]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Add support for hex token numbers.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
1452af69 471999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760
PE
51under the terms of the @acronym{GNU} Free Documentation License,
52Version 1.1 or any later version published by the Free Software
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
65@dircategory GNU programming tools
66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
931c7513
RS
8559 Temple Place, Suite 330 @*
86Boston, MA 02111-1307 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976
RS
119* Invocation:: How to run Bison (to produce the parser source file).
120* Table of Symbols:: All the keywords of the Bison language are explained.
121* Glossary:: Basic concepts are explained.
d1a1114f 122* FAQ:: Frequently Asked Questions
f2b5126e 123* Copying This Manual:: License for copying this manual.
bfa74976
RS
124* Index:: Cross-references to the text.
125
93dd49ab
PE
126@detailmenu
127 --- The Detailed Node Listing ---
bfa74976
RS
128
129The Concepts of Bison
130
131* Language and Grammar:: Languages and context-free grammars,
132 as mathematical ideas.
133* Grammar in Bison:: How we represent grammars for Bison's sake.
134* Semantic Values:: Each token or syntactic grouping can have
135 a semantic value (the value of an integer,
136 the name of an identifier, etc.).
137* Semantic Actions:: Each rule can have an action containing C code.
93dd49ab
PE
138* GLR Parsers:: Writing parsers for general context-free languages
139* Locations Overview:: Tracking Locations.
bfa74976
RS
140* Bison Parser:: What are Bison's input and output,
141 how is the output used?
142* Stages:: Stages in writing and running Bison grammars.
143* Grammar Layout:: Overall structure of a Bison grammar file.
144
145Examples
146
147* RPN Calc:: Reverse polish notation calculator;
148 a first example with no operator precedence.
149* Infix Calc:: Infix (algebraic) notation calculator.
150 Operator precedence is introduced.
151* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 152* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
153* Multi-function Calc:: Calculator with memory and trig functions.
154 It uses multiple data-types for semantic values.
bfa74976
RS
155* Exercises:: Ideas for improving the multi-function calculator.
156
157Reverse Polish Notation Calculator
158
75f5aaea 159* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
160* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
161* Lexer: Rpcalc Lexer. The lexical analyzer.
162* Main: Rpcalc Main. The controlling function.
163* Error: Rpcalc Error. The error reporting function.
164* Gen: Rpcalc Gen. Running Bison on the grammar file.
165* Comp: Rpcalc Compile. Run the C compiler on the output code.
166
167Grammar Rules for @code{rpcalc}
168
13863333
AD
169* Rpcalc Input::
170* Rpcalc Line::
171* Rpcalc Expr::
bfa74976 172
342b8b6e
AD
173Location Tracking Calculator: @code{ltcalc}
174
175* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
176* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
177* Lexer: Ltcalc Lexer. The lexical analyzer.
178
bfa74976
RS
179Multi-Function Calculator: @code{mfcalc}
180
181* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
182* Rules: Mfcalc Rules. Grammar rules for the calculator.
183* Symtab: Mfcalc Symtab. Symbol table management subroutines.
184
185Bison Grammar Files
186
187* Grammar Outline:: Overall layout of the grammar file.
188* Symbols:: Terminal and nonterminal symbols.
189* Rules:: How to write grammar rules.
190* Recursion:: Writing recursive rules.
191* Semantics:: Semantic values and actions.
93dd49ab 192* Locations:: Locations and actions.
bfa74976
RS
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
195
196Outline of a Bison Grammar
197
93dd49ab 198* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
199* Bison Declarations:: Syntax and usage of the Bison declarations section.
200* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 201* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
202
203Defining Language Semantics
204
205* Value Type:: Specifying one data type for all semantic values.
206* Multiple Types:: Specifying several alternative data types.
207* Actions:: An action is the semantic definition of a grammar rule.
208* Action Types:: Specifying data types for actions to operate on.
209* Mid-Rule Actions:: Most actions go at the end of a rule.
210 This says when, why and how to use the exceptional
211 action in the middle of a rule.
212
93dd49ab
PE
213Tracking Locations
214
215* Location Type:: Specifying a data type for locations.
216* Actions and Locations:: Using locations in actions.
217* Location Default Action:: Defining a general way to compute locations.
218
bfa74976
RS
219Bison Declarations
220
221* Token Decl:: Declaring terminal symbols.
222* Precedence Decl:: Declaring terminals with precedence and associativity.
223* Union Decl:: Declaring the set of all semantic value types.
224* Type Decl:: Declaring the choice of type for a nonterminal symbol.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
bfa74976
RS
226* Expect Decl:: Suppressing warnings about shift/reduce conflicts.
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
233* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 234* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
235 which reads tokens.
236* Error Reporting:: You must supply a function @code{yyerror}.
237* Action Features:: Special features for use in actions.
238
239The Lexical Analyzer Function @code{yylex}
240
241* Calling Convention:: How @code{yyparse} calls @code{yylex}.
242* Token Values:: How @code{yylex} must return the semantic value
243 of the token it has read.
95923bd6 244* Token Locations:: How @code{yylex} must return the text location
bfa74976 245 (line number, etc.) of the token, if the
93dd49ab 246 actions want that.
bfa74976
RS
247* Pure Calling:: How the calling convention differs
248 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
249
13863333 250The Bison Parser Algorithm
bfa74976
RS
251
252* Look-Ahead:: Parser looks one token ahead when deciding what to do.
253* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
254* Precedence:: Operator precedence works by resolving conflicts.
255* Contextual Precedence:: When an operator's precedence depends on context.
256* Parser States:: The parser is a finite-state-machine with stack.
257* Reduce/Reduce:: When two rules are applicable in the same situation.
258* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 259* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
260* Stack Overflow:: What happens when stack gets full. How to avoid it.
261
262Operator Precedence
263
264* Why Precedence:: An example showing why precedence is needed.
265* Using Precedence:: How to specify precedence in Bison grammars.
266* Precedence Examples:: How these features are used in the previous example.
267* How Precedence:: How they work.
268
269Handling Context Dependencies
270
271* Semantic Tokens:: Token parsing can depend on the semantic context.
272* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
273* Tie-in Recovery:: Lexical tie-ins have implications for how
274 error recovery rules must be written.
275
93dd49ab 276Debugging Your Parser
ec3bc396
AD
277
278* Understanding:: Understanding the structure of your parser.
279* Tracing:: Tracing the execution of your parser.
280
bfa74976
RS
281Invoking Bison
282
13863333 283* Bison Options:: All the options described in detail,
c827f760 284 in alphabetical order by short options.
bfa74976 285* Option Cross Key:: Alphabetical list of long options.
93dd49ab 286* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 287
d1a1114f
AD
288Frequently Asked Questions
289
290* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 291* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 292* Strings are Destroyed:: @code{yylval} Loses Track of Strings
a06ea4aa
AD
293* C++ Parsers:: Compiling Parsers with C++ Compilers
294* Implementing Loops:: Control Flow in the Calculator
d1a1114f 295
f2b5126e
PB
296Copying This Manual
297
298* GNU Free Documentation License:: License for copying this manual.
299
342b8b6e 300@end detailmenu
bfa74976
RS
301@end menu
302
342b8b6e 303@node Introduction
bfa74976
RS
304@unnumbered Introduction
305@cindex introduction
306
307@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 308grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
309program to parse that grammar. Once you are proficient with Bison,
310you may use it to develop a wide range of language parsers, from those
311used in simple desk calculators to complex programming languages.
312
313Bison is upward compatible with Yacc: all properly-written Yacc grammars
314ought to work with Bison with no change. Anyone familiar with Yacc
315should be able to use Bison with little trouble. You need to be fluent in
316C programming in order to use Bison or to understand this manual.
317
318We begin with tutorial chapters that explain the basic concepts of using
319Bison and show three explained examples, each building on the last. If you
320don't know Bison or Yacc, start by reading these chapters. Reference
321chapters follow which describe specific aspects of Bison in detail.
322
931c7513
RS
323Bison was written primarily by Robert Corbett; Richard Stallman made it
324Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 325multi-character string literals and other features.
931c7513 326
df1af54c 327This edition corresponds to version @value{VERSION} of Bison.
bfa74976 328
342b8b6e 329@node Conditions
bfa74976
RS
330@unnumbered Conditions for Using Bison
331
a31239f1 332As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 333@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 334Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 335parsers could be used only in programs that were free software.
a31239f1 336
c827f760
PE
337The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
338compiler, have never
9ecbd125 339had such a requirement. They could always be used for nonfree
a31239f1
RS
340software. The reason Bison was different was not due to a special
341policy decision; it resulted from applying the usual General Public
342License to all of the Bison source code.
343
344The output of the Bison utility---the Bison parser file---contains a
345verbatim copy of a sizable piece of Bison, which is the code for the
346@code{yyparse} function. (The actions from your grammar are inserted
347into this function at one point, but the rest of the function is not
c827f760
PE
348changed.) When we applied the @acronym{GPL} terms to the code for
349@code{yyparse},
a31239f1
RS
350the effect was to restrict the use of Bison output to free software.
351
352We didn't change the terms because of sympathy for people who want to
353make software proprietary. @strong{Software should be free.} But we
354concluded that limiting Bison's use to free software was doing little to
355encourage people to make other software free. So we decided to make the
356practical conditions for using Bison match the practical conditions for
c827f760 357using the other @acronym{GNU} tools.
bfa74976 358
eda42934 359This exception applies only when Bison is generating C code for an
c827f760
PE
360@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
361as usual. You can
262aa8dd
PE
362tell whether the exception applies to your @samp{.c} output file by
363inspecting it to see whether it says ``As a special exception, when
364this file is copied by Bison into a Bison output file, you may use
365that output file without restriction.''
366
c67a198d 367@include gpl.texi
bfa74976 368
342b8b6e 369@node Concepts
bfa74976
RS
370@chapter The Concepts of Bison
371
372This chapter introduces many of the basic concepts without which the
373details of Bison will not make sense. If you do not already know how to
374use Bison or Yacc, we suggest you start by reading this chapter carefully.
375
376@menu
377* Language and Grammar:: Languages and context-free grammars,
378 as mathematical ideas.
379* Grammar in Bison:: How we represent grammars for Bison's sake.
380* Semantic Values:: Each token or syntactic grouping can have
381 a semantic value (the value of an integer,
382 the name of an identifier, etc.).
383* Semantic Actions:: Each rule can have an action containing C code.
676385e2 384* GLR Parsers:: Writing parsers for general context-free languages
847bf1f5 385* Locations Overview:: Tracking Locations.
bfa74976
RS
386* Bison Parser:: What are Bison's input and output,
387 how is the output used?
388* Stages:: Stages in writing and running Bison grammars.
389* Grammar Layout:: Overall structure of a Bison grammar file.
390@end menu
391
342b8b6e 392@node Language and Grammar
bfa74976
RS
393@section Languages and Context-Free Grammars
394
bfa74976
RS
395@cindex context-free grammar
396@cindex grammar, context-free
397In order for Bison to parse a language, it must be described by a
398@dfn{context-free grammar}. This means that you specify one or more
399@dfn{syntactic groupings} and give rules for constructing them from their
400parts. For example, in the C language, one kind of grouping is called an
401`expression'. One rule for making an expression might be, ``An expression
402can be made of a minus sign and another expression''. Another would be,
403``An expression can be an integer''. As you can see, rules are often
404recursive, but there must be at least one rule which leads out of the
405recursion.
406
c827f760 407@cindex @acronym{BNF}
bfa74976
RS
408@cindex Backus-Naur form
409The most common formal system for presenting such rules for humans to read
c827f760
PE
410is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
411order to specify the language Algol 60. Any grammar expressed in
412@acronym{BNF} is a context-free grammar. The input to Bison is
413essentially machine-readable @acronym{BNF}.
bfa74976 414
c827f760
PE
415@cindex @acronym{LALR}(1) grammars
416@cindex @acronym{LR}(1) grammars
676385e2
PH
417There are various important subclasses of context-free grammar. Although it
418can handle almost all context-free grammars, Bison is optimized for what
c827f760 419are called @acronym{LALR}(1) grammars.
676385e2 420In brief, in these grammars, it must be possible to
bfa74976
RS
421tell how to parse any portion of an input string with just a single
422token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
423@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
424restrictions that are
bfa74976 425hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
426@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
427@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
428more information on this.
bfa74976 429
c827f760
PE
430@cindex @acronym{GLR} parsing
431@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
432@cindex ambiguous grammars
433@cindex non-deterministic parsing
9501dc6e
AD
434
435Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
436roughly that the next grammar rule to apply at any point in the input is
437uniquely determined by the preceding input and a fixed, finite portion
438(called a @dfn{look-ahead}) of the remaining input. A context-free
439grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
440apply the grammar rules to get the some inputs. Even unambiguous
441grammars can be @dfn{non-deterministic}, meaning that no fixed
442look-ahead always suffices to determine the next grammar rule to apply.
443With the proper declarations, Bison is also able to parse these more
444general context-free grammars, using a technique known as @acronym{GLR}
445parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
446are able to handle any context-free grammar for which the number of
447possible parses of any given string is finite.
676385e2 448
bfa74976
RS
449@cindex symbols (abstract)
450@cindex token
451@cindex syntactic grouping
452@cindex grouping, syntactic
9501dc6e
AD
453In the formal grammatical rules for a language, each kind of syntactic
454unit or grouping is named by a @dfn{symbol}. Those which are built by
455grouping smaller constructs according to grammatical rules are called
bfa74976
RS
456@dfn{nonterminal symbols}; those which can't be subdivided are called
457@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
458corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 459corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
460
461We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
462nonterminal, mean. The tokens of C are identifiers, constants (numeric
463and string), and the various keywords, arithmetic operators and
464punctuation marks. So the terminal symbols of a grammar for C include
465`identifier', `number', `string', plus one symbol for each keyword,
466operator or punctuation mark: `if', `return', `const', `static', `int',
467`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
468(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
469lexicography, not grammar.)
470
471Here is a simple C function subdivided into tokens:
472
9edcd895
AD
473@ifinfo
474@example
475int /* @r{keyword `int'} */
476square (int x) /* @r{identifier, open-paren, identifier,}
477 @r{identifier, close-paren} */
478@{ /* @r{open-brace} */
479 return x * x; /* @r{keyword `return', identifier, asterisk,
480 identifier, semicolon} */
481@} /* @r{close-brace} */
482@end example
483@end ifinfo
484@ifnotinfo
bfa74976
RS
485@example
486int /* @r{keyword `int'} */
9edcd895 487square (int x) /* @r{identifier, open-paren, identifier, identifier, close-paren} */
bfa74976 488@{ /* @r{open-brace} */
9edcd895 489 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
490@} /* @r{close-brace} */
491@end example
9edcd895 492@end ifnotinfo
bfa74976
RS
493
494The syntactic groupings of C include the expression, the statement, the
495declaration, and the function definition. These are represented in the
496grammar of C by nonterminal symbols `expression', `statement',
497`declaration' and `function definition'. The full grammar uses dozens of
498additional language constructs, each with its own nonterminal symbol, in
499order to express the meanings of these four. The example above is a
500function definition; it contains one declaration, and one statement. In
501the statement, each @samp{x} is an expression and so is @samp{x * x}.
502
503Each nonterminal symbol must have grammatical rules showing how it is made
504out of simpler constructs. For example, one kind of C statement is the
505@code{return} statement; this would be described with a grammar rule which
506reads informally as follows:
507
508@quotation
509A `statement' can be made of a `return' keyword, an `expression' and a
510`semicolon'.
511@end quotation
512
513@noindent
514There would be many other rules for `statement', one for each kind of
515statement in C.
516
517@cindex start symbol
518One nonterminal symbol must be distinguished as the special one which
519defines a complete utterance in the language. It is called the @dfn{start
520symbol}. In a compiler, this means a complete input program. In the C
521language, the nonterminal symbol `sequence of definitions and declarations'
522plays this role.
523
524For example, @samp{1 + 2} is a valid C expression---a valid part of a C
525program---but it is not valid as an @emph{entire} C program. In the
526context-free grammar of C, this follows from the fact that `expression' is
527not the start symbol.
528
529The Bison parser reads a sequence of tokens as its input, and groups the
530tokens using the grammar rules. If the input is valid, the end result is
531that the entire token sequence reduces to a single grouping whose symbol is
532the grammar's start symbol. If we use a grammar for C, the entire input
533must be a `sequence of definitions and declarations'. If not, the parser
534reports a syntax error.
535
342b8b6e 536@node Grammar in Bison
bfa74976
RS
537@section From Formal Rules to Bison Input
538@cindex Bison grammar
539@cindex grammar, Bison
540@cindex formal grammar
541
542A formal grammar is a mathematical construct. To define the language
543for Bison, you must write a file expressing the grammar in Bison syntax:
544a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
545
546A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 547as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
548in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
549
550The Bison representation for a terminal symbol is also called a @dfn{token
551type}. Token types as well can be represented as C-like identifiers. By
552convention, these identifiers should be upper case to distinguish them from
553nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
554@code{RETURN}. A terminal symbol that stands for a particular keyword in
555the language should be named after that keyword converted to upper case.
556The terminal symbol @code{error} is reserved for error recovery.
931c7513 557@xref{Symbols}.
bfa74976
RS
558
559A terminal symbol can also be represented as a character literal, just like
560a C character constant. You should do this whenever a token is just a
561single character (parenthesis, plus-sign, etc.): use that same character in
562a literal as the terminal symbol for that token.
563
931c7513
RS
564A third way to represent a terminal symbol is with a C string constant
565containing several characters. @xref{Symbols}, for more information.
566
bfa74976
RS
567The grammar rules also have an expression in Bison syntax. For example,
568here is the Bison rule for a C @code{return} statement. The semicolon in
569quotes is a literal character token, representing part of the C syntax for
570the statement; the naked semicolon, and the colon, are Bison punctuation
571used in every rule.
572
573@example
574stmt: RETURN expr ';'
575 ;
576@end example
577
578@noindent
579@xref{Rules, ,Syntax of Grammar Rules}.
580
342b8b6e 581@node Semantic Values
bfa74976
RS
582@section Semantic Values
583@cindex semantic value
584@cindex value, semantic
585
586A formal grammar selects tokens only by their classifications: for example,
587if a rule mentions the terminal symbol `integer constant', it means that
588@emph{any} integer constant is grammatically valid in that position. The
589precise value of the constant is irrelevant to how to parse the input: if
590@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 591grammatical.
bfa74976
RS
592
593But the precise value is very important for what the input means once it is
594parsed. A compiler is useless if it fails to distinguish between 4, 1 and
5953989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
596has both a token type and a @dfn{semantic value}. @xref{Semantics,
597,Defining Language Semantics},
bfa74976
RS
598for details.
599
600The token type is a terminal symbol defined in the grammar, such as
601@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
602you need to know to decide where the token may validly appear and how to
603group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 604except their types.
bfa74976
RS
605
606The semantic value has all the rest of the information about the
607meaning of the token, such as the value of an integer, or the name of an
608identifier. (A token such as @code{','} which is just punctuation doesn't
609need to have any semantic value.)
610
611For example, an input token might be classified as token type
612@code{INTEGER} and have the semantic value 4. Another input token might
613have the same token type @code{INTEGER} but value 3989. When a grammar
614rule says that @code{INTEGER} is allowed, either of these tokens is
615acceptable because each is an @code{INTEGER}. When the parser accepts the
616token, it keeps track of the token's semantic value.
617
618Each grouping can also have a semantic value as well as its nonterminal
619symbol. For example, in a calculator, an expression typically has a
620semantic value that is a number. In a compiler for a programming
621language, an expression typically has a semantic value that is a tree
622structure describing the meaning of the expression.
623
342b8b6e 624@node Semantic Actions
bfa74976
RS
625@section Semantic Actions
626@cindex semantic actions
627@cindex actions, semantic
628
629In order to be useful, a program must do more than parse input; it must
630also produce some output based on the input. In a Bison grammar, a grammar
631rule can have an @dfn{action} made up of C statements. Each time the
632parser recognizes a match for that rule, the action is executed.
633@xref{Actions}.
13863333 634
bfa74976
RS
635Most of the time, the purpose of an action is to compute the semantic value
636of the whole construct from the semantic values of its parts. For example,
637suppose we have a rule which says an expression can be the sum of two
638expressions. When the parser recognizes such a sum, each of the
639subexpressions has a semantic value which describes how it was built up.
640The action for this rule should create a similar sort of value for the
641newly recognized larger expression.
642
643For example, here is a rule that says an expression can be the sum of
644two subexpressions:
645
646@example
647expr: expr '+' expr @{ $$ = $1 + $3; @}
648 ;
649@end example
650
651@noindent
652The action says how to produce the semantic value of the sum expression
653from the values of the two subexpressions.
654
676385e2 655@node GLR Parsers
c827f760
PE
656@section Writing @acronym{GLR} Parsers
657@cindex @acronym{GLR} parsing
658@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
659@findex %glr-parser
660@cindex conflicts
661@cindex shift/reduce conflicts
662
9501dc6e
AD
663In some grammars, there will be cases where Bison's standard
664@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
665certain grammar rule at a given point. That is, it may not be able to
666decide (on the basis of the input read so far) which of two possible
667reductions (applications of a grammar rule) applies, or whether to apply
668a reduction or read more of the input and apply a reduction later in the
669input. These are known respectively as @dfn{reduce/reduce} conflicts
670(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
671(@pxref{Shift/Reduce}).
672
673To use a grammar that is not easily modified to be @acronym{LALR}(1), a
674more general parsing algorithm is sometimes necessary. If you include
676385e2 675@code{%glr-parser} among the Bison declarations in your file
9501dc6e
AD
676(@pxref{Grammar Outline}), the result will be a Generalized @acronym{LR}
677(@acronym{GLR}) parser. These parsers handle Bison grammars that
678contain no unresolved conflicts (i.e., after applying precedence
679declarations) identically to @acronym{LALR}(1) parsers. However, when
680faced with unresolved shift/reduce and reduce/reduce conflicts,
681@acronym{GLR} parsers use the simple expedient of doing both,
682effectively cloning the parser to follow both possibilities. Each of
683the resulting parsers can again split, so that at any given time, there
684can be any number of possible parses being explored. The parsers
676385e2
PH
685proceed in lockstep; that is, all of them consume (shift) a given input
686symbol before any of them proceed to the next. Each of the cloned
687parsers eventually meets one of two possible fates: either it runs into
688a parsing error, in which case it simply vanishes, or it merges with
689another parser, because the two of them have reduced the input to an
690identical set of symbols.
691
692During the time that there are multiple parsers, semantic actions are
693recorded, but not performed. When a parser disappears, its recorded
694semantic actions disappear as well, and are never performed. When a
695reduction makes two parsers identical, causing them to merge, Bison
696records both sets of semantic actions. Whenever the last two parsers
697merge, reverting to the single-parser case, Bison resolves all the
698outstanding actions either by precedences given to the grammar rules
699involved, or by performing both actions, and then calling a designated
700user-defined function on the resulting values to produce an arbitrary
701merged result.
702
2a8d363a 703Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
704
705@example
706%@{
38a92d50
PE
707 #include <stdio.h>
708 #define YYSTYPE char const *
709 int yylex (void);
710 void yyerror (char const *);
676385e2
PH
711%@}
712
713%token TYPENAME ID
714
715%right '='
716%left '+'
717
718%glr-parser
719
720%%
721
fae437e8 722prog :
676385e2
PH
723 | prog stmt @{ printf ("\n"); @}
724 ;
725
726stmt : expr ';' %dprec 1
727 | decl %dprec 2
728 ;
729
2a8d363a 730expr : ID @{ printf ("%s ", $$); @}
fae437e8 731 | TYPENAME '(' expr ')'
2a8d363a
AD
732 @{ printf ("%s <cast> ", $1); @}
733 | expr '+' expr @{ printf ("+ "); @}
734 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
735 ;
736
fae437e8 737decl : TYPENAME declarator ';'
2a8d363a 738 @{ printf ("%s <declare> ", $1); @}
676385e2 739 | TYPENAME declarator '=' expr ';'
2a8d363a 740 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
741 ;
742
2a8d363a 743declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
744 | '(' declarator ')'
745 ;
746@end example
747
748@noindent
749This models a problematic part of the C++ grammar---the ambiguity between
750certain declarations and statements. For example,
751
752@example
753T (x) = y+z;
754@end example
755
756@noindent
757parses as either an @code{expr} or a @code{stmt}
c827f760
PE
758(assuming that @samp{T} is recognized as a @code{TYPENAME} and
759@samp{x} as an @code{ID}).
676385e2 760Bison detects this as a reduce/reduce conflict between the rules
fae437e8
AD
761@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
762time it encounters @code{x} in the example above. The two @code{%dprec}
763declarations, however, give precedence to interpreting the example as a
676385e2
PH
764@code{decl}, which implies that @code{x} is a declarator.
765The parser therefore prints
766
767@example
fae437e8 768"x" y z + T <init-declare>
676385e2
PH
769@end example
770
771Consider a different input string for this parser:
772
773@example
774T (x) + y;
775@end example
776
777@noindent
778Here, there is no ambiguity (this cannot be parsed as a declaration).
779However, at the time the Bison parser encounters @code{x}, it does not
780have enough information to resolve the reduce/reduce conflict (again,
781between @code{x} as an @code{expr} or a @code{declarator}). In this
782case, no precedence declaration is used. Instead, the parser splits
783into two, one assuming that @code{x} is an @code{expr}, and the other
784assuming @code{x} is a @code{declarator}. The second of these parsers
785then vanishes when it sees @code{+}, and the parser prints
786
787@example
fae437e8 788x T <cast> y +
676385e2
PH
789@end example
790
791Suppose that instead of resolving the ambiguity, you wanted to see all
792the possibilities. For this purpose, we must @dfn{merge} the semantic
793actions of the two possible parsers, rather than choosing one over the
794other. To do so, you could change the declaration of @code{stmt} as
795follows:
796
797@example
798stmt : expr ';' %merge <stmtMerge>
799 | decl %merge <stmtMerge>
800 ;
801@end example
802
803@noindent
804
805and define the @code{stmtMerge} function as:
806
807@example
38a92d50
PE
808static YYSTYPE
809stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
810@{
811 printf ("<OR> ");
812 return "";
813@}
814@end example
815
816@noindent
817with an accompanying forward declaration
818in the C declarations at the beginning of the file:
819
820@example
821%@{
38a92d50 822 #define YYSTYPE char const *
676385e2
PH
823 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
824%@}
825@end example
826
827@noindent
828With these declarations, the resulting parser will parse the first example
829as both an @code{expr} and a @code{decl}, and print
830
831@example
fae437e8 832"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
833@end example
834
9501dc6e
AD
835@sp 1
836
837@cindex @code{incline}
838@cindex @acronym{GLR} parsers and @code{inline}
38a92d50
PE
839The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
840later. In addition, they use the @code{inline} keyword, which is not
841C89, but is C99 and is a common extension in pre-C99 compilers. It is
842up to the user of these parsers to handle
9501dc6e
AD
843portability issues. For instance, if using Autoconf and the Autoconf
844macro @code{AC_C_INLINE}, a mere
845
846@example
847%@{
38a92d50 848 #include <config.h>
9501dc6e
AD
849%@}
850@end example
851
852@noindent
853will suffice. Otherwise, we suggest
854
855@example
856%@{
38a92d50
PE
857 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
858 #define inline
859 #endif
9501dc6e
AD
860%@}
861@end example
676385e2 862
342b8b6e 863@node Locations Overview
847bf1f5
AD
864@section Locations
865@cindex location
95923bd6
AD
866@cindex textual location
867@cindex location, textual
847bf1f5
AD
868
869Many applications, like interpreters or compilers, have to produce verbose
72d2299c 870and useful error messages. To achieve this, one must be able to keep track of
95923bd6 871the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
872Bison provides a mechanism for handling these locations.
873
72d2299c 874Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 875associated location, but the type of locations is the same for all tokens and
72d2299c 876groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
877structure for storing locations (@pxref{Locations}, for more details).
878
879Like semantic values, locations can be reached in actions using a dedicated
72d2299c 880set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
881is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
882@code{@@3}.
883
884When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
885of its left hand side (@pxref{Actions}). In the same way, another default
886action is used for locations. However, the action for locations is general
847bf1f5 887enough for most cases, meaning there is usually no need to describe for each
72d2299c 888rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
889grouping, the default behavior of the output parser is to take the beginning
890of the first symbol, and the end of the last symbol.
891
342b8b6e 892@node Bison Parser
bfa74976
RS
893@section Bison Output: the Parser File
894@cindex Bison parser
895@cindex Bison utility
896@cindex lexical analyzer, purpose
897@cindex parser
898
899When you run Bison, you give it a Bison grammar file as input. The output
900is a C source file that parses the language described by the grammar.
901This file is called a @dfn{Bison parser}. Keep in mind that the Bison
902utility and the Bison parser are two distinct programs: the Bison utility
903is a program whose output is the Bison parser that becomes part of your
904program.
905
906The job of the Bison parser is to group tokens into groupings according to
907the grammar rules---for example, to build identifiers and operators into
908expressions. As it does this, it runs the actions for the grammar rules it
909uses.
910
704a47c4
AD
911The tokens come from a function called the @dfn{lexical analyzer} that
912you must supply in some fashion (such as by writing it in C). The Bison
913parser calls the lexical analyzer each time it wants a new token. It
914doesn't know what is ``inside'' the tokens (though their semantic values
915may reflect this). Typically the lexical analyzer makes the tokens by
916parsing characters of text, but Bison does not depend on this.
917@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
918
919The Bison parser file is C code which defines a function named
920@code{yyparse} which implements that grammar. This function does not make
921a complete C program: you must supply some additional functions. One is
922the lexical analyzer. Another is an error-reporting function which the
923parser calls to report an error. In addition, a complete C program must
924start with a function called @code{main}; you have to provide this, and
925arrange for it to call @code{yyparse} or the parser will never run.
926@xref{Interface, ,Parser C-Language Interface}.
927
928Aside from the token type names and the symbols in the actions you
7093d0f5 929write, all symbols defined in the Bison parser file itself
bfa74976
RS
930begin with @samp{yy} or @samp{YY}. This includes interface functions
931such as the lexical analyzer function @code{yylex}, the error reporting
932function @code{yyerror} and the parser function @code{yyparse} itself.
933This also includes numerous identifiers used for internal purposes.
934Therefore, you should avoid using C identifiers starting with @samp{yy}
935or @samp{YY} in the Bison grammar file except for the ones defined in
936this manual.
937
7093d0f5
AD
938In some cases the Bison parser file includes system headers, and in
939those cases your code should respect the identifiers reserved by those
c827f760 940headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
7093d0f5 941@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
ec3bc396
AD
942declare memory allocators and related types. Other system headers may
943be included if you define @code{YYDEBUG} to a nonzero value
944(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 945
342b8b6e 946@node Stages
bfa74976
RS
947@section Stages in Using Bison
948@cindex stages in using Bison
949@cindex using Bison
950
951The actual language-design process using Bison, from grammar specification
952to a working compiler or interpreter, has these parts:
953
954@enumerate
955@item
956Formally specify the grammar in a form recognized by Bison
704a47c4
AD
957(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
958in the language, describe the action that is to be taken when an
959instance of that rule is recognized. The action is described by a
960sequence of C statements.
bfa74976
RS
961
962@item
704a47c4
AD
963Write a lexical analyzer to process input and pass tokens to the parser.
964The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
965Lexical Analyzer Function @code{yylex}}). It could also be produced
966using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
967
968@item
969Write a controlling function that calls the Bison-produced parser.
970
971@item
972Write error-reporting routines.
973@end enumerate
974
975To turn this source code as written into a runnable program, you
976must follow these steps:
977
978@enumerate
979@item
980Run Bison on the grammar to produce the parser.
981
982@item
983Compile the code output by Bison, as well as any other source files.
984
985@item
986Link the object files to produce the finished product.
987@end enumerate
988
342b8b6e 989@node Grammar Layout
bfa74976
RS
990@section The Overall Layout of a Bison Grammar
991@cindex grammar file
992@cindex file format
993@cindex format of grammar file
994@cindex layout of Bison grammar
995
996The input file for the Bison utility is a @dfn{Bison grammar file}. The
997general form of a Bison grammar file is as follows:
998
999@example
1000%@{
08e49d20 1001@var{Prologue}
bfa74976
RS
1002%@}
1003
1004@var{Bison declarations}
1005
1006%%
1007@var{Grammar rules}
1008%%
08e49d20 1009@var{Epilogue}
bfa74976
RS
1010@end example
1011
1012@noindent
1013The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1014in every Bison grammar file to separate the sections.
1015
72d2299c 1016The prologue may define types and variables used in the actions. You can
342b8b6e 1017also use preprocessor commands to define macros used there, and use
bfa74976 1018@code{#include} to include header files that do any of these things.
38a92d50
PE
1019You need to declare the lexical analyzer @code{yylex} and the error
1020printer @code{yyerror} here, along with any other global identifiers
1021used by the actions in the grammar rules.
bfa74976
RS
1022
1023The Bison declarations declare the names of the terminal and nonterminal
1024symbols, and may also describe operator precedence and the data types of
1025semantic values of various symbols.
1026
1027The grammar rules define how to construct each nonterminal symbol from its
1028parts.
1029
38a92d50
PE
1030The epilogue can contain any code you want to use. Often the
1031definitions of functions declared in the prologue go here. In a
1032simple program, all the rest of the program can go here.
bfa74976 1033
342b8b6e 1034@node Examples
bfa74976
RS
1035@chapter Examples
1036@cindex simple examples
1037@cindex examples, simple
1038
1039Now we show and explain three sample programs written using Bison: a
1040reverse polish notation calculator, an algebraic (infix) notation
1041calculator, and a multi-function calculator. All three have been tested
1042under BSD Unix 4.3; each produces a usable, though limited, interactive
1043desk-top calculator.
1044
1045These examples are simple, but Bison grammars for real programming
1046languages are written the same way.
1047@ifinfo
1048You can copy these examples out of the Info file and into a source file
1049to try them.
1050@end ifinfo
1051
1052@menu
1053* RPN Calc:: Reverse polish notation calculator;
1054 a first example with no operator precedence.
1055* Infix Calc:: Infix (algebraic) notation calculator.
1056 Operator precedence is introduced.
1057* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1058* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1059* Multi-function Calc:: Calculator with memory and trig functions.
1060 It uses multiple data-types for semantic values.
1061* Exercises:: Ideas for improving the multi-function calculator.
1062@end menu
1063
342b8b6e 1064@node RPN Calc
bfa74976
RS
1065@section Reverse Polish Notation Calculator
1066@cindex reverse polish notation
1067@cindex polish notation calculator
1068@cindex @code{rpcalc}
1069@cindex calculator, simple
1070
1071The first example is that of a simple double-precision @dfn{reverse polish
1072notation} calculator (a calculator using postfix operators). This example
1073provides a good starting point, since operator precedence is not an issue.
1074The second example will illustrate how operator precedence is handled.
1075
1076The source code for this calculator is named @file{rpcalc.y}. The
1077@samp{.y} extension is a convention used for Bison input files.
1078
1079@menu
75f5aaea 1080* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1081* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1082* Lexer: Rpcalc Lexer. The lexical analyzer.
1083* Main: Rpcalc Main. The controlling function.
1084* Error: Rpcalc Error. The error reporting function.
1085* Gen: Rpcalc Gen. Running Bison on the grammar file.
1086* Comp: Rpcalc Compile. Run the C compiler on the output code.
1087@end menu
1088
342b8b6e 1089@node Rpcalc Decls
bfa74976
RS
1090@subsection Declarations for @code{rpcalc}
1091
1092Here are the C and Bison declarations for the reverse polish notation
1093calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1094
1095@example
72d2299c 1096/* Reverse polish notation calculator. */
bfa74976
RS
1097
1098%@{
38a92d50
PE
1099 #define YYSTYPE double
1100 #include <math.h>
1101 int yylex (void);
1102 void yyerror (char const *);
bfa74976
RS
1103%@}
1104
1105%token NUM
1106
72d2299c 1107%% /* Grammar rules and actions follow. */
bfa74976
RS
1108@end example
1109
75f5aaea 1110The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1111preprocessor directives and two forward declarations.
bfa74976
RS
1112
1113The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1114specifying the C data type for semantic values of both tokens and
1115groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1116Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1117don't define it, @code{int} is the default. Because we specify
1118@code{double}, each token and each expression has an associated value,
1119which is a floating point number.
bfa74976
RS
1120
1121The @code{#include} directive is used to declare the exponentiation
1122function @code{pow}.
1123
38a92d50
PE
1124The forward declarations for @code{yylex} and @code{yyerror} are
1125needed because the C language requires that functions be declared
1126before they are used. These functions will be defined in the
1127epilogue, but the parser calls them so they must be declared in the
1128prologue.
1129
704a47c4
AD
1130The second section, Bison declarations, provides information to Bison
1131about the token types (@pxref{Bison Declarations, ,The Bison
1132Declarations Section}). Each terminal symbol that is not a
1133single-character literal must be declared here. (Single-character
bfa74976
RS
1134literals normally don't need to be declared.) In this example, all the
1135arithmetic operators are designated by single-character literals, so the
1136only terminal symbol that needs to be declared is @code{NUM}, the token
1137type for numeric constants.
1138
342b8b6e 1139@node Rpcalc Rules
bfa74976
RS
1140@subsection Grammar Rules for @code{rpcalc}
1141
1142Here are the grammar rules for the reverse polish notation calculator.
1143
1144@example
1145input: /* empty */
1146 | input line
1147;
1148
1149line: '\n'
18b519c0 1150 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1151;
1152
18b519c0
AD
1153exp: NUM @{ $$ = $1; @}
1154 | exp exp '+' @{ $$ = $1 + $2; @}
1155 | exp exp '-' @{ $$ = $1 - $2; @}
1156 | exp exp '*' @{ $$ = $1 * $2; @}
1157 | exp exp '/' @{ $$ = $1 / $2; @}
1158 /* Exponentiation */
1159 | exp exp '^' @{ $$ = pow ($1, $2); @}
1160 /* Unary minus */
1161 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1162;
1163%%
1164@end example
1165
1166The groupings of the rpcalc ``language'' defined here are the expression
1167(given the name @code{exp}), the line of input (@code{line}), and the
1168complete input transcript (@code{input}). Each of these nonterminal
1169symbols has several alternate rules, joined by the @samp{|} punctuator
1170which is read as ``or''. The following sections explain what these rules
1171mean.
1172
1173The semantics of the language is determined by the actions taken when a
1174grouping is recognized. The actions are the C code that appears inside
1175braces. @xref{Actions}.
1176
1177You must specify these actions in C, but Bison provides the means for
1178passing semantic values between the rules. In each action, the
1179pseudo-variable @code{$$} stands for the semantic value for the grouping
1180that the rule is going to construct. Assigning a value to @code{$$} is the
1181main job of most actions. The semantic values of the components of the
1182rule are referred to as @code{$1}, @code{$2}, and so on.
1183
1184@menu
13863333
AD
1185* Rpcalc Input::
1186* Rpcalc Line::
1187* Rpcalc Expr::
bfa74976
RS
1188@end menu
1189
342b8b6e 1190@node Rpcalc Input
bfa74976
RS
1191@subsubsection Explanation of @code{input}
1192
1193Consider the definition of @code{input}:
1194
1195@example
1196input: /* empty */
1197 | input line
1198;
1199@end example
1200
1201This definition reads as follows: ``A complete input is either an empty
1202string, or a complete input followed by an input line''. Notice that
1203``complete input'' is defined in terms of itself. This definition is said
1204to be @dfn{left recursive} since @code{input} appears always as the
1205leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1206
1207The first alternative is empty because there are no symbols between the
1208colon and the first @samp{|}; this means that @code{input} can match an
1209empty string of input (no tokens). We write the rules this way because it
1210is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1211It's conventional to put an empty alternative first and write the comment
1212@samp{/* empty */} in it.
1213
1214The second alternate rule (@code{input line}) handles all nontrivial input.
1215It means, ``After reading any number of lines, read one more line if
1216possible.'' The left recursion makes this rule into a loop. Since the
1217first alternative matches empty input, the loop can be executed zero or
1218more times.
1219
1220The parser function @code{yyparse} continues to process input until a
1221grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1222input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1223
342b8b6e 1224@node Rpcalc Line
bfa74976
RS
1225@subsubsection Explanation of @code{line}
1226
1227Now consider the definition of @code{line}:
1228
1229@example
1230line: '\n'
1231 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1232;
1233@end example
1234
1235The first alternative is a token which is a newline character; this means
1236that rpcalc accepts a blank line (and ignores it, since there is no
1237action). The second alternative is an expression followed by a newline.
1238This is the alternative that makes rpcalc useful. The semantic value of
1239the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1240question is the first symbol in the alternative. The action prints this
1241value, which is the result of the computation the user asked for.
1242
1243This action is unusual because it does not assign a value to @code{$$}. As
1244a consequence, the semantic value associated with the @code{line} is
1245uninitialized (its value will be unpredictable). This would be a bug if
1246that value were ever used, but we don't use it: once rpcalc has printed the
1247value of the user's input line, that value is no longer needed.
1248
342b8b6e 1249@node Rpcalc Expr
bfa74976
RS
1250@subsubsection Explanation of @code{expr}
1251
1252The @code{exp} grouping has several rules, one for each kind of expression.
1253The first rule handles the simplest expressions: those that are just numbers.
1254The second handles an addition-expression, which looks like two expressions
1255followed by a plus-sign. The third handles subtraction, and so on.
1256
1257@example
1258exp: NUM
1259 | exp exp '+' @{ $$ = $1 + $2; @}
1260 | exp exp '-' @{ $$ = $1 - $2; @}
1261 @dots{}
1262 ;
1263@end example
1264
1265We have used @samp{|} to join all the rules for @code{exp}, but we could
1266equally well have written them separately:
1267
1268@example
1269exp: NUM ;
1270exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1271exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1272 @dots{}
1273@end example
1274
1275Most of the rules have actions that compute the value of the expression in
1276terms of the value of its parts. For example, in the rule for addition,
1277@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1278the second one. The third component, @code{'+'}, has no meaningful
1279associated semantic value, but if it had one you could refer to it as
1280@code{$3}. When @code{yyparse} recognizes a sum expression using this
1281rule, the sum of the two subexpressions' values is produced as the value of
1282the entire expression. @xref{Actions}.
1283
1284You don't have to give an action for every rule. When a rule has no
1285action, Bison by default copies the value of @code{$1} into @code{$$}.
1286This is what happens in the first rule (the one that uses @code{NUM}).
1287
1288The formatting shown here is the recommended convention, but Bison does
72d2299c 1289not require it. You can add or change white space as much as you wish.
bfa74976
RS
1290For example, this:
1291
1292@example
1293exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{}
1294@end example
1295
1296@noindent
1297means the same thing as this:
1298
1299@example
1300exp: NUM
1301 | exp exp '+' @{ $$ = $1 + $2; @}
1302 | @dots{}
1303@end example
1304
1305@noindent
1306The latter, however, is much more readable.
1307
342b8b6e 1308@node Rpcalc Lexer
bfa74976
RS
1309@subsection The @code{rpcalc} Lexical Analyzer
1310@cindex writing a lexical analyzer
1311@cindex lexical analyzer, writing
1312
704a47c4
AD
1313The lexical analyzer's job is low-level parsing: converting characters
1314or sequences of characters into tokens. The Bison parser gets its
1315tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1316Analyzer Function @code{yylex}}.
bfa74976 1317
c827f760
PE
1318Only a simple lexical analyzer is needed for the @acronym{RPN}
1319calculator. This
bfa74976
RS
1320lexical analyzer skips blanks and tabs, then reads in numbers as
1321@code{double} and returns them as @code{NUM} tokens. Any other character
1322that isn't part of a number is a separate token. Note that the token-code
1323for such a single-character token is the character itself.
1324
1325The return value of the lexical analyzer function is a numeric code which
1326represents a token type. The same text used in Bison rules to stand for
1327this token type is also a C expression for the numeric code for the type.
1328This works in two ways. If the token type is a character literal, then its
e966383b 1329numeric code is that of the character; you can use the same
bfa74976
RS
1330character literal in the lexical analyzer to express the number. If the
1331token type is an identifier, that identifier is defined by Bison as a C
1332macro whose definition is the appropriate number. In this example,
1333therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1334
1964ad8c
AD
1335The semantic value of the token (if it has one) is stored into the
1336global variable @code{yylval}, which is where the Bison parser will look
1337for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1338defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1339,Declarations for @code{rpcalc}}.)
bfa74976 1340
72d2299c
PE
1341A token type code of zero is returned if the end-of-input is encountered.
1342(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1343
1344Here is the code for the lexical analyzer:
1345
1346@example
1347@group
72d2299c 1348/* The lexical analyzer returns a double floating point
e966383b 1349 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1350 of the character read if not a number. It skips all blanks
1351 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1352
1353#include <ctype.h>
1354@end group
1355
1356@group
13863333
AD
1357int
1358yylex (void)
bfa74976
RS
1359@{
1360 int c;
1361
72d2299c 1362 /* Skip white space. */
13863333 1363 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1364 ;
1365@end group
1366@group
72d2299c 1367 /* Process numbers. */
13863333 1368 if (c == '.' || isdigit (c))
bfa74976
RS
1369 @{
1370 ungetc (c, stdin);
1371 scanf ("%lf", &yylval);
1372 return NUM;
1373 @}
1374@end group
1375@group
72d2299c 1376 /* Return end-of-input. */
13863333 1377 if (c == EOF)
bfa74976 1378 return 0;
72d2299c 1379 /* Return a single char. */
13863333 1380 return c;
bfa74976
RS
1381@}
1382@end group
1383@end example
1384
342b8b6e 1385@node Rpcalc Main
bfa74976
RS
1386@subsection The Controlling Function
1387@cindex controlling function
1388@cindex main function in simple example
1389
1390In keeping with the spirit of this example, the controlling function is
1391kept to the bare minimum. The only requirement is that it call
1392@code{yyparse} to start the process of parsing.
1393
1394@example
1395@group
13863333
AD
1396int
1397main (void)
bfa74976 1398@{
13863333 1399 return yyparse ();
bfa74976
RS
1400@}
1401@end group
1402@end example
1403
342b8b6e 1404@node Rpcalc Error
bfa74976
RS
1405@subsection The Error Reporting Routine
1406@cindex error reporting routine
1407
1408When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1409function @code{yyerror} to print an error message (usually but not
6e649e65 1410always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1411@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1412here is the definition we will use:
bfa74976
RS
1413
1414@example
1415@group
1416#include <stdio.h>
1417
38a92d50 1418/* Called by yyparse on error. */
13863333 1419void
38a92d50 1420yyerror (char const *s)
bfa74976 1421@{
4e03e201 1422 fprintf (stderr, "%s\n", s);
bfa74976
RS
1423@}
1424@end group
1425@end example
1426
1427After @code{yyerror} returns, the Bison parser may recover from the error
1428and continue parsing if the grammar contains a suitable error rule
1429(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1430have not written any error rules in this example, so any invalid input will
1431cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1432real calculator, but it is adequate for the first example.
bfa74976 1433
342b8b6e 1434@node Rpcalc Gen
bfa74976
RS
1435@subsection Running Bison to Make the Parser
1436@cindex running Bison (introduction)
1437
ceed8467
AD
1438Before running Bison to produce a parser, we need to decide how to
1439arrange all the source code in one or more source files. For such a
1440simple example, the easiest thing is to put everything in one file. The
1441definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1442end, in the epilogue of the file
75f5aaea 1443(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1444
1445For a large project, you would probably have several source files, and use
1446@code{make} to arrange to recompile them.
1447
1448With all the source in a single file, you use the following command to
1449convert it into a parser file:
1450
1451@example
1452bison @var{file_name}.y
1453@end example
1454
1455@noindent
1456In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
c827f760 1457@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c},
72d2299c 1458removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1459Bison contains the source code for @code{yyparse}. The additional
1460functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1461are copied verbatim to the output.
1462
342b8b6e 1463@node Rpcalc Compile
bfa74976
RS
1464@subsection Compiling the Parser File
1465@cindex compiling the parser
1466
1467Here is how to compile and run the parser file:
1468
1469@example
1470@group
1471# @r{List files in current directory.}
9edcd895 1472$ @kbd{ls}
bfa74976
RS
1473rpcalc.tab.c rpcalc.y
1474@end group
1475
1476@group
1477# @r{Compile the Bison parser.}
1478# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1479$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1480@end group
1481
1482@group
1483# @r{List files again.}
9edcd895 1484$ @kbd{ls}
bfa74976
RS
1485rpcalc rpcalc.tab.c rpcalc.y
1486@end group
1487@end example
1488
1489The file @file{rpcalc} now contains the executable code. Here is an
1490example session using @code{rpcalc}.
1491
1492@example
9edcd895
AD
1493$ @kbd{rpcalc}
1494@kbd{4 9 +}
bfa74976 149513
9edcd895 1496@kbd{3 7 + 3 4 5 *+-}
bfa74976 1497-13
9edcd895 1498@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 149913
9edcd895 1500@kbd{5 6 / 4 n +}
bfa74976 1501-3.166666667
9edcd895 1502@kbd{3 4 ^} @r{Exponentiation}
bfa74976 150381
9edcd895
AD
1504@kbd{^D} @r{End-of-file indicator}
1505$
bfa74976
RS
1506@end example
1507
342b8b6e 1508@node Infix Calc
bfa74976
RS
1509@section Infix Notation Calculator: @code{calc}
1510@cindex infix notation calculator
1511@cindex @code{calc}
1512@cindex calculator, infix notation
1513
1514We now modify rpcalc to handle infix operators instead of postfix. Infix
1515notation involves the concept of operator precedence and the need for
1516parentheses nested to arbitrary depth. Here is the Bison code for
1517@file{calc.y}, an infix desk-top calculator.
1518
1519@example
38a92d50 1520/* Infix notation calculator. */
bfa74976
RS
1521
1522%@{
38a92d50
PE
1523 #define YYSTYPE double
1524 #include <math.h>
1525 #include <stdio.h>
1526 int yylex (void);
1527 void yyerror (char const *);
bfa74976
RS
1528%@}
1529
38a92d50 1530/* Bison declarations. */
bfa74976
RS
1531%token NUM
1532%left '-' '+'
1533%left '*' '/'
1534%left NEG /* negation--unary minus */
38a92d50 1535%right '^' /* exponentiation */
bfa74976 1536
38a92d50
PE
1537%% /* The grammar follows. */
1538input: /* empty */
bfa74976
RS
1539 | input line
1540;
1541
1542line: '\n'
1543 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1544;
1545
1546exp: NUM @{ $$ = $1; @}
1547 | exp '+' exp @{ $$ = $1 + $3; @}
1548 | exp '-' exp @{ $$ = $1 - $3; @}
1549 | exp '*' exp @{ $$ = $1 * $3; @}
1550 | exp '/' exp @{ $$ = $1 / $3; @}
1551 | '-' exp %prec NEG @{ $$ = -$2; @}
1552 | exp '^' exp @{ $$ = pow ($1, $3); @}
1553 | '(' exp ')' @{ $$ = $2; @}
1554;
1555%%
1556@end example
1557
1558@noindent
ceed8467
AD
1559The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1560same as before.
bfa74976
RS
1561
1562There are two important new features shown in this code.
1563
1564In the second section (Bison declarations), @code{%left} declares token
1565types and says they are left-associative operators. The declarations
1566@code{%left} and @code{%right} (right associativity) take the place of
1567@code{%token} which is used to declare a token type name without
1568associativity. (These tokens are single-character literals, which
1569ordinarily don't need to be declared. We declare them here to specify
1570the associativity.)
1571
1572Operator precedence is determined by the line ordering of the
1573declarations; the higher the line number of the declaration (lower on
1574the page or screen), the higher the precedence. Hence, exponentiation
1575has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1576by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1577Precedence}.
bfa74976 1578
704a47c4
AD
1579The other important new feature is the @code{%prec} in the grammar
1580section for the unary minus operator. The @code{%prec} simply instructs
1581Bison that the rule @samp{| '-' exp} has the same precedence as
1582@code{NEG}---in this case the next-to-highest. @xref{Contextual
1583Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1584
1585Here is a sample run of @file{calc.y}:
1586
1587@need 500
1588@example
9edcd895
AD
1589$ @kbd{calc}
1590@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 15916.880952381
9edcd895 1592@kbd{-56 + 2}
bfa74976 1593-54
9edcd895 1594@kbd{3 ^ 2}
bfa74976
RS
15959
1596@end example
1597
342b8b6e 1598@node Simple Error Recovery
bfa74976
RS
1599@section Simple Error Recovery
1600@cindex error recovery, simple
1601
1602Up to this point, this manual has not addressed the issue of @dfn{error
1603recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1604error. All we have handled is error reporting with @code{yyerror}.
1605Recall that by default @code{yyparse} returns after calling
1606@code{yyerror}. This means that an erroneous input line causes the
1607calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1608
1609The Bison language itself includes the reserved word @code{error}, which
1610may be included in the grammar rules. In the example below it has
1611been added to one of the alternatives for @code{line}:
1612
1613@example
1614@group
1615line: '\n'
1616 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1617 | error '\n' @{ yyerrok; @}
1618;
1619@end group
1620@end example
1621
ceed8467 1622This addition to the grammar allows for simple error recovery in the
6e649e65 1623event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1624read, the error will be recognized by the third rule for @code{line},
1625and parsing will continue. (The @code{yyerror} function is still called
1626upon to print its message as well.) The action executes the statement
1627@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1628that error recovery is complete (@pxref{Error Recovery}). Note the
1629difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1630misprint.
bfa74976
RS
1631
1632This form of error recovery deals with syntax errors. There are other
1633kinds of errors; for example, division by zero, which raises an exception
1634signal that is normally fatal. A real calculator program must handle this
1635signal and use @code{longjmp} to return to @code{main} and resume parsing
1636input lines; it would also have to discard the rest of the current line of
1637input. We won't discuss this issue further because it is not specific to
1638Bison programs.
1639
342b8b6e
AD
1640@node Location Tracking Calc
1641@section Location Tracking Calculator: @code{ltcalc}
1642@cindex location tracking calculator
1643@cindex @code{ltcalc}
1644@cindex calculator, location tracking
1645
9edcd895
AD
1646This example extends the infix notation calculator with location
1647tracking. This feature will be used to improve the error messages. For
1648the sake of clarity, this example is a simple integer calculator, since
1649most of the work needed to use locations will be done in the lexical
72d2299c 1650analyzer.
342b8b6e
AD
1651
1652@menu
1653* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1654* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1655* Lexer: Ltcalc Lexer. The lexical analyzer.
1656@end menu
1657
1658@node Ltcalc Decls
1659@subsection Declarations for @code{ltcalc}
1660
9edcd895
AD
1661The C and Bison declarations for the location tracking calculator are
1662the same as the declarations for the infix notation calculator.
342b8b6e
AD
1663
1664@example
1665/* Location tracking calculator. */
1666
1667%@{
38a92d50
PE
1668 #define YYSTYPE int
1669 #include <math.h>
1670 int yylex (void);
1671 void yyerror (char const *);
342b8b6e
AD
1672%@}
1673
1674/* Bison declarations. */
1675%token NUM
1676
1677%left '-' '+'
1678%left '*' '/'
1679%left NEG
1680%right '^'
1681
38a92d50 1682%% /* The grammar follows. */
342b8b6e
AD
1683@end example
1684
9edcd895
AD
1685@noindent
1686Note there are no declarations specific to locations. Defining a data
1687type for storing locations is not needed: we will use the type provided
1688by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1689four member structure with the following integer fields:
1690@code{first_line}, @code{first_column}, @code{last_line} and
1691@code{last_column}.
342b8b6e
AD
1692
1693@node Ltcalc Rules
1694@subsection Grammar Rules for @code{ltcalc}
1695
9edcd895
AD
1696Whether handling locations or not has no effect on the syntax of your
1697language. Therefore, grammar rules for this example will be very close
1698to those of the previous example: we will only modify them to benefit
1699from the new information.
342b8b6e 1700
9edcd895
AD
1701Here, we will use locations to report divisions by zero, and locate the
1702wrong expressions or subexpressions.
342b8b6e
AD
1703
1704@example
1705@group
1706input : /* empty */
1707 | input line
1708;
1709@end group
1710
1711@group
1712line : '\n'
1713 | exp '\n' @{ printf ("%d\n", $1); @}
1714;
1715@end group
1716
1717@group
1718exp : NUM @{ $$ = $1; @}
1719 | exp '+' exp @{ $$ = $1 + $3; @}
1720 | exp '-' exp @{ $$ = $1 - $3; @}
1721 | exp '*' exp @{ $$ = $1 * $3; @}
1722@end group
342b8b6e 1723@group
9edcd895 1724 | exp '/' exp
342b8b6e
AD
1725 @{
1726 if ($3)
1727 $$ = $1 / $3;
1728 else
1729 @{
1730 $$ = 1;
9edcd895
AD
1731 fprintf (stderr, "%d.%d-%d.%d: division by zero",
1732 @@3.first_line, @@3.first_column,
1733 @@3.last_line, @@3.last_column);
342b8b6e
AD
1734 @}
1735 @}
1736@end group
1737@group
1738 | '-' exp %preg NEG @{ $$ = -$2; @}
1739 | exp '^' exp @{ $$ = pow ($1, $3); @}
1740 | '(' exp ')' @{ $$ = $2; @}
1741@end group
1742@end example
1743
1744This code shows how to reach locations inside of semantic actions, by
1745using the pseudo-variables @code{@@@var{n}} for rule components, and the
1746pseudo-variable @code{@@$} for groupings.
1747
9edcd895
AD
1748We don't need to assign a value to @code{@@$}: the output parser does it
1749automatically. By default, before executing the C code of each action,
1750@code{@@$} is set to range from the beginning of @code{@@1} to the end
1751of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
1752can be redefined (@pxref{Location Default Action, , Default Action for
1753Locations}), and for very specific rules, @code{@@$} can be computed by
1754hand.
342b8b6e
AD
1755
1756@node Ltcalc Lexer
1757@subsection The @code{ltcalc} Lexical Analyzer.
1758
9edcd895 1759Until now, we relied on Bison's defaults to enable location
72d2299c 1760tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
1761able to feed the parser with the token locations, as it already does for
1762semantic values.
342b8b6e 1763
9edcd895
AD
1764To this end, we must take into account every single character of the
1765input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
1766
1767@example
1768@group
1769int
1770yylex (void)
1771@{
1772 int c;
18b519c0 1773@end group
342b8b6e 1774
18b519c0 1775@group
72d2299c 1776 /* Skip white space. */
342b8b6e
AD
1777 while ((c = getchar ()) == ' ' || c == '\t')
1778 ++yylloc.last_column;
18b519c0 1779@end group
342b8b6e 1780
18b519c0 1781@group
72d2299c 1782 /* Step. */
342b8b6e
AD
1783 yylloc.first_line = yylloc.last_line;
1784 yylloc.first_column = yylloc.last_column;
1785@end group
1786
1787@group
72d2299c 1788 /* Process numbers. */
342b8b6e
AD
1789 if (isdigit (c))
1790 @{
1791 yylval = c - '0';
1792 ++yylloc.last_column;
1793 while (isdigit (c = getchar ()))
1794 @{
1795 ++yylloc.last_column;
1796 yylval = yylval * 10 + c - '0';
1797 @}
1798 ungetc (c, stdin);
1799 return NUM;
1800 @}
1801@end group
1802
72d2299c 1803 /* Return end-of-input. */
342b8b6e
AD
1804 if (c == EOF)
1805 return 0;
1806
72d2299c 1807 /* Return a single char, and update location. */
342b8b6e
AD
1808 if (c == '\n')
1809 @{
1810 ++yylloc.last_line;
1811 yylloc.last_column = 0;
1812 @}
1813 else
1814 ++yylloc.last_column;
1815 return c;
1816@}
1817@end example
1818
9edcd895
AD
1819Basically, the lexical analyzer performs the same processing as before:
1820it skips blanks and tabs, and reads numbers or single-character tokens.
1821In addition, it updates @code{yylloc}, the global variable (of type
1822@code{YYLTYPE}) containing the token's location.
342b8b6e 1823
9edcd895 1824Now, each time this function returns a token, the parser has its number
72d2299c 1825as well as its semantic value, and its location in the text. The last
9edcd895
AD
1826needed change is to initialize @code{yylloc}, for example in the
1827controlling function:
342b8b6e
AD
1828
1829@example
9edcd895 1830@group
342b8b6e
AD
1831int
1832main (void)
1833@{
1834 yylloc.first_line = yylloc.last_line = 1;
1835 yylloc.first_column = yylloc.last_column = 0;
1836 return yyparse ();
1837@}
9edcd895 1838@end group
342b8b6e
AD
1839@end example
1840
9edcd895
AD
1841Remember that computing locations is not a matter of syntax. Every
1842character must be associated to a location update, whether it is in
1843valid input, in comments, in literal strings, and so on.
342b8b6e
AD
1844
1845@node Multi-function Calc
bfa74976
RS
1846@section Multi-Function Calculator: @code{mfcalc}
1847@cindex multi-function calculator
1848@cindex @code{mfcalc}
1849@cindex calculator, multi-function
1850
1851Now that the basics of Bison have been discussed, it is time to move on to
1852a more advanced problem. The above calculators provided only five
1853functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
1854be nice to have a calculator that provides other mathematical functions such
1855as @code{sin}, @code{cos}, etc.
1856
1857It is easy to add new operators to the infix calculator as long as they are
1858only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 1859back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
1860adding a new operator. But we want something more flexible: built-in
1861functions whose syntax has this form:
1862
1863@example
1864@var{function_name} (@var{argument})
1865@end example
1866
1867@noindent
1868At the same time, we will add memory to the calculator, by allowing you
1869to create named variables, store values in them, and use them later.
1870Here is a sample session with the multi-function calculator:
1871
1872@example
9edcd895
AD
1873$ @kbd{mfcalc}
1874@kbd{pi = 3.141592653589}
bfa74976 18753.1415926536
9edcd895 1876@kbd{sin(pi)}
bfa74976 18770.0000000000
9edcd895 1878@kbd{alpha = beta1 = 2.3}
bfa74976 18792.3000000000
9edcd895 1880@kbd{alpha}
bfa74976 18812.3000000000
9edcd895 1882@kbd{ln(alpha)}
bfa74976 18830.8329091229
9edcd895 1884@kbd{exp(ln(beta1))}
bfa74976 18852.3000000000
9edcd895 1886$
bfa74976
RS
1887@end example
1888
1889Note that multiple assignment and nested function calls are permitted.
1890
1891@menu
1892* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
1893* Rules: Mfcalc Rules. Grammar rules for the calculator.
1894* Symtab: Mfcalc Symtab. Symbol table management subroutines.
1895@end menu
1896
342b8b6e 1897@node Mfcalc Decl
bfa74976
RS
1898@subsection Declarations for @code{mfcalc}
1899
1900Here are the C and Bison declarations for the multi-function calculator.
1901
1902@smallexample
18b519c0 1903@group
bfa74976 1904%@{
38a92d50
PE
1905 #include <math.h> /* For math functions, cos(), sin(), etc. */
1906 #include "calc.h" /* Contains definition of `symrec'. */
1907 int yylex (void);
1908 void yyerror (char const *);
bfa74976 1909%@}
18b519c0
AD
1910@end group
1911@group
bfa74976 1912%union @{
38a92d50
PE
1913 double val; /* For returning numbers. */
1914 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 1915@}
18b519c0 1916@end group
38a92d50
PE
1917%token <val> NUM /* Simple double precision number. */
1918%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
1919%type <val> exp
1920
18b519c0 1921@group
bfa74976
RS
1922%right '='
1923%left '-' '+'
1924%left '*' '/'
38a92d50
PE
1925%left NEG /* negation--unary minus */
1926%right '^' /* exponentiation */
18b519c0 1927@end group
38a92d50 1928%% /* The grammar follows. */
bfa74976
RS
1929@end smallexample
1930
1931The above grammar introduces only two new features of the Bison language.
1932These features allow semantic values to have various data types
1933(@pxref{Multiple Types, ,More Than One Value Type}).
1934
1935The @code{%union} declaration specifies the entire list of possible types;
1936this is instead of defining @code{YYSTYPE}. The allowable types are now
1937double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
1938the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
1939
1940Since values can now have various types, it is necessary to associate a
1941type with each grammar symbol whose semantic value is used. These symbols
1942are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
1943declarations are augmented with information about their data type (placed
1944between angle brackets).
1945
704a47c4
AD
1946The Bison construct @code{%type} is used for declaring nonterminal
1947symbols, just as @code{%token} is used for declaring token types. We
1948have not used @code{%type} before because nonterminal symbols are
1949normally declared implicitly by the rules that define them. But
1950@code{exp} must be declared explicitly so we can specify its value type.
1951@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 1952
342b8b6e 1953@node Mfcalc Rules
bfa74976
RS
1954@subsection Grammar Rules for @code{mfcalc}
1955
1956Here are the grammar rules for the multi-function calculator.
1957Most of them are copied directly from @code{calc}; three rules,
1958those which mention @code{VAR} or @code{FNCT}, are new.
1959
1960@smallexample
18b519c0 1961@group
bfa74976
RS
1962input: /* empty */
1963 | input line
1964;
18b519c0 1965@end group
bfa74976 1966
18b519c0 1967@group
bfa74976
RS
1968line:
1969 '\n'
1970 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1971 | error '\n' @{ yyerrok; @}
1972;
18b519c0 1973@end group
bfa74976 1974
18b519c0 1975@group
bfa74976
RS
1976exp: NUM @{ $$ = $1; @}
1977 | VAR @{ $$ = $1->value.var; @}
1978 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
1979 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
1980 | exp '+' exp @{ $$ = $1 + $3; @}
1981 | exp '-' exp @{ $$ = $1 - $3; @}
1982 | exp '*' exp @{ $$ = $1 * $3; @}
1983 | exp '/' exp @{ $$ = $1 / $3; @}
1984 | '-' exp %prec NEG @{ $$ = -$2; @}
1985 | exp '^' exp @{ $$ = pow ($1, $3); @}
1986 | '(' exp ')' @{ $$ = $2; @}
1987;
18b519c0 1988@end group
38a92d50 1989/* End of grammar. */
bfa74976
RS
1990%%
1991@end smallexample
1992
342b8b6e 1993@node Mfcalc Symtab
bfa74976
RS
1994@subsection The @code{mfcalc} Symbol Table
1995@cindex symbol table example
1996
1997The multi-function calculator requires a symbol table to keep track of the
1998names and meanings of variables and functions. This doesn't affect the
1999grammar rules (except for the actions) or the Bison declarations, but it
2000requires some additional C functions for support.
2001
2002The symbol table itself consists of a linked list of records. Its
2003definition, which is kept in the header @file{calc.h}, is as follows. It
2004provides for either functions or variables to be placed in the table.
2005
2006@smallexample
2007@group
38a92d50 2008/* Function type. */
32dfccf8 2009typedef double (*func_t) (double);
72f889cc 2010@end group
32dfccf8 2011
72f889cc 2012@group
38a92d50 2013/* Data type for links in the chain of symbols. */
bfa74976
RS
2014struct symrec
2015@{
38a92d50 2016 char *name; /* name of symbol */
bfa74976 2017 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2018 union
2019 @{
38a92d50
PE
2020 double var; /* value of a VAR */
2021 func_t fnctptr; /* value of a FNCT */
bfa74976 2022 @} value;
38a92d50 2023 struct symrec *next; /* link field */
bfa74976
RS
2024@};
2025@end group
2026
2027@group
2028typedef struct symrec symrec;
2029
38a92d50 2030/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2031extern symrec *sym_table;
2032
38a92d50
PE
2033symrec *putsym (char const *, func_t);
2034symrec *getsym (char const *);
bfa74976
RS
2035@end group
2036@end smallexample
2037
2038The new version of @code{main} includes a call to @code{init_table}, a
2039function that initializes the symbol table. Here it is, and
2040@code{init_table} as well:
2041
2042@smallexample
bfa74976
RS
2043#include <stdio.h>
2044
18b519c0 2045@group
38a92d50 2046/* Called by yyparse on error. */
13863333 2047void
38a92d50 2048yyerror (char const *s)
bfa74976
RS
2049@{
2050 printf ("%s\n", s);
2051@}
18b519c0 2052@end group
bfa74976 2053
18b519c0 2054@group
bfa74976
RS
2055struct init
2056@{
38a92d50
PE
2057 char const *fname;
2058 double (*fnct) (double);
bfa74976
RS
2059@};
2060@end group
2061
2062@group
38a92d50 2063struct init const arith_fncts[] =
13863333 2064@{
32dfccf8
AD
2065 "sin", sin,
2066 "cos", cos,
13863333 2067 "atan", atan,
32dfccf8
AD
2068 "ln", log,
2069 "exp", exp,
13863333
AD
2070 "sqrt", sqrt,
2071 0, 0
2072@};
18b519c0 2073@end group
bfa74976 2074
18b519c0 2075@group
bfa74976 2076/* The symbol table: a chain of `struct symrec'. */
38a92d50 2077symrec *sym_table;
bfa74976
RS
2078@end group
2079
2080@group
72d2299c 2081/* Put arithmetic functions in table. */
13863333
AD
2082void
2083init_table (void)
bfa74976
RS
2084@{
2085 int i;
2086 symrec *ptr;
2087 for (i = 0; arith_fncts[i].fname != 0; i++)
2088 @{
2089 ptr = putsym (arith_fncts[i].fname, FNCT);
2090 ptr->value.fnctptr = arith_fncts[i].fnct;
2091 @}
2092@}
2093@end group
38a92d50
PE
2094
2095@group
2096int
2097main (void)
2098@{
2099 init_table ();
2100 return yyparse ();
2101@}
2102@end group
bfa74976
RS
2103@end smallexample
2104
2105By simply editing the initialization list and adding the necessary include
2106files, you can add additional functions to the calculator.
2107
2108Two important functions allow look-up and installation of symbols in the
2109symbol table. The function @code{putsym} is passed a name and the type
2110(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2111linked to the front of the list, and a pointer to the object is returned.
2112The function @code{getsym} is passed the name of the symbol to look up. If
2113found, a pointer to that symbol is returned; otherwise zero is returned.
2114
2115@smallexample
2116symrec *
38a92d50 2117putsym (char const *sym_name, int sym_type)
bfa74976
RS
2118@{
2119 symrec *ptr;
2120 ptr = (symrec *) malloc (sizeof (symrec));
2121 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2122 strcpy (ptr->name,sym_name);
2123 ptr->type = sym_type;
72d2299c 2124 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2125 ptr->next = (struct symrec *)sym_table;
2126 sym_table = ptr;
2127 return ptr;
2128@}
2129
2130symrec *
38a92d50 2131getsym (char const *sym_name)
bfa74976
RS
2132@{
2133 symrec *ptr;
2134 for (ptr = sym_table; ptr != (symrec *) 0;
2135 ptr = (symrec *)ptr->next)
2136 if (strcmp (ptr->name,sym_name) == 0)
2137 return ptr;
2138 return 0;
2139@}
2140@end smallexample
2141
2142The function @code{yylex} must now recognize variables, numeric values, and
2143the single-character arithmetic operators. Strings of alphanumeric
14ded682 2144characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2145functions depending on what the symbol table says about them.
2146
2147The string is passed to @code{getsym} for look up in the symbol table. If
2148the name appears in the table, a pointer to its location and its type
2149(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2150already in the table, then it is installed as a @code{VAR} using
2151@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2152returned to @code{yyparse}.
bfa74976
RS
2153
2154No change is needed in the handling of numeric values and arithmetic
2155operators in @code{yylex}.
2156
2157@smallexample
2158@group
2159#include <ctype.h>
18b519c0 2160@end group
13863333 2161
18b519c0 2162@group
13863333
AD
2163int
2164yylex (void)
bfa74976
RS
2165@{
2166 int c;
2167
72d2299c 2168 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2169 while ((c = getchar ()) == ' ' || c == '\t');
2170
2171 if (c == EOF)
2172 return 0;
2173@end group
2174
2175@group
2176 /* Char starts a number => parse the number. */
2177 if (c == '.' || isdigit (c))
2178 @{
2179 ungetc (c, stdin);
2180 scanf ("%lf", &yylval.val);
2181 return NUM;
2182 @}
2183@end group
2184
2185@group
2186 /* Char starts an identifier => read the name. */
2187 if (isalpha (c))
2188 @{
2189 symrec *s;
2190 static char *symbuf = 0;
2191 static int length = 0;
2192 int i;
2193@end group
2194
2195@group
2196 /* Initially make the buffer long enough
2197 for a 40-character symbol name. */
2198 if (length == 0)
2199 length = 40, symbuf = (char *)malloc (length + 1);
2200
2201 i = 0;
2202 do
2203@end group
2204@group
2205 @{
2206 /* If buffer is full, make it bigger. */
2207 if (i == length)
2208 @{
2209 length *= 2;
18b519c0 2210 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2211 @}
2212 /* Add this character to the buffer. */
2213 symbuf[i++] = c;
2214 /* Get another character. */
2215 c = getchar ();
2216 @}
2217@end group
2218@group
72d2299c 2219 while (isalnum (c));
bfa74976
RS
2220
2221 ungetc (c, stdin);
2222 symbuf[i] = '\0';
2223@end group
2224
2225@group
2226 s = getsym (symbuf);
2227 if (s == 0)
2228 s = putsym (symbuf, VAR);
2229 yylval.tptr = s;
2230 return s->type;
2231 @}
2232
2233 /* Any other character is a token by itself. */
2234 return c;
2235@}
2236@end group
2237@end smallexample
2238
72d2299c 2239This program is both powerful and flexible. You may easily add new
704a47c4
AD
2240functions, and it is a simple job to modify this code to install
2241predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2242
342b8b6e 2243@node Exercises
bfa74976
RS
2244@section Exercises
2245@cindex exercises
2246
2247@enumerate
2248@item
2249Add some new functions from @file{math.h} to the initialization list.
2250
2251@item
2252Add another array that contains constants and their values. Then
2253modify @code{init_table} to add these constants to the symbol table.
2254It will be easiest to give the constants type @code{VAR}.
2255
2256@item
2257Make the program report an error if the user refers to an
2258uninitialized variable in any way except to store a value in it.
2259@end enumerate
2260
342b8b6e 2261@node Grammar File
bfa74976
RS
2262@chapter Bison Grammar Files
2263
2264Bison takes as input a context-free grammar specification and produces a
2265C-language function that recognizes correct instances of the grammar.
2266
2267The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2268@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2269
2270@menu
2271* Grammar Outline:: Overall layout of the grammar file.
2272* Symbols:: Terminal and nonterminal symbols.
2273* Rules:: How to write grammar rules.
2274* Recursion:: Writing recursive rules.
2275* Semantics:: Semantic values and actions.
847bf1f5 2276* Locations:: Locations and actions.
bfa74976
RS
2277* Declarations:: All kinds of Bison declarations are described here.
2278* Multiple Parsers:: Putting more than one Bison parser in one program.
2279@end menu
2280
342b8b6e 2281@node Grammar Outline
bfa74976
RS
2282@section Outline of a Bison Grammar
2283
2284A Bison grammar file has four main sections, shown here with the
2285appropriate delimiters:
2286
2287@example
2288%@{
38a92d50 2289 @var{Prologue}
bfa74976
RS
2290%@}
2291
2292@var{Bison declarations}
2293
2294%%
2295@var{Grammar rules}
2296%%
2297
75f5aaea 2298@var{Epilogue}
bfa74976
RS
2299@end example
2300
2301Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2302As a @acronym{GNU} extension, @samp{//} introduces a comment that
2303continues until end of line.
bfa74976
RS
2304
2305@menu
75f5aaea 2306* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2307* Bison Declarations:: Syntax and usage of the Bison declarations section.
2308* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2309* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2310@end menu
2311
38a92d50 2312@node Prologue
75f5aaea
MA
2313@subsection The prologue
2314@cindex declarations section
2315@cindex Prologue
2316@cindex declarations
bfa74976 2317
08e49d20 2318The @var{Prologue} section contains macro definitions and
bfa74976
RS
2319declarations of functions and variables that are used in the actions in the
2320grammar rules. These are copied to the beginning of the parser file so
2321that they precede the definition of @code{yyparse}. You can use
2322@samp{#include} to get the declarations from a header file. If you don't
2323need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2324delimiters that bracket this section.
2325
c732d2c6
AD
2326You may have more than one @var{Prologue} section, intermixed with the
2327@var{Bison declarations}. This allows you to have C and Bison
2328declarations that refer to each other. For example, the @code{%union}
2329declaration may use types defined in a header file, and you may wish to
2330prototype functions that take arguments of type @code{YYSTYPE}. This
2331can be done with two @var{Prologue} blocks, one before and one after the
2332@code{%union} declaration.
2333
2334@smallexample
2335%@{
38a92d50
PE
2336 #include <stdio.h>
2337 #include "ptypes.h"
c732d2c6
AD
2338%@}
2339
2340%union @{
2341 long n;
2342 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2343@}
2344
2345%@{
38a92d50
PE
2346 static void print_token_value (FILE *, int, YYSTYPE);
2347 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2348%@}
2349
2350@dots{}
2351@end smallexample
2352
342b8b6e 2353@node Bison Declarations
bfa74976
RS
2354@subsection The Bison Declarations Section
2355@cindex Bison declarations (introduction)
2356@cindex declarations, Bison (introduction)
2357
2358The @var{Bison declarations} section contains declarations that define
2359terminal and nonterminal symbols, specify precedence, and so on.
2360In some simple grammars you may not need any declarations.
2361@xref{Declarations, ,Bison Declarations}.
2362
342b8b6e 2363@node Grammar Rules
bfa74976
RS
2364@subsection The Grammar Rules Section
2365@cindex grammar rules section
2366@cindex rules section for grammar
2367
2368The @dfn{grammar rules} section contains one or more Bison grammar
2369rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2370
2371There must always be at least one grammar rule, and the first
2372@samp{%%} (which precedes the grammar rules) may never be omitted even
2373if it is the first thing in the file.
2374
38a92d50 2375@node Epilogue
75f5aaea 2376@subsection The epilogue
bfa74976 2377@cindex additional C code section
75f5aaea 2378@cindex epilogue
bfa74976
RS
2379@cindex C code, section for additional
2380
08e49d20
PE
2381The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2382the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2383place to put anything that you want to have in the parser file but which need
2384not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2385definitions of @code{yylex} and @code{yyerror} often go here. Because
2386C requires functions to be declared before being used, you often need
2387to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
2388even if you define them int he Epilogue.
75f5aaea 2389@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2390
2391If the last section is empty, you may omit the @samp{%%} that separates it
2392from the grammar rules.
2393
38a92d50
PE
2394The Bison parser itself contains many macros and identifiers whose
2395names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2396good idea to avoid using any such names (except those documented in this
75f5aaea 2397manual) in the epilogue of the grammar file.
bfa74976 2398
342b8b6e 2399@node Symbols
bfa74976
RS
2400@section Symbols, Terminal and Nonterminal
2401@cindex nonterminal symbol
2402@cindex terminal symbol
2403@cindex token type
2404@cindex symbol
2405
2406@dfn{Symbols} in Bison grammars represent the grammatical classifications
2407of the language.
2408
2409A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2410class of syntactically equivalent tokens. You use the symbol in grammar
2411rules to mean that a token in that class is allowed. The symbol is
2412represented in the Bison parser by a numeric code, and the @code{yylex}
2413function returns a token type code to indicate what kind of token has been
2414read. You don't need to know what the code value is; you can use the
2415symbol to stand for it.
2416
2417A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2418groupings. The symbol name is used in writing grammar rules. By convention,
2419it should be all lower case.
2420
2421Symbol names can contain letters, digits (not at the beginning),
2422underscores and periods. Periods make sense only in nonterminals.
2423
931c7513 2424There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2425
2426@itemize @bullet
2427@item
2428A @dfn{named token type} is written with an identifier, like an
c827f760 2429identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2430such name must be defined with a Bison declaration such as
2431@code{%token}. @xref{Token Decl, ,Token Type Names}.
2432
2433@item
2434@cindex character token
2435@cindex literal token
2436@cindex single-character literal
931c7513
RS
2437A @dfn{character token type} (or @dfn{literal character token}) is
2438written in the grammar using the same syntax used in C for character
2439constants; for example, @code{'+'} is a character token type. A
2440character token type doesn't need to be declared unless you need to
2441specify its semantic value data type (@pxref{Value Type, ,Data Types of
2442Semantic Values}), associativity, or precedence (@pxref{Precedence,
2443,Operator Precedence}).
bfa74976
RS
2444
2445By convention, a character token type is used only to represent a
2446token that consists of that particular character. Thus, the token
2447type @code{'+'} is used to represent the character @samp{+} as a
2448token. Nothing enforces this convention, but if you depart from it,
2449your program will confuse other readers.
2450
2451All the usual escape sequences used in character literals in C can be
2452used in Bison as well, but you must not use the null character as a
72d2299c
PE
2453character literal because its numeric code, zero, signifies
2454end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2455for @code{yylex}}). Also, unlike standard C, trigraphs have no
2456special meaning in Bison character literals, nor is backslash-newline
2457allowed.
931c7513
RS
2458
2459@item
2460@cindex string token
2461@cindex literal string token
9ecbd125 2462@cindex multicharacter literal
931c7513
RS
2463A @dfn{literal string token} is written like a C string constant; for
2464example, @code{"<="} is a literal string token. A literal string token
2465doesn't need to be declared unless you need to specify its semantic
14ded682 2466value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2467(@pxref{Precedence}).
2468
2469You can associate the literal string token with a symbolic name as an
2470alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2471Declarations}). If you don't do that, the lexical analyzer has to
2472retrieve the token number for the literal string token from the
2473@code{yytname} table (@pxref{Calling Convention}).
2474
c827f760 2475@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2476
2477By convention, a literal string token is used only to represent a token
2478that consists of that particular string. Thus, you should use the token
2479type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2480does not enforce this convention, but if you depart from it, people who
931c7513
RS
2481read your program will be confused.
2482
2483All the escape sequences used in string literals in C can be used in
92ac3705
PE
2484Bison as well, except that you must not use a null character within a
2485string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2486meaning in Bison string literals, nor is backslash-newline allowed. A
2487literal string token must contain two or more characters; for a token
2488containing just one character, use a character token (see above).
bfa74976
RS
2489@end itemize
2490
2491How you choose to write a terminal symbol has no effect on its
2492grammatical meaning. That depends only on where it appears in rules and
2493on when the parser function returns that symbol.
2494
72d2299c
PE
2495The value returned by @code{yylex} is always one of the terminal
2496symbols, except that a zero or negative value signifies end-of-input.
2497Whichever way you write the token type in the grammar rules, you write
2498it the same way in the definition of @code{yylex}. The numeric code
2499for a character token type is simply the positive numeric code of the
2500character, so @code{yylex} can use the identical value to generate the
2501requisite code, though you may need to convert it to @code{unsigned
2502char} to avoid sign-extension on hosts where @code{char} is signed.
2503Each named token type becomes a C macro in
bfa74976 2504the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2505(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2506@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2507
2508If @code{yylex} is defined in a separate file, you need to arrange for the
2509token-type macro definitions to be available there. Use the @samp{-d}
2510option when you run Bison, so that it will write these macro definitions
2511into a separate header file @file{@var{name}.tab.h} which you can include
2512in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2513
72d2299c
PE
2514If you want to write a grammar that is portable to any Standard C
2515host, you must use only non-null character tokens taken from the basic
c827f760 2516execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2517digits, the 52 lower- and upper-case English letters, and the
2518characters in the following C-language string:
2519
2520@example
2521"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2522@end example
2523
2524The @code{yylex} function and Bison must use a consistent character
2525set and encoding for character tokens. For example, if you run Bison in an
c827f760 2526@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2527in an environment that uses an incompatible character set like
c827f760
PE
2528@acronym{EBCDIC}, the resulting program may not work because the
2529tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2530character tokens. It is standard
e966383b 2531practice for software distributions to contain C source files that
c827f760
PE
2532were generated by Bison in an @acronym{ASCII} environment, so installers on
2533platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2534files before compiling them.
2535
bfa74976
RS
2536The symbol @code{error} is a terminal symbol reserved for error recovery
2537(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2538In particular, @code{yylex} should never return this value. The default
2539value of the error token is 256, unless you explicitly assigned 256 to
2540one of your tokens with a @code{%token} declaration.
bfa74976 2541
342b8b6e 2542@node Rules
bfa74976
RS
2543@section Syntax of Grammar Rules
2544@cindex rule syntax
2545@cindex grammar rule syntax
2546@cindex syntax of grammar rules
2547
2548A Bison grammar rule has the following general form:
2549
2550@example
e425e872 2551@group
bfa74976
RS
2552@var{result}: @var{components}@dots{}
2553 ;
e425e872 2554@end group
bfa74976
RS
2555@end example
2556
2557@noindent
9ecbd125 2558where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2559and @var{components} are various terminal and nonterminal symbols that
13863333 2560are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2561
2562For example,
2563
2564@example
2565@group
2566exp: exp '+' exp
2567 ;
2568@end group
2569@end example
2570
2571@noindent
2572says that two groupings of type @code{exp}, with a @samp{+} token in between,
2573can be combined into a larger grouping of type @code{exp}.
2574
72d2299c
PE
2575White space in rules is significant only to separate symbols. You can add
2576extra white space as you wish.
bfa74976
RS
2577
2578Scattered among the components can be @var{actions} that determine
2579the semantics of the rule. An action looks like this:
2580
2581@example
2582@{@var{C statements}@}
2583@end example
2584
2585@noindent
2586Usually there is only one action and it follows the components.
2587@xref{Actions}.
2588
2589@findex |
2590Multiple rules for the same @var{result} can be written separately or can
2591be joined with the vertical-bar character @samp{|} as follows:
2592
2593@ifinfo
2594@example
2595@var{result}: @var{rule1-components}@dots{}
2596 | @var{rule2-components}@dots{}
2597 @dots{}
2598 ;
2599@end example
2600@end ifinfo
2601@iftex
2602@example
2603@group
2604@var{result}: @var{rule1-components}@dots{}
2605 | @var{rule2-components}@dots{}
2606 @dots{}
2607 ;
2608@end group
2609@end example
2610@end iftex
2611
2612@noindent
2613They are still considered distinct rules even when joined in this way.
2614
2615If @var{components} in a rule is empty, it means that @var{result} can
2616match the empty string. For example, here is how to define a
2617comma-separated sequence of zero or more @code{exp} groupings:
2618
2619@example
2620@group
2621expseq: /* empty */
2622 | expseq1
2623 ;
2624@end group
2625
2626@group
2627expseq1: exp
2628 | expseq1 ',' exp
2629 ;
2630@end group
2631@end example
2632
2633@noindent
2634It is customary to write a comment @samp{/* empty */} in each rule
2635with no components.
2636
342b8b6e 2637@node Recursion
bfa74976
RS
2638@section Recursive Rules
2639@cindex recursive rule
2640
2641A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2642also on its right hand side. Nearly all Bison grammars need to use
2643recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2644of a particular thing. Consider this recursive definition of a
2645comma-separated sequence of one or more expressions:
bfa74976
RS
2646
2647@example
2648@group
2649expseq1: exp
2650 | expseq1 ',' exp
2651 ;
2652@end group
2653@end example
2654
2655@cindex left recursion
2656@cindex right recursion
2657@noindent
2658Since the recursive use of @code{expseq1} is the leftmost symbol in the
2659right hand side, we call this @dfn{left recursion}. By contrast, here
2660the same construct is defined using @dfn{right recursion}:
2661
2662@example
2663@group
2664expseq1: exp
2665 | exp ',' expseq1
2666 ;
2667@end group
2668@end example
2669
2670@noindent
ec3bc396
AD
2671Any kind of sequence can be defined using either left recursion or right
2672recursion, but you should always use left recursion, because it can
2673parse a sequence of any number of elements with bounded stack space.
2674Right recursion uses up space on the Bison stack in proportion to the
2675number of elements in the sequence, because all the elements must be
2676shifted onto the stack before the rule can be applied even once.
2677@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2678of this.
bfa74976
RS
2679
2680@cindex mutual recursion
2681@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2682rule does not appear directly on its right hand side, but does appear
2683in rules for other nonterminals which do appear on its right hand
13863333 2684side.
bfa74976
RS
2685
2686For example:
2687
2688@example
2689@group
2690expr: primary
2691 | primary '+' primary
2692 ;
2693@end group
2694
2695@group
2696primary: constant
2697 | '(' expr ')'
2698 ;
2699@end group
2700@end example
2701
2702@noindent
2703defines two mutually-recursive nonterminals, since each refers to the
2704other.
2705
342b8b6e 2706@node Semantics
bfa74976
RS
2707@section Defining Language Semantics
2708@cindex defining language semantics
13863333 2709@cindex language semantics, defining
bfa74976
RS
2710
2711The grammar rules for a language determine only the syntax. The semantics
2712are determined by the semantic values associated with various tokens and
2713groupings, and by the actions taken when various groupings are recognized.
2714
2715For example, the calculator calculates properly because the value
2716associated with each expression is the proper number; it adds properly
2717because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2718the numbers associated with @var{x} and @var{y}.
2719
2720@menu
2721* Value Type:: Specifying one data type for all semantic values.
2722* Multiple Types:: Specifying several alternative data types.
2723* Actions:: An action is the semantic definition of a grammar rule.
2724* Action Types:: Specifying data types for actions to operate on.
2725* Mid-Rule Actions:: Most actions go at the end of a rule.
2726 This says when, why and how to use the exceptional
2727 action in the middle of a rule.
2728@end menu
2729
342b8b6e 2730@node Value Type
bfa74976
RS
2731@subsection Data Types of Semantic Values
2732@cindex semantic value type
2733@cindex value type, semantic
2734@cindex data types of semantic values
2735@cindex default data type
2736
2737In a simple program it may be sufficient to use the same data type for
2738the semantic values of all language constructs. This was true in the
c827f760 2739@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 2740Notation Calculator}).
bfa74976
RS
2741
2742Bison's default is to use type @code{int} for all semantic values. To
2743specify some other type, define @code{YYSTYPE} as a macro, like this:
2744
2745@example
2746#define YYSTYPE double
2747@end example
2748
2749@noindent
342b8b6e 2750This macro definition must go in the prologue of the grammar file
75f5aaea 2751(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 2752
342b8b6e 2753@node Multiple Types
bfa74976
RS
2754@subsection More Than One Value Type
2755
2756In most programs, you will need different data types for different kinds
2757of tokens and groupings. For example, a numeric constant may need type
2758@code{int} or @code{long}, while a string constant needs type @code{char *},
2759and an identifier might need a pointer to an entry in the symbol table.
2760
2761To use more than one data type for semantic values in one parser, Bison
2762requires you to do two things:
2763
2764@itemize @bullet
2765@item
2766Specify the entire collection of possible data types, with the
704a47c4
AD
2767@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
2768Value Types}).
bfa74976
RS
2769
2770@item
14ded682
AD
2771Choose one of those types for each symbol (terminal or nonterminal) for
2772which semantic values are used. This is done for tokens with the
2773@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
2774and for groupings with the @code{%type} Bison declaration (@pxref{Type
2775Decl, ,Nonterminal Symbols}).
bfa74976
RS
2776@end itemize
2777
342b8b6e 2778@node Actions
bfa74976
RS
2779@subsection Actions
2780@cindex action
2781@vindex $$
2782@vindex $@var{n}
2783
2784An action accompanies a syntactic rule and contains C code to be executed
2785each time an instance of that rule is recognized. The task of most actions
2786is to compute a semantic value for the grouping built by the rule from the
2787semantic values associated with tokens or smaller groupings.
2788
2789An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
2790compound statement in C@. An action can contain any sequence of C
2791statements. Bison does not look for trigraphs, though, so if your C
2792code uses trigraphs you should ensure that they do not affect the
2793nesting of braces or the boundaries of comments, strings, or character
2794literals.
2795
2796An action can be placed at any position in the rule;
704a47c4
AD
2797it is executed at that position. Most rules have just one action at the
2798end of the rule, following all the components. Actions in the middle of
2799a rule are tricky and used only for special purposes (@pxref{Mid-Rule
2800Actions, ,Actions in Mid-Rule}).
bfa74976
RS
2801
2802The C code in an action can refer to the semantic values of the components
2803matched by the rule with the construct @code{$@var{n}}, which stands for
2804the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
2805being constructed is @code{$$}. Bison translates both of these
2806constructs into expressions of the appropriate type when it copies the
2807actions into the parser file. @code{$$} is translated to a modifiable
2808lvalue, so it can be assigned to.
bfa74976
RS
2809
2810Here is a typical example:
2811
2812@example
2813@group
2814exp: @dots{}
2815 | exp '+' exp
2816 @{ $$ = $1 + $3; @}
2817@end group
2818@end example
2819
2820@noindent
2821This rule constructs an @code{exp} from two smaller @code{exp} groupings
2822connected by a plus-sign token. In the action, @code{$1} and @code{$3}
2823refer to the semantic values of the two component @code{exp} groupings,
2824which are the first and third symbols on the right hand side of the rule.
2825The sum is stored into @code{$$} so that it becomes the semantic value of
2826the addition-expression just recognized by the rule. If there were a
2827useful semantic value associated with the @samp{+} token, it could be
e0c471a9 2828referred to as @code{$2}.
bfa74976 2829
3ded9a63
AD
2830Note that the vertical-bar character @samp{|} is really a rule
2831separator, and actions are attached to a single rule. This is a
2832difference with tools like Flex, for which @samp{|} stands for either
2833``or'', or ``the same action as that of the next rule''. In the
2834following example, the action is triggered only when @samp{b} is found:
2835
2836@example
2837@group
2838a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
2839@end group
2840@end example
2841
bfa74976
RS
2842@cindex default action
2843If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
2844@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
2845becomes the value of the whole rule. Of course, the default action is
2846valid only if the two data types match. There is no meaningful default
2847action for an empty rule; every empty rule must have an explicit action
2848unless the rule's value does not matter.
bfa74976
RS
2849
2850@code{$@var{n}} with @var{n} zero or negative is allowed for reference
2851to tokens and groupings on the stack @emph{before} those that match the
2852current rule. This is a very risky practice, and to use it reliably
2853you must be certain of the context in which the rule is applied. Here
2854is a case in which you can use this reliably:
2855
2856@example
2857@group
2858foo: expr bar '+' expr @{ @dots{} @}
2859 | expr bar '-' expr @{ @dots{} @}
2860 ;
2861@end group
2862
2863@group
2864bar: /* empty */
2865 @{ previous_expr = $0; @}
2866 ;
2867@end group
2868@end example
2869
2870As long as @code{bar} is used only in the fashion shown here, @code{$0}
2871always refers to the @code{expr} which precedes @code{bar} in the
2872definition of @code{foo}.
2873
342b8b6e 2874@node Action Types
bfa74976
RS
2875@subsection Data Types of Values in Actions
2876@cindex action data types
2877@cindex data types in actions
2878
2879If you have chosen a single data type for semantic values, the @code{$$}
2880and @code{$@var{n}} constructs always have that data type.
2881
2882If you have used @code{%union} to specify a variety of data types, then you
2883must declare a choice among these types for each terminal or nonterminal
2884symbol that can have a semantic value. Then each time you use @code{$$} or
2885@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 2886in the rule. In this example,
bfa74976
RS
2887
2888@example
2889@group
2890exp: @dots{}
2891 | exp '+' exp
2892 @{ $$ = $1 + $3; @}
2893@end group
2894@end example
2895
2896@noindent
2897@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
2898have the data type declared for the nonterminal symbol @code{exp}. If
2899@code{$2} were used, it would have the data type declared for the
e0c471a9 2900terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
2901
2902Alternatively, you can specify the data type when you refer to the value,
2903by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
2904reference. For example, if you have defined types as shown here:
2905
2906@example
2907@group
2908%union @{
2909 int itype;
2910 double dtype;
2911@}
2912@end group
2913@end example
2914
2915@noindent
2916then you can write @code{$<itype>1} to refer to the first subunit of the
2917rule as an integer, or @code{$<dtype>1} to refer to it as a double.
2918
342b8b6e 2919@node Mid-Rule Actions
bfa74976
RS
2920@subsection Actions in Mid-Rule
2921@cindex actions in mid-rule
2922@cindex mid-rule actions
2923
2924Occasionally it is useful to put an action in the middle of a rule.
2925These actions are written just like usual end-of-rule actions, but they
2926are executed before the parser even recognizes the following components.
2927
2928A mid-rule action may refer to the components preceding it using
2929@code{$@var{n}}, but it may not refer to subsequent components because
2930it is run before they are parsed.
2931
2932The mid-rule action itself counts as one of the components of the rule.
2933This makes a difference when there is another action later in the same rule
2934(and usually there is another at the end): you have to count the actions
2935along with the symbols when working out which number @var{n} to use in
2936@code{$@var{n}}.
2937
2938The mid-rule action can also have a semantic value. The action can set
2939its value with an assignment to @code{$$}, and actions later in the rule
2940can refer to the value using @code{$@var{n}}. Since there is no symbol
2941to name the action, there is no way to declare a data type for the value
fdc6758b
MA
2942in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
2943specify a data type each time you refer to this value.
bfa74976
RS
2944
2945There is no way to set the value of the entire rule with a mid-rule
2946action, because assignments to @code{$$} do not have that effect. The
2947only way to set the value for the entire rule is with an ordinary action
2948at the end of the rule.
2949
2950Here is an example from a hypothetical compiler, handling a @code{let}
2951statement that looks like @samp{let (@var{variable}) @var{statement}} and
2952serves to create a variable named @var{variable} temporarily for the
2953duration of @var{statement}. To parse this construct, we must put
2954@var{variable} into the symbol table while @var{statement} is parsed, then
2955remove it afterward. Here is how it is done:
2956
2957@example
2958@group
2959stmt: LET '(' var ')'
2960 @{ $<context>$ = push_context ();
2961 declare_variable ($3); @}
2962 stmt @{ $$ = $6;
2963 pop_context ($<context>5); @}
2964@end group
2965@end example
2966
2967@noindent
2968As soon as @samp{let (@var{variable})} has been recognized, the first
2969action is run. It saves a copy of the current semantic context (the
2970list of accessible variables) as its semantic value, using alternative
2971@code{context} in the data-type union. Then it calls
2972@code{declare_variable} to add the new variable to that list. Once the
2973first action is finished, the embedded statement @code{stmt} can be
2974parsed. Note that the mid-rule action is component number 5, so the
2975@samp{stmt} is component number 6.
2976
2977After the embedded statement is parsed, its semantic value becomes the
2978value of the entire @code{let}-statement. Then the semantic value from the
2979earlier action is used to restore the prior list of variables. This
2980removes the temporary @code{let}-variable from the list so that it won't
2981appear to exist while the rest of the program is parsed.
2982
2983Taking action before a rule is completely recognized often leads to
2984conflicts since the parser must commit to a parse in order to execute the
2985action. For example, the following two rules, without mid-rule actions,
2986can coexist in a working parser because the parser can shift the open-brace
2987token and look at what follows before deciding whether there is a
2988declaration or not:
2989
2990@example
2991@group
2992compound: '@{' declarations statements '@}'
2993 | '@{' statements '@}'
2994 ;
2995@end group
2996@end example
2997
2998@noindent
2999But when we add a mid-rule action as follows, the rules become nonfunctional:
3000
3001@example
3002@group
3003compound: @{ prepare_for_local_variables (); @}
3004 '@{' declarations statements '@}'
3005@end group
3006@group
3007 | '@{' statements '@}'
3008 ;
3009@end group
3010@end example
3011
3012@noindent
3013Now the parser is forced to decide whether to run the mid-rule action
3014when it has read no farther than the open-brace. In other words, it
3015must commit to using one rule or the other, without sufficient
3016information to do it correctly. (The open-brace token is what is called
3017the @dfn{look-ahead} token at this time, since the parser is still
3018deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3019
3020You might think that you could correct the problem by putting identical
3021actions into the two rules, like this:
3022
3023@example
3024@group
3025compound: @{ prepare_for_local_variables (); @}
3026 '@{' declarations statements '@}'
3027 | @{ prepare_for_local_variables (); @}
3028 '@{' statements '@}'
3029 ;
3030@end group
3031@end example
3032
3033@noindent
3034But this does not help, because Bison does not realize that the two actions
3035are identical. (Bison never tries to understand the C code in an action.)
3036
3037If the grammar is such that a declaration can be distinguished from a
3038statement by the first token (which is true in C), then one solution which
3039does work is to put the action after the open-brace, like this:
3040
3041@example
3042@group
3043compound: '@{' @{ prepare_for_local_variables (); @}
3044 declarations statements '@}'
3045 | '@{' statements '@}'
3046 ;
3047@end group
3048@end example
3049
3050@noindent
3051Now the first token of the following declaration or statement,
3052which would in any case tell Bison which rule to use, can still do so.
3053
3054Another solution is to bury the action inside a nonterminal symbol which
3055serves as a subroutine:
3056
3057@example
3058@group
3059subroutine: /* empty */
3060 @{ prepare_for_local_variables (); @}
3061 ;
3062
3063@end group
3064
3065@group
3066compound: subroutine
3067 '@{' declarations statements '@}'
3068 | subroutine
3069 '@{' statements '@}'
3070 ;
3071@end group
3072@end example
3073
3074@noindent
3075Now Bison can execute the action in the rule for @code{subroutine} without
3076deciding which rule for @code{compound} it will eventually use. Note that
3077the action is now at the end of its rule. Any mid-rule action can be
3078converted to an end-of-rule action in this way, and this is what Bison
3079actually does to implement mid-rule actions.
3080
342b8b6e 3081@node Locations
847bf1f5
AD
3082@section Tracking Locations
3083@cindex location
95923bd6
AD
3084@cindex textual location
3085@cindex location, textual
847bf1f5
AD
3086
3087Though grammar rules and semantic actions are enough to write a fully
72d2299c 3088functional parser, it can be useful to process some additional information,
3e259915
MA
3089especially symbol locations.
3090
704a47c4
AD
3091The way locations are handled is defined by providing a data type, and
3092actions to take when rules are matched.
847bf1f5
AD
3093
3094@menu
3095* Location Type:: Specifying a data type for locations.
3096* Actions and Locations:: Using locations in actions.
3097* Location Default Action:: Defining a general way to compute locations.
3098@end menu
3099
342b8b6e 3100@node Location Type
847bf1f5
AD
3101@subsection Data Type of Locations
3102@cindex data type of locations
3103@cindex default location type
3104
3105Defining a data type for locations is much simpler than for semantic values,
3106since all tokens and groupings always use the same type.
3107
3108The type of locations is specified by defining a macro called @code{YYLTYPE}.
3109When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3110four members:
3111
3112@example
6273355b 3113typedef struct YYLTYPE
847bf1f5
AD
3114@{
3115 int first_line;
3116 int first_column;
3117 int last_line;
3118 int last_column;
6273355b 3119@} YYLTYPE;
847bf1f5
AD
3120@end example
3121
342b8b6e 3122@node Actions and Locations
847bf1f5
AD
3123@subsection Actions and Locations
3124@cindex location actions
3125@cindex actions, location
3126@vindex @@$
3127@vindex @@@var{n}
3128
3129Actions are not only useful for defining language semantics, but also for
3130describing the behavior of the output parser with locations.
3131
3132The most obvious way for building locations of syntactic groupings is very
72d2299c 3133similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3134constructs can be used to access the locations of the elements being matched.
3135The location of the @var{n}th component of the right hand side is
3136@code{@@@var{n}}, while the location of the left hand side grouping is
3137@code{@@$}.
3138
3e259915 3139Here is a basic example using the default data type for locations:
847bf1f5
AD
3140
3141@example
3142@group
3143exp: @dots{}
3e259915 3144 | exp '/' exp
847bf1f5 3145 @{
3e259915
MA
3146 @@$.first_column = @@1.first_column;
3147 @@$.first_line = @@1.first_line;
847bf1f5
AD
3148 @@$.last_column = @@3.last_column;
3149 @@$.last_line = @@3.last_line;
3e259915
MA
3150 if ($3)
3151 $$ = $1 / $3;
3152 else
3153 @{
3154 $$ = 1;
4e03e201
AD
3155 fprintf (stderr,
3156 "Division by zero, l%d,c%d-l%d,c%d",
3157 @@3.first_line, @@3.first_column,
3158 @@3.last_line, @@3.last_column);
3e259915 3159 @}
847bf1f5
AD
3160 @}
3161@end group
3162@end example
3163
3e259915 3164As for semantic values, there is a default action for locations that is
72d2299c 3165run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3166beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3167last symbol.
3e259915 3168
72d2299c 3169With this default action, the location tracking can be fully automatic. The
3e259915
MA
3170example above simply rewrites this way:
3171
3172@example
3173@group
3174exp: @dots{}
3175 | exp '/' exp
3176 @{
3177 if ($3)
3178 $$ = $1 / $3;
3179 else
3180 @{
3181 $$ = 1;
4e03e201
AD
3182 fprintf (stderr,
3183 "Division by zero, l%d,c%d-l%d,c%d",
3184 @@3.first_line, @@3.first_column,
3185 @@3.last_line, @@3.last_column);
3e259915
MA
3186 @}
3187 @}
3188@end group
3189@end example
847bf1f5 3190
342b8b6e 3191@node Location Default Action
847bf1f5
AD
3192@subsection Default Action for Locations
3193@vindex YYLLOC_DEFAULT
3194
72d2299c 3195Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3196locations are much more general than semantic values, there is room in
3197the output parser to redefine the default action to take for each
72d2299c 3198rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3199matched, before the associated action is run. It is also invoked
3200while processing a syntax error, to compute the error's location.
847bf1f5 3201
3e259915 3202Most of the time, this macro is general enough to suppress location
79282c6c 3203dedicated code from semantic actions.
847bf1f5 3204
72d2299c 3205The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d
PE
3206the location of the grouping (the result of the computation). When a
3207rule is matched, the second parameter is an array holding locations of
3208all right hand side elements of the rule being matched, and the third
3209parameter is the size of the rule's right hand side. When processing
3210a syntax error, the second parameter is an array holding locations of
3211the symbols that were discarded during error processing, and the third
3212parameter is the number of discarded symbols.
847bf1f5 3213
96b93a3d
PE
3214By default, @code{YYLLOC_DEFAULT} is defined this way for simple
3215@acronym{LALR}(1) parsers:
847bf1f5
AD
3216
3217@example
3218@group
0ae99356
PE
3219# define YYLLOC_DEFAULT(Current, Rhs, N) \
3220 ((Current).first_line = (Rhs)[1].first_line, \
3221 (Current).first_column = (Rhs)[1].first_column, \
3222 (Current).last_line = (Rhs)[N].last_line, \
3223 (Current).last_column = (Rhs)[N].last_column)
847bf1f5
AD
3224@end group
3225@end example
3226
676385e2 3227@noindent
c827f760 3228and like this for @acronym{GLR} parsers:
676385e2
PH
3229
3230@example
3231@group
0ae99356
PE
3232# define YYLLOC_DEFAULT(yyCurrent, yyRhs, YYN) \
3233 ((yyCurrent).first_line = YYRHSLOC(yyRhs, 1).first_line, \
3234 (yyCurrent).first_column = YYRHSLOC(yyRhs, 1).first_column, \
3235 (yyCurrent).last_line = YYRHSLOC(yyRhs, YYN).last_line, \
3236 (yyCurrent).last_column = YYRHSLOC(yyRhs, YYN).last_column)
676385e2
PH
3237@end group
3238@end example
3239
3e259915 3240When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3241
3e259915 3242@itemize @bullet
79282c6c 3243@item
72d2299c 3244All arguments are free of side-effects. However, only the first one (the
3e259915 3245result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3246
3e259915 3247@item
b2d52318
AD
3248For consistency with semantic actions, valid indexes for the location
3249array range from 1 to @var{n}.
0ae99356
PE
3250
3251@item
3252Your macro should parenthesize its arguments, if need be, since the
3253actual arguments may not be surrounded by parentheses. Also, your
3254macro should expand to something that can be used as a single
3255statement when it is followed by a semicolon.
3e259915 3256@end itemize
847bf1f5 3257
342b8b6e 3258@node Declarations
bfa74976
RS
3259@section Bison Declarations
3260@cindex declarations, Bison
3261@cindex Bison declarations
3262
3263The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3264used in formulating the grammar and the data types of semantic values.
3265@xref{Symbols}.
3266
3267All token type names (but not single-character literal tokens such as
3268@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3269declared if you need to specify which data type to use for the semantic
3270value (@pxref{Multiple Types, ,More Than One Value Type}).
3271
3272The first rule in the file also specifies the start symbol, by default.
3273If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3274it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3275Grammars}).
bfa74976
RS
3276
3277@menu
3278* Token Decl:: Declaring terminal symbols.
3279* Precedence Decl:: Declaring terminals with precedence and associativity.
3280* Union Decl:: Declaring the set of all semantic value types.
3281* Type Decl:: Declaring the choice of type for a nonterminal symbol.
72f889cc 3282* Destructor Decl:: Declaring how symbols are freed.
bfa74976
RS
3283* Expect Decl:: Suppressing warnings about shift/reduce conflicts.
3284* Start Decl:: Specifying the start symbol.
3285* Pure Decl:: Requesting a reentrant parser.
3286* Decl Summary:: Table of all Bison declarations.
3287@end menu
3288
342b8b6e 3289@node Token Decl
bfa74976
RS
3290@subsection Token Type Names
3291@cindex declaring token type names
3292@cindex token type names, declaring
931c7513 3293@cindex declaring literal string tokens
bfa74976
RS
3294@findex %token
3295
3296The basic way to declare a token type name (terminal symbol) is as follows:
3297
3298@example
3299%token @var{name}
3300@end example
3301
3302Bison will convert this into a @code{#define} directive in
3303the parser, so that the function @code{yylex} (if it is in this file)
3304can use the name @var{name} to stand for this token type's code.
3305
14ded682
AD
3306Alternatively, you can use @code{%left}, @code{%right}, or
3307@code{%nonassoc} instead of @code{%token}, if you wish to specify
3308associativity and precedence. @xref{Precedence Decl, ,Operator
3309Precedence}.
bfa74976
RS
3310
3311You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3312a decimal or hexadecimal integer value in the field immediately
3313following the token name:
bfa74976
RS
3314
3315@example
3316%token NUM 300
1452af69 3317%token XNUM 0x12d // a GNU extension
bfa74976
RS
3318@end example
3319
3320@noindent
3321It is generally best, however, to let Bison choose the numeric codes for
3322all token types. Bison will automatically select codes that don't conflict
e966383b 3323with each other or with normal characters.
bfa74976
RS
3324
3325In the event that the stack type is a union, you must augment the
3326@code{%token} or other token declaration to include the data type
704a47c4
AD
3327alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3328Than One Value Type}).
bfa74976
RS
3329
3330For example:
3331
3332@example
3333@group
3334%union @{ /* define stack type */
3335 double val;
3336 symrec *tptr;
3337@}
3338%token <val> NUM /* define token NUM and its type */
3339@end group
3340@end example
3341
931c7513
RS
3342You can associate a literal string token with a token type name by
3343writing the literal string at the end of a @code{%token}
3344declaration which declares the name. For example:
3345
3346@example
3347%token arrow "=>"
3348@end example
3349
3350@noindent
3351For example, a grammar for the C language might specify these names with
3352equivalent literal string tokens:
3353
3354@example
3355%token <operator> OR "||"
3356%token <operator> LE 134 "<="
3357%left OR "<="
3358@end example
3359
3360@noindent
3361Once you equate the literal string and the token name, you can use them
3362interchangeably in further declarations or the grammar rules. The
3363@code{yylex} function can use the token name or the literal string to
3364obtain the token type code number (@pxref{Calling Convention}).
3365
342b8b6e 3366@node Precedence Decl
bfa74976
RS
3367@subsection Operator Precedence
3368@cindex precedence declarations
3369@cindex declaring operator precedence
3370@cindex operator precedence, declaring
3371
3372Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3373declare a token and specify its precedence and associativity, all at
3374once. These are called @dfn{precedence declarations}.
704a47c4
AD
3375@xref{Precedence, ,Operator Precedence}, for general information on
3376operator precedence.
bfa74976
RS
3377
3378The syntax of a precedence declaration is the same as that of
3379@code{%token}: either
3380
3381@example
3382%left @var{symbols}@dots{}
3383@end example
3384
3385@noindent
3386or
3387
3388@example
3389%left <@var{type}> @var{symbols}@dots{}
3390@end example
3391
3392And indeed any of these declarations serves the purposes of @code{%token}.
3393But in addition, they specify the associativity and relative precedence for
3394all the @var{symbols}:
3395
3396@itemize @bullet
3397@item
3398The associativity of an operator @var{op} determines how repeated uses
3399of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3400@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3401grouping @var{y} with @var{z} first. @code{%left} specifies
3402left-associativity (grouping @var{x} with @var{y} first) and
3403@code{%right} specifies right-associativity (grouping @var{y} with
3404@var{z} first). @code{%nonassoc} specifies no associativity, which
3405means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3406considered a syntax error.
3407
3408@item
3409The precedence of an operator determines how it nests with other operators.
3410All the tokens declared in a single precedence declaration have equal
3411precedence and nest together according to their associativity.
3412When two tokens declared in different precedence declarations associate,
3413the one declared later has the higher precedence and is grouped first.
3414@end itemize
3415
342b8b6e 3416@node Union Decl
bfa74976
RS
3417@subsection The Collection of Value Types
3418@cindex declaring value types
3419@cindex value types, declaring
3420@findex %union
3421
3422The @code{%union} declaration specifies the entire collection of possible
3423data types for semantic values. The keyword @code{%union} is followed by a
3424pair of braces containing the same thing that goes inside a @code{union} in
13863333 3425C.
bfa74976
RS
3426
3427For example:
3428
3429@example
3430@group
3431%union @{
3432 double val;
3433 symrec *tptr;
3434@}
3435@end group
3436@end example
3437
3438@noindent
3439This says that the two alternative types are @code{double} and @code{symrec
3440*}. They are given names @code{val} and @code{tptr}; these names are used
3441in the @code{%token} and @code{%type} declarations to pick one of the types
3442for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3443
6273355b
PE
3444As an extension to @acronym{POSIX}, a tag is allowed after the
3445@code{union}. For example:
3446
3447@example
3448@group
3449%union value @{
3450 double val;
3451 symrec *tptr;
3452@}
3453@end group
3454@end example
3455
3456specifies the union tag @code{value}, so the corresponding C type is
3457@code{union value}. If you do not specify a tag, it defaults to
3458@code{YYSTYPE}.
3459
3460Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3461a semicolon after the closing brace.
3462
342b8b6e 3463@node Type Decl
bfa74976
RS
3464@subsection Nonterminal Symbols
3465@cindex declaring value types, nonterminals
3466@cindex value types, nonterminals, declaring
3467@findex %type
3468
3469@noindent
3470When you use @code{%union} to specify multiple value types, you must
3471declare the value type of each nonterminal symbol for which values are
3472used. This is done with a @code{%type} declaration, like this:
3473
3474@example
3475%type <@var{type}> @var{nonterminal}@dots{}
3476@end example
3477
3478@noindent
704a47c4
AD
3479Here @var{nonterminal} is the name of a nonterminal symbol, and
3480@var{type} is the name given in the @code{%union} to the alternative
3481that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3482can give any number of nonterminal symbols in the same @code{%type}
3483declaration, if they have the same value type. Use spaces to separate
3484the symbol names.
bfa74976 3485
931c7513
RS
3486You can also declare the value type of a terminal symbol. To do this,
3487use the same @code{<@var{type}>} construction in a declaration for the
3488terminal symbol. All kinds of token declarations allow
3489@code{<@var{type}>}.
3490
72f889cc
AD
3491@node Destructor Decl
3492@subsection Freeing Discarded Symbols
3493@cindex freeing discarded symbols
3494@findex %destructor
3495
3496Some symbols can be discarded by the parser, typically during error
3497recovery (@pxref{Error Recovery}). Basically, during error recovery,
3498embarrassing symbols already pushed on the stack, and embarrassing
3499tokens coming from the rest of the file are thrown away until the parser
3500falls on its feet. If these symbols convey heap based information, this
3501memory is lost. While this behavior is tolerable for batch parsers,
3502such as in compilers, it is unacceptable for parsers that can
3503possibility ``never end'' such as shells, or implementations of
3504communication protocols.
3505
3506The @code{%destructor} directive allows for the definition of code that
3507is called when a symbol is thrown away.
3508
3509@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3510@findex %destructor
3511Declare that the @var{code} must be invoked for each of the
3512@var{symbols} that will be discarded by the parser. The @var{code}
3513should use @code{$$} to designate the semantic value associated to the
a06ea4aa 3514@var{symbols}. The additional parser parameters are also available
72f889cc
AD
3515(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3516
3517@strong{Warning:} as of Bison 1.875, this feature is still considered as
96b93a3d 3518experimental, as there was not enough user feedback. In particular,
3df37415 3519the syntax might still change.
72f889cc
AD
3520@end deffn
3521
3522For instance:
3523
3524@smallexample
3525%union
3526@{
3527 char *string;
3528@}
3529%token <string> STRING
3530%type <string> string
3531%destructor @{ free ($$); @} STRING string
3532@end smallexample
3533
3534@noindent
3535guarantees that when a @code{STRING} or a @code{string} will be discarded,
3536its associated memory will be freed.
3537
3538Note that in the future, Bison might also consider that right hand side
3539members that are not mentioned in the action can be destroyed. For
3540instance, in:
3541
3542@smallexample
3543comment: "/*" STRING "*/";
3544@end smallexample
3545
3546@noindent
3547the parser is entitled to destroy the semantic value of the
3548@code{string}. Of course, this will not apply to the default action;
3549compare:
3550
3551@smallexample
3552typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3553typefull: string; // $$ = $1 applies, $1 is not destroyed.
3554@end smallexample
3555
342b8b6e 3556@node Expect Decl
bfa74976
RS
3557@subsection Suppressing Conflict Warnings
3558@cindex suppressing conflict warnings
3559@cindex preventing warnings about conflicts
3560@cindex warnings, preventing
3561@cindex conflicts, suppressing warnings of
3562@findex %expect
3563
3564Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3565(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3566have harmless shift/reduce conflicts which are resolved in a predictable
3567way and would be difficult to eliminate. It is desirable to suppress
3568the warning about these conflicts unless the number of conflicts
3569changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3570
3571The declaration looks like this:
3572
3573@example
3574%expect @var{n}
3575@end example
3576
7da99ede
AD
3577Here @var{n} is a decimal integer. The declaration says there should be
3578no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3579reduce/reduce conflicts. The usual warning is
7da99ede
AD
3580given if there are either more or fewer conflicts, or if there are any
3581reduce/reduce conflicts.
bfa74976
RS
3582
3583In general, using @code{%expect} involves these steps:
3584
3585@itemize @bullet
3586@item
3587Compile your grammar without @code{%expect}. Use the @samp{-v} option
3588to get a verbose list of where the conflicts occur. Bison will also
3589print the number of conflicts.
3590
3591@item
3592Check each of the conflicts to make sure that Bison's default
3593resolution is what you really want. If not, rewrite the grammar and
3594go back to the beginning.
3595
3596@item
3597Add an @code{%expect} declaration, copying the number @var{n} from the
3598number which Bison printed.
3599@end itemize
3600
69363a9e
PE
3601Now Bison will stop annoying you if you do not change the number of
3602conflicts, but it will warn you again if changes in the grammar result
3603in more or fewer conflicts.
bfa74976 3604
342b8b6e 3605@node Start Decl
bfa74976
RS
3606@subsection The Start-Symbol
3607@cindex declaring the start symbol
3608@cindex start symbol, declaring
3609@cindex default start symbol
3610@findex %start
3611
3612Bison assumes by default that the start symbol for the grammar is the first
3613nonterminal specified in the grammar specification section. The programmer
3614may override this restriction with the @code{%start} declaration as follows:
3615
3616@example
3617%start @var{symbol}
3618@end example
3619
342b8b6e 3620@node Pure Decl
bfa74976
RS
3621@subsection A Pure (Reentrant) Parser
3622@cindex reentrant parser
3623@cindex pure parser
8c9a50be 3624@findex %pure-parser
bfa74976
RS
3625
3626A @dfn{reentrant} program is one which does not alter in the course of
3627execution; in other words, it consists entirely of @dfn{pure} (read-only)
3628code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3629for example, a non-reentrant program may not be safe to call from a signal
3630handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3631program must be called only within interlocks.
3632
70811b85 3633Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3634suitable for most uses, and it permits compatibility with Yacc. (The
3635standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3636statically allocated variables for communication with @code{yylex},
3637including @code{yylval} and @code{yylloc}.)
bfa74976 3638
70811b85 3639Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3640declaration @code{%pure-parser} says that you want the parser to be
70811b85 3641reentrant. It looks like this:
bfa74976
RS
3642
3643@example
8c9a50be 3644%pure-parser
bfa74976
RS
3645@end example
3646
70811b85
RS
3647The result is that the communication variables @code{yylval} and
3648@code{yylloc} become local variables in @code{yyparse}, and a different
3649calling convention is used for the lexical analyzer function
3650@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3651Parsers}, for the details of this. The variable @code{yynerrs} also
3652becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3653Reporting Function @code{yyerror}}). The convention for calling
3654@code{yyparse} itself is unchanged.
3655
3656Whether the parser is pure has nothing to do with the grammar rules.
3657You can generate either a pure parser or a nonreentrant parser from any
3658valid grammar.
bfa74976 3659
342b8b6e 3660@node Decl Summary
bfa74976
RS
3661@subsection Bison Declaration Summary
3662@cindex Bison declaration summary
3663@cindex declaration summary
3664@cindex summary, Bison declaration
3665
d8988b2f 3666Here is a summary of the declarations used to define a grammar:
bfa74976 3667
18b519c0 3668@deffn {Directive} %union
bfa74976
RS
3669Declare the collection of data types that semantic values may have
3670(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 3671@end deffn
bfa74976 3672
18b519c0 3673@deffn {Directive} %token
bfa74976
RS
3674Declare a terminal symbol (token type name) with no precedence
3675or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 3676@end deffn
bfa74976 3677
18b519c0 3678@deffn {Directive} %right
bfa74976
RS
3679Declare a terminal symbol (token type name) that is right-associative
3680(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 3681@end deffn
bfa74976 3682
18b519c0 3683@deffn {Directive} %left
bfa74976
RS
3684Declare a terminal symbol (token type name) that is left-associative
3685(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 3686@end deffn
bfa74976 3687
18b519c0 3688@deffn {Directive} %nonassoc
bfa74976 3689Declare a terminal symbol (token type name) that is nonassociative
bfa74976 3690(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
3691Using it in a way that would be associative is a syntax error.
3692@end deffn
3693
91d2c560 3694@ifset defaultprec
39a06c25 3695@deffn {Directive} %default-prec
22fccf95 3696Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
3697(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
3698@end deffn
91d2c560 3699@end ifset
bfa74976 3700
18b519c0 3701@deffn {Directive} %type
bfa74976
RS
3702Declare the type of semantic values for a nonterminal symbol
3703(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 3704@end deffn
bfa74976 3705
18b519c0 3706@deffn {Directive} %start
89cab50d
AD
3707Specify the grammar's start symbol (@pxref{Start Decl, ,The
3708Start-Symbol}).
18b519c0 3709@end deffn
bfa74976 3710
18b519c0 3711@deffn {Directive} %expect
bfa74976
RS
3712Declare the expected number of shift-reduce conflicts
3713(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
3714@end deffn
3715
bfa74976 3716
d8988b2f
AD
3717@sp 1
3718@noindent
3719In order to change the behavior of @command{bison}, use the following
3720directives:
3721
18b519c0 3722@deffn {Directive} %debug
4947ebdb
PE
3723In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
3724already defined, so that the debugging facilities are compiled.
18b519c0 3725@end deffn
ec3bc396 3726@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 3727
18b519c0 3728@deffn {Directive} %defines
d8988b2f
AD
3729Write an extra output file containing macro definitions for the token
3730type names defined in the grammar and the semantic value type
3731@code{YYSTYPE}, as well as a few @code{extern} variable declarations.
3732
3733If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 3734is named @file{@var{name}.h}.
d8988b2f
AD
3735
3736This output file is essential if you wish to put the definition of
3737@code{yylex} in a separate source file, because @code{yylex} needs to
3738be able to refer to token type codes and the variable
e0c471a9 3739@code{yylval}. @xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 3740@end deffn
d8988b2f 3741
18b519c0 3742@deffn {Directive} %destructor
72f889cc
AD
3743Specifying how the parser should reclaim the memory associated to
3744discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 3745@end deffn
72f889cc 3746
18b519c0 3747@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
3748Specify a prefix to use for all Bison output file names. The names are
3749chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 3750@end deffn
d8988b2f 3751
18b519c0 3752@deffn {Directive} %locations
89cab50d
AD
3753Generate the code processing the locations (@pxref{Action Features,
3754,Special Features for Use in Actions}). This mode is enabled as soon as
3755the grammar uses the special @samp{@@@var{n}} tokens, but if your
3756grammar does not use it, using @samp{%locations} allows for more
6e649e65 3757accurate syntax error messages.
18b519c0 3758@end deffn
89cab50d 3759
18b519c0 3760@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
3761Rename the external symbols used in the parser so that they start with
3762@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
3763is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
3764@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
3765possible @code{yylloc}. For example, if you use
3766@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
3767and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
3768Program}.
18b519c0 3769@end deffn
931c7513 3770
91d2c560 3771@ifset defaultprec
22fccf95
PE
3772@deffn {Directive} %no-default-prec
3773Do not assign a precedence to rules lacking an explicit @code{%prec}
3774modifier (@pxref{Contextual Precedence, ,Context-Dependent
3775Precedence}).
3776@end deffn
91d2c560 3777@end ifset
22fccf95 3778
18b519c0 3779@deffn {Directive} %no-parser
6deb4447
AD
3780Do not include any C code in the parser file; generate tables only. The
3781parser file contains just @code{#define} directives and static variable
3782declarations.
3783
3784This option also tells Bison to write the C code for the grammar actions
3785into a file named @file{@var{filename}.act}, in the form of a
3786brace-surrounded body fit for a @code{switch} statement.
18b519c0 3787@end deffn
6deb4447 3788
18b519c0 3789@deffn {Directive} %no-lines
931c7513
RS
3790Don't generate any @code{#line} preprocessor commands in the parser
3791file. Ordinarily Bison writes these commands in the parser file so that
3792the C compiler and debuggers will associate errors and object code with
3793your source file (the grammar file). This directive causes them to
3794associate errors with the parser file, treating it an independent source
3795file in its own right.
18b519c0 3796@end deffn
931c7513 3797
18b519c0 3798@deffn {Directive} %output="@var{filename}"
d8988b2f 3799Specify the @var{filename} for the parser file.
18b519c0 3800@end deffn
6deb4447 3801
18b519c0 3802@deffn {Directive} %pure-parser
d8988b2f
AD
3803Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
3804(Reentrant) Parser}).
18b519c0 3805@end deffn
6deb4447 3806
18b519c0 3807@deffn {Directive} %token-table
931c7513
RS
3808Generate an array of token names in the parser file. The name of the
3809array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 3810token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
3811three elements of @code{yytname} correspond to the predefined tokens
3812@code{"$end"},
88bce5a2
AD
3813@code{"error"}, and @code{"$undefined"}; after these come the symbols
3814defined in the grammar file.
931c7513
RS
3815
3816For single-character literal tokens and literal string tokens, the name
3817in the table includes the single-quote or double-quote characters: for
3818example, @code{"'+'"} is a single-character literal and @code{"\"<=\""}
3819is a literal string token. All the characters of the literal string
3820token appear verbatim in the string found in the table; even
3821double-quote characters are not escaped. For example, if the token
3822consists of three characters @samp{*"*}, its string in @code{yytname}
3823contains @samp{"*"*"}. (In C, that would be written as
3824@code{"\"*\"*\""}).
3825
8c9a50be 3826When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
3827definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
3828@code{YYNRULES}, and @code{YYNSTATES}:
3829
3830@table @code
3831@item YYNTOKENS
3832The highest token number, plus one.
3833@item YYNNTS
9ecbd125 3834The number of nonterminal symbols.
931c7513
RS
3835@item YYNRULES
3836The number of grammar rules,
3837@item YYNSTATES
3838The number of parser states (@pxref{Parser States}).
3839@end table
18b519c0 3840@end deffn
d8988b2f 3841
18b519c0 3842@deffn {Directive} %verbose
d8988b2f
AD
3843Write an extra output file containing verbose descriptions of the
3844parser states and what is done for each type of look-ahead token in
72d2299c 3845that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 3846information.
18b519c0 3847@end deffn
d8988b2f 3848
18b519c0 3849@deffn {Directive} %yacc
d8988b2f
AD
3850Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
3851including its naming conventions. @xref{Bison Options}, for more.
18b519c0 3852@end deffn
d8988b2f
AD
3853
3854
342b8b6e 3855@node Multiple Parsers
bfa74976
RS
3856@section Multiple Parsers in the Same Program
3857
3858Most programs that use Bison parse only one language and therefore contain
3859only one Bison parser. But what if you want to parse more than one
3860language with the same program? Then you need to avoid a name conflict
3861between different definitions of @code{yyparse}, @code{yylval}, and so on.
3862
3863The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
3864(@pxref{Invocation, ,Invoking Bison}). This renames the interface
3865functions and variables of the Bison parser to start with @var{prefix}
3866instead of @samp{yy}. You can use this to give each parser distinct
3867names that do not conflict.
bfa74976
RS
3868
3869The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
3870@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
3871@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
3872the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
3873
3874@strong{All the other variables and macros associated with Bison are not
3875renamed.} These others are not global; there is no conflict if the same
3876name is used in different parsers. For example, @code{YYSTYPE} is not
3877renamed, but defining this in different ways in different parsers causes
3878no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
3879
3880The @samp{-p} option works by adding macro definitions to the beginning
3881of the parser source file, defining @code{yyparse} as
3882@code{@var{prefix}parse}, and so on. This effectively substitutes one
3883name for the other in the entire parser file.
3884
342b8b6e 3885@node Interface
bfa74976
RS
3886@chapter Parser C-Language Interface
3887@cindex C-language interface
3888@cindex interface
3889
3890The Bison parser is actually a C function named @code{yyparse}. Here we
3891describe the interface conventions of @code{yyparse} and the other
3892functions that it needs to use.
3893
3894Keep in mind that the parser uses many C identifiers starting with
3895@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
3896identifier (aside from those in this manual) in an action or in epilogue
3897in the grammar file, you are likely to run into trouble.
bfa74976
RS
3898
3899@menu
3900* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 3901* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
3902 which reads tokens.
3903* Error Reporting:: You must supply a function @code{yyerror}.
3904* Action Features:: Special features for use in actions.
3905@end menu
3906
342b8b6e 3907@node Parser Function
bfa74976
RS
3908@section The Parser Function @code{yyparse}
3909@findex yyparse
3910
3911You call the function @code{yyparse} to cause parsing to occur. This
3912function reads tokens, executes actions, and ultimately returns when it
3913encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
3914write an action which directs @code{yyparse} to return immediately
3915without reading further.
bfa74976 3916
2a8d363a
AD
3917
3918@deftypefun int yyparse (void)
bfa74976
RS
3919The value returned by @code{yyparse} is 0 if parsing was successful (return
3920is due to end-of-input).
3921
3922The value is 1 if parsing failed (return is due to a syntax error).
2a8d363a 3923@end deftypefun
bfa74976
RS
3924
3925In an action, you can cause immediate return from @code{yyparse} by using
3926these macros:
3927
2a8d363a 3928@defmac YYACCEPT
bfa74976
RS
3929@findex YYACCEPT
3930Return immediately with value 0 (to report success).
2a8d363a 3931@end defmac
bfa74976 3932
2a8d363a 3933@defmac YYABORT
bfa74976
RS
3934@findex YYABORT
3935Return immediately with value 1 (to report failure).
2a8d363a
AD
3936@end defmac
3937
3938If you use a reentrant parser, you can optionally pass additional
3939parameter information to it in a reentrant way. To do so, use the
3940declaration @code{%parse-param}:
3941
feeb0eda 3942@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 3943@findex %parse-param
feeb0eda 3944Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
3945additional @code{yyparse} argument.
3946The @var{argument-declaration} is used when declaring
feeb0eda
PE
3947functions or prototypes. The last identifier in
3948@var{argument-declaration} must be the argument name.
2a8d363a
AD
3949@end deffn
3950
3951Here's an example. Write this in the parser:
3952
3953@example
feeb0eda
PE
3954%parse-param @{int *nastiness@}
3955%parse-param @{int *randomness@}
2a8d363a
AD
3956@end example
3957
3958@noindent
3959Then call the parser like this:
3960
3961@example
3962@{
3963 int nastiness, randomness;
3964 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
3965 value = yyparse (&nastiness, &randomness);
3966 @dots{}
3967@}
3968@end example
3969
3970@noindent
3971In the grammar actions, use expressions like this to refer to the data:
3972
3973@example
3974exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
3975@end example
3976
bfa74976 3977
342b8b6e 3978@node Lexical
bfa74976
RS
3979@section The Lexical Analyzer Function @code{yylex}
3980@findex yylex
3981@cindex lexical analyzer
3982
3983The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
3984the input stream and returns them to the parser. Bison does not create
3985this function automatically; you must write it so that @code{yyparse} can
3986call it. The function is sometimes referred to as a lexical scanner.
3987
3988In simple programs, @code{yylex} is often defined at the end of the Bison
3989grammar file. If @code{yylex} is defined in a separate source file, you
3990need to arrange for the token-type macro definitions to be available there.
3991To do this, use the @samp{-d} option when you run Bison, so that it will
3992write these macro definitions into a separate header file
3993@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 3994that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
3995
3996@menu
3997* Calling Convention:: How @code{yyparse} calls @code{yylex}.
3998* Token Values:: How @code{yylex} must return the semantic value
3999 of the token it has read.
95923bd6 4000* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4001 (line number, etc.) of the token, if the
4002 actions want that.
4003* Pure Calling:: How the calling convention differs
4004 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4005@end menu
4006
342b8b6e 4007@node Calling Convention
bfa74976
RS
4008@subsection Calling Convention for @code{yylex}
4009
72d2299c
PE
4010The value that @code{yylex} returns must be the positive numeric code
4011for the type of token it has just found; a zero or negative value
4012signifies end-of-input.
bfa74976
RS
4013
4014When a token is referred to in the grammar rules by a name, that name
4015in the parser file becomes a C macro whose definition is the proper
4016numeric code for that token type. So @code{yylex} can use the name
4017to indicate that type. @xref{Symbols}.
4018
4019When a token is referred to in the grammar rules by a character literal,
4020the numeric code for that character is also the code for the token type.
72d2299c
PE
4021So @code{yylex} can simply return that character code, possibly converted
4022to @code{unsigned char} to avoid sign-extension. The null character
4023must not be used this way, because its code is zero and that
bfa74976
RS
4024signifies end-of-input.
4025
4026Here is an example showing these things:
4027
4028@example
13863333
AD
4029int
4030yylex (void)
bfa74976
RS
4031@{
4032 @dots{}
72d2299c 4033 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4034 return 0;
4035 @dots{}
4036 if (c == '+' || c == '-')
72d2299c 4037 return c; /* Assume token type for `+' is '+'. */
bfa74976 4038 @dots{}
72d2299c 4039 return INT; /* Return the type of the token. */
bfa74976
RS
4040 @dots{}
4041@}
4042@end example
4043
4044@noindent
4045This interface has been designed so that the output from the @code{lex}
4046utility can be used without change as the definition of @code{yylex}.
4047
931c7513
RS
4048If the grammar uses literal string tokens, there are two ways that
4049@code{yylex} can determine the token type codes for them:
4050
4051@itemize @bullet
4052@item
4053If the grammar defines symbolic token names as aliases for the
4054literal string tokens, @code{yylex} can use these symbolic names like
4055all others. In this case, the use of the literal string tokens in
4056the grammar file has no effect on @code{yylex}.
4057
4058@item
9ecbd125 4059@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4060table. The index of the token in the table is the token type's code.
9ecbd125 4061The name of a multicharacter token is recorded in @code{yytname} with a
931c7513
RS
4062double-quote, the token's characters, and another double-quote. The
4063token's characters are not escaped in any way; they appear verbatim in
4064the contents of the string in the table.
4065
4066Here's code for looking up a token in @code{yytname}, assuming that the
4067characters of the token are stored in @code{token_buffer}.
4068
4069@smallexample
4070for (i = 0; i < YYNTOKENS; i++)
4071 @{
4072 if (yytname[i] != 0
4073 && yytname[i][0] == '"'
68449b3a
PE
4074 && ! strncmp (yytname[i] + 1, token_buffer,
4075 strlen (token_buffer))
931c7513
RS
4076 && yytname[i][strlen (token_buffer) + 1] == '"'
4077 && yytname[i][strlen (token_buffer) + 2] == 0)
4078 break;
4079 @}
4080@end smallexample
4081
4082The @code{yytname} table is generated only if you use the
8c9a50be 4083@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4084@end itemize
4085
342b8b6e 4086@node Token Values
bfa74976
RS
4087@subsection Semantic Values of Tokens
4088
4089@vindex yylval
14ded682 4090In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4091be stored into the global variable @code{yylval}. When you are using
4092just one data type for semantic values, @code{yylval} has that type.
4093Thus, if the type is @code{int} (the default), you might write this in
4094@code{yylex}:
4095
4096@example
4097@group
4098 @dots{}
72d2299c
PE
4099 yylval = value; /* Put value onto Bison stack. */
4100 return INT; /* Return the type of the token. */
bfa74976
RS
4101 @dots{}
4102@end group
4103@end example
4104
4105When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4106made from the @code{%union} declaration (@pxref{Union Decl, ,The
4107Collection of Value Types}). So when you store a token's value, you
4108must use the proper member of the union. If the @code{%union}
4109declaration looks like this:
bfa74976
RS
4110
4111@example
4112@group
4113%union @{
4114 int intval;
4115 double val;
4116 symrec *tptr;
4117@}
4118@end group
4119@end example
4120
4121@noindent
4122then the code in @code{yylex} might look like this:
4123
4124@example
4125@group
4126 @dots{}
72d2299c
PE
4127 yylval.intval = value; /* Put value onto Bison stack. */
4128 return INT; /* Return the type of the token. */
bfa74976
RS
4129 @dots{}
4130@end group
4131@end example
4132
95923bd6
AD
4133@node Token Locations
4134@subsection Textual Locations of Tokens
bfa74976
RS
4135
4136@vindex yylloc
847bf1f5
AD
4137If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4138Tracking Locations}) in actions to keep track of the
89cab50d
AD
4139textual locations of tokens and groupings, then you must provide this
4140information in @code{yylex}. The function @code{yyparse} expects to
4141find the textual location of a token just parsed in the global variable
4142@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4143variable.
4144
4145By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4146initialize the members that are going to be used by the actions. The
4147four members are called @code{first_line}, @code{first_column},
4148@code{last_line} and @code{last_column}. Note that the use of this
4149feature makes the parser noticeably slower.
bfa74976
RS
4150
4151@tindex YYLTYPE
4152The data type of @code{yylloc} has the name @code{YYLTYPE}.
4153
342b8b6e 4154@node Pure Calling
c656404a 4155@subsection Calling Conventions for Pure Parsers
bfa74976 4156
8c9a50be 4157When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4158pure, reentrant parser, the global communication variables @code{yylval}
4159and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4160Parser}.) In such parsers the two global variables are replaced by
4161pointers passed as arguments to @code{yylex}. You must declare them as
4162shown here, and pass the information back by storing it through those
4163pointers.
bfa74976
RS
4164
4165@example
13863333
AD
4166int
4167yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4168@{
4169 @dots{}
4170 *lvalp = value; /* Put value onto Bison stack. */
4171 return INT; /* Return the type of the token. */
4172 @dots{}
4173@}
4174@end example
4175
4176If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4177textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4178this case, omit the second argument; @code{yylex} will be called with
4179only one argument.
4180
e425e872 4181
2a8d363a
AD
4182If you wish to pass the additional parameter data to @code{yylex}, use
4183@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4184Function}).
e425e872 4185
feeb0eda 4186@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4187@findex %lex-param
feeb0eda
PE
4188Declare that @code{argument-declaration} is an additional @code{yylex}
4189argument declaration.
2a8d363a 4190@end deffn
e425e872 4191
2a8d363a 4192For instance:
e425e872
RS
4193
4194@example
feeb0eda
PE
4195%parse-param @{int *nastiness@}
4196%lex-param @{int *nastiness@}
4197%parse-param @{int *randomness@}
e425e872
RS
4198@end example
4199
4200@noindent
2a8d363a 4201results in the following signature:
e425e872
RS
4202
4203@example
2a8d363a
AD
4204int yylex (int *nastiness);
4205int yyparse (int *nastiness, int *randomness);
e425e872
RS
4206@end example
4207
2a8d363a 4208If @code{%pure-parser} is added:
c656404a
RS
4209
4210@example
2a8d363a
AD
4211int yylex (YYSTYPE *lvalp, int *nastiness);
4212int yyparse (int *nastiness, int *randomness);
c656404a
RS
4213@end example
4214
2a8d363a
AD
4215@noindent
4216and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4217
2a8d363a
AD
4218@example
4219int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4220int yyparse (int *nastiness, int *randomness);
4221@end example
931c7513 4222
342b8b6e 4223@node Error Reporting
bfa74976
RS
4224@section The Error Reporting Function @code{yyerror}
4225@cindex error reporting function
4226@findex yyerror
4227@cindex parse error
4228@cindex syntax error
4229
6e649e65 4230The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4231whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4232action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4233macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4234in Actions}).
bfa74976
RS
4235
4236The Bison parser expects to report the error by calling an error
4237reporting function named @code{yyerror}, which you must supply. It is
4238called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4239receives one argument. For a syntax error, the string is normally
4240@w{@code{"syntax error"}}.
bfa74976 4241
2a8d363a
AD
4242@findex %error-verbose
4243If you invoke the directive @code{%error-verbose} in the Bison
4244declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4245Section}), then Bison provides a more verbose and specific error message
6e649e65 4246string instead of just plain @w{@code{"syntax error"}}.
bfa74976
RS
4247
4248The parser can detect one other kind of error: stack overflow. This
4249happens when the input contains constructions that are very deeply
4250nested. It isn't likely you will encounter this, since the Bison
4251parser extends its stack automatically up to a very large limit. But
4252if overflow happens, @code{yyparse} calls @code{yyerror} in the usual
4253fashion, except that the argument string is @w{@code{"parser stack
4254overflow"}}.
4255
4256The following definition suffices in simple programs:
4257
4258@example
4259@group
13863333 4260void
38a92d50 4261yyerror (char const *s)
bfa74976
RS
4262@{
4263@end group
4264@group
4265 fprintf (stderr, "%s\n", s);
4266@}
4267@end group
4268@end example
4269
4270After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4271error recovery if you have written suitable error recovery grammar rules
4272(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4273immediately return 1.
4274
93724f13 4275Obviously, in location tracking pure parsers, @code{yyerror} should have
2a8d363a
AD
4276an access to the current location. This is indeed the case for the GLR
4277parsers, but not for the Yacc parser, for historical reasons. I.e., if
4278@samp{%locations %pure-parser} is passed then the prototypes for
4279@code{yyerror} are:
4280
4281@example
38a92d50
PE
4282void yyerror (char const *msg); /* Yacc parsers. */
4283void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4284@end example
4285
feeb0eda 4286If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4287
4288@example
b317297e
PE
4289void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4290void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4291@end example
4292
4293Finally, GLR and Yacc parsers share the same @code{yyerror} calling
4294convention for absolutely pure parsers, i.e., when the calling
4295convention of @code{yylex} @emph{and} the calling convention of
4296@code{%pure-parser} are pure. I.e.:
4297
4298@example
4299/* Location tracking. */
4300%locations
4301/* Pure yylex. */
4302%pure-parser
feeb0eda 4303%lex-param @{int *nastiness@}
2a8d363a 4304/* Pure yyparse. */
feeb0eda
PE
4305%parse-param @{int *nastiness@}
4306%parse-param @{int *randomness@}
2a8d363a
AD
4307@end example
4308
4309@noindent
4310results in the following signatures for all the parser kinds:
4311
4312@example
4313int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4314int yyparse (int *nastiness, int *randomness);
93724f13
AD
4315void yyerror (YYLTYPE *locp,
4316 int *nastiness, int *randomness,
38a92d50 4317 char const *msg);
2a8d363a
AD
4318@end example
4319
1c0c3e95 4320@noindent
38a92d50
PE
4321The prototypes are only indications of how the code produced by Bison
4322uses @code{yyerror}. Bison-generated code always ignores the returned
4323value, so @code{yyerror} can return any type, including @code{void}.
4324Also, @code{yyerror} can be a variadic function; that is why the
4325message is always passed last.
4326
4327Traditionally @code{yyerror} returns an @code{int} that is always
4328ignored, but this is purely for historical reasons, and @code{void} is
4329preferable since it more accurately describes the return type for
4330@code{yyerror}.
93724f13 4331
bfa74976
RS
4332@vindex yynerrs
4333The variable @code{yynerrs} contains the number of syntax errors
4334encountered so far. Normally this variable is global; but if you
704a47c4
AD
4335request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4336then it is a local variable which only the actions can access.
bfa74976 4337
342b8b6e 4338@node Action Features
bfa74976
RS
4339@section Special Features for Use in Actions
4340@cindex summary, action features
4341@cindex action features summary
4342
4343Here is a table of Bison constructs, variables and macros that
4344are useful in actions.
4345
18b519c0 4346@deffn {Variable} $$
bfa74976
RS
4347Acts like a variable that contains the semantic value for the
4348grouping made by the current rule. @xref{Actions}.
18b519c0 4349@end deffn
bfa74976 4350
18b519c0 4351@deffn {Variable} $@var{n}
bfa74976
RS
4352Acts like a variable that contains the semantic value for the
4353@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4354@end deffn
bfa74976 4355
18b519c0 4356@deffn {Variable} $<@var{typealt}>$
bfa74976 4357Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4358specified by the @code{%union} declaration. @xref{Action Types, ,Data
4359Types of Values in Actions}.
18b519c0 4360@end deffn
bfa74976 4361
18b519c0 4362@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4363Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4364union specified by the @code{%union} declaration.
e0c471a9 4365@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4366@end deffn
bfa74976 4367
18b519c0 4368@deffn {Macro} YYABORT;
bfa74976
RS
4369Return immediately from @code{yyparse}, indicating failure.
4370@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4371@end deffn
bfa74976 4372
18b519c0 4373@deffn {Macro} YYACCEPT;
bfa74976
RS
4374Return immediately from @code{yyparse}, indicating success.
4375@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4376@end deffn
bfa74976 4377
18b519c0 4378@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4379@findex YYBACKUP
4380Unshift a token. This macro is allowed only for rules that reduce
4381a single value, and only when there is no look-ahead token.
c827f760 4382It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4383It installs a look-ahead token with token type @var{token} and
4384semantic value @var{value}; then it discards the value that was
4385going to be reduced by this rule.
4386
4387If the macro is used when it is not valid, such as when there is
4388a look-ahead token already, then it reports a syntax error with
4389a message @samp{cannot back up} and performs ordinary error
4390recovery.
4391
4392In either case, the rest of the action is not executed.
18b519c0 4393@end deffn
bfa74976 4394
18b519c0 4395@deffn {Macro} YYEMPTY
bfa74976
RS
4396@vindex YYEMPTY
4397Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4398@end deffn
bfa74976 4399
18b519c0 4400@deffn {Macro} YYERROR;
bfa74976
RS
4401@findex YYERROR
4402Cause an immediate syntax error. This statement initiates error
4403recovery just as if the parser itself had detected an error; however, it
4404does not call @code{yyerror}, and does not print any message. If you
4405want to print an error message, call @code{yyerror} explicitly before
4406the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4407@end deffn
bfa74976 4408
18b519c0 4409@deffn {Macro} YYRECOVERING
bfa74976
RS
4410This macro stands for an expression that has the value 1 when the parser
4411is recovering from a syntax error, and 0 the rest of the time.
4412@xref{Error Recovery}.
18b519c0 4413@end deffn
bfa74976 4414
18b519c0 4415@deffn {Variable} yychar
bfa74976
RS
4416Variable containing the current look-ahead token. (In a pure parser,
4417this is actually a local variable within @code{yyparse}.) When there is
4418no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4419@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4420@end deffn
bfa74976 4421
18b519c0 4422@deffn {Macro} yyclearin;
bfa74976
RS
4423Discard the current look-ahead token. This is useful primarily in
4424error rules. @xref{Error Recovery}.
18b519c0 4425@end deffn
bfa74976 4426
18b519c0 4427@deffn {Macro} yyerrok;
bfa74976 4428Resume generating error messages immediately for subsequent syntax
13863333 4429errors. This is useful primarily in error rules.
bfa74976 4430@xref{Error Recovery}.
18b519c0 4431@end deffn
bfa74976 4432
18b519c0 4433@deffn {Value} @@$
847bf1f5 4434@findex @@$
95923bd6 4435Acts like a structure variable containing information on the textual location
847bf1f5
AD
4436of the grouping made by the current rule. @xref{Locations, ,
4437Tracking Locations}.
bfa74976 4438
847bf1f5
AD
4439@c Check if those paragraphs are still useful or not.
4440
4441@c @example
4442@c struct @{
4443@c int first_line, last_line;
4444@c int first_column, last_column;
4445@c @};
4446@c @end example
4447
4448@c Thus, to get the starting line number of the third component, you would
4449@c use @samp{@@3.first_line}.
bfa74976 4450
847bf1f5
AD
4451@c In order for the members of this structure to contain valid information,
4452@c you must make @code{yylex} supply this information about each token.
4453@c If you need only certain members, then @code{yylex} need only fill in
4454@c those members.
bfa74976 4455
847bf1f5 4456@c The use of this feature makes the parser noticeably slower.
18b519c0 4457@end deffn
847bf1f5 4458
18b519c0 4459@deffn {Value} @@@var{n}
847bf1f5 4460@findex @@@var{n}
95923bd6 4461Acts like a structure variable containing information on the textual location
847bf1f5
AD
4462of the @var{n}th component of the current rule. @xref{Locations, ,
4463Tracking Locations}.
18b519c0 4464@end deffn
bfa74976 4465
bfa74976 4466
342b8b6e 4467@node Algorithm
13863333
AD
4468@chapter The Bison Parser Algorithm
4469@cindex Bison parser algorithm
bfa74976
RS
4470@cindex algorithm of parser
4471@cindex shifting
4472@cindex reduction
4473@cindex parser stack
4474@cindex stack, parser
4475
4476As Bison reads tokens, it pushes them onto a stack along with their
4477semantic values. The stack is called the @dfn{parser stack}. Pushing a
4478token is traditionally called @dfn{shifting}.
4479
4480For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4481@samp{3} to come. The stack will have four elements, one for each token
4482that was shifted.
4483
4484But the stack does not always have an element for each token read. When
4485the last @var{n} tokens and groupings shifted match the components of a
4486grammar rule, they can be combined according to that rule. This is called
4487@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4488single grouping whose symbol is the result (left hand side) of that rule.
4489Running the rule's action is part of the process of reduction, because this
4490is what computes the semantic value of the resulting grouping.
4491
4492For example, if the infix calculator's parser stack contains this:
4493
4494@example
44951 + 5 * 3
4496@end example
4497
4498@noindent
4499and the next input token is a newline character, then the last three
4500elements can be reduced to 15 via the rule:
4501
4502@example
4503expr: expr '*' expr;
4504@end example
4505
4506@noindent
4507Then the stack contains just these three elements:
4508
4509@example
45101 + 15
4511@end example
4512
4513@noindent
4514At this point, another reduction can be made, resulting in the single value
451516. Then the newline token can be shifted.
4516
4517The parser tries, by shifts and reductions, to reduce the entire input down
4518to a single grouping whose symbol is the grammar's start-symbol
4519(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4520
4521This kind of parser is known in the literature as a bottom-up parser.
4522
4523@menu
4524* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4525* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4526* Precedence:: Operator precedence works by resolving conflicts.
4527* Contextual Precedence:: When an operator's precedence depends on context.
4528* Parser States:: The parser is a finite-state-machine with stack.
4529* Reduce/Reduce:: When two rules are applicable in the same situation.
4530* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4531* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
4532* Stack Overflow:: What happens when stack gets full. How to avoid it.
4533@end menu
4534
342b8b6e 4535@node Look-Ahead
bfa74976
RS
4536@section Look-Ahead Tokens
4537@cindex look-ahead token
4538
4539The Bison parser does @emph{not} always reduce immediately as soon as the
4540last @var{n} tokens and groupings match a rule. This is because such a
4541simple strategy is inadequate to handle most languages. Instead, when a
4542reduction is possible, the parser sometimes ``looks ahead'' at the next
4543token in order to decide what to do.
4544
4545When a token is read, it is not immediately shifted; first it becomes the
4546@dfn{look-ahead token}, which is not on the stack. Now the parser can
4547perform one or more reductions of tokens and groupings on the stack, while
4548the look-ahead token remains off to the side. When no more reductions
4549should take place, the look-ahead token is shifted onto the stack. This
4550does not mean that all possible reductions have been done; depending on the
4551token type of the look-ahead token, some rules may choose to delay their
4552application.
4553
4554Here is a simple case where look-ahead is needed. These three rules define
4555expressions which contain binary addition operators and postfix unary
4556factorial operators (@samp{!}), and allow parentheses for grouping.
4557
4558@example
4559@group
4560expr: term '+' expr
4561 | term
4562 ;
4563@end group
4564
4565@group
4566term: '(' expr ')'
4567 | term '!'
4568 | NUMBER
4569 ;
4570@end group
4571@end example
4572
4573Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
4574should be done? If the following token is @samp{)}, then the first three
4575tokens must be reduced to form an @code{expr}. This is the only valid
4576course, because shifting the @samp{)} would produce a sequence of symbols
4577@w{@code{term ')'}}, and no rule allows this.
4578
4579If the following token is @samp{!}, then it must be shifted immediately so
4580that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
4581parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
4582@code{expr}. It would then be impossible to shift the @samp{!} because
4583doing so would produce on the stack the sequence of symbols @code{expr
4584'!'}. No rule allows that sequence.
4585
4586@vindex yychar
4587The current look-ahead token is stored in the variable @code{yychar}.
4588@xref{Action Features, ,Special Features for Use in Actions}.
4589
342b8b6e 4590@node Shift/Reduce
bfa74976
RS
4591@section Shift/Reduce Conflicts
4592@cindex conflicts
4593@cindex shift/reduce conflicts
4594@cindex dangling @code{else}
4595@cindex @code{else}, dangling
4596
4597Suppose we are parsing a language which has if-then and if-then-else
4598statements, with a pair of rules like this:
4599
4600@example
4601@group
4602if_stmt:
4603 IF expr THEN stmt
4604 | IF expr THEN stmt ELSE stmt
4605 ;
4606@end group
4607@end example
4608
4609@noindent
4610Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
4611terminal symbols for specific keyword tokens.
4612
4613When the @code{ELSE} token is read and becomes the look-ahead token, the
4614contents of the stack (assuming the input is valid) are just right for
4615reduction by the first rule. But it is also legitimate to shift the
4616@code{ELSE}, because that would lead to eventual reduction by the second
4617rule.
4618
4619This situation, where either a shift or a reduction would be valid, is
4620called a @dfn{shift/reduce conflict}. Bison is designed to resolve
4621these conflicts by choosing to shift, unless otherwise directed by
4622operator precedence declarations. To see the reason for this, let's
4623contrast it with the other alternative.
4624
4625Since the parser prefers to shift the @code{ELSE}, the result is to attach
4626the else-clause to the innermost if-statement, making these two inputs
4627equivalent:
4628
4629@example
4630if x then if y then win (); else lose;
4631
4632if x then do; if y then win (); else lose; end;
4633@end example
4634
4635But if the parser chose to reduce when possible rather than shift, the
4636result would be to attach the else-clause to the outermost if-statement,
4637making these two inputs equivalent:
4638
4639@example
4640if x then if y then win (); else lose;
4641
4642if x then do; if y then win (); end; else lose;
4643@end example
4644
4645The conflict exists because the grammar as written is ambiguous: either
4646parsing of the simple nested if-statement is legitimate. The established
4647convention is that these ambiguities are resolved by attaching the
4648else-clause to the innermost if-statement; this is what Bison accomplishes
4649by choosing to shift rather than reduce. (It would ideally be cleaner to
4650write an unambiguous grammar, but that is very hard to do in this case.)
4651This particular ambiguity was first encountered in the specifications of
4652Algol 60 and is called the ``dangling @code{else}'' ambiguity.
4653
4654To avoid warnings from Bison about predictable, legitimate shift/reduce
4655conflicts, use the @code{%expect @var{n}} declaration. There will be no
4656warning as long as the number of shift/reduce conflicts is exactly @var{n}.
4657@xref{Expect Decl, ,Suppressing Conflict Warnings}.
4658
4659The definition of @code{if_stmt} above is solely to blame for the
4660conflict, but the conflict does not actually appear without additional
4661rules. Here is a complete Bison input file that actually manifests the
4662conflict:
4663
4664@example
4665@group
4666%token IF THEN ELSE variable
4667%%
4668@end group
4669@group
4670stmt: expr
4671 | if_stmt
4672 ;
4673@end group
4674
4675@group
4676if_stmt:
4677 IF expr THEN stmt
4678 | IF expr THEN stmt ELSE stmt
4679 ;
4680@end group
4681
4682expr: variable
4683 ;
4684@end example
4685
342b8b6e 4686@node Precedence
bfa74976
RS
4687@section Operator Precedence
4688@cindex operator precedence
4689@cindex precedence of operators
4690
4691Another situation where shift/reduce conflicts appear is in arithmetic
4692expressions. Here shifting is not always the preferred resolution; the
4693Bison declarations for operator precedence allow you to specify when to
4694shift and when to reduce.
4695
4696@menu
4697* Why Precedence:: An example showing why precedence is needed.
4698* Using Precedence:: How to specify precedence in Bison grammars.
4699* Precedence Examples:: How these features are used in the previous example.
4700* How Precedence:: How they work.
4701@end menu
4702
342b8b6e 4703@node Why Precedence
bfa74976
RS
4704@subsection When Precedence is Needed
4705
4706Consider the following ambiguous grammar fragment (ambiguous because the
4707input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
4708
4709@example
4710@group
4711expr: expr '-' expr
4712 | expr '*' expr
4713 | expr '<' expr
4714 | '(' expr ')'
4715 @dots{}
4716 ;
4717@end group
4718@end example
4719
4720@noindent
4721Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
4722should it reduce them via the rule for the subtraction operator? It
4723depends on the next token. Of course, if the next token is @samp{)}, we
4724must reduce; shifting is invalid because no single rule can reduce the
4725token sequence @w{@samp{- 2 )}} or anything starting with that. But if
4726the next token is @samp{*} or @samp{<}, we have a choice: either
4727shifting or reduction would allow the parse to complete, but with
4728different results.
4729
4730To decide which one Bison should do, we must consider the results. If
4731the next operator token @var{op} is shifted, then it must be reduced
4732first in order to permit another opportunity to reduce the difference.
4733The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
4734hand, if the subtraction is reduced before shifting @var{op}, the result
4735is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
4736reduce should depend on the relative precedence of the operators
4737@samp{-} and @var{op}: @samp{*} should be shifted first, but not
4738@samp{<}.
bfa74976
RS
4739
4740@cindex associativity
4741What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
4742@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
4743operators we prefer the former, which is called @dfn{left association}.
4744The latter alternative, @dfn{right association}, is desirable for
4745assignment operators. The choice of left or right association is a
4746matter of whether the parser chooses to shift or reduce when the stack
4747contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
4748makes right-associativity.
bfa74976 4749
342b8b6e 4750@node Using Precedence
bfa74976
RS
4751@subsection Specifying Operator Precedence
4752@findex %left
4753@findex %right
4754@findex %nonassoc
4755
4756Bison allows you to specify these choices with the operator precedence
4757declarations @code{%left} and @code{%right}. Each such declaration
4758contains a list of tokens, which are operators whose precedence and
4759associativity is being declared. The @code{%left} declaration makes all
4760those operators left-associative and the @code{%right} declaration makes
4761them right-associative. A third alternative is @code{%nonassoc}, which
4762declares that it is a syntax error to find the same operator twice ``in a
4763row''.
4764
4765The relative precedence of different operators is controlled by the
4766order in which they are declared. The first @code{%left} or
4767@code{%right} declaration in the file declares the operators whose
4768precedence is lowest, the next such declaration declares the operators
4769whose precedence is a little higher, and so on.
4770
342b8b6e 4771@node Precedence Examples
bfa74976
RS
4772@subsection Precedence Examples
4773
4774In our example, we would want the following declarations:
4775
4776@example
4777%left '<'
4778%left '-'
4779%left '*'
4780@end example
4781
4782In a more complete example, which supports other operators as well, we
4783would declare them in groups of equal precedence. For example, @code{'+'} is
4784declared with @code{'-'}:
4785
4786@example
4787%left '<' '>' '=' NE LE GE
4788%left '+' '-'
4789%left '*' '/'
4790@end example
4791
4792@noindent
4793(Here @code{NE} and so on stand for the operators for ``not equal''
4794and so on. We assume that these tokens are more than one character long
4795and therefore are represented by names, not character literals.)
4796
342b8b6e 4797@node How Precedence
bfa74976
RS
4798@subsection How Precedence Works
4799
4800The first effect of the precedence declarations is to assign precedence
4801levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
4802precedence levels to certain rules: each rule gets its precedence from
4803the last terminal symbol mentioned in the components. (You can also
4804specify explicitly the precedence of a rule. @xref{Contextual
4805Precedence, ,Context-Dependent Precedence}.)
4806
4807Finally, the resolution of conflicts works by comparing the precedence
4808of the rule being considered with that of the look-ahead token. If the
4809token's precedence is higher, the choice is to shift. If the rule's
4810precedence is higher, the choice is to reduce. If they have equal
4811precedence, the choice is made based on the associativity of that
4812precedence level. The verbose output file made by @samp{-v}
4813(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
4814resolved.
bfa74976
RS
4815
4816Not all rules and not all tokens have precedence. If either the rule or
4817the look-ahead token has no precedence, then the default is to shift.
4818
342b8b6e 4819@node Contextual Precedence
bfa74976
RS
4820@section Context-Dependent Precedence
4821@cindex context-dependent precedence
4822@cindex unary operator precedence
4823@cindex precedence, context-dependent
4824@cindex precedence, unary operator
4825@findex %prec
4826
4827Often the precedence of an operator depends on the context. This sounds
4828outlandish at first, but it is really very common. For example, a minus
4829sign typically has a very high precedence as a unary operator, and a
4830somewhat lower precedence (lower than multiplication) as a binary operator.
4831
4832The Bison precedence declarations, @code{%left}, @code{%right} and
4833@code{%nonassoc}, can only be used once for a given token; so a token has
4834only one precedence declared in this way. For context-dependent
4835precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 4836modifier for rules.
bfa74976
RS
4837
4838The @code{%prec} modifier declares the precedence of a particular rule by
4839specifying a terminal symbol whose precedence should be used for that rule.
4840It's not necessary for that symbol to appear otherwise in the rule. The
4841modifier's syntax is:
4842
4843@example
4844%prec @var{terminal-symbol}
4845@end example
4846
4847@noindent
4848and it is written after the components of the rule. Its effect is to
4849assign the rule the precedence of @var{terminal-symbol}, overriding
4850the precedence that would be deduced for it in the ordinary way. The
4851altered rule precedence then affects how conflicts involving that rule
4852are resolved (@pxref{Precedence, ,Operator Precedence}).
4853
4854Here is how @code{%prec} solves the problem of unary minus. First, declare
4855a precedence for a fictitious terminal symbol named @code{UMINUS}. There
4856are no tokens of this type, but the symbol serves to stand for its
4857precedence:
4858
4859@example
4860@dots{}
4861%left '+' '-'
4862%left '*'
4863%left UMINUS
4864@end example
4865
4866Now the precedence of @code{UMINUS} can be used in specific rules:
4867
4868@example
4869@group
4870exp: @dots{}
4871 | exp '-' exp
4872 @dots{}
4873 | '-' exp %prec UMINUS
4874@end group
4875@end example
4876
91d2c560 4877@ifset defaultprec
39a06c25
PE
4878If you forget to append @code{%prec UMINUS} to the rule for unary
4879minus, Bison silently assumes that minus has its usual precedence.
4880This kind of problem can be tricky to debug, since one typically
4881discovers the mistake only by testing the code.
4882
22fccf95 4883The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
4884this kind of problem systematically. It causes rules that lack a
4885@code{%prec} modifier to have no precedence, even if the last terminal
4886symbol mentioned in their components has a declared precedence.
4887
22fccf95 4888If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
4889for all rules that participate in precedence conflict resolution.
4890Then you will see any shift/reduce conflict until you tell Bison how
4891to resolve it, either by changing your grammar or by adding an
4892explicit precedence. This will probably add declarations to the
4893grammar, but it helps to protect against incorrect rule precedences.
4894
22fccf95
PE
4895The effect of @code{%no-default-prec;} can be reversed by giving
4896@code{%default-prec;}, which is the default.
91d2c560 4897@end ifset
39a06c25 4898
342b8b6e 4899@node Parser States
bfa74976
RS
4900@section Parser States
4901@cindex finite-state machine
4902@cindex parser state
4903@cindex state (of parser)
4904
4905The function @code{yyparse} is implemented using a finite-state machine.
4906The values pushed on the parser stack are not simply token type codes; they
4907represent the entire sequence of terminal and nonterminal symbols at or
4908near the top of the stack. The current state collects all the information
4909about previous input which is relevant to deciding what to do next.
4910
4911Each time a look-ahead token is read, the current parser state together
4912with the type of look-ahead token are looked up in a table. This table
4913entry can say, ``Shift the look-ahead token.'' In this case, it also
4914specifies the new parser state, which is pushed onto the top of the
4915parser stack. Or it can say, ``Reduce using rule number @var{n}.''
4916This means that a certain number of tokens or groupings are taken off
4917the top of the stack, and replaced by one grouping. In other words,
4918that number of states are popped from the stack, and one new state is
4919pushed.
4920
4921There is one other alternative: the table can say that the look-ahead token
4922is erroneous in the current state. This causes error processing to begin
4923(@pxref{Error Recovery}).
4924
342b8b6e 4925@node Reduce/Reduce
bfa74976
RS
4926@section Reduce/Reduce Conflicts
4927@cindex reduce/reduce conflict
4928@cindex conflicts, reduce/reduce
4929
4930A reduce/reduce conflict occurs if there are two or more rules that apply
4931to the same sequence of input. This usually indicates a serious error
4932in the grammar.
4933
4934For example, here is an erroneous attempt to define a sequence
4935of zero or more @code{word} groupings.
4936
4937@example
4938sequence: /* empty */
4939 @{ printf ("empty sequence\n"); @}
4940 | maybeword
4941 | sequence word
4942 @{ printf ("added word %s\n", $2); @}
4943 ;
4944
4945maybeword: /* empty */
4946 @{ printf ("empty maybeword\n"); @}
4947 | word
4948 @{ printf ("single word %s\n", $1); @}
4949 ;
4950@end example
4951
4952@noindent
4953The error is an ambiguity: there is more than one way to parse a single
4954@code{word} into a @code{sequence}. It could be reduced to a
4955@code{maybeword} and then into a @code{sequence} via the second rule.
4956Alternatively, nothing-at-all could be reduced into a @code{sequence}
4957via the first rule, and this could be combined with the @code{word}
4958using the third rule for @code{sequence}.
4959
4960There is also more than one way to reduce nothing-at-all into a
4961@code{sequence}. This can be done directly via the first rule,
4962or indirectly via @code{maybeword} and then the second rule.
4963
4964You might think that this is a distinction without a difference, because it
4965does not change whether any particular input is valid or not. But it does
4966affect which actions are run. One parsing order runs the second rule's
4967action; the other runs the first rule's action and the third rule's action.
4968In this example, the output of the program changes.
4969
4970Bison resolves a reduce/reduce conflict by choosing to use the rule that
4971appears first in the grammar, but it is very risky to rely on this. Every
4972reduce/reduce conflict must be studied and usually eliminated. Here is the
4973proper way to define @code{sequence}:
4974
4975@example
4976sequence: /* empty */
4977 @{ printf ("empty sequence\n"); @}
4978 | sequence word
4979 @{ printf ("added word %s\n", $2); @}
4980 ;
4981@end example
4982
4983Here is another common error that yields a reduce/reduce conflict:
4984
4985@example
4986sequence: /* empty */
4987 | sequence words
4988 | sequence redirects
4989 ;
4990
4991words: /* empty */
4992 | words word
4993 ;
4994
4995redirects:/* empty */
4996 | redirects redirect
4997 ;
4998@end example
4999
5000@noindent
5001The intention here is to define a sequence which can contain either
5002@code{word} or @code{redirect} groupings. The individual definitions of
5003@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5004three together make a subtle ambiguity: even an empty input can be parsed
5005in infinitely many ways!
5006
5007Consider: nothing-at-all could be a @code{words}. Or it could be two
5008@code{words} in a row, or three, or any number. It could equally well be a
5009@code{redirects}, or two, or any number. Or it could be a @code{words}
5010followed by three @code{redirects} and another @code{words}. And so on.
5011
5012Here are two ways to correct these rules. First, to make it a single level
5013of sequence:
5014
5015@example
5016sequence: /* empty */
5017 | sequence word
5018 | sequence redirect
5019 ;
5020@end example
5021
5022Second, to prevent either a @code{words} or a @code{redirects}
5023from being empty:
5024
5025@example
5026sequence: /* empty */
5027 | sequence words
5028 | sequence redirects
5029 ;
5030
5031words: word
5032 | words word
5033 ;
5034
5035redirects:redirect
5036 | redirects redirect
5037 ;
5038@end example
5039
342b8b6e 5040@node Mystery Conflicts
bfa74976
RS
5041@section Mysterious Reduce/Reduce Conflicts
5042
5043Sometimes reduce/reduce conflicts can occur that don't look warranted.
5044Here is an example:
5045
5046@example
5047@group
5048%token ID
5049
5050%%
5051def: param_spec return_spec ','
5052 ;
5053param_spec:
5054 type
5055 | name_list ':' type
5056 ;
5057@end group
5058@group
5059return_spec:
5060 type
5061 | name ':' type
5062 ;
5063@end group
5064@group
5065type: ID
5066 ;
5067@end group
5068@group
5069name: ID
5070 ;
5071name_list:
5072 name
5073 | name ',' name_list
5074 ;
5075@end group
5076@end example
5077
5078It would seem that this grammar can be parsed with only a single token
13863333 5079of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5080a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5081@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5082
c827f760
PE
5083@cindex @acronym{LR}(1)
5084@cindex @acronym{LALR}(1)
bfa74976 5085However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5086@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5087an @code{ID}
bfa74976
RS
5088at the beginning of a @code{param_spec} and likewise at the beginning of
5089a @code{return_spec}, are similar enough that Bison assumes they are the
5090same. They appear similar because the same set of rules would be
5091active---the rule for reducing to a @code{name} and that for reducing to
5092a @code{type}. Bison is unable to determine at that stage of processing
5093that the rules would require different look-ahead tokens in the two
5094contexts, so it makes a single parser state for them both. Combining
5095the two contexts causes a conflict later. In parser terminology, this
c827f760 5096occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5097
5098In general, it is better to fix deficiencies than to document them. But
5099this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5100generators that can handle @acronym{LR}(1) grammars are hard to write
5101and tend to
bfa74976
RS
5102produce parsers that are very large. In practice, Bison is more useful
5103as it is now.
5104
5105When the problem arises, you can often fix it by identifying the two
a220f555
MA
5106parser states that are being confused, and adding something to make them
5107look distinct. In the above example, adding one rule to
bfa74976
RS
5108@code{return_spec} as follows makes the problem go away:
5109
5110@example
5111@group
5112%token BOGUS
5113@dots{}
5114%%
5115@dots{}
5116return_spec:
5117 type
5118 | name ':' type
5119 /* This rule is never used. */
5120 | ID BOGUS
5121 ;
5122@end group
5123@end example
5124
5125This corrects the problem because it introduces the possibility of an
5126additional active rule in the context after the @code{ID} at the beginning of
5127@code{return_spec}. This rule is not active in the corresponding context
5128in a @code{param_spec}, so the two contexts receive distinct parser states.
5129As long as the token @code{BOGUS} is never generated by @code{yylex},
5130the added rule cannot alter the way actual input is parsed.
5131
5132In this particular example, there is another way to solve the problem:
5133rewrite the rule for @code{return_spec} to use @code{ID} directly
5134instead of via @code{name}. This also causes the two confusing
5135contexts to have different sets of active rules, because the one for
5136@code{return_spec} activates the altered rule for @code{return_spec}
5137rather than the one for @code{name}.
5138
5139@example
5140param_spec:
5141 type
5142 | name_list ':' type
5143 ;
5144return_spec:
5145 type
5146 | ID ':' type
5147 ;
5148@end example
5149
fae437e8 5150@node Generalized LR Parsing
c827f760
PE
5151@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5152@cindex @acronym{GLR} parsing
5153@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5154@cindex ambiguous grammars
5155@cindex non-deterministic parsing
5156
fae437e8
AD
5157Bison produces @emph{deterministic} parsers that choose uniquely
5158when to reduce and which reduction to apply
676385e2
PH
5159based on a summary of the preceding input and on one extra token of lookahead.
5160As a result, normal Bison handles a proper subset of the family of
5161context-free languages.
fae437e8 5162Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5163sequence of reductions cannot have deterministic parsers in this sense.
5164The same is true of languages that require more than one symbol of
5165lookahead, since the parser lacks the information necessary to make a
5166decision at the point it must be made in a shift-reduce parser.
fae437e8 5167Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5168there are languages where Bison's particular choice of how to
5169summarize the input seen so far loses necessary information.
5170
5171When you use the @samp{%glr-parser} declaration in your grammar file,
5172Bison generates a parser that uses a different algorithm, called
c827f760
PE
5173Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5174parser uses the same basic
676385e2
PH
5175algorithm for parsing as an ordinary Bison parser, but behaves
5176differently in cases where there is a shift-reduce conflict that has not
fae437e8 5177been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5178reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5179situation, it
fae437e8 5180effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5181shift or reduction. These parsers then proceed as usual, consuming
5182tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5183and split further, with the result that instead of a sequence of states,
c827f760 5184a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5185
5186In effect, each stack represents a guess as to what the proper parse
5187is. Additional input may indicate that a guess was wrong, in which case
5188the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5189actions generated in each stack are saved, rather than being executed
676385e2 5190immediately. When a stack disappears, its saved semantic actions never
fae437e8 5191get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5192their sets of semantic actions are both saved with the state that
5193results from the reduction. We say that two stacks are equivalent
fae437e8 5194when they both represent the same sequence of states,
676385e2
PH
5195and each pair of corresponding states represents a
5196grammar symbol that produces the same segment of the input token
5197stream.
5198
5199Whenever the parser makes a transition from having multiple
c827f760 5200states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5201algorithm, after resolving and executing the saved-up actions.
5202At this transition, some of the states on the stack will have semantic
5203values that are sets (actually multisets) of possible actions. The
5204parser tries to pick one of the actions by first finding one whose rule
5205has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5206declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5207precedence, but there the same merging function is declared for both
fae437e8 5208rules by the @samp{%merge} declaration,
676385e2
PH
5209Bison resolves and evaluates both and then calls the merge function on
5210the result. Otherwise, it reports an ambiguity.
5211
c827f760
PE
5212It is possible to use a data structure for the @acronym{GLR} parsing tree that
5213permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5214size of the input), any unambiguous (not necessarily
5215@acronym{LALR}(1)) grammar in
fae437e8 5216quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5217context-free grammar in cubic worst-case time. However, Bison currently
5218uses a simpler data structure that requires time proportional to the
5219length of the input times the maximum number of stacks required for any
5220prefix of the input. Thus, really ambiguous or non-deterministic
5221grammars can require exponential time and space to process. Such badly
5222behaving examples, however, are not generally of practical interest.
5223Usually, non-determinism in a grammar is local---the parser is ``in
5224doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5225structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5226grammar, in particular, it is only slightly slower than with the default
5227Bison parser.
5228
f6481e2f
PE
5229For a more detailed exposition of GLR parsers, please see: Elizabeth
5230Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5231Generalised @acronym{LR} Parsers, Royal Holloway, University of
5232London, Department of Computer Science, TR-00-12,
5233@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5234(2000-12-24).
5235
342b8b6e 5236@node Stack Overflow
bfa74976
RS
5237@section Stack Overflow, and How to Avoid It
5238@cindex stack overflow
5239@cindex parser stack overflow
5240@cindex overflow of parser stack
5241
5242The Bison parser stack can overflow if too many tokens are shifted and
5243not reduced. When this happens, the parser function @code{yyparse}
5244returns a nonzero value, pausing only to call @code{yyerror} to report
5245the overflow.
5246
c827f760 5247Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5248usually results from using a right recursion instead of a left
5249recursion, @xref{Recursion, ,Recursive Rules}.
5250
bfa74976
RS
5251@vindex YYMAXDEPTH
5252By defining the macro @code{YYMAXDEPTH}, you can control how deep the
5253parser stack can become before a stack overflow occurs. Define the
5254macro with a value that is an integer. This value is the maximum number
5255of tokens that can be shifted (and not reduced) before overflow.
5256It must be a constant expression whose value is known at compile time.
5257
5258The stack space allowed is not necessarily allocated. If you specify a
5259large value for @code{YYMAXDEPTH}, the parser actually allocates a small
5260stack at first, and then makes it bigger by stages as needed. This
5261increasing allocation happens automatically and silently. Therefore,
5262you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5263space for ordinary inputs that do not need much stack.
5264
5265@cindex default stack limit
5266The default value of @code{YYMAXDEPTH}, if you do not define it, is
526710000.
5268
5269@vindex YYINITDEPTH
5270You can control how much stack is allocated initially by defining the
5271macro @code{YYINITDEPTH}. This value too must be a compile-time
5272constant integer. The default is 200.
5273
d1a1114f 5274@c FIXME: C++ output.
c827f760
PE
5275Because of semantical differences between C and C++, the
5276@acronym{LALR}(1) parsers
d1a1114f
AD
5277in C produced by Bison by compiled as C++ cannot grow. In this precise
5278case (compiling a C parser as C++) you are suggested to grow
5279@code{YYINITDEPTH}. In the near future, a C++ output output will be
5280provided which addresses this issue.
5281
342b8b6e 5282@node Error Recovery
bfa74976
RS
5283@chapter Error Recovery
5284@cindex error recovery
5285@cindex recovery from errors
5286
6e649e65 5287It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5288error. For example, a compiler should recover sufficiently to parse the
5289rest of the input file and check it for errors; a calculator should accept
5290another expression.
5291
5292In a simple interactive command parser where each input is one line, it may
5293be sufficient to allow @code{yyparse} to return 1 on error and have the
5294caller ignore the rest of the input line when that happens (and then call
5295@code{yyparse} again). But this is inadequate for a compiler, because it
5296forgets all the syntactic context leading up to the error. A syntax error
5297deep within a function in the compiler input should not cause the compiler
5298to treat the following line like the beginning of a source file.
5299
5300@findex error
5301You can define how to recover from a syntax error by writing rules to
5302recognize the special token @code{error}. This is a terminal symbol that
5303is always defined (you need not declare it) and reserved for error
5304handling. The Bison parser generates an @code{error} token whenever a
5305syntax error happens; if you have provided a rule to recognize this token
13863333 5306in the current context, the parse can continue.
bfa74976
RS
5307
5308For example:
5309
5310@example
5311stmnts: /* empty string */
5312 | stmnts '\n'
5313 | stmnts exp '\n'
5314 | stmnts error '\n'
5315@end example
5316
5317The fourth rule in this example says that an error followed by a newline
5318makes a valid addition to any @code{stmnts}.
5319
5320What happens if a syntax error occurs in the middle of an @code{exp}? The
5321error recovery rule, interpreted strictly, applies to the precise sequence
5322of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5323the middle of an @code{exp}, there will probably be some additional tokens
5324and subexpressions on the stack after the last @code{stmnts}, and there
5325will be tokens to read before the next newline. So the rule is not
5326applicable in the ordinary way.
5327
5328But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5329the semantic context and part of the input. First it discards states
5330and objects from the stack until it gets back to a state in which the
bfa74976 5331@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5332already parsed are discarded, back to the last complete @code{stmnts}.)
5333At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5334look-ahead token is not acceptable to be shifted next, the parser reads
5335tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5336this example, Bison reads and discards input until the next newline so
5337that the fourth rule can apply. Note that discarded symbols are
5338possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5339Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5340
5341The choice of error rules in the grammar is a choice of strategies for
5342error recovery. A simple and useful strategy is simply to skip the rest of
5343the current input line or current statement if an error is detected:
5344
5345@example
72d2299c 5346stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5347@end example
5348
5349It is also useful to recover to the matching close-delimiter of an
5350opening-delimiter that has already been parsed. Otherwise the
5351close-delimiter will probably appear to be unmatched, and generate another,
5352spurious error message:
5353
5354@example
5355primary: '(' expr ')'
5356 | '(' error ')'
5357 @dots{}
5358 ;
5359@end example
5360
5361Error recovery strategies are necessarily guesses. When they guess wrong,
5362one syntax error often leads to another. In the above example, the error
5363recovery rule guesses that an error is due to bad input within one
5364@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5365middle of a valid @code{stmnt}. After the error recovery rule recovers
5366from the first error, another syntax error will be found straightaway,
5367since the text following the spurious semicolon is also an invalid
5368@code{stmnt}.
5369
5370To prevent an outpouring of error messages, the parser will output no error
5371message for another syntax error that happens shortly after the first; only
5372after three consecutive input tokens have been successfully shifted will
5373error messages resume.
5374
5375Note that rules which accept the @code{error} token may have actions, just
5376as any other rules can.
5377
5378@findex yyerrok
5379You can make error messages resume immediately by using the macro
5380@code{yyerrok} in an action. If you do this in the error rule's action, no
5381error messages will be suppressed. This macro requires no arguments;
5382@samp{yyerrok;} is a valid C statement.
5383
5384@findex yyclearin
5385The previous look-ahead token is reanalyzed immediately after an error. If
5386this is unacceptable, then the macro @code{yyclearin} may be used to clear
5387this token. Write the statement @samp{yyclearin;} in the error rule's
5388action.
5389
6e649e65 5390For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5391called that advances the input stream to some point where parsing should
5392once again commence. The next symbol returned by the lexical scanner is
5393probably correct. The previous look-ahead token ought to be discarded
5394with @samp{yyclearin;}.
5395
5396@vindex YYRECOVERING
5397The macro @code{YYRECOVERING} stands for an expression that has the
5398value 1 when the parser is recovering from a syntax error, and 0 the
5399rest of the time. A value of 1 indicates that error messages are
5400currently suppressed for new syntax errors.
5401
342b8b6e 5402@node Context Dependency
bfa74976
RS
5403@chapter Handling Context Dependencies
5404
5405The Bison paradigm is to parse tokens first, then group them into larger
5406syntactic units. In many languages, the meaning of a token is affected by
5407its context. Although this violates the Bison paradigm, certain techniques
5408(known as @dfn{kludges}) may enable you to write Bison parsers for such
5409languages.
5410
5411@menu
5412* Semantic Tokens:: Token parsing can depend on the semantic context.
5413* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5414* Tie-in Recovery:: Lexical tie-ins have implications for how
5415 error recovery rules must be written.
5416@end menu
5417
5418(Actually, ``kludge'' means any technique that gets its job done but is
5419neither clean nor robust.)
5420
342b8b6e 5421@node Semantic Tokens
bfa74976
RS
5422@section Semantic Info in Token Types
5423
5424The C language has a context dependency: the way an identifier is used
5425depends on what its current meaning is. For example, consider this:
5426
5427@example
5428foo (x);
5429@end example
5430
5431This looks like a function call statement, but if @code{foo} is a typedef
5432name, then this is actually a declaration of @code{x}. How can a Bison
5433parser for C decide how to parse this input?
5434
c827f760 5435The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5436@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5437identifier, it looks up the current declaration of the identifier in order
5438to decide which token type to return: @code{TYPENAME} if the identifier is
5439declared as a typedef, @code{IDENTIFIER} otherwise.
5440
5441The grammar rules can then express the context dependency by the choice of
5442token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5443but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5444@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5445is @emph{not} significant, such as in declarations that can shadow a
5446typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5447accepted---there is one rule for each of the two token types.
5448
5449This technique is simple to use if the decision of which kinds of
5450identifiers to allow is made at a place close to where the identifier is
5451parsed. But in C this is not always so: C allows a declaration to
5452redeclare a typedef name provided an explicit type has been specified
5453earlier:
5454
5455@example
5456typedef int foo, bar, lose;
5457static foo (bar); /* @r{redeclare @code{bar} as static variable} */
5458static int foo (lose); /* @r{redeclare @code{foo} as function} */
5459@end example
5460
5461Unfortunately, the name being declared is separated from the declaration
5462construct itself by a complicated syntactic structure---the ``declarator''.
5463
9ecbd125 5464As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5465all the nonterminal names changed: once for parsing a declaration in
5466which a typedef name can be redefined, and once for parsing a
5467declaration in which that can't be done. Here is a part of the
5468duplication, with actions omitted for brevity:
bfa74976
RS
5469
5470@example
5471initdcl:
5472 declarator maybeasm '='
5473 init
5474 | declarator maybeasm
5475 ;
5476
5477notype_initdcl:
5478 notype_declarator maybeasm '='
5479 init
5480 | notype_declarator maybeasm
5481 ;
5482@end example
5483
5484@noindent
5485Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5486cannot. The distinction between @code{declarator} and
5487@code{notype_declarator} is the same sort of thing.
5488
5489There is some similarity between this technique and a lexical tie-in
5490(described next), in that information which alters the lexical analysis is
5491changed during parsing by other parts of the program. The difference is
5492here the information is global, and is used for other purposes in the
5493program. A true lexical tie-in has a special-purpose flag controlled by
5494the syntactic context.
5495
342b8b6e 5496@node Lexical Tie-ins
bfa74976
RS
5497@section Lexical Tie-ins
5498@cindex lexical tie-in
5499
5500One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5501which is set by Bison actions, whose purpose is to alter the way tokens are
5502parsed.
5503
5504For example, suppose we have a language vaguely like C, but with a special
5505construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5506an expression in parentheses in which all integers are hexadecimal. In
5507particular, the token @samp{a1b} must be treated as an integer rather than
5508as an identifier if it appears in that context. Here is how you can do it:
5509
5510@example
5511@group
5512%@{
38a92d50
PE
5513 int hexflag;
5514 int yylex (void);
5515 void yyerror (char const *);
bfa74976
RS
5516%@}
5517%%
5518@dots{}
5519@end group
5520@group
5521expr: IDENTIFIER
5522 | constant
5523 | HEX '('
5524 @{ hexflag = 1; @}
5525 expr ')'
5526 @{ hexflag = 0;
5527 $$ = $4; @}
5528 | expr '+' expr
5529 @{ $$ = make_sum ($1, $3); @}
5530 @dots{}
5531 ;
5532@end group
5533
5534@group
5535constant:
5536 INTEGER
5537 | STRING
5538 ;
5539@end group
5540@end example
5541
5542@noindent
5543Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
5544it is nonzero, all integers are parsed in hexadecimal, and tokens starting
5545with letters are parsed as integers if possible.
5546
342b8b6e
AD
5547The declaration of @code{hexflag} shown in the prologue of the parser file
5548is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 5549You must also write the code in @code{yylex} to obey the flag.
bfa74976 5550
342b8b6e 5551@node Tie-in Recovery
bfa74976
RS
5552@section Lexical Tie-ins and Error Recovery
5553
5554Lexical tie-ins make strict demands on any error recovery rules you have.
5555@xref{Error Recovery}.
5556
5557The reason for this is that the purpose of an error recovery rule is to
5558abort the parsing of one construct and resume in some larger construct.
5559For example, in C-like languages, a typical error recovery rule is to skip
5560tokens until the next semicolon, and then start a new statement, like this:
5561
5562@example
5563stmt: expr ';'
5564 | IF '(' expr ')' stmt @{ @dots{} @}
5565 @dots{}
5566 error ';'
5567 @{ hexflag = 0; @}
5568 ;
5569@end example
5570
5571If there is a syntax error in the middle of a @samp{hex (@var{expr})}
5572construct, this error rule will apply, and then the action for the
5573completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
5574remain set for the entire rest of the input, or until the next @code{hex}
5575keyword, causing identifiers to be misinterpreted as integers.
5576
5577To avoid this problem the error recovery rule itself clears @code{hexflag}.
5578
5579There may also be an error recovery rule that works within expressions.
5580For example, there could be a rule which applies within parentheses
5581and skips to the close-parenthesis:
5582
5583@example
5584@group
5585expr: @dots{}
5586 | '(' expr ')'
5587 @{ $$ = $2; @}
5588 | '(' error ')'
5589 @dots{}
5590@end group
5591@end example
5592
5593If this rule acts within the @code{hex} construct, it is not going to abort
5594that construct (since it applies to an inner level of parentheses within
5595the construct). Therefore, it should not clear the flag: the rest of
5596the @code{hex} construct should be parsed with the flag still in effect.
5597
5598What if there is an error recovery rule which might abort out of the
5599@code{hex} construct or might not, depending on circumstances? There is no
5600way you can write the action to determine whether a @code{hex} construct is
5601being aborted or not. So if you are using a lexical tie-in, you had better
5602make sure your error recovery rules are not of this kind. Each rule must
5603be such that you can be sure that it always will, or always won't, have to
5604clear the flag.
5605
ec3bc396
AD
5606@c ================================================== Debugging Your Parser
5607
342b8b6e 5608@node Debugging
bfa74976 5609@chapter Debugging Your Parser
ec3bc396
AD
5610
5611Developing a parser can be a challenge, especially if you don't
5612understand the algorithm (@pxref{Algorithm, ,The Bison Parser
5613Algorithm}). Even so, sometimes a detailed description of the automaton
5614can help (@pxref{Understanding, , Understanding Your Parser}), or
5615tracing the execution of the parser can give some insight on why it
5616behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
5617
5618@menu
5619* Understanding:: Understanding the structure of your parser.
5620* Tracing:: Tracing the execution of your parser.
5621@end menu
5622
5623@node Understanding
5624@section Understanding Your Parser
5625
5626As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
5627Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
5628frequent than one would hope), looking at this automaton is required to
5629tune or simply fix a parser. Bison provides two different
c827f760 5630representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
5631file).
5632
5633The textual file is generated when the options @option{--report} or
5634@option{--verbose} are specified, see @xref{Invocation, , Invoking
5635Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
5636the parser output file name, and adding @samp{.output} instead.
5637Therefore, if the input file is @file{foo.y}, then the parser file is
5638called @file{foo.tab.c} by default. As a consequence, the verbose
5639output file is called @file{foo.output}.
5640
5641The following grammar file, @file{calc.y}, will be used in the sequel:
5642
5643@example
5644%token NUM STR
5645%left '+' '-'
5646%left '*'
5647%%
5648exp: exp '+' exp
5649 | exp '-' exp
5650 | exp '*' exp
5651 | exp '/' exp
5652 | NUM
5653 ;
5654useless: STR;
5655%%
5656@end example
5657
88bce5a2
AD
5658@command{bison} reports:
5659
5660@example
5661calc.y: warning: 1 useless nonterminal and 1 useless rule
5662calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
5663calc.y:11.10-12: warning: useless rule: useless: STR
5664calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
5665@end example
5666
5667When given @option{--report=state}, in addition to @file{calc.tab.c}, it
5668creates a file @file{calc.output} with contents detailed below. The
5669order of the output and the exact presentation might vary, but the
5670interpretation is the same.
ec3bc396
AD
5671
5672The first section includes details on conflicts that were solved thanks
5673to precedence and/or associativity:
5674
5675@example
5676Conflict in state 8 between rule 2 and token '+' resolved as reduce.
5677Conflict in state 8 between rule 2 and token '-' resolved as reduce.
5678Conflict in state 8 between rule 2 and token '*' resolved as shift.
5679@exdent @dots{}
5680@end example
5681
5682@noindent
5683The next section lists states that still have conflicts.
5684
5685@example
5a99098d
PE
5686State 8 conflicts: 1 shift/reduce
5687State 9 conflicts: 1 shift/reduce
5688State 10 conflicts: 1 shift/reduce
5689State 11 conflicts: 4 shift/reduce
ec3bc396
AD
5690@end example
5691
5692@noindent
5693@cindex token, useless
5694@cindex useless token
5695@cindex nonterminal, useless
5696@cindex useless nonterminal
5697@cindex rule, useless
5698@cindex useless rule
5699The next section reports useless tokens, nonterminal and rules. Useless
5700nonterminals and rules are removed in order to produce a smaller parser,
5701but useless tokens are preserved, since they might be used by the
5702scanner (note the difference between ``useless'' and ``not used''
5703below):
5704
5705@example
5706Useless nonterminals:
5707 useless
5708
5709Terminals which are not used:
5710 STR
5711
5712Useless rules:
5713#6 useless: STR;
5714@end example
5715
5716@noindent
5717The next section reproduces the exact grammar that Bison used:
5718
5719@example
5720Grammar
5721
5722 Number, Line, Rule
88bce5a2 5723 0 5 $accept -> exp $end
ec3bc396
AD
5724 1 5 exp -> exp '+' exp
5725 2 6 exp -> exp '-' exp
5726 3 7 exp -> exp '*' exp
5727 4 8 exp -> exp '/' exp
5728 5 9 exp -> NUM
5729@end example
5730
5731@noindent
5732and reports the uses of the symbols:
5733
5734@example
5735Terminals, with rules where they appear
5736
88bce5a2 5737$end (0) 0
ec3bc396
AD
5738'*' (42) 3
5739'+' (43) 1
5740'-' (45) 2
5741'/' (47) 4
5742error (256)
5743NUM (258) 5
5744
5745Nonterminals, with rules where they appear
5746
88bce5a2 5747$accept (8)
ec3bc396
AD
5748 on left: 0
5749exp (9)
5750 on left: 1 2 3 4 5, on right: 0 1 2 3 4
5751@end example
5752
5753@noindent
5754@cindex item
5755@cindex pointed rule
5756@cindex rule, pointed
5757Bison then proceeds onto the automaton itself, describing each state
5758with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
5759item is a production rule together with a point (marked by @samp{.})
5760that the input cursor.
5761
5762@example
5763state 0
5764
88bce5a2 5765 $accept -> . exp $ (rule 0)
ec3bc396 5766
2a8d363a 5767 NUM shift, and go to state 1
ec3bc396 5768
2a8d363a 5769 exp go to state 2
ec3bc396
AD
5770@end example
5771
5772This reads as follows: ``state 0 corresponds to being at the very
5773beginning of the parsing, in the initial rule, right before the start
5774symbol (here, @code{exp}). When the parser returns to this state right
5775after having reduced a rule that produced an @code{exp}, the control
5776flow jumps to state 2. If there is no such transition on a nonterminal
5777symbol, and the lookahead is a @code{NUM}, then this token is shifted on
5778the parse stack, and the control flow jumps to state 1. Any other
6e649e65 5779lookahead triggers a syntax error.''
ec3bc396
AD
5780
5781@cindex core, item set
5782@cindex item set core
5783@cindex kernel, item set
5784@cindex item set core
5785Even though the only active rule in state 0 seems to be rule 0, the
5786report lists @code{NUM} as a lookahead symbol because @code{NUM} can be
5787at the beginning of any rule deriving an @code{exp}. By default Bison
5788reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
5789you want to see more detail you can invoke @command{bison} with
5790@option{--report=itemset} to list all the items, include those that can
5791be derived:
5792
5793@example
5794state 0
5795
88bce5a2 5796 $accept -> . exp $ (rule 0)
ec3bc396
AD
5797 exp -> . exp '+' exp (rule 1)
5798 exp -> . exp '-' exp (rule 2)
5799 exp -> . exp '*' exp (rule 3)
5800 exp -> . exp '/' exp (rule 4)
5801 exp -> . NUM (rule 5)
5802
5803 NUM shift, and go to state 1
5804
5805 exp go to state 2
5806@end example
5807
5808@noindent
5809In the state 1...
5810
5811@example
5812state 1
5813
5814 exp -> NUM . (rule 5)
5815
2a8d363a 5816 $default reduce using rule 5 (exp)
ec3bc396
AD
5817@end example
5818
5819@noindent
5820the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead
5821(@samp{$default}), the parser will reduce it. If it was coming from
5822state 0, then, after this reduction it will return to state 0, and will
5823jump to state 2 (@samp{exp: go to state 2}).
5824
5825@example
5826state 2
5827
88bce5a2 5828 $accept -> exp . $ (rule 0)
ec3bc396
AD
5829 exp -> exp . '+' exp (rule 1)
5830 exp -> exp . '-' exp (rule 2)
5831 exp -> exp . '*' exp (rule 3)
5832 exp -> exp . '/' exp (rule 4)
5833
2a8d363a
AD
5834 $ shift, and go to state 3
5835 '+' shift, and go to state 4
5836 '-' shift, and go to state 5
5837 '*' shift, and go to state 6
5838 '/' shift, and go to state 7
ec3bc396
AD
5839@end example
5840
5841@noindent
5842In state 2, the automaton can only shift a symbol. For instance,
5843because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
5844@samp{+}, it will be shifted on the parse stack, and the automaton
5845control will jump to state 4, corresponding to the item @samp{exp -> exp
5846'+' . exp}. Since there is no default action, any other token than
6e649e65 5847those listed above will trigger a syntax error.
ec3bc396
AD
5848
5849The state 3 is named the @dfn{final state}, or the @dfn{accepting
5850state}:
5851
5852@example
5853state 3
5854
88bce5a2 5855 $accept -> exp $ . (rule 0)
ec3bc396 5856
2a8d363a 5857 $default accept
ec3bc396
AD
5858@end example
5859
5860@noindent
5861the initial rule is completed (the start symbol and the end
5862of input were read), the parsing exits successfully.
5863
5864The interpretation of states 4 to 7 is straightforward, and is left to
5865the reader.
5866
5867@example
5868state 4
5869
5870 exp -> exp '+' . exp (rule 1)
5871
2a8d363a 5872 NUM shift, and go to state 1
ec3bc396 5873
2a8d363a 5874 exp go to state 8
ec3bc396
AD
5875
5876state 5
5877
5878 exp -> exp '-' . exp (rule 2)
5879
2a8d363a 5880 NUM shift, and go to state 1
ec3bc396 5881
2a8d363a 5882 exp go to state 9
ec3bc396
AD
5883
5884state 6
5885
5886 exp -> exp '*' . exp (rule 3)
5887
2a8d363a 5888 NUM shift, and go to state 1
ec3bc396 5889
2a8d363a 5890 exp go to state 10
ec3bc396
AD
5891
5892state 7
5893
5894 exp -> exp '/' . exp (rule 4)
5895
2a8d363a 5896 NUM shift, and go to state 1
ec3bc396 5897
2a8d363a 5898 exp go to state 11
ec3bc396
AD
5899@end example
5900
5a99098d
PE
5901As was announced in beginning of the report, @samp{State 8 conflicts:
59021 shift/reduce}:
ec3bc396
AD
5903
5904@example
5905state 8
5906
5907 exp -> exp . '+' exp (rule 1)
5908 exp -> exp '+' exp . (rule 1)
5909 exp -> exp . '-' exp (rule 2)
5910 exp -> exp . '*' exp (rule 3)
5911 exp -> exp . '/' exp (rule 4)
5912
2a8d363a
AD
5913 '*' shift, and go to state 6
5914 '/' shift, and go to state 7
ec3bc396 5915
2a8d363a
AD
5916 '/' [reduce using rule 1 (exp)]
5917 $default reduce using rule 1 (exp)
ec3bc396
AD
5918@end example
5919
5920Indeed, there are two actions associated to the lookahead @samp{/}:
5921either shifting (and going to state 7), or reducing rule 1. The
5922conflict means that either the grammar is ambiguous, or the parser lacks
5923information to make the right decision. Indeed the grammar is
5924ambiguous, as, since we did not specify the precedence of @samp{/}, the
5925sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
5926NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
5927NUM}, which corresponds to reducing rule 1.
5928
c827f760 5929Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
5930arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
5931Shift/Reduce Conflicts}. Discarded actions are reported in between
5932square brackets.
5933
5934Note that all the previous states had a single possible action: either
5935shifting the next token and going to the corresponding state, or
5936reducing a single rule. In the other cases, i.e., when shifting
5937@emph{and} reducing is possible or when @emph{several} reductions are
5938possible, the lookahead is required to select the action. State 8 is
5939one such state: if the lookahead is @samp{*} or @samp{/} then the action
5940is shifting, otherwise the action is reducing rule 1. In other words,
5941the first two items, corresponding to rule 1, are not eligible when the
5942lookahead is @samp{*}, since we specified that @samp{*} has higher
5943precedence that @samp{+}. More generally, some items are eligible only
5944with some set of possible lookaheads. When run with
5945@option{--report=lookahead}, Bison specifies these lookaheads:
5946
5947@example
5948state 8
5949
5950 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
5951 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
5952 exp -> exp . '-' exp (rule 2)
5953 exp -> exp . '*' exp (rule 3)
5954 exp -> exp . '/' exp (rule 4)
5955
5956 '*' shift, and go to state 6
5957 '/' shift, and go to state 7
5958
5959 '/' [reduce using rule 1 (exp)]
5960 $default reduce using rule 1 (exp)
5961@end example
5962
5963The remaining states are similar:
5964
5965@example
5966state 9
5967
5968 exp -> exp . '+' exp (rule 1)
5969 exp -> exp . '-' exp (rule 2)
5970 exp -> exp '-' exp . (rule 2)
5971 exp -> exp . '*' exp (rule 3)
5972 exp -> exp . '/' exp (rule 4)
5973
2a8d363a
AD
5974 '*' shift, and go to state 6
5975 '/' shift, and go to state 7
ec3bc396 5976
2a8d363a
AD
5977 '/' [reduce using rule 2 (exp)]
5978 $default reduce using rule 2 (exp)
ec3bc396
AD
5979
5980state 10
5981
5982 exp -> exp . '+' exp (rule 1)
5983 exp -> exp . '-' exp (rule 2)
5984 exp -> exp . '*' exp (rule 3)
5985 exp -> exp '*' exp . (rule 3)
5986 exp -> exp . '/' exp (rule 4)
5987
2a8d363a 5988 '/' shift, and go to state 7
ec3bc396 5989
2a8d363a
AD
5990 '/' [reduce using rule 3 (exp)]
5991 $default reduce using rule 3 (exp)
ec3bc396
AD
5992
5993state 11
5994
5995 exp -> exp . '+' exp (rule 1)
5996 exp -> exp . '-' exp (rule 2)
5997 exp -> exp . '*' exp (rule 3)
5998 exp -> exp . '/' exp (rule 4)
5999 exp -> exp '/' exp . (rule 4)
6000
2a8d363a
AD
6001 '+' shift, and go to state 4
6002 '-' shift, and go to state 5
6003 '*' shift, and go to state 6
6004 '/' shift, and go to state 7
ec3bc396 6005
2a8d363a
AD
6006 '+' [reduce using rule 4 (exp)]
6007 '-' [reduce using rule 4 (exp)]
6008 '*' [reduce using rule 4 (exp)]
6009 '/' [reduce using rule 4 (exp)]
6010 $default reduce using rule 4 (exp)
ec3bc396
AD
6011@end example
6012
6013@noindent
6014Observe that state 11 contains conflicts due to the lack of precedence
6015of @samp{/} wrt @samp{+}, @samp{-}, and @samp{*}, but also because the
6016associativity of @samp{/} is not specified.
6017
6018
6019@node Tracing
6020@section Tracing Your Parser
bfa74976
RS
6021@findex yydebug
6022@cindex debugging
6023@cindex tracing the parser
6024
6025If a Bison grammar compiles properly but doesn't do what you want when it
6026runs, the @code{yydebug} parser-trace feature can help you figure out why.
6027
3ded9a63
AD
6028There are several means to enable compilation of trace facilities:
6029
6030@table @asis
6031@item the macro @code{YYDEBUG}
6032@findex YYDEBUG
6033Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6034parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6035@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6036YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6037Prologue}).
6038
6039@item the option @option{-t}, @option{--debug}
6040Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6041,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6042
6043@item the directive @samp{%debug}
6044@findex %debug
6045Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6046Declaration Summary}). This is a Bison extension, which will prove
6047useful when Bison will output parsers for languages that don't use a
c827f760
PE
6048preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6049you, this is
3ded9a63
AD
6050the preferred solution.
6051@end table
6052
6053We suggest that you always enable the debug option so that debugging is
6054always possible.
bfa74976 6055
02a81e05 6056The trace facility outputs messages with macro calls of the form
e2742e46 6057@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6058@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6059arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6060define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6061and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6062
6063Once you have compiled the program with trace facilities, the way to
6064request a trace is to store a nonzero value in the variable @code{yydebug}.
6065You can do this by making the C code do it (in @code{main}, perhaps), or
6066you can alter the value with a C debugger.
6067
6068Each step taken by the parser when @code{yydebug} is nonzero produces a
6069line or two of trace information, written on @code{stderr}. The trace
6070messages tell you these things:
6071
6072@itemize @bullet
6073@item
6074Each time the parser calls @code{yylex}, what kind of token was read.
6075
6076@item
6077Each time a token is shifted, the depth and complete contents of the
6078state stack (@pxref{Parser States}).
6079
6080@item
6081Each time a rule is reduced, which rule it is, and the complete contents
6082of the state stack afterward.
6083@end itemize
6084
6085To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6086produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6087Bison}). This file shows the meaning of each state in terms of
6088positions in various rules, and also what each state will do with each
6089possible input token. As you read the successive trace messages, you
6090can see that the parser is functioning according to its specification in
6091the listing file. Eventually you will arrive at the place where
6092something undesirable happens, and you will see which parts of the
6093grammar are to blame.
bfa74976
RS
6094
6095The parser file is a C program and you can use C debuggers on it, but it's
6096not easy to interpret what it is doing. The parser function is a
6097finite-state machine interpreter, and aside from the actions it executes
6098the same code over and over. Only the values of variables show where in
6099the grammar it is working.
6100
6101@findex YYPRINT
6102The debugging information normally gives the token type of each token
6103read, but not its semantic value. You can optionally define a macro
6104named @code{YYPRINT} to provide a way to print the value. If you define
6105@code{YYPRINT}, it should take three arguments. The parser will pass a
6106standard I/O stream, the numeric code for the token type, and the token
6107value (from @code{yylval}).
6108
6109Here is an example of @code{YYPRINT} suitable for the multi-function
6110calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6111
6112@smallexample
38a92d50
PE
6113%@{
6114 static void print_token_value (FILE *, int, YYSTYPE);
6115 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6116%@}
6117
6118@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6119
6120static void
831d3c99 6121print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6122@{
6123 if (type == VAR)
d3c4e709 6124 fprintf (file, "%s", value.tptr->name);
bfa74976 6125 else if (type == NUM)
d3c4e709 6126 fprintf (file, "%d", value.val);
bfa74976
RS
6127@}
6128@end smallexample
6129
ec3bc396
AD
6130@c ================================================= Invoking Bison
6131
342b8b6e 6132@node Invocation
bfa74976
RS
6133@chapter Invoking Bison
6134@cindex invoking Bison
6135@cindex Bison invocation
6136@cindex options for invoking Bison
6137
6138The usual way to invoke Bison is as follows:
6139
6140@example
6141bison @var{infile}
6142@end example
6143
6144Here @var{infile} is the grammar file name, which usually ends in
6145@samp{.y}. The parser file's name is made by replacing the @samp{.y}
6146with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
6147@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
72d2299c 6148@file{hack/foo.tab.c}. It's also possible, in case you are writing
79282c6c 6149C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6150or @file{foo.y++}. Then, the output files will take an extension like
6151the given one as input (respectively @file{foo.tab.cpp} and
6152@file{foo.tab.c++}).
234a3be3
AD
6153This feature takes effect with all options that manipulate filenames like
6154@samp{-o} or @samp{-d}.
6155
6156For example :
6157
6158@example
6159bison -d @var{infile.yxx}
6160@end example
84163231 6161@noindent
72d2299c 6162will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6163
6164@example
b56471a6 6165bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6166@end example
84163231 6167@noindent
234a3be3
AD
6168will produce @file{output.c++} and @file{outfile.h++}.
6169
397ec073
PE
6170For compatibility with @acronym{POSIX}, the standard Bison
6171distribution also contains a shell script called @command{yacc} that
6172invokes Bison with the @option{-y} option.
6173
bfa74976 6174@menu
13863333 6175* Bison Options:: All the options described in detail,
c827f760 6176 in alphabetical order by short options.
bfa74976 6177* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6178* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6179@end menu
6180
342b8b6e 6181@node Bison Options
bfa74976
RS
6182@section Bison Options
6183
6184Bison supports both traditional single-letter options and mnemonic long
6185option names. Long option names are indicated with @samp{--} instead of
6186@samp{-}. Abbreviations for option names are allowed as long as they
6187are unique. When a long option takes an argument, like
6188@samp{--file-prefix}, connect the option name and the argument with
6189@samp{=}.
6190
6191Here is a list of options that can be used with Bison, alphabetized by
6192short option. It is followed by a cross key alphabetized by long
6193option.
6194
89cab50d
AD
6195@c Please, keep this ordered as in `bison --help'.
6196@noindent
6197Operations modes:
6198@table @option
6199@item -h
6200@itemx --help
6201Print a summary of the command-line options to Bison and exit.
bfa74976 6202
89cab50d
AD
6203@item -V
6204@itemx --version
6205Print the version number of Bison and exit.
bfa74976 6206
89cab50d
AD
6207@need 1750
6208@item -y
6209@itemx --yacc
89cab50d
AD
6210Equivalent to @samp{-o y.tab.c}; the parser output file is called
6211@file{y.tab.c}, and the other outputs are called @file{y.output} and
6212@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6213file name conventions. Thus, the following shell script can substitute
397ec073
PE
6214for Yacc, and the Bison distribution contains such a script for
6215compatibility with @acronym{POSIX}:
bfa74976 6216
89cab50d 6217@example
397ec073 6218#! /bin/sh
26e06a21 6219bison -y "$@@"
89cab50d
AD
6220@end example
6221@end table
6222
6223@noindent
6224Tuning the parser:
6225
6226@table @option
cd5bd6ac
AD
6227@item -S @var{file}
6228@itemx --skeleton=@var{file}
6229Specify the skeleton to use. You probably don't need this option unless
6230you are developing Bison.
6231
89cab50d
AD
6232@item -t
6233@itemx --debug
4947ebdb
PE
6234In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6235already defined, so that the debugging facilities are compiled.
ec3bc396 6236@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6237
6238@item --locations
d8988b2f 6239Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6240
6241@item -p @var{prefix}
6242@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6243Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6244@xref{Decl Summary}.
bfa74976
RS
6245
6246@item -l
6247@itemx --no-lines
6248Don't put any @code{#line} preprocessor commands in the parser file.
6249Ordinarily Bison puts them in the parser file so that the C compiler
6250and debuggers will associate errors with your source file, the
6251grammar file. This option causes them to associate errors with the
95e742f7 6252parser file, treating it as an independent source file in its own right.
bfa74976 6253
931c7513
RS
6254@item -n
6255@itemx --no-parser
d8988b2f 6256Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6257
89cab50d
AD
6258@item -k
6259@itemx --token-table
d8988b2f 6260Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6261@end table
bfa74976 6262
89cab50d
AD
6263@noindent
6264Adjust the output:
bfa74976 6265
89cab50d
AD
6266@table @option
6267@item -d
d8988b2f
AD
6268@itemx --defines
6269Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447
AD
6270file containing macro definitions for the token type names defined in
6271the grammar and the semantic value type @code{YYSTYPE}, as well as a few
6272@code{extern} variable declarations. @xref{Decl Summary}.
931c7513 6273
342b8b6e 6274@item --defines=@var{defines-file}
d8988b2f 6275Same as above, but save in the file @var{defines-file}.
342b8b6e 6276
89cab50d
AD
6277@item -b @var{file-prefix}
6278@itemx --file-prefix=@var{prefix}
d8988b2f 6279Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6280for all Bison output file names. @xref{Decl Summary}.
bfa74976 6281
ec3bc396
AD
6282@item -r @var{things}
6283@itemx --report=@var{things}
6284Write an extra output file containing verbose description of the comma
6285separated list of @var{things} among:
6286
6287@table @code
6288@item state
6289Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6290@acronym{LALR} automaton.
ec3bc396
AD
6291
6292@item lookahead
6293Implies @code{state} and augments the description of the automaton with
6294each rule's lookahead set.
6295
6296@item itemset
6297Implies @code{state} and augments the description of the automaton with
6298the full set of items for each state, instead of its core only.
6299@end table
6300
6301For instance, on the following grammar
6302
bfa74976
RS
6303@item -v
6304@itemx --verbose
6deb4447
AD
6305Pretend that @code{%verbose} was specified, i.e, write an extra output
6306file containing verbose descriptions of the grammar and
72d2299c 6307parser. @xref{Decl Summary}.
bfa74976 6308
d8988b2f
AD
6309@item -o @var{filename}
6310@itemx --output=@var{filename}
6311Specify the @var{filename} for the parser file.
bfa74976 6312
d8988b2f
AD
6313The other output files' names are constructed from @var{filename} as
6314described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6315
6316@item -g
c827f760
PE
6317Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6318automaton computed by Bison. If the grammar file is @file{foo.y}, the
6319@acronym{VCG} output file will
342b8b6e
AD
6320be @file{foo.vcg}.
6321
6322@item --graph=@var{graph-file}
72d2299c
PE
6323The behavior of @var{--graph} is the same than @samp{-g}. The only
6324difference is that it has an optional argument which is the name of
342b8b6e 6325the output graph filename.
bfa74976
RS
6326@end table
6327
342b8b6e 6328@node Option Cross Key
bfa74976
RS
6329@section Option Cross Key
6330
6331Here is a list of options, alphabetized by long option, to help you find
6332the corresponding short option.
6333
6334@tex
6335\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6336
6337{\tt
6338\line{ --debug \leaderfill -t}
6339\line{ --defines \leaderfill -d}
6340\line{ --file-prefix \leaderfill -b}
342b8b6e 6341\line{ --graph \leaderfill -g}
ff51d159 6342\line{ --help \leaderfill -h}
bfa74976
RS
6343\line{ --name-prefix \leaderfill -p}
6344\line{ --no-lines \leaderfill -l}
931c7513 6345\line{ --no-parser \leaderfill -n}
d8988b2f 6346\line{ --output \leaderfill -o}
931c7513 6347\line{ --token-table \leaderfill -k}
bfa74976
RS
6348\line{ --verbose \leaderfill -v}
6349\line{ --version \leaderfill -V}
6350\line{ --yacc \leaderfill -y}
6351}
6352@end tex
6353
6354@ifinfo
6355@example
6356--debug -t
342b8b6e 6357--defines=@var{defines-file} -d
bfa74976 6358--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6359--graph=@var{graph-file} -d
ff51d159 6360--help -h
931c7513 6361--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6362--no-lines -l
931c7513 6363--no-parser -n
d8988b2f 6364--output=@var{outfile} -o @var{outfile}
931c7513 6365--token-table -k
bfa74976
RS
6366--verbose -v
6367--version -V
8c9a50be 6368--yacc -y
bfa74976
RS
6369@end example
6370@end ifinfo
6371
93dd49ab
PE
6372@node Yacc Library
6373@section Yacc Library
6374
6375The Yacc library contains default implementations of the
6376@code{yyerror} and @code{main} functions. These default
6377implementations are normally not useful, but @acronym{POSIX} requires
6378them. To use the Yacc library, link your program with the
6379@option{-ly} option. Note that Bison's implementation of the Yacc
6380library is distributed under the terms of the @acronym{GNU} General
6381Public License (@pxref{Copying}).
6382
6383If you use the Yacc library's @code{yyerror} function, you should
6384declare @code{yyerror} as follows:
6385
6386@example
6387int yyerror (char const *);
6388@end example
6389
6390Bison ignores the @code{int} value returned by this @code{yyerror}.
6391If you use the Yacc library's @code{main} function, your
6392@code{yyparse} function should have the following type signature:
6393
6394@example
6395int yyparse (void);
6396@end example
6397
d1a1114f
AD
6398@c ================================================= Invoking Bison
6399
6400@node FAQ
6401@chapter Frequently Asked Questions
6402@cindex frequently asked questions
6403@cindex questions
6404
6405Several questions about Bison come up occasionally. Here some of them
6406are addressed.
6407
6408@menu
6409* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 6410* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 6411* Strings are Destroyed:: @code{yylval} Loses Track of Strings
a06ea4aa
AD
6412* C++ Parsers:: Compiling Parsers with C++ Compilers
6413* Implementing Loops:: Control Flow in the Calculator
d1a1114f
AD
6414@end menu
6415
6416@node Parser Stack Overflow
6417@section Parser Stack Overflow
6418
6419@display
6420My parser returns with error with a @samp{parser stack overflow}
6421message. What can I do?
6422@end display
6423
6424This question is already addressed elsewhere, @xref{Recursion,
6425,Recursive Rules}.
6426
e64fec0a
PE
6427@node How Can I Reset the Parser
6428@section How Can I Reset the Parser
5b066063 6429
0e14ad77
PE
6430The following phenomenon has several symptoms, resulting in the
6431following typical questions:
5b066063
AD
6432
6433@display
6434I invoke @code{yyparse} several times, and on correct input it works
6435properly; but when a parse error is found, all the other calls fail
0e14ad77 6436too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
6437@end display
6438
6439@noindent
6440or
6441
6442@display
0e14ad77 6443My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
6444which case I run @code{yyparse} from @code{yyparse}. This fails
6445although I did specify I needed a @code{%pure-parser}.
6446@end display
6447
0e14ad77
PE
6448These problems typically come not from Bison itself, but from
6449Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
6450speed, they might not notice a change of input file. As a
6451demonstration, consider the following source file,
6452@file{first-line.l}:
6453
6454@verbatim
6455%{
6456#include <stdio.h>
6457#include <stdlib.h>
6458%}
6459%%
6460.*\n ECHO; return 1;
6461%%
6462int
0e14ad77 6463yyparse (char const *file)
5b066063
AD
6464{
6465 yyin = fopen (file, "r");
6466 if (!yyin)
6467 exit (2);
6468 /* One token only. */
6469 yylex ();
0e14ad77 6470 if (fclose (yyin) != 0)
5b066063
AD
6471 exit (3);
6472 return 0;
6473}
6474
6475int
0e14ad77 6476main (void)
5b066063
AD
6477{
6478 yyparse ("input");
6479 yyparse ("input");
6480 return 0;
6481}
6482@end verbatim
6483
6484@noindent
6485If the file @file{input} contains
6486
6487@verbatim
6488input:1: Hello,
6489input:2: World!
6490@end verbatim
6491
6492@noindent
0e14ad77 6493then instead of getting the first line twice, you get:
5b066063
AD
6494
6495@example
6496$ @kbd{flex -ofirst-line.c first-line.l}
6497$ @kbd{gcc -ofirst-line first-line.c -ll}
6498$ @kbd{./first-line}
6499input:1: Hello,
6500input:2: World!
6501@end example
6502
0e14ad77
PE
6503Therefore, whenever you change @code{yyin}, you must tell the
6504Lex-generated scanner to discard its current buffer and switch to the
6505new one. This depends upon your implementation of Lex; see its
6506documentation for more. For Flex, it suffices to call
6507@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
6508Flex-generated scanner needs to read from several input streams to
6509handle features like include files, you might consider using Flex
6510functions like @samp{yy_switch_to_buffer} that manipulate multiple
6511input buffers.
5b066063 6512
b165c324
AD
6513If your Flex-generated scanner uses start conditions (@pxref{Start
6514conditions, , Start conditions, flex, The Flex Manual}), you might
6515also want to reset the scanner's state, i.e., go back to the initial
6516start condition, through a call to @samp{BEGIN (0)}.
6517
fef4cb51
AD
6518@node Strings are Destroyed
6519@section Strings are Destroyed
6520
6521@display
c7e441b4 6522My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
6523them. Instead of reporting @samp{"foo", "bar"}, it reports
6524@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
6525@end display
6526
6527This error is probably the single most frequent ``bug report'' sent to
6528Bison lists, but is only concerned with a misunderstanding of the role
6529of scanner. Consider the following Lex code:
6530
6531@verbatim
6532%{
6533#include <stdio.h>
6534char *yylval = NULL;
6535%}
6536%%
6537.* yylval = yytext; return 1;
6538\n /* IGNORE */
6539%%
6540int
6541main ()
6542{
6543 /* Similar to using $1, $2 in a Bison action. */
6544 char *fst = (yylex (), yylval);
6545 char *snd = (yylex (), yylval);
6546 printf ("\"%s\", \"%s\"\n", fst, snd);
6547 return 0;
6548}
6549@end verbatim
6550
6551If you compile and run this code, you get:
6552
6553@example
6554$ @kbd{flex -osplit-lines.c split-lines.l}
6555$ @kbd{gcc -osplit-lines split-lines.c -ll}
6556$ @kbd{printf 'one\ntwo\n' | ./split-lines}
6557"one
6558two", "two"
6559@end example
6560
6561@noindent
6562this is because @code{yytext} is a buffer provided for @emph{reading}
6563in the action, but if you want to keep it, you have to duplicate it
6564(e.g., using @code{strdup}). Note that the output may depend on how
6565your implementation of Lex handles @code{yytext}. For instance, when
6566given the Lex compatibility option @option{-l} (which triggers the
6567option @samp{%array}) Flex generates a different behavior:
6568
6569@example
6570$ @kbd{flex -l -osplit-lines.c split-lines.l}
6571$ @kbd{gcc -osplit-lines split-lines.c -ll}
6572$ @kbd{printf 'one\ntwo\n' | ./split-lines}
6573"two", "two"
6574@end example
6575
6576
a06ea4aa
AD
6577@node C++ Parsers
6578@section C++ Parsers
6579
6580@display
6581How can I generate parsers in C++?
6582@end display
6583
6584We are working on a C++ output for Bison, but unfortunately, for lack
6585of time, the skeleton is not finished. It is functional, but in
6586numerous respects, it will require additional work which @emph{might}
6587break backward compatibility. Since the skeleton for C++ is not
6588documented, we do not consider ourselves bound to this interface,
6589nevertheless, as much as possible we will try to keep compatibility.
6590
6591Another possibility is to use the regular C parsers, and to compile
6592them with a C++ compiler. This works properly, provided that you bear
6593some simple C++ rules in mind, such as not including ``real classes''
6594(i.e., structure with constructors) in unions. Therefore, in the
6595@code{%union}, use pointers to classes, or better yet, a single
6596pointer type to the root of your lexical/syntactic hierarchy.
6597
6598
6599@node Implementing Loops
6600@section Implementing Loops
6601
6602@display
6603My simple calculator supports variables, assignments, and functions,
6604but how can I implement loops?
6605@end display
6606
6607Although very pedagogical, the examples included in the document blur
a1c84f45 6608the distinction to make between the parser---whose job is to recover
a06ea4aa 6609the structure of a text and to transmit it to subsequent modules of
a1c84f45 6610the program---and the processing (such as the execution) of this
a06ea4aa
AD
6611structure. This works well with so called straight line programs,
6612i.e., precisely those that have a straightforward execution model:
6613execute simple instructions one after the others.
6614
6615@cindex abstract syntax tree
6616@cindex @acronym{AST}
6617If you want a richer model, you will probably need to use the parser
6618to construct a tree that does represent the structure it has
6619recovered; this tree is usually called the @dfn{abstract syntax tree},
6620or @dfn{@acronym{AST}} for short. Then, walking through this tree,
6621traversing it in various ways, will enable treatments such as its
6622execution or its translation, which will result in an interpreter or a
6623compiler.
6624
6625This topic is way beyond the scope of this manual, and the reader is
6626invited to consult the dedicated literature.
6627
6628
6629
d1a1114f
AD
6630@c ================================================= Table of Symbols
6631
342b8b6e 6632@node Table of Symbols
bfa74976
RS
6633@appendix Bison Symbols
6634@cindex Bison symbols, table of
6635@cindex symbols in Bison, table of
6636
18b519c0 6637@deffn {Variable} @@$
3ded9a63 6638In an action, the location of the left-hand side of the rule.
88bce5a2 6639@xref{Locations, , Locations Overview}.
18b519c0 6640@end deffn
3ded9a63 6641
18b519c0 6642@deffn {Variable} @@@var{n}
3ded9a63
AD
6643In an action, the location of the @var{n}-th symbol of the right-hand
6644side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 6645@end deffn
3ded9a63 6646
18b519c0 6647@deffn {Variable} $$
3ded9a63
AD
6648In an action, the semantic value of the left-hand side of the rule.
6649@xref{Actions}.
18b519c0 6650@end deffn
3ded9a63 6651
18b519c0 6652@deffn {Variable} $@var{n}
3ded9a63
AD
6653In an action, the semantic value of the @var{n}-th symbol of the
6654right-hand side of the rule. @xref{Actions}.
18b519c0 6655@end deffn
3ded9a63 6656
18b519c0 6657@deffn {Symbol} $accept
88bce5a2
AD
6658The predefined nonterminal whose only rule is @samp{$accept: @var{start}
6659$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
6660Start-Symbol}. It cannot be used in the grammar.
18b519c0 6661@end deffn
88bce5a2 6662
18b519c0 6663@deffn {Symbol} $end
88bce5a2
AD
6664The predefined token marking the end of the token stream. It cannot be
6665used in the grammar.
18b519c0 6666@end deffn
88bce5a2 6667
18b519c0 6668@deffn {Symbol} $undefined
88bce5a2
AD
6669The predefined token onto which all undefined values returned by
6670@code{yylex} are mapped. It cannot be used in the grammar, rather, use
6671@code{error}.
18b519c0 6672@end deffn
88bce5a2 6673
18b519c0 6674@deffn {Symbol} error
bfa74976
RS
6675A token name reserved for error recovery. This token may be used in
6676grammar rules so as to allow the Bison parser to recognize an error in
6677the grammar without halting the process. In effect, a sentence
6e649e65 6678containing an error may be recognized as valid. On a syntax error, the
bfa74976
RS
6679token @code{error} becomes the current look-ahead token. Actions
6680corresponding to @code{error} are then executed, and the look-ahead
6681token is reset to the token that originally caused the violation.
6682@xref{Error Recovery}.
18b519c0 6683@end deffn
bfa74976 6684
18b519c0 6685@deffn {Macro} YYABORT
bfa74976
RS
6686Macro to pretend that an unrecoverable syntax error has occurred, by
6687making @code{yyparse} return 1 immediately. The error reporting
ceed8467
AD
6688function @code{yyerror} is not called. @xref{Parser Function, ,The
6689Parser Function @code{yyparse}}.
18b519c0 6690@end deffn
bfa74976 6691
18b519c0 6692@deffn {Macro} YYACCEPT
bfa74976 6693Macro to pretend that a complete utterance of the language has been
13863333 6694read, by making @code{yyparse} return 0 immediately.
bfa74976 6695@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6696@end deffn
bfa74976 6697
18b519c0 6698@deffn {Macro} YYBACKUP
bfa74976
RS
6699Macro to discard a value from the parser stack and fake a look-ahead
6700token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6701@end deffn
bfa74976 6702
18b519c0 6703@deffn {Macro} YYDEBUG
72d2299c 6704Macro to define to equip the parser with tracing code. @xref{Tracing,
ec3bc396 6705,Tracing Your Parser}.
18b519c0 6706@end deffn
3ded9a63 6707
18b519c0 6708@deffn {Macro} YYERROR
bfa74976
RS
6709Macro to pretend that a syntax error has just been detected: call
6710@code{yyerror} and then perform normal error recovery if possible
6711(@pxref{Error Recovery}), or (if recovery is impossible) make
6712@code{yyparse} return 1. @xref{Error Recovery}.
18b519c0 6713@end deffn
bfa74976 6714
18b519c0 6715@deffn {Macro} YYERROR_VERBOSE
b69d743e
PE
6716An obsolete macro that you define with @code{#define} in the prologue
6717to request verbose, specific error message strings
2a8d363a
AD
6718when @code{yyerror} is called. It doesn't matter what definition you
6719use for @code{YYERROR_VERBOSE}, just whether you define it. Using
6720@code{%error-verbose} is preferred.
18b519c0 6721@end deffn
bfa74976 6722
18b519c0 6723@deffn {Macro} YYINITDEPTH
bfa74976
RS
6724Macro for specifying the initial size of the parser stack.
6725@xref{Stack Overflow}.
18b519c0 6726@end deffn
bfa74976 6727
18b519c0 6728@deffn {Macro} YYLEX_PARAM
2a8d363a
AD
6729An obsolete macro for specifying an extra argument (or list of extra
6730arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
6731macro is deprecated, and is supported only for Yacc like parsers.
6732@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
18b519c0 6733@end deffn
c656404a 6734
6273355b
PE
6735@deffn {Type} YYLTYPE
6736Data type of @code{yylloc}; by default, a structure with four
847bf1f5 6737members. @xref{Location Type, , Data Types of Locations}.
18b519c0 6738@end deffn
bfa74976 6739
18b519c0
AD
6740@deffn {Macro} YYMAXDEPTH
6741Macro for specifying the maximum size of the parser stack. @xref{Stack
6742Overflow}.
6743@end deffn
bfa74976 6744
18b519c0 6745@deffn {Macro} YYPARSE_PARAM
2a8d363a
AD
6746An obsolete macro for specifying the name of a parameter that
6747@code{yyparse} should accept. The use of this macro is deprecated, and
6748is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
6749Conventions for Pure Parsers}.
18b519c0 6750@end deffn
c656404a 6751
18b519c0 6752@deffn {Macro} YYRECOVERING
bfa74976
RS
6753Macro whose value indicates whether the parser is recovering from a
6754syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6755@end deffn
bfa74976 6756
18b519c0 6757@deffn {Macro} YYSTACK_USE_ALLOCA
72d2299c 6758Macro used to control the use of @code{alloca}. If defined to @samp{0},
f9a8293a 6759the parser will not use @code{alloca} but @code{malloc} when trying to
72d2299c 6760grow its internal stacks. Do @emph{not} define @code{YYSTACK_USE_ALLOCA}
f9a8293a 6761to anything else.
18b519c0 6762@end deffn
f9a8293a 6763
6273355b
PE
6764@deffn {Type} YYSTYPE
6765Data type of semantic values; @code{int} by default.
bfa74976 6766@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 6767@end deffn
bfa74976 6768
18b519c0 6769@deffn {Variable} yychar
13863333
AD
6770External integer variable that contains the integer value of the current
6771look-ahead token. (In a pure parser, it is a local variable within
6772@code{yyparse}.) Error-recovery rule actions may examine this variable.
6773@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6774@end deffn
bfa74976 6775
18b519c0 6776@deffn {Variable} yyclearin
bfa74976
RS
6777Macro used in error-recovery rule actions. It clears the previous
6778look-ahead token. @xref{Error Recovery}.
18b519c0 6779@end deffn
bfa74976 6780
18b519c0 6781@deffn {Variable} yydebug
bfa74976
RS
6782External integer variable set to zero by default. If @code{yydebug}
6783is given a nonzero value, the parser will output information on input
ec3bc396 6784symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 6785@end deffn
bfa74976 6786
18b519c0 6787@deffn {Macro} yyerrok
bfa74976 6788Macro to cause parser to recover immediately to its normal mode
6e649e65 6789after a syntax error. @xref{Error Recovery}.
18b519c0 6790@end deffn
bfa74976 6791
18b519c0 6792@deffn {Function} yyerror
38a92d50
PE
6793User-supplied function to be called by @code{yyparse} on error.
6794@xref{Error Reporting, ,The Error
13863333 6795Reporting Function @code{yyerror}}.
18b519c0 6796@end deffn
bfa74976 6797
18b519c0 6798@deffn {Function} yylex
704a47c4
AD
6799User-supplied lexical analyzer function, called with no arguments to get
6800the next token. @xref{Lexical, ,The Lexical Analyzer Function
6801@code{yylex}}.
18b519c0 6802@end deffn
bfa74976 6803
18b519c0 6804@deffn {Variable} yylval
bfa74976
RS
6805External variable in which @code{yylex} should place the semantic
6806value associated with a token. (In a pure parser, it is a local
6807variable within @code{yyparse}, and its address is passed to
6808@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 6809@end deffn
bfa74976 6810
18b519c0 6811@deffn {Variable} yylloc
13863333
AD
6812External variable in which @code{yylex} should place the line and column
6813numbers associated with a token. (In a pure parser, it is a local
6814variable within @code{yyparse}, and its address is passed to
bfa74976 6815@code{yylex}.) You can ignore this variable if you don't use the
95923bd6
AD
6816@samp{@@} feature in the grammar actions. @xref{Token Locations,
6817,Textual Locations of Tokens}.
18b519c0 6818@end deffn
bfa74976 6819
18b519c0 6820@deffn {Variable} yynerrs
6e649e65 6821Global variable which Bison increments each time there is a syntax error.
13863333
AD
6822(In a pure parser, it is a local variable within @code{yyparse}.)
6823@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
18b519c0 6824@end deffn
bfa74976 6825
18b519c0 6826@deffn {Function} yyparse
bfa74976
RS
6827The parser function produced by Bison; call this function to start
6828parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6829@end deffn
bfa74976 6830
18b519c0 6831@deffn {Directive} %debug
6deb4447 6832Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 6833@end deffn
6deb4447 6834
91d2c560 6835@ifset defaultprec
22fccf95
PE
6836@deffn {Directive} %default-prec
6837Assign a precedence to rules that lack an explicit @samp{%prec}
6838modifier. @xref{Contextual Precedence, ,Context-Dependent
6839Precedence}.
39a06c25 6840@end deffn
91d2c560 6841@end ifset
39a06c25 6842
18b519c0 6843@deffn {Directive} %defines
6deb4447
AD
6844Bison declaration to create a header file meant for the scanner.
6845@xref{Decl Summary}.
18b519c0 6846@end deffn
6deb4447 6847
18b519c0 6848@deffn {Directive} %destructor
72f889cc
AD
6849Specifying how the parser should reclaim the memory associated to
6850discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 6851@end deffn
72f889cc 6852
18b519c0 6853@deffn {Directive} %dprec
676385e2 6854Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
6855time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
6856@acronym{GLR} Parsers}.
18b519c0 6857@end deffn
676385e2 6858
18b519c0 6859@deffn {Directive} %error-verbose
2a8d363a
AD
6860Bison declaration to request verbose, specific error message strings
6861when @code{yyerror} is called.
18b519c0 6862@end deffn
2a8d363a 6863
18b519c0 6864@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 6865Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 6866Summary}.
18b519c0 6867@end deffn
d8988b2f 6868
18b519c0 6869@deffn {Directive} %glr-parser
c827f760
PE
6870Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
6871Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 6872@end deffn
676385e2 6873
18b519c0 6874@deffn {Directive} %left
bfa74976
RS
6875Bison declaration to assign left associativity to token(s).
6876@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 6877@end deffn
bfa74976 6878
feeb0eda 6879@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
6880Bison declaration to specifying an additional parameter that
6881@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
6882for Pure Parsers}.
18b519c0 6883@end deffn
2a8d363a 6884
18b519c0 6885@deffn {Directive} %merge
676385e2 6886Bison declaration to assign a merging function to a rule. If there is a
fae437e8 6887reduce/reduce conflict with a rule having the same merging function, the
676385e2 6888function is applied to the two semantic values to get a single result.
c827f760 6889@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 6890@end deffn
676385e2 6891
18b519c0 6892@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 6893Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 6894@end deffn
d8988b2f 6895
91d2c560 6896@ifset defaultprec
22fccf95
PE
6897@deffn {Directive} %no-default-prec
6898Do not assign a precedence to rules that lack an explicit @samp{%prec}
6899modifier. @xref{Contextual Precedence, ,Context-Dependent
6900Precedence}.
6901@end deffn
91d2c560 6902@end ifset
22fccf95 6903
18b519c0 6904@deffn {Directive} %no-lines
931c7513
RS
6905Bison declaration to avoid generating @code{#line} directives in the
6906parser file. @xref{Decl Summary}.
18b519c0 6907@end deffn
931c7513 6908
18b519c0 6909@deffn {Directive} %nonassoc
14ded682 6910Bison declaration to assign non-associativity to token(s).
bfa74976 6911@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 6912@end deffn
bfa74976 6913
18b519c0 6914@deffn {Directive} %output="@var{filename}"
72d2299c 6915Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 6916Summary}.
18b519c0 6917@end deffn
d8988b2f 6918
feeb0eda 6919@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
6920Bison declaration to specifying an additional parameter that
6921@code{yyparse} should accept. @xref{Parser Function,, The Parser
6922Function @code{yyparse}}.
18b519c0 6923@end deffn
2a8d363a 6924
18b519c0 6925@deffn {Directive} %prec
bfa74976
RS
6926Bison declaration to assign a precedence to a specific rule.
6927@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 6928@end deffn
bfa74976 6929
18b519c0 6930@deffn {Directive} %pure-parser
bfa74976
RS
6931Bison declaration to request a pure (reentrant) parser.
6932@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 6933@end deffn
bfa74976 6934
18b519c0 6935@deffn {Directive} %right
bfa74976
RS
6936Bison declaration to assign right associativity to token(s).
6937@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 6938@end deffn
bfa74976 6939
18b519c0 6940@deffn {Directive} %start
704a47c4
AD
6941Bison declaration to specify the start symbol. @xref{Start Decl, ,The
6942Start-Symbol}.
18b519c0 6943@end deffn
bfa74976 6944
18b519c0 6945@deffn {Directive} %token
bfa74976
RS
6946Bison declaration to declare token(s) without specifying precedence.
6947@xref{Token Decl, ,Token Type Names}.
18b519c0 6948@end deffn
bfa74976 6949
18b519c0 6950@deffn {Directive} %token-table
931c7513
RS
6951Bison declaration to include a token name table in the parser file.
6952@xref{Decl Summary}.
18b519c0 6953@end deffn
931c7513 6954
18b519c0 6955@deffn {Directive} %type
704a47c4
AD
6956Bison declaration to declare nonterminals. @xref{Type Decl,
6957,Nonterminal Symbols}.
18b519c0 6958@end deffn
bfa74976 6959
18b519c0 6960@deffn {Directive} %union
bfa74976
RS
6961Bison declaration to specify several possible data types for semantic
6962values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 6963@end deffn
bfa74976 6964
3ded9a63
AD
6965@sp 1
6966
bfa74976
RS
6967These are the punctuation and delimiters used in Bison input:
6968
18b519c0 6969@deffn {Delimiter} %%
bfa74976 6970Delimiter used to separate the grammar rule section from the
75f5aaea 6971Bison declarations section or the epilogue.
bfa74976 6972@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 6973@end deffn
bfa74976 6974
18b519c0
AD
6975@c Don't insert spaces, or check the DVI output.
6976@deffn {Delimiter} %@{@var{code}%@}
89cab50d 6977All code listed between @samp{%@{} and @samp{%@}} is copied directly to
342b8b6e 6978the output file uninterpreted. Such code forms the prologue of the input
75f5aaea 6979file. @xref{Grammar Outline, ,Outline of a Bison
89cab50d 6980Grammar}.
18b519c0 6981@end deffn
bfa74976 6982
18b519c0 6983@deffn {Construct} /*@dots{}*/
bfa74976 6984Comment delimiters, as in C.
18b519c0 6985@end deffn
bfa74976 6986
18b519c0 6987@deffn {Delimiter} :
89cab50d
AD
6988Separates a rule's result from its components. @xref{Rules, ,Syntax of
6989Grammar Rules}.
18b519c0 6990@end deffn
bfa74976 6991
18b519c0 6992@deffn {Delimiter} ;
bfa74976 6993Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 6994@end deffn
bfa74976 6995
18b519c0 6996@deffn {Delimiter} |
bfa74976
RS
6997Separates alternate rules for the same result nonterminal.
6998@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 6999@end deffn
bfa74976 7000
342b8b6e 7001@node Glossary
bfa74976
RS
7002@appendix Glossary
7003@cindex glossary
7004
7005@table @asis
c827f760
PE
7006@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
7007Formal method of specifying context-free grammars originally proposed
7008by John Backus, and slightly improved by Peter Naur in his 1960-01-02
7009committee document contributing to what became the Algol 60 report.
7010@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
7011
7012@item Context-free grammars
7013Grammars specified as rules that can be applied regardless of context.
7014Thus, if there is a rule which says that an integer can be used as an
7015expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
7016permitted. @xref{Language and Grammar, ,Languages and Context-Free
7017Grammars}.
bfa74976
RS
7018
7019@item Dynamic allocation
7020Allocation of memory that occurs during execution, rather than at
7021compile time or on entry to a function.
7022
7023@item Empty string
7024Analogous to the empty set in set theory, the empty string is a
7025character string of length zero.
7026
7027@item Finite-state stack machine
7028A ``machine'' that has discrete states in which it is said to exist at
7029each instant in time. As input to the machine is processed, the
7030machine moves from state to state as specified by the logic of the
7031machine. In the case of the parser, the input is the language being
7032parsed, and the states correspond to various stages in the grammar
c827f760 7033rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 7034
c827f760 7035@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 7036A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
7037that are not @acronym{LALR}(1). It resolves situations that Bison's
7038usual @acronym{LALR}(1)
676385e2
PH
7039algorithm cannot by effectively splitting off multiple parsers, trying all
7040possible parsers, and discarding those that fail in the light of additional
c827f760
PE
7041right context. @xref{Generalized LR Parsing, ,Generalized
7042@acronym{LR} Parsing}.
676385e2 7043
bfa74976
RS
7044@item Grouping
7045A language construct that is (in general) grammatically divisible;
c827f760 7046for example, `expression' or `declaration' in C@.
bfa74976
RS
7047@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7048
7049@item Infix operator
7050An arithmetic operator that is placed between the operands on which it
7051performs some operation.
7052
7053@item Input stream
7054A continuous flow of data between devices or programs.
7055
7056@item Language construct
7057One of the typical usage schemas of the language. For example, one of
7058the constructs of the C language is the @code{if} statement.
7059@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7060
7061@item Left associativity
7062Operators having left associativity are analyzed from left to right:
7063@samp{a+b+c} first computes @samp{a+b} and then combines with
7064@samp{c}. @xref{Precedence, ,Operator Precedence}.
7065
7066@item Left recursion
89cab50d
AD
7067A rule whose result symbol is also its first component symbol; for
7068example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
7069Rules}.
bfa74976
RS
7070
7071@item Left-to-right parsing
7072Parsing a sentence of a language by analyzing it token by token from
c827f760 7073left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
7074
7075@item Lexical analyzer (scanner)
7076A function that reads an input stream and returns tokens one by one.
7077@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
7078
7079@item Lexical tie-in
7080A flag, set by actions in the grammar rules, which alters the way
7081tokens are parsed. @xref{Lexical Tie-ins}.
7082
931c7513 7083@item Literal string token
14ded682 7084A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 7085
bfa74976 7086@item Look-ahead token
89cab50d
AD
7087A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
7088Tokens}.
bfa74976 7089
c827f760 7090@item @acronym{LALR}(1)
bfa74976 7091The class of context-free grammars that Bison (like most other parser
c827f760
PE
7092generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
7093Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 7094
c827f760 7095@item @acronym{LR}(1)
bfa74976
RS
7096The class of context-free grammars in which at most one token of
7097look-ahead is needed to disambiguate the parsing of any piece of input.
7098
7099@item Nonterminal symbol
7100A grammar symbol standing for a grammatical construct that can
7101be expressed through rules in terms of smaller constructs; in other
7102words, a construct that is not a token. @xref{Symbols}.
7103
bfa74976
RS
7104@item Parser
7105A function that recognizes valid sentences of a language by analyzing
7106the syntax structure of a set of tokens passed to it from a lexical
7107analyzer.
7108
7109@item Postfix operator
7110An arithmetic operator that is placed after the operands upon which it
7111performs some operation.
7112
7113@item Reduction
7114Replacing a string of nonterminals and/or terminals with a single
89cab50d 7115nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 7116Parser Algorithm}.
bfa74976
RS
7117
7118@item Reentrant
7119A reentrant subprogram is a subprogram which can be in invoked any
7120number of times in parallel, without interference between the various
7121invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
7122
7123@item Reverse polish notation
7124A language in which all operators are postfix operators.
7125
7126@item Right recursion
89cab50d
AD
7127A rule whose result symbol is also its last component symbol; for
7128example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
7129Rules}.
bfa74976
RS
7130
7131@item Semantics
7132In computer languages, the semantics are specified by the actions
7133taken for each instance of the language, i.e., the meaning of
7134each statement. @xref{Semantics, ,Defining Language Semantics}.
7135
7136@item Shift
7137A parser is said to shift when it makes the choice of analyzing
7138further input from the stream rather than reducing immediately some
c827f760 7139already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
7140
7141@item Single-character literal
7142A single character that is recognized and interpreted as is.
7143@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
7144
7145@item Start symbol
7146The nonterminal symbol that stands for a complete valid utterance in
7147the language being parsed. The start symbol is usually listed as the
13863333 7148first nonterminal symbol in a language specification.
bfa74976
RS
7149@xref{Start Decl, ,The Start-Symbol}.
7150
7151@item Symbol table
7152A data structure where symbol names and associated data are stored
7153during parsing to allow for recognition and use of existing
7154information in repeated uses of a symbol. @xref{Multi-function Calc}.
7155
6e649e65
PE
7156@item Syntax error
7157An error encountered during parsing of an input stream due to invalid
7158syntax. @xref{Error Recovery}.
7159
bfa74976
RS
7160@item Token
7161A basic, grammatically indivisible unit of a language. The symbol
7162that describes a token in the grammar is a terminal symbol.
7163The input of the Bison parser is a stream of tokens which comes from
7164the lexical analyzer. @xref{Symbols}.
7165
7166@item Terminal symbol
89cab50d
AD
7167A grammar symbol that has no rules in the grammar and therefore is
7168grammatically indivisible. The piece of text it represents is a token.
7169@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
7170@end table
7171
342b8b6e 7172@node Copying This Manual
f2b5126e 7173@appendix Copying This Manual
f9a8293a 7174
f2b5126e
PB
7175@menu
7176* GNU Free Documentation License:: License for copying this manual.
7177@end menu
f9a8293a 7178
f2b5126e
PB
7179@include fdl.texi
7180
342b8b6e 7181@node Index
bfa74976
RS
7182@unnumbered Index
7183
7184@printindex cp
7185
bfa74976 7186@bye
a06ea4aa
AD
7187
7188@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
7189@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
7190@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
7191@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
7192@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
7193@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
7194@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
7195@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
7196@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
7197@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
7198@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
7199@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
7200@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
7201@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
7202@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
7203@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
7204@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
7205@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
7206@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
7207@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
7208@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
7209@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
7210@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
7211@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
7212@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
7213@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
7214@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
7215@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
7216@c LocalWords: YYSTACK DVI fdl printindex