]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* data/glr.cc, data/lalr1.cc: Using %defines is mandatory.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
107* C++ Language Interface:: Creating C++ parser objects.
108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
194* Bison Declarations:: Syntax and usage of the Bison declarations section.
195* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 196* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
197
198Defining Language Semantics
199
200* Value Type:: Specifying one data type for all semantic values.
201* Multiple Types:: Specifying several alternative data types.
202* Actions:: An action is the semantic definition of a grammar rule.
203* Action Types:: Specifying data types for actions to operate on.
204* Mid-Rule Actions:: Most actions go at the end of a rule.
205 This says when, why and how to use the exceptional
206 action in the middle of a rule.
207
93dd49ab
PE
208Tracking Locations
209
210* Location Type:: Specifying a data type for locations.
211* Actions and Locations:: Using locations in actions.
212* Location Default Action:: Defining a general way to compute locations.
213
bfa74976
RS
214Bison Declarations
215
b50d2359 216* Require Decl:: Requiring a Bison version.
bfa74976
RS
217* Token Decl:: Declaring terminal symbols.
218* Precedence Decl:: Declaring terminals with precedence and associativity.
219* Union Decl:: Declaring the set of all semantic value types.
220* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 221* Initial Action Decl:: Code run before parsing starts.
72f889cc 222* Destructor Decl:: Declaring how symbols are freed.
d6328241 223* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
224* Start Decl:: Specifying the start symbol.
225* Pure Decl:: Requesting a reentrant parser.
226* Decl Summary:: Table of all Bison declarations.
227
228Parser C-Language Interface
229
230* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 231* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
232 which reads tokens.
233* Error Reporting:: You must supply a function @code{yyerror}.
234* Action Features:: Special features for use in actions.
f7ab6a50
PE
235* Internationalization:: How to let the parser speak in the user's
236 native language.
bfa74976
RS
237
238The Lexical Analyzer Function @code{yylex}
239
240* Calling Convention:: How @code{yyparse} calls @code{yylex}.
241* Token Values:: How @code{yylex} must return the semantic value
242 of the token it has read.
95923bd6 243* Token Locations:: How @code{yylex} must return the text location
bfa74976 244 (line number, etc.) of the token, if the
93dd49ab 245 actions want that.
bfa74976
RS
246* Pure Calling:: How the calling convention differs
247 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
248
13863333 249The Bison Parser Algorithm
bfa74976
RS
250
251* Look-Ahead:: Parser looks one token ahead when deciding what to do.
252* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
253* Precedence:: Operator precedence works by resolving conflicts.
254* Contextual Precedence:: When an operator's precedence depends on context.
255* Parser States:: The parser is a finite-state-machine with stack.
256* Reduce/Reduce:: When two rules are applicable in the same situation.
257* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 258* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 259* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
260
261Operator Precedence
262
263* Why Precedence:: An example showing why precedence is needed.
264* Using Precedence:: How to specify precedence in Bison grammars.
265* Precedence Examples:: How these features are used in the previous example.
266* How Precedence:: How they work.
267
268Handling Context Dependencies
269
270* Semantic Tokens:: Token parsing can depend on the semantic context.
271* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
272* Tie-in Recovery:: Lexical tie-ins have implications for how
273 error recovery rules must be written.
274
93dd49ab 275Debugging Your Parser
ec3bc396
AD
276
277* Understanding:: Understanding the structure of your parser.
278* Tracing:: Tracing the execution of your parser.
279
bfa74976
RS
280Invoking Bison
281
13863333 282* Bison Options:: All the options described in detail,
c827f760 283 in alphabetical order by short options.
bfa74976 284* Option Cross Key:: Alphabetical list of long options.
93dd49ab 285* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 286
12545799
AD
287C++ Language Interface
288
289* C++ Parsers:: The interface to generate C++ parser classes
290* A Complete C++ Example:: Demonstrating their use
291
292C++ Parsers
293
294* C++ Bison Interface:: Asking for C++ parser generation
295* C++ Semantic Values:: %union vs. C++
296* C++ Location Values:: The position and location classes
297* C++ Parser Interface:: Instantiating and running the parser
298* C++ Scanner Interface:: Exchanges between yylex and parse
299
300A Complete C++ Example
301
302* Calc++ --- C++ Calculator:: The specifications
303* Calc++ Parsing Driver:: An active parsing context
304* Calc++ Parser:: A parser class
305* Calc++ Scanner:: A pure C++ Flex scanner
306* Calc++ Top Level:: Conducting the band
307
d1a1114f
AD
308Frequently Asked Questions
309
1a059451 310* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 311* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 312* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 313* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 314* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
315* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
316* I can't build Bison:: Troubleshooting
317* Where can I find help?:: Troubleshouting
318* Bug Reports:: Troublereporting
319* Other Languages:: Parsers in Java and others
320* Beta Testing:: Experimenting development versions
321* Mailing Lists:: Meeting other Bison users
d1a1114f 322
f2b5126e
PB
323Copying This Manual
324
325* GNU Free Documentation License:: License for copying this manual.
326
342b8b6e 327@end detailmenu
bfa74976
RS
328@end menu
329
342b8b6e 330@node Introduction
bfa74976
RS
331@unnumbered Introduction
332@cindex introduction
333
1e137b71
JD
334@dfn{Bison} is a general-purpose parser generator that converts a grammar
335description for an @acronym{LALR}(1) or @acronym{GLR} context-free grammar
336into a C or C++ program to parse that grammar. Once you are proficient with
337Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
338used in simple desk calculators to complex programming languages.
339
340Bison is upward compatible with Yacc: all properly-written Yacc grammars
341ought to work with Bison with no change. Anyone familiar with Yacc
342should be able to use Bison with little trouble. You need to be fluent in
1e137b71 343C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
344
345We begin with tutorial chapters that explain the basic concepts of using
346Bison and show three explained examples, each building on the last. If you
347don't know Bison or Yacc, start by reading these chapters. Reference
348chapters follow which describe specific aspects of Bison in detail.
349
931c7513
RS
350Bison was written primarily by Robert Corbett; Richard Stallman made it
351Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 352multi-character string literals and other features.
931c7513 353
df1af54c 354This edition corresponds to version @value{VERSION} of Bison.
bfa74976 355
342b8b6e 356@node Conditions
bfa74976
RS
357@unnumbered Conditions for Using Bison
358
193d7c70
PE
359The distribution terms for Bison-generated parsers permit using the
360parsers in nonfree programs. Before Bison version 2.2, these extra
361permissions applied only when Bison was generating @acronym{LALR}(1)
362parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 363parsers could be used only in programs that were free software.
a31239f1 364
c827f760
PE
365The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
366compiler, have never
9ecbd125 367had such a requirement. They could always be used for nonfree
a31239f1
RS
368software. The reason Bison was different was not due to a special
369policy decision; it resulted from applying the usual General Public
370License to all of the Bison source code.
371
372The output of the Bison utility---the Bison parser file---contains a
373verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
374parser's implementation. (The actions from your grammar are inserted
375into this implementation at one point, but most of the rest of the
376implementation is not changed.) When we applied the @acronym{GPL}
377terms to the skeleton code for the parser's implementation,
a31239f1
RS
378the effect was to restrict the use of Bison output to free software.
379
380We didn't change the terms because of sympathy for people who want to
381make software proprietary. @strong{Software should be free.} But we
382concluded that limiting Bison's use to free software was doing little to
383encourage people to make other software free. So we decided to make the
384practical conditions for using Bison match the practical conditions for
c827f760 385using the other @acronym{GNU} tools.
bfa74976 386
193d7c70
PE
387This exception applies when Bison is generating code for a parser.
388You can tell whether the exception applies to a Bison output file by
389inspecting the file for text beginning with ``As a special
390exception@dots{}''. The text spells out the exact terms of the
391exception.
262aa8dd 392
c67a198d 393@include gpl.texi
bfa74976 394
342b8b6e 395@node Concepts
bfa74976
RS
396@chapter The Concepts of Bison
397
398This chapter introduces many of the basic concepts without which the
399details of Bison will not make sense. If you do not already know how to
400use Bison or Yacc, we suggest you start by reading this chapter carefully.
401
402@menu
403* Language and Grammar:: Languages and context-free grammars,
404 as mathematical ideas.
405* Grammar in Bison:: How we represent grammars for Bison's sake.
406* Semantic Values:: Each token or syntactic grouping can have
407 a semantic value (the value of an integer,
408 the name of an identifier, etc.).
409* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 410* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 411* Locations Overview:: Tracking Locations.
bfa74976
RS
412* Bison Parser:: What are Bison's input and output,
413 how is the output used?
414* Stages:: Stages in writing and running Bison grammars.
415* Grammar Layout:: Overall structure of a Bison grammar file.
416@end menu
417
342b8b6e 418@node Language and Grammar
bfa74976
RS
419@section Languages and Context-Free Grammars
420
bfa74976
RS
421@cindex context-free grammar
422@cindex grammar, context-free
423In order for Bison to parse a language, it must be described by a
424@dfn{context-free grammar}. This means that you specify one or more
425@dfn{syntactic groupings} and give rules for constructing them from their
426parts. For example, in the C language, one kind of grouping is called an
427`expression'. One rule for making an expression might be, ``An expression
428can be made of a minus sign and another expression''. Another would be,
429``An expression can be an integer''. As you can see, rules are often
430recursive, but there must be at least one rule which leads out of the
431recursion.
432
c827f760 433@cindex @acronym{BNF}
bfa74976
RS
434@cindex Backus-Naur form
435The most common formal system for presenting such rules for humans to read
c827f760
PE
436is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
437order to specify the language Algol 60. Any grammar expressed in
438@acronym{BNF} is a context-free grammar. The input to Bison is
439essentially machine-readable @acronym{BNF}.
bfa74976 440
c827f760
PE
441@cindex @acronym{LALR}(1) grammars
442@cindex @acronym{LR}(1) grammars
676385e2
PH
443There are various important subclasses of context-free grammar. Although it
444can handle almost all context-free grammars, Bison is optimized for what
c827f760 445are called @acronym{LALR}(1) grammars.
676385e2 446In brief, in these grammars, it must be possible to
bfa74976
RS
447tell how to parse any portion of an input string with just a single
448token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
449@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
450restrictions that are
bfa74976 451hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
452@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
453@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
454more information on this.
bfa74976 455
c827f760
PE
456@cindex @acronym{GLR} parsing
457@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 458@cindex ambiguous grammars
9d9b8b70 459@cindex nondeterministic parsing
9501dc6e
AD
460
461Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
462roughly that the next grammar rule to apply at any point in the input is
463uniquely determined by the preceding input and a fixed, finite portion
464(called a @dfn{look-ahead}) of the remaining input. A context-free
465grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 466apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 467grammars can be @dfn{nondeterministic}, meaning that no fixed
9501dc6e
AD
468look-ahead always suffices to determine the next grammar rule to apply.
469With the proper declarations, Bison is also able to parse these more
470general context-free grammars, using a technique known as @acronym{GLR}
471parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
472are able to handle any context-free grammar for which the number of
473possible parses of any given string is finite.
676385e2 474
bfa74976
RS
475@cindex symbols (abstract)
476@cindex token
477@cindex syntactic grouping
478@cindex grouping, syntactic
9501dc6e
AD
479In the formal grammatical rules for a language, each kind of syntactic
480unit or grouping is named by a @dfn{symbol}. Those which are built by
481grouping smaller constructs according to grammatical rules are called
bfa74976
RS
482@dfn{nonterminal symbols}; those which can't be subdivided are called
483@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
484corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 485corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
486
487We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
488nonterminal, mean. The tokens of C are identifiers, constants (numeric
489and string), and the various keywords, arithmetic operators and
490punctuation marks. So the terminal symbols of a grammar for C include
491`identifier', `number', `string', plus one symbol for each keyword,
492operator or punctuation mark: `if', `return', `const', `static', `int',
493`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
494(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
495lexicography, not grammar.)
496
497Here is a simple C function subdivided into tokens:
498
9edcd895
AD
499@ifinfo
500@example
501int /* @r{keyword `int'} */
14d4662b 502square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
503 @r{identifier, close-paren} */
504@{ /* @r{open-brace} */
aa08666d
AD
505 return x * x; /* @r{keyword `return', identifier, asterisk,}
506 @r{identifier, semicolon} */
9edcd895
AD
507@} /* @r{close-brace} */
508@end example
509@end ifinfo
510@ifnotinfo
bfa74976
RS
511@example
512int /* @r{keyword `int'} */
14d4662b 513square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 514@{ /* @r{open-brace} */
9edcd895 515 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
516@} /* @r{close-brace} */
517@end example
9edcd895 518@end ifnotinfo
bfa74976
RS
519
520The syntactic groupings of C include the expression, the statement, the
521declaration, and the function definition. These are represented in the
522grammar of C by nonterminal symbols `expression', `statement',
523`declaration' and `function definition'. The full grammar uses dozens of
524additional language constructs, each with its own nonterminal symbol, in
525order to express the meanings of these four. The example above is a
526function definition; it contains one declaration, and one statement. In
527the statement, each @samp{x} is an expression and so is @samp{x * x}.
528
529Each nonterminal symbol must have grammatical rules showing how it is made
530out of simpler constructs. For example, one kind of C statement is the
531@code{return} statement; this would be described with a grammar rule which
532reads informally as follows:
533
534@quotation
535A `statement' can be made of a `return' keyword, an `expression' and a
536`semicolon'.
537@end quotation
538
539@noindent
540There would be many other rules for `statement', one for each kind of
541statement in C.
542
543@cindex start symbol
544One nonterminal symbol must be distinguished as the special one which
545defines a complete utterance in the language. It is called the @dfn{start
546symbol}. In a compiler, this means a complete input program. In the C
547language, the nonterminal symbol `sequence of definitions and declarations'
548plays this role.
549
550For example, @samp{1 + 2} is a valid C expression---a valid part of a C
551program---but it is not valid as an @emph{entire} C program. In the
552context-free grammar of C, this follows from the fact that `expression' is
553not the start symbol.
554
555The Bison parser reads a sequence of tokens as its input, and groups the
556tokens using the grammar rules. If the input is valid, the end result is
557that the entire token sequence reduces to a single grouping whose symbol is
558the grammar's start symbol. If we use a grammar for C, the entire input
559must be a `sequence of definitions and declarations'. If not, the parser
560reports a syntax error.
561
342b8b6e 562@node Grammar in Bison
bfa74976
RS
563@section From Formal Rules to Bison Input
564@cindex Bison grammar
565@cindex grammar, Bison
566@cindex formal grammar
567
568A formal grammar is a mathematical construct. To define the language
569for Bison, you must write a file expressing the grammar in Bison syntax:
570a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
571
572A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 573as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
574in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
575
576The Bison representation for a terminal symbol is also called a @dfn{token
577type}. Token types as well can be represented as C-like identifiers. By
578convention, these identifiers should be upper case to distinguish them from
579nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
580@code{RETURN}. A terminal symbol that stands for a particular keyword in
581the language should be named after that keyword converted to upper case.
582The terminal symbol @code{error} is reserved for error recovery.
931c7513 583@xref{Symbols}.
bfa74976
RS
584
585A terminal symbol can also be represented as a character literal, just like
586a C character constant. You should do this whenever a token is just a
587single character (parenthesis, plus-sign, etc.): use that same character in
588a literal as the terminal symbol for that token.
589
931c7513
RS
590A third way to represent a terminal symbol is with a C string constant
591containing several characters. @xref{Symbols}, for more information.
592
bfa74976
RS
593The grammar rules also have an expression in Bison syntax. For example,
594here is the Bison rule for a C @code{return} statement. The semicolon in
595quotes is a literal character token, representing part of the C syntax for
596the statement; the naked semicolon, and the colon, are Bison punctuation
597used in every rule.
598
599@example
600stmt: RETURN expr ';'
601 ;
602@end example
603
604@noindent
605@xref{Rules, ,Syntax of Grammar Rules}.
606
342b8b6e 607@node Semantic Values
bfa74976
RS
608@section Semantic Values
609@cindex semantic value
610@cindex value, semantic
611
612A formal grammar selects tokens only by their classifications: for example,
613if a rule mentions the terminal symbol `integer constant', it means that
614@emph{any} integer constant is grammatically valid in that position. The
615precise value of the constant is irrelevant to how to parse the input: if
616@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 617grammatical.
bfa74976
RS
618
619But the precise value is very important for what the input means once it is
620parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6213989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
622has both a token type and a @dfn{semantic value}. @xref{Semantics,
623,Defining Language Semantics},
bfa74976
RS
624for details.
625
626The token type is a terminal symbol defined in the grammar, such as
627@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
628you need to know to decide where the token may validly appear and how to
629group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 630except their types.
bfa74976
RS
631
632The semantic value has all the rest of the information about the
633meaning of the token, such as the value of an integer, or the name of an
634identifier. (A token such as @code{','} which is just punctuation doesn't
635need to have any semantic value.)
636
637For example, an input token might be classified as token type
638@code{INTEGER} and have the semantic value 4. Another input token might
639have the same token type @code{INTEGER} but value 3989. When a grammar
640rule says that @code{INTEGER} is allowed, either of these tokens is
641acceptable because each is an @code{INTEGER}. When the parser accepts the
642token, it keeps track of the token's semantic value.
643
644Each grouping can also have a semantic value as well as its nonterminal
645symbol. For example, in a calculator, an expression typically has a
646semantic value that is a number. In a compiler for a programming
647language, an expression typically has a semantic value that is a tree
648structure describing the meaning of the expression.
649
342b8b6e 650@node Semantic Actions
bfa74976
RS
651@section Semantic Actions
652@cindex semantic actions
653@cindex actions, semantic
654
655In order to be useful, a program must do more than parse input; it must
656also produce some output based on the input. In a Bison grammar, a grammar
657rule can have an @dfn{action} made up of C statements. Each time the
658parser recognizes a match for that rule, the action is executed.
659@xref{Actions}.
13863333 660
bfa74976
RS
661Most of the time, the purpose of an action is to compute the semantic value
662of the whole construct from the semantic values of its parts. For example,
663suppose we have a rule which says an expression can be the sum of two
664expressions. When the parser recognizes such a sum, each of the
665subexpressions has a semantic value which describes how it was built up.
666The action for this rule should create a similar sort of value for the
667newly recognized larger expression.
668
669For example, here is a rule that says an expression can be the sum of
670two subexpressions:
671
672@example
673expr: expr '+' expr @{ $$ = $1 + $3; @}
674 ;
675@end example
676
677@noindent
678The action says how to produce the semantic value of the sum expression
679from the values of the two subexpressions.
680
676385e2 681@node GLR Parsers
c827f760
PE
682@section Writing @acronym{GLR} Parsers
683@cindex @acronym{GLR} parsing
684@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
685@findex %glr-parser
686@cindex conflicts
687@cindex shift/reduce conflicts
fa7e68c3 688@cindex reduce/reduce conflicts
676385e2 689
fa7e68c3 690In some grammars, Bison's standard
9501dc6e
AD
691@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
692certain grammar rule at a given point. That is, it may not be able to
693decide (on the basis of the input read so far) which of two possible
694reductions (applications of a grammar rule) applies, or whether to apply
695a reduction or read more of the input and apply a reduction later in the
696input. These are known respectively as @dfn{reduce/reduce} conflicts
697(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
698(@pxref{Shift/Reduce}).
699
700To use a grammar that is not easily modified to be @acronym{LALR}(1), a
701more general parsing algorithm is sometimes necessary. If you include
676385e2 702@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 703(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
704(@acronym{GLR}) parser. These parsers handle Bison grammars that
705contain no unresolved conflicts (i.e., after applying precedence
706declarations) identically to @acronym{LALR}(1) parsers. However, when
707faced with unresolved shift/reduce and reduce/reduce conflicts,
708@acronym{GLR} parsers use the simple expedient of doing both,
709effectively cloning the parser to follow both possibilities. Each of
710the resulting parsers can again split, so that at any given time, there
711can be any number of possible parses being explored. The parsers
676385e2
PH
712proceed in lockstep; that is, all of them consume (shift) a given input
713symbol before any of them proceed to the next. Each of the cloned
714parsers eventually meets one of two possible fates: either it runs into
715a parsing error, in which case it simply vanishes, or it merges with
716another parser, because the two of them have reduced the input to an
717identical set of symbols.
718
719During the time that there are multiple parsers, semantic actions are
720recorded, but not performed. When a parser disappears, its recorded
721semantic actions disappear as well, and are never performed. When a
722reduction makes two parsers identical, causing them to merge, Bison
723records both sets of semantic actions. Whenever the last two parsers
724merge, reverting to the single-parser case, Bison resolves all the
725outstanding actions either by precedences given to the grammar rules
726involved, or by performing both actions, and then calling a designated
727user-defined function on the resulting values to produce an arbitrary
728merged result.
729
fa7e68c3 730@menu
32c29292
JD
731* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
732* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
733* GLR Semantic Actions:: Deferred semantic actions have special concerns.
734* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
735@end menu
736
737@node Simple GLR Parsers
738@subsection Using @acronym{GLR} on Unambiguous Grammars
739@cindex @acronym{GLR} parsing, unambiguous grammars
740@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
741@findex %glr-parser
742@findex %expect-rr
743@cindex conflicts
744@cindex reduce/reduce conflicts
745@cindex shift/reduce conflicts
746
747In the simplest cases, you can use the @acronym{GLR} algorithm
748to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
749Such grammars typically require more than one symbol of look-ahead,
750or (in rare cases) fall into the category of grammars in which the
751@acronym{LALR}(1) algorithm throws away too much information (they are in
752@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
753
754Consider a problem that
755arises in the declaration of enumerated and subrange types in the
756programming language Pascal. Here are some examples:
757
758@example
759type subrange = lo .. hi;
760type enum = (a, b, c);
761@end example
762
763@noindent
764The original language standard allows only numeric
765literals and constant identifiers for the subrange bounds (@samp{lo}
766and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76710206) and many other
768Pascal implementations allow arbitrary expressions there. This gives
769rise to the following situation, containing a superfluous pair of
770parentheses:
771
772@example
773type subrange = (a) .. b;
774@end example
775
776@noindent
777Compare this to the following declaration of an enumerated
778type with only one value:
779
780@example
781type enum = (a);
782@end example
783
784@noindent
785(These declarations are contrived, but they are syntactically
786valid, and more-complicated cases can come up in practical programs.)
787
788These two declarations look identical until the @samp{..} token.
789With normal @acronym{LALR}(1) one-token look-ahead it is not
790possible to decide between the two forms when the identifier
791@samp{a} is parsed. It is, however, desirable
792for a parser to decide this, since in the latter case
793@samp{a} must become a new identifier to represent the enumeration
794value, while in the former case @samp{a} must be evaluated with its
795current meaning, which may be a constant or even a function call.
796
797You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
798to be resolved later, but this typically requires substantial
799contortions in both semantic actions and large parts of the
800grammar, where the parentheses are nested in the recursive rules for
801expressions.
802
803You might think of using the lexer to distinguish between the two
804forms by returning different tokens for currently defined and
805undefined identifiers. But if these declarations occur in a local
806scope, and @samp{a} is defined in an outer scope, then both forms
807are possible---either locally redefining @samp{a}, or using the
808value of @samp{a} from the outer scope. So this approach cannot
809work.
810
e757bb10 811A simple solution to this problem is to declare the parser to
fa7e68c3
PE
812use the @acronym{GLR} algorithm.
813When the @acronym{GLR} parser reaches the critical state, it
814merely splits into two branches and pursues both syntax rules
815simultaneously. Sooner or later, one of them runs into a parsing
816error. If there is a @samp{..} token before the next
817@samp{;}, the rule for enumerated types fails since it cannot
818accept @samp{..} anywhere; otherwise, the subrange type rule
819fails since it requires a @samp{..} token. So one of the branches
820fails silently, and the other one continues normally, performing
821all the intermediate actions that were postponed during the split.
822
823If the input is syntactically incorrect, both branches fail and the parser
824reports a syntax error as usual.
825
826The effect of all this is that the parser seems to ``guess'' the
827correct branch to take, or in other words, it seems to use more
828look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
829for. In this example, @acronym{LALR}(2) would suffice, but also some cases
830that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
831
832In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
833and the current Bison parser even takes exponential time and space
834for some grammars. In practice, this rarely happens, and for many
835grammars it is possible to prove that it cannot happen.
836The present example contains only one conflict between two
837rules, and the type-declaration context containing the conflict
838cannot be nested. So the number of
839branches that can exist at any time is limited by the constant 2,
840and the parsing time is still linear.
841
842Here is a Bison grammar corresponding to the example above. It
843parses a vastly simplified form of Pascal type declarations.
844
845@example
846%token TYPE DOTDOT ID
847
848@group
849%left '+' '-'
850%left '*' '/'
851@end group
852
853%%
854
855@group
856type_decl : TYPE ID '=' type ';'
857 ;
858@end group
859
860@group
861type : '(' id_list ')'
862 | expr DOTDOT expr
863 ;
864@end group
865
866@group
867id_list : ID
868 | id_list ',' ID
869 ;
870@end group
871
872@group
873expr : '(' expr ')'
874 | expr '+' expr
875 | expr '-' expr
876 | expr '*' expr
877 | expr '/' expr
878 | ID
879 ;
880@end group
881@end example
882
883When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
884about one reduce/reduce conflict. In the conflicting situation the
885parser chooses one of the alternatives, arbitrarily the one
886declared first. Therefore the following correct input is not
887recognized:
888
889@example
890type t = (a) .. b;
891@end example
892
893The parser can be turned into a @acronym{GLR} parser, while also telling Bison
894to be silent about the one known reduce/reduce conflict, by
e757bb10 895adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
896@samp{%%}):
897
898@example
899%glr-parser
900%expect-rr 1
901@end example
902
903@noindent
904No change in the grammar itself is required. Now the
905parser recognizes all valid declarations, according to the
906limited syntax above, transparently. In fact, the user does not even
907notice when the parser splits.
908
f8e1c9e5
AD
909So here we have a case where we can use the benefits of @acronym{GLR},
910almost without disadvantages. Even in simple cases like this, however,
911there are at least two potential problems to beware. First, always
912analyze the conflicts reported by Bison to make sure that @acronym{GLR}
913splitting is only done where it is intended. A @acronym{GLR} parser
914splitting inadvertently may cause problems less obvious than an
915@acronym{LALR} parser statically choosing the wrong alternative in a
916conflict. Second, consider interactions with the lexer (@pxref{Semantic
917Tokens}) with great care. Since a split parser consumes tokens without
918performing any actions during the split, the lexer cannot obtain
919information via parser actions. Some cases of lexer interactions can be
920eliminated by using @acronym{GLR} to shift the complications from the
921lexer to the parser. You must check the remaining cases for
922correctness.
923
924In our example, it would be safe for the lexer to return tokens based on
925their current meanings in some symbol table, because no new symbols are
926defined in the middle of a type declaration. Though it is possible for
927a parser to define the enumeration constants as they are parsed, before
928the type declaration is completed, it actually makes no difference since
929they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
930
931@node Merging GLR Parses
932@subsection Using @acronym{GLR} to Resolve Ambiguities
933@cindex @acronym{GLR} parsing, ambiguous grammars
934@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
935@findex %dprec
936@findex %merge
937@cindex conflicts
938@cindex reduce/reduce conflicts
939
2a8d363a 940Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
941
942@example
943%@{
38a92d50
PE
944 #include <stdio.h>
945 #define YYSTYPE char const *
946 int yylex (void);
947 void yyerror (char const *);
676385e2
PH
948%@}
949
950%token TYPENAME ID
951
952%right '='
953%left '+'
954
955%glr-parser
956
957%%
958
fae437e8 959prog :
676385e2
PH
960 | prog stmt @{ printf ("\n"); @}
961 ;
962
963stmt : expr ';' %dprec 1
964 | decl %dprec 2
965 ;
966
2a8d363a 967expr : ID @{ printf ("%s ", $$); @}
fae437e8 968 | TYPENAME '(' expr ')'
2a8d363a
AD
969 @{ printf ("%s <cast> ", $1); @}
970 | expr '+' expr @{ printf ("+ "); @}
971 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
972 ;
973
fae437e8 974decl : TYPENAME declarator ';'
2a8d363a 975 @{ printf ("%s <declare> ", $1); @}
676385e2 976 | TYPENAME declarator '=' expr ';'
2a8d363a 977 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
978 ;
979
2a8d363a 980declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
981 | '(' declarator ')'
982 ;
983@end example
984
985@noindent
986This models a problematic part of the C++ grammar---the ambiguity between
987certain declarations and statements. For example,
988
989@example
990T (x) = y+z;
991@end example
992
993@noindent
994parses as either an @code{expr} or a @code{stmt}
c827f760
PE
995(assuming that @samp{T} is recognized as a @code{TYPENAME} and
996@samp{x} as an @code{ID}).
676385e2 997Bison detects this as a reduce/reduce conflict between the rules
fae437e8 998@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
999time it encounters @code{x} in the example above. Since this is a
1000@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1001each choice of resolving the reduce/reduce conflict.
1002Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1003however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1004ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1005the other reduces @code{stmt : decl}, after which both parsers are in an
1006identical state: they've seen @samp{prog stmt} and have the same unprocessed
1007input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1008
1009At this point, the @acronym{GLR} parser requires a specification in the
1010grammar of how to choose between the competing parses.
1011In the example above, the two @code{%dprec}
e757bb10 1012declarations specify that Bison is to give precedence
fa7e68c3 1013to the parse that interprets the example as a
676385e2
PH
1014@code{decl}, which implies that @code{x} is a declarator.
1015The parser therefore prints
1016
1017@example
fae437e8 1018"x" y z + T <init-declare>
676385e2
PH
1019@end example
1020
fa7e68c3
PE
1021The @code{%dprec} declarations only come into play when more than one
1022parse survives. Consider a different input string for this parser:
676385e2
PH
1023
1024@example
1025T (x) + y;
1026@end example
1027
1028@noindent
e757bb10 1029This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1030construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1031Here, there is no ambiguity (this cannot be parsed as a declaration).
1032However, at the time the Bison parser encounters @code{x}, it does not
1033have enough information to resolve the reduce/reduce conflict (again,
1034between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1035case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1036into two, one assuming that @code{x} is an @code{expr}, and the other
1037assuming @code{x} is a @code{declarator}. The second of these parsers
1038then vanishes when it sees @code{+}, and the parser prints
1039
1040@example
fae437e8 1041x T <cast> y +
676385e2
PH
1042@end example
1043
1044Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1045the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1046actions of the two possible parsers, rather than choosing one over the
1047other. To do so, you could change the declaration of @code{stmt} as
1048follows:
1049
1050@example
1051stmt : expr ';' %merge <stmtMerge>
1052 | decl %merge <stmtMerge>
1053 ;
1054@end example
1055
1056@noindent
676385e2
PH
1057and define the @code{stmtMerge} function as:
1058
1059@example
38a92d50
PE
1060static YYSTYPE
1061stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1062@{
1063 printf ("<OR> ");
1064 return "";
1065@}
1066@end example
1067
1068@noindent
1069with an accompanying forward declaration
1070in the C declarations at the beginning of the file:
1071
1072@example
1073%@{
38a92d50 1074 #define YYSTYPE char const *
676385e2
PH
1075 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1076%@}
1077@end example
1078
1079@noindent
fa7e68c3
PE
1080With these declarations, the resulting parser parses the first example
1081as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1082
1083@example
fae437e8 1084"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1085@end example
1086
fa7e68c3 1087Bison requires that all of the
e757bb10 1088productions that participate in any particular merge have identical
fa7e68c3
PE
1089@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1090and the parser will report an error during any parse that results in
1091the offending merge.
9501dc6e 1092
32c29292
JD
1093@node GLR Semantic Actions
1094@subsection GLR Semantic Actions
1095
1096@cindex deferred semantic actions
1097By definition, a deferred semantic action is not performed at the same time as
1098the associated reduction.
1099This raises caveats for several Bison features you might use in a semantic
1100action in a @acronym{GLR} parser.
1101
1102@vindex yychar
1103@cindex @acronym{GLR} parsers and @code{yychar}
1104@vindex yylval
1105@cindex @acronym{GLR} parsers and @code{yylval}
1106@vindex yylloc
1107@cindex @acronym{GLR} parsers and @code{yylloc}
1108In any semantic action, you can examine @code{yychar} to determine the type of
1109the look-ahead token present at the time of the associated reduction.
1110After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1111you can then examine @code{yylval} and @code{yylloc} to determine the
1112look-ahead token's semantic value and location, if any.
1113In a nondeferred semantic action, you can also modify any of these variables to
1114influence syntax analysis.
1115@xref{Look-Ahead, ,Look-Ahead Tokens}.
1116
1117@findex yyclearin
1118@cindex @acronym{GLR} parsers and @code{yyclearin}
1119In a deferred semantic action, it's too late to influence syntax analysis.
1120In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1121shallow copies of the values they had at the time of the associated reduction.
1122For this reason alone, modifying them is dangerous.
1123Moreover, the result of modifying them is undefined and subject to change with
1124future versions of Bison.
1125For example, if a semantic action might be deferred, you should never write it
1126to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1127memory referenced by @code{yylval}.
1128
1129@findex YYERROR
1130@cindex @acronym{GLR} parsers and @code{YYERROR}
1131Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1132(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1133initiate error recovery.
1134During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1135the same as its effect in an @acronym{LALR}(1) parser.
1136In a deferred semantic action, its effect is undefined.
1137@c The effect is probably a syntax error at the split point.
1138
8710fc41
JD
1139Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1140describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1141
fa7e68c3
PE
1142@node Compiler Requirements
1143@subsection Considerations when Compiling @acronym{GLR} Parsers
1144@cindex @code{inline}
9501dc6e 1145@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1146
38a92d50
PE
1147The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1148later. In addition, they use the @code{inline} keyword, which is not
1149C89, but is C99 and is a common extension in pre-C99 compilers. It is
1150up to the user of these parsers to handle
9501dc6e
AD
1151portability issues. For instance, if using Autoconf and the Autoconf
1152macro @code{AC_C_INLINE}, a mere
1153
1154@example
1155%@{
38a92d50 1156 #include <config.h>
9501dc6e
AD
1157%@}
1158@end example
1159
1160@noindent
1161will suffice. Otherwise, we suggest
1162
1163@example
1164%@{
38a92d50
PE
1165 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1166 #define inline
1167 #endif
9501dc6e
AD
1168%@}
1169@end example
676385e2 1170
342b8b6e 1171@node Locations Overview
847bf1f5
AD
1172@section Locations
1173@cindex location
95923bd6
AD
1174@cindex textual location
1175@cindex location, textual
847bf1f5
AD
1176
1177Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1178and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1179the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1180Bison provides a mechanism for handling these locations.
1181
72d2299c 1182Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1183associated location, but the type of locations is the same for all tokens and
72d2299c 1184groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1185structure for storing locations (@pxref{Locations}, for more details).
1186
1187Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1188set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1189is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1190@code{@@3}.
1191
1192When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1193of its left hand side (@pxref{Actions}). In the same way, another default
1194action is used for locations. However, the action for locations is general
847bf1f5 1195enough for most cases, meaning there is usually no need to describe for each
72d2299c 1196rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1197grouping, the default behavior of the output parser is to take the beginning
1198of the first symbol, and the end of the last symbol.
1199
342b8b6e 1200@node Bison Parser
bfa74976
RS
1201@section Bison Output: the Parser File
1202@cindex Bison parser
1203@cindex Bison utility
1204@cindex lexical analyzer, purpose
1205@cindex parser
1206
1207When you run Bison, you give it a Bison grammar file as input. The output
1208is a C source file that parses the language described by the grammar.
1209This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1210utility and the Bison parser are two distinct programs: the Bison utility
1211is a program whose output is the Bison parser that becomes part of your
1212program.
1213
1214The job of the Bison parser is to group tokens into groupings according to
1215the grammar rules---for example, to build identifiers and operators into
1216expressions. As it does this, it runs the actions for the grammar rules it
1217uses.
1218
704a47c4
AD
1219The tokens come from a function called the @dfn{lexical analyzer} that
1220you must supply in some fashion (such as by writing it in C). The Bison
1221parser calls the lexical analyzer each time it wants a new token. It
1222doesn't know what is ``inside'' the tokens (though their semantic values
1223may reflect this). Typically the lexical analyzer makes the tokens by
1224parsing characters of text, but Bison does not depend on this.
1225@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1226
1227The Bison parser file is C code which defines a function named
1228@code{yyparse} which implements that grammar. This function does not make
1229a complete C program: you must supply some additional functions. One is
1230the lexical analyzer. Another is an error-reporting function which the
1231parser calls to report an error. In addition, a complete C program must
1232start with a function called @code{main}; you have to provide this, and
1233arrange for it to call @code{yyparse} or the parser will never run.
1234@xref{Interface, ,Parser C-Language Interface}.
1235
f7ab6a50 1236Aside from the token type names and the symbols in the actions you
7093d0f5 1237write, all symbols defined in the Bison parser file itself
bfa74976
RS
1238begin with @samp{yy} or @samp{YY}. This includes interface functions
1239such as the lexical analyzer function @code{yylex}, the error reporting
1240function @code{yyerror} and the parser function @code{yyparse} itself.
1241This also includes numerous identifiers used for internal purposes.
1242Therefore, you should avoid using C identifiers starting with @samp{yy}
1243or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1244this manual. Also, you should avoid using the C identifiers
1245@samp{malloc} and @samp{free} for anything other than their usual
1246meanings.
bfa74976 1247
7093d0f5
AD
1248In some cases the Bison parser file includes system headers, and in
1249those cases your code should respect the identifiers reserved by those
55289366 1250headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1251@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1252declare memory allocators and related types. @code{<libintl.h>} is
1253included if message translation is in use
1254(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1255be included if you define @code{YYDEBUG} to a nonzero value
1256(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1257
342b8b6e 1258@node Stages
bfa74976
RS
1259@section Stages in Using Bison
1260@cindex stages in using Bison
1261@cindex using Bison
1262
1263The actual language-design process using Bison, from grammar specification
1264to a working compiler or interpreter, has these parts:
1265
1266@enumerate
1267@item
1268Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1269(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1270in the language, describe the action that is to be taken when an
1271instance of that rule is recognized. The action is described by a
1272sequence of C statements.
bfa74976
RS
1273
1274@item
704a47c4
AD
1275Write a lexical analyzer to process input and pass tokens to the parser.
1276The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1277Lexical Analyzer Function @code{yylex}}). It could also be produced
1278using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1279
1280@item
1281Write a controlling function that calls the Bison-produced parser.
1282
1283@item
1284Write error-reporting routines.
1285@end enumerate
1286
1287To turn this source code as written into a runnable program, you
1288must follow these steps:
1289
1290@enumerate
1291@item
1292Run Bison on the grammar to produce the parser.
1293
1294@item
1295Compile the code output by Bison, as well as any other source files.
1296
1297@item
1298Link the object files to produce the finished product.
1299@end enumerate
1300
342b8b6e 1301@node Grammar Layout
bfa74976
RS
1302@section The Overall Layout of a Bison Grammar
1303@cindex grammar file
1304@cindex file format
1305@cindex format of grammar file
1306@cindex layout of Bison grammar
1307
1308The input file for the Bison utility is a @dfn{Bison grammar file}. The
1309general form of a Bison grammar file is as follows:
1310
1311@example
1312%@{
08e49d20 1313@var{Prologue}
bfa74976
RS
1314%@}
1315
1316@var{Bison declarations}
1317
1318%%
1319@var{Grammar rules}
1320%%
08e49d20 1321@var{Epilogue}
bfa74976
RS
1322@end example
1323
1324@noindent
1325The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1326in every Bison grammar file to separate the sections.
1327
72d2299c 1328The prologue may define types and variables used in the actions. You can
342b8b6e 1329also use preprocessor commands to define macros used there, and use
bfa74976 1330@code{#include} to include header files that do any of these things.
38a92d50
PE
1331You need to declare the lexical analyzer @code{yylex} and the error
1332printer @code{yyerror} here, along with any other global identifiers
1333used by the actions in the grammar rules.
bfa74976
RS
1334
1335The Bison declarations declare the names of the terminal and nonterminal
1336symbols, and may also describe operator precedence and the data types of
1337semantic values of various symbols.
1338
1339The grammar rules define how to construct each nonterminal symbol from its
1340parts.
1341
38a92d50
PE
1342The epilogue can contain any code you want to use. Often the
1343definitions of functions declared in the prologue go here. In a
1344simple program, all the rest of the program can go here.
bfa74976 1345
342b8b6e 1346@node Examples
bfa74976
RS
1347@chapter Examples
1348@cindex simple examples
1349@cindex examples, simple
1350
1351Now we show and explain three sample programs written using Bison: a
1352reverse polish notation calculator, an algebraic (infix) notation
1353calculator, and a multi-function calculator. All three have been tested
1354under BSD Unix 4.3; each produces a usable, though limited, interactive
1355desk-top calculator.
1356
1357These examples are simple, but Bison grammars for real programming
aa08666d
AD
1358languages are written the same way. You can copy these examples into a
1359source file to try them.
bfa74976
RS
1360
1361@menu
1362* RPN Calc:: Reverse polish notation calculator;
1363 a first example with no operator precedence.
1364* Infix Calc:: Infix (algebraic) notation calculator.
1365 Operator precedence is introduced.
1366* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1367* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1368* Multi-function Calc:: Calculator with memory and trig functions.
1369 It uses multiple data-types for semantic values.
1370* Exercises:: Ideas for improving the multi-function calculator.
1371@end menu
1372
342b8b6e 1373@node RPN Calc
bfa74976
RS
1374@section Reverse Polish Notation Calculator
1375@cindex reverse polish notation
1376@cindex polish notation calculator
1377@cindex @code{rpcalc}
1378@cindex calculator, simple
1379
1380The first example is that of a simple double-precision @dfn{reverse polish
1381notation} calculator (a calculator using postfix operators). This example
1382provides a good starting point, since operator precedence is not an issue.
1383The second example will illustrate how operator precedence is handled.
1384
1385The source code for this calculator is named @file{rpcalc.y}. The
1386@samp{.y} extension is a convention used for Bison input files.
1387
1388@menu
75f5aaea 1389* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1390* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1391* Lexer: Rpcalc Lexer. The lexical analyzer.
1392* Main: Rpcalc Main. The controlling function.
1393* Error: Rpcalc Error. The error reporting function.
1394* Gen: Rpcalc Gen. Running Bison on the grammar file.
1395* Comp: Rpcalc Compile. Run the C compiler on the output code.
1396@end menu
1397
342b8b6e 1398@node Rpcalc Decls
bfa74976
RS
1399@subsection Declarations for @code{rpcalc}
1400
1401Here are the C and Bison declarations for the reverse polish notation
1402calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1403
1404@example
72d2299c 1405/* Reverse polish notation calculator. */
bfa74976
RS
1406
1407%@{
38a92d50
PE
1408 #define YYSTYPE double
1409 #include <math.h>
1410 int yylex (void);
1411 void yyerror (char const *);
bfa74976
RS
1412%@}
1413
1414%token NUM
1415
72d2299c 1416%% /* Grammar rules and actions follow. */
bfa74976
RS
1417@end example
1418
75f5aaea 1419The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1420preprocessor directives and two forward declarations.
bfa74976
RS
1421
1422The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1423specifying the C data type for semantic values of both tokens and
1424groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1425Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1426don't define it, @code{int} is the default. Because we specify
1427@code{double}, each token and each expression has an associated value,
1428which is a floating point number.
bfa74976
RS
1429
1430The @code{#include} directive is used to declare the exponentiation
1431function @code{pow}.
1432
38a92d50
PE
1433The forward declarations for @code{yylex} and @code{yyerror} are
1434needed because the C language requires that functions be declared
1435before they are used. These functions will be defined in the
1436epilogue, but the parser calls them so they must be declared in the
1437prologue.
1438
704a47c4
AD
1439The second section, Bison declarations, provides information to Bison
1440about the token types (@pxref{Bison Declarations, ,The Bison
1441Declarations Section}). Each terminal symbol that is not a
1442single-character literal must be declared here. (Single-character
bfa74976
RS
1443literals normally don't need to be declared.) In this example, all the
1444arithmetic operators are designated by single-character literals, so the
1445only terminal symbol that needs to be declared is @code{NUM}, the token
1446type for numeric constants.
1447
342b8b6e 1448@node Rpcalc Rules
bfa74976
RS
1449@subsection Grammar Rules for @code{rpcalc}
1450
1451Here are the grammar rules for the reverse polish notation calculator.
1452
1453@example
1454input: /* empty */
1455 | input line
1456;
1457
1458line: '\n'
18b519c0 1459 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1460;
1461
18b519c0
AD
1462exp: NUM @{ $$ = $1; @}
1463 | exp exp '+' @{ $$ = $1 + $2; @}
1464 | exp exp '-' @{ $$ = $1 - $2; @}
1465 | exp exp '*' @{ $$ = $1 * $2; @}
1466 | exp exp '/' @{ $$ = $1 / $2; @}
1467 /* Exponentiation */
1468 | exp exp '^' @{ $$ = pow ($1, $2); @}
1469 /* Unary minus */
1470 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1471;
1472%%
1473@end example
1474
1475The groupings of the rpcalc ``language'' defined here are the expression
1476(given the name @code{exp}), the line of input (@code{line}), and the
1477complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1478symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1479which is read as ``or''. The following sections explain what these rules
1480mean.
1481
1482The semantics of the language is determined by the actions taken when a
1483grouping is recognized. The actions are the C code that appears inside
1484braces. @xref{Actions}.
1485
1486You must specify these actions in C, but Bison provides the means for
1487passing semantic values between the rules. In each action, the
1488pseudo-variable @code{$$} stands for the semantic value for the grouping
1489that the rule is going to construct. Assigning a value to @code{$$} is the
1490main job of most actions. The semantic values of the components of the
1491rule are referred to as @code{$1}, @code{$2}, and so on.
1492
1493@menu
13863333
AD
1494* Rpcalc Input::
1495* Rpcalc Line::
1496* Rpcalc Expr::
bfa74976
RS
1497@end menu
1498
342b8b6e 1499@node Rpcalc Input
bfa74976
RS
1500@subsubsection Explanation of @code{input}
1501
1502Consider the definition of @code{input}:
1503
1504@example
1505input: /* empty */
1506 | input line
1507;
1508@end example
1509
1510This definition reads as follows: ``A complete input is either an empty
1511string, or a complete input followed by an input line''. Notice that
1512``complete input'' is defined in terms of itself. This definition is said
1513to be @dfn{left recursive} since @code{input} appears always as the
1514leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1515
1516The first alternative is empty because there are no symbols between the
1517colon and the first @samp{|}; this means that @code{input} can match an
1518empty string of input (no tokens). We write the rules this way because it
1519is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1520It's conventional to put an empty alternative first and write the comment
1521@samp{/* empty */} in it.
1522
1523The second alternate rule (@code{input line}) handles all nontrivial input.
1524It means, ``After reading any number of lines, read one more line if
1525possible.'' The left recursion makes this rule into a loop. Since the
1526first alternative matches empty input, the loop can be executed zero or
1527more times.
1528
1529The parser function @code{yyparse} continues to process input until a
1530grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1531input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1532
342b8b6e 1533@node Rpcalc Line
bfa74976
RS
1534@subsubsection Explanation of @code{line}
1535
1536Now consider the definition of @code{line}:
1537
1538@example
1539line: '\n'
1540 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1541;
1542@end example
1543
1544The first alternative is a token which is a newline character; this means
1545that rpcalc accepts a blank line (and ignores it, since there is no
1546action). The second alternative is an expression followed by a newline.
1547This is the alternative that makes rpcalc useful. The semantic value of
1548the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1549question is the first symbol in the alternative. The action prints this
1550value, which is the result of the computation the user asked for.
1551
1552This action is unusual because it does not assign a value to @code{$$}. As
1553a consequence, the semantic value associated with the @code{line} is
1554uninitialized (its value will be unpredictable). This would be a bug if
1555that value were ever used, but we don't use it: once rpcalc has printed the
1556value of the user's input line, that value is no longer needed.
1557
342b8b6e 1558@node Rpcalc Expr
bfa74976
RS
1559@subsubsection Explanation of @code{expr}
1560
1561The @code{exp} grouping has several rules, one for each kind of expression.
1562The first rule handles the simplest expressions: those that are just numbers.
1563The second handles an addition-expression, which looks like two expressions
1564followed by a plus-sign. The third handles subtraction, and so on.
1565
1566@example
1567exp: NUM
1568 | exp exp '+' @{ $$ = $1 + $2; @}
1569 | exp exp '-' @{ $$ = $1 - $2; @}
1570 @dots{}
1571 ;
1572@end example
1573
1574We have used @samp{|} to join all the rules for @code{exp}, but we could
1575equally well have written them separately:
1576
1577@example
1578exp: NUM ;
1579exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1580exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1581 @dots{}
1582@end example
1583
1584Most of the rules have actions that compute the value of the expression in
1585terms of the value of its parts. For example, in the rule for addition,
1586@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1587the second one. The third component, @code{'+'}, has no meaningful
1588associated semantic value, but if it had one you could refer to it as
1589@code{$3}. When @code{yyparse} recognizes a sum expression using this
1590rule, the sum of the two subexpressions' values is produced as the value of
1591the entire expression. @xref{Actions}.
1592
1593You don't have to give an action for every rule. When a rule has no
1594action, Bison by default copies the value of @code{$1} into @code{$$}.
1595This is what happens in the first rule (the one that uses @code{NUM}).
1596
1597The formatting shown here is the recommended convention, but Bison does
72d2299c 1598not require it. You can add or change white space as much as you wish.
bfa74976
RS
1599For example, this:
1600
1601@example
99a9344e 1602exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1603@end example
1604
1605@noindent
1606means the same thing as this:
1607
1608@example
1609exp: NUM
1610 | exp exp '+' @{ $$ = $1 + $2; @}
1611 | @dots{}
99a9344e 1612;
bfa74976
RS
1613@end example
1614
1615@noindent
1616The latter, however, is much more readable.
1617
342b8b6e 1618@node Rpcalc Lexer
bfa74976
RS
1619@subsection The @code{rpcalc} Lexical Analyzer
1620@cindex writing a lexical analyzer
1621@cindex lexical analyzer, writing
1622
704a47c4
AD
1623The lexical analyzer's job is low-level parsing: converting characters
1624or sequences of characters into tokens. The Bison parser gets its
1625tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1626Analyzer Function @code{yylex}}.
bfa74976 1627
c827f760
PE
1628Only a simple lexical analyzer is needed for the @acronym{RPN}
1629calculator. This
bfa74976
RS
1630lexical analyzer skips blanks and tabs, then reads in numbers as
1631@code{double} and returns them as @code{NUM} tokens. Any other character
1632that isn't part of a number is a separate token. Note that the token-code
1633for such a single-character token is the character itself.
1634
1635The return value of the lexical analyzer function is a numeric code which
1636represents a token type. The same text used in Bison rules to stand for
1637this token type is also a C expression for the numeric code for the type.
1638This works in two ways. If the token type is a character literal, then its
e966383b 1639numeric code is that of the character; you can use the same
bfa74976
RS
1640character literal in the lexical analyzer to express the number. If the
1641token type is an identifier, that identifier is defined by Bison as a C
1642macro whose definition is the appropriate number. In this example,
1643therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1644
1964ad8c
AD
1645The semantic value of the token (if it has one) is stored into the
1646global variable @code{yylval}, which is where the Bison parser will look
1647for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1648defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1649,Declarations for @code{rpcalc}}.)
bfa74976 1650
72d2299c
PE
1651A token type code of zero is returned if the end-of-input is encountered.
1652(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1653
1654Here is the code for the lexical analyzer:
1655
1656@example
1657@group
72d2299c 1658/* The lexical analyzer returns a double floating point
e966383b 1659 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1660 of the character read if not a number. It skips all blanks
1661 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1662
1663#include <ctype.h>
1664@end group
1665
1666@group
13863333
AD
1667int
1668yylex (void)
bfa74976
RS
1669@{
1670 int c;
1671
72d2299c 1672 /* Skip white space. */
13863333 1673 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1674 ;
1675@end group
1676@group
72d2299c 1677 /* Process numbers. */
13863333 1678 if (c == '.' || isdigit (c))
bfa74976
RS
1679 @{
1680 ungetc (c, stdin);
1681 scanf ("%lf", &yylval);
1682 return NUM;
1683 @}
1684@end group
1685@group
72d2299c 1686 /* Return end-of-input. */
13863333 1687 if (c == EOF)
bfa74976 1688 return 0;
72d2299c 1689 /* Return a single char. */
13863333 1690 return c;
bfa74976
RS
1691@}
1692@end group
1693@end example
1694
342b8b6e 1695@node Rpcalc Main
bfa74976
RS
1696@subsection The Controlling Function
1697@cindex controlling function
1698@cindex main function in simple example
1699
1700In keeping with the spirit of this example, the controlling function is
1701kept to the bare minimum. The only requirement is that it call
1702@code{yyparse} to start the process of parsing.
1703
1704@example
1705@group
13863333
AD
1706int
1707main (void)
bfa74976 1708@{
13863333 1709 return yyparse ();
bfa74976
RS
1710@}
1711@end group
1712@end example
1713
342b8b6e 1714@node Rpcalc Error
bfa74976
RS
1715@subsection The Error Reporting Routine
1716@cindex error reporting routine
1717
1718When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1719function @code{yyerror} to print an error message (usually but not
6e649e65 1720always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1721@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1722here is the definition we will use:
bfa74976
RS
1723
1724@example
1725@group
1726#include <stdio.h>
1727
38a92d50 1728/* Called by yyparse on error. */
13863333 1729void
38a92d50 1730yyerror (char const *s)
bfa74976 1731@{
4e03e201 1732 fprintf (stderr, "%s\n", s);
bfa74976
RS
1733@}
1734@end group
1735@end example
1736
1737After @code{yyerror} returns, the Bison parser may recover from the error
1738and continue parsing if the grammar contains a suitable error rule
1739(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1740have not written any error rules in this example, so any invalid input will
1741cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1742real calculator, but it is adequate for the first example.
bfa74976 1743
342b8b6e 1744@node Rpcalc Gen
bfa74976
RS
1745@subsection Running Bison to Make the Parser
1746@cindex running Bison (introduction)
1747
ceed8467
AD
1748Before running Bison to produce a parser, we need to decide how to
1749arrange all the source code in one or more source files. For such a
1750simple example, the easiest thing is to put everything in one file. The
1751definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1752end, in the epilogue of the file
75f5aaea 1753(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1754
1755For a large project, you would probably have several source files, and use
1756@code{make} to arrange to recompile them.
1757
1758With all the source in a single file, you use the following command to
1759convert it into a parser file:
1760
1761@example
fa4d969f 1762bison @var{file}.y
bfa74976
RS
1763@end example
1764
1765@noindent
1766In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1767@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1768removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1769Bison contains the source code for @code{yyparse}. The additional
1770functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1771are copied verbatim to the output.
1772
342b8b6e 1773@node Rpcalc Compile
bfa74976
RS
1774@subsection Compiling the Parser File
1775@cindex compiling the parser
1776
1777Here is how to compile and run the parser file:
1778
1779@example
1780@group
1781# @r{List files in current directory.}
9edcd895 1782$ @kbd{ls}
bfa74976
RS
1783rpcalc.tab.c rpcalc.y
1784@end group
1785
1786@group
1787# @r{Compile the Bison parser.}
1788# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1789$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1790@end group
1791
1792@group
1793# @r{List files again.}
9edcd895 1794$ @kbd{ls}
bfa74976
RS
1795rpcalc rpcalc.tab.c rpcalc.y
1796@end group
1797@end example
1798
1799The file @file{rpcalc} now contains the executable code. Here is an
1800example session using @code{rpcalc}.
1801
1802@example
9edcd895
AD
1803$ @kbd{rpcalc}
1804@kbd{4 9 +}
bfa74976 180513
9edcd895 1806@kbd{3 7 + 3 4 5 *+-}
bfa74976 1807-13
9edcd895 1808@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 180913
9edcd895 1810@kbd{5 6 / 4 n +}
bfa74976 1811-3.166666667
9edcd895 1812@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181381
9edcd895
AD
1814@kbd{^D} @r{End-of-file indicator}
1815$
bfa74976
RS
1816@end example
1817
342b8b6e 1818@node Infix Calc
bfa74976
RS
1819@section Infix Notation Calculator: @code{calc}
1820@cindex infix notation calculator
1821@cindex @code{calc}
1822@cindex calculator, infix notation
1823
1824We now modify rpcalc to handle infix operators instead of postfix. Infix
1825notation involves the concept of operator precedence and the need for
1826parentheses nested to arbitrary depth. Here is the Bison code for
1827@file{calc.y}, an infix desk-top calculator.
1828
1829@example
38a92d50 1830/* Infix notation calculator. */
bfa74976
RS
1831
1832%@{
38a92d50
PE
1833 #define YYSTYPE double
1834 #include <math.h>
1835 #include <stdio.h>
1836 int yylex (void);
1837 void yyerror (char const *);
bfa74976
RS
1838%@}
1839
38a92d50 1840/* Bison declarations. */
bfa74976
RS
1841%token NUM
1842%left '-' '+'
1843%left '*' '/'
1844%left NEG /* negation--unary minus */
38a92d50 1845%right '^' /* exponentiation */
bfa74976 1846
38a92d50
PE
1847%% /* The grammar follows. */
1848input: /* empty */
bfa74976
RS
1849 | input line
1850;
1851
1852line: '\n'
1853 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1854;
1855
1856exp: NUM @{ $$ = $1; @}
1857 | exp '+' exp @{ $$ = $1 + $3; @}
1858 | exp '-' exp @{ $$ = $1 - $3; @}
1859 | exp '*' exp @{ $$ = $1 * $3; @}
1860 | exp '/' exp @{ $$ = $1 / $3; @}
1861 | '-' exp %prec NEG @{ $$ = -$2; @}
1862 | exp '^' exp @{ $$ = pow ($1, $3); @}
1863 | '(' exp ')' @{ $$ = $2; @}
1864;
1865%%
1866@end example
1867
1868@noindent
ceed8467
AD
1869The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1870same as before.
bfa74976
RS
1871
1872There are two important new features shown in this code.
1873
1874In the second section (Bison declarations), @code{%left} declares token
1875types and says they are left-associative operators. The declarations
1876@code{%left} and @code{%right} (right associativity) take the place of
1877@code{%token} which is used to declare a token type name without
1878associativity. (These tokens are single-character literals, which
1879ordinarily don't need to be declared. We declare them here to specify
1880the associativity.)
1881
1882Operator precedence is determined by the line ordering of the
1883declarations; the higher the line number of the declaration (lower on
1884the page or screen), the higher the precedence. Hence, exponentiation
1885has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1886by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1887Precedence}.
bfa74976 1888
704a47c4
AD
1889The other important new feature is the @code{%prec} in the grammar
1890section for the unary minus operator. The @code{%prec} simply instructs
1891Bison that the rule @samp{| '-' exp} has the same precedence as
1892@code{NEG}---in this case the next-to-highest. @xref{Contextual
1893Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1894
1895Here is a sample run of @file{calc.y}:
1896
1897@need 500
1898@example
9edcd895
AD
1899$ @kbd{calc}
1900@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19016.880952381
9edcd895 1902@kbd{-56 + 2}
bfa74976 1903-54
9edcd895 1904@kbd{3 ^ 2}
bfa74976
RS
19059
1906@end example
1907
342b8b6e 1908@node Simple Error Recovery
bfa74976
RS
1909@section Simple Error Recovery
1910@cindex error recovery, simple
1911
1912Up to this point, this manual has not addressed the issue of @dfn{error
1913recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1914error. All we have handled is error reporting with @code{yyerror}.
1915Recall that by default @code{yyparse} returns after calling
1916@code{yyerror}. This means that an erroneous input line causes the
1917calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1918
1919The Bison language itself includes the reserved word @code{error}, which
1920may be included in the grammar rules. In the example below it has
1921been added to one of the alternatives for @code{line}:
1922
1923@example
1924@group
1925line: '\n'
1926 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1927 | error '\n' @{ yyerrok; @}
1928;
1929@end group
1930@end example
1931
ceed8467 1932This addition to the grammar allows for simple error recovery in the
6e649e65 1933event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1934read, the error will be recognized by the third rule for @code{line},
1935and parsing will continue. (The @code{yyerror} function is still called
1936upon to print its message as well.) The action executes the statement
1937@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1938that error recovery is complete (@pxref{Error Recovery}). Note the
1939difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1940misprint.
bfa74976
RS
1941
1942This form of error recovery deals with syntax errors. There are other
1943kinds of errors; for example, division by zero, which raises an exception
1944signal that is normally fatal. A real calculator program must handle this
1945signal and use @code{longjmp} to return to @code{main} and resume parsing
1946input lines; it would also have to discard the rest of the current line of
1947input. We won't discuss this issue further because it is not specific to
1948Bison programs.
1949
342b8b6e
AD
1950@node Location Tracking Calc
1951@section Location Tracking Calculator: @code{ltcalc}
1952@cindex location tracking calculator
1953@cindex @code{ltcalc}
1954@cindex calculator, location tracking
1955
9edcd895
AD
1956This example extends the infix notation calculator with location
1957tracking. This feature will be used to improve the error messages. For
1958the sake of clarity, this example is a simple integer calculator, since
1959most of the work needed to use locations will be done in the lexical
72d2299c 1960analyzer.
342b8b6e
AD
1961
1962@menu
1963* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1964* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1965* Lexer: Ltcalc Lexer. The lexical analyzer.
1966@end menu
1967
1968@node Ltcalc Decls
1969@subsection Declarations for @code{ltcalc}
1970
9edcd895
AD
1971The C and Bison declarations for the location tracking calculator are
1972the same as the declarations for the infix notation calculator.
342b8b6e
AD
1973
1974@example
1975/* Location tracking calculator. */
1976
1977%@{
38a92d50
PE
1978 #define YYSTYPE int
1979 #include <math.h>
1980 int yylex (void);
1981 void yyerror (char const *);
342b8b6e
AD
1982%@}
1983
1984/* Bison declarations. */
1985%token NUM
1986
1987%left '-' '+'
1988%left '*' '/'
1989%left NEG
1990%right '^'
1991
38a92d50 1992%% /* The grammar follows. */
342b8b6e
AD
1993@end example
1994
9edcd895
AD
1995@noindent
1996Note there are no declarations specific to locations. Defining a data
1997type for storing locations is not needed: we will use the type provided
1998by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1999four member structure with the following integer fields:
2000@code{first_line}, @code{first_column}, @code{last_line} and
2001@code{last_column}.
342b8b6e
AD
2002
2003@node Ltcalc Rules
2004@subsection Grammar Rules for @code{ltcalc}
2005
9edcd895
AD
2006Whether handling locations or not has no effect on the syntax of your
2007language. Therefore, grammar rules for this example will be very close
2008to those of the previous example: we will only modify them to benefit
2009from the new information.
342b8b6e 2010
9edcd895
AD
2011Here, we will use locations to report divisions by zero, and locate the
2012wrong expressions or subexpressions.
342b8b6e
AD
2013
2014@example
2015@group
2016input : /* empty */
2017 | input line
2018;
2019@end group
2020
2021@group
2022line : '\n'
2023 | exp '\n' @{ printf ("%d\n", $1); @}
2024;
2025@end group
2026
2027@group
2028exp : NUM @{ $$ = $1; @}
2029 | exp '+' exp @{ $$ = $1 + $3; @}
2030 | exp '-' exp @{ $$ = $1 - $3; @}
2031 | exp '*' exp @{ $$ = $1 * $3; @}
2032@end group
342b8b6e 2033@group
9edcd895 2034 | exp '/' exp
342b8b6e
AD
2035 @{
2036 if ($3)
2037 $$ = $1 / $3;
2038 else
2039 @{
2040 $$ = 1;
9edcd895
AD
2041 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2042 @@3.first_line, @@3.first_column,
2043 @@3.last_line, @@3.last_column);
342b8b6e
AD
2044 @}
2045 @}
2046@end group
2047@group
2048 | '-' exp %preg NEG @{ $$ = -$2; @}
2049 | exp '^' exp @{ $$ = pow ($1, $3); @}
2050 | '(' exp ')' @{ $$ = $2; @}
2051@end group
2052@end example
2053
2054This code shows how to reach locations inside of semantic actions, by
2055using the pseudo-variables @code{@@@var{n}} for rule components, and the
2056pseudo-variable @code{@@$} for groupings.
2057
9edcd895
AD
2058We don't need to assign a value to @code{@@$}: the output parser does it
2059automatically. By default, before executing the C code of each action,
2060@code{@@$} is set to range from the beginning of @code{@@1} to the end
2061of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2062can be redefined (@pxref{Location Default Action, , Default Action for
2063Locations}), and for very specific rules, @code{@@$} can be computed by
2064hand.
342b8b6e
AD
2065
2066@node Ltcalc Lexer
2067@subsection The @code{ltcalc} Lexical Analyzer.
2068
9edcd895 2069Until now, we relied on Bison's defaults to enable location
72d2299c 2070tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2071able to feed the parser with the token locations, as it already does for
2072semantic values.
342b8b6e 2073
9edcd895
AD
2074To this end, we must take into account every single character of the
2075input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2076
2077@example
2078@group
2079int
2080yylex (void)
2081@{
2082 int c;
18b519c0 2083@end group
342b8b6e 2084
18b519c0 2085@group
72d2299c 2086 /* Skip white space. */
342b8b6e
AD
2087 while ((c = getchar ()) == ' ' || c == '\t')
2088 ++yylloc.last_column;
18b519c0 2089@end group
342b8b6e 2090
18b519c0 2091@group
72d2299c 2092 /* Step. */
342b8b6e
AD
2093 yylloc.first_line = yylloc.last_line;
2094 yylloc.first_column = yylloc.last_column;
2095@end group
2096
2097@group
72d2299c 2098 /* Process numbers. */
342b8b6e
AD
2099 if (isdigit (c))
2100 @{
2101 yylval = c - '0';
2102 ++yylloc.last_column;
2103 while (isdigit (c = getchar ()))
2104 @{
2105 ++yylloc.last_column;
2106 yylval = yylval * 10 + c - '0';
2107 @}
2108 ungetc (c, stdin);
2109 return NUM;
2110 @}
2111@end group
2112
72d2299c 2113 /* Return end-of-input. */
342b8b6e
AD
2114 if (c == EOF)
2115 return 0;
2116
72d2299c 2117 /* Return a single char, and update location. */
342b8b6e
AD
2118 if (c == '\n')
2119 @{
2120 ++yylloc.last_line;
2121 yylloc.last_column = 0;
2122 @}
2123 else
2124 ++yylloc.last_column;
2125 return c;
2126@}
2127@end example
2128
9edcd895
AD
2129Basically, the lexical analyzer performs the same processing as before:
2130it skips blanks and tabs, and reads numbers or single-character tokens.
2131In addition, it updates @code{yylloc}, the global variable (of type
2132@code{YYLTYPE}) containing the token's location.
342b8b6e 2133
9edcd895 2134Now, each time this function returns a token, the parser has its number
72d2299c 2135as well as its semantic value, and its location in the text. The last
9edcd895
AD
2136needed change is to initialize @code{yylloc}, for example in the
2137controlling function:
342b8b6e
AD
2138
2139@example
9edcd895 2140@group
342b8b6e
AD
2141int
2142main (void)
2143@{
2144 yylloc.first_line = yylloc.last_line = 1;
2145 yylloc.first_column = yylloc.last_column = 0;
2146 return yyparse ();
2147@}
9edcd895 2148@end group
342b8b6e
AD
2149@end example
2150
9edcd895
AD
2151Remember that computing locations is not a matter of syntax. Every
2152character must be associated to a location update, whether it is in
2153valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2154
2155@node Multi-function Calc
bfa74976
RS
2156@section Multi-Function Calculator: @code{mfcalc}
2157@cindex multi-function calculator
2158@cindex @code{mfcalc}
2159@cindex calculator, multi-function
2160
2161Now that the basics of Bison have been discussed, it is time to move on to
2162a more advanced problem. The above calculators provided only five
2163functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2164be nice to have a calculator that provides other mathematical functions such
2165as @code{sin}, @code{cos}, etc.
2166
2167It is easy to add new operators to the infix calculator as long as they are
2168only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2169back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2170adding a new operator. But we want something more flexible: built-in
2171functions whose syntax has this form:
2172
2173@example
2174@var{function_name} (@var{argument})
2175@end example
2176
2177@noindent
2178At the same time, we will add memory to the calculator, by allowing you
2179to create named variables, store values in them, and use them later.
2180Here is a sample session with the multi-function calculator:
2181
2182@example
9edcd895
AD
2183$ @kbd{mfcalc}
2184@kbd{pi = 3.141592653589}
bfa74976 21853.1415926536
9edcd895 2186@kbd{sin(pi)}
bfa74976 21870.0000000000
9edcd895 2188@kbd{alpha = beta1 = 2.3}
bfa74976 21892.3000000000
9edcd895 2190@kbd{alpha}
bfa74976 21912.3000000000
9edcd895 2192@kbd{ln(alpha)}
bfa74976 21930.8329091229
9edcd895 2194@kbd{exp(ln(beta1))}
bfa74976 21952.3000000000
9edcd895 2196$
bfa74976
RS
2197@end example
2198
2199Note that multiple assignment and nested function calls are permitted.
2200
2201@menu
2202* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2203* Rules: Mfcalc Rules. Grammar rules for the calculator.
2204* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2205@end menu
2206
342b8b6e 2207@node Mfcalc Decl
bfa74976
RS
2208@subsection Declarations for @code{mfcalc}
2209
2210Here are the C and Bison declarations for the multi-function calculator.
2211
2212@smallexample
18b519c0 2213@group
bfa74976 2214%@{
38a92d50
PE
2215 #include <math.h> /* For math functions, cos(), sin(), etc. */
2216 #include "calc.h" /* Contains definition of `symrec'. */
2217 int yylex (void);
2218 void yyerror (char const *);
bfa74976 2219%@}
18b519c0
AD
2220@end group
2221@group
bfa74976 2222%union @{
38a92d50
PE
2223 double val; /* For returning numbers. */
2224 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2225@}
18b519c0 2226@end group
38a92d50
PE
2227%token <val> NUM /* Simple double precision number. */
2228%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2229%type <val> exp
2230
18b519c0 2231@group
bfa74976
RS
2232%right '='
2233%left '-' '+'
2234%left '*' '/'
38a92d50
PE
2235%left NEG /* negation--unary minus */
2236%right '^' /* exponentiation */
18b519c0 2237@end group
38a92d50 2238%% /* The grammar follows. */
bfa74976
RS
2239@end smallexample
2240
2241The above grammar introduces only two new features of the Bison language.
2242These features allow semantic values to have various data types
2243(@pxref{Multiple Types, ,More Than One Value Type}).
2244
2245The @code{%union} declaration specifies the entire list of possible types;
2246this is instead of defining @code{YYSTYPE}. The allowable types are now
2247double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2248the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2249
2250Since values can now have various types, it is necessary to associate a
2251type with each grammar symbol whose semantic value is used. These symbols
2252are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2253declarations are augmented with information about their data type (placed
2254between angle brackets).
2255
704a47c4
AD
2256The Bison construct @code{%type} is used for declaring nonterminal
2257symbols, just as @code{%token} is used for declaring token types. We
2258have not used @code{%type} before because nonterminal symbols are
2259normally declared implicitly by the rules that define them. But
2260@code{exp} must be declared explicitly so we can specify its value type.
2261@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2262
342b8b6e 2263@node Mfcalc Rules
bfa74976
RS
2264@subsection Grammar Rules for @code{mfcalc}
2265
2266Here are the grammar rules for the multi-function calculator.
2267Most of them are copied directly from @code{calc}; three rules,
2268those which mention @code{VAR} or @code{FNCT}, are new.
2269
2270@smallexample
18b519c0 2271@group
bfa74976
RS
2272input: /* empty */
2273 | input line
2274;
18b519c0 2275@end group
bfa74976 2276
18b519c0 2277@group
bfa74976
RS
2278line:
2279 '\n'
2280 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2281 | error '\n' @{ yyerrok; @}
2282;
18b519c0 2283@end group
bfa74976 2284
18b519c0 2285@group
bfa74976
RS
2286exp: NUM @{ $$ = $1; @}
2287 | VAR @{ $$ = $1->value.var; @}
2288 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2289 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2290 | exp '+' exp @{ $$ = $1 + $3; @}
2291 | exp '-' exp @{ $$ = $1 - $3; @}
2292 | exp '*' exp @{ $$ = $1 * $3; @}
2293 | exp '/' exp @{ $$ = $1 / $3; @}
2294 | '-' exp %prec NEG @{ $$ = -$2; @}
2295 | exp '^' exp @{ $$ = pow ($1, $3); @}
2296 | '(' exp ')' @{ $$ = $2; @}
2297;
18b519c0 2298@end group
38a92d50 2299/* End of grammar. */
bfa74976
RS
2300%%
2301@end smallexample
2302
342b8b6e 2303@node Mfcalc Symtab
bfa74976
RS
2304@subsection The @code{mfcalc} Symbol Table
2305@cindex symbol table example
2306
2307The multi-function calculator requires a symbol table to keep track of the
2308names and meanings of variables and functions. This doesn't affect the
2309grammar rules (except for the actions) or the Bison declarations, but it
2310requires some additional C functions for support.
2311
2312The symbol table itself consists of a linked list of records. Its
2313definition, which is kept in the header @file{calc.h}, is as follows. It
2314provides for either functions or variables to be placed in the table.
2315
2316@smallexample
2317@group
38a92d50 2318/* Function type. */
32dfccf8 2319typedef double (*func_t) (double);
72f889cc 2320@end group
32dfccf8 2321
72f889cc 2322@group
38a92d50 2323/* Data type for links in the chain of symbols. */
bfa74976
RS
2324struct symrec
2325@{
38a92d50 2326 char *name; /* name of symbol */
bfa74976 2327 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2328 union
2329 @{
38a92d50
PE
2330 double var; /* value of a VAR */
2331 func_t fnctptr; /* value of a FNCT */
bfa74976 2332 @} value;
38a92d50 2333 struct symrec *next; /* link field */
bfa74976
RS
2334@};
2335@end group
2336
2337@group
2338typedef struct symrec symrec;
2339
38a92d50 2340/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2341extern symrec *sym_table;
2342
a730d142 2343symrec *putsym (char const *, int);
38a92d50 2344symrec *getsym (char const *);
bfa74976
RS
2345@end group
2346@end smallexample
2347
2348The new version of @code{main} includes a call to @code{init_table}, a
2349function that initializes the symbol table. Here it is, and
2350@code{init_table} as well:
2351
2352@smallexample
bfa74976
RS
2353#include <stdio.h>
2354
18b519c0 2355@group
38a92d50 2356/* Called by yyparse on error. */
13863333 2357void
38a92d50 2358yyerror (char const *s)
bfa74976
RS
2359@{
2360 printf ("%s\n", s);
2361@}
18b519c0 2362@end group
bfa74976 2363
18b519c0 2364@group
bfa74976
RS
2365struct init
2366@{
38a92d50
PE
2367 char const *fname;
2368 double (*fnct) (double);
bfa74976
RS
2369@};
2370@end group
2371
2372@group
38a92d50 2373struct init const arith_fncts[] =
13863333 2374@{
32dfccf8
AD
2375 "sin", sin,
2376 "cos", cos,
13863333 2377 "atan", atan,
32dfccf8
AD
2378 "ln", log,
2379 "exp", exp,
13863333
AD
2380 "sqrt", sqrt,
2381 0, 0
2382@};
18b519c0 2383@end group
bfa74976 2384
18b519c0 2385@group
bfa74976 2386/* The symbol table: a chain of `struct symrec'. */
38a92d50 2387symrec *sym_table;
bfa74976
RS
2388@end group
2389
2390@group
72d2299c 2391/* Put arithmetic functions in table. */
13863333
AD
2392void
2393init_table (void)
bfa74976
RS
2394@{
2395 int i;
2396 symrec *ptr;
2397 for (i = 0; arith_fncts[i].fname != 0; i++)
2398 @{
2399 ptr = putsym (arith_fncts[i].fname, FNCT);
2400 ptr->value.fnctptr = arith_fncts[i].fnct;
2401 @}
2402@}
2403@end group
38a92d50
PE
2404
2405@group
2406int
2407main (void)
2408@{
2409 init_table ();
2410 return yyparse ();
2411@}
2412@end group
bfa74976
RS
2413@end smallexample
2414
2415By simply editing the initialization list and adding the necessary include
2416files, you can add additional functions to the calculator.
2417
2418Two important functions allow look-up and installation of symbols in the
2419symbol table. The function @code{putsym} is passed a name and the type
2420(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2421linked to the front of the list, and a pointer to the object is returned.
2422The function @code{getsym} is passed the name of the symbol to look up. If
2423found, a pointer to that symbol is returned; otherwise zero is returned.
2424
2425@smallexample
2426symrec *
38a92d50 2427putsym (char const *sym_name, int sym_type)
bfa74976
RS
2428@{
2429 symrec *ptr;
2430 ptr = (symrec *) malloc (sizeof (symrec));
2431 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2432 strcpy (ptr->name,sym_name);
2433 ptr->type = sym_type;
72d2299c 2434 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2435 ptr->next = (struct symrec *)sym_table;
2436 sym_table = ptr;
2437 return ptr;
2438@}
2439
2440symrec *
38a92d50 2441getsym (char const *sym_name)
bfa74976
RS
2442@{
2443 symrec *ptr;
2444 for (ptr = sym_table; ptr != (symrec *) 0;
2445 ptr = (symrec *)ptr->next)
2446 if (strcmp (ptr->name,sym_name) == 0)
2447 return ptr;
2448 return 0;
2449@}
2450@end smallexample
2451
2452The function @code{yylex} must now recognize variables, numeric values, and
2453the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2454characters with a leading letter are recognized as either variables or
bfa74976
RS
2455functions depending on what the symbol table says about them.
2456
2457The string is passed to @code{getsym} for look up in the symbol table. If
2458the name appears in the table, a pointer to its location and its type
2459(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2460already in the table, then it is installed as a @code{VAR} using
2461@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2462returned to @code{yyparse}.
bfa74976
RS
2463
2464No change is needed in the handling of numeric values and arithmetic
2465operators in @code{yylex}.
2466
2467@smallexample
2468@group
2469#include <ctype.h>
18b519c0 2470@end group
13863333 2471
18b519c0 2472@group
13863333
AD
2473int
2474yylex (void)
bfa74976
RS
2475@{
2476 int c;
2477
72d2299c 2478 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2479 while ((c = getchar ()) == ' ' || c == '\t');
2480
2481 if (c == EOF)
2482 return 0;
2483@end group
2484
2485@group
2486 /* Char starts a number => parse the number. */
2487 if (c == '.' || isdigit (c))
2488 @{
2489 ungetc (c, stdin);
2490 scanf ("%lf", &yylval.val);
2491 return NUM;
2492 @}
2493@end group
2494
2495@group
2496 /* Char starts an identifier => read the name. */
2497 if (isalpha (c))
2498 @{
2499 symrec *s;
2500 static char *symbuf = 0;
2501 static int length = 0;
2502 int i;
2503@end group
2504
2505@group
2506 /* Initially make the buffer long enough
2507 for a 40-character symbol name. */
2508 if (length == 0)
2509 length = 40, symbuf = (char *)malloc (length + 1);
2510
2511 i = 0;
2512 do
2513@end group
2514@group
2515 @{
2516 /* If buffer is full, make it bigger. */
2517 if (i == length)
2518 @{
2519 length *= 2;
18b519c0 2520 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2521 @}
2522 /* Add this character to the buffer. */
2523 symbuf[i++] = c;
2524 /* Get another character. */
2525 c = getchar ();
2526 @}
2527@end group
2528@group
72d2299c 2529 while (isalnum (c));
bfa74976
RS
2530
2531 ungetc (c, stdin);
2532 symbuf[i] = '\0';
2533@end group
2534
2535@group
2536 s = getsym (symbuf);
2537 if (s == 0)
2538 s = putsym (symbuf, VAR);
2539 yylval.tptr = s;
2540 return s->type;
2541 @}
2542
2543 /* Any other character is a token by itself. */
2544 return c;
2545@}
2546@end group
2547@end smallexample
2548
72d2299c 2549This program is both powerful and flexible. You may easily add new
704a47c4
AD
2550functions, and it is a simple job to modify this code to install
2551predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2552
342b8b6e 2553@node Exercises
bfa74976
RS
2554@section Exercises
2555@cindex exercises
2556
2557@enumerate
2558@item
2559Add some new functions from @file{math.h} to the initialization list.
2560
2561@item
2562Add another array that contains constants and their values. Then
2563modify @code{init_table} to add these constants to the symbol table.
2564It will be easiest to give the constants type @code{VAR}.
2565
2566@item
2567Make the program report an error if the user refers to an
2568uninitialized variable in any way except to store a value in it.
2569@end enumerate
2570
342b8b6e 2571@node Grammar File
bfa74976
RS
2572@chapter Bison Grammar Files
2573
2574Bison takes as input a context-free grammar specification and produces a
2575C-language function that recognizes correct instances of the grammar.
2576
2577The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2578@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2579
2580@menu
2581* Grammar Outline:: Overall layout of the grammar file.
2582* Symbols:: Terminal and nonterminal symbols.
2583* Rules:: How to write grammar rules.
2584* Recursion:: Writing recursive rules.
2585* Semantics:: Semantic values and actions.
847bf1f5 2586* Locations:: Locations and actions.
bfa74976
RS
2587* Declarations:: All kinds of Bison declarations are described here.
2588* Multiple Parsers:: Putting more than one Bison parser in one program.
2589@end menu
2590
342b8b6e 2591@node Grammar Outline
bfa74976
RS
2592@section Outline of a Bison Grammar
2593
2594A Bison grammar file has four main sections, shown here with the
2595appropriate delimiters:
2596
2597@example
2598%@{
38a92d50 2599 @var{Prologue}
bfa74976
RS
2600%@}
2601
2602@var{Bison declarations}
2603
2604%%
2605@var{Grammar rules}
2606%%
2607
75f5aaea 2608@var{Epilogue}
bfa74976
RS
2609@end example
2610
2611Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2612As a @acronym{GNU} extension, @samp{//} introduces a comment that
2613continues until end of line.
bfa74976
RS
2614
2615@menu
75f5aaea 2616* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2617* Bison Declarations:: Syntax and usage of the Bison declarations section.
2618* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2619* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2620@end menu
2621
38a92d50 2622@node Prologue
75f5aaea
MA
2623@subsection The prologue
2624@cindex declarations section
2625@cindex Prologue
2626@cindex declarations
bfa74976 2627
f8e1c9e5
AD
2628The @var{Prologue} section contains macro definitions and declarations
2629of functions and variables that are used in the actions in the grammar
2630rules. These are copied to the beginning of the parser file so that
2631they precede the definition of @code{yyparse}. You can use
2632@samp{#include} to get the declarations from a header file. If you
2633don't need any C declarations, you may omit the @samp{%@{} and
2634@samp{%@}} delimiters that bracket this section.
bfa74976 2635
287c78f6
PE
2636The @var{Prologue} section is terminated by the the first occurrence
2637of @samp{%@}} that is outside a comment, a string literal, or a
2638character constant.
2639
c732d2c6
AD
2640You may have more than one @var{Prologue} section, intermixed with the
2641@var{Bison declarations}. This allows you to have C and Bison
2642declarations that refer to each other. For example, the @code{%union}
2643declaration may use types defined in a header file, and you may wish to
2644prototype functions that take arguments of type @code{YYSTYPE}. This
2645can be done with two @var{Prologue} blocks, one before and one after the
2646@code{%union} declaration.
2647
2648@smallexample
2649%@{
38a92d50
PE
2650 #include <stdio.h>
2651 #include "ptypes.h"
c732d2c6
AD
2652%@}
2653
2654%union @{
779e7ceb 2655 long int n;
c732d2c6
AD
2656 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2657@}
2658
2659%@{
38a92d50
PE
2660 static void print_token_value (FILE *, int, YYSTYPE);
2661 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2662%@}
2663
2664@dots{}
2665@end smallexample
2666
342b8b6e 2667@node Bison Declarations
bfa74976
RS
2668@subsection The Bison Declarations Section
2669@cindex Bison declarations (introduction)
2670@cindex declarations, Bison (introduction)
2671
2672The @var{Bison declarations} section contains declarations that define
2673terminal and nonterminal symbols, specify precedence, and so on.
2674In some simple grammars you may not need any declarations.
2675@xref{Declarations, ,Bison Declarations}.
2676
342b8b6e 2677@node Grammar Rules
bfa74976
RS
2678@subsection The Grammar Rules Section
2679@cindex grammar rules section
2680@cindex rules section for grammar
2681
2682The @dfn{grammar rules} section contains one or more Bison grammar
2683rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2684
2685There must always be at least one grammar rule, and the first
2686@samp{%%} (which precedes the grammar rules) may never be omitted even
2687if it is the first thing in the file.
2688
38a92d50 2689@node Epilogue
75f5aaea 2690@subsection The epilogue
bfa74976 2691@cindex additional C code section
75f5aaea 2692@cindex epilogue
bfa74976
RS
2693@cindex C code, section for additional
2694
08e49d20
PE
2695The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2696the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2697place to put anything that you want to have in the parser file but which need
2698not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2699definitions of @code{yylex} and @code{yyerror} often go here. Because
2700C requires functions to be declared before being used, you often need
2701to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2702even if you define them in the Epilogue.
75f5aaea 2703@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2704
2705If the last section is empty, you may omit the @samp{%%} that separates it
2706from the grammar rules.
2707
f8e1c9e5
AD
2708The Bison parser itself contains many macros and identifiers whose names
2709start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2710any such names (except those documented in this manual) in the epilogue
2711of the grammar file.
bfa74976 2712
342b8b6e 2713@node Symbols
bfa74976
RS
2714@section Symbols, Terminal and Nonterminal
2715@cindex nonterminal symbol
2716@cindex terminal symbol
2717@cindex token type
2718@cindex symbol
2719
2720@dfn{Symbols} in Bison grammars represent the grammatical classifications
2721of the language.
2722
2723A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2724class of syntactically equivalent tokens. You use the symbol in grammar
2725rules to mean that a token in that class is allowed. The symbol is
2726represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2727function returns a token type code to indicate what kind of token has
2728been read. You don't need to know what the code value is; you can use
2729the symbol to stand for it.
bfa74976 2730
f8e1c9e5
AD
2731A @dfn{nonterminal symbol} stands for a class of syntactically
2732equivalent groupings. The symbol name is used in writing grammar rules.
2733By convention, it should be all lower case.
bfa74976
RS
2734
2735Symbol names can contain letters, digits (not at the beginning),
2736underscores and periods. Periods make sense only in nonterminals.
2737
931c7513 2738There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2739
2740@itemize @bullet
2741@item
2742A @dfn{named token type} is written with an identifier, like an
c827f760 2743identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2744such name must be defined with a Bison declaration such as
2745@code{%token}. @xref{Token Decl, ,Token Type Names}.
2746
2747@item
2748@cindex character token
2749@cindex literal token
2750@cindex single-character literal
931c7513
RS
2751A @dfn{character token type} (or @dfn{literal character token}) is
2752written in the grammar using the same syntax used in C for character
2753constants; for example, @code{'+'} is a character token type. A
2754character token type doesn't need to be declared unless you need to
2755specify its semantic value data type (@pxref{Value Type, ,Data Types of
2756Semantic Values}), associativity, or precedence (@pxref{Precedence,
2757,Operator Precedence}).
bfa74976
RS
2758
2759By convention, a character token type is used only to represent a
2760token that consists of that particular character. Thus, the token
2761type @code{'+'} is used to represent the character @samp{+} as a
2762token. Nothing enforces this convention, but if you depart from it,
2763your program will confuse other readers.
2764
2765All the usual escape sequences used in character literals in C can be
2766used in Bison as well, but you must not use the null character as a
72d2299c
PE
2767character literal because its numeric code, zero, signifies
2768end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2769for @code{yylex}}). Also, unlike standard C, trigraphs have no
2770special meaning in Bison character literals, nor is backslash-newline
2771allowed.
931c7513
RS
2772
2773@item
2774@cindex string token
2775@cindex literal string token
9ecbd125 2776@cindex multicharacter literal
931c7513
RS
2777A @dfn{literal string token} is written like a C string constant; for
2778example, @code{"<="} is a literal string token. A literal string token
2779doesn't need to be declared unless you need to specify its semantic
14ded682 2780value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2781(@pxref{Precedence}).
2782
2783You can associate the literal string token with a symbolic name as an
2784alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2785Declarations}). If you don't do that, the lexical analyzer has to
2786retrieve the token number for the literal string token from the
2787@code{yytname} table (@pxref{Calling Convention}).
2788
c827f760 2789@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2790
2791By convention, a literal string token is used only to represent a token
2792that consists of that particular string. Thus, you should use the token
2793type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2794does not enforce this convention, but if you depart from it, people who
931c7513
RS
2795read your program will be confused.
2796
2797All the escape sequences used in string literals in C can be used in
92ac3705
PE
2798Bison as well, except that you must not use a null character within a
2799string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2800meaning in Bison string literals, nor is backslash-newline allowed. A
2801literal string token must contain two or more characters; for a token
2802containing just one character, use a character token (see above).
bfa74976
RS
2803@end itemize
2804
2805How you choose to write a terminal symbol has no effect on its
2806grammatical meaning. That depends only on where it appears in rules and
2807on when the parser function returns that symbol.
2808
72d2299c
PE
2809The value returned by @code{yylex} is always one of the terminal
2810symbols, except that a zero or negative value signifies end-of-input.
2811Whichever way you write the token type in the grammar rules, you write
2812it the same way in the definition of @code{yylex}. The numeric code
2813for a character token type is simply the positive numeric code of the
2814character, so @code{yylex} can use the identical value to generate the
2815requisite code, though you may need to convert it to @code{unsigned
2816char} to avoid sign-extension on hosts where @code{char} is signed.
2817Each named token type becomes a C macro in
bfa74976 2818the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2819(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2820@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2821
2822If @code{yylex} is defined in a separate file, you need to arrange for the
2823token-type macro definitions to be available there. Use the @samp{-d}
2824option when you run Bison, so that it will write these macro definitions
2825into a separate header file @file{@var{name}.tab.h} which you can include
2826in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2827
72d2299c 2828If you want to write a grammar that is portable to any Standard C
9d9b8b70 2829host, you must use only nonnull character tokens taken from the basic
c827f760 2830execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2831digits, the 52 lower- and upper-case English letters, and the
2832characters in the following C-language string:
2833
2834@example
2835"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2836@end example
2837
f8e1c9e5
AD
2838The @code{yylex} function and Bison must use a consistent character set
2839and encoding for character tokens. For example, if you run Bison in an
2840@acronym{ASCII} environment, but then compile and run the resulting
2841program in an environment that uses an incompatible character set like
2842@acronym{EBCDIC}, the resulting program may not work because the tables
2843generated by Bison will assume @acronym{ASCII} numeric values for
2844character tokens. It is standard practice for software distributions to
2845contain C source files that were generated by Bison in an
2846@acronym{ASCII} environment, so installers on platforms that are
2847incompatible with @acronym{ASCII} must rebuild those files before
2848compiling them.
e966383b 2849
bfa74976
RS
2850The symbol @code{error} is a terminal symbol reserved for error recovery
2851(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2852In particular, @code{yylex} should never return this value. The default
2853value of the error token is 256, unless you explicitly assigned 256 to
2854one of your tokens with a @code{%token} declaration.
bfa74976 2855
342b8b6e 2856@node Rules
bfa74976
RS
2857@section Syntax of Grammar Rules
2858@cindex rule syntax
2859@cindex grammar rule syntax
2860@cindex syntax of grammar rules
2861
2862A Bison grammar rule has the following general form:
2863
2864@example
e425e872 2865@group
bfa74976
RS
2866@var{result}: @var{components}@dots{}
2867 ;
e425e872 2868@end group
bfa74976
RS
2869@end example
2870
2871@noindent
9ecbd125 2872where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2873and @var{components} are various terminal and nonterminal symbols that
13863333 2874are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2875
2876For example,
2877
2878@example
2879@group
2880exp: exp '+' exp
2881 ;
2882@end group
2883@end example
2884
2885@noindent
2886says that two groupings of type @code{exp}, with a @samp{+} token in between,
2887can be combined into a larger grouping of type @code{exp}.
2888
72d2299c
PE
2889White space in rules is significant only to separate symbols. You can add
2890extra white space as you wish.
bfa74976
RS
2891
2892Scattered among the components can be @var{actions} that determine
2893the semantics of the rule. An action looks like this:
2894
2895@example
2896@{@var{C statements}@}
2897@end example
2898
2899@noindent
287c78f6
PE
2900@cindex braced code
2901This is an example of @dfn{braced code}, that is, C code surrounded by
2902braces, much like a compound statement in C@. Braced code can contain
2903any sequence of C tokens, so long as its braces are balanced. Bison
2904does not check the braced code for correctness directly; it merely
2905copies the code to the output file, where the C compiler can check it.
2906
2907Within braced code, the balanced-brace count is not affected by braces
2908within comments, string literals, or character constants, but it is
2909affected by the C digraphs @samp{<%} and @samp{%>} that represent
2910braces. At the top level braced code must be terminated by @samp{@}}
2911and not by a digraph. Bison does not look for trigraphs, so if braced
2912code uses trigraphs you should ensure that they do not affect the
2913nesting of braces or the boundaries of comments, string literals, or
2914character constants.
2915
bfa74976
RS
2916Usually there is only one action and it follows the components.
2917@xref{Actions}.
2918
2919@findex |
2920Multiple rules for the same @var{result} can be written separately or can
2921be joined with the vertical-bar character @samp{|} as follows:
2922
bfa74976
RS
2923@example
2924@group
2925@var{result}: @var{rule1-components}@dots{}
2926 | @var{rule2-components}@dots{}
2927 @dots{}
2928 ;
2929@end group
2930@end example
bfa74976
RS
2931
2932@noindent
2933They are still considered distinct rules even when joined in this way.
2934
2935If @var{components} in a rule is empty, it means that @var{result} can
2936match the empty string. For example, here is how to define a
2937comma-separated sequence of zero or more @code{exp} groupings:
2938
2939@example
2940@group
2941expseq: /* empty */
2942 | expseq1
2943 ;
2944@end group
2945
2946@group
2947expseq1: exp
2948 | expseq1 ',' exp
2949 ;
2950@end group
2951@end example
2952
2953@noindent
2954It is customary to write a comment @samp{/* empty */} in each rule
2955with no components.
2956
342b8b6e 2957@node Recursion
bfa74976
RS
2958@section Recursive Rules
2959@cindex recursive rule
2960
f8e1c9e5
AD
2961A rule is called @dfn{recursive} when its @var{result} nonterminal
2962appears also on its right hand side. Nearly all Bison grammars need to
2963use recursion, because that is the only way to define a sequence of any
2964number of a particular thing. Consider this recursive definition of a
9ecbd125 2965comma-separated sequence of one or more expressions:
bfa74976
RS
2966
2967@example
2968@group
2969expseq1: exp
2970 | expseq1 ',' exp
2971 ;
2972@end group
2973@end example
2974
2975@cindex left recursion
2976@cindex right recursion
2977@noindent
2978Since the recursive use of @code{expseq1} is the leftmost symbol in the
2979right hand side, we call this @dfn{left recursion}. By contrast, here
2980the same construct is defined using @dfn{right recursion}:
2981
2982@example
2983@group
2984expseq1: exp
2985 | exp ',' expseq1
2986 ;
2987@end group
2988@end example
2989
2990@noindent
ec3bc396
AD
2991Any kind of sequence can be defined using either left recursion or right
2992recursion, but you should always use left recursion, because it can
2993parse a sequence of any number of elements with bounded stack space.
2994Right recursion uses up space on the Bison stack in proportion to the
2995number of elements in the sequence, because all the elements must be
2996shifted onto the stack before the rule can be applied even once.
2997@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2998of this.
bfa74976
RS
2999
3000@cindex mutual recursion
3001@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3002rule does not appear directly on its right hand side, but does appear
3003in rules for other nonterminals which do appear on its right hand
13863333 3004side.
bfa74976
RS
3005
3006For example:
3007
3008@example
3009@group
3010expr: primary
3011 | primary '+' primary
3012 ;
3013@end group
3014
3015@group
3016primary: constant
3017 | '(' expr ')'
3018 ;
3019@end group
3020@end example
3021
3022@noindent
3023defines two mutually-recursive nonterminals, since each refers to the
3024other.
3025
342b8b6e 3026@node Semantics
bfa74976
RS
3027@section Defining Language Semantics
3028@cindex defining language semantics
13863333 3029@cindex language semantics, defining
bfa74976
RS
3030
3031The grammar rules for a language determine only the syntax. The semantics
3032are determined by the semantic values associated with various tokens and
3033groupings, and by the actions taken when various groupings are recognized.
3034
3035For example, the calculator calculates properly because the value
3036associated with each expression is the proper number; it adds properly
3037because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3038the numbers associated with @var{x} and @var{y}.
3039
3040@menu
3041* Value Type:: Specifying one data type for all semantic values.
3042* Multiple Types:: Specifying several alternative data types.
3043* Actions:: An action is the semantic definition of a grammar rule.
3044* Action Types:: Specifying data types for actions to operate on.
3045* Mid-Rule Actions:: Most actions go at the end of a rule.
3046 This says when, why and how to use the exceptional
3047 action in the middle of a rule.
3048@end menu
3049
342b8b6e 3050@node Value Type
bfa74976
RS
3051@subsection Data Types of Semantic Values
3052@cindex semantic value type
3053@cindex value type, semantic
3054@cindex data types of semantic values
3055@cindex default data type
3056
3057In a simple program it may be sufficient to use the same data type for
3058the semantic values of all language constructs. This was true in the
c827f760 3059@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3060Notation Calculator}).
bfa74976
RS
3061
3062Bison's default is to use type @code{int} for all semantic values. To
3063specify some other type, define @code{YYSTYPE} as a macro, like this:
3064
3065@example
3066#define YYSTYPE double
3067@end example
3068
3069@noindent
342b8b6e 3070This macro definition must go in the prologue of the grammar file
75f5aaea 3071(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3072
342b8b6e 3073@node Multiple Types
bfa74976
RS
3074@subsection More Than One Value Type
3075
3076In most programs, you will need different data types for different kinds
3077of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3078@code{int} or @code{long int}, while a string constant needs type
3079@code{char *}, and an identifier might need a pointer to an entry in the
3080symbol table.
bfa74976
RS
3081
3082To use more than one data type for semantic values in one parser, Bison
3083requires you to do two things:
3084
3085@itemize @bullet
3086@item
3087Specify the entire collection of possible data types, with the
704a47c4
AD
3088@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3089Value Types}).
bfa74976
RS
3090
3091@item
14ded682
AD
3092Choose one of those types for each symbol (terminal or nonterminal) for
3093which semantic values are used. This is done for tokens with the
3094@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3095and for groupings with the @code{%type} Bison declaration (@pxref{Type
3096Decl, ,Nonterminal Symbols}).
bfa74976
RS
3097@end itemize
3098
342b8b6e 3099@node Actions
bfa74976
RS
3100@subsection Actions
3101@cindex action
3102@vindex $$
3103@vindex $@var{n}
3104
3105An action accompanies a syntactic rule and contains C code to be executed
3106each time an instance of that rule is recognized. The task of most actions
3107is to compute a semantic value for the grouping built by the rule from the
3108semantic values associated with tokens or smaller groupings.
3109
287c78f6
PE
3110An action consists of braced code containing C statements, and can be
3111placed at any position in the rule;
704a47c4
AD
3112it is executed at that position. Most rules have just one action at the
3113end of the rule, following all the components. Actions in the middle of
3114a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3115Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3116
3117The C code in an action can refer to the semantic values of the components
3118matched by the rule with the construct @code{$@var{n}}, which stands for
3119the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3120being constructed is @code{$$}. Bison translates both of these
3121constructs into expressions of the appropriate type when it copies the
3122actions into the parser file. @code{$$} is translated to a modifiable
3123lvalue, so it can be assigned to.
bfa74976
RS
3124
3125Here is a typical example:
3126
3127@example
3128@group
3129exp: @dots{}
3130 | exp '+' exp
3131 @{ $$ = $1 + $3; @}
3132@end group
3133@end example
3134
3135@noindent
3136This rule constructs an @code{exp} from two smaller @code{exp} groupings
3137connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3138refer to the semantic values of the two component @code{exp} groupings,
3139which are the first and third symbols on the right hand side of the rule.
3140The sum is stored into @code{$$} so that it becomes the semantic value of
3141the addition-expression just recognized by the rule. If there were a
3142useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3143referred to as @code{$2}.
bfa74976 3144
3ded9a63
AD
3145Note that the vertical-bar character @samp{|} is really a rule
3146separator, and actions are attached to a single rule. This is a
3147difference with tools like Flex, for which @samp{|} stands for either
3148``or'', or ``the same action as that of the next rule''. In the
3149following example, the action is triggered only when @samp{b} is found:
3150
3151@example
3152@group
3153a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3154@end group
3155@end example
3156
bfa74976
RS
3157@cindex default action
3158If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3159@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3160becomes the value of the whole rule. Of course, the default action is
3161valid only if the two data types match. There is no meaningful default
3162action for an empty rule; every empty rule must have an explicit action
3163unless the rule's value does not matter.
bfa74976
RS
3164
3165@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3166to tokens and groupings on the stack @emph{before} those that match the
3167current rule. This is a very risky practice, and to use it reliably
3168you must be certain of the context in which the rule is applied. Here
3169is a case in which you can use this reliably:
3170
3171@example
3172@group
3173foo: expr bar '+' expr @{ @dots{} @}
3174 | expr bar '-' expr @{ @dots{} @}
3175 ;
3176@end group
3177
3178@group
3179bar: /* empty */
3180 @{ previous_expr = $0; @}
3181 ;
3182@end group
3183@end example
3184
3185As long as @code{bar} is used only in the fashion shown here, @code{$0}
3186always refers to the @code{expr} which precedes @code{bar} in the
3187definition of @code{foo}.
3188
32c29292
JD
3189@vindex yylval
3190It is also possible to access the semantic value of the look-ahead token, if
3191any, from a semantic action.
3192This semantic value is stored in @code{yylval}.
3193@xref{Action Features, ,Special Features for Use in Actions}.
3194
342b8b6e 3195@node Action Types
bfa74976
RS
3196@subsection Data Types of Values in Actions
3197@cindex action data types
3198@cindex data types in actions
3199
3200If you have chosen a single data type for semantic values, the @code{$$}
3201and @code{$@var{n}} constructs always have that data type.
3202
3203If you have used @code{%union} to specify a variety of data types, then you
3204must declare a choice among these types for each terminal or nonterminal
3205symbol that can have a semantic value. Then each time you use @code{$$} or
3206@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3207in the rule. In this example,
bfa74976
RS
3208
3209@example
3210@group
3211exp: @dots{}
3212 | exp '+' exp
3213 @{ $$ = $1 + $3; @}
3214@end group
3215@end example
3216
3217@noindent
3218@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3219have the data type declared for the nonterminal symbol @code{exp}. If
3220@code{$2} were used, it would have the data type declared for the
e0c471a9 3221terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3222
3223Alternatively, you can specify the data type when you refer to the value,
3224by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3225reference. For example, if you have defined types as shown here:
3226
3227@example
3228@group
3229%union @{
3230 int itype;
3231 double dtype;
3232@}
3233@end group
3234@end example
3235
3236@noindent
3237then you can write @code{$<itype>1} to refer to the first subunit of the
3238rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3239
342b8b6e 3240@node Mid-Rule Actions
bfa74976
RS
3241@subsection Actions in Mid-Rule
3242@cindex actions in mid-rule
3243@cindex mid-rule actions
3244
3245Occasionally it is useful to put an action in the middle of a rule.
3246These actions are written just like usual end-of-rule actions, but they
3247are executed before the parser even recognizes the following components.
3248
3249A mid-rule action may refer to the components preceding it using
3250@code{$@var{n}}, but it may not refer to subsequent components because
3251it is run before they are parsed.
3252
3253The mid-rule action itself counts as one of the components of the rule.
3254This makes a difference when there is another action later in the same rule
3255(and usually there is another at the end): you have to count the actions
3256along with the symbols when working out which number @var{n} to use in
3257@code{$@var{n}}.
3258
3259The mid-rule action can also have a semantic value. The action can set
3260its value with an assignment to @code{$$}, and actions later in the rule
3261can refer to the value using @code{$@var{n}}. Since there is no symbol
3262to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3263in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3264specify a data type each time you refer to this value.
bfa74976
RS
3265
3266There is no way to set the value of the entire rule with a mid-rule
3267action, because assignments to @code{$$} do not have that effect. The
3268only way to set the value for the entire rule is with an ordinary action
3269at the end of the rule.
3270
3271Here is an example from a hypothetical compiler, handling a @code{let}
3272statement that looks like @samp{let (@var{variable}) @var{statement}} and
3273serves to create a variable named @var{variable} temporarily for the
3274duration of @var{statement}. To parse this construct, we must put
3275@var{variable} into the symbol table while @var{statement} is parsed, then
3276remove it afterward. Here is how it is done:
3277
3278@example
3279@group
3280stmt: LET '(' var ')'
3281 @{ $<context>$ = push_context ();
3282 declare_variable ($3); @}
3283 stmt @{ $$ = $6;
3284 pop_context ($<context>5); @}
3285@end group
3286@end example
3287
3288@noindent
3289As soon as @samp{let (@var{variable})} has been recognized, the first
3290action is run. It saves a copy of the current semantic context (the
3291list of accessible variables) as its semantic value, using alternative
3292@code{context} in the data-type union. Then it calls
3293@code{declare_variable} to add the new variable to that list. Once the
3294first action is finished, the embedded statement @code{stmt} can be
3295parsed. Note that the mid-rule action is component number 5, so the
3296@samp{stmt} is component number 6.
3297
3298After the embedded statement is parsed, its semantic value becomes the
3299value of the entire @code{let}-statement. Then the semantic value from the
3300earlier action is used to restore the prior list of variables. This
3301removes the temporary @code{let}-variable from the list so that it won't
3302appear to exist while the rest of the program is parsed.
3303
841a7737
JD
3304@findex %destructor
3305@cindex discarded symbols, mid-rule actions
3306@cindex error recovery, mid-rule actions
3307In the above example, if the parser initiates error recovery (@pxref{Error
3308Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3309it might discard the previous semantic context @code{$<context>5} without
3310restoring it.
3311Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3312Discarded Symbols}).
3313However, Bison currently provides no means to declare a destructor for a
3314mid-rule action's semantic value.
3315
3316One solution is to bury the mid-rule action inside a nonterminal symbol and to
3317declare a destructor for that symbol:
3318
3319@example
3320@group
3321%type <context> let
3322%destructor @{ pop_context ($$); @} let
3323
3324%%
3325
3326stmt: let stmt
3327 @{ $$ = $2;
3328 pop_context ($1); @}
3329 ;
3330
3331let: LET '(' var ')'
3332 @{ $$ = push_context ();
3333 declare_variable ($3); @}
3334 ;
3335
3336@end group
3337@end example
3338
3339@noindent
3340Note that the action is now at the end of its rule.
3341Any mid-rule action can be converted to an end-of-rule action in this way, and
3342this is what Bison actually does to implement mid-rule actions.
3343
bfa74976
RS
3344Taking action before a rule is completely recognized often leads to
3345conflicts since the parser must commit to a parse in order to execute the
3346action. For example, the following two rules, without mid-rule actions,
3347can coexist in a working parser because the parser can shift the open-brace
3348token and look at what follows before deciding whether there is a
3349declaration or not:
3350
3351@example
3352@group
3353compound: '@{' declarations statements '@}'
3354 | '@{' statements '@}'
3355 ;
3356@end group
3357@end example
3358
3359@noindent
3360But when we add a mid-rule action as follows, the rules become nonfunctional:
3361
3362@example
3363@group
3364compound: @{ prepare_for_local_variables (); @}
3365 '@{' declarations statements '@}'
3366@end group
3367@group
3368 | '@{' statements '@}'
3369 ;
3370@end group
3371@end example
3372
3373@noindent
3374Now the parser is forced to decide whether to run the mid-rule action
3375when it has read no farther than the open-brace. In other words, it
3376must commit to using one rule or the other, without sufficient
3377information to do it correctly. (The open-brace token is what is called
3378the @dfn{look-ahead} token at this time, since the parser is still
3379deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3380
3381You might think that you could correct the problem by putting identical
3382actions into the two rules, like this:
3383
3384@example
3385@group
3386compound: @{ prepare_for_local_variables (); @}
3387 '@{' declarations statements '@}'
3388 | @{ prepare_for_local_variables (); @}
3389 '@{' statements '@}'
3390 ;
3391@end group
3392@end example
3393
3394@noindent
3395But this does not help, because Bison does not realize that the two actions
3396are identical. (Bison never tries to understand the C code in an action.)
3397
3398If the grammar is such that a declaration can be distinguished from a
3399statement by the first token (which is true in C), then one solution which
3400does work is to put the action after the open-brace, like this:
3401
3402@example
3403@group
3404compound: '@{' @{ prepare_for_local_variables (); @}
3405 declarations statements '@}'
3406 | '@{' statements '@}'
3407 ;
3408@end group
3409@end example
3410
3411@noindent
3412Now the first token of the following declaration or statement,
3413which would in any case tell Bison which rule to use, can still do so.
3414
3415Another solution is to bury the action inside a nonterminal symbol which
3416serves as a subroutine:
3417
3418@example
3419@group
3420subroutine: /* empty */
3421 @{ prepare_for_local_variables (); @}
3422 ;
3423
3424@end group
3425
3426@group
3427compound: subroutine
3428 '@{' declarations statements '@}'
3429 | subroutine
3430 '@{' statements '@}'
3431 ;
3432@end group
3433@end example
3434
3435@noindent
3436Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3437deciding which rule for @code{compound} it will eventually use.
bfa74976 3438
342b8b6e 3439@node Locations
847bf1f5
AD
3440@section Tracking Locations
3441@cindex location
95923bd6
AD
3442@cindex textual location
3443@cindex location, textual
847bf1f5
AD
3444
3445Though grammar rules and semantic actions are enough to write a fully
72d2299c 3446functional parser, it can be useful to process some additional information,
3e259915
MA
3447especially symbol locations.
3448
704a47c4
AD
3449The way locations are handled is defined by providing a data type, and
3450actions to take when rules are matched.
847bf1f5
AD
3451
3452@menu
3453* Location Type:: Specifying a data type for locations.
3454* Actions and Locations:: Using locations in actions.
3455* Location Default Action:: Defining a general way to compute locations.
3456@end menu
3457
342b8b6e 3458@node Location Type
847bf1f5
AD
3459@subsection Data Type of Locations
3460@cindex data type of locations
3461@cindex default location type
3462
3463Defining a data type for locations is much simpler than for semantic values,
3464since all tokens and groupings always use the same type.
3465
3466The type of locations is specified by defining a macro called @code{YYLTYPE}.
3467When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3468four members:
3469
3470@example
6273355b 3471typedef struct YYLTYPE
847bf1f5
AD
3472@{
3473 int first_line;
3474 int first_column;
3475 int last_line;
3476 int last_column;
6273355b 3477@} YYLTYPE;
847bf1f5
AD
3478@end example
3479
342b8b6e 3480@node Actions and Locations
847bf1f5
AD
3481@subsection Actions and Locations
3482@cindex location actions
3483@cindex actions, location
3484@vindex @@$
3485@vindex @@@var{n}
3486
3487Actions are not only useful for defining language semantics, but also for
3488describing the behavior of the output parser with locations.
3489
3490The most obvious way for building locations of syntactic groupings is very
72d2299c 3491similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3492constructs can be used to access the locations of the elements being matched.
3493The location of the @var{n}th component of the right hand side is
3494@code{@@@var{n}}, while the location of the left hand side grouping is
3495@code{@@$}.
3496
3e259915 3497Here is a basic example using the default data type for locations:
847bf1f5
AD
3498
3499@example
3500@group
3501exp: @dots{}
3e259915 3502 | exp '/' exp
847bf1f5 3503 @{
3e259915
MA
3504 @@$.first_column = @@1.first_column;
3505 @@$.first_line = @@1.first_line;
847bf1f5
AD
3506 @@$.last_column = @@3.last_column;
3507 @@$.last_line = @@3.last_line;
3e259915
MA
3508 if ($3)
3509 $$ = $1 / $3;
3510 else
3511 @{
3512 $$ = 1;
4e03e201
AD
3513 fprintf (stderr,
3514 "Division by zero, l%d,c%d-l%d,c%d",
3515 @@3.first_line, @@3.first_column,
3516 @@3.last_line, @@3.last_column);
3e259915 3517 @}
847bf1f5
AD
3518 @}
3519@end group
3520@end example
3521
3e259915 3522As for semantic values, there is a default action for locations that is
72d2299c 3523run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3524beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3525last symbol.
3e259915 3526
72d2299c 3527With this default action, the location tracking can be fully automatic. The
3e259915
MA
3528example above simply rewrites this way:
3529
3530@example
3531@group
3532exp: @dots{}
3533 | exp '/' exp
3534 @{
3535 if ($3)
3536 $$ = $1 / $3;
3537 else
3538 @{
3539 $$ = 1;
4e03e201
AD
3540 fprintf (stderr,
3541 "Division by zero, l%d,c%d-l%d,c%d",
3542 @@3.first_line, @@3.first_column,
3543 @@3.last_line, @@3.last_column);
3e259915
MA
3544 @}
3545 @}
3546@end group
3547@end example
847bf1f5 3548
32c29292
JD
3549@vindex yylloc
3550It is also possible to access the location of the look-ahead token, if any,
3551from a semantic action.
3552This location is stored in @code{yylloc}.
3553@xref{Action Features, ,Special Features for Use in Actions}.
3554
342b8b6e 3555@node Location Default Action
847bf1f5
AD
3556@subsection Default Action for Locations
3557@vindex YYLLOC_DEFAULT
8710fc41 3558@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3559
72d2299c 3560Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3561locations are much more general than semantic values, there is room in
3562the output parser to redefine the default action to take for each
72d2299c 3563rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3564matched, before the associated action is run. It is also invoked
3565while processing a syntax error, to compute the error's location.
8710fc41
JD
3566Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3567parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3568of that ambiguity.
847bf1f5 3569
3e259915 3570Most of the time, this macro is general enough to suppress location
79282c6c 3571dedicated code from semantic actions.
847bf1f5 3572
72d2299c 3573The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3574the location of the grouping (the result of the computation). When a
766de5eb 3575rule is matched, the second parameter identifies locations of
96b93a3d 3576all right hand side elements of the rule being matched, and the third
8710fc41
JD
3577parameter is the size of the rule's right hand side.
3578When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3579right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3580When processing a syntax error, the second parameter identifies locations
3581of the symbols that were discarded during error processing, and the third
96b93a3d 3582parameter is the number of discarded symbols.
847bf1f5 3583
766de5eb 3584By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3585
766de5eb 3586@smallexample
847bf1f5 3587@group
766de5eb
PE
3588# define YYLLOC_DEFAULT(Current, Rhs, N) \
3589 do \
3590 if (N) \
3591 @{ \
3592 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3593 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3594 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3595 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3596 @} \
3597 else \
3598 @{ \
3599 (Current).first_line = (Current).last_line = \
3600 YYRHSLOC(Rhs, 0).last_line; \
3601 (Current).first_column = (Current).last_column = \
3602 YYRHSLOC(Rhs, 0).last_column; \
3603 @} \
3604 while (0)
847bf1f5 3605@end group
766de5eb 3606@end smallexample
676385e2 3607
766de5eb
PE
3608where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3609in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3610just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3611
3e259915 3612When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3613
3e259915 3614@itemize @bullet
79282c6c 3615@item
72d2299c 3616All arguments are free of side-effects. However, only the first one (the
3e259915 3617result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3618
3e259915 3619@item
766de5eb
PE
3620For consistency with semantic actions, valid indexes within the
3621right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3622valid index, and it refers to the symbol just before the reduction.
3623During error processing @var{n} is always positive.
0ae99356
PE
3624
3625@item
3626Your macro should parenthesize its arguments, if need be, since the
3627actual arguments may not be surrounded by parentheses. Also, your
3628macro should expand to something that can be used as a single
3629statement when it is followed by a semicolon.
3e259915 3630@end itemize
847bf1f5 3631
342b8b6e 3632@node Declarations
bfa74976
RS
3633@section Bison Declarations
3634@cindex declarations, Bison
3635@cindex Bison declarations
3636
3637The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3638used in formulating the grammar and the data types of semantic values.
3639@xref{Symbols}.
3640
3641All token type names (but not single-character literal tokens such as
3642@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3643declared if you need to specify which data type to use for the semantic
3644value (@pxref{Multiple Types, ,More Than One Value Type}).
3645
3646The first rule in the file also specifies the start symbol, by default.
3647If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3648it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3649Grammars}).
bfa74976
RS
3650
3651@menu
b50d2359 3652* Require Decl:: Requiring a Bison version.
bfa74976
RS
3653* Token Decl:: Declaring terminal symbols.
3654* Precedence Decl:: Declaring terminals with precedence and associativity.
3655* Union Decl:: Declaring the set of all semantic value types.
3656* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3657* Initial Action Decl:: Code run before parsing starts.
72f889cc 3658* Destructor Decl:: Declaring how symbols are freed.
d6328241 3659* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3660* Start Decl:: Specifying the start symbol.
3661* Pure Decl:: Requesting a reentrant parser.
3662* Decl Summary:: Table of all Bison declarations.
3663@end menu
3664
b50d2359
AD
3665@node Require Decl
3666@subsection Require a Version of Bison
3667@cindex version requirement
3668@cindex requiring a version of Bison
3669@findex %require
3670
3671You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3672the requirement is not met, @command{bison} exits with an error (exit
3673status 63).
b50d2359
AD
3674
3675@example
3676%require "@var{version}"
3677@end example
3678
342b8b6e 3679@node Token Decl
bfa74976
RS
3680@subsection Token Type Names
3681@cindex declaring token type names
3682@cindex token type names, declaring
931c7513 3683@cindex declaring literal string tokens
bfa74976
RS
3684@findex %token
3685
3686The basic way to declare a token type name (terminal symbol) is as follows:
3687
3688@example
3689%token @var{name}
3690@end example
3691
3692Bison will convert this into a @code{#define} directive in
3693the parser, so that the function @code{yylex} (if it is in this file)
3694can use the name @var{name} to stand for this token type's code.
3695
14ded682
AD
3696Alternatively, you can use @code{%left}, @code{%right}, or
3697@code{%nonassoc} instead of @code{%token}, if you wish to specify
3698associativity and precedence. @xref{Precedence Decl, ,Operator
3699Precedence}.
bfa74976
RS
3700
3701You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3702a decimal or hexadecimal integer value in the field immediately
3703following the token name:
bfa74976
RS
3704
3705@example
3706%token NUM 300
1452af69 3707%token XNUM 0x12d // a GNU extension
bfa74976
RS
3708@end example
3709
3710@noindent
3711It is generally best, however, to let Bison choose the numeric codes for
3712all token types. Bison will automatically select codes that don't conflict
e966383b 3713with each other or with normal characters.
bfa74976
RS
3714
3715In the event that the stack type is a union, you must augment the
3716@code{%token} or other token declaration to include the data type
704a47c4
AD
3717alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3718Than One Value Type}).
bfa74976
RS
3719
3720For example:
3721
3722@example
3723@group
3724%union @{ /* define stack type */
3725 double val;
3726 symrec *tptr;
3727@}
3728%token <val> NUM /* define token NUM and its type */
3729@end group
3730@end example
3731
931c7513
RS
3732You can associate a literal string token with a token type name by
3733writing the literal string at the end of a @code{%token}
3734declaration which declares the name. For example:
3735
3736@example
3737%token arrow "=>"
3738@end example
3739
3740@noindent
3741For example, a grammar for the C language might specify these names with
3742equivalent literal string tokens:
3743
3744@example
3745%token <operator> OR "||"
3746%token <operator> LE 134 "<="
3747%left OR "<="
3748@end example
3749
3750@noindent
3751Once you equate the literal string and the token name, you can use them
3752interchangeably in further declarations or the grammar rules. The
3753@code{yylex} function can use the token name or the literal string to
3754obtain the token type code number (@pxref{Calling Convention}).
3755
342b8b6e 3756@node Precedence Decl
bfa74976
RS
3757@subsection Operator Precedence
3758@cindex precedence declarations
3759@cindex declaring operator precedence
3760@cindex operator precedence, declaring
3761
3762Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3763declare a token and specify its precedence and associativity, all at
3764once. These are called @dfn{precedence declarations}.
704a47c4
AD
3765@xref{Precedence, ,Operator Precedence}, for general information on
3766operator precedence.
bfa74976
RS
3767
3768The syntax of a precedence declaration is the same as that of
3769@code{%token}: either
3770
3771@example
3772%left @var{symbols}@dots{}
3773@end example
3774
3775@noindent
3776or
3777
3778@example
3779%left <@var{type}> @var{symbols}@dots{}
3780@end example
3781
3782And indeed any of these declarations serves the purposes of @code{%token}.
3783But in addition, they specify the associativity and relative precedence for
3784all the @var{symbols}:
3785
3786@itemize @bullet
3787@item
3788The associativity of an operator @var{op} determines how repeated uses
3789of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3790@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3791grouping @var{y} with @var{z} first. @code{%left} specifies
3792left-associativity (grouping @var{x} with @var{y} first) and
3793@code{%right} specifies right-associativity (grouping @var{y} with
3794@var{z} first). @code{%nonassoc} specifies no associativity, which
3795means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3796considered a syntax error.
3797
3798@item
3799The precedence of an operator determines how it nests with other operators.
3800All the tokens declared in a single precedence declaration have equal
3801precedence and nest together according to their associativity.
3802When two tokens declared in different precedence declarations associate,
3803the one declared later has the higher precedence and is grouped first.
3804@end itemize
3805
342b8b6e 3806@node Union Decl
bfa74976
RS
3807@subsection The Collection of Value Types
3808@cindex declaring value types
3809@cindex value types, declaring
3810@findex %union
3811
287c78f6
PE
3812The @code{%union} declaration specifies the entire collection of
3813possible data types for semantic values. The keyword @code{%union} is
3814followed by braced code containing the same thing that goes inside a
3815@code{union} in C@.
bfa74976
RS
3816
3817For example:
3818
3819@example
3820@group
3821%union @{
3822 double val;
3823 symrec *tptr;
3824@}
3825@end group
3826@end example
3827
3828@noindent
3829This says that the two alternative types are @code{double} and @code{symrec
3830*}. They are given names @code{val} and @code{tptr}; these names are used
3831in the @code{%token} and @code{%type} declarations to pick one of the types
3832for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3833
6273355b
PE
3834As an extension to @acronym{POSIX}, a tag is allowed after the
3835@code{union}. For example:
3836
3837@example
3838@group
3839%union value @{
3840 double val;
3841 symrec *tptr;
3842@}
3843@end group
3844@end example
3845
d6ca7905 3846@noindent
6273355b
PE
3847specifies the union tag @code{value}, so the corresponding C type is
3848@code{union value}. If you do not specify a tag, it defaults to
3849@code{YYSTYPE}.
3850
d6ca7905
PE
3851As another extension to @acronym{POSIX}, you may specify multiple
3852@code{%union} declarations; their contents are concatenated. However,
3853only the first @code{%union} declaration can specify a tag.
3854
6273355b 3855Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3856a semicolon after the closing brace.
3857
342b8b6e 3858@node Type Decl
bfa74976
RS
3859@subsection Nonterminal Symbols
3860@cindex declaring value types, nonterminals
3861@cindex value types, nonterminals, declaring
3862@findex %type
3863
3864@noindent
3865When you use @code{%union} to specify multiple value types, you must
3866declare the value type of each nonterminal symbol for which values are
3867used. This is done with a @code{%type} declaration, like this:
3868
3869@example
3870%type <@var{type}> @var{nonterminal}@dots{}
3871@end example
3872
3873@noindent
704a47c4
AD
3874Here @var{nonterminal} is the name of a nonterminal symbol, and
3875@var{type} is the name given in the @code{%union} to the alternative
3876that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3877can give any number of nonterminal symbols in the same @code{%type}
3878declaration, if they have the same value type. Use spaces to separate
3879the symbol names.
bfa74976 3880
931c7513
RS
3881You can also declare the value type of a terminal symbol. To do this,
3882use the same @code{<@var{type}>} construction in a declaration for the
3883terminal symbol. All kinds of token declarations allow
3884@code{<@var{type}>}.
3885
18d192f0
AD
3886@node Initial Action Decl
3887@subsection Performing Actions before Parsing
3888@findex %initial-action
3889
3890Sometimes your parser needs to perform some initializations before
3891parsing. The @code{%initial-action} directive allows for such arbitrary
3892code.
3893
3894@deffn {Directive} %initial-action @{ @var{code} @}
3895@findex %initial-action
287c78f6 3896Declare that the braced @var{code} must be invoked before parsing each time
451364ed
AD
3897@code{yyparse} is called. The @var{code} may use @code{$$} and
3898@code{@@$} --- initial value and location of the look-ahead --- and the
3899@code{%parse-param}.
18d192f0
AD
3900@end deffn
3901
451364ed
AD
3902For instance, if your locations use a file name, you may use
3903
3904@example
48b16bbc 3905%parse-param @{ char const *file_name @};
451364ed
AD
3906%initial-action
3907@{
4626a15d 3908 @@$.initialize (file_name);
451364ed
AD
3909@};
3910@end example
3911
18d192f0 3912
72f889cc
AD
3913@node Destructor Decl
3914@subsection Freeing Discarded Symbols
3915@cindex freeing discarded symbols
3916@findex %destructor
3917
a85284cf
AD
3918During error recovery (@pxref{Error Recovery}), symbols already pushed
3919on the stack and tokens coming from the rest of the file are discarded
3920until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 3921or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
3922symbols on the stack must be discarded. Even if the parser succeeds, it
3923must discard the start symbol.
258b75ca
PE
3924
3925When discarded symbols convey heap based information, this memory is
3926lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
3927in traditional compilers, it is unacceptable for programs like shells or
3928protocol implementations that may parse and execute indefinitely.
258b75ca 3929
a85284cf
AD
3930The @code{%destructor} directive defines code that is called when a
3931symbol is automatically discarded.
72f889cc
AD
3932
3933@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3934@findex %destructor
287c78f6
PE
3935Invoke the braced @var{code} whenever the parser discards one of the
3936@var{symbols}.
4b367315
AD
3937Within @var{code}, @code{$$} designates the semantic value associated
3938with the discarded symbol. The additional parser parameters are also
3939available (@pxref{Parser Function, , The Parser Function
3940@code{yyparse}}).
72f889cc
AD
3941@end deffn
3942
3943For instance:
3944
3945@smallexample
3946%union
3947@{
3948 char *string;
3949@}
3950%token <string> STRING
3951%type <string> string
3952%destructor @{ free ($$); @} STRING string
3953@end smallexample
3954
3955@noindent
258b75ca 3956guarantees that when a @code{STRING} or a @code{string} is discarded,
72f889cc
AD
3957its associated memory will be freed.
3958
e757bb10
AD
3959@sp 1
3960
3961@cindex discarded symbols
3962@dfn{Discarded symbols} are the following:
3963
3964@itemize
3965@item
3966stacked symbols popped during the first phase of error recovery,
3967@item
3968incoming terminals during the second phase of error recovery,
3969@item
a85284cf 3970the current look-ahead and the entire stack (except the current
9d9b8b70 3971right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
3972@item
3973the start symbol, when the parser succeeds.
e757bb10
AD
3974@end itemize
3975
9d9b8b70
PE
3976The parser can @dfn{return immediately} because of an explicit call to
3977@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
3978exhaustion.
3979
3980Right-hand size symbols of a rule that explicitly triggers a syntax
3981error via @code{YYERROR} are not discarded automatically. As a rule
3982of thumb, destructors are invoked only when user actions cannot manage
a85284cf 3983the memory.
e757bb10 3984
342b8b6e 3985@node Expect Decl
bfa74976
RS
3986@subsection Suppressing Conflict Warnings
3987@cindex suppressing conflict warnings
3988@cindex preventing warnings about conflicts
3989@cindex warnings, preventing
3990@cindex conflicts, suppressing warnings of
3991@findex %expect
d6328241 3992@findex %expect-rr
bfa74976
RS
3993
3994Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3995(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3996have harmless shift/reduce conflicts which are resolved in a predictable
3997way and would be difficult to eliminate. It is desirable to suppress
3998the warning about these conflicts unless the number of conflicts
3999changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4000
4001The declaration looks like this:
4002
4003@example
4004%expect @var{n}
4005@end example
4006
035aa4a0
PE
4007Here @var{n} is a decimal integer. The declaration says there should
4008be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4009Bison reports an error if the number of shift/reduce conflicts differs
4010from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4011
035aa4a0
PE
4012For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4013serious, and should be eliminated entirely. Bison will always report
4014reduce/reduce conflicts for these parsers. With @acronym{GLR}
4015parsers, however, both kinds of conflicts are routine; otherwise,
4016there would be no need to use @acronym{GLR} parsing. Therefore, it is
4017also possible to specify an expected number of reduce/reduce conflicts
4018in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4019
4020@example
4021%expect-rr @var{n}
4022@end example
4023
bfa74976
RS
4024In general, using @code{%expect} involves these steps:
4025
4026@itemize @bullet
4027@item
4028Compile your grammar without @code{%expect}. Use the @samp{-v} option
4029to get a verbose list of where the conflicts occur. Bison will also
4030print the number of conflicts.
4031
4032@item
4033Check each of the conflicts to make sure that Bison's default
4034resolution is what you really want. If not, rewrite the grammar and
4035go back to the beginning.
4036
4037@item
4038Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4039number which Bison printed. With @acronym{GLR} parsers, add an
4040@code{%expect-rr} declaration as well.
bfa74976
RS
4041@end itemize
4042
035aa4a0
PE
4043Now Bison will warn you if you introduce an unexpected conflict, but
4044will keep silent otherwise.
bfa74976 4045
342b8b6e 4046@node Start Decl
bfa74976
RS
4047@subsection The Start-Symbol
4048@cindex declaring the start symbol
4049@cindex start symbol, declaring
4050@cindex default start symbol
4051@findex %start
4052
4053Bison assumes by default that the start symbol for the grammar is the first
4054nonterminal specified in the grammar specification section. The programmer
4055may override this restriction with the @code{%start} declaration as follows:
4056
4057@example
4058%start @var{symbol}
4059@end example
4060
342b8b6e 4061@node Pure Decl
bfa74976
RS
4062@subsection A Pure (Reentrant) Parser
4063@cindex reentrant parser
4064@cindex pure parser
8c9a50be 4065@findex %pure-parser
bfa74976
RS
4066
4067A @dfn{reentrant} program is one which does not alter in the course of
4068execution; in other words, it consists entirely of @dfn{pure} (read-only)
4069code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4070for example, a nonreentrant program may not be safe to call from a signal
4071handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4072program must be called only within interlocks.
4073
70811b85 4074Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4075suitable for most uses, and it permits compatibility with Yacc. (The
4076standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4077statically allocated variables for communication with @code{yylex},
4078including @code{yylval} and @code{yylloc}.)
bfa74976 4079
70811b85 4080Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4081declaration @code{%pure-parser} says that you want the parser to be
70811b85 4082reentrant. It looks like this:
bfa74976
RS
4083
4084@example
8c9a50be 4085%pure-parser
bfa74976
RS
4086@end example
4087
70811b85
RS
4088The result is that the communication variables @code{yylval} and
4089@code{yylloc} become local variables in @code{yyparse}, and a different
4090calling convention is used for the lexical analyzer function
4091@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4092Parsers}, for the details of this. The variable @code{yynerrs} also
4093becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4094Reporting Function @code{yyerror}}). The convention for calling
4095@code{yyparse} itself is unchanged.
4096
4097Whether the parser is pure has nothing to do with the grammar rules.
4098You can generate either a pure parser or a nonreentrant parser from any
4099valid grammar.
bfa74976 4100
342b8b6e 4101@node Decl Summary
bfa74976
RS
4102@subsection Bison Declaration Summary
4103@cindex Bison declaration summary
4104@cindex declaration summary
4105@cindex summary, Bison declaration
4106
d8988b2f 4107Here is a summary of the declarations used to define a grammar:
bfa74976 4108
18b519c0 4109@deffn {Directive} %union
bfa74976
RS
4110Declare the collection of data types that semantic values may have
4111(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4112@end deffn
bfa74976 4113
18b519c0 4114@deffn {Directive} %token
bfa74976
RS
4115Declare a terminal symbol (token type name) with no precedence
4116or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4117@end deffn
bfa74976 4118
18b519c0 4119@deffn {Directive} %right
bfa74976
RS
4120Declare a terminal symbol (token type name) that is right-associative
4121(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4122@end deffn
bfa74976 4123
18b519c0 4124@deffn {Directive} %left
bfa74976
RS
4125Declare a terminal symbol (token type name) that is left-associative
4126(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4127@end deffn
bfa74976 4128
18b519c0 4129@deffn {Directive} %nonassoc
bfa74976 4130Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4131(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4132Using it in a way that would be associative is a syntax error.
4133@end deffn
4134
91d2c560 4135@ifset defaultprec
39a06c25 4136@deffn {Directive} %default-prec
22fccf95 4137Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4138(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4139@end deffn
91d2c560 4140@end ifset
bfa74976 4141
18b519c0 4142@deffn {Directive} %type
bfa74976
RS
4143Declare the type of semantic values for a nonterminal symbol
4144(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4145@end deffn
bfa74976 4146
18b519c0 4147@deffn {Directive} %start
89cab50d
AD
4148Specify the grammar's start symbol (@pxref{Start Decl, ,The
4149Start-Symbol}).
18b519c0 4150@end deffn
bfa74976 4151
18b519c0 4152@deffn {Directive} %expect
bfa74976
RS
4153Declare the expected number of shift-reduce conflicts
4154(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4155@end deffn
4156
bfa74976 4157
d8988b2f
AD
4158@sp 1
4159@noindent
4160In order to change the behavior of @command{bison}, use the following
4161directives:
4162
18b519c0 4163@deffn {Directive} %debug
4947ebdb
PE
4164In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4165already defined, so that the debugging facilities are compiled.
18b519c0 4166@end deffn
ec3bc396 4167@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4168
18b519c0 4169@deffn {Directive} %defines
4bfd5e4e
PE
4170Write a header file containing macro definitions for the token type
4171names defined in the grammar as well as a few other declarations.
d8988b2f 4172If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4173is named @file{@var{name}.h}.
d8988b2f 4174
4bfd5e4e 4175Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d 4176declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4177(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4178require other definitions, or if you have defined a @code{YYSTYPE} macro
4179(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4180arrange for these definitions to be propagated to all modules, e.g., by
4181putting them in a prerequisite header that is included both by your
4182parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4183
4184Unless your parser is pure, the output header declares @code{yylval}
4185as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4186Parser}.
4187
4188If you have also used locations, the output header declares
4189@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4190@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4191Locations}.
4192
f8e1c9e5
AD
4193This output file is normally essential if you wish to put the definition
4194of @code{yylex} in a separate source file, because @code{yylex}
4195typically needs to be able to refer to the above-mentioned declarations
4196and to the token type codes. @xref{Token Values, ,Semantic Values of
4197Tokens}.
18b519c0 4198@end deffn
d8988b2f 4199
18b519c0 4200@deffn {Directive} %destructor
258b75ca 4201Specify how the parser should reclaim the memory associated to
fa7e68c3 4202discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4203@end deffn
72f889cc 4204
18b519c0 4205@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4206Specify a prefix to use for all Bison output file names. The names are
4207chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4208@end deffn
d8988b2f 4209
18b519c0 4210@deffn {Directive} %locations
89cab50d
AD
4211Generate the code processing the locations (@pxref{Action Features,
4212,Special Features for Use in Actions}). This mode is enabled as soon as
4213the grammar uses the special @samp{@@@var{n}} tokens, but if your
4214grammar does not use it, using @samp{%locations} allows for more
6e649e65 4215accurate syntax error messages.
18b519c0 4216@end deffn
89cab50d 4217
18b519c0 4218@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4219Rename the external symbols used in the parser so that they start with
4220@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4221in C parsers
d8988b2f 4222is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4223@code{yylval}, @code{yychar}, @code{yydebug}, and
4224(if locations are used) @code{yylloc}. For example, if you use
2a8d363a 4225@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4226and so on. In C++ parsers, it is only the surrounding namespace which is
4227named @var{prefix} instead of @samp{yy}.
4228@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4229@end deffn
931c7513 4230
91d2c560 4231@ifset defaultprec
22fccf95
PE
4232@deffn {Directive} %no-default-prec
4233Do not assign a precedence to rules lacking an explicit @code{%prec}
4234modifier (@pxref{Contextual Precedence, ,Context-Dependent
4235Precedence}).
4236@end deffn
91d2c560 4237@end ifset
22fccf95 4238
18b519c0 4239@deffn {Directive} %no-parser
6deb4447
AD
4240Do not include any C code in the parser file; generate tables only. The
4241parser file contains just @code{#define} directives and static variable
4242declarations.
4243
4244This option also tells Bison to write the C code for the grammar actions
fa4d969f 4245into a file named @file{@var{file}.act}, in the form of a
6deb4447 4246brace-surrounded body fit for a @code{switch} statement.
18b519c0 4247@end deffn
6deb4447 4248
18b519c0 4249@deffn {Directive} %no-lines
931c7513
RS
4250Don't generate any @code{#line} preprocessor commands in the parser
4251file. Ordinarily Bison writes these commands in the parser file so that
4252the C compiler and debuggers will associate errors and object code with
4253your source file (the grammar file). This directive causes them to
4254associate errors with the parser file, treating it an independent source
4255file in its own right.
18b519c0 4256@end deffn
931c7513 4257
fa4d969f
PE
4258@deffn {Directive} %output="@var{file}"
4259Specify @var{file} for the parser file.
18b519c0 4260@end deffn
6deb4447 4261
18b519c0 4262@deffn {Directive} %pure-parser
d8988b2f
AD
4263Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4264(Reentrant) Parser}).
18b519c0 4265@end deffn
6deb4447 4266
b50d2359 4267@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4268Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4269Require a Version of Bison}.
b50d2359
AD
4270@end deffn
4271
18b519c0 4272@deffn {Directive} %token-table
931c7513
RS
4273Generate an array of token names in the parser file. The name of the
4274array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4275token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4276three elements of @code{yytname} correspond to the predefined tokens
4277@code{"$end"},
88bce5a2
AD
4278@code{"error"}, and @code{"$undefined"}; after these come the symbols
4279defined in the grammar file.
931c7513 4280
9e0876fb
PE
4281The name in the table includes all the characters needed to represent
4282the token in Bison. For single-character literals and literal
4283strings, this includes the surrounding quoting characters and any
4284escape sequences. For example, the Bison single-character literal
4285@code{'+'} corresponds to a three-character name, represented in C as
4286@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4287corresponds to a five-character name, represented in C as
4288@code{"\"\\\\/\""}.
931c7513 4289
8c9a50be 4290When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4291definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4292@code{YYNRULES}, and @code{YYNSTATES}:
4293
4294@table @code
4295@item YYNTOKENS
4296The highest token number, plus one.
4297@item YYNNTS
9ecbd125 4298The number of nonterminal symbols.
931c7513
RS
4299@item YYNRULES
4300The number of grammar rules,
4301@item YYNSTATES
4302The number of parser states (@pxref{Parser States}).
4303@end table
18b519c0 4304@end deffn
d8988b2f 4305
18b519c0 4306@deffn {Directive} %verbose
d8988b2f
AD
4307Write an extra output file containing verbose descriptions of the
4308parser states and what is done for each type of look-ahead token in
72d2299c 4309that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4310information.
18b519c0 4311@end deffn
d8988b2f 4312
18b519c0 4313@deffn {Directive} %yacc
d8988b2f
AD
4314Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4315including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4316@end deffn
d8988b2f
AD
4317
4318
342b8b6e 4319@node Multiple Parsers
bfa74976
RS
4320@section Multiple Parsers in the Same Program
4321
4322Most programs that use Bison parse only one language and therefore contain
4323only one Bison parser. But what if you want to parse more than one
4324language with the same program? Then you need to avoid a name conflict
4325between different definitions of @code{yyparse}, @code{yylval}, and so on.
4326
4327The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4328(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4329functions and variables of the Bison parser to start with @var{prefix}
4330instead of @samp{yy}. You can use this to give each parser distinct
4331names that do not conflict.
bfa74976
RS
4332
4333The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4334@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4335@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4336the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4337
4338@strong{All the other variables and macros associated with Bison are not
4339renamed.} These others are not global; there is no conflict if the same
4340name is used in different parsers. For example, @code{YYSTYPE} is not
4341renamed, but defining this in different ways in different parsers causes
4342no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4343
4344The @samp{-p} option works by adding macro definitions to the beginning
4345of the parser source file, defining @code{yyparse} as
4346@code{@var{prefix}parse}, and so on. This effectively substitutes one
4347name for the other in the entire parser file.
4348
342b8b6e 4349@node Interface
bfa74976
RS
4350@chapter Parser C-Language Interface
4351@cindex C-language interface
4352@cindex interface
4353
4354The Bison parser is actually a C function named @code{yyparse}. Here we
4355describe the interface conventions of @code{yyparse} and the other
4356functions that it needs to use.
4357
4358Keep in mind that the parser uses many C identifiers starting with
4359@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4360identifier (aside from those in this manual) in an action or in epilogue
4361in the grammar file, you are likely to run into trouble.
bfa74976
RS
4362
4363@menu
4364* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4365* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4366 which reads tokens.
4367* Error Reporting:: You must supply a function @code{yyerror}.
4368* Action Features:: Special features for use in actions.
f7ab6a50
PE
4369* Internationalization:: How to let the parser speak in the user's
4370 native language.
bfa74976
RS
4371@end menu
4372
342b8b6e 4373@node Parser Function
bfa74976
RS
4374@section The Parser Function @code{yyparse}
4375@findex yyparse
4376
4377You call the function @code{yyparse} to cause parsing to occur. This
4378function reads tokens, executes actions, and ultimately returns when it
4379encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4380write an action which directs @code{yyparse} to return immediately
4381without reading further.
bfa74976 4382
2a8d363a
AD
4383
4384@deftypefun int yyparse (void)
bfa74976
RS
4385The value returned by @code{yyparse} is 0 if parsing was successful (return
4386is due to end-of-input).
4387
b47dbebe
PE
4388The value is 1 if parsing failed because of invalid input, i.e., input
4389that contains a syntax error or that causes @code{YYABORT} to be
4390invoked.
4391
4392The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4393@end deftypefun
bfa74976
RS
4394
4395In an action, you can cause immediate return from @code{yyparse} by using
4396these macros:
4397
2a8d363a 4398@defmac YYACCEPT
bfa74976
RS
4399@findex YYACCEPT
4400Return immediately with value 0 (to report success).
2a8d363a 4401@end defmac
bfa74976 4402
2a8d363a 4403@defmac YYABORT
bfa74976
RS
4404@findex YYABORT
4405Return immediately with value 1 (to report failure).
2a8d363a
AD
4406@end defmac
4407
4408If you use a reentrant parser, you can optionally pass additional
4409parameter information to it in a reentrant way. To do so, use the
4410declaration @code{%parse-param}:
4411
feeb0eda 4412@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4413@findex %parse-param
287c78f6
PE
4414Declare that an argument declared by the braced-code
4415@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4416The @var{argument-declaration} is used when declaring
feeb0eda
PE
4417functions or prototypes. The last identifier in
4418@var{argument-declaration} must be the argument name.
2a8d363a
AD
4419@end deffn
4420
4421Here's an example. Write this in the parser:
4422
4423@example
feeb0eda
PE
4424%parse-param @{int *nastiness@}
4425%parse-param @{int *randomness@}
2a8d363a
AD
4426@end example
4427
4428@noindent
4429Then call the parser like this:
4430
4431@example
4432@{
4433 int nastiness, randomness;
4434 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4435 value = yyparse (&nastiness, &randomness);
4436 @dots{}
4437@}
4438@end example
4439
4440@noindent
4441In the grammar actions, use expressions like this to refer to the data:
4442
4443@example
4444exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4445@end example
4446
bfa74976 4447
342b8b6e 4448@node Lexical
bfa74976
RS
4449@section The Lexical Analyzer Function @code{yylex}
4450@findex yylex
4451@cindex lexical analyzer
4452
4453The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4454the input stream and returns them to the parser. Bison does not create
4455this function automatically; you must write it so that @code{yyparse} can
4456call it. The function is sometimes referred to as a lexical scanner.
4457
4458In simple programs, @code{yylex} is often defined at the end of the Bison
4459grammar file. If @code{yylex} is defined in a separate source file, you
4460need to arrange for the token-type macro definitions to be available there.
4461To do this, use the @samp{-d} option when you run Bison, so that it will
4462write these macro definitions into a separate header file
4463@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4464that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4465
4466@menu
4467* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4468* Token Values:: How @code{yylex} must return the semantic value
4469 of the token it has read.
95923bd6 4470* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4471 (line number, etc.) of the token, if the
4472 actions want that.
4473* Pure Calling:: How the calling convention differs
4474 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4475@end menu
4476
342b8b6e 4477@node Calling Convention
bfa74976
RS
4478@subsection Calling Convention for @code{yylex}
4479
72d2299c
PE
4480The value that @code{yylex} returns must be the positive numeric code
4481for the type of token it has just found; a zero or negative value
4482signifies end-of-input.
bfa74976
RS
4483
4484When a token is referred to in the grammar rules by a name, that name
4485in the parser file becomes a C macro whose definition is the proper
4486numeric code for that token type. So @code{yylex} can use the name
4487to indicate that type. @xref{Symbols}.
4488
4489When a token is referred to in the grammar rules by a character literal,
4490the numeric code for that character is also the code for the token type.
72d2299c
PE
4491So @code{yylex} can simply return that character code, possibly converted
4492to @code{unsigned char} to avoid sign-extension. The null character
4493must not be used this way, because its code is zero and that
bfa74976
RS
4494signifies end-of-input.
4495
4496Here is an example showing these things:
4497
4498@example
13863333
AD
4499int
4500yylex (void)
bfa74976
RS
4501@{
4502 @dots{}
72d2299c 4503 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4504 return 0;
4505 @dots{}
4506 if (c == '+' || c == '-')
72d2299c 4507 return c; /* Assume token type for `+' is '+'. */
bfa74976 4508 @dots{}
72d2299c 4509 return INT; /* Return the type of the token. */
bfa74976
RS
4510 @dots{}
4511@}
4512@end example
4513
4514@noindent
4515This interface has been designed so that the output from the @code{lex}
4516utility can be used without change as the definition of @code{yylex}.
4517
931c7513
RS
4518If the grammar uses literal string tokens, there are two ways that
4519@code{yylex} can determine the token type codes for them:
4520
4521@itemize @bullet
4522@item
4523If the grammar defines symbolic token names as aliases for the
4524literal string tokens, @code{yylex} can use these symbolic names like
4525all others. In this case, the use of the literal string tokens in
4526the grammar file has no effect on @code{yylex}.
4527
4528@item
9ecbd125 4529@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4530table. The index of the token in the table is the token type's code.
9ecbd125 4531The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4532double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4533token's characters are escaped as necessary to be suitable as input
4534to Bison.
931c7513 4535
9e0876fb
PE
4536Here's code for looking up a multicharacter token in @code{yytname},
4537assuming that the characters of the token are stored in
4538@code{token_buffer}, and assuming that the token does not contain any
4539characters like @samp{"} that require escaping.
931c7513
RS
4540
4541@smallexample
4542for (i = 0; i < YYNTOKENS; i++)
4543 @{
4544 if (yytname[i] != 0
4545 && yytname[i][0] == '"'
68449b3a
PE
4546 && ! strncmp (yytname[i] + 1, token_buffer,
4547 strlen (token_buffer))
931c7513
RS
4548 && yytname[i][strlen (token_buffer) + 1] == '"'
4549 && yytname[i][strlen (token_buffer) + 2] == 0)
4550 break;
4551 @}
4552@end smallexample
4553
4554The @code{yytname} table is generated only if you use the
8c9a50be 4555@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4556@end itemize
4557
342b8b6e 4558@node Token Values
bfa74976
RS
4559@subsection Semantic Values of Tokens
4560
4561@vindex yylval
9d9b8b70 4562In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4563be stored into the global variable @code{yylval}. When you are using
4564just one data type for semantic values, @code{yylval} has that type.
4565Thus, if the type is @code{int} (the default), you might write this in
4566@code{yylex}:
4567
4568@example
4569@group
4570 @dots{}
72d2299c
PE
4571 yylval = value; /* Put value onto Bison stack. */
4572 return INT; /* Return the type of the token. */
bfa74976
RS
4573 @dots{}
4574@end group
4575@end example
4576
4577When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4578made from the @code{%union} declaration (@pxref{Union Decl, ,The
4579Collection of Value Types}). So when you store a token's value, you
4580must use the proper member of the union. If the @code{%union}
4581declaration looks like this:
bfa74976
RS
4582
4583@example
4584@group
4585%union @{
4586 int intval;
4587 double val;
4588 symrec *tptr;
4589@}
4590@end group
4591@end example
4592
4593@noindent
4594then the code in @code{yylex} might look like this:
4595
4596@example
4597@group
4598 @dots{}
72d2299c
PE
4599 yylval.intval = value; /* Put value onto Bison stack. */
4600 return INT; /* Return the type of the token. */
bfa74976
RS
4601 @dots{}
4602@end group
4603@end example
4604
95923bd6
AD
4605@node Token Locations
4606@subsection Textual Locations of Tokens
bfa74976
RS
4607
4608@vindex yylloc
847bf1f5 4609If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4610Tracking Locations}) in actions to keep track of the textual locations
4611of tokens and groupings, then you must provide this information in
4612@code{yylex}. The function @code{yyparse} expects to find the textual
4613location of a token just parsed in the global variable @code{yylloc}.
4614So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4615
4616By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4617initialize the members that are going to be used by the actions. The
4618four members are called @code{first_line}, @code{first_column},
4619@code{last_line} and @code{last_column}. Note that the use of this
4620feature makes the parser noticeably slower.
bfa74976
RS
4621
4622@tindex YYLTYPE
4623The data type of @code{yylloc} has the name @code{YYLTYPE}.
4624
342b8b6e 4625@node Pure Calling
c656404a 4626@subsection Calling Conventions for Pure Parsers
bfa74976 4627
8c9a50be 4628When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4629pure, reentrant parser, the global communication variables @code{yylval}
4630and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4631Parser}.) In such parsers the two global variables are replaced by
4632pointers passed as arguments to @code{yylex}. You must declare them as
4633shown here, and pass the information back by storing it through those
4634pointers.
bfa74976
RS
4635
4636@example
13863333
AD
4637int
4638yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4639@{
4640 @dots{}
4641 *lvalp = value; /* Put value onto Bison stack. */
4642 return INT; /* Return the type of the token. */
4643 @dots{}
4644@}
4645@end example
4646
4647If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4648textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4649this case, omit the second argument; @code{yylex} will be called with
4650only one argument.
4651
e425e872 4652
2a8d363a
AD
4653If you wish to pass the additional parameter data to @code{yylex}, use
4654@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4655Function}).
e425e872 4656
feeb0eda 4657@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4658@findex %lex-param
287c78f6
PE
4659Declare that the braced-code @var{argument-declaration} is an
4660additional @code{yylex} argument declaration.
2a8d363a 4661@end deffn
e425e872 4662
2a8d363a 4663For instance:
e425e872
RS
4664
4665@example
feeb0eda
PE
4666%parse-param @{int *nastiness@}
4667%lex-param @{int *nastiness@}
4668%parse-param @{int *randomness@}
e425e872
RS
4669@end example
4670
4671@noindent
2a8d363a 4672results in the following signature:
e425e872
RS
4673
4674@example
2a8d363a
AD
4675int yylex (int *nastiness);
4676int yyparse (int *nastiness, int *randomness);
e425e872
RS
4677@end example
4678
2a8d363a 4679If @code{%pure-parser} is added:
c656404a
RS
4680
4681@example
2a8d363a
AD
4682int yylex (YYSTYPE *lvalp, int *nastiness);
4683int yyparse (int *nastiness, int *randomness);
c656404a
RS
4684@end example
4685
2a8d363a
AD
4686@noindent
4687and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4688
2a8d363a
AD
4689@example
4690int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4691int yyparse (int *nastiness, int *randomness);
4692@end example
931c7513 4693
342b8b6e 4694@node Error Reporting
bfa74976
RS
4695@section The Error Reporting Function @code{yyerror}
4696@cindex error reporting function
4697@findex yyerror
4698@cindex parse error
4699@cindex syntax error
4700
6e649e65 4701The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4702whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4703action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4704macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4705in Actions}).
bfa74976
RS
4706
4707The Bison parser expects to report the error by calling an error
4708reporting function named @code{yyerror}, which you must supply. It is
4709called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4710receives one argument. For a syntax error, the string is normally
4711@w{@code{"syntax error"}}.
bfa74976 4712
2a8d363a
AD
4713@findex %error-verbose
4714If you invoke the directive @code{%error-verbose} in the Bison
4715declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4716Section}), then Bison provides a more verbose and specific error message
6e649e65 4717string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4718
1a059451
PE
4719The parser can detect one other kind of error: memory exhaustion. This
4720can happen when the input contains constructions that are very deeply
bfa74976 4721nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4722parser normally extends its stack automatically up to a very large limit. But
4723if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4724fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4725
4726In some cases diagnostics like @w{@code{"syntax error"}} are
4727translated automatically from English to some other language before
4728they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4729
4730The following definition suffices in simple programs:
4731
4732@example
4733@group
13863333 4734void
38a92d50 4735yyerror (char const *s)
bfa74976
RS
4736@{
4737@end group
4738@group
4739 fprintf (stderr, "%s\n", s);
4740@}
4741@end group
4742@end example
4743
4744After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4745error recovery if you have written suitable error recovery grammar rules
4746(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4747immediately return 1.
4748
93724f13 4749Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4750an access to the current location.
4751This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4752parsers, but not for the Yacc parser, for historical reasons. I.e., if
4753@samp{%locations %pure-parser} is passed then the prototypes for
4754@code{yyerror} are:
4755
4756@example
38a92d50
PE
4757void yyerror (char const *msg); /* Yacc parsers. */
4758void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4759@end example
4760
feeb0eda 4761If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4762
4763@example
b317297e
PE
4764void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4765void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4766@end example
4767
fa7e68c3 4768Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4769convention for absolutely pure parsers, i.e., when the calling
4770convention of @code{yylex} @emph{and} the calling convention of
4771@code{%pure-parser} are pure. I.e.:
4772
4773@example
4774/* Location tracking. */
4775%locations
4776/* Pure yylex. */
4777%pure-parser
feeb0eda 4778%lex-param @{int *nastiness@}
2a8d363a 4779/* Pure yyparse. */
feeb0eda
PE
4780%parse-param @{int *nastiness@}
4781%parse-param @{int *randomness@}
2a8d363a
AD
4782@end example
4783
4784@noindent
4785results in the following signatures for all the parser kinds:
4786
4787@example
4788int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4789int yyparse (int *nastiness, int *randomness);
93724f13
AD
4790void yyerror (YYLTYPE *locp,
4791 int *nastiness, int *randomness,
38a92d50 4792 char const *msg);
2a8d363a
AD
4793@end example
4794
1c0c3e95 4795@noindent
38a92d50
PE
4796The prototypes are only indications of how the code produced by Bison
4797uses @code{yyerror}. Bison-generated code always ignores the returned
4798value, so @code{yyerror} can return any type, including @code{void}.
4799Also, @code{yyerror} can be a variadic function; that is why the
4800message is always passed last.
4801
4802Traditionally @code{yyerror} returns an @code{int} that is always
4803ignored, but this is purely for historical reasons, and @code{void} is
4804preferable since it more accurately describes the return type for
4805@code{yyerror}.
93724f13 4806
bfa74976
RS
4807@vindex yynerrs
4808The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4809reported so far. Normally this variable is global; but if you
704a47c4
AD
4810request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4811then it is a local variable which only the actions can access.
bfa74976 4812
342b8b6e 4813@node Action Features
bfa74976
RS
4814@section Special Features for Use in Actions
4815@cindex summary, action features
4816@cindex action features summary
4817
4818Here is a table of Bison constructs, variables and macros that
4819are useful in actions.
4820
18b519c0 4821@deffn {Variable} $$
bfa74976
RS
4822Acts like a variable that contains the semantic value for the
4823grouping made by the current rule. @xref{Actions}.
18b519c0 4824@end deffn
bfa74976 4825
18b519c0 4826@deffn {Variable} $@var{n}
bfa74976
RS
4827Acts like a variable that contains the semantic value for the
4828@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4829@end deffn
bfa74976 4830
18b519c0 4831@deffn {Variable} $<@var{typealt}>$
bfa74976 4832Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4833specified by the @code{%union} declaration. @xref{Action Types, ,Data
4834Types of Values in Actions}.
18b519c0 4835@end deffn
bfa74976 4836
18b519c0 4837@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4838Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4839union specified by the @code{%union} declaration.
e0c471a9 4840@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4841@end deffn
bfa74976 4842
18b519c0 4843@deffn {Macro} YYABORT;
bfa74976
RS
4844Return immediately from @code{yyparse}, indicating failure.
4845@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4846@end deffn
bfa74976 4847
18b519c0 4848@deffn {Macro} YYACCEPT;
bfa74976
RS
4849Return immediately from @code{yyparse}, indicating success.
4850@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4851@end deffn
bfa74976 4852
18b519c0 4853@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4854@findex YYBACKUP
4855Unshift a token. This macro is allowed only for rules that reduce
4856a single value, and only when there is no look-ahead token.
c827f760 4857It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4858It installs a look-ahead token with token type @var{token} and
4859semantic value @var{value}; then it discards the value that was
4860going to be reduced by this rule.
4861
4862If the macro is used when it is not valid, such as when there is
4863a look-ahead token already, then it reports a syntax error with
4864a message @samp{cannot back up} and performs ordinary error
4865recovery.
4866
4867In either case, the rest of the action is not executed.
18b519c0 4868@end deffn
bfa74976 4869
18b519c0 4870@deffn {Macro} YYEMPTY
bfa74976
RS
4871@vindex YYEMPTY
4872Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4873@end deffn
bfa74976 4874
32c29292
JD
4875@deffn {Macro} YYEOF
4876@vindex YYEOF
4877Value stored in @code{yychar} when the look-ahead is the end of the input
4878stream.
4879@end deffn
4880
18b519c0 4881@deffn {Macro} YYERROR;
bfa74976
RS
4882@findex YYERROR
4883Cause an immediate syntax error. This statement initiates error
4884recovery just as if the parser itself had detected an error; however, it
4885does not call @code{yyerror}, and does not print any message. If you
4886want to print an error message, call @code{yyerror} explicitly before
4887the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4888@end deffn
bfa74976 4889
18b519c0 4890@deffn {Macro} YYRECOVERING
bfa74976
RS
4891This macro stands for an expression that has the value 1 when the parser
4892is recovering from a syntax error, and 0 the rest of the time.
4893@xref{Error Recovery}.
18b519c0 4894@end deffn
bfa74976 4895
18b519c0 4896@deffn {Variable} yychar
32c29292
JD
4897Variable containing either the look-ahead token, or @code{YYEOF} when the
4898look-ahead is the end of the input stream, or @code{YYEMPTY} when no look-ahead
4899has been performed so the next token is not yet known.
4900Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
4901Actions}).
bfa74976 4902@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4903@end deffn
bfa74976 4904
18b519c0 4905@deffn {Macro} yyclearin;
bfa74976 4906Discard the current look-ahead token. This is useful primarily in
32c29292
JD
4907error rules.
4908Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
4909Semantic Actions}).
4910@xref{Error Recovery}.
18b519c0 4911@end deffn
bfa74976 4912
18b519c0 4913@deffn {Macro} yyerrok;
bfa74976 4914Resume generating error messages immediately for subsequent syntax
13863333 4915errors. This is useful primarily in error rules.
bfa74976 4916@xref{Error Recovery}.
18b519c0 4917@end deffn
bfa74976 4918
32c29292
JD
4919@deffn {Variable} yylloc
4920Variable containing the look-ahead token location when @code{yychar} is not set
4921to @code{YYEMPTY} or @code{YYEOF}.
4922Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
4923Actions}).
4924@xref{Actions and Locations, ,Actions and Locations}.
4925@end deffn
4926
4927@deffn {Variable} yylval
4928Variable containing the look-ahead token semantic value when @code{yychar} is
4929not set to @code{YYEMPTY} or @code{YYEOF}.
4930Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
4931Actions}).
4932@xref{Actions, ,Actions}.
4933@end deffn
4934
18b519c0 4935@deffn {Value} @@$
847bf1f5 4936@findex @@$
95923bd6 4937Acts like a structure variable containing information on the textual location
847bf1f5
AD
4938of the grouping made by the current rule. @xref{Locations, ,
4939Tracking Locations}.
bfa74976 4940
847bf1f5
AD
4941@c Check if those paragraphs are still useful or not.
4942
4943@c @example
4944@c struct @{
4945@c int first_line, last_line;
4946@c int first_column, last_column;
4947@c @};
4948@c @end example
4949
4950@c Thus, to get the starting line number of the third component, you would
4951@c use @samp{@@3.first_line}.
bfa74976 4952
847bf1f5
AD
4953@c In order for the members of this structure to contain valid information,
4954@c you must make @code{yylex} supply this information about each token.
4955@c If you need only certain members, then @code{yylex} need only fill in
4956@c those members.
bfa74976 4957
847bf1f5 4958@c The use of this feature makes the parser noticeably slower.
18b519c0 4959@end deffn
847bf1f5 4960
18b519c0 4961@deffn {Value} @@@var{n}
847bf1f5 4962@findex @@@var{n}
95923bd6 4963Acts like a structure variable containing information on the textual location
847bf1f5
AD
4964of the @var{n}th component of the current rule. @xref{Locations, ,
4965Tracking Locations}.
18b519c0 4966@end deffn
bfa74976 4967
f7ab6a50
PE
4968@node Internationalization
4969@section Parser Internationalization
4970@cindex internationalization
4971@cindex i18n
4972@cindex NLS
4973@cindex gettext
4974@cindex bison-po
4975
4976A Bison-generated parser can print diagnostics, including error and
4977tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
4978also supports outputting diagnostics in the user's native language. To
4979make this work, the user should set the usual environment variables.
4980@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
4981For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
4982set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
4983encoding. The exact set of available locales depends on the user's
4984installation.
4985
4986The maintainer of a package that uses a Bison-generated parser enables
4987the internationalization of the parser's output through the following
4988steps. Here we assume a package that uses @acronym{GNU} Autoconf and
4989@acronym{GNU} Automake.
4990
4991@enumerate
4992@item
30757c8c 4993@cindex bison-i18n.m4
f7ab6a50
PE
4994Into the directory containing the @acronym{GNU} Autoconf macros used
4995by the package---often called @file{m4}---copy the
4996@file{bison-i18n.m4} file installed by Bison under
4997@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
4998For example:
4999
5000@example
5001cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5002@end example
5003
5004@item
30757c8c
PE
5005@findex BISON_I18N
5006@vindex BISON_LOCALEDIR
5007@vindex YYENABLE_NLS
f7ab6a50
PE
5008In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5009invocation, add an invocation of @code{BISON_I18N}. This macro is
5010defined in the file @file{bison-i18n.m4} that you copied earlier. It
5011causes @samp{configure} to find the value of the
30757c8c
PE
5012@code{BISON_LOCALEDIR} variable, and it defines the source-language
5013symbol @code{YYENABLE_NLS} to enable translations in the
5014Bison-generated parser.
f7ab6a50
PE
5015
5016@item
5017In the @code{main} function of your program, designate the directory
5018containing Bison's runtime message catalog, through a call to
5019@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5020For example:
5021
5022@example
5023bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5024@end example
5025
5026Typically this appears after any other call @code{bindtextdomain
5027(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5028@samp{BISON_LOCALEDIR} to be defined as a string through the
5029@file{Makefile}.
5030
5031@item
5032In the @file{Makefile.am} that controls the compilation of the @code{main}
5033function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5034either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5035
5036@example
5037DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5038@end example
5039
5040or:
5041
5042@example
5043AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5044@end example
5045
5046@item
5047Finally, invoke the command @command{autoreconf} to generate the build
5048infrastructure.
5049@end enumerate
5050
bfa74976 5051
342b8b6e 5052@node Algorithm
13863333
AD
5053@chapter The Bison Parser Algorithm
5054@cindex Bison parser algorithm
bfa74976
RS
5055@cindex algorithm of parser
5056@cindex shifting
5057@cindex reduction
5058@cindex parser stack
5059@cindex stack, parser
5060
5061As Bison reads tokens, it pushes them onto a stack along with their
5062semantic values. The stack is called the @dfn{parser stack}. Pushing a
5063token is traditionally called @dfn{shifting}.
5064
5065For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5066@samp{3} to come. The stack will have four elements, one for each token
5067that was shifted.
5068
5069But the stack does not always have an element for each token read. When
5070the last @var{n} tokens and groupings shifted match the components of a
5071grammar rule, they can be combined according to that rule. This is called
5072@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5073single grouping whose symbol is the result (left hand side) of that rule.
5074Running the rule's action is part of the process of reduction, because this
5075is what computes the semantic value of the resulting grouping.
5076
5077For example, if the infix calculator's parser stack contains this:
5078
5079@example
50801 + 5 * 3
5081@end example
5082
5083@noindent
5084and the next input token is a newline character, then the last three
5085elements can be reduced to 15 via the rule:
5086
5087@example
5088expr: expr '*' expr;
5089@end example
5090
5091@noindent
5092Then the stack contains just these three elements:
5093
5094@example
50951 + 15
5096@end example
5097
5098@noindent
5099At this point, another reduction can be made, resulting in the single value
510016. Then the newline token can be shifted.
5101
5102The parser tries, by shifts and reductions, to reduce the entire input down
5103to a single grouping whose symbol is the grammar's start-symbol
5104(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5105
5106This kind of parser is known in the literature as a bottom-up parser.
5107
5108@menu
5109* Look-Ahead:: Parser looks one token ahead when deciding what to do.
5110* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5111* Precedence:: Operator precedence works by resolving conflicts.
5112* Contextual Precedence:: When an operator's precedence depends on context.
5113* Parser States:: The parser is a finite-state-machine with stack.
5114* Reduce/Reduce:: When two rules are applicable in the same situation.
5115* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5116* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5117* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5118@end menu
5119
342b8b6e 5120@node Look-Ahead
bfa74976
RS
5121@section Look-Ahead Tokens
5122@cindex look-ahead token
5123
5124The Bison parser does @emph{not} always reduce immediately as soon as the
5125last @var{n} tokens and groupings match a rule. This is because such a
5126simple strategy is inadequate to handle most languages. Instead, when a
5127reduction is possible, the parser sometimes ``looks ahead'' at the next
5128token in order to decide what to do.
5129
5130When a token is read, it is not immediately shifted; first it becomes the
5131@dfn{look-ahead token}, which is not on the stack. Now the parser can
5132perform one or more reductions of tokens and groupings on the stack, while
5133the look-ahead token remains off to the side. When no more reductions
5134should take place, the look-ahead token is shifted onto the stack. This
5135does not mean that all possible reductions have been done; depending on the
5136token type of the look-ahead token, some rules may choose to delay their
5137application.
5138
5139Here is a simple case where look-ahead is needed. These three rules define
5140expressions which contain binary addition operators and postfix unary
5141factorial operators (@samp{!}), and allow parentheses for grouping.
5142
5143@example
5144@group
5145expr: term '+' expr
5146 | term
5147 ;
5148@end group
5149
5150@group
5151term: '(' expr ')'
5152 | term '!'
5153 | NUMBER
5154 ;
5155@end group
5156@end example
5157
5158Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5159should be done? If the following token is @samp{)}, then the first three
5160tokens must be reduced to form an @code{expr}. This is the only valid
5161course, because shifting the @samp{)} would produce a sequence of symbols
5162@w{@code{term ')'}}, and no rule allows this.
5163
5164If the following token is @samp{!}, then it must be shifted immediately so
5165that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5166parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5167@code{expr}. It would then be impossible to shift the @samp{!} because
5168doing so would produce on the stack the sequence of symbols @code{expr
5169'!'}. No rule allows that sequence.
5170
5171@vindex yychar
32c29292
JD
5172@vindex yylval
5173@vindex yylloc
5174The look-ahead token is stored in the variable @code{yychar}.
5175Its semantic value and location, if any, are stored in the variables
5176@code{yylval} and @code{yylloc}.
bfa74976
RS
5177@xref{Action Features, ,Special Features for Use in Actions}.
5178
342b8b6e 5179@node Shift/Reduce
bfa74976
RS
5180@section Shift/Reduce Conflicts
5181@cindex conflicts
5182@cindex shift/reduce conflicts
5183@cindex dangling @code{else}
5184@cindex @code{else}, dangling
5185
5186Suppose we are parsing a language which has if-then and if-then-else
5187statements, with a pair of rules like this:
5188
5189@example
5190@group
5191if_stmt:
5192 IF expr THEN stmt
5193 | IF expr THEN stmt ELSE stmt
5194 ;
5195@end group
5196@end example
5197
5198@noindent
5199Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5200terminal symbols for specific keyword tokens.
5201
5202When the @code{ELSE} token is read and becomes the look-ahead token, the
5203contents of the stack (assuming the input is valid) are just right for
5204reduction by the first rule. But it is also legitimate to shift the
5205@code{ELSE}, because that would lead to eventual reduction by the second
5206rule.
5207
5208This situation, where either a shift or a reduction would be valid, is
5209called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5210these conflicts by choosing to shift, unless otherwise directed by
5211operator precedence declarations. To see the reason for this, let's
5212contrast it with the other alternative.
5213
5214Since the parser prefers to shift the @code{ELSE}, the result is to attach
5215the else-clause to the innermost if-statement, making these two inputs
5216equivalent:
5217
5218@example
5219if x then if y then win (); else lose;
5220
5221if x then do; if y then win (); else lose; end;
5222@end example
5223
5224But if the parser chose to reduce when possible rather than shift, the
5225result would be to attach the else-clause to the outermost if-statement,
5226making these two inputs equivalent:
5227
5228@example
5229if x then if y then win (); else lose;
5230
5231if x then do; if y then win (); end; else lose;
5232@end example
5233
5234The conflict exists because the grammar as written is ambiguous: either
5235parsing of the simple nested if-statement is legitimate. The established
5236convention is that these ambiguities are resolved by attaching the
5237else-clause to the innermost if-statement; this is what Bison accomplishes
5238by choosing to shift rather than reduce. (It would ideally be cleaner to
5239write an unambiguous grammar, but that is very hard to do in this case.)
5240This particular ambiguity was first encountered in the specifications of
5241Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5242
5243To avoid warnings from Bison about predictable, legitimate shift/reduce
5244conflicts, use the @code{%expect @var{n}} declaration. There will be no
5245warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5246@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5247
5248The definition of @code{if_stmt} above is solely to blame for the
5249conflict, but the conflict does not actually appear without additional
5250rules. Here is a complete Bison input file that actually manifests the
5251conflict:
5252
5253@example
5254@group
5255%token IF THEN ELSE variable
5256%%
5257@end group
5258@group
5259stmt: expr
5260 | if_stmt
5261 ;
5262@end group
5263
5264@group
5265if_stmt:
5266 IF expr THEN stmt
5267 | IF expr THEN stmt ELSE stmt
5268 ;
5269@end group
5270
5271expr: variable
5272 ;
5273@end example
5274
342b8b6e 5275@node Precedence
bfa74976
RS
5276@section Operator Precedence
5277@cindex operator precedence
5278@cindex precedence of operators
5279
5280Another situation where shift/reduce conflicts appear is in arithmetic
5281expressions. Here shifting is not always the preferred resolution; the
5282Bison declarations for operator precedence allow you to specify when to
5283shift and when to reduce.
5284
5285@menu
5286* Why Precedence:: An example showing why precedence is needed.
5287* Using Precedence:: How to specify precedence in Bison grammars.
5288* Precedence Examples:: How these features are used in the previous example.
5289* How Precedence:: How they work.
5290@end menu
5291
342b8b6e 5292@node Why Precedence
bfa74976
RS
5293@subsection When Precedence is Needed
5294
5295Consider the following ambiguous grammar fragment (ambiguous because the
5296input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5297
5298@example
5299@group
5300expr: expr '-' expr
5301 | expr '*' expr
5302 | expr '<' expr
5303 | '(' expr ')'
5304 @dots{}
5305 ;
5306@end group
5307@end example
5308
5309@noindent
5310Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5311should it reduce them via the rule for the subtraction operator? It
5312depends on the next token. Of course, if the next token is @samp{)}, we
5313must reduce; shifting is invalid because no single rule can reduce the
5314token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5315the next token is @samp{*} or @samp{<}, we have a choice: either
5316shifting or reduction would allow the parse to complete, but with
5317different results.
5318
5319To decide which one Bison should do, we must consider the results. If
5320the next operator token @var{op} is shifted, then it must be reduced
5321first in order to permit another opportunity to reduce the difference.
5322The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5323hand, if the subtraction is reduced before shifting @var{op}, the result
5324is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5325reduce should depend on the relative precedence of the operators
5326@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5327@samp{<}.
bfa74976
RS
5328
5329@cindex associativity
5330What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5331@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5332operators we prefer the former, which is called @dfn{left association}.
5333The latter alternative, @dfn{right association}, is desirable for
5334assignment operators. The choice of left or right association is a
5335matter of whether the parser chooses to shift or reduce when the stack
5336contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5337makes right-associativity.
bfa74976 5338
342b8b6e 5339@node Using Precedence
bfa74976
RS
5340@subsection Specifying Operator Precedence
5341@findex %left
5342@findex %right
5343@findex %nonassoc
5344
5345Bison allows you to specify these choices with the operator precedence
5346declarations @code{%left} and @code{%right}. Each such declaration
5347contains a list of tokens, which are operators whose precedence and
5348associativity is being declared. The @code{%left} declaration makes all
5349those operators left-associative and the @code{%right} declaration makes
5350them right-associative. A third alternative is @code{%nonassoc}, which
5351declares that it is a syntax error to find the same operator twice ``in a
5352row''.
5353
5354The relative precedence of different operators is controlled by the
5355order in which they are declared. The first @code{%left} or
5356@code{%right} declaration in the file declares the operators whose
5357precedence is lowest, the next such declaration declares the operators
5358whose precedence is a little higher, and so on.
5359
342b8b6e 5360@node Precedence Examples
bfa74976
RS
5361@subsection Precedence Examples
5362
5363In our example, we would want the following declarations:
5364
5365@example
5366%left '<'
5367%left '-'
5368%left '*'
5369@end example
5370
5371In a more complete example, which supports other operators as well, we
5372would declare them in groups of equal precedence. For example, @code{'+'} is
5373declared with @code{'-'}:
5374
5375@example
5376%left '<' '>' '=' NE LE GE
5377%left '+' '-'
5378%left '*' '/'
5379@end example
5380
5381@noindent
5382(Here @code{NE} and so on stand for the operators for ``not equal''
5383and so on. We assume that these tokens are more than one character long
5384and therefore are represented by names, not character literals.)
5385
342b8b6e 5386@node How Precedence
bfa74976
RS
5387@subsection How Precedence Works
5388
5389The first effect of the precedence declarations is to assign precedence
5390levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5391precedence levels to certain rules: each rule gets its precedence from
5392the last terminal symbol mentioned in the components. (You can also
5393specify explicitly the precedence of a rule. @xref{Contextual
5394Precedence, ,Context-Dependent Precedence}.)
5395
5396Finally, the resolution of conflicts works by comparing the precedence
5397of the rule being considered with that of the look-ahead token. If the
5398token's precedence is higher, the choice is to shift. If the rule's
5399precedence is higher, the choice is to reduce. If they have equal
5400precedence, the choice is made based on the associativity of that
5401precedence level. The verbose output file made by @samp{-v}
5402(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5403resolved.
bfa74976
RS
5404
5405Not all rules and not all tokens have precedence. If either the rule or
5406the look-ahead token has no precedence, then the default is to shift.
5407
342b8b6e 5408@node Contextual Precedence
bfa74976
RS
5409@section Context-Dependent Precedence
5410@cindex context-dependent precedence
5411@cindex unary operator precedence
5412@cindex precedence, context-dependent
5413@cindex precedence, unary operator
5414@findex %prec
5415
5416Often the precedence of an operator depends on the context. This sounds
5417outlandish at first, but it is really very common. For example, a minus
5418sign typically has a very high precedence as a unary operator, and a
5419somewhat lower precedence (lower than multiplication) as a binary operator.
5420
5421The Bison precedence declarations, @code{%left}, @code{%right} and
5422@code{%nonassoc}, can only be used once for a given token; so a token has
5423only one precedence declared in this way. For context-dependent
5424precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5425modifier for rules.
bfa74976
RS
5426
5427The @code{%prec} modifier declares the precedence of a particular rule by
5428specifying a terminal symbol whose precedence should be used for that rule.
5429It's not necessary for that symbol to appear otherwise in the rule. The
5430modifier's syntax is:
5431
5432@example
5433%prec @var{terminal-symbol}
5434@end example
5435
5436@noindent
5437and it is written after the components of the rule. Its effect is to
5438assign the rule the precedence of @var{terminal-symbol}, overriding
5439the precedence that would be deduced for it in the ordinary way. The
5440altered rule precedence then affects how conflicts involving that rule
5441are resolved (@pxref{Precedence, ,Operator Precedence}).
5442
5443Here is how @code{%prec} solves the problem of unary minus. First, declare
5444a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5445are no tokens of this type, but the symbol serves to stand for its
5446precedence:
5447
5448@example
5449@dots{}
5450%left '+' '-'
5451%left '*'
5452%left UMINUS
5453@end example
5454
5455Now the precedence of @code{UMINUS} can be used in specific rules:
5456
5457@example
5458@group
5459exp: @dots{}
5460 | exp '-' exp
5461 @dots{}
5462 | '-' exp %prec UMINUS
5463@end group
5464@end example
5465
91d2c560 5466@ifset defaultprec
39a06c25
PE
5467If you forget to append @code{%prec UMINUS} to the rule for unary
5468minus, Bison silently assumes that minus has its usual precedence.
5469This kind of problem can be tricky to debug, since one typically
5470discovers the mistake only by testing the code.
5471
22fccf95 5472The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5473this kind of problem systematically. It causes rules that lack a
5474@code{%prec} modifier to have no precedence, even if the last terminal
5475symbol mentioned in their components has a declared precedence.
5476
22fccf95 5477If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5478for all rules that participate in precedence conflict resolution.
5479Then you will see any shift/reduce conflict until you tell Bison how
5480to resolve it, either by changing your grammar or by adding an
5481explicit precedence. This will probably add declarations to the
5482grammar, but it helps to protect against incorrect rule precedences.
5483
22fccf95
PE
5484The effect of @code{%no-default-prec;} can be reversed by giving
5485@code{%default-prec;}, which is the default.
91d2c560 5486@end ifset
39a06c25 5487
342b8b6e 5488@node Parser States
bfa74976
RS
5489@section Parser States
5490@cindex finite-state machine
5491@cindex parser state
5492@cindex state (of parser)
5493
5494The function @code{yyparse} is implemented using a finite-state machine.
5495The values pushed on the parser stack are not simply token type codes; they
5496represent the entire sequence of terminal and nonterminal symbols at or
5497near the top of the stack. The current state collects all the information
5498about previous input which is relevant to deciding what to do next.
5499
5500Each time a look-ahead token is read, the current parser state together
5501with the type of look-ahead token are looked up in a table. This table
5502entry can say, ``Shift the look-ahead token.'' In this case, it also
5503specifies the new parser state, which is pushed onto the top of the
5504parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5505This means that a certain number of tokens or groupings are taken off
5506the top of the stack, and replaced by one grouping. In other words,
5507that number of states are popped from the stack, and one new state is
5508pushed.
5509
5510There is one other alternative: the table can say that the look-ahead token
5511is erroneous in the current state. This causes error processing to begin
5512(@pxref{Error Recovery}).
5513
342b8b6e 5514@node Reduce/Reduce
bfa74976
RS
5515@section Reduce/Reduce Conflicts
5516@cindex reduce/reduce conflict
5517@cindex conflicts, reduce/reduce
5518
5519A reduce/reduce conflict occurs if there are two or more rules that apply
5520to the same sequence of input. This usually indicates a serious error
5521in the grammar.
5522
5523For example, here is an erroneous attempt to define a sequence
5524of zero or more @code{word} groupings.
5525
5526@example
5527sequence: /* empty */
5528 @{ printf ("empty sequence\n"); @}
5529 | maybeword
5530 | sequence word
5531 @{ printf ("added word %s\n", $2); @}
5532 ;
5533
5534maybeword: /* empty */
5535 @{ printf ("empty maybeword\n"); @}
5536 | word
5537 @{ printf ("single word %s\n", $1); @}
5538 ;
5539@end example
5540
5541@noindent
5542The error is an ambiguity: there is more than one way to parse a single
5543@code{word} into a @code{sequence}. It could be reduced to a
5544@code{maybeword} and then into a @code{sequence} via the second rule.
5545Alternatively, nothing-at-all could be reduced into a @code{sequence}
5546via the first rule, and this could be combined with the @code{word}
5547using the third rule for @code{sequence}.
5548
5549There is also more than one way to reduce nothing-at-all into a
5550@code{sequence}. This can be done directly via the first rule,
5551or indirectly via @code{maybeword} and then the second rule.
5552
5553You might think that this is a distinction without a difference, because it
5554does not change whether any particular input is valid or not. But it does
5555affect which actions are run. One parsing order runs the second rule's
5556action; the other runs the first rule's action and the third rule's action.
5557In this example, the output of the program changes.
5558
5559Bison resolves a reduce/reduce conflict by choosing to use the rule that
5560appears first in the grammar, but it is very risky to rely on this. Every
5561reduce/reduce conflict must be studied and usually eliminated. Here is the
5562proper way to define @code{sequence}:
5563
5564@example
5565sequence: /* empty */
5566 @{ printf ("empty sequence\n"); @}
5567 | sequence word
5568 @{ printf ("added word %s\n", $2); @}
5569 ;
5570@end example
5571
5572Here is another common error that yields a reduce/reduce conflict:
5573
5574@example
5575sequence: /* empty */
5576 | sequence words
5577 | sequence redirects
5578 ;
5579
5580words: /* empty */
5581 | words word
5582 ;
5583
5584redirects:/* empty */
5585 | redirects redirect
5586 ;
5587@end example
5588
5589@noindent
5590The intention here is to define a sequence which can contain either
5591@code{word} or @code{redirect} groupings. The individual definitions of
5592@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5593three together make a subtle ambiguity: even an empty input can be parsed
5594in infinitely many ways!
5595
5596Consider: nothing-at-all could be a @code{words}. Or it could be two
5597@code{words} in a row, or three, or any number. It could equally well be a
5598@code{redirects}, or two, or any number. Or it could be a @code{words}
5599followed by three @code{redirects} and another @code{words}. And so on.
5600
5601Here are two ways to correct these rules. First, to make it a single level
5602of sequence:
5603
5604@example
5605sequence: /* empty */
5606 | sequence word
5607 | sequence redirect
5608 ;
5609@end example
5610
5611Second, to prevent either a @code{words} or a @code{redirects}
5612from being empty:
5613
5614@example
5615sequence: /* empty */
5616 | sequence words
5617 | sequence redirects
5618 ;
5619
5620words: word
5621 | words word
5622 ;
5623
5624redirects:redirect
5625 | redirects redirect
5626 ;
5627@end example
5628
342b8b6e 5629@node Mystery Conflicts
bfa74976
RS
5630@section Mysterious Reduce/Reduce Conflicts
5631
5632Sometimes reduce/reduce conflicts can occur that don't look warranted.
5633Here is an example:
5634
5635@example
5636@group
5637%token ID
5638
5639%%
5640def: param_spec return_spec ','
5641 ;
5642param_spec:
5643 type
5644 | name_list ':' type
5645 ;
5646@end group
5647@group
5648return_spec:
5649 type
5650 | name ':' type
5651 ;
5652@end group
5653@group
5654type: ID
5655 ;
5656@end group
5657@group
5658name: ID
5659 ;
5660name_list:
5661 name
5662 | name ',' name_list
5663 ;
5664@end group
5665@end example
5666
5667It would seem that this grammar can be parsed with only a single token
13863333 5668of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5669a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5670@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5671
c827f760
PE
5672@cindex @acronym{LR}(1)
5673@cindex @acronym{LALR}(1)
bfa74976 5674However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5675@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5676an @code{ID}
bfa74976
RS
5677at the beginning of a @code{param_spec} and likewise at the beginning of
5678a @code{return_spec}, are similar enough that Bison assumes they are the
5679same. They appear similar because the same set of rules would be
5680active---the rule for reducing to a @code{name} and that for reducing to
5681a @code{type}. Bison is unable to determine at that stage of processing
5682that the rules would require different look-ahead tokens in the two
5683contexts, so it makes a single parser state for them both. Combining
5684the two contexts causes a conflict later. In parser terminology, this
c827f760 5685occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5686
5687In general, it is better to fix deficiencies than to document them. But
5688this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5689generators that can handle @acronym{LR}(1) grammars are hard to write
5690and tend to
bfa74976
RS
5691produce parsers that are very large. In practice, Bison is more useful
5692as it is now.
5693
5694When the problem arises, you can often fix it by identifying the two
a220f555
MA
5695parser states that are being confused, and adding something to make them
5696look distinct. In the above example, adding one rule to
bfa74976
RS
5697@code{return_spec} as follows makes the problem go away:
5698
5699@example
5700@group
5701%token BOGUS
5702@dots{}
5703%%
5704@dots{}
5705return_spec:
5706 type
5707 | name ':' type
5708 /* This rule is never used. */
5709 | ID BOGUS
5710 ;
5711@end group
5712@end example
5713
5714This corrects the problem because it introduces the possibility of an
5715additional active rule in the context after the @code{ID} at the beginning of
5716@code{return_spec}. This rule is not active in the corresponding context
5717in a @code{param_spec}, so the two contexts receive distinct parser states.
5718As long as the token @code{BOGUS} is never generated by @code{yylex},
5719the added rule cannot alter the way actual input is parsed.
5720
5721In this particular example, there is another way to solve the problem:
5722rewrite the rule for @code{return_spec} to use @code{ID} directly
5723instead of via @code{name}. This also causes the two confusing
5724contexts to have different sets of active rules, because the one for
5725@code{return_spec} activates the altered rule for @code{return_spec}
5726rather than the one for @code{name}.
5727
5728@example
5729param_spec:
5730 type
5731 | name_list ':' type
5732 ;
5733return_spec:
5734 type
5735 | ID ':' type
5736 ;
5737@end example
5738
e054b190
PE
5739For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5740generators, please see:
5741Frank DeRemer and Thomas Pennello, Efficient Computation of
5742@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5743Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5744pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5745
fae437e8 5746@node Generalized LR Parsing
c827f760
PE
5747@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5748@cindex @acronym{GLR} parsing
5749@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 5750@cindex ambiguous grammars
9d9b8b70 5751@cindex nondeterministic parsing
676385e2 5752
fae437e8
AD
5753Bison produces @emph{deterministic} parsers that choose uniquely
5754when to reduce and which reduction to apply
8dd162d3 5755based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5756As a result, normal Bison handles a proper subset of the family of
5757context-free languages.
fae437e8 5758Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5759sequence of reductions cannot have deterministic parsers in this sense.
5760The same is true of languages that require more than one symbol of
8dd162d3 5761look-ahead, since the parser lacks the information necessary to make a
676385e2 5762decision at the point it must be made in a shift-reduce parser.
fae437e8 5763Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5764there are languages where Bison's particular choice of how to
5765summarize the input seen so far loses necessary information.
5766
5767When you use the @samp{%glr-parser} declaration in your grammar file,
5768Bison generates a parser that uses a different algorithm, called
c827f760
PE
5769Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5770parser uses the same basic
676385e2
PH
5771algorithm for parsing as an ordinary Bison parser, but behaves
5772differently in cases where there is a shift-reduce conflict that has not
fae437e8 5773been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5774reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5775situation, it
fae437e8 5776effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5777shift or reduction. These parsers then proceed as usual, consuming
5778tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5779and split further, with the result that instead of a sequence of states,
c827f760 5780a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5781
5782In effect, each stack represents a guess as to what the proper parse
5783is. Additional input may indicate that a guess was wrong, in which case
5784the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5785actions generated in each stack are saved, rather than being executed
676385e2 5786immediately. When a stack disappears, its saved semantic actions never
fae437e8 5787get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5788their sets of semantic actions are both saved with the state that
5789results from the reduction. We say that two stacks are equivalent
fae437e8 5790when they both represent the same sequence of states,
676385e2
PH
5791and each pair of corresponding states represents a
5792grammar symbol that produces the same segment of the input token
5793stream.
5794
5795Whenever the parser makes a transition from having multiple
c827f760 5796states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5797algorithm, after resolving and executing the saved-up actions.
5798At this transition, some of the states on the stack will have semantic
5799values that are sets (actually multisets) of possible actions. The
5800parser tries to pick one of the actions by first finding one whose rule
5801has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5802declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5803precedence, but there the same merging function is declared for both
fae437e8 5804rules by the @samp{%merge} declaration,
676385e2
PH
5805Bison resolves and evaluates both and then calls the merge function on
5806the result. Otherwise, it reports an ambiguity.
5807
c827f760
PE
5808It is possible to use a data structure for the @acronym{GLR} parsing tree that
5809permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5810size of the input), any unambiguous (not necessarily
5811@acronym{LALR}(1)) grammar in
fae437e8 5812quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5813context-free grammar in cubic worst-case time. However, Bison currently
5814uses a simpler data structure that requires time proportional to the
5815length of the input times the maximum number of stacks required for any
9d9b8b70 5816prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
5817grammars can require exponential time and space to process. Such badly
5818behaving examples, however, are not generally of practical interest.
9d9b8b70 5819Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 5820doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5821structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5822grammar, in particular, it is only slightly slower than with the default
5823Bison parser.
5824
fa7e68c3 5825For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5826Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5827Generalised @acronym{LR} Parsers, Royal Holloway, University of
5828London, Department of Computer Science, TR-00-12,
5829@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5830(2000-12-24).
5831
1a059451
PE
5832@node Memory Management
5833@section Memory Management, and How to Avoid Memory Exhaustion
5834@cindex memory exhaustion
5835@cindex memory management
bfa74976
RS
5836@cindex stack overflow
5837@cindex parser stack overflow
5838@cindex overflow of parser stack
5839
1a059451 5840The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5841not reduced. When this happens, the parser function @code{yyparse}
1a059451 5842calls @code{yyerror} and then returns 2.
bfa74976 5843
c827f760 5844Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5845usually results from using a right recursion instead of a left
5846recursion, @xref{Recursion, ,Recursive Rules}.
5847
bfa74976
RS
5848@vindex YYMAXDEPTH
5849By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5850parser stack can become before memory is exhausted. Define the
bfa74976
RS
5851macro with a value that is an integer. This value is the maximum number
5852of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5853
5854The stack space allowed is not necessarily allocated. If you specify a
1a059451 5855large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5856stack at first, and then makes it bigger by stages as needed. This
5857increasing allocation happens automatically and silently. Therefore,
5858you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5859space for ordinary inputs that do not need much stack.
5860
d7e14fc0
PE
5861However, do not allow @code{YYMAXDEPTH} to be a value so large that
5862arithmetic overflow could occur when calculating the size of the stack
5863space. Also, do not allow @code{YYMAXDEPTH} to be less than
5864@code{YYINITDEPTH}.
5865
bfa74976
RS
5866@cindex default stack limit
5867The default value of @code{YYMAXDEPTH}, if you do not define it, is
586810000.
5869
5870@vindex YYINITDEPTH
5871You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5872macro @code{YYINITDEPTH} to a positive integer. For the C
5873@acronym{LALR}(1) parser, this value must be a compile-time constant
5874unless you are assuming C99 or some other target language or compiler
5875that allows variable-length arrays. The default is 200.
5876
1a059451 5877Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5878
d1a1114f 5879@c FIXME: C++ output.
c827f760 5880Because of semantical differences between C and C++, the
1a059451
PE
5881@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5882by C++ compilers. In this precise case (compiling a C parser as C++) you are
5883suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5884this deficiency in a future release.
d1a1114f 5885
342b8b6e 5886@node Error Recovery
bfa74976
RS
5887@chapter Error Recovery
5888@cindex error recovery
5889@cindex recovery from errors
5890
6e649e65 5891It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5892error. For example, a compiler should recover sufficiently to parse the
5893rest of the input file and check it for errors; a calculator should accept
5894another expression.
5895
5896In a simple interactive command parser where each input is one line, it may
5897be sufficient to allow @code{yyparse} to return 1 on error and have the
5898caller ignore the rest of the input line when that happens (and then call
5899@code{yyparse} again). But this is inadequate for a compiler, because it
5900forgets all the syntactic context leading up to the error. A syntax error
5901deep within a function in the compiler input should not cause the compiler
5902to treat the following line like the beginning of a source file.
5903
5904@findex error
5905You can define how to recover from a syntax error by writing rules to
5906recognize the special token @code{error}. This is a terminal symbol that
5907is always defined (you need not declare it) and reserved for error
5908handling. The Bison parser generates an @code{error} token whenever a
5909syntax error happens; if you have provided a rule to recognize this token
13863333 5910in the current context, the parse can continue.
bfa74976
RS
5911
5912For example:
5913
5914@example
5915stmnts: /* empty string */
5916 | stmnts '\n'
5917 | stmnts exp '\n'
5918 | stmnts error '\n'
5919@end example
5920
5921The fourth rule in this example says that an error followed by a newline
5922makes a valid addition to any @code{stmnts}.
5923
5924What happens if a syntax error occurs in the middle of an @code{exp}? The
5925error recovery rule, interpreted strictly, applies to the precise sequence
5926of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5927the middle of an @code{exp}, there will probably be some additional tokens
5928and subexpressions on the stack after the last @code{stmnts}, and there
5929will be tokens to read before the next newline. So the rule is not
5930applicable in the ordinary way.
5931
5932But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5933the semantic context and part of the input. First it discards states
5934and objects from the stack until it gets back to a state in which the
bfa74976 5935@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5936already parsed are discarded, back to the last complete @code{stmnts}.)
5937At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5938look-ahead token is not acceptable to be shifted next, the parser reads
5939tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5940this example, Bison reads and discards input until the next newline so
5941that the fourth rule can apply. Note that discarded symbols are
5942possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5943Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5944
5945The choice of error rules in the grammar is a choice of strategies for
5946error recovery. A simple and useful strategy is simply to skip the rest of
5947the current input line or current statement if an error is detected:
5948
5949@example
72d2299c 5950stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5951@end example
5952
5953It is also useful to recover to the matching close-delimiter of an
5954opening-delimiter that has already been parsed. Otherwise the
5955close-delimiter will probably appear to be unmatched, and generate another,
5956spurious error message:
5957
5958@example
5959primary: '(' expr ')'
5960 | '(' error ')'
5961 @dots{}
5962 ;
5963@end example
5964
5965Error recovery strategies are necessarily guesses. When they guess wrong,
5966one syntax error often leads to another. In the above example, the error
5967recovery rule guesses that an error is due to bad input within one
5968@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5969middle of a valid @code{stmnt}. After the error recovery rule recovers
5970from the first error, another syntax error will be found straightaway,
5971since the text following the spurious semicolon is also an invalid
5972@code{stmnt}.
5973
5974To prevent an outpouring of error messages, the parser will output no error
5975message for another syntax error that happens shortly after the first; only
5976after three consecutive input tokens have been successfully shifted will
5977error messages resume.
5978
5979Note that rules which accept the @code{error} token may have actions, just
5980as any other rules can.
5981
5982@findex yyerrok
5983You can make error messages resume immediately by using the macro
5984@code{yyerrok} in an action. If you do this in the error rule's action, no
5985error messages will be suppressed. This macro requires no arguments;
5986@samp{yyerrok;} is a valid C statement.
5987
5988@findex yyclearin
5989The previous look-ahead token is reanalyzed immediately after an error. If
5990this is unacceptable, then the macro @code{yyclearin} may be used to clear
5991this token. Write the statement @samp{yyclearin;} in the error rule's
5992action.
32c29292 5993@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 5994
6e649e65 5995For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5996called that advances the input stream to some point where parsing should
5997once again commence. The next symbol returned by the lexical scanner is
5998probably correct. The previous look-ahead token ought to be discarded
5999with @samp{yyclearin;}.
6000
6001@vindex YYRECOVERING
6002The macro @code{YYRECOVERING} stands for an expression that has the
6003value 1 when the parser is recovering from a syntax error, and 0 the
6004rest of the time. A value of 1 indicates that error messages are
6005currently suppressed for new syntax errors.
6006
342b8b6e 6007@node Context Dependency
bfa74976
RS
6008@chapter Handling Context Dependencies
6009
6010The Bison paradigm is to parse tokens first, then group them into larger
6011syntactic units. In many languages, the meaning of a token is affected by
6012its context. Although this violates the Bison paradigm, certain techniques
6013(known as @dfn{kludges}) may enable you to write Bison parsers for such
6014languages.
6015
6016@menu
6017* Semantic Tokens:: Token parsing can depend on the semantic context.
6018* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6019* Tie-in Recovery:: Lexical tie-ins have implications for how
6020 error recovery rules must be written.
6021@end menu
6022
6023(Actually, ``kludge'' means any technique that gets its job done but is
6024neither clean nor robust.)
6025
342b8b6e 6026@node Semantic Tokens
bfa74976
RS
6027@section Semantic Info in Token Types
6028
6029The C language has a context dependency: the way an identifier is used
6030depends on what its current meaning is. For example, consider this:
6031
6032@example
6033foo (x);
6034@end example
6035
6036This looks like a function call statement, but if @code{foo} is a typedef
6037name, then this is actually a declaration of @code{x}. How can a Bison
6038parser for C decide how to parse this input?
6039
c827f760 6040The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6041@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6042identifier, it looks up the current declaration of the identifier in order
6043to decide which token type to return: @code{TYPENAME} if the identifier is
6044declared as a typedef, @code{IDENTIFIER} otherwise.
6045
6046The grammar rules can then express the context dependency by the choice of
6047token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6048but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6049@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6050is @emph{not} significant, such as in declarations that can shadow a
6051typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6052accepted---there is one rule for each of the two token types.
6053
6054This technique is simple to use if the decision of which kinds of
6055identifiers to allow is made at a place close to where the identifier is
6056parsed. But in C this is not always so: C allows a declaration to
6057redeclare a typedef name provided an explicit type has been specified
6058earlier:
6059
6060@example
3a4f411f
PE
6061typedef int foo, bar;
6062int baz (void)
6063@{
6064 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6065 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6066 return foo (bar);
6067@}
bfa74976
RS
6068@end example
6069
6070Unfortunately, the name being declared is separated from the declaration
6071construct itself by a complicated syntactic structure---the ``declarator''.
6072
9ecbd125 6073As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6074all the nonterminal names changed: once for parsing a declaration in
6075which a typedef name can be redefined, and once for parsing a
6076declaration in which that can't be done. Here is a part of the
6077duplication, with actions omitted for brevity:
bfa74976
RS
6078
6079@example
6080initdcl:
6081 declarator maybeasm '='
6082 init
6083 | declarator maybeasm
6084 ;
6085
6086notype_initdcl:
6087 notype_declarator maybeasm '='
6088 init
6089 | notype_declarator maybeasm
6090 ;
6091@end example
6092
6093@noindent
6094Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6095cannot. The distinction between @code{declarator} and
6096@code{notype_declarator} is the same sort of thing.
6097
6098There is some similarity between this technique and a lexical tie-in
6099(described next), in that information which alters the lexical analysis is
6100changed during parsing by other parts of the program. The difference is
6101here the information is global, and is used for other purposes in the
6102program. A true lexical tie-in has a special-purpose flag controlled by
6103the syntactic context.
6104
342b8b6e 6105@node Lexical Tie-ins
bfa74976
RS
6106@section Lexical Tie-ins
6107@cindex lexical tie-in
6108
6109One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6110which is set by Bison actions, whose purpose is to alter the way tokens are
6111parsed.
6112
6113For example, suppose we have a language vaguely like C, but with a special
6114construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6115an expression in parentheses in which all integers are hexadecimal. In
6116particular, the token @samp{a1b} must be treated as an integer rather than
6117as an identifier if it appears in that context. Here is how you can do it:
6118
6119@example
6120@group
6121%@{
38a92d50
PE
6122 int hexflag;
6123 int yylex (void);
6124 void yyerror (char const *);
bfa74976
RS
6125%@}
6126%%
6127@dots{}
6128@end group
6129@group
6130expr: IDENTIFIER
6131 | constant
6132 | HEX '('
6133 @{ hexflag = 1; @}
6134 expr ')'
6135 @{ hexflag = 0;
6136 $$ = $4; @}
6137 | expr '+' expr
6138 @{ $$ = make_sum ($1, $3); @}
6139 @dots{}
6140 ;
6141@end group
6142
6143@group
6144constant:
6145 INTEGER
6146 | STRING
6147 ;
6148@end group
6149@end example
6150
6151@noindent
6152Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6153it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6154with letters are parsed as integers if possible.
6155
342b8b6e
AD
6156The declaration of @code{hexflag} shown in the prologue of the parser file
6157is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6158You must also write the code in @code{yylex} to obey the flag.
bfa74976 6159
342b8b6e 6160@node Tie-in Recovery
bfa74976
RS
6161@section Lexical Tie-ins and Error Recovery
6162
6163Lexical tie-ins make strict demands on any error recovery rules you have.
6164@xref{Error Recovery}.
6165
6166The reason for this is that the purpose of an error recovery rule is to
6167abort the parsing of one construct and resume in some larger construct.
6168For example, in C-like languages, a typical error recovery rule is to skip
6169tokens until the next semicolon, and then start a new statement, like this:
6170
6171@example
6172stmt: expr ';'
6173 | IF '(' expr ')' stmt @{ @dots{} @}
6174 @dots{}
6175 error ';'
6176 @{ hexflag = 0; @}
6177 ;
6178@end example
6179
6180If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6181construct, this error rule will apply, and then the action for the
6182completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6183remain set for the entire rest of the input, or until the next @code{hex}
6184keyword, causing identifiers to be misinterpreted as integers.
6185
6186To avoid this problem the error recovery rule itself clears @code{hexflag}.
6187
6188There may also be an error recovery rule that works within expressions.
6189For example, there could be a rule which applies within parentheses
6190and skips to the close-parenthesis:
6191
6192@example
6193@group
6194expr: @dots{}
6195 | '(' expr ')'
6196 @{ $$ = $2; @}
6197 | '(' error ')'
6198 @dots{}
6199@end group
6200@end example
6201
6202If this rule acts within the @code{hex} construct, it is not going to abort
6203that construct (since it applies to an inner level of parentheses within
6204the construct). Therefore, it should not clear the flag: the rest of
6205the @code{hex} construct should be parsed with the flag still in effect.
6206
6207What if there is an error recovery rule which might abort out of the
6208@code{hex} construct or might not, depending on circumstances? There is no
6209way you can write the action to determine whether a @code{hex} construct is
6210being aborted or not. So if you are using a lexical tie-in, you had better
6211make sure your error recovery rules are not of this kind. Each rule must
6212be such that you can be sure that it always will, or always won't, have to
6213clear the flag.
6214
ec3bc396
AD
6215@c ================================================== Debugging Your Parser
6216
342b8b6e 6217@node Debugging
bfa74976 6218@chapter Debugging Your Parser
ec3bc396
AD
6219
6220Developing a parser can be a challenge, especially if you don't
6221understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6222Algorithm}). Even so, sometimes a detailed description of the automaton
6223can help (@pxref{Understanding, , Understanding Your Parser}), or
6224tracing the execution of the parser can give some insight on why it
6225behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6226
6227@menu
6228* Understanding:: Understanding the structure of your parser.
6229* Tracing:: Tracing the execution of your parser.
6230@end menu
6231
6232@node Understanding
6233@section Understanding Your Parser
6234
6235As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6236Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6237frequent than one would hope), looking at this automaton is required to
6238tune or simply fix a parser. Bison provides two different
c827f760 6239representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6240file).
6241
6242The textual file is generated when the options @option{--report} or
6243@option{--verbose} are specified, see @xref{Invocation, , Invoking
6244Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6245the parser output file name, and adding @samp{.output} instead.
6246Therefore, if the input file is @file{foo.y}, then the parser file is
6247called @file{foo.tab.c} by default. As a consequence, the verbose
6248output file is called @file{foo.output}.
6249
6250The following grammar file, @file{calc.y}, will be used in the sequel:
6251
6252@example
6253%token NUM STR
6254%left '+' '-'
6255%left '*'
6256%%
6257exp: exp '+' exp
6258 | exp '-' exp
6259 | exp '*' exp
6260 | exp '/' exp
6261 | NUM
6262 ;
6263useless: STR;
6264%%
6265@end example
6266
88bce5a2
AD
6267@command{bison} reports:
6268
6269@example
6270calc.y: warning: 1 useless nonterminal and 1 useless rule
6271calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6272calc.y:11.10-12: warning: useless rule: useless: STR
6273calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6274@end example
6275
6276When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6277creates a file @file{calc.output} with contents detailed below. The
6278order of the output and the exact presentation might vary, but the
6279interpretation is the same.
ec3bc396
AD
6280
6281The first section includes details on conflicts that were solved thanks
6282to precedence and/or associativity:
6283
6284@example
6285Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6286Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6287Conflict in state 8 between rule 2 and token '*' resolved as shift.
6288@exdent @dots{}
6289@end example
6290
6291@noindent
6292The next section lists states that still have conflicts.
6293
6294@example
5a99098d
PE
6295State 8 conflicts: 1 shift/reduce
6296State 9 conflicts: 1 shift/reduce
6297State 10 conflicts: 1 shift/reduce
6298State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6299@end example
6300
6301@noindent
6302@cindex token, useless
6303@cindex useless token
6304@cindex nonterminal, useless
6305@cindex useless nonterminal
6306@cindex rule, useless
6307@cindex useless rule
6308The next section reports useless tokens, nonterminal and rules. Useless
6309nonterminals and rules are removed in order to produce a smaller parser,
6310but useless tokens are preserved, since they might be used by the
6311scanner (note the difference between ``useless'' and ``not used''
6312below):
6313
6314@example
6315Useless nonterminals:
6316 useless
6317
6318Terminals which are not used:
6319 STR
6320
6321Useless rules:
6322#6 useless: STR;
6323@end example
6324
6325@noindent
6326The next section reproduces the exact grammar that Bison used:
6327
6328@example
6329Grammar
6330
6331 Number, Line, Rule
88bce5a2 6332 0 5 $accept -> exp $end
ec3bc396
AD
6333 1 5 exp -> exp '+' exp
6334 2 6 exp -> exp '-' exp
6335 3 7 exp -> exp '*' exp
6336 4 8 exp -> exp '/' exp
6337 5 9 exp -> NUM
6338@end example
6339
6340@noindent
6341and reports the uses of the symbols:
6342
6343@example
6344Terminals, with rules where they appear
6345
88bce5a2 6346$end (0) 0
ec3bc396
AD
6347'*' (42) 3
6348'+' (43) 1
6349'-' (45) 2
6350'/' (47) 4
6351error (256)
6352NUM (258) 5
6353
6354Nonterminals, with rules where they appear
6355
88bce5a2 6356$accept (8)
ec3bc396
AD
6357 on left: 0
6358exp (9)
6359 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6360@end example
6361
6362@noindent
6363@cindex item
6364@cindex pointed rule
6365@cindex rule, pointed
6366Bison then proceeds onto the automaton itself, describing each state
6367with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6368item is a production rule together with a point (marked by @samp{.})
6369that the input cursor.
6370
6371@example
6372state 0
6373
88bce5a2 6374 $accept -> . exp $ (rule 0)
ec3bc396 6375
2a8d363a 6376 NUM shift, and go to state 1
ec3bc396 6377
2a8d363a 6378 exp go to state 2
ec3bc396
AD
6379@end example
6380
6381This reads as follows: ``state 0 corresponds to being at the very
6382beginning of the parsing, in the initial rule, right before the start
6383symbol (here, @code{exp}). When the parser returns to this state right
6384after having reduced a rule that produced an @code{exp}, the control
6385flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6386symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6387the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6388look-ahead triggers a syntax error.''
ec3bc396
AD
6389
6390@cindex core, item set
6391@cindex item set core
6392@cindex kernel, item set
6393@cindex item set core
6394Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6395report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6396at the beginning of any rule deriving an @code{exp}. By default Bison
6397reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6398you want to see more detail you can invoke @command{bison} with
6399@option{--report=itemset} to list all the items, include those that can
6400be derived:
6401
6402@example
6403state 0
6404
88bce5a2 6405 $accept -> . exp $ (rule 0)
ec3bc396
AD
6406 exp -> . exp '+' exp (rule 1)
6407 exp -> . exp '-' exp (rule 2)
6408 exp -> . exp '*' exp (rule 3)
6409 exp -> . exp '/' exp (rule 4)
6410 exp -> . NUM (rule 5)
6411
6412 NUM shift, and go to state 1
6413
6414 exp go to state 2
6415@end example
6416
6417@noindent
6418In the state 1...
6419
6420@example
6421state 1
6422
6423 exp -> NUM . (rule 5)
6424
2a8d363a 6425 $default reduce using rule 5 (exp)
ec3bc396
AD
6426@end example
6427
6428@noindent
8dd162d3 6429the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6430(@samp{$default}), the parser will reduce it. If it was coming from
6431state 0, then, after this reduction it will return to state 0, and will
6432jump to state 2 (@samp{exp: go to state 2}).
6433
6434@example
6435state 2
6436
88bce5a2 6437 $accept -> exp . $ (rule 0)
ec3bc396
AD
6438 exp -> exp . '+' exp (rule 1)
6439 exp -> exp . '-' exp (rule 2)
6440 exp -> exp . '*' exp (rule 3)
6441 exp -> exp . '/' exp (rule 4)
6442
2a8d363a
AD
6443 $ shift, and go to state 3
6444 '+' shift, and go to state 4
6445 '-' shift, and go to state 5
6446 '*' shift, and go to state 6
6447 '/' shift, and go to state 7
ec3bc396
AD
6448@end example
6449
6450@noindent
6451In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6452because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6453@samp{+}, it will be shifted on the parse stack, and the automaton
6454control will jump to state 4, corresponding to the item @samp{exp -> exp
6455'+' . exp}. Since there is no default action, any other token than
6e649e65 6456those listed above will trigger a syntax error.
ec3bc396
AD
6457
6458The state 3 is named the @dfn{final state}, or the @dfn{accepting
6459state}:
6460
6461@example
6462state 3
6463
88bce5a2 6464 $accept -> exp $ . (rule 0)
ec3bc396 6465
2a8d363a 6466 $default accept
ec3bc396
AD
6467@end example
6468
6469@noindent
6470the initial rule is completed (the start symbol and the end
6471of input were read), the parsing exits successfully.
6472
6473The interpretation of states 4 to 7 is straightforward, and is left to
6474the reader.
6475
6476@example
6477state 4
6478
6479 exp -> exp '+' . exp (rule 1)
6480
2a8d363a 6481 NUM shift, and go to state 1
ec3bc396 6482
2a8d363a 6483 exp go to state 8
ec3bc396
AD
6484
6485state 5
6486
6487 exp -> exp '-' . exp (rule 2)
6488
2a8d363a 6489 NUM shift, and go to state 1
ec3bc396 6490
2a8d363a 6491 exp go to state 9
ec3bc396
AD
6492
6493state 6
6494
6495 exp -> exp '*' . exp (rule 3)
6496
2a8d363a 6497 NUM shift, and go to state 1
ec3bc396 6498
2a8d363a 6499 exp go to state 10
ec3bc396
AD
6500
6501state 7
6502
6503 exp -> exp '/' . exp (rule 4)
6504
2a8d363a 6505 NUM shift, and go to state 1
ec3bc396 6506
2a8d363a 6507 exp go to state 11
ec3bc396
AD
6508@end example
6509
5a99098d
PE
6510As was announced in beginning of the report, @samp{State 8 conflicts:
65111 shift/reduce}:
ec3bc396
AD
6512
6513@example
6514state 8
6515
6516 exp -> exp . '+' exp (rule 1)
6517 exp -> exp '+' exp . (rule 1)
6518 exp -> exp . '-' exp (rule 2)
6519 exp -> exp . '*' exp (rule 3)
6520 exp -> exp . '/' exp (rule 4)
6521
2a8d363a
AD
6522 '*' shift, and go to state 6
6523 '/' shift, and go to state 7
ec3bc396 6524
2a8d363a
AD
6525 '/' [reduce using rule 1 (exp)]
6526 $default reduce using rule 1 (exp)
ec3bc396
AD
6527@end example
6528
8dd162d3 6529Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6530either shifting (and going to state 7), or reducing rule 1. The
6531conflict means that either the grammar is ambiguous, or the parser lacks
6532information to make the right decision. Indeed the grammar is
6533ambiguous, as, since we did not specify the precedence of @samp{/}, the
6534sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6535NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6536NUM}, which corresponds to reducing rule 1.
6537
c827f760 6538Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6539arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6540Shift/Reduce Conflicts}. Discarded actions are reported in between
6541square brackets.
6542
6543Note that all the previous states had a single possible action: either
6544shifting the next token and going to the corresponding state, or
6545reducing a single rule. In the other cases, i.e., when shifting
6546@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6547possible, the look-ahead is required to select the action. State 8 is
6548one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6549is shifting, otherwise the action is reducing rule 1. In other words,
6550the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6551look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6552precedence than @samp{+}. More generally, some items are eligible only
6553with some set of possible look-ahead tokens. When run with
6554@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6555
6556@example
6557state 8
6558
6559 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6560 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6561 exp -> exp . '-' exp (rule 2)
6562 exp -> exp . '*' exp (rule 3)
6563 exp -> exp . '/' exp (rule 4)
6564
6565 '*' shift, and go to state 6
6566 '/' shift, and go to state 7
6567
6568 '/' [reduce using rule 1 (exp)]
6569 $default reduce using rule 1 (exp)
6570@end example
6571
6572The remaining states are similar:
6573
6574@example
6575state 9
6576
6577 exp -> exp . '+' exp (rule 1)
6578 exp -> exp . '-' exp (rule 2)
6579 exp -> exp '-' exp . (rule 2)
6580 exp -> exp . '*' exp (rule 3)
6581 exp -> exp . '/' exp (rule 4)
6582
2a8d363a
AD
6583 '*' shift, and go to state 6
6584 '/' shift, and go to state 7
ec3bc396 6585
2a8d363a
AD
6586 '/' [reduce using rule 2 (exp)]
6587 $default reduce using rule 2 (exp)
ec3bc396
AD
6588
6589state 10
6590
6591 exp -> exp . '+' exp (rule 1)
6592 exp -> exp . '-' exp (rule 2)
6593 exp -> exp . '*' exp (rule 3)
6594 exp -> exp '*' exp . (rule 3)
6595 exp -> exp . '/' exp (rule 4)
6596
2a8d363a 6597 '/' shift, and go to state 7
ec3bc396 6598
2a8d363a
AD
6599 '/' [reduce using rule 3 (exp)]
6600 $default reduce using rule 3 (exp)
ec3bc396
AD
6601
6602state 11
6603
6604 exp -> exp . '+' exp (rule 1)
6605 exp -> exp . '-' exp (rule 2)
6606 exp -> exp . '*' exp (rule 3)
6607 exp -> exp . '/' exp (rule 4)
6608 exp -> exp '/' exp . (rule 4)
6609
2a8d363a
AD
6610 '+' shift, and go to state 4
6611 '-' shift, and go to state 5
6612 '*' shift, and go to state 6
6613 '/' shift, and go to state 7
ec3bc396 6614
2a8d363a
AD
6615 '+' [reduce using rule 4 (exp)]
6616 '-' [reduce using rule 4 (exp)]
6617 '*' [reduce using rule 4 (exp)]
6618 '/' [reduce using rule 4 (exp)]
6619 $default reduce using rule 4 (exp)
ec3bc396
AD
6620@end example
6621
6622@noindent
fa7e68c3
PE
6623Observe that state 11 contains conflicts not only due to the lack of
6624precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6625@samp{*}, but also because the
ec3bc396
AD
6626associativity of @samp{/} is not specified.
6627
6628
6629@node Tracing
6630@section Tracing Your Parser
bfa74976
RS
6631@findex yydebug
6632@cindex debugging
6633@cindex tracing the parser
6634
6635If a Bison grammar compiles properly but doesn't do what you want when it
6636runs, the @code{yydebug} parser-trace feature can help you figure out why.
6637
3ded9a63
AD
6638There are several means to enable compilation of trace facilities:
6639
6640@table @asis
6641@item the macro @code{YYDEBUG}
6642@findex YYDEBUG
6643Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6644parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6645@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6646YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6647Prologue}).
6648
6649@item the option @option{-t}, @option{--debug}
6650Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6651,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6652
6653@item the directive @samp{%debug}
6654@findex %debug
6655Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6656Declaration Summary}). This is a Bison extension, which will prove
6657useful when Bison will output parsers for languages that don't use a
c827f760
PE
6658preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6659you, this is
3ded9a63
AD
6660the preferred solution.
6661@end table
6662
6663We suggest that you always enable the debug option so that debugging is
6664always possible.
bfa74976 6665
02a81e05 6666The trace facility outputs messages with macro calls of the form
e2742e46 6667@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6668@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6669arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6670define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6671and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6672
6673Once you have compiled the program with trace facilities, the way to
6674request a trace is to store a nonzero value in the variable @code{yydebug}.
6675You can do this by making the C code do it (in @code{main}, perhaps), or
6676you can alter the value with a C debugger.
6677
6678Each step taken by the parser when @code{yydebug} is nonzero produces a
6679line or two of trace information, written on @code{stderr}. The trace
6680messages tell you these things:
6681
6682@itemize @bullet
6683@item
6684Each time the parser calls @code{yylex}, what kind of token was read.
6685
6686@item
6687Each time a token is shifted, the depth and complete contents of the
6688state stack (@pxref{Parser States}).
6689
6690@item
6691Each time a rule is reduced, which rule it is, and the complete contents
6692of the state stack afterward.
6693@end itemize
6694
6695To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6696produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6697Bison}). This file shows the meaning of each state in terms of
6698positions in various rules, and also what each state will do with each
6699possible input token. As you read the successive trace messages, you
6700can see that the parser is functioning according to its specification in
6701the listing file. Eventually you will arrive at the place where
6702something undesirable happens, and you will see which parts of the
6703grammar are to blame.
bfa74976
RS
6704
6705The parser file is a C program and you can use C debuggers on it, but it's
6706not easy to interpret what it is doing. The parser function is a
6707finite-state machine interpreter, and aside from the actions it executes
6708the same code over and over. Only the values of variables show where in
6709the grammar it is working.
6710
6711@findex YYPRINT
6712The debugging information normally gives the token type of each token
6713read, but not its semantic value. You can optionally define a macro
6714named @code{YYPRINT} to provide a way to print the value. If you define
6715@code{YYPRINT}, it should take three arguments. The parser will pass a
6716standard I/O stream, the numeric code for the token type, and the token
6717value (from @code{yylval}).
6718
6719Here is an example of @code{YYPRINT} suitable for the multi-function
6720calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6721
6722@smallexample
38a92d50
PE
6723%@{
6724 static void print_token_value (FILE *, int, YYSTYPE);
6725 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6726%@}
6727
6728@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6729
6730static void
831d3c99 6731print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6732@{
6733 if (type == VAR)
d3c4e709 6734 fprintf (file, "%s", value.tptr->name);
bfa74976 6735 else if (type == NUM)
d3c4e709 6736 fprintf (file, "%d", value.val);
bfa74976
RS
6737@}
6738@end smallexample
6739
ec3bc396
AD
6740@c ================================================= Invoking Bison
6741
342b8b6e 6742@node Invocation
bfa74976
RS
6743@chapter Invoking Bison
6744@cindex invoking Bison
6745@cindex Bison invocation
6746@cindex options for invoking Bison
6747
6748The usual way to invoke Bison is as follows:
6749
6750@example
6751bison @var{infile}
6752@end example
6753
6754Here @var{infile} is the grammar file name, which usually ends in
6755@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6756with @samp{.tab.c} and removing any leading directory. Thus, the
6757@samp{bison foo.y} file name yields
6758@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6759@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6760C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6761or @file{foo.y++}. Then, the output files will take an extension like
6762the given one as input (respectively @file{foo.tab.cpp} and
6763@file{foo.tab.c++}).
fa4d969f 6764This feature takes effect with all options that manipulate file names like
234a3be3
AD
6765@samp{-o} or @samp{-d}.
6766
6767For example :
6768
6769@example
6770bison -d @var{infile.yxx}
6771@end example
84163231 6772@noindent
72d2299c 6773will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6774
6775@example
b56471a6 6776bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6777@end example
84163231 6778@noindent
234a3be3
AD
6779will produce @file{output.c++} and @file{outfile.h++}.
6780
397ec073
PE
6781For compatibility with @acronym{POSIX}, the standard Bison
6782distribution also contains a shell script called @command{yacc} that
6783invokes Bison with the @option{-y} option.
6784
bfa74976 6785@menu
13863333 6786* Bison Options:: All the options described in detail,
c827f760 6787 in alphabetical order by short options.
bfa74976 6788* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6789* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6790@end menu
6791
342b8b6e 6792@node Bison Options
bfa74976
RS
6793@section Bison Options
6794
6795Bison supports both traditional single-letter options and mnemonic long
6796option names. Long option names are indicated with @samp{--} instead of
6797@samp{-}. Abbreviations for option names are allowed as long as they
6798are unique. When a long option takes an argument, like
6799@samp{--file-prefix}, connect the option name and the argument with
6800@samp{=}.
6801
6802Here is a list of options that can be used with Bison, alphabetized by
6803short option. It is followed by a cross key alphabetized by long
6804option.
6805
89cab50d
AD
6806@c Please, keep this ordered as in `bison --help'.
6807@noindent
6808Operations modes:
6809@table @option
6810@item -h
6811@itemx --help
6812Print a summary of the command-line options to Bison and exit.
bfa74976 6813
89cab50d
AD
6814@item -V
6815@itemx --version
6816Print the version number of Bison and exit.
bfa74976 6817
f7ab6a50
PE
6818@item --print-localedir
6819Print the name of the directory containing locale-dependent data.
6820
89cab50d
AD
6821@item -y
6822@itemx --yacc
54662697
PE
6823Act more like the traditional Yacc command. This can cause
6824different diagnostics to be generated, and may change behavior in
6825other minor ways. Most importantly, imitate Yacc's output
6826file name conventions, so that the parser output file is called
89cab50d 6827@file{y.tab.c}, and the other outputs are called @file{y.output} and
54662697 6828@file{y.tab.h}. Thus, the following shell script can substitute
397ec073
PE
6829for Yacc, and the Bison distribution contains such a script for
6830compatibility with @acronym{POSIX}:
bfa74976 6831
89cab50d 6832@example
397ec073 6833#! /bin/sh
26e06a21 6834bison -y "$@@"
89cab50d 6835@end example
54662697
PE
6836
6837The @option{-y}/@option{--yacc} option is intended for use with
6838traditional Yacc grammars. If your grammar uses a Bison extension
6839like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
6840this option is specified.
6841
89cab50d
AD
6842@end table
6843
6844@noindent
6845Tuning the parser:
6846
6847@table @option
cd5bd6ac
AD
6848@item -S @var{file}
6849@itemx --skeleton=@var{file}
6850Specify the skeleton to use. You probably don't need this option unless
6851you are developing Bison.
6852
89cab50d
AD
6853@item -t
6854@itemx --debug
4947ebdb
PE
6855In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6856already defined, so that the debugging facilities are compiled.
ec3bc396 6857@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6858
6859@item --locations
d8988b2f 6860Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6861
6862@item -p @var{prefix}
6863@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6864Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6865@xref{Decl Summary}.
bfa74976
RS
6866
6867@item -l
6868@itemx --no-lines
6869Don't put any @code{#line} preprocessor commands in the parser file.
6870Ordinarily Bison puts them in the parser file so that the C compiler
6871and debuggers will associate errors with your source file, the
6872grammar file. This option causes them to associate errors with the
95e742f7 6873parser file, treating it as an independent source file in its own right.
bfa74976 6874
931c7513
RS
6875@item -n
6876@itemx --no-parser
d8988b2f 6877Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6878
89cab50d
AD
6879@item -k
6880@itemx --token-table
d8988b2f 6881Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6882@end table
bfa74976 6883
89cab50d
AD
6884@noindent
6885Adjust the output:
bfa74976 6886
89cab50d
AD
6887@table @option
6888@item -d
d8988b2f
AD
6889@itemx --defines
6890Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6891file containing macro definitions for the token type names defined in
4bfd5e4e 6892the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6893
342b8b6e 6894@item --defines=@var{defines-file}
d8988b2f 6895Same as above, but save in the file @var{defines-file}.
342b8b6e 6896
89cab50d
AD
6897@item -b @var{file-prefix}
6898@itemx --file-prefix=@var{prefix}
aa08666d 6899Pretend that @code{%file-prefix} was specified, i.e, specify prefix to use
72d2299c 6900for all Bison output file names. @xref{Decl Summary}.
bfa74976 6901
ec3bc396
AD
6902@item -r @var{things}
6903@itemx --report=@var{things}
6904Write an extra output file containing verbose description of the comma
6905separated list of @var{things} among:
6906
6907@table @code
6908@item state
6909Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6910@acronym{LALR} automaton.
ec3bc396 6911
8dd162d3 6912@item look-ahead
ec3bc396 6913Implies @code{state} and augments the description of the automaton with
8dd162d3 6914each rule's look-ahead set.
ec3bc396
AD
6915
6916@item itemset
6917Implies @code{state} and augments the description of the automaton with
6918the full set of items for each state, instead of its core only.
6919@end table
6920
bfa74976
RS
6921@item -v
6922@itemx --verbose
6deb4447
AD
6923Pretend that @code{%verbose} was specified, i.e, write an extra output
6924file containing verbose descriptions of the grammar and
72d2299c 6925parser. @xref{Decl Summary}.
bfa74976 6926
fa4d969f
PE
6927@item -o @var{file}
6928@itemx --output=@var{file}
6929Specify the @var{file} for the parser file.
bfa74976 6930
fa4d969f 6931The other output files' names are constructed from @var{file} as
d8988b2f 6932described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6933
6934@item -g
c827f760
PE
6935Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6936automaton computed by Bison. If the grammar file is @file{foo.y}, the
6937@acronym{VCG} output file will
342b8b6e
AD
6938be @file{foo.vcg}.
6939
6940@item --graph=@var{graph-file}
72d2299c
PE
6941The behavior of @var{--graph} is the same than @samp{-g}. The only
6942difference is that it has an optional argument which is the name of
fa4d969f 6943the output graph file.
bfa74976
RS
6944@end table
6945
342b8b6e 6946@node Option Cross Key
bfa74976
RS
6947@section Option Cross Key
6948
aa08666d 6949@c FIXME: How about putting the directives too?
bfa74976
RS
6950Here is a list of options, alphabetized by long option, to help you find
6951the corresponding short option.
6952
aa08666d
AD
6953@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
6954@headitem Long Option @tab Short Option
6955@item @option{--debug} @tab @option{-t}
6956@item @option{--defines=@var{defines-file}} @tab @option{-d}
6957@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
6958@item @option{--graph=@var{graph-file}} @tab @option{-d}
6959@item @option{--help} @tab @option{-h}
6960@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
6961@item @option{--no-lines} @tab @option{-l}
6962@item @option{--no-parser} @tab @option{-n}
6963@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
6964@item @option{--print-localedir} @tab
6965@item @option{--token-table} @tab @option{-k}
6966@item @option{--verbose} @tab @option{-v}
6967@item @option{--version} @tab @option{-V}
6968@item @option{--yacc} @tab @option{-y}
6969@end multitable
bfa74976 6970
93dd49ab
PE
6971@node Yacc Library
6972@section Yacc Library
6973
6974The Yacc library contains default implementations of the
6975@code{yyerror} and @code{main} functions. These default
6976implementations are normally not useful, but @acronym{POSIX} requires
6977them. To use the Yacc library, link your program with the
6978@option{-ly} option. Note that Bison's implementation of the Yacc
6979library is distributed under the terms of the @acronym{GNU} General
6980Public License (@pxref{Copying}).
6981
6982If you use the Yacc library's @code{yyerror} function, you should
6983declare @code{yyerror} as follows:
6984
6985@example
6986int yyerror (char const *);
6987@end example
6988
6989Bison ignores the @code{int} value returned by this @code{yyerror}.
6990If you use the Yacc library's @code{main} function, your
6991@code{yyparse} function should have the following type signature:
6992
6993@example
6994int yyparse (void);
6995@end example
6996
12545799
AD
6997@c ================================================= C++ Bison
6998
6999@node C++ Language Interface
7000@chapter C++ Language Interface
7001
7002@menu
7003* C++ Parsers:: The interface to generate C++ parser classes
7004* A Complete C++ Example:: Demonstrating their use
7005@end menu
7006
7007@node C++ Parsers
7008@section C++ Parsers
7009
7010@menu
7011* C++ Bison Interface:: Asking for C++ parser generation
7012* C++ Semantic Values:: %union vs. C++
7013* C++ Location Values:: The position and location classes
7014* C++ Parser Interface:: Instantiating and running the parser
7015* C++ Scanner Interface:: Exchanges between yylex and parse
7016@end menu
7017
7018@node C++ Bison Interface
7019@subsection C++ Bison Interface
7020@c - %skeleton "lalr1.cc"
7021@c - Always pure
7022@c - initial action
7023
aa08666d
AD
7024The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To
7025select it, you may either pass the option @option{--skeleton=lalr1.cc}
7026to Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
12545799 7027grammar preamble. When run, @command{bison} will create several
aa08666d
AD
7028entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7029directive to change the namespace name, see @ref{Decl Summary}. The
7030various classes are generated in the following files:
7031
12545799
AD
7032@table @file
7033@item position.hh
7034@itemx location.hh
7035The definition of the classes @code{position} and @code{location},
7036used for location tracking. @xref{C++ Location Values}.
7037
7038@item stack.hh
7039An auxiliary class @code{stack} used by the parser.
7040
fa4d969f
PE
7041@item @var{file}.hh
7042@itemx @var{file}.cc
12545799 7043The declaration and implementation of the C++ parser class.
fa4d969f 7044@var{file} is the name of the output file. It follows the same
12545799
AD
7045rules as with regular C parsers.
7046
fa4d969f 7047Note that @file{@var{file}.hh} is @emph{mandatory}, the C++ cannot
12545799
AD
7048work without the parser class declaration. Therefore, you must either
7049pass @option{-d}/@option{--defines} to @command{bison}, or use the
7050@samp{%defines} directive.
7051@end table
7052
7053All these files are documented using Doxygen; run @command{doxygen}
7054for a complete and accurate documentation.
7055
7056@node C++ Semantic Values
7057@subsection C++ Semantic Values
7058@c - No objects in unions
7059@c - YSTYPE
7060@c - Printer and destructor
7061
7062The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7063Collection of Value Types}. In particular it produces a genuine
7064@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7065within pseudo-unions (similar to Boost variants) might be implemented to
7066alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7067@itemize @minus
7068@item
fb9712a9
AD
7069The type @code{YYSTYPE} is defined but its use is discouraged: rather
7070you should refer to the parser's encapsulated type
7071@code{yy::parser::semantic_type}.
12545799
AD
7072@item
7073Non POD (Plain Old Data) types cannot be used. C++ forbids any
7074instance of classes with constructors in unions: only @emph{pointers}
7075to such objects are allowed.
7076@end itemize
7077
7078Because objects have to be stored via pointers, memory is not
7079reclaimed automatically: using the @code{%destructor} directive is the
7080only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7081Symbols}.
7082
7083
7084@node C++ Location Values
7085@subsection C++ Location Values
7086@c - %locations
7087@c - class Position
7088@c - class Location
b47dbebe 7089@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7090
7091When the directive @code{%locations} is used, the C++ parser supports
7092location tracking, see @ref{Locations, , Locations Overview}. Two
7093auxiliary classes define a @code{position}, a single point in a file,
7094and a @code{location}, a range composed of a pair of
7095@code{position}s (possibly spanning several files).
7096
fa4d969f 7097@deftypemethod {position} {std::string*} file
12545799
AD
7098The name of the file. It will always be handled as a pointer, the
7099parser will never duplicate nor deallocate it. As an experimental
7100feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7101"filename_type" "@var{type}"}.
12545799
AD
7102@end deftypemethod
7103
7104@deftypemethod {position} {unsigned int} line
7105The line, starting at 1.
7106@end deftypemethod
7107
7108@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7109Advance by @var{height} lines, resetting the column number.
7110@end deftypemethod
7111
7112@deftypemethod {position} {unsigned int} column
7113The column, starting at 0.
7114@end deftypemethod
7115
7116@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7117Advance by @var{width} columns, without changing the line number.
7118@end deftypemethod
7119
7120@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7121@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7122@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7123@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7124Various forms of syntactic sugar for @code{columns}.
7125@end deftypemethod
7126
7127@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7128Report @var{p} on @var{o} like this:
fa4d969f
PE
7129@samp{@var{file}:@var{line}.@var{column}}, or
7130@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7131@end deftypemethod
7132
7133@deftypemethod {location} {position} begin
7134@deftypemethodx {location} {position} end
7135The first, inclusive, position of the range, and the first beyond.
7136@end deftypemethod
7137
7138@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7139@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7140Advance the @code{end} position.
7141@end deftypemethod
7142
7143@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7144@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7145@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7146Various forms of syntactic sugar.
7147@end deftypemethod
7148
7149@deftypemethod {location} {void} step ()
7150Move @code{begin} onto @code{end}.
7151@end deftypemethod
7152
7153
7154@node C++ Parser Interface
7155@subsection C++ Parser Interface
7156@c - define parser_class_name
7157@c - Ctor
7158@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7159@c debug_stream.
7160@c - Reporting errors
7161
7162The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7163declare and define the parser class in the namespace @code{yy}. The
7164class name defaults to @code{parser}, but may be changed using
7165@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7166this class is detailed below. It can be extended using the
12545799
AD
7167@code{%parse-param} feature: its semantics is slightly changed since
7168it describes an additional member of the parser class, and an
7169additional argument for its constructor.
7170
8a0adb01
AD
7171@defcv {Type} {parser} {semantic_value_type}
7172@defcvx {Type} {parser} {location_value_type}
12545799 7173The types for semantics value and locations.
8a0adb01 7174@end defcv
12545799
AD
7175
7176@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7177Build a new parser object. There are no arguments by default, unless
7178@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7179@end deftypemethod
7180
7181@deftypemethod {parser} {int} parse ()
7182Run the syntactic analysis, and return 0 on success, 1 otherwise.
7183@end deftypemethod
7184
7185@deftypemethod {parser} {std::ostream&} debug_stream ()
7186@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7187Get or set the stream used for tracing the parsing. It defaults to
7188@code{std::cerr}.
7189@end deftypemethod
7190
7191@deftypemethod {parser} {debug_level_type} debug_level ()
7192@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7193Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7194or nonzero, full tracing.
12545799
AD
7195@end deftypemethod
7196
7197@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7198The definition for this member function must be supplied by the user:
7199the parser uses it to report a parser error occurring at @var{l},
7200described by @var{m}.
7201@end deftypemethod
7202
7203
7204@node C++ Scanner Interface
7205@subsection C++ Scanner Interface
7206@c - prefix for yylex.
7207@c - Pure interface to yylex
7208@c - %lex-param
7209
7210The parser invokes the scanner by calling @code{yylex}. Contrary to C
7211parsers, C++ parsers are always pure: there is no point in using the
7212@code{%pure-parser} directive. Therefore the interface is as follows.
7213
7214@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7215Return the next token. Its type is the return value, its semantic
7216value and location being @var{yylval} and @var{yylloc}. Invocations of
7217@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7218@end deftypemethod
7219
7220
7221@node A Complete C++ Example
7222@section A Complete C++ Example
7223
7224This section demonstrates the use of a C++ parser with a simple but
7225complete example. This example should be available on your system,
7226ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7227focuses on the use of Bison, therefore the design of the various C++
7228classes is very naive: no accessors, no encapsulation of members etc.
7229We will use a Lex scanner, and more precisely, a Flex scanner, to
7230demonstrate the various interaction. A hand written scanner is
7231actually easier to interface with.
7232
7233@menu
7234* Calc++ --- C++ Calculator:: The specifications
7235* Calc++ Parsing Driver:: An active parsing context
7236* Calc++ Parser:: A parser class
7237* Calc++ Scanner:: A pure C++ Flex scanner
7238* Calc++ Top Level:: Conducting the band
7239@end menu
7240
7241@node Calc++ --- C++ Calculator
7242@subsection Calc++ --- C++ Calculator
7243
7244Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7245expression, possibly preceded by variable assignments. An
12545799
AD
7246environment containing possibly predefined variables such as
7247@code{one} and @code{two}, is exchanged with the parser. An example
7248of valid input follows.
7249
7250@example
7251three := 3
7252seven := one + two * three
7253seven * seven
7254@end example
7255
7256@node Calc++ Parsing Driver
7257@subsection Calc++ Parsing Driver
7258@c - An env
7259@c - A place to store error messages
7260@c - A place for the result
7261
7262To support a pure interface with the parser (and the scanner) the
7263technique of the ``parsing context'' is convenient: a structure
7264containing all the data to exchange. Since, in addition to simply
7265launch the parsing, there are several auxiliary tasks to execute (open
7266the file for parsing, instantiate the parser etc.), we recommend
7267transforming the simple parsing context structure into a fully blown
7268@dfn{parsing driver} class.
7269
7270The declaration of this driver class, @file{calc++-driver.hh}, is as
7271follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7272required standard library components, and the declaration of the parser
7273class.
12545799 7274
1c59e0a1 7275@comment file: calc++-driver.hh
12545799
AD
7276@example
7277#ifndef CALCXX_DRIVER_HH
7278# define CALCXX_DRIVER_HH
7279# include <string>
7280# include <map>
fb9712a9 7281# include "calc++-parser.hh"
12545799
AD
7282@end example
7283
12545799
AD
7284
7285@noindent
7286Then comes the declaration of the scanning function. Flex expects
7287the signature of @code{yylex} to be defined in the macro
7288@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7289factor both as follows.
1c59e0a1
AD
7290
7291@comment file: calc++-driver.hh
12545799
AD
7292@example
7293// Announce to Flex the prototype we want for lexing function, ...
c095d689
AD
7294# define YY_DECL \
7295 yy::calcxx_parser::token_type \
7296 yylex (yy::calcxx_parser::semantic_type* yylval, \
7297 yy::calcxx_parser::location_type* yylloc, \
7298 calcxx_driver& driver)
12545799
AD
7299// ... and declare it for the parser's sake.
7300YY_DECL;
7301@end example
7302
7303@noindent
7304The @code{calcxx_driver} class is then declared with its most obvious
7305members.
7306
1c59e0a1 7307@comment file: calc++-driver.hh
12545799
AD
7308@example
7309// Conducting the whole scanning and parsing of Calc++.
7310class calcxx_driver
7311@{
7312public:
7313 calcxx_driver ();
7314 virtual ~calcxx_driver ();
7315
7316 std::map<std::string, int> variables;
7317
7318 int result;
7319@end example
7320
7321@noindent
7322To encapsulate the coordination with the Flex scanner, it is useful to
7323have two members function to open and close the scanning phase.
7324members.
7325
1c59e0a1 7326@comment file: calc++-driver.hh
12545799
AD
7327@example
7328 // Handling the scanner.
7329 void scan_begin ();
7330 void scan_end ();
7331 bool trace_scanning;
7332@end example
7333
7334@noindent
7335Similarly for the parser itself.
7336
1c59e0a1 7337@comment file: calc++-driver.hh
12545799
AD
7338@example
7339 // Handling the parser.
7340 void parse (const std::string& f);
7341 std::string file;
7342 bool trace_parsing;
7343@end example
7344
7345@noindent
7346To demonstrate pure handling of parse errors, instead of simply
7347dumping them on the standard error output, we will pass them to the
7348compiler driver using the following two member functions. Finally, we
7349close the class declaration and CPP guard.
7350
1c59e0a1 7351@comment file: calc++-driver.hh
12545799
AD
7352@example
7353 // Error handling.
7354 void error (const yy::location& l, const std::string& m);
7355 void error (const std::string& m);
7356@};
7357#endif // ! CALCXX_DRIVER_HH
7358@end example
7359
7360The implementation of the driver is straightforward. The @code{parse}
7361member function deserves some attention. The @code{error} functions
7362are simple stubs, they should actually register the located error
7363messages and set error state.
7364
1c59e0a1 7365@comment file: calc++-driver.cc
12545799
AD
7366@example
7367#include "calc++-driver.hh"
7368#include "calc++-parser.hh"
7369
7370calcxx_driver::calcxx_driver ()
7371 : trace_scanning (false), trace_parsing (false)
7372@{
7373 variables["one"] = 1;
7374 variables["two"] = 2;
7375@}
7376
7377calcxx_driver::~calcxx_driver ()
7378@{
7379@}
7380
7381void
7382calcxx_driver::parse (const std::string &f)
7383@{
7384 file = f;
7385 scan_begin ();
7386 yy::calcxx_parser parser (*this);
7387 parser.set_debug_level (trace_parsing);
7388 parser.parse ();
7389 scan_end ();
7390@}
7391
7392void
7393calcxx_driver::error (const yy::location& l, const std::string& m)
7394@{
7395 std::cerr << l << ": " << m << std::endl;
7396@}
7397
7398void
7399calcxx_driver::error (const std::string& m)
7400@{
7401 std::cerr << m << std::endl;
7402@}
7403@end example
7404
7405@node Calc++ Parser
7406@subsection Calc++ Parser
7407
b50d2359
AD
7408The parser definition file @file{calc++-parser.yy} starts by asking for
7409the C++ LALR(1) skeleton, the creation of the parser header file, and
7410specifies the name of the parser class. Because the C++ skeleton
7411changed several times, it is safer to require the version you designed
7412the grammar for.
1c59e0a1
AD
7413
7414@comment file: calc++-parser.yy
12545799
AD
7415@example
7416%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7417%require "2.1a"
12545799 7418%defines
fb9712a9
AD
7419%define "parser_class_name" "calcxx_parser"
7420@end example
7421
7422@noindent
7423Then come the declarations/inclusions needed to define the
7424@code{%union}. Because the parser uses the parsing driver and
7425reciprocally, both cannot include the header of the other. Because the
7426driver's header needs detailed knowledge about the parser class (in
7427particular its inner types), it is the parser's header which will simply
7428use a forward declaration of the driver.
7429
7430@comment file: calc++-parser.yy
7431@example
12545799
AD
7432%@{
7433# include <string>
fb9712a9 7434class calcxx_driver;
12545799
AD
7435%@}
7436@end example
7437
7438@noindent
7439The driver is passed by reference to the parser and to the scanner.
7440This provides a simple but effective pure interface, not relying on
7441global variables.
7442
1c59e0a1 7443@comment file: calc++-parser.yy
12545799
AD
7444@example
7445// The parsing context.
7446%parse-param @{ calcxx_driver& driver @}
7447%lex-param @{ calcxx_driver& driver @}
7448@end example
7449
7450@noindent
7451Then we request the location tracking feature, and initialize the
7452first location's file name. Afterwards new locations are computed
7453relatively to the previous locations: the file name will be
7454automatically propagated.
7455
1c59e0a1 7456@comment file: calc++-parser.yy
12545799
AD
7457@example
7458%locations
7459%initial-action
7460@{
7461 // Initialize the initial location.
b47dbebe 7462 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7463@};
7464@end example
7465
7466@noindent
7467Use the two following directives to enable parser tracing and verbose
7468error messages.
7469
1c59e0a1 7470@comment file: calc++-parser.yy
12545799
AD
7471@example
7472%debug
7473%error-verbose
7474@end example
7475
7476@noindent
7477Semantic values cannot use ``real'' objects, but only pointers to
7478them.
7479
1c59e0a1 7480@comment file: calc++-parser.yy
12545799
AD
7481@example
7482// Symbols.
7483%union
7484@{
7485 int ival;
7486 std::string *sval;
7487@};
7488@end example
7489
fb9712a9
AD
7490@noindent
7491The code between @samp{%@{} and @samp{%@}} after the introduction of the
7492@samp{%union} is output in the @file{*.cc} file; it needs detailed
7493knowledge about the driver.
7494
7495@comment file: calc++-parser.yy
7496@example
7497%@{
7498# include "calc++-driver.hh"
7499%@}
7500@end example
7501
7502
12545799
AD
7503@noindent
7504The token numbered as 0 corresponds to end of file; the following line
7505allows for nicer error messages referring to ``end of file'' instead
7506of ``$end''. Similarly user friendly named are provided for each
7507symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7508avoid name clashes.
7509
1c59e0a1 7510@comment file: calc++-parser.yy
12545799 7511@example
fb9712a9
AD
7512%token END 0 "end of file"
7513%token ASSIGN ":="
7514%token <sval> IDENTIFIER "identifier"
7515%token <ival> NUMBER "number"
7516%type <ival> exp "expression"
12545799
AD
7517@end example
7518
7519@noindent
7520To enable memory deallocation during error recovery, use
7521@code{%destructor}.
7522
287c78f6 7523@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7524@comment file: calc++-parser.yy
12545799
AD
7525@example
7526%printer @{ debug_stream () << *$$; @} "identifier"
7527%destructor @{ delete $$; @} "identifier"
7528
7529%printer @{ debug_stream () << $$; @} "number" "expression"
7530@end example
7531
7532@noindent
7533The grammar itself is straightforward.
7534
1c59e0a1 7535@comment file: calc++-parser.yy
12545799
AD
7536@example
7537%%
7538%start unit;
7539unit: assignments exp @{ driver.result = $2; @};
7540
7541assignments: assignments assignment @{@}
9d9b8b70 7542 | /* Nothing. */ @{@};
12545799 7543
fb9712a9 7544assignment: "identifier" ":=" exp @{ driver.variables[*$1] = $3; @};
12545799
AD
7545
7546%left '+' '-';
7547%left '*' '/';
7548exp: exp '+' exp @{ $$ = $1 + $3; @}
7549 | exp '-' exp @{ $$ = $1 - $3; @}
7550 | exp '*' exp @{ $$ = $1 * $3; @}
7551 | exp '/' exp @{ $$ = $1 / $3; @}
fb9712a9
AD
7552 | "identifier" @{ $$ = driver.variables[*$1]; @}
7553 | "number" @{ $$ = $1; @};
12545799
AD
7554%%
7555@end example
7556
7557@noindent
7558Finally the @code{error} member function registers the errors to the
7559driver.
7560
1c59e0a1 7561@comment file: calc++-parser.yy
12545799
AD
7562@example
7563void
1c59e0a1
AD
7564yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7565 const std::string& m)
12545799
AD
7566@{
7567 driver.error (l, m);
7568@}
7569@end example
7570
7571@node Calc++ Scanner
7572@subsection Calc++ Scanner
7573
7574The Flex scanner first includes the driver declaration, then the
7575parser's to get the set of defined tokens.
7576
1c59e0a1 7577@comment file: calc++-scanner.ll
12545799
AD
7578@example
7579%@{ /* -*- C++ -*- */
04098407
PE
7580# include <cstdlib>
7581# include <errno.h>
7582# include <limits.h>
12545799
AD
7583# include <string>
7584# include "calc++-driver.hh"
7585# include "calc++-parser.hh"
eaea13f5
PE
7586
7587/* Work around an incompatibility in flex (at least versions
7588 2.5.31 through 2.5.33): it generates code that does
7589 not conform to C89. See Debian bug 333231
7590 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
7591# undef yywrap
7592# define yywrap() 1
eaea13f5 7593
c095d689
AD
7594/* By default yylex returns int, we use token_type.
7595 Unfortunately yyterminate by default returns 0, which is
7596 not of token_type. */
8c5b881d 7597#define yyterminate() return token::END
12545799
AD
7598%@}
7599@end example
7600
7601@noindent
7602Because there is no @code{#include}-like feature we don't need
7603@code{yywrap}, we don't need @code{unput} either, and we parse an
7604actual file, this is not an interactive session with the user.
7605Finally we enable the scanner tracing features.
7606
1c59e0a1 7607@comment file: calc++-scanner.ll
12545799
AD
7608@example
7609%option noyywrap nounput batch debug
7610@end example
7611
7612@noindent
7613Abbreviations allow for more readable rules.
7614
1c59e0a1 7615@comment file: calc++-scanner.ll
12545799
AD
7616@example
7617id [a-zA-Z][a-zA-Z_0-9]*
7618int [0-9]+
7619blank [ \t]
7620@end example
7621
7622@noindent
9d9b8b70 7623The following paragraph suffices to track locations accurately. Each
12545799
AD
7624time @code{yylex} is invoked, the begin position is moved onto the end
7625position. Then when a pattern is matched, the end position is
7626advanced of its width. In case it matched ends of lines, the end
7627cursor is adjusted, and each time blanks are matched, the begin cursor
7628is moved onto the end cursor to effectively ignore the blanks
7629preceding tokens. Comments would be treated equally.
7630
1c59e0a1 7631@comment file: calc++-scanner.ll
12545799 7632@example
828c373b
AD
7633%@{
7634# define YY_USER_ACTION yylloc->columns (yyleng);
7635%@}
12545799
AD
7636%%
7637%@{
7638 yylloc->step ();
12545799
AD
7639%@}
7640@{blank@}+ yylloc->step ();
7641[\n]+ yylloc->lines (yyleng); yylloc->step ();
7642@end example
7643
7644@noindent
fb9712a9
AD
7645The rules are simple, just note the use of the driver to report errors.
7646It is convenient to use a typedef to shorten
7647@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 7648@code{token::identifier} for instance.
12545799 7649
1c59e0a1 7650@comment file: calc++-scanner.ll
12545799 7651@example
fb9712a9
AD
7652%@{
7653 typedef yy::calcxx_parser::token token;
7654%@}
8c5b881d 7655 /* Convert ints to the actual type of tokens. */
c095d689 7656[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 7657":=" return token::ASSIGN;
04098407
PE
7658@{int@} @{
7659 errno = 0;
7660 long n = strtol (yytext, NULL, 10);
7661 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7662 driver.error (*yylloc, "integer is out of range");
7663 yylval->ival = n;
fb9712a9 7664 return token::NUMBER;
04098407 7665@}
fb9712a9 7666@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7667. driver.error (*yylloc, "invalid character");
7668%%
7669@end example
7670
7671@noindent
7672Finally, because the scanner related driver's member function depend
7673on the scanner's data, it is simpler to implement them in this file.
7674
1c59e0a1 7675@comment file: calc++-scanner.ll
12545799
AD
7676@example
7677void
7678calcxx_driver::scan_begin ()
7679@{
7680 yy_flex_debug = trace_scanning;
7681 if (!(yyin = fopen (file.c_str (), "r")))
7682 error (std::string ("cannot open ") + file);
7683@}
7684
7685void
7686calcxx_driver::scan_end ()
7687@{
7688 fclose (yyin);
7689@}
7690@end example
7691
7692@node Calc++ Top Level
7693@subsection Calc++ Top Level
7694
7695The top level file, @file{calc++.cc}, poses no problem.
7696
1c59e0a1 7697@comment file: calc++.cc
12545799
AD
7698@example
7699#include <iostream>
7700#include "calc++-driver.hh"
7701
7702int
fa4d969f 7703main (int argc, char *argv[])
12545799
AD
7704@{
7705 calcxx_driver driver;
7706 for (++argv; argv[0]; ++argv)
7707 if (*argv == std::string ("-p"))
7708 driver.trace_parsing = true;
7709 else if (*argv == std::string ("-s"))
7710 driver.trace_scanning = true;
7711 else
7712 @{
7713 driver.parse (*argv);
7714 std::cout << driver.result << std::endl;
7715 @}
7716@}
7717@end example
7718
7719@c ================================================= FAQ
d1a1114f
AD
7720
7721@node FAQ
7722@chapter Frequently Asked Questions
7723@cindex frequently asked questions
7724@cindex questions
7725
7726Several questions about Bison come up occasionally. Here some of them
7727are addressed.
7728
7729@menu
55ba27be
AD
7730* Memory Exhausted:: Breaking the Stack Limits
7731* How Can I Reset the Parser:: @code{yyparse} Keeps some State
7732* Strings are Destroyed:: @code{yylval} Loses Track of Strings
7733* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 7734* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
7735* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
7736* I can't build Bison:: Troubleshooting
7737* Where can I find help?:: Troubleshouting
7738* Bug Reports:: Troublereporting
7739* Other Languages:: Parsers in Java and others
7740* Beta Testing:: Experimenting development versions
7741* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
7742@end menu
7743
1a059451
PE
7744@node Memory Exhausted
7745@section Memory Exhausted
d1a1114f
AD
7746
7747@display
1a059451 7748My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7749message. What can I do?
7750@end display
7751
7752This question is already addressed elsewhere, @xref{Recursion,
7753,Recursive Rules}.
7754
e64fec0a
PE
7755@node How Can I Reset the Parser
7756@section How Can I Reset the Parser
5b066063 7757
0e14ad77
PE
7758The following phenomenon has several symptoms, resulting in the
7759following typical questions:
5b066063
AD
7760
7761@display
7762I invoke @code{yyparse} several times, and on correct input it works
7763properly; but when a parse error is found, all the other calls fail
0e14ad77 7764too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7765@end display
7766
7767@noindent
7768or
7769
7770@display
0e14ad77 7771My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7772which case I run @code{yyparse} from @code{yyparse}. This fails
7773although I did specify I needed a @code{%pure-parser}.
7774@end display
7775
0e14ad77
PE
7776These problems typically come not from Bison itself, but from
7777Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7778speed, they might not notice a change of input file. As a
7779demonstration, consider the following source file,
7780@file{first-line.l}:
7781
7782@verbatim
7783%{
7784#include <stdio.h>
7785#include <stdlib.h>
7786%}
7787%%
7788.*\n ECHO; return 1;
7789%%
7790int
0e14ad77 7791yyparse (char const *file)
5b066063
AD
7792{
7793 yyin = fopen (file, "r");
7794 if (!yyin)
7795 exit (2);
fa7e68c3 7796 /* One token only. */
5b066063 7797 yylex ();
0e14ad77 7798 if (fclose (yyin) != 0)
5b066063
AD
7799 exit (3);
7800 return 0;
7801}
7802
7803int
0e14ad77 7804main (void)
5b066063
AD
7805{
7806 yyparse ("input");
7807 yyparse ("input");
7808 return 0;
7809}
7810@end verbatim
7811
7812@noindent
7813If the file @file{input} contains
7814
7815@verbatim
7816input:1: Hello,
7817input:2: World!
7818@end verbatim
7819
7820@noindent
0e14ad77 7821then instead of getting the first line twice, you get:
5b066063
AD
7822
7823@example
7824$ @kbd{flex -ofirst-line.c first-line.l}
7825$ @kbd{gcc -ofirst-line first-line.c -ll}
7826$ @kbd{./first-line}
7827input:1: Hello,
7828input:2: World!
7829@end example
7830
0e14ad77
PE
7831Therefore, whenever you change @code{yyin}, you must tell the
7832Lex-generated scanner to discard its current buffer and switch to the
7833new one. This depends upon your implementation of Lex; see its
7834documentation for more. For Flex, it suffices to call
7835@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7836Flex-generated scanner needs to read from several input streams to
7837handle features like include files, you might consider using Flex
7838functions like @samp{yy_switch_to_buffer} that manipulate multiple
7839input buffers.
5b066063 7840
b165c324
AD
7841If your Flex-generated scanner uses start conditions (@pxref{Start
7842conditions, , Start conditions, flex, The Flex Manual}), you might
7843also want to reset the scanner's state, i.e., go back to the initial
7844start condition, through a call to @samp{BEGIN (0)}.
7845
fef4cb51
AD
7846@node Strings are Destroyed
7847@section Strings are Destroyed
7848
7849@display
c7e441b4 7850My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7851them. Instead of reporting @samp{"foo", "bar"}, it reports
7852@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7853@end display
7854
7855This error is probably the single most frequent ``bug report'' sent to
7856Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 7857of the scanner. Consider the following Lex code:
fef4cb51
AD
7858
7859@verbatim
7860%{
7861#include <stdio.h>
7862char *yylval = NULL;
7863%}
7864%%
7865.* yylval = yytext; return 1;
7866\n /* IGNORE */
7867%%
7868int
7869main ()
7870{
fa7e68c3 7871 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7872 char *fst = (yylex (), yylval);
7873 char *snd = (yylex (), yylval);
7874 printf ("\"%s\", \"%s\"\n", fst, snd);
7875 return 0;
7876}
7877@end verbatim
7878
7879If you compile and run this code, you get:
7880
7881@example
7882$ @kbd{flex -osplit-lines.c split-lines.l}
7883$ @kbd{gcc -osplit-lines split-lines.c -ll}
7884$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7885"one
7886two", "two"
7887@end example
7888
7889@noindent
7890this is because @code{yytext} is a buffer provided for @emph{reading}
7891in the action, but if you want to keep it, you have to duplicate it
7892(e.g., using @code{strdup}). Note that the output may depend on how
7893your implementation of Lex handles @code{yytext}. For instance, when
7894given the Lex compatibility option @option{-l} (which triggers the
7895option @samp{%array}) Flex generates a different behavior:
7896
7897@example
7898$ @kbd{flex -l -osplit-lines.c split-lines.l}
7899$ @kbd{gcc -osplit-lines split-lines.c -ll}
7900$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7901"two", "two"
7902@end example
7903
7904
2fa09258
AD
7905@node Implementing Gotos/Loops
7906@section Implementing Gotos/Loops
a06ea4aa
AD
7907
7908@display
7909My simple calculator supports variables, assignments, and functions,
2fa09258 7910but how can I implement gotos, or loops?
a06ea4aa
AD
7911@end display
7912
7913Although very pedagogical, the examples included in the document blur
a1c84f45 7914the distinction to make between the parser---whose job is to recover
a06ea4aa 7915the structure of a text and to transmit it to subsequent modules of
a1c84f45 7916the program---and the processing (such as the execution) of this
a06ea4aa
AD
7917structure. This works well with so called straight line programs,
7918i.e., precisely those that have a straightforward execution model:
7919execute simple instructions one after the others.
7920
7921@cindex abstract syntax tree
7922@cindex @acronym{AST}
7923If you want a richer model, you will probably need to use the parser
7924to construct a tree that does represent the structure it has
7925recovered; this tree is usually called the @dfn{abstract syntax tree},
7926or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7927traversing it in various ways, will enable treatments such as its
7928execution or its translation, which will result in an interpreter or a
7929compiler.
7930
7931This topic is way beyond the scope of this manual, and the reader is
7932invited to consult the dedicated literature.
7933
7934
ed2e6384
AD
7935@node Multiple start-symbols
7936@section Multiple start-symbols
7937
7938@display
7939I have several closely related grammars, and I would like to share their
7940implementations. In fact, I could use a single grammar but with
7941multiple entry points.
7942@end display
7943
7944Bison does not support multiple start-symbols, but there is a very
7945simple means to simulate them. If @code{foo} and @code{bar} are the two
7946pseudo start-symbols, then introduce two new tokens, say
7947@code{START_FOO} and @code{START_BAR}, and use them as switches from the
7948real start-symbol:
7949
7950@example
7951%token START_FOO START_BAR;
7952%start start;
7953start: START_FOO foo
7954 | START_BAR bar;
7955@end example
7956
7957These tokens prevents the introduction of new conflicts. As far as the
7958parser goes, that is all that is needed.
7959
7960Now the difficult part is ensuring that the scanner will send these
7961tokens first. If your scanner is hand-written, that should be
7962straightforward. If your scanner is generated by Lex, them there is
7963simple means to do it: recall that anything between @samp{%@{ ... %@}}
7964after the first @code{%%} is copied verbatim in the top of the generated
7965@code{yylex} function. Make sure a variable @code{start_token} is
7966available in the scanner (e.g., a global variable or using
7967@code{%lex-param} etc.), and use the following:
7968
7969@example
7970 /* @r{Prologue.} */
7971%%
7972%@{
7973 if (start_token)
7974 @{
7975 int t = start_token;
7976 start_token = 0;
7977 return t;
7978 @}
7979%@}
7980 /* @r{The rules.} */
7981@end example
7982
7983
55ba27be
AD
7984@node Secure? Conform?
7985@section Secure? Conform?
7986
7987@display
7988Is Bison secure? Does it conform to POSIX?
7989@end display
7990
7991If you're looking for a guarantee or certification, we don't provide it.
7992However, Bison is intended to be a reliable program that conforms to the
7993@acronym{POSIX} specification for Yacc. If you run into problems,
7994please send us a bug report.
7995
7996@node I can't build Bison
7997@section I can't build Bison
7998
7999@display
8c5b881d
PE
8000I can't build Bison because @command{make} complains that
8001@code{msgfmt} is not found.
55ba27be
AD
8002What should I do?
8003@end display
8004
8005Like most GNU packages with internationalization support, that feature
8006is turned on by default. If you have problems building in the @file{po}
8007subdirectory, it indicates that your system's internationalization
8008support is lacking. You can re-configure Bison with
8009@option{--disable-nls} to turn off this support, or you can install GNU
8010gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8011Bison. See the file @file{ABOUT-NLS} for more information.
8012
8013
8014@node Where can I find help?
8015@section Where can I find help?
8016
8017@display
8018I'm having trouble using Bison. Where can I find help?
8019@end display
8020
8021First, read this fine manual. Beyond that, you can send mail to
8022@email{help-bison@@gnu.org}. This mailing list is intended to be
8023populated with people who are willing to answer questions about using
8024and installing Bison. Please keep in mind that (most of) the people on
8025the list have aspects of their lives which are not related to Bison (!),
8026so you may not receive an answer to your question right away. This can
8027be frustrating, but please try not to honk them off; remember that any
8028help they provide is purely voluntary and out of the kindness of their
8029hearts.
8030
8031@node Bug Reports
8032@section Bug Reports
8033
8034@display
8035I found a bug. What should I include in the bug report?
8036@end display
8037
8038Before you send a bug report, make sure you are using the latest
8039version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8040mirrors. Be sure to include the version number in your bug report. If
8041the bug is present in the latest version but not in a previous version,
8042try to determine the most recent version which did not contain the bug.
8043
8044If the bug is parser-related, you should include the smallest grammar
8045you can which demonstrates the bug. The grammar file should also be
8046complete (i.e., I should be able to run it through Bison without having
8047to edit or add anything). The smaller and simpler the grammar, the
8048easier it will be to fix the bug.
8049
8050Include information about your compilation environment, including your
8051operating system's name and version and your compiler's name and
8052version. If you have trouble compiling, you should also include a
8053transcript of the build session, starting with the invocation of
8054`configure'. Depending on the nature of the bug, you may be asked to
8055send additional files as well (such as `config.h' or `config.cache').
8056
8057Patches are most welcome, but not required. That is, do not hesitate to
8058send a bug report just because you can not provide a fix.
8059
8060Send bug reports to @email{bug-bison@@gnu.org}.
8061
8062@node Other Languages
8063@section Other Languages
8064
8065@display
8066Will Bison ever have C++ support? How about Java or @var{insert your
8067favorite language here}?
8068@end display
8069
8070C++ support is there now, and is documented. We'd love to add other
8071languages; contributions are welcome.
8072
8073@node Beta Testing
8074@section Beta Testing
8075
8076@display
8077What is involved in being a beta tester?
8078@end display
8079
8080It's not terribly involved. Basically, you would download a test
8081release, compile it, and use it to build and run a parser or two. After
8082that, you would submit either a bug report or a message saying that
8083everything is okay. It is important to report successes as well as
8084failures because test releases eventually become mainstream releases,
8085but only if they are adequately tested. If no one tests, development is
8086essentially halted.
8087
8088Beta testers are particularly needed for operating systems to which the
8089developers do not have easy access. They currently have easy access to
8090recent GNU/Linux and Solaris versions. Reports about other operating
8091systems are especially welcome.
8092
8093@node Mailing Lists
8094@section Mailing Lists
8095
8096@display
8097How do I join the help-bison and bug-bison mailing lists?
8098@end display
8099
8100See @url{http://lists.gnu.org/}.
a06ea4aa 8101
d1a1114f
AD
8102@c ================================================= Table of Symbols
8103
342b8b6e 8104@node Table of Symbols
bfa74976
RS
8105@appendix Bison Symbols
8106@cindex Bison symbols, table of
8107@cindex symbols in Bison, table of
8108
18b519c0 8109@deffn {Variable} @@$
3ded9a63 8110In an action, the location of the left-hand side of the rule.
88bce5a2 8111@xref{Locations, , Locations Overview}.
18b519c0 8112@end deffn
3ded9a63 8113
18b519c0 8114@deffn {Variable} @@@var{n}
3ded9a63
AD
8115In an action, the location of the @var{n}-th symbol of the right-hand
8116side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8117@end deffn
3ded9a63 8118
18b519c0 8119@deffn {Variable} $$
3ded9a63
AD
8120In an action, the semantic value of the left-hand side of the rule.
8121@xref{Actions}.
18b519c0 8122@end deffn
3ded9a63 8123
18b519c0 8124@deffn {Variable} $@var{n}
3ded9a63
AD
8125In an action, the semantic value of the @var{n}-th symbol of the
8126right-hand side of the rule. @xref{Actions}.
18b519c0 8127@end deffn
3ded9a63 8128
dd8d9022
AD
8129@deffn {Delimiter} %%
8130Delimiter used to separate the grammar rule section from the
8131Bison declarations section or the epilogue.
8132@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8133@end deffn
bfa74976 8134
dd8d9022
AD
8135@c Don't insert spaces, or check the DVI output.
8136@deffn {Delimiter} %@{@var{code}%@}
8137All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8138the output file uninterpreted. Such code forms the prologue of the input
8139file. @xref{Grammar Outline, ,Outline of a Bison
8140Grammar}.
18b519c0 8141@end deffn
bfa74976 8142
dd8d9022
AD
8143@deffn {Construct} /*@dots{}*/
8144Comment delimiters, as in C.
18b519c0 8145@end deffn
bfa74976 8146
dd8d9022
AD
8147@deffn {Delimiter} :
8148Separates a rule's result from its components. @xref{Rules, ,Syntax of
8149Grammar Rules}.
18b519c0 8150@end deffn
bfa74976 8151
dd8d9022
AD
8152@deffn {Delimiter} ;
8153Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8154@end deffn
bfa74976 8155
dd8d9022
AD
8156@deffn {Delimiter} |
8157Separates alternate rules for the same result nonterminal.
8158@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8159@end deffn
bfa74976 8160
dd8d9022
AD
8161@deffn {Symbol} $accept
8162The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8163$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8164Start-Symbol}. It cannot be used in the grammar.
18b519c0 8165@end deffn
bfa74976 8166
18b519c0 8167@deffn {Directive} %debug
6deb4447 8168Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8169@end deffn
6deb4447 8170
91d2c560 8171@ifset defaultprec
22fccf95
PE
8172@deffn {Directive} %default-prec
8173Assign a precedence to rules that lack an explicit @samp{%prec}
8174modifier. @xref{Contextual Precedence, ,Context-Dependent
8175Precedence}.
39a06c25 8176@end deffn
91d2c560 8177@end ifset
39a06c25 8178
18b519c0 8179@deffn {Directive} %defines
6deb4447
AD
8180Bison declaration to create a header file meant for the scanner.
8181@xref{Decl Summary}.
18b519c0 8182@end deffn
6deb4447 8183
18b519c0 8184@deffn {Directive} %destructor
258b75ca 8185Specify how the parser should reclaim the memory associated to
fa7e68c3 8186discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8187@end deffn
72f889cc 8188
18b519c0 8189@deffn {Directive} %dprec
676385e2 8190Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8191time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8192@acronym{GLR} Parsers}.
18b519c0 8193@end deffn
676385e2 8194
dd8d9022
AD
8195@deffn {Symbol} $end
8196The predefined token marking the end of the token stream. It cannot be
8197used in the grammar.
8198@end deffn
8199
8200@deffn {Symbol} error
8201A token name reserved for error recovery. This token may be used in
8202grammar rules so as to allow the Bison parser to recognize an error in
8203the grammar without halting the process. In effect, a sentence
8204containing an error may be recognized as valid. On a syntax error, the
8205token @code{error} becomes the current look-ahead token. Actions
8206corresponding to @code{error} are then executed, and the look-ahead
8207token is reset to the token that originally caused the violation.
8208@xref{Error Recovery}.
18d192f0
AD
8209@end deffn
8210
18b519c0 8211@deffn {Directive} %error-verbose
2a8d363a
AD
8212Bison declaration to request verbose, specific error message strings
8213when @code{yyerror} is called.
18b519c0 8214@end deffn
2a8d363a 8215
18b519c0 8216@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8217Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8218Summary}.
18b519c0 8219@end deffn
d8988b2f 8220
18b519c0 8221@deffn {Directive} %glr-parser
c827f760
PE
8222Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8223Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8224@end deffn
676385e2 8225
dd8d9022
AD
8226@deffn {Directive} %initial-action
8227Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8228@end deffn
8229
18b519c0 8230@deffn {Directive} %left
bfa74976
RS
8231Bison declaration to assign left associativity to token(s).
8232@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8233@end deffn
bfa74976 8234
feeb0eda 8235@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8236Bison declaration to specifying an additional parameter that
8237@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8238for Pure Parsers}.
18b519c0 8239@end deffn
2a8d363a 8240
18b519c0 8241@deffn {Directive} %merge
676385e2 8242Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8243reduce/reduce conflict with a rule having the same merging function, the
676385e2 8244function is applied to the two semantic values to get a single result.
c827f760 8245@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8246@end deffn
676385e2 8247
18b519c0 8248@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8249Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8250@end deffn
d8988b2f 8251
91d2c560 8252@ifset defaultprec
22fccf95
PE
8253@deffn {Directive} %no-default-prec
8254Do not assign a precedence to rules that lack an explicit @samp{%prec}
8255modifier. @xref{Contextual Precedence, ,Context-Dependent
8256Precedence}.
8257@end deffn
91d2c560 8258@end ifset
22fccf95 8259
18b519c0 8260@deffn {Directive} %no-lines
931c7513
RS
8261Bison declaration to avoid generating @code{#line} directives in the
8262parser file. @xref{Decl Summary}.
18b519c0 8263@end deffn
931c7513 8264
18b519c0 8265@deffn {Directive} %nonassoc
9d9b8b70 8266Bison declaration to assign nonassociativity to token(s).
bfa74976 8267@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8268@end deffn
bfa74976 8269
fa4d969f 8270@deffn {Directive} %output="@var{file}"
72d2299c 8271Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8272Summary}.
18b519c0 8273@end deffn
d8988b2f 8274
feeb0eda 8275@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8276Bison declaration to specifying an additional parameter that
8277@code{yyparse} should accept. @xref{Parser Function,, The Parser
8278Function @code{yyparse}}.
18b519c0 8279@end deffn
2a8d363a 8280
18b519c0 8281@deffn {Directive} %prec
bfa74976
RS
8282Bison declaration to assign a precedence to a specific rule.
8283@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8284@end deffn
bfa74976 8285
18b519c0 8286@deffn {Directive} %pure-parser
bfa74976
RS
8287Bison declaration to request a pure (reentrant) parser.
8288@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8289@end deffn
bfa74976 8290
b50d2359 8291@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8292Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8293Require a Version of Bison}.
b50d2359
AD
8294@end deffn
8295
18b519c0 8296@deffn {Directive} %right
bfa74976
RS
8297Bison declaration to assign right associativity to token(s).
8298@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8299@end deffn
bfa74976 8300
18b519c0 8301@deffn {Directive} %start
704a47c4
AD
8302Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8303Start-Symbol}.
18b519c0 8304@end deffn
bfa74976 8305
18b519c0 8306@deffn {Directive} %token
bfa74976
RS
8307Bison declaration to declare token(s) without specifying precedence.
8308@xref{Token Decl, ,Token Type Names}.
18b519c0 8309@end deffn
bfa74976 8310
18b519c0 8311@deffn {Directive} %token-table
931c7513
RS
8312Bison declaration to include a token name table in the parser file.
8313@xref{Decl Summary}.
18b519c0 8314@end deffn
931c7513 8315
18b519c0 8316@deffn {Directive} %type
704a47c4
AD
8317Bison declaration to declare nonterminals. @xref{Type Decl,
8318,Nonterminal Symbols}.
18b519c0 8319@end deffn
bfa74976 8320
dd8d9022
AD
8321@deffn {Symbol} $undefined
8322The predefined token onto which all undefined values returned by
8323@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8324@code{error}.
8325@end deffn
8326
18b519c0 8327@deffn {Directive} %union
bfa74976
RS
8328Bison declaration to specify several possible data types for semantic
8329values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8330@end deffn
bfa74976 8331
dd8d9022
AD
8332@deffn {Macro} YYABORT
8333Macro to pretend that an unrecoverable syntax error has occurred, by
8334making @code{yyparse} return 1 immediately. The error reporting
8335function @code{yyerror} is not called. @xref{Parser Function, ,The
8336Parser Function @code{yyparse}}.
8337@end deffn
3ded9a63 8338
dd8d9022
AD
8339@deffn {Macro} YYACCEPT
8340Macro to pretend that a complete utterance of the language has been
8341read, by making @code{yyparse} return 0 immediately.
8342@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8343@end deffn
bfa74976 8344
dd8d9022
AD
8345@deffn {Macro} YYBACKUP
8346Macro to discard a value from the parser stack and fake a look-ahead
8347token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8348@end deffn
bfa74976 8349
dd8d9022 8350@deffn {Variable} yychar
32c29292 8351External integer variable that contains the integer value of the
dd8d9022
AD
8352look-ahead token. (In a pure parser, it is a local variable within
8353@code{yyparse}.) Error-recovery rule actions may examine this variable.
8354@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8355@end deffn
bfa74976 8356
dd8d9022
AD
8357@deffn {Variable} yyclearin
8358Macro used in error-recovery rule actions. It clears the previous
8359look-ahead token. @xref{Error Recovery}.
18b519c0 8360@end deffn
bfa74976 8361
dd8d9022
AD
8362@deffn {Macro} YYDEBUG
8363Macro to define to equip the parser with tracing code. @xref{Tracing,
8364,Tracing Your Parser}.
18b519c0 8365@end deffn
bfa74976 8366
dd8d9022
AD
8367@deffn {Variable} yydebug
8368External integer variable set to zero by default. If @code{yydebug}
8369is given a nonzero value, the parser will output information on input
8370symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8371@end deffn
bfa74976 8372
dd8d9022
AD
8373@deffn {Macro} yyerrok
8374Macro to cause parser to recover immediately to its normal mode
8375after a syntax error. @xref{Error Recovery}.
8376@end deffn
8377
8378@deffn {Macro} YYERROR
8379Macro to pretend that a syntax error has just been detected: call
8380@code{yyerror} and then perform normal error recovery if possible
8381(@pxref{Error Recovery}), or (if recovery is impossible) make
8382@code{yyparse} return 1. @xref{Error Recovery}.
8383@end deffn
8384
8385@deffn {Function} yyerror
8386User-supplied function to be called by @code{yyparse} on error.
8387@xref{Error Reporting, ,The Error
8388Reporting Function @code{yyerror}}.
8389@end deffn
8390
8391@deffn {Macro} YYERROR_VERBOSE
8392An obsolete macro that you define with @code{#define} in the prologue
8393to request verbose, specific error message strings
8394when @code{yyerror} is called. It doesn't matter what definition you
8395use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8396@code{%error-verbose} is preferred.
8397@end deffn
8398
8399@deffn {Macro} YYINITDEPTH
8400Macro for specifying the initial size of the parser stack.
1a059451 8401@xref{Memory Management}.
dd8d9022
AD
8402@end deffn
8403
8404@deffn {Function} yylex
8405User-supplied lexical analyzer function, called with no arguments to get
8406the next token. @xref{Lexical, ,The Lexical Analyzer Function
8407@code{yylex}}.
8408@end deffn
8409
8410@deffn {Macro} YYLEX_PARAM
8411An obsolete macro for specifying an extra argument (or list of extra
32c29292 8412arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8413macro is deprecated, and is supported only for Yacc like parsers.
8414@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8415@end deffn
8416
8417@deffn {Variable} yylloc
8418External variable in which @code{yylex} should place the line and column
8419numbers associated with a token. (In a pure parser, it is a local
8420variable within @code{yyparse}, and its address is passed to
32c29292
JD
8421@code{yylex}.)
8422You can ignore this variable if you don't use the @samp{@@} feature in the
8423grammar actions.
8424@xref{Token Locations, ,Textual Locations of Tokens}.
8425In semantic actions, it stores the location of the look-ahead token.
8426@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8427@end deffn
8428
8429@deffn {Type} YYLTYPE
8430Data type of @code{yylloc}; by default, a structure with four
8431members. @xref{Location Type, , Data Types of Locations}.
8432@end deffn
8433
8434@deffn {Variable} yylval
8435External variable in which @code{yylex} should place the semantic
8436value associated with a token. (In a pure parser, it is a local
8437variable within @code{yyparse}, and its address is passed to
32c29292
JD
8438@code{yylex}.)
8439@xref{Token Values, ,Semantic Values of Tokens}.
8440In semantic actions, it stores the semantic value of the look-ahead token.
8441@xref{Actions, ,Actions}.
dd8d9022
AD
8442@end deffn
8443
8444@deffn {Macro} YYMAXDEPTH
1a059451
PE
8445Macro for specifying the maximum size of the parser stack. @xref{Memory
8446Management}.
dd8d9022
AD
8447@end deffn
8448
8449@deffn {Variable} yynerrs
8a2800e7 8450Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8451(In a pure parser, it is a local variable within @code{yyparse}.)
8452@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8453@end deffn
8454
8455@deffn {Function} yyparse
8456The parser function produced by Bison; call this function to start
8457parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8458@end deffn
8459
8460@deffn {Macro} YYPARSE_PARAM
8461An obsolete macro for specifying the name of a parameter that
8462@code{yyparse} should accept. The use of this macro is deprecated, and
8463is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8464Conventions for Pure Parsers}.
8465@end deffn
8466
8467@deffn {Macro} YYRECOVERING
8468Macro whose value indicates whether the parser is recovering from a
8469syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8470@end deffn
8471
8472@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8473Macro used to control the use of @code{alloca} when the C
8474@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8475the parser will use @code{malloc} to extend its stacks. If defined to
84761, the parser will use @code{alloca}. Values other than 0 and 1 are
8477reserved for future Bison extensions. If not defined,
8478@code{YYSTACK_USE_ALLOCA} defaults to 0.
8479
55289366 8480In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8481limited stack and with unreliable stack-overflow checking, you should
8482set @code{YYMAXDEPTH} to a value that cannot possibly result in
8483unchecked stack overflow on any of your target hosts when
8484@code{alloca} is called. You can inspect the code that Bison
8485generates in order to determine the proper numeric values. This will
8486require some expertise in low-level implementation details.
dd8d9022
AD
8487@end deffn
8488
8489@deffn {Type} YYSTYPE
8490Data type of semantic values; @code{int} by default.
8491@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8492@end deffn
bfa74976 8493
342b8b6e 8494@node Glossary
bfa74976
RS
8495@appendix Glossary
8496@cindex glossary
8497
8498@table @asis
c827f760
PE
8499@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8500Formal method of specifying context-free grammars originally proposed
8501by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8502committee document contributing to what became the Algol 60 report.
8503@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8504
8505@item Context-free grammars
8506Grammars specified as rules that can be applied regardless of context.
8507Thus, if there is a rule which says that an integer can be used as an
8508expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8509permitted. @xref{Language and Grammar, ,Languages and Context-Free
8510Grammars}.
bfa74976
RS
8511
8512@item Dynamic allocation
8513Allocation of memory that occurs during execution, rather than at
8514compile time or on entry to a function.
8515
8516@item Empty string
8517Analogous to the empty set in set theory, the empty string is a
8518character string of length zero.
8519
8520@item Finite-state stack machine
8521A ``machine'' that has discrete states in which it is said to exist at
8522each instant in time. As input to the machine is processed, the
8523machine moves from state to state as specified by the logic of the
8524machine. In the case of the parser, the input is the language being
8525parsed, and the states correspond to various stages in the grammar
c827f760 8526rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8527
c827f760 8528@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8529A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8530that are not @acronym{LALR}(1). It resolves situations that Bison's
8531usual @acronym{LALR}(1)
676385e2
PH
8532algorithm cannot by effectively splitting off multiple parsers, trying all
8533possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8534right context. @xref{Generalized LR Parsing, ,Generalized
8535@acronym{LR} Parsing}.
676385e2 8536
bfa74976
RS
8537@item Grouping
8538A language construct that is (in general) grammatically divisible;
c827f760 8539for example, `expression' or `declaration' in C@.
bfa74976
RS
8540@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8541
8542@item Infix operator
8543An arithmetic operator that is placed between the operands on which it
8544performs some operation.
8545
8546@item Input stream
8547A continuous flow of data between devices or programs.
8548
8549@item Language construct
8550One of the typical usage schemas of the language. For example, one of
8551the constructs of the C language is the @code{if} statement.
8552@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8553
8554@item Left associativity
8555Operators having left associativity are analyzed from left to right:
8556@samp{a+b+c} first computes @samp{a+b} and then combines with
8557@samp{c}. @xref{Precedence, ,Operator Precedence}.
8558
8559@item Left recursion
89cab50d
AD
8560A rule whose result symbol is also its first component symbol; for
8561example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8562Rules}.
bfa74976
RS
8563
8564@item Left-to-right parsing
8565Parsing a sentence of a language by analyzing it token by token from
c827f760 8566left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8567
8568@item Lexical analyzer (scanner)
8569A function that reads an input stream and returns tokens one by one.
8570@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8571
8572@item Lexical tie-in
8573A flag, set by actions in the grammar rules, which alters the way
8574tokens are parsed. @xref{Lexical Tie-ins}.
8575
931c7513 8576@item Literal string token
14ded682 8577A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8578
bfa74976 8579@item Look-ahead token
89cab50d
AD
8580A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8581Tokens}.
bfa74976 8582
c827f760 8583@item @acronym{LALR}(1)
bfa74976 8584The class of context-free grammars that Bison (like most other parser
c827f760
PE
8585generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8586Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8587
c827f760 8588@item @acronym{LR}(1)
bfa74976
RS
8589The class of context-free grammars in which at most one token of
8590look-ahead is needed to disambiguate the parsing of any piece of input.
8591
8592@item Nonterminal symbol
8593A grammar symbol standing for a grammatical construct that can
8594be expressed through rules in terms of smaller constructs; in other
8595words, a construct that is not a token. @xref{Symbols}.
8596
bfa74976
RS
8597@item Parser
8598A function that recognizes valid sentences of a language by analyzing
8599the syntax structure of a set of tokens passed to it from a lexical
8600analyzer.
8601
8602@item Postfix operator
8603An arithmetic operator that is placed after the operands upon which it
8604performs some operation.
8605
8606@item Reduction
8607Replacing a string of nonterminals and/or terminals with a single
89cab50d 8608nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8609Parser Algorithm}.
bfa74976
RS
8610
8611@item Reentrant
8612A reentrant subprogram is a subprogram which can be in invoked any
8613number of times in parallel, without interference between the various
8614invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8615
8616@item Reverse polish notation
8617A language in which all operators are postfix operators.
8618
8619@item Right recursion
89cab50d
AD
8620A rule whose result symbol is also its last component symbol; for
8621example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8622Rules}.
bfa74976
RS
8623
8624@item Semantics
8625In computer languages, the semantics are specified by the actions
8626taken for each instance of the language, i.e., the meaning of
8627each statement. @xref{Semantics, ,Defining Language Semantics}.
8628
8629@item Shift
8630A parser is said to shift when it makes the choice of analyzing
8631further input from the stream rather than reducing immediately some
c827f760 8632already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8633
8634@item Single-character literal
8635A single character that is recognized and interpreted as is.
8636@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8637
8638@item Start symbol
8639The nonterminal symbol that stands for a complete valid utterance in
8640the language being parsed. The start symbol is usually listed as the
13863333 8641first nonterminal symbol in a language specification.
bfa74976
RS
8642@xref{Start Decl, ,The Start-Symbol}.
8643
8644@item Symbol table
8645A data structure where symbol names and associated data are stored
8646during parsing to allow for recognition and use of existing
8647information in repeated uses of a symbol. @xref{Multi-function Calc}.
8648
6e649e65
PE
8649@item Syntax error
8650An error encountered during parsing of an input stream due to invalid
8651syntax. @xref{Error Recovery}.
8652
bfa74976
RS
8653@item Token
8654A basic, grammatically indivisible unit of a language. The symbol
8655that describes a token in the grammar is a terminal symbol.
8656The input of the Bison parser is a stream of tokens which comes from
8657the lexical analyzer. @xref{Symbols}.
8658
8659@item Terminal symbol
89cab50d
AD
8660A grammar symbol that has no rules in the grammar and therefore is
8661grammatically indivisible. The piece of text it represents is a token.
8662@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8663@end table
8664
342b8b6e 8665@node Copying This Manual
f2b5126e 8666@appendix Copying This Manual
f9a8293a 8667
f2b5126e
PB
8668@menu
8669* GNU Free Documentation License:: License for copying this manual.
8670@end menu
f9a8293a 8671
f2b5126e
PB
8672@include fdl.texi
8673
342b8b6e 8674@node Index
bfa74976
RS
8675@unnumbered Index
8676
8677@printindex cp
8678
bfa74976 8679@bye
a06ea4aa
AD
8680
8681@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8682@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8683@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8684@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8685@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8686@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8687@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8688@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8689@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8690@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8691@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8692@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8693@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8694@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8695@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8696@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8697@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8698@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8699@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8700@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8701@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 8702@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa
AD
8703@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8704@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8705@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8706@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8707@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8708@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8709@c LocalWords: YYSTACK DVI fdl printindex