]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* doc/bison.texinfo (Bison Options): Escape `@' in `$@'.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
3add7b9c 471999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760
PE
51under the terms of the @acronym{GNU} Free Documentation License,
52Version 1.1 or any later version published by the Free Software
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
65@dircategory GNU programming tools
66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
931c7513
RS
8559 Temple Place, Suite 330 @*
86Boston, MA 02111-1307 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976
RS
119* Invocation:: How to run Bison (to produce the parser source file).
120* Table of Symbols:: All the keywords of the Bison language are explained.
121* Glossary:: Basic concepts are explained.
d1a1114f 122* FAQ:: Frequently Asked Questions
f2b5126e 123* Copying This Manual:: License for copying this manual.
bfa74976
RS
124* Index:: Cross-references to the text.
125
93dd49ab
PE
126@detailmenu
127 --- The Detailed Node Listing ---
bfa74976
RS
128
129The Concepts of Bison
130
131* Language and Grammar:: Languages and context-free grammars,
132 as mathematical ideas.
133* Grammar in Bison:: How we represent grammars for Bison's sake.
134* Semantic Values:: Each token or syntactic grouping can have
135 a semantic value (the value of an integer,
136 the name of an identifier, etc.).
137* Semantic Actions:: Each rule can have an action containing C code.
93dd49ab
PE
138* GLR Parsers:: Writing parsers for general context-free languages
139* Locations Overview:: Tracking Locations.
bfa74976
RS
140* Bison Parser:: What are Bison's input and output,
141 how is the output used?
142* Stages:: Stages in writing and running Bison grammars.
143* Grammar Layout:: Overall structure of a Bison grammar file.
144
145Examples
146
147* RPN Calc:: Reverse polish notation calculator;
148 a first example with no operator precedence.
149* Infix Calc:: Infix (algebraic) notation calculator.
150 Operator precedence is introduced.
151* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 152* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
153* Multi-function Calc:: Calculator with memory and trig functions.
154 It uses multiple data-types for semantic values.
bfa74976
RS
155* Exercises:: Ideas for improving the multi-function calculator.
156
157Reverse Polish Notation Calculator
158
75f5aaea 159* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
160* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
161* Lexer: Rpcalc Lexer. The lexical analyzer.
162* Main: Rpcalc Main. The controlling function.
163* Error: Rpcalc Error. The error reporting function.
164* Gen: Rpcalc Gen. Running Bison on the grammar file.
165* Comp: Rpcalc Compile. Run the C compiler on the output code.
166
167Grammar Rules for @code{rpcalc}
168
13863333
AD
169* Rpcalc Input::
170* Rpcalc Line::
171* Rpcalc Expr::
bfa74976 172
342b8b6e
AD
173Location Tracking Calculator: @code{ltcalc}
174
175* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
176* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
177* Lexer: Ltcalc Lexer. The lexical analyzer.
178
bfa74976
RS
179Multi-Function Calculator: @code{mfcalc}
180
181* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
182* Rules: Mfcalc Rules. Grammar rules for the calculator.
183* Symtab: Mfcalc Symtab. Symbol table management subroutines.
184
185Bison Grammar Files
186
187* Grammar Outline:: Overall layout of the grammar file.
188* Symbols:: Terminal and nonterminal symbols.
189* Rules:: How to write grammar rules.
190* Recursion:: Writing recursive rules.
191* Semantics:: Semantic values and actions.
93dd49ab 192* Locations:: Locations and actions.
bfa74976
RS
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
195
196Outline of a Bison Grammar
197
93dd49ab 198* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
199* Bison Declarations:: Syntax and usage of the Bison declarations section.
200* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 201* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
202
203Defining Language Semantics
204
205* Value Type:: Specifying one data type for all semantic values.
206* Multiple Types:: Specifying several alternative data types.
207* Actions:: An action is the semantic definition of a grammar rule.
208* Action Types:: Specifying data types for actions to operate on.
209* Mid-Rule Actions:: Most actions go at the end of a rule.
210 This says when, why and how to use the exceptional
211 action in the middle of a rule.
212
93dd49ab
PE
213Tracking Locations
214
215* Location Type:: Specifying a data type for locations.
216* Actions and Locations:: Using locations in actions.
217* Location Default Action:: Defining a general way to compute locations.
218
bfa74976
RS
219Bison Declarations
220
221* Token Decl:: Declaring terminal symbols.
222* Precedence Decl:: Declaring terminals with precedence and associativity.
223* Union Decl:: Declaring the set of all semantic value types.
224* Type Decl:: Declaring the choice of type for a nonterminal symbol.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
bfa74976
RS
226* Expect Decl:: Suppressing warnings about shift/reduce conflicts.
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
233* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 234* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
235 which reads tokens.
236* Error Reporting:: You must supply a function @code{yyerror}.
237* Action Features:: Special features for use in actions.
238
239The Lexical Analyzer Function @code{yylex}
240
241* Calling Convention:: How @code{yyparse} calls @code{yylex}.
242* Token Values:: How @code{yylex} must return the semantic value
243 of the token it has read.
95923bd6 244* Token Locations:: How @code{yylex} must return the text location
bfa74976 245 (line number, etc.) of the token, if the
93dd49ab 246 actions want that.
bfa74976
RS
247* Pure Calling:: How the calling convention differs
248 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
249
13863333 250The Bison Parser Algorithm
bfa74976
RS
251
252* Look-Ahead:: Parser looks one token ahead when deciding what to do.
253* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
254* Precedence:: Operator precedence works by resolving conflicts.
255* Contextual Precedence:: When an operator's precedence depends on context.
256* Parser States:: The parser is a finite-state-machine with stack.
257* Reduce/Reduce:: When two rules are applicable in the same situation.
258* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 259* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
260* Stack Overflow:: What happens when stack gets full. How to avoid it.
261
262Operator Precedence
263
264* Why Precedence:: An example showing why precedence is needed.
265* Using Precedence:: How to specify precedence in Bison grammars.
266* Precedence Examples:: How these features are used in the previous example.
267* How Precedence:: How they work.
268
269Handling Context Dependencies
270
271* Semantic Tokens:: Token parsing can depend on the semantic context.
272* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
273* Tie-in Recovery:: Lexical tie-ins have implications for how
274 error recovery rules must be written.
275
93dd49ab 276Debugging Your Parser
ec3bc396
AD
277
278* Understanding:: Understanding the structure of your parser.
279* Tracing:: Tracing the execution of your parser.
280
bfa74976
RS
281Invoking Bison
282
13863333 283* Bison Options:: All the options described in detail,
c827f760 284 in alphabetical order by short options.
bfa74976 285* Option Cross Key:: Alphabetical list of long options.
93dd49ab 286* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 287
d1a1114f
AD
288Frequently Asked Questions
289
290* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 291* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 292* Strings are Destroyed:: @code{yylval} Loses Track of Strings
a06ea4aa
AD
293* C++ Parsers:: Compiling Parsers with C++ Compilers
294* Implementing Loops:: Control Flow in the Calculator
d1a1114f 295
f2b5126e
PB
296Copying This Manual
297
298* GNU Free Documentation License:: License for copying this manual.
299
342b8b6e 300@end detailmenu
bfa74976
RS
301@end menu
302
342b8b6e 303@node Introduction
bfa74976
RS
304@unnumbered Introduction
305@cindex introduction
306
307@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 308grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
309program to parse that grammar. Once you are proficient with Bison,
310you may use it to develop a wide range of language parsers, from those
311used in simple desk calculators to complex programming languages.
312
313Bison is upward compatible with Yacc: all properly-written Yacc grammars
314ought to work with Bison with no change. Anyone familiar with Yacc
315should be able to use Bison with little trouble. You need to be fluent in
316C programming in order to use Bison or to understand this manual.
317
318We begin with tutorial chapters that explain the basic concepts of using
319Bison and show three explained examples, each building on the last. If you
320don't know Bison or Yacc, start by reading these chapters. Reference
321chapters follow which describe specific aspects of Bison in detail.
322
931c7513
RS
323Bison was written primarily by Robert Corbett; Richard Stallman made it
324Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 325multi-character string literals and other features.
931c7513 326
df1af54c 327This edition corresponds to version @value{VERSION} of Bison.
bfa74976 328
342b8b6e 329@node Conditions
bfa74976
RS
330@unnumbered Conditions for Using Bison
331
a31239f1 332As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 333@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 334Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 335parsers could be used only in programs that were free software.
a31239f1 336
c827f760
PE
337The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
338compiler, have never
9ecbd125 339had such a requirement. They could always be used for nonfree
a31239f1
RS
340software. The reason Bison was different was not due to a special
341policy decision; it resulted from applying the usual General Public
342License to all of the Bison source code.
343
344The output of the Bison utility---the Bison parser file---contains a
345verbatim copy of a sizable piece of Bison, which is the code for the
346@code{yyparse} function. (The actions from your grammar are inserted
347into this function at one point, but the rest of the function is not
c827f760
PE
348changed.) When we applied the @acronym{GPL} terms to the code for
349@code{yyparse},
a31239f1
RS
350the effect was to restrict the use of Bison output to free software.
351
352We didn't change the terms because of sympathy for people who want to
353make software proprietary. @strong{Software should be free.} But we
354concluded that limiting Bison's use to free software was doing little to
355encourage people to make other software free. So we decided to make the
356practical conditions for using Bison match the practical conditions for
c827f760 357using the other @acronym{GNU} tools.
bfa74976 358
eda42934 359This exception applies only when Bison is generating C code for an
c827f760
PE
360@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
361as usual. You can
262aa8dd
PE
362tell whether the exception applies to your @samp{.c} output file by
363inspecting it to see whether it says ``As a special exception, when
364this file is copied by Bison into a Bison output file, you may use
365that output file without restriction.''
366
c67a198d 367@include gpl.texi
bfa74976 368
342b8b6e 369@node Concepts
bfa74976
RS
370@chapter The Concepts of Bison
371
372This chapter introduces many of the basic concepts without which the
373details of Bison will not make sense. If you do not already know how to
374use Bison or Yacc, we suggest you start by reading this chapter carefully.
375
376@menu
377* Language and Grammar:: Languages and context-free grammars,
378 as mathematical ideas.
379* Grammar in Bison:: How we represent grammars for Bison's sake.
380* Semantic Values:: Each token or syntactic grouping can have
381 a semantic value (the value of an integer,
382 the name of an identifier, etc.).
383* Semantic Actions:: Each rule can have an action containing C code.
676385e2 384* GLR Parsers:: Writing parsers for general context-free languages
847bf1f5 385* Locations Overview:: Tracking Locations.
bfa74976
RS
386* Bison Parser:: What are Bison's input and output,
387 how is the output used?
388* Stages:: Stages in writing and running Bison grammars.
389* Grammar Layout:: Overall structure of a Bison grammar file.
390@end menu
391
342b8b6e 392@node Language and Grammar
bfa74976
RS
393@section Languages and Context-Free Grammars
394
bfa74976
RS
395@cindex context-free grammar
396@cindex grammar, context-free
397In order for Bison to parse a language, it must be described by a
398@dfn{context-free grammar}. This means that you specify one or more
399@dfn{syntactic groupings} and give rules for constructing them from their
400parts. For example, in the C language, one kind of grouping is called an
401`expression'. One rule for making an expression might be, ``An expression
402can be made of a minus sign and another expression''. Another would be,
403``An expression can be an integer''. As you can see, rules are often
404recursive, but there must be at least one rule which leads out of the
405recursion.
406
c827f760 407@cindex @acronym{BNF}
bfa74976
RS
408@cindex Backus-Naur form
409The most common formal system for presenting such rules for humans to read
c827f760
PE
410is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
411order to specify the language Algol 60. Any grammar expressed in
412@acronym{BNF} is a context-free grammar. The input to Bison is
413essentially machine-readable @acronym{BNF}.
bfa74976 414
c827f760
PE
415@cindex @acronym{LALR}(1) grammars
416@cindex @acronym{LR}(1) grammars
676385e2
PH
417There are various important subclasses of context-free grammar. Although it
418can handle almost all context-free grammars, Bison is optimized for what
c827f760 419are called @acronym{LALR}(1) grammars.
676385e2 420In brief, in these grammars, it must be possible to
bfa74976
RS
421tell how to parse any portion of an input string with just a single
422token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
423@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
424restrictions that are
bfa74976 425hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
426@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
427@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
428more information on this.
bfa74976 429
c827f760
PE
430@cindex @acronym{GLR} parsing
431@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
432@cindex ambiguous grammars
433@cindex non-deterministic parsing
9501dc6e
AD
434
435Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
436roughly that the next grammar rule to apply at any point in the input is
437uniquely determined by the preceding input and a fixed, finite portion
438(called a @dfn{look-ahead}) of the remaining input. A context-free
439grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
440apply the grammar rules to get the some inputs. Even unambiguous
441grammars can be @dfn{non-deterministic}, meaning that no fixed
442look-ahead always suffices to determine the next grammar rule to apply.
443With the proper declarations, Bison is also able to parse these more
444general context-free grammars, using a technique known as @acronym{GLR}
445parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
446are able to handle any context-free grammar for which the number of
447possible parses of any given string is finite.
676385e2 448
bfa74976
RS
449@cindex symbols (abstract)
450@cindex token
451@cindex syntactic grouping
452@cindex grouping, syntactic
9501dc6e
AD
453In the formal grammatical rules for a language, each kind of syntactic
454unit or grouping is named by a @dfn{symbol}. Those which are built by
455grouping smaller constructs according to grammatical rules are called
bfa74976
RS
456@dfn{nonterminal symbols}; those which can't be subdivided are called
457@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
458corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 459corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
460
461We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
462nonterminal, mean. The tokens of C are identifiers, constants (numeric
463and string), and the various keywords, arithmetic operators and
464punctuation marks. So the terminal symbols of a grammar for C include
465`identifier', `number', `string', plus one symbol for each keyword,
466operator or punctuation mark: `if', `return', `const', `static', `int',
467`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
468(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
469lexicography, not grammar.)
470
471Here is a simple C function subdivided into tokens:
472
9edcd895
AD
473@ifinfo
474@example
475int /* @r{keyword `int'} */
476square (int x) /* @r{identifier, open-paren, identifier,}
477 @r{identifier, close-paren} */
478@{ /* @r{open-brace} */
479 return x * x; /* @r{keyword `return', identifier, asterisk,
480 identifier, semicolon} */
481@} /* @r{close-brace} */
482@end example
483@end ifinfo
484@ifnotinfo
bfa74976
RS
485@example
486int /* @r{keyword `int'} */
9edcd895 487square (int x) /* @r{identifier, open-paren, identifier, identifier, close-paren} */
bfa74976 488@{ /* @r{open-brace} */
9edcd895 489 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
490@} /* @r{close-brace} */
491@end example
9edcd895 492@end ifnotinfo
bfa74976
RS
493
494The syntactic groupings of C include the expression, the statement, the
495declaration, and the function definition. These are represented in the
496grammar of C by nonterminal symbols `expression', `statement',
497`declaration' and `function definition'. The full grammar uses dozens of
498additional language constructs, each with its own nonterminal symbol, in
499order to express the meanings of these four. The example above is a
500function definition; it contains one declaration, and one statement. In
501the statement, each @samp{x} is an expression and so is @samp{x * x}.
502
503Each nonterminal symbol must have grammatical rules showing how it is made
504out of simpler constructs. For example, one kind of C statement is the
505@code{return} statement; this would be described with a grammar rule which
506reads informally as follows:
507
508@quotation
509A `statement' can be made of a `return' keyword, an `expression' and a
510`semicolon'.
511@end quotation
512
513@noindent
514There would be many other rules for `statement', one for each kind of
515statement in C.
516
517@cindex start symbol
518One nonterminal symbol must be distinguished as the special one which
519defines a complete utterance in the language. It is called the @dfn{start
520symbol}. In a compiler, this means a complete input program. In the C
521language, the nonterminal symbol `sequence of definitions and declarations'
522plays this role.
523
524For example, @samp{1 + 2} is a valid C expression---a valid part of a C
525program---but it is not valid as an @emph{entire} C program. In the
526context-free grammar of C, this follows from the fact that `expression' is
527not the start symbol.
528
529The Bison parser reads a sequence of tokens as its input, and groups the
530tokens using the grammar rules. If the input is valid, the end result is
531that the entire token sequence reduces to a single grouping whose symbol is
532the grammar's start symbol. If we use a grammar for C, the entire input
533must be a `sequence of definitions and declarations'. If not, the parser
534reports a syntax error.
535
342b8b6e 536@node Grammar in Bison
bfa74976
RS
537@section From Formal Rules to Bison Input
538@cindex Bison grammar
539@cindex grammar, Bison
540@cindex formal grammar
541
542A formal grammar is a mathematical construct. To define the language
543for Bison, you must write a file expressing the grammar in Bison syntax:
544a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
545
546A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 547as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
548in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
549
550The Bison representation for a terminal symbol is also called a @dfn{token
551type}. Token types as well can be represented as C-like identifiers. By
552convention, these identifiers should be upper case to distinguish them from
553nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
554@code{RETURN}. A terminal symbol that stands for a particular keyword in
555the language should be named after that keyword converted to upper case.
556The terminal symbol @code{error} is reserved for error recovery.
931c7513 557@xref{Symbols}.
bfa74976
RS
558
559A terminal symbol can also be represented as a character literal, just like
560a C character constant. You should do this whenever a token is just a
561single character (parenthesis, plus-sign, etc.): use that same character in
562a literal as the terminal symbol for that token.
563
931c7513
RS
564A third way to represent a terminal symbol is with a C string constant
565containing several characters. @xref{Symbols}, for more information.
566
bfa74976
RS
567The grammar rules also have an expression in Bison syntax. For example,
568here is the Bison rule for a C @code{return} statement. The semicolon in
569quotes is a literal character token, representing part of the C syntax for
570the statement; the naked semicolon, and the colon, are Bison punctuation
571used in every rule.
572
573@example
574stmt: RETURN expr ';'
575 ;
576@end example
577
578@noindent
579@xref{Rules, ,Syntax of Grammar Rules}.
580
342b8b6e 581@node Semantic Values
bfa74976
RS
582@section Semantic Values
583@cindex semantic value
584@cindex value, semantic
585
586A formal grammar selects tokens only by their classifications: for example,
587if a rule mentions the terminal symbol `integer constant', it means that
588@emph{any} integer constant is grammatically valid in that position. The
589precise value of the constant is irrelevant to how to parse the input: if
590@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 591grammatical.
bfa74976
RS
592
593But the precise value is very important for what the input means once it is
594parsed. A compiler is useless if it fails to distinguish between 4, 1 and
5953989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
596has both a token type and a @dfn{semantic value}. @xref{Semantics,
597,Defining Language Semantics},
bfa74976
RS
598for details.
599
600The token type is a terminal symbol defined in the grammar, such as
601@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
602you need to know to decide where the token may validly appear and how to
603group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 604except their types.
bfa74976
RS
605
606The semantic value has all the rest of the information about the
607meaning of the token, such as the value of an integer, or the name of an
608identifier. (A token such as @code{','} which is just punctuation doesn't
609need to have any semantic value.)
610
611For example, an input token might be classified as token type
612@code{INTEGER} and have the semantic value 4. Another input token might
613have the same token type @code{INTEGER} but value 3989. When a grammar
614rule says that @code{INTEGER} is allowed, either of these tokens is
615acceptable because each is an @code{INTEGER}. When the parser accepts the
616token, it keeps track of the token's semantic value.
617
618Each grouping can also have a semantic value as well as its nonterminal
619symbol. For example, in a calculator, an expression typically has a
620semantic value that is a number. In a compiler for a programming
621language, an expression typically has a semantic value that is a tree
622structure describing the meaning of the expression.
623
342b8b6e 624@node Semantic Actions
bfa74976
RS
625@section Semantic Actions
626@cindex semantic actions
627@cindex actions, semantic
628
629In order to be useful, a program must do more than parse input; it must
630also produce some output based on the input. In a Bison grammar, a grammar
631rule can have an @dfn{action} made up of C statements. Each time the
632parser recognizes a match for that rule, the action is executed.
633@xref{Actions}.
13863333 634
bfa74976
RS
635Most of the time, the purpose of an action is to compute the semantic value
636of the whole construct from the semantic values of its parts. For example,
637suppose we have a rule which says an expression can be the sum of two
638expressions. When the parser recognizes such a sum, each of the
639subexpressions has a semantic value which describes how it was built up.
640The action for this rule should create a similar sort of value for the
641newly recognized larger expression.
642
643For example, here is a rule that says an expression can be the sum of
644two subexpressions:
645
646@example
647expr: expr '+' expr @{ $$ = $1 + $3; @}
648 ;
649@end example
650
651@noindent
652The action says how to produce the semantic value of the sum expression
653from the values of the two subexpressions.
654
676385e2 655@node GLR Parsers
c827f760
PE
656@section Writing @acronym{GLR} Parsers
657@cindex @acronym{GLR} parsing
658@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
659@findex %glr-parser
660@cindex conflicts
661@cindex shift/reduce conflicts
662
9501dc6e
AD
663In some grammars, there will be cases where Bison's standard
664@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
665certain grammar rule at a given point. That is, it may not be able to
666decide (on the basis of the input read so far) which of two possible
667reductions (applications of a grammar rule) applies, or whether to apply
668a reduction or read more of the input and apply a reduction later in the
669input. These are known respectively as @dfn{reduce/reduce} conflicts
670(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
671(@pxref{Shift/Reduce}).
672
673To use a grammar that is not easily modified to be @acronym{LALR}(1), a
674more general parsing algorithm is sometimes necessary. If you include
676385e2 675@code{%glr-parser} among the Bison declarations in your file
9501dc6e
AD
676(@pxref{Grammar Outline}), the result will be a Generalized @acronym{LR}
677(@acronym{GLR}) parser. These parsers handle Bison grammars that
678contain no unresolved conflicts (i.e., after applying precedence
679declarations) identically to @acronym{LALR}(1) parsers. However, when
680faced with unresolved shift/reduce and reduce/reduce conflicts,
681@acronym{GLR} parsers use the simple expedient of doing both,
682effectively cloning the parser to follow both possibilities. Each of
683the resulting parsers can again split, so that at any given time, there
684can be any number of possible parses being explored. The parsers
676385e2
PH
685proceed in lockstep; that is, all of them consume (shift) a given input
686symbol before any of them proceed to the next. Each of the cloned
687parsers eventually meets one of two possible fates: either it runs into
688a parsing error, in which case it simply vanishes, or it merges with
689another parser, because the two of them have reduced the input to an
690identical set of symbols.
691
692During the time that there are multiple parsers, semantic actions are
693recorded, but not performed. When a parser disappears, its recorded
694semantic actions disappear as well, and are never performed. When a
695reduction makes two parsers identical, causing them to merge, Bison
696records both sets of semantic actions. Whenever the last two parsers
697merge, reverting to the single-parser case, Bison resolves all the
698outstanding actions either by precedences given to the grammar rules
699involved, or by performing both actions, and then calling a designated
700user-defined function on the resulting values to produce an arbitrary
701merged result.
702
2a8d363a 703Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
704
705@example
706%@{
38a92d50
PE
707 #include <stdio.h>
708 #define YYSTYPE char const *
709 int yylex (void);
710 void yyerror (char const *);
676385e2
PH
711%@}
712
713%token TYPENAME ID
714
715%right '='
716%left '+'
717
718%glr-parser
719
720%%
721
fae437e8 722prog :
676385e2
PH
723 | prog stmt @{ printf ("\n"); @}
724 ;
725
726stmt : expr ';' %dprec 1
727 | decl %dprec 2
728 ;
729
2a8d363a 730expr : ID @{ printf ("%s ", $$); @}
fae437e8 731 | TYPENAME '(' expr ')'
2a8d363a
AD
732 @{ printf ("%s <cast> ", $1); @}
733 | expr '+' expr @{ printf ("+ "); @}
734 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
735 ;
736
fae437e8 737decl : TYPENAME declarator ';'
2a8d363a 738 @{ printf ("%s <declare> ", $1); @}
676385e2 739 | TYPENAME declarator '=' expr ';'
2a8d363a 740 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
741 ;
742
2a8d363a 743declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
744 | '(' declarator ')'
745 ;
746@end example
747
748@noindent
749This models a problematic part of the C++ grammar---the ambiguity between
750certain declarations and statements. For example,
751
752@example
753T (x) = y+z;
754@end example
755
756@noindent
757parses as either an @code{expr} or a @code{stmt}
c827f760
PE
758(assuming that @samp{T} is recognized as a @code{TYPENAME} and
759@samp{x} as an @code{ID}).
676385e2 760Bison detects this as a reduce/reduce conflict between the rules
fae437e8
AD
761@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
762time it encounters @code{x} in the example above. The two @code{%dprec}
763declarations, however, give precedence to interpreting the example as a
676385e2
PH
764@code{decl}, which implies that @code{x} is a declarator.
765The parser therefore prints
766
767@example
fae437e8 768"x" y z + T <init-declare>
676385e2
PH
769@end example
770
771Consider a different input string for this parser:
772
773@example
774T (x) + y;
775@end example
776
777@noindent
778Here, there is no ambiguity (this cannot be parsed as a declaration).
779However, at the time the Bison parser encounters @code{x}, it does not
780have enough information to resolve the reduce/reduce conflict (again,
781between @code{x} as an @code{expr} or a @code{declarator}). In this
782case, no precedence declaration is used. Instead, the parser splits
783into two, one assuming that @code{x} is an @code{expr}, and the other
784assuming @code{x} is a @code{declarator}. The second of these parsers
785then vanishes when it sees @code{+}, and the parser prints
786
787@example
fae437e8 788x T <cast> y +
676385e2
PH
789@end example
790
791Suppose that instead of resolving the ambiguity, you wanted to see all
792the possibilities. For this purpose, we must @dfn{merge} the semantic
793actions of the two possible parsers, rather than choosing one over the
794other. To do so, you could change the declaration of @code{stmt} as
795follows:
796
797@example
798stmt : expr ';' %merge <stmtMerge>
799 | decl %merge <stmtMerge>
800 ;
801@end example
802
803@noindent
804
805and define the @code{stmtMerge} function as:
806
807@example
38a92d50
PE
808static YYSTYPE
809stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
810@{
811 printf ("<OR> ");
812 return "";
813@}
814@end example
815
816@noindent
817with an accompanying forward declaration
818in the C declarations at the beginning of the file:
819
820@example
821%@{
38a92d50 822 #define YYSTYPE char const *
676385e2
PH
823 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
824%@}
825@end example
826
827@noindent
828With these declarations, the resulting parser will parse the first example
829as both an @code{expr} and a @code{decl}, and print
830
831@example
fae437e8 832"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
833@end example
834
9501dc6e
AD
835@sp 1
836
837@cindex @code{incline}
838@cindex @acronym{GLR} parsers and @code{inline}
38a92d50
PE
839The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
840later. In addition, they use the @code{inline} keyword, which is not
841C89, but is C99 and is a common extension in pre-C99 compilers. It is
842up to the user of these parsers to handle
9501dc6e
AD
843portability issues. For instance, if using Autoconf and the Autoconf
844macro @code{AC_C_INLINE}, a mere
845
846@example
847%@{
38a92d50 848 #include <config.h>
9501dc6e
AD
849%@}
850@end example
851
852@noindent
853will suffice. Otherwise, we suggest
854
855@example
856%@{
38a92d50
PE
857 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
858 #define inline
859 #endif
9501dc6e
AD
860%@}
861@end example
676385e2 862
342b8b6e 863@node Locations Overview
847bf1f5
AD
864@section Locations
865@cindex location
95923bd6
AD
866@cindex textual location
867@cindex location, textual
847bf1f5
AD
868
869Many applications, like interpreters or compilers, have to produce verbose
72d2299c 870and useful error messages. To achieve this, one must be able to keep track of
95923bd6 871the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
872Bison provides a mechanism for handling these locations.
873
72d2299c 874Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 875associated location, but the type of locations is the same for all tokens and
72d2299c 876groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
877structure for storing locations (@pxref{Locations}, for more details).
878
879Like semantic values, locations can be reached in actions using a dedicated
72d2299c 880set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
881is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
882@code{@@3}.
883
884When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
885of its left hand side (@pxref{Actions}). In the same way, another default
886action is used for locations. However, the action for locations is general
847bf1f5 887enough for most cases, meaning there is usually no need to describe for each
72d2299c 888rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
889grouping, the default behavior of the output parser is to take the beginning
890of the first symbol, and the end of the last symbol.
891
342b8b6e 892@node Bison Parser
bfa74976
RS
893@section Bison Output: the Parser File
894@cindex Bison parser
895@cindex Bison utility
896@cindex lexical analyzer, purpose
897@cindex parser
898
899When you run Bison, you give it a Bison grammar file as input. The output
900is a C source file that parses the language described by the grammar.
901This file is called a @dfn{Bison parser}. Keep in mind that the Bison
902utility and the Bison parser are two distinct programs: the Bison utility
903is a program whose output is the Bison parser that becomes part of your
904program.
905
906The job of the Bison parser is to group tokens into groupings according to
907the grammar rules---for example, to build identifiers and operators into
908expressions. As it does this, it runs the actions for the grammar rules it
909uses.
910
704a47c4
AD
911The tokens come from a function called the @dfn{lexical analyzer} that
912you must supply in some fashion (such as by writing it in C). The Bison
913parser calls the lexical analyzer each time it wants a new token. It
914doesn't know what is ``inside'' the tokens (though their semantic values
915may reflect this). Typically the lexical analyzer makes the tokens by
916parsing characters of text, but Bison does not depend on this.
917@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
918
919The Bison parser file is C code which defines a function named
920@code{yyparse} which implements that grammar. This function does not make
921a complete C program: you must supply some additional functions. One is
922the lexical analyzer. Another is an error-reporting function which the
923parser calls to report an error. In addition, a complete C program must
924start with a function called @code{main}; you have to provide this, and
925arrange for it to call @code{yyparse} or the parser will never run.
926@xref{Interface, ,Parser C-Language Interface}.
927
928Aside from the token type names and the symbols in the actions you
7093d0f5 929write, all symbols defined in the Bison parser file itself
bfa74976
RS
930begin with @samp{yy} or @samp{YY}. This includes interface functions
931such as the lexical analyzer function @code{yylex}, the error reporting
932function @code{yyerror} and the parser function @code{yyparse} itself.
933This also includes numerous identifiers used for internal purposes.
934Therefore, you should avoid using C identifiers starting with @samp{yy}
935or @samp{YY} in the Bison grammar file except for the ones defined in
936this manual.
937
7093d0f5
AD
938In some cases the Bison parser file includes system headers, and in
939those cases your code should respect the identifiers reserved by those
c827f760 940headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
7093d0f5 941@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
ec3bc396
AD
942declare memory allocators and related types. Other system headers may
943be included if you define @code{YYDEBUG} to a nonzero value
944(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 945
342b8b6e 946@node Stages
bfa74976
RS
947@section Stages in Using Bison
948@cindex stages in using Bison
949@cindex using Bison
950
951The actual language-design process using Bison, from grammar specification
952to a working compiler or interpreter, has these parts:
953
954@enumerate
955@item
956Formally specify the grammar in a form recognized by Bison
704a47c4
AD
957(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
958in the language, describe the action that is to be taken when an
959instance of that rule is recognized. The action is described by a
960sequence of C statements.
bfa74976
RS
961
962@item
704a47c4
AD
963Write a lexical analyzer to process input and pass tokens to the parser.
964The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
965Lexical Analyzer Function @code{yylex}}). It could also be produced
966using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
967
968@item
969Write a controlling function that calls the Bison-produced parser.
970
971@item
972Write error-reporting routines.
973@end enumerate
974
975To turn this source code as written into a runnable program, you
976must follow these steps:
977
978@enumerate
979@item
980Run Bison on the grammar to produce the parser.
981
982@item
983Compile the code output by Bison, as well as any other source files.
984
985@item
986Link the object files to produce the finished product.
987@end enumerate
988
342b8b6e 989@node Grammar Layout
bfa74976
RS
990@section The Overall Layout of a Bison Grammar
991@cindex grammar file
992@cindex file format
993@cindex format of grammar file
994@cindex layout of Bison grammar
995
996The input file for the Bison utility is a @dfn{Bison grammar file}. The
997general form of a Bison grammar file is as follows:
998
999@example
1000%@{
08e49d20 1001@var{Prologue}
bfa74976
RS
1002%@}
1003
1004@var{Bison declarations}
1005
1006%%
1007@var{Grammar rules}
1008%%
08e49d20 1009@var{Epilogue}
bfa74976
RS
1010@end example
1011
1012@noindent
1013The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1014in every Bison grammar file to separate the sections.
1015
72d2299c 1016The prologue may define types and variables used in the actions. You can
342b8b6e 1017also use preprocessor commands to define macros used there, and use
bfa74976 1018@code{#include} to include header files that do any of these things.
38a92d50
PE
1019You need to declare the lexical analyzer @code{yylex} and the error
1020printer @code{yyerror} here, along with any other global identifiers
1021used by the actions in the grammar rules.
bfa74976
RS
1022
1023The Bison declarations declare the names of the terminal and nonterminal
1024symbols, and may also describe operator precedence and the data types of
1025semantic values of various symbols.
1026
1027The grammar rules define how to construct each nonterminal symbol from its
1028parts.
1029
38a92d50
PE
1030The epilogue can contain any code you want to use. Often the
1031definitions of functions declared in the prologue go here. In a
1032simple program, all the rest of the program can go here.
bfa74976 1033
342b8b6e 1034@node Examples
bfa74976
RS
1035@chapter Examples
1036@cindex simple examples
1037@cindex examples, simple
1038
1039Now we show and explain three sample programs written using Bison: a
1040reverse polish notation calculator, an algebraic (infix) notation
1041calculator, and a multi-function calculator. All three have been tested
1042under BSD Unix 4.3; each produces a usable, though limited, interactive
1043desk-top calculator.
1044
1045These examples are simple, but Bison grammars for real programming
1046languages are written the same way.
1047@ifinfo
1048You can copy these examples out of the Info file and into a source file
1049to try them.
1050@end ifinfo
1051
1052@menu
1053* RPN Calc:: Reverse polish notation calculator;
1054 a first example with no operator precedence.
1055* Infix Calc:: Infix (algebraic) notation calculator.
1056 Operator precedence is introduced.
1057* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1058* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1059* Multi-function Calc:: Calculator with memory and trig functions.
1060 It uses multiple data-types for semantic values.
1061* Exercises:: Ideas for improving the multi-function calculator.
1062@end menu
1063
342b8b6e 1064@node RPN Calc
bfa74976
RS
1065@section Reverse Polish Notation Calculator
1066@cindex reverse polish notation
1067@cindex polish notation calculator
1068@cindex @code{rpcalc}
1069@cindex calculator, simple
1070
1071The first example is that of a simple double-precision @dfn{reverse polish
1072notation} calculator (a calculator using postfix operators). This example
1073provides a good starting point, since operator precedence is not an issue.
1074The second example will illustrate how operator precedence is handled.
1075
1076The source code for this calculator is named @file{rpcalc.y}. The
1077@samp{.y} extension is a convention used for Bison input files.
1078
1079@menu
75f5aaea 1080* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1081* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1082* Lexer: Rpcalc Lexer. The lexical analyzer.
1083* Main: Rpcalc Main. The controlling function.
1084* Error: Rpcalc Error. The error reporting function.
1085* Gen: Rpcalc Gen. Running Bison on the grammar file.
1086* Comp: Rpcalc Compile. Run the C compiler on the output code.
1087@end menu
1088
342b8b6e 1089@node Rpcalc Decls
bfa74976
RS
1090@subsection Declarations for @code{rpcalc}
1091
1092Here are the C and Bison declarations for the reverse polish notation
1093calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1094
1095@example
72d2299c 1096/* Reverse polish notation calculator. */
bfa74976
RS
1097
1098%@{
38a92d50
PE
1099 #define YYSTYPE double
1100 #include <math.h>
1101 int yylex (void);
1102 void yyerror (char const *);
bfa74976
RS
1103%@}
1104
1105%token NUM
1106
72d2299c 1107%% /* Grammar rules and actions follow. */
bfa74976
RS
1108@end example
1109
75f5aaea 1110The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1111preprocessor directives and two forward declarations.
bfa74976
RS
1112
1113The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1114specifying the C data type for semantic values of both tokens and
1115groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1116Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1117don't define it, @code{int} is the default. Because we specify
1118@code{double}, each token and each expression has an associated value,
1119which is a floating point number.
bfa74976
RS
1120
1121The @code{#include} directive is used to declare the exponentiation
1122function @code{pow}.
1123
38a92d50
PE
1124The forward declarations for @code{yylex} and @code{yyerror} are
1125needed because the C language requires that functions be declared
1126before they are used. These functions will be defined in the
1127epilogue, but the parser calls them so they must be declared in the
1128prologue.
1129
704a47c4
AD
1130The second section, Bison declarations, provides information to Bison
1131about the token types (@pxref{Bison Declarations, ,The Bison
1132Declarations Section}). Each terminal symbol that is not a
1133single-character literal must be declared here. (Single-character
bfa74976
RS
1134literals normally don't need to be declared.) In this example, all the
1135arithmetic operators are designated by single-character literals, so the
1136only terminal symbol that needs to be declared is @code{NUM}, the token
1137type for numeric constants.
1138
342b8b6e 1139@node Rpcalc Rules
bfa74976
RS
1140@subsection Grammar Rules for @code{rpcalc}
1141
1142Here are the grammar rules for the reverse polish notation calculator.
1143
1144@example
1145input: /* empty */
1146 | input line
1147;
1148
1149line: '\n'
18b519c0 1150 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1151;
1152
18b519c0
AD
1153exp: NUM @{ $$ = $1; @}
1154 | exp exp '+' @{ $$ = $1 + $2; @}
1155 | exp exp '-' @{ $$ = $1 - $2; @}
1156 | exp exp '*' @{ $$ = $1 * $2; @}
1157 | exp exp '/' @{ $$ = $1 / $2; @}
1158 /* Exponentiation */
1159 | exp exp '^' @{ $$ = pow ($1, $2); @}
1160 /* Unary minus */
1161 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1162;
1163%%
1164@end example
1165
1166The groupings of the rpcalc ``language'' defined here are the expression
1167(given the name @code{exp}), the line of input (@code{line}), and the
1168complete input transcript (@code{input}). Each of these nonterminal
1169symbols has several alternate rules, joined by the @samp{|} punctuator
1170which is read as ``or''. The following sections explain what these rules
1171mean.
1172
1173The semantics of the language is determined by the actions taken when a
1174grouping is recognized. The actions are the C code that appears inside
1175braces. @xref{Actions}.
1176
1177You must specify these actions in C, but Bison provides the means for
1178passing semantic values between the rules. In each action, the
1179pseudo-variable @code{$$} stands for the semantic value for the grouping
1180that the rule is going to construct. Assigning a value to @code{$$} is the
1181main job of most actions. The semantic values of the components of the
1182rule are referred to as @code{$1}, @code{$2}, and so on.
1183
1184@menu
13863333
AD
1185* Rpcalc Input::
1186* Rpcalc Line::
1187* Rpcalc Expr::
bfa74976
RS
1188@end menu
1189
342b8b6e 1190@node Rpcalc Input
bfa74976
RS
1191@subsubsection Explanation of @code{input}
1192
1193Consider the definition of @code{input}:
1194
1195@example
1196input: /* empty */
1197 | input line
1198;
1199@end example
1200
1201This definition reads as follows: ``A complete input is either an empty
1202string, or a complete input followed by an input line''. Notice that
1203``complete input'' is defined in terms of itself. This definition is said
1204to be @dfn{left recursive} since @code{input} appears always as the
1205leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1206
1207The first alternative is empty because there are no symbols between the
1208colon and the first @samp{|}; this means that @code{input} can match an
1209empty string of input (no tokens). We write the rules this way because it
1210is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1211It's conventional to put an empty alternative first and write the comment
1212@samp{/* empty */} in it.
1213
1214The second alternate rule (@code{input line}) handles all nontrivial input.
1215It means, ``After reading any number of lines, read one more line if
1216possible.'' The left recursion makes this rule into a loop. Since the
1217first alternative matches empty input, the loop can be executed zero or
1218more times.
1219
1220The parser function @code{yyparse} continues to process input until a
1221grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1222input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1223
342b8b6e 1224@node Rpcalc Line
bfa74976
RS
1225@subsubsection Explanation of @code{line}
1226
1227Now consider the definition of @code{line}:
1228
1229@example
1230line: '\n'
1231 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1232;
1233@end example
1234
1235The first alternative is a token which is a newline character; this means
1236that rpcalc accepts a blank line (and ignores it, since there is no
1237action). The second alternative is an expression followed by a newline.
1238This is the alternative that makes rpcalc useful. The semantic value of
1239the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1240question is the first symbol in the alternative. The action prints this
1241value, which is the result of the computation the user asked for.
1242
1243This action is unusual because it does not assign a value to @code{$$}. As
1244a consequence, the semantic value associated with the @code{line} is
1245uninitialized (its value will be unpredictable). This would be a bug if
1246that value were ever used, but we don't use it: once rpcalc has printed the
1247value of the user's input line, that value is no longer needed.
1248
342b8b6e 1249@node Rpcalc Expr
bfa74976
RS
1250@subsubsection Explanation of @code{expr}
1251
1252The @code{exp} grouping has several rules, one for each kind of expression.
1253The first rule handles the simplest expressions: those that are just numbers.
1254The second handles an addition-expression, which looks like two expressions
1255followed by a plus-sign. The third handles subtraction, and so on.
1256
1257@example
1258exp: NUM
1259 | exp exp '+' @{ $$ = $1 + $2; @}
1260 | exp exp '-' @{ $$ = $1 - $2; @}
1261 @dots{}
1262 ;
1263@end example
1264
1265We have used @samp{|} to join all the rules for @code{exp}, but we could
1266equally well have written them separately:
1267
1268@example
1269exp: NUM ;
1270exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1271exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1272 @dots{}
1273@end example
1274
1275Most of the rules have actions that compute the value of the expression in
1276terms of the value of its parts. For example, in the rule for addition,
1277@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1278the second one. The third component, @code{'+'}, has no meaningful
1279associated semantic value, but if it had one you could refer to it as
1280@code{$3}. When @code{yyparse} recognizes a sum expression using this
1281rule, the sum of the two subexpressions' values is produced as the value of
1282the entire expression. @xref{Actions}.
1283
1284You don't have to give an action for every rule. When a rule has no
1285action, Bison by default copies the value of @code{$1} into @code{$$}.
1286This is what happens in the first rule (the one that uses @code{NUM}).
1287
1288The formatting shown here is the recommended convention, but Bison does
72d2299c 1289not require it. You can add or change white space as much as you wish.
bfa74976
RS
1290For example, this:
1291
1292@example
1293exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{}
1294@end example
1295
1296@noindent
1297means the same thing as this:
1298
1299@example
1300exp: NUM
1301 | exp exp '+' @{ $$ = $1 + $2; @}
1302 | @dots{}
1303@end example
1304
1305@noindent
1306The latter, however, is much more readable.
1307
342b8b6e 1308@node Rpcalc Lexer
bfa74976
RS
1309@subsection The @code{rpcalc} Lexical Analyzer
1310@cindex writing a lexical analyzer
1311@cindex lexical analyzer, writing
1312
704a47c4
AD
1313The lexical analyzer's job is low-level parsing: converting characters
1314or sequences of characters into tokens. The Bison parser gets its
1315tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1316Analyzer Function @code{yylex}}.
bfa74976 1317
c827f760
PE
1318Only a simple lexical analyzer is needed for the @acronym{RPN}
1319calculator. This
bfa74976
RS
1320lexical analyzer skips blanks and tabs, then reads in numbers as
1321@code{double} and returns them as @code{NUM} tokens. Any other character
1322that isn't part of a number is a separate token. Note that the token-code
1323for such a single-character token is the character itself.
1324
1325The return value of the lexical analyzer function is a numeric code which
1326represents a token type. The same text used in Bison rules to stand for
1327this token type is also a C expression for the numeric code for the type.
1328This works in two ways. If the token type is a character literal, then its
e966383b 1329numeric code is that of the character; you can use the same
bfa74976
RS
1330character literal in the lexical analyzer to express the number. If the
1331token type is an identifier, that identifier is defined by Bison as a C
1332macro whose definition is the appropriate number. In this example,
1333therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1334
1964ad8c
AD
1335The semantic value of the token (if it has one) is stored into the
1336global variable @code{yylval}, which is where the Bison parser will look
1337for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1338defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1339,Declarations for @code{rpcalc}}.)
bfa74976 1340
72d2299c
PE
1341A token type code of zero is returned if the end-of-input is encountered.
1342(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1343
1344Here is the code for the lexical analyzer:
1345
1346@example
1347@group
72d2299c 1348/* The lexical analyzer returns a double floating point
e966383b 1349 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1350 of the character read if not a number. It skips all blanks
1351 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1352
1353#include <ctype.h>
1354@end group
1355
1356@group
13863333
AD
1357int
1358yylex (void)
bfa74976
RS
1359@{
1360 int c;
1361
72d2299c 1362 /* Skip white space. */
13863333 1363 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1364 ;
1365@end group
1366@group
72d2299c 1367 /* Process numbers. */
13863333 1368 if (c == '.' || isdigit (c))
bfa74976
RS
1369 @{
1370 ungetc (c, stdin);
1371 scanf ("%lf", &yylval);
1372 return NUM;
1373 @}
1374@end group
1375@group
72d2299c 1376 /* Return end-of-input. */
13863333 1377 if (c == EOF)
bfa74976 1378 return 0;
72d2299c 1379 /* Return a single char. */
13863333 1380 return c;
bfa74976
RS
1381@}
1382@end group
1383@end example
1384
342b8b6e 1385@node Rpcalc Main
bfa74976
RS
1386@subsection The Controlling Function
1387@cindex controlling function
1388@cindex main function in simple example
1389
1390In keeping with the spirit of this example, the controlling function is
1391kept to the bare minimum. The only requirement is that it call
1392@code{yyparse} to start the process of parsing.
1393
1394@example
1395@group
13863333
AD
1396int
1397main (void)
bfa74976 1398@{
13863333 1399 return yyparse ();
bfa74976
RS
1400@}
1401@end group
1402@end example
1403
342b8b6e 1404@node Rpcalc Error
bfa74976
RS
1405@subsection The Error Reporting Routine
1406@cindex error reporting routine
1407
1408When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1409function @code{yyerror} to print an error message (usually but not
6e649e65 1410always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1411@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1412here is the definition we will use:
bfa74976
RS
1413
1414@example
1415@group
1416#include <stdio.h>
1417
38a92d50 1418/* Called by yyparse on error. */
13863333 1419void
38a92d50 1420yyerror (char const *s)
bfa74976 1421@{
4e03e201 1422 fprintf (stderr, "%s\n", s);
bfa74976
RS
1423@}
1424@end group
1425@end example
1426
1427After @code{yyerror} returns, the Bison parser may recover from the error
1428and continue parsing if the grammar contains a suitable error rule
1429(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1430have not written any error rules in this example, so any invalid input will
1431cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1432real calculator, but it is adequate for the first example.
bfa74976 1433
342b8b6e 1434@node Rpcalc Gen
bfa74976
RS
1435@subsection Running Bison to Make the Parser
1436@cindex running Bison (introduction)
1437
ceed8467
AD
1438Before running Bison to produce a parser, we need to decide how to
1439arrange all the source code in one or more source files. For such a
1440simple example, the easiest thing is to put everything in one file. The
1441definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1442end, in the epilogue of the file
75f5aaea 1443(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1444
1445For a large project, you would probably have several source files, and use
1446@code{make} to arrange to recompile them.
1447
1448With all the source in a single file, you use the following command to
1449convert it into a parser file:
1450
1451@example
1452bison @var{file_name}.y
1453@end example
1454
1455@noindent
1456In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
c827f760 1457@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c},
72d2299c 1458removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1459Bison contains the source code for @code{yyparse}. The additional
1460functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1461are copied verbatim to the output.
1462
342b8b6e 1463@node Rpcalc Compile
bfa74976
RS
1464@subsection Compiling the Parser File
1465@cindex compiling the parser
1466
1467Here is how to compile and run the parser file:
1468
1469@example
1470@group
1471# @r{List files in current directory.}
9edcd895 1472$ @kbd{ls}
bfa74976
RS
1473rpcalc.tab.c rpcalc.y
1474@end group
1475
1476@group
1477# @r{Compile the Bison parser.}
1478# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1479$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1480@end group
1481
1482@group
1483# @r{List files again.}
9edcd895 1484$ @kbd{ls}
bfa74976
RS
1485rpcalc rpcalc.tab.c rpcalc.y
1486@end group
1487@end example
1488
1489The file @file{rpcalc} now contains the executable code. Here is an
1490example session using @code{rpcalc}.
1491
1492@example
9edcd895
AD
1493$ @kbd{rpcalc}
1494@kbd{4 9 +}
bfa74976 149513
9edcd895 1496@kbd{3 7 + 3 4 5 *+-}
bfa74976 1497-13
9edcd895 1498@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 149913
9edcd895 1500@kbd{5 6 / 4 n +}
bfa74976 1501-3.166666667
9edcd895 1502@kbd{3 4 ^} @r{Exponentiation}
bfa74976 150381
9edcd895
AD
1504@kbd{^D} @r{End-of-file indicator}
1505$
bfa74976
RS
1506@end example
1507
342b8b6e 1508@node Infix Calc
bfa74976
RS
1509@section Infix Notation Calculator: @code{calc}
1510@cindex infix notation calculator
1511@cindex @code{calc}
1512@cindex calculator, infix notation
1513
1514We now modify rpcalc to handle infix operators instead of postfix. Infix
1515notation involves the concept of operator precedence and the need for
1516parentheses nested to arbitrary depth. Here is the Bison code for
1517@file{calc.y}, an infix desk-top calculator.
1518
1519@example
38a92d50 1520/* Infix notation calculator. */
bfa74976
RS
1521
1522%@{
38a92d50
PE
1523 #define YYSTYPE double
1524 #include <math.h>
1525 #include <stdio.h>
1526 int yylex (void);
1527 void yyerror (char const *);
bfa74976
RS
1528%@}
1529
38a92d50 1530/* Bison declarations. */
bfa74976
RS
1531%token NUM
1532%left '-' '+'
1533%left '*' '/'
1534%left NEG /* negation--unary minus */
38a92d50 1535%right '^' /* exponentiation */
bfa74976 1536
38a92d50
PE
1537%% /* The grammar follows. */
1538input: /* empty */
bfa74976
RS
1539 | input line
1540;
1541
1542line: '\n'
1543 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1544;
1545
1546exp: NUM @{ $$ = $1; @}
1547 | exp '+' exp @{ $$ = $1 + $3; @}
1548 | exp '-' exp @{ $$ = $1 - $3; @}
1549 | exp '*' exp @{ $$ = $1 * $3; @}
1550 | exp '/' exp @{ $$ = $1 / $3; @}
1551 | '-' exp %prec NEG @{ $$ = -$2; @}
1552 | exp '^' exp @{ $$ = pow ($1, $3); @}
1553 | '(' exp ')' @{ $$ = $2; @}
1554;
1555%%
1556@end example
1557
1558@noindent
ceed8467
AD
1559The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1560same as before.
bfa74976
RS
1561
1562There are two important new features shown in this code.
1563
1564In the second section (Bison declarations), @code{%left} declares token
1565types and says they are left-associative operators. The declarations
1566@code{%left} and @code{%right} (right associativity) take the place of
1567@code{%token} which is used to declare a token type name without
1568associativity. (These tokens are single-character literals, which
1569ordinarily don't need to be declared. We declare them here to specify
1570the associativity.)
1571
1572Operator precedence is determined by the line ordering of the
1573declarations; the higher the line number of the declaration (lower on
1574the page or screen), the higher the precedence. Hence, exponentiation
1575has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1576by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1577Precedence}.
bfa74976 1578
704a47c4
AD
1579The other important new feature is the @code{%prec} in the grammar
1580section for the unary minus operator. The @code{%prec} simply instructs
1581Bison that the rule @samp{| '-' exp} has the same precedence as
1582@code{NEG}---in this case the next-to-highest. @xref{Contextual
1583Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1584
1585Here is a sample run of @file{calc.y}:
1586
1587@need 500
1588@example
9edcd895
AD
1589$ @kbd{calc}
1590@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 15916.880952381
9edcd895 1592@kbd{-56 + 2}
bfa74976 1593-54
9edcd895 1594@kbd{3 ^ 2}
bfa74976
RS
15959
1596@end example
1597
342b8b6e 1598@node Simple Error Recovery
bfa74976
RS
1599@section Simple Error Recovery
1600@cindex error recovery, simple
1601
1602Up to this point, this manual has not addressed the issue of @dfn{error
1603recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1604error. All we have handled is error reporting with @code{yyerror}.
1605Recall that by default @code{yyparse} returns after calling
1606@code{yyerror}. This means that an erroneous input line causes the
1607calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1608
1609The Bison language itself includes the reserved word @code{error}, which
1610may be included in the grammar rules. In the example below it has
1611been added to one of the alternatives for @code{line}:
1612
1613@example
1614@group
1615line: '\n'
1616 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1617 | error '\n' @{ yyerrok; @}
1618;
1619@end group
1620@end example
1621
ceed8467 1622This addition to the grammar allows for simple error recovery in the
6e649e65 1623event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1624read, the error will be recognized by the third rule for @code{line},
1625and parsing will continue. (The @code{yyerror} function is still called
1626upon to print its message as well.) The action executes the statement
1627@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1628that error recovery is complete (@pxref{Error Recovery}). Note the
1629difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1630misprint.
bfa74976
RS
1631
1632This form of error recovery deals with syntax errors. There are other
1633kinds of errors; for example, division by zero, which raises an exception
1634signal that is normally fatal. A real calculator program must handle this
1635signal and use @code{longjmp} to return to @code{main} and resume parsing
1636input lines; it would also have to discard the rest of the current line of
1637input. We won't discuss this issue further because it is not specific to
1638Bison programs.
1639
342b8b6e
AD
1640@node Location Tracking Calc
1641@section Location Tracking Calculator: @code{ltcalc}
1642@cindex location tracking calculator
1643@cindex @code{ltcalc}
1644@cindex calculator, location tracking
1645
9edcd895
AD
1646This example extends the infix notation calculator with location
1647tracking. This feature will be used to improve the error messages. For
1648the sake of clarity, this example is a simple integer calculator, since
1649most of the work needed to use locations will be done in the lexical
72d2299c 1650analyzer.
342b8b6e
AD
1651
1652@menu
1653* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1654* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1655* Lexer: Ltcalc Lexer. The lexical analyzer.
1656@end menu
1657
1658@node Ltcalc Decls
1659@subsection Declarations for @code{ltcalc}
1660
9edcd895
AD
1661The C and Bison declarations for the location tracking calculator are
1662the same as the declarations for the infix notation calculator.
342b8b6e
AD
1663
1664@example
1665/* Location tracking calculator. */
1666
1667%@{
38a92d50
PE
1668 #define YYSTYPE int
1669 #include <math.h>
1670 int yylex (void);
1671 void yyerror (char const *);
342b8b6e
AD
1672%@}
1673
1674/* Bison declarations. */
1675%token NUM
1676
1677%left '-' '+'
1678%left '*' '/'
1679%left NEG
1680%right '^'
1681
38a92d50 1682%% /* The grammar follows. */
342b8b6e
AD
1683@end example
1684
9edcd895
AD
1685@noindent
1686Note there are no declarations specific to locations. Defining a data
1687type for storing locations is not needed: we will use the type provided
1688by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1689four member structure with the following integer fields:
1690@code{first_line}, @code{first_column}, @code{last_line} and
1691@code{last_column}.
342b8b6e
AD
1692
1693@node Ltcalc Rules
1694@subsection Grammar Rules for @code{ltcalc}
1695
9edcd895
AD
1696Whether handling locations or not has no effect on the syntax of your
1697language. Therefore, grammar rules for this example will be very close
1698to those of the previous example: we will only modify them to benefit
1699from the new information.
342b8b6e 1700
9edcd895
AD
1701Here, we will use locations to report divisions by zero, and locate the
1702wrong expressions or subexpressions.
342b8b6e
AD
1703
1704@example
1705@group
1706input : /* empty */
1707 | input line
1708;
1709@end group
1710
1711@group
1712line : '\n'
1713 | exp '\n' @{ printf ("%d\n", $1); @}
1714;
1715@end group
1716
1717@group
1718exp : NUM @{ $$ = $1; @}
1719 | exp '+' exp @{ $$ = $1 + $3; @}
1720 | exp '-' exp @{ $$ = $1 - $3; @}
1721 | exp '*' exp @{ $$ = $1 * $3; @}
1722@end group
342b8b6e 1723@group
9edcd895 1724 | exp '/' exp
342b8b6e
AD
1725 @{
1726 if ($3)
1727 $$ = $1 / $3;
1728 else
1729 @{
1730 $$ = 1;
9edcd895
AD
1731 fprintf (stderr, "%d.%d-%d.%d: division by zero",
1732 @@3.first_line, @@3.first_column,
1733 @@3.last_line, @@3.last_column);
342b8b6e
AD
1734 @}
1735 @}
1736@end group
1737@group
1738 | '-' exp %preg NEG @{ $$ = -$2; @}
1739 | exp '^' exp @{ $$ = pow ($1, $3); @}
1740 | '(' exp ')' @{ $$ = $2; @}
1741@end group
1742@end example
1743
1744This code shows how to reach locations inside of semantic actions, by
1745using the pseudo-variables @code{@@@var{n}} for rule components, and the
1746pseudo-variable @code{@@$} for groupings.
1747
9edcd895
AD
1748We don't need to assign a value to @code{@@$}: the output parser does it
1749automatically. By default, before executing the C code of each action,
1750@code{@@$} is set to range from the beginning of @code{@@1} to the end
1751of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
1752can be redefined (@pxref{Location Default Action, , Default Action for
1753Locations}), and for very specific rules, @code{@@$} can be computed by
1754hand.
342b8b6e
AD
1755
1756@node Ltcalc Lexer
1757@subsection The @code{ltcalc} Lexical Analyzer.
1758
9edcd895 1759Until now, we relied on Bison's defaults to enable location
72d2299c 1760tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
1761able to feed the parser with the token locations, as it already does for
1762semantic values.
342b8b6e 1763
9edcd895
AD
1764To this end, we must take into account every single character of the
1765input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
1766
1767@example
1768@group
1769int
1770yylex (void)
1771@{
1772 int c;
18b519c0 1773@end group
342b8b6e 1774
18b519c0 1775@group
72d2299c 1776 /* Skip white space. */
342b8b6e
AD
1777 while ((c = getchar ()) == ' ' || c == '\t')
1778 ++yylloc.last_column;
18b519c0 1779@end group
342b8b6e 1780
18b519c0 1781@group
72d2299c 1782 /* Step. */
342b8b6e
AD
1783 yylloc.first_line = yylloc.last_line;
1784 yylloc.first_column = yylloc.last_column;
1785@end group
1786
1787@group
72d2299c 1788 /* Process numbers. */
342b8b6e
AD
1789 if (isdigit (c))
1790 @{
1791 yylval = c - '0';
1792 ++yylloc.last_column;
1793 while (isdigit (c = getchar ()))
1794 @{
1795 ++yylloc.last_column;
1796 yylval = yylval * 10 + c - '0';
1797 @}
1798 ungetc (c, stdin);
1799 return NUM;
1800 @}
1801@end group
1802
72d2299c 1803 /* Return end-of-input. */
342b8b6e
AD
1804 if (c == EOF)
1805 return 0;
1806
72d2299c 1807 /* Return a single char, and update location. */
342b8b6e
AD
1808 if (c == '\n')
1809 @{
1810 ++yylloc.last_line;
1811 yylloc.last_column = 0;
1812 @}
1813 else
1814 ++yylloc.last_column;
1815 return c;
1816@}
1817@end example
1818
9edcd895
AD
1819Basically, the lexical analyzer performs the same processing as before:
1820it skips blanks and tabs, and reads numbers or single-character tokens.
1821In addition, it updates @code{yylloc}, the global variable (of type
1822@code{YYLTYPE}) containing the token's location.
342b8b6e 1823
9edcd895 1824Now, each time this function returns a token, the parser has its number
72d2299c 1825as well as its semantic value, and its location in the text. The last
9edcd895
AD
1826needed change is to initialize @code{yylloc}, for example in the
1827controlling function:
342b8b6e
AD
1828
1829@example
9edcd895 1830@group
342b8b6e
AD
1831int
1832main (void)
1833@{
1834 yylloc.first_line = yylloc.last_line = 1;
1835 yylloc.first_column = yylloc.last_column = 0;
1836 return yyparse ();
1837@}
9edcd895 1838@end group
342b8b6e
AD
1839@end example
1840
9edcd895
AD
1841Remember that computing locations is not a matter of syntax. Every
1842character must be associated to a location update, whether it is in
1843valid input, in comments, in literal strings, and so on.
342b8b6e
AD
1844
1845@node Multi-function Calc
bfa74976
RS
1846@section Multi-Function Calculator: @code{mfcalc}
1847@cindex multi-function calculator
1848@cindex @code{mfcalc}
1849@cindex calculator, multi-function
1850
1851Now that the basics of Bison have been discussed, it is time to move on to
1852a more advanced problem. The above calculators provided only five
1853functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
1854be nice to have a calculator that provides other mathematical functions such
1855as @code{sin}, @code{cos}, etc.
1856
1857It is easy to add new operators to the infix calculator as long as they are
1858only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 1859back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
1860adding a new operator. But we want something more flexible: built-in
1861functions whose syntax has this form:
1862
1863@example
1864@var{function_name} (@var{argument})
1865@end example
1866
1867@noindent
1868At the same time, we will add memory to the calculator, by allowing you
1869to create named variables, store values in them, and use them later.
1870Here is a sample session with the multi-function calculator:
1871
1872@example
9edcd895
AD
1873$ @kbd{mfcalc}
1874@kbd{pi = 3.141592653589}
bfa74976 18753.1415926536
9edcd895 1876@kbd{sin(pi)}
bfa74976 18770.0000000000
9edcd895 1878@kbd{alpha = beta1 = 2.3}
bfa74976 18792.3000000000
9edcd895 1880@kbd{alpha}
bfa74976 18812.3000000000
9edcd895 1882@kbd{ln(alpha)}
bfa74976 18830.8329091229
9edcd895 1884@kbd{exp(ln(beta1))}
bfa74976 18852.3000000000
9edcd895 1886$
bfa74976
RS
1887@end example
1888
1889Note that multiple assignment and nested function calls are permitted.
1890
1891@menu
1892* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
1893* Rules: Mfcalc Rules. Grammar rules for the calculator.
1894* Symtab: Mfcalc Symtab. Symbol table management subroutines.
1895@end menu
1896
342b8b6e 1897@node Mfcalc Decl
bfa74976
RS
1898@subsection Declarations for @code{mfcalc}
1899
1900Here are the C and Bison declarations for the multi-function calculator.
1901
1902@smallexample
18b519c0 1903@group
bfa74976 1904%@{
38a92d50
PE
1905 #include <math.h> /* For math functions, cos(), sin(), etc. */
1906 #include "calc.h" /* Contains definition of `symrec'. */
1907 int yylex (void);
1908 void yyerror (char const *);
bfa74976 1909%@}
18b519c0
AD
1910@end group
1911@group
bfa74976 1912%union @{
38a92d50
PE
1913 double val; /* For returning numbers. */
1914 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 1915@}
18b519c0 1916@end group
38a92d50
PE
1917%token <val> NUM /* Simple double precision number. */
1918%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
1919%type <val> exp
1920
18b519c0 1921@group
bfa74976
RS
1922%right '='
1923%left '-' '+'
1924%left '*' '/'
38a92d50
PE
1925%left NEG /* negation--unary minus */
1926%right '^' /* exponentiation */
18b519c0 1927@end group
38a92d50 1928%% /* The grammar follows. */
bfa74976
RS
1929@end smallexample
1930
1931The above grammar introduces only two new features of the Bison language.
1932These features allow semantic values to have various data types
1933(@pxref{Multiple Types, ,More Than One Value Type}).
1934
1935The @code{%union} declaration specifies the entire list of possible types;
1936this is instead of defining @code{YYSTYPE}. The allowable types are now
1937double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
1938the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
1939
1940Since values can now have various types, it is necessary to associate a
1941type with each grammar symbol whose semantic value is used. These symbols
1942are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
1943declarations are augmented with information about their data type (placed
1944between angle brackets).
1945
704a47c4
AD
1946The Bison construct @code{%type} is used for declaring nonterminal
1947symbols, just as @code{%token} is used for declaring token types. We
1948have not used @code{%type} before because nonterminal symbols are
1949normally declared implicitly by the rules that define them. But
1950@code{exp} must be declared explicitly so we can specify its value type.
1951@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 1952
342b8b6e 1953@node Mfcalc Rules
bfa74976
RS
1954@subsection Grammar Rules for @code{mfcalc}
1955
1956Here are the grammar rules for the multi-function calculator.
1957Most of them are copied directly from @code{calc}; three rules,
1958those which mention @code{VAR} or @code{FNCT}, are new.
1959
1960@smallexample
18b519c0 1961@group
bfa74976
RS
1962input: /* empty */
1963 | input line
1964;
18b519c0 1965@end group
bfa74976 1966
18b519c0 1967@group
bfa74976
RS
1968line:
1969 '\n'
1970 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1971 | error '\n' @{ yyerrok; @}
1972;
18b519c0 1973@end group
bfa74976 1974
18b519c0 1975@group
bfa74976
RS
1976exp: NUM @{ $$ = $1; @}
1977 | VAR @{ $$ = $1->value.var; @}
1978 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
1979 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
1980 | exp '+' exp @{ $$ = $1 + $3; @}
1981 | exp '-' exp @{ $$ = $1 - $3; @}
1982 | exp '*' exp @{ $$ = $1 * $3; @}
1983 | exp '/' exp @{ $$ = $1 / $3; @}
1984 | '-' exp %prec NEG @{ $$ = -$2; @}
1985 | exp '^' exp @{ $$ = pow ($1, $3); @}
1986 | '(' exp ')' @{ $$ = $2; @}
1987;
18b519c0 1988@end group
38a92d50 1989/* End of grammar. */
bfa74976
RS
1990%%
1991@end smallexample
1992
342b8b6e 1993@node Mfcalc Symtab
bfa74976
RS
1994@subsection The @code{mfcalc} Symbol Table
1995@cindex symbol table example
1996
1997The multi-function calculator requires a symbol table to keep track of the
1998names and meanings of variables and functions. This doesn't affect the
1999grammar rules (except for the actions) or the Bison declarations, but it
2000requires some additional C functions for support.
2001
2002The symbol table itself consists of a linked list of records. Its
2003definition, which is kept in the header @file{calc.h}, is as follows. It
2004provides for either functions or variables to be placed in the table.
2005
2006@smallexample
2007@group
38a92d50 2008/* Function type. */
32dfccf8 2009typedef double (*func_t) (double);
72f889cc 2010@end group
32dfccf8 2011
72f889cc 2012@group
38a92d50 2013/* Data type for links in the chain of symbols. */
bfa74976
RS
2014struct symrec
2015@{
38a92d50 2016 char *name; /* name of symbol */
bfa74976 2017 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2018 union
2019 @{
38a92d50
PE
2020 double var; /* value of a VAR */
2021 func_t fnctptr; /* value of a FNCT */
bfa74976 2022 @} value;
38a92d50 2023 struct symrec *next; /* link field */
bfa74976
RS
2024@};
2025@end group
2026
2027@group
2028typedef struct symrec symrec;
2029
38a92d50 2030/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2031extern symrec *sym_table;
2032
38a92d50
PE
2033symrec *putsym (char const *, func_t);
2034symrec *getsym (char const *);
bfa74976
RS
2035@end group
2036@end smallexample
2037
2038The new version of @code{main} includes a call to @code{init_table}, a
2039function that initializes the symbol table. Here it is, and
2040@code{init_table} as well:
2041
2042@smallexample
bfa74976
RS
2043#include <stdio.h>
2044
18b519c0 2045@group
38a92d50 2046/* Called by yyparse on error. */
13863333 2047void
38a92d50 2048yyerror (char const *s)
bfa74976
RS
2049@{
2050 printf ("%s\n", s);
2051@}
18b519c0 2052@end group
bfa74976 2053
18b519c0 2054@group
bfa74976
RS
2055struct init
2056@{
38a92d50
PE
2057 char const *fname;
2058 double (*fnct) (double);
bfa74976
RS
2059@};
2060@end group
2061
2062@group
38a92d50 2063struct init const arith_fncts[] =
13863333 2064@{
32dfccf8
AD
2065 "sin", sin,
2066 "cos", cos,
13863333 2067 "atan", atan,
32dfccf8
AD
2068 "ln", log,
2069 "exp", exp,
13863333
AD
2070 "sqrt", sqrt,
2071 0, 0
2072@};
18b519c0 2073@end group
bfa74976 2074
18b519c0 2075@group
bfa74976 2076/* The symbol table: a chain of `struct symrec'. */
38a92d50 2077symrec *sym_table;
bfa74976
RS
2078@end group
2079
2080@group
72d2299c 2081/* Put arithmetic functions in table. */
13863333
AD
2082void
2083init_table (void)
bfa74976
RS
2084@{
2085 int i;
2086 symrec *ptr;
2087 for (i = 0; arith_fncts[i].fname != 0; i++)
2088 @{
2089 ptr = putsym (arith_fncts[i].fname, FNCT);
2090 ptr->value.fnctptr = arith_fncts[i].fnct;
2091 @}
2092@}
2093@end group
38a92d50
PE
2094
2095@group
2096int
2097main (void)
2098@{
2099 init_table ();
2100 return yyparse ();
2101@}
2102@end group
bfa74976
RS
2103@end smallexample
2104
2105By simply editing the initialization list and adding the necessary include
2106files, you can add additional functions to the calculator.
2107
2108Two important functions allow look-up and installation of symbols in the
2109symbol table. The function @code{putsym} is passed a name and the type
2110(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2111linked to the front of the list, and a pointer to the object is returned.
2112The function @code{getsym} is passed the name of the symbol to look up. If
2113found, a pointer to that symbol is returned; otherwise zero is returned.
2114
2115@smallexample
2116symrec *
38a92d50 2117putsym (char const *sym_name, int sym_type)
bfa74976
RS
2118@{
2119 symrec *ptr;
2120 ptr = (symrec *) malloc (sizeof (symrec));
2121 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2122 strcpy (ptr->name,sym_name);
2123 ptr->type = sym_type;
72d2299c 2124 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2125 ptr->next = (struct symrec *)sym_table;
2126 sym_table = ptr;
2127 return ptr;
2128@}
2129
2130symrec *
38a92d50 2131getsym (char const *sym_name)
bfa74976
RS
2132@{
2133 symrec *ptr;
2134 for (ptr = sym_table; ptr != (symrec *) 0;
2135 ptr = (symrec *)ptr->next)
2136 if (strcmp (ptr->name,sym_name) == 0)
2137 return ptr;
2138 return 0;
2139@}
2140@end smallexample
2141
2142The function @code{yylex} must now recognize variables, numeric values, and
2143the single-character arithmetic operators. Strings of alphanumeric
14ded682 2144characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2145functions depending on what the symbol table says about them.
2146
2147The string is passed to @code{getsym} for look up in the symbol table. If
2148the name appears in the table, a pointer to its location and its type
2149(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2150already in the table, then it is installed as a @code{VAR} using
2151@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2152returned to @code{yyparse}.
bfa74976
RS
2153
2154No change is needed in the handling of numeric values and arithmetic
2155operators in @code{yylex}.
2156
2157@smallexample
2158@group
2159#include <ctype.h>
18b519c0 2160@end group
13863333 2161
18b519c0 2162@group
13863333
AD
2163int
2164yylex (void)
bfa74976
RS
2165@{
2166 int c;
2167
72d2299c 2168 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2169 while ((c = getchar ()) == ' ' || c == '\t');
2170
2171 if (c == EOF)
2172 return 0;
2173@end group
2174
2175@group
2176 /* Char starts a number => parse the number. */
2177 if (c == '.' || isdigit (c))
2178 @{
2179 ungetc (c, stdin);
2180 scanf ("%lf", &yylval.val);
2181 return NUM;
2182 @}
2183@end group
2184
2185@group
2186 /* Char starts an identifier => read the name. */
2187 if (isalpha (c))
2188 @{
2189 symrec *s;
2190 static char *symbuf = 0;
2191 static int length = 0;
2192 int i;
2193@end group
2194
2195@group
2196 /* Initially make the buffer long enough
2197 for a 40-character symbol name. */
2198 if (length == 0)
2199 length = 40, symbuf = (char *)malloc (length + 1);
2200
2201 i = 0;
2202 do
2203@end group
2204@group
2205 @{
2206 /* If buffer is full, make it bigger. */
2207 if (i == length)
2208 @{
2209 length *= 2;
18b519c0 2210 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2211 @}
2212 /* Add this character to the buffer. */
2213 symbuf[i++] = c;
2214 /* Get another character. */
2215 c = getchar ();
2216 @}
2217@end group
2218@group
72d2299c 2219 while (isalnum (c));
bfa74976
RS
2220
2221 ungetc (c, stdin);
2222 symbuf[i] = '\0';
2223@end group
2224
2225@group
2226 s = getsym (symbuf);
2227 if (s == 0)
2228 s = putsym (symbuf, VAR);
2229 yylval.tptr = s;
2230 return s->type;
2231 @}
2232
2233 /* Any other character is a token by itself. */
2234 return c;
2235@}
2236@end group
2237@end smallexample
2238
72d2299c 2239This program is both powerful and flexible. You may easily add new
704a47c4
AD
2240functions, and it is a simple job to modify this code to install
2241predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2242
342b8b6e 2243@node Exercises
bfa74976
RS
2244@section Exercises
2245@cindex exercises
2246
2247@enumerate
2248@item
2249Add some new functions from @file{math.h} to the initialization list.
2250
2251@item
2252Add another array that contains constants and their values. Then
2253modify @code{init_table} to add these constants to the symbol table.
2254It will be easiest to give the constants type @code{VAR}.
2255
2256@item
2257Make the program report an error if the user refers to an
2258uninitialized variable in any way except to store a value in it.
2259@end enumerate
2260
342b8b6e 2261@node Grammar File
bfa74976
RS
2262@chapter Bison Grammar Files
2263
2264Bison takes as input a context-free grammar specification and produces a
2265C-language function that recognizes correct instances of the grammar.
2266
2267The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2268@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2269
2270@menu
2271* Grammar Outline:: Overall layout of the grammar file.
2272* Symbols:: Terminal and nonterminal symbols.
2273* Rules:: How to write grammar rules.
2274* Recursion:: Writing recursive rules.
2275* Semantics:: Semantic values and actions.
847bf1f5 2276* Locations:: Locations and actions.
bfa74976
RS
2277* Declarations:: All kinds of Bison declarations are described here.
2278* Multiple Parsers:: Putting more than one Bison parser in one program.
2279@end menu
2280
342b8b6e 2281@node Grammar Outline
bfa74976
RS
2282@section Outline of a Bison Grammar
2283
2284A Bison grammar file has four main sections, shown here with the
2285appropriate delimiters:
2286
2287@example
2288%@{
38a92d50 2289 @var{Prologue}
bfa74976
RS
2290%@}
2291
2292@var{Bison declarations}
2293
2294%%
2295@var{Grammar rules}
2296%%
2297
75f5aaea 2298@var{Epilogue}
bfa74976
RS
2299@end example
2300
2301Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2302As a @acronym{GNU} extension, @samp{//} introduces a comment that
2303continues until end of line.
bfa74976
RS
2304
2305@menu
75f5aaea 2306* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2307* Bison Declarations:: Syntax and usage of the Bison declarations section.
2308* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2309* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2310@end menu
2311
38a92d50 2312@node Prologue
75f5aaea
MA
2313@subsection The prologue
2314@cindex declarations section
2315@cindex Prologue
2316@cindex declarations
bfa74976 2317
08e49d20 2318The @var{Prologue} section contains macro definitions and
bfa74976
RS
2319declarations of functions and variables that are used in the actions in the
2320grammar rules. These are copied to the beginning of the parser file so
2321that they precede the definition of @code{yyparse}. You can use
2322@samp{#include} to get the declarations from a header file. If you don't
2323need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2324delimiters that bracket this section.
2325
c732d2c6
AD
2326You may have more than one @var{Prologue} section, intermixed with the
2327@var{Bison declarations}. This allows you to have C and Bison
2328declarations that refer to each other. For example, the @code{%union}
2329declaration may use types defined in a header file, and you may wish to
2330prototype functions that take arguments of type @code{YYSTYPE}. This
2331can be done with two @var{Prologue} blocks, one before and one after the
2332@code{%union} declaration.
2333
2334@smallexample
2335%@{
38a92d50
PE
2336 #include <stdio.h>
2337 #include "ptypes.h"
c732d2c6
AD
2338%@}
2339
2340%union @{
2341 long n;
2342 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2343@}
2344
2345%@{
38a92d50
PE
2346 static void print_token_value (FILE *, int, YYSTYPE);
2347 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2348%@}
2349
2350@dots{}
2351@end smallexample
2352
342b8b6e 2353@node Bison Declarations
bfa74976
RS
2354@subsection The Bison Declarations Section
2355@cindex Bison declarations (introduction)
2356@cindex declarations, Bison (introduction)
2357
2358The @var{Bison declarations} section contains declarations that define
2359terminal and nonterminal symbols, specify precedence, and so on.
2360In some simple grammars you may not need any declarations.
2361@xref{Declarations, ,Bison Declarations}.
2362
342b8b6e 2363@node Grammar Rules
bfa74976
RS
2364@subsection The Grammar Rules Section
2365@cindex grammar rules section
2366@cindex rules section for grammar
2367
2368The @dfn{grammar rules} section contains one or more Bison grammar
2369rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2370
2371There must always be at least one grammar rule, and the first
2372@samp{%%} (which precedes the grammar rules) may never be omitted even
2373if it is the first thing in the file.
2374
38a92d50 2375@node Epilogue
75f5aaea 2376@subsection The epilogue
bfa74976 2377@cindex additional C code section
75f5aaea 2378@cindex epilogue
bfa74976
RS
2379@cindex C code, section for additional
2380
08e49d20
PE
2381The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2382the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2383place to put anything that you want to have in the parser file but which need
2384not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2385definitions of @code{yylex} and @code{yyerror} often go here. Because
2386C requires functions to be declared before being used, you often need
2387to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
2388even if you define them int he Epilogue.
75f5aaea 2389@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2390
2391If the last section is empty, you may omit the @samp{%%} that separates it
2392from the grammar rules.
2393
38a92d50
PE
2394The Bison parser itself contains many macros and identifiers whose
2395names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2396good idea to avoid using any such names (except those documented in this
75f5aaea 2397manual) in the epilogue of the grammar file.
bfa74976 2398
342b8b6e 2399@node Symbols
bfa74976
RS
2400@section Symbols, Terminal and Nonterminal
2401@cindex nonterminal symbol
2402@cindex terminal symbol
2403@cindex token type
2404@cindex symbol
2405
2406@dfn{Symbols} in Bison grammars represent the grammatical classifications
2407of the language.
2408
2409A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2410class of syntactically equivalent tokens. You use the symbol in grammar
2411rules to mean that a token in that class is allowed. The symbol is
2412represented in the Bison parser by a numeric code, and the @code{yylex}
2413function returns a token type code to indicate what kind of token has been
2414read. You don't need to know what the code value is; you can use the
2415symbol to stand for it.
2416
2417A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2418groupings. The symbol name is used in writing grammar rules. By convention,
2419it should be all lower case.
2420
2421Symbol names can contain letters, digits (not at the beginning),
2422underscores and periods. Periods make sense only in nonterminals.
2423
931c7513 2424There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2425
2426@itemize @bullet
2427@item
2428A @dfn{named token type} is written with an identifier, like an
c827f760 2429identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2430such name must be defined with a Bison declaration such as
2431@code{%token}. @xref{Token Decl, ,Token Type Names}.
2432
2433@item
2434@cindex character token
2435@cindex literal token
2436@cindex single-character literal
931c7513
RS
2437A @dfn{character token type} (or @dfn{literal character token}) is
2438written in the grammar using the same syntax used in C for character
2439constants; for example, @code{'+'} is a character token type. A
2440character token type doesn't need to be declared unless you need to
2441specify its semantic value data type (@pxref{Value Type, ,Data Types of
2442Semantic Values}), associativity, or precedence (@pxref{Precedence,
2443,Operator Precedence}).
bfa74976
RS
2444
2445By convention, a character token type is used only to represent a
2446token that consists of that particular character. Thus, the token
2447type @code{'+'} is used to represent the character @samp{+} as a
2448token. Nothing enforces this convention, but if you depart from it,
2449your program will confuse other readers.
2450
2451All the usual escape sequences used in character literals in C can be
2452used in Bison as well, but you must not use the null character as a
72d2299c
PE
2453character literal because its numeric code, zero, signifies
2454end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2455for @code{yylex}}). Also, unlike standard C, trigraphs have no
2456special meaning in Bison character literals, nor is backslash-newline
2457allowed.
931c7513
RS
2458
2459@item
2460@cindex string token
2461@cindex literal string token
9ecbd125 2462@cindex multicharacter literal
931c7513
RS
2463A @dfn{literal string token} is written like a C string constant; for
2464example, @code{"<="} is a literal string token. A literal string token
2465doesn't need to be declared unless you need to specify its semantic
14ded682 2466value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2467(@pxref{Precedence}).
2468
2469You can associate the literal string token with a symbolic name as an
2470alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2471Declarations}). If you don't do that, the lexical analyzer has to
2472retrieve the token number for the literal string token from the
2473@code{yytname} table (@pxref{Calling Convention}).
2474
c827f760 2475@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2476
2477By convention, a literal string token is used only to represent a token
2478that consists of that particular string. Thus, you should use the token
2479type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2480does not enforce this convention, but if you depart from it, people who
931c7513
RS
2481read your program will be confused.
2482
2483All the escape sequences used in string literals in C can be used in
92ac3705
PE
2484Bison as well, except that you must not use a null character within a
2485string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2486meaning in Bison string literals, nor is backslash-newline allowed. A
2487literal string token must contain two or more characters; for a token
2488containing just one character, use a character token (see above).
bfa74976
RS
2489@end itemize
2490
2491How you choose to write a terminal symbol has no effect on its
2492grammatical meaning. That depends only on where it appears in rules and
2493on when the parser function returns that symbol.
2494
72d2299c
PE
2495The value returned by @code{yylex} is always one of the terminal
2496symbols, except that a zero or negative value signifies end-of-input.
2497Whichever way you write the token type in the grammar rules, you write
2498it the same way in the definition of @code{yylex}. The numeric code
2499for a character token type is simply the positive numeric code of the
2500character, so @code{yylex} can use the identical value to generate the
2501requisite code, though you may need to convert it to @code{unsigned
2502char} to avoid sign-extension on hosts where @code{char} is signed.
2503Each named token type becomes a C macro in
bfa74976 2504the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2505(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2506@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2507
2508If @code{yylex} is defined in a separate file, you need to arrange for the
2509token-type macro definitions to be available there. Use the @samp{-d}
2510option when you run Bison, so that it will write these macro definitions
2511into a separate header file @file{@var{name}.tab.h} which you can include
2512in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2513
72d2299c
PE
2514If you want to write a grammar that is portable to any Standard C
2515host, you must use only non-null character tokens taken from the basic
c827f760 2516execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2517digits, the 52 lower- and upper-case English letters, and the
2518characters in the following C-language string:
2519
2520@example
2521"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2522@end example
2523
2524The @code{yylex} function and Bison must use a consistent character
2525set and encoding for character tokens. For example, if you run Bison in an
c827f760 2526@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2527in an environment that uses an incompatible character set like
c827f760
PE
2528@acronym{EBCDIC}, the resulting program may not work because the
2529tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2530character tokens. It is standard
e966383b 2531practice for software distributions to contain C source files that
c827f760
PE
2532were generated by Bison in an @acronym{ASCII} environment, so installers on
2533platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2534files before compiling them.
2535
bfa74976
RS
2536The symbol @code{error} is a terminal symbol reserved for error recovery
2537(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2538In particular, @code{yylex} should never return this value. The default
2539value of the error token is 256, unless you explicitly assigned 256 to
2540one of your tokens with a @code{%token} declaration.
bfa74976 2541
342b8b6e 2542@node Rules
bfa74976
RS
2543@section Syntax of Grammar Rules
2544@cindex rule syntax
2545@cindex grammar rule syntax
2546@cindex syntax of grammar rules
2547
2548A Bison grammar rule has the following general form:
2549
2550@example
e425e872 2551@group
bfa74976
RS
2552@var{result}: @var{components}@dots{}
2553 ;
e425e872 2554@end group
bfa74976
RS
2555@end example
2556
2557@noindent
9ecbd125 2558where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2559and @var{components} are various terminal and nonterminal symbols that
13863333 2560are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2561
2562For example,
2563
2564@example
2565@group
2566exp: exp '+' exp
2567 ;
2568@end group
2569@end example
2570
2571@noindent
2572says that two groupings of type @code{exp}, with a @samp{+} token in between,
2573can be combined into a larger grouping of type @code{exp}.
2574
72d2299c
PE
2575White space in rules is significant only to separate symbols. You can add
2576extra white space as you wish.
bfa74976
RS
2577
2578Scattered among the components can be @var{actions} that determine
2579the semantics of the rule. An action looks like this:
2580
2581@example
2582@{@var{C statements}@}
2583@end example
2584
2585@noindent
2586Usually there is only one action and it follows the components.
2587@xref{Actions}.
2588
2589@findex |
2590Multiple rules for the same @var{result} can be written separately or can
2591be joined with the vertical-bar character @samp{|} as follows:
2592
2593@ifinfo
2594@example
2595@var{result}: @var{rule1-components}@dots{}
2596 | @var{rule2-components}@dots{}
2597 @dots{}
2598 ;
2599@end example
2600@end ifinfo
2601@iftex
2602@example
2603@group
2604@var{result}: @var{rule1-components}@dots{}
2605 | @var{rule2-components}@dots{}
2606 @dots{}
2607 ;
2608@end group
2609@end example
2610@end iftex
2611
2612@noindent
2613They are still considered distinct rules even when joined in this way.
2614
2615If @var{components} in a rule is empty, it means that @var{result} can
2616match the empty string. For example, here is how to define a
2617comma-separated sequence of zero or more @code{exp} groupings:
2618
2619@example
2620@group
2621expseq: /* empty */
2622 | expseq1
2623 ;
2624@end group
2625
2626@group
2627expseq1: exp
2628 | expseq1 ',' exp
2629 ;
2630@end group
2631@end example
2632
2633@noindent
2634It is customary to write a comment @samp{/* empty */} in each rule
2635with no components.
2636
342b8b6e 2637@node Recursion
bfa74976
RS
2638@section Recursive Rules
2639@cindex recursive rule
2640
2641A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2642also on its right hand side. Nearly all Bison grammars need to use
2643recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2644of a particular thing. Consider this recursive definition of a
2645comma-separated sequence of one or more expressions:
bfa74976
RS
2646
2647@example
2648@group
2649expseq1: exp
2650 | expseq1 ',' exp
2651 ;
2652@end group
2653@end example
2654
2655@cindex left recursion
2656@cindex right recursion
2657@noindent
2658Since the recursive use of @code{expseq1} is the leftmost symbol in the
2659right hand side, we call this @dfn{left recursion}. By contrast, here
2660the same construct is defined using @dfn{right recursion}:
2661
2662@example
2663@group
2664expseq1: exp
2665 | exp ',' expseq1
2666 ;
2667@end group
2668@end example
2669
2670@noindent
ec3bc396
AD
2671Any kind of sequence can be defined using either left recursion or right
2672recursion, but you should always use left recursion, because it can
2673parse a sequence of any number of elements with bounded stack space.
2674Right recursion uses up space on the Bison stack in proportion to the
2675number of elements in the sequence, because all the elements must be
2676shifted onto the stack before the rule can be applied even once.
2677@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2678of this.
bfa74976
RS
2679
2680@cindex mutual recursion
2681@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2682rule does not appear directly on its right hand side, but does appear
2683in rules for other nonterminals which do appear on its right hand
13863333 2684side.
bfa74976
RS
2685
2686For example:
2687
2688@example
2689@group
2690expr: primary
2691 | primary '+' primary
2692 ;
2693@end group
2694
2695@group
2696primary: constant
2697 | '(' expr ')'
2698 ;
2699@end group
2700@end example
2701
2702@noindent
2703defines two mutually-recursive nonterminals, since each refers to the
2704other.
2705
342b8b6e 2706@node Semantics
bfa74976
RS
2707@section Defining Language Semantics
2708@cindex defining language semantics
13863333 2709@cindex language semantics, defining
bfa74976
RS
2710
2711The grammar rules for a language determine only the syntax. The semantics
2712are determined by the semantic values associated with various tokens and
2713groupings, and by the actions taken when various groupings are recognized.
2714
2715For example, the calculator calculates properly because the value
2716associated with each expression is the proper number; it adds properly
2717because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2718the numbers associated with @var{x} and @var{y}.
2719
2720@menu
2721* Value Type:: Specifying one data type for all semantic values.
2722* Multiple Types:: Specifying several alternative data types.
2723* Actions:: An action is the semantic definition of a grammar rule.
2724* Action Types:: Specifying data types for actions to operate on.
2725* Mid-Rule Actions:: Most actions go at the end of a rule.
2726 This says when, why and how to use the exceptional
2727 action in the middle of a rule.
2728@end menu
2729
342b8b6e 2730@node Value Type
bfa74976
RS
2731@subsection Data Types of Semantic Values
2732@cindex semantic value type
2733@cindex value type, semantic
2734@cindex data types of semantic values
2735@cindex default data type
2736
2737In a simple program it may be sufficient to use the same data type for
2738the semantic values of all language constructs. This was true in the
c827f760 2739@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 2740Notation Calculator}).
bfa74976
RS
2741
2742Bison's default is to use type @code{int} for all semantic values. To
2743specify some other type, define @code{YYSTYPE} as a macro, like this:
2744
2745@example
2746#define YYSTYPE double
2747@end example
2748
2749@noindent
342b8b6e 2750This macro definition must go in the prologue of the grammar file
75f5aaea 2751(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 2752
342b8b6e 2753@node Multiple Types
bfa74976
RS
2754@subsection More Than One Value Type
2755
2756In most programs, you will need different data types for different kinds
2757of tokens and groupings. For example, a numeric constant may need type
2758@code{int} or @code{long}, while a string constant needs type @code{char *},
2759and an identifier might need a pointer to an entry in the symbol table.
2760
2761To use more than one data type for semantic values in one parser, Bison
2762requires you to do two things:
2763
2764@itemize @bullet
2765@item
2766Specify the entire collection of possible data types, with the
704a47c4
AD
2767@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
2768Value Types}).
bfa74976
RS
2769
2770@item
14ded682
AD
2771Choose one of those types for each symbol (terminal or nonterminal) for
2772which semantic values are used. This is done for tokens with the
2773@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
2774and for groupings with the @code{%type} Bison declaration (@pxref{Type
2775Decl, ,Nonterminal Symbols}).
bfa74976
RS
2776@end itemize
2777
342b8b6e 2778@node Actions
bfa74976
RS
2779@subsection Actions
2780@cindex action
2781@vindex $$
2782@vindex $@var{n}
2783
2784An action accompanies a syntactic rule and contains C code to be executed
2785each time an instance of that rule is recognized. The task of most actions
2786is to compute a semantic value for the grouping built by the rule from the
2787semantic values associated with tokens or smaller groupings.
2788
2789An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
2790compound statement in C@. An action can contain any sequence of C
2791statements. Bison does not look for trigraphs, though, so if your C
2792code uses trigraphs you should ensure that they do not affect the
2793nesting of braces or the boundaries of comments, strings, or character
2794literals.
2795
2796An action can be placed at any position in the rule;
704a47c4
AD
2797it is executed at that position. Most rules have just one action at the
2798end of the rule, following all the components. Actions in the middle of
2799a rule are tricky and used only for special purposes (@pxref{Mid-Rule
2800Actions, ,Actions in Mid-Rule}).
bfa74976
RS
2801
2802The C code in an action can refer to the semantic values of the components
2803matched by the rule with the construct @code{$@var{n}}, which stands for
2804the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
2805being constructed is @code{$$}. Bison translates both of these
2806constructs into expressions of the appropriate type when it copies the
2807actions into the parser file. @code{$$} is translated to a modifiable
2808lvalue, so it can be assigned to.
bfa74976
RS
2809
2810Here is a typical example:
2811
2812@example
2813@group
2814exp: @dots{}
2815 | exp '+' exp
2816 @{ $$ = $1 + $3; @}
2817@end group
2818@end example
2819
2820@noindent
2821This rule constructs an @code{exp} from two smaller @code{exp} groupings
2822connected by a plus-sign token. In the action, @code{$1} and @code{$3}
2823refer to the semantic values of the two component @code{exp} groupings,
2824which are the first and third symbols on the right hand side of the rule.
2825The sum is stored into @code{$$} so that it becomes the semantic value of
2826the addition-expression just recognized by the rule. If there were a
2827useful semantic value associated with the @samp{+} token, it could be
e0c471a9 2828referred to as @code{$2}.
bfa74976 2829
3ded9a63
AD
2830Note that the vertical-bar character @samp{|} is really a rule
2831separator, and actions are attached to a single rule. This is a
2832difference with tools like Flex, for which @samp{|} stands for either
2833``or'', or ``the same action as that of the next rule''. In the
2834following example, the action is triggered only when @samp{b} is found:
2835
2836@example
2837@group
2838a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
2839@end group
2840@end example
2841
bfa74976
RS
2842@cindex default action
2843If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
2844@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
2845becomes the value of the whole rule. Of course, the default action is
2846valid only if the two data types match. There is no meaningful default
2847action for an empty rule; every empty rule must have an explicit action
2848unless the rule's value does not matter.
bfa74976
RS
2849
2850@code{$@var{n}} with @var{n} zero or negative is allowed for reference
2851to tokens and groupings on the stack @emph{before} those that match the
2852current rule. This is a very risky practice, and to use it reliably
2853you must be certain of the context in which the rule is applied. Here
2854is a case in which you can use this reliably:
2855
2856@example
2857@group
2858foo: expr bar '+' expr @{ @dots{} @}
2859 | expr bar '-' expr @{ @dots{} @}
2860 ;
2861@end group
2862
2863@group
2864bar: /* empty */
2865 @{ previous_expr = $0; @}
2866 ;
2867@end group
2868@end example
2869
2870As long as @code{bar} is used only in the fashion shown here, @code{$0}
2871always refers to the @code{expr} which precedes @code{bar} in the
2872definition of @code{foo}.
2873
342b8b6e 2874@node Action Types
bfa74976
RS
2875@subsection Data Types of Values in Actions
2876@cindex action data types
2877@cindex data types in actions
2878
2879If you have chosen a single data type for semantic values, the @code{$$}
2880and @code{$@var{n}} constructs always have that data type.
2881
2882If you have used @code{%union} to specify a variety of data types, then you
2883must declare a choice among these types for each terminal or nonterminal
2884symbol that can have a semantic value. Then each time you use @code{$$} or
2885@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 2886in the rule. In this example,
bfa74976
RS
2887
2888@example
2889@group
2890exp: @dots{}
2891 | exp '+' exp
2892 @{ $$ = $1 + $3; @}
2893@end group
2894@end example
2895
2896@noindent
2897@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
2898have the data type declared for the nonterminal symbol @code{exp}. If
2899@code{$2} were used, it would have the data type declared for the
e0c471a9 2900terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
2901
2902Alternatively, you can specify the data type when you refer to the value,
2903by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
2904reference. For example, if you have defined types as shown here:
2905
2906@example
2907@group
2908%union @{
2909 int itype;
2910 double dtype;
2911@}
2912@end group
2913@end example
2914
2915@noindent
2916then you can write @code{$<itype>1} to refer to the first subunit of the
2917rule as an integer, or @code{$<dtype>1} to refer to it as a double.
2918
342b8b6e 2919@node Mid-Rule Actions
bfa74976
RS
2920@subsection Actions in Mid-Rule
2921@cindex actions in mid-rule
2922@cindex mid-rule actions
2923
2924Occasionally it is useful to put an action in the middle of a rule.
2925These actions are written just like usual end-of-rule actions, but they
2926are executed before the parser even recognizes the following components.
2927
2928A mid-rule action may refer to the components preceding it using
2929@code{$@var{n}}, but it may not refer to subsequent components because
2930it is run before they are parsed.
2931
2932The mid-rule action itself counts as one of the components of the rule.
2933This makes a difference when there is another action later in the same rule
2934(and usually there is another at the end): you have to count the actions
2935along with the symbols when working out which number @var{n} to use in
2936@code{$@var{n}}.
2937
2938The mid-rule action can also have a semantic value. The action can set
2939its value with an assignment to @code{$$}, and actions later in the rule
2940can refer to the value using @code{$@var{n}}. Since there is no symbol
2941to name the action, there is no way to declare a data type for the value
fdc6758b
MA
2942in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
2943specify a data type each time you refer to this value.
bfa74976
RS
2944
2945There is no way to set the value of the entire rule with a mid-rule
2946action, because assignments to @code{$$} do not have that effect. The
2947only way to set the value for the entire rule is with an ordinary action
2948at the end of the rule.
2949
2950Here is an example from a hypothetical compiler, handling a @code{let}
2951statement that looks like @samp{let (@var{variable}) @var{statement}} and
2952serves to create a variable named @var{variable} temporarily for the
2953duration of @var{statement}. To parse this construct, we must put
2954@var{variable} into the symbol table while @var{statement} is parsed, then
2955remove it afterward. Here is how it is done:
2956
2957@example
2958@group
2959stmt: LET '(' var ')'
2960 @{ $<context>$ = push_context ();
2961 declare_variable ($3); @}
2962 stmt @{ $$ = $6;
2963 pop_context ($<context>5); @}
2964@end group
2965@end example
2966
2967@noindent
2968As soon as @samp{let (@var{variable})} has been recognized, the first
2969action is run. It saves a copy of the current semantic context (the
2970list of accessible variables) as its semantic value, using alternative
2971@code{context} in the data-type union. Then it calls
2972@code{declare_variable} to add the new variable to that list. Once the
2973first action is finished, the embedded statement @code{stmt} can be
2974parsed. Note that the mid-rule action is component number 5, so the
2975@samp{stmt} is component number 6.
2976
2977After the embedded statement is parsed, its semantic value becomes the
2978value of the entire @code{let}-statement. Then the semantic value from the
2979earlier action is used to restore the prior list of variables. This
2980removes the temporary @code{let}-variable from the list so that it won't
2981appear to exist while the rest of the program is parsed.
2982
2983Taking action before a rule is completely recognized often leads to
2984conflicts since the parser must commit to a parse in order to execute the
2985action. For example, the following two rules, without mid-rule actions,
2986can coexist in a working parser because the parser can shift the open-brace
2987token and look at what follows before deciding whether there is a
2988declaration or not:
2989
2990@example
2991@group
2992compound: '@{' declarations statements '@}'
2993 | '@{' statements '@}'
2994 ;
2995@end group
2996@end example
2997
2998@noindent
2999But when we add a mid-rule action as follows, the rules become nonfunctional:
3000
3001@example
3002@group
3003compound: @{ prepare_for_local_variables (); @}
3004 '@{' declarations statements '@}'
3005@end group
3006@group
3007 | '@{' statements '@}'
3008 ;
3009@end group
3010@end example
3011
3012@noindent
3013Now the parser is forced to decide whether to run the mid-rule action
3014when it has read no farther than the open-brace. In other words, it
3015must commit to using one rule or the other, without sufficient
3016information to do it correctly. (The open-brace token is what is called
3017the @dfn{look-ahead} token at this time, since the parser is still
3018deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3019
3020You might think that you could correct the problem by putting identical
3021actions into the two rules, like this:
3022
3023@example
3024@group
3025compound: @{ prepare_for_local_variables (); @}
3026 '@{' declarations statements '@}'
3027 | @{ prepare_for_local_variables (); @}
3028 '@{' statements '@}'
3029 ;
3030@end group
3031@end example
3032
3033@noindent
3034But this does not help, because Bison does not realize that the two actions
3035are identical. (Bison never tries to understand the C code in an action.)
3036
3037If the grammar is such that a declaration can be distinguished from a
3038statement by the first token (which is true in C), then one solution which
3039does work is to put the action after the open-brace, like this:
3040
3041@example
3042@group
3043compound: '@{' @{ prepare_for_local_variables (); @}
3044 declarations statements '@}'
3045 | '@{' statements '@}'
3046 ;
3047@end group
3048@end example
3049
3050@noindent
3051Now the first token of the following declaration or statement,
3052which would in any case tell Bison which rule to use, can still do so.
3053
3054Another solution is to bury the action inside a nonterminal symbol which
3055serves as a subroutine:
3056
3057@example
3058@group
3059subroutine: /* empty */
3060 @{ prepare_for_local_variables (); @}
3061 ;
3062
3063@end group
3064
3065@group
3066compound: subroutine
3067 '@{' declarations statements '@}'
3068 | subroutine
3069 '@{' statements '@}'
3070 ;
3071@end group
3072@end example
3073
3074@noindent
3075Now Bison can execute the action in the rule for @code{subroutine} without
3076deciding which rule for @code{compound} it will eventually use. Note that
3077the action is now at the end of its rule. Any mid-rule action can be
3078converted to an end-of-rule action in this way, and this is what Bison
3079actually does to implement mid-rule actions.
3080
342b8b6e 3081@node Locations
847bf1f5
AD
3082@section Tracking Locations
3083@cindex location
95923bd6
AD
3084@cindex textual location
3085@cindex location, textual
847bf1f5
AD
3086
3087Though grammar rules and semantic actions are enough to write a fully
72d2299c 3088functional parser, it can be useful to process some additional information,
3e259915
MA
3089especially symbol locations.
3090
704a47c4
AD
3091The way locations are handled is defined by providing a data type, and
3092actions to take when rules are matched.
847bf1f5
AD
3093
3094@menu
3095* Location Type:: Specifying a data type for locations.
3096* Actions and Locations:: Using locations in actions.
3097* Location Default Action:: Defining a general way to compute locations.
3098@end menu
3099
342b8b6e 3100@node Location Type
847bf1f5
AD
3101@subsection Data Type of Locations
3102@cindex data type of locations
3103@cindex default location type
3104
3105Defining a data type for locations is much simpler than for semantic values,
3106since all tokens and groupings always use the same type.
3107
3108The type of locations is specified by defining a macro called @code{YYLTYPE}.
3109When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3110four members:
3111
3112@example
6273355b 3113typedef struct YYLTYPE
847bf1f5
AD
3114@{
3115 int first_line;
3116 int first_column;
3117 int last_line;
3118 int last_column;
6273355b 3119@} YYLTYPE;
847bf1f5
AD
3120@end example
3121
342b8b6e 3122@node Actions and Locations
847bf1f5
AD
3123@subsection Actions and Locations
3124@cindex location actions
3125@cindex actions, location
3126@vindex @@$
3127@vindex @@@var{n}
3128
3129Actions are not only useful for defining language semantics, but also for
3130describing the behavior of the output parser with locations.
3131
3132The most obvious way for building locations of syntactic groupings is very
72d2299c 3133similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3134constructs can be used to access the locations of the elements being matched.
3135The location of the @var{n}th component of the right hand side is
3136@code{@@@var{n}}, while the location of the left hand side grouping is
3137@code{@@$}.
3138
3e259915 3139Here is a basic example using the default data type for locations:
847bf1f5
AD
3140
3141@example
3142@group
3143exp: @dots{}
3e259915 3144 | exp '/' exp
847bf1f5 3145 @{
3e259915
MA
3146 @@$.first_column = @@1.first_column;
3147 @@$.first_line = @@1.first_line;
847bf1f5
AD
3148 @@$.last_column = @@3.last_column;
3149 @@$.last_line = @@3.last_line;
3e259915
MA
3150 if ($3)
3151 $$ = $1 / $3;
3152 else
3153 @{
3154 $$ = 1;
4e03e201
AD
3155 fprintf (stderr,
3156 "Division by zero, l%d,c%d-l%d,c%d",
3157 @@3.first_line, @@3.first_column,
3158 @@3.last_line, @@3.last_column);
3e259915 3159 @}
847bf1f5
AD
3160 @}
3161@end group
3162@end example
3163
3e259915 3164As for semantic values, there is a default action for locations that is
72d2299c 3165run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3166beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3167last symbol.
3e259915 3168
72d2299c 3169With this default action, the location tracking can be fully automatic. The
3e259915
MA
3170example above simply rewrites this way:
3171
3172@example
3173@group
3174exp: @dots{}
3175 | exp '/' exp
3176 @{
3177 if ($3)
3178 $$ = $1 / $3;
3179 else
3180 @{
3181 $$ = 1;
4e03e201
AD
3182 fprintf (stderr,
3183 "Division by zero, l%d,c%d-l%d,c%d",
3184 @@3.first_line, @@3.first_column,
3185 @@3.last_line, @@3.last_column);
3e259915
MA
3186 @}
3187 @}
3188@end group
3189@end example
847bf1f5 3190
342b8b6e 3191@node Location Default Action
847bf1f5
AD
3192@subsection Default Action for Locations
3193@vindex YYLLOC_DEFAULT
3194
72d2299c 3195Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3196locations are much more general than semantic values, there is room in
3197the output parser to redefine the default action to take for each
72d2299c 3198rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3199matched, before the associated action is run. It is also invoked
3200while processing a syntax error, to compute the error's location.
847bf1f5 3201
3e259915 3202Most of the time, this macro is general enough to suppress location
79282c6c 3203dedicated code from semantic actions.
847bf1f5 3204
72d2299c 3205The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d
PE
3206the location of the grouping (the result of the computation). When a
3207rule is matched, the second parameter is an array holding locations of
3208all right hand side elements of the rule being matched, and the third
3209parameter is the size of the rule's right hand side. When processing
3210a syntax error, the second parameter is an array holding locations of
3211the symbols that were discarded during error processing, and the third
3212parameter is the number of discarded symbols.
847bf1f5 3213
96b93a3d
PE
3214By default, @code{YYLLOC_DEFAULT} is defined this way for simple
3215@acronym{LALR}(1) parsers:
847bf1f5
AD
3216
3217@example
3218@group
0ae99356
PE
3219# define YYLLOC_DEFAULT(Current, Rhs, N) \
3220 ((Current).first_line = (Rhs)[1].first_line, \
3221 (Current).first_column = (Rhs)[1].first_column, \
3222 (Current).last_line = (Rhs)[N].last_line, \
3223 (Current).last_column = (Rhs)[N].last_column)
847bf1f5
AD
3224@end group
3225@end example
3226
676385e2 3227@noindent
c827f760 3228and like this for @acronym{GLR} parsers:
676385e2
PH
3229
3230@example
3231@group
0ae99356
PE
3232# define YYLLOC_DEFAULT(yyCurrent, yyRhs, YYN) \
3233 ((yyCurrent).first_line = YYRHSLOC(yyRhs, 1).first_line, \
3234 (yyCurrent).first_column = YYRHSLOC(yyRhs, 1).first_column, \
3235 (yyCurrent).last_line = YYRHSLOC(yyRhs, YYN).last_line, \
3236 (yyCurrent).last_column = YYRHSLOC(yyRhs, YYN).last_column)
676385e2
PH
3237@end group
3238@end example
3239
3e259915 3240When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3241
3e259915 3242@itemize @bullet
79282c6c 3243@item
72d2299c 3244All arguments are free of side-effects. However, only the first one (the
3e259915 3245result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3246
3e259915 3247@item
b2d52318
AD
3248For consistency with semantic actions, valid indexes for the location
3249array range from 1 to @var{n}.
0ae99356
PE
3250
3251@item
3252Your macro should parenthesize its arguments, if need be, since the
3253actual arguments may not be surrounded by parentheses. Also, your
3254macro should expand to something that can be used as a single
3255statement when it is followed by a semicolon.
3e259915 3256@end itemize
847bf1f5 3257
342b8b6e 3258@node Declarations
bfa74976
RS
3259@section Bison Declarations
3260@cindex declarations, Bison
3261@cindex Bison declarations
3262
3263The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3264used in formulating the grammar and the data types of semantic values.
3265@xref{Symbols}.
3266
3267All token type names (but not single-character literal tokens such as
3268@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3269declared if you need to specify which data type to use for the semantic
3270value (@pxref{Multiple Types, ,More Than One Value Type}).
3271
3272The first rule in the file also specifies the start symbol, by default.
3273If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3274it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3275Grammars}).
bfa74976
RS
3276
3277@menu
3278* Token Decl:: Declaring terminal symbols.
3279* Precedence Decl:: Declaring terminals with precedence and associativity.
3280* Union Decl:: Declaring the set of all semantic value types.
3281* Type Decl:: Declaring the choice of type for a nonterminal symbol.
72f889cc 3282* Destructor Decl:: Declaring how symbols are freed.
bfa74976
RS
3283* Expect Decl:: Suppressing warnings about shift/reduce conflicts.
3284* Start Decl:: Specifying the start symbol.
3285* Pure Decl:: Requesting a reentrant parser.
3286* Decl Summary:: Table of all Bison declarations.
3287@end menu
3288
342b8b6e 3289@node Token Decl
bfa74976
RS
3290@subsection Token Type Names
3291@cindex declaring token type names
3292@cindex token type names, declaring
931c7513 3293@cindex declaring literal string tokens
bfa74976
RS
3294@findex %token
3295
3296The basic way to declare a token type name (terminal symbol) is as follows:
3297
3298@example
3299%token @var{name}
3300@end example
3301
3302Bison will convert this into a @code{#define} directive in
3303the parser, so that the function @code{yylex} (if it is in this file)
3304can use the name @var{name} to stand for this token type's code.
3305
14ded682
AD
3306Alternatively, you can use @code{%left}, @code{%right}, or
3307@code{%nonassoc} instead of @code{%token}, if you wish to specify
3308associativity and precedence. @xref{Precedence Decl, ,Operator
3309Precedence}.
bfa74976
RS
3310
3311You can explicitly specify the numeric code for a token type by appending
3312an integer value in the field immediately following the token name:
3313
3314@example
3315%token NUM 300
3316@end example
3317
3318@noindent
3319It is generally best, however, to let Bison choose the numeric codes for
3320all token types. Bison will automatically select codes that don't conflict
e966383b 3321with each other or with normal characters.
bfa74976
RS
3322
3323In the event that the stack type is a union, you must augment the
3324@code{%token} or other token declaration to include the data type
704a47c4
AD
3325alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3326Than One Value Type}).
bfa74976
RS
3327
3328For example:
3329
3330@example
3331@group
3332%union @{ /* define stack type */
3333 double val;
3334 symrec *tptr;
3335@}
3336%token <val> NUM /* define token NUM and its type */
3337@end group
3338@end example
3339
931c7513
RS
3340You can associate a literal string token with a token type name by
3341writing the literal string at the end of a @code{%token}
3342declaration which declares the name. For example:
3343
3344@example
3345%token arrow "=>"
3346@end example
3347
3348@noindent
3349For example, a grammar for the C language might specify these names with
3350equivalent literal string tokens:
3351
3352@example
3353%token <operator> OR "||"
3354%token <operator> LE 134 "<="
3355%left OR "<="
3356@end example
3357
3358@noindent
3359Once you equate the literal string and the token name, you can use them
3360interchangeably in further declarations or the grammar rules. The
3361@code{yylex} function can use the token name or the literal string to
3362obtain the token type code number (@pxref{Calling Convention}).
3363
342b8b6e 3364@node Precedence Decl
bfa74976
RS
3365@subsection Operator Precedence
3366@cindex precedence declarations
3367@cindex declaring operator precedence
3368@cindex operator precedence, declaring
3369
3370Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3371declare a token and specify its precedence and associativity, all at
3372once. These are called @dfn{precedence declarations}.
704a47c4
AD
3373@xref{Precedence, ,Operator Precedence}, for general information on
3374operator precedence.
bfa74976
RS
3375
3376The syntax of a precedence declaration is the same as that of
3377@code{%token}: either
3378
3379@example
3380%left @var{symbols}@dots{}
3381@end example
3382
3383@noindent
3384or
3385
3386@example
3387%left <@var{type}> @var{symbols}@dots{}
3388@end example
3389
3390And indeed any of these declarations serves the purposes of @code{%token}.
3391But in addition, they specify the associativity and relative precedence for
3392all the @var{symbols}:
3393
3394@itemize @bullet
3395@item
3396The associativity of an operator @var{op} determines how repeated uses
3397of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3398@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3399grouping @var{y} with @var{z} first. @code{%left} specifies
3400left-associativity (grouping @var{x} with @var{y} first) and
3401@code{%right} specifies right-associativity (grouping @var{y} with
3402@var{z} first). @code{%nonassoc} specifies no associativity, which
3403means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3404considered a syntax error.
3405
3406@item
3407The precedence of an operator determines how it nests with other operators.
3408All the tokens declared in a single precedence declaration have equal
3409precedence and nest together according to their associativity.
3410When two tokens declared in different precedence declarations associate,
3411the one declared later has the higher precedence and is grouped first.
3412@end itemize
3413
342b8b6e 3414@node Union Decl
bfa74976
RS
3415@subsection The Collection of Value Types
3416@cindex declaring value types
3417@cindex value types, declaring
3418@findex %union
3419
3420The @code{%union} declaration specifies the entire collection of possible
3421data types for semantic values. The keyword @code{%union} is followed by a
3422pair of braces containing the same thing that goes inside a @code{union} in
13863333 3423C.
bfa74976
RS
3424
3425For example:
3426
3427@example
3428@group
3429%union @{
3430 double val;
3431 symrec *tptr;
3432@}
3433@end group
3434@end example
3435
3436@noindent
3437This says that the two alternative types are @code{double} and @code{symrec
3438*}. They are given names @code{val} and @code{tptr}; these names are used
3439in the @code{%token} and @code{%type} declarations to pick one of the types
3440for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3441
6273355b
PE
3442As an extension to @acronym{POSIX}, a tag is allowed after the
3443@code{union}. For example:
3444
3445@example
3446@group
3447%union value @{
3448 double val;
3449 symrec *tptr;
3450@}
3451@end group
3452@end example
3453
3454specifies the union tag @code{value}, so the corresponding C type is
3455@code{union value}. If you do not specify a tag, it defaults to
3456@code{YYSTYPE}.
3457
3458Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3459a semicolon after the closing brace.
3460
342b8b6e 3461@node Type Decl
bfa74976
RS
3462@subsection Nonterminal Symbols
3463@cindex declaring value types, nonterminals
3464@cindex value types, nonterminals, declaring
3465@findex %type
3466
3467@noindent
3468When you use @code{%union} to specify multiple value types, you must
3469declare the value type of each nonterminal symbol for which values are
3470used. This is done with a @code{%type} declaration, like this:
3471
3472@example
3473%type <@var{type}> @var{nonterminal}@dots{}
3474@end example
3475
3476@noindent
704a47c4
AD
3477Here @var{nonterminal} is the name of a nonterminal symbol, and
3478@var{type} is the name given in the @code{%union} to the alternative
3479that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3480can give any number of nonterminal symbols in the same @code{%type}
3481declaration, if they have the same value type. Use spaces to separate
3482the symbol names.
bfa74976 3483
931c7513
RS
3484You can also declare the value type of a terminal symbol. To do this,
3485use the same @code{<@var{type}>} construction in a declaration for the
3486terminal symbol. All kinds of token declarations allow
3487@code{<@var{type}>}.
3488
72f889cc
AD
3489@node Destructor Decl
3490@subsection Freeing Discarded Symbols
3491@cindex freeing discarded symbols
3492@findex %destructor
3493
3494Some symbols can be discarded by the parser, typically during error
3495recovery (@pxref{Error Recovery}). Basically, during error recovery,
3496embarrassing symbols already pushed on the stack, and embarrassing
3497tokens coming from the rest of the file are thrown away until the parser
3498falls on its feet. If these symbols convey heap based information, this
3499memory is lost. While this behavior is tolerable for batch parsers,
3500such as in compilers, it is unacceptable for parsers that can
3501possibility ``never end'' such as shells, or implementations of
3502communication protocols.
3503
3504The @code{%destructor} directive allows for the definition of code that
3505is called when a symbol is thrown away.
3506
3507@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3508@findex %destructor
3509Declare that the @var{code} must be invoked for each of the
3510@var{symbols} that will be discarded by the parser. The @var{code}
3511should use @code{$$} to designate the semantic value associated to the
a06ea4aa 3512@var{symbols}. The additional parser parameters are also available
72f889cc
AD
3513(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3514
3515@strong{Warning:} as of Bison 1.875, this feature is still considered as
96b93a3d 3516experimental, as there was not enough user feedback. In particular,
3df37415 3517the syntax might still change.
72f889cc
AD
3518@end deffn
3519
3520For instance:
3521
3522@smallexample
3523%union
3524@{
3525 char *string;
3526@}
3527%token <string> STRING
3528%type <string> string
3529%destructor @{ free ($$); @} STRING string
3530@end smallexample
3531
3532@noindent
3533guarantees that when a @code{STRING} or a @code{string} will be discarded,
3534its associated memory will be freed.
3535
3536Note that in the future, Bison might also consider that right hand side
3537members that are not mentioned in the action can be destroyed. For
3538instance, in:
3539
3540@smallexample
3541comment: "/*" STRING "*/";
3542@end smallexample
3543
3544@noindent
3545the parser is entitled to destroy the semantic value of the
3546@code{string}. Of course, this will not apply to the default action;
3547compare:
3548
3549@smallexample
3550typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3551typefull: string; // $$ = $1 applies, $1 is not destroyed.
3552@end smallexample
3553
342b8b6e 3554@node Expect Decl
bfa74976
RS
3555@subsection Suppressing Conflict Warnings
3556@cindex suppressing conflict warnings
3557@cindex preventing warnings about conflicts
3558@cindex warnings, preventing
3559@cindex conflicts, suppressing warnings of
3560@findex %expect
3561
3562Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3563(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3564have harmless shift/reduce conflicts which are resolved in a predictable
3565way and would be difficult to eliminate. It is desirable to suppress
3566the warning about these conflicts unless the number of conflicts
3567changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3568
3569The declaration looks like this:
3570
3571@example
3572%expect @var{n}
3573@end example
3574
7da99ede
AD
3575Here @var{n} is a decimal integer. The declaration says there should be
3576no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3577reduce/reduce conflicts. The usual warning is
7da99ede
AD
3578given if there are either more or fewer conflicts, or if there are any
3579reduce/reduce conflicts.
bfa74976
RS
3580
3581In general, using @code{%expect} involves these steps:
3582
3583@itemize @bullet
3584@item
3585Compile your grammar without @code{%expect}. Use the @samp{-v} option
3586to get a verbose list of where the conflicts occur. Bison will also
3587print the number of conflicts.
3588
3589@item
3590Check each of the conflicts to make sure that Bison's default
3591resolution is what you really want. If not, rewrite the grammar and
3592go back to the beginning.
3593
3594@item
3595Add an @code{%expect} declaration, copying the number @var{n} from the
3596number which Bison printed.
3597@end itemize
3598
69363a9e
PE
3599Now Bison will stop annoying you if you do not change the number of
3600conflicts, but it will warn you again if changes in the grammar result
3601in more or fewer conflicts.
bfa74976 3602
342b8b6e 3603@node Start Decl
bfa74976
RS
3604@subsection The Start-Symbol
3605@cindex declaring the start symbol
3606@cindex start symbol, declaring
3607@cindex default start symbol
3608@findex %start
3609
3610Bison assumes by default that the start symbol for the grammar is the first
3611nonterminal specified in the grammar specification section. The programmer
3612may override this restriction with the @code{%start} declaration as follows:
3613
3614@example
3615%start @var{symbol}
3616@end example
3617
342b8b6e 3618@node Pure Decl
bfa74976
RS
3619@subsection A Pure (Reentrant) Parser
3620@cindex reentrant parser
3621@cindex pure parser
8c9a50be 3622@findex %pure-parser
bfa74976
RS
3623
3624A @dfn{reentrant} program is one which does not alter in the course of
3625execution; in other words, it consists entirely of @dfn{pure} (read-only)
3626code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3627for example, a non-reentrant program may not be safe to call from a signal
3628handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3629program must be called only within interlocks.
3630
70811b85 3631Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3632suitable for most uses, and it permits compatibility with Yacc. (The
3633standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3634statically allocated variables for communication with @code{yylex},
3635including @code{yylval} and @code{yylloc}.)
bfa74976 3636
70811b85 3637Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3638declaration @code{%pure-parser} says that you want the parser to be
70811b85 3639reentrant. It looks like this:
bfa74976
RS
3640
3641@example
8c9a50be 3642%pure-parser
bfa74976
RS
3643@end example
3644
70811b85
RS
3645The result is that the communication variables @code{yylval} and
3646@code{yylloc} become local variables in @code{yyparse}, and a different
3647calling convention is used for the lexical analyzer function
3648@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3649Parsers}, for the details of this. The variable @code{yynerrs} also
3650becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3651Reporting Function @code{yyerror}}). The convention for calling
3652@code{yyparse} itself is unchanged.
3653
3654Whether the parser is pure has nothing to do with the grammar rules.
3655You can generate either a pure parser or a nonreentrant parser from any
3656valid grammar.
bfa74976 3657
342b8b6e 3658@node Decl Summary
bfa74976
RS
3659@subsection Bison Declaration Summary
3660@cindex Bison declaration summary
3661@cindex declaration summary
3662@cindex summary, Bison declaration
3663
d8988b2f 3664Here is a summary of the declarations used to define a grammar:
bfa74976 3665
18b519c0 3666@deffn {Directive} %union
bfa74976
RS
3667Declare the collection of data types that semantic values may have
3668(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 3669@end deffn
bfa74976 3670
18b519c0 3671@deffn {Directive} %token
bfa74976
RS
3672Declare a terminal symbol (token type name) with no precedence
3673or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 3674@end deffn
bfa74976 3675
18b519c0 3676@deffn {Directive} %right
bfa74976
RS
3677Declare a terminal symbol (token type name) that is right-associative
3678(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 3679@end deffn
bfa74976 3680
18b519c0 3681@deffn {Directive} %left
bfa74976
RS
3682Declare a terminal symbol (token type name) that is left-associative
3683(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 3684@end deffn
bfa74976 3685
18b519c0 3686@deffn {Directive} %nonassoc
bfa74976 3687Declare a terminal symbol (token type name) that is nonassociative
bfa74976 3688(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
3689Using it in a way that would be associative is a syntax error.
3690@end deffn
3691
91d2c560 3692@ifset defaultprec
39a06c25 3693@deffn {Directive} %default-prec
22fccf95 3694Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
3695(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
3696@end deffn
91d2c560 3697@end ifset
bfa74976 3698
18b519c0 3699@deffn {Directive} %type
bfa74976
RS
3700Declare the type of semantic values for a nonterminal symbol
3701(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 3702@end deffn
bfa74976 3703
18b519c0 3704@deffn {Directive} %start
89cab50d
AD
3705Specify the grammar's start symbol (@pxref{Start Decl, ,The
3706Start-Symbol}).
18b519c0 3707@end deffn
bfa74976 3708
18b519c0 3709@deffn {Directive} %expect
bfa74976
RS
3710Declare the expected number of shift-reduce conflicts
3711(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
3712@end deffn
3713
bfa74976 3714
d8988b2f
AD
3715@sp 1
3716@noindent
3717In order to change the behavior of @command{bison}, use the following
3718directives:
3719
18b519c0 3720@deffn {Directive} %debug
4947ebdb
PE
3721In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
3722already defined, so that the debugging facilities are compiled.
18b519c0 3723@end deffn
ec3bc396 3724@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 3725
18b519c0 3726@deffn {Directive} %defines
d8988b2f
AD
3727Write an extra output file containing macro definitions for the token
3728type names defined in the grammar and the semantic value type
3729@code{YYSTYPE}, as well as a few @code{extern} variable declarations.
3730
3731If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 3732is named @file{@var{name}.h}.
d8988b2f
AD
3733
3734This output file is essential if you wish to put the definition of
3735@code{yylex} in a separate source file, because @code{yylex} needs to
3736be able to refer to token type codes and the variable
e0c471a9 3737@code{yylval}. @xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 3738@end deffn
d8988b2f 3739
18b519c0 3740@deffn {Directive} %destructor
72f889cc
AD
3741Specifying how the parser should reclaim the memory associated to
3742discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 3743@end deffn
72f889cc 3744
18b519c0 3745@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
3746Specify a prefix to use for all Bison output file names. The names are
3747chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 3748@end deffn
d8988b2f 3749
18b519c0 3750@deffn {Directive} %locations
89cab50d
AD
3751Generate the code processing the locations (@pxref{Action Features,
3752,Special Features for Use in Actions}). This mode is enabled as soon as
3753the grammar uses the special @samp{@@@var{n}} tokens, but if your
3754grammar does not use it, using @samp{%locations} allows for more
6e649e65 3755accurate syntax error messages.
18b519c0 3756@end deffn
89cab50d 3757
18b519c0 3758@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
3759Rename the external symbols used in the parser so that they start with
3760@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
3761is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
3762@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
3763possible @code{yylloc}. For example, if you use
3764@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
3765and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
3766Program}.
18b519c0 3767@end deffn
931c7513 3768
91d2c560 3769@ifset defaultprec
22fccf95
PE
3770@deffn {Directive} %no-default-prec
3771Do not assign a precedence to rules lacking an explicit @code{%prec}
3772modifier (@pxref{Contextual Precedence, ,Context-Dependent
3773Precedence}).
3774@end deffn
91d2c560 3775@end ifset
22fccf95 3776
18b519c0 3777@deffn {Directive} %no-parser
6deb4447
AD
3778Do not include any C code in the parser file; generate tables only. The
3779parser file contains just @code{#define} directives and static variable
3780declarations.
3781
3782This option also tells Bison to write the C code for the grammar actions
3783into a file named @file{@var{filename}.act}, in the form of a
3784brace-surrounded body fit for a @code{switch} statement.
18b519c0 3785@end deffn
6deb4447 3786
18b519c0 3787@deffn {Directive} %no-lines
931c7513
RS
3788Don't generate any @code{#line} preprocessor commands in the parser
3789file. Ordinarily Bison writes these commands in the parser file so that
3790the C compiler and debuggers will associate errors and object code with
3791your source file (the grammar file). This directive causes them to
3792associate errors with the parser file, treating it an independent source
3793file in its own right.
18b519c0 3794@end deffn
931c7513 3795
18b519c0 3796@deffn {Directive} %output="@var{filename}"
d8988b2f 3797Specify the @var{filename} for the parser file.
18b519c0 3798@end deffn
6deb4447 3799
18b519c0 3800@deffn {Directive} %pure-parser
d8988b2f
AD
3801Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
3802(Reentrant) Parser}).
18b519c0 3803@end deffn
6deb4447 3804
18b519c0 3805@deffn {Directive} %token-table
931c7513
RS
3806Generate an array of token names in the parser file. The name of the
3807array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 3808token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
3809three elements of @code{yytname} correspond to the predefined tokens
3810@code{"$end"},
88bce5a2
AD
3811@code{"error"}, and @code{"$undefined"}; after these come the symbols
3812defined in the grammar file.
931c7513
RS
3813
3814For single-character literal tokens and literal string tokens, the name
3815in the table includes the single-quote or double-quote characters: for
3816example, @code{"'+'"} is a single-character literal and @code{"\"<=\""}
3817is a literal string token. All the characters of the literal string
3818token appear verbatim in the string found in the table; even
3819double-quote characters are not escaped. For example, if the token
3820consists of three characters @samp{*"*}, its string in @code{yytname}
3821contains @samp{"*"*"}. (In C, that would be written as
3822@code{"\"*\"*\""}).
3823
8c9a50be 3824When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
3825definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
3826@code{YYNRULES}, and @code{YYNSTATES}:
3827
3828@table @code
3829@item YYNTOKENS
3830The highest token number, plus one.
3831@item YYNNTS
9ecbd125 3832The number of nonterminal symbols.
931c7513
RS
3833@item YYNRULES
3834The number of grammar rules,
3835@item YYNSTATES
3836The number of parser states (@pxref{Parser States}).
3837@end table
18b519c0 3838@end deffn
d8988b2f 3839
18b519c0 3840@deffn {Directive} %verbose
d8988b2f
AD
3841Write an extra output file containing verbose descriptions of the
3842parser states and what is done for each type of look-ahead token in
72d2299c 3843that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 3844information.
18b519c0 3845@end deffn
d8988b2f 3846
18b519c0 3847@deffn {Directive} %yacc
d8988b2f
AD
3848Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
3849including its naming conventions. @xref{Bison Options}, for more.
18b519c0 3850@end deffn
d8988b2f
AD
3851
3852
342b8b6e 3853@node Multiple Parsers
bfa74976
RS
3854@section Multiple Parsers in the Same Program
3855
3856Most programs that use Bison parse only one language and therefore contain
3857only one Bison parser. But what if you want to parse more than one
3858language with the same program? Then you need to avoid a name conflict
3859between different definitions of @code{yyparse}, @code{yylval}, and so on.
3860
3861The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
3862(@pxref{Invocation, ,Invoking Bison}). This renames the interface
3863functions and variables of the Bison parser to start with @var{prefix}
3864instead of @samp{yy}. You can use this to give each parser distinct
3865names that do not conflict.
bfa74976
RS
3866
3867The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
3868@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
3869@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
3870the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
3871
3872@strong{All the other variables and macros associated with Bison are not
3873renamed.} These others are not global; there is no conflict if the same
3874name is used in different parsers. For example, @code{YYSTYPE} is not
3875renamed, but defining this in different ways in different parsers causes
3876no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
3877
3878The @samp{-p} option works by adding macro definitions to the beginning
3879of the parser source file, defining @code{yyparse} as
3880@code{@var{prefix}parse}, and so on. This effectively substitutes one
3881name for the other in the entire parser file.
3882
342b8b6e 3883@node Interface
bfa74976
RS
3884@chapter Parser C-Language Interface
3885@cindex C-language interface
3886@cindex interface
3887
3888The Bison parser is actually a C function named @code{yyparse}. Here we
3889describe the interface conventions of @code{yyparse} and the other
3890functions that it needs to use.
3891
3892Keep in mind that the parser uses many C identifiers starting with
3893@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
3894identifier (aside from those in this manual) in an action or in epilogue
3895in the grammar file, you are likely to run into trouble.
bfa74976
RS
3896
3897@menu
3898* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 3899* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
3900 which reads tokens.
3901* Error Reporting:: You must supply a function @code{yyerror}.
3902* Action Features:: Special features for use in actions.
3903@end menu
3904
342b8b6e 3905@node Parser Function
bfa74976
RS
3906@section The Parser Function @code{yyparse}
3907@findex yyparse
3908
3909You call the function @code{yyparse} to cause parsing to occur. This
3910function reads tokens, executes actions, and ultimately returns when it
3911encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
3912write an action which directs @code{yyparse} to return immediately
3913without reading further.
bfa74976 3914
2a8d363a
AD
3915
3916@deftypefun int yyparse (void)
bfa74976
RS
3917The value returned by @code{yyparse} is 0 if parsing was successful (return
3918is due to end-of-input).
3919
3920The value is 1 if parsing failed (return is due to a syntax error).
2a8d363a 3921@end deftypefun
bfa74976
RS
3922
3923In an action, you can cause immediate return from @code{yyparse} by using
3924these macros:
3925
2a8d363a 3926@defmac YYACCEPT
bfa74976
RS
3927@findex YYACCEPT
3928Return immediately with value 0 (to report success).
2a8d363a 3929@end defmac
bfa74976 3930
2a8d363a 3931@defmac YYABORT
bfa74976
RS
3932@findex YYABORT
3933Return immediately with value 1 (to report failure).
2a8d363a
AD
3934@end defmac
3935
3936If you use a reentrant parser, you can optionally pass additional
3937parameter information to it in a reentrant way. To do so, use the
3938declaration @code{%parse-param}:
3939
feeb0eda 3940@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 3941@findex %parse-param
feeb0eda 3942Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
3943additional @code{yyparse} argument.
3944The @var{argument-declaration} is used when declaring
feeb0eda
PE
3945functions or prototypes. The last identifier in
3946@var{argument-declaration} must be the argument name.
2a8d363a
AD
3947@end deffn
3948
3949Here's an example. Write this in the parser:
3950
3951@example
feeb0eda
PE
3952%parse-param @{int *nastiness@}
3953%parse-param @{int *randomness@}
2a8d363a
AD
3954@end example
3955
3956@noindent
3957Then call the parser like this:
3958
3959@example
3960@{
3961 int nastiness, randomness;
3962 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
3963 value = yyparse (&nastiness, &randomness);
3964 @dots{}
3965@}
3966@end example
3967
3968@noindent
3969In the grammar actions, use expressions like this to refer to the data:
3970
3971@example
3972exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
3973@end example
3974
bfa74976 3975
342b8b6e 3976@node Lexical
bfa74976
RS
3977@section The Lexical Analyzer Function @code{yylex}
3978@findex yylex
3979@cindex lexical analyzer
3980
3981The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
3982the input stream and returns them to the parser. Bison does not create
3983this function automatically; you must write it so that @code{yyparse} can
3984call it. The function is sometimes referred to as a lexical scanner.
3985
3986In simple programs, @code{yylex} is often defined at the end of the Bison
3987grammar file. If @code{yylex} is defined in a separate source file, you
3988need to arrange for the token-type macro definitions to be available there.
3989To do this, use the @samp{-d} option when you run Bison, so that it will
3990write these macro definitions into a separate header file
3991@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 3992that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
3993
3994@menu
3995* Calling Convention:: How @code{yyparse} calls @code{yylex}.
3996* Token Values:: How @code{yylex} must return the semantic value
3997 of the token it has read.
95923bd6 3998* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
3999 (line number, etc.) of the token, if the
4000 actions want that.
4001* Pure Calling:: How the calling convention differs
4002 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4003@end menu
4004
342b8b6e 4005@node Calling Convention
bfa74976
RS
4006@subsection Calling Convention for @code{yylex}
4007
72d2299c
PE
4008The value that @code{yylex} returns must be the positive numeric code
4009for the type of token it has just found; a zero or negative value
4010signifies end-of-input.
bfa74976
RS
4011
4012When a token is referred to in the grammar rules by a name, that name
4013in the parser file becomes a C macro whose definition is the proper
4014numeric code for that token type. So @code{yylex} can use the name
4015to indicate that type. @xref{Symbols}.
4016
4017When a token is referred to in the grammar rules by a character literal,
4018the numeric code for that character is also the code for the token type.
72d2299c
PE
4019So @code{yylex} can simply return that character code, possibly converted
4020to @code{unsigned char} to avoid sign-extension. The null character
4021must not be used this way, because its code is zero and that
bfa74976
RS
4022signifies end-of-input.
4023
4024Here is an example showing these things:
4025
4026@example
13863333
AD
4027int
4028yylex (void)
bfa74976
RS
4029@{
4030 @dots{}
72d2299c 4031 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4032 return 0;
4033 @dots{}
4034 if (c == '+' || c == '-')
72d2299c 4035 return c; /* Assume token type for `+' is '+'. */
bfa74976 4036 @dots{}
72d2299c 4037 return INT; /* Return the type of the token. */
bfa74976
RS
4038 @dots{}
4039@}
4040@end example
4041
4042@noindent
4043This interface has been designed so that the output from the @code{lex}
4044utility can be used without change as the definition of @code{yylex}.
4045
931c7513
RS
4046If the grammar uses literal string tokens, there are two ways that
4047@code{yylex} can determine the token type codes for them:
4048
4049@itemize @bullet
4050@item
4051If the grammar defines symbolic token names as aliases for the
4052literal string tokens, @code{yylex} can use these symbolic names like
4053all others. In this case, the use of the literal string tokens in
4054the grammar file has no effect on @code{yylex}.
4055
4056@item
9ecbd125 4057@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4058table. The index of the token in the table is the token type's code.
9ecbd125 4059The name of a multicharacter token is recorded in @code{yytname} with a
931c7513
RS
4060double-quote, the token's characters, and another double-quote. The
4061token's characters are not escaped in any way; they appear verbatim in
4062the contents of the string in the table.
4063
4064Here's code for looking up a token in @code{yytname}, assuming that the
4065characters of the token are stored in @code{token_buffer}.
4066
4067@smallexample
4068for (i = 0; i < YYNTOKENS; i++)
4069 @{
4070 if (yytname[i] != 0
4071 && yytname[i][0] == '"'
68449b3a
PE
4072 && ! strncmp (yytname[i] + 1, token_buffer,
4073 strlen (token_buffer))
931c7513
RS
4074 && yytname[i][strlen (token_buffer) + 1] == '"'
4075 && yytname[i][strlen (token_buffer) + 2] == 0)
4076 break;
4077 @}
4078@end smallexample
4079
4080The @code{yytname} table is generated only if you use the
8c9a50be 4081@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4082@end itemize
4083
342b8b6e 4084@node Token Values
bfa74976
RS
4085@subsection Semantic Values of Tokens
4086
4087@vindex yylval
14ded682 4088In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4089be stored into the global variable @code{yylval}. When you are using
4090just one data type for semantic values, @code{yylval} has that type.
4091Thus, if the type is @code{int} (the default), you might write this in
4092@code{yylex}:
4093
4094@example
4095@group
4096 @dots{}
72d2299c
PE
4097 yylval = value; /* Put value onto Bison stack. */
4098 return INT; /* Return the type of the token. */
bfa74976
RS
4099 @dots{}
4100@end group
4101@end example
4102
4103When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4104made from the @code{%union} declaration (@pxref{Union Decl, ,The
4105Collection of Value Types}). So when you store a token's value, you
4106must use the proper member of the union. If the @code{%union}
4107declaration looks like this:
bfa74976
RS
4108
4109@example
4110@group
4111%union @{
4112 int intval;
4113 double val;
4114 symrec *tptr;
4115@}
4116@end group
4117@end example
4118
4119@noindent
4120then the code in @code{yylex} might look like this:
4121
4122@example
4123@group
4124 @dots{}
72d2299c
PE
4125 yylval.intval = value; /* Put value onto Bison stack. */
4126 return INT; /* Return the type of the token. */
bfa74976
RS
4127 @dots{}
4128@end group
4129@end example
4130
95923bd6
AD
4131@node Token Locations
4132@subsection Textual Locations of Tokens
bfa74976
RS
4133
4134@vindex yylloc
847bf1f5
AD
4135If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4136Tracking Locations}) in actions to keep track of the
89cab50d
AD
4137textual locations of tokens and groupings, then you must provide this
4138information in @code{yylex}. The function @code{yyparse} expects to
4139find the textual location of a token just parsed in the global variable
4140@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4141variable.
4142
4143By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4144initialize the members that are going to be used by the actions. The
4145four members are called @code{first_line}, @code{first_column},
4146@code{last_line} and @code{last_column}. Note that the use of this
4147feature makes the parser noticeably slower.
bfa74976
RS
4148
4149@tindex YYLTYPE
4150The data type of @code{yylloc} has the name @code{YYLTYPE}.
4151
342b8b6e 4152@node Pure Calling
c656404a 4153@subsection Calling Conventions for Pure Parsers
bfa74976 4154
8c9a50be 4155When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4156pure, reentrant parser, the global communication variables @code{yylval}
4157and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4158Parser}.) In such parsers the two global variables are replaced by
4159pointers passed as arguments to @code{yylex}. You must declare them as
4160shown here, and pass the information back by storing it through those
4161pointers.
bfa74976
RS
4162
4163@example
13863333
AD
4164int
4165yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4166@{
4167 @dots{}
4168 *lvalp = value; /* Put value onto Bison stack. */
4169 return INT; /* Return the type of the token. */
4170 @dots{}
4171@}
4172@end example
4173
4174If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4175textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4176this case, omit the second argument; @code{yylex} will be called with
4177only one argument.
4178
e425e872 4179
2a8d363a
AD
4180If you wish to pass the additional parameter data to @code{yylex}, use
4181@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4182Function}).
e425e872 4183
feeb0eda 4184@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4185@findex %lex-param
feeb0eda
PE
4186Declare that @code{argument-declaration} is an additional @code{yylex}
4187argument declaration.
2a8d363a 4188@end deffn
e425e872 4189
2a8d363a 4190For instance:
e425e872
RS
4191
4192@example
feeb0eda
PE
4193%parse-param @{int *nastiness@}
4194%lex-param @{int *nastiness@}
4195%parse-param @{int *randomness@}
e425e872
RS
4196@end example
4197
4198@noindent
2a8d363a 4199results in the following signature:
e425e872
RS
4200
4201@example
2a8d363a
AD
4202int yylex (int *nastiness);
4203int yyparse (int *nastiness, int *randomness);
e425e872
RS
4204@end example
4205
2a8d363a 4206If @code{%pure-parser} is added:
c656404a
RS
4207
4208@example
2a8d363a
AD
4209int yylex (YYSTYPE *lvalp, int *nastiness);
4210int yyparse (int *nastiness, int *randomness);
c656404a
RS
4211@end example
4212
2a8d363a
AD
4213@noindent
4214and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4215
2a8d363a
AD
4216@example
4217int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4218int yyparse (int *nastiness, int *randomness);
4219@end example
931c7513 4220
342b8b6e 4221@node Error Reporting
bfa74976
RS
4222@section The Error Reporting Function @code{yyerror}
4223@cindex error reporting function
4224@findex yyerror
4225@cindex parse error
4226@cindex syntax error
4227
6e649e65 4228The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4229whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4230action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4231macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4232in Actions}).
bfa74976
RS
4233
4234The Bison parser expects to report the error by calling an error
4235reporting function named @code{yyerror}, which you must supply. It is
4236called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4237receives one argument. For a syntax error, the string is normally
4238@w{@code{"syntax error"}}.
bfa74976 4239
2a8d363a
AD
4240@findex %error-verbose
4241If you invoke the directive @code{%error-verbose} in the Bison
4242declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4243Section}), then Bison provides a more verbose and specific error message
6e649e65 4244string instead of just plain @w{@code{"syntax error"}}.
bfa74976
RS
4245
4246The parser can detect one other kind of error: stack overflow. This
4247happens when the input contains constructions that are very deeply
4248nested. It isn't likely you will encounter this, since the Bison
4249parser extends its stack automatically up to a very large limit. But
4250if overflow happens, @code{yyparse} calls @code{yyerror} in the usual
4251fashion, except that the argument string is @w{@code{"parser stack
4252overflow"}}.
4253
4254The following definition suffices in simple programs:
4255
4256@example
4257@group
13863333 4258void
38a92d50 4259yyerror (char const *s)
bfa74976
RS
4260@{
4261@end group
4262@group
4263 fprintf (stderr, "%s\n", s);
4264@}
4265@end group
4266@end example
4267
4268After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4269error recovery if you have written suitable error recovery grammar rules
4270(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4271immediately return 1.
4272
93724f13 4273Obviously, in location tracking pure parsers, @code{yyerror} should have
2a8d363a
AD
4274an access to the current location. This is indeed the case for the GLR
4275parsers, but not for the Yacc parser, for historical reasons. I.e., if
4276@samp{%locations %pure-parser} is passed then the prototypes for
4277@code{yyerror} are:
4278
4279@example
38a92d50
PE
4280void yyerror (char const *msg); /* Yacc parsers. */
4281void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4282@end example
4283
feeb0eda 4284If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4285
4286@example
b317297e
PE
4287void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4288void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4289@end example
4290
4291Finally, GLR and Yacc parsers share the same @code{yyerror} calling
4292convention for absolutely pure parsers, i.e., when the calling
4293convention of @code{yylex} @emph{and} the calling convention of
4294@code{%pure-parser} are pure. I.e.:
4295
4296@example
4297/* Location tracking. */
4298%locations
4299/* Pure yylex. */
4300%pure-parser
feeb0eda 4301%lex-param @{int *nastiness@}
2a8d363a 4302/* Pure yyparse. */
feeb0eda
PE
4303%parse-param @{int *nastiness@}
4304%parse-param @{int *randomness@}
2a8d363a
AD
4305@end example
4306
4307@noindent
4308results in the following signatures for all the parser kinds:
4309
4310@example
4311int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4312int yyparse (int *nastiness, int *randomness);
93724f13
AD
4313void yyerror (YYLTYPE *locp,
4314 int *nastiness, int *randomness,
38a92d50 4315 char const *msg);
2a8d363a
AD
4316@end example
4317
1c0c3e95 4318@noindent
38a92d50
PE
4319The prototypes are only indications of how the code produced by Bison
4320uses @code{yyerror}. Bison-generated code always ignores the returned
4321value, so @code{yyerror} can return any type, including @code{void}.
4322Also, @code{yyerror} can be a variadic function; that is why the
4323message is always passed last.
4324
4325Traditionally @code{yyerror} returns an @code{int} that is always
4326ignored, but this is purely for historical reasons, and @code{void} is
4327preferable since it more accurately describes the return type for
4328@code{yyerror}.
93724f13 4329
bfa74976
RS
4330@vindex yynerrs
4331The variable @code{yynerrs} contains the number of syntax errors
4332encountered so far. Normally this variable is global; but if you
704a47c4
AD
4333request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4334then it is a local variable which only the actions can access.
bfa74976 4335
342b8b6e 4336@node Action Features
bfa74976
RS
4337@section Special Features for Use in Actions
4338@cindex summary, action features
4339@cindex action features summary
4340
4341Here is a table of Bison constructs, variables and macros that
4342are useful in actions.
4343
18b519c0 4344@deffn {Variable} $$
bfa74976
RS
4345Acts like a variable that contains the semantic value for the
4346grouping made by the current rule. @xref{Actions}.
18b519c0 4347@end deffn
bfa74976 4348
18b519c0 4349@deffn {Variable} $@var{n}
bfa74976
RS
4350Acts like a variable that contains the semantic value for the
4351@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4352@end deffn
bfa74976 4353
18b519c0 4354@deffn {Variable} $<@var{typealt}>$
bfa74976 4355Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4356specified by the @code{%union} declaration. @xref{Action Types, ,Data
4357Types of Values in Actions}.
18b519c0 4358@end deffn
bfa74976 4359
18b519c0 4360@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4361Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4362union specified by the @code{%union} declaration.
e0c471a9 4363@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4364@end deffn
bfa74976 4365
18b519c0 4366@deffn {Macro} YYABORT;
bfa74976
RS
4367Return immediately from @code{yyparse}, indicating failure.
4368@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4369@end deffn
bfa74976 4370
18b519c0 4371@deffn {Macro} YYACCEPT;
bfa74976
RS
4372Return immediately from @code{yyparse}, indicating success.
4373@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4374@end deffn
bfa74976 4375
18b519c0 4376@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4377@findex YYBACKUP
4378Unshift a token. This macro is allowed only for rules that reduce
4379a single value, and only when there is no look-ahead token.
c827f760 4380It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4381It installs a look-ahead token with token type @var{token} and
4382semantic value @var{value}; then it discards the value that was
4383going to be reduced by this rule.
4384
4385If the macro is used when it is not valid, such as when there is
4386a look-ahead token already, then it reports a syntax error with
4387a message @samp{cannot back up} and performs ordinary error
4388recovery.
4389
4390In either case, the rest of the action is not executed.
18b519c0 4391@end deffn
bfa74976 4392
18b519c0 4393@deffn {Macro} YYEMPTY
bfa74976
RS
4394@vindex YYEMPTY
4395Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4396@end deffn
bfa74976 4397
18b519c0 4398@deffn {Macro} YYERROR;
bfa74976
RS
4399@findex YYERROR
4400Cause an immediate syntax error. This statement initiates error
4401recovery just as if the parser itself had detected an error; however, it
4402does not call @code{yyerror}, and does not print any message. If you
4403want to print an error message, call @code{yyerror} explicitly before
4404the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4405@end deffn
bfa74976 4406
18b519c0 4407@deffn {Macro} YYRECOVERING
bfa74976
RS
4408This macro stands for an expression that has the value 1 when the parser
4409is recovering from a syntax error, and 0 the rest of the time.
4410@xref{Error Recovery}.
18b519c0 4411@end deffn
bfa74976 4412
18b519c0 4413@deffn {Variable} yychar
bfa74976
RS
4414Variable containing the current look-ahead token. (In a pure parser,
4415this is actually a local variable within @code{yyparse}.) When there is
4416no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4417@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4418@end deffn
bfa74976 4419
18b519c0 4420@deffn {Macro} yyclearin;
bfa74976
RS
4421Discard the current look-ahead token. This is useful primarily in
4422error rules. @xref{Error Recovery}.
18b519c0 4423@end deffn
bfa74976 4424
18b519c0 4425@deffn {Macro} yyerrok;
bfa74976 4426Resume generating error messages immediately for subsequent syntax
13863333 4427errors. This is useful primarily in error rules.
bfa74976 4428@xref{Error Recovery}.
18b519c0 4429@end deffn
bfa74976 4430
18b519c0 4431@deffn {Value} @@$
847bf1f5 4432@findex @@$
95923bd6 4433Acts like a structure variable containing information on the textual location
847bf1f5
AD
4434of the grouping made by the current rule. @xref{Locations, ,
4435Tracking Locations}.
bfa74976 4436
847bf1f5
AD
4437@c Check if those paragraphs are still useful or not.
4438
4439@c @example
4440@c struct @{
4441@c int first_line, last_line;
4442@c int first_column, last_column;
4443@c @};
4444@c @end example
4445
4446@c Thus, to get the starting line number of the third component, you would
4447@c use @samp{@@3.first_line}.
bfa74976 4448
847bf1f5
AD
4449@c In order for the members of this structure to contain valid information,
4450@c you must make @code{yylex} supply this information about each token.
4451@c If you need only certain members, then @code{yylex} need only fill in
4452@c those members.
bfa74976 4453
847bf1f5 4454@c The use of this feature makes the parser noticeably slower.
18b519c0 4455@end deffn
847bf1f5 4456
18b519c0 4457@deffn {Value} @@@var{n}
847bf1f5 4458@findex @@@var{n}
95923bd6 4459Acts like a structure variable containing information on the textual location
847bf1f5
AD
4460of the @var{n}th component of the current rule. @xref{Locations, ,
4461Tracking Locations}.
18b519c0 4462@end deffn
bfa74976 4463
bfa74976 4464
342b8b6e 4465@node Algorithm
13863333
AD
4466@chapter The Bison Parser Algorithm
4467@cindex Bison parser algorithm
bfa74976
RS
4468@cindex algorithm of parser
4469@cindex shifting
4470@cindex reduction
4471@cindex parser stack
4472@cindex stack, parser
4473
4474As Bison reads tokens, it pushes them onto a stack along with their
4475semantic values. The stack is called the @dfn{parser stack}. Pushing a
4476token is traditionally called @dfn{shifting}.
4477
4478For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4479@samp{3} to come. The stack will have four elements, one for each token
4480that was shifted.
4481
4482But the stack does not always have an element for each token read. When
4483the last @var{n} tokens and groupings shifted match the components of a
4484grammar rule, they can be combined according to that rule. This is called
4485@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4486single grouping whose symbol is the result (left hand side) of that rule.
4487Running the rule's action is part of the process of reduction, because this
4488is what computes the semantic value of the resulting grouping.
4489
4490For example, if the infix calculator's parser stack contains this:
4491
4492@example
44931 + 5 * 3
4494@end example
4495
4496@noindent
4497and the next input token is a newline character, then the last three
4498elements can be reduced to 15 via the rule:
4499
4500@example
4501expr: expr '*' expr;
4502@end example
4503
4504@noindent
4505Then the stack contains just these three elements:
4506
4507@example
45081 + 15
4509@end example
4510
4511@noindent
4512At this point, another reduction can be made, resulting in the single value
451316. Then the newline token can be shifted.
4514
4515The parser tries, by shifts and reductions, to reduce the entire input down
4516to a single grouping whose symbol is the grammar's start-symbol
4517(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4518
4519This kind of parser is known in the literature as a bottom-up parser.
4520
4521@menu
4522* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4523* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4524* Precedence:: Operator precedence works by resolving conflicts.
4525* Contextual Precedence:: When an operator's precedence depends on context.
4526* Parser States:: The parser is a finite-state-machine with stack.
4527* Reduce/Reduce:: When two rules are applicable in the same situation.
4528* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4529* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
4530* Stack Overflow:: What happens when stack gets full. How to avoid it.
4531@end menu
4532
342b8b6e 4533@node Look-Ahead
bfa74976
RS
4534@section Look-Ahead Tokens
4535@cindex look-ahead token
4536
4537The Bison parser does @emph{not} always reduce immediately as soon as the
4538last @var{n} tokens and groupings match a rule. This is because such a
4539simple strategy is inadequate to handle most languages. Instead, when a
4540reduction is possible, the parser sometimes ``looks ahead'' at the next
4541token in order to decide what to do.
4542
4543When a token is read, it is not immediately shifted; first it becomes the
4544@dfn{look-ahead token}, which is not on the stack. Now the parser can
4545perform one or more reductions of tokens and groupings on the stack, while
4546the look-ahead token remains off to the side. When no more reductions
4547should take place, the look-ahead token is shifted onto the stack. This
4548does not mean that all possible reductions have been done; depending on the
4549token type of the look-ahead token, some rules may choose to delay their
4550application.
4551
4552Here is a simple case where look-ahead is needed. These three rules define
4553expressions which contain binary addition operators and postfix unary
4554factorial operators (@samp{!}), and allow parentheses for grouping.
4555
4556@example
4557@group
4558expr: term '+' expr
4559 | term
4560 ;
4561@end group
4562
4563@group
4564term: '(' expr ')'
4565 | term '!'
4566 | NUMBER
4567 ;
4568@end group
4569@end example
4570
4571Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
4572should be done? If the following token is @samp{)}, then the first three
4573tokens must be reduced to form an @code{expr}. This is the only valid
4574course, because shifting the @samp{)} would produce a sequence of symbols
4575@w{@code{term ')'}}, and no rule allows this.
4576
4577If the following token is @samp{!}, then it must be shifted immediately so
4578that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
4579parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
4580@code{expr}. It would then be impossible to shift the @samp{!} because
4581doing so would produce on the stack the sequence of symbols @code{expr
4582'!'}. No rule allows that sequence.
4583
4584@vindex yychar
4585The current look-ahead token is stored in the variable @code{yychar}.
4586@xref{Action Features, ,Special Features for Use in Actions}.
4587
342b8b6e 4588@node Shift/Reduce
bfa74976
RS
4589@section Shift/Reduce Conflicts
4590@cindex conflicts
4591@cindex shift/reduce conflicts
4592@cindex dangling @code{else}
4593@cindex @code{else}, dangling
4594
4595Suppose we are parsing a language which has if-then and if-then-else
4596statements, with a pair of rules like this:
4597
4598@example
4599@group
4600if_stmt:
4601 IF expr THEN stmt
4602 | IF expr THEN stmt ELSE stmt
4603 ;
4604@end group
4605@end example
4606
4607@noindent
4608Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
4609terminal symbols for specific keyword tokens.
4610
4611When the @code{ELSE} token is read and becomes the look-ahead token, the
4612contents of the stack (assuming the input is valid) are just right for
4613reduction by the first rule. But it is also legitimate to shift the
4614@code{ELSE}, because that would lead to eventual reduction by the second
4615rule.
4616
4617This situation, where either a shift or a reduction would be valid, is
4618called a @dfn{shift/reduce conflict}. Bison is designed to resolve
4619these conflicts by choosing to shift, unless otherwise directed by
4620operator precedence declarations. To see the reason for this, let's
4621contrast it with the other alternative.
4622
4623Since the parser prefers to shift the @code{ELSE}, the result is to attach
4624the else-clause to the innermost if-statement, making these two inputs
4625equivalent:
4626
4627@example
4628if x then if y then win (); else lose;
4629
4630if x then do; if y then win (); else lose; end;
4631@end example
4632
4633But if the parser chose to reduce when possible rather than shift, the
4634result would be to attach the else-clause to the outermost if-statement,
4635making these two inputs equivalent:
4636
4637@example
4638if x then if y then win (); else lose;
4639
4640if x then do; if y then win (); end; else lose;
4641@end example
4642
4643The conflict exists because the grammar as written is ambiguous: either
4644parsing of the simple nested if-statement is legitimate. The established
4645convention is that these ambiguities are resolved by attaching the
4646else-clause to the innermost if-statement; this is what Bison accomplishes
4647by choosing to shift rather than reduce. (It would ideally be cleaner to
4648write an unambiguous grammar, but that is very hard to do in this case.)
4649This particular ambiguity was first encountered in the specifications of
4650Algol 60 and is called the ``dangling @code{else}'' ambiguity.
4651
4652To avoid warnings from Bison about predictable, legitimate shift/reduce
4653conflicts, use the @code{%expect @var{n}} declaration. There will be no
4654warning as long as the number of shift/reduce conflicts is exactly @var{n}.
4655@xref{Expect Decl, ,Suppressing Conflict Warnings}.
4656
4657The definition of @code{if_stmt} above is solely to blame for the
4658conflict, but the conflict does not actually appear without additional
4659rules. Here is a complete Bison input file that actually manifests the
4660conflict:
4661
4662@example
4663@group
4664%token IF THEN ELSE variable
4665%%
4666@end group
4667@group
4668stmt: expr
4669 | if_stmt
4670 ;
4671@end group
4672
4673@group
4674if_stmt:
4675 IF expr THEN stmt
4676 | IF expr THEN stmt ELSE stmt
4677 ;
4678@end group
4679
4680expr: variable
4681 ;
4682@end example
4683
342b8b6e 4684@node Precedence
bfa74976
RS
4685@section Operator Precedence
4686@cindex operator precedence
4687@cindex precedence of operators
4688
4689Another situation where shift/reduce conflicts appear is in arithmetic
4690expressions. Here shifting is not always the preferred resolution; the
4691Bison declarations for operator precedence allow you to specify when to
4692shift and when to reduce.
4693
4694@menu
4695* Why Precedence:: An example showing why precedence is needed.
4696* Using Precedence:: How to specify precedence in Bison grammars.
4697* Precedence Examples:: How these features are used in the previous example.
4698* How Precedence:: How they work.
4699@end menu
4700
342b8b6e 4701@node Why Precedence
bfa74976
RS
4702@subsection When Precedence is Needed
4703
4704Consider the following ambiguous grammar fragment (ambiguous because the
4705input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
4706
4707@example
4708@group
4709expr: expr '-' expr
4710 | expr '*' expr
4711 | expr '<' expr
4712 | '(' expr ')'
4713 @dots{}
4714 ;
4715@end group
4716@end example
4717
4718@noindent
4719Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
4720should it reduce them via the rule for the subtraction operator? It
4721depends on the next token. Of course, if the next token is @samp{)}, we
4722must reduce; shifting is invalid because no single rule can reduce the
4723token sequence @w{@samp{- 2 )}} or anything starting with that. But if
4724the next token is @samp{*} or @samp{<}, we have a choice: either
4725shifting or reduction would allow the parse to complete, but with
4726different results.
4727
4728To decide which one Bison should do, we must consider the results. If
4729the next operator token @var{op} is shifted, then it must be reduced
4730first in order to permit another opportunity to reduce the difference.
4731The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
4732hand, if the subtraction is reduced before shifting @var{op}, the result
4733is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
4734reduce should depend on the relative precedence of the operators
4735@samp{-} and @var{op}: @samp{*} should be shifted first, but not
4736@samp{<}.
bfa74976
RS
4737
4738@cindex associativity
4739What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
4740@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
4741operators we prefer the former, which is called @dfn{left association}.
4742The latter alternative, @dfn{right association}, is desirable for
4743assignment operators. The choice of left or right association is a
4744matter of whether the parser chooses to shift or reduce when the stack
4745contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
4746makes right-associativity.
bfa74976 4747
342b8b6e 4748@node Using Precedence
bfa74976
RS
4749@subsection Specifying Operator Precedence
4750@findex %left
4751@findex %right
4752@findex %nonassoc
4753
4754Bison allows you to specify these choices with the operator precedence
4755declarations @code{%left} and @code{%right}. Each such declaration
4756contains a list of tokens, which are operators whose precedence and
4757associativity is being declared. The @code{%left} declaration makes all
4758those operators left-associative and the @code{%right} declaration makes
4759them right-associative. A third alternative is @code{%nonassoc}, which
4760declares that it is a syntax error to find the same operator twice ``in a
4761row''.
4762
4763The relative precedence of different operators is controlled by the
4764order in which they are declared. The first @code{%left} or
4765@code{%right} declaration in the file declares the operators whose
4766precedence is lowest, the next such declaration declares the operators
4767whose precedence is a little higher, and so on.
4768
342b8b6e 4769@node Precedence Examples
bfa74976
RS
4770@subsection Precedence Examples
4771
4772In our example, we would want the following declarations:
4773
4774@example
4775%left '<'
4776%left '-'
4777%left '*'
4778@end example
4779
4780In a more complete example, which supports other operators as well, we
4781would declare them in groups of equal precedence. For example, @code{'+'} is
4782declared with @code{'-'}:
4783
4784@example
4785%left '<' '>' '=' NE LE GE
4786%left '+' '-'
4787%left '*' '/'
4788@end example
4789
4790@noindent
4791(Here @code{NE} and so on stand for the operators for ``not equal''
4792and so on. We assume that these tokens are more than one character long
4793and therefore are represented by names, not character literals.)
4794
342b8b6e 4795@node How Precedence
bfa74976
RS
4796@subsection How Precedence Works
4797
4798The first effect of the precedence declarations is to assign precedence
4799levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
4800precedence levels to certain rules: each rule gets its precedence from
4801the last terminal symbol mentioned in the components. (You can also
4802specify explicitly the precedence of a rule. @xref{Contextual
4803Precedence, ,Context-Dependent Precedence}.)
4804
4805Finally, the resolution of conflicts works by comparing the precedence
4806of the rule being considered with that of the look-ahead token. If the
4807token's precedence is higher, the choice is to shift. If the rule's
4808precedence is higher, the choice is to reduce. If they have equal
4809precedence, the choice is made based on the associativity of that
4810precedence level. The verbose output file made by @samp{-v}
4811(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
4812resolved.
bfa74976
RS
4813
4814Not all rules and not all tokens have precedence. If either the rule or
4815the look-ahead token has no precedence, then the default is to shift.
4816
342b8b6e 4817@node Contextual Precedence
bfa74976
RS
4818@section Context-Dependent Precedence
4819@cindex context-dependent precedence
4820@cindex unary operator precedence
4821@cindex precedence, context-dependent
4822@cindex precedence, unary operator
4823@findex %prec
4824
4825Often the precedence of an operator depends on the context. This sounds
4826outlandish at first, but it is really very common. For example, a minus
4827sign typically has a very high precedence as a unary operator, and a
4828somewhat lower precedence (lower than multiplication) as a binary operator.
4829
4830The Bison precedence declarations, @code{%left}, @code{%right} and
4831@code{%nonassoc}, can only be used once for a given token; so a token has
4832only one precedence declared in this way. For context-dependent
4833precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 4834modifier for rules.
bfa74976
RS
4835
4836The @code{%prec} modifier declares the precedence of a particular rule by
4837specifying a terminal symbol whose precedence should be used for that rule.
4838It's not necessary for that symbol to appear otherwise in the rule. The
4839modifier's syntax is:
4840
4841@example
4842%prec @var{terminal-symbol}
4843@end example
4844
4845@noindent
4846and it is written after the components of the rule. Its effect is to
4847assign the rule the precedence of @var{terminal-symbol}, overriding
4848the precedence that would be deduced for it in the ordinary way. The
4849altered rule precedence then affects how conflicts involving that rule
4850are resolved (@pxref{Precedence, ,Operator Precedence}).
4851
4852Here is how @code{%prec} solves the problem of unary minus. First, declare
4853a precedence for a fictitious terminal symbol named @code{UMINUS}. There
4854are no tokens of this type, but the symbol serves to stand for its
4855precedence:
4856
4857@example
4858@dots{}
4859%left '+' '-'
4860%left '*'
4861%left UMINUS
4862@end example
4863
4864Now the precedence of @code{UMINUS} can be used in specific rules:
4865
4866@example
4867@group
4868exp: @dots{}
4869 | exp '-' exp
4870 @dots{}
4871 | '-' exp %prec UMINUS
4872@end group
4873@end example
4874
91d2c560 4875@ifset defaultprec
39a06c25
PE
4876If you forget to append @code{%prec UMINUS} to the rule for unary
4877minus, Bison silently assumes that minus has its usual precedence.
4878This kind of problem can be tricky to debug, since one typically
4879discovers the mistake only by testing the code.
4880
22fccf95 4881The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
4882this kind of problem systematically. It causes rules that lack a
4883@code{%prec} modifier to have no precedence, even if the last terminal
4884symbol mentioned in their components has a declared precedence.
4885
22fccf95 4886If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
4887for all rules that participate in precedence conflict resolution.
4888Then you will see any shift/reduce conflict until you tell Bison how
4889to resolve it, either by changing your grammar or by adding an
4890explicit precedence. This will probably add declarations to the
4891grammar, but it helps to protect against incorrect rule precedences.
4892
22fccf95
PE
4893The effect of @code{%no-default-prec;} can be reversed by giving
4894@code{%default-prec;}, which is the default.
91d2c560 4895@end ifset
39a06c25 4896
342b8b6e 4897@node Parser States
bfa74976
RS
4898@section Parser States
4899@cindex finite-state machine
4900@cindex parser state
4901@cindex state (of parser)
4902
4903The function @code{yyparse} is implemented using a finite-state machine.
4904The values pushed on the parser stack are not simply token type codes; they
4905represent the entire sequence of terminal and nonterminal symbols at or
4906near the top of the stack. The current state collects all the information
4907about previous input which is relevant to deciding what to do next.
4908
4909Each time a look-ahead token is read, the current parser state together
4910with the type of look-ahead token are looked up in a table. This table
4911entry can say, ``Shift the look-ahead token.'' In this case, it also
4912specifies the new parser state, which is pushed onto the top of the
4913parser stack. Or it can say, ``Reduce using rule number @var{n}.''
4914This means that a certain number of tokens or groupings are taken off
4915the top of the stack, and replaced by one grouping. In other words,
4916that number of states are popped from the stack, and one new state is
4917pushed.
4918
4919There is one other alternative: the table can say that the look-ahead token
4920is erroneous in the current state. This causes error processing to begin
4921(@pxref{Error Recovery}).
4922
342b8b6e 4923@node Reduce/Reduce
bfa74976
RS
4924@section Reduce/Reduce Conflicts
4925@cindex reduce/reduce conflict
4926@cindex conflicts, reduce/reduce
4927
4928A reduce/reduce conflict occurs if there are two or more rules that apply
4929to the same sequence of input. This usually indicates a serious error
4930in the grammar.
4931
4932For example, here is an erroneous attempt to define a sequence
4933of zero or more @code{word} groupings.
4934
4935@example
4936sequence: /* empty */
4937 @{ printf ("empty sequence\n"); @}
4938 | maybeword
4939 | sequence word
4940 @{ printf ("added word %s\n", $2); @}
4941 ;
4942
4943maybeword: /* empty */
4944 @{ printf ("empty maybeword\n"); @}
4945 | word
4946 @{ printf ("single word %s\n", $1); @}
4947 ;
4948@end example
4949
4950@noindent
4951The error is an ambiguity: there is more than one way to parse a single
4952@code{word} into a @code{sequence}. It could be reduced to a
4953@code{maybeword} and then into a @code{sequence} via the second rule.
4954Alternatively, nothing-at-all could be reduced into a @code{sequence}
4955via the first rule, and this could be combined with the @code{word}
4956using the third rule for @code{sequence}.
4957
4958There is also more than one way to reduce nothing-at-all into a
4959@code{sequence}. This can be done directly via the first rule,
4960or indirectly via @code{maybeword} and then the second rule.
4961
4962You might think that this is a distinction without a difference, because it
4963does not change whether any particular input is valid or not. But it does
4964affect which actions are run. One parsing order runs the second rule's
4965action; the other runs the first rule's action and the third rule's action.
4966In this example, the output of the program changes.
4967
4968Bison resolves a reduce/reduce conflict by choosing to use the rule that
4969appears first in the grammar, but it is very risky to rely on this. Every
4970reduce/reduce conflict must be studied and usually eliminated. Here is the
4971proper way to define @code{sequence}:
4972
4973@example
4974sequence: /* empty */
4975 @{ printf ("empty sequence\n"); @}
4976 | sequence word
4977 @{ printf ("added word %s\n", $2); @}
4978 ;
4979@end example
4980
4981Here is another common error that yields a reduce/reduce conflict:
4982
4983@example
4984sequence: /* empty */
4985 | sequence words
4986 | sequence redirects
4987 ;
4988
4989words: /* empty */
4990 | words word
4991 ;
4992
4993redirects:/* empty */
4994 | redirects redirect
4995 ;
4996@end example
4997
4998@noindent
4999The intention here is to define a sequence which can contain either
5000@code{word} or @code{redirect} groupings. The individual definitions of
5001@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5002three together make a subtle ambiguity: even an empty input can be parsed
5003in infinitely many ways!
5004
5005Consider: nothing-at-all could be a @code{words}. Or it could be two
5006@code{words} in a row, or three, or any number. It could equally well be a
5007@code{redirects}, or two, or any number. Or it could be a @code{words}
5008followed by three @code{redirects} and another @code{words}. And so on.
5009
5010Here are two ways to correct these rules. First, to make it a single level
5011of sequence:
5012
5013@example
5014sequence: /* empty */
5015 | sequence word
5016 | sequence redirect
5017 ;
5018@end example
5019
5020Second, to prevent either a @code{words} or a @code{redirects}
5021from being empty:
5022
5023@example
5024sequence: /* empty */
5025 | sequence words
5026 | sequence redirects
5027 ;
5028
5029words: word
5030 | words word
5031 ;
5032
5033redirects:redirect
5034 | redirects redirect
5035 ;
5036@end example
5037
342b8b6e 5038@node Mystery Conflicts
bfa74976
RS
5039@section Mysterious Reduce/Reduce Conflicts
5040
5041Sometimes reduce/reduce conflicts can occur that don't look warranted.
5042Here is an example:
5043
5044@example
5045@group
5046%token ID
5047
5048%%
5049def: param_spec return_spec ','
5050 ;
5051param_spec:
5052 type
5053 | name_list ':' type
5054 ;
5055@end group
5056@group
5057return_spec:
5058 type
5059 | name ':' type
5060 ;
5061@end group
5062@group
5063type: ID
5064 ;
5065@end group
5066@group
5067name: ID
5068 ;
5069name_list:
5070 name
5071 | name ',' name_list
5072 ;
5073@end group
5074@end example
5075
5076It would seem that this grammar can be parsed with only a single token
13863333 5077of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5078a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5079@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5080
c827f760
PE
5081@cindex @acronym{LR}(1)
5082@cindex @acronym{LALR}(1)
bfa74976 5083However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5084@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5085an @code{ID}
bfa74976
RS
5086at the beginning of a @code{param_spec} and likewise at the beginning of
5087a @code{return_spec}, are similar enough that Bison assumes they are the
5088same. They appear similar because the same set of rules would be
5089active---the rule for reducing to a @code{name} and that for reducing to
5090a @code{type}. Bison is unable to determine at that stage of processing
5091that the rules would require different look-ahead tokens in the two
5092contexts, so it makes a single parser state for them both. Combining
5093the two contexts causes a conflict later. In parser terminology, this
c827f760 5094occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5095
5096In general, it is better to fix deficiencies than to document them. But
5097this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5098generators that can handle @acronym{LR}(1) grammars are hard to write
5099and tend to
bfa74976
RS
5100produce parsers that are very large. In practice, Bison is more useful
5101as it is now.
5102
5103When the problem arises, you can often fix it by identifying the two
a220f555
MA
5104parser states that are being confused, and adding something to make them
5105look distinct. In the above example, adding one rule to
bfa74976
RS
5106@code{return_spec} as follows makes the problem go away:
5107
5108@example
5109@group
5110%token BOGUS
5111@dots{}
5112%%
5113@dots{}
5114return_spec:
5115 type
5116 | name ':' type
5117 /* This rule is never used. */
5118 | ID BOGUS
5119 ;
5120@end group
5121@end example
5122
5123This corrects the problem because it introduces the possibility of an
5124additional active rule in the context after the @code{ID} at the beginning of
5125@code{return_spec}. This rule is not active in the corresponding context
5126in a @code{param_spec}, so the two contexts receive distinct parser states.
5127As long as the token @code{BOGUS} is never generated by @code{yylex},
5128the added rule cannot alter the way actual input is parsed.
5129
5130In this particular example, there is another way to solve the problem:
5131rewrite the rule for @code{return_spec} to use @code{ID} directly
5132instead of via @code{name}. This also causes the two confusing
5133contexts to have different sets of active rules, because the one for
5134@code{return_spec} activates the altered rule for @code{return_spec}
5135rather than the one for @code{name}.
5136
5137@example
5138param_spec:
5139 type
5140 | name_list ':' type
5141 ;
5142return_spec:
5143 type
5144 | ID ':' type
5145 ;
5146@end example
5147
fae437e8 5148@node Generalized LR Parsing
c827f760
PE
5149@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5150@cindex @acronym{GLR} parsing
5151@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5152@cindex ambiguous grammars
5153@cindex non-deterministic parsing
5154
fae437e8
AD
5155Bison produces @emph{deterministic} parsers that choose uniquely
5156when to reduce and which reduction to apply
676385e2
PH
5157based on a summary of the preceding input and on one extra token of lookahead.
5158As a result, normal Bison handles a proper subset of the family of
5159context-free languages.
fae437e8 5160Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5161sequence of reductions cannot have deterministic parsers in this sense.
5162The same is true of languages that require more than one symbol of
5163lookahead, since the parser lacks the information necessary to make a
5164decision at the point it must be made in a shift-reduce parser.
fae437e8 5165Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5166there are languages where Bison's particular choice of how to
5167summarize the input seen so far loses necessary information.
5168
5169When you use the @samp{%glr-parser} declaration in your grammar file,
5170Bison generates a parser that uses a different algorithm, called
c827f760
PE
5171Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5172parser uses the same basic
676385e2
PH
5173algorithm for parsing as an ordinary Bison parser, but behaves
5174differently in cases where there is a shift-reduce conflict that has not
fae437e8 5175been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5176reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5177situation, it
fae437e8 5178effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5179shift or reduction. These parsers then proceed as usual, consuming
5180tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5181and split further, with the result that instead of a sequence of states,
c827f760 5182a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5183
5184In effect, each stack represents a guess as to what the proper parse
5185is. Additional input may indicate that a guess was wrong, in which case
5186the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5187actions generated in each stack are saved, rather than being executed
676385e2 5188immediately. When a stack disappears, its saved semantic actions never
fae437e8 5189get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5190their sets of semantic actions are both saved with the state that
5191results from the reduction. We say that two stacks are equivalent
fae437e8 5192when they both represent the same sequence of states,
676385e2
PH
5193and each pair of corresponding states represents a
5194grammar symbol that produces the same segment of the input token
5195stream.
5196
5197Whenever the parser makes a transition from having multiple
c827f760 5198states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5199algorithm, after resolving and executing the saved-up actions.
5200At this transition, some of the states on the stack will have semantic
5201values that are sets (actually multisets) of possible actions. The
5202parser tries to pick one of the actions by first finding one whose rule
5203has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5204declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5205precedence, but there the same merging function is declared for both
fae437e8 5206rules by the @samp{%merge} declaration,
676385e2
PH
5207Bison resolves and evaluates both and then calls the merge function on
5208the result. Otherwise, it reports an ambiguity.
5209
c827f760
PE
5210It is possible to use a data structure for the @acronym{GLR} parsing tree that
5211permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5212size of the input), any unambiguous (not necessarily
5213@acronym{LALR}(1)) grammar in
fae437e8 5214quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5215context-free grammar in cubic worst-case time. However, Bison currently
5216uses a simpler data structure that requires time proportional to the
5217length of the input times the maximum number of stacks required for any
5218prefix of the input. Thus, really ambiguous or non-deterministic
5219grammars can require exponential time and space to process. Such badly
5220behaving examples, however, are not generally of practical interest.
5221Usually, non-determinism in a grammar is local---the parser is ``in
5222doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5223structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5224grammar, in particular, it is only slightly slower than with the default
5225Bison parser.
5226
f6481e2f
PE
5227For a more detailed exposition of GLR parsers, please see: Elizabeth
5228Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5229Generalised @acronym{LR} Parsers, Royal Holloway, University of
5230London, Department of Computer Science, TR-00-12,
5231@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5232(2000-12-24).
5233
342b8b6e 5234@node Stack Overflow
bfa74976
RS
5235@section Stack Overflow, and How to Avoid It
5236@cindex stack overflow
5237@cindex parser stack overflow
5238@cindex overflow of parser stack
5239
5240The Bison parser stack can overflow if too many tokens are shifted and
5241not reduced. When this happens, the parser function @code{yyparse}
5242returns a nonzero value, pausing only to call @code{yyerror} to report
5243the overflow.
5244
c827f760 5245Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5246usually results from using a right recursion instead of a left
5247recursion, @xref{Recursion, ,Recursive Rules}.
5248
bfa74976
RS
5249@vindex YYMAXDEPTH
5250By defining the macro @code{YYMAXDEPTH}, you can control how deep the
5251parser stack can become before a stack overflow occurs. Define the
5252macro with a value that is an integer. This value is the maximum number
5253of tokens that can be shifted (and not reduced) before overflow.
5254It must be a constant expression whose value is known at compile time.
5255
5256The stack space allowed is not necessarily allocated. If you specify a
5257large value for @code{YYMAXDEPTH}, the parser actually allocates a small
5258stack at first, and then makes it bigger by stages as needed. This
5259increasing allocation happens automatically and silently. Therefore,
5260you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5261space for ordinary inputs that do not need much stack.
5262
5263@cindex default stack limit
5264The default value of @code{YYMAXDEPTH}, if you do not define it, is
526510000.
5266
5267@vindex YYINITDEPTH
5268You can control how much stack is allocated initially by defining the
5269macro @code{YYINITDEPTH}. This value too must be a compile-time
5270constant integer. The default is 200.
5271
d1a1114f 5272@c FIXME: C++ output.
c827f760
PE
5273Because of semantical differences between C and C++, the
5274@acronym{LALR}(1) parsers
d1a1114f
AD
5275in C produced by Bison by compiled as C++ cannot grow. In this precise
5276case (compiling a C parser as C++) you are suggested to grow
5277@code{YYINITDEPTH}. In the near future, a C++ output output will be
5278provided which addresses this issue.
5279
342b8b6e 5280@node Error Recovery
bfa74976
RS
5281@chapter Error Recovery
5282@cindex error recovery
5283@cindex recovery from errors
5284
6e649e65 5285It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5286error. For example, a compiler should recover sufficiently to parse the
5287rest of the input file and check it for errors; a calculator should accept
5288another expression.
5289
5290In a simple interactive command parser where each input is one line, it may
5291be sufficient to allow @code{yyparse} to return 1 on error and have the
5292caller ignore the rest of the input line when that happens (and then call
5293@code{yyparse} again). But this is inadequate for a compiler, because it
5294forgets all the syntactic context leading up to the error. A syntax error
5295deep within a function in the compiler input should not cause the compiler
5296to treat the following line like the beginning of a source file.
5297
5298@findex error
5299You can define how to recover from a syntax error by writing rules to
5300recognize the special token @code{error}. This is a terminal symbol that
5301is always defined (you need not declare it) and reserved for error
5302handling. The Bison parser generates an @code{error} token whenever a
5303syntax error happens; if you have provided a rule to recognize this token
13863333 5304in the current context, the parse can continue.
bfa74976
RS
5305
5306For example:
5307
5308@example
5309stmnts: /* empty string */
5310 | stmnts '\n'
5311 | stmnts exp '\n'
5312 | stmnts error '\n'
5313@end example
5314
5315The fourth rule in this example says that an error followed by a newline
5316makes a valid addition to any @code{stmnts}.
5317
5318What happens if a syntax error occurs in the middle of an @code{exp}? The
5319error recovery rule, interpreted strictly, applies to the precise sequence
5320of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5321the middle of an @code{exp}, there will probably be some additional tokens
5322and subexpressions on the stack after the last @code{stmnts}, and there
5323will be tokens to read before the next newline. So the rule is not
5324applicable in the ordinary way.
5325
5326But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5327the semantic context and part of the input. First it discards states
5328and objects from the stack until it gets back to a state in which the
bfa74976 5329@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5330already parsed are discarded, back to the last complete @code{stmnts}.)
5331At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5332look-ahead token is not acceptable to be shifted next, the parser reads
5333tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5334this example, Bison reads and discards input until the next newline so
5335that the fourth rule can apply. Note that discarded symbols are
5336possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5337Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5338
5339The choice of error rules in the grammar is a choice of strategies for
5340error recovery. A simple and useful strategy is simply to skip the rest of
5341the current input line or current statement if an error is detected:
5342
5343@example
72d2299c 5344stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5345@end example
5346
5347It is also useful to recover to the matching close-delimiter of an
5348opening-delimiter that has already been parsed. Otherwise the
5349close-delimiter will probably appear to be unmatched, and generate another,
5350spurious error message:
5351
5352@example
5353primary: '(' expr ')'
5354 | '(' error ')'
5355 @dots{}
5356 ;
5357@end example
5358
5359Error recovery strategies are necessarily guesses. When they guess wrong,
5360one syntax error often leads to another. In the above example, the error
5361recovery rule guesses that an error is due to bad input within one
5362@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5363middle of a valid @code{stmnt}. After the error recovery rule recovers
5364from the first error, another syntax error will be found straightaway,
5365since the text following the spurious semicolon is also an invalid
5366@code{stmnt}.
5367
5368To prevent an outpouring of error messages, the parser will output no error
5369message for another syntax error that happens shortly after the first; only
5370after three consecutive input tokens have been successfully shifted will
5371error messages resume.
5372
5373Note that rules which accept the @code{error} token may have actions, just
5374as any other rules can.
5375
5376@findex yyerrok
5377You can make error messages resume immediately by using the macro
5378@code{yyerrok} in an action. If you do this in the error rule's action, no
5379error messages will be suppressed. This macro requires no arguments;
5380@samp{yyerrok;} is a valid C statement.
5381
5382@findex yyclearin
5383The previous look-ahead token is reanalyzed immediately after an error. If
5384this is unacceptable, then the macro @code{yyclearin} may be used to clear
5385this token. Write the statement @samp{yyclearin;} in the error rule's
5386action.
5387
6e649e65 5388For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5389called that advances the input stream to some point where parsing should
5390once again commence. The next symbol returned by the lexical scanner is
5391probably correct. The previous look-ahead token ought to be discarded
5392with @samp{yyclearin;}.
5393
5394@vindex YYRECOVERING
5395The macro @code{YYRECOVERING} stands for an expression that has the
5396value 1 when the parser is recovering from a syntax error, and 0 the
5397rest of the time. A value of 1 indicates that error messages are
5398currently suppressed for new syntax errors.
5399
342b8b6e 5400@node Context Dependency
bfa74976
RS
5401@chapter Handling Context Dependencies
5402
5403The Bison paradigm is to parse tokens first, then group them into larger
5404syntactic units. In many languages, the meaning of a token is affected by
5405its context. Although this violates the Bison paradigm, certain techniques
5406(known as @dfn{kludges}) may enable you to write Bison parsers for such
5407languages.
5408
5409@menu
5410* Semantic Tokens:: Token parsing can depend on the semantic context.
5411* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5412* Tie-in Recovery:: Lexical tie-ins have implications for how
5413 error recovery rules must be written.
5414@end menu
5415
5416(Actually, ``kludge'' means any technique that gets its job done but is
5417neither clean nor robust.)
5418
342b8b6e 5419@node Semantic Tokens
bfa74976
RS
5420@section Semantic Info in Token Types
5421
5422The C language has a context dependency: the way an identifier is used
5423depends on what its current meaning is. For example, consider this:
5424
5425@example
5426foo (x);
5427@end example
5428
5429This looks like a function call statement, but if @code{foo} is a typedef
5430name, then this is actually a declaration of @code{x}. How can a Bison
5431parser for C decide how to parse this input?
5432
c827f760 5433The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5434@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5435identifier, it looks up the current declaration of the identifier in order
5436to decide which token type to return: @code{TYPENAME} if the identifier is
5437declared as a typedef, @code{IDENTIFIER} otherwise.
5438
5439The grammar rules can then express the context dependency by the choice of
5440token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5441but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5442@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5443is @emph{not} significant, such as in declarations that can shadow a
5444typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5445accepted---there is one rule for each of the two token types.
5446
5447This technique is simple to use if the decision of which kinds of
5448identifiers to allow is made at a place close to where the identifier is
5449parsed. But in C this is not always so: C allows a declaration to
5450redeclare a typedef name provided an explicit type has been specified
5451earlier:
5452
5453@example
5454typedef int foo, bar, lose;
5455static foo (bar); /* @r{redeclare @code{bar} as static variable} */
5456static int foo (lose); /* @r{redeclare @code{foo} as function} */
5457@end example
5458
5459Unfortunately, the name being declared is separated from the declaration
5460construct itself by a complicated syntactic structure---the ``declarator''.
5461
9ecbd125 5462As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5463all the nonterminal names changed: once for parsing a declaration in
5464which a typedef name can be redefined, and once for parsing a
5465declaration in which that can't be done. Here is a part of the
5466duplication, with actions omitted for brevity:
bfa74976
RS
5467
5468@example
5469initdcl:
5470 declarator maybeasm '='
5471 init
5472 | declarator maybeasm
5473 ;
5474
5475notype_initdcl:
5476 notype_declarator maybeasm '='
5477 init
5478 | notype_declarator maybeasm
5479 ;
5480@end example
5481
5482@noindent
5483Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5484cannot. The distinction between @code{declarator} and
5485@code{notype_declarator} is the same sort of thing.
5486
5487There is some similarity between this technique and a lexical tie-in
5488(described next), in that information which alters the lexical analysis is
5489changed during parsing by other parts of the program. The difference is
5490here the information is global, and is used for other purposes in the
5491program. A true lexical tie-in has a special-purpose flag controlled by
5492the syntactic context.
5493
342b8b6e 5494@node Lexical Tie-ins
bfa74976
RS
5495@section Lexical Tie-ins
5496@cindex lexical tie-in
5497
5498One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5499which is set by Bison actions, whose purpose is to alter the way tokens are
5500parsed.
5501
5502For example, suppose we have a language vaguely like C, but with a special
5503construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5504an expression in parentheses in which all integers are hexadecimal. In
5505particular, the token @samp{a1b} must be treated as an integer rather than
5506as an identifier if it appears in that context. Here is how you can do it:
5507
5508@example
5509@group
5510%@{
38a92d50
PE
5511 int hexflag;
5512 int yylex (void);
5513 void yyerror (char const *);
bfa74976
RS
5514%@}
5515%%
5516@dots{}
5517@end group
5518@group
5519expr: IDENTIFIER
5520 | constant
5521 | HEX '('
5522 @{ hexflag = 1; @}
5523 expr ')'
5524 @{ hexflag = 0;
5525 $$ = $4; @}
5526 | expr '+' expr
5527 @{ $$ = make_sum ($1, $3); @}
5528 @dots{}
5529 ;
5530@end group
5531
5532@group
5533constant:
5534 INTEGER
5535 | STRING
5536 ;
5537@end group
5538@end example
5539
5540@noindent
5541Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
5542it is nonzero, all integers are parsed in hexadecimal, and tokens starting
5543with letters are parsed as integers if possible.
5544
342b8b6e
AD
5545The declaration of @code{hexflag} shown in the prologue of the parser file
5546is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 5547You must also write the code in @code{yylex} to obey the flag.
bfa74976 5548
342b8b6e 5549@node Tie-in Recovery
bfa74976
RS
5550@section Lexical Tie-ins and Error Recovery
5551
5552Lexical tie-ins make strict demands on any error recovery rules you have.
5553@xref{Error Recovery}.
5554
5555The reason for this is that the purpose of an error recovery rule is to
5556abort the parsing of one construct and resume in some larger construct.
5557For example, in C-like languages, a typical error recovery rule is to skip
5558tokens until the next semicolon, and then start a new statement, like this:
5559
5560@example
5561stmt: expr ';'
5562 | IF '(' expr ')' stmt @{ @dots{} @}
5563 @dots{}
5564 error ';'
5565 @{ hexflag = 0; @}
5566 ;
5567@end example
5568
5569If there is a syntax error in the middle of a @samp{hex (@var{expr})}
5570construct, this error rule will apply, and then the action for the
5571completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
5572remain set for the entire rest of the input, or until the next @code{hex}
5573keyword, causing identifiers to be misinterpreted as integers.
5574
5575To avoid this problem the error recovery rule itself clears @code{hexflag}.
5576
5577There may also be an error recovery rule that works within expressions.
5578For example, there could be a rule which applies within parentheses
5579and skips to the close-parenthesis:
5580
5581@example
5582@group
5583expr: @dots{}
5584 | '(' expr ')'
5585 @{ $$ = $2; @}
5586 | '(' error ')'
5587 @dots{}
5588@end group
5589@end example
5590
5591If this rule acts within the @code{hex} construct, it is not going to abort
5592that construct (since it applies to an inner level of parentheses within
5593the construct). Therefore, it should not clear the flag: the rest of
5594the @code{hex} construct should be parsed with the flag still in effect.
5595
5596What if there is an error recovery rule which might abort out of the
5597@code{hex} construct or might not, depending on circumstances? There is no
5598way you can write the action to determine whether a @code{hex} construct is
5599being aborted or not. So if you are using a lexical tie-in, you had better
5600make sure your error recovery rules are not of this kind. Each rule must
5601be such that you can be sure that it always will, or always won't, have to
5602clear the flag.
5603
ec3bc396
AD
5604@c ================================================== Debugging Your Parser
5605
342b8b6e 5606@node Debugging
bfa74976 5607@chapter Debugging Your Parser
ec3bc396
AD
5608
5609Developing a parser can be a challenge, especially if you don't
5610understand the algorithm (@pxref{Algorithm, ,The Bison Parser
5611Algorithm}). Even so, sometimes a detailed description of the automaton
5612can help (@pxref{Understanding, , Understanding Your Parser}), or
5613tracing the execution of the parser can give some insight on why it
5614behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
5615
5616@menu
5617* Understanding:: Understanding the structure of your parser.
5618* Tracing:: Tracing the execution of your parser.
5619@end menu
5620
5621@node Understanding
5622@section Understanding Your Parser
5623
5624As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
5625Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
5626frequent than one would hope), looking at this automaton is required to
5627tune or simply fix a parser. Bison provides two different
c827f760 5628representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
5629file).
5630
5631The textual file is generated when the options @option{--report} or
5632@option{--verbose} are specified, see @xref{Invocation, , Invoking
5633Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
5634the parser output file name, and adding @samp{.output} instead.
5635Therefore, if the input file is @file{foo.y}, then the parser file is
5636called @file{foo.tab.c} by default. As a consequence, the verbose
5637output file is called @file{foo.output}.
5638
5639The following grammar file, @file{calc.y}, will be used in the sequel:
5640
5641@example
5642%token NUM STR
5643%left '+' '-'
5644%left '*'
5645%%
5646exp: exp '+' exp
5647 | exp '-' exp
5648 | exp '*' exp
5649 | exp '/' exp
5650 | NUM
5651 ;
5652useless: STR;
5653%%
5654@end example
5655
88bce5a2
AD
5656@command{bison} reports:
5657
5658@example
5659calc.y: warning: 1 useless nonterminal and 1 useless rule
5660calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
5661calc.y:11.10-12: warning: useless rule: useless: STR
5662calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
5663@end example
5664
5665When given @option{--report=state}, in addition to @file{calc.tab.c}, it
5666creates a file @file{calc.output} with contents detailed below. The
5667order of the output and the exact presentation might vary, but the
5668interpretation is the same.
ec3bc396
AD
5669
5670The first section includes details on conflicts that were solved thanks
5671to precedence and/or associativity:
5672
5673@example
5674Conflict in state 8 between rule 2 and token '+' resolved as reduce.
5675Conflict in state 8 between rule 2 and token '-' resolved as reduce.
5676Conflict in state 8 between rule 2 and token '*' resolved as shift.
5677@exdent @dots{}
5678@end example
5679
5680@noindent
5681The next section lists states that still have conflicts.
5682
5683@example
5a99098d
PE
5684State 8 conflicts: 1 shift/reduce
5685State 9 conflicts: 1 shift/reduce
5686State 10 conflicts: 1 shift/reduce
5687State 11 conflicts: 4 shift/reduce
ec3bc396
AD
5688@end example
5689
5690@noindent
5691@cindex token, useless
5692@cindex useless token
5693@cindex nonterminal, useless
5694@cindex useless nonterminal
5695@cindex rule, useless
5696@cindex useless rule
5697The next section reports useless tokens, nonterminal and rules. Useless
5698nonterminals and rules are removed in order to produce a smaller parser,
5699but useless tokens are preserved, since they might be used by the
5700scanner (note the difference between ``useless'' and ``not used''
5701below):
5702
5703@example
5704Useless nonterminals:
5705 useless
5706
5707Terminals which are not used:
5708 STR
5709
5710Useless rules:
5711#6 useless: STR;
5712@end example
5713
5714@noindent
5715The next section reproduces the exact grammar that Bison used:
5716
5717@example
5718Grammar
5719
5720 Number, Line, Rule
88bce5a2 5721 0 5 $accept -> exp $end
ec3bc396
AD
5722 1 5 exp -> exp '+' exp
5723 2 6 exp -> exp '-' exp
5724 3 7 exp -> exp '*' exp
5725 4 8 exp -> exp '/' exp
5726 5 9 exp -> NUM
5727@end example
5728
5729@noindent
5730and reports the uses of the symbols:
5731
5732@example
5733Terminals, with rules where they appear
5734
88bce5a2 5735$end (0) 0
ec3bc396
AD
5736'*' (42) 3
5737'+' (43) 1
5738'-' (45) 2
5739'/' (47) 4
5740error (256)
5741NUM (258) 5
5742
5743Nonterminals, with rules where they appear
5744
88bce5a2 5745$accept (8)
ec3bc396
AD
5746 on left: 0
5747exp (9)
5748 on left: 1 2 3 4 5, on right: 0 1 2 3 4
5749@end example
5750
5751@noindent
5752@cindex item
5753@cindex pointed rule
5754@cindex rule, pointed
5755Bison then proceeds onto the automaton itself, describing each state
5756with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
5757item is a production rule together with a point (marked by @samp{.})
5758that the input cursor.
5759
5760@example
5761state 0
5762
88bce5a2 5763 $accept -> . exp $ (rule 0)
ec3bc396 5764
2a8d363a 5765 NUM shift, and go to state 1
ec3bc396 5766
2a8d363a 5767 exp go to state 2
ec3bc396
AD
5768@end example
5769
5770This reads as follows: ``state 0 corresponds to being at the very
5771beginning of the parsing, in the initial rule, right before the start
5772symbol (here, @code{exp}). When the parser returns to this state right
5773after having reduced a rule that produced an @code{exp}, the control
5774flow jumps to state 2. If there is no such transition on a nonterminal
5775symbol, and the lookahead is a @code{NUM}, then this token is shifted on
5776the parse stack, and the control flow jumps to state 1. Any other
6e649e65 5777lookahead triggers a syntax error.''
ec3bc396
AD
5778
5779@cindex core, item set
5780@cindex item set core
5781@cindex kernel, item set
5782@cindex item set core
5783Even though the only active rule in state 0 seems to be rule 0, the
5784report lists @code{NUM} as a lookahead symbol because @code{NUM} can be
5785at the beginning of any rule deriving an @code{exp}. By default Bison
5786reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
5787you want to see more detail you can invoke @command{bison} with
5788@option{--report=itemset} to list all the items, include those that can
5789be derived:
5790
5791@example
5792state 0
5793
88bce5a2 5794 $accept -> . exp $ (rule 0)
ec3bc396
AD
5795 exp -> . exp '+' exp (rule 1)
5796 exp -> . exp '-' exp (rule 2)
5797 exp -> . exp '*' exp (rule 3)
5798 exp -> . exp '/' exp (rule 4)
5799 exp -> . NUM (rule 5)
5800
5801 NUM shift, and go to state 1
5802
5803 exp go to state 2
5804@end example
5805
5806@noindent
5807In the state 1...
5808
5809@example
5810state 1
5811
5812 exp -> NUM . (rule 5)
5813
2a8d363a 5814 $default reduce using rule 5 (exp)
ec3bc396
AD
5815@end example
5816
5817@noindent
5818the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead
5819(@samp{$default}), the parser will reduce it. If it was coming from
5820state 0, then, after this reduction it will return to state 0, and will
5821jump to state 2 (@samp{exp: go to state 2}).
5822
5823@example
5824state 2
5825
88bce5a2 5826 $accept -> exp . $ (rule 0)
ec3bc396
AD
5827 exp -> exp . '+' exp (rule 1)
5828 exp -> exp . '-' exp (rule 2)
5829 exp -> exp . '*' exp (rule 3)
5830 exp -> exp . '/' exp (rule 4)
5831
2a8d363a
AD
5832 $ shift, and go to state 3
5833 '+' shift, and go to state 4
5834 '-' shift, and go to state 5
5835 '*' shift, and go to state 6
5836 '/' shift, and go to state 7
ec3bc396
AD
5837@end example
5838
5839@noindent
5840In state 2, the automaton can only shift a symbol. For instance,
5841because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
5842@samp{+}, it will be shifted on the parse stack, and the automaton
5843control will jump to state 4, corresponding to the item @samp{exp -> exp
5844'+' . exp}. Since there is no default action, any other token than
6e649e65 5845those listed above will trigger a syntax error.
ec3bc396
AD
5846
5847The state 3 is named the @dfn{final state}, or the @dfn{accepting
5848state}:
5849
5850@example
5851state 3
5852
88bce5a2 5853 $accept -> exp $ . (rule 0)
ec3bc396 5854
2a8d363a 5855 $default accept
ec3bc396
AD
5856@end example
5857
5858@noindent
5859the initial rule is completed (the start symbol and the end
5860of input were read), the parsing exits successfully.
5861
5862The interpretation of states 4 to 7 is straightforward, and is left to
5863the reader.
5864
5865@example
5866state 4
5867
5868 exp -> exp '+' . exp (rule 1)
5869
2a8d363a 5870 NUM shift, and go to state 1
ec3bc396 5871
2a8d363a 5872 exp go to state 8
ec3bc396
AD
5873
5874state 5
5875
5876 exp -> exp '-' . exp (rule 2)
5877
2a8d363a 5878 NUM shift, and go to state 1
ec3bc396 5879
2a8d363a 5880 exp go to state 9
ec3bc396
AD
5881
5882state 6
5883
5884 exp -> exp '*' . exp (rule 3)
5885
2a8d363a 5886 NUM shift, and go to state 1
ec3bc396 5887
2a8d363a 5888 exp go to state 10
ec3bc396
AD
5889
5890state 7
5891
5892 exp -> exp '/' . exp (rule 4)
5893
2a8d363a 5894 NUM shift, and go to state 1
ec3bc396 5895
2a8d363a 5896 exp go to state 11
ec3bc396
AD
5897@end example
5898
5a99098d
PE
5899As was announced in beginning of the report, @samp{State 8 conflicts:
59001 shift/reduce}:
ec3bc396
AD
5901
5902@example
5903state 8
5904
5905 exp -> exp . '+' exp (rule 1)
5906 exp -> exp '+' exp . (rule 1)
5907 exp -> exp . '-' exp (rule 2)
5908 exp -> exp . '*' exp (rule 3)
5909 exp -> exp . '/' exp (rule 4)
5910
2a8d363a
AD
5911 '*' shift, and go to state 6
5912 '/' shift, and go to state 7
ec3bc396 5913
2a8d363a
AD
5914 '/' [reduce using rule 1 (exp)]
5915 $default reduce using rule 1 (exp)
ec3bc396
AD
5916@end example
5917
5918Indeed, there are two actions associated to the lookahead @samp{/}:
5919either shifting (and going to state 7), or reducing rule 1. The
5920conflict means that either the grammar is ambiguous, or the parser lacks
5921information to make the right decision. Indeed the grammar is
5922ambiguous, as, since we did not specify the precedence of @samp{/}, the
5923sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
5924NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
5925NUM}, which corresponds to reducing rule 1.
5926
c827f760 5927Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
5928arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
5929Shift/Reduce Conflicts}. Discarded actions are reported in between
5930square brackets.
5931
5932Note that all the previous states had a single possible action: either
5933shifting the next token and going to the corresponding state, or
5934reducing a single rule. In the other cases, i.e., when shifting
5935@emph{and} reducing is possible or when @emph{several} reductions are
5936possible, the lookahead is required to select the action. State 8 is
5937one such state: if the lookahead is @samp{*} or @samp{/} then the action
5938is shifting, otherwise the action is reducing rule 1. In other words,
5939the first two items, corresponding to rule 1, are not eligible when the
5940lookahead is @samp{*}, since we specified that @samp{*} has higher
5941precedence that @samp{+}. More generally, some items are eligible only
5942with some set of possible lookaheads. When run with
5943@option{--report=lookahead}, Bison specifies these lookaheads:
5944
5945@example
5946state 8
5947
5948 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
5949 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
5950 exp -> exp . '-' exp (rule 2)
5951 exp -> exp . '*' exp (rule 3)
5952 exp -> exp . '/' exp (rule 4)
5953
5954 '*' shift, and go to state 6
5955 '/' shift, and go to state 7
5956
5957 '/' [reduce using rule 1 (exp)]
5958 $default reduce using rule 1 (exp)
5959@end example
5960
5961The remaining states are similar:
5962
5963@example
5964state 9
5965
5966 exp -> exp . '+' exp (rule 1)
5967 exp -> exp . '-' exp (rule 2)
5968 exp -> exp '-' exp . (rule 2)
5969 exp -> exp . '*' exp (rule 3)
5970 exp -> exp . '/' exp (rule 4)
5971
2a8d363a
AD
5972 '*' shift, and go to state 6
5973 '/' shift, and go to state 7
ec3bc396 5974
2a8d363a
AD
5975 '/' [reduce using rule 2 (exp)]
5976 $default reduce using rule 2 (exp)
ec3bc396
AD
5977
5978state 10
5979
5980 exp -> exp . '+' exp (rule 1)
5981 exp -> exp . '-' exp (rule 2)
5982 exp -> exp . '*' exp (rule 3)
5983 exp -> exp '*' exp . (rule 3)
5984 exp -> exp . '/' exp (rule 4)
5985
2a8d363a 5986 '/' shift, and go to state 7
ec3bc396 5987
2a8d363a
AD
5988 '/' [reduce using rule 3 (exp)]
5989 $default reduce using rule 3 (exp)
ec3bc396
AD
5990
5991state 11
5992
5993 exp -> exp . '+' exp (rule 1)
5994 exp -> exp . '-' exp (rule 2)
5995 exp -> exp . '*' exp (rule 3)
5996 exp -> exp . '/' exp (rule 4)
5997 exp -> exp '/' exp . (rule 4)
5998
2a8d363a
AD
5999 '+' shift, and go to state 4
6000 '-' shift, and go to state 5
6001 '*' shift, and go to state 6
6002 '/' shift, and go to state 7
ec3bc396 6003
2a8d363a
AD
6004 '+' [reduce using rule 4 (exp)]
6005 '-' [reduce using rule 4 (exp)]
6006 '*' [reduce using rule 4 (exp)]
6007 '/' [reduce using rule 4 (exp)]
6008 $default reduce using rule 4 (exp)
ec3bc396
AD
6009@end example
6010
6011@noindent
6012Observe that state 11 contains conflicts due to the lack of precedence
6013of @samp{/} wrt @samp{+}, @samp{-}, and @samp{*}, but also because the
6014associativity of @samp{/} is not specified.
6015
6016
6017@node Tracing
6018@section Tracing Your Parser
bfa74976
RS
6019@findex yydebug
6020@cindex debugging
6021@cindex tracing the parser
6022
6023If a Bison grammar compiles properly but doesn't do what you want when it
6024runs, the @code{yydebug} parser-trace feature can help you figure out why.
6025
3ded9a63
AD
6026There are several means to enable compilation of trace facilities:
6027
6028@table @asis
6029@item the macro @code{YYDEBUG}
6030@findex YYDEBUG
6031Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6032parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6033@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6034YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6035Prologue}).
6036
6037@item the option @option{-t}, @option{--debug}
6038Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6039,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6040
6041@item the directive @samp{%debug}
6042@findex %debug
6043Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6044Declaration Summary}). This is a Bison extension, which will prove
6045useful when Bison will output parsers for languages that don't use a
c827f760
PE
6046preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6047you, this is
3ded9a63
AD
6048the preferred solution.
6049@end table
6050
6051We suggest that you always enable the debug option so that debugging is
6052always possible.
bfa74976 6053
02a81e05 6054The trace facility outputs messages with macro calls of the form
e2742e46 6055@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6056@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6057arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6058define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6059and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6060
6061Once you have compiled the program with trace facilities, the way to
6062request a trace is to store a nonzero value in the variable @code{yydebug}.
6063You can do this by making the C code do it (in @code{main}, perhaps), or
6064you can alter the value with a C debugger.
6065
6066Each step taken by the parser when @code{yydebug} is nonzero produces a
6067line or two of trace information, written on @code{stderr}. The trace
6068messages tell you these things:
6069
6070@itemize @bullet
6071@item
6072Each time the parser calls @code{yylex}, what kind of token was read.
6073
6074@item
6075Each time a token is shifted, the depth and complete contents of the
6076state stack (@pxref{Parser States}).
6077
6078@item
6079Each time a rule is reduced, which rule it is, and the complete contents
6080of the state stack afterward.
6081@end itemize
6082
6083To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6084produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6085Bison}). This file shows the meaning of each state in terms of
6086positions in various rules, and also what each state will do with each
6087possible input token. As you read the successive trace messages, you
6088can see that the parser is functioning according to its specification in
6089the listing file. Eventually you will arrive at the place where
6090something undesirable happens, and you will see which parts of the
6091grammar are to blame.
bfa74976
RS
6092
6093The parser file is a C program and you can use C debuggers on it, but it's
6094not easy to interpret what it is doing. The parser function is a
6095finite-state machine interpreter, and aside from the actions it executes
6096the same code over and over. Only the values of variables show where in
6097the grammar it is working.
6098
6099@findex YYPRINT
6100The debugging information normally gives the token type of each token
6101read, but not its semantic value. You can optionally define a macro
6102named @code{YYPRINT} to provide a way to print the value. If you define
6103@code{YYPRINT}, it should take three arguments. The parser will pass a
6104standard I/O stream, the numeric code for the token type, and the token
6105value (from @code{yylval}).
6106
6107Here is an example of @code{YYPRINT} suitable for the multi-function
6108calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6109
6110@smallexample
38a92d50
PE
6111%@{
6112 static void print_token_value (FILE *, int, YYSTYPE);
6113 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6114%@}
6115
6116@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6117
6118static void
831d3c99 6119print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6120@{
6121 if (type == VAR)
d3c4e709 6122 fprintf (file, "%s", value.tptr->name);
bfa74976 6123 else if (type == NUM)
d3c4e709 6124 fprintf (file, "%d", value.val);
bfa74976
RS
6125@}
6126@end smallexample
6127
ec3bc396
AD
6128@c ================================================= Invoking Bison
6129
342b8b6e 6130@node Invocation
bfa74976
RS
6131@chapter Invoking Bison
6132@cindex invoking Bison
6133@cindex Bison invocation
6134@cindex options for invoking Bison
6135
6136The usual way to invoke Bison is as follows:
6137
6138@example
6139bison @var{infile}
6140@end example
6141
6142Here @var{infile} is the grammar file name, which usually ends in
6143@samp{.y}. The parser file's name is made by replacing the @samp{.y}
6144with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
6145@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
72d2299c 6146@file{hack/foo.tab.c}. It's also possible, in case you are writing
79282c6c 6147C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6148or @file{foo.y++}. Then, the output files will take an extension like
6149the given one as input (respectively @file{foo.tab.cpp} and
6150@file{foo.tab.c++}).
234a3be3
AD
6151This feature takes effect with all options that manipulate filenames like
6152@samp{-o} or @samp{-d}.
6153
6154For example :
6155
6156@example
6157bison -d @var{infile.yxx}
6158@end example
84163231 6159@noindent
72d2299c 6160will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6161
6162@example
b56471a6 6163bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6164@end example
84163231 6165@noindent
234a3be3
AD
6166will produce @file{output.c++} and @file{outfile.h++}.
6167
397ec073
PE
6168For compatibility with @acronym{POSIX}, the standard Bison
6169distribution also contains a shell script called @command{yacc} that
6170invokes Bison with the @option{-y} option.
6171
bfa74976 6172@menu
13863333 6173* Bison Options:: All the options described in detail,
c827f760 6174 in alphabetical order by short options.
bfa74976 6175* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6176* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6177@end menu
6178
342b8b6e 6179@node Bison Options
bfa74976
RS
6180@section Bison Options
6181
6182Bison supports both traditional single-letter options and mnemonic long
6183option names. Long option names are indicated with @samp{--} instead of
6184@samp{-}. Abbreviations for option names are allowed as long as they
6185are unique. When a long option takes an argument, like
6186@samp{--file-prefix}, connect the option name and the argument with
6187@samp{=}.
6188
6189Here is a list of options that can be used with Bison, alphabetized by
6190short option. It is followed by a cross key alphabetized by long
6191option.
6192
89cab50d
AD
6193@c Please, keep this ordered as in `bison --help'.
6194@noindent
6195Operations modes:
6196@table @option
6197@item -h
6198@itemx --help
6199Print a summary of the command-line options to Bison and exit.
bfa74976 6200
89cab50d
AD
6201@item -V
6202@itemx --version
6203Print the version number of Bison and exit.
bfa74976 6204
89cab50d
AD
6205@need 1750
6206@item -y
6207@itemx --yacc
89cab50d
AD
6208Equivalent to @samp{-o y.tab.c}; the parser output file is called
6209@file{y.tab.c}, and the other outputs are called @file{y.output} and
6210@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6211file name conventions. Thus, the following shell script can substitute
397ec073
PE
6212for Yacc, and the Bison distribution contains such a script for
6213compatibility with @acronym{POSIX}:
bfa74976 6214
89cab50d 6215@example
397ec073 6216#! /bin/sh
26e06a21 6217bison -y "$@@"
89cab50d
AD
6218@end example
6219@end table
6220
6221@noindent
6222Tuning the parser:
6223
6224@table @option
cd5bd6ac
AD
6225@item -S @var{file}
6226@itemx --skeleton=@var{file}
6227Specify the skeleton to use. You probably don't need this option unless
6228you are developing Bison.
6229
89cab50d
AD
6230@item -t
6231@itemx --debug
4947ebdb
PE
6232In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6233already defined, so that the debugging facilities are compiled.
ec3bc396 6234@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6235
6236@item --locations
d8988b2f 6237Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6238
6239@item -p @var{prefix}
6240@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6241Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6242@xref{Decl Summary}.
bfa74976
RS
6243
6244@item -l
6245@itemx --no-lines
6246Don't put any @code{#line} preprocessor commands in the parser file.
6247Ordinarily Bison puts them in the parser file so that the C compiler
6248and debuggers will associate errors with your source file, the
6249grammar file. This option causes them to associate errors with the
95e742f7 6250parser file, treating it as an independent source file in its own right.
bfa74976 6251
931c7513
RS
6252@item -n
6253@itemx --no-parser
d8988b2f 6254Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6255
89cab50d
AD
6256@item -k
6257@itemx --token-table
d8988b2f 6258Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6259@end table
bfa74976 6260
89cab50d
AD
6261@noindent
6262Adjust the output:
bfa74976 6263
89cab50d
AD
6264@table @option
6265@item -d
d8988b2f
AD
6266@itemx --defines
6267Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447
AD
6268file containing macro definitions for the token type names defined in
6269the grammar and the semantic value type @code{YYSTYPE}, as well as a few
6270@code{extern} variable declarations. @xref{Decl Summary}.
931c7513 6271
342b8b6e 6272@item --defines=@var{defines-file}
d8988b2f 6273Same as above, but save in the file @var{defines-file}.
342b8b6e 6274
89cab50d
AD
6275@item -b @var{file-prefix}
6276@itemx --file-prefix=@var{prefix}
d8988b2f 6277Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6278for all Bison output file names. @xref{Decl Summary}.
bfa74976 6279
ec3bc396
AD
6280@item -r @var{things}
6281@itemx --report=@var{things}
6282Write an extra output file containing verbose description of the comma
6283separated list of @var{things} among:
6284
6285@table @code
6286@item state
6287Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6288@acronym{LALR} automaton.
ec3bc396
AD
6289
6290@item lookahead
6291Implies @code{state} and augments the description of the automaton with
6292each rule's lookahead set.
6293
6294@item itemset
6295Implies @code{state} and augments the description of the automaton with
6296the full set of items for each state, instead of its core only.
6297@end table
6298
6299For instance, on the following grammar
6300
bfa74976
RS
6301@item -v
6302@itemx --verbose
6deb4447
AD
6303Pretend that @code{%verbose} was specified, i.e, write an extra output
6304file containing verbose descriptions of the grammar and
72d2299c 6305parser. @xref{Decl Summary}.
bfa74976 6306
d8988b2f
AD
6307@item -o @var{filename}
6308@itemx --output=@var{filename}
6309Specify the @var{filename} for the parser file.
bfa74976 6310
d8988b2f
AD
6311The other output files' names are constructed from @var{filename} as
6312described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6313
6314@item -g
c827f760
PE
6315Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6316automaton computed by Bison. If the grammar file is @file{foo.y}, the
6317@acronym{VCG} output file will
342b8b6e
AD
6318be @file{foo.vcg}.
6319
6320@item --graph=@var{graph-file}
72d2299c
PE
6321The behavior of @var{--graph} is the same than @samp{-g}. The only
6322difference is that it has an optional argument which is the name of
342b8b6e 6323the output graph filename.
bfa74976
RS
6324@end table
6325
342b8b6e 6326@node Option Cross Key
bfa74976
RS
6327@section Option Cross Key
6328
6329Here is a list of options, alphabetized by long option, to help you find
6330the corresponding short option.
6331
6332@tex
6333\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6334
6335{\tt
6336\line{ --debug \leaderfill -t}
6337\line{ --defines \leaderfill -d}
6338\line{ --file-prefix \leaderfill -b}
342b8b6e 6339\line{ --graph \leaderfill -g}
ff51d159 6340\line{ --help \leaderfill -h}
bfa74976
RS
6341\line{ --name-prefix \leaderfill -p}
6342\line{ --no-lines \leaderfill -l}
931c7513 6343\line{ --no-parser \leaderfill -n}
d8988b2f 6344\line{ --output \leaderfill -o}
931c7513 6345\line{ --token-table \leaderfill -k}
bfa74976
RS
6346\line{ --verbose \leaderfill -v}
6347\line{ --version \leaderfill -V}
6348\line{ --yacc \leaderfill -y}
6349}
6350@end tex
6351
6352@ifinfo
6353@example
6354--debug -t
342b8b6e 6355--defines=@var{defines-file} -d
bfa74976 6356--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6357--graph=@var{graph-file} -d
ff51d159 6358--help -h
931c7513 6359--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6360--no-lines -l
931c7513 6361--no-parser -n
d8988b2f 6362--output=@var{outfile} -o @var{outfile}
931c7513 6363--token-table -k
bfa74976
RS
6364--verbose -v
6365--version -V
8c9a50be 6366--yacc -y
bfa74976
RS
6367@end example
6368@end ifinfo
6369
93dd49ab
PE
6370@node Yacc Library
6371@section Yacc Library
6372
6373The Yacc library contains default implementations of the
6374@code{yyerror} and @code{main} functions. These default
6375implementations are normally not useful, but @acronym{POSIX} requires
6376them. To use the Yacc library, link your program with the
6377@option{-ly} option. Note that Bison's implementation of the Yacc
6378library is distributed under the terms of the @acronym{GNU} General
6379Public License (@pxref{Copying}).
6380
6381If you use the Yacc library's @code{yyerror} function, you should
6382declare @code{yyerror} as follows:
6383
6384@example
6385int yyerror (char const *);
6386@end example
6387
6388Bison ignores the @code{int} value returned by this @code{yyerror}.
6389If you use the Yacc library's @code{main} function, your
6390@code{yyparse} function should have the following type signature:
6391
6392@example
6393int yyparse (void);
6394@end example
6395
d1a1114f
AD
6396@c ================================================= Invoking Bison
6397
6398@node FAQ
6399@chapter Frequently Asked Questions
6400@cindex frequently asked questions
6401@cindex questions
6402
6403Several questions about Bison come up occasionally. Here some of them
6404are addressed.
6405
6406@menu
6407* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 6408* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 6409* Strings are Destroyed:: @code{yylval} Loses Track of Strings
a06ea4aa
AD
6410* C++ Parsers:: Compiling Parsers with C++ Compilers
6411* Implementing Loops:: Control Flow in the Calculator
d1a1114f
AD
6412@end menu
6413
6414@node Parser Stack Overflow
6415@section Parser Stack Overflow
6416
6417@display
6418My parser returns with error with a @samp{parser stack overflow}
6419message. What can I do?
6420@end display
6421
6422This question is already addressed elsewhere, @xref{Recursion,
6423,Recursive Rules}.
6424
e64fec0a
PE
6425@node How Can I Reset the Parser
6426@section How Can I Reset the Parser
5b066063 6427
0e14ad77
PE
6428The following phenomenon has several symptoms, resulting in the
6429following typical questions:
5b066063
AD
6430
6431@display
6432I invoke @code{yyparse} several times, and on correct input it works
6433properly; but when a parse error is found, all the other calls fail
0e14ad77 6434too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
6435@end display
6436
6437@noindent
6438or
6439
6440@display
0e14ad77 6441My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
6442which case I run @code{yyparse} from @code{yyparse}. This fails
6443although I did specify I needed a @code{%pure-parser}.
6444@end display
6445
0e14ad77
PE
6446These problems typically come not from Bison itself, but from
6447Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
6448speed, they might not notice a change of input file. As a
6449demonstration, consider the following source file,
6450@file{first-line.l}:
6451
6452@verbatim
6453%{
6454#include <stdio.h>
6455#include <stdlib.h>
6456%}
6457%%
6458.*\n ECHO; return 1;
6459%%
6460int
0e14ad77 6461yyparse (char const *file)
5b066063
AD
6462{
6463 yyin = fopen (file, "r");
6464 if (!yyin)
6465 exit (2);
6466 /* One token only. */
6467 yylex ();
0e14ad77 6468 if (fclose (yyin) != 0)
5b066063
AD
6469 exit (3);
6470 return 0;
6471}
6472
6473int
0e14ad77 6474main (void)
5b066063
AD
6475{
6476 yyparse ("input");
6477 yyparse ("input");
6478 return 0;
6479}
6480@end verbatim
6481
6482@noindent
6483If the file @file{input} contains
6484
6485@verbatim
6486input:1: Hello,
6487input:2: World!
6488@end verbatim
6489
6490@noindent
0e14ad77 6491then instead of getting the first line twice, you get:
5b066063
AD
6492
6493@example
6494$ @kbd{flex -ofirst-line.c first-line.l}
6495$ @kbd{gcc -ofirst-line first-line.c -ll}
6496$ @kbd{./first-line}
6497input:1: Hello,
6498input:2: World!
6499@end example
6500
0e14ad77
PE
6501Therefore, whenever you change @code{yyin}, you must tell the
6502Lex-generated scanner to discard its current buffer and switch to the
6503new one. This depends upon your implementation of Lex; see its
6504documentation for more. For Flex, it suffices to call
6505@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
6506Flex-generated scanner needs to read from several input streams to
6507handle features like include files, you might consider using Flex
6508functions like @samp{yy_switch_to_buffer} that manipulate multiple
6509input buffers.
5b066063 6510
fef4cb51
AD
6511@node Strings are Destroyed
6512@section Strings are Destroyed
6513
6514@display
c7e441b4 6515My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
6516them. Instead of reporting @samp{"foo", "bar"}, it reports
6517@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
6518@end display
6519
6520This error is probably the single most frequent ``bug report'' sent to
6521Bison lists, but is only concerned with a misunderstanding of the role
6522of scanner. Consider the following Lex code:
6523
6524@verbatim
6525%{
6526#include <stdio.h>
6527char *yylval = NULL;
6528%}
6529%%
6530.* yylval = yytext; return 1;
6531\n /* IGNORE */
6532%%
6533int
6534main ()
6535{
6536 /* Similar to using $1, $2 in a Bison action. */
6537 char *fst = (yylex (), yylval);
6538 char *snd = (yylex (), yylval);
6539 printf ("\"%s\", \"%s\"\n", fst, snd);
6540 return 0;
6541}
6542@end verbatim
6543
6544If you compile and run this code, you get:
6545
6546@example
6547$ @kbd{flex -osplit-lines.c split-lines.l}
6548$ @kbd{gcc -osplit-lines split-lines.c -ll}
6549$ @kbd{printf 'one\ntwo\n' | ./split-lines}
6550"one
6551two", "two"
6552@end example
6553
6554@noindent
6555this is because @code{yytext} is a buffer provided for @emph{reading}
6556in the action, but if you want to keep it, you have to duplicate it
6557(e.g., using @code{strdup}). Note that the output may depend on how
6558your implementation of Lex handles @code{yytext}. For instance, when
6559given the Lex compatibility option @option{-l} (which triggers the
6560option @samp{%array}) Flex generates a different behavior:
6561
6562@example
6563$ @kbd{flex -l -osplit-lines.c split-lines.l}
6564$ @kbd{gcc -osplit-lines split-lines.c -ll}
6565$ @kbd{printf 'one\ntwo\n' | ./split-lines}
6566"two", "two"
6567@end example
6568
6569
a06ea4aa
AD
6570@node C++ Parsers
6571@section C++ Parsers
6572
6573@display
6574How can I generate parsers in C++?
6575@end display
6576
6577We are working on a C++ output for Bison, but unfortunately, for lack
6578of time, the skeleton is not finished. It is functional, but in
6579numerous respects, it will require additional work which @emph{might}
6580break backward compatibility. Since the skeleton for C++ is not
6581documented, we do not consider ourselves bound to this interface,
6582nevertheless, as much as possible we will try to keep compatibility.
6583
6584Another possibility is to use the regular C parsers, and to compile
6585them with a C++ compiler. This works properly, provided that you bear
6586some simple C++ rules in mind, such as not including ``real classes''
6587(i.e., structure with constructors) in unions. Therefore, in the
6588@code{%union}, use pointers to classes, or better yet, a single
6589pointer type to the root of your lexical/syntactic hierarchy.
6590
6591
6592@node Implementing Loops
6593@section Implementing Loops
6594
6595@display
6596My simple calculator supports variables, assignments, and functions,
6597but how can I implement loops?
6598@end display
6599
6600Although very pedagogical, the examples included in the document blur
a1c84f45 6601the distinction to make between the parser---whose job is to recover
a06ea4aa 6602the structure of a text and to transmit it to subsequent modules of
a1c84f45 6603the program---and the processing (such as the execution) of this
a06ea4aa
AD
6604structure. This works well with so called straight line programs,
6605i.e., precisely those that have a straightforward execution model:
6606execute simple instructions one after the others.
6607
6608@cindex abstract syntax tree
6609@cindex @acronym{AST}
6610If you want a richer model, you will probably need to use the parser
6611to construct a tree that does represent the structure it has
6612recovered; this tree is usually called the @dfn{abstract syntax tree},
6613or @dfn{@acronym{AST}} for short. Then, walking through this tree,
6614traversing it in various ways, will enable treatments such as its
6615execution or its translation, which will result in an interpreter or a
6616compiler.
6617
6618This topic is way beyond the scope of this manual, and the reader is
6619invited to consult the dedicated literature.
6620
6621
6622
d1a1114f
AD
6623@c ================================================= Table of Symbols
6624
342b8b6e 6625@node Table of Symbols
bfa74976
RS
6626@appendix Bison Symbols
6627@cindex Bison symbols, table of
6628@cindex symbols in Bison, table of
6629
18b519c0 6630@deffn {Variable} @@$
3ded9a63 6631In an action, the location of the left-hand side of the rule.
88bce5a2 6632@xref{Locations, , Locations Overview}.
18b519c0 6633@end deffn
3ded9a63 6634
18b519c0 6635@deffn {Variable} @@@var{n}
3ded9a63
AD
6636In an action, the location of the @var{n}-th symbol of the right-hand
6637side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 6638@end deffn
3ded9a63 6639
18b519c0 6640@deffn {Variable} $$
3ded9a63
AD
6641In an action, the semantic value of the left-hand side of the rule.
6642@xref{Actions}.
18b519c0 6643@end deffn
3ded9a63 6644
18b519c0 6645@deffn {Variable} $@var{n}
3ded9a63
AD
6646In an action, the semantic value of the @var{n}-th symbol of the
6647right-hand side of the rule. @xref{Actions}.
18b519c0 6648@end deffn
3ded9a63 6649
18b519c0 6650@deffn {Symbol} $accept
88bce5a2
AD
6651The predefined nonterminal whose only rule is @samp{$accept: @var{start}
6652$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
6653Start-Symbol}. It cannot be used in the grammar.
18b519c0 6654@end deffn
88bce5a2 6655
18b519c0 6656@deffn {Symbol} $end
88bce5a2
AD
6657The predefined token marking the end of the token stream. It cannot be
6658used in the grammar.
18b519c0 6659@end deffn
88bce5a2 6660
18b519c0 6661@deffn {Symbol} $undefined
88bce5a2
AD
6662The predefined token onto which all undefined values returned by
6663@code{yylex} are mapped. It cannot be used in the grammar, rather, use
6664@code{error}.
18b519c0 6665@end deffn
88bce5a2 6666
18b519c0 6667@deffn {Symbol} error
bfa74976
RS
6668A token name reserved for error recovery. This token may be used in
6669grammar rules so as to allow the Bison parser to recognize an error in
6670the grammar without halting the process. In effect, a sentence
6e649e65 6671containing an error may be recognized as valid. On a syntax error, the
bfa74976
RS
6672token @code{error} becomes the current look-ahead token. Actions
6673corresponding to @code{error} are then executed, and the look-ahead
6674token is reset to the token that originally caused the violation.
6675@xref{Error Recovery}.
18b519c0 6676@end deffn
bfa74976 6677
18b519c0 6678@deffn {Macro} YYABORT
bfa74976
RS
6679Macro to pretend that an unrecoverable syntax error has occurred, by
6680making @code{yyparse} return 1 immediately. The error reporting
ceed8467
AD
6681function @code{yyerror} is not called. @xref{Parser Function, ,The
6682Parser Function @code{yyparse}}.
18b519c0 6683@end deffn
bfa74976 6684
18b519c0 6685@deffn {Macro} YYACCEPT
bfa74976 6686Macro to pretend that a complete utterance of the language has been
13863333 6687read, by making @code{yyparse} return 0 immediately.
bfa74976 6688@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6689@end deffn
bfa74976 6690
18b519c0 6691@deffn {Macro} YYBACKUP
bfa74976
RS
6692Macro to discard a value from the parser stack and fake a look-ahead
6693token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6694@end deffn
bfa74976 6695
18b519c0 6696@deffn {Macro} YYDEBUG
72d2299c 6697Macro to define to equip the parser with tracing code. @xref{Tracing,
ec3bc396 6698,Tracing Your Parser}.
18b519c0 6699@end deffn
3ded9a63 6700
18b519c0 6701@deffn {Macro} YYERROR
bfa74976
RS
6702Macro to pretend that a syntax error has just been detected: call
6703@code{yyerror} and then perform normal error recovery if possible
6704(@pxref{Error Recovery}), or (if recovery is impossible) make
6705@code{yyparse} return 1. @xref{Error Recovery}.
18b519c0 6706@end deffn
bfa74976 6707
18b519c0 6708@deffn {Macro} YYERROR_VERBOSE
b69d743e
PE
6709An obsolete macro that you define with @code{#define} in the prologue
6710to request verbose, specific error message strings
2a8d363a
AD
6711when @code{yyerror} is called. It doesn't matter what definition you
6712use for @code{YYERROR_VERBOSE}, just whether you define it. Using
6713@code{%error-verbose} is preferred.
18b519c0 6714@end deffn
bfa74976 6715
18b519c0 6716@deffn {Macro} YYINITDEPTH
bfa74976
RS
6717Macro for specifying the initial size of the parser stack.
6718@xref{Stack Overflow}.
18b519c0 6719@end deffn
bfa74976 6720
18b519c0 6721@deffn {Macro} YYLEX_PARAM
2a8d363a
AD
6722An obsolete macro for specifying an extra argument (or list of extra
6723arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
6724macro is deprecated, and is supported only for Yacc like parsers.
6725@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
18b519c0 6726@end deffn
c656404a 6727
6273355b
PE
6728@deffn {Type} YYLTYPE
6729Data type of @code{yylloc}; by default, a structure with four
847bf1f5 6730members. @xref{Location Type, , Data Types of Locations}.
18b519c0 6731@end deffn
bfa74976 6732
18b519c0
AD
6733@deffn {Macro} YYMAXDEPTH
6734Macro for specifying the maximum size of the parser stack. @xref{Stack
6735Overflow}.
6736@end deffn
bfa74976 6737
18b519c0 6738@deffn {Macro} YYPARSE_PARAM
2a8d363a
AD
6739An obsolete macro for specifying the name of a parameter that
6740@code{yyparse} should accept. The use of this macro is deprecated, and
6741is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
6742Conventions for Pure Parsers}.
18b519c0 6743@end deffn
c656404a 6744
18b519c0 6745@deffn {Macro} YYRECOVERING
bfa74976
RS
6746Macro whose value indicates whether the parser is recovering from a
6747syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6748@end deffn
bfa74976 6749
18b519c0 6750@deffn {Macro} YYSTACK_USE_ALLOCA
72d2299c 6751Macro used to control the use of @code{alloca}. If defined to @samp{0},
f9a8293a 6752the parser will not use @code{alloca} but @code{malloc} when trying to
72d2299c 6753grow its internal stacks. Do @emph{not} define @code{YYSTACK_USE_ALLOCA}
f9a8293a 6754to anything else.
18b519c0 6755@end deffn
f9a8293a 6756
6273355b
PE
6757@deffn {Type} YYSTYPE
6758Data type of semantic values; @code{int} by default.
bfa74976 6759@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 6760@end deffn
bfa74976 6761
18b519c0 6762@deffn {Variable} yychar
13863333
AD
6763External integer variable that contains the integer value of the current
6764look-ahead token. (In a pure parser, it is a local variable within
6765@code{yyparse}.) Error-recovery rule actions may examine this variable.
6766@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6767@end deffn
bfa74976 6768
18b519c0 6769@deffn {Variable} yyclearin
bfa74976
RS
6770Macro used in error-recovery rule actions. It clears the previous
6771look-ahead token. @xref{Error Recovery}.
18b519c0 6772@end deffn
bfa74976 6773
18b519c0 6774@deffn {Variable} yydebug
bfa74976
RS
6775External integer variable set to zero by default. If @code{yydebug}
6776is given a nonzero value, the parser will output information on input
ec3bc396 6777symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 6778@end deffn
bfa74976 6779
18b519c0 6780@deffn {Macro} yyerrok
bfa74976 6781Macro to cause parser to recover immediately to its normal mode
6e649e65 6782after a syntax error. @xref{Error Recovery}.
18b519c0 6783@end deffn
bfa74976 6784
18b519c0 6785@deffn {Function} yyerror
38a92d50
PE
6786User-supplied function to be called by @code{yyparse} on error.
6787@xref{Error Reporting, ,The Error
13863333 6788Reporting Function @code{yyerror}}.
18b519c0 6789@end deffn
bfa74976 6790
18b519c0 6791@deffn {Function} yylex
704a47c4
AD
6792User-supplied lexical analyzer function, called with no arguments to get
6793the next token. @xref{Lexical, ,The Lexical Analyzer Function
6794@code{yylex}}.
18b519c0 6795@end deffn
bfa74976 6796
18b519c0 6797@deffn {Variable} yylval
bfa74976
RS
6798External variable in which @code{yylex} should place the semantic
6799value associated with a token. (In a pure parser, it is a local
6800variable within @code{yyparse}, and its address is passed to
6801@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 6802@end deffn
bfa74976 6803
18b519c0 6804@deffn {Variable} yylloc
13863333
AD
6805External variable in which @code{yylex} should place the line and column
6806numbers associated with a token. (In a pure parser, it is a local
6807variable within @code{yyparse}, and its address is passed to
bfa74976 6808@code{yylex}.) You can ignore this variable if you don't use the
95923bd6
AD
6809@samp{@@} feature in the grammar actions. @xref{Token Locations,
6810,Textual Locations of Tokens}.
18b519c0 6811@end deffn
bfa74976 6812
18b519c0 6813@deffn {Variable} yynerrs
6e649e65 6814Global variable which Bison increments each time there is a syntax error.
13863333
AD
6815(In a pure parser, it is a local variable within @code{yyparse}.)
6816@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
18b519c0 6817@end deffn
bfa74976 6818
18b519c0 6819@deffn {Function} yyparse
bfa74976
RS
6820The parser function produced by Bison; call this function to start
6821parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6822@end deffn
bfa74976 6823
18b519c0 6824@deffn {Directive} %debug
6deb4447 6825Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 6826@end deffn
6deb4447 6827
91d2c560 6828@ifset defaultprec
22fccf95
PE
6829@deffn {Directive} %default-prec
6830Assign a precedence to rules that lack an explicit @samp{%prec}
6831modifier. @xref{Contextual Precedence, ,Context-Dependent
6832Precedence}.
39a06c25 6833@end deffn
91d2c560 6834@end ifset
39a06c25 6835
18b519c0 6836@deffn {Directive} %defines
6deb4447
AD
6837Bison declaration to create a header file meant for the scanner.
6838@xref{Decl Summary}.
18b519c0 6839@end deffn
6deb4447 6840
18b519c0 6841@deffn {Directive} %destructor
72f889cc
AD
6842Specifying how the parser should reclaim the memory associated to
6843discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 6844@end deffn
72f889cc 6845
18b519c0 6846@deffn {Directive} %dprec
676385e2 6847Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
6848time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
6849@acronym{GLR} Parsers}.
18b519c0 6850@end deffn
676385e2 6851
18b519c0 6852@deffn {Directive} %error-verbose
2a8d363a
AD
6853Bison declaration to request verbose, specific error message strings
6854when @code{yyerror} is called.
18b519c0 6855@end deffn
2a8d363a 6856
18b519c0 6857@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 6858Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 6859Summary}.
18b519c0 6860@end deffn
d8988b2f 6861
18b519c0 6862@deffn {Directive} %glr-parser
c827f760
PE
6863Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
6864Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 6865@end deffn
676385e2 6866
18b519c0 6867@deffn {Directive} %left
bfa74976
RS
6868Bison declaration to assign left associativity to token(s).
6869@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 6870@end deffn
bfa74976 6871
feeb0eda 6872@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
6873Bison declaration to specifying an additional parameter that
6874@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
6875for Pure Parsers}.
18b519c0 6876@end deffn
2a8d363a 6877
18b519c0 6878@deffn {Directive} %merge
676385e2 6879Bison declaration to assign a merging function to a rule. If there is a
fae437e8 6880reduce/reduce conflict with a rule having the same merging function, the
676385e2 6881function is applied to the two semantic values to get a single result.
c827f760 6882@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 6883@end deffn
676385e2 6884
18b519c0 6885@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 6886Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 6887@end deffn
d8988b2f 6888
91d2c560 6889@ifset defaultprec
22fccf95
PE
6890@deffn {Directive} %no-default-prec
6891Do not assign a precedence to rules that lack an explicit @samp{%prec}
6892modifier. @xref{Contextual Precedence, ,Context-Dependent
6893Precedence}.
6894@end deffn
91d2c560 6895@end ifset
22fccf95 6896
18b519c0 6897@deffn {Directive} %no-lines
931c7513
RS
6898Bison declaration to avoid generating @code{#line} directives in the
6899parser file. @xref{Decl Summary}.
18b519c0 6900@end deffn
931c7513 6901
18b519c0 6902@deffn {Directive} %nonassoc
14ded682 6903Bison declaration to assign non-associativity to token(s).
bfa74976 6904@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 6905@end deffn
bfa74976 6906
18b519c0 6907@deffn {Directive} %output="@var{filename}"
72d2299c 6908Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 6909Summary}.
18b519c0 6910@end deffn
d8988b2f 6911
feeb0eda 6912@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
6913Bison declaration to specifying an additional parameter that
6914@code{yyparse} should accept. @xref{Parser Function,, The Parser
6915Function @code{yyparse}}.
18b519c0 6916@end deffn
2a8d363a 6917
18b519c0 6918@deffn {Directive} %prec
bfa74976
RS
6919Bison declaration to assign a precedence to a specific rule.
6920@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 6921@end deffn
bfa74976 6922
18b519c0 6923@deffn {Directive} %pure-parser
bfa74976
RS
6924Bison declaration to request a pure (reentrant) parser.
6925@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 6926@end deffn
bfa74976 6927
18b519c0 6928@deffn {Directive} %right
bfa74976
RS
6929Bison declaration to assign right associativity to token(s).
6930@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 6931@end deffn
bfa74976 6932
18b519c0 6933@deffn {Directive} %start
704a47c4
AD
6934Bison declaration to specify the start symbol. @xref{Start Decl, ,The
6935Start-Symbol}.
18b519c0 6936@end deffn
bfa74976 6937
18b519c0 6938@deffn {Directive} %token
bfa74976
RS
6939Bison declaration to declare token(s) without specifying precedence.
6940@xref{Token Decl, ,Token Type Names}.
18b519c0 6941@end deffn
bfa74976 6942
18b519c0 6943@deffn {Directive} %token-table
931c7513
RS
6944Bison declaration to include a token name table in the parser file.
6945@xref{Decl Summary}.
18b519c0 6946@end deffn
931c7513 6947
18b519c0 6948@deffn {Directive} %type
704a47c4
AD
6949Bison declaration to declare nonterminals. @xref{Type Decl,
6950,Nonterminal Symbols}.
18b519c0 6951@end deffn
bfa74976 6952
18b519c0 6953@deffn {Directive} %union
bfa74976
RS
6954Bison declaration to specify several possible data types for semantic
6955values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 6956@end deffn
bfa74976 6957
3ded9a63
AD
6958@sp 1
6959
bfa74976
RS
6960These are the punctuation and delimiters used in Bison input:
6961
18b519c0 6962@deffn {Delimiter} %%
bfa74976 6963Delimiter used to separate the grammar rule section from the
75f5aaea 6964Bison declarations section or the epilogue.
bfa74976 6965@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 6966@end deffn
bfa74976 6967
18b519c0
AD
6968@c Don't insert spaces, or check the DVI output.
6969@deffn {Delimiter} %@{@var{code}%@}
89cab50d 6970All code listed between @samp{%@{} and @samp{%@}} is copied directly to
342b8b6e 6971the output file uninterpreted. Such code forms the prologue of the input
75f5aaea 6972file. @xref{Grammar Outline, ,Outline of a Bison
89cab50d 6973Grammar}.
18b519c0 6974@end deffn
bfa74976 6975
18b519c0 6976@deffn {Construct} /*@dots{}*/
bfa74976 6977Comment delimiters, as in C.
18b519c0 6978@end deffn
bfa74976 6979
18b519c0 6980@deffn {Delimiter} :
89cab50d
AD
6981Separates a rule's result from its components. @xref{Rules, ,Syntax of
6982Grammar Rules}.
18b519c0 6983@end deffn
bfa74976 6984
18b519c0 6985@deffn {Delimiter} ;
bfa74976 6986Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 6987@end deffn
bfa74976 6988
18b519c0 6989@deffn {Delimiter} |
bfa74976
RS
6990Separates alternate rules for the same result nonterminal.
6991@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 6992@end deffn
bfa74976 6993
342b8b6e 6994@node Glossary
bfa74976
RS
6995@appendix Glossary
6996@cindex glossary
6997
6998@table @asis
c827f760
PE
6999@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
7000Formal method of specifying context-free grammars originally proposed
7001by John Backus, and slightly improved by Peter Naur in his 1960-01-02
7002committee document contributing to what became the Algol 60 report.
7003@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
7004
7005@item Context-free grammars
7006Grammars specified as rules that can be applied regardless of context.
7007Thus, if there is a rule which says that an integer can be used as an
7008expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
7009permitted. @xref{Language and Grammar, ,Languages and Context-Free
7010Grammars}.
bfa74976
RS
7011
7012@item Dynamic allocation
7013Allocation of memory that occurs during execution, rather than at
7014compile time or on entry to a function.
7015
7016@item Empty string
7017Analogous to the empty set in set theory, the empty string is a
7018character string of length zero.
7019
7020@item Finite-state stack machine
7021A ``machine'' that has discrete states in which it is said to exist at
7022each instant in time. As input to the machine is processed, the
7023machine moves from state to state as specified by the logic of the
7024machine. In the case of the parser, the input is the language being
7025parsed, and the states correspond to various stages in the grammar
c827f760 7026rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 7027
c827f760 7028@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 7029A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
7030that are not @acronym{LALR}(1). It resolves situations that Bison's
7031usual @acronym{LALR}(1)
676385e2
PH
7032algorithm cannot by effectively splitting off multiple parsers, trying all
7033possible parsers, and discarding those that fail in the light of additional
c827f760
PE
7034right context. @xref{Generalized LR Parsing, ,Generalized
7035@acronym{LR} Parsing}.
676385e2 7036
bfa74976
RS
7037@item Grouping
7038A language construct that is (in general) grammatically divisible;
c827f760 7039for example, `expression' or `declaration' in C@.
bfa74976
RS
7040@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7041
7042@item Infix operator
7043An arithmetic operator that is placed between the operands on which it
7044performs some operation.
7045
7046@item Input stream
7047A continuous flow of data between devices or programs.
7048
7049@item Language construct
7050One of the typical usage schemas of the language. For example, one of
7051the constructs of the C language is the @code{if} statement.
7052@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7053
7054@item Left associativity
7055Operators having left associativity are analyzed from left to right:
7056@samp{a+b+c} first computes @samp{a+b} and then combines with
7057@samp{c}. @xref{Precedence, ,Operator Precedence}.
7058
7059@item Left recursion
89cab50d
AD
7060A rule whose result symbol is also its first component symbol; for
7061example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
7062Rules}.
bfa74976
RS
7063
7064@item Left-to-right parsing
7065Parsing a sentence of a language by analyzing it token by token from
c827f760 7066left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
7067
7068@item Lexical analyzer (scanner)
7069A function that reads an input stream and returns tokens one by one.
7070@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
7071
7072@item Lexical tie-in
7073A flag, set by actions in the grammar rules, which alters the way
7074tokens are parsed. @xref{Lexical Tie-ins}.
7075
931c7513 7076@item Literal string token
14ded682 7077A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 7078
bfa74976 7079@item Look-ahead token
89cab50d
AD
7080A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
7081Tokens}.
bfa74976 7082
c827f760 7083@item @acronym{LALR}(1)
bfa74976 7084The class of context-free grammars that Bison (like most other parser
c827f760
PE
7085generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
7086Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 7087
c827f760 7088@item @acronym{LR}(1)
bfa74976
RS
7089The class of context-free grammars in which at most one token of
7090look-ahead is needed to disambiguate the parsing of any piece of input.
7091
7092@item Nonterminal symbol
7093A grammar symbol standing for a grammatical construct that can
7094be expressed through rules in terms of smaller constructs; in other
7095words, a construct that is not a token. @xref{Symbols}.
7096
bfa74976
RS
7097@item Parser
7098A function that recognizes valid sentences of a language by analyzing
7099the syntax structure of a set of tokens passed to it from a lexical
7100analyzer.
7101
7102@item Postfix operator
7103An arithmetic operator that is placed after the operands upon which it
7104performs some operation.
7105
7106@item Reduction
7107Replacing a string of nonterminals and/or terminals with a single
89cab50d 7108nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 7109Parser Algorithm}.
bfa74976
RS
7110
7111@item Reentrant
7112A reentrant subprogram is a subprogram which can be in invoked any
7113number of times in parallel, without interference between the various
7114invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
7115
7116@item Reverse polish notation
7117A language in which all operators are postfix operators.
7118
7119@item Right recursion
89cab50d
AD
7120A rule whose result symbol is also its last component symbol; for
7121example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
7122Rules}.
bfa74976
RS
7123
7124@item Semantics
7125In computer languages, the semantics are specified by the actions
7126taken for each instance of the language, i.e., the meaning of
7127each statement. @xref{Semantics, ,Defining Language Semantics}.
7128
7129@item Shift
7130A parser is said to shift when it makes the choice of analyzing
7131further input from the stream rather than reducing immediately some
c827f760 7132already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
7133
7134@item Single-character literal
7135A single character that is recognized and interpreted as is.
7136@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
7137
7138@item Start symbol
7139The nonterminal symbol that stands for a complete valid utterance in
7140the language being parsed. The start symbol is usually listed as the
13863333 7141first nonterminal symbol in a language specification.
bfa74976
RS
7142@xref{Start Decl, ,The Start-Symbol}.
7143
7144@item Symbol table
7145A data structure where symbol names and associated data are stored
7146during parsing to allow for recognition and use of existing
7147information in repeated uses of a symbol. @xref{Multi-function Calc}.
7148
6e649e65
PE
7149@item Syntax error
7150An error encountered during parsing of an input stream due to invalid
7151syntax. @xref{Error Recovery}.
7152
bfa74976
RS
7153@item Token
7154A basic, grammatically indivisible unit of a language. The symbol
7155that describes a token in the grammar is a terminal symbol.
7156The input of the Bison parser is a stream of tokens which comes from
7157the lexical analyzer. @xref{Symbols}.
7158
7159@item Terminal symbol
89cab50d
AD
7160A grammar symbol that has no rules in the grammar and therefore is
7161grammatically indivisible. The piece of text it represents is a token.
7162@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
7163@end table
7164
342b8b6e 7165@node Copying This Manual
f2b5126e 7166@appendix Copying This Manual
f9a8293a 7167
f2b5126e
PB
7168@menu
7169* GNU Free Documentation License:: License for copying this manual.
7170@end menu
f9a8293a 7171
f2b5126e
PB
7172@include fdl.texi
7173
342b8b6e 7174@node Index
bfa74976
RS
7175@unnumbered Index
7176
7177@printindex cp
7178
bfa74976 7179@bye
a06ea4aa
AD
7180
7181@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
7182@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
7183@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
7184@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
7185@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
7186@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
7187@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
7188@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
7189@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
7190@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
7191@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
7192@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
7193@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
7194@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
7195@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
7196@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
7197@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
7198@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
7199@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
7200@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
7201@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
7202@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
7203@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
7204@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
7205@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
7206@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
7207@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
7208@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
7209@c LocalWords: YYSTACK DVI fdl printindex