr.keep-unreachable-state
6b5a0de9 6064
dbf3962c 6065@deffn Directive {%define lr.keep-unreachable-state}
31984206
JD
6066
6067@itemize @bullet
6068@item Language(s): all
f1b238df 6069@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 6070remain in the parser tables. @xref{Unreachable States}.
31984206 6071@item Accepted Values: Boolean
cf499cff 6072@item Default Value: @code{false}
a256496a 6073@item History:
f3bc3386 6074introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 6075@code{lr.keep-unreachable-states} in 2.5, and as
c53b6848 6076@code{lr.keep-unreachable-state} in 3.0.
dbf3962c
AD
6077@end itemize
6078@end deffn
f3bc3386 6079@c lr.keep-unreachable-state
31984206 6080
6b5a0de9
AD
6081@c ================================================== lr.type
6082
dbf3962c 6083@deffn Directive {%define lr.type} @var{type}
eb45ef3b
JD
6084
6085@itemize @bullet
6086@item Language(s): all
6087
f1b238df 6088@item Purpose: Specify the type of parser tables within the
7fceb615 6089LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
6090More user feedback will help to stabilize it.)
6091
7fceb615 6092@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 6093
cf499cff 6094@item Default Value: @code{lalr}
eb45ef3b 6095@end itemize
dbf3962c 6096@end deffn
67501061
AD
6097
6098@c ================================================== namespace
eb0e86ac 6099@deffn Directive %define namespace @{@var{namespace}@}
67501061 6100Obsoleted by @code{api.namespace}
fa819509 6101@c namespace
dbf3962c 6102@end deffn
31b850d2
AD
6103
6104@c ================================================== parse.assert
dbf3962c 6105@deffn Directive {%define parse.assert}
0c90a1f5
AD
6106
6107@itemize
6108@item Languages(s): C++
6109
6110@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
6111In C++, when variants are used (@pxref{C++ Variants}), symbols must be
6112constructed and
0c90a1f5
AD
6113destroyed properly. This option checks these constraints.
6114
6115@item Accepted Values: Boolean
6116
6117@item Default Value: @code{false}
6118@end itemize
dbf3962c 6119@end deffn
0c90a1f5
AD
6120@c parse.assert
6121
31b850d2
AD
6122
6123@c ================================================== parse.error
6ce4b4ff 6124@deffn Directive {%define parse.error} @var{verbosity}
31b850d2
AD
6125@itemize
6126@item Languages(s):
fcf834f9 6127all
31b850d2
AD
6128@item Purpose:
6129Control the kind of error messages passed to the error reporting
6130function. @xref{Error Reporting, ,The Error Reporting Function
6131@code{yyerror}}.
6132@item Accepted Values:
6133@itemize
cf499cff 6134@item @code{simple}
31b850d2
AD
6135Error messages passed to @code{yyerror} are simply @w{@code{"syntax
6136error"}}.
cf499cff 6137@item @code{verbose}
7fceb615
JD
6138Error messages report the unexpected token, and possibly the expected ones.
6139However, this report can often be incorrect when LAC is not enabled
6140(@pxref{LAC}).
31b850d2
AD
6141@end itemize
6142
6143@item Default Value:
6144@code{simple}
6145@end itemize
dbf3962c 6146@end deffn
31b850d2
AD
6147@c parse.error
6148
6149
fcf834f9 6150@c ================================================== parse.lac
6ce4b4ff 6151@deffn Directive {%define parse.lac} @var{when}
fcf834f9
JD
6152
6153@itemize
7fceb615 6154@item Languages(s): C (deterministic parsers only)
fcf834f9 6155
8a4281b9 6156@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 6157syntax error handling. @xref{LAC}.
fcf834f9 6158@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
6159@item Default Value: @code{none}
6160@end itemize
dbf3962c 6161@end deffn
fcf834f9
JD
6162@c parse.lac
6163
31b850d2 6164@c ================================================== parse.trace
dbf3962c 6165@deffn Directive {%define parse.trace}
fa819509
AD
6166
6167@itemize
60aa04a2 6168@item Languages(s): C, C++, Java
fa819509
AD
6169
6170@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
6171@xref{Tracing, ,Tracing Your Parser}.
6172
6173In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
6ce4b4ff 6174@samp{%define api.prefix @{@var{prefix}@}}), see @ref{Multiple Parsers,
60aa04a2 6175,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 6176file if it is not already defined, so that the debugging facilities are
60aa04a2 6177compiled.
793fbca5 6178
fa819509
AD
6179@item Accepted Values: Boolean
6180
6181@item Default Value: @code{false}
6182@end itemize
dbf3962c 6183@end deffn
fa819509 6184@c parse.trace
592d0b1e 6185
e0c07222
JD
6186@node %code Summary
6187@subsection %code Summary
e0c07222 6188@findex %code
e0c07222 6189@cindex Prologue
51151d91
JD
6190
6191The @code{%code} directive inserts code verbatim into the output
6192parser source at any of a predefined set of locations. It thus serves
6193as a flexible and user-friendly alternative to the traditional Yacc
6194prologue, @code{%@{@var{code}%@}}. This section summarizes the
6195functionality of @code{%code} for the various target languages
6196supported by Bison. For a detailed discussion of how to use
6197@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
6198is advantageous to do so, @pxref{Prologue Alternatives}.
6199
6200@deffn {Directive} %code @{@var{code}@}
6201This is the unqualified form of the @code{%code} directive. It
6202inserts @var{code} verbatim at a language-dependent default location
6203in the parser implementation.
6204
e0c07222 6205For C/C++, the default location is the parser implementation file
51151d91
JD
6206after the usual contents of the parser header file. Thus, the
6207unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
6208
6209For Java, the default location is inside the parser class.
6210@end deffn
6211
6212@deffn {Directive} %code @var{qualifier} @{@var{code}@}
6213This is the qualified form of the @code{%code} directive.
51151d91
JD
6214@var{qualifier} identifies the purpose of @var{code} and thus the
6215location(s) where Bison should insert it. That is, if you need to
6216specify location-sensitive @var{code} that does not belong at the
6217default location selected by the unqualified @code{%code} form, use
6218this form instead.
6219@end deffn
6220
6221For any particular qualifier or for the unqualified form, if there are
6222multiple occurrences of the @code{%code} directive, Bison concatenates
6223the specified code in the order in which it appears in the grammar
6224file.
e0c07222 6225
51151d91
JD
6226Not all qualifiers are accepted for all target languages. Unaccepted
6227qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 6228
84072495 6229@table @code
e0c07222
JD
6230@item requires
6231@findex %code requires
6232
6233@itemize @bullet
6234@item Language(s): C, C++
6235
6236@item Purpose: This is the best place to write dependency code required for
21e3a2b5
AD
6237@code{YYSTYPE} and @code{YYLTYPE}. In other words, it's the best place to
6238define types referenced in @code{%union} directives. If you use
6239@code{#define} to override Bison's default @code{YYSTYPE} and @code{YYLTYPE}
6240definitions, then it is also the best place. However you should rather
6241@code{%define} @code{api.value.type} and @code{api.location.type}.
e0c07222
JD
6242
6243@item Location(s): The parser header file and the parser implementation file
6244before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
6245definitions.
6246@end itemize
6247
6248@item provides
6249@findex %code provides
6250
6251@itemize @bullet
6252@item Language(s): C, C++
6253
6254@item Purpose: This is the best place to write additional definitions and
6255declarations that should be provided to other modules.
6256
6257@item Location(s): The parser header file and the parser implementation
6258file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
6259token definitions.
6260@end itemize
6261
6262@item top
6263@findex %code top
6264
6265@itemize @bullet
6266@item Language(s): C, C++
6267
6268@item Purpose: The unqualified @code{%code} or @code{%code requires}
6269should usually be more appropriate than @code{%code top}. However,
6270occasionally it is necessary to insert code much nearer the top of the
6271parser implementation file. For example:
6272
c93f22fc 6273@example
e0c07222
JD
6274%code top @{
6275 #define _GNU_SOURCE
6276 #include <stdio.h>
6277@}
c93f22fc 6278@end example
e0c07222
JD
6279
6280@item Location(s): Near the top of the parser implementation file.
6281@end itemize
6282
6283@item imports
6284@findex %code imports
6285
6286@itemize @bullet
6287@item Language(s): Java
6288
6289@item Purpose: This is the best place to write Java import directives.
6290
6291@item Location(s): The parser Java file after any Java package directive and
6292before any class definitions.
6293@end itemize
84072495 6294@end table
e0c07222 6295
51151d91
JD
6296Though we say the insertion locations are language-dependent, they are
6297technically skeleton-dependent. Writers of non-standard skeletons
6298however should choose their locations consistently with the behavior
6299of the standard Bison skeletons.
e0c07222 6300
d8988b2f 6301
342b8b6e 6302@node Multiple Parsers
bfa74976
RS
6303@section Multiple Parsers in the Same Program
6304
6305Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6306only one Bison parser. But what if you want to parse more than one language
6307with the same program? Then you need to avoid name conflicts between
6308different definitions of functions and variables such as @code{yyparse},
6309@code{yylval}. To use different parsers from the same compilation unit, you
6310also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6311exported in the generated header.
6312
6313The easy way to do this is to define the @code{%define} variable
e358222b
AD
6314@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6315headers do not conflict when included together, and that compiled objects
6316can be linked together too. Specifying @samp{%define api.prefix
6ce4b4ff 6317@{@var{prefix}@}} (or passing the option @samp{-Dapi.prefix=@{@var{prefix}@}}, see
e358222b
AD
6318@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6319variables of the Bison parser to start with @var{prefix} instead of
6320@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6321upper-cased) instead of @samp{YY}.
4b3847c3
AD
6322
6323The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6324@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6325@code{yydebug}. If you use a push parser, @code{yypush_parse},
6326@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6327@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6328@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6329specifically --- more about this below.
4b3847c3 6330
6ce4b4ff 6331For example, if you use @samp{%define api.prefix @{c@}}, the names become
4b3847c3
AD
6332@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6333on.
6334
6335The @code{%define} variable @code{api.prefix} works in two different ways.
6336In the implementation file, it works by adding macro definitions to the
6337beginning of the parser implementation file, defining @code{yyparse} as
6338@code{@var{prefix}parse}, and so on:
6339
6340@example
6341#define YYSTYPE CTYPE
6342#define yyparse cparse
6343#define yylval clval
6344...
6345YYSTYPE yylval;
6346int yyparse (void);
6347@end example
6348
6349This effectively substitutes one name for the other in the entire parser
6350implementation file, thus the ``original'' names (@code{yylex},
6351@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6352
6353However, in the parser header file, the symbols are defined renamed, for
6354instance:
bfa74976 6355
4b3847c3
AD
6356@example
6357extern CSTYPE clval;
6358int cparse (void);
6359@end example
bfa74976 6360
e358222b
AD
6361The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6362parsers. To comply with this tradition, when @code{api.prefix} is used,
6363@code{YYDEBUG} (not renamed) is used as a default value:
6364
6365@example
4d9bdbe3 6366/* Debug traces. */
e358222b
AD
6367#ifndef CDEBUG
6368# if defined YYDEBUG
6369# if YYDEBUG
6370# define CDEBUG 1
6371# else
6372# define CDEBUG 0
6373# endif
6374# else
6375# define CDEBUG 0
6376# endif
6377#endif
6378#if CDEBUG
6379extern int cdebug;
6380#endif
6381@end example
6382
6383@sp 2
6384
6385Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6386the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6387Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6388
342b8b6e 6389@node Interface
bfa74976
RS
6390@chapter Parser C-Language Interface
6391@cindex C-language interface
6392@cindex interface
6393
6394The Bison parser is actually a C function named @code{yyparse}. Here we
6395describe the interface conventions of @code{yyparse} and the other
6396functions that it needs to use.
6397
6398Keep in mind that the parser uses many C identifiers starting with
6399@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6400identifier (aside from those in this manual) in an action or in epilogue
6401in the grammar file, you are likely to run into trouble.
bfa74976
RS
6402
6403@menu
f5f419de
DJ
6404* Parser Function:: How to call @code{yyparse} and what it returns.
6405* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6406* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6407* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6408* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6409* Lexical:: You must supply a function @code{yylex}
6410 which reads tokens.
6411* Error Reporting:: You must supply a function @code{yyerror}.
6412* Action Features:: Special features for use in actions.
6413* Internationalization:: How to let the parser speak in the user's
6414 native language.
bfa74976
RS
6415@end menu
6416
342b8b6e 6417@node Parser Function
bfa74976
RS
6418@section The Parser Function @code{yyparse}
6419@findex yyparse
6420
6421You call the function @code{yyparse} to cause parsing to occur. This
6422function reads tokens, executes actions, and ultimately returns when it
6423encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6424write an action which directs @code{yyparse} to return immediately
6425without reading further.
bfa74976 6426
2a8d363a
AD
6427
6428@deftypefun int yyparse (void)
bfa74976
RS
6429The value returned by @code{yyparse} is 0 if parsing was successful (return
6430is due to end-of-input).
6431
b47dbebe
PE
6432The value is 1 if parsing failed because of invalid input, i.e., input
6433that contains a syntax error or that causes @code{YYABORT} to be
6434invoked.
6435
6436The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6437@end deftypefun
bfa74976
RS
6438
6439In an action, you can cause immediate return from @code{yyparse} by using
6440these macros:
6441
2a8d363a 6442@defmac YYACCEPT
bfa74976
RS
6443@findex YYACCEPT
6444Return immediately with value 0 (to report success).
2a8d363a 6445@end defmac
bfa74976 6446
2a8d363a 6447@defmac YYABORT
bfa74976
RS
6448@findex YYABORT
6449Return immediately with value 1 (to report failure).
2a8d363a
AD
6450@end defmac
6451
6452If you use a reentrant parser, you can optionally pass additional
6453parameter information to it in a reentrant way. To do so, use the
6454declaration @code{%parse-param}:
6455
2055a44e 6456@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6457@findex %parse-param
2055a44e
AD
6458Declare that one or more
6459@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6460The @var{argument-declaration} is used when declaring
feeb0eda
PE
6461functions or prototypes. The last identifier in
6462@var{argument-declaration} must be the argument name.
2a8d363a
AD
6463@end deffn
6464
6465Here's an example. Write this in the parser:
6466
6467@example
2055a44e 6468%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6469@end example
6470
6471@noindent
6472Then call the parser like this:
6473
6474@example
6475@{
6476 int nastiness, randomness;
6477 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6478 value = yyparse (&nastiness, &randomness);
6479 @dots{}
6480@}
6481@end example
6482
6483@noindent
6484In the grammar actions, use expressions like this to refer to the data:
6485
6486@example
6487exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6488@end example
6489
1f1bd572
TR
6490@noindent
6491Using the following:
6492@example
6493%parse-param @{int *randomness@}
6494@end example
6495
6496Results in these signatures:
6497@example
6498void yyerror (int *randomness, const char *msg);
6499int yyparse (int *randomness);
6500@end example
6501
6502@noindent
6503Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6504and @code{%locations} are used:
6505
6506@example
6507void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6508int yyparse (int *randomness);
6509@end example
6510
9987d1b3
JD
6511@node Push Parser Function
6512@section The Push Parser Function @code{yypush_parse}
6513@findex yypush_parse
6514
59da312b
JD
6515(The current push parsing interface is experimental and may evolve.
6516More user feedback will help to stabilize it.)
6517
f4101aa6 6518You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6519function is available if either the @samp{%define api.push-pull push} or
6520@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6521@xref{Push Decl, ,A Push Parser}.
6522
a73aa764 6523@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6524The value returned by @code{yypush_parse} is the same as for yyparse with
6525the following exception: it returns @code{YYPUSH_MORE} if more input is
6526required to finish parsing the grammar.
9987d1b3
JD
6527@end deftypefun
6528
6529@node Pull Parser Function
6530@section The Pull Parser Function @code{yypull_parse}
6531@findex yypull_parse
6532
59da312b
JD
6533(The current push parsing interface is experimental and may evolve.
6534More user feedback will help to stabilize it.)
6535
f4101aa6 6536You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6537stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6538declaration is used.
9987d1b3
JD
6539@xref{Push Decl, ,A Push Parser}.
6540
a73aa764 6541@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6542The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6543@end deftypefun
6544
6545@node Parser Create Function
6546@section The Parser Create Function @code{yystate_new}
6547@findex yypstate_new
6548
59da312b
JD
6549(The current push parsing interface is experimental and may evolve.
6550More user feedback will help to stabilize it.)
6551
f4101aa6 6552You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6553This function is available if either the @samp{%define api.push-pull push} or
6554@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6555@xref{Push Decl, ,A Push Parser}.
6556
34a41a93 6557@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6558The function will return a valid parser instance if there was memory available
333e670c
JD
6559or 0 if no memory was available.
6560In impure mode, it will also return 0 if a parser instance is currently
6561allocated.
9987d1b3
JD
6562@end deftypefun
6563
6564@node Parser Delete Function
6565@section The Parser Delete Function @code{yystate_delete}
6566@findex yypstate_delete
6567
59da312b
JD
6568(The current push parsing interface is experimental and may evolve.
6569More user feedback will help to stabilize it.)
6570
9987d1b3 6571You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6572function is available if either the @samp{%define api.push-pull push} or
6573@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6574@xref{Push Decl, ,A Push Parser}.
6575
a73aa764 6576@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6577This function will reclaim the memory associated with a parser instance.
6578After this call, you should no longer attempt to use the parser instance.
6579@end deftypefun
bfa74976 6580
342b8b6e 6581@node Lexical
bfa74976
RS
6582@section The Lexical Analyzer Function @code{yylex}
6583@findex yylex
6584@cindex lexical analyzer
6585
6586The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6587the input stream and returns them to the parser. Bison does not create
6588this function automatically; you must write it so that @code{yyparse} can
6589call it. The function is sometimes referred to as a lexical scanner.
6590
ff7571c0
JD
6591In simple programs, @code{yylex} is often defined at the end of the
6592Bison grammar file. If @code{yylex} is defined in a separate source
6593file, you need to arrange for the token-type macro definitions to be
6594available there. To do this, use the @samp{-d} option when you run
6595Bison, so that it will write these macro definitions into the separate
6596parser header file, @file{@var{name}.tab.h}, which you can include in
6597the other source files that need it. @xref{Invocation, ,Invoking
6598Bison}.
bfa74976
RS
6599
6600@menu
6601* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6602* Token Values:: How @code{yylex} must return the semantic value
6603 of the token it has read.
6604* Token Locations:: How @code{yylex} must return the text location
6605 (line number, etc.) of the token, if the
6606 actions want that.
6607* Pure Calling:: How the calling convention differs in a pure parser
6608 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6609@end menu
6610
342b8b6e 6611@node Calling Convention
bfa74976
RS
6612@subsection Calling Convention for @code{yylex}
6613
72d2299c
PE
6614The value that @code{yylex} returns must be the positive numeric code
6615for the type of token it has just found; a zero or negative value
6616signifies end-of-input.
bfa74976
RS
6617
6618When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6619in the parser implementation file becomes a C macro whose definition
6620is the proper numeric code for that token type. So @code{yylex} can
6621use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6622
6623When a token is referred to in the grammar rules by a character literal,
6624the numeric code for that character is also the code for the token type.
72d2299c
PE
6625So @code{yylex} can simply return that character code, possibly converted
6626to @code{unsigned char} to avoid sign-extension. The null character
6627must not be used this way, because its code is zero and that
bfa74976
RS
6628signifies end-of-input.
6629
6630Here is an example showing these things:
6631
6632@example
13863333
AD
6633int
6634yylex (void)
bfa74976
RS
6635@{
6636 @dots{}
72d2299c 6637 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6638 return 0;
6639 @dots{}
6640 if (c == '+' || c == '-')
4c9b8f13 6641 return c; /* Assume token type for '+' is '+'. */
bfa74976 6642 @dots{}
72d2299c 6643 return INT; /* Return the type of the token. */
bfa74976
RS
6644 @dots{}
6645@}
6646@end example
6647
6648@noindent
6649This interface has been designed so that the output from the @code{lex}
6650utility can be used without change as the definition of @code{yylex}.
6651
931c7513
RS
6652If the grammar uses literal string tokens, there are two ways that
6653@code{yylex} can determine the token type codes for them:
6654
6655@itemize @bullet
6656@item
6657If the grammar defines symbolic token names as aliases for the
6658literal string tokens, @code{yylex} can use these symbolic names like
6659all others. In this case, the use of the literal string tokens in
6660the grammar file has no effect on @code{yylex}.
6661
6662@item
9ecbd125 6663@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6664table. The index of the token in the table is the token type's code.
9ecbd125 6665The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6666double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6667token's characters are escaped as necessary to be suitable as input
6668to Bison.
931c7513 6669
9e0876fb
PE
6670Here's code for looking up a multicharacter token in @code{yytname},
6671assuming that the characters of the token are stored in
6672@code{token_buffer}, and assuming that the token does not contain any
6673characters like @samp{"} that require escaping.
931c7513 6674
c93f22fc 6675@example
931c7513
RS
6676for (i = 0; i < YYNTOKENS; i++)
6677 @{
6678 if (yytname[i] != 0
6679 && yytname[i][0] == '"'
68449b3a
PE
6680 && ! strncmp (yytname[i] + 1, token_buffer,
6681 strlen (token_buffer))
931c7513
RS
6682 && yytname[i][strlen (token_buffer) + 1] == '"'
6683 && yytname[i][strlen (token_buffer) + 2] == 0)
6684 break;
6685 @}
c93f22fc 6686@end example
931c7513
RS
6687
6688The @code{yytname} table is generated only if you use the
8c9a50be 6689@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6690@end itemize
6691
342b8b6e 6692@node Token Values
bfa74976
RS
6693@subsection Semantic Values of Tokens
6694
6695@vindex yylval
9d9b8b70 6696In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6697be stored into the global variable @code{yylval}. When you are using
6698just one data type for semantic values, @code{yylval} has that type.
6699Thus, if the type is @code{int} (the default), you might write this in
6700@code{yylex}:
6701
6702@example
6703@group
6704 @dots{}
72d2299c
PE
6705 yylval = value; /* Put value onto Bison stack. */
6706 return INT; /* Return the type of the token. */
bfa74976
RS
6707 @dots{}
6708@end group
6709@end example
6710
6711When you are using multiple data types, @code{yylval}'s type is a union
704a47c4 6712made from the @code{%union} declaration (@pxref{Union Decl, ,The
e4d49586 6713Union Declaration}). So when you store a token's value, you
704a47c4
AD
6714must use the proper member of the union. If the @code{%union}
6715declaration looks like this:
bfa74976
RS
6716
6717@example
6718@group
6719%union @{
6720 int intval;
6721 double val;
6722 symrec *tptr;
6723@}
6724@end group
6725@end example
6726
6727@noindent
6728then the code in @code{yylex} might look like this:
6729
6730@example
6731@group
6732 @dots{}
72d2299c
PE
6733 yylval.intval = value; /* Put value onto Bison stack. */
6734 return INT; /* Return the type of the token. */
bfa74976
RS
6735 @dots{}
6736@end group
6737@end example
6738
95923bd6
AD
6739@node Token Locations
6740@subsection Textual Locations of Tokens
bfa74976
RS
6741
6742@vindex yylloc
303834cc
JD
6743If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6744in actions to keep track of the textual locations of tokens and groupings,
6745then you must provide this information in @code{yylex}. The function
6746@code{yyparse} expects to find the textual location of a token just parsed
6747in the global variable @code{yylloc}. So @code{yylex} must store the proper
6748data in that variable.
847bf1f5
AD
6749
6750By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6751initialize the members that are going to be used by the actions. The
6752four members are called @code{first_line}, @code{first_column},
6753@code{last_line} and @code{last_column}. Note that the use of this
6754feature makes the parser noticeably slower.
bfa74976
RS
6755
6756@tindex YYLTYPE
6757The data type of @code{yylloc} has the name @code{YYLTYPE}.
6758
342b8b6e 6759@node Pure Calling
c656404a 6760@subsection Calling Conventions for Pure Parsers
bfa74976 6761
1f1bd572 6762When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6763pure, reentrant parser, the global communication variables @code{yylval}
6764and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6765Parser}.) In such parsers the two global variables are replaced by
6766pointers passed as arguments to @code{yylex}. You must declare them as
6767shown here, and pass the information back by storing it through those
6768pointers.
bfa74976
RS
6769
6770@example
13863333
AD
6771int
6772yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6773@{
6774 @dots{}
6775 *lvalp = value; /* Put value onto Bison stack. */
6776 return INT; /* Return the type of the token. */
6777 @dots{}
6778@}
6779@end example
6780
6781If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6782textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6783this case, omit the second argument; @code{yylex} will be called with
6784only one argument.
6785
2055a44e 6786If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6787@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6788Function}). To pass additional arguments to both @code{yylex} and
6789@code{yyparse}, use @code{%param}.
e425e872 6790
2055a44e 6791@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6792@findex %lex-param
2055a44e
AD
6793Specify that @var{argument-declaration} are additional @code{yylex} argument
6794declarations. You may pass one or more such declarations, which is
6795equivalent to repeating @code{%lex-param}.
6796@end deffn
6797
6798@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6799@findex %param
6800Specify that @var{argument-declaration} are additional
6801@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6802@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6803@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6804declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6805@end deffn
e425e872 6806
1f1bd572 6807@noindent
2a8d363a 6808For instance:
e425e872
RS
6809
6810@example
2055a44e
AD
6811%lex-param @{scanner_mode *mode@}
6812%parse-param @{parser_mode *mode@}
6813%param @{environment_type *env@}
e425e872
RS
6814@end example
6815
6816@noindent
18ad57b3 6817results in the following signatures:
e425e872
RS
6818
6819@example
2055a44e
AD
6820int yylex (scanner_mode *mode, environment_type *env);
6821int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6822@end example
6823
5807bb91 6824If @samp{%define api.pure full} is added:
c656404a
RS
6825
6826@example
2055a44e
AD
6827int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6828int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6829@end example
6830
2a8d363a 6831@noindent
5807bb91
AD
6832and finally, if both @samp{%define api.pure full} and @code{%locations} are
6833used:
c656404a 6834
2a8d363a 6835@example
2055a44e
AD
6836int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6837 scanner_mode *mode, environment_type *env);
6838int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6839@end example
931c7513 6840
342b8b6e 6841@node Error Reporting
bfa74976
RS
6842@section The Error Reporting Function @code{yyerror}
6843@cindex error reporting function
6844@findex yyerror
6845@cindex parse error
6846@cindex syntax error
6847
31b850d2 6848The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6849whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6850action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6851macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6852in Actions}).
bfa74976
RS
6853
6854The Bison parser expects to report the error by calling an error
6855reporting function named @code{yyerror}, which you must supply. It is
6856called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6857receives one argument. For a syntax error, the string is normally
6858@w{@code{"syntax error"}}.
bfa74976 6859
31b850d2 6860@findex %define parse.error
7fceb615
JD
6861If you invoke @samp{%define parse.error verbose} in the Bison declarations
6862section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6863Bison provides a more verbose and specific error message string instead of
6864just plain @w{@code{"syntax error"}}. However, that message sometimes
6865contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6866
1a059451
PE
6867The parser can detect one other kind of error: memory exhaustion. This
6868can happen when the input contains constructions that are very deeply
bfa74976 6869nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6870parser normally extends its stack automatically up to a very large limit. But
6871if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6872fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6873
6874In some cases diagnostics like @w{@code{"syntax error"}} are
6875translated automatically from English to some other language before
6876they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6877
6878The following definition suffices in simple programs:
6879
6880@example
6881@group
13863333 6882void
38a92d50 6883yyerror (char const *s)
bfa74976
RS
6884@{
6885@end group
6886@group
6887 fprintf (stderr, "%s\n", s);
6888@}
6889@end group
6890@end example
6891
6892After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6893error recovery if you have written suitable error recovery grammar rules
6894(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6895immediately return 1.
6896
93724f13 6897Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6898an access to the current location. With @code{%define api.pure}, this is
6899indeed the case for the GLR parsers, but not for the Yacc parser, for
6900historical reasons, and this is the why @code{%define api.pure full} should be
6901prefered over @code{%define api.pure}.
2a8d363a 6902
1f1bd572
TR
6903When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6904following signature:
2a8d363a
AD
6905
6906@example
1f1bd572 6907void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6908@end example
6909
1c0c3e95 6910@noindent
38a92d50
PE
6911The prototypes are only indications of how the code produced by Bison
6912uses @code{yyerror}. Bison-generated code always ignores the returned
6913value, so @code{yyerror} can return any type, including @code{void}.
6914Also, @code{yyerror} can be a variadic function; that is why the
6915message is always passed last.
6916
6917Traditionally @code{yyerror} returns an @code{int} that is always
6918ignored, but this is purely for historical reasons, and @code{void} is
6919preferable since it more accurately describes the return type for
6920@code{yyerror}.
93724f13 6921
bfa74976
RS
6922@vindex yynerrs
6923The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6924reported so far. Normally this variable is global; but if you
704a47c4
AD
6925request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6926then it is a local variable which only the actions can access.
bfa74976 6927
342b8b6e 6928@node Action Features
bfa74976
RS
6929@section Special Features for Use in Actions
6930@cindex summary, action features
6931@cindex action features summary
6932
6933Here is a table of Bison constructs, variables and macros that
6934are useful in actions.
6935
18b519c0 6936@deffn {Variable} $$
bfa74976
RS
6937Acts like a variable that contains the semantic value for the
6938grouping made by the current rule. @xref{Actions}.
18b519c0 6939@end deffn
bfa74976 6940
18b519c0 6941@deffn {Variable} $@var{n}
bfa74976
RS
6942Acts like a variable that contains the semantic value for the
6943@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6944@end deffn
bfa74976 6945
18b519c0 6946@deffn {Variable} $<@var{typealt}>$
bfa74976 6947Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6948specified by the @code{%union} declaration. @xref{Action Types, ,Data
6949Types of Values in Actions}.
18b519c0 6950@end deffn
bfa74976 6951
18b519c0 6952@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6953Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6954union specified by the @code{%union} declaration.
e0c471a9 6955@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6956@end deffn
bfa74976 6957
34a41a93 6958@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6959Return immediately from @code{yyparse}, indicating failure.
6960@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6961@end deffn
bfa74976 6962
34a41a93 6963@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6964Return immediately from @code{yyparse}, indicating success.
6965@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6966@end deffn
bfa74976 6967
34a41a93 6968@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6969@findex YYBACKUP
6970Unshift a token. This macro is allowed only for rules that reduce
742e4900 6971a single value, and only when there is no lookahead token.
8a4281b9 6972It is also disallowed in GLR parsers.
742e4900 6973It installs a lookahead token with token type @var{token} and
bfa74976
RS
6974semantic value @var{value}; then it discards the value that was
6975going to be reduced by this rule.
6976
6977If the macro is used when it is not valid, such as when there is
742e4900 6978a lookahead token already, then it reports a syntax error with
bfa74976
RS
6979a message @samp{cannot back up} and performs ordinary error
6980recovery.
6981
6982In either case, the rest of the action is not executed.
18b519c0 6983@end deffn
bfa74976 6984
18b519c0 6985@deffn {Macro} YYEMPTY
742e4900 6986Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6987@end deffn
bfa74976 6988
32c29292 6989@deffn {Macro} YYEOF
742e4900 6990Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6991stream.
6992@end deffn
6993
34a41a93 6994@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6995Cause an immediate syntax error. This statement initiates error
6996recovery just as if the parser itself had detected an error; however, it
6997does not call @code{yyerror}, and does not print any message. If you
6998want to print an error message, call @code{yyerror} explicitly before
6999the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 7000@end deffn
bfa74976 7001
18b519c0 7002@deffn {Macro} YYRECOVERING
02103984
PE
7003@findex YYRECOVERING
7004The expression @code{YYRECOVERING ()} yields 1 when the parser
7005is recovering from a syntax error, and 0 otherwise.
bfa74976 7006@xref{Error Recovery}.
18b519c0 7007@end deffn
bfa74976 7008
18b519c0 7009@deffn {Variable} yychar
742e4900
JD
7010Variable containing either the lookahead token, or @code{YYEOF} when the
7011lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
7012has been performed so the next token is not yet known.
7013Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
7014Actions}).
742e4900 7015@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 7016@end deffn
bfa74976 7017
34a41a93 7018@deffn {Macro} yyclearin @code{;}
742e4900 7019Discard the current lookahead token. This is useful primarily in
32c29292
JD
7020error rules.
7021Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
7022Semantic Actions}).
7023@xref{Error Recovery}.
18b519c0 7024@end deffn
bfa74976 7025
34a41a93 7026@deffn {Macro} yyerrok @code{;}
bfa74976 7027Resume generating error messages immediately for subsequent syntax
13863333 7028errors. This is useful primarily in error rules.
bfa74976 7029@xref{Error Recovery}.
18b519c0 7030@end deffn
bfa74976 7031
32c29292 7032@deffn {Variable} yylloc
742e4900 7033Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
7034to @code{YYEMPTY} or @code{YYEOF}.
7035Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
7036Actions}).
7037@xref{Actions and Locations, ,Actions and Locations}.
7038@end deffn
7039
7040@deffn {Variable} yylval
742e4900 7041Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
7042not set to @code{YYEMPTY} or @code{YYEOF}.
7043Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
7044Actions}).
7045@xref{Actions, ,Actions}.
7046@end deffn
7047
18b519c0 7048@deffn {Value} @@$
303834cc
JD
7049Acts like a structure variable containing information on the textual
7050location of the grouping made by the current rule. @xref{Tracking
7051Locations}.
bfa74976 7052
847bf1f5
AD
7053@c Check if those paragraphs are still useful or not.
7054
7055@c @example
7056@c struct @{
7057@c int first_line, last_line;
7058@c int first_column, last_column;
7059@c @};
7060@c @end example
7061
7062@c Thus, to get the starting line number of the third component, you would
7063@c use @samp{@@3.first_line}.
bfa74976 7064
847bf1f5
AD
7065@c In order for the members of this structure to contain valid information,
7066@c you must make @code{yylex} supply this information about each token.
7067@c If you need only certain members, then @code{yylex} need only fill in
7068@c those members.
bfa74976 7069
847bf1f5 7070@c The use of this feature makes the parser noticeably slower.
18b519c0 7071@end deffn
847bf1f5 7072
18b519c0 7073@deffn {Value} @@@var{n}
847bf1f5 7074@findex @@@var{n}
303834cc
JD
7075Acts like a structure variable containing information on the textual
7076location of the @var{n}th component of the current rule. @xref{Tracking
7077Locations}.
18b519c0 7078@end deffn
bfa74976 7079
f7ab6a50
PE
7080@node Internationalization
7081@section Parser Internationalization
7082@cindex internationalization
7083@cindex i18n
7084@cindex NLS
7085@cindex gettext
7086@cindex bison-po
7087
7088A Bison-generated parser can print diagnostics, including error and
7089tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
7090also supports outputting diagnostics in the user's native language. To
7091make this work, the user should set the usual environment variables.
7092@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
7093For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 7094set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
7095encoding. The exact set of available locales depends on the user's
7096installation.
7097
7098The maintainer of a package that uses a Bison-generated parser enables
7099the internationalization of the parser's output through the following
8a4281b9
JD
7100steps. Here we assume a package that uses GNU Autoconf and
7101GNU Automake.
f7ab6a50
PE
7102
7103@enumerate
7104@item
30757c8c 7105@cindex bison-i18n.m4
8a4281b9 7106Into the directory containing the GNU Autoconf macros used
c949ada3 7107by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
7108@file{bison-i18n.m4} file installed by Bison under
7109@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
7110For example:
7111
7112@example
7113cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
7114@end example
7115
7116@item
30757c8c
PE
7117@findex BISON_I18N
7118@vindex BISON_LOCALEDIR
7119@vindex YYENABLE_NLS
f7ab6a50
PE
7120In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
7121invocation, add an invocation of @code{BISON_I18N}. This macro is
7122defined in the file @file{bison-i18n.m4} that you copied earlier. It
7123causes @samp{configure} to find the value of the
30757c8c
PE
7124@code{BISON_LOCALEDIR} variable, and it defines the source-language
7125symbol @code{YYENABLE_NLS} to enable translations in the
7126Bison-generated parser.
f7ab6a50
PE
7127
7128@item
7129In the @code{main} function of your program, designate the directory
7130containing Bison's runtime message catalog, through a call to
7131@samp{bindtextdomain} with domain name @samp{bison-runtime}.
7132For example:
7133
7134@example
7135bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
7136@end example
7137
7138Typically this appears after any other call @code{bindtextdomain
7139(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
7140@samp{BISON_LOCALEDIR} to be defined as a string through the
7141@file{Makefile}.
7142
7143@item
7144In the @file{Makefile.am} that controls the compilation of the @code{main}
7145function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
7146either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
7147
7148@example
7149DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7150@end example
7151
7152or:
7153
7154@example
7155AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7156@end example
7157
7158@item
7159Finally, invoke the command @command{autoreconf} to generate the build
7160infrastructure.
7161@end enumerate
7162
bfa74976 7163
342b8b6e 7164@node Algorithm
13863333
AD
7165@chapter The Bison Parser Algorithm
7166@cindex Bison parser algorithm
bfa74976
RS
7167@cindex algorithm of parser
7168@cindex shifting
7169@cindex reduction
7170@cindex parser stack
7171@cindex stack, parser
7172
7173As Bison reads tokens, it pushes them onto a stack along with their
7174semantic values. The stack is called the @dfn{parser stack}. Pushing a
7175token is traditionally called @dfn{shifting}.
7176
7177For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
7178@samp{3} to come. The stack will have four elements, one for each token
7179that was shifted.
7180
7181But the stack does not always have an element for each token read. When
7182the last @var{n} tokens and groupings shifted match the components of a
7183grammar rule, they can be combined according to that rule. This is called
7184@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
7185single grouping whose symbol is the result (left hand side) of that rule.
7186Running the rule's action is part of the process of reduction, because this
7187is what computes the semantic value of the resulting grouping.
7188
7189For example, if the infix calculator's parser stack contains this:
7190
7191@example
71921 + 5 * 3
7193@end example
7194
7195@noindent
7196and the next input token is a newline character, then the last three
7197elements can be reduced to 15 via the rule:
7198
7199@example
7200expr: expr '*' expr;
7201@end example
7202
7203@noindent
7204Then the stack contains just these three elements:
7205
7206@example
72071 + 15
7208@end example
7209
7210@noindent
7211At this point, another reduction can be made, resulting in the single value
721216. Then the newline token can be shifted.
7213
7214The parser tries, by shifts and reductions, to reduce the entire input down
7215to a single grouping whose symbol is the grammar's start-symbol
7216(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
7217
7218This kind of parser is known in the literature as a bottom-up parser.
7219
7220@menu
742e4900 7221* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
7222* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
7223* Precedence:: Operator precedence works by resolving conflicts.
7224* Contextual Precedence:: When an operator's precedence depends on context.
7225* Parser States:: The parser is a finite-state-machine with stack.
7226* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 7227* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 7228* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 7229* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 7230* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
7231@end menu
7232
742e4900
JD
7233@node Lookahead
7234@section Lookahead Tokens
7235@cindex lookahead token
bfa74976
RS
7236
7237The Bison parser does @emph{not} always reduce immediately as soon as the
7238last @var{n} tokens and groupings match a rule. This is because such a
7239simple strategy is inadequate to handle most languages. Instead, when a
7240reduction is possible, the parser sometimes ``looks ahead'' at the next
7241token in order to decide what to do.
7242
7243When a token is read, it is not immediately shifted; first it becomes the
742e4900 7244@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 7245perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
7246the lookahead token remains off to the side. When no more reductions
7247should take place, the lookahead token is shifted onto the stack. This
bfa74976 7248does not mean that all possible reductions have been done; depending on the
742e4900 7249token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
7250application.
7251
742e4900 7252Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
7253expressions which contain binary addition operators and postfix unary
7254factorial operators (@samp{!}), and allow parentheses for grouping.
7255
7256@example
7257@group
5e9b6624
AD
7258expr:
7259 term '+' expr
7260| term
7261;
bfa74976
RS
7262@end group
7263
7264@group
5e9b6624
AD
7265term:
7266 '(' expr ')'
7267| term '!'
534cee7a 7268| "number"
5e9b6624 7269;
bfa74976
RS
7270@end group
7271@end example
7272
7273Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7274should be done? If the following token is @samp{)}, then the first three
7275tokens must be reduced to form an @code{expr}. This is the only valid
7276course, because shifting the @samp{)} would produce a sequence of symbols
7277@w{@code{term ')'}}, and no rule allows this.
7278
7279If the following token is @samp{!}, then it must be shifted immediately so
7280that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7281parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7282@code{expr}. It would then be impossible to shift the @samp{!} because
7283doing so would produce on the stack the sequence of symbols @code{expr
7284'!'}. No rule allows that sequence.
7285
7286@vindex yychar
32c29292
JD
7287@vindex yylval
7288@vindex yylloc
742e4900 7289The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7290Its semantic value and location, if any, are stored in the variables
7291@code{yylval} and @code{yylloc}.
bfa74976
RS
7292@xref{Action Features, ,Special Features for Use in Actions}.
7293
342b8b6e 7294@node Shift/Reduce
bfa74976
RS
7295@section Shift/Reduce Conflicts
7296@cindex conflicts
7297@cindex shift/reduce conflicts
7298@cindex dangling @code{else}
7299@cindex @code{else}, dangling
7300
7301Suppose we are parsing a language which has if-then and if-then-else
7302statements, with a pair of rules like this:
7303
7304@example
7305@group
7306if_stmt:
534cee7a
AD
7307 "if" expr "then" stmt
7308| "if" expr "then" stmt "else" stmt
5e9b6624 7309;
bfa74976
RS
7310@end group
7311@end example
7312
7313@noindent
534cee7a
AD
7314Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7315specific keyword tokens.
bfa74976 7316
534cee7a 7317When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7318contents of the stack (assuming the input is valid) are just right for
7319reduction by the first rule. But it is also legitimate to shift the
534cee7a 7320@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7321rule.
7322
7323This situation, where either a shift or a reduction would be valid, is
7324called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7325these conflicts by choosing to shift, unless otherwise directed by
7326operator precedence declarations. To see the reason for this, let's
7327contrast it with the other alternative.
7328
534cee7a 7329Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7330the else-clause to the innermost if-statement, making these two inputs
7331equivalent:
7332
7333@example
534cee7a 7334if x then if y then win; else lose;
bfa74976 7335
534cee7a 7336if x then do; if y then win; else lose; end;
bfa74976
RS
7337@end example
7338
7339But if the parser chose to reduce when possible rather than shift, the
7340result would be to attach the else-clause to the outermost if-statement,
7341making these two inputs equivalent:
7342
7343@example
534cee7a 7344if x then if y then win; else lose;
bfa74976 7345
534cee7a 7346if x then do; if y then win; end; else lose;
bfa74976
RS
7347@end example
7348
7349The conflict exists because the grammar as written is ambiguous: either
7350parsing of the simple nested if-statement is legitimate. The established
7351convention is that these ambiguities are resolved by attaching the
7352else-clause to the innermost if-statement; this is what Bison accomplishes
7353by choosing to shift rather than reduce. (It would ideally be cleaner to
7354write an unambiguous grammar, but that is very hard to do in this case.)
7355This particular ambiguity was first encountered in the specifications of
7356Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7357
7358To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7359conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7360There will be no warning as long as the number of shift/reduce conflicts
7361is exactly @var{n}, and Bison will report an error if there is a
7362different number.
c28cd5dc
AD
7363@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7364recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7365number of conflicts does not mean that they are the @emph{same}. When
7366possible, you should rather use precedence directives to @emph{fix} the
7367conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7368Operators}).
bfa74976
RS
7369
7370The definition of @code{if_stmt} above is solely to blame for the
7371conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7372rules. Here is a complete Bison grammar file that actually manifests
7373the conflict:
bfa74976
RS
7374
7375@example
bfa74976 7376%%
bfa74976 7377@group
5e9b6624
AD
7378stmt:
7379 expr
7380| if_stmt
7381;
bfa74976
RS
7382@end group
7383
7384@group
7385if_stmt:
534cee7a
AD
7386 "if" expr "then" stmt
7387| "if" expr "then" stmt "else" stmt
5e9b6624 7388;
bfa74976
RS
7389@end group
7390
5e9b6624 7391expr:
534cee7a 7392 "identifier"
5e9b6624 7393;
bfa74976
RS
7394@end example
7395
342b8b6e 7396@node Precedence
bfa74976
RS
7397@section Operator Precedence
7398@cindex operator precedence
7399@cindex precedence of operators
7400
7401Another situation where shift/reduce conflicts appear is in arithmetic
7402expressions. Here shifting is not always the preferred resolution; the
7403Bison declarations for operator precedence allow you to specify when to
7404shift and when to reduce.
7405
7406@menu
7407* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7408* Using Precedence:: How to specify precedence and associativity.
7409* Precedence Only:: How to specify precedence only.
bfa74976
RS
7410* Precedence Examples:: How these features are used in the previous example.
7411* How Precedence:: How they work.
c28cd5dc 7412* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7413@end menu
7414
342b8b6e 7415@node Why Precedence
bfa74976
RS
7416@subsection When Precedence is Needed
7417
7418Consider the following ambiguous grammar fragment (ambiguous because the
7419input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7420
7421@example
7422@group
5e9b6624
AD
7423expr:
7424 expr '-' expr
7425| expr '*' expr
7426| expr '<' expr
7427| '(' expr ')'
7428@dots{}
7429;
bfa74976
RS
7430@end group
7431@end example
7432
7433@noindent
7434Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7435should it reduce them via the rule for the subtraction operator? It
7436depends on the next token. Of course, if the next token is @samp{)}, we
7437must reduce; shifting is invalid because no single rule can reduce the
7438token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7439the next token is @samp{*} or @samp{<}, we have a choice: either
7440shifting or reduction would allow the parse to complete, but with
7441different results.
7442
7443To decide which one Bison should do, we must consider the results. If
7444the next operator token @var{op} is shifted, then it must be reduced
7445first in order to permit another opportunity to reduce the difference.
7446The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7447hand, if the subtraction is reduced before shifting @var{op}, the result
7448is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7449reduce should depend on the relative precedence of the operators
7450@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7451@samp{<}.
bfa74976
RS
7452
7453@cindex associativity
7454What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7455@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7456operators we prefer the former, which is called @dfn{left association}.
7457The latter alternative, @dfn{right association}, is desirable for
7458assignment operators. The choice of left or right association is a
7459matter of whether the parser chooses to shift or reduce when the stack
742e4900 7460contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7461makes right-associativity.
bfa74976 7462
342b8b6e 7463@node Using Precedence
bfa74976
RS
7464@subsection Specifying Operator Precedence
7465@findex %left
bfa74976 7466@findex %nonassoc
d78f0ac9
AD
7467@findex %precedence
7468@findex %right
bfa74976
RS
7469
7470Bison allows you to specify these choices with the operator precedence
7471declarations @code{%left} and @code{%right}. Each such declaration
7472contains a list of tokens, which are operators whose precedence and
7473associativity is being declared. The @code{%left} declaration makes all
7474those operators left-associative and the @code{%right} declaration makes
7475them right-associative. A third alternative is @code{%nonassoc}, which
7476declares that it is a syntax error to find the same operator twice ``in a
7477row''.
d78f0ac9
AD
7478The last alternative, @code{%precedence}, allows to define only
7479precedence and no associativity at all. As a result, any
7480associativity-related conflict that remains will be reported as an
7481compile-time error. The directive @code{%nonassoc} creates run-time
7482error: using the operator in a associative way is a syntax error. The
7483directive @code{%precedence} creates compile-time errors: an operator
7484@emph{can} be involved in an associativity-related conflict, contrary to
7485what expected the grammar author.
bfa74976
RS
7486
7487The relative precedence of different operators is controlled by the
d78f0ac9
AD
7488order in which they are declared. The first precedence/associativity
7489declaration in the file declares the operators whose
bfa74976
RS
7490precedence is lowest, the next such declaration declares the operators
7491whose precedence is a little higher, and so on.
7492
d78f0ac9
AD
7493@node Precedence Only
7494@subsection Specifying Precedence Only
7495@findex %precedence
7496
8a4281b9 7497Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7498@code{%nonassoc}, which all defines precedence and associativity, little
7499attention is paid to the fact that precedence cannot be defined without
7500defining associativity. Yet, sometimes, when trying to solve a
7501conflict, precedence suffices. In such a case, using @code{%left},
7502@code{%right}, or @code{%nonassoc} might hide future (associativity
7503related) conflicts that would remain hidden.
7504
7505The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7506Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7507in the following situation, where the period denotes the current parsing
7508state:
7509
7510@example
7511if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7512@end example
7513
7514The conflict involves the reduction of the rule @samp{IF expr THEN
7515stmt}, which precedence is by default that of its last token
7516(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7517disambiguation (attach the @code{else} to the closest @code{if}),
7518shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7519higher than that of @code{THEN}. But neither is expected to be involved
7520in an associativity related conflict, which can be specified as follows.
7521
7522@example
7523%precedence THEN
7524%precedence ELSE
7525@end example
7526
7527The unary-minus is another typical example where associativity is
7528usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7529Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7530used to declare the precedence of @code{NEG}, which is more than needed
7531since it also defines its associativity. While this is harmless in the
7532traditional example, who knows how @code{NEG} might be used in future
7533evolutions of the grammar@dots{}
7534
342b8b6e 7535@node Precedence Examples
bfa74976
RS
7536@subsection Precedence Examples
7537
7538In our example, we would want the following declarations:
7539
7540@example
7541%left '<'
7542%left '-'
7543%left '*'
7544@end example
7545
7546In a more complete example, which supports other operators as well, we
7547would declare them in groups of equal precedence. For example, @code{'+'} is
7548declared with @code{'-'}:
7549
7550@example
534cee7a 7551%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7552%left '+' '-'
7553%left '*' '/'
7554@end example
7555
342b8b6e 7556@node How Precedence
bfa74976
RS
7557@subsection How Precedence Works
7558
7559The first effect of the precedence declarations is to assign precedence
7560levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7561precedence levels to certain rules: each rule gets its precedence from
7562the last terminal symbol mentioned in the components. (You can also
7563specify explicitly the precedence of a rule. @xref{Contextual
7564Precedence, ,Context-Dependent Precedence}.)
7565
7566Finally, the resolution of conflicts works by comparing the precedence
742e4900 7567of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7568token's precedence is higher, the choice is to shift. If the rule's
7569precedence is higher, the choice is to reduce. If they have equal
7570precedence, the choice is made based on the associativity of that
7571precedence level. The verbose output file made by @samp{-v}
7572(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7573resolved.
bfa74976
RS
7574
7575Not all rules and not all tokens have precedence. If either the rule or
742e4900 7576the lookahead token has no precedence, then the default is to shift.
bfa74976 7577
c28cd5dc
AD
7578@node Non Operators
7579@subsection Using Precedence For Non Operators
7580
7581Using properly precedence and associativity directives can help fixing
7582shift/reduce conflicts that do not involve arithmetics-like operators. For
7583instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7584Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7585
7586In the present case, the conflict is between the token @code{"else"} willing
7587to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7588for reduction. By default, the precedence of a rule is that of its last
7589token, here @code{"then"}, so the conflict will be solved appropriately
7590by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7591instance as follows:
7592
7593@example
7594@group
589149dc
AD
7595%precedence "then"
7596%precedence "else"
c28cd5dc
AD
7597@end group
7598@end example
7599
7600Alternatively, you may give both tokens the same precedence, in which case
7601associativity is used to solve the conflict. To preserve the shift action,
7602use right associativity:
7603
7604@example
7605%right "then" "else"
7606@end example
7607
7608Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7609``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7610of these keywords with respect to the other operators your grammar.
7611Therefore, instead of being warned about new conflicts you would be unaware
7612of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7613being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7614else 2) + 3}?), the conflict will be already ``fixed''.
7615
342b8b6e 7616@node Contextual Precedence
bfa74976
RS
7617@section Context-Dependent Precedence
7618@cindex context-dependent precedence
7619@cindex unary operator precedence
7620@cindex precedence, context-dependent
7621@cindex precedence, unary operator
7622@findex %prec
7623
7624Often the precedence of an operator depends on the context. This sounds
7625outlandish at first, but it is really very common. For example, a minus
7626sign typically has a very high precedence as a unary operator, and a
7627somewhat lower precedence (lower than multiplication) as a binary operator.
7628
d78f0ac9
AD
7629The Bison precedence declarations
7630can only be used once for a given token; so a token has
bfa74976
RS
7631only one precedence declared in this way. For context-dependent
7632precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7633modifier for rules.
bfa74976
RS
7634
7635The @code{%prec} modifier declares the precedence of a particular rule by
7636specifying a terminal symbol whose precedence should be used for that rule.
7637It's not necessary for that symbol to appear otherwise in the rule. The
7638modifier's syntax is:
7639
7640@example
7641%prec @var{terminal-symbol}
7642@end example
7643
7644@noindent
7645and it is written after the components of the rule. Its effect is to
7646assign the rule the precedence of @var{terminal-symbol}, overriding
7647the precedence that would be deduced for it in the ordinary way. The
7648altered rule precedence then affects how conflicts involving that rule
7649are resolved (@pxref{Precedence, ,Operator Precedence}).
7650
7651Here is how @code{%prec} solves the problem of unary minus. First, declare
7652a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7653are no tokens of this type, but the symbol serves to stand for its
7654precedence:
7655
7656@example
7657@dots{}
7658%left '+' '-'
7659%left '*'
7660%left UMINUS
7661@end example
7662
7663Now the precedence of @code{UMINUS} can be used in specific rules:
7664
7665@example
7666@group
5e9b6624
AD
7667exp:
7668 @dots{}
7669| exp '-' exp
7670 @dots{}
7671| '-' exp %prec UMINUS
bfa74976
RS
7672@end group
7673@end example
7674
91d2c560 7675@ifset defaultprec
39a06c25
PE
7676If you forget to append @code{%prec UMINUS} to the rule for unary
7677minus, Bison silently assumes that minus has its usual precedence.
7678This kind of problem can be tricky to debug, since one typically
7679discovers the mistake only by testing the code.
7680
22fccf95 7681The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7682this kind of problem systematically. It causes rules that lack a
7683@code{%prec} modifier to have no precedence, even if the last terminal
7684symbol mentioned in their components has a declared precedence.
7685
22fccf95 7686If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7687for all rules that participate in precedence conflict resolution.
7688Then you will see any shift/reduce conflict until you tell Bison how
7689to resolve it, either by changing your grammar or by adding an
7690explicit precedence. This will probably add declarations to the
7691grammar, but it helps to protect against incorrect rule precedences.
7692
22fccf95
PE
7693The effect of @code{%no-default-prec;} can be reversed by giving
7694@code{%default-prec;}, which is the default.
91d2c560 7695@end ifset
39a06c25 7696
342b8b6e 7697@node Parser States
bfa74976
RS
7698@section Parser States
7699@cindex finite-state machine
7700@cindex parser state
7701@cindex state (of parser)
7702
7703The function @code{yyparse} is implemented using a finite-state machine.
7704The values pushed on the parser stack are not simply token type codes; they
7705represent the entire sequence of terminal and nonterminal symbols at or
7706near the top of the stack. The current state collects all the information
7707about previous input which is relevant to deciding what to do next.
7708
742e4900
JD
7709Each time a lookahead token is read, the current parser state together
7710with the type of lookahead token are looked up in a table. This table
7711entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7712specifies the new parser state, which is pushed onto the top of the
7713parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7714This means that a certain number of tokens or groupings are taken off
7715the top of the stack, and replaced by one grouping. In other words,
7716that number of states are popped from the stack, and one new state is
7717pushed.
7718
742e4900 7719There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7720is erroneous in the current state. This causes error processing to begin
7721(@pxref{Error Recovery}).
7722
342b8b6e 7723@node Reduce/Reduce
bfa74976
RS
7724@section Reduce/Reduce Conflicts
7725@cindex reduce/reduce conflict
7726@cindex conflicts, reduce/reduce
7727
7728A reduce/reduce conflict occurs if there are two or more rules that apply
7729to the same sequence of input. This usually indicates a serious error
7730in the grammar.
7731
7732For example, here is an erroneous attempt to define a sequence
7733of zero or more @code{word} groupings.
7734
7735@example
d4fca427 7736@group
5e9b6624 7737sequence:
6240346a 7738 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7739| maybeword
7740| sequence word @{ printf ("added word %s\n", $2); @}
7741;
d4fca427 7742@end group
bfa74976 7743
d4fca427 7744@group
5e9b6624 7745maybeword:
6240346a
AD
7746 %empty @{ printf ("empty maybeword\n"); @}
7747| word @{ printf ("single word %s\n", $1); @}
5e9b6624 7748;
d4fca427 7749@end group
bfa74976
RS
7750@end example
7751
7752@noindent
7753The error is an ambiguity: there is more than one way to parse a single
7754@code{word} into a @code{sequence}. It could be reduced to a
7755@code{maybeword} and then into a @code{sequence} via the second rule.
7756Alternatively, nothing-at-all could be reduced into a @code{sequence}
7757via the first rule, and this could be combined with the @code{word}
7758using the third rule for @code{sequence}.
7759
7760There is also more than one way to reduce nothing-at-all into a
7761@code{sequence}. This can be done directly via the first rule,
7762or indirectly via @code{maybeword} and then the second rule.
7763
7764You might think that this is a distinction without a difference, because it
7765does not change whether any particular input is valid or not. But it does
7766affect which actions are run. One parsing order runs the second rule's
7767action; the other runs the first rule's action and the third rule's action.
7768In this example, the output of the program changes.
7769
7770Bison resolves a reduce/reduce conflict by choosing to use the rule that
7771appears first in the grammar, but it is very risky to rely on this. Every
7772reduce/reduce conflict must be studied and usually eliminated. Here is the
7773proper way to define @code{sequence}:
7774
7775@example
51356dd2 7776@group
5e9b6624 7777sequence:
6240346a 7778 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7779| sequence word @{ printf ("added word %s\n", $2); @}
7780;
51356dd2 7781@end group
bfa74976
RS
7782@end example
7783
7784Here is another common error that yields a reduce/reduce conflict:
7785
7786@example
51356dd2 7787@group
589149dc 7788sequence:
6240346a 7789 %empty
5e9b6624
AD
7790| sequence words
7791| sequence redirects
7792;
51356dd2 7793@end group
bfa74976 7794
51356dd2 7795@group
5e9b6624 7796words:
6240346a 7797 %empty
5e9b6624
AD
7798| words word
7799;
51356dd2 7800@end group
bfa74976 7801
51356dd2 7802@group
5e9b6624 7803redirects:
6240346a 7804 %empty
5e9b6624
AD
7805| redirects redirect
7806;
51356dd2 7807@end group
bfa74976
RS
7808@end example
7809
7810@noindent
7811The intention here is to define a sequence which can contain either
7812@code{word} or @code{redirect} groupings. The individual definitions of
7813@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7814three together make a subtle ambiguity: even an empty input can be parsed
7815in infinitely many ways!
7816
7817Consider: nothing-at-all could be a @code{words}. Or it could be two
7818@code{words} in a row, or three, or any number. It could equally well be a
7819@code{redirects}, or two, or any number. Or it could be a @code{words}
7820followed by three @code{redirects} and another @code{words}. And so on.
7821
7822Here are two ways to correct these rules. First, to make it a single level
7823of sequence:
7824
7825@example
5e9b6624 7826sequence:
6240346a 7827 %empty
5e9b6624
AD
7828| sequence word
7829| sequence redirect
7830;
bfa74976
RS
7831@end example
7832
7833Second, to prevent either a @code{words} or a @code{redirects}
7834from being empty:
7835
7836@example
d4fca427 7837@group
5e9b6624 7838sequence:
6240346a 7839 %empty
5e9b6624
AD
7840| sequence words
7841| sequence redirects
7842;
d4fca427 7843@end group
bfa74976 7844
d4fca427 7845@group
5e9b6624
AD
7846words:
7847 word
7848| words word
7849;
d4fca427 7850@end group
bfa74976 7851
d4fca427 7852@group
5e9b6624
AD
7853redirects:
7854 redirect
7855| redirects redirect
7856;
d4fca427 7857@end group
bfa74976
RS
7858@end example
7859
53e2cd1e
AD
7860Yet this proposal introduces another kind of ambiguity! The input
7861@samp{word word} can be parsed as a single @code{words} composed of two
7862@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7863@code{redirect}/@code{redirects}). However this ambiguity is now a
7864shift/reduce conflict, and therefore it can now be addressed with precedence
7865directives.
7866
7867To simplify the matter, we will proceed with @code{word} and @code{redirect}
7868being tokens: @code{"word"} and @code{"redirect"}.
7869
7870To prefer the longest @code{words}, the conflict between the token
7871@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7872as a shift. To this end, we use the same techniques as exposed above, see
7873@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7874relies on precedences: use @code{%prec} to give a lower precedence to the
7875rule:
7876
7877@example
589149dc
AD
7878%precedence "word"
7879%precedence "sequence"
53e2cd1e
AD
7880%%
7881@group
7882sequence:
6240346a 7883 %empty
53e2cd1e
AD
7884| sequence word %prec "sequence"
7885| sequence redirect %prec "sequence"
7886;
7887@end group
7888
7889@group
7890words:
7891 word
7892| words "word"
7893;
7894@end group
7895@end example
7896
7897Another solution relies on associativity: provide both the token and the
7898rule with the same precedence, but make them right-associative:
7899
7900@example
7901%right "word" "redirect"
7902%%
7903@group
7904sequence:
6240346a 7905 %empty
53e2cd1e
AD
7906| sequence word %prec "word"
7907| sequence redirect %prec "redirect"
7908;
7909@end group
7910@end example
7911
cc09e5be
JD
7912@node Mysterious Conflicts
7913@section Mysterious Conflicts
7fceb615 7914@cindex Mysterious Conflicts
bfa74976
RS
7915
7916Sometimes reduce/reduce conflicts can occur that don't look warranted.
7917Here is an example:
7918
7919@example
7920@group
bfa74976 7921%%
5e9b6624 7922def: param_spec return_spec ',';
bfa74976 7923param_spec:
5e9b6624
AD
7924 type
7925| name_list ':' type
7926;
bfa74976 7927@end group
589149dc 7928
bfa74976
RS
7929@group
7930return_spec:
5e9b6624
AD
7931 type
7932| name ':' type
7933;
bfa74976 7934@end group
589149dc 7935
534cee7a 7936type: "id";
589149dc 7937
bfa74976 7938@group
534cee7a 7939name: "id";
bfa74976 7940name_list:
5e9b6624
AD
7941 name
7942| name ',' name_list
7943;
bfa74976
RS
7944@end group
7945@end example
7946
534cee7a
AD
7947It would seem that this grammar can be parsed with only a single token of
7948lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7949@code{name} if a comma or colon follows, or a @code{type} if another
7950@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7951
7fceb615
JD
7952@cindex LR
7953@cindex LALR
eb45ef3b 7954However, for historical reasons, Bison cannot by default handle all
8a4281b9 7955LR(1) grammars.
534cee7a 7956In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7957of a @code{param_spec} and likewise at the beginning of a
7958@code{return_spec}, are similar enough that Bison assumes they are the
7959same.
7960They appear similar because the same set of rules would be
bfa74976
RS
7961active---the rule for reducing to a @code{name} and that for reducing to
7962a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7963that the rules would require different lookahead tokens in the two
bfa74976
RS
7964contexts, so it makes a single parser state for them both. Combining
7965the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7966occurrence means that the grammar is not LALR(1).
bfa74976 7967
7fceb615
JD
7968@cindex IELR
7969@cindex canonical LR
7970For many practical grammars (specifically those that fall into the non-LR(1)
7971class), the limitations of LALR(1) result in difficulties beyond just
7972mysterious reduce/reduce conflicts. The best way to fix all these problems
7973is to select a different parser table construction algorithm. Either
7974IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7975and easier to debug during development. @xref{LR Table Construction}, for
7976details. (Bison's IELR(1) and canonical LR(1) implementations are
7977experimental. More user feedback will help to stabilize them.)
eb45ef3b 7978
8a4281b9 7979If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7980can often fix a mysterious conflict by identifying the two parser states
7981that are being confused, and adding something to make them look
7982distinct. In the above example, adding one rule to
bfa74976
RS
7983@code{return_spec} as follows makes the problem go away:
7984
7985@example
7986@group
bfa74976
RS
7987@dots{}
7988return_spec:
5e9b6624
AD
7989 type
7990| name ':' type
534cee7a 7991| "id" "bogus" /* This rule is never used. */
5e9b6624 7992;
bfa74976
RS
7993@end group
7994@end example
7995
7996This corrects the problem because it introduces the possibility of an
534cee7a 7997additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7998@code{return_spec}. This rule is not active in the corresponding context
7999in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 8000As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
8001the added rule cannot alter the way actual input is parsed.
8002
8003In this particular example, there is another way to solve the problem:
534cee7a 8004rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
8005instead of via @code{name}. This also causes the two confusing
8006contexts to have different sets of active rules, because the one for
8007@code{return_spec} activates the altered rule for @code{return_spec}
8008rather than the one for @code{name}.
8009
8010@example
589149dc 8011@group
bfa74976 8012param_spec:
5e9b6624
AD
8013 type
8014| name_list ':' type
8015;
589149dc
AD
8016@end group
8017
8018@group
bfa74976 8019return_spec:
5e9b6624 8020 type
534cee7a 8021| "id" ':' type
5e9b6624 8022;
589149dc 8023@end group
bfa74976
RS
8024@end example
8025
8a4281b9 8026For a more detailed exposition of LALR(1) parsers and parser
5e528941 8027generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 8028
7fceb615
JD
8029@node Tuning LR
8030@section Tuning LR
8031
8032The default behavior of Bison's LR-based parsers is chosen mostly for
8033historical reasons, but that behavior is often not robust. For example, in
8034the previous section, we discussed the mysterious conflicts that can be
8035produced by LALR(1), Bison's default parser table construction algorithm.
8036Another example is Bison's @code{%define parse.error verbose} directive,
8037which instructs the generated parser to produce verbose syntax error
8038messages, which can sometimes contain incorrect information.
8039
8040In this section, we explore several modern features of Bison that allow you
8041to tune fundamental aspects of the generated LR-based parsers. Some of
8042these features easily eliminate shortcomings like those mentioned above.
8043Others can be helpful purely for understanding your parser.
8044
8045Most of the features discussed in this section are still experimental. More
8046user feedback will help to stabilize them.
8047
8048@menu
8049* LR Table Construction:: Choose a different construction algorithm.
8050* Default Reductions:: Disable default reductions.
8051* LAC:: Correct lookahead sets in the parser states.
8052* Unreachable States:: Keep unreachable parser states for debugging.
8053@end menu
8054
8055@node LR Table Construction
8056@subsection LR Table Construction
8057@cindex Mysterious Conflict
8058@cindex LALR
8059@cindex IELR
8060@cindex canonical LR
8061@findex %define lr.type
8062
8063For historical reasons, Bison constructs LALR(1) parser tables by default.
8064However, LALR does not possess the full language-recognition power of LR.
8065As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 8066mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
8067Conflicts}.
8068
8069As we also demonstrated in that example, the traditional approach to
8070eliminating such mysterious behavior is to restructure the grammar.
8071Unfortunately, doing so correctly is often difficult. Moreover, merely
8072discovering that LALR causes mysterious behavior in your parser can be
8073difficult as well.
8074
8075Fortunately, Bison provides an easy way to eliminate the possibility of such
8076mysterious behavior altogether. You simply need to activate a more powerful
8077parser table construction algorithm by using the @code{%define lr.type}
8078directive.
8079
511dd971 8080@deffn {Directive} {%define lr.type} @var{type}
7fceb615 8081Specify the type of parser tables within the LR(1) family. The accepted
511dd971 8082values for @var{type} are:
7fceb615
JD
8083
8084@itemize
8085@item @code{lalr} (default)
8086@item @code{ielr}
8087@item @code{canonical-lr}
8088@end itemize
8089
8090(This feature is experimental. More user feedback will help to stabilize
8091it.)
8092@end deffn
8093
8094For example, to activate IELR, you might add the following directive to you
8095grammar file:
8096
8097@example
8098%define lr.type ielr
8099@end example
8100
cc09e5be 8101@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
8102conflict is then eliminated, so there is no need to invest time in
8103comprehending the conflict or restructuring the grammar to fix it. If,
8104during future development, the grammar evolves such that all mysterious
8105behavior would have disappeared using just LALR, you need not fear that
8106continuing to use IELR will result in unnecessarily large parser tables.
8107That is, IELR generates LALR tables when LALR (using a deterministic parsing
8108algorithm) is sufficient to support the full language-recognition power of
8109LR. Thus, by enabling IELR at the start of grammar development, you can
8110safely and completely eliminate the need to consider LALR's shortcomings.
8111
8112While IELR is almost always preferable, there are circumstances where LALR
8113or the canonical LR parser tables described by Knuth
8114(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
8115relative advantages of each parser table construction algorithm within
8116Bison:
8117
8118@itemize
8119@item LALR
8120
8121There are at least two scenarios where LALR can be worthwhile:
8122
8123@itemize
8124@item GLR without static conflict resolution.
8125
8126@cindex GLR with LALR
8127When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
8128conflicts statically (for example, with @code{%left} or @code{%precedence}),
8129then
7fceb615
JD
8130the parser explores all potential parses of any given input. In this case,
8131the choice of parser table construction algorithm is guaranteed not to alter
8132the language accepted by the parser. LALR parser tables are the smallest
8133parser tables Bison can currently construct, so they may then be preferable.
8134Nevertheless, once you begin to resolve conflicts statically, GLR behaves
8135more like a deterministic parser in the syntactic contexts where those
8136conflicts appear, and so either IELR or canonical LR can then be helpful to
8137avoid LALR's mysterious behavior.
8138
8139@item Malformed grammars.
8140
8141Occasionally during development, an especially malformed grammar with a
8142major recurring flaw may severely impede the IELR or canonical LR parser
8143table construction algorithm. LALR can be a quick way to construct parser
8144tables in order to investigate such problems while ignoring the more subtle
8145differences from IELR and canonical LR.
8146@end itemize
8147
8148@item IELR
8149
8150IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
8151any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
8152always accept exactly the same set of sentences. However, like LALR, IELR
8153merges parser states during parser table construction so that the number of
8154parser states is often an order of magnitude less than for canonical LR.
8155More importantly, because canonical LR's extra parser states may contain
8156duplicate conflicts in the case of non-LR grammars, the number of conflicts
8157for IELR is often an order of magnitude less as well. This effect can
8158significantly reduce the complexity of developing a grammar.
8159
8160@item Canonical LR
8161
8162@cindex delayed syntax error detection
8163@cindex LAC
8164@findex %nonassoc
8165While inefficient, canonical LR parser tables can be an interesting means to
8166explore a grammar because they possess a property that IELR and LALR tables
8167do not. That is, if @code{%nonassoc} is not used and default reductions are
8168left disabled (@pxref{Default Reductions}), then, for every left context of
8169every canonical LR state, the set of tokens accepted by that state is
8170guaranteed to be the exact set of tokens that is syntactically acceptable in
8171that left context. It might then seem that an advantage of canonical LR
8172parsers in production is that, under the above constraints, they are
8173guaranteed to detect a syntax error as soon as possible without performing
8174any unnecessary reductions. However, IELR parsers that use LAC are also
8175able to achieve this behavior without sacrificing @code{%nonassoc} or
8176default reductions. For details and a few caveats of LAC, @pxref{LAC}.
8177@end itemize
8178
8179For a more detailed exposition of the mysterious behavior in LALR parsers
8180and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
8181@ref{Bibliography,,Denny 2010 November}.
8182
8183@node Default Reductions
8184@subsection Default Reductions
8185@cindex default reductions
f3bc3386 8186@findex %define lr.default-reduction
7fceb615
JD
8187@findex %nonassoc
8188
8189After parser table construction, Bison identifies the reduction with the
8190largest lookahead set in each parser state. To reduce the size of the
8191parser state, traditional Bison behavior is to remove that lookahead set and
8192to assign that reduction to be the default parser action. Such a reduction
8193is known as a @dfn{default reduction}.
8194
8195Default reductions affect more than the size of the parser tables. They
8196also affect the behavior of the parser:
8197
8198@itemize
8199@item Delayed @code{yylex} invocations.
8200
8201@cindex delayed yylex invocations
8202@cindex consistent states
8203@cindex defaulted states
8204A @dfn{consistent state} is a state that has only one possible parser
8205action. If that action is a reduction and is encoded as a default
8206reduction, then that consistent state is called a @dfn{defaulted state}.
8207Upon reaching a defaulted state, a Bison-generated parser does not bother to
8208invoke @code{yylex} to fetch the next token before performing the reduction.
8209In other words, whether default reductions are enabled in consistent states
8210determines how soon a Bison-generated parser invokes @code{yylex} for a
8211token: immediately when it @emph{reaches} that token in the input or when it
8212eventually @emph{needs} that token as a lookahead to determine the next
8213parser action. Traditionally, default reductions are enabled, and so the
8214parser exhibits the latter behavior.
8215
8216The presence of defaulted states is an important consideration when
8217designing @code{yylex} and the grammar file. That is, if the behavior of
8218@code{yylex} can influence or be influenced by the semantic actions
8219associated with the reductions in defaulted states, then the delay of the
8220next @code{yylex} invocation until after those reductions is significant.
8221For example, the semantic actions might pop a scope stack that @code{yylex}
8222uses to determine what token to return. Thus, the delay might be necessary
8223to ensure that @code{yylex} does not look up the next token in a scope that
8224should already be considered closed.
8225
8226@item Delayed syntax error detection.
8227
8228@cindex delayed syntax error detection
8229When the parser fetches a new token by invoking @code{yylex}, it checks
8230whether there is an action for that token in the current parser state. The
8231parser detects a syntax error if and only if either (1) there is no action
8232for that token or (2) the action for that token is the error action (due to
8233the use of @code{%nonassoc}). However, if there is a default reduction in
8234that state (which might or might not be a defaulted state), then it is
8235impossible for condition 1 to exist. That is, all tokens have an action.
8236Thus, the parser sometimes fails to detect the syntax error until it reaches
8237a later state.
8238
8239@cindex LAC
8240@c If there's an infinite loop, default reductions can prevent an incorrect
8241@c sentence from being rejected.
8242While default reductions never cause the parser to accept syntactically
8243incorrect sentences, the delay of syntax error detection can have unexpected
8244effects on the behavior of the parser. However, the delay can be caused
8245anyway by parser state merging and the use of @code{%nonassoc}, and it can
8246be fixed by another Bison feature, LAC. We discuss the effects of delayed
8247syntax error detection and LAC more in the next section (@pxref{LAC}).
8248@end itemize
8249
8250For canonical LR, the only default reduction that Bison enables by default
8251is the accept action, which appears only in the accepting state, which has
8252no other action and is thus a defaulted state. However, the default accept
8253action does not delay any @code{yylex} invocation or syntax error detection
8254because the accept action ends the parse.
8255
8256For LALR and IELR, Bison enables default reductions in nearly all states by
8257default. There are only two exceptions. First, states that have a shift
8258action on the @code{error} token do not have default reductions because
8259delayed syntax error detection could then prevent the @code{error} token
8260from ever being shifted in that state. However, parser state merging can
8261cause the same effect anyway, and LAC fixes it in both cases, so future
8262versions of Bison might drop this exception when LAC is activated. Second,
8263GLR parsers do not record the default reduction as the action on a lookahead
8264token for which there is a conflict. The correct action in this case is to
8265split the parse instead.
8266
8267To adjust which states have default reductions enabled, use the
f3bc3386 8268@code{%define lr.default-reduction} directive.
7fceb615 8269
5807bb91 8270@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8271Specify the kind of states that are permitted to contain default reductions.
511dd971 8272The accepted values of @var{where} are:
7fceb615 8273@itemize
f0ad1b2f 8274@item @code{most} (default for LALR and IELR)
7fceb615
JD
8275@item @code{consistent}
8276@item @code{accepting} (default for canonical LR)
8277@end itemize
8278
8279(The ability to specify where default reductions are permitted is
8280experimental. More user feedback will help to stabilize it.)
8281@end deffn
8282
7fceb615
JD
8283@node LAC
8284@subsection LAC
8285@findex %define parse.lac
8286@cindex LAC
8287@cindex lookahead correction
8288
8289Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8290encountering a syntax error. First, the parser might perform additional
8291parser stack reductions before discovering the syntax error. Such
8292reductions can perform user semantic actions that are unexpected because
8293they are based on an invalid token, and they cause error recovery to begin
8294in a different syntactic context than the one in which the invalid token was
8295encountered. Second, when verbose error messages are enabled (@pxref{Error
8296Reporting}), the expected token list in the syntax error message can both
8297contain invalid tokens and omit valid tokens.
8298
8299The culprits for the above problems are @code{%nonassoc}, default reductions
8300in inconsistent states (@pxref{Default Reductions}), and parser state
8301merging. Because IELR and LALR merge parser states, they suffer the most.
8302Canonical LR can suffer only if @code{%nonassoc} is used or if default
8303reductions are enabled for inconsistent states.
8304
8305LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8306that solves these problems for canonical LR, IELR, and LALR without
8307sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8308enable LAC with the @code{%define parse.lac} directive.
8309
511dd971 8310@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8311Enable LAC to improve syntax error handling.
8312@itemize
8313@item @code{none} (default)
8314@item @code{full}
8315@end itemize
8316(This feature is experimental. More user feedback will help to stabilize
8317it. Moreover, it is currently only available for deterministic parsers in
8318C.)
8319@end deffn
8320
8321Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8322fetches a new token from the scanner so that it can determine the next
8323parser action, it immediately suspends normal parsing and performs an
8324exploratory parse using a temporary copy of the normal parser state stack.
8325During this exploratory parse, the parser does not perform user semantic
8326actions. If the exploratory parse reaches a shift action, normal parsing
8327then resumes on the normal parser stacks. If the exploratory parse reaches
8328an error instead, the parser reports a syntax error. If verbose syntax
8329error messages are enabled, the parser must then discover the list of
8330expected tokens, so it performs a separate exploratory parse for each token
8331in the grammar.
8332
8333There is one subtlety about the use of LAC. That is, when in a consistent
8334parser state with a default reduction, the parser will not attempt to fetch
8335a token from the scanner because no lookahead is needed to determine the
8336next parser action. Thus, whether default reductions are enabled in
8337consistent states (@pxref{Default Reductions}) affects how soon the parser
8338detects a syntax error: immediately when it @emph{reaches} an erroneous
8339token or when it eventually @emph{needs} that token as a lookahead to
8340determine the next parser action. The latter behavior is probably more
8341intuitive, so Bison currently provides no way to achieve the former behavior
8342while default reductions are enabled in consistent states.
8343
8344Thus, when LAC is in use, for some fixed decision of whether to enable
8345default reductions in consistent states, canonical LR and IELR behave almost
8346exactly the same for both syntactically acceptable and syntactically
8347unacceptable input. While LALR still does not support the full
8348language-recognition power of canonical LR and IELR, LAC at least enables
8349LALR's syntax error handling to correctly reflect LALR's
8350language-recognition power.
8351
8352There are a few caveats to consider when using LAC:
8353
8354@itemize
8355@item Infinite parsing loops.
8356
8357IELR plus LAC does have one shortcoming relative to canonical LR. Some
8358parsers generated by Bison can loop infinitely. LAC does not fix infinite
8359parsing loops that occur between encountering a syntax error and detecting
8360it, but enabling canonical LR or disabling default reductions sometimes
8361does.
8362
8363@item Verbose error message limitations.
8364
8365Because of internationalization considerations, Bison-generated parsers
8366limit the size of the expected token list they are willing to report in a
8367verbose syntax error message. If the number of expected tokens exceeds that
8368limit, the list is simply dropped from the message. Enabling LAC can
8369increase the size of the list and thus cause the parser to drop it. Of
8370course, dropping the list is better than reporting an incorrect list.
8371
8372@item Performance.
8373
8374Because LAC requires many parse actions to be performed twice, it can have a
8375performance penalty. However, not all parse actions must be performed
8376twice. Specifically, during a series of default reductions in consistent
8377states and shift actions, the parser never has to initiate an exploratory
8378parse. Moreover, the most time-consuming tasks in a parse are often the
8379file I/O, the lexical analysis performed by the scanner, and the user's
8380semantic actions, but none of these are performed during the exploratory
8381parse. Finally, the base of the temporary stack used during an exploratory
8382parse is a pointer into the normal parser state stack so that the stack is
8383never physically copied. In our experience, the performance penalty of LAC
5a321748 8384has proved insignificant for practical grammars.
7fceb615
JD
8385@end itemize
8386
709c7d11
JD
8387While the LAC algorithm shares techniques that have been recognized in the
8388parser community for years, for the publication that introduces LAC,
8389@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8390
7fceb615
JD
8391@node Unreachable States
8392@subsection Unreachable States
f3bc3386 8393@findex %define lr.keep-unreachable-state
7fceb615
JD
8394@cindex unreachable states
8395
8396If there exists no sequence of transitions from the parser's start state to
8397some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8398state}. A state can become unreachable during conflict resolution if Bison
8399disables a shift action leading to it from a predecessor state.
8400
8401By default, Bison removes unreachable states from the parser after conflict
8402resolution because they are useless in the generated parser. However,
8403keeping unreachable states is sometimes useful when trying to understand the
8404relationship between the parser and the grammar.
8405
5807bb91 8406@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8407Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8408@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8409@end deffn
8410
8411There are a few caveats to consider:
8412
8413@itemize @bullet
8414@item Missing or extraneous warnings.
8415
8416Unreachable states may contain conflicts and may use rules not used in any
8417other state. Thus, keeping unreachable states may induce warnings that are
8418irrelevant to your parser's behavior, and it may eliminate warnings that are
8419relevant. Of course, the change in warnings may actually be relevant to a
8420parser table analysis that wants to keep unreachable states, so this
8421behavior will likely remain in future Bison releases.
8422
8423@item Other useless states.
8424
8425While Bison is able to remove unreachable states, it is not guaranteed to
8426remove other kinds of useless states. Specifically, when Bison disables
8427reduce actions during conflict resolution, some goto actions may become
8428useless, and thus some additional states may become useless. If Bison were
8429to compute which goto actions were useless and then disable those actions,
8430it could identify such states as unreachable and then remove those states.
8431However, Bison does not compute which goto actions are useless.
8432@end itemize
8433
fae437e8 8434@node Generalized LR Parsing
8a4281b9
JD
8435@section Generalized LR (GLR) Parsing
8436@cindex GLR parsing
8437@cindex generalized LR (GLR) parsing
676385e2 8438@cindex ambiguous grammars
9d9b8b70 8439@cindex nondeterministic parsing
676385e2 8440
fae437e8
AD
8441Bison produces @emph{deterministic} parsers that choose uniquely
8442when to reduce and which reduction to apply
742e4900 8443based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8444As a result, normal Bison handles a proper subset of the family of
8445context-free languages.
fae437e8 8446Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8447sequence of reductions cannot have deterministic parsers in this sense.
8448The same is true of languages that require more than one symbol of
742e4900 8449lookahead, since the parser lacks the information necessary to make a
676385e2 8450decision at the point it must be made in a shift-reduce parser.
cc09e5be 8451Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8452there are languages where Bison's default choice of how to
676385e2
PH
8453summarize the input seen so far loses necessary information.
8454
8455When you use the @samp{%glr-parser} declaration in your grammar file,
8456Bison generates a parser that uses a different algorithm, called
8a4281b9 8457Generalized LR (or GLR). A Bison GLR
c827f760 8458parser uses the same basic
676385e2
PH
8459algorithm for parsing as an ordinary Bison parser, but behaves
8460differently in cases where there is a shift-reduce conflict that has not
fae437e8 8461been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8462reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8463situation, it
fae437e8 8464effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8465shift or reduction. These parsers then proceed as usual, consuming
8466tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8467and split further, with the result that instead of a sequence of states,
8a4281b9 8468a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8469
8470In effect, each stack represents a guess as to what the proper parse
8471is. Additional input may indicate that a guess was wrong, in which case
8472the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8473actions generated in each stack are saved, rather than being executed
676385e2 8474immediately. When a stack disappears, its saved semantic actions never
fae437e8 8475get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8476their sets of semantic actions are both saved with the state that
8477results from the reduction. We say that two stacks are equivalent
fae437e8 8478when they both represent the same sequence of states,
676385e2
PH
8479and each pair of corresponding states represents a
8480grammar symbol that produces the same segment of the input token
8481stream.
8482
8483Whenever the parser makes a transition from having multiple
eb45ef3b 8484states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8485algorithm, after resolving and executing the saved-up actions.
8486At this transition, some of the states on the stack will have semantic
8487values that are sets (actually multisets) of possible actions. The
8488parser tries to pick one of the actions by first finding one whose rule
8489has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8490declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8491precedence, but there the same merging function is declared for both
fae437e8 8492rules by the @samp{%merge} declaration,
676385e2
PH
8493Bison resolves and evaluates both and then calls the merge function on
8494the result. Otherwise, it reports an ambiguity.
8495
8a4281b9
JD
8496It is possible to use a data structure for the GLR parsing tree that
8497permits the processing of any LR(1) grammar in linear time (in the
c827f760 8498size of the input), any unambiguous (not necessarily
8a4281b9 8499LR(1)) grammar in
fae437e8 8500quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8501context-free grammar in cubic worst-case time. However, Bison currently
8502uses a simpler data structure that requires time proportional to the
8503length of the input times the maximum number of stacks required for any
9d9b8b70 8504prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8505grammars can require exponential time and space to process. Such badly
8506behaving examples, however, are not generally of practical interest.
9d9b8b70 8507Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8508doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8509structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8510grammar, in particular, it is only slightly slower than with the
8a4281b9 8511deterministic LR(1) Bison parser.
676385e2 8512
5e528941
JD
8513For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
85142000}.
f6481e2f 8515
1a059451
PE
8516@node Memory Management
8517@section Memory Management, and How to Avoid Memory Exhaustion
8518@cindex memory exhaustion
8519@cindex memory management
bfa74976
RS
8520@cindex stack overflow
8521@cindex parser stack overflow
8522@cindex overflow of parser stack
8523
1a059451 8524The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8525not reduced. When this happens, the parser function @code{yyparse}
1a059451 8526calls @code{yyerror} and then returns 2.
bfa74976 8527
c827f760 8528Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8529usually results from using a right recursion instead of a left
188867ac 8530recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8531
bfa74976
RS
8532@vindex YYMAXDEPTH
8533By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8534parser stack can become before memory is exhausted. Define the
bfa74976
RS
8535macro with a value that is an integer. This value is the maximum number
8536of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8537
8538The stack space allowed is not necessarily allocated. If you specify a
1a059451 8539large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8540stack at first, and then makes it bigger by stages as needed. This
8541increasing allocation happens automatically and silently. Therefore,
8542you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8543space for ordinary inputs that do not need much stack.
8544
d7e14fc0
PE
8545However, do not allow @code{YYMAXDEPTH} to be a value so large that
8546arithmetic overflow could occur when calculating the size of the stack
8547space. Also, do not allow @code{YYMAXDEPTH} to be less than
8548@code{YYINITDEPTH}.
8549
bfa74976
RS
8550@cindex default stack limit
8551The default value of @code{YYMAXDEPTH}, if you do not define it, is
855210000.
8553
8554@vindex YYINITDEPTH
8555You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8556macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8557parser in C, this value must be a compile-time constant
d7e14fc0
PE
8558unless you are assuming C99 or some other target language or compiler
8559that allows variable-length arrays. The default is 200.
8560
1a059451 8561Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8562
20be2f92 8563You can generate a deterministic parser containing C++ user code from
411614fa 8564the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8565(@pxref{C++ Parsers}). However, if you do use the default skeleton
8566and want to allow the parsing stack to grow,
8567be careful not to use semantic types or location types that require
8568non-trivial copy constructors.
8569The C skeleton bypasses these constructors when copying data to
8570new, larger stacks.
d1a1114f 8571
342b8b6e 8572@node Error Recovery
bfa74976
RS
8573@chapter Error Recovery
8574@cindex error recovery
8575@cindex recovery from errors
8576
6e649e65 8577It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8578error. For example, a compiler should recover sufficiently to parse the
8579rest of the input file and check it for errors; a calculator should accept
8580another expression.
8581
8582In a simple interactive command parser where each input is one line, it may
8583be sufficient to allow @code{yyparse} to return 1 on error and have the
8584caller ignore the rest of the input line when that happens (and then call
8585@code{yyparse} again). But this is inadequate for a compiler, because it
8586forgets all the syntactic context leading up to the error. A syntax error
8587deep within a function in the compiler input should not cause the compiler
8588to treat the following line like the beginning of a source file.
8589
8590@findex error
8591You can define how to recover from a syntax error by writing rules to
8592recognize the special token @code{error}. This is a terminal symbol that
8593is always defined (you need not declare it) and reserved for error
8594handling. The Bison parser generates an @code{error} token whenever a
8595syntax error happens; if you have provided a rule to recognize this token
13863333 8596in the current context, the parse can continue.
bfa74976
RS
8597
8598For example:
8599
8600@example
0860e383 8601stmts:
6240346a 8602 %empty
0860e383
AD
8603| stmts '\n'
8604| stmts exp '\n'
8605| stmts error '\n'
bfa74976
RS
8606@end example
8607
8608The fourth rule in this example says that an error followed by a newline
0860e383 8609makes a valid addition to any @code{stmts}.
bfa74976
RS
8610
8611What happens if a syntax error occurs in the middle of an @code{exp}? The
8612error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8613of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8614the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8615and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8616will be tokens to read before the next newline. So the rule is not
8617applicable in the ordinary way.
8618
8619But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8620the semantic context and part of the input. First it discards states
8621and objects from the stack until it gets back to a state in which the
bfa74976 8622@code{error} token is acceptable. (This means that the subexpressions
0860e383 8623already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8624At this point the @code{error} token can be shifted. Then, if the old
742e4900 8625lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8626tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8627this example, Bison reads and discards input until the next newline so
8628that the fourth rule can apply. Note that discarded symbols are
8629possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8630Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8631
8632The choice of error rules in the grammar is a choice of strategies for
8633error recovery. A simple and useful strategy is simply to skip the rest of
8634the current input line or current statement if an error is detected:
8635
8636@example
0860e383 8637stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8638@end example
8639
8640It is also useful to recover to the matching close-delimiter of an
8641opening-delimiter that has already been parsed. Otherwise the
8642close-delimiter will probably appear to be unmatched, and generate another,
8643spurious error message:
8644
8645@example
5e9b6624
AD
8646primary:
8647 '(' expr ')'
8648| '(' error ')'
8649@dots{}
8650;
bfa74976
RS
8651@end example
8652
8653Error recovery strategies are necessarily guesses. When they guess wrong,
8654one syntax error often leads to another. In the above example, the error
8655recovery rule guesses that an error is due to bad input within one
0860e383
AD
8656@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8657middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8658from the first error, another syntax error will be found straightaway,
8659since the text following the spurious semicolon is also an invalid
0860e383 8660@code{stmt}.
bfa74976
RS
8661
8662To prevent an outpouring of error messages, the parser will output no error
8663message for another syntax error that happens shortly after the first; only
8664after three consecutive input tokens have been successfully shifted will
8665error messages resume.
8666
8667Note that rules which accept the @code{error} token may have actions, just
8668as any other rules can.
8669
8670@findex yyerrok
8671You can make error messages resume immediately by using the macro
8672@code{yyerrok} in an action. If you do this in the error rule's action, no
8673error messages will be suppressed. This macro requires no arguments;
8674@samp{yyerrok;} is a valid C statement.
8675
8676@findex yyclearin
742e4900 8677The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8678this is unacceptable, then the macro @code{yyclearin} may be used to clear
8679this token. Write the statement @samp{yyclearin;} in the error rule's
8680action.
32c29292 8681@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8682
6e649e65 8683For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8684called that advances the input stream to some point where parsing should
8685once again commence. The next symbol returned by the lexical scanner is
742e4900 8686probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8687with @samp{yyclearin;}.
8688
8689@vindex YYRECOVERING
02103984
PE
8690The expression @code{YYRECOVERING ()} yields 1 when the parser
8691is recovering from a syntax error, and 0 otherwise.
8692Syntax error diagnostics are suppressed while recovering from a syntax
8693error.
bfa74976 8694
342b8b6e 8695@node Context Dependency
bfa74976
RS
8696@chapter Handling Context Dependencies
8697
8698The Bison paradigm is to parse tokens first, then group them into larger
8699syntactic units. In many languages, the meaning of a token is affected by
8700its context. Although this violates the Bison paradigm, certain techniques
8701(known as @dfn{kludges}) may enable you to write Bison parsers for such
8702languages.
8703
8704@menu
8705* Semantic Tokens:: Token parsing can depend on the semantic context.
8706* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8707* Tie-in Recovery:: Lexical tie-ins have implications for how
8708 error recovery rules must be written.
8709@end menu
8710
8711(Actually, ``kludge'' means any technique that gets its job done but is
8712neither clean nor robust.)
8713
342b8b6e 8714@node Semantic Tokens
bfa74976
RS
8715@section Semantic Info in Token Types
8716
8717The C language has a context dependency: the way an identifier is used
8718depends on what its current meaning is. For example, consider this:
8719
8720@example
8721foo (x);
8722@end example
8723
8724This looks like a function call statement, but if @code{foo} is a typedef
8725name, then this is actually a declaration of @code{x}. How can a Bison
8726parser for C decide how to parse this input?
8727
8a4281b9 8728The method used in GNU C is to have two different token types,
bfa74976
RS
8729@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8730identifier, it looks up the current declaration of the identifier in order
8731to decide which token type to return: @code{TYPENAME} if the identifier is
8732declared as a typedef, @code{IDENTIFIER} otherwise.
8733
8734The grammar rules can then express the context dependency by the choice of
8735token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8736but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8737@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8738is @emph{not} significant, such as in declarations that can shadow a
8739typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8740accepted---there is one rule for each of the two token types.
8741
8742This technique is simple to use if the decision of which kinds of
8743identifiers to allow is made at a place close to where the identifier is
8744parsed. But in C this is not always so: C allows a declaration to
8745redeclare a typedef name provided an explicit type has been specified
8746earlier:
8747
8748@example
3a4f411f
PE
8749typedef int foo, bar;
8750int baz (void)
d4fca427 8751@group
3a4f411f
PE
8752@{
8753 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8754 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8755 return foo (bar);
8756@}
d4fca427 8757@end group
bfa74976
RS
8758@end example
8759
8760Unfortunately, the name being declared is separated from the declaration
8761construct itself by a complicated syntactic structure---the ``declarator''.
8762
9ecbd125 8763As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8764all the nonterminal names changed: once for parsing a declaration in
8765which a typedef name can be redefined, and once for parsing a
8766declaration in which that can't be done. Here is a part of the
8767duplication, with actions omitted for brevity:
bfa74976
RS
8768
8769@example
d4fca427 8770@group
bfa74976 8771initdcl:
5e9b6624
AD
8772 declarator maybeasm '=' init
8773| declarator maybeasm
8774;
d4fca427 8775@end group
bfa74976 8776
d4fca427 8777@group
bfa74976 8778notype_initdcl:
5e9b6624
AD
8779 notype_declarator maybeasm '=' init
8780| notype_declarator maybeasm
8781;
d4fca427 8782@end group
bfa74976
RS
8783@end example
8784
8785@noindent
8786Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8787cannot. The distinction between @code{declarator} and
8788@code{notype_declarator} is the same sort of thing.
8789
8790There is some similarity between this technique and a lexical tie-in
8791(described next), in that information which alters the lexical analysis is
8792changed during parsing by other parts of the program. The difference is
8793here the information is global, and is used for other purposes in the
8794program. A true lexical tie-in has a special-purpose flag controlled by
8795the syntactic context.
8796
342b8b6e 8797@node Lexical Tie-ins
bfa74976
RS
8798@section Lexical Tie-ins
8799@cindex lexical tie-in
8800
8801One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8802which is set by Bison actions, whose purpose is to alter the way tokens are
8803parsed.
8804
8805For example, suppose we have a language vaguely like C, but with a special
8806construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8807an expression in parentheses in which all integers are hexadecimal. In
8808particular, the token @samp{a1b} must be treated as an integer rather than
8809as an identifier if it appears in that context. Here is how you can do it:
8810
8811@example
8812@group
8813%@{
38a92d50
PE
8814 int hexflag;
8815 int yylex (void);
8816 void yyerror (char const *);
bfa74976
RS
8817%@}
8818%%
8819@dots{}
8820@end group
8821@group
5e9b6624
AD
8822expr:
8823 IDENTIFIER
8824| constant
8825| HEX '(' @{ hexflag = 1; @}
8826 expr ')' @{ hexflag = 0; $$ = $4; @}
8827| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8828@dots{}
8829;
bfa74976
RS
8830@end group
8831
8832@group
8833constant:
5e9b6624
AD
8834 INTEGER
8835| STRING
8836;
bfa74976
RS
8837@end group
8838@end example
8839
8840@noindent
8841Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8842it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8843with letters are parsed as integers if possible.
8844
ff7571c0
JD
8845The declaration of @code{hexflag} shown in the prologue of the grammar
8846file is needed to make it accessible to the actions (@pxref{Prologue,
8847,The Prologue}). You must also write the code in @code{yylex} to obey
8848the flag.
bfa74976 8849
342b8b6e 8850@node Tie-in Recovery
bfa74976
RS
8851@section Lexical Tie-ins and Error Recovery
8852
8853Lexical tie-ins make strict demands on any error recovery rules you have.
8854@xref{Error Recovery}.
8855
8856The reason for this is that the purpose of an error recovery rule is to
8857abort the parsing of one construct and resume in some larger construct.
8858For example, in C-like languages, a typical error recovery rule is to skip
8859tokens until the next semicolon, and then start a new statement, like this:
8860
8861@example
5e9b6624
AD
8862stmt:
8863 expr ';'
8864| IF '(' expr ')' stmt @{ @dots{} @}
8865@dots{}
8866| error ';' @{ hexflag = 0; @}
8867;
bfa74976
RS
8868@end example
8869
8870If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8871construct, this error rule will apply, and then the action for the
8872completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8873remain set for the entire rest of the input, or until the next @code{hex}
8874keyword, causing identifiers to be misinterpreted as integers.
8875
8876To avoid this problem the error recovery rule itself clears @code{hexflag}.
8877
8878There may also be an error recovery rule that works within expressions.
8879For example, there could be a rule which applies within parentheses
8880and skips to the close-parenthesis:
8881
8882@example
8883@group
5e9b6624
AD
8884expr:
8885 @dots{}
8886| '(' expr ')' @{ $$ = $2; @}
8887| '(' error ')'
8888@dots{}
bfa74976
RS
8889@end group
8890@end example
8891
8892If this rule acts within the @code{hex} construct, it is not going to abort
8893that construct (since it applies to an inner level of parentheses within
8894the construct). Therefore, it should not clear the flag: the rest of
8895the @code{hex} construct should be parsed with the flag still in effect.
8896
8897What if there is an error recovery rule which might abort out of the
8898@code{hex} construct or might not, depending on circumstances? There is no
8899way you can write the action to determine whether a @code{hex} construct is
8900being aborted or not. So if you are using a lexical tie-in, you had better
8901make sure your error recovery rules are not of this kind. Each rule must
8902be such that you can be sure that it always will, or always won't, have to
8903clear the flag.
8904
ec3bc396
AD
8905@c ================================================== Debugging Your Parser
8906
342b8b6e 8907@node Debugging
bfa74976 8908@chapter Debugging Your Parser
ec3bc396 8909
93c150b6
AD
8910Developing a parser can be a challenge, especially if you don't understand
8911the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8912chapter explains how understand and debug a parser.
8913
8914The first sections focus on the static part of the parser: its structure.
8915They explain how to generate and read the detailed description of the
8916automaton. There are several formats available:
8917@itemize @minus
8918@item
8919as text, see @ref{Understanding, , Understanding Your Parser};
8920
8921@item
8922as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8923
8924@item
8925or as a markup report that can be turned, for instance, into HTML, see
8926@ref{Xml,, Visualizing your parser in multiple formats}.
8927@end itemize
8928
8929The last section focuses on the dynamic part of the parser: how to enable
8930and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8931Parser}).
ec3bc396
AD
8932
8933@menu
8934* Understanding:: Understanding the structure of your parser.
fc4fdd62 8935* Graphviz:: Getting a visual representation of the parser.
9c16d399 8936* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8937* Tracing:: Tracing the execution of your parser.
8938@end menu
8939
8940@node Understanding
8941@section Understanding Your Parser
8942
8943As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8944Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8945frequent than one would hope), looking at this automaton is required to
c949ada3 8946tune or simply fix a parser.
ec3bc396
AD
8947
8948The textual file is generated when the options @option{--report} or
e3fd1dcb 8949@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8950Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8951the parser implementation file name, and adding @samp{.output}
8952instead. Therefore, if the grammar file is @file{foo.y}, then the
8953parser implementation file is called @file{foo.tab.c} by default. As
8954a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8955
8956The following grammar file, @file{calc.y}, will be used in the sequel:
8957
8958@example
8959%token NUM STR
c949ada3 8960@group
ec3bc396
AD
8961%left '+' '-'
8962%left '*'
c949ada3 8963@end group
ec3bc396 8964%%
c949ada3 8965@group
5e9b6624
AD
8966exp:
8967 exp '+' exp
8968| exp '-' exp
8969| exp '*' exp
8970| exp '/' exp
8971| NUM
8972;
c949ada3 8973@end group
ec3bc396
AD
8974useless: STR;
8975%%
8976@end example
8977
88bce5a2
AD
8978@command{bison} reports:
8979
8980@example
8f0d265e
JD
8981calc.y: warning: 1 nonterminal useless in grammar
8982calc.y: warning: 1 rule useless in grammar
c949ada3
AD
8983calc.y:12.1-7: warning: nonterminal useless in grammar: useless
8984calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8985calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8986@end example
8987
8988When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8989creates a file @file{calc.output} with contents detailed below. The
8990order of the output and the exact presentation might vary, but the
8991interpretation is the same.
ec3bc396 8992
ec3bc396
AD
8993@noindent
8994@cindex token, useless
8995@cindex useless token
8996@cindex nonterminal, useless
8997@cindex useless nonterminal
8998@cindex rule, useless
8999@cindex useless rule
62243aa5 9000The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
9001nonterminals and rules are removed in order to produce a smaller parser, but
9002useless tokens are preserved, since they might be used by the scanner (note
9003the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
9004
9005@example
29e20e22 9006Nonterminals useless in grammar
ec3bc396
AD
9007 useless
9008
29e20e22 9009Terminals unused in grammar
ec3bc396
AD
9010 STR
9011
29e20e22
AD
9012Rules useless in grammar
9013 6 useless: STR
ec3bc396
AD
9014@end example
9015
9016@noindent
29e20e22
AD
9017The next section lists states that still have conflicts.
9018
9019@example
9020State 8 conflicts: 1 shift/reduce
9021State 9 conflicts: 1 shift/reduce
9022State 10 conflicts: 1 shift/reduce
9023State 11 conflicts: 4 shift/reduce
9024@end example
9025
9026@noindent
9027Then Bison reproduces the exact grammar it used:
ec3bc396
AD
9028
9029@example
9030Grammar
9031
29e20e22
AD
9032 0 $accept: exp $end
9033
9034 1 exp: exp '+' exp
9035 2 | exp '-' exp
9036 3 | exp '*' exp
9037 4 | exp '/' exp
9038 5 | NUM
ec3bc396
AD
9039@end example
9040
9041@noindent
9042and reports the uses of the symbols:
9043
9044@example
d4fca427 9045@group
ec3bc396
AD
9046Terminals, with rules where they appear
9047
88bce5a2 9048$end (0) 0
ec3bc396
AD
9049'*' (42) 3
9050'+' (43) 1
9051'-' (45) 2
9052'/' (47) 4
9053error (256)
9054NUM (258) 5
29e20e22 9055STR (259)
d4fca427 9056@end group
ec3bc396 9057
d4fca427 9058@group
ec3bc396
AD
9059Nonterminals, with rules where they appear
9060
29e20e22 9061$accept (9)
ec3bc396 9062 on left: 0
29e20e22 9063exp (10)
ec3bc396 9064 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 9065@end group
ec3bc396
AD
9066@end example
9067
9068@noindent
9069@cindex item
9070@cindex pointed rule
9071@cindex rule, pointed
9072Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
9073with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
9074item is a production rule together with a point (@samp{.}) marking
9075the location of the input cursor.
ec3bc396
AD
9076
9077@example
c949ada3 9078State 0
ec3bc396 9079
29e20e22 9080 0 $accept: . exp $end
ec3bc396 9081
29e20e22 9082 NUM shift, and go to state 1
ec3bc396 9083
29e20e22 9084 exp go to state 2
ec3bc396
AD
9085@end example
9086
9087This reads as follows: ``state 0 corresponds to being at the very
9088beginning of the parsing, in the initial rule, right before the start
9089symbol (here, @code{exp}). When the parser returns to this state right
9090after having reduced a rule that produced an @code{exp}, the control
9091flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 9092symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 9093the parse stack, and the control flow jumps to state 1. Any other
742e4900 9094lookahead triggers a syntax error.''
ec3bc396
AD
9095
9096@cindex core, item set
9097@cindex item set core
9098@cindex kernel, item set
9099@cindex item set core
9100Even though the only active rule in state 0 seems to be rule 0, the
742e4900 9101report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
9102at the beginning of any rule deriving an @code{exp}. By default Bison
9103reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
9104you want to see more detail you can invoke @command{bison} with
35880c82 9105@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
9106
9107@example
c949ada3 9108State 0
ec3bc396 9109
29e20e22
AD
9110 0 $accept: . exp $end
9111 1 exp: . exp '+' exp
9112 2 | . exp '-' exp
9113 3 | . exp '*' exp
9114 4 | . exp '/' exp
9115 5 | . NUM
ec3bc396 9116
29e20e22 9117 NUM shift, and go to state 1
ec3bc396 9118
29e20e22 9119 exp go to state 2
ec3bc396
AD
9120@end example
9121
9122@noindent
29e20e22 9123In the state 1@dots{}
ec3bc396
AD
9124
9125@example
c949ada3 9126State 1
ec3bc396 9127
29e20e22 9128 5 exp: NUM .
ec3bc396 9129
29e20e22 9130 $default reduce using rule 5 (exp)
ec3bc396
AD
9131@end example
9132
9133@noindent
742e4900 9134the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 9135(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 9136State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
9137jump to state 2 (@samp{exp: go to state 2}).
9138
9139@example
c949ada3 9140State 2
ec3bc396 9141
29e20e22
AD
9142 0 $accept: exp . $end
9143 1 exp: exp . '+' exp
9144 2 | exp . '-' exp
9145 3 | exp . '*' exp
9146 4 | exp . '/' exp
ec3bc396 9147
29e20e22
AD
9148 $end shift, and go to state 3
9149 '+' shift, and go to state 4
9150 '-' shift, and go to state 5
9151 '*' shift, and go to state 6
9152 '/' shift, and go to state 7
ec3bc396
AD
9153@end example
9154
9155@noindent
9156In state 2, the automaton can only shift a symbol. For instance,
29e20e22 9157because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 9158@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 9159jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
9160Since there is no default action, any lookahead not listed triggers a syntax
9161error.
ec3bc396 9162
eb45ef3b 9163@cindex accepting state
ec3bc396
AD
9164The state 3 is named the @dfn{final state}, or the @dfn{accepting
9165state}:
9166
9167@example
c949ada3 9168State 3
ec3bc396 9169
29e20e22 9170 0 $accept: exp $end .
ec3bc396 9171
29e20e22 9172 $default accept
ec3bc396
AD
9173@end example
9174
9175@noindent
29e20e22
AD
9176the initial rule is completed (the start symbol and the end-of-input were
9177read), the parsing exits successfully.
ec3bc396
AD
9178
9179The interpretation of states 4 to 7 is straightforward, and is left to
9180the reader.
9181
9182@example
c949ada3 9183State 4
ec3bc396 9184
29e20e22 9185 1 exp: exp '+' . exp
ec3bc396 9186
29e20e22
AD
9187 NUM shift, and go to state 1
9188
9189 exp go to state 8
ec3bc396 9190
ec3bc396 9191
c949ada3 9192State 5
ec3bc396 9193
29e20e22
AD
9194 2 exp: exp '-' . exp
9195
9196 NUM shift, and go to state 1
ec3bc396 9197
29e20e22 9198 exp go to state 9
ec3bc396 9199
ec3bc396 9200
c949ada3 9201State 6
ec3bc396 9202
29e20e22 9203 3 exp: exp '*' . exp
ec3bc396 9204
29e20e22
AD
9205 NUM shift, and go to state 1
9206
9207 exp go to state 10
ec3bc396 9208
ec3bc396 9209
c949ada3 9210State 7
ec3bc396 9211
29e20e22 9212 4 exp: exp '/' . exp
ec3bc396 9213
29e20e22 9214 NUM shift, and go to state 1
ec3bc396 9215
29e20e22 9216 exp go to state 11
ec3bc396
AD
9217@end example
9218
5a99098d
PE
9219As was announced in beginning of the report, @samp{State 8 conflicts:
92201 shift/reduce}:
ec3bc396
AD
9221
9222@example
c949ada3 9223State 8
ec3bc396 9224
29e20e22
AD
9225 1 exp: exp . '+' exp
9226 1 | exp '+' exp .
9227 2 | exp . '-' exp
9228 3 | exp . '*' exp
9229 4 | exp . '/' exp
ec3bc396 9230
29e20e22
AD
9231 '*' shift, and go to state 6
9232 '/' shift, and go to state 7
ec3bc396 9233
29e20e22
AD
9234 '/' [reduce using rule 1 (exp)]
9235 $default reduce using rule 1 (exp)
ec3bc396
AD
9236@end example
9237
742e4900 9238Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
9239either shifting (and going to state 7), or reducing rule 1. The
9240conflict means that either the grammar is ambiguous, or the parser lacks
9241information to make the right decision. Indeed the grammar is
9242ambiguous, as, since we did not specify the precedence of @samp{/}, the
9243sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
9244NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
9245NUM}, which corresponds to reducing rule 1.
9246
eb45ef3b 9247Because in deterministic parsing a single decision can be made, Bison
ec3bc396 9248arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 9249Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
9250square brackets.
9251
9252Note that all the previous states had a single possible action: either
9253shifting the next token and going to the corresponding state, or
9254reducing a single rule. In the other cases, i.e., when shifting
9255@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
9256possible, the lookahead is required to select the action. State 8 is
9257one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
9258is shifting, otherwise the action is reducing rule 1. In other words,
9259the first two items, corresponding to rule 1, are not eligible when the
742e4900 9260lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 9261precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
9262with some set of possible lookahead tokens. When run with
9263@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
9264
9265@example
c949ada3 9266State 8
ec3bc396 9267
29e20e22
AD
9268 1 exp: exp . '+' exp
9269 1 | exp '+' exp . [$end, '+', '-', '/']
9270 2 | exp . '-' exp
9271 3 | exp . '*' exp
9272 4 | exp . '/' exp
9273
9274 '*' shift, and go to state 6
9275 '/' shift, and go to state 7
ec3bc396 9276
29e20e22
AD
9277 '/' [reduce using rule 1 (exp)]
9278 $default reduce using rule 1 (exp)
9279@end example
9280
9281Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9282the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9283solved thanks to associativity and precedence directives. If invoked with
9284@option{--report=solved}, Bison includes information about the solved
9285conflicts in the report:
ec3bc396 9286
29e20e22
AD
9287@example
9288Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9289Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9290Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9291@end example
9292
29e20e22 9293
ec3bc396
AD
9294The remaining states are similar:
9295
9296@example
d4fca427 9297@group
c949ada3 9298State 9
ec3bc396 9299
29e20e22
AD
9300 1 exp: exp . '+' exp
9301 2 | exp . '-' exp
9302 2 | exp '-' exp .
9303 3 | exp . '*' exp
9304 4 | exp . '/' exp
ec3bc396 9305
29e20e22
AD
9306 '*' shift, and go to state 6
9307 '/' shift, and go to state 7
ec3bc396 9308
29e20e22
AD
9309 '/' [reduce using rule 2 (exp)]
9310 $default reduce using rule 2 (exp)
d4fca427 9311@end group
ec3bc396 9312
d4fca427 9313@group
c949ada3 9314State 10
ec3bc396 9315
29e20e22
AD
9316 1 exp: exp . '+' exp
9317 2 | exp . '-' exp
9318 3 | exp . '*' exp
9319 3 | exp '*' exp .
9320 4 | exp . '/' exp
ec3bc396 9321
29e20e22 9322 '/' shift, and go to state 7
ec3bc396 9323
29e20e22
AD
9324 '/' [reduce using rule 3 (exp)]
9325 $default reduce using rule 3 (exp)
d4fca427 9326@end group
ec3bc396 9327
d4fca427 9328@group
c949ada3 9329State 11
ec3bc396 9330
29e20e22
AD
9331 1 exp: exp . '+' exp
9332 2 | exp . '-' exp
9333 3 | exp . '*' exp
9334 4 | exp . '/' exp
9335 4 | exp '/' exp .
9336
9337 '+' shift, and go to state 4
9338 '-' shift, and go to state 5
9339 '*' shift, and go to state 6
9340 '/' shift, and go to state 7
9341
9342 '+' [reduce using rule 4 (exp)]
9343 '-' [reduce using rule 4 (exp)]
9344 '*' [reduce using rule 4 (exp)]
9345 '/' [reduce using rule 4 (exp)]
9346 $default reduce using rule 4 (exp)
d4fca427 9347@end group
ec3bc396
AD
9348@end example
9349
9350@noindent
fa7e68c3 9351Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9352precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9353also because the associativity of @samp{/} is not specified.
ec3bc396 9354
c949ada3
AD
9355Bison may also produce an HTML version of this output, via an XML file and
9356XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9357
fc4fdd62
TR
9358@c ================================================= Graphical Representation
9359
9360@node Graphviz
9361@section Visualizing Your Parser
9362@cindex dot
9363
9364As another means to gain better understanding of the shift/reduce
9365automaton corresponding to the Bison parser, a DOT file can be generated. Note
9366that debugging a real grammar with this is tedious at best, and impractical
9367most of the times, because the generated files are huge (the generation of
9368a PDF or PNG file from it will take very long, and more often than not it will
9369fail due to memory exhaustion). This option was rather designed for beginners,
9370to help them understand LR parsers.
9371
bfdcc3a0
AD
9372This file is generated when the @option{--graph} option is specified
9373(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9374@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9375adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9376Graphviz output file is called @file{foo.dot}. A DOT file may also be
9377produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9378parser in multiple formats}).
9379
fc4fdd62
TR
9380
9381The following grammar file, @file{rr.y}, will be used in the sequel:
9382
9383@example
9384%%
9385@group
9386exp: a ";" | b ".";
9387a: "0";
9388b: "0";
9389@end group
9390@end example
9391
c949ada3
AD
9392The graphical output
9393@ifnotinfo
9394(see @ref{fig:graph})
9395@end ifnotinfo
9396is very similar to the textual one, and as such it is easier understood by
9397making direct comparisons between them. @xref{Debugging, , Debugging Your
9398Parser}, for a detailled analysis of the textual report.
9399
9400@ifnotinfo
9401@float Figure,fig:graph
9402@image{figs/example, 430pt}
9403@caption{A graphical rendering of the parser.}
9404@end float
9405@end ifnotinfo
fc4fdd62
TR
9406
9407@subheading Graphical Representation of States
9408
9409The items (pointed rules) for each state are grouped together in graph nodes.
9410Their numbering is the same as in the verbose file. See the following points,
9411about transitions, for examples
9412
9413When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9414needed, are shown next to the relevant rule between square brackets as a
9415comma separated list. This is the case in the figure for the representation of
9416reductions, below.
9417
9418@sp 1
9419
9420The transitions are represented as directed edges between the current and
9421the target states.
9422
9423@subheading Graphical Representation of Shifts
9424
9425Shifts are shown as solid arrows, labelled with the lookahead token for that
9426shift. The following describes a reduction in the @file{rr.output} file:
9427
9428@example
9429@group
c949ada3 9430State 3
fc4fdd62
TR
9431
9432 1 exp: a . ";"
9433
9434 ";" shift, and go to state 6
9435@end group
9436@end example
9437
9438A Graphviz rendering of this portion of the graph could be:
9439
9440@center @image{figs/example-shift, 100pt}
9441
9442@subheading Graphical Representation of Reductions
9443
9444Reductions are shown as solid arrows, leading to a diamond-shaped node
9445bearing the number of the reduction rule. The arrow is labelled with the
9446appropriate comma separated lookahead tokens. If the reduction is the default
9447action for the given state, there is no such label.
9448
9449This is how reductions are represented in the verbose file @file{rr.output}:
9450@example
c949ada3 9451State 1
fc4fdd62
TR
9452
9453 3 a: "0" . [";"]
9454 4 b: "0" . ["."]
9455
9456 "." reduce using rule 4 (b)
9457 $default reduce using rule 3 (a)
9458@end example
9459
9460A Graphviz rendering of this portion of the graph could be:
9461
9462@center @image{figs/example-reduce, 120pt}
9463
9464When unresolved conflicts are present, because in deterministic parsing
9465a single decision can be made, Bison can arbitrarily choose to disable a
9466reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9467are distinguished by a red filling color on these nodes, just like how they are
9468reported between square brackets in the verbose file.
9469
c949ada3
AD
9470The reduction corresponding to the rule number 0 is the acceptation
9471state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9472
9473@subheading Graphical representation of go tos
9474
9475The @samp{go to} jump transitions are represented as dotted lines bearing
9476the name of the rule being jumped to.
9477
9c16d399
TR
9478@c ================================================= XML
9479
9480@node Xml
9481@section Visualizing your parser in multiple formats
9482@cindex xml
9483
9484Bison supports two major report formats: textual output
c949ada3
AD
9485(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9486with option @option{--verbose}, and DOT
9487(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9488option @option{--graph}. However,
9c16d399
TR
9489another alternative is to output an XML file that may then be, with
9490@command{xsltproc}, rendered as either a raw text format equivalent to the
9491verbose file, or as an HTML version of the same file, with clickable
9492transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9493XSLT have no difference whatsoever with those obtained by invoking
9494@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9495
c949ada3 9496The XML file is generated when the options @option{-x} or
9c16d399
TR
9497@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9498If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9499from the parser implementation file name, and adding @samp{.xml} instead.
9500For instance, if the grammar file is @file{foo.y}, the default XML output
9501file is @file{foo.xml}.
9502
9503Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9504files to apply to the XML file. Their names are non-ambiguous:
9505
9506@table @file
9507@item xml2dot.xsl
be3517b0 9508Used to output a copy of the DOT visualization of the automaton.
9c16d399 9509@item xml2text.xsl
c949ada3 9510Used to output a copy of the @samp{.output} file.
9c16d399 9511@item xml2xhtml.xsl
c949ada3 9512Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9513@end table
9514
c949ada3 9515Sample usage (requires @command{xsltproc}):
9c16d399 9516@example
c949ada3 9517$ bison -x gr.y
9c16d399
TR
9518@group
9519$ bison --print-datadir
9520/usr/local/share/bison
9521@end group
c949ada3 9522$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9523@end example
9524
fc4fdd62 9525@c ================================================= Tracing
ec3bc396
AD
9526
9527@node Tracing
9528@section Tracing Your Parser
bfa74976
RS
9529@findex yydebug
9530@cindex debugging
9531@cindex tracing the parser
9532
93c150b6
AD
9533When a Bison grammar compiles properly but parses ``incorrectly'', the
9534@code{yydebug} parser-trace feature helps figuring out why.
9535
9536@menu
9537* Enabling Traces:: Activating run-time trace support
9538* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9539* The YYPRINT Macro:: Obsolete interface for semantic value reports
9540@end menu
bfa74976 9541
93c150b6
AD
9542@node Enabling Traces
9543@subsection Enabling Traces
3ded9a63
AD
9544There are several means to enable compilation of trace facilities:
9545
9546@table @asis
9547@item the macro @code{YYDEBUG}
9548@findex YYDEBUG
9549Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9550parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9551@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9552YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9553Prologue}).
9554
e6ae99fe 9555If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9556Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9557api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9558tracing feature (enabled if and only if nonzero); otherwise tracing is
9559enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9560
9561@item the option @option{-t} (POSIX Yacc compliant)
9562@itemx the option @option{--debug} (Bison extension)
9563Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
6ce4b4ff 9564Bison}). With @samp{%define api.prefix @{c@}}, it defines @code{CDEBUG} to 1,
e358222b 9565otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9566
9567@item the directive @samp{%debug}
9568@findex %debug
fa819509
AD
9569Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9570Summary}). This Bison extension is maintained for backward
9571compatibility with previous versions of Bison.
9572
9573@item the variable @samp{parse.trace}
9574@findex %define parse.trace
35c1e5f0
JD
9575Add the @samp{%define parse.trace} directive (@pxref{%define
9576Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9577(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9578useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9579portability matter to you, this is the preferred solution.
3ded9a63
AD
9580@end table
9581
fa819509 9582We suggest that you always enable the trace option so that debugging is
3ded9a63 9583always possible.
bfa74976 9584
93c150b6 9585@findex YYFPRINTF
02a81e05 9586The trace facility outputs messages with macro calls of the form
e2742e46 9587@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9588@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9589arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9590define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9591and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9592
9593Once you have compiled the program with trace facilities, the way to
9594request a trace is to store a nonzero value in the variable @code{yydebug}.
9595You can do this by making the C code do it (in @code{main}, perhaps), or
9596you can alter the value with a C debugger.
9597
9598Each step taken by the parser when @code{yydebug} is nonzero produces a
9599line or two of trace information, written on @code{stderr}. The trace
9600messages tell you these things:
9601
9602@itemize @bullet
9603@item
9604Each time the parser calls @code{yylex}, what kind of token was read.
9605
9606@item
9607Each time a token is shifted, the depth and complete contents of the
9608state stack (@pxref{Parser States}).
9609
9610@item
9611Each time a rule is reduced, which rule it is, and the complete contents
9612of the state stack afterward.
9613@end itemize
9614
93c150b6
AD
9615To make sense of this information, it helps to refer to the automaton
9616description file (@pxref{Understanding, ,Understanding Your Parser}).
9617This file shows the meaning of each state in terms of
704a47c4
AD
9618positions in various rules, and also what each state will do with each
9619possible input token. As you read the successive trace messages, you
9620can see that the parser is functioning according to its specification in
9621the listing file. Eventually you will arrive at the place where
9622something undesirable happens, and you will see which parts of the
9623grammar are to blame.
bfa74976 9624
93c150b6 9625The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9626debuggers on it, but it's not easy to interpret what it is doing. The
9627parser function is a finite-state machine interpreter, and aside from
9628the actions it executes the same code over and over. Only the values
9629of variables show where in the grammar it is working.
bfa74976 9630
93c150b6
AD
9631@node Mfcalc Traces
9632@subsection Enabling Debug Traces for @code{mfcalc}
9633
9634The debugging information normally gives the token type of each token read,
9635but not its semantic value. The @code{%printer} directive allows specify
9636how semantic values are reported, see @ref{Printer Decl, , Printing
9637Semantic Values}. For backward compatibility, Yacc like C parsers may also
9638use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9639Macro}), but its use is discouraged.
9640
9641As a demonstration of @code{%printer}, consider the multi-function
9642calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9643traces, and semantic value reports, insert the following directives in its
9644prologue:
9645
9646@comment file: mfcalc.y: 2
9647@example
9648/* Generate the parser description file. */
9649%verbose
9650/* Enable run-time traces (yydebug). */
9651%define parse.trace
9652
9653/* Formatting semantic values. */
9654%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9655%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
90b89dad 9656%printer @{ fprintf (yyoutput, "%g", $$); @} <double>;
93c150b6
AD
9657@end example
9658
9659The @code{%define} directive instructs Bison to generate run-time trace
9660support. Then, activation of these traces is controlled at run-time by the
9661@code{yydebug} variable, which is disabled by default. Because these traces
9662will refer to the ``states'' of the parser, it is helpful to ask for the
9663creation of a description of that parser; this is the purpose of (admittedly
9664ill-named) @code{%verbose} directive.
9665
9666The set of @code{%printer} directives demonstrates how to format the
9667semantic value in the traces. Note that the specification can be done
9668either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
90b89dad
AD
9669tag: since @code{<double>} is the type for both @code{NUM} and @code{exp},
9670this printer will be used for them.
93c150b6
AD
9671
9672Here is a sample of the information provided by run-time traces. The traces
9673are sent onto standard error.
9674
9675@example
9676$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9677Starting parse
9678Entering state 0
9679Reducing stack by rule 1 (line 34):
9680-> $$ = nterm input ()
9681Stack now 0
9682Entering state 1
9683@end example
9684
9685@noindent
9686This first batch shows a specific feature of this grammar: the first rule
9687(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9688to look for the first token. The resulting left-hand symbol (@code{$$}) is
9689a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9690
9691Then the parser calls the scanner.
9692@example
9693Reading a token: Next token is token FNCT (sin())
9694Shifting token FNCT (sin())
9695Entering state 6
9696@end example
9697
9698@noindent
9699That token (@code{token}) is a function (@code{FNCT}) whose value is
9700@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9701The parser stores (@code{Shifting}) that token, and others, until it can do
9702something about it.
9703
9704@example
9705Reading a token: Next token is token '(' ()
9706Shifting token '(' ()
9707Entering state 14
9708Reading a token: Next token is token NUM (1.000000)
9709Shifting token NUM (1.000000)
9710Entering state 4
9711Reducing stack by rule 6 (line 44):
9712 $1 = token NUM (1.000000)
9713-> $$ = nterm exp (1.000000)
9714Stack now 0 1 6 14
9715Entering state 24
9716@end example
9717
9718@noindent
9719The previous reduction demonstrates the @code{%printer} directive for
90b89dad 9720@code{<double>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9721@code{exp} have @samp{1} as value.
9722
9723@example
9724Reading a token: Next token is token '-' ()
9725Shifting token '-' ()
9726Entering state 17
9727Reading a token: Next token is token NUM (1.000000)
9728Shifting token NUM (1.000000)
9729Entering state 4
9730Reducing stack by rule 6 (line 44):
9731 $1 = token NUM (1.000000)
9732-> $$ = nterm exp (1.000000)
9733Stack now 0 1 6 14 24 17
9734Entering state 26
9735Reading a token: Next token is token ')' ()
9736Reducing stack by rule 11 (line 49):
9737 $1 = nterm exp (1.000000)
9738 $2 = token '-' ()
9739 $3 = nterm exp (1.000000)
9740-> $$ = nterm exp (0.000000)
9741Stack now 0 1 6 14
9742Entering state 24
9743@end example
9744
9745@noindent
9746The rule for the subtraction was just reduced. The parser is about to
9747discover the end of the call to @code{sin}.
9748
9749@example
9750Next token is token ')' ()
9751Shifting token ')' ()
9752Entering state 31
9753Reducing stack by rule 9 (line 47):
9754 $1 = token FNCT (sin())
9755 $2 = token '(' ()
9756 $3 = nterm exp (0.000000)
9757 $4 = token ')' ()
9758-> $$ = nterm exp (0.000000)
9759Stack now 0 1
9760Entering state 11
9761@end example
9762
9763@noindent
9764Finally, the end-of-line allow the parser to complete the computation, and
9765display its result.
9766
9767@example
9768Reading a token: Next token is token '\n' ()
9769Shifting token '\n' ()
9770Entering state 22
9771Reducing stack by rule 4 (line 40):
9772 $1 = nterm exp (0.000000)
9773 $2 = token '\n' ()
9774@result{} 0
9775-> $$ = nterm line ()
9776Stack now 0 1
9777Entering state 10
9778Reducing stack by rule 2 (line 35):
9779 $1 = nterm input ()
9780 $2 = nterm line ()
9781-> $$ = nterm input ()
9782Stack now 0
9783Entering state 1
9784@end example
9785
9786The parser has returned into state 1, in which it is waiting for the next
9787expression to evaluate, or for the end-of-file token, which causes the
9788completion of the parsing.
9789
9790@example
9791Reading a token: Now at end of input.
9792Shifting token $end ()
9793Entering state 2
9794Stack now 0 1 2
9795Cleanup: popping token $end ()
9796Cleanup: popping nterm input ()
9797@end example
9798
9799
9800@node The YYPRINT Macro
9801@subsection The @code{YYPRINT} Macro
9802
bfa74976 9803@findex YYPRINT
93c150b6
AD
9804Before @code{%printer} support, semantic values could be displayed using the
9805@code{YYPRINT} macro, which works only for terminal symbols and only with
9806the @file{yacc.c} skeleton.
9807
9808@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9809@findex YYPRINT
9810If you define @code{YYPRINT}, it should take three arguments. The parser
9811will pass a standard I/O stream, the numeric code for the token type, and
9812the token value (from @code{yylval}).
9813
9814For @file{yacc.c} only. Obsoleted by @code{%printer}.
9815@end deffn
bfa74976
RS
9816
9817Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9818calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9819
c93f22fc 9820@example
38a92d50
PE
9821%@{
9822 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9823 #define YYPRINT(File, Type, Value) \
9824 print_token_value (File, Type, Value)
38a92d50
PE
9825%@}
9826
9827@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9828
9829static void
831d3c99 9830print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9831@{
9832 if (type == VAR)
d3c4e709 9833 fprintf (file, "%s", value.tptr->name);
bfa74976 9834 else if (type == NUM)
d3c4e709 9835 fprintf (file, "%d", value.val);
bfa74976 9836@}
c93f22fc 9837@end example
bfa74976 9838
ec3bc396
AD
9839@c ================================================= Invoking Bison
9840
342b8b6e 9841@node Invocation
bfa74976
RS
9842@chapter Invoking Bison
9843@cindex invoking Bison
9844@cindex Bison invocation
9845@cindex options for invoking Bison
9846
9847The usual way to invoke Bison is as follows:
9848
9849@example
9850bison @var{infile}
9851@end example
9852
9853Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9854@samp{.y}. The parser implementation file's name is made by replacing
9855the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9856Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9857the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9858also possible, in case you are writing C++ code instead of C in your
9859grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9860output files will take an extension like the given one as input
9861(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9862feature takes effect with all options that manipulate file names like
234a3be3
AD
9863@samp{-o} or @samp{-d}.
9864
9865For example :
9866
9867@example
9868bison -d @var{infile.yxx}
9869@end example
84163231 9870@noindent
72d2299c 9871will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9872
9873@example
b56471a6 9874bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9875@end example
84163231 9876@noindent
234a3be3
AD
9877will produce @file{output.c++} and @file{outfile.h++}.
9878
8a4281b9 9879For compatibility with POSIX, the standard Bison
397ec073
PE
9880distribution also contains a shell script called @command{yacc} that
9881invokes Bison with the @option{-y} option.
9882
bfa74976 9883@menu
13863333 9884* Bison Options:: All the options described in detail,
c827f760 9885 in alphabetical order by short options.
bfa74976 9886* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9887* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9888@end menu
9889
342b8b6e 9890@node Bison Options
bfa74976
RS
9891@section Bison Options
9892
9893Bison supports both traditional single-letter options and mnemonic long
9894option names. Long option names are indicated with @samp{--} instead of
9895@samp{-}. Abbreviations for option names are allowed as long as they
9896are unique. When a long option takes an argument, like
9897@samp{--file-prefix}, connect the option name and the argument with
9898@samp{=}.
9899
9900Here is a list of options that can be used with Bison, alphabetized by
9901short option. It is followed by a cross key alphabetized by long
9902option.
9903
4c9b8f13 9904@c Please, keep this ordered as in 'bison --help'.
89cab50d
AD
9905@noindent
9906Operations modes:
9907@table @option
9908@item -h
9909@itemx --help
9910Print a summary of the command-line options to Bison and exit.
bfa74976 9911
89cab50d
AD
9912@item -V
9913@itemx --version
9914Print the version number of Bison and exit.
bfa74976 9915
f7ab6a50
PE
9916@item --print-localedir
9917Print the name of the directory containing locale-dependent data.
9918
a0de5091
JD
9919@item --print-datadir
9920Print the name of the directory containing skeletons and XSLT.
9921
89cab50d
AD
9922@item -y
9923@itemx --yacc
ff7571c0
JD
9924Act more like the traditional Yacc command. This can cause different
9925diagnostics to be generated, and may change behavior in other minor
9926ways. Most importantly, imitate Yacc's output file name conventions,
9927so that the parser implementation file is called @file{y.tab.c}, and
9928the other outputs are called @file{y.output} and @file{y.tab.h}.
9929Also, if generating a deterministic parser in C, generate
9930@code{#define} statements in addition to an @code{enum} to associate
9931token numbers with token names. Thus, the following shell script can
9932substitute for Yacc, and the Bison distribution contains such a script
9933for compatibility with POSIX:
bfa74976 9934
89cab50d 9935@example
397ec073 9936#! /bin/sh
26e06a21 9937bison -y "$@@"
89cab50d 9938@end example
54662697
PE
9939
9940The @option{-y}/@option{--yacc} option is intended for use with
9941traditional Yacc grammars. If your grammar uses a Bison extension
9942like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9943this option is specified.
9944
1d5b3c08
JD
9945@item -W [@var{category}]
9946@itemx --warnings[=@var{category}]
118d4978
AD
9947Output warnings falling in @var{category}. @var{category} can be one
9948of:
9949@table @code
9950@item midrule-values
8e55b3aa
JD
9951Warn about mid-rule values that are set but not used within any of the actions
9952of the parent rule.
9953For example, warn about unused @code{$2} in:
118d4978
AD
9954
9955@example
9956exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9957@end example
9958
8e55b3aa
JD
9959Also warn about mid-rule values that are used but not set.
9960For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9961
9962@example
5e9b6624 9963exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9964@end example
9965
9966These warnings are not enabled by default since they sometimes prove to
9967be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9968@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9969
118d4978 9970@item yacc
8a4281b9 9971Incompatibilities with POSIX Yacc.
118d4978 9972
786743d5
JD
9973@item conflicts-sr
9974@itemx conflicts-rr
9975S/R and R/R conflicts. These warnings are enabled by default. However, if
9976the @code{%expect} or @code{%expect-rr} directive is specified, an
9977unexpected number of conflicts is an error, and an expected number of
9978conflicts is not reported, so @option{-W} and @option{--warning} then have
9979no effect on the conflict report.
9980
518e8830
AD
9981@item deprecated
9982Deprecated constructs whose support will be removed in future versions of
9983Bison.
9984
09add9c2
AD
9985@item empty-rule
9986Empty rules without @code{%empty}. @xref{Empty Rules}. Disabled by
9987default, but enabled by uses of @code{%empty}, unless
9988@option{-Wno-empty-rule} was specified.
9989
cc2235ac
VT
9990@item precedence
9991Useless precedence and associativity directives. Disabled by default.
9992
9993Consider for instance the following grammar:
9994
9995@example
9996@group
9997%nonassoc "="
9998%left "+"
9999%left "*"
10000%precedence "("
10001@end group
10002%%
10003@group
10004stmt:
10005 exp
10006| "var" "=" exp
10007;
10008@end group
10009
10010@group
10011exp:
10012 exp "+" exp
10013| exp "*" "num"
10014| "(" exp ")"
10015| "num"
10016;
10017@end group
10018@end example
10019
10020Bison reports:
10021
10022@c cannot leave the location and the [-Wprecedence] for lack of
10023@c width in PDF.
10024@example
10025@group
10026warning: useless precedence and associativity for "="
10027 %nonassoc "="
10028 ^^^
10029@end group
10030@group
10031warning: useless associativity for "*", use %precedence
10032 %left "*"
10033 ^^^
10034@end group
10035@group
10036warning: useless precedence for "("
10037 %precedence "("
10038 ^^^
10039@end group
10040@end example
10041
10042One would get the exact same parser with the following directives instead:
10043
10044@example
10045@group
10046%left "+"
10047%precedence "*"
10048@end group
10049@end example
10050
c39014ae
JD
10051@item other
10052All warnings not categorized above. These warnings are enabled by default.
10053
10054This category is provided merely for the sake of completeness. Future
10055releases of Bison may move warnings from this category to new, more specific
10056categories.
10057
118d4978 10058@item all
f24695ef
AD
10059All the warnings except @code{yacc}.
10060
118d4978 10061@item none
8e55b3aa 10062Turn off all the warnings.
f24695ef 10063
118d4978 10064@item error
1048a1c9 10065See @option{-Werror}, below.
118d4978
AD
10066@end table
10067
10068A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 10069instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 10070POSIX Yacc incompatibilities.
1048a1c9 10071
e4678430
AD
10072@item -Werror
10073Turn enabled warnings for every @var{category} into errors, unless they are
10074explicitly disabled by @option{-Wno-error=@var{category}}.
10075
10076@item -Werror=@var{category}
10077Enable warnings falling in @var{category}, and treat them as errors.
1048a1c9
AD
10078
10079@var{category} is the same as for @option{--warnings}, with the exception that
10080it may not be prefixed with @samp{no-} (see above).
10081
1048a1c9
AD
10082Note that the precedence of the @samp{=} and @samp{,} operators is such that
10083the following commands are @emph{not} equivalent, as the first will not treat
10084S/R conflicts as errors.
10085
10086@example
10087$ bison -Werror=yacc,conflicts-sr input.y
10088$ bison -Werror=yacc,error=conflicts-sr input.y
10089@end example
f3ead217 10090
e4678430
AD
10091@item -Wno-error
10092Do not turn enabled warnings for every @var{category} into errors, unless
10093they are explicitly enabled by @option{-Werror=@var{category}}.
10094
10095@item -Wno-error=@var{category}
10096Deactivate the error treatment for this @var{category}. However, the warning
10097itself won't be disabled, or enabled, by this option.
10098
7bada535
TR
10099@item -f [@var{feature}]
10100@itemx --feature[=@var{feature}]
10101Activate miscellaneous @var{feature}. @var{feature} can be one of:
10102@table @code
10103@item caret
10104@itemx diagnostics-show-caret
10105Show caret errors, in a manner similar to GCC's
10106@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
10107location provided with the message is used to quote the corresponding line of
10108the source file, underlining the important part of it with carets (^). Here is
c949ada3 10109an example, using the following file @file{in.y}:
7bada535
TR
10110
10111@example
10112%type <ival> exp
10113%%
10114exp: exp '+' exp @{ $exp = $1 + $2; @};
10115@end example
10116
016426c1 10117When invoked with @option{-fcaret} (or nothing), Bison will report:
7bada535
TR
10118
10119@example
10120@group
c949ada3 10121in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
10122 exp: exp '+' exp @{ $exp = $1 + $2; @};
10123 ^^^^
10124@end group
10125@group
c949ada3 10126in.y:3.1-3: refers to: $exp at $$
7bada535
TR
10127 exp: exp '+' exp @{ $exp = $1 + $2; @};
10128 ^^^
10129@end group
10130@group
c949ada3 10131in.y:3.6-8: refers to: $exp at $1
7bada535
TR
10132 exp: exp '+' exp @{ $exp = $1 + $2; @};
10133 ^^^
10134@end group
10135@group
c949ada3 10136in.y:3.14-16: refers to: $exp at $3
7bada535
TR
10137 exp: exp '+' exp @{ $exp = $1 + $2; @};
10138 ^^^
10139@end group
10140@group
c949ada3 10141in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
10142 exp: exp '+' exp @{ $exp = $1 + $2; @};
10143 ^^
10144@end group
10145@end example
10146
016426c1
TR
10147Whereas, when invoked with @option{-fno-caret}, Bison will only report:
10148
10149@example
10150@group
10151in.y:3.20-23: error: ambiguous reference: ‘$exp’
10152in.y:3.1-3: refers to: $exp at $$
10153in.y:3.6-8: refers to: $exp at $1
10154in.y:3.14-16: refers to: $exp at $3
10155in.y:3.32-33: error: $2 of ‘exp’ has no declared type
10156@end group
10157@end example
10158
10159This option is activated by default.
10160
7bada535 10161@end table
89cab50d
AD
10162@end table
10163
10164@noindent
10165Tuning the parser:
10166
10167@table @option
10168@item -t
10169@itemx --debug
ff7571c0
JD
10170In the parser implementation file, define the macro @code{YYDEBUG} to
101711 if it is not already defined, so that the debugging facilities are
10172compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 10173
58697c6d
AD
10174@item -D @var{name}[=@var{value}]
10175@itemx --define=@var{name}[=@var{value}]
17aed602 10176@itemx -F @var{name}[=@var{value}]
de5ab940
JD
10177@itemx --force-define=@var{name}[=@var{value}]
10178Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 10179(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
10180definitions for the same @var{name} as follows:
10181
10182@itemize
10183@item
0b6d43c5
JD
10184Bison quietly ignores all command-line definitions for @var{name} except
10185the last.
de5ab940 10186@item
0b6d43c5
JD
10187If that command-line definition is specified by a @code{-D} or
10188@code{--define}, Bison reports an error for any @code{%define}
10189definition for @var{name}.
de5ab940 10190@item
0b6d43c5
JD
10191If that command-line definition is specified by a @code{-F} or
10192@code{--force-define} instead, Bison quietly ignores all @code{%define}
10193definitions for @var{name}.
10194@item
10195Otherwise, Bison reports an error if there are multiple @code{%define}
10196definitions for @var{name}.
de5ab940
JD
10197@end itemize
10198
10199You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
10200make files unless you are confident that it is safe to quietly ignore
10201any conflicting @code{%define} that may be added to the grammar file.
58697c6d 10202
0e021770
PE
10203@item -L @var{language}
10204@itemx --language=@var{language}
10205Specify the programming language for the generated parser, as if
10206@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 10207Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 10208@var{language} is case-insensitive.
0e021770 10209
89cab50d 10210@item --locations
d8988b2f 10211Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
10212
10213@item -p @var{prefix}
10214@itemx --name-prefix=@var{prefix}
4b3847c3
AD
10215Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
10216Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
10217Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
10218
10219@item -l
10220@itemx --no-lines
ff7571c0
JD
10221Don't put any @code{#line} preprocessor commands in the parser
10222implementation file. Ordinarily Bison puts them in the parser
10223implementation file so that the C compiler and debuggers will
10224associate errors with your source file, the grammar file. This option
10225causes them to associate errors with the parser implementation file,
10226treating it as an independent source file in its own right.
bfa74976 10227
e6e704dc
JD
10228@item -S @var{file}
10229@itemx --skeleton=@var{file}
a7867f53 10230Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
10231(@pxref{Decl Summary, , Bison Declaration Summary}).
10232
ed4d67dc
JD
10233@c You probably don't need this option unless you are developing Bison.
10234@c You should use @option{--language} if you want to specify the skeleton for a
10235@c different language, because it is clearer and because it will always
10236@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 10237
a7867f53
JD
10238If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
10239file in the Bison installation directory.
10240If it does, @var{file} is an absolute file name or a file name relative to the
10241current working directory.
10242This is similar to how most shells resolve commands.
10243
89cab50d
AD
10244@item -k
10245@itemx --token-table
d8988b2f 10246Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 10247@end table
bfa74976 10248
89cab50d
AD
10249@noindent
10250Adjust the output:
bfa74976 10251
89cab50d 10252@table @option
8e55b3aa 10253@item --defines[=@var{file}]
d8988b2f 10254Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 10255file containing macro definitions for the token type names defined in
4bfd5e4e 10256the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 10257
8e55b3aa
JD
10258@item -d
10259This is the same as @code{--defines} except @code{-d} does not accept a
10260@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
10261with other short options.
342b8b6e 10262
89cab50d
AD
10263@item -b @var{file-prefix}
10264@itemx --file-prefix=@var{prefix}
9c437126 10265Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 10266for all Bison output file names. @xref{Decl Summary}.
bfa74976 10267
ec3bc396
AD
10268@item -r @var{things}
10269@itemx --report=@var{things}
10270Write an extra output file containing verbose description of the comma
10271separated list of @var{things} among:
10272
10273@table @code
10274@item state
10275Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 10276parser's automaton.
ec3bc396 10277
57f8bd8d
AD
10278@item itemset
10279Implies @code{state} and augments the description of the automaton with
10280the full set of items for each state, instead of its core only.
10281
742e4900 10282@item lookahead
ec3bc396 10283Implies @code{state} and augments the description of the automaton with
742e4900 10284each rule's lookahead set.
ec3bc396 10285
57f8bd8d
AD
10286@item solved
10287Implies @code{state}. Explain how conflicts were solved thanks to
10288precedence and associativity directives.
10289
10290@item all
10291Enable all the items.
10292
10293@item none
10294Do not generate the report.
ec3bc396
AD
10295@end table
10296
1bb2bd75
JD
10297@item --report-file=@var{file}
10298Specify the @var{file} for the verbose description.
10299
bfa74976
RS
10300@item -v
10301@itemx --verbose
9c437126 10302Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 10303file containing verbose descriptions of the grammar and
72d2299c 10304parser. @xref{Decl Summary}.
bfa74976 10305
fa4d969f
PE
10306@item -o @var{file}
10307@itemx --output=@var{file}
ff7571c0 10308Specify the @var{file} for the parser implementation file.
bfa74976 10309
fa4d969f 10310The other output files' names are constructed from @var{file} as
d8988b2f 10311described under the @samp{-v} and @samp{-d} options.
342b8b6e 10312
a7c09cba 10313@item -g [@var{file}]
8e55b3aa 10314@itemx --graph[=@var{file}]
eb45ef3b 10315Output a graphical representation of the parser's
35fe0834 10316automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 10317@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
10318@code{@var{file}} is optional.
10319If omitted and the grammar file is @file{foo.y}, the output file will be
10320@file{foo.dot}.
59da312b 10321
a7c09cba 10322@item -x [@var{file}]
8e55b3aa 10323@itemx --xml[=@var{file}]
eb45ef3b 10324Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 10325@code{@var{file}} is optional.
59da312b
JD
10326If omitted and the grammar file is @file{foo.y}, the output file will be
10327@file{foo.xml}.
10328(The current XML schema is experimental and may evolve.
10329More user feedback will help to stabilize it.)
bfa74976
RS
10330@end table
10331
342b8b6e 10332@node Option Cross Key
bfa74976
RS
10333@section Option Cross Key
10334
10335Here is a list of options, alphabetized by long option, to help you find
de5ab940 10336the corresponding short option and directive.
bfa74976 10337
de5ab940 10338@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 10339@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 10340@include cross-options.texi
aa08666d 10341@end multitable
bfa74976 10342
93dd49ab
PE
10343@node Yacc Library
10344@section Yacc Library
10345
10346The Yacc library contains default implementations of the
10347@code{yyerror} and @code{main} functions. These default
8a4281b9 10348implementations are normally not useful, but POSIX requires
93dd49ab
PE
10349them. To use the Yacc library, link your program with the
10350@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 10351library is distributed under the terms of the GNU General
93dd49ab
PE
10352Public License (@pxref{Copying}).
10353
10354If you use the Yacc library's @code{yyerror} function, you should
10355declare @code{yyerror} as follows:
10356
10357@example
10358int yyerror (char const *);
10359@end example
10360
10361Bison ignores the @code{int} value returned by this @code{yyerror}.
10362If you use the Yacc library's @code{main} function, your
10363@code{yyparse} function should have the following type signature:
10364
10365@example
10366int yyparse (void);
10367@end example
10368
12545799
AD
10369@c ================================================= C++ Bison
10370
8405b70c
PB
10371@node Other Languages
10372@chapter Parsers Written In Other Languages
12545799
AD
10373
10374@menu
10375* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10376* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10377@end menu
10378
10379@node C++ Parsers
10380@section C++ Parsers
10381
10382@menu
10383* C++ Bison Interface:: Asking for C++ parser generation
10384* C++ Semantic Values:: %union vs. C++
10385* C++ Location Values:: The position and location classes
10386* C++ Parser Interface:: Instantiating and running the parser
10387* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10388* A Complete C++ Example:: Demonstrating their use
12545799
AD
10389@end menu
10390
10391@node C++ Bison Interface
10392@subsection C++ Bison Interface
ed4d67dc 10393@c - %skeleton "lalr1.cc"
12545799
AD
10394@c - Always pure
10395@c - initial action
10396
eb45ef3b 10397The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10398@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10399@option{--skeleton=lalr1.cc}.
e6e704dc 10400@xref{Decl Summary}.
0e021770 10401
793fbca5
JD
10402When run, @command{bison} will create several entities in the @samp{yy}
10403namespace.
67501061 10404@findex %define api.namespace
35c1e5f0
JD
10405Use the @samp{%define api.namespace} directive to change the namespace name,
10406see @ref{%define Summary,,api.namespace}. The various classes are generated
10407in the following files:
aa08666d 10408
12545799
AD
10409@table @file
10410@item position.hh
10411@itemx location.hh
db8ab2be 10412The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10413location tracking when enabled. These files are not generated if the
10414@code{%define} variable @code{api.location.type} is defined. @xref{C++
10415Location Values}.
12545799
AD
10416
10417@item stack.hh
10418An auxiliary class @code{stack} used by the parser.
10419
fa4d969f
PE
10420@item @var{file}.hh
10421@itemx @var{file}.cc
ff7571c0 10422(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10423declaration and implementation of the C++ parser class. The basename
10424and extension of these two files follow the same rules as with regular C
10425parsers (@pxref{Invocation}).
12545799 10426
cd8b5791
AD
10427The header is @emph{mandatory}; you must either pass
10428@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10429@samp{%defines} directive.
10430@end table
10431
10432All these files are documented using Doxygen; run @command{doxygen}
10433for a complete and accurate documentation.
10434
10435@node C++ Semantic Values
10436@subsection C++ Semantic Values
10437@c - No objects in unions
178e123e 10438@c - YYSTYPE
12545799
AD
10439@c - Printer and destructor
10440
3cdc21cf
AD
10441Bison supports two different means to handle semantic values in C++. One is
10442alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10443practitioners know, unions are inconvenient in C++, therefore another
10444approach is provided, based on variants (@pxref{C++ Variants}).
10445
10446@menu
10447* C++ Unions:: Semantic values cannot be objects
10448* C++ Variants:: Using objects as semantic values
10449@end menu
10450
10451@node C++ Unions
10452@subsubsection C++ Unions
10453
12545799 10454The @code{%union} directive works as for C, see @ref{Union Decl, ,The
e4d49586 10455Union Declaration}. In particular it produces a genuine
3cdc21cf 10456@code{union}, which have a few specific features in C++.
12545799
AD
10457@itemize @minus
10458@item
fb9712a9
AD
10459The type @code{YYSTYPE} is defined but its use is discouraged: rather
10460you should refer to the parser's encapsulated type
10461@code{yy::parser::semantic_type}.
12545799
AD
10462@item
10463Non POD (Plain Old Data) types cannot be used. C++ forbids any
10464instance of classes with constructors in unions: only @emph{pointers}
10465to such objects are allowed.
10466@end itemize
10467
10468Because objects have to be stored via pointers, memory is not
10469reclaimed automatically: using the @code{%destructor} directive is the
10470only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10471Symbols}.
10472
3cdc21cf
AD
10473@node C++ Variants
10474@subsubsection C++ Variants
10475
ae8880de
AD
10476Bison provides a @emph{variant} based implementation of semantic values for
10477C++. This alleviates all the limitations reported in the previous section,
10478and in particular, object types can be used without pointers.
3cdc21cf
AD
10479
10480To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10481@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10482@code{%union} is ignored, and instead of using the name of the fields of the
10483@code{%union} to ``type'' the symbols, use genuine types.
10484
10485For instance, instead of
10486
10487@example
10488%union
10489@{
10490 int ival;
10491 std::string* sval;
10492@}
10493%token <ival> NUMBER;
10494%token <sval> STRING;
10495@end example
10496
10497@noindent
10498write
10499
10500@example
10501%token <int> NUMBER;
10502%token <std::string> STRING;
10503@end example
10504
10505@code{STRING} is no longer a pointer, which should fairly simplify the user
10506actions in the grammar and in the scanner (in particular the memory
10507management).
10508
10509Since C++ features destructors, and since it is customary to specialize
10510@code{operator<<} to support uniform printing of values, variants also
10511typically simplify Bison printers and destructors.
10512
10513Variants are stricter than unions. When based on unions, you may play any
10514dirty game with @code{yylval}, say storing an @code{int}, reading a
10515@code{char*}, and then storing a @code{double} in it. This is no longer
10516possible with variants: they must be initialized, then assigned to, and
10517eventually, destroyed.
10518
10519@deftypemethod {semantic_type} {T&} build<T> ()
10520Initialize, but leave empty. Returns the address where the actual value may
10521be stored. Requires that the variant was not initialized yet.
10522@end deftypemethod
10523
10524@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10525Initialize, and copy-construct from @var{t}.
10526@end deftypemethod
10527
10528
10529@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10530appeared unacceptable to require Boost on the user's machine (i.e., the
10531machine on which the generated parser will be compiled, not the machine on
10532which @command{bison} was run). Second, for each possible semantic value,
10533Boost.Variant not only stores the value, but also a tag specifying its
10534type. But the parser already ``knows'' the type of the semantic value, so
10535that would be duplicating the information.
10536
10537Therefore we developed light-weight variants whose type tag is external (so
10538they are really like @code{unions} for C++ actually). But our code is much
10539less mature that Boost.Variant. So there is a number of limitations in
10540(the current implementation of) variants:
10541@itemize
10542@item
10543Alignment must be enforced: values should be aligned in memory according to
10544the most demanding type. Computing the smallest alignment possible requires
10545meta-programming techniques that are not currently implemented in Bison, and
10546therefore, since, as far as we know, @code{double} is the most demanding
10547type on all platforms, alignments are enforced for @code{double} whatever
10548types are actually used. This may waste space in some cases.
10549
3cdc21cf
AD
10550@item
10551There might be portability issues we are not aware of.
10552@end itemize
10553
a6ca4ce2 10554As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10555is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10556
10557@node C++ Location Values
10558@subsection C++ Location Values
10559@c - %locations
10560@c - class Position
10561@c - class Location
16dc6a9e 10562@c - %define filename_type "const symbol::Symbol"
12545799
AD
10563
10564When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10565location tracking, see @ref{Tracking Locations}.
10566
10567By default, two auxiliary classes define a @code{position}, a single point
10568in a file, and a @code{location}, a range composed of a pair of
10569@code{position}s (possibly spanning several files). But if the
10570@code{%define} variable @code{api.location.type} is defined, then these
10571classes will not be generated, and the user defined type will be used.
12545799 10572
936c88d1
AD
10573@tindex uint
10574In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10575genuine code only the latter is used.
10576
10577@menu
10578* C++ position:: One point in the source file
10579* C++ location:: Two points in the source file
db8ab2be 10580* User Defined Location Type:: Required interface for locations
936c88d1
AD
10581@end menu
10582
10583@node C++ position
10584@subsubsection C++ @code{position}
10585
10586@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10587Create a @code{position} denoting a given point. Note that @code{file} is
10588not reclaimed when the @code{position} is destroyed: memory managed must be
10589handled elsewhere.
10590@end deftypeop
10591
10592@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10593Reset the position to the given values.
10594@end deftypemethod
10595
10596@deftypeivar {position} {std::string*} file
12545799
AD
10597The name of the file. It will always be handled as a pointer, the
10598parser will never duplicate nor deallocate it. As an experimental
10599feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10600filename_type "@var{type}"}.
936c88d1 10601@end deftypeivar
12545799 10602
936c88d1 10603@deftypeivar {position} {uint} line
12545799 10604The line, starting at 1.
936c88d1 10605@end deftypeivar
12545799 10606
75ae8299
AD
10607@deftypemethod {position} {void} lines (int @var{height} = 1)
10608If @var{height} is not null, advance by @var{height} lines, resetting the
10609column number. The resulting line number cannot be less than 1.
12545799
AD
10610@end deftypemethod
10611
936c88d1
AD
10612@deftypeivar {position} {uint} column
10613The column, starting at 1.
10614@end deftypeivar
12545799 10615
75ae8299
AD
10616@deftypemethod {position} {void} columns (int @var{width} = 1)
10617Advance by @var{width} columns, without changing the line number. The
10618resulting column number cannot be less than 1.
12545799
AD
10619@end deftypemethod
10620
936c88d1
AD
10621@deftypemethod {position} {position&} operator+= (int @var{width})
10622@deftypemethodx {position} {position} operator+ (int @var{width})
10623@deftypemethodx {position} {position&} operator-= (int @var{width})
10624@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10625Various forms of syntactic sugar for @code{columns}.
10626@end deftypemethod
10627
936c88d1
AD
10628@deftypemethod {position} {bool} operator== (const position& @var{that})
10629@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10630Whether @code{*this} and @code{that} denote equal/different positions.
10631@end deftypemethod
10632
10633@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10634Report @var{p} on @var{o} like this:
fa4d969f
PE
10635@samp{@var{file}:@var{line}.@var{column}}, or
10636@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10637@end deftypefun
10638
10639@node C++ location
10640@subsubsection C++ @code{location}
10641
10642@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10643Create a @code{Location} from the endpoints of the range.
10644@end deftypeop
10645
10646@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10647@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10648Create a @code{Location} denoting an empty range located at a given point.
10649@end deftypeop
10650
10651@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10652Reset the location to an empty range at the given values.
12545799
AD
10653@end deftypemethod
10654
936c88d1
AD
10655@deftypeivar {location} {position} begin
10656@deftypeivarx {location} {position} end
12545799 10657The first, inclusive, position of the range, and the first beyond.
936c88d1 10658@end deftypeivar
12545799 10659
75ae8299
AD
10660@deftypemethod {location} {void} columns (int @var{width} = 1)
10661@deftypemethodx {location} {void} lines (int @var{height} = 1)
10662Forwarded to the @code{end} position.
12545799
AD
10663@end deftypemethod
10664
936c88d1
AD
10665@deftypemethod {location} {location} operator+ (const location& @var{end})
10666@deftypemethodx {location} {location} operator+ (int @var{width})
10667@deftypemethodx {location} {location} operator+= (int @var{width})
75ae8299
AD
10668@deftypemethodx {location} {location} operator- (int @var{width})
10669@deftypemethodx {location} {location} operator-= (int @var{width})
12545799
AD
10670Various forms of syntactic sugar.
10671@end deftypemethod
10672
10673@deftypemethod {location} {void} step ()
10674Move @code{begin} onto @code{end}.
10675@end deftypemethod
10676
936c88d1
AD
10677@deftypemethod {location} {bool} operator== (const location& @var{that})
10678@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10679Whether @code{*this} and @code{that} denote equal/different ranges of
10680positions.
10681@end deftypemethod
10682
10683@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10684Report @var{p} on @var{o}, taking care of special cases such as: no
10685@code{filename} defined, or equal filename/line or column.
10686@end deftypefun
12545799 10687
db8ab2be
AD
10688@node User Defined Location Type
10689@subsubsection User Defined Location Type
10690@findex %define api.location.type
10691
10692Instead of using the built-in types you may use the @code{%define} variable
10693@code{api.location.type} to specify your own type:
10694
10695@example
6ce4b4ff 10696%define api.location.type @{@var{LocationType}@}
db8ab2be
AD
10697@end example
10698
10699The requirements over your @var{LocationType} are:
10700@itemize
10701@item
10702it must be copyable;
10703
10704@item
10705in order to compute the (default) value of @code{@@$} in a reduction, the
10706parser basically runs
10707@example
10708@@$.begin = @@$1.begin;
10709@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10710@end example
10711@noindent
10712so there must be copyable @code{begin} and @code{end} members;
10713
10714@item
10715alternatively you may redefine the computation of the default location, in
10716which case these members are not required (@pxref{Location Default Action});
10717
10718@item
10719if traces are enabled, then there must exist an @samp{std::ostream&
10720 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10721@end itemize
10722
10723@sp 1
10724
10725In programs with several C++ parsers, you may also use the @code{%define}
10726variable @code{api.location.type} to share a common set of built-in
10727definitions for @code{position} and @code{location}. For instance, one
10728parser @file{master/parser.yy} might use:
10729
10730@example
10731%defines
10732%locations
6ce4b4ff 10733%define api.namespace @{master::@}
db8ab2be
AD
10734@end example
10735
10736@noindent
10737to generate the @file{master/position.hh} and @file{master/location.hh}
10738files, reused by other parsers as follows:
10739
10740@example
6ce4b4ff 10741%define api.location.type @{master::location@}
db8ab2be
AD
10742%code requires @{ #include <master/location.hh> @}
10743@end example
10744
12545799
AD
10745@node C++ Parser Interface
10746@subsection C++ Parser Interface
10747@c - define parser_class_name
10748@c - Ctor
10749@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10750@c debug_stream.
10751@c - Reporting errors
10752
10753The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10754declare and define the parser class in the namespace @code{yy}. The
10755class name defaults to @code{parser}, but may be changed using
6ce4b4ff 10756@samp{%define parser_class_name @{@var{name}@}}. The interface of
9d9b8b70 10757this class is detailed below. It can be extended using the
12545799
AD
10758@code{%parse-param} feature: its semantics is slightly changed since
10759it describes an additional member of the parser class, and an
10760additional argument for its constructor.
10761
3cdc21cf
AD
10762@defcv {Type} {parser} {semantic_type}
10763@defcvx {Type} {parser} {location_type}
10764The types for semantic values and locations (if enabled).
10765@end defcv
10766
86e5b440 10767@defcv {Type} {parser} {token}
aaaa2aae
AD
10768A structure that contains (only) the @code{yytokentype} enumeration, which
10769defines the tokens. To refer to the token @code{FOO},
10770use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10771@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10772(@pxref{Calc++ Scanner}).
10773@end defcv
10774
3cdc21cf
AD
10775@defcv {Type} {parser} {syntax_error}
10776This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10777from the scanner or from the user actions to raise parse errors. This is
10778equivalent with first
3cdc21cf
AD
10779invoking @code{error} to report the location and message of the syntax
10780error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10781But contrary to @code{YYERROR} which can only be invoked from user actions
10782(i.e., written in the action itself), the exception can be thrown from
10783function invoked from the user action.
8a0adb01 10784@end defcv
12545799
AD
10785
10786@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10787Build a new parser object. There are no arguments by default, unless
10788@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10789@end deftypemethod
10790
3cdc21cf
AD
10791@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10792@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10793Instantiate a syntax-error exception.
10794@end deftypemethod
10795
12545799
AD
10796@deftypemethod {parser} {int} parse ()
10797Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10798
10799@cindex exceptions
10800The whole function is wrapped in a @code{try}/@code{catch} block, so that
10801when an exception is thrown, the @code{%destructor}s are called to release
10802the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10803@end deftypemethod
10804
10805@deftypemethod {parser} {std::ostream&} debug_stream ()
10806@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10807Get or set the stream used for tracing the parsing. It defaults to
10808@code{std::cerr}.
10809@end deftypemethod
10810
10811@deftypemethod {parser} {debug_level_type} debug_level ()
10812@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10813Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10814or nonzero, full tracing.
12545799
AD
10815@end deftypemethod
10816
10817@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10818@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10819The definition for this member function must be supplied by the user:
10820the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10821described by @var{m}. If location tracking is not enabled, the second
10822signature is used.
12545799
AD
10823@end deftypemethod
10824
10825
10826@node C++ Scanner Interface
10827@subsection C++ Scanner Interface
10828@c - prefix for yylex.
10829@c - Pure interface to yylex
10830@c - %lex-param
10831
10832The parser invokes the scanner by calling @code{yylex}. Contrary to C
10833parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10834@samp{%define api.pure} directive. The actual interface with @code{yylex}
10835depends whether you use unions, or variants.
12545799 10836
3cdc21cf
AD
10837@menu
10838* Split Symbols:: Passing symbols as two/three components
10839* Complete Symbols:: Making symbols a whole
10840@end menu
10841
10842@node Split Symbols
10843@subsubsection Split Symbols
10844
5807bb91 10845The interface is as follows.
3cdc21cf 10846
86e5b440
AD
10847@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10848@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10849Return the next token. Its type is the return value, its semantic value and
10850location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10851@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10852@end deftypemethod
10853
3cdc21cf
AD
10854Note that when using variants, the interface for @code{yylex} is the same,
10855but @code{yylval} is handled differently.
10856
10857Regular union-based code in Lex scanner typically look like:
10858
10859@example
10860[0-9]+ @{
10861 yylval.ival = text_to_int (yytext);
10862 return yy::parser::INTEGER;
10863 @}
10864[a-z]+ @{
10865 yylval.sval = new std::string (yytext);
10866 return yy::parser::IDENTIFIER;
10867 @}
10868@end example
10869
10870Using variants, @code{yylval} is already constructed, but it is not
10871initialized. So the code would look like:
10872
10873@example
10874[0-9]+ @{
10875 yylval.build<int>() = text_to_int (yytext);
10876 return yy::parser::INTEGER;
10877 @}
10878[a-z]+ @{
10879 yylval.build<std::string> = yytext;
10880 return yy::parser::IDENTIFIER;
10881 @}
10882@end example
10883
10884@noindent
10885or
10886
10887@example
10888[0-9]+ @{
10889 yylval.build(text_to_int (yytext));
10890 return yy::parser::INTEGER;
10891 @}
10892[a-z]+ @{
10893 yylval.build(yytext);
10894 return yy::parser::IDENTIFIER;
10895 @}
10896@end example
10897
10898
10899@node Complete Symbols
10900@subsubsection Complete Symbols
10901
ae8880de 10902If you specified both @code{%define api.value.type variant} and
e36ec1f4 10903@code{%define api.token.constructor},
3cdc21cf
AD
10904the @code{parser} class also defines the class @code{parser::symbol_type}
10905which defines a @emph{complete} symbol, aggregating its type (i.e., the
10906traditional value returned by @code{yylex}), its semantic value (i.e., the
10907value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10908
10909@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10910Build a complete terminal symbol which token type is @var{type}, and which
10911semantic value is @var{value}. If location tracking is enabled, also pass
10912the @var{location}.
10913@end deftypemethod
10914
10915This interface is low-level and should not be used for two reasons. First,
10916it is inconvenient, as you still have to build the semantic value, which is
10917a variant, and second, because consistency is not enforced: as with unions,
10918it is still possible to give an integer as semantic value for a string.
10919
10920So for each token type, Bison generates named constructors as follows.
10921
10922@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10923@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10924Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10925including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10926@var{value} of adequate @var{value_type}. If location tracking is enabled,
10927also pass the @var{location}.
10928@end deftypemethod
10929
10930For instance, given the following declarations:
10931
10932@example
630a0218 10933%define api.token.prefix @{TOK_@}
3cdc21cf
AD
10934%token <std::string> IDENTIFIER;
10935%token <int> INTEGER;
10936%token COLON;
10937@end example
10938
10939@noindent
10940Bison generates the following functions:
10941
10942@example
10943symbol_type make_IDENTIFIER(const std::string& v,
10944 const location_type& l);
10945symbol_type make_INTEGER(const int& v,
10946 const location_type& loc);
10947symbol_type make_COLON(const location_type& loc);
10948@end example
10949
10950@noindent
10951which should be used in a Lex-scanner as follows.
10952
10953@example
10954[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10955[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10956":" return yy::parser::make_COLON(loc);
10957@end example
10958
10959Tokens that do not have an identifier are not accessible: you cannot simply
10960use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10961
10962@node A Complete C++ Example
8405b70c 10963@subsection A Complete C++ Example
12545799
AD
10964
10965This section demonstrates the use of a C++ parser with a simple but
10966complete example. This example should be available on your system,
3cdc21cf 10967ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10968focuses on the use of Bison, therefore the design of the various C++
10969classes is very naive: no accessors, no encapsulation of members etc.
10970We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10971demonstrate the various interactions. A hand-written scanner is
12545799
AD
10972actually easier to interface with.
10973
10974@menu
10975* Calc++ --- C++ Calculator:: The specifications
10976* Calc++ Parsing Driver:: An active parsing context
10977* Calc++ Parser:: A parser class
10978* Calc++ Scanner:: A pure C++ Flex scanner
10979* Calc++ Top Level:: Conducting the band
10980@end menu
10981
10982@node Calc++ --- C++ Calculator
8405b70c 10983@subsubsection Calc++ --- C++ Calculator
12545799
AD
10984
10985Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10986expression, possibly preceded by variable assignments. An
12545799
AD
10987environment containing possibly predefined variables such as
10988@code{one} and @code{two}, is exchanged with the parser. An example
10989of valid input follows.
10990
10991@example
10992three := 3
10993seven := one + two * three
10994seven * seven
10995@end example
10996
10997@node Calc++ Parsing Driver
8405b70c 10998@subsubsection Calc++ Parsing Driver
12545799
AD
10999@c - An env
11000@c - A place to store error messages
11001@c - A place for the result
11002
11003To support a pure interface with the parser (and the scanner) the
11004technique of the ``parsing context'' is convenient: a structure
11005containing all the data to exchange. Since, in addition to simply
11006launch the parsing, there are several auxiliary tasks to execute (open
11007the file for parsing, instantiate the parser etc.), we recommend
11008transforming the simple parsing context structure into a fully blown
11009@dfn{parsing driver} class.
11010
11011The declaration of this driver class, @file{calc++-driver.hh}, is as
11012follows. The first part includes the CPP guard and imports the
fb9712a9
AD
11013required standard library components, and the declaration of the parser
11014class.
12545799 11015
1c59e0a1 11016@comment file: calc++-driver.hh
12545799
AD
11017@example
11018#ifndef CALCXX_DRIVER_HH
11019# define CALCXX_DRIVER_HH
11020# include <string>
11021# include <map>
fb9712a9 11022# include "calc++-parser.hh"
12545799
AD
11023@end example
11024
12545799
AD
11025
11026@noindent
11027Then comes the declaration of the scanning function. Flex expects
11028the signature of @code{yylex} to be defined in the macro
11029@code{YY_DECL}, and the C++ parser expects it to be declared. We can
11030factor both as follows.
1c59e0a1
AD
11031
11032@comment file: calc++-driver.hh
12545799 11033@example
3dc5e96b 11034// Tell Flex the lexer's prototype ...
3cdc21cf
AD
11035# define YY_DECL \
11036 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
11037// ... and declare it for the parser's sake.
11038YY_DECL;
11039@end example
11040
11041@noindent
11042The @code{calcxx_driver} class is then declared with its most obvious
11043members.
11044
1c59e0a1 11045@comment file: calc++-driver.hh
12545799
AD
11046@example
11047// Conducting the whole scanning and parsing of Calc++.
11048class calcxx_driver
11049@{
11050public:
11051 calcxx_driver ();
11052 virtual ~calcxx_driver ();
11053
11054 std::map<std::string, int> variables;
11055
11056 int result;
11057@end example
11058
11059@noindent
3cdc21cf
AD
11060To encapsulate the coordination with the Flex scanner, it is useful to have
11061member functions to open and close the scanning phase.
12545799 11062
1c59e0a1 11063@comment file: calc++-driver.hh
12545799
AD
11064@example
11065 // Handling the scanner.
11066 void scan_begin ();
11067 void scan_end ();
11068 bool trace_scanning;
11069@end example
11070
11071@noindent
11072Similarly for the parser itself.
11073
1c59e0a1 11074@comment file: calc++-driver.hh
12545799 11075@example
3cdc21cf
AD
11076 // Run the parser on file F.
11077 // Return 0 on success.
bb32f4f2 11078 int parse (const std::string& f);
3cdc21cf
AD
11079 // The name of the file being parsed.
11080 // Used later to pass the file name to the location tracker.
12545799 11081 std::string file;
3cdc21cf 11082 // Whether parser traces should be generated.
12545799
AD
11083 bool trace_parsing;
11084@end example
11085
11086@noindent
11087To demonstrate pure handling of parse errors, instead of simply
11088dumping them on the standard error output, we will pass them to the
11089compiler driver using the following two member functions. Finally, we
11090close the class declaration and CPP guard.
11091
1c59e0a1 11092@comment file: calc++-driver.hh
12545799
AD
11093@example
11094 // Error handling.
11095 void error (const yy::location& l, const std::string& m);
11096 void error (const std::string& m);
11097@};
11098#endif // ! CALCXX_DRIVER_HH
11099@end example
11100
11101The implementation of the driver is straightforward. The @code{parse}
11102member function deserves some attention. The @code{error} functions
11103are simple stubs, they should actually register the located error
11104messages and set error state.
11105
1c59e0a1 11106@comment file: calc++-driver.cc
12545799
AD
11107@example
11108#include "calc++-driver.hh"
11109#include "calc++-parser.hh"
11110
11111calcxx_driver::calcxx_driver ()
11112 : trace_scanning (false), trace_parsing (false)
11113@{
11114 variables["one"] = 1;
11115 variables["two"] = 2;
11116@}
11117
11118calcxx_driver::~calcxx_driver ()
11119@{
11120@}
11121
bb32f4f2 11122int
12545799
AD
11123calcxx_driver::parse (const std::string &f)
11124@{
11125 file = f;
11126 scan_begin ();
11127 yy::calcxx_parser parser (*this);
11128 parser.set_debug_level (trace_parsing);
bb32f4f2 11129 int res = parser.parse ();
12545799 11130 scan_end ();
bb32f4f2 11131 return res;
12545799
AD
11132@}
11133
11134void
11135calcxx_driver::error (const yy::location& l, const std::string& m)
11136@{
11137 std::cerr << l << ": " << m << std::endl;
11138@}
11139
11140void
11141calcxx_driver::error (const std::string& m)
11142@{
11143 std::cerr << m << std::endl;
11144@}
11145@end example
11146
11147@node Calc++ Parser
8405b70c 11148@subsubsection Calc++ Parser
12545799 11149
ff7571c0
JD
11150The grammar file @file{calc++-parser.yy} starts by asking for the C++
11151deterministic parser skeleton, the creation of the parser header file,
11152and specifies the name of the parser class. Because the C++ skeleton
11153changed several times, it is safer to require the version you designed
11154the grammar for.
1c59e0a1
AD
11155
11156@comment file: calc++-parser.yy
12545799 11157@example
c93f22fc 11158%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 11159%require "@value{VERSION}"
12545799 11160%defines
6ce4b4ff 11161%define parser_class_name @{calcxx_parser@}
fb9712a9
AD
11162@end example
11163
3cdc21cf 11164@noindent
e36ec1f4 11165@findex %define api.token.constructor
ae8880de 11166@findex %define api.value.type variant
3cdc21cf
AD
11167This example will use genuine C++ objects as semantic values, therefore, we
11168require the variant-based interface. To make sure we properly use it, we
11169enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 11170definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
11171
11172@comment file: calc++-parser.yy
11173@example
e36ec1f4 11174%define api.token.constructor
ae8880de 11175%define api.value.type variant
3cdc21cf 11176%define parse.assert
3cdc21cf
AD
11177@end example
11178
fb9712a9 11179@noindent
16dc6a9e 11180@findex %code requires
3cdc21cf
AD
11181Then come the declarations/inclusions needed by the semantic values.
11182Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 11183to include the header of the other, which is, of course, insane. This
3cdc21cf 11184mutual dependency will be broken using forward declarations. Because the
fb9712a9 11185driver's header needs detailed knowledge about the parser class (in
3cdc21cf 11186particular its inner types), it is the parser's header which will use a
e0c07222 11187forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
11188
11189@comment file: calc++-parser.yy
11190@example
3cdc21cf
AD
11191%code requires
11192@{
12545799 11193# include <string>
fb9712a9 11194class calcxx_driver;
9bc0dd67 11195@}
12545799
AD
11196@end example
11197
11198@noindent
11199The driver is passed by reference to the parser and to the scanner.
11200This provides a simple but effective pure interface, not relying on
11201global variables.
11202
1c59e0a1 11203@comment file: calc++-parser.yy
12545799
AD
11204@example
11205// The parsing context.
2055a44e 11206%param @{ calcxx_driver& driver @}
12545799
AD
11207@end example
11208
11209@noindent
2055a44e 11210Then we request location tracking, and initialize the
f50bfcd6 11211first location's file name. Afterward new locations are computed
12545799 11212relatively to the previous locations: the file name will be
2055a44e 11213propagated.
12545799 11214
1c59e0a1 11215@comment file: calc++-parser.yy
12545799
AD
11216@example
11217%locations
11218%initial-action
11219@{
11220 // Initialize the initial location.
b47dbebe 11221 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
11222@};
11223@end example
11224
11225@noindent
7fceb615
JD
11226Use the following two directives to enable parser tracing and verbose error
11227messages. However, verbose error messages can contain incorrect information
11228(@pxref{LAC}).
12545799 11229
1c59e0a1 11230@comment file: calc++-parser.yy
12545799 11231@example
fa819509 11232%define parse.trace
cf499cff 11233%define parse.error verbose
12545799
AD
11234@end example
11235
fb9712a9 11236@noindent
136a0f76
PB
11237@findex %code
11238The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 11239@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
11240
11241@comment file: calc++-parser.yy
11242@example
3cdc21cf
AD
11243%code
11244@{
fb9712a9 11245# include "calc++-driver.hh"
34f98f46 11246@}
fb9712a9
AD
11247@end example
11248
11249
12545799
AD
11250@noindent
11251The token numbered as 0 corresponds to end of file; the following line
99c08fb6 11252allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
11253``$end''. Similarly user friendly names are provided for each symbol. To
11254avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 11255tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 11256
1c59e0a1 11257@comment file: calc++-parser.yy
12545799 11258@example
630a0218 11259%define api.token.prefix @{TOK_@}
3cdc21cf
AD
11260%token
11261 END 0 "end of file"
11262 ASSIGN ":="
11263 MINUS "-"
11264 PLUS "+"
11265 STAR "*"
11266 SLASH "/"
11267 LPAREN "("
11268 RPAREN ")"
11269;
12545799
AD
11270@end example
11271
11272@noindent
3cdc21cf
AD
11273Since we use variant-based semantic values, @code{%union} is not used, and
11274both @code{%type} and @code{%token} expect genuine types, as opposed to type
11275tags.
12545799 11276
1c59e0a1 11277@comment file: calc++-parser.yy
12545799 11278@example
3cdc21cf
AD
11279%token <std::string> IDENTIFIER "identifier"
11280%token <int> NUMBER "number"
11281%type <int> exp
11282@end example
11283
11284@noindent
11285No @code{%destructor} is needed to enable memory deallocation during error
11286recovery; the memory, for strings for instance, will be reclaimed by the
11287regular destructors. All the values are printed using their
a76c741d 11288@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 11289
3cdc21cf
AD
11290@comment file: calc++-parser.yy
11291@example
c5026327 11292%printer @{ yyoutput << $$; @} <*>;
12545799
AD
11293@end example
11294
11295@noindent
3cdc21cf
AD
11296The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
11297Location Tracking Calculator: @code{ltcalc}}).
12545799 11298
1c59e0a1 11299@comment file: calc++-parser.yy
12545799
AD
11300@example
11301%%
11302%start unit;
11303unit: assignments exp @{ driver.result = $2; @};
11304
99c08fb6 11305assignments:
6240346a 11306 %empty @{@}
5e9b6624 11307| assignments assignment @{@};
12545799 11308
3dc5e96b 11309assignment:
3cdc21cf 11310 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 11311
3cdc21cf
AD
11312%left "+" "-";
11313%left "*" "/";
99c08fb6 11314exp:
3cdc21cf
AD
11315 exp "+" exp @{ $$ = $1 + $3; @}
11316| exp "-" exp @{ $$ = $1 - $3; @}
11317| exp "*" exp @{ $$ = $1 * $3; @}
11318| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 11319| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 11320| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 11321| "number" @{ std::swap ($$, $1); @};
12545799
AD
11322%%
11323@end example
11324
11325@noindent
11326Finally the @code{error} member function registers the errors to the
11327driver.
11328
1c59e0a1 11329@comment file: calc++-parser.yy
12545799
AD
11330@example
11331void
3cdc21cf 11332yy::calcxx_parser::error (const location_type& l,
1c59e0a1 11333 const std::string& m)
12545799
AD
11334@{
11335 driver.error (l, m);
11336@}
11337@end example
11338
11339@node Calc++ Scanner
8405b70c 11340@subsubsection Calc++ Scanner
12545799
AD
11341
11342The Flex scanner first includes the driver declaration, then the
11343parser's to get the set of defined tokens.
11344
1c59e0a1 11345@comment file: calc++-scanner.ll
12545799 11346@example
c93f22fc 11347%@{ /* -*- C++ -*- */
3c248d70
AD
11348# include <cerrno>
11349# include <climits>
3cdc21cf 11350# include <cstdlib>
12545799
AD
11351# include <string>
11352# include "calc++-driver.hh"
11353# include "calc++-parser.hh"
eaea13f5 11354
3cdc21cf
AD
11355// Work around an incompatibility in flex (at least versions
11356// 2.5.31 through 2.5.33): it generates code that does
11357// not conform to C89. See Debian bug 333231
11358// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11359# undef yywrap
11360# define yywrap() 1
eaea13f5 11361
3cdc21cf
AD
11362// The location of the current token.
11363static yy::location loc;
12545799
AD
11364%@}
11365@end example
11366
11367@noindent
11368Because there is no @code{#include}-like feature we don't need
11369@code{yywrap}, we don't need @code{unput} either, and we parse an
11370actual file, this is not an interactive session with the user.
3cdc21cf 11371Finally, we enable scanner tracing.
12545799 11372
1c59e0a1 11373@comment file: calc++-scanner.ll
12545799 11374@example
6908c2e1 11375%option noyywrap nounput batch debug noinput
12545799
AD
11376@end example
11377
11378@noindent
11379Abbreviations allow for more readable rules.
11380
1c59e0a1 11381@comment file: calc++-scanner.ll
12545799
AD
11382@example
11383id [a-zA-Z][a-zA-Z_0-9]*
11384int [0-9]+
11385blank [ \t]
11386@end example
11387
11388@noindent
9d9b8b70 11389The following paragraph suffices to track locations accurately. Each
12545799 11390time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11391position. Then when a pattern is matched, its width is added to the end
11392column. When matching ends of lines, the end
12545799
AD
11393cursor is adjusted, and each time blanks are matched, the begin cursor
11394is moved onto the end cursor to effectively ignore the blanks
11395preceding tokens. Comments would be treated equally.
11396
1c59e0a1 11397@comment file: calc++-scanner.ll
12545799 11398@example
d4fca427 11399@group
828c373b 11400%@{
3cdc21cf
AD
11401 // Code run each time a pattern is matched.
11402 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11403%@}
d4fca427 11404@end group
12545799 11405%%
d4fca427 11406@group
12545799 11407%@{
3cdc21cf
AD
11408 // Code run each time yylex is called.
11409 loc.step ();
12545799 11410%@}
d4fca427 11411@end group
3cdc21cf
AD
11412@{blank@}+ loc.step ();
11413[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11414@end example
11415
11416@noindent
3cdc21cf 11417The rules are simple. The driver is used to report errors.
12545799 11418
1c59e0a1 11419@comment file: calc++-scanner.ll
12545799 11420@example
3cdc21cf
AD
11421"-" return yy::calcxx_parser::make_MINUS(loc);
11422"+" return yy::calcxx_parser::make_PLUS(loc);
11423"*" return yy::calcxx_parser::make_STAR(loc);
11424"/" return yy::calcxx_parser::make_SLASH(loc);
11425"(" return yy::calcxx_parser::make_LPAREN(loc);
11426")" return yy::calcxx_parser::make_RPAREN(loc);
11427":=" return yy::calcxx_parser::make_ASSIGN(loc);
11428
d4fca427 11429@group
04098407
PE
11430@{int@} @{
11431 errno = 0;
11432 long n = strtol (yytext, NULL, 10);
11433 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11434 driver.error (loc, "integer is out of range");
11435 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11436@}
d4fca427 11437@end group
3cdc21cf
AD
11438@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11439. driver.error (loc, "invalid character");
11440<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11441%%
11442@end example
11443
11444@noindent
3cdc21cf 11445Finally, because the scanner-related driver's member-functions depend
12545799
AD
11446on the scanner's data, it is simpler to implement them in this file.
11447
1c59e0a1 11448@comment file: calc++-scanner.ll
12545799 11449@example
d4fca427 11450@group
12545799
AD
11451void
11452calcxx_driver::scan_begin ()
11453@{
11454 yy_flex_debug = trace_scanning;
93c150b6 11455 if (file.empty () || file == "-")
bb32f4f2
AD
11456 yyin = stdin;
11457 else if (!(yyin = fopen (file.c_str (), "r")))
11458 @{
aaaa2aae 11459 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11460 exit (EXIT_FAILURE);
bb32f4f2 11461 @}
12545799 11462@}
d4fca427 11463@end group
12545799 11464
d4fca427 11465@group
12545799
AD
11466void
11467calcxx_driver::scan_end ()
11468@{
11469 fclose (yyin);
11470@}
d4fca427 11471@end group
12545799
AD
11472@end example
11473
11474@node Calc++ Top Level
8405b70c 11475@subsubsection Calc++ Top Level
12545799
AD
11476
11477The top level file, @file{calc++.cc}, poses no problem.
11478
1c59e0a1 11479@comment file: calc++.cc
12545799
AD
11480@example
11481#include <iostream>
11482#include "calc++-driver.hh"
11483
d4fca427 11484@group
12545799 11485int
fa4d969f 11486main (int argc, char *argv[])
12545799 11487@{
414c76a4 11488 int res = 0;
12545799 11489 calcxx_driver driver;
93c150b6
AD
11490 for (int i = 1; i < argc; ++i)
11491 if (argv[i] == std::string ("-p"))
12545799 11492 driver.trace_parsing = true;
93c150b6 11493 else if (argv[i] == std::string ("-s"))
12545799 11494 driver.trace_scanning = true;
93c150b6 11495 else if (!driver.parse (argv[i]))
bb32f4f2 11496 std::cout << driver.result << std::endl;
414c76a4
AD
11497 else
11498 res = 1;
11499 return res;
12545799 11500@}
d4fca427 11501@end group
12545799
AD
11502@end example
11503
8405b70c
PB
11504@node Java Parsers
11505@section Java Parsers
11506
11507@menu
f5f419de
DJ
11508* Java Bison Interface:: Asking for Java parser generation
11509* Java Semantic Values:: %type and %token vs. Java
11510* Java Location Values:: The position and location classes
11511* Java Parser Interface:: Instantiating and running the parser
11512* Java Scanner Interface:: Specifying the scanner for the parser
11513* Java Action Features:: Special features for use in actions
aa94def1 11514* Java Push Parser Interface:: Instantiating and running the a push parser
f5f419de
DJ
11515* Java Differences:: Differences between C/C++ and Java Grammars
11516* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11517@end menu
11518
11519@node Java Bison Interface
11520@subsection Java Bison Interface
11521@c - %language "Java"
8405b70c 11522
59da312b
JD
11523(The current Java interface is experimental and may evolve.
11524More user feedback will help to stabilize it.)
11525
e254a580
DJ
11526The Java parser skeletons are selected using the @code{%language "Java"}
11527directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11528
e254a580 11529@c FIXME: Documented bug.
ff7571c0
JD
11530When generating a Java parser, @code{bison @var{basename}.y} will
11531create a single Java source file named @file{@var{basename}.java}
11532containing the parser implementation. Using a grammar file without a
11533@file{.y} suffix is currently broken. The basename of the parser
11534implementation file can be changed by the @code{%file-prefix}
11535directive or the @option{-p}/@option{--name-prefix} option. The
11536entire parser implementation file name can be changed by the
11537@code{%output} directive or the @option{-o}/@option{--output} option.
11538The parser implementation file contains a single class for the parser.
8405b70c 11539
e254a580 11540You can create documentation for generated parsers using Javadoc.
8405b70c 11541
e254a580
DJ
11542Contrary to C parsers, Java parsers do not use global variables; the
11543state of the parser is always local to an instance of the parser class.
11544Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11545and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11546
e254a580 11547Push parsers are currently unsupported in Java and @code{%define
67212941 11548api.push-pull} have no effect.
01b477c6 11549
8a4281b9 11550GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11551@code{glr-parser} directive.
11552
11553No header file can be generated for Java parsers. Do not use the
11554@code{%defines} directive or the @option{-d}/@option{--defines} options.
11555
11556@c FIXME: Possible code change.
fa819509
AD
11557Currently, support for tracing is always compiled
11558in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11559directives and the
e254a580
DJ
11560@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11561options have no effect. This may change in the future to eliminate
fa819509
AD
11562unused code in the generated parser, so use @samp{%define parse.trace}
11563explicitly
1979121c 11564if needed. Also, in the future the
e254a580
DJ
11565@code{%token-table} directive might enable a public interface to
11566access the token names and codes.
8405b70c 11567
09ccae9b 11568Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11569hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11570Try reducing the amount of code in actions and static initializers;
11571otherwise, report a bug so that the parser skeleton will be improved.
11572
11573
8405b70c
PB
11574@node Java Semantic Values
11575@subsection Java Semantic Values
11576@c - No %union, specify type in %type/%token.
11577@c - YYSTYPE
11578@c - Printer and destructor
11579
11580There is no @code{%union} directive in Java parsers. Instead, the
11581semantic values' types (class names) should be specified in the
11582@code{%type} or @code{%token} directive:
11583
11584@example
11585%type <Expression> expr assignment_expr term factor
11586%type <Integer> number
11587@end example
11588
11589By default, the semantic stack is declared to have @code{Object} members,
11590which means that the class types you specify can be of any class.
11591To improve the type safety of the parser, you can declare the common
4119d1ea 11592superclass of all the semantic values using the @samp{%define api.value.type}
e254a580 11593directive. For example, after the following declaration:
8405b70c
PB
11594
11595@example
6ce4b4ff 11596%define api.value.type @{ASTNode@}
8405b70c
PB
11597@end example
11598
11599@noindent
11600any @code{%type} or @code{%token} specifying a semantic type which
11601is not a subclass of ASTNode, will cause a compile-time error.
11602
e254a580 11603@c FIXME: Documented bug.
8405b70c
PB
11604Types used in the directives may be qualified with a package name.
11605Primitive data types are accepted for Java version 1.5 or later. Note
11606that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11607Generic types may not be used; this is due to a limitation in the
11608implementation of Bison, and may change in future releases.
8405b70c
PB
11609
11610Java parsers do not support @code{%destructor}, since the language
11611adopts garbage collection. The parser will try to hold references
11612to semantic values for as little time as needed.
11613
11614Java parsers do not support @code{%printer}, as @code{toString()}
11615can be used to print the semantic values. This however may change
11616(in a backwards-compatible way) in future versions of Bison.
11617
11618
11619@node Java Location Values
11620@subsection Java Location Values
11621@c - %locations
11622@c - class Position
11623@c - class Location
11624
303834cc
JD
11625When the directive @code{%locations} is used, the Java parser supports
11626location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11627class defines a @dfn{position}, a single point in a file; Bison itself
11628defines a class representing a @dfn{location}, a range composed of a pair of
11629positions (possibly spanning several files). The location class is an inner
11630class of the parser; the name is @code{Location} by default, and may also be
6ce4b4ff 11631renamed using @code{%define api.location.type @{@var{class-name}@}}.
8405b70c
PB
11632
11633The location class treats the position as a completely opaque value.
11634By default, the class name is @code{Position}, but this can be changed
6ce4b4ff 11635with @code{%define api.position.type @{@var{class-name}@}}. This class must
e254a580 11636be supplied by the user.
8405b70c
PB
11637
11638
e254a580
DJ
11639@deftypeivar {Location} {Position} begin
11640@deftypeivarx {Location} {Position} end
8405b70c 11641The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11642@end deftypeivar
11643
11644@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11645Create a @code{Location} denoting an empty range located at a given point.
e254a580 11646@end deftypeop
8405b70c 11647
e254a580
DJ
11648@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11649Create a @code{Location} from the endpoints of the range.
11650@end deftypeop
11651
11652@deftypemethod {Location} {String} toString ()
8405b70c
PB
11653Prints the range represented by the location. For this to work
11654properly, the position class should override the @code{equals} and
11655@code{toString} methods appropriately.
11656@end deftypemethod
11657
11658
11659@node Java Parser Interface
11660@subsection Java Parser Interface
11661@c - define parser_class_name
11662@c - Ctor
11663@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11664@c debug_stream.
11665@c - Reporting errors
11666
e254a580
DJ
11667The name of the generated parser class defaults to @code{YYParser}. The
11668@code{YY} prefix may be changed using the @code{%name-prefix} directive
11669or the @option{-p}/@option{--name-prefix} option. Alternatively, use
6ce4b4ff 11670@samp{%define parser_class_name @{@var{name}@}} to give a custom name to
e254a580 11671the class. The interface of this class is detailed below.
8405b70c 11672
e254a580 11673By default, the parser class has package visibility. A declaration
67501061 11674@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11675according to the Java language specification, the name of the @file{.java}
11676file should match the name of the class in this case. Similarly, you can
11677use @code{abstract}, @code{final} and @code{strictfp} with the
11678@code{%define} declaration to add other modifiers to the parser class.
6ce4b4ff 11679A single @samp{%define annotations @{@var{annotations}@}} directive can
1979121c 11680be used to add any number of annotations to the parser class.
e254a580
DJ
11681
11682The Java package name of the parser class can be specified using the
67501061 11683@samp{%define package} directive. The superclass and the implemented
e254a580 11684interfaces of the parser class can be specified with the @code{%define
67501061 11685extends} and @samp{%define implements} directives.
e254a580
DJ
11686
11687The parser class defines an inner class, @code{Location}, that is used
11688for location tracking (see @ref{Java Location Values}), and a inner
11689interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11690these inner class/interface, and the members described in the interface
11691below, all the other members and fields are preceded with a @code{yy} or
11692@code{YY} prefix to avoid clashes with user code.
11693
e254a580
DJ
11694The parser class can be extended using the @code{%parse-param}
11695directive. Each occurrence of the directive will add a @code{protected
11696final} field to the parser class, and an argument to its constructor,
11697which initialize them automatically.
11698
e254a580
DJ
11699@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11700Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11701no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11702@code{%lex-param}s are used.
1979121c
DJ
11703
11704Use @code{%code init} for code added to the start of the constructor
11705body. This is especially useful to initialize superclasses. Use
f50bfcd6 11706@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11707@end deftypeop
11708
11709@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11710Build a new parser object using the specified scanner. There are no
2055a44e
AD
11711additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11712used.
e254a580
DJ
11713
11714If the scanner is defined by @code{%code lexer}, this constructor is
11715declared @code{protected} and is called automatically with a scanner
2055a44e 11716created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11717
11718Use @code{%code init} for code added to the start of the constructor
11719body. This is especially useful to initialize superclasses. Use
5a321748 11720@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11721@end deftypeop
8405b70c
PB
11722
11723@deftypemethod {YYParser} {boolean} parse ()
11724Run the syntactic analysis, and return @code{true} on success,
11725@code{false} otherwise.
11726@end deftypemethod
11727
1979121c
DJ
11728@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11729@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11730Get or set the option to produce verbose error messages. These are only
cf499cff 11731available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11732verbose error messages.
11733@end deftypemethod
11734
11735@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11736@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11737@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11738Print an error message using the @code{yyerror} method of the scanner
11739instance in use. The @code{Location} and @code{Position} parameters are
11740available only if location tracking is active.
11741@end deftypemethod
11742
01b477c6 11743@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11744During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11745from a syntax error.
11746@xref{Error Recovery}.
8405b70c
PB
11747@end deftypemethod
11748
11749@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11750@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11751Get or set the stream used for tracing the parsing. It defaults to
11752@code{System.err}.
11753@end deftypemethod
11754
11755@deftypemethod {YYParser} {int} getDebugLevel ()
11756@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11757Get or set the tracing level. Currently its value is either 0, no trace,
11758or nonzero, full tracing.
11759@end deftypemethod
11760
1979121c
DJ
11761@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11762@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11763Identify the Bison version and skeleton used to generate this parser.
11764@end deftypecv
11765
8405b70c
PB
11766
11767@node Java Scanner Interface
11768@subsection Java Scanner Interface
01b477c6 11769@c - %code lexer
8405b70c 11770@c - %lex-param
01b477c6 11771@c - Lexer interface
8405b70c 11772
e254a580
DJ
11773There are two possible ways to interface a Bison-generated Java parser
11774with a scanner: the scanner may be defined by @code{%code lexer}, or
11775defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11776@code{Lexer} inner interface of the parser class. This interface also
11777contain constants for all user-defined token names and the predefined
11778@code{EOF} token.
e254a580
DJ
11779
11780In the first case, the body of the scanner class is placed in
11781@code{%code lexer} blocks. If you want to pass parameters from the
11782parser constructor to the scanner constructor, specify them with
11783@code{%lex-param}; they are passed before @code{%parse-param}s to the
11784constructor.
01b477c6 11785
59c5ac72 11786In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11787which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11788The constructor of the parser object will then accept an object
11789implementing the interface; @code{%lex-param} is not used in this
11790case.
11791
11792In both cases, the scanner has to implement the following methods.
11793
e254a580
DJ
11794@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11795This method is defined by the user to emit an error message. The first
11796parameter is omitted if location tracking is not active. Its type can be
6ce4b4ff 11797changed using @code{%define api.location.type @{@var{class-name}@}}.
8405b70c
PB
11798@end deftypemethod
11799
e254a580 11800@deftypemethod {Lexer} {int} yylex ()
8405b70c 11801Return the next token. Its type is the return value, its semantic
f50bfcd6 11802value and location are saved and returned by the their methods in the
e254a580
DJ
11803interface.
11804
67501061 11805Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11806Default is @code{java.io.IOException}.
8405b70c
PB
11807@end deftypemethod
11808
11809@deftypemethod {Lexer} {Position} getStartPos ()
11810@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11811Return respectively the first position of the last token that
11812@code{yylex} returned, and the first position beyond it. These
11813methods are not needed unless location tracking is active.
8405b70c 11814
7287be84 11815The return type can be changed using @code{%define api.position.type
6ce4b4ff 11816@{@var{class-name}@}}.
8405b70c
PB
11817@end deftypemethod
11818
11819@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11820Return the semantic value of the last token that yylex returned.
8405b70c 11821
4119d1ea 11822The return type can be changed using @samp{%define api.value.type
6ce4b4ff 11823@{@var{class-name}@}}.
8405b70c
PB
11824@end deftypemethod
11825
e254a580
DJ
11826@node Java Action Features
11827@subsection Special Features for Use in Java Actions
11828
11829The following special constructs can be uses in Java actions.
11830Other analogous C action features are currently unavailable for Java.
11831
67501061 11832Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11833actions, and initial actions specified by @code{%initial-action}.
11834
11835@defvar $@var{n}
11836The semantic value for the @var{n}th component of the current rule.
11837This may not be assigned to.
11838@xref{Java Semantic Values}.
11839@end defvar
11840
11841@defvar $<@var{typealt}>@var{n}
11842Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11843@xref{Java Semantic Values}.
11844@end defvar
11845
11846@defvar $$
11847The semantic value for the grouping made by the current rule. As a
11848value, this is in the base type (@code{Object} or as specified by
4119d1ea 11849@samp{%define api.value.type}) as in not cast to the declared subtype because
e254a580
DJ
11850casts are not allowed on the left-hand side of Java assignments.
11851Use an explicit Java cast if the correct subtype is needed.
11852@xref{Java Semantic Values}.
11853@end defvar
11854
11855@defvar $<@var{typealt}>$
11856Same as @code{$$} since Java always allow assigning to the base type.
11857Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11858for setting the value but there is currently no easy way to distinguish
11859these constructs.
11860@xref{Java Semantic Values}.
11861@end defvar
11862
11863@defvar @@@var{n}
11864The location information of the @var{n}th component of the current rule.
11865This may not be assigned to.
11866@xref{Java Location Values}.
11867@end defvar
11868
11869@defvar @@$
11870The location information of the grouping made by the current rule.
11871@xref{Java Location Values}.
11872@end defvar
11873
34a41a93 11874@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11875Return immediately from the parser, indicating failure.
11876@xref{Java Parser Interface}.
34a41a93 11877@end deftypefn
8405b70c 11878
34a41a93 11879@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11880Return immediately from the parser, indicating success.
11881@xref{Java Parser Interface}.
34a41a93 11882@end deftypefn
8405b70c 11883
34a41a93 11884@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11885Start error recovery (without printing an error message).
e254a580 11886@xref{Error Recovery}.
34a41a93 11887@end deftypefn
8405b70c 11888
e254a580
DJ
11889@deftypefn {Function} {boolean} recovering ()
11890Return whether error recovery is being done. In this state, the parser
11891reads token until it reaches a known state, and then restarts normal
11892operation.
11893@xref{Error Recovery}.
11894@end deftypefn
8405b70c 11895
1979121c
DJ
11896@deftypefn {Function} {void} yyerror (String @var{msg})
11897@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11898@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11899Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11900instance in use. The @code{Location} and @code{Position} parameters are
11901available only if location tracking is active.
e254a580 11902@end deftypefn
8405b70c 11903
aa94def1
DH
11904@node Java Push Parser Interface
11905@subsection Java Push Parser Interface
11906@c - define push_parse
11907@findex %define api.push-pull
11908
11909(The current push parsing interface is experimental and may evolve. More
11910user feedback will help to stabilize it.)
11911
11912Normally, Bison generates a pull parser for Java.
11913The following Bison declaration says that you want the parser to be a push
11914parser (@pxref{%define Summary,,api.push-pull}):
11915
11916@example
11917%define api.push-pull push
11918@end example
11919
11920Most of the discussion about the Java pull Parser Interface, (@pxref{Java
11921Parser Interface}) applies to the push parser interface as well.
11922
11923When generating a push parser, the method @code{push_parse} is created with
11924the following signature (depending on if locations are enabled).
11925
11926@deftypemethod {YYParser} {void} push_parse ({int} @var{token}, {Object} @var{yylval})
11927@deftypemethodx {YYParser} {void} push_parse ({int} @var{token}, {Object} @var{yylval}, {Location} @var{yyloc})
11928@deftypemethodx {YYParser} {void} push_parse ({int} @var{token}, {Object} @var{yylval}, {Position} @var{yypos})
11929@end deftypemethod
11930
11931The primary difference with respect to a pull parser is that the parser
11932method @code{push_parse} is invoked repeatedly to parse each token. This
11933function is available if either the "%define api.push-pull push" or "%define
11934api.push-pull both" declaration is used (@pxref{%define
11935Summary,,api.push-pull}). The @code{Location} and @code{Position}
11936parameters are available only if location tracking is active.
11937
11938The value returned by the @code{push_parse} method is one of the following
11939four constants: @code{YYABORT}, @code{YYACCEPT}, @code{YYERROR}, or
45c64fa6
AD
11940@code{YYPUSH_MORE}. This new value, @code{YYPUSH_MORE}, may be returned if
11941more input is required to finish parsing the grammar.
aa94def1
DH
11942
11943If api.push-pull is declared as @code{both}, then the generated parser class
11944will also implement the @code{parse} method. This method's body is a loop
11945that repeatedly invokes the scanner and then passes the values obtained from
11946the scanner to the @code{push_parse} method.
11947
11948There is one additional complication. Technically, the push parser does not
11949need to know about the scanner (i.e. an object implementing the
11950@code{YYParser.Lexer} interface), but it does need access to the
11951@code{yyerror} method. Currently, the @code{yyerror} method is defined in
11952the @code{YYParser.Lexer} interface. Hence, an implementation of that
11953interface is still required in order to provide an implementation of
11954@code{yyerror}. The current approach (and subject to change) is to require
11955the @code{YYParser} constructor to be given an object implementing the
11956@code{YYParser.Lexer} interface. This object need only implement the
11957@code{yyerror} method; the other methods can be stubbed since they will
11958never be invoked. The simplest way to do this is to add a trivial scanner
11959implementation to your grammar file using whatever implementation of
11960@code{yyerror} is desired. The following code sample shows a simple way to
11961accomplish this.
11962
11963@example
11964%code lexer
11965@{
11966 public Object getLVal () @{return null;@}
11967 public int yylex () @{return 0;@}
11968 public void yyerror (String s) @{System.err.println(s);@}
11969@}
11970@end example
8405b70c 11971
8405b70c
PB
11972@node Java Differences
11973@subsection Differences between C/C++ and Java Grammars
11974
11975The different structure of the Java language forces several differences
11976between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11977section summarizes these differences.
8405b70c
PB
11978
11979@itemize
11980@item
01b477c6 11981Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11982@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11983macros. Instead, they should be preceded by @code{return} when they
11984appear in an action. The actual definition of these symbols is
8405b70c
PB
11985opaque to the Bison grammar, and it might change in the future. The
11986only meaningful operation that you can do, is to return them.
e3fd1dcb 11987@xref{Java Action Features}.
8405b70c
PB
11988
11989Note that of these three symbols, only @code{YYACCEPT} and
11990@code{YYABORT} will cause a return from the @code{yyparse}
11991method@footnote{Java parsers include the actions in a separate
11992method than @code{yyparse} in order to have an intuitive syntax that
11993corresponds to these C macros.}.
11994
e254a580
DJ
11995@item
11996Java lacks unions, so @code{%union} has no effect. Instead, semantic
11997values have a common base type: @code{Object} or as specified by
4119d1ea 11998@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11999@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
12000an union. The type of @code{$$}, even with angle brackets, is the base
12001type since Java casts are not allow on the left-hand side of assignments.
12002Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 12003left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 12004@ref{Java Action Features}.
e254a580 12005
8405b70c 12006@item
f50bfcd6 12007The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
12008@table @asis
12009@item @code{%code imports}
12010blocks are placed at the beginning of the Java source code. They may
12011include copyright notices. For a @code{package} declarations, it is
67501061 12012suggested to use @samp{%define package} instead.
8405b70c 12013
01b477c6
PB
12014@item unqualified @code{%code}
12015blocks are placed inside the parser class.
12016
12017@item @code{%code lexer}
12018blocks, if specified, should include the implementation of the
12019scanner. If there is no such block, the scanner can be any class
e3fd1dcb 12020that implements the appropriate interface (@pxref{Java Scanner
01b477c6 12021Interface}).
29553547 12022@end table
8405b70c
PB
12023
12024Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
12025In particular, @code{%@{ @dots{} %@}} blocks should not be used
12026and may give an error in future versions of Bison.
12027
01b477c6 12028The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
12029be used to define other classes used by the parser @emph{outside}
12030the parser class.
8405b70c
PB
12031@end itemize
12032
e254a580
DJ
12033
12034@node Java Declarations Summary
12035@subsection Java Declarations Summary
12036
12037This summary only include declarations specific to Java or have special
12038meaning when used in a Java parser.
12039
12040@deffn {Directive} {%language "Java"}
12041Generate a Java class for the parser.
12042@end deffn
12043
12044@deffn {Directive} %lex-param @{@var{type} @var{name}@}
12045A parameter for the lexer class defined by @code{%code lexer}
12046@emph{only}, added as parameters to the lexer constructor and the parser
12047constructor that @emph{creates} a lexer. Default is none.
12048@xref{Java Scanner Interface}.
12049@end deffn
12050
12051@deffn {Directive} %name-prefix "@var{prefix}"
12052The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 12053@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
12054@xref{Java Bison Interface}.
12055@end deffn
12056
12057@deffn {Directive} %parse-param @{@var{type} @var{name}@}
12058A parameter for the parser class added as parameters to constructor(s)
12059and as fields initialized by the constructor(s). Default is none.
12060@xref{Java Parser Interface}.
12061@end deffn
12062
12063@deffn {Directive} %token <@var{type}> @var{token} @dots{}
12064Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
12065@xref{Java Semantic Values}.
12066@end deffn
12067
12068@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
12069Declare the type of nonterminals. Note that the angle brackets enclose
12070a Java @emph{type}.
12071@xref{Java Semantic Values}.
12072@end deffn
12073
12074@deffn {Directive} %code @{ @var{code} @dots{} @}
12075Code appended to the inside of the parser class.
12076@xref{Java Differences}.
12077@end deffn
12078
12079@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
12080Code inserted just after the @code{package} declaration.
12081@xref{Java Differences}.
12082@end deffn
12083
1979121c
DJ
12084@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
12085Code inserted at the beginning of the parser constructor body.
12086@xref{Java Parser Interface}.
12087@end deffn
12088
e254a580
DJ
12089@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
12090Code added to the body of a inner lexer class within the parser class.
12091@xref{Java Scanner Interface}.
12092@end deffn
12093
12094@deffn {Directive} %% @var{code} @dots{}
12095Code (after the second @code{%%}) appended to the end of the file,
12096@emph{outside} the parser class.
12097@xref{Java Differences}.
12098@end deffn
12099
12100@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 12101Not supported. Use @code{%code imports} instead.
e254a580
DJ
12102@xref{Java Differences}.
12103@end deffn
12104
12105@deffn {Directive} {%define abstract}
12106Whether the parser class is declared @code{abstract}. Default is false.
12107@xref{Java Bison Interface}.
12108@end deffn
12109
6ce4b4ff 12110@deffn {Directive} {%define annotations} @{@var{annotations}@}
1979121c
DJ
12111The Java annotations for the parser class. Default is none.
12112@xref{Java Bison Interface}.
12113@end deffn
12114
6ce4b4ff 12115@deffn {Directive} {%define extends} @{@var{superclass}@}
e254a580
DJ
12116The superclass of the parser class. Default is none.
12117@xref{Java Bison Interface}.
12118@end deffn
12119
12120@deffn {Directive} {%define final}
12121Whether the parser class is declared @code{final}. Default is false.
12122@xref{Java Bison Interface}.
12123@end deffn
12124
6ce4b4ff 12125@deffn {Directive} {%define implements} @{@var{interfaces}@}
e254a580
DJ
12126The implemented interfaces of the parser class, a comma-separated list.
12127Default is none.
12128@xref{Java Bison Interface}.
12129@end deffn
12130
6ce4b4ff 12131@deffn {Directive} {%define init_throws} @{@var{exceptions}@}
1979121c
DJ
12132The exceptions thrown by @code{%code init} from the parser class
12133constructor. Default is none.
12134@xref{Java Parser Interface}.
12135@end deffn
12136
6ce4b4ff 12137@deffn {Directive} {%define lex_throws} @{@var{exceptions}@}
e254a580
DJ
12138The exceptions thrown by the @code{yylex} method of the lexer, a
12139comma-separated list. Default is @code{java.io.IOException}.
12140@xref{Java Scanner Interface}.
12141@end deffn
12142
6ce4b4ff 12143@deffn {Directive} {%define api.location.type} @{@var{class}@}
e254a580
DJ
12144The name of the class used for locations (a range between two
12145positions). This class is generated as an inner class of the parser
12146class by @command{bison}. Default is @code{Location}.
7287be84 12147Formerly named @code{location_type}.
e254a580
DJ
12148@xref{Java Location Values}.
12149@end deffn
12150
6ce4b4ff 12151@deffn {Directive} {%define package} @{@var{package}@}
e254a580
DJ
12152The package to put the parser class in. Default is none.
12153@xref{Java Bison Interface}.
12154@end deffn
12155
6ce4b4ff 12156@deffn {Directive} {%define parser_class_name} @{@var{name}@}
e254a580
DJ
12157The name of the parser class. Default is @code{YYParser} or
12158@code{@var{name-prefix}Parser}.
12159@xref{Java Bison Interface}.
12160@end deffn
12161
6ce4b4ff 12162@deffn {Directive} {%define api.position.type} @{@var{class}@}
e254a580
DJ
12163The name of the class used for positions. This class must be supplied by
12164the user. Default is @code{Position}.
7287be84 12165Formerly named @code{position_type}.
e254a580
DJ
12166@xref{Java Location Values}.
12167@end deffn
12168
12169@deffn {Directive} {%define public}
12170Whether the parser class is declared @code{public}. Default is false.
12171@xref{Java Bison Interface}.
12172@end deffn
12173
6ce4b4ff 12174@deffn {Directive} {%define api.value.type} @{@var{class}@}
e254a580
DJ
12175The base type of semantic values. Default is @code{Object}.
12176@xref{Java Semantic Values}.
12177@end deffn
12178
12179@deffn {Directive} {%define strictfp}
12180Whether the parser class is declared @code{strictfp}. Default is false.
12181@xref{Java Bison Interface}.
12182@end deffn
12183
6ce4b4ff 12184@deffn {Directive} {%define throws} @{@var{exceptions}@}
e254a580
DJ
12185The exceptions thrown by user-supplied parser actions and
12186@code{%initial-action}, a comma-separated list. Default is none.
12187@xref{Java Parser Interface}.
12188@end deffn
12189
12190
12545799 12191@c ================================================= FAQ
d1a1114f
AD
12192
12193@node FAQ
12194@chapter Frequently Asked Questions
12195@cindex frequently asked questions
12196@cindex questions
12197
12198Several questions about Bison come up occasionally. Here some of them
12199are addressed.
12200
12201@menu
55ba27be
AD
12202* Memory Exhausted:: Breaking the Stack Limits
12203* How Can I Reset the Parser:: @code{yyparse} Keeps some State
12204* Strings are Destroyed:: @code{yylval} Loses Track of Strings
12205* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 12206* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 12207* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
12208* I can't build Bison:: Troubleshooting
12209* Where can I find help?:: Troubleshouting
12210* Bug Reports:: Troublereporting
8405b70c 12211* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
12212* Beta Testing:: Experimenting development versions
12213* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
12214@end menu
12215
1a059451
PE
12216@node Memory Exhausted
12217@section Memory Exhausted
d1a1114f 12218
71b52b13 12219@quotation
1a059451 12220My parser returns with error with a @samp{memory exhausted}
d1a1114f 12221message. What can I do?
71b52b13 12222@end quotation
d1a1114f 12223
188867ac
AD
12224This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
12225Rules}.
d1a1114f 12226
e64fec0a
PE
12227@node How Can I Reset the Parser
12228@section How Can I Reset the Parser
5b066063 12229
0e14ad77
PE
12230The following phenomenon has several symptoms, resulting in the
12231following typical questions:
5b066063 12232
71b52b13 12233@quotation
5b066063
AD
12234I invoke @code{yyparse} several times, and on correct input it works
12235properly; but when a parse error is found, all the other calls fail
0e14ad77 12236too. How can I reset the error flag of @code{yyparse}?
71b52b13 12237@end quotation
5b066063
AD
12238
12239@noindent
12240or
12241
71b52b13 12242@quotation
0e14ad77 12243My parser includes support for an @samp{#include}-like feature, in
5b066063 12244which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 12245although I did specify @samp{%define api.pure full}.
71b52b13 12246@end quotation
5b066063 12247
0e14ad77
PE
12248These problems typically come not from Bison itself, but from
12249Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
12250speed, they might not notice a change of input file. As a
12251demonstration, consider the following source file,
12252@file{first-line.l}:
12253
d4fca427
AD
12254@example
12255@group
12256%@{
5b066063
AD
12257#include <stdio.h>
12258#include <stdlib.h>
d4fca427
AD
12259%@}
12260@end group
5b066063
AD
12261%%
12262.*\n ECHO; return 1;
12263%%
d4fca427 12264@group
5b066063 12265int
0e14ad77 12266yyparse (char const *file)
d4fca427 12267@{
5b066063
AD
12268 yyin = fopen (file, "r");
12269 if (!yyin)
d4fca427
AD
12270 @{
12271 perror ("fopen");
12272 exit (EXIT_FAILURE);
12273 @}
12274@end group
12275@group
fa7e68c3 12276 /* One token only. */
5b066063 12277 yylex ();
0e14ad77 12278 if (fclose (yyin) != 0)
d4fca427
AD
12279 @{
12280 perror ("fclose");
12281 exit (EXIT_FAILURE);
12282 @}
5b066063 12283 return 0;
d4fca427
AD
12284@}
12285@end group
5b066063 12286
d4fca427 12287@group
5b066063 12288int
0e14ad77 12289main (void)
d4fca427 12290@{
5b066063
AD
12291 yyparse ("input");
12292 yyparse ("input");
12293 return 0;
d4fca427
AD
12294@}
12295@end group
12296@end example
5b066063
AD
12297
12298@noindent
12299If the file @file{input} contains
12300
71b52b13 12301@example
5b066063
AD
12302input:1: Hello,
12303input:2: World!
71b52b13 12304@end example
5b066063
AD
12305
12306@noindent
0e14ad77 12307then instead of getting the first line twice, you get:
5b066063
AD
12308
12309@example
12310$ @kbd{flex -ofirst-line.c first-line.l}
12311$ @kbd{gcc -ofirst-line first-line.c -ll}
12312$ @kbd{./first-line}
12313input:1: Hello,
12314input:2: World!
12315@end example
12316
0e14ad77
PE
12317Therefore, whenever you change @code{yyin}, you must tell the
12318Lex-generated scanner to discard its current buffer and switch to the
12319new one. This depends upon your implementation of Lex; see its
12320documentation for more. For Flex, it suffices to call
12321@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
12322Flex-generated scanner needs to read from several input streams to
12323handle features like include files, you might consider using Flex
12324functions like @samp{yy_switch_to_buffer} that manipulate multiple
12325input buffers.
5b066063 12326
b165c324
AD
12327If your Flex-generated scanner uses start conditions (@pxref{Start
12328conditions, , Start conditions, flex, The Flex Manual}), you might
12329also want to reset the scanner's state, i.e., go back to the initial
12330start condition, through a call to @samp{BEGIN (0)}.
12331
fef4cb51
AD
12332@node Strings are Destroyed
12333@section Strings are Destroyed
12334
71b52b13 12335@quotation
c7e441b4 12336My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
12337them. Instead of reporting @samp{"foo", "bar"}, it reports
12338@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 12339@end quotation
fef4cb51
AD
12340
12341This error is probably the single most frequent ``bug report'' sent to
12342Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 12343of the scanner. Consider the following Lex code:
fef4cb51 12344
71b52b13 12345@example
d4fca427 12346@group
71b52b13 12347%@{
fef4cb51
AD
12348#include <stdio.h>
12349char *yylval = NULL;
71b52b13 12350%@}
d4fca427
AD
12351@end group
12352@group
fef4cb51
AD
12353%%
12354.* yylval = yytext; return 1;
12355\n /* IGNORE */
12356%%
d4fca427
AD
12357@end group
12358@group
fef4cb51
AD
12359int
12360main ()
71b52b13 12361@{
fa7e68c3 12362 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
12363 char *fst = (yylex (), yylval);
12364 char *snd = (yylex (), yylval);
12365 printf ("\"%s\", \"%s\"\n", fst, snd);
12366 return 0;
71b52b13 12367@}
d4fca427 12368@end group
71b52b13 12369@end example
fef4cb51
AD
12370
12371If you compile and run this code, you get:
12372
12373@example
12374$ @kbd{flex -osplit-lines.c split-lines.l}
12375$ @kbd{gcc -osplit-lines split-lines.c -ll}
12376$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12377"one
12378two", "two"
12379@end example
12380
12381@noindent
12382this is because @code{yytext} is a buffer provided for @emph{reading}
12383in the action, but if you want to keep it, you have to duplicate it
12384(e.g., using @code{strdup}). Note that the output may depend on how
12385your implementation of Lex handles @code{yytext}. For instance, when
12386given the Lex compatibility option @option{-l} (which triggers the
12387option @samp{%array}) Flex generates a different behavior:
12388
12389@example
12390$ @kbd{flex -l -osplit-lines.c split-lines.l}
12391$ @kbd{gcc -osplit-lines split-lines.c -ll}
12392$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12393"two", "two"
12394@end example
12395
12396
2fa09258
AD
12397@node Implementing Gotos/Loops
12398@section Implementing Gotos/Loops
a06ea4aa 12399
71b52b13 12400@quotation
a06ea4aa 12401My simple calculator supports variables, assignments, and functions,
2fa09258 12402but how can I implement gotos, or loops?
71b52b13 12403@end quotation
a06ea4aa
AD
12404
12405Although very pedagogical, the examples included in the document blur
a1c84f45 12406the distinction to make between the parser---whose job is to recover
a06ea4aa 12407the structure of a text and to transmit it to subsequent modules of
a1c84f45 12408the program---and the processing (such as the execution) of this
a06ea4aa
AD
12409structure. This works well with so called straight line programs,
12410i.e., precisely those that have a straightforward execution model:
12411execute simple instructions one after the others.
12412
12413@cindex abstract syntax tree
8a4281b9 12414@cindex AST
a06ea4aa
AD
12415If you want a richer model, you will probably need to use the parser
12416to construct a tree that does represent the structure it has
12417recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 12418or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
12419traversing it in various ways, will enable treatments such as its
12420execution or its translation, which will result in an interpreter or a
12421compiler.
12422
12423This topic is way beyond the scope of this manual, and the reader is
12424invited to consult the dedicated literature.
12425
12426
ed2e6384
AD
12427@node Multiple start-symbols
12428@section Multiple start-symbols
12429
71b52b13 12430@quotation
ed2e6384
AD
12431I have several closely related grammars, and I would like to share their
12432implementations. In fact, I could use a single grammar but with
12433multiple entry points.
71b52b13 12434@end quotation
ed2e6384
AD
12435
12436Bison does not support multiple start-symbols, but there is a very
12437simple means to simulate them. If @code{foo} and @code{bar} are the two
12438pseudo start-symbols, then introduce two new tokens, say
12439@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12440real start-symbol:
12441
12442@example
12443%token START_FOO START_BAR;
12444%start start;
5e9b6624
AD
12445start:
12446 START_FOO foo
12447| START_BAR bar;
ed2e6384
AD
12448@end example
12449
12450These tokens prevents the introduction of new conflicts. As far as the
12451parser goes, that is all that is needed.
12452
12453Now the difficult part is ensuring that the scanner will send these
12454tokens first. If your scanner is hand-written, that should be
12455straightforward. If your scanner is generated by Lex, them there is
12456simple means to do it: recall that anything between @samp{%@{ ... %@}}
12457after the first @code{%%} is copied verbatim in the top of the generated
12458@code{yylex} function. Make sure a variable @code{start_token} is
12459available in the scanner (e.g., a global variable or using
12460@code{%lex-param} etc.), and use the following:
12461
12462@example
12463 /* @r{Prologue.} */
12464%%
12465%@{
12466 if (start_token)
12467 @{
12468 int t = start_token;
12469 start_token = 0;
12470 return t;
12471 @}
12472%@}
12473 /* @r{The rules.} */
12474@end example
12475
12476
55ba27be
AD
12477@node Secure? Conform?
12478@section Secure? Conform?
12479
71b52b13 12480@quotation
55ba27be 12481Is Bison secure? Does it conform to POSIX?
71b52b13 12482@end quotation
55ba27be
AD
12483
12484If you're looking for a guarantee or certification, we don't provide it.
12485However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12486POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12487please send us a bug report.
12488
12489@node I can't build Bison
12490@section I can't build Bison
12491
71b52b13 12492@quotation
8c5b881d
PE
12493I can't build Bison because @command{make} complains that
12494@code{msgfmt} is not found.
55ba27be 12495What should I do?
71b52b13 12496@end quotation
55ba27be
AD
12497
12498Like most GNU packages with internationalization support, that feature
12499is turned on by default. If you have problems building in the @file{po}
12500subdirectory, it indicates that your system's internationalization
12501support is lacking. You can re-configure Bison with
12502@option{--disable-nls} to turn off this support, or you can install GNU
12503gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12504Bison. See the file @file{ABOUT-NLS} for more information.
12505
12506
12507@node Where can I find help?
12508@section Where can I find help?
12509
71b52b13 12510@quotation
55ba27be 12511I'm having trouble using Bison. Where can I find help?
71b52b13 12512@end quotation
55ba27be
AD
12513
12514First, read this fine manual. Beyond that, you can send mail to
12515@email{help-bison@@gnu.org}. This mailing list is intended to be
12516populated with people who are willing to answer questions about using
12517and installing Bison. Please keep in mind that (most of) the people on
12518the list have aspects of their lives which are not related to Bison (!),
12519so you may not receive an answer to your question right away. This can
12520be frustrating, but please try not to honk them off; remember that any
12521help they provide is purely voluntary and out of the kindness of their
12522hearts.
12523
12524@node Bug Reports
12525@section Bug Reports
12526
71b52b13 12527@quotation
55ba27be 12528I found a bug. What should I include in the bug report?
71b52b13 12529@end quotation
55ba27be
AD
12530
12531Before you send a bug report, make sure you are using the latest
12532version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12533mirrors. Be sure to include the version number in your bug report. If
12534the bug is present in the latest version but not in a previous version,
12535try to determine the most recent version which did not contain the bug.
12536
12537If the bug is parser-related, you should include the smallest grammar
12538you can which demonstrates the bug. The grammar file should also be
12539complete (i.e., I should be able to run it through Bison without having
12540to edit or add anything). The smaller and simpler the grammar, the
12541easier it will be to fix the bug.
12542
12543Include information about your compilation environment, including your
12544operating system's name and version and your compiler's name and
12545version. If you have trouble compiling, you should also include a
12546transcript of the build session, starting with the invocation of
12547`configure'. Depending on the nature of the bug, you may be asked to
4c9b8f13 12548send additional files as well (such as @file{config.h} or @file{config.cache}).
55ba27be
AD
12549
12550Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12551send a bug report just because you cannot provide a fix.
55ba27be
AD
12552
12553Send bug reports to @email{bug-bison@@gnu.org}.
12554
8405b70c
PB
12555@node More Languages
12556@section More Languages
55ba27be 12557
71b52b13 12558@quotation
8405b70c 12559Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12560favorite language here}?
71b52b13 12561@end quotation
55ba27be 12562
8405b70c 12563C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12564languages; contributions are welcome.
12565
12566@node Beta Testing
12567@section Beta Testing
12568
71b52b13 12569@quotation
55ba27be 12570What is involved in being a beta tester?
71b52b13 12571@end quotation
55ba27be
AD
12572
12573It's not terribly involved. Basically, you would download a test
12574release, compile it, and use it to build and run a parser or two. After
12575that, you would submit either a bug report or a message saying that
12576everything is okay. It is important to report successes as well as
12577failures because test releases eventually become mainstream releases,
12578but only if they are adequately tested. If no one tests, development is
12579essentially halted.
12580
12581Beta testers are particularly needed for operating systems to which the
12582developers do not have easy access. They currently have easy access to
12583recent GNU/Linux and Solaris versions. Reports about other operating
12584systems are especially welcome.
12585
12586@node Mailing Lists
12587@section Mailing Lists
12588
71b52b13 12589@quotation
55ba27be 12590How do I join the help-bison and bug-bison mailing lists?
71b52b13 12591@end quotation
55ba27be
AD
12592
12593See @url{http://lists.gnu.org/}.
a06ea4aa 12594
d1a1114f
AD
12595@c ================================================= Table of Symbols
12596
342b8b6e 12597@node Table of Symbols
bfa74976
RS
12598@appendix Bison Symbols
12599@cindex Bison symbols, table of
12600@cindex symbols in Bison, table of
12601
18b519c0 12602@deffn {Variable} @@$
3ded9a63 12603In an action, the location of the left-hand side of the rule.
303834cc 12604@xref{Tracking Locations}.
18b519c0 12605@end deffn
3ded9a63 12606
18b519c0 12607@deffn {Variable} @@@var{n}
be22823e 12608@deffnx {Symbol} @@@var{n}
303834cc
JD
12609In an action, the location of the @var{n}-th symbol of the right-hand side
12610of the rule. @xref{Tracking Locations}.
be22823e
AD
12611
12612In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12613with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12614@end deffn
3ded9a63 12615
d013372c 12616@deffn {Variable} @@@var{name}
c949ada3
AD
12617@deffnx {Variable} @@[@var{name}]
12618In an action, the location of a symbol addressed by @var{name}.
12619@xref{Tracking Locations}.
d013372c
AR
12620@end deffn
12621
be22823e
AD
12622@deffn {Symbol} $@@@var{n}
12623In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12624with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12625@end deffn
12626
18b519c0 12627@deffn {Variable} $$
3ded9a63
AD
12628In an action, the semantic value of the left-hand side of the rule.
12629@xref{Actions}.
18b519c0 12630@end deffn
3ded9a63 12631
18b519c0 12632@deffn {Variable} $@var{n}
3ded9a63
AD
12633In an action, the semantic value of the @var{n}-th symbol of the
12634right-hand side of the rule. @xref{Actions}.
18b519c0 12635@end deffn
3ded9a63 12636
d013372c 12637@deffn {Variable} $@var{name}
c949ada3
AD
12638@deffnx {Variable} $[@var{name}]
12639In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12640@xref{Actions}.
12641@end deffn
12642
dd8d9022
AD
12643@deffn {Delimiter} %%
12644Delimiter used to separate the grammar rule section from the
12645Bison declarations section or the epilogue.
12646@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12647@end deffn
bfa74976 12648
dd8d9022
AD
12649@c Don't insert spaces, or check the DVI output.
12650@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12651All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12652to the parser implementation file. Such code forms the prologue of
12653the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12654Grammar}.
18b519c0 12655@end deffn
bfa74976 12656
ca2a6d15
PH
12657@deffn {Directive} %?@{@var{expression}@}
12658Predicate actions. This is a type of action clause that may appear in
12659rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12660GLR parsers during nondeterministic operation,
ca2a6d15
PH
12661this silently causes an alternative parse to die. During deterministic
12662operation, it is the same as the effect of YYERROR.
12663@xref{Semantic Predicates}.
12664
12665This feature is experimental.
12666More user feedback will help to determine whether it should become a permanent
12667feature.
12668@end deffn
12669
c949ada3
AD
12670@deffn {Construct} /* @dots{} */
12671@deffnx {Construct} // @dots{}
12672Comments, as in C/C++.
18b519c0 12673@end deffn
bfa74976 12674
dd8d9022
AD
12675@deffn {Delimiter} :
12676Separates a rule's result from its components. @xref{Rules, ,Syntax of
12677Grammar Rules}.
18b519c0 12678@end deffn
bfa74976 12679
dd8d9022
AD
12680@deffn {Delimiter} ;
12681Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12682@end deffn
bfa74976 12683
dd8d9022
AD
12684@deffn {Delimiter} |
12685Separates alternate rules for the same result nonterminal.
12686@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12687@end deffn
bfa74976 12688
12e35840
JD
12689@deffn {Directive} <*>
12690Used to define a default tagged @code{%destructor} or default tagged
12691@code{%printer}.
85894313
JD
12692
12693This feature is experimental.
12694More user feedback will help to determine whether it should become a permanent
12695feature.
12696
12e35840
JD
12697@xref{Destructor Decl, , Freeing Discarded Symbols}.
12698@end deffn
12699
3ebecc24 12700@deffn {Directive} <>
12e35840
JD
12701Used to define a default tagless @code{%destructor} or default tagless
12702@code{%printer}.
85894313
JD
12703
12704This feature is experimental.
12705More user feedback will help to determine whether it should become a permanent
12706feature.
12707
12e35840
JD
12708@xref{Destructor Decl, , Freeing Discarded Symbols}.
12709@end deffn
12710
dd8d9022
AD
12711@deffn {Symbol} $accept
12712The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12713$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12714Start-Symbol}. It cannot be used in the grammar.
18b519c0 12715@end deffn
bfa74976 12716
136a0f76 12717@deffn {Directive} %code @{@var{code}@}
148d66d8 12718@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12719Insert @var{code} verbatim into the output parser source at the
12720default location or at the location specified by @var{qualifier}.
e0c07222 12721@xref{%code Summary}.
9bc0dd67
JD
12722@end deffn
12723
12724@deffn {Directive} %debug
12725Equip the parser for debugging. @xref{Decl Summary}.
12726@end deffn
12727
91d2c560 12728@ifset defaultprec
22fccf95
PE
12729@deffn {Directive} %default-prec
12730Assign a precedence to rules that lack an explicit @samp{%prec}
12731modifier. @xref{Contextual Precedence, ,Context-Dependent
12732Precedence}.
39a06c25 12733@end deffn
91d2c560 12734@end ifset
39a06c25 12735
7fceb615
JD
12736@deffn {Directive} %define @var{variable}
12737@deffnx {Directive} %define @var{variable} @var{value}
6ce4b4ff 12738@deffnx {Directive} %define @var{variable} @{@var{value}@}
7fceb615 12739@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12740Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12741@end deffn
12742
18b519c0 12743@deffn {Directive} %defines
ff7571c0
JD
12744Bison declaration to create a parser header file, which is usually
12745meant for the scanner. @xref{Decl Summary}.
18b519c0 12746@end deffn
6deb4447 12747
02975b9a
JD
12748@deffn {Directive} %defines @var{defines-file}
12749Same as above, but save in the file @var{defines-file}.
12750@xref{Decl Summary}.
12751@end deffn
12752
18b519c0 12753@deffn {Directive} %destructor
258b75ca 12754Specify how the parser should reclaim the memory associated to
fa7e68c3 12755discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12756@end deffn
72f889cc 12757
18b519c0 12758@deffn {Directive} %dprec
676385e2 12759Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12760time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12761GLR Parsers}.
18b519c0 12762@end deffn
676385e2 12763
09add9c2
AD
12764@deffn {Directive} %empty
12765Bison declaration to declare make explicit that a rule has an empty
12766right-hand side. @xref{Empty Rules}.
12767@end deffn
12768
dd8d9022
AD
12769@deffn {Symbol} $end
12770The predefined token marking the end of the token stream. It cannot be
12771used in the grammar.
12772@end deffn
12773
12774@deffn {Symbol} error
12775A token name reserved for error recovery. This token may be used in
12776grammar rules so as to allow the Bison parser to recognize an error in
12777the grammar without halting the process. In effect, a sentence
12778containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12779token @code{error} becomes the current lookahead token. Actions
12780corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12781token is reset to the token that originally caused the violation.
12782@xref{Error Recovery}.
18d192f0
AD
12783@end deffn
12784
18b519c0 12785@deffn {Directive} %error-verbose
7fceb615
JD
12786An obsolete directive standing for @samp{%define parse.error verbose}
12787(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12788@end deffn
2a8d363a 12789
02975b9a 12790@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12791Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12792Summary}.
18b519c0 12793@end deffn
d8988b2f 12794
18b519c0 12795@deffn {Directive} %glr-parser
8a4281b9
JD
12796Bison declaration to produce a GLR parser. @xref{GLR
12797Parsers, ,Writing GLR Parsers}.
18b519c0 12798@end deffn
676385e2 12799
dd8d9022
AD
12800@deffn {Directive} %initial-action
12801Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12802@end deffn
12803
e6e704dc
JD
12804@deffn {Directive} %language
12805Specify the programming language for the generated parser.
12806@xref{Decl Summary}.
12807@end deffn
12808
18b519c0 12809@deffn {Directive} %left
d78f0ac9 12810Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12811@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12812@end deffn
bfa74976 12813
2055a44e
AD
12814@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12815Bison declaration to specifying additional arguments that
2a8d363a
AD
12816@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12817for Pure Parsers}.
18b519c0 12818@end deffn
2a8d363a 12819
18b519c0 12820@deffn {Directive} %merge
676385e2 12821Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12822reduce/reduce conflict with a rule having the same merging function, the
676385e2 12823function is applied to the two semantic values to get a single result.
8a4281b9 12824@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12825@end deffn
676385e2 12826
02975b9a 12827@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12828Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12829Parsers, ,Multiple Parsers in the Same Program}).
12830
12831Rename the external symbols (variables and functions) used in the parser so
12832that they start with @var{prefix} instead of @samp{yy}. Contrary to
12833@code{api.prefix}, do no rename types and macros.
12834
12835The precise list of symbols renamed in C parsers is @code{yyparse},
12836@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12837@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12838push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12839@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12840example, if you use @samp{%name-prefix "c_"}, the names become
12841@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
07e65a77 12842@code{%define api.namespace} documentation in this section.
18b519c0 12843@end deffn
d8988b2f 12844
4b3847c3 12845
91d2c560 12846@ifset defaultprec
22fccf95
PE
12847@deffn {Directive} %no-default-prec
12848Do not assign a precedence to rules that lack an explicit @samp{%prec}
12849modifier. @xref{Contextual Precedence, ,Context-Dependent
12850Precedence}.
12851@end deffn
91d2c560 12852@end ifset
22fccf95 12853
18b519c0 12854@deffn {Directive} %no-lines
931c7513 12855Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12856parser implementation file. @xref{Decl Summary}.
18b519c0 12857@end deffn
931c7513 12858
18b519c0 12859@deffn {Directive} %nonassoc
d78f0ac9 12860Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12861@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12862@end deffn
bfa74976 12863
02975b9a 12864@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12865Bison declaration to set the name of the parser implementation file.
12866@xref{Decl Summary}.
18b519c0 12867@end deffn
d8988b2f 12868
2055a44e
AD
12869@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12870Bison declaration to specify additional arguments that both
12871@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12872Parser Function @code{yyparse}}.
12873@end deffn
12874
12875@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12876Bison declaration to specify additional arguments that @code{yyparse}
12877should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12878@end deffn
2a8d363a 12879
18b519c0 12880@deffn {Directive} %prec
bfa74976
RS
12881Bison declaration to assign a precedence to a specific rule.
12882@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12883@end deffn
bfa74976 12884
d78f0ac9
AD
12885@deffn {Directive} %precedence
12886Bison declaration to assign precedence to token(s), but no associativity
12887@xref{Precedence Decl, ,Operator Precedence}.
12888@end deffn
12889
18b519c0 12890@deffn {Directive} %pure-parser
35c1e5f0
JD
12891Deprecated version of @samp{%define api.pure} (@pxref{%define
12892Summary,,api.pure}), for which Bison is more careful to warn about
12893unreasonable usage.
18b519c0 12894@end deffn
bfa74976 12895
b50d2359 12896@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12897Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12898Require a Version of Bison}.
b50d2359
AD
12899@end deffn
12900
18b519c0 12901@deffn {Directive} %right
d78f0ac9 12902Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12903@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12904@end deffn
bfa74976 12905
e6e704dc
JD
12906@deffn {Directive} %skeleton
12907Specify the skeleton to use; usually for development.
12908@xref{Decl Summary}.
12909@end deffn
12910
18b519c0 12911@deffn {Directive} %start
704a47c4
AD
12912Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12913Start-Symbol}.
18b519c0 12914@end deffn
bfa74976 12915
18b519c0 12916@deffn {Directive} %token
bfa74976
RS
12917Bison declaration to declare token(s) without specifying precedence.
12918@xref{Token Decl, ,Token Type Names}.
18b519c0 12919@end deffn
bfa74976 12920
18b519c0 12921@deffn {Directive} %token-table
ff7571c0
JD
12922Bison declaration to include a token name table in the parser
12923implementation file. @xref{Decl Summary}.
18b519c0 12924@end deffn
931c7513 12925
18b519c0 12926@deffn {Directive} %type
704a47c4
AD
12927Bison declaration to declare nonterminals. @xref{Type Decl,
12928,Nonterminal Symbols}.
18b519c0 12929@end deffn
bfa74976 12930
dd8d9022
AD
12931@deffn {Symbol} $undefined
12932The predefined token onto which all undefined values returned by
12933@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12934@code{error}.
12935@end deffn
12936
18b519c0 12937@deffn {Directive} %union
bfa74976 12938Bison declaration to specify several possible data types for semantic
e4d49586 12939values. @xref{Union Decl, ,The Union Declaration}.
18b519c0 12940@end deffn
bfa74976 12941
dd8d9022
AD
12942@deffn {Macro} YYABORT
12943Macro to pretend that an unrecoverable syntax error has occurred, by
12944making @code{yyparse} return 1 immediately. The error reporting
12945function @code{yyerror} is not called. @xref{Parser Function, ,The
12946Parser Function @code{yyparse}}.
8405b70c
PB
12947
12948For Java parsers, this functionality is invoked using @code{return YYABORT;}
12949instead.
dd8d9022 12950@end deffn
3ded9a63 12951
dd8d9022
AD
12952@deffn {Macro} YYACCEPT
12953Macro to pretend that a complete utterance of the language has been
12954read, by making @code{yyparse} return 0 immediately.
12955@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12956
12957For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12958instead.
dd8d9022 12959@end deffn
bfa74976 12960
dd8d9022 12961@deffn {Macro} YYBACKUP
742e4900 12962Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12963token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12964@end deffn
bfa74976 12965
dd8d9022 12966@deffn {Variable} yychar
32c29292 12967External integer variable that contains the integer value of the
742e4900 12968lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12969@code{yyparse}.) Error-recovery rule actions may examine this variable.
12970@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12971@end deffn
bfa74976 12972
dd8d9022
AD
12973@deffn {Variable} yyclearin
12974Macro used in error-recovery rule actions. It clears the previous
742e4900 12975lookahead token. @xref{Error Recovery}.
18b519c0 12976@end deffn
bfa74976 12977
dd8d9022
AD
12978@deffn {Macro} YYDEBUG
12979Macro to define to equip the parser with tracing code. @xref{Tracing,
12980,Tracing Your Parser}.
18b519c0 12981@end deffn
bfa74976 12982
dd8d9022
AD
12983@deffn {Variable} yydebug
12984External integer variable set to zero by default. If @code{yydebug}
12985is given a nonzero value, the parser will output information on input
12986symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12987@end deffn
bfa74976 12988
dd8d9022
AD
12989@deffn {Macro} yyerrok
12990Macro to cause parser to recover immediately to its normal mode
12991after a syntax error. @xref{Error Recovery}.
12992@end deffn
12993
12994@deffn {Macro} YYERROR
4a11b852
AD
12995Cause an immediate syntax error. This statement initiates error
12996recovery just as if the parser itself had detected an error; however, it
12997does not call @code{yyerror}, and does not print any message. If you
12998want to print an error message, call @code{yyerror} explicitly before
12999the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
13000
13001For Java parsers, this functionality is invoked using @code{return YYERROR;}
13002instead.
dd8d9022
AD
13003@end deffn
13004
13005@deffn {Function} yyerror
13006User-supplied function to be called by @code{yyparse} on error.
71b00ed8 13007@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
13008@end deffn
13009
13010@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
13011An obsolete macro used in the @file{yacc.c} skeleton, that you define
13012with @code{#define} in the prologue to request verbose, specific error
13013message strings when @code{yyerror} is called. It doesn't matter what
13014definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 13015it. Using @samp{%define parse.error verbose} is preferred
31b850d2 13016(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
13017@end deffn
13018
93c150b6
AD
13019@deffn {Macro} YYFPRINTF
13020Macro used to output run-time traces.
13021@xref{Enabling Traces}.
13022@end deffn
13023
dd8d9022
AD
13024@deffn {Macro} YYINITDEPTH
13025Macro for specifying the initial size of the parser stack.
1a059451 13026@xref{Memory Management}.
dd8d9022
AD
13027@end deffn
13028
13029@deffn {Function} yylex
13030User-supplied lexical analyzer function, called with no arguments to get
13031the next token. @xref{Lexical, ,The Lexical Analyzer Function
13032@code{yylex}}.
13033@end deffn
13034
dd8d9022
AD
13035@deffn {Variable} yylloc
13036External variable in which @code{yylex} should place the line and column
13037numbers associated with a token. (In a pure parser, it is a local
13038variable within @code{yyparse}, and its address is passed to
32c29292
JD
13039@code{yylex}.)
13040You can ignore this variable if you don't use the @samp{@@} feature in the
13041grammar actions.
13042@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 13043In semantic actions, it stores the location of the lookahead token.
32c29292 13044@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
13045@end deffn
13046
13047@deffn {Type} YYLTYPE
13048Data type of @code{yylloc}; by default, a structure with four
13049members. @xref{Location Type, , Data Types of Locations}.
13050@end deffn
13051
13052@deffn {Variable} yylval
13053External variable in which @code{yylex} should place the semantic
13054value associated with a token. (In a pure parser, it is a local
13055variable within @code{yyparse}, and its address is passed to
32c29292
JD
13056@code{yylex}.)
13057@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 13058In semantic actions, it stores the semantic value of the lookahead token.
32c29292 13059@xref{Actions, ,Actions}.
dd8d9022
AD
13060@end deffn
13061
13062@deffn {Macro} YYMAXDEPTH
1a059451
PE
13063Macro for specifying the maximum size of the parser stack. @xref{Memory
13064Management}.
dd8d9022
AD
13065@end deffn
13066
13067@deffn {Variable} yynerrs
8a2800e7 13068Global variable which Bison increments each time it reports a syntax error.
f4101aa6 13069(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 13070pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
13071@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
13072@end deffn
13073
13074@deffn {Function} yyparse
13075The parser function produced by Bison; call this function to start
13076parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
13077@end deffn
13078
93c150b6
AD
13079@deffn {Macro} YYPRINT
13080Macro used to output token semantic values. For @file{yacc.c} only.
13081Obsoleted by @code{%printer}.
13082@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
13083@end deffn
13084
9987d1b3 13085@deffn {Function} yypstate_delete
f4101aa6 13086The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 13087call this function to delete the memory associated with a parser.
f4101aa6 13088@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 13089@code{yypstate_delete}}.
59da312b
JD
13090(The current push parsing interface is experimental and may evolve.
13091More user feedback will help to stabilize it.)
9987d1b3
JD
13092@end deffn
13093
13094@deffn {Function} yypstate_new
f4101aa6 13095The function to create a parser instance, produced by Bison in push mode;
9987d1b3 13096call this function to create a new parser.
f4101aa6 13097@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 13098@code{yypstate_new}}.
59da312b
JD
13099(The current push parsing interface is experimental and may evolve.
13100More user feedback will help to stabilize it.)
9987d1b3
JD
13101@end deffn
13102
13103@deffn {Function} yypull_parse
f4101aa6
AD
13104The parser function produced by Bison in push mode; call this function to
13105parse the rest of the input stream.
13106@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 13107@code{yypull_parse}}.
59da312b
JD
13108(The current push parsing interface is experimental and may evolve.
13109More user feedback will help to stabilize it.)
9987d1b3
JD
13110@end deffn
13111
13112@deffn {Function} yypush_parse
f4101aa6
AD
13113The parser function produced by Bison in push mode; call this function to
13114parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 13115@code{yypush_parse}}.
59da312b
JD
13116(The current push parsing interface is experimental and may evolve.
13117More user feedback will help to stabilize it.)
9987d1b3
JD
13118@end deffn
13119
dd8d9022 13120@deffn {Macro} YYRECOVERING
02103984
PE
13121The expression @code{YYRECOVERING ()} yields 1 when the parser
13122is recovering from a syntax error, and 0 otherwise.
13123@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
13124@end deffn
13125
13126@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
13127Macro used to control the use of @code{alloca} when the
13128deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
13129the parser will use @code{malloc} to extend its stacks. If defined to
131301, the parser will use @code{alloca}. Values other than 0 and 1 are
13131reserved for future Bison extensions. If not defined,
13132@code{YYSTACK_USE_ALLOCA} defaults to 0.
13133
55289366 13134In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
13135limited stack and with unreliable stack-overflow checking, you should
13136set @code{YYMAXDEPTH} to a value that cannot possibly result in
13137unchecked stack overflow on any of your target hosts when
13138@code{alloca} is called. You can inspect the code that Bison
13139generates in order to determine the proper numeric values. This will
13140require some expertise in low-level implementation details.
dd8d9022
AD
13141@end deffn
13142
13143@deffn {Type} YYSTYPE
21e3a2b5 13144Deprecated in favor of the @code{%define} variable @code{api.value.type}.
dd8d9022
AD
13145Data type of semantic values; @code{int} by default.
13146@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 13147@end deffn
bfa74976 13148
342b8b6e 13149@node Glossary
bfa74976
RS
13150@appendix Glossary
13151@cindex glossary
13152
13153@table @asis
7fceb615 13154@item Accepting state
eb45ef3b
JD
13155A state whose only action is the accept action.
13156The accepting state is thus a consistent state.
c949ada3 13157@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 13158
8a4281b9 13159@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
13160Formal method of specifying context-free grammars originally proposed
13161by John Backus, and slightly improved by Peter Naur in his 1960-01-02
13162committee document contributing to what became the Algol 60 report.
13163@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 13164
7fceb615
JD
13165@item Consistent state
13166A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 13167
bfa74976
RS
13168@item Context-free grammars
13169Grammars specified as rules that can be applied regardless of context.
13170Thus, if there is a rule which says that an integer can be used as an
13171expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
13172permitted. @xref{Language and Grammar, ,Languages and Context-Free
13173Grammars}.
bfa74976 13174
7fceb615 13175@item Default reduction
110ef36a 13176The reduction that a parser should perform if the current parser state
35c1e5f0 13177contains no other action for the lookahead token. In permitted parser
7fceb615
JD
13178states, Bison declares the reduction with the largest lookahead set to be
13179the default reduction and removes that lookahead set. @xref{Default
13180Reductions}.
13181
13182@item Defaulted state
13183A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 13184
bfa74976
RS
13185@item Dynamic allocation
13186Allocation of memory that occurs during execution, rather than at
13187compile time or on entry to a function.
13188
13189@item Empty string
13190Analogous to the empty set in set theory, the empty string is a
13191character string of length zero.
13192
13193@item Finite-state stack machine
13194A ``machine'' that has discrete states in which it is said to exist at
13195each instant in time. As input to the machine is processed, the
13196machine moves from state to state as specified by the logic of the
13197machine. In the case of the parser, the input is the language being
13198parsed, and the states correspond to various stages in the grammar
c827f760 13199rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 13200
8a4281b9 13201@item Generalized LR (GLR)
676385e2 13202A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 13203that are not LR(1). It resolves situations that Bison's
eb45ef3b 13204deterministic parsing
676385e2
PH
13205algorithm cannot by effectively splitting off multiple parsers, trying all
13206possible parsers, and discarding those that fail in the light of additional
c827f760 13207right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 13208LR Parsing}.
676385e2 13209
bfa74976
RS
13210@item Grouping
13211A language construct that is (in general) grammatically divisible;
c827f760 13212for example, `expression' or `declaration' in C@.
bfa74976
RS
13213@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13214
7fceb615
JD
13215@item IELR(1) (Inadequacy Elimination LR(1))
13216A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 13217context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
13218language-recognition power of canonical LR(1) but with nearly the same
13219number of parser states as LALR(1). This reduction in parser states is
13220often an order of magnitude. More importantly, because canonical LR(1)'s
13221extra parser states may contain duplicate conflicts in the case of non-LR(1)
13222grammars, the number of conflicts for IELR(1) is often an order of magnitude
13223less as well. This can significantly reduce the complexity of developing a
13224grammar. @xref{LR Table Construction}.
eb45ef3b 13225
bfa74976
RS
13226@item Infix operator
13227An arithmetic operator that is placed between the operands on which it
13228performs some operation.
13229
13230@item Input stream
13231A continuous flow of data between devices or programs.
13232
8a4281b9 13233@item LAC (Lookahead Correction)
fcf834f9 13234A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
13235detection, which is caused by LR state merging, default reductions, and the
13236use of @code{%nonassoc}. Delayed syntax error detection results in
13237unexpected semantic actions, initiation of error recovery in the wrong
13238syntactic context, and an incorrect list of expected tokens in a verbose
13239syntax error message. @xref{LAC}.
fcf834f9 13240
bfa74976
RS
13241@item Language construct
13242One of the typical usage schemas of the language. For example, one of
13243the constructs of the C language is the @code{if} statement.
13244@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13245
13246@item Left associativity
13247Operators having left associativity are analyzed from left to right:
13248@samp{a+b+c} first computes @samp{a+b} and then combines with
13249@samp{c}. @xref{Precedence, ,Operator Precedence}.
13250
13251@item Left recursion
89cab50d
AD
13252A rule whose result symbol is also its first component symbol; for
13253example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
13254Rules}.
bfa74976
RS
13255
13256@item Left-to-right parsing
13257Parsing a sentence of a language by analyzing it token by token from
c827f760 13258left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13259
13260@item Lexical analyzer (scanner)
13261A function that reads an input stream and returns tokens one by one.
13262@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
13263
13264@item Lexical tie-in
13265A flag, set by actions in the grammar rules, which alters the way
13266tokens are parsed. @xref{Lexical Tie-ins}.
13267
931c7513 13268@item Literal string token
14ded682 13269A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 13270
742e4900
JD
13271@item Lookahead token
13272A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 13273Tokens}.
bfa74976 13274
8a4281b9 13275@item LALR(1)
bfa74976 13276The class of context-free grammars that Bison (like most other parser
8a4281b9 13277generators) can handle by default; a subset of LR(1).
cc09e5be 13278@xref{Mysterious Conflicts}.
bfa74976 13279
8a4281b9 13280@item LR(1)
bfa74976 13281The class of context-free grammars in which at most one token of
742e4900 13282lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
13283
13284@item Nonterminal symbol
13285A grammar symbol standing for a grammatical construct that can
13286be expressed through rules in terms of smaller constructs; in other
13287words, a construct that is not a token. @xref{Symbols}.
13288
bfa74976
RS
13289@item Parser
13290A function that recognizes valid sentences of a language by analyzing
13291the syntax structure of a set of tokens passed to it from a lexical
13292analyzer.
13293
13294@item Postfix operator
13295An arithmetic operator that is placed after the operands upon which it
13296performs some operation.
13297
13298@item Reduction
13299Replacing a string of nonterminals and/or terminals with a single
89cab50d 13300nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 13301Parser Algorithm}.
bfa74976
RS
13302
13303@item Reentrant
13304A reentrant subprogram is a subprogram which can be in invoked any
13305number of times in parallel, without interference between the various
13306invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
13307
13308@item Reverse polish notation
13309A language in which all operators are postfix operators.
13310
13311@item Right recursion
89cab50d
AD
13312A rule whose result symbol is also its last component symbol; for
13313example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
13314Rules}.
bfa74976
RS
13315
13316@item Semantics
13317In computer languages, the semantics are specified by the actions
13318taken for each instance of the language, i.e., the meaning of
13319each statement. @xref{Semantics, ,Defining Language Semantics}.
13320
13321@item Shift
13322A parser is said to shift when it makes the choice of analyzing
13323further input from the stream rather than reducing immediately some
c827f760 13324already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13325
13326@item Single-character literal
13327A single character that is recognized and interpreted as is.
13328@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
13329
13330@item Start symbol
13331The nonterminal symbol that stands for a complete valid utterance in
13332the language being parsed. The start symbol is usually listed as the
13863333 13333first nonterminal symbol in a language specification.
bfa74976
RS
13334@xref{Start Decl, ,The Start-Symbol}.
13335
13336@item Symbol table
13337A data structure where symbol names and associated data are stored
13338during parsing to allow for recognition and use of existing
13339information in repeated uses of a symbol. @xref{Multi-function Calc}.
13340
6e649e65
PE
13341@item Syntax error
13342An error encountered during parsing of an input stream due to invalid
13343syntax. @xref{Error Recovery}.
13344
bfa74976
RS
13345@item Token
13346A basic, grammatically indivisible unit of a language. The symbol
13347that describes a token in the grammar is a terminal symbol.
13348The input of the Bison parser is a stream of tokens which comes from
13349the lexical analyzer. @xref{Symbols}.
13350
13351@item Terminal symbol
89cab50d
AD
13352A grammar symbol that has no rules in the grammar and therefore is
13353grammatically indivisible. The piece of text it represents is a token.
13354@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
13355
13356@item Unreachable state
13357A parser state to which there does not exist a sequence of transitions from
13358the parser's start state. A state can become unreachable during conflict
13359resolution. @xref{Unreachable States}.
bfa74976
RS
13360@end table
13361
342b8b6e 13362@node Copying This Manual
f2b5126e 13363@appendix Copying This Manual
f2b5126e
PB
13364@include fdl.texi
13365
5e528941
JD
13366@node Bibliography
13367@unnumbered Bibliography
13368
13369@table @asis
13370@item [Denny 2008]
13371Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
13372for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
133732008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
13374pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
13375
13376@item [Denny 2010 May]
13377Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
13378Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
13379University, Clemson, SC, USA (May 2010).
13380@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
13381
13382@item [Denny 2010 November]
13383Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
13384Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
13385in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
133862010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
13387
13388@item [DeRemer 1982]
13389Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
13390Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
13391Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
13392615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
13393
13394@item [Knuth 1965]
13395Donald E. Knuth, On the Translation of Languages from Left to Right, in
13396@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
13397607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
13398
13399@item [Scott 2000]
13400Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
13401@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
13402London, Department of Computer Science, TR-00-12 (December 2000).
13403@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
13404@end table
13405
f9b86351
AD
13406@node Index of Terms
13407@unnumbered Index of Terms
bfa74976
RS
13408
13409@printindex cp
13410
bfa74976 13411@bye
a06ea4aa 13412
6b5a0de9
AD
13413@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
13414@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
13415@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
13416@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
13417@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
13418@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
13419@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
13420@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
13421@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
13422@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
13423@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
13424@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
13425@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 13426@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
13427@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
13428@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13429@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13430@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13431@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13432@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13433@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13434@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13435@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13436@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13437@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13438@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13439@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13440@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13441@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13442@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13443@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13444@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13445@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13446@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13447@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13448@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13449@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13450@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13451@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13452@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13453@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13454@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13455@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13456@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13457@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13458@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13459@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13460@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13461@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13462@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13463@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13464@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13465@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13466@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13467@c LocalWords: parsers parser's
13468@c LocalWords: associativity subclasses precedences unresolvable runnable
13469@c LocalWords: allocators subunit initializations unreferenced untyped
13470@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13471
13472@c Local Variables:
13473@c ispell-dictionary: "american"
13474@c fill-column: 76
13475@c End: