]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Get rid of broken %no-parser, -n, and --no-parser implementation and
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
bb32f4f2 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
8405b70c 107* Other Languages:: Creating C++ and Java parsers.
12545799 108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
208
93dd49ab
PE
209Tracking Locations
210
211* Location Type:: Specifying a data type for locations.
212* Actions and Locations:: Using locations in actions.
213* Location Default Action:: Defining a general way to compute locations.
214
bfa74976
RS
215Bison Declarations
216
b50d2359 217* Require Decl:: Requiring a Bison version.
bfa74976
RS
218* Token Decl:: Declaring terminal symbols.
219* Precedence Decl:: Declaring terminals with precedence and associativity.
220* Union Decl:: Declaring the set of all semantic value types.
221* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 222* Initial Action Decl:: Code run before parsing starts.
72f889cc 223* Destructor Decl:: Declaring how symbols are freed.
d6328241 224* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
225* Start Decl:: Specifying the start symbol.
226* Pure Decl:: Requesting a reentrant parser.
227* Decl Summary:: Table of all Bison declarations.
228
229Parser C-Language Interface
230
231* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 232* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
233 which reads tokens.
234* Error Reporting:: You must supply a function @code{yyerror}.
235* Action Features:: Special features for use in actions.
f7ab6a50
PE
236* Internationalization:: How to let the parser speak in the user's
237 native language.
bfa74976
RS
238
239The Lexical Analyzer Function @code{yylex}
240
241* Calling Convention:: How @code{yyparse} calls @code{yylex}.
242* Token Values:: How @code{yylex} must return the semantic value
243 of the token it has read.
95923bd6 244* Token Locations:: How @code{yylex} must return the text location
bfa74976 245 (line number, etc.) of the token, if the
93dd49ab 246 actions want that.
bfa74976
RS
247* Pure Calling:: How the calling convention differs
248 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
249
13863333 250The Bison Parser Algorithm
bfa74976 251
742e4900 252* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
253* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
254* Precedence:: Operator precedence works by resolving conflicts.
255* Contextual Precedence:: When an operator's precedence depends on context.
256* Parser States:: The parser is a finite-state-machine with stack.
257* Reduce/Reduce:: When two rules are applicable in the same situation.
258* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 259* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 260* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
261
262Operator Precedence
263
264* Why Precedence:: An example showing why precedence is needed.
265* Using Precedence:: How to specify precedence in Bison grammars.
266* Precedence Examples:: How these features are used in the previous example.
267* How Precedence:: How they work.
268
269Handling Context Dependencies
270
271* Semantic Tokens:: Token parsing can depend on the semantic context.
272* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
273* Tie-in Recovery:: Lexical tie-ins have implications for how
274 error recovery rules must be written.
275
93dd49ab 276Debugging Your Parser
ec3bc396
AD
277
278* Understanding:: Understanding the structure of your parser.
279* Tracing:: Tracing the execution of your parser.
280
bfa74976
RS
281Invoking Bison
282
13863333 283* Bison Options:: All the options described in detail,
c827f760 284 in alphabetical order by short options.
bfa74976 285* Option Cross Key:: Alphabetical list of long options.
93dd49ab 286* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 287
8405b70c 288Parsers Written In Other Languages
12545799
AD
289
290* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 291* Java Parsers:: The interface to generate Java parser classes
12545799
AD
292
293C++ Parsers
294
295* C++ Bison Interface:: Asking for C++ parser generation
296* C++ Semantic Values:: %union vs. C++
297* C++ Location Values:: The position and location classes
298* C++ Parser Interface:: Instantiating and running the parser
299* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 300* A Complete C++ Example:: Demonstrating their use
12545799
AD
301
302A Complete C++ Example
303
304* Calc++ --- C++ Calculator:: The specifications
305* Calc++ Parsing Driver:: An active parsing context
306* Calc++ Parser:: A parser class
307* Calc++ Scanner:: A pure C++ Flex scanner
308* Calc++ Top Level:: Conducting the band
309
8405b70c
PB
310Java Parsers
311
312* Java Bison Interface:: Asking for Java parser generation
313* Java Semantic Values:: %type and %token vs. Java
314* Java Location Values:: The position and location classes
315* Java Parser Interface:: Instantiating and running the parser
316* Java Scanner Interface:: Java scanners, and pure parsers
317* Java Differences:: Differences between C/C++ and Java Grammars
318
d1a1114f
AD
319Frequently Asked Questions
320
1a059451 321* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 322* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 323* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 324* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 325* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
326* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
327* I can't build Bison:: Troubleshooting
328* Where can I find help?:: Troubleshouting
329* Bug Reports:: Troublereporting
330* Other Languages:: Parsers in Java and others
331* Beta Testing:: Experimenting development versions
332* Mailing Lists:: Meeting other Bison users
d1a1114f 333
f2b5126e
PB
334Copying This Manual
335
336* GNU Free Documentation License:: License for copying this manual.
337
342b8b6e 338@end detailmenu
bfa74976
RS
339@end menu
340
342b8b6e 341@node Introduction
bfa74976
RS
342@unnumbered Introduction
343@cindex introduction
344
6077da58
PE
345@dfn{Bison} is a general-purpose parser generator that converts an
346annotated context-free grammar into an @acronym{LALR}(1) or
347@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 348Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
349used in simple desk calculators to complex programming languages.
350
351Bison is upward compatible with Yacc: all properly-written Yacc grammars
352ought to work with Bison with no change. Anyone familiar with Yacc
353should be able to use Bison with little trouble. You need to be fluent in
1e137b71 354C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
355
356We begin with tutorial chapters that explain the basic concepts of using
357Bison and show three explained examples, each building on the last. If you
358don't know Bison or Yacc, start by reading these chapters. Reference
359chapters follow which describe specific aspects of Bison in detail.
360
931c7513
RS
361Bison was written primarily by Robert Corbett; Richard Stallman made it
362Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 363multi-character string literals and other features.
931c7513 364
df1af54c 365This edition corresponds to version @value{VERSION} of Bison.
bfa74976 366
342b8b6e 367@node Conditions
bfa74976
RS
368@unnumbered Conditions for Using Bison
369
193d7c70
PE
370The distribution terms for Bison-generated parsers permit using the
371parsers in nonfree programs. Before Bison version 2.2, these extra
372permissions applied only when Bison was generating @acronym{LALR}(1)
373parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 374parsers could be used only in programs that were free software.
a31239f1 375
c827f760
PE
376The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
377compiler, have never
9ecbd125 378had such a requirement. They could always be used for nonfree
a31239f1
RS
379software. The reason Bison was different was not due to a special
380policy decision; it resulted from applying the usual General Public
381License to all of the Bison source code.
382
383The output of the Bison utility---the Bison parser file---contains a
384verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
385parser's implementation. (The actions from your grammar are inserted
386into this implementation at one point, but most of the rest of the
387implementation is not changed.) When we applied the @acronym{GPL}
388terms to the skeleton code for the parser's implementation,
a31239f1
RS
389the effect was to restrict the use of Bison output to free software.
390
391We didn't change the terms because of sympathy for people who want to
392make software proprietary. @strong{Software should be free.} But we
393concluded that limiting Bison's use to free software was doing little to
394encourage people to make other software free. So we decided to make the
395practical conditions for using Bison match the practical conditions for
c827f760 396using the other @acronym{GNU} tools.
bfa74976 397
193d7c70
PE
398This exception applies when Bison is generating code for a parser.
399You can tell whether the exception applies to a Bison output file by
400inspecting the file for text beginning with ``As a special
401exception@dots{}''. The text spells out the exact terms of the
402exception.
262aa8dd 403
c67a198d 404@include gpl.texi
bfa74976 405
342b8b6e 406@node Concepts
bfa74976
RS
407@chapter The Concepts of Bison
408
409This chapter introduces many of the basic concepts without which the
410details of Bison will not make sense. If you do not already know how to
411use Bison or Yacc, we suggest you start by reading this chapter carefully.
412
413@menu
414* Language and Grammar:: Languages and context-free grammars,
415 as mathematical ideas.
416* Grammar in Bison:: How we represent grammars for Bison's sake.
417* Semantic Values:: Each token or syntactic grouping can have
418 a semantic value (the value of an integer,
419 the name of an identifier, etc.).
420* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 421* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 422* Locations Overview:: Tracking Locations.
bfa74976
RS
423* Bison Parser:: What are Bison's input and output,
424 how is the output used?
425* Stages:: Stages in writing and running Bison grammars.
426* Grammar Layout:: Overall structure of a Bison grammar file.
427@end menu
428
342b8b6e 429@node Language and Grammar
bfa74976
RS
430@section Languages and Context-Free Grammars
431
bfa74976
RS
432@cindex context-free grammar
433@cindex grammar, context-free
434In order for Bison to parse a language, it must be described by a
435@dfn{context-free grammar}. This means that you specify one or more
436@dfn{syntactic groupings} and give rules for constructing them from their
437parts. For example, in the C language, one kind of grouping is called an
438`expression'. One rule for making an expression might be, ``An expression
439can be made of a minus sign and another expression''. Another would be,
440``An expression can be an integer''. As you can see, rules are often
441recursive, but there must be at least one rule which leads out of the
442recursion.
443
c827f760 444@cindex @acronym{BNF}
bfa74976
RS
445@cindex Backus-Naur form
446The most common formal system for presenting such rules for humans to read
c827f760
PE
447is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
448order to specify the language Algol 60. Any grammar expressed in
449@acronym{BNF} is a context-free grammar. The input to Bison is
450essentially machine-readable @acronym{BNF}.
bfa74976 451
c827f760
PE
452@cindex @acronym{LALR}(1) grammars
453@cindex @acronym{LR}(1) grammars
676385e2
PH
454There are various important subclasses of context-free grammar. Although it
455can handle almost all context-free grammars, Bison is optimized for what
c827f760 456are called @acronym{LALR}(1) grammars.
676385e2 457In brief, in these grammars, it must be possible to
bfa74976 458tell how to parse any portion of an input string with just a single
742e4900 459token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
460@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
461restrictions that are
bfa74976 462hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
463@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
464@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
465more information on this.
bfa74976 466
c827f760
PE
467@cindex @acronym{GLR} parsing
468@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 469@cindex ambiguous grammars
9d9b8b70 470@cindex nondeterministic parsing
9501dc6e
AD
471
472Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
473roughly that the next grammar rule to apply at any point in the input is
474uniquely determined by the preceding input and a fixed, finite portion
742e4900 475(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 476grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 477apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 478grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 479lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
480With the proper declarations, Bison is also able to parse these more
481general context-free grammars, using a technique known as @acronym{GLR}
482parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
483are able to handle any context-free grammar for which the number of
484possible parses of any given string is finite.
676385e2 485
bfa74976
RS
486@cindex symbols (abstract)
487@cindex token
488@cindex syntactic grouping
489@cindex grouping, syntactic
9501dc6e
AD
490In the formal grammatical rules for a language, each kind of syntactic
491unit or grouping is named by a @dfn{symbol}. Those which are built by
492grouping smaller constructs according to grammatical rules are called
bfa74976
RS
493@dfn{nonterminal symbols}; those which can't be subdivided are called
494@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
495corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 496corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
497
498We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
499nonterminal, mean. The tokens of C are identifiers, constants (numeric
500and string), and the various keywords, arithmetic operators and
501punctuation marks. So the terminal symbols of a grammar for C include
502`identifier', `number', `string', plus one symbol for each keyword,
503operator or punctuation mark: `if', `return', `const', `static', `int',
504`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
505(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
506lexicography, not grammar.)
507
508Here is a simple C function subdivided into tokens:
509
9edcd895
AD
510@ifinfo
511@example
512int /* @r{keyword `int'} */
14d4662b 513square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
514 @r{identifier, close-paren} */
515@{ /* @r{open-brace} */
aa08666d
AD
516 return x * x; /* @r{keyword `return', identifier, asterisk,}
517 @r{identifier, semicolon} */
9edcd895
AD
518@} /* @r{close-brace} */
519@end example
520@end ifinfo
521@ifnotinfo
bfa74976
RS
522@example
523int /* @r{keyword `int'} */
14d4662b 524square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 525@{ /* @r{open-brace} */
9edcd895 526 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
527@} /* @r{close-brace} */
528@end example
9edcd895 529@end ifnotinfo
bfa74976
RS
530
531The syntactic groupings of C include the expression, the statement, the
532declaration, and the function definition. These are represented in the
533grammar of C by nonterminal symbols `expression', `statement',
534`declaration' and `function definition'. The full grammar uses dozens of
535additional language constructs, each with its own nonterminal symbol, in
536order to express the meanings of these four. The example above is a
537function definition; it contains one declaration, and one statement. In
538the statement, each @samp{x} is an expression and so is @samp{x * x}.
539
540Each nonterminal symbol must have grammatical rules showing how it is made
541out of simpler constructs. For example, one kind of C statement is the
542@code{return} statement; this would be described with a grammar rule which
543reads informally as follows:
544
545@quotation
546A `statement' can be made of a `return' keyword, an `expression' and a
547`semicolon'.
548@end quotation
549
550@noindent
551There would be many other rules for `statement', one for each kind of
552statement in C.
553
554@cindex start symbol
555One nonterminal symbol must be distinguished as the special one which
556defines a complete utterance in the language. It is called the @dfn{start
557symbol}. In a compiler, this means a complete input program. In the C
558language, the nonterminal symbol `sequence of definitions and declarations'
559plays this role.
560
561For example, @samp{1 + 2} is a valid C expression---a valid part of a C
562program---but it is not valid as an @emph{entire} C program. In the
563context-free grammar of C, this follows from the fact that `expression' is
564not the start symbol.
565
566The Bison parser reads a sequence of tokens as its input, and groups the
567tokens using the grammar rules. If the input is valid, the end result is
568that the entire token sequence reduces to a single grouping whose symbol is
569the grammar's start symbol. If we use a grammar for C, the entire input
570must be a `sequence of definitions and declarations'. If not, the parser
571reports a syntax error.
572
342b8b6e 573@node Grammar in Bison
bfa74976
RS
574@section From Formal Rules to Bison Input
575@cindex Bison grammar
576@cindex grammar, Bison
577@cindex formal grammar
578
579A formal grammar is a mathematical construct. To define the language
580for Bison, you must write a file expressing the grammar in Bison syntax:
581a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
582
583A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 584as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
585in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
586
587The Bison representation for a terminal symbol is also called a @dfn{token
588type}. Token types as well can be represented as C-like identifiers. By
589convention, these identifiers should be upper case to distinguish them from
590nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
591@code{RETURN}. A terminal symbol that stands for a particular keyword in
592the language should be named after that keyword converted to upper case.
593The terminal symbol @code{error} is reserved for error recovery.
931c7513 594@xref{Symbols}.
bfa74976
RS
595
596A terminal symbol can also be represented as a character literal, just like
597a C character constant. You should do this whenever a token is just a
598single character (parenthesis, plus-sign, etc.): use that same character in
599a literal as the terminal symbol for that token.
600
931c7513
RS
601A third way to represent a terminal symbol is with a C string constant
602containing several characters. @xref{Symbols}, for more information.
603
bfa74976
RS
604The grammar rules also have an expression in Bison syntax. For example,
605here is the Bison rule for a C @code{return} statement. The semicolon in
606quotes is a literal character token, representing part of the C syntax for
607the statement; the naked semicolon, and the colon, are Bison punctuation
608used in every rule.
609
610@example
611stmt: RETURN expr ';'
612 ;
613@end example
614
615@noindent
616@xref{Rules, ,Syntax of Grammar Rules}.
617
342b8b6e 618@node Semantic Values
bfa74976
RS
619@section Semantic Values
620@cindex semantic value
621@cindex value, semantic
622
623A formal grammar selects tokens only by their classifications: for example,
624if a rule mentions the terminal symbol `integer constant', it means that
625@emph{any} integer constant is grammatically valid in that position. The
626precise value of the constant is irrelevant to how to parse the input: if
627@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 628grammatical.
bfa74976
RS
629
630But the precise value is very important for what the input means once it is
631parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6323989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
633has both a token type and a @dfn{semantic value}. @xref{Semantics,
634,Defining Language Semantics},
bfa74976
RS
635for details.
636
637The token type is a terminal symbol defined in the grammar, such as
638@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
639you need to know to decide where the token may validly appear and how to
640group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 641except their types.
bfa74976
RS
642
643The semantic value has all the rest of the information about the
644meaning of the token, such as the value of an integer, or the name of an
645identifier. (A token such as @code{','} which is just punctuation doesn't
646need to have any semantic value.)
647
648For example, an input token might be classified as token type
649@code{INTEGER} and have the semantic value 4. Another input token might
650have the same token type @code{INTEGER} but value 3989. When a grammar
651rule says that @code{INTEGER} is allowed, either of these tokens is
652acceptable because each is an @code{INTEGER}. When the parser accepts the
653token, it keeps track of the token's semantic value.
654
655Each grouping can also have a semantic value as well as its nonterminal
656symbol. For example, in a calculator, an expression typically has a
657semantic value that is a number. In a compiler for a programming
658language, an expression typically has a semantic value that is a tree
659structure describing the meaning of the expression.
660
342b8b6e 661@node Semantic Actions
bfa74976
RS
662@section Semantic Actions
663@cindex semantic actions
664@cindex actions, semantic
665
666In order to be useful, a program must do more than parse input; it must
667also produce some output based on the input. In a Bison grammar, a grammar
668rule can have an @dfn{action} made up of C statements. Each time the
669parser recognizes a match for that rule, the action is executed.
670@xref{Actions}.
13863333 671
bfa74976
RS
672Most of the time, the purpose of an action is to compute the semantic value
673of the whole construct from the semantic values of its parts. For example,
674suppose we have a rule which says an expression can be the sum of two
675expressions. When the parser recognizes such a sum, each of the
676subexpressions has a semantic value which describes how it was built up.
677The action for this rule should create a similar sort of value for the
678newly recognized larger expression.
679
680For example, here is a rule that says an expression can be the sum of
681two subexpressions:
682
683@example
684expr: expr '+' expr @{ $$ = $1 + $3; @}
685 ;
686@end example
687
688@noindent
689The action says how to produce the semantic value of the sum expression
690from the values of the two subexpressions.
691
676385e2 692@node GLR Parsers
c827f760
PE
693@section Writing @acronym{GLR} Parsers
694@cindex @acronym{GLR} parsing
695@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
696@findex %glr-parser
697@cindex conflicts
698@cindex shift/reduce conflicts
fa7e68c3 699@cindex reduce/reduce conflicts
676385e2 700
fa7e68c3 701In some grammars, Bison's standard
9501dc6e
AD
702@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
703certain grammar rule at a given point. That is, it may not be able to
704decide (on the basis of the input read so far) which of two possible
705reductions (applications of a grammar rule) applies, or whether to apply
706a reduction or read more of the input and apply a reduction later in the
707input. These are known respectively as @dfn{reduce/reduce} conflicts
708(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
709(@pxref{Shift/Reduce}).
710
711To use a grammar that is not easily modified to be @acronym{LALR}(1), a
712more general parsing algorithm is sometimes necessary. If you include
676385e2 713@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 714(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
715(@acronym{GLR}) parser. These parsers handle Bison grammars that
716contain no unresolved conflicts (i.e., after applying precedence
717declarations) identically to @acronym{LALR}(1) parsers. However, when
718faced with unresolved shift/reduce and reduce/reduce conflicts,
719@acronym{GLR} parsers use the simple expedient of doing both,
720effectively cloning the parser to follow both possibilities. Each of
721the resulting parsers can again split, so that at any given time, there
722can be any number of possible parses being explored. The parsers
676385e2
PH
723proceed in lockstep; that is, all of them consume (shift) a given input
724symbol before any of them proceed to the next. Each of the cloned
725parsers eventually meets one of two possible fates: either it runs into
726a parsing error, in which case it simply vanishes, or it merges with
727another parser, because the two of them have reduced the input to an
728identical set of symbols.
729
730During the time that there are multiple parsers, semantic actions are
731recorded, but not performed. When a parser disappears, its recorded
732semantic actions disappear as well, and are never performed. When a
733reduction makes two parsers identical, causing them to merge, Bison
734records both sets of semantic actions. Whenever the last two parsers
735merge, reverting to the single-parser case, Bison resolves all the
736outstanding actions either by precedences given to the grammar rules
737involved, or by performing both actions, and then calling a designated
738user-defined function on the resulting values to produce an arbitrary
739merged result.
740
fa7e68c3 741@menu
32c29292
JD
742* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
743* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
744* GLR Semantic Actions:: Deferred semantic actions have special concerns.
745* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
746@end menu
747
748@node Simple GLR Parsers
749@subsection Using @acronym{GLR} on Unambiguous Grammars
750@cindex @acronym{GLR} parsing, unambiguous grammars
751@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
752@findex %glr-parser
753@findex %expect-rr
754@cindex conflicts
755@cindex reduce/reduce conflicts
756@cindex shift/reduce conflicts
757
758In the simplest cases, you can use the @acronym{GLR} algorithm
759to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 760Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
761or (in rare cases) fall into the category of grammars in which the
762@acronym{LALR}(1) algorithm throws away too much information (they are in
763@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
764
765Consider a problem that
766arises in the declaration of enumerated and subrange types in the
767programming language Pascal. Here are some examples:
768
769@example
770type subrange = lo .. hi;
771type enum = (a, b, c);
772@end example
773
774@noindent
775The original language standard allows only numeric
776literals and constant identifiers for the subrange bounds (@samp{lo}
777and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77810206) and many other
779Pascal implementations allow arbitrary expressions there. This gives
780rise to the following situation, containing a superfluous pair of
781parentheses:
782
783@example
784type subrange = (a) .. b;
785@end example
786
787@noindent
788Compare this to the following declaration of an enumerated
789type with only one value:
790
791@example
792type enum = (a);
793@end example
794
795@noindent
796(These declarations are contrived, but they are syntactically
797valid, and more-complicated cases can come up in practical programs.)
798
799These two declarations look identical until the @samp{..} token.
742e4900 800With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
801possible to decide between the two forms when the identifier
802@samp{a} is parsed. It is, however, desirable
803for a parser to decide this, since in the latter case
804@samp{a} must become a new identifier to represent the enumeration
805value, while in the former case @samp{a} must be evaluated with its
806current meaning, which may be a constant or even a function call.
807
808You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
809to be resolved later, but this typically requires substantial
810contortions in both semantic actions and large parts of the
811grammar, where the parentheses are nested in the recursive rules for
812expressions.
813
814You might think of using the lexer to distinguish between the two
815forms by returning different tokens for currently defined and
816undefined identifiers. But if these declarations occur in a local
817scope, and @samp{a} is defined in an outer scope, then both forms
818are possible---either locally redefining @samp{a}, or using the
819value of @samp{a} from the outer scope. So this approach cannot
820work.
821
e757bb10 822A simple solution to this problem is to declare the parser to
fa7e68c3
PE
823use the @acronym{GLR} algorithm.
824When the @acronym{GLR} parser reaches the critical state, it
825merely splits into two branches and pursues both syntax rules
826simultaneously. Sooner or later, one of them runs into a parsing
827error. If there is a @samp{..} token before the next
828@samp{;}, the rule for enumerated types fails since it cannot
829accept @samp{..} anywhere; otherwise, the subrange type rule
830fails since it requires a @samp{..} token. So one of the branches
831fails silently, and the other one continues normally, performing
832all the intermediate actions that were postponed during the split.
833
834If the input is syntactically incorrect, both branches fail and the parser
835reports a syntax error as usual.
836
837The effect of all this is that the parser seems to ``guess'' the
838correct branch to take, or in other words, it seems to use more
742e4900 839lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
840for. In this example, @acronym{LALR}(2) would suffice, but also some cases
841that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
842
843In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
844and the current Bison parser even takes exponential time and space
845for some grammars. In practice, this rarely happens, and for many
846grammars it is possible to prove that it cannot happen.
847The present example contains only one conflict between two
848rules, and the type-declaration context containing the conflict
849cannot be nested. So the number of
850branches that can exist at any time is limited by the constant 2,
851and the parsing time is still linear.
852
853Here is a Bison grammar corresponding to the example above. It
854parses a vastly simplified form of Pascal type declarations.
855
856@example
857%token TYPE DOTDOT ID
858
859@group
860%left '+' '-'
861%left '*' '/'
862@end group
863
864%%
865
866@group
867type_decl : TYPE ID '=' type ';'
868 ;
869@end group
870
871@group
872type : '(' id_list ')'
873 | expr DOTDOT expr
874 ;
875@end group
876
877@group
878id_list : ID
879 | id_list ',' ID
880 ;
881@end group
882
883@group
884expr : '(' expr ')'
885 | expr '+' expr
886 | expr '-' expr
887 | expr '*' expr
888 | expr '/' expr
889 | ID
890 ;
891@end group
892@end example
893
894When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
895about one reduce/reduce conflict. In the conflicting situation the
896parser chooses one of the alternatives, arbitrarily the one
897declared first. Therefore the following correct input is not
898recognized:
899
900@example
901type t = (a) .. b;
902@end example
903
904The parser can be turned into a @acronym{GLR} parser, while also telling Bison
905to be silent about the one known reduce/reduce conflict, by
e757bb10 906adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
907@samp{%%}):
908
909@example
910%glr-parser
911%expect-rr 1
912@end example
913
914@noindent
915No change in the grammar itself is required. Now the
916parser recognizes all valid declarations, according to the
917limited syntax above, transparently. In fact, the user does not even
918notice when the parser splits.
919
f8e1c9e5
AD
920So here we have a case where we can use the benefits of @acronym{GLR},
921almost without disadvantages. Even in simple cases like this, however,
922there are at least two potential problems to beware. First, always
923analyze the conflicts reported by Bison to make sure that @acronym{GLR}
924splitting is only done where it is intended. A @acronym{GLR} parser
925splitting inadvertently may cause problems less obvious than an
926@acronym{LALR} parser statically choosing the wrong alternative in a
927conflict. Second, consider interactions with the lexer (@pxref{Semantic
928Tokens}) with great care. Since a split parser consumes tokens without
929performing any actions during the split, the lexer cannot obtain
930information via parser actions. Some cases of lexer interactions can be
931eliminated by using @acronym{GLR} to shift the complications from the
932lexer to the parser. You must check the remaining cases for
933correctness.
934
935In our example, it would be safe for the lexer to return tokens based on
936their current meanings in some symbol table, because no new symbols are
937defined in the middle of a type declaration. Though it is possible for
938a parser to define the enumeration constants as they are parsed, before
939the type declaration is completed, it actually makes no difference since
940they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
941
942@node Merging GLR Parses
943@subsection Using @acronym{GLR} to Resolve Ambiguities
944@cindex @acronym{GLR} parsing, ambiguous grammars
945@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
946@findex %dprec
947@findex %merge
948@cindex conflicts
949@cindex reduce/reduce conflicts
950
2a8d363a 951Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
952
953@example
954%@{
38a92d50
PE
955 #include <stdio.h>
956 #define YYSTYPE char const *
957 int yylex (void);
958 void yyerror (char const *);
676385e2
PH
959%@}
960
961%token TYPENAME ID
962
963%right '='
964%left '+'
965
966%glr-parser
967
968%%
969
fae437e8 970prog :
676385e2
PH
971 | prog stmt @{ printf ("\n"); @}
972 ;
973
974stmt : expr ';' %dprec 1
975 | decl %dprec 2
976 ;
977
2a8d363a 978expr : ID @{ printf ("%s ", $$); @}
fae437e8 979 | TYPENAME '(' expr ')'
2a8d363a
AD
980 @{ printf ("%s <cast> ", $1); @}
981 | expr '+' expr @{ printf ("+ "); @}
982 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
983 ;
984
fae437e8 985decl : TYPENAME declarator ';'
2a8d363a 986 @{ printf ("%s <declare> ", $1); @}
676385e2 987 | TYPENAME declarator '=' expr ';'
2a8d363a 988 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
989 ;
990
2a8d363a 991declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
992 | '(' declarator ')'
993 ;
994@end example
995
996@noindent
997This models a problematic part of the C++ grammar---the ambiguity between
998certain declarations and statements. For example,
999
1000@example
1001T (x) = y+z;
1002@end example
1003
1004@noindent
1005parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1006(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1007@samp{x} as an @code{ID}).
676385e2 1008Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1009@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1010time it encounters @code{x} in the example above. Since this is a
1011@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1012each choice of resolving the reduce/reduce conflict.
1013Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1014however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1015ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1016the other reduces @code{stmt : decl}, after which both parsers are in an
1017identical state: they've seen @samp{prog stmt} and have the same unprocessed
1018input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1019
1020At this point, the @acronym{GLR} parser requires a specification in the
1021grammar of how to choose between the competing parses.
1022In the example above, the two @code{%dprec}
e757bb10 1023declarations specify that Bison is to give precedence
fa7e68c3 1024to the parse that interprets the example as a
676385e2
PH
1025@code{decl}, which implies that @code{x} is a declarator.
1026The parser therefore prints
1027
1028@example
fae437e8 1029"x" y z + T <init-declare>
676385e2
PH
1030@end example
1031
fa7e68c3
PE
1032The @code{%dprec} declarations only come into play when more than one
1033parse survives. Consider a different input string for this parser:
676385e2
PH
1034
1035@example
1036T (x) + y;
1037@end example
1038
1039@noindent
e757bb10 1040This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1041construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1042Here, there is no ambiguity (this cannot be parsed as a declaration).
1043However, at the time the Bison parser encounters @code{x}, it does not
1044have enough information to resolve the reduce/reduce conflict (again,
1045between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1046case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1047into two, one assuming that @code{x} is an @code{expr}, and the other
1048assuming @code{x} is a @code{declarator}. The second of these parsers
1049then vanishes when it sees @code{+}, and the parser prints
1050
1051@example
fae437e8 1052x T <cast> y +
676385e2
PH
1053@end example
1054
1055Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1056the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1057actions of the two possible parsers, rather than choosing one over the
1058other. To do so, you could change the declaration of @code{stmt} as
1059follows:
1060
1061@example
1062stmt : expr ';' %merge <stmtMerge>
1063 | decl %merge <stmtMerge>
1064 ;
1065@end example
1066
1067@noindent
676385e2
PH
1068and define the @code{stmtMerge} function as:
1069
1070@example
38a92d50
PE
1071static YYSTYPE
1072stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1073@{
1074 printf ("<OR> ");
1075 return "";
1076@}
1077@end example
1078
1079@noindent
1080with an accompanying forward declaration
1081in the C declarations at the beginning of the file:
1082
1083@example
1084%@{
38a92d50 1085 #define YYSTYPE char const *
676385e2
PH
1086 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1087%@}
1088@end example
1089
1090@noindent
fa7e68c3
PE
1091With these declarations, the resulting parser parses the first example
1092as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1093
1094@example
fae437e8 1095"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1096@end example
1097
fa7e68c3 1098Bison requires that all of the
e757bb10 1099productions that participate in any particular merge have identical
fa7e68c3
PE
1100@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1101and the parser will report an error during any parse that results in
1102the offending merge.
9501dc6e 1103
32c29292
JD
1104@node GLR Semantic Actions
1105@subsection GLR Semantic Actions
1106
1107@cindex deferred semantic actions
1108By definition, a deferred semantic action is not performed at the same time as
1109the associated reduction.
1110This raises caveats for several Bison features you might use in a semantic
1111action in a @acronym{GLR} parser.
1112
1113@vindex yychar
1114@cindex @acronym{GLR} parsers and @code{yychar}
1115@vindex yylval
1116@cindex @acronym{GLR} parsers and @code{yylval}
1117@vindex yylloc
1118@cindex @acronym{GLR} parsers and @code{yylloc}
1119In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1120the lookahead token present at the time of the associated reduction.
32c29292
JD
1121After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1122you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1123lookahead token's semantic value and location, if any.
32c29292
JD
1124In a nondeferred semantic action, you can also modify any of these variables to
1125influence syntax analysis.
742e4900 1126@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1127
1128@findex yyclearin
1129@cindex @acronym{GLR} parsers and @code{yyclearin}
1130In a deferred semantic action, it's too late to influence syntax analysis.
1131In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1132shallow copies of the values they had at the time of the associated reduction.
1133For this reason alone, modifying them is dangerous.
1134Moreover, the result of modifying them is undefined and subject to change with
1135future versions of Bison.
1136For example, if a semantic action might be deferred, you should never write it
1137to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1138memory referenced by @code{yylval}.
1139
1140@findex YYERROR
1141@cindex @acronym{GLR} parsers and @code{YYERROR}
1142Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1143(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1144initiate error recovery.
1145During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1146the same as its effect in an @acronym{LALR}(1) parser.
1147In a deferred semantic action, its effect is undefined.
1148@c The effect is probably a syntax error at the split point.
1149
8710fc41
JD
1150Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1151describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1152
fa7e68c3
PE
1153@node Compiler Requirements
1154@subsection Considerations when Compiling @acronym{GLR} Parsers
1155@cindex @code{inline}
9501dc6e 1156@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1157
38a92d50
PE
1158The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1159later. In addition, they use the @code{inline} keyword, which is not
1160C89, but is C99 and is a common extension in pre-C99 compilers. It is
1161up to the user of these parsers to handle
9501dc6e
AD
1162portability issues. For instance, if using Autoconf and the Autoconf
1163macro @code{AC_C_INLINE}, a mere
1164
1165@example
1166%@{
38a92d50 1167 #include <config.h>
9501dc6e
AD
1168%@}
1169@end example
1170
1171@noindent
1172will suffice. Otherwise, we suggest
1173
1174@example
1175%@{
38a92d50
PE
1176 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1177 #define inline
1178 #endif
9501dc6e
AD
1179%@}
1180@end example
676385e2 1181
342b8b6e 1182@node Locations Overview
847bf1f5
AD
1183@section Locations
1184@cindex location
95923bd6
AD
1185@cindex textual location
1186@cindex location, textual
847bf1f5
AD
1187
1188Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1189and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1190the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1191Bison provides a mechanism for handling these locations.
1192
72d2299c 1193Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1194associated location, but the type of locations is the same for all tokens and
72d2299c 1195groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1196structure for storing locations (@pxref{Locations}, for more details).
1197
1198Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1199set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1200is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1201@code{@@3}.
1202
1203When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1204of its left hand side (@pxref{Actions}). In the same way, another default
1205action is used for locations. However, the action for locations is general
847bf1f5 1206enough for most cases, meaning there is usually no need to describe for each
72d2299c 1207rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1208grouping, the default behavior of the output parser is to take the beginning
1209of the first symbol, and the end of the last symbol.
1210
342b8b6e 1211@node Bison Parser
bfa74976
RS
1212@section Bison Output: the Parser File
1213@cindex Bison parser
1214@cindex Bison utility
1215@cindex lexical analyzer, purpose
1216@cindex parser
1217
1218When you run Bison, you give it a Bison grammar file as input. The output
1219is a C source file that parses the language described by the grammar.
1220This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1221utility and the Bison parser are two distinct programs: the Bison utility
1222is a program whose output is the Bison parser that becomes part of your
1223program.
1224
1225The job of the Bison parser is to group tokens into groupings according to
1226the grammar rules---for example, to build identifiers and operators into
1227expressions. As it does this, it runs the actions for the grammar rules it
1228uses.
1229
704a47c4
AD
1230The tokens come from a function called the @dfn{lexical analyzer} that
1231you must supply in some fashion (such as by writing it in C). The Bison
1232parser calls the lexical analyzer each time it wants a new token. It
1233doesn't know what is ``inside'' the tokens (though their semantic values
1234may reflect this). Typically the lexical analyzer makes the tokens by
1235parsing characters of text, but Bison does not depend on this.
1236@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1237
1238The Bison parser file is C code which defines a function named
1239@code{yyparse} which implements that grammar. This function does not make
1240a complete C program: you must supply some additional functions. One is
1241the lexical analyzer. Another is an error-reporting function which the
1242parser calls to report an error. In addition, a complete C program must
1243start with a function called @code{main}; you have to provide this, and
1244arrange for it to call @code{yyparse} or the parser will never run.
1245@xref{Interface, ,Parser C-Language Interface}.
1246
f7ab6a50 1247Aside from the token type names and the symbols in the actions you
7093d0f5 1248write, all symbols defined in the Bison parser file itself
bfa74976
RS
1249begin with @samp{yy} or @samp{YY}. This includes interface functions
1250such as the lexical analyzer function @code{yylex}, the error reporting
1251function @code{yyerror} and the parser function @code{yyparse} itself.
1252This also includes numerous identifiers used for internal purposes.
1253Therefore, you should avoid using C identifiers starting with @samp{yy}
1254or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1255this manual. Also, you should avoid using the C identifiers
1256@samp{malloc} and @samp{free} for anything other than their usual
1257meanings.
bfa74976 1258
7093d0f5
AD
1259In some cases the Bison parser file includes system headers, and in
1260those cases your code should respect the identifiers reserved by those
55289366 1261headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1262@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1263declare memory allocators and related types. @code{<libintl.h>} is
1264included if message translation is in use
1265(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1266be included if you define @code{YYDEBUG} to a nonzero value
1267(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1268
342b8b6e 1269@node Stages
bfa74976
RS
1270@section Stages in Using Bison
1271@cindex stages in using Bison
1272@cindex using Bison
1273
1274The actual language-design process using Bison, from grammar specification
1275to a working compiler or interpreter, has these parts:
1276
1277@enumerate
1278@item
1279Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1280(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1281in the language, describe the action that is to be taken when an
1282instance of that rule is recognized. The action is described by a
1283sequence of C statements.
bfa74976
RS
1284
1285@item
704a47c4
AD
1286Write a lexical analyzer to process input and pass tokens to the parser.
1287The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1288Lexical Analyzer Function @code{yylex}}). It could also be produced
1289using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1290
1291@item
1292Write a controlling function that calls the Bison-produced parser.
1293
1294@item
1295Write error-reporting routines.
1296@end enumerate
1297
1298To turn this source code as written into a runnable program, you
1299must follow these steps:
1300
1301@enumerate
1302@item
1303Run Bison on the grammar to produce the parser.
1304
1305@item
1306Compile the code output by Bison, as well as any other source files.
1307
1308@item
1309Link the object files to produce the finished product.
1310@end enumerate
1311
342b8b6e 1312@node Grammar Layout
bfa74976
RS
1313@section The Overall Layout of a Bison Grammar
1314@cindex grammar file
1315@cindex file format
1316@cindex format of grammar file
1317@cindex layout of Bison grammar
1318
1319The input file for the Bison utility is a @dfn{Bison grammar file}. The
1320general form of a Bison grammar file is as follows:
1321
1322@example
1323%@{
08e49d20 1324@var{Prologue}
bfa74976
RS
1325%@}
1326
1327@var{Bison declarations}
1328
1329%%
1330@var{Grammar rules}
1331%%
08e49d20 1332@var{Epilogue}
bfa74976
RS
1333@end example
1334
1335@noindent
1336The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1337in every Bison grammar file to separate the sections.
1338
72d2299c 1339The prologue may define types and variables used in the actions. You can
342b8b6e 1340also use preprocessor commands to define macros used there, and use
bfa74976 1341@code{#include} to include header files that do any of these things.
38a92d50
PE
1342You need to declare the lexical analyzer @code{yylex} and the error
1343printer @code{yyerror} here, along with any other global identifiers
1344used by the actions in the grammar rules.
bfa74976
RS
1345
1346The Bison declarations declare the names of the terminal and nonterminal
1347symbols, and may also describe operator precedence and the data types of
1348semantic values of various symbols.
1349
1350The grammar rules define how to construct each nonterminal symbol from its
1351parts.
1352
38a92d50
PE
1353The epilogue can contain any code you want to use. Often the
1354definitions of functions declared in the prologue go here. In a
1355simple program, all the rest of the program can go here.
bfa74976 1356
342b8b6e 1357@node Examples
bfa74976
RS
1358@chapter Examples
1359@cindex simple examples
1360@cindex examples, simple
1361
1362Now we show and explain three sample programs written using Bison: a
1363reverse polish notation calculator, an algebraic (infix) notation
1364calculator, and a multi-function calculator. All three have been tested
1365under BSD Unix 4.3; each produces a usable, though limited, interactive
1366desk-top calculator.
1367
1368These examples are simple, but Bison grammars for real programming
aa08666d
AD
1369languages are written the same way. You can copy these examples into a
1370source file to try them.
bfa74976
RS
1371
1372@menu
1373* RPN Calc:: Reverse polish notation calculator;
1374 a first example with no operator precedence.
1375* Infix Calc:: Infix (algebraic) notation calculator.
1376 Operator precedence is introduced.
1377* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1378* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1379* Multi-function Calc:: Calculator with memory and trig functions.
1380 It uses multiple data-types for semantic values.
1381* Exercises:: Ideas for improving the multi-function calculator.
1382@end menu
1383
342b8b6e 1384@node RPN Calc
bfa74976
RS
1385@section Reverse Polish Notation Calculator
1386@cindex reverse polish notation
1387@cindex polish notation calculator
1388@cindex @code{rpcalc}
1389@cindex calculator, simple
1390
1391The first example is that of a simple double-precision @dfn{reverse polish
1392notation} calculator (a calculator using postfix operators). This example
1393provides a good starting point, since operator precedence is not an issue.
1394The second example will illustrate how operator precedence is handled.
1395
1396The source code for this calculator is named @file{rpcalc.y}. The
1397@samp{.y} extension is a convention used for Bison input files.
1398
1399@menu
75f5aaea 1400* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1401* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1402* Lexer: Rpcalc Lexer. The lexical analyzer.
1403* Main: Rpcalc Main. The controlling function.
1404* Error: Rpcalc Error. The error reporting function.
1405* Gen: Rpcalc Gen. Running Bison on the grammar file.
1406* Comp: Rpcalc Compile. Run the C compiler on the output code.
1407@end menu
1408
342b8b6e 1409@node Rpcalc Decls
bfa74976
RS
1410@subsection Declarations for @code{rpcalc}
1411
1412Here are the C and Bison declarations for the reverse polish notation
1413calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1414
1415@example
72d2299c 1416/* Reverse polish notation calculator. */
bfa74976
RS
1417
1418%@{
38a92d50
PE
1419 #define YYSTYPE double
1420 #include <math.h>
1421 int yylex (void);
1422 void yyerror (char const *);
bfa74976
RS
1423%@}
1424
1425%token NUM
1426
72d2299c 1427%% /* Grammar rules and actions follow. */
bfa74976
RS
1428@end example
1429
75f5aaea 1430The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1431preprocessor directives and two forward declarations.
bfa74976
RS
1432
1433The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1434specifying the C data type for semantic values of both tokens and
1435groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1436Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1437don't define it, @code{int} is the default. Because we specify
1438@code{double}, each token and each expression has an associated value,
1439which is a floating point number.
bfa74976
RS
1440
1441The @code{#include} directive is used to declare the exponentiation
1442function @code{pow}.
1443
38a92d50
PE
1444The forward declarations for @code{yylex} and @code{yyerror} are
1445needed because the C language requires that functions be declared
1446before they are used. These functions will be defined in the
1447epilogue, but the parser calls them so they must be declared in the
1448prologue.
1449
704a47c4
AD
1450The second section, Bison declarations, provides information to Bison
1451about the token types (@pxref{Bison Declarations, ,The Bison
1452Declarations Section}). Each terminal symbol that is not a
1453single-character literal must be declared here. (Single-character
bfa74976
RS
1454literals normally don't need to be declared.) In this example, all the
1455arithmetic operators are designated by single-character literals, so the
1456only terminal symbol that needs to be declared is @code{NUM}, the token
1457type for numeric constants.
1458
342b8b6e 1459@node Rpcalc Rules
bfa74976
RS
1460@subsection Grammar Rules for @code{rpcalc}
1461
1462Here are the grammar rules for the reverse polish notation calculator.
1463
1464@example
1465input: /* empty */
1466 | input line
1467;
1468
1469line: '\n'
18b519c0 1470 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1471;
1472
18b519c0
AD
1473exp: NUM @{ $$ = $1; @}
1474 | exp exp '+' @{ $$ = $1 + $2; @}
1475 | exp exp '-' @{ $$ = $1 - $2; @}
1476 | exp exp '*' @{ $$ = $1 * $2; @}
1477 | exp exp '/' @{ $$ = $1 / $2; @}
1478 /* Exponentiation */
1479 | exp exp '^' @{ $$ = pow ($1, $2); @}
1480 /* Unary minus */
1481 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1482;
1483%%
1484@end example
1485
1486The groupings of the rpcalc ``language'' defined here are the expression
1487(given the name @code{exp}), the line of input (@code{line}), and the
1488complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1489symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1490which is read as ``or''. The following sections explain what these rules
1491mean.
1492
1493The semantics of the language is determined by the actions taken when a
1494grouping is recognized. The actions are the C code that appears inside
1495braces. @xref{Actions}.
1496
1497You must specify these actions in C, but Bison provides the means for
1498passing semantic values between the rules. In each action, the
1499pseudo-variable @code{$$} stands for the semantic value for the grouping
1500that the rule is going to construct. Assigning a value to @code{$$} is the
1501main job of most actions. The semantic values of the components of the
1502rule are referred to as @code{$1}, @code{$2}, and so on.
1503
1504@menu
13863333
AD
1505* Rpcalc Input::
1506* Rpcalc Line::
1507* Rpcalc Expr::
bfa74976
RS
1508@end menu
1509
342b8b6e 1510@node Rpcalc Input
bfa74976
RS
1511@subsubsection Explanation of @code{input}
1512
1513Consider the definition of @code{input}:
1514
1515@example
1516input: /* empty */
1517 | input line
1518;
1519@end example
1520
1521This definition reads as follows: ``A complete input is either an empty
1522string, or a complete input followed by an input line''. Notice that
1523``complete input'' is defined in terms of itself. This definition is said
1524to be @dfn{left recursive} since @code{input} appears always as the
1525leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1526
1527The first alternative is empty because there are no symbols between the
1528colon and the first @samp{|}; this means that @code{input} can match an
1529empty string of input (no tokens). We write the rules this way because it
1530is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1531It's conventional to put an empty alternative first and write the comment
1532@samp{/* empty */} in it.
1533
1534The second alternate rule (@code{input line}) handles all nontrivial input.
1535It means, ``After reading any number of lines, read one more line if
1536possible.'' The left recursion makes this rule into a loop. Since the
1537first alternative matches empty input, the loop can be executed zero or
1538more times.
1539
1540The parser function @code{yyparse} continues to process input until a
1541grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1542input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1543
342b8b6e 1544@node Rpcalc Line
bfa74976
RS
1545@subsubsection Explanation of @code{line}
1546
1547Now consider the definition of @code{line}:
1548
1549@example
1550line: '\n'
1551 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1552;
1553@end example
1554
1555The first alternative is a token which is a newline character; this means
1556that rpcalc accepts a blank line (and ignores it, since there is no
1557action). The second alternative is an expression followed by a newline.
1558This is the alternative that makes rpcalc useful. The semantic value of
1559the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1560question is the first symbol in the alternative. The action prints this
1561value, which is the result of the computation the user asked for.
1562
1563This action is unusual because it does not assign a value to @code{$$}. As
1564a consequence, the semantic value associated with the @code{line} is
1565uninitialized (its value will be unpredictable). This would be a bug if
1566that value were ever used, but we don't use it: once rpcalc has printed the
1567value of the user's input line, that value is no longer needed.
1568
342b8b6e 1569@node Rpcalc Expr
bfa74976
RS
1570@subsubsection Explanation of @code{expr}
1571
1572The @code{exp} grouping has several rules, one for each kind of expression.
1573The first rule handles the simplest expressions: those that are just numbers.
1574The second handles an addition-expression, which looks like two expressions
1575followed by a plus-sign. The third handles subtraction, and so on.
1576
1577@example
1578exp: NUM
1579 | exp exp '+' @{ $$ = $1 + $2; @}
1580 | exp exp '-' @{ $$ = $1 - $2; @}
1581 @dots{}
1582 ;
1583@end example
1584
1585We have used @samp{|} to join all the rules for @code{exp}, but we could
1586equally well have written them separately:
1587
1588@example
1589exp: NUM ;
1590exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1591exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1592 @dots{}
1593@end example
1594
1595Most of the rules have actions that compute the value of the expression in
1596terms of the value of its parts. For example, in the rule for addition,
1597@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1598the second one. The third component, @code{'+'}, has no meaningful
1599associated semantic value, but if it had one you could refer to it as
1600@code{$3}. When @code{yyparse} recognizes a sum expression using this
1601rule, the sum of the two subexpressions' values is produced as the value of
1602the entire expression. @xref{Actions}.
1603
1604You don't have to give an action for every rule. When a rule has no
1605action, Bison by default copies the value of @code{$1} into @code{$$}.
1606This is what happens in the first rule (the one that uses @code{NUM}).
1607
1608The formatting shown here is the recommended convention, but Bison does
72d2299c 1609not require it. You can add or change white space as much as you wish.
bfa74976
RS
1610For example, this:
1611
1612@example
99a9344e 1613exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1614@end example
1615
1616@noindent
1617means the same thing as this:
1618
1619@example
1620exp: NUM
1621 | exp exp '+' @{ $$ = $1 + $2; @}
1622 | @dots{}
99a9344e 1623;
bfa74976
RS
1624@end example
1625
1626@noindent
1627The latter, however, is much more readable.
1628
342b8b6e 1629@node Rpcalc Lexer
bfa74976
RS
1630@subsection The @code{rpcalc} Lexical Analyzer
1631@cindex writing a lexical analyzer
1632@cindex lexical analyzer, writing
1633
704a47c4
AD
1634The lexical analyzer's job is low-level parsing: converting characters
1635or sequences of characters into tokens. The Bison parser gets its
1636tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1637Analyzer Function @code{yylex}}.
bfa74976 1638
c827f760
PE
1639Only a simple lexical analyzer is needed for the @acronym{RPN}
1640calculator. This
bfa74976
RS
1641lexical analyzer skips blanks and tabs, then reads in numbers as
1642@code{double} and returns them as @code{NUM} tokens. Any other character
1643that isn't part of a number is a separate token. Note that the token-code
1644for such a single-character token is the character itself.
1645
1646The return value of the lexical analyzer function is a numeric code which
1647represents a token type. The same text used in Bison rules to stand for
1648this token type is also a C expression for the numeric code for the type.
1649This works in two ways. If the token type is a character literal, then its
e966383b 1650numeric code is that of the character; you can use the same
bfa74976
RS
1651character literal in the lexical analyzer to express the number. If the
1652token type is an identifier, that identifier is defined by Bison as a C
1653macro whose definition is the appropriate number. In this example,
1654therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1655
1964ad8c
AD
1656The semantic value of the token (if it has one) is stored into the
1657global variable @code{yylval}, which is where the Bison parser will look
1658for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1659defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1660,Declarations for @code{rpcalc}}.)
bfa74976 1661
72d2299c
PE
1662A token type code of zero is returned if the end-of-input is encountered.
1663(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1664
1665Here is the code for the lexical analyzer:
1666
1667@example
1668@group
72d2299c 1669/* The lexical analyzer returns a double floating point
e966383b 1670 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1671 of the character read if not a number. It skips all blanks
1672 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1673
1674#include <ctype.h>
1675@end group
1676
1677@group
13863333
AD
1678int
1679yylex (void)
bfa74976
RS
1680@{
1681 int c;
1682
72d2299c 1683 /* Skip white space. */
13863333 1684 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1685 ;
1686@end group
1687@group
72d2299c 1688 /* Process numbers. */
13863333 1689 if (c == '.' || isdigit (c))
bfa74976
RS
1690 @{
1691 ungetc (c, stdin);
1692 scanf ("%lf", &yylval);
1693 return NUM;
1694 @}
1695@end group
1696@group
72d2299c 1697 /* Return end-of-input. */
13863333 1698 if (c == EOF)
bfa74976 1699 return 0;
72d2299c 1700 /* Return a single char. */
13863333 1701 return c;
bfa74976
RS
1702@}
1703@end group
1704@end example
1705
342b8b6e 1706@node Rpcalc Main
bfa74976
RS
1707@subsection The Controlling Function
1708@cindex controlling function
1709@cindex main function in simple example
1710
1711In keeping with the spirit of this example, the controlling function is
1712kept to the bare minimum. The only requirement is that it call
1713@code{yyparse} to start the process of parsing.
1714
1715@example
1716@group
13863333
AD
1717int
1718main (void)
bfa74976 1719@{
13863333 1720 return yyparse ();
bfa74976
RS
1721@}
1722@end group
1723@end example
1724
342b8b6e 1725@node Rpcalc Error
bfa74976
RS
1726@subsection The Error Reporting Routine
1727@cindex error reporting routine
1728
1729When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1730function @code{yyerror} to print an error message (usually but not
6e649e65 1731always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1732@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1733here is the definition we will use:
bfa74976
RS
1734
1735@example
1736@group
1737#include <stdio.h>
1738
38a92d50 1739/* Called by yyparse on error. */
13863333 1740void
38a92d50 1741yyerror (char const *s)
bfa74976 1742@{
4e03e201 1743 fprintf (stderr, "%s\n", s);
bfa74976
RS
1744@}
1745@end group
1746@end example
1747
1748After @code{yyerror} returns, the Bison parser may recover from the error
1749and continue parsing if the grammar contains a suitable error rule
1750(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1751have not written any error rules in this example, so any invalid input will
1752cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1753real calculator, but it is adequate for the first example.
bfa74976 1754
342b8b6e 1755@node Rpcalc Gen
bfa74976
RS
1756@subsection Running Bison to Make the Parser
1757@cindex running Bison (introduction)
1758
ceed8467
AD
1759Before running Bison to produce a parser, we need to decide how to
1760arrange all the source code in one or more source files. For such a
1761simple example, the easiest thing is to put everything in one file. The
1762definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1763end, in the epilogue of the file
75f5aaea 1764(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1765
1766For a large project, you would probably have several source files, and use
1767@code{make} to arrange to recompile them.
1768
1769With all the source in a single file, you use the following command to
1770convert it into a parser file:
1771
1772@example
fa4d969f 1773bison @var{file}.y
bfa74976
RS
1774@end example
1775
1776@noindent
1777In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1778@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1779removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1780Bison contains the source code for @code{yyparse}. The additional
1781functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1782are copied verbatim to the output.
1783
342b8b6e 1784@node Rpcalc Compile
bfa74976
RS
1785@subsection Compiling the Parser File
1786@cindex compiling the parser
1787
1788Here is how to compile and run the parser file:
1789
1790@example
1791@group
1792# @r{List files in current directory.}
9edcd895 1793$ @kbd{ls}
bfa74976
RS
1794rpcalc.tab.c rpcalc.y
1795@end group
1796
1797@group
1798# @r{Compile the Bison parser.}
1799# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1800$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1801@end group
1802
1803@group
1804# @r{List files again.}
9edcd895 1805$ @kbd{ls}
bfa74976
RS
1806rpcalc rpcalc.tab.c rpcalc.y
1807@end group
1808@end example
1809
1810The file @file{rpcalc} now contains the executable code. Here is an
1811example session using @code{rpcalc}.
1812
1813@example
9edcd895
AD
1814$ @kbd{rpcalc}
1815@kbd{4 9 +}
bfa74976 181613
9edcd895 1817@kbd{3 7 + 3 4 5 *+-}
bfa74976 1818-13
9edcd895 1819@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 182013
9edcd895 1821@kbd{5 6 / 4 n +}
bfa74976 1822-3.166666667
9edcd895 1823@kbd{3 4 ^} @r{Exponentiation}
bfa74976 182481
9edcd895
AD
1825@kbd{^D} @r{End-of-file indicator}
1826$
bfa74976
RS
1827@end example
1828
342b8b6e 1829@node Infix Calc
bfa74976
RS
1830@section Infix Notation Calculator: @code{calc}
1831@cindex infix notation calculator
1832@cindex @code{calc}
1833@cindex calculator, infix notation
1834
1835We now modify rpcalc to handle infix operators instead of postfix. Infix
1836notation involves the concept of operator precedence and the need for
1837parentheses nested to arbitrary depth. Here is the Bison code for
1838@file{calc.y}, an infix desk-top calculator.
1839
1840@example
38a92d50 1841/* Infix notation calculator. */
bfa74976
RS
1842
1843%@{
38a92d50
PE
1844 #define YYSTYPE double
1845 #include <math.h>
1846 #include <stdio.h>
1847 int yylex (void);
1848 void yyerror (char const *);
bfa74976
RS
1849%@}
1850
38a92d50 1851/* Bison declarations. */
bfa74976
RS
1852%token NUM
1853%left '-' '+'
1854%left '*' '/'
1855%left NEG /* negation--unary minus */
38a92d50 1856%right '^' /* exponentiation */
bfa74976 1857
38a92d50
PE
1858%% /* The grammar follows. */
1859input: /* empty */
bfa74976
RS
1860 | input line
1861;
1862
1863line: '\n'
1864 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1865;
1866
1867exp: NUM @{ $$ = $1; @}
1868 | exp '+' exp @{ $$ = $1 + $3; @}
1869 | exp '-' exp @{ $$ = $1 - $3; @}
1870 | exp '*' exp @{ $$ = $1 * $3; @}
1871 | exp '/' exp @{ $$ = $1 / $3; @}
1872 | '-' exp %prec NEG @{ $$ = -$2; @}
1873 | exp '^' exp @{ $$ = pow ($1, $3); @}
1874 | '(' exp ')' @{ $$ = $2; @}
1875;
1876%%
1877@end example
1878
1879@noindent
ceed8467
AD
1880The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1881same as before.
bfa74976
RS
1882
1883There are two important new features shown in this code.
1884
1885In the second section (Bison declarations), @code{%left} declares token
1886types and says they are left-associative operators. The declarations
1887@code{%left} and @code{%right} (right associativity) take the place of
1888@code{%token} which is used to declare a token type name without
1889associativity. (These tokens are single-character literals, which
1890ordinarily don't need to be declared. We declare them here to specify
1891the associativity.)
1892
1893Operator precedence is determined by the line ordering of the
1894declarations; the higher the line number of the declaration (lower on
1895the page or screen), the higher the precedence. Hence, exponentiation
1896has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1897by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1898Precedence}.
bfa74976 1899
704a47c4
AD
1900The other important new feature is the @code{%prec} in the grammar
1901section for the unary minus operator. The @code{%prec} simply instructs
1902Bison that the rule @samp{| '-' exp} has the same precedence as
1903@code{NEG}---in this case the next-to-highest. @xref{Contextual
1904Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1905
1906Here is a sample run of @file{calc.y}:
1907
1908@need 500
1909@example
9edcd895
AD
1910$ @kbd{calc}
1911@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19126.880952381
9edcd895 1913@kbd{-56 + 2}
bfa74976 1914-54
9edcd895 1915@kbd{3 ^ 2}
bfa74976
RS
19169
1917@end example
1918
342b8b6e 1919@node Simple Error Recovery
bfa74976
RS
1920@section Simple Error Recovery
1921@cindex error recovery, simple
1922
1923Up to this point, this manual has not addressed the issue of @dfn{error
1924recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1925error. All we have handled is error reporting with @code{yyerror}.
1926Recall that by default @code{yyparse} returns after calling
1927@code{yyerror}. This means that an erroneous input line causes the
1928calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1929
1930The Bison language itself includes the reserved word @code{error}, which
1931may be included in the grammar rules. In the example below it has
1932been added to one of the alternatives for @code{line}:
1933
1934@example
1935@group
1936line: '\n'
1937 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1938 | error '\n' @{ yyerrok; @}
1939;
1940@end group
1941@end example
1942
ceed8467 1943This addition to the grammar allows for simple error recovery in the
6e649e65 1944event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1945read, the error will be recognized by the third rule for @code{line},
1946and parsing will continue. (The @code{yyerror} function is still called
1947upon to print its message as well.) The action executes the statement
1948@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1949that error recovery is complete (@pxref{Error Recovery}). Note the
1950difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1951misprint.
bfa74976
RS
1952
1953This form of error recovery deals with syntax errors. There are other
1954kinds of errors; for example, division by zero, which raises an exception
1955signal that is normally fatal. A real calculator program must handle this
1956signal and use @code{longjmp} to return to @code{main} and resume parsing
1957input lines; it would also have to discard the rest of the current line of
1958input. We won't discuss this issue further because it is not specific to
1959Bison programs.
1960
342b8b6e
AD
1961@node Location Tracking Calc
1962@section Location Tracking Calculator: @code{ltcalc}
1963@cindex location tracking calculator
1964@cindex @code{ltcalc}
1965@cindex calculator, location tracking
1966
9edcd895
AD
1967This example extends the infix notation calculator with location
1968tracking. This feature will be used to improve the error messages. For
1969the sake of clarity, this example is a simple integer calculator, since
1970most of the work needed to use locations will be done in the lexical
72d2299c 1971analyzer.
342b8b6e
AD
1972
1973@menu
1974* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1975* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1976* Lexer: Ltcalc Lexer. The lexical analyzer.
1977@end menu
1978
1979@node Ltcalc Decls
1980@subsection Declarations for @code{ltcalc}
1981
9edcd895
AD
1982The C and Bison declarations for the location tracking calculator are
1983the same as the declarations for the infix notation calculator.
342b8b6e
AD
1984
1985@example
1986/* Location tracking calculator. */
1987
1988%@{
38a92d50
PE
1989 #define YYSTYPE int
1990 #include <math.h>
1991 int yylex (void);
1992 void yyerror (char const *);
342b8b6e
AD
1993%@}
1994
1995/* Bison declarations. */
1996%token NUM
1997
1998%left '-' '+'
1999%left '*' '/'
2000%left NEG
2001%right '^'
2002
38a92d50 2003%% /* The grammar follows. */
342b8b6e
AD
2004@end example
2005
9edcd895
AD
2006@noindent
2007Note there are no declarations specific to locations. Defining a data
2008type for storing locations is not needed: we will use the type provided
2009by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2010four member structure with the following integer fields:
2011@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2012@code{last_column}. By conventions, and in accordance with the GNU
2013Coding Standards and common practice, the line and column count both
2014start at 1.
342b8b6e
AD
2015
2016@node Ltcalc Rules
2017@subsection Grammar Rules for @code{ltcalc}
2018
9edcd895
AD
2019Whether handling locations or not has no effect on the syntax of your
2020language. Therefore, grammar rules for this example will be very close
2021to those of the previous example: we will only modify them to benefit
2022from the new information.
342b8b6e 2023
9edcd895
AD
2024Here, we will use locations to report divisions by zero, and locate the
2025wrong expressions or subexpressions.
342b8b6e
AD
2026
2027@example
2028@group
2029input : /* empty */
2030 | input line
2031;
2032@end group
2033
2034@group
2035line : '\n'
2036 | exp '\n' @{ printf ("%d\n", $1); @}
2037;
2038@end group
2039
2040@group
2041exp : NUM @{ $$ = $1; @}
2042 | exp '+' exp @{ $$ = $1 + $3; @}
2043 | exp '-' exp @{ $$ = $1 - $3; @}
2044 | exp '*' exp @{ $$ = $1 * $3; @}
2045@end group
342b8b6e 2046@group
9edcd895 2047 | exp '/' exp
342b8b6e
AD
2048 @{
2049 if ($3)
2050 $$ = $1 / $3;
2051 else
2052 @{
2053 $$ = 1;
9edcd895
AD
2054 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2055 @@3.first_line, @@3.first_column,
2056 @@3.last_line, @@3.last_column);
342b8b6e
AD
2057 @}
2058 @}
2059@end group
2060@group
178e123e 2061 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2062 | exp '^' exp @{ $$ = pow ($1, $3); @}
2063 | '(' exp ')' @{ $$ = $2; @}
2064@end group
2065@end example
2066
2067This code shows how to reach locations inside of semantic actions, by
2068using the pseudo-variables @code{@@@var{n}} for rule components, and the
2069pseudo-variable @code{@@$} for groupings.
2070
9edcd895
AD
2071We don't need to assign a value to @code{@@$}: the output parser does it
2072automatically. By default, before executing the C code of each action,
2073@code{@@$} is set to range from the beginning of @code{@@1} to the end
2074of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2075can be redefined (@pxref{Location Default Action, , Default Action for
2076Locations}), and for very specific rules, @code{@@$} can be computed by
2077hand.
342b8b6e
AD
2078
2079@node Ltcalc Lexer
2080@subsection The @code{ltcalc} Lexical Analyzer.
2081
9edcd895 2082Until now, we relied on Bison's defaults to enable location
72d2299c 2083tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2084able to feed the parser with the token locations, as it already does for
2085semantic values.
342b8b6e 2086
9edcd895
AD
2087To this end, we must take into account every single character of the
2088input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2089
2090@example
2091@group
2092int
2093yylex (void)
2094@{
2095 int c;
18b519c0 2096@end group
342b8b6e 2097
18b519c0 2098@group
72d2299c 2099 /* Skip white space. */
342b8b6e
AD
2100 while ((c = getchar ()) == ' ' || c == '\t')
2101 ++yylloc.last_column;
18b519c0 2102@end group
342b8b6e 2103
18b519c0 2104@group
72d2299c 2105 /* Step. */
342b8b6e
AD
2106 yylloc.first_line = yylloc.last_line;
2107 yylloc.first_column = yylloc.last_column;
2108@end group
2109
2110@group
72d2299c 2111 /* Process numbers. */
342b8b6e
AD
2112 if (isdigit (c))
2113 @{
2114 yylval = c - '0';
2115 ++yylloc.last_column;
2116 while (isdigit (c = getchar ()))
2117 @{
2118 ++yylloc.last_column;
2119 yylval = yylval * 10 + c - '0';
2120 @}
2121 ungetc (c, stdin);
2122 return NUM;
2123 @}
2124@end group
2125
72d2299c 2126 /* Return end-of-input. */
342b8b6e
AD
2127 if (c == EOF)
2128 return 0;
2129
72d2299c 2130 /* Return a single char, and update location. */
342b8b6e
AD
2131 if (c == '\n')
2132 @{
2133 ++yylloc.last_line;
2134 yylloc.last_column = 0;
2135 @}
2136 else
2137 ++yylloc.last_column;
2138 return c;
2139@}
2140@end example
2141
9edcd895
AD
2142Basically, the lexical analyzer performs the same processing as before:
2143it skips blanks and tabs, and reads numbers or single-character tokens.
2144In addition, it updates @code{yylloc}, the global variable (of type
2145@code{YYLTYPE}) containing the token's location.
342b8b6e 2146
9edcd895 2147Now, each time this function returns a token, the parser has its number
72d2299c 2148as well as its semantic value, and its location in the text. The last
9edcd895
AD
2149needed change is to initialize @code{yylloc}, for example in the
2150controlling function:
342b8b6e
AD
2151
2152@example
9edcd895 2153@group
342b8b6e
AD
2154int
2155main (void)
2156@{
2157 yylloc.first_line = yylloc.last_line = 1;
2158 yylloc.first_column = yylloc.last_column = 0;
2159 return yyparse ();
2160@}
9edcd895 2161@end group
342b8b6e
AD
2162@end example
2163
9edcd895
AD
2164Remember that computing locations is not a matter of syntax. Every
2165character must be associated to a location update, whether it is in
2166valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2167
2168@node Multi-function Calc
bfa74976
RS
2169@section Multi-Function Calculator: @code{mfcalc}
2170@cindex multi-function calculator
2171@cindex @code{mfcalc}
2172@cindex calculator, multi-function
2173
2174Now that the basics of Bison have been discussed, it is time to move on to
2175a more advanced problem. The above calculators provided only five
2176functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2177be nice to have a calculator that provides other mathematical functions such
2178as @code{sin}, @code{cos}, etc.
2179
2180It is easy to add new operators to the infix calculator as long as they are
2181only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2182back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2183adding a new operator. But we want something more flexible: built-in
2184functions whose syntax has this form:
2185
2186@example
2187@var{function_name} (@var{argument})
2188@end example
2189
2190@noindent
2191At the same time, we will add memory to the calculator, by allowing you
2192to create named variables, store values in them, and use them later.
2193Here is a sample session with the multi-function calculator:
2194
2195@example
9edcd895
AD
2196$ @kbd{mfcalc}
2197@kbd{pi = 3.141592653589}
bfa74976 21983.1415926536
9edcd895 2199@kbd{sin(pi)}
bfa74976 22000.0000000000
9edcd895 2201@kbd{alpha = beta1 = 2.3}
bfa74976 22022.3000000000
9edcd895 2203@kbd{alpha}
bfa74976 22042.3000000000
9edcd895 2205@kbd{ln(alpha)}
bfa74976 22060.8329091229
9edcd895 2207@kbd{exp(ln(beta1))}
bfa74976 22082.3000000000
9edcd895 2209$
bfa74976
RS
2210@end example
2211
2212Note that multiple assignment and nested function calls are permitted.
2213
2214@menu
2215* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2216* Rules: Mfcalc Rules. Grammar rules for the calculator.
2217* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2218@end menu
2219
342b8b6e 2220@node Mfcalc Decl
bfa74976
RS
2221@subsection Declarations for @code{mfcalc}
2222
2223Here are the C and Bison declarations for the multi-function calculator.
2224
2225@smallexample
18b519c0 2226@group
bfa74976 2227%@{
38a92d50
PE
2228 #include <math.h> /* For math functions, cos(), sin(), etc. */
2229 #include "calc.h" /* Contains definition of `symrec'. */
2230 int yylex (void);
2231 void yyerror (char const *);
bfa74976 2232%@}
18b519c0
AD
2233@end group
2234@group
bfa74976 2235%union @{
38a92d50
PE
2236 double val; /* For returning numbers. */
2237 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2238@}
18b519c0 2239@end group
38a92d50
PE
2240%token <val> NUM /* Simple double precision number. */
2241%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2242%type <val> exp
2243
18b519c0 2244@group
bfa74976
RS
2245%right '='
2246%left '-' '+'
2247%left '*' '/'
38a92d50
PE
2248%left NEG /* negation--unary minus */
2249%right '^' /* exponentiation */
18b519c0 2250@end group
38a92d50 2251%% /* The grammar follows. */
bfa74976
RS
2252@end smallexample
2253
2254The above grammar introduces only two new features of the Bison language.
2255These features allow semantic values to have various data types
2256(@pxref{Multiple Types, ,More Than One Value Type}).
2257
2258The @code{%union} declaration specifies the entire list of possible types;
2259this is instead of defining @code{YYSTYPE}. The allowable types are now
2260double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2261the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2262
2263Since values can now have various types, it is necessary to associate a
2264type with each grammar symbol whose semantic value is used. These symbols
2265are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2266declarations are augmented with information about their data type (placed
2267between angle brackets).
2268
704a47c4
AD
2269The Bison construct @code{%type} is used for declaring nonterminal
2270symbols, just as @code{%token} is used for declaring token types. We
2271have not used @code{%type} before because nonterminal symbols are
2272normally declared implicitly by the rules that define them. But
2273@code{exp} must be declared explicitly so we can specify its value type.
2274@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2275
342b8b6e 2276@node Mfcalc Rules
bfa74976
RS
2277@subsection Grammar Rules for @code{mfcalc}
2278
2279Here are the grammar rules for the multi-function calculator.
2280Most of them are copied directly from @code{calc}; three rules,
2281those which mention @code{VAR} or @code{FNCT}, are new.
2282
2283@smallexample
18b519c0 2284@group
bfa74976
RS
2285input: /* empty */
2286 | input line
2287;
18b519c0 2288@end group
bfa74976 2289
18b519c0 2290@group
bfa74976
RS
2291line:
2292 '\n'
2293 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2294 | error '\n' @{ yyerrok; @}
2295;
18b519c0 2296@end group
bfa74976 2297
18b519c0 2298@group
bfa74976
RS
2299exp: NUM @{ $$ = $1; @}
2300 | VAR @{ $$ = $1->value.var; @}
2301 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2302 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2303 | exp '+' exp @{ $$ = $1 + $3; @}
2304 | exp '-' exp @{ $$ = $1 - $3; @}
2305 | exp '*' exp @{ $$ = $1 * $3; @}
2306 | exp '/' exp @{ $$ = $1 / $3; @}
2307 | '-' exp %prec NEG @{ $$ = -$2; @}
2308 | exp '^' exp @{ $$ = pow ($1, $3); @}
2309 | '(' exp ')' @{ $$ = $2; @}
2310;
18b519c0 2311@end group
38a92d50 2312/* End of grammar. */
bfa74976
RS
2313%%
2314@end smallexample
2315
342b8b6e 2316@node Mfcalc Symtab
bfa74976
RS
2317@subsection The @code{mfcalc} Symbol Table
2318@cindex symbol table example
2319
2320The multi-function calculator requires a symbol table to keep track of the
2321names and meanings of variables and functions. This doesn't affect the
2322grammar rules (except for the actions) or the Bison declarations, but it
2323requires some additional C functions for support.
2324
2325The symbol table itself consists of a linked list of records. Its
2326definition, which is kept in the header @file{calc.h}, is as follows. It
2327provides for either functions or variables to be placed in the table.
2328
2329@smallexample
2330@group
38a92d50 2331/* Function type. */
32dfccf8 2332typedef double (*func_t) (double);
72f889cc 2333@end group
32dfccf8 2334
72f889cc 2335@group
38a92d50 2336/* Data type for links in the chain of symbols. */
bfa74976
RS
2337struct symrec
2338@{
38a92d50 2339 char *name; /* name of symbol */
bfa74976 2340 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2341 union
2342 @{
38a92d50
PE
2343 double var; /* value of a VAR */
2344 func_t fnctptr; /* value of a FNCT */
bfa74976 2345 @} value;
38a92d50 2346 struct symrec *next; /* link field */
bfa74976
RS
2347@};
2348@end group
2349
2350@group
2351typedef struct symrec symrec;
2352
38a92d50 2353/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2354extern symrec *sym_table;
2355
a730d142 2356symrec *putsym (char const *, int);
38a92d50 2357symrec *getsym (char const *);
bfa74976
RS
2358@end group
2359@end smallexample
2360
2361The new version of @code{main} includes a call to @code{init_table}, a
2362function that initializes the symbol table. Here it is, and
2363@code{init_table} as well:
2364
2365@smallexample
bfa74976
RS
2366#include <stdio.h>
2367
18b519c0 2368@group
38a92d50 2369/* Called by yyparse on error. */
13863333 2370void
38a92d50 2371yyerror (char const *s)
bfa74976
RS
2372@{
2373 printf ("%s\n", s);
2374@}
18b519c0 2375@end group
bfa74976 2376
18b519c0 2377@group
bfa74976
RS
2378struct init
2379@{
38a92d50
PE
2380 char const *fname;
2381 double (*fnct) (double);
bfa74976
RS
2382@};
2383@end group
2384
2385@group
38a92d50 2386struct init const arith_fncts[] =
13863333 2387@{
32dfccf8
AD
2388 "sin", sin,
2389 "cos", cos,
13863333 2390 "atan", atan,
32dfccf8
AD
2391 "ln", log,
2392 "exp", exp,
13863333
AD
2393 "sqrt", sqrt,
2394 0, 0
2395@};
18b519c0 2396@end group
bfa74976 2397
18b519c0 2398@group
bfa74976 2399/* The symbol table: a chain of `struct symrec'. */
38a92d50 2400symrec *sym_table;
bfa74976
RS
2401@end group
2402
2403@group
72d2299c 2404/* Put arithmetic functions in table. */
13863333
AD
2405void
2406init_table (void)
bfa74976
RS
2407@{
2408 int i;
2409 symrec *ptr;
2410 for (i = 0; arith_fncts[i].fname != 0; i++)
2411 @{
2412 ptr = putsym (arith_fncts[i].fname, FNCT);
2413 ptr->value.fnctptr = arith_fncts[i].fnct;
2414 @}
2415@}
2416@end group
38a92d50
PE
2417
2418@group
2419int
2420main (void)
2421@{
2422 init_table ();
2423 return yyparse ();
2424@}
2425@end group
bfa74976
RS
2426@end smallexample
2427
2428By simply editing the initialization list and adding the necessary include
2429files, you can add additional functions to the calculator.
2430
2431Two important functions allow look-up and installation of symbols in the
2432symbol table. The function @code{putsym} is passed a name and the type
2433(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2434linked to the front of the list, and a pointer to the object is returned.
2435The function @code{getsym} is passed the name of the symbol to look up. If
2436found, a pointer to that symbol is returned; otherwise zero is returned.
2437
2438@smallexample
2439symrec *
38a92d50 2440putsym (char const *sym_name, int sym_type)
bfa74976
RS
2441@{
2442 symrec *ptr;
2443 ptr = (symrec *) malloc (sizeof (symrec));
2444 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2445 strcpy (ptr->name,sym_name);
2446 ptr->type = sym_type;
72d2299c 2447 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2448 ptr->next = (struct symrec *)sym_table;
2449 sym_table = ptr;
2450 return ptr;
2451@}
2452
2453symrec *
38a92d50 2454getsym (char const *sym_name)
bfa74976
RS
2455@{
2456 symrec *ptr;
2457 for (ptr = sym_table; ptr != (symrec *) 0;
2458 ptr = (symrec *)ptr->next)
2459 if (strcmp (ptr->name,sym_name) == 0)
2460 return ptr;
2461 return 0;
2462@}
2463@end smallexample
2464
2465The function @code{yylex} must now recognize variables, numeric values, and
2466the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2467characters with a leading letter are recognized as either variables or
bfa74976
RS
2468functions depending on what the symbol table says about them.
2469
2470The string is passed to @code{getsym} for look up in the symbol table. If
2471the name appears in the table, a pointer to its location and its type
2472(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2473already in the table, then it is installed as a @code{VAR} using
2474@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2475returned to @code{yyparse}.
bfa74976
RS
2476
2477No change is needed in the handling of numeric values and arithmetic
2478operators in @code{yylex}.
2479
2480@smallexample
2481@group
2482#include <ctype.h>
18b519c0 2483@end group
13863333 2484
18b519c0 2485@group
13863333
AD
2486int
2487yylex (void)
bfa74976
RS
2488@{
2489 int c;
2490
72d2299c 2491 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2492 while ((c = getchar ()) == ' ' || c == '\t');
2493
2494 if (c == EOF)
2495 return 0;
2496@end group
2497
2498@group
2499 /* Char starts a number => parse the number. */
2500 if (c == '.' || isdigit (c))
2501 @{
2502 ungetc (c, stdin);
2503 scanf ("%lf", &yylval.val);
2504 return NUM;
2505 @}
2506@end group
2507
2508@group
2509 /* Char starts an identifier => read the name. */
2510 if (isalpha (c))
2511 @{
2512 symrec *s;
2513 static char *symbuf = 0;
2514 static int length = 0;
2515 int i;
2516@end group
2517
2518@group
2519 /* Initially make the buffer long enough
2520 for a 40-character symbol name. */
2521 if (length == 0)
2522 length = 40, symbuf = (char *)malloc (length + 1);
2523
2524 i = 0;
2525 do
2526@end group
2527@group
2528 @{
2529 /* If buffer is full, make it bigger. */
2530 if (i == length)
2531 @{
2532 length *= 2;
18b519c0 2533 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2534 @}
2535 /* Add this character to the buffer. */
2536 symbuf[i++] = c;
2537 /* Get another character. */
2538 c = getchar ();
2539 @}
2540@end group
2541@group
72d2299c 2542 while (isalnum (c));
bfa74976
RS
2543
2544 ungetc (c, stdin);
2545 symbuf[i] = '\0';
2546@end group
2547
2548@group
2549 s = getsym (symbuf);
2550 if (s == 0)
2551 s = putsym (symbuf, VAR);
2552 yylval.tptr = s;
2553 return s->type;
2554 @}
2555
2556 /* Any other character is a token by itself. */
2557 return c;
2558@}
2559@end group
2560@end smallexample
2561
72d2299c 2562This program is both powerful and flexible. You may easily add new
704a47c4
AD
2563functions, and it is a simple job to modify this code to install
2564predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2565
342b8b6e 2566@node Exercises
bfa74976
RS
2567@section Exercises
2568@cindex exercises
2569
2570@enumerate
2571@item
2572Add some new functions from @file{math.h} to the initialization list.
2573
2574@item
2575Add another array that contains constants and their values. Then
2576modify @code{init_table} to add these constants to the symbol table.
2577It will be easiest to give the constants type @code{VAR}.
2578
2579@item
2580Make the program report an error if the user refers to an
2581uninitialized variable in any way except to store a value in it.
2582@end enumerate
2583
342b8b6e 2584@node Grammar File
bfa74976
RS
2585@chapter Bison Grammar Files
2586
2587Bison takes as input a context-free grammar specification and produces a
2588C-language function that recognizes correct instances of the grammar.
2589
2590The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2591@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2592
2593@menu
2594* Grammar Outline:: Overall layout of the grammar file.
2595* Symbols:: Terminal and nonterminal symbols.
2596* Rules:: How to write grammar rules.
2597* Recursion:: Writing recursive rules.
2598* Semantics:: Semantic values and actions.
847bf1f5 2599* Locations:: Locations and actions.
bfa74976
RS
2600* Declarations:: All kinds of Bison declarations are described here.
2601* Multiple Parsers:: Putting more than one Bison parser in one program.
2602@end menu
2603
342b8b6e 2604@node Grammar Outline
bfa74976
RS
2605@section Outline of a Bison Grammar
2606
2607A Bison grammar file has four main sections, shown here with the
2608appropriate delimiters:
2609
2610@example
2611%@{
38a92d50 2612 @var{Prologue}
bfa74976
RS
2613%@}
2614
2615@var{Bison declarations}
2616
2617%%
2618@var{Grammar rules}
2619%%
2620
75f5aaea 2621@var{Epilogue}
bfa74976
RS
2622@end example
2623
2624Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2625As a @acronym{GNU} extension, @samp{//} introduces a comment that
2626continues until end of line.
bfa74976
RS
2627
2628@menu
75f5aaea 2629* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2630* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2631* Bison Declarations:: Syntax and usage of the Bison declarations section.
2632* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2633* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2634@end menu
2635
38a92d50 2636@node Prologue
75f5aaea
MA
2637@subsection The prologue
2638@cindex declarations section
2639@cindex Prologue
2640@cindex declarations
bfa74976 2641
f8e1c9e5
AD
2642The @var{Prologue} section contains macro definitions and declarations
2643of functions and variables that are used in the actions in the grammar
2644rules. These are copied to the beginning of the parser file so that
2645they precede the definition of @code{yyparse}. You can use
2646@samp{#include} to get the declarations from a header file. If you
2647don't need any C declarations, you may omit the @samp{%@{} and
2648@samp{%@}} delimiters that bracket this section.
bfa74976 2649
9c437126 2650The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2651of @samp{%@}} that is outside a comment, a string literal, or a
2652character constant.
2653
c732d2c6
AD
2654You may have more than one @var{Prologue} section, intermixed with the
2655@var{Bison declarations}. This allows you to have C and Bison
2656declarations that refer to each other. For example, the @code{%union}
2657declaration may use types defined in a header file, and you may wish to
2658prototype functions that take arguments of type @code{YYSTYPE}. This
2659can be done with two @var{Prologue} blocks, one before and one after the
2660@code{%union} declaration.
2661
2662@smallexample
2663%@{
aef3da86 2664 #define _GNU_SOURCE
38a92d50
PE
2665 #include <stdio.h>
2666 #include "ptypes.h"
c732d2c6
AD
2667%@}
2668
2669%union @{
779e7ceb 2670 long int n;
c732d2c6
AD
2671 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2672@}
2673
2674%@{
38a92d50
PE
2675 static void print_token_value (FILE *, int, YYSTYPE);
2676 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2677%@}
2678
2679@dots{}
2680@end smallexample
2681
aef3da86
PE
2682When in doubt, it is usually safer to put prologue code before all
2683Bison declarations, rather than after. For example, any definitions
2684of feature test macros like @code{_GNU_SOURCE} or
2685@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2686feature test macros can affect the behavior of Bison-generated
2687@code{#include} directives.
2688
2cbe6b7f
JD
2689@node Prologue Alternatives
2690@subsection Prologue Alternatives
2691@cindex Prologue Alternatives
2692
136a0f76 2693@findex %code
16dc6a9e
JD
2694@findex %code requires
2695@findex %code provides
2696@findex %code top
85894313
JD
2697(The prologue alternatives described here are experimental.
2698More user feedback will help to determine whether they should become permanent
2699features.)
2700
2cbe6b7f
JD
2701The functionality of @var{Prologue} sections can often be subtle and
2702inflexible.
8e0a5e9e
JD
2703As an alternative, Bison provides a %code directive with an explicit qualifier
2704field, which identifies the purpose of the code and thus the location(s) where
2705Bison should generate it.
2706For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2707one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2708@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2709
2710Look again at the example of the previous section:
2711
2712@smallexample
2713%@{
2714 #define _GNU_SOURCE
2715 #include <stdio.h>
2716 #include "ptypes.h"
2717%@}
2718
2719%union @{
2720 long int n;
2721 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2722@}
2723
2724%@{
2725 static void print_token_value (FILE *, int, YYSTYPE);
2726 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2727%@}
2728
2729@dots{}
2730@end smallexample
2731
2732@noindent
2733Notice that there are two @var{Prologue} sections here, but there's a subtle
2734distinction between their functionality.
2735For example, if you decide to override Bison's default definition for
2736@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2737definition?
2738You should write it in the first since Bison will insert that code into the
8e0a5e9e 2739parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2740In which @var{Prologue} section should you prototype an internal function,
2741@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2742arguments?
2743You should prototype it in the second since Bison will insert that code
2744@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2745
2746This distinction in functionality between the two @var{Prologue} sections is
2747established by the appearance of the @code{%union} between them.
a501eca9 2748This behavior raises a few questions.
2cbe6b7f
JD
2749First, why should the position of a @code{%union} affect definitions related to
2750@code{YYLTYPE} and @code{yytokentype}?
2751Second, what if there is no @code{%union}?
2752In that case, the second kind of @var{Prologue} section is not available.
2753This behavior is not intuitive.
2754
8e0a5e9e 2755To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2756@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2757Let's go ahead and add the new @code{YYLTYPE} definition and the
2758@code{trace_token} prototype at the same time:
2759
2760@smallexample
16dc6a9e 2761%code top @{
2cbe6b7f
JD
2762 #define _GNU_SOURCE
2763 #include <stdio.h>
8e0a5e9e
JD
2764
2765 /* WARNING: The following code really belongs
16dc6a9e 2766 * in a `%code requires'; see below. */
8e0a5e9e 2767
2cbe6b7f
JD
2768 #include "ptypes.h"
2769 #define YYLTYPE YYLTYPE
2770 typedef struct YYLTYPE
2771 @{
2772 int first_line;
2773 int first_column;
2774 int last_line;
2775 int last_column;
2776 char *filename;
2777 @} YYLTYPE;
2778@}
2779
2780%union @{
2781 long int n;
2782 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2783@}
2784
2785%code @{
2786 static void print_token_value (FILE *, int, YYSTYPE);
2787 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2788 static void trace_token (enum yytokentype token, YYLTYPE loc);
2789@}
2790
2791@dots{}
2792@end smallexample
2793
2794@noindent
16dc6a9e
JD
2795In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2796functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2797explicit which kind you intend.
2cbe6b7f
JD
2798Moreover, both kinds are always available even in the absence of @code{%union}.
2799
16dc6a9e 2800The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2801The first two lines before the warning need to appear near the top of the
2802parser source code file.
2803The first line after the warning is required by @code{YYSTYPE} and thus also
2804needs to appear in the parser source code file.
2cbe6b7f 2805However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2806(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2807the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2808The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2809override the default @code{YYLTYPE} definition there.
2810
16dc6a9e 2811In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2812lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2813definitions.
16dc6a9e 2814Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2815
2816@smallexample
16dc6a9e 2817%code top @{
2cbe6b7f
JD
2818 #define _GNU_SOURCE
2819 #include <stdio.h>
2820@}
2821
16dc6a9e 2822%code requires @{
9bc0dd67
JD
2823 #include "ptypes.h"
2824@}
2825%union @{
2826 long int n;
2827 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2828@}
2829
16dc6a9e 2830%code requires @{
2cbe6b7f
JD
2831 #define YYLTYPE YYLTYPE
2832 typedef struct YYLTYPE
2833 @{
2834 int first_line;
2835 int first_column;
2836 int last_line;
2837 int last_column;
2838 char *filename;
2839 @} YYLTYPE;
2840@}
2841
136a0f76 2842%code @{
2cbe6b7f
JD
2843 static void print_token_value (FILE *, int, YYSTYPE);
2844 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2845 static void trace_token (enum yytokentype token, YYLTYPE loc);
2846@}
2847
2848@dots{}
2849@end smallexample
2850
2851@noindent
2852Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2853definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2854definitions in both the parser source code file and the parser header file.
16dc6a9e 2855(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2856place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2857
a501eca9 2858When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2859should prefer @code{%code requires} over @code{%code top} regardless of whether
2860you instruct Bison to generate a parser header file.
a501eca9 2861When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2862source code file and that has no special need to appear at the top of that
16dc6a9e 2863file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2864These practices will make the purpose of each block of your code explicit to
2865Bison and to other developers reading your grammar file.
8e0a5e9e 2866Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2867@code{%code requires} to be the most important of the four @var{Prologue}
2868alternatives.
a501eca9 2869
2cbe6b7f
JD
2870At some point while developing your parser, you might decide to provide
2871@code{trace_token} to modules that are external to your parser.
2872Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2873header file and the parser source code file.
2874Since this function is not a dependency required by @code{YYSTYPE} or
2875@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2876@code{%code requires}.
2cbe6b7f 2877More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2878@code{%code requires} is not sufficient.
8e0a5e9e 2879Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2880@code{%code provides}:
2cbe6b7f
JD
2881
2882@smallexample
16dc6a9e 2883%code top @{
2cbe6b7f 2884 #define _GNU_SOURCE
136a0f76 2885 #include <stdio.h>
2cbe6b7f 2886@}
136a0f76 2887
16dc6a9e 2888%code requires @{
2cbe6b7f
JD
2889 #include "ptypes.h"
2890@}
2891%union @{
2892 long int n;
2893 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2894@}
2895
16dc6a9e 2896%code requires @{
2cbe6b7f
JD
2897 #define YYLTYPE YYLTYPE
2898 typedef struct YYLTYPE
2899 @{
2900 int first_line;
2901 int first_column;
2902 int last_line;
2903 int last_column;
2904 char *filename;
2905 @} YYLTYPE;
2906@}
2907
16dc6a9e 2908%code provides @{
2cbe6b7f
JD
2909 void trace_token (enum yytokentype token, YYLTYPE loc);
2910@}
2911
2912%code @{
9bc0dd67
JD
2913 static void print_token_value (FILE *, int, YYSTYPE);
2914 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2915@}
9bc0dd67
JD
2916
2917@dots{}
2918@end smallexample
2919
2cbe6b7f
JD
2920@noindent
2921Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2922file and the parser source code file after the definitions for
2923@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2924
2925The above examples are careful to write directives in an order that reflects
8e0a5e9e 2926the layout of the generated parser source code and header files:
16dc6a9e 2927@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2928@code{%code}.
a501eca9 2929While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2930this order, Bison does not require it.
2931Instead, Bison lets you choose an organization that makes sense to you.
2932
a501eca9 2933You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2934In that case, Bison concatenates the contained code in declaration order.
2935This is the only way in which the position of one of these directives within
2936the grammar file affects its functionality.
2937
2938The result of the previous two properties is greater flexibility in how you may
2939organize your grammar file.
2940For example, you may organize semantic-type-related directives by semantic
2941type:
2942
2943@smallexample
16dc6a9e 2944%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2945%union @{ type1 field1; @}
2946%destructor @{ type1_free ($$); @} <field1>
2947%printer @{ type1_print ($$); @} <field1>
2948
16dc6a9e 2949%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2950%union @{ type2 field2; @}
2951%destructor @{ type2_free ($$); @} <field2>
2952%printer @{ type2_print ($$); @} <field2>
2953@end smallexample
2954
2955@noindent
2956You could even place each of the above directive groups in the rules section of
2957the grammar file next to the set of rules that uses the associated semantic
2958type.
61fee93e
JD
2959(In the rules section, you must terminate each of those directives with a
2960semicolon.)
2cbe6b7f
JD
2961And you don't have to worry that some directive (like a @code{%union}) in the
2962definitions section is going to adversely affect their functionality in some
2963counter-intuitive manner just because it comes first.
2964Such an organization is not possible using @var{Prologue} sections.
2965
a501eca9 2966This section has been concerned with explaining the advantages of the four
8e0a5e9e 2967@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2968However, in most cases when using these directives, you shouldn't need to
2969think about all the low-level ordering issues discussed here.
2970Instead, you should simply use these directives to label each block of your
2971code according to its purpose and let Bison handle the ordering.
2972@code{%code} is the most generic label.
16dc6a9e
JD
2973Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2974as needed.
a501eca9 2975
342b8b6e 2976@node Bison Declarations
bfa74976
RS
2977@subsection The Bison Declarations Section
2978@cindex Bison declarations (introduction)
2979@cindex declarations, Bison (introduction)
2980
2981The @var{Bison declarations} section contains declarations that define
2982terminal and nonterminal symbols, specify precedence, and so on.
2983In some simple grammars you may not need any declarations.
2984@xref{Declarations, ,Bison Declarations}.
2985
342b8b6e 2986@node Grammar Rules
bfa74976
RS
2987@subsection The Grammar Rules Section
2988@cindex grammar rules section
2989@cindex rules section for grammar
2990
2991The @dfn{grammar rules} section contains one or more Bison grammar
2992rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2993
2994There must always be at least one grammar rule, and the first
2995@samp{%%} (which precedes the grammar rules) may never be omitted even
2996if it is the first thing in the file.
2997
38a92d50 2998@node Epilogue
75f5aaea 2999@subsection The epilogue
bfa74976 3000@cindex additional C code section
75f5aaea 3001@cindex epilogue
bfa74976
RS
3002@cindex C code, section for additional
3003
08e49d20
PE
3004The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3005the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3006place to put anything that you want to have in the parser file but which need
3007not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3008definitions of @code{yylex} and @code{yyerror} often go here. Because
3009C requires functions to be declared before being used, you often need
3010to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3011even if you define them in the Epilogue.
75f5aaea 3012@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3013
3014If the last section is empty, you may omit the @samp{%%} that separates it
3015from the grammar rules.
3016
f8e1c9e5
AD
3017The Bison parser itself contains many macros and identifiers whose names
3018start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3019any such names (except those documented in this manual) in the epilogue
3020of the grammar file.
bfa74976 3021
342b8b6e 3022@node Symbols
bfa74976
RS
3023@section Symbols, Terminal and Nonterminal
3024@cindex nonterminal symbol
3025@cindex terminal symbol
3026@cindex token type
3027@cindex symbol
3028
3029@dfn{Symbols} in Bison grammars represent the grammatical classifications
3030of the language.
3031
3032A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3033class of syntactically equivalent tokens. You use the symbol in grammar
3034rules to mean that a token in that class is allowed. The symbol is
3035represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3036function returns a token type code to indicate what kind of token has
3037been read. You don't need to know what the code value is; you can use
3038the symbol to stand for it.
bfa74976 3039
f8e1c9e5
AD
3040A @dfn{nonterminal symbol} stands for a class of syntactically
3041equivalent groupings. The symbol name is used in writing grammar rules.
3042By convention, it should be all lower case.
bfa74976
RS
3043
3044Symbol names can contain letters, digits (not at the beginning),
3045underscores and periods. Periods make sense only in nonterminals.
3046
931c7513 3047There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3048
3049@itemize @bullet
3050@item
3051A @dfn{named token type} is written with an identifier, like an
c827f760 3052identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3053such name must be defined with a Bison declaration such as
3054@code{%token}. @xref{Token Decl, ,Token Type Names}.
3055
3056@item
3057@cindex character token
3058@cindex literal token
3059@cindex single-character literal
931c7513
RS
3060A @dfn{character token type} (or @dfn{literal character token}) is
3061written in the grammar using the same syntax used in C for character
3062constants; for example, @code{'+'} is a character token type. A
3063character token type doesn't need to be declared unless you need to
3064specify its semantic value data type (@pxref{Value Type, ,Data Types of
3065Semantic Values}), associativity, or precedence (@pxref{Precedence,
3066,Operator Precedence}).
bfa74976
RS
3067
3068By convention, a character token type is used only to represent a
3069token that consists of that particular character. Thus, the token
3070type @code{'+'} is used to represent the character @samp{+} as a
3071token. Nothing enforces this convention, but if you depart from it,
3072your program will confuse other readers.
3073
3074All the usual escape sequences used in character literals in C can be
3075used in Bison as well, but you must not use the null character as a
72d2299c
PE
3076character literal because its numeric code, zero, signifies
3077end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3078for @code{yylex}}). Also, unlike standard C, trigraphs have no
3079special meaning in Bison character literals, nor is backslash-newline
3080allowed.
931c7513
RS
3081
3082@item
3083@cindex string token
3084@cindex literal string token
9ecbd125 3085@cindex multicharacter literal
931c7513
RS
3086A @dfn{literal string token} is written like a C string constant; for
3087example, @code{"<="} is a literal string token. A literal string token
3088doesn't need to be declared unless you need to specify its semantic
14ded682 3089value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3090(@pxref{Precedence}).
3091
3092You can associate the literal string token with a symbolic name as an
3093alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3094Declarations}). If you don't do that, the lexical analyzer has to
3095retrieve the token number for the literal string token from the
3096@code{yytname} table (@pxref{Calling Convention}).
3097
c827f760 3098@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3099
3100By convention, a literal string token is used only to represent a token
3101that consists of that particular string. Thus, you should use the token
3102type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3103does not enforce this convention, but if you depart from it, people who
931c7513
RS
3104read your program will be confused.
3105
3106All the escape sequences used in string literals in C can be used in
92ac3705
PE
3107Bison as well, except that you must not use a null character within a
3108string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3109meaning in Bison string literals, nor is backslash-newline allowed. A
3110literal string token must contain two or more characters; for a token
3111containing just one character, use a character token (see above).
bfa74976
RS
3112@end itemize
3113
3114How you choose to write a terminal symbol has no effect on its
3115grammatical meaning. That depends only on where it appears in rules and
3116on when the parser function returns that symbol.
3117
72d2299c
PE
3118The value returned by @code{yylex} is always one of the terminal
3119symbols, except that a zero or negative value signifies end-of-input.
3120Whichever way you write the token type in the grammar rules, you write
3121it the same way in the definition of @code{yylex}. The numeric code
3122for a character token type is simply the positive numeric code of the
3123character, so @code{yylex} can use the identical value to generate the
3124requisite code, though you may need to convert it to @code{unsigned
3125char} to avoid sign-extension on hosts where @code{char} is signed.
3126Each named token type becomes a C macro in
bfa74976 3127the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3128(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3129@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3130
3131If @code{yylex} is defined in a separate file, you need to arrange for the
3132token-type macro definitions to be available there. Use the @samp{-d}
3133option when you run Bison, so that it will write these macro definitions
3134into a separate header file @file{@var{name}.tab.h} which you can include
3135in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3136
72d2299c 3137If you want to write a grammar that is portable to any Standard C
9d9b8b70 3138host, you must use only nonnull character tokens taken from the basic
c827f760 3139execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3140digits, the 52 lower- and upper-case English letters, and the
3141characters in the following C-language string:
3142
3143@example
3144"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3145@end example
3146
f8e1c9e5
AD
3147The @code{yylex} function and Bison must use a consistent character set
3148and encoding for character tokens. For example, if you run Bison in an
3149@acronym{ASCII} environment, but then compile and run the resulting
3150program in an environment that uses an incompatible character set like
3151@acronym{EBCDIC}, the resulting program may not work because the tables
3152generated by Bison will assume @acronym{ASCII} numeric values for
3153character tokens. It is standard practice for software distributions to
3154contain C source files that were generated by Bison in an
3155@acronym{ASCII} environment, so installers on platforms that are
3156incompatible with @acronym{ASCII} must rebuild those files before
3157compiling them.
e966383b 3158
bfa74976
RS
3159The symbol @code{error} is a terminal symbol reserved for error recovery
3160(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3161In particular, @code{yylex} should never return this value. The default
3162value of the error token is 256, unless you explicitly assigned 256 to
3163one of your tokens with a @code{%token} declaration.
bfa74976 3164
342b8b6e 3165@node Rules
bfa74976
RS
3166@section Syntax of Grammar Rules
3167@cindex rule syntax
3168@cindex grammar rule syntax
3169@cindex syntax of grammar rules
3170
3171A Bison grammar rule has the following general form:
3172
3173@example
e425e872 3174@group
bfa74976
RS
3175@var{result}: @var{components}@dots{}
3176 ;
e425e872 3177@end group
bfa74976
RS
3178@end example
3179
3180@noindent
9ecbd125 3181where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3182and @var{components} are various terminal and nonterminal symbols that
13863333 3183are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3184
3185For example,
3186
3187@example
3188@group
3189exp: exp '+' exp
3190 ;
3191@end group
3192@end example
3193
3194@noindent
3195says that two groupings of type @code{exp}, with a @samp{+} token in between,
3196can be combined into a larger grouping of type @code{exp}.
3197
72d2299c
PE
3198White space in rules is significant only to separate symbols. You can add
3199extra white space as you wish.
bfa74976
RS
3200
3201Scattered among the components can be @var{actions} that determine
3202the semantics of the rule. An action looks like this:
3203
3204@example
3205@{@var{C statements}@}
3206@end example
3207
3208@noindent
287c78f6
PE
3209@cindex braced code
3210This is an example of @dfn{braced code}, that is, C code surrounded by
3211braces, much like a compound statement in C@. Braced code can contain
3212any sequence of C tokens, so long as its braces are balanced. Bison
3213does not check the braced code for correctness directly; it merely
3214copies the code to the output file, where the C compiler can check it.
3215
3216Within braced code, the balanced-brace count is not affected by braces
3217within comments, string literals, or character constants, but it is
3218affected by the C digraphs @samp{<%} and @samp{%>} that represent
3219braces. At the top level braced code must be terminated by @samp{@}}
3220and not by a digraph. Bison does not look for trigraphs, so if braced
3221code uses trigraphs you should ensure that they do not affect the
3222nesting of braces or the boundaries of comments, string literals, or
3223character constants.
3224
bfa74976
RS
3225Usually there is only one action and it follows the components.
3226@xref{Actions}.
3227
3228@findex |
3229Multiple rules for the same @var{result} can be written separately or can
3230be joined with the vertical-bar character @samp{|} as follows:
3231
bfa74976
RS
3232@example
3233@group
3234@var{result}: @var{rule1-components}@dots{}
3235 | @var{rule2-components}@dots{}
3236 @dots{}
3237 ;
3238@end group
3239@end example
bfa74976
RS
3240
3241@noindent
3242They are still considered distinct rules even when joined in this way.
3243
3244If @var{components} in a rule is empty, it means that @var{result} can
3245match the empty string. For example, here is how to define a
3246comma-separated sequence of zero or more @code{exp} groupings:
3247
3248@example
3249@group
3250expseq: /* empty */
3251 | expseq1
3252 ;
3253@end group
3254
3255@group
3256expseq1: exp
3257 | expseq1 ',' exp
3258 ;
3259@end group
3260@end example
3261
3262@noindent
3263It is customary to write a comment @samp{/* empty */} in each rule
3264with no components.
3265
342b8b6e 3266@node Recursion
bfa74976
RS
3267@section Recursive Rules
3268@cindex recursive rule
3269
f8e1c9e5
AD
3270A rule is called @dfn{recursive} when its @var{result} nonterminal
3271appears also on its right hand side. Nearly all Bison grammars need to
3272use recursion, because that is the only way to define a sequence of any
3273number of a particular thing. Consider this recursive definition of a
9ecbd125 3274comma-separated sequence of one or more expressions:
bfa74976
RS
3275
3276@example
3277@group
3278expseq1: exp
3279 | expseq1 ',' exp
3280 ;
3281@end group
3282@end example
3283
3284@cindex left recursion
3285@cindex right recursion
3286@noindent
3287Since the recursive use of @code{expseq1} is the leftmost symbol in the
3288right hand side, we call this @dfn{left recursion}. By contrast, here
3289the same construct is defined using @dfn{right recursion}:
3290
3291@example
3292@group
3293expseq1: exp
3294 | exp ',' expseq1
3295 ;
3296@end group
3297@end example
3298
3299@noindent
ec3bc396
AD
3300Any kind of sequence can be defined using either left recursion or right
3301recursion, but you should always use left recursion, because it can
3302parse a sequence of any number of elements with bounded stack space.
3303Right recursion uses up space on the Bison stack in proportion to the
3304number of elements in the sequence, because all the elements must be
3305shifted onto the stack before the rule can be applied even once.
3306@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3307of this.
bfa74976
RS
3308
3309@cindex mutual recursion
3310@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3311rule does not appear directly on its right hand side, but does appear
3312in rules for other nonterminals which do appear on its right hand
13863333 3313side.
bfa74976
RS
3314
3315For example:
3316
3317@example
3318@group
3319expr: primary
3320 | primary '+' primary
3321 ;
3322@end group
3323
3324@group
3325primary: constant
3326 | '(' expr ')'
3327 ;
3328@end group
3329@end example
3330
3331@noindent
3332defines two mutually-recursive nonterminals, since each refers to the
3333other.
3334
342b8b6e 3335@node Semantics
bfa74976
RS
3336@section Defining Language Semantics
3337@cindex defining language semantics
13863333 3338@cindex language semantics, defining
bfa74976
RS
3339
3340The grammar rules for a language determine only the syntax. The semantics
3341are determined by the semantic values associated with various tokens and
3342groupings, and by the actions taken when various groupings are recognized.
3343
3344For example, the calculator calculates properly because the value
3345associated with each expression is the proper number; it adds properly
3346because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3347the numbers associated with @var{x} and @var{y}.
3348
3349@menu
3350* Value Type:: Specifying one data type for all semantic values.
3351* Multiple Types:: Specifying several alternative data types.
3352* Actions:: An action is the semantic definition of a grammar rule.
3353* Action Types:: Specifying data types for actions to operate on.
3354* Mid-Rule Actions:: Most actions go at the end of a rule.
3355 This says when, why and how to use the exceptional
3356 action in the middle of a rule.
3357@end menu
3358
342b8b6e 3359@node Value Type
bfa74976
RS
3360@subsection Data Types of Semantic Values
3361@cindex semantic value type
3362@cindex value type, semantic
3363@cindex data types of semantic values
3364@cindex default data type
3365
3366In a simple program it may be sufficient to use the same data type for
3367the semantic values of all language constructs. This was true in the
c827f760 3368@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3369Notation Calculator}).
bfa74976 3370
ddc8ede1
PE
3371Bison normally uses the type @code{int} for semantic values if your
3372program uses the same data type for all language constructs. To
bfa74976
RS
3373specify some other type, define @code{YYSTYPE} as a macro, like this:
3374
3375@example
3376#define YYSTYPE double
3377@end example
3378
3379@noindent
50cce58e
PE
3380@code{YYSTYPE}'s replacement list should be a type name
3381that does not contain parentheses or square brackets.
342b8b6e 3382This macro definition must go in the prologue of the grammar file
75f5aaea 3383(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3384
342b8b6e 3385@node Multiple Types
bfa74976
RS
3386@subsection More Than One Value Type
3387
3388In most programs, you will need different data types for different kinds
3389of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3390@code{int} or @code{long int}, while a string constant needs type
3391@code{char *}, and an identifier might need a pointer to an entry in the
3392symbol table.
bfa74976
RS
3393
3394To use more than one data type for semantic values in one parser, Bison
3395requires you to do two things:
3396
3397@itemize @bullet
3398@item
ddc8ede1 3399Specify the entire collection of possible data types, either by using the
704a47c4 3400@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3401Value Types}), or by using a @code{typedef} or a @code{#define} to
3402define @code{YYSTYPE} to be a union type whose member names are
3403the type tags.
bfa74976
RS
3404
3405@item
14ded682
AD
3406Choose one of those types for each symbol (terminal or nonterminal) for
3407which semantic values are used. This is done for tokens with the
3408@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3409and for groupings with the @code{%type} Bison declaration (@pxref{Type
3410Decl, ,Nonterminal Symbols}).
bfa74976
RS
3411@end itemize
3412
342b8b6e 3413@node Actions
bfa74976
RS
3414@subsection Actions
3415@cindex action
3416@vindex $$
3417@vindex $@var{n}
3418
3419An action accompanies a syntactic rule and contains C code to be executed
3420each time an instance of that rule is recognized. The task of most actions
3421is to compute a semantic value for the grouping built by the rule from the
3422semantic values associated with tokens or smaller groupings.
3423
287c78f6
PE
3424An action consists of braced code containing C statements, and can be
3425placed at any position in the rule;
704a47c4
AD
3426it is executed at that position. Most rules have just one action at the
3427end of the rule, following all the components. Actions in the middle of
3428a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3429Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3430
3431The C code in an action can refer to the semantic values of the components
3432matched by the rule with the construct @code{$@var{n}}, which stands for
3433the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3434being constructed is @code{$$}. Bison translates both of these
3435constructs into expressions of the appropriate type when it copies the
3436actions into the parser file. @code{$$} is translated to a modifiable
3437lvalue, so it can be assigned to.
bfa74976
RS
3438
3439Here is a typical example:
3440
3441@example
3442@group
3443exp: @dots{}
3444 | exp '+' exp
3445 @{ $$ = $1 + $3; @}
3446@end group
3447@end example
3448
3449@noindent
3450This rule constructs an @code{exp} from two smaller @code{exp} groupings
3451connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3452refer to the semantic values of the two component @code{exp} groupings,
3453which are the first and third symbols on the right hand side of the rule.
3454The sum is stored into @code{$$} so that it becomes the semantic value of
3455the addition-expression just recognized by the rule. If there were a
3456useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3457referred to as @code{$2}.
bfa74976 3458
3ded9a63
AD
3459Note that the vertical-bar character @samp{|} is really a rule
3460separator, and actions are attached to a single rule. This is a
3461difference with tools like Flex, for which @samp{|} stands for either
3462``or'', or ``the same action as that of the next rule''. In the
3463following example, the action is triggered only when @samp{b} is found:
3464
3465@example
3466@group
3467a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3468@end group
3469@end example
3470
bfa74976
RS
3471@cindex default action
3472If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3473@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3474becomes the value of the whole rule. Of course, the default action is
3475valid only if the two data types match. There is no meaningful default
3476action for an empty rule; every empty rule must have an explicit action
3477unless the rule's value does not matter.
bfa74976
RS
3478
3479@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3480to tokens and groupings on the stack @emph{before} those that match the
3481current rule. This is a very risky practice, and to use it reliably
3482you must be certain of the context in which the rule is applied. Here
3483is a case in which you can use this reliably:
3484
3485@example
3486@group
3487foo: expr bar '+' expr @{ @dots{} @}
3488 | expr bar '-' expr @{ @dots{} @}
3489 ;
3490@end group
3491
3492@group
3493bar: /* empty */
3494 @{ previous_expr = $0; @}
3495 ;
3496@end group
3497@end example
3498
3499As long as @code{bar} is used only in the fashion shown here, @code{$0}
3500always refers to the @code{expr} which precedes @code{bar} in the
3501definition of @code{foo}.
3502
32c29292 3503@vindex yylval
742e4900 3504It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3505any, from a semantic action.
3506This semantic value is stored in @code{yylval}.
3507@xref{Action Features, ,Special Features for Use in Actions}.
3508
342b8b6e 3509@node Action Types
bfa74976
RS
3510@subsection Data Types of Values in Actions
3511@cindex action data types
3512@cindex data types in actions
3513
3514If you have chosen a single data type for semantic values, the @code{$$}
3515and @code{$@var{n}} constructs always have that data type.
3516
3517If you have used @code{%union} to specify a variety of data types, then you
3518must declare a choice among these types for each terminal or nonterminal
3519symbol that can have a semantic value. Then each time you use @code{$$} or
3520@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3521in the rule. In this example,
bfa74976
RS
3522
3523@example
3524@group
3525exp: @dots{}
3526 | exp '+' exp
3527 @{ $$ = $1 + $3; @}
3528@end group
3529@end example
3530
3531@noindent
3532@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3533have the data type declared for the nonterminal symbol @code{exp}. If
3534@code{$2} were used, it would have the data type declared for the
e0c471a9 3535terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3536
3537Alternatively, you can specify the data type when you refer to the value,
3538by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3539reference. For example, if you have defined types as shown here:
3540
3541@example
3542@group
3543%union @{
3544 int itype;
3545 double dtype;
3546@}
3547@end group
3548@end example
3549
3550@noindent
3551then you can write @code{$<itype>1} to refer to the first subunit of the
3552rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3553
342b8b6e 3554@node Mid-Rule Actions
bfa74976
RS
3555@subsection Actions in Mid-Rule
3556@cindex actions in mid-rule
3557@cindex mid-rule actions
3558
3559Occasionally it is useful to put an action in the middle of a rule.
3560These actions are written just like usual end-of-rule actions, but they
3561are executed before the parser even recognizes the following components.
3562
3563A mid-rule action may refer to the components preceding it using
3564@code{$@var{n}}, but it may not refer to subsequent components because
3565it is run before they are parsed.
3566
3567The mid-rule action itself counts as one of the components of the rule.
3568This makes a difference when there is another action later in the same rule
3569(and usually there is another at the end): you have to count the actions
3570along with the symbols when working out which number @var{n} to use in
3571@code{$@var{n}}.
3572
3573The mid-rule action can also have a semantic value. The action can set
3574its value with an assignment to @code{$$}, and actions later in the rule
3575can refer to the value using @code{$@var{n}}. Since there is no symbol
3576to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3577in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3578specify a data type each time you refer to this value.
bfa74976
RS
3579
3580There is no way to set the value of the entire rule with a mid-rule
3581action, because assignments to @code{$$} do not have that effect. The
3582only way to set the value for the entire rule is with an ordinary action
3583at the end of the rule.
3584
3585Here is an example from a hypothetical compiler, handling a @code{let}
3586statement that looks like @samp{let (@var{variable}) @var{statement}} and
3587serves to create a variable named @var{variable} temporarily for the
3588duration of @var{statement}. To parse this construct, we must put
3589@var{variable} into the symbol table while @var{statement} is parsed, then
3590remove it afterward. Here is how it is done:
3591
3592@example
3593@group
3594stmt: LET '(' var ')'
3595 @{ $<context>$ = push_context ();
3596 declare_variable ($3); @}
3597 stmt @{ $$ = $6;
3598 pop_context ($<context>5); @}
3599@end group
3600@end example
3601
3602@noindent
3603As soon as @samp{let (@var{variable})} has been recognized, the first
3604action is run. It saves a copy of the current semantic context (the
3605list of accessible variables) as its semantic value, using alternative
3606@code{context} in the data-type union. Then it calls
3607@code{declare_variable} to add the new variable to that list. Once the
3608first action is finished, the embedded statement @code{stmt} can be
3609parsed. Note that the mid-rule action is component number 5, so the
3610@samp{stmt} is component number 6.
3611
3612After the embedded statement is parsed, its semantic value becomes the
3613value of the entire @code{let}-statement. Then the semantic value from the
3614earlier action is used to restore the prior list of variables. This
3615removes the temporary @code{let}-variable from the list so that it won't
3616appear to exist while the rest of the program is parsed.
3617
841a7737
JD
3618@findex %destructor
3619@cindex discarded symbols, mid-rule actions
3620@cindex error recovery, mid-rule actions
3621In the above example, if the parser initiates error recovery (@pxref{Error
3622Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3623it might discard the previous semantic context @code{$<context>5} without
3624restoring it.
3625Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3626Discarded Symbols}).
ec5479ce
JD
3627However, Bison currently provides no means to declare a destructor specific to
3628a particular mid-rule action's semantic value.
841a7737
JD
3629
3630One solution is to bury the mid-rule action inside a nonterminal symbol and to
3631declare a destructor for that symbol:
3632
3633@example
3634@group
3635%type <context> let
3636%destructor @{ pop_context ($$); @} let
3637
3638%%
3639
3640stmt: let stmt
3641 @{ $$ = $2;
3642 pop_context ($1); @}
3643 ;
3644
3645let: LET '(' var ')'
3646 @{ $$ = push_context ();
3647 declare_variable ($3); @}
3648 ;
3649
3650@end group
3651@end example
3652
3653@noindent
3654Note that the action is now at the end of its rule.
3655Any mid-rule action can be converted to an end-of-rule action in this way, and
3656this is what Bison actually does to implement mid-rule actions.
3657
bfa74976
RS
3658Taking action before a rule is completely recognized often leads to
3659conflicts since the parser must commit to a parse in order to execute the
3660action. For example, the following two rules, without mid-rule actions,
3661can coexist in a working parser because the parser can shift the open-brace
3662token and look at what follows before deciding whether there is a
3663declaration or not:
3664
3665@example
3666@group
3667compound: '@{' declarations statements '@}'
3668 | '@{' statements '@}'
3669 ;
3670@end group
3671@end example
3672
3673@noindent
3674But when we add a mid-rule action as follows, the rules become nonfunctional:
3675
3676@example
3677@group
3678compound: @{ prepare_for_local_variables (); @}
3679 '@{' declarations statements '@}'
3680@end group
3681@group
3682 | '@{' statements '@}'
3683 ;
3684@end group
3685@end example
3686
3687@noindent
3688Now the parser is forced to decide whether to run the mid-rule action
3689when it has read no farther than the open-brace. In other words, it
3690must commit to using one rule or the other, without sufficient
3691information to do it correctly. (The open-brace token is what is called
742e4900
JD
3692the @dfn{lookahead} token at this time, since the parser is still
3693deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3694
3695You might think that you could correct the problem by putting identical
3696actions into the two rules, like this:
3697
3698@example
3699@group
3700compound: @{ prepare_for_local_variables (); @}
3701 '@{' declarations statements '@}'
3702 | @{ prepare_for_local_variables (); @}
3703 '@{' statements '@}'
3704 ;
3705@end group
3706@end example
3707
3708@noindent
3709But this does not help, because Bison does not realize that the two actions
3710are identical. (Bison never tries to understand the C code in an action.)
3711
3712If the grammar is such that a declaration can be distinguished from a
3713statement by the first token (which is true in C), then one solution which
3714does work is to put the action after the open-brace, like this:
3715
3716@example
3717@group
3718compound: '@{' @{ prepare_for_local_variables (); @}
3719 declarations statements '@}'
3720 | '@{' statements '@}'
3721 ;
3722@end group
3723@end example
3724
3725@noindent
3726Now the first token of the following declaration or statement,
3727which would in any case tell Bison which rule to use, can still do so.
3728
3729Another solution is to bury the action inside a nonterminal symbol which
3730serves as a subroutine:
3731
3732@example
3733@group
3734subroutine: /* empty */
3735 @{ prepare_for_local_variables (); @}
3736 ;
3737
3738@end group
3739
3740@group
3741compound: subroutine
3742 '@{' declarations statements '@}'
3743 | subroutine
3744 '@{' statements '@}'
3745 ;
3746@end group
3747@end example
3748
3749@noindent
3750Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3751deciding which rule for @code{compound} it will eventually use.
bfa74976 3752
342b8b6e 3753@node Locations
847bf1f5
AD
3754@section Tracking Locations
3755@cindex location
95923bd6
AD
3756@cindex textual location
3757@cindex location, textual
847bf1f5
AD
3758
3759Though grammar rules and semantic actions are enough to write a fully
72d2299c 3760functional parser, it can be useful to process some additional information,
3e259915
MA
3761especially symbol locations.
3762
704a47c4
AD
3763The way locations are handled is defined by providing a data type, and
3764actions to take when rules are matched.
847bf1f5
AD
3765
3766@menu
3767* Location Type:: Specifying a data type for locations.
3768* Actions and Locations:: Using locations in actions.
3769* Location Default Action:: Defining a general way to compute locations.
3770@end menu
3771
342b8b6e 3772@node Location Type
847bf1f5
AD
3773@subsection Data Type of Locations
3774@cindex data type of locations
3775@cindex default location type
3776
3777Defining a data type for locations is much simpler than for semantic values,
3778since all tokens and groupings always use the same type.
3779
50cce58e
PE
3780You can specify the type of locations by defining a macro called
3781@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3782defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3783When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3784four members:
3785
3786@example
6273355b 3787typedef struct YYLTYPE
847bf1f5
AD
3788@{
3789 int first_line;
3790 int first_column;
3791 int last_line;
3792 int last_column;
6273355b 3793@} YYLTYPE;
847bf1f5
AD
3794@end example
3795
cd48d21d
AD
3796At the beginning of the parsing, Bison initializes all these fields to 1
3797for @code{yylloc}.
3798
342b8b6e 3799@node Actions and Locations
847bf1f5
AD
3800@subsection Actions and Locations
3801@cindex location actions
3802@cindex actions, location
3803@vindex @@$
3804@vindex @@@var{n}
3805
3806Actions are not only useful for defining language semantics, but also for
3807describing the behavior of the output parser with locations.
3808
3809The most obvious way for building locations of syntactic groupings is very
72d2299c 3810similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3811constructs can be used to access the locations of the elements being matched.
3812The location of the @var{n}th component of the right hand side is
3813@code{@@@var{n}}, while the location of the left hand side grouping is
3814@code{@@$}.
3815
3e259915 3816Here is a basic example using the default data type for locations:
847bf1f5
AD
3817
3818@example
3819@group
3820exp: @dots{}
3e259915 3821 | exp '/' exp
847bf1f5 3822 @{
3e259915
MA
3823 @@$.first_column = @@1.first_column;
3824 @@$.first_line = @@1.first_line;
847bf1f5
AD
3825 @@$.last_column = @@3.last_column;
3826 @@$.last_line = @@3.last_line;
3e259915
MA
3827 if ($3)
3828 $$ = $1 / $3;
3829 else
3830 @{
3831 $$ = 1;
4e03e201
AD
3832 fprintf (stderr,
3833 "Division by zero, l%d,c%d-l%d,c%d",
3834 @@3.first_line, @@3.first_column,
3835 @@3.last_line, @@3.last_column);
3e259915 3836 @}
847bf1f5
AD
3837 @}
3838@end group
3839@end example
3840
3e259915 3841As for semantic values, there is a default action for locations that is
72d2299c 3842run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3843beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3844last symbol.
3e259915 3845
72d2299c 3846With this default action, the location tracking can be fully automatic. The
3e259915
MA
3847example above simply rewrites this way:
3848
3849@example
3850@group
3851exp: @dots{}
3852 | exp '/' exp
3853 @{
3854 if ($3)
3855 $$ = $1 / $3;
3856 else
3857 @{
3858 $$ = 1;
4e03e201
AD
3859 fprintf (stderr,
3860 "Division by zero, l%d,c%d-l%d,c%d",
3861 @@3.first_line, @@3.first_column,
3862 @@3.last_line, @@3.last_column);
3e259915
MA
3863 @}
3864 @}
3865@end group
3866@end example
847bf1f5 3867
32c29292 3868@vindex yylloc
742e4900 3869It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3870from a semantic action.
3871This location is stored in @code{yylloc}.
3872@xref{Action Features, ,Special Features for Use in Actions}.
3873
342b8b6e 3874@node Location Default Action
847bf1f5
AD
3875@subsection Default Action for Locations
3876@vindex YYLLOC_DEFAULT
8710fc41 3877@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3878
72d2299c 3879Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3880locations are much more general than semantic values, there is room in
3881the output parser to redefine the default action to take for each
72d2299c 3882rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3883matched, before the associated action is run. It is also invoked
3884while processing a syntax error, to compute the error's location.
8710fc41
JD
3885Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3886parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3887of that ambiguity.
847bf1f5 3888
3e259915 3889Most of the time, this macro is general enough to suppress location
79282c6c 3890dedicated code from semantic actions.
847bf1f5 3891
72d2299c 3892The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3893the location of the grouping (the result of the computation). When a
766de5eb 3894rule is matched, the second parameter identifies locations of
96b93a3d 3895all right hand side elements of the rule being matched, and the third
8710fc41
JD
3896parameter is the size of the rule's right hand side.
3897When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3898right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3899When processing a syntax error, the second parameter identifies locations
3900of the symbols that were discarded during error processing, and the third
96b93a3d 3901parameter is the number of discarded symbols.
847bf1f5 3902
766de5eb 3903By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3904
766de5eb 3905@smallexample
847bf1f5 3906@group
766de5eb
PE
3907# define YYLLOC_DEFAULT(Current, Rhs, N) \
3908 do \
3909 if (N) \
3910 @{ \
3911 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3912 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3913 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3914 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3915 @} \
3916 else \
3917 @{ \
3918 (Current).first_line = (Current).last_line = \
3919 YYRHSLOC(Rhs, 0).last_line; \
3920 (Current).first_column = (Current).last_column = \
3921 YYRHSLOC(Rhs, 0).last_column; \
3922 @} \
3923 while (0)
847bf1f5 3924@end group
766de5eb 3925@end smallexample
676385e2 3926
766de5eb
PE
3927where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3928in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3929just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3930
3e259915 3931When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3932
3e259915 3933@itemize @bullet
79282c6c 3934@item
72d2299c 3935All arguments are free of side-effects. However, only the first one (the
3e259915 3936result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3937
3e259915 3938@item
766de5eb
PE
3939For consistency with semantic actions, valid indexes within the
3940right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3941valid index, and it refers to the symbol just before the reduction.
3942During error processing @var{n} is always positive.
0ae99356
PE
3943
3944@item
3945Your macro should parenthesize its arguments, if need be, since the
3946actual arguments may not be surrounded by parentheses. Also, your
3947macro should expand to something that can be used as a single
3948statement when it is followed by a semicolon.
3e259915 3949@end itemize
847bf1f5 3950
342b8b6e 3951@node Declarations
bfa74976
RS
3952@section Bison Declarations
3953@cindex declarations, Bison
3954@cindex Bison declarations
3955
3956The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3957used in formulating the grammar and the data types of semantic values.
3958@xref{Symbols}.
3959
3960All token type names (but not single-character literal tokens such as
3961@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3962declared if you need to specify which data type to use for the semantic
3963value (@pxref{Multiple Types, ,More Than One Value Type}).
3964
3965The first rule in the file also specifies the start symbol, by default.
3966If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3967it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3968Grammars}).
bfa74976
RS
3969
3970@menu
b50d2359 3971* Require Decl:: Requiring a Bison version.
bfa74976
RS
3972* Token Decl:: Declaring terminal symbols.
3973* Precedence Decl:: Declaring terminals with precedence and associativity.
3974* Union Decl:: Declaring the set of all semantic value types.
3975* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3976* Initial Action Decl:: Code run before parsing starts.
72f889cc 3977* Destructor Decl:: Declaring how symbols are freed.
d6328241 3978* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3979* Start Decl:: Specifying the start symbol.
3980* Pure Decl:: Requesting a reentrant parser.
3981* Decl Summary:: Table of all Bison declarations.
3982@end menu
3983
b50d2359
AD
3984@node Require Decl
3985@subsection Require a Version of Bison
3986@cindex version requirement
3987@cindex requiring a version of Bison
3988@findex %require
3989
3990You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3991the requirement is not met, @command{bison} exits with an error (exit
3992status 63).
b50d2359
AD
3993
3994@example
3995%require "@var{version}"
3996@end example
3997
342b8b6e 3998@node Token Decl
bfa74976
RS
3999@subsection Token Type Names
4000@cindex declaring token type names
4001@cindex token type names, declaring
931c7513 4002@cindex declaring literal string tokens
bfa74976
RS
4003@findex %token
4004
4005The basic way to declare a token type name (terminal symbol) is as follows:
4006
4007@example
4008%token @var{name}
4009@end example
4010
4011Bison will convert this into a @code{#define} directive in
4012the parser, so that the function @code{yylex} (if it is in this file)
4013can use the name @var{name} to stand for this token type's code.
4014
14ded682
AD
4015Alternatively, you can use @code{%left}, @code{%right}, or
4016@code{%nonassoc} instead of @code{%token}, if you wish to specify
4017associativity and precedence. @xref{Precedence Decl, ,Operator
4018Precedence}.
bfa74976
RS
4019
4020You can explicitly specify the numeric code for a token type by appending
1452af69
PE
4021a decimal or hexadecimal integer value in the field immediately
4022following the token name:
bfa74976
RS
4023
4024@example
4025%token NUM 300
1452af69 4026%token XNUM 0x12d // a GNU extension
bfa74976
RS
4027@end example
4028
4029@noindent
4030It is generally best, however, to let Bison choose the numeric codes for
4031all token types. Bison will automatically select codes that don't conflict
e966383b 4032with each other or with normal characters.
bfa74976
RS
4033
4034In the event that the stack type is a union, you must augment the
4035@code{%token} or other token declaration to include the data type
704a47c4
AD
4036alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4037Than One Value Type}).
bfa74976
RS
4038
4039For example:
4040
4041@example
4042@group
4043%union @{ /* define stack type */
4044 double val;
4045 symrec *tptr;
4046@}
4047%token <val> NUM /* define token NUM and its type */
4048@end group
4049@end example
4050
931c7513
RS
4051You can associate a literal string token with a token type name by
4052writing the literal string at the end of a @code{%token}
4053declaration which declares the name. For example:
4054
4055@example
4056%token arrow "=>"
4057@end example
4058
4059@noindent
4060For example, a grammar for the C language might specify these names with
4061equivalent literal string tokens:
4062
4063@example
4064%token <operator> OR "||"
4065%token <operator> LE 134 "<="
4066%left OR "<="
4067@end example
4068
4069@noindent
4070Once you equate the literal string and the token name, you can use them
4071interchangeably in further declarations or the grammar rules. The
4072@code{yylex} function can use the token name or the literal string to
4073obtain the token type code number (@pxref{Calling Convention}).
4074
342b8b6e 4075@node Precedence Decl
bfa74976
RS
4076@subsection Operator Precedence
4077@cindex precedence declarations
4078@cindex declaring operator precedence
4079@cindex operator precedence, declaring
4080
4081Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4082declare a token and specify its precedence and associativity, all at
4083once. These are called @dfn{precedence declarations}.
704a47c4
AD
4084@xref{Precedence, ,Operator Precedence}, for general information on
4085operator precedence.
bfa74976
RS
4086
4087The syntax of a precedence declaration is the same as that of
4088@code{%token}: either
4089
4090@example
4091%left @var{symbols}@dots{}
4092@end example
4093
4094@noindent
4095or
4096
4097@example
4098%left <@var{type}> @var{symbols}@dots{}
4099@end example
4100
4101And indeed any of these declarations serves the purposes of @code{%token}.
4102But in addition, they specify the associativity and relative precedence for
4103all the @var{symbols}:
4104
4105@itemize @bullet
4106@item
4107The associativity of an operator @var{op} determines how repeated uses
4108of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4109@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4110grouping @var{y} with @var{z} first. @code{%left} specifies
4111left-associativity (grouping @var{x} with @var{y} first) and
4112@code{%right} specifies right-associativity (grouping @var{y} with
4113@var{z} first). @code{%nonassoc} specifies no associativity, which
4114means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4115considered a syntax error.
4116
4117@item
4118The precedence of an operator determines how it nests with other operators.
4119All the tokens declared in a single precedence declaration have equal
4120precedence and nest together according to their associativity.
4121When two tokens declared in different precedence declarations associate,
4122the one declared later has the higher precedence and is grouped first.
4123@end itemize
4124
342b8b6e 4125@node Union Decl
bfa74976
RS
4126@subsection The Collection of Value Types
4127@cindex declaring value types
4128@cindex value types, declaring
4129@findex %union
4130
287c78f6
PE
4131The @code{%union} declaration specifies the entire collection of
4132possible data types for semantic values. The keyword @code{%union} is
4133followed by braced code containing the same thing that goes inside a
4134@code{union} in C@.
bfa74976
RS
4135
4136For example:
4137
4138@example
4139@group
4140%union @{
4141 double val;
4142 symrec *tptr;
4143@}
4144@end group
4145@end example
4146
4147@noindent
4148This says that the two alternative types are @code{double} and @code{symrec
4149*}. They are given names @code{val} and @code{tptr}; these names are used
4150in the @code{%token} and @code{%type} declarations to pick one of the types
4151for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4152
6273355b
PE
4153As an extension to @acronym{POSIX}, a tag is allowed after the
4154@code{union}. For example:
4155
4156@example
4157@group
4158%union value @{
4159 double val;
4160 symrec *tptr;
4161@}
4162@end group
4163@end example
4164
d6ca7905 4165@noindent
6273355b
PE
4166specifies the union tag @code{value}, so the corresponding C type is
4167@code{union value}. If you do not specify a tag, it defaults to
4168@code{YYSTYPE}.
4169
d6ca7905
PE
4170As another extension to @acronym{POSIX}, you may specify multiple
4171@code{%union} declarations; their contents are concatenated. However,
4172only the first @code{%union} declaration can specify a tag.
4173
6273355b 4174Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4175a semicolon after the closing brace.
4176
ddc8ede1
PE
4177Instead of @code{%union}, you can define and use your own union type
4178@code{YYSTYPE} if your grammar contains at least one
4179@samp{<@var{type}>} tag. For example, you can put the following into
4180a header file @file{parser.h}:
4181
4182@example
4183@group
4184union YYSTYPE @{
4185 double val;
4186 symrec *tptr;
4187@};
4188typedef union YYSTYPE YYSTYPE;
4189@end group
4190@end example
4191
4192@noindent
4193and then your grammar can use the following
4194instead of @code{%union}:
4195
4196@example
4197@group
4198%@{
4199#include "parser.h"
4200%@}
4201%type <val> expr
4202%token <tptr> ID
4203@end group
4204@end example
4205
342b8b6e 4206@node Type Decl
bfa74976
RS
4207@subsection Nonterminal Symbols
4208@cindex declaring value types, nonterminals
4209@cindex value types, nonterminals, declaring
4210@findex %type
4211
4212@noindent
4213When you use @code{%union} to specify multiple value types, you must
4214declare the value type of each nonterminal symbol for which values are
4215used. This is done with a @code{%type} declaration, like this:
4216
4217@example
4218%type <@var{type}> @var{nonterminal}@dots{}
4219@end example
4220
4221@noindent
704a47c4
AD
4222Here @var{nonterminal} is the name of a nonterminal symbol, and
4223@var{type} is the name given in the @code{%union} to the alternative
4224that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4225can give any number of nonterminal symbols in the same @code{%type}
4226declaration, if they have the same value type. Use spaces to separate
4227the symbol names.
bfa74976 4228
931c7513
RS
4229You can also declare the value type of a terminal symbol. To do this,
4230use the same @code{<@var{type}>} construction in a declaration for the
4231terminal symbol. All kinds of token declarations allow
4232@code{<@var{type}>}.
4233
18d192f0
AD
4234@node Initial Action Decl
4235@subsection Performing Actions before Parsing
4236@findex %initial-action
4237
4238Sometimes your parser needs to perform some initializations before
4239parsing. The @code{%initial-action} directive allows for such arbitrary
4240code.
4241
4242@deffn {Directive} %initial-action @{ @var{code} @}
4243@findex %initial-action
287c78f6 4244Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4245@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4246@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4247@code{%parse-param}.
18d192f0
AD
4248@end deffn
4249
451364ed
AD
4250For instance, if your locations use a file name, you may use
4251
4252@example
48b16bbc 4253%parse-param @{ char const *file_name @};
451364ed
AD
4254%initial-action
4255@{
4626a15d 4256 @@$.initialize (file_name);
451364ed
AD
4257@};
4258@end example
4259
18d192f0 4260
72f889cc
AD
4261@node Destructor Decl
4262@subsection Freeing Discarded Symbols
4263@cindex freeing discarded symbols
4264@findex %destructor
12e35840 4265@findex <*>
3ebecc24 4266@findex <>
a85284cf
AD
4267During error recovery (@pxref{Error Recovery}), symbols already pushed
4268on the stack and tokens coming from the rest of the file are discarded
4269until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4270or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4271symbols on the stack must be discarded. Even if the parser succeeds, it
4272must discard the start symbol.
258b75ca
PE
4273
4274When discarded symbols convey heap based information, this memory is
4275lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4276in traditional compilers, it is unacceptable for programs like shells or
4277protocol implementations that may parse and execute indefinitely.
258b75ca 4278
a85284cf
AD
4279The @code{%destructor} directive defines code that is called when a
4280symbol is automatically discarded.
72f889cc
AD
4281
4282@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4283@findex %destructor
287c78f6
PE
4284Invoke the braced @var{code} whenever the parser discards one of the
4285@var{symbols}.
4b367315 4286Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4287with the discarded symbol, and @code{@@$} designates its location.
4288The additional parser parameters are also available (@pxref{Parser Function, ,
4289The Parser Function @code{yyparse}}).
ec5479ce 4290
b2a0b7ca
JD
4291When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4292per-symbol @code{%destructor}.
4293You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4294tag among @var{symbols}.
b2a0b7ca 4295In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4296grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4297per-symbol @code{%destructor}.
4298
12e35840 4299Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4300(These default forms are experimental.
4301More user feedback will help to determine whether they should become permanent
4302features.)
3ebecc24 4303You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4304exactly one @code{%destructor} declaration in your grammar file.
4305The parser will invoke the @var{code} associated with one of these whenever it
4306discards any user-defined grammar symbol that has no per-symbol and no per-type
4307@code{%destructor}.
4308The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4309symbol for which you have formally declared a semantic type tag (@code{%type}
4310counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4311The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4312symbol that has no declared semantic type tag.
72f889cc
AD
4313@end deffn
4314
b2a0b7ca 4315@noindent
12e35840 4316For example:
72f889cc
AD
4317
4318@smallexample
ec5479ce
JD
4319%union @{ char *string; @}
4320%token <string> STRING1
4321%token <string> STRING2
4322%type <string> string1
4323%type <string> string2
b2a0b7ca
JD
4324%union @{ char character; @}
4325%token <character> CHR
4326%type <character> chr
12e35840
JD
4327%token TAGLESS
4328
b2a0b7ca 4329%destructor @{ @} <character>
12e35840
JD
4330%destructor @{ free ($$); @} <*>
4331%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4332%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4333@end smallexample
4334
4335@noindent
b2a0b7ca
JD
4336guarantees that, when the parser discards any user-defined symbol that has a
4337semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4338to @code{free} by default.
ec5479ce
JD
4339However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4340prints its line number to @code{stdout}.
4341It performs only the second @code{%destructor} in this case, so it invokes
4342@code{free} only once.
12e35840
JD
4343Finally, the parser merely prints a message whenever it discards any symbol,
4344such as @code{TAGLESS}, that has no semantic type tag.
4345
4346A Bison-generated parser invokes the default @code{%destructor}s only for
4347user-defined as opposed to Bison-defined symbols.
4348For example, the parser will not invoke either kind of default
4349@code{%destructor} for the special Bison-defined symbols @code{$accept},
4350@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4351none of which you can reference in your grammar.
4352It also will not invoke either for the @code{error} token (@pxref{Table of
4353Symbols, ,error}), which is always defined by Bison regardless of whether you
4354reference it in your grammar.
4355However, it may invoke one of them for the end token (token 0) if you
4356redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4357
4358@smallexample
4359%token END 0
4360@end smallexample
4361
12e35840
JD
4362@cindex actions in mid-rule
4363@cindex mid-rule actions
4364Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4365mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4366That is, Bison does not consider a mid-rule to have a semantic value if you do
4367not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4368@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4369rule.
4370However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4371@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4372
3508ce36
JD
4373@ignore
4374@noindent
4375In the future, it may be possible to redefine the @code{error} token as a
4376nonterminal that captures the discarded symbols.
4377In that case, the parser will invoke the default destructor for it as well.
4378@end ignore
4379
e757bb10
AD
4380@sp 1
4381
4382@cindex discarded symbols
4383@dfn{Discarded symbols} are the following:
4384
4385@itemize
4386@item
4387stacked symbols popped during the first phase of error recovery,
4388@item
4389incoming terminals during the second phase of error recovery,
4390@item
742e4900 4391the current lookahead and the entire stack (except the current
9d9b8b70 4392right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4393@item
4394the start symbol, when the parser succeeds.
e757bb10
AD
4395@end itemize
4396
9d9b8b70
PE
4397The parser can @dfn{return immediately} because of an explicit call to
4398@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4399exhaustion.
4400
29553547 4401Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4402error via @code{YYERROR} are not discarded automatically. As a rule
4403of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4404the memory.
e757bb10 4405
342b8b6e 4406@node Expect Decl
bfa74976
RS
4407@subsection Suppressing Conflict Warnings
4408@cindex suppressing conflict warnings
4409@cindex preventing warnings about conflicts
4410@cindex warnings, preventing
4411@cindex conflicts, suppressing warnings of
4412@findex %expect
d6328241 4413@findex %expect-rr
bfa74976
RS
4414
4415Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4416(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4417have harmless shift/reduce conflicts which are resolved in a predictable
4418way and would be difficult to eliminate. It is desirable to suppress
4419the warning about these conflicts unless the number of conflicts
4420changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4421
4422The declaration looks like this:
4423
4424@example
4425%expect @var{n}
4426@end example
4427
035aa4a0
PE
4428Here @var{n} is a decimal integer. The declaration says there should
4429be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4430Bison reports an error if the number of shift/reduce conflicts differs
4431from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4432
035aa4a0
PE
4433For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4434serious, and should be eliminated entirely. Bison will always report
4435reduce/reduce conflicts for these parsers. With @acronym{GLR}
4436parsers, however, both kinds of conflicts are routine; otherwise,
4437there would be no need to use @acronym{GLR} parsing. Therefore, it is
4438also possible to specify an expected number of reduce/reduce conflicts
4439in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4440
4441@example
4442%expect-rr @var{n}
4443@end example
4444
bfa74976
RS
4445In general, using @code{%expect} involves these steps:
4446
4447@itemize @bullet
4448@item
4449Compile your grammar without @code{%expect}. Use the @samp{-v} option
4450to get a verbose list of where the conflicts occur. Bison will also
4451print the number of conflicts.
4452
4453@item
4454Check each of the conflicts to make sure that Bison's default
4455resolution is what you really want. If not, rewrite the grammar and
4456go back to the beginning.
4457
4458@item
4459Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4460number which Bison printed. With @acronym{GLR} parsers, add an
4461@code{%expect-rr} declaration as well.
bfa74976
RS
4462@end itemize
4463
035aa4a0
PE
4464Now Bison will warn you if you introduce an unexpected conflict, but
4465will keep silent otherwise.
bfa74976 4466
342b8b6e 4467@node Start Decl
bfa74976
RS
4468@subsection The Start-Symbol
4469@cindex declaring the start symbol
4470@cindex start symbol, declaring
4471@cindex default start symbol
4472@findex %start
4473
4474Bison assumes by default that the start symbol for the grammar is the first
4475nonterminal specified in the grammar specification section. The programmer
4476may override this restriction with the @code{%start} declaration as follows:
4477
4478@example
4479%start @var{symbol}
4480@end example
4481
342b8b6e 4482@node Pure Decl
bfa74976
RS
4483@subsection A Pure (Reentrant) Parser
4484@cindex reentrant parser
4485@cindex pure parser
8c9a50be 4486@findex %pure-parser
bfa74976
RS
4487
4488A @dfn{reentrant} program is one which does not alter in the course of
4489execution; in other words, it consists entirely of @dfn{pure} (read-only)
4490code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4491for example, a nonreentrant program may not be safe to call from a signal
4492handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4493program must be called only within interlocks.
4494
70811b85 4495Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4496suitable for most uses, and it permits compatibility with Yacc. (The
4497standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4498statically allocated variables for communication with @code{yylex},
4499including @code{yylval} and @code{yylloc}.)
bfa74976 4500
70811b85 4501Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4502declaration @code{%pure-parser} says that you want the parser to be
70811b85 4503reentrant. It looks like this:
bfa74976
RS
4504
4505@example
8c9a50be 4506%pure-parser
bfa74976
RS
4507@end example
4508
70811b85
RS
4509The result is that the communication variables @code{yylval} and
4510@code{yylloc} become local variables in @code{yyparse}, and a different
4511calling convention is used for the lexical analyzer function
4512@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4513Parsers}, for the details of this. The variable @code{yynerrs} also
4514becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4515Reporting Function @code{yyerror}}). The convention for calling
4516@code{yyparse} itself is unchanged.
4517
4518Whether the parser is pure has nothing to do with the grammar rules.
4519You can generate either a pure parser or a nonreentrant parser from any
4520valid grammar.
bfa74976 4521
342b8b6e 4522@node Decl Summary
bfa74976
RS
4523@subsection Bison Declaration Summary
4524@cindex Bison declaration summary
4525@cindex declaration summary
4526@cindex summary, Bison declaration
4527
d8988b2f 4528Here is a summary of the declarations used to define a grammar:
bfa74976 4529
18b519c0 4530@deffn {Directive} %union
bfa74976
RS
4531Declare the collection of data types that semantic values may have
4532(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4533@end deffn
bfa74976 4534
18b519c0 4535@deffn {Directive} %token
bfa74976
RS
4536Declare a terminal symbol (token type name) with no precedence
4537or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4538@end deffn
bfa74976 4539
18b519c0 4540@deffn {Directive} %right
bfa74976
RS
4541Declare a terminal symbol (token type name) that is right-associative
4542(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4543@end deffn
bfa74976 4544
18b519c0 4545@deffn {Directive} %left
bfa74976
RS
4546Declare a terminal symbol (token type name) that is left-associative
4547(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4548@end deffn
bfa74976 4549
18b519c0 4550@deffn {Directive} %nonassoc
bfa74976 4551Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4552(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4553Using it in a way that would be associative is a syntax error.
4554@end deffn
4555
91d2c560 4556@ifset defaultprec
39a06c25 4557@deffn {Directive} %default-prec
22fccf95 4558Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4559(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4560@end deffn
91d2c560 4561@end ifset
bfa74976 4562
18b519c0 4563@deffn {Directive} %type
bfa74976
RS
4564Declare the type of semantic values for a nonterminal symbol
4565(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4566@end deffn
bfa74976 4567
18b519c0 4568@deffn {Directive} %start
89cab50d
AD
4569Specify the grammar's start symbol (@pxref{Start Decl, ,The
4570Start-Symbol}).
18b519c0 4571@end deffn
bfa74976 4572
18b519c0 4573@deffn {Directive} %expect
bfa74976
RS
4574Declare the expected number of shift-reduce conflicts
4575(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4576@end deffn
4577
bfa74976 4578
d8988b2f
AD
4579@sp 1
4580@noindent
4581In order to change the behavior of @command{bison}, use the following
4582directives:
4583
148d66d8
JD
4584@deffn {Directive} %code @{@var{code}@}
4585@findex %code
4586This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4587It inserts @var{code} verbatim at a language-dependent default location in the
4588output@footnote{The default location is actually skeleton-dependent;
4589 writers of non-standard skeletons however should choose the default location
4590 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4591
4592@cindex Prologue
8405b70c 4593For C/C++, the default location is the parser source code
148d66d8
JD
4594file after the usual contents of the parser header file.
4595Thus, @code{%code} replaces the traditional Yacc prologue,
4596@code{%@{@var{code}%@}}, for most purposes.
4597For a detailed discussion, see @ref{Prologue Alternatives}.
4598
8405b70c 4599For Java, the default location is inside the parser class.
148d66d8
JD
4600
4601(Like all the Yacc prologue alternatives, this directive is experimental.
4602More user feedback will help to determine whether it should become a permanent
4603feature.)
4604@end deffn
4605
4606@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4607This is the qualified form of the @code{%code} directive.
4608If you need to specify location-sensitive verbatim @var{code} that does not
4609belong at the default location selected by the unqualified @code{%code} form,
4610use this form instead.
4611
4612@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4613where Bison should generate it.
4614Not all values of @var{qualifier} are available for all target languages:
4615
4616@itemize @bullet
4617@findex %code requires
4618@item requires
4619
4620@itemize @bullet
4621@item Language(s): C, C++
4622
4623@item Purpose: This is the best place to write dependency code required for
4624@code{YYSTYPE} and @code{YYLTYPE}.
4625In other words, it's the best place to define types referenced in @code{%union}
4626directives, and it's the best place to override Bison's default @code{YYSTYPE}
4627and @code{YYLTYPE} definitions.
4628
4629@item Location(s): The parser header file and the parser source code file
4630before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4631@end itemize
4632
4633@item provides
4634@findex %code provides
4635
4636@itemize @bullet
4637@item Language(s): C, C++
4638
4639@item Purpose: This is the best place to write additional definitions and
4640declarations that should be provided to other modules.
4641
4642@item Location(s): The parser header file and the parser source code file after
4643the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4644@end itemize
4645
4646@item top
4647@findex %code top
4648
4649@itemize @bullet
4650@item Language(s): C, C++
4651
4652@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4653usually be more appropriate than @code{%code top}.
4654However, occasionally it is necessary to insert code much nearer the top of the
4655parser source code file.
4656For example:
4657
4658@smallexample
4659%code top @{
4660 #define _GNU_SOURCE
4661 #include <stdio.h>
4662@}
4663@end smallexample
4664
4665@item Location(s): Near the top of the parser source code file.
4666@end itemize
8405b70c 4667
148d66d8
JD
4668@item imports
4669@findex %code imports
4670
4671@itemize @bullet
4672@item Language(s): Java
4673
4674@item Purpose: This is the best place to write Java import directives.
4675
4676@item Location(s): The parser Java file after any Java package directive and
4677before any class definitions.
4678@end itemize
148d66d8
JD
4679@end itemize
4680
4681(Like all the Yacc prologue alternatives, this directive is experimental.
4682More user feedback will help to determine whether it should become a permanent
4683feature.)
4684
4685@cindex Prologue
4686For a detailed discussion of how to use @code{%code} in place of the
4687traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4688@end deffn
4689
18b519c0 4690@deffn {Directive} %debug
4947ebdb
PE
4691In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4692already defined, so that the debugging facilities are compiled.
18b519c0 4693@end deffn
ec3bc396 4694@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4695
c1d19e10
PB
4696@deffn {Directive} %define @var{variable}
4697@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4698Define a variable to adjust Bison's behavior.
4699The possible choices for @var{variable}, as well as their meanings, depend on
4700the selected target language and/or the parser skeleton (@pxref{Decl
4701Summary,,%language}).
4702
4703Bison will warn if a @var{variable} is defined multiple times.
4704
4705Omitting @code{"@var{value}"} is always equivalent to specifying it as
4706@code{""}.
4707
4708Some @var{variable}s may be used as booleans.
4709In this case, Bison will complain if the variable definition does not meet one
4710of the following four conditions:
4711
4712@enumerate
4713@item @code{"@var{value}"} is @code{"true"}
4714
4715@item @code{"@var{value}"} is omitted (or is @code{""}).
4716This is equivalent to @code{"true"}.
4717
4718@item @code{"@var{value}"} is @code{"false"}.
4719
4720@item @var{variable} is never defined.
4721In this case, Bison selects a default value, which may depend on the selected
4722target language and/or parser skeleton.
4723@end enumerate
148d66d8
JD
4724@end deffn
4725
18b519c0 4726@deffn {Directive} %defines
4bfd5e4e
PE
4727Write a header file containing macro definitions for the token type
4728names defined in the grammar as well as a few other declarations.
d8988b2f 4729If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4730is named @file{@var{name}.h}.
d8988b2f 4731
b321737f 4732For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4733@code{YYSTYPE} is already defined as a macro or you have used a
4734@code{<@var{type}>} tag without using @code{%union}.
4735Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4736(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4737require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4738or type definition
f8e1c9e5
AD
4739(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4740arrange for these definitions to be propagated to all modules, e.g., by
4741putting them in a prerequisite header that is included both by your
4742parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4743
4744Unless your parser is pure, the output header declares @code{yylval}
4745as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4746Parser}.
4747
4748If you have also used locations, the output header declares
4749@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4750the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4751Locations}.
4752
f8e1c9e5
AD
4753This output file is normally essential if you wish to put the definition
4754of @code{yylex} in a separate source file, because @code{yylex}
4755typically needs to be able to refer to the above-mentioned declarations
4756and to the token type codes. @xref{Token Values, ,Semantic Values of
4757Tokens}.
9bc0dd67 4758
16dc6a9e
JD
4759@findex %code requires
4760@findex %code provides
4761If you have declared @code{%code requires} or @code{%code provides}, the output
4762header also contains their code.
148d66d8 4763@xref{Decl Summary, ,%code}.
592d0b1e
PB
4764@end deffn
4765
02975b9a
JD
4766@deffn {Directive} %defines @var{defines-file}
4767Same as above, but save in the file @var{defines-file}.
4768@end deffn
4769
18b519c0 4770@deffn {Directive} %destructor
258b75ca 4771Specify how the parser should reclaim the memory associated to
fa7e68c3 4772discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4773@end deffn
72f889cc 4774
02975b9a 4775@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
4776Specify a prefix to use for all Bison output file names. The names are
4777chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4778@end deffn
d8988b2f 4779
e6e704dc 4780@deffn {Directive} %language "@var{language}"
0e021770
PE
4781Specify the programming language for the generated parser. Currently
4782supported languages include C and C++.
e6e704dc 4783@var{language} is case-insensitive.
0e021770
PE
4784@end deffn
4785
18b519c0 4786@deffn {Directive} %locations
89cab50d
AD
4787Generate the code processing the locations (@pxref{Action Features,
4788,Special Features for Use in Actions}). This mode is enabled as soon as
4789the grammar uses the special @samp{@@@var{n}} tokens, but if your
4790grammar does not use it, using @samp{%locations} allows for more
6e649e65 4791accurate syntax error messages.
18b519c0 4792@end deffn
89cab50d 4793
02975b9a 4794@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
4795Rename the external symbols used in the parser so that they start with
4796@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4797in C parsers
d8988b2f 4798is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4799@code{yylval}, @code{yychar}, @code{yydebug}, and
4800(if locations are used) @code{yylloc}. For example, if you use
02975b9a 4801@samp{%name-prefix "c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4802and so on. In C++ parsers, it is only the surrounding namespace which is
4803named @var{prefix} instead of @samp{yy}.
4804@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4805@end deffn
931c7513 4806
91d2c560 4807@ifset defaultprec
22fccf95
PE
4808@deffn {Directive} %no-default-prec
4809Do not assign a precedence to rules lacking an explicit @code{%prec}
4810modifier (@pxref{Contextual Precedence, ,Context-Dependent
4811Precedence}).
4812@end deffn
91d2c560 4813@end ifset
22fccf95 4814
18b519c0 4815@deffn {Directive} %no-lines
931c7513
RS
4816Don't generate any @code{#line} preprocessor commands in the parser
4817file. Ordinarily Bison writes these commands in the parser file so that
4818the C compiler and debuggers will associate errors and object code with
4819your source file (the grammar file). This directive causes them to
4820associate errors with the parser file, treating it an independent source
4821file in its own right.
18b519c0 4822@end deffn
931c7513 4823
02975b9a 4824@deffn {Directive} %output "@var{file}"
fa4d969f 4825Specify @var{file} for the parser file.
18b519c0 4826@end deffn
6deb4447 4827
18b519c0 4828@deffn {Directive} %pure-parser
d8988b2f
AD
4829Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4830(Reentrant) Parser}).
18b519c0 4831@end deffn
6deb4447 4832
b50d2359 4833@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4834Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4835Require a Version of Bison}.
b50d2359
AD
4836@end deffn
4837
0e021770 4838@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
4839Specify the skeleton to use.
4840
4841You probably don't need this option unless you are developing Bison.
4842You should use @code{%language} if you want to specify the skeleton for a
4843different language, because it is clearer and because it will always choose the
4844correct skeleton for non-deterministic or push parsers.
4845
4846If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
4847file in the Bison installation directory.
4848If it does, @var{file} is an absolute file name or a file name relative to the
4849directory of the grammar file.
4850This is similar to how most shells resolve commands.
0e021770
PE
4851@end deffn
4852
18b519c0 4853@deffn {Directive} %token-table
931c7513
RS
4854Generate an array of token names in the parser file. The name of the
4855array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4856token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4857three elements of @code{yytname} correspond to the predefined tokens
4858@code{"$end"},
88bce5a2
AD
4859@code{"error"}, and @code{"$undefined"}; after these come the symbols
4860defined in the grammar file.
931c7513 4861
9e0876fb
PE
4862The name in the table includes all the characters needed to represent
4863the token in Bison. For single-character literals and literal
4864strings, this includes the surrounding quoting characters and any
4865escape sequences. For example, the Bison single-character literal
4866@code{'+'} corresponds to a three-character name, represented in C as
4867@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4868corresponds to a five-character name, represented in C as
4869@code{"\"\\\\/\""}.
931c7513 4870
8c9a50be 4871When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4872definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4873@code{YYNRULES}, and @code{YYNSTATES}:
4874
4875@table @code
4876@item YYNTOKENS
4877The highest token number, plus one.
4878@item YYNNTS
9ecbd125 4879The number of nonterminal symbols.
931c7513
RS
4880@item YYNRULES
4881The number of grammar rules,
4882@item YYNSTATES
4883The number of parser states (@pxref{Parser States}).
4884@end table
18b519c0 4885@end deffn
d8988b2f 4886
18b519c0 4887@deffn {Directive} %verbose
d8988b2f 4888Write an extra output file containing verbose descriptions of the
742e4900 4889parser states and what is done for each type of lookahead token in
72d2299c 4890that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4891information.
18b519c0 4892@end deffn
d8988b2f 4893
18b519c0 4894@deffn {Directive} %yacc
d8988b2f
AD
4895Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4896including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4897@end deffn
d8988b2f
AD
4898
4899
342b8b6e 4900@node Multiple Parsers
bfa74976
RS
4901@section Multiple Parsers in the Same Program
4902
4903Most programs that use Bison parse only one language and therefore contain
4904only one Bison parser. But what if you want to parse more than one
4905language with the same program? Then you need to avoid a name conflict
4906between different definitions of @code{yyparse}, @code{yylval}, and so on.
4907
4908The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4909(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4910functions and variables of the Bison parser to start with @var{prefix}
4911instead of @samp{yy}. You can use this to give each parser distinct
4912names that do not conflict.
bfa74976
RS
4913
4914The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4915@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4916@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4917the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4918
4919@strong{All the other variables and macros associated with Bison are not
4920renamed.} These others are not global; there is no conflict if the same
4921name is used in different parsers. For example, @code{YYSTYPE} is not
4922renamed, but defining this in different ways in different parsers causes
4923no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4924
4925The @samp{-p} option works by adding macro definitions to the beginning
4926of the parser source file, defining @code{yyparse} as
4927@code{@var{prefix}parse}, and so on. This effectively substitutes one
4928name for the other in the entire parser file.
4929
342b8b6e 4930@node Interface
bfa74976
RS
4931@chapter Parser C-Language Interface
4932@cindex C-language interface
4933@cindex interface
4934
4935The Bison parser is actually a C function named @code{yyparse}. Here we
4936describe the interface conventions of @code{yyparse} and the other
4937functions that it needs to use.
4938
4939Keep in mind that the parser uses many C identifiers starting with
4940@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4941identifier (aside from those in this manual) in an action or in epilogue
4942in the grammar file, you are likely to run into trouble.
bfa74976
RS
4943
4944@menu
4945* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4946* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4947 which reads tokens.
4948* Error Reporting:: You must supply a function @code{yyerror}.
4949* Action Features:: Special features for use in actions.
f7ab6a50
PE
4950* Internationalization:: How to let the parser speak in the user's
4951 native language.
bfa74976
RS
4952@end menu
4953
342b8b6e 4954@node Parser Function
bfa74976
RS
4955@section The Parser Function @code{yyparse}
4956@findex yyparse
4957
4958You call the function @code{yyparse} to cause parsing to occur. This
4959function reads tokens, executes actions, and ultimately returns when it
4960encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4961write an action which directs @code{yyparse} to return immediately
4962without reading further.
bfa74976 4963
2a8d363a
AD
4964
4965@deftypefun int yyparse (void)
bfa74976
RS
4966The value returned by @code{yyparse} is 0 if parsing was successful (return
4967is due to end-of-input).
4968
b47dbebe
PE
4969The value is 1 if parsing failed because of invalid input, i.e., input
4970that contains a syntax error or that causes @code{YYABORT} to be
4971invoked.
4972
4973The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4974@end deftypefun
bfa74976
RS
4975
4976In an action, you can cause immediate return from @code{yyparse} by using
4977these macros:
4978
2a8d363a 4979@defmac YYACCEPT
bfa74976
RS
4980@findex YYACCEPT
4981Return immediately with value 0 (to report success).
2a8d363a 4982@end defmac
bfa74976 4983
2a8d363a 4984@defmac YYABORT
bfa74976
RS
4985@findex YYABORT
4986Return immediately with value 1 (to report failure).
2a8d363a
AD
4987@end defmac
4988
4989If you use a reentrant parser, you can optionally pass additional
4990parameter information to it in a reentrant way. To do so, use the
4991declaration @code{%parse-param}:
4992
feeb0eda 4993@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4994@findex %parse-param
287c78f6
PE
4995Declare that an argument declared by the braced-code
4996@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4997The @var{argument-declaration} is used when declaring
feeb0eda
PE
4998functions or prototypes. The last identifier in
4999@var{argument-declaration} must be the argument name.
2a8d363a
AD
5000@end deffn
5001
5002Here's an example. Write this in the parser:
5003
5004@example
feeb0eda
PE
5005%parse-param @{int *nastiness@}
5006%parse-param @{int *randomness@}
2a8d363a
AD
5007@end example
5008
5009@noindent
5010Then call the parser like this:
5011
5012@example
5013@{
5014 int nastiness, randomness;
5015 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5016 value = yyparse (&nastiness, &randomness);
5017 @dots{}
5018@}
5019@end example
5020
5021@noindent
5022In the grammar actions, use expressions like this to refer to the data:
5023
5024@example
5025exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5026@end example
5027
bfa74976 5028
342b8b6e 5029@node Lexical
bfa74976
RS
5030@section The Lexical Analyzer Function @code{yylex}
5031@findex yylex
5032@cindex lexical analyzer
5033
5034The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5035the input stream and returns them to the parser. Bison does not create
5036this function automatically; you must write it so that @code{yyparse} can
5037call it. The function is sometimes referred to as a lexical scanner.
5038
5039In simple programs, @code{yylex} is often defined at the end of the Bison
5040grammar file. If @code{yylex} is defined in a separate source file, you
5041need to arrange for the token-type macro definitions to be available there.
5042To do this, use the @samp{-d} option when you run Bison, so that it will
5043write these macro definitions into a separate header file
5044@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5045that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5046
5047@menu
5048* Calling Convention:: How @code{yyparse} calls @code{yylex}.
5049* Token Values:: How @code{yylex} must return the semantic value
5050 of the token it has read.
95923bd6 5051* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
5052 (line number, etc.) of the token, if the
5053 actions want that.
5054* Pure Calling:: How the calling convention differs
5055 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
5056@end menu
5057
342b8b6e 5058@node Calling Convention
bfa74976
RS
5059@subsection Calling Convention for @code{yylex}
5060
72d2299c
PE
5061The value that @code{yylex} returns must be the positive numeric code
5062for the type of token it has just found; a zero or negative value
5063signifies end-of-input.
bfa74976
RS
5064
5065When a token is referred to in the grammar rules by a name, that name
5066in the parser file becomes a C macro whose definition is the proper
5067numeric code for that token type. So @code{yylex} can use the name
5068to indicate that type. @xref{Symbols}.
5069
5070When a token is referred to in the grammar rules by a character literal,
5071the numeric code for that character is also the code for the token type.
72d2299c
PE
5072So @code{yylex} can simply return that character code, possibly converted
5073to @code{unsigned char} to avoid sign-extension. The null character
5074must not be used this way, because its code is zero and that
bfa74976
RS
5075signifies end-of-input.
5076
5077Here is an example showing these things:
5078
5079@example
13863333
AD
5080int
5081yylex (void)
bfa74976
RS
5082@{
5083 @dots{}
72d2299c 5084 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5085 return 0;
5086 @dots{}
5087 if (c == '+' || c == '-')
72d2299c 5088 return c; /* Assume token type for `+' is '+'. */
bfa74976 5089 @dots{}
72d2299c 5090 return INT; /* Return the type of the token. */
bfa74976
RS
5091 @dots{}
5092@}
5093@end example
5094
5095@noindent
5096This interface has been designed so that the output from the @code{lex}
5097utility can be used without change as the definition of @code{yylex}.
5098
931c7513
RS
5099If the grammar uses literal string tokens, there are two ways that
5100@code{yylex} can determine the token type codes for them:
5101
5102@itemize @bullet
5103@item
5104If the grammar defines symbolic token names as aliases for the
5105literal string tokens, @code{yylex} can use these symbolic names like
5106all others. In this case, the use of the literal string tokens in
5107the grammar file has no effect on @code{yylex}.
5108
5109@item
9ecbd125 5110@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5111table. The index of the token in the table is the token type's code.
9ecbd125 5112The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5113double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5114token's characters are escaped as necessary to be suitable as input
5115to Bison.
931c7513 5116
9e0876fb
PE
5117Here's code for looking up a multicharacter token in @code{yytname},
5118assuming that the characters of the token are stored in
5119@code{token_buffer}, and assuming that the token does not contain any
5120characters like @samp{"} that require escaping.
931c7513
RS
5121
5122@smallexample
5123for (i = 0; i < YYNTOKENS; i++)
5124 @{
5125 if (yytname[i] != 0
5126 && yytname[i][0] == '"'
68449b3a
PE
5127 && ! strncmp (yytname[i] + 1, token_buffer,
5128 strlen (token_buffer))
931c7513
RS
5129 && yytname[i][strlen (token_buffer) + 1] == '"'
5130 && yytname[i][strlen (token_buffer) + 2] == 0)
5131 break;
5132 @}
5133@end smallexample
5134
5135The @code{yytname} table is generated only if you use the
8c9a50be 5136@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5137@end itemize
5138
342b8b6e 5139@node Token Values
bfa74976
RS
5140@subsection Semantic Values of Tokens
5141
5142@vindex yylval
9d9b8b70 5143In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5144be stored into the global variable @code{yylval}. When you are using
5145just one data type for semantic values, @code{yylval} has that type.
5146Thus, if the type is @code{int} (the default), you might write this in
5147@code{yylex}:
5148
5149@example
5150@group
5151 @dots{}
72d2299c
PE
5152 yylval = value; /* Put value onto Bison stack. */
5153 return INT; /* Return the type of the token. */
bfa74976
RS
5154 @dots{}
5155@end group
5156@end example
5157
5158When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5159made from the @code{%union} declaration (@pxref{Union Decl, ,The
5160Collection of Value Types}). So when you store a token's value, you
5161must use the proper member of the union. If the @code{%union}
5162declaration looks like this:
bfa74976
RS
5163
5164@example
5165@group
5166%union @{
5167 int intval;
5168 double val;
5169 symrec *tptr;
5170@}
5171@end group
5172@end example
5173
5174@noindent
5175then the code in @code{yylex} might look like this:
5176
5177@example
5178@group
5179 @dots{}
72d2299c
PE
5180 yylval.intval = value; /* Put value onto Bison stack. */
5181 return INT; /* Return the type of the token. */
bfa74976
RS
5182 @dots{}
5183@end group
5184@end example
5185
95923bd6
AD
5186@node Token Locations
5187@subsection Textual Locations of Tokens
bfa74976
RS
5188
5189@vindex yylloc
847bf1f5 5190If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5191Tracking Locations}) in actions to keep track of the textual locations
5192of tokens and groupings, then you must provide this information in
5193@code{yylex}. The function @code{yyparse} expects to find the textual
5194location of a token just parsed in the global variable @code{yylloc}.
5195So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5196
5197By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5198initialize the members that are going to be used by the actions. The
5199four members are called @code{first_line}, @code{first_column},
5200@code{last_line} and @code{last_column}. Note that the use of this
5201feature makes the parser noticeably slower.
bfa74976
RS
5202
5203@tindex YYLTYPE
5204The data type of @code{yylloc} has the name @code{YYLTYPE}.
5205
342b8b6e 5206@node Pure Calling
c656404a 5207@subsection Calling Conventions for Pure Parsers
bfa74976 5208
8c9a50be 5209When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
5210pure, reentrant parser, the global communication variables @code{yylval}
5211and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5212Parser}.) In such parsers the two global variables are replaced by
5213pointers passed as arguments to @code{yylex}. You must declare them as
5214shown here, and pass the information back by storing it through those
5215pointers.
bfa74976
RS
5216
5217@example
13863333
AD
5218int
5219yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5220@{
5221 @dots{}
5222 *lvalp = value; /* Put value onto Bison stack. */
5223 return INT; /* Return the type of the token. */
5224 @dots{}
5225@}
5226@end example
5227
5228If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5229textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5230this case, omit the second argument; @code{yylex} will be called with
5231only one argument.
5232
e425e872 5233
2a8d363a
AD
5234If you wish to pass the additional parameter data to @code{yylex}, use
5235@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5236Function}).
e425e872 5237
feeb0eda 5238@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5239@findex %lex-param
287c78f6
PE
5240Declare that the braced-code @var{argument-declaration} is an
5241additional @code{yylex} argument declaration.
2a8d363a 5242@end deffn
e425e872 5243
2a8d363a 5244For instance:
e425e872
RS
5245
5246@example
feeb0eda
PE
5247%parse-param @{int *nastiness@}
5248%lex-param @{int *nastiness@}
5249%parse-param @{int *randomness@}
e425e872
RS
5250@end example
5251
5252@noindent
2a8d363a 5253results in the following signature:
e425e872
RS
5254
5255@example
2a8d363a
AD
5256int yylex (int *nastiness);
5257int yyparse (int *nastiness, int *randomness);
e425e872
RS
5258@end example
5259
2a8d363a 5260If @code{%pure-parser} is added:
c656404a
RS
5261
5262@example
2a8d363a
AD
5263int yylex (YYSTYPE *lvalp, int *nastiness);
5264int yyparse (int *nastiness, int *randomness);
c656404a
RS
5265@end example
5266
2a8d363a
AD
5267@noindent
5268and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 5269
2a8d363a
AD
5270@example
5271int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5272int yyparse (int *nastiness, int *randomness);
5273@end example
931c7513 5274
342b8b6e 5275@node Error Reporting
bfa74976
RS
5276@section The Error Reporting Function @code{yyerror}
5277@cindex error reporting function
5278@findex yyerror
5279@cindex parse error
5280@cindex syntax error
5281
6e649e65 5282The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5283whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5284action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5285macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5286in Actions}).
bfa74976
RS
5287
5288The Bison parser expects to report the error by calling an error
5289reporting function named @code{yyerror}, which you must supply. It is
5290called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5291receives one argument. For a syntax error, the string is normally
5292@w{@code{"syntax error"}}.
bfa74976 5293
2a8d363a
AD
5294@findex %error-verbose
5295If you invoke the directive @code{%error-verbose} in the Bison
5296declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5297Section}), then Bison provides a more verbose and specific error message
6e649e65 5298string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5299
1a059451
PE
5300The parser can detect one other kind of error: memory exhaustion. This
5301can happen when the input contains constructions that are very deeply
bfa74976 5302nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5303parser normally extends its stack automatically up to a very large limit. But
5304if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5305fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5306
5307In some cases diagnostics like @w{@code{"syntax error"}} are
5308translated automatically from English to some other language before
5309they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5310
5311The following definition suffices in simple programs:
5312
5313@example
5314@group
13863333 5315void
38a92d50 5316yyerror (char const *s)
bfa74976
RS
5317@{
5318@end group
5319@group
5320 fprintf (stderr, "%s\n", s);
5321@}
5322@end group
5323@end example
5324
5325After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5326error recovery if you have written suitable error recovery grammar rules
5327(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5328immediately return 1.
5329
93724f13 5330Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5331an access to the current location.
5332This is indeed the case for the @acronym{GLR}
2a8d363a
AD
5333parsers, but not for the Yacc parser, for historical reasons. I.e., if
5334@samp{%locations %pure-parser} is passed then the prototypes for
5335@code{yyerror} are:
5336
5337@example
38a92d50
PE
5338void yyerror (char const *msg); /* Yacc parsers. */
5339void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5340@end example
5341
feeb0eda 5342If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5343
5344@example
b317297e
PE
5345void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5346void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5347@end example
5348
fa7e68c3 5349Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5350convention for absolutely pure parsers, i.e., when the calling
5351convention of @code{yylex} @emph{and} the calling convention of
5352@code{%pure-parser} are pure. I.e.:
5353
5354@example
5355/* Location tracking. */
5356%locations
5357/* Pure yylex. */
5358%pure-parser
feeb0eda 5359%lex-param @{int *nastiness@}
2a8d363a 5360/* Pure yyparse. */
feeb0eda
PE
5361%parse-param @{int *nastiness@}
5362%parse-param @{int *randomness@}
2a8d363a
AD
5363@end example
5364
5365@noindent
5366results in the following signatures for all the parser kinds:
5367
5368@example
5369int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5370int yyparse (int *nastiness, int *randomness);
93724f13
AD
5371void yyerror (YYLTYPE *locp,
5372 int *nastiness, int *randomness,
38a92d50 5373 char const *msg);
2a8d363a
AD
5374@end example
5375
1c0c3e95 5376@noindent
38a92d50
PE
5377The prototypes are only indications of how the code produced by Bison
5378uses @code{yyerror}. Bison-generated code always ignores the returned
5379value, so @code{yyerror} can return any type, including @code{void}.
5380Also, @code{yyerror} can be a variadic function; that is why the
5381message is always passed last.
5382
5383Traditionally @code{yyerror} returns an @code{int} that is always
5384ignored, but this is purely for historical reasons, and @code{void} is
5385preferable since it more accurately describes the return type for
5386@code{yyerror}.
93724f13 5387
bfa74976
RS
5388@vindex yynerrs
5389The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5390reported so far. Normally this variable is global; but if you
704a47c4
AD
5391request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5392then it is a local variable which only the actions can access.
bfa74976 5393
342b8b6e 5394@node Action Features
bfa74976
RS
5395@section Special Features for Use in Actions
5396@cindex summary, action features
5397@cindex action features summary
5398
5399Here is a table of Bison constructs, variables and macros that
5400are useful in actions.
5401
18b519c0 5402@deffn {Variable} $$
bfa74976
RS
5403Acts like a variable that contains the semantic value for the
5404grouping made by the current rule. @xref{Actions}.
18b519c0 5405@end deffn
bfa74976 5406
18b519c0 5407@deffn {Variable} $@var{n}
bfa74976
RS
5408Acts like a variable that contains the semantic value for the
5409@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5410@end deffn
bfa74976 5411
18b519c0 5412@deffn {Variable} $<@var{typealt}>$
bfa74976 5413Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5414specified by the @code{%union} declaration. @xref{Action Types, ,Data
5415Types of Values in Actions}.
18b519c0 5416@end deffn
bfa74976 5417
18b519c0 5418@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5419Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5420union specified by the @code{%union} declaration.
e0c471a9 5421@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5422@end deffn
bfa74976 5423
18b519c0 5424@deffn {Macro} YYABORT;
bfa74976
RS
5425Return immediately from @code{yyparse}, indicating failure.
5426@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5427@end deffn
bfa74976 5428
18b519c0 5429@deffn {Macro} YYACCEPT;
bfa74976
RS
5430Return immediately from @code{yyparse}, indicating success.
5431@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5432@end deffn
bfa74976 5433
18b519c0 5434@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5435@findex YYBACKUP
5436Unshift a token. This macro is allowed only for rules that reduce
742e4900 5437a single value, and only when there is no lookahead token.
c827f760 5438It is also disallowed in @acronym{GLR} parsers.
742e4900 5439It installs a lookahead token with token type @var{token} and
bfa74976
RS
5440semantic value @var{value}; then it discards the value that was
5441going to be reduced by this rule.
5442
5443If the macro is used when it is not valid, such as when there is
742e4900 5444a lookahead token already, then it reports a syntax error with
bfa74976
RS
5445a message @samp{cannot back up} and performs ordinary error
5446recovery.
5447
5448In either case, the rest of the action is not executed.
18b519c0 5449@end deffn
bfa74976 5450
18b519c0 5451@deffn {Macro} YYEMPTY
bfa74976 5452@vindex YYEMPTY
742e4900 5453Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5454@end deffn
bfa74976 5455
32c29292
JD
5456@deffn {Macro} YYEOF
5457@vindex YYEOF
742e4900 5458Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5459stream.
5460@end deffn
5461
18b519c0 5462@deffn {Macro} YYERROR;
bfa74976
RS
5463@findex YYERROR
5464Cause an immediate syntax error. This statement initiates error
5465recovery just as if the parser itself had detected an error; however, it
5466does not call @code{yyerror}, and does not print any message. If you
5467want to print an error message, call @code{yyerror} explicitly before
5468the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5469@end deffn
bfa74976 5470
18b519c0 5471@deffn {Macro} YYRECOVERING
02103984
PE
5472@findex YYRECOVERING
5473The expression @code{YYRECOVERING ()} yields 1 when the parser
5474is recovering from a syntax error, and 0 otherwise.
bfa74976 5475@xref{Error Recovery}.
18b519c0 5476@end deffn
bfa74976 5477
18b519c0 5478@deffn {Variable} yychar
742e4900
JD
5479Variable containing either the lookahead token, or @code{YYEOF} when the
5480lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5481has been performed so the next token is not yet known.
5482Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5483Actions}).
742e4900 5484@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5485@end deffn
bfa74976 5486
18b519c0 5487@deffn {Macro} yyclearin;
742e4900 5488Discard the current lookahead token. This is useful primarily in
32c29292
JD
5489error rules.
5490Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5491Semantic Actions}).
5492@xref{Error Recovery}.
18b519c0 5493@end deffn
bfa74976 5494
18b519c0 5495@deffn {Macro} yyerrok;
bfa74976 5496Resume generating error messages immediately for subsequent syntax
13863333 5497errors. This is useful primarily in error rules.
bfa74976 5498@xref{Error Recovery}.
18b519c0 5499@end deffn
bfa74976 5500
32c29292 5501@deffn {Variable} yylloc
742e4900 5502Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5503to @code{YYEMPTY} or @code{YYEOF}.
5504Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5505Actions}).
5506@xref{Actions and Locations, ,Actions and Locations}.
5507@end deffn
5508
5509@deffn {Variable} yylval
742e4900 5510Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5511not set to @code{YYEMPTY} or @code{YYEOF}.
5512Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5513Actions}).
5514@xref{Actions, ,Actions}.
5515@end deffn
5516
18b519c0 5517@deffn {Value} @@$
847bf1f5 5518@findex @@$
95923bd6 5519Acts like a structure variable containing information on the textual location
847bf1f5
AD
5520of the grouping made by the current rule. @xref{Locations, ,
5521Tracking Locations}.
bfa74976 5522
847bf1f5
AD
5523@c Check if those paragraphs are still useful or not.
5524
5525@c @example
5526@c struct @{
5527@c int first_line, last_line;
5528@c int first_column, last_column;
5529@c @};
5530@c @end example
5531
5532@c Thus, to get the starting line number of the third component, you would
5533@c use @samp{@@3.first_line}.
bfa74976 5534
847bf1f5
AD
5535@c In order for the members of this structure to contain valid information,
5536@c you must make @code{yylex} supply this information about each token.
5537@c If you need only certain members, then @code{yylex} need only fill in
5538@c those members.
bfa74976 5539
847bf1f5 5540@c The use of this feature makes the parser noticeably slower.
18b519c0 5541@end deffn
847bf1f5 5542
18b519c0 5543@deffn {Value} @@@var{n}
847bf1f5 5544@findex @@@var{n}
95923bd6 5545Acts like a structure variable containing information on the textual location
847bf1f5
AD
5546of the @var{n}th component of the current rule. @xref{Locations, ,
5547Tracking Locations}.
18b519c0 5548@end deffn
bfa74976 5549
f7ab6a50
PE
5550@node Internationalization
5551@section Parser Internationalization
5552@cindex internationalization
5553@cindex i18n
5554@cindex NLS
5555@cindex gettext
5556@cindex bison-po
5557
5558A Bison-generated parser can print diagnostics, including error and
5559tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5560also supports outputting diagnostics in the user's native language. To
5561make this work, the user should set the usual environment variables.
5562@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5563For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5564set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5565encoding. The exact set of available locales depends on the user's
5566installation.
5567
5568The maintainer of a package that uses a Bison-generated parser enables
5569the internationalization of the parser's output through the following
5570steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5571@acronym{GNU} Automake.
5572
5573@enumerate
5574@item
30757c8c 5575@cindex bison-i18n.m4
f7ab6a50
PE
5576Into the directory containing the @acronym{GNU} Autoconf macros used
5577by the package---often called @file{m4}---copy the
5578@file{bison-i18n.m4} file installed by Bison under
5579@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5580For example:
5581
5582@example
5583cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5584@end example
5585
5586@item
30757c8c
PE
5587@findex BISON_I18N
5588@vindex BISON_LOCALEDIR
5589@vindex YYENABLE_NLS
f7ab6a50
PE
5590In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5591invocation, add an invocation of @code{BISON_I18N}. This macro is
5592defined in the file @file{bison-i18n.m4} that you copied earlier. It
5593causes @samp{configure} to find the value of the
30757c8c
PE
5594@code{BISON_LOCALEDIR} variable, and it defines the source-language
5595symbol @code{YYENABLE_NLS} to enable translations in the
5596Bison-generated parser.
f7ab6a50
PE
5597
5598@item
5599In the @code{main} function of your program, designate the directory
5600containing Bison's runtime message catalog, through a call to
5601@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5602For example:
5603
5604@example
5605bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5606@end example
5607
5608Typically this appears after any other call @code{bindtextdomain
5609(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5610@samp{BISON_LOCALEDIR} to be defined as a string through the
5611@file{Makefile}.
5612
5613@item
5614In the @file{Makefile.am} that controls the compilation of the @code{main}
5615function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5616either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5617
5618@example
5619DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5620@end example
5621
5622or:
5623
5624@example
5625AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5626@end example
5627
5628@item
5629Finally, invoke the command @command{autoreconf} to generate the build
5630infrastructure.
5631@end enumerate
5632
bfa74976 5633
342b8b6e 5634@node Algorithm
13863333
AD
5635@chapter The Bison Parser Algorithm
5636@cindex Bison parser algorithm
bfa74976
RS
5637@cindex algorithm of parser
5638@cindex shifting
5639@cindex reduction
5640@cindex parser stack
5641@cindex stack, parser
5642
5643As Bison reads tokens, it pushes them onto a stack along with their
5644semantic values. The stack is called the @dfn{parser stack}. Pushing a
5645token is traditionally called @dfn{shifting}.
5646
5647For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5648@samp{3} to come. The stack will have four elements, one for each token
5649that was shifted.
5650
5651But the stack does not always have an element for each token read. When
5652the last @var{n} tokens and groupings shifted match the components of a
5653grammar rule, they can be combined according to that rule. This is called
5654@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5655single grouping whose symbol is the result (left hand side) of that rule.
5656Running the rule's action is part of the process of reduction, because this
5657is what computes the semantic value of the resulting grouping.
5658
5659For example, if the infix calculator's parser stack contains this:
5660
5661@example
56621 + 5 * 3
5663@end example
5664
5665@noindent
5666and the next input token is a newline character, then the last three
5667elements can be reduced to 15 via the rule:
5668
5669@example
5670expr: expr '*' expr;
5671@end example
5672
5673@noindent
5674Then the stack contains just these three elements:
5675
5676@example
56771 + 15
5678@end example
5679
5680@noindent
5681At this point, another reduction can be made, resulting in the single value
568216. Then the newline token can be shifted.
5683
5684The parser tries, by shifts and reductions, to reduce the entire input down
5685to a single grouping whose symbol is the grammar's start-symbol
5686(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5687
5688This kind of parser is known in the literature as a bottom-up parser.
5689
5690@menu
742e4900 5691* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5692* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5693* Precedence:: Operator precedence works by resolving conflicts.
5694* Contextual Precedence:: When an operator's precedence depends on context.
5695* Parser States:: The parser is a finite-state-machine with stack.
5696* Reduce/Reduce:: When two rules are applicable in the same situation.
5697* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5698* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5699* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5700@end menu
5701
742e4900
JD
5702@node Lookahead
5703@section Lookahead Tokens
5704@cindex lookahead token
bfa74976
RS
5705
5706The Bison parser does @emph{not} always reduce immediately as soon as the
5707last @var{n} tokens and groupings match a rule. This is because such a
5708simple strategy is inadequate to handle most languages. Instead, when a
5709reduction is possible, the parser sometimes ``looks ahead'' at the next
5710token in order to decide what to do.
5711
5712When a token is read, it is not immediately shifted; first it becomes the
742e4900 5713@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5714perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5715the lookahead token remains off to the side. When no more reductions
5716should take place, the lookahead token is shifted onto the stack. This
bfa74976 5717does not mean that all possible reductions have been done; depending on the
742e4900 5718token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5719application.
5720
742e4900 5721Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5722expressions which contain binary addition operators and postfix unary
5723factorial operators (@samp{!}), and allow parentheses for grouping.
5724
5725@example
5726@group
5727expr: term '+' expr
5728 | term
5729 ;
5730@end group
5731
5732@group
5733term: '(' expr ')'
5734 | term '!'
5735 | NUMBER
5736 ;
5737@end group
5738@end example
5739
5740Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5741should be done? If the following token is @samp{)}, then the first three
5742tokens must be reduced to form an @code{expr}. This is the only valid
5743course, because shifting the @samp{)} would produce a sequence of symbols
5744@w{@code{term ')'}}, and no rule allows this.
5745
5746If the following token is @samp{!}, then it must be shifted immediately so
5747that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5748parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5749@code{expr}. It would then be impossible to shift the @samp{!} because
5750doing so would produce on the stack the sequence of symbols @code{expr
5751'!'}. No rule allows that sequence.
5752
5753@vindex yychar
32c29292
JD
5754@vindex yylval
5755@vindex yylloc
742e4900 5756The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5757Its semantic value and location, if any, are stored in the variables
5758@code{yylval} and @code{yylloc}.
bfa74976
RS
5759@xref{Action Features, ,Special Features for Use in Actions}.
5760
342b8b6e 5761@node Shift/Reduce
bfa74976
RS
5762@section Shift/Reduce Conflicts
5763@cindex conflicts
5764@cindex shift/reduce conflicts
5765@cindex dangling @code{else}
5766@cindex @code{else}, dangling
5767
5768Suppose we are parsing a language which has if-then and if-then-else
5769statements, with a pair of rules like this:
5770
5771@example
5772@group
5773if_stmt:
5774 IF expr THEN stmt
5775 | IF expr THEN stmt ELSE stmt
5776 ;
5777@end group
5778@end example
5779
5780@noindent
5781Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5782terminal symbols for specific keyword tokens.
5783
742e4900 5784When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5785contents of the stack (assuming the input is valid) are just right for
5786reduction by the first rule. But it is also legitimate to shift the
5787@code{ELSE}, because that would lead to eventual reduction by the second
5788rule.
5789
5790This situation, where either a shift or a reduction would be valid, is
5791called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5792these conflicts by choosing to shift, unless otherwise directed by
5793operator precedence declarations. To see the reason for this, let's
5794contrast it with the other alternative.
5795
5796Since the parser prefers to shift the @code{ELSE}, the result is to attach
5797the else-clause to the innermost if-statement, making these two inputs
5798equivalent:
5799
5800@example
5801if x then if y then win (); else lose;
5802
5803if x then do; if y then win (); else lose; end;
5804@end example
5805
5806But if the parser chose to reduce when possible rather than shift, the
5807result would be to attach the else-clause to the outermost if-statement,
5808making these two inputs equivalent:
5809
5810@example
5811if x then if y then win (); else lose;
5812
5813if x then do; if y then win (); end; else lose;
5814@end example
5815
5816The conflict exists because the grammar as written is ambiguous: either
5817parsing of the simple nested if-statement is legitimate. The established
5818convention is that these ambiguities are resolved by attaching the
5819else-clause to the innermost if-statement; this is what Bison accomplishes
5820by choosing to shift rather than reduce. (It would ideally be cleaner to
5821write an unambiguous grammar, but that is very hard to do in this case.)
5822This particular ambiguity was first encountered in the specifications of
5823Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5824
5825To avoid warnings from Bison about predictable, legitimate shift/reduce
5826conflicts, use the @code{%expect @var{n}} declaration. There will be no
5827warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5828@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5829
5830The definition of @code{if_stmt} above is solely to blame for the
5831conflict, but the conflict does not actually appear without additional
5832rules. Here is a complete Bison input file that actually manifests the
5833conflict:
5834
5835@example
5836@group
5837%token IF THEN ELSE variable
5838%%
5839@end group
5840@group
5841stmt: expr
5842 | if_stmt
5843 ;
5844@end group
5845
5846@group
5847if_stmt:
5848 IF expr THEN stmt
5849 | IF expr THEN stmt ELSE stmt
5850 ;
5851@end group
5852
5853expr: variable
5854 ;
5855@end example
5856
342b8b6e 5857@node Precedence
bfa74976
RS
5858@section Operator Precedence
5859@cindex operator precedence
5860@cindex precedence of operators
5861
5862Another situation where shift/reduce conflicts appear is in arithmetic
5863expressions. Here shifting is not always the preferred resolution; the
5864Bison declarations for operator precedence allow you to specify when to
5865shift and when to reduce.
5866
5867@menu
5868* Why Precedence:: An example showing why precedence is needed.
5869* Using Precedence:: How to specify precedence in Bison grammars.
5870* Precedence Examples:: How these features are used in the previous example.
5871* How Precedence:: How they work.
5872@end menu
5873
342b8b6e 5874@node Why Precedence
bfa74976
RS
5875@subsection When Precedence is Needed
5876
5877Consider the following ambiguous grammar fragment (ambiguous because the
5878input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5879
5880@example
5881@group
5882expr: expr '-' expr
5883 | expr '*' expr
5884 | expr '<' expr
5885 | '(' expr ')'
5886 @dots{}
5887 ;
5888@end group
5889@end example
5890
5891@noindent
5892Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5893should it reduce them via the rule for the subtraction operator? It
5894depends on the next token. Of course, if the next token is @samp{)}, we
5895must reduce; shifting is invalid because no single rule can reduce the
5896token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5897the next token is @samp{*} or @samp{<}, we have a choice: either
5898shifting or reduction would allow the parse to complete, but with
5899different results.
5900
5901To decide which one Bison should do, we must consider the results. If
5902the next operator token @var{op} is shifted, then it must be reduced
5903first in order to permit another opportunity to reduce the difference.
5904The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5905hand, if the subtraction is reduced before shifting @var{op}, the result
5906is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5907reduce should depend on the relative precedence of the operators
5908@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5909@samp{<}.
bfa74976
RS
5910
5911@cindex associativity
5912What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5913@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5914operators we prefer the former, which is called @dfn{left association}.
5915The latter alternative, @dfn{right association}, is desirable for
5916assignment operators. The choice of left or right association is a
5917matter of whether the parser chooses to shift or reduce when the stack
742e4900 5918contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5919makes right-associativity.
bfa74976 5920
342b8b6e 5921@node Using Precedence
bfa74976
RS
5922@subsection Specifying Operator Precedence
5923@findex %left
5924@findex %right
5925@findex %nonassoc
5926
5927Bison allows you to specify these choices with the operator precedence
5928declarations @code{%left} and @code{%right}. Each such declaration
5929contains a list of tokens, which are operators whose precedence and
5930associativity is being declared. The @code{%left} declaration makes all
5931those operators left-associative and the @code{%right} declaration makes
5932them right-associative. A third alternative is @code{%nonassoc}, which
5933declares that it is a syntax error to find the same operator twice ``in a
5934row''.
5935
5936The relative precedence of different operators is controlled by the
5937order in which they are declared. The first @code{%left} or
5938@code{%right} declaration in the file declares the operators whose
5939precedence is lowest, the next such declaration declares the operators
5940whose precedence is a little higher, and so on.
5941
342b8b6e 5942@node Precedence Examples
bfa74976
RS
5943@subsection Precedence Examples
5944
5945In our example, we would want the following declarations:
5946
5947@example
5948%left '<'
5949%left '-'
5950%left '*'
5951@end example
5952
5953In a more complete example, which supports other operators as well, we
5954would declare them in groups of equal precedence. For example, @code{'+'} is
5955declared with @code{'-'}:
5956
5957@example
5958%left '<' '>' '=' NE LE GE
5959%left '+' '-'
5960%left '*' '/'
5961@end example
5962
5963@noindent
5964(Here @code{NE} and so on stand for the operators for ``not equal''
5965and so on. We assume that these tokens are more than one character long
5966and therefore are represented by names, not character literals.)
5967
342b8b6e 5968@node How Precedence
bfa74976
RS
5969@subsection How Precedence Works
5970
5971The first effect of the precedence declarations is to assign precedence
5972levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5973precedence levels to certain rules: each rule gets its precedence from
5974the last terminal symbol mentioned in the components. (You can also
5975specify explicitly the precedence of a rule. @xref{Contextual
5976Precedence, ,Context-Dependent Precedence}.)
5977
5978Finally, the resolution of conflicts works by comparing the precedence
742e4900 5979of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5980token's precedence is higher, the choice is to shift. If the rule's
5981precedence is higher, the choice is to reduce. If they have equal
5982precedence, the choice is made based on the associativity of that
5983precedence level. The verbose output file made by @samp{-v}
5984(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5985resolved.
bfa74976
RS
5986
5987Not all rules and not all tokens have precedence. If either the rule or
742e4900 5988the lookahead token has no precedence, then the default is to shift.
bfa74976 5989
342b8b6e 5990@node Contextual Precedence
bfa74976
RS
5991@section Context-Dependent Precedence
5992@cindex context-dependent precedence
5993@cindex unary operator precedence
5994@cindex precedence, context-dependent
5995@cindex precedence, unary operator
5996@findex %prec
5997
5998Often the precedence of an operator depends on the context. This sounds
5999outlandish at first, but it is really very common. For example, a minus
6000sign typically has a very high precedence as a unary operator, and a
6001somewhat lower precedence (lower than multiplication) as a binary operator.
6002
6003The Bison precedence declarations, @code{%left}, @code{%right} and
6004@code{%nonassoc}, can only be used once for a given token; so a token has
6005only one precedence declared in this way. For context-dependent
6006precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6007modifier for rules.
bfa74976
RS
6008
6009The @code{%prec} modifier declares the precedence of a particular rule by
6010specifying a terminal symbol whose precedence should be used for that rule.
6011It's not necessary for that symbol to appear otherwise in the rule. The
6012modifier's syntax is:
6013
6014@example
6015%prec @var{terminal-symbol}
6016@end example
6017
6018@noindent
6019and it is written after the components of the rule. Its effect is to
6020assign the rule the precedence of @var{terminal-symbol}, overriding
6021the precedence that would be deduced for it in the ordinary way. The
6022altered rule precedence then affects how conflicts involving that rule
6023are resolved (@pxref{Precedence, ,Operator Precedence}).
6024
6025Here is how @code{%prec} solves the problem of unary minus. First, declare
6026a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6027are no tokens of this type, but the symbol serves to stand for its
6028precedence:
6029
6030@example
6031@dots{}
6032%left '+' '-'
6033%left '*'
6034%left UMINUS
6035@end example
6036
6037Now the precedence of @code{UMINUS} can be used in specific rules:
6038
6039@example
6040@group
6041exp: @dots{}
6042 | exp '-' exp
6043 @dots{}
6044 | '-' exp %prec UMINUS
6045@end group
6046@end example
6047
91d2c560 6048@ifset defaultprec
39a06c25
PE
6049If you forget to append @code{%prec UMINUS} to the rule for unary
6050minus, Bison silently assumes that minus has its usual precedence.
6051This kind of problem can be tricky to debug, since one typically
6052discovers the mistake only by testing the code.
6053
22fccf95 6054The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6055this kind of problem systematically. It causes rules that lack a
6056@code{%prec} modifier to have no precedence, even if the last terminal
6057symbol mentioned in their components has a declared precedence.
6058
22fccf95 6059If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6060for all rules that participate in precedence conflict resolution.
6061Then you will see any shift/reduce conflict until you tell Bison how
6062to resolve it, either by changing your grammar or by adding an
6063explicit precedence. This will probably add declarations to the
6064grammar, but it helps to protect against incorrect rule precedences.
6065
22fccf95
PE
6066The effect of @code{%no-default-prec;} can be reversed by giving
6067@code{%default-prec;}, which is the default.
91d2c560 6068@end ifset
39a06c25 6069
342b8b6e 6070@node Parser States
bfa74976
RS
6071@section Parser States
6072@cindex finite-state machine
6073@cindex parser state
6074@cindex state (of parser)
6075
6076The function @code{yyparse} is implemented using a finite-state machine.
6077The values pushed on the parser stack are not simply token type codes; they
6078represent the entire sequence of terminal and nonterminal symbols at or
6079near the top of the stack. The current state collects all the information
6080about previous input which is relevant to deciding what to do next.
6081
742e4900
JD
6082Each time a lookahead token is read, the current parser state together
6083with the type of lookahead token are looked up in a table. This table
6084entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6085specifies the new parser state, which is pushed onto the top of the
6086parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6087This means that a certain number of tokens or groupings are taken off
6088the top of the stack, and replaced by one grouping. In other words,
6089that number of states are popped from the stack, and one new state is
6090pushed.
6091
742e4900 6092There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6093is erroneous in the current state. This causes error processing to begin
6094(@pxref{Error Recovery}).
6095
342b8b6e 6096@node Reduce/Reduce
bfa74976
RS
6097@section Reduce/Reduce Conflicts
6098@cindex reduce/reduce conflict
6099@cindex conflicts, reduce/reduce
6100
6101A reduce/reduce conflict occurs if there are two or more rules that apply
6102to the same sequence of input. This usually indicates a serious error
6103in the grammar.
6104
6105For example, here is an erroneous attempt to define a sequence
6106of zero or more @code{word} groupings.
6107
6108@example
6109sequence: /* empty */
6110 @{ printf ("empty sequence\n"); @}
6111 | maybeword
6112 | sequence word
6113 @{ printf ("added word %s\n", $2); @}
6114 ;
6115
6116maybeword: /* empty */
6117 @{ printf ("empty maybeword\n"); @}
6118 | word
6119 @{ printf ("single word %s\n", $1); @}
6120 ;
6121@end example
6122
6123@noindent
6124The error is an ambiguity: there is more than one way to parse a single
6125@code{word} into a @code{sequence}. It could be reduced to a
6126@code{maybeword} and then into a @code{sequence} via the second rule.
6127Alternatively, nothing-at-all could be reduced into a @code{sequence}
6128via the first rule, and this could be combined with the @code{word}
6129using the third rule for @code{sequence}.
6130
6131There is also more than one way to reduce nothing-at-all into a
6132@code{sequence}. This can be done directly via the first rule,
6133or indirectly via @code{maybeword} and then the second rule.
6134
6135You might think that this is a distinction without a difference, because it
6136does not change whether any particular input is valid or not. But it does
6137affect which actions are run. One parsing order runs the second rule's
6138action; the other runs the first rule's action and the third rule's action.
6139In this example, the output of the program changes.
6140
6141Bison resolves a reduce/reduce conflict by choosing to use the rule that
6142appears first in the grammar, but it is very risky to rely on this. Every
6143reduce/reduce conflict must be studied and usually eliminated. Here is the
6144proper way to define @code{sequence}:
6145
6146@example
6147sequence: /* empty */
6148 @{ printf ("empty sequence\n"); @}
6149 | sequence word
6150 @{ printf ("added word %s\n", $2); @}
6151 ;
6152@end example
6153
6154Here is another common error that yields a reduce/reduce conflict:
6155
6156@example
6157sequence: /* empty */
6158 | sequence words
6159 | sequence redirects
6160 ;
6161
6162words: /* empty */
6163 | words word
6164 ;
6165
6166redirects:/* empty */
6167 | redirects redirect
6168 ;
6169@end example
6170
6171@noindent
6172The intention here is to define a sequence which can contain either
6173@code{word} or @code{redirect} groupings. The individual definitions of
6174@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6175three together make a subtle ambiguity: even an empty input can be parsed
6176in infinitely many ways!
6177
6178Consider: nothing-at-all could be a @code{words}. Or it could be two
6179@code{words} in a row, or three, or any number. It could equally well be a
6180@code{redirects}, or two, or any number. Or it could be a @code{words}
6181followed by three @code{redirects} and another @code{words}. And so on.
6182
6183Here are two ways to correct these rules. First, to make it a single level
6184of sequence:
6185
6186@example
6187sequence: /* empty */
6188 | sequence word
6189 | sequence redirect
6190 ;
6191@end example
6192
6193Second, to prevent either a @code{words} or a @code{redirects}
6194from being empty:
6195
6196@example
6197sequence: /* empty */
6198 | sequence words
6199 | sequence redirects
6200 ;
6201
6202words: word
6203 | words word
6204 ;
6205
6206redirects:redirect
6207 | redirects redirect
6208 ;
6209@end example
6210
342b8b6e 6211@node Mystery Conflicts
bfa74976
RS
6212@section Mysterious Reduce/Reduce Conflicts
6213
6214Sometimes reduce/reduce conflicts can occur that don't look warranted.
6215Here is an example:
6216
6217@example
6218@group
6219%token ID
6220
6221%%
6222def: param_spec return_spec ','
6223 ;
6224param_spec:
6225 type
6226 | name_list ':' type
6227 ;
6228@end group
6229@group
6230return_spec:
6231 type
6232 | name ':' type
6233 ;
6234@end group
6235@group
6236type: ID
6237 ;
6238@end group
6239@group
6240name: ID
6241 ;
6242name_list:
6243 name
6244 | name ',' name_list
6245 ;
6246@end group
6247@end example
6248
6249It would seem that this grammar can be parsed with only a single token
742e4900 6250of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6251a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6252@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6253
c827f760
PE
6254@cindex @acronym{LR}(1)
6255@cindex @acronym{LALR}(1)
bfa74976 6256However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6257@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6258an @code{ID}
bfa74976
RS
6259at the beginning of a @code{param_spec} and likewise at the beginning of
6260a @code{return_spec}, are similar enough that Bison assumes they are the
6261same. They appear similar because the same set of rules would be
6262active---the rule for reducing to a @code{name} and that for reducing to
6263a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6264that the rules would require different lookahead tokens in the two
bfa74976
RS
6265contexts, so it makes a single parser state for them both. Combining
6266the two contexts causes a conflict later. In parser terminology, this
c827f760 6267occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6268
6269In general, it is better to fix deficiencies than to document them. But
6270this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6271generators that can handle @acronym{LR}(1) grammars are hard to write
6272and tend to
bfa74976
RS
6273produce parsers that are very large. In practice, Bison is more useful
6274as it is now.
6275
6276When the problem arises, you can often fix it by identifying the two
a220f555
MA
6277parser states that are being confused, and adding something to make them
6278look distinct. In the above example, adding one rule to
bfa74976
RS
6279@code{return_spec} as follows makes the problem go away:
6280
6281@example
6282@group
6283%token BOGUS
6284@dots{}
6285%%
6286@dots{}
6287return_spec:
6288 type
6289 | name ':' type
6290 /* This rule is never used. */
6291 | ID BOGUS
6292 ;
6293@end group
6294@end example
6295
6296This corrects the problem because it introduces the possibility of an
6297additional active rule in the context after the @code{ID} at the beginning of
6298@code{return_spec}. This rule is not active in the corresponding context
6299in a @code{param_spec}, so the two contexts receive distinct parser states.
6300As long as the token @code{BOGUS} is never generated by @code{yylex},
6301the added rule cannot alter the way actual input is parsed.
6302
6303In this particular example, there is another way to solve the problem:
6304rewrite the rule for @code{return_spec} to use @code{ID} directly
6305instead of via @code{name}. This also causes the two confusing
6306contexts to have different sets of active rules, because the one for
6307@code{return_spec} activates the altered rule for @code{return_spec}
6308rather than the one for @code{name}.
6309
6310@example
6311param_spec:
6312 type
6313 | name_list ':' type
6314 ;
6315return_spec:
6316 type
6317 | ID ':' type
6318 ;
6319@end example
6320
e054b190
PE
6321For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6322generators, please see:
6323Frank DeRemer and Thomas Pennello, Efficient Computation of
6324@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6325Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6326pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6327
fae437e8 6328@node Generalized LR Parsing
c827f760
PE
6329@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6330@cindex @acronym{GLR} parsing
6331@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6332@cindex ambiguous grammars
9d9b8b70 6333@cindex nondeterministic parsing
676385e2 6334
fae437e8
AD
6335Bison produces @emph{deterministic} parsers that choose uniquely
6336when to reduce and which reduction to apply
742e4900 6337based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6338As a result, normal Bison handles a proper subset of the family of
6339context-free languages.
fae437e8 6340Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6341sequence of reductions cannot have deterministic parsers in this sense.
6342The same is true of languages that require more than one symbol of
742e4900 6343lookahead, since the parser lacks the information necessary to make a
676385e2 6344decision at the point it must be made in a shift-reduce parser.
fae437e8 6345Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6346there are languages where Bison's particular choice of how to
6347summarize the input seen so far loses necessary information.
6348
6349When you use the @samp{%glr-parser} declaration in your grammar file,
6350Bison generates a parser that uses a different algorithm, called
c827f760
PE
6351Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6352parser uses the same basic
676385e2
PH
6353algorithm for parsing as an ordinary Bison parser, but behaves
6354differently in cases where there is a shift-reduce conflict that has not
fae437e8 6355been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6356reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6357situation, it
fae437e8 6358effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6359shift or reduction. These parsers then proceed as usual, consuming
6360tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6361and split further, with the result that instead of a sequence of states,
c827f760 6362a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6363
6364In effect, each stack represents a guess as to what the proper parse
6365is. Additional input may indicate that a guess was wrong, in which case
6366the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6367actions generated in each stack are saved, rather than being executed
676385e2 6368immediately. When a stack disappears, its saved semantic actions never
fae437e8 6369get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6370their sets of semantic actions are both saved with the state that
6371results from the reduction. We say that two stacks are equivalent
fae437e8 6372when they both represent the same sequence of states,
676385e2
PH
6373and each pair of corresponding states represents a
6374grammar symbol that produces the same segment of the input token
6375stream.
6376
6377Whenever the parser makes a transition from having multiple
c827f760 6378states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6379algorithm, after resolving and executing the saved-up actions.
6380At this transition, some of the states on the stack will have semantic
6381values that are sets (actually multisets) of possible actions. The
6382parser tries to pick one of the actions by first finding one whose rule
6383has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6384declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6385precedence, but there the same merging function is declared for both
fae437e8 6386rules by the @samp{%merge} declaration,
676385e2
PH
6387Bison resolves and evaluates both and then calls the merge function on
6388the result. Otherwise, it reports an ambiguity.
6389
c827f760
PE
6390It is possible to use a data structure for the @acronym{GLR} parsing tree that
6391permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6392size of the input), any unambiguous (not necessarily
6393@acronym{LALR}(1)) grammar in
fae437e8 6394quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6395context-free grammar in cubic worst-case time. However, Bison currently
6396uses a simpler data structure that requires time proportional to the
6397length of the input times the maximum number of stacks required for any
9d9b8b70 6398prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6399grammars can require exponential time and space to process. Such badly
6400behaving examples, however, are not generally of practical interest.
9d9b8b70 6401Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6402doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6403structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6404grammar, in particular, it is only slightly slower than with the default
6405Bison parser.
6406
fa7e68c3 6407For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6408Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6409Generalised @acronym{LR} Parsers, Royal Holloway, University of
6410London, Department of Computer Science, TR-00-12,
6411@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6412(2000-12-24).
6413
1a059451
PE
6414@node Memory Management
6415@section Memory Management, and How to Avoid Memory Exhaustion
6416@cindex memory exhaustion
6417@cindex memory management
bfa74976
RS
6418@cindex stack overflow
6419@cindex parser stack overflow
6420@cindex overflow of parser stack
6421
1a059451 6422The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6423not reduced. When this happens, the parser function @code{yyparse}
1a059451 6424calls @code{yyerror} and then returns 2.
bfa74976 6425
c827f760 6426Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6427usually results from using a right recursion instead of a left
6428recursion, @xref{Recursion, ,Recursive Rules}.
6429
bfa74976
RS
6430@vindex YYMAXDEPTH
6431By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6432parser stack can become before memory is exhausted. Define the
bfa74976
RS
6433macro with a value that is an integer. This value is the maximum number
6434of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6435
6436The stack space allowed is not necessarily allocated. If you specify a
1a059451 6437large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6438stack at first, and then makes it bigger by stages as needed. This
6439increasing allocation happens automatically and silently. Therefore,
6440you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6441space for ordinary inputs that do not need much stack.
6442
d7e14fc0
PE
6443However, do not allow @code{YYMAXDEPTH} to be a value so large that
6444arithmetic overflow could occur when calculating the size of the stack
6445space. Also, do not allow @code{YYMAXDEPTH} to be less than
6446@code{YYINITDEPTH}.
6447
bfa74976
RS
6448@cindex default stack limit
6449The default value of @code{YYMAXDEPTH}, if you do not define it, is
645010000.
6451
6452@vindex YYINITDEPTH
6453You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6454macro @code{YYINITDEPTH} to a positive integer. For the C
6455@acronym{LALR}(1) parser, this value must be a compile-time constant
6456unless you are assuming C99 or some other target language or compiler
6457that allows variable-length arrays. The default is 200.
6458
1a059451 6459Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6460
d1a1114f 6461@c FIXME: C++ output.
c827f760 6462Because of semantical differences between C and C++, the
1a059451
PE
6463@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6464by C++ compilers. In this precise case (compiling a C parser as C++) you are
6465suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6466this deficiency in a future release.
d1a1114f 6467
342b8b6e 6468@node Error Recovery
bfa74976
RS
6469@chapter Error Recovery
6470@cindex error recovery
6471@cindex recovery from errors
6472
6e649e65 6473It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6474error. For example, a compiler should recover sufficiently to parse the
6475rest of the input file and check it for errors; a calculator should accept
6476another expression.
6477
6478In a simple interactive command parser where each input is one line, it may
6479be sufficient to allow @code{yyparse} to return 1 on error and have the
6480caller ignore the rest of the input line when that happens (and then call
6481@code{yyparse} again). But this is inadequate for a compiler, because it
6482forgets all the syntactic context leading up to the error. A syntax error
6483deep within a function in the compiler input should not cause the compiler
6484to treat the following line like the beginning of a source file.
6485
6486@findex error
6487You can define how to recover from a syntax error by writing rules to
6488recognize the special token @code{error}. This is a terminal symbol that
6489is always defined (you need not declare it) and reserved for error
6490handling. The Bison parser generates an @code{error} token whenever a
6491syntax error happens; if you have provided a rule to recognize this token
13863333 6492in the current context, the parse can continue.
bfa74976
RS
6493
6494For example:
6495
6496@example
6497stmnts: /* empty string */
6498 | stmnts '\n'
6499 | stmnts exp '\n'
6500 | stmnts error '\n'
6501@end example
6502
6503The fourth rule in this example says that an error followed by a newline
6504makes a valid addition to any @code{stmnts}.
6505
6506What happens if a syntax error occurs in the middle of an @code{exp}? The
6507error recovery rule, interpreted strictly, applies to the precise sequence
6508of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6509the middle of an @code{exp}, there will probably be some additional tokens
6510and subexpressions on the stack after the last @code{stmnts}, and there
6511will be tokens to read before the next newline. So the rule is not
6512applicable in the ordinary way.
6513
6514But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6515the semantic context and part of the input. First it discards states
6516and objects from the stack until it gets back to a state in which the
bfa74976 6517@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6518already parsed are discarded, back to the last complete @code{stmnts}.)
6519At this point the @code{error} token can be shifted. Then, if the old
742e4900 6520lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6521tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6522this example, Bison reads and discards input until the next newline so
6523that the fourth rule can apply. Note that discarded symbols are
6524possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6525Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6526
6527The choice of error rules in the grammar is a choice of strategies for
6528error recovery. A simple and useful strategy is simply to skip the rest of
6529the current input line or current statement if an error is detected:
6530
6531@example
72d2299c 6532stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6533@end example
6534
6535It is also useful to recover to the matching close-delimiter of an
6536opening-delimiter that has already been parsed. Otherwise the
6537close-delimiter will probably appear to be unmatched, and generate another,
6538spurious error message:
6539
6540@example
6541primary: '(' expr ')'
6542 | '(' error ')'
6543 @dots{}
6544 ;
6545@end example
6546
6547Error recovery strategies are necessarily guesses. When they guess wrong,
6548one syntax error often leads to another. In the above example, the error
6549recovery rule guesses that an error is due to bad input within one
6550@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6551middle of a valid @code{stmnt}. After the error recovery rule recovers
6552from the first error, another syntax error will be found straightaway,
6553since the text following the spurious semicolon is also an invalid
6554@code{stmnt}.
6555
6556To prevent an outpouring of error messages, the parser will output no error
6557message for another syntax error that happens shortly after the first; only
6558after three consecutive input tokens have been successfully shifted will
6559error messages resume.
6560
6561Note that rules which accept the @code{error} token may have actions, just
6562as any other rules can.
6563
6564@findex yyerrok
6565You can make error messages resume immediately by using the macro
6566@code{yyerrok} in an action. If you do this in the error rule's action, no
6567error messages will be suppressed. This macro requires no arguments;
6568@samp{yyerrok;} is a valid C statement.
6569
6570@findex yyclearin
742e4900 6571The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6572this is unacceptable, then the macro @code{yyclearin} may be used to clear
6573this token. Write the statement @samp{yyclearin;} in the error rule's
6574action.
32c29292 6575@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6576
6e649e65 6577For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6578called that advances the input stream to some point where parsing should
6579once again commence. The next symbol returned by the lexical scanner is
742e4900 6580probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6581with @samp{yyclearin;}.
6582
6583@vindex YYRECOVERING
02103984
PE
6584The expression @code{YYRECOVERING ()} yields 1 when the parser
6585is recovering from a syntax error, and 0 otherwise.
6586Syntax error diagnostics are suppressed while recovering from a syntax
6587error.
bfa74976 6588
342b8b6e 6589@node Context Dependency
bfa74976
RS
6590@chapter Handling Context Dependencies
6591
6592The Bison paradigm is to parse tokens first, then group them into larger
6593syntactic units. In many languages, the meaning of a token is affected by
6594its context. Although this violates the Bison paradigm, certain techniques
6595(known as @dfn{kludges}) may enable you to write Bison parsers for such
6596languages.
6597
6598@menu
6599* Semantic Tokens:: Token parsing can depend on the semantic context.
6600* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6601* Tie-in Recovery:: Lexical tie-ins have implications for how
6602 error recovery rules must be written.
6603@end menu
6604
6605(Actually, ``kludge'' means any technique that gets its job done but is
6606neither clean nor robust.)
6607
342b8b6e 6608@node Semantic Tokens
bfa74976
RS
6609@section Semantic Info in Token Types
6610
6611The C language has a context dependency: the way an identifier is used
6612depends on what its current meaning is. For example, consider this:
6613
6614@example
6615foo (x);
6616@end example
6617
6618This looks like a function call statement, but if @code{foo} is a typedef
6619name, then this is actually a declaration of @code{x}. How can a Bison
6620parser for C decide how to parse this input?
6621
c827f760 6622The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6623@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6624identifier, it looks up the current declaration of the identifier in order
6625to decide which token type to return: @code{TYPENAME} if the identifier is
6626declared as a typedef, @code{IDENTIFIER} otherwise.
6627
6628The grammar rules can then express the context dependency by the choice of
6629token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6630but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6631@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6632is @emph{not} significant, such as in declarations that can shadow a
6633typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6634accepted---there is one rule for each of the two token types.
6635
6636This technique is simple to use if the decision of which kinds of
6637identifiers to allow is made at a place close to where the identifier is
6638parsed. But in C this is not always so: C allows a declaration to
6639redeclare a typedef name provided an explicit type has been specified
6640earlier:
6641
6642@example
3a4f411f
PE
6643typedef int foo, bar;
6644int baz (void)
6645@{
6646 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6647 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6648 return foo (bar);
6649@}
bfa74976
RS
6650@end example
6651
6652Unfortunately, the name being declared is separated from the declaration
6653construct itself by a complicated syntactic structure---the ``declarator''.
6654
9ecbd125 6655As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6656all the nonterminal names changed: once for parsing a declaration in
6657which a typedef name can be redefined, and once for parsing a
6658declaration in which that can't be done. Here is a part of the
6659duplication, with actions omitted for brevity:
bfa74976
RS
6660
6661@example
6662initdcl:
6663 declarator maybeasm '='
6664 init
6665 | declarator maybeasm
6666 ;
6667
6668notype_initdcl:
6669 notype_declarator maybeasm '='
6670 init
6671 | notype_declarator maybeasm
6672 ;
6673@end example
6674
6675@noindent
6676Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6677cannot. The distinction between @code{declarator} and
6678@code{notype_declarator} is the same sort of thing.
6679
6680There is some similarity between this technique and a lexical tie-in
6681(described next), in that information which alters the lexical analysis is
6682changed during parsing by other parts of the program. The difference is
6683here the information is global, and is used for other purposes in the
6684program. A true lexical tie-in has a special-purpose flag controlled by
6685the syntactic context.
6686
342b8b6e 6687@node Lexical Tie-ins
bfa74976
RS
6688@section Lexical Tie-ins
6689@cindex lexical tie-in
6690
6691One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6692which is set by Bison actions, whose purpose is to alter the way tokens are
6693parsed.
6694
6695For example, suppose we have a language vaguely like C, but with a special
6696construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6697an expression in parentheses in which all integers are hexadecimal. In
6698particular, the token @samp{a1b} must be treated as an integer rather than
6699as an identifier if it appears in that context. Here is how you can do it:
6700
6701@example
6702@group
6703%@{
38a92d50
PE
6704 int hexflag;
6705 int yylex (void);
6706 void yyerror (char const *);
bfa74976
RS
6707%@}
6708%%
6709@dots{}
6710@end group
6711@group
6712expr: IDENTIFIER
6713 | constant
6714 | HEX '('
6715 @{ hexflag = 1; @}
6716 expr ')'
6717 @{ hexflag = 0;
6718 $$ = $4; @}
6719 | expr '+' expr
6720 @{ $$ = make_sum ($1, $3); @}
6721 @dots{}
6722 ;
6723@end group
6724
6725@group
6726constant:
6727 INTEGER
6728 | STRING
6729 ;
6730@end group
6731@end example
6732
6733@noindent
6734Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6735it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6736with letters are parsed as integers if possible.
6737
342b8b6e
AD
6738The declaration of @code{hexflag} shown in the prologue of the parser file
6739is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6740You must also write the code in @code{yylex} to obey the flag.
bfa74976 6741
342b8b6e 6742@node Tie-in Recovery
bfa74976
RS
6743@section Lexical Tie-ins and Error Recovery
6744
6745Lexical tie-ins make strict demands on any error recovery rules you have.
6746@xref{Error Recovery}.
6747
6748The reason for this is that the purpose of an error recovery rule is to
6749abort the parsing of one construct and resume in some larger construct.
6750For example, in C-like languages, a typical error recovery rule is to skip
6751tokens until the next semicolon, and then start a new statement, like this:
6752
6753@example
6754stmt: expr ';'
6755 | IF '(' expr ')' stmt @{ @dots{} @}
6756 @dots{}
6757 error ';'
6758 @{ hexflag = 0; @}
6759 ;
6760@end example
6761
6762If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6763construct, this error rule will apply, and then the action for the
6764completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6765remain set for the entire rest of the input, or until the next @code{hex}
6766keyword, causing identifiers to be misinterpreted as integers.
6767
6768To avoid this problem the error recovery rule itself clears @code{hexflag}.
6769
6770There may also be an error recovery rule that works within expressions.
6771For example, there could be a rule which applies within parentheses
6772and skips to the close-parenthesis:
6773
6774@example
6775@group
6776expr: @dots{}
6777 | '(' expr ')'
6778 @{ $$ = $2; @}
6779 | '(' error ')'
6780 @dots{}
6781@end group
6782@end example
6783
6784If this rule acts within the @code{hex} construct, it is not going to abort
6785that construct (since it applies to an inner level of parentheses within
6786the construct). Therefore, it should not clear the flag: the rest of
6787the @code{hex} construct should be parsed with the flag still in effect.
6788
6789What if there is an error recovery rule which might abort out of the
6790@code{hex} construct or might not, depending on circumstances? There is no
6791way you can write the action to determine whether a @code{hex} construct is
6792being aborted or not. So if you are using a lexical tie-in, you had better
6793make sure your error recovery rules are not of this kind. Each rule must
6794be such that you can be sure that it always will, or always won't, have to
6795clear the flag.
6796
ec3bc396
AD
6797@c ================================================== Debugging Your Parser
6798
342b8b6e 6799@node Debugging
bfa74976 6800@chapter Debugging Your Parser
ec3bc396
AD
6801
6802Developing a parser can be a challenge, especially if you don't
6803understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6804Algorithm}). Even so, sometimes a detailed description of the automaton
6805can help (@pxref{Understanding, , Understanding Your Parser}), or
6806tracing the execution of the parser can give some insight on why it
6807behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6808
6809@menu
6810* Understanding:: Understanding the structure of your parser.
6811* Tracing:: Tracing the execution of your parser.
6812@end menu
6813
6814@node Understanding
6815@section Understanding Your Parser
6816
6817As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6818Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6819frequent than one would hope), looking at this automaton is required to
6820tune or simply fix a parser. Bison provides two different
35fe0834 6821representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
6822
6823The textual file is generated when the options @option{--report} or
6824@option{--verbose} are specified, see @xref{Invocation, , Invoking
6825Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6826the parser output file name, and adding @samp{.output} instead.
6827Therefore, if the input file is @file{foo.y}, then the parser file is
6828called @file{foo.tab.c} by default. As a consequence, the verbose
6829output file is called @file{foo.output}.
6830
6831The following grammar file, @file{calc.y}, will be used in the sequel:
6832
6833@example
6834%token NUM STR
6835%left '+' '-'
6836%left '*'
6837%%
6838exp: exp '+' exp
6839 | exp '-' exp
6840 | exp '*' exp
6841 | exp '/' exp
6842 | NUM
6843 ;
6844useless: STR;
6845%%
6846@end example
6847
88bce5a2
AD
6848@command{bison} reports:
6849
6850@example
6851calc.y: warning: 1 useless nonterminal and 1 useless rule
6852calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6853calc.y:11.10-12: warning: useless rule: useless: STR
6854calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6855@end example
6856
6857When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6858creates a file @file{calc.output} with contents detailed below. The
6859order of the output and the exact presentation might vary, but the
6860interpretation is the same.
ec3bc396
AD
6861
6862The first section includes details on conflicts that were solved thanks
6863to precedence and/or associativity:
6864
6865@example
6866Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6867Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6868Conflict in state 8 between rule 2 and token '*' resolved as shift.
6869@exdent @dots{}
6870@end example
6871
6872@noindent
6873The next section lists states that still have conflicts.
6874
6875@example
5a99098d
PE
6876State 8 conflicts: 1 shift/reduce
6877State 9 conflicts: 1 shift/reduce
6878State 10 conflicts: 1 shift/reduce
6879State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6880@end example
6881
6882@noindent
6883@cindex token, useless
6884@cindex useless token
6885@cindex nonterminal, useless
6886@cindex useless nonterminal
6887@cindex rule, useless
6888@cindex useless rule
6889The next section reports useless tokens, nonterminal and rules. Useless
6890nonterminals and rules are removed in order to produce a smaller parser,
6891but useless tokens are preserved, since they might be used by the
6892scanner (note the difference between ``useless'' and ``not used''
6893below):
6894
6895@example
6896Useless nonterminals:
6897 useless
6898
6899Terminals which are not used:
6900 STR
6901
6902Useless rules:
6903#6 useless: STR;
6904@end example
6905
6906@noindent
6907The next section reproduces the exact grammar that Bison used:
6908
6909@example
6910Grammar
6911
6912 Number, Line, Rule
88bce5a2 6913 0 5 $accept -> exp $end
ec3bc396
AD
6914 1 5 exp -> exp '+' exp
6915 2 6 exp -> exp '-' exp
6916 3 7 exp -> exp '*' exp
6917 4 8 exp -> exp '/' exp
6918 5 9 exp -> NUM
6919@end example
6920
6921@noindent
6922and reports the uses of the symbols:
6923
6924@example
6925Terminals, with rules where they appear
6926
88bce5a2 6927$end (0) 0
ec3bc396
AD
6928'*' (42) 3
6929'+' (43) 1
6930'-' (45) 2
6931'/' (47) 4
6932error (256)
6933NUM (258) 5
6934
6935Nonterminals, with rules where they appear
6936
88bce5a2 6937$accept (8)
ec3bc396
AD
6938 on left: 0
6939exp (9)
6940 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6941@end example
6942
6943@noindent
6944@cindex item
6945@cindex pointed rule
6946@cindex rule, pointed
6947Bison then proceeds onto the automaton itself, describing each state
6948with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6949item is a production rule together with a point (marked by @samp{.})
6950that the input cursor.
6951
6952@example
6953state 0
6954
88bce5a2 6955 $accept -> . exp $ (rule 0)
ec3bc396 6956
2a8d363a 6957 NUM shift, and go to state 1
ec3bc396 6958
2a8d363a 6959 exp go to state 2
ec3bc396
AD
6960@end example
6961
6962This reads as follows: ``state 0 corresponds to being at the very
6963beginning of the parsing, in the initial rule, right before the start
6964symbol (here, @code{exp}). When the parser returns to this state right
6965after having reduced a rule that produced an @code{exp}, the control
6966flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6967symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6968the parse stack, and the control flow jumps to state 1. Any other
742e4900 6969lookahead triggers a syntax error.''
ec3bc396
AD
6970
6971@cindex core, item set
6972@cindex item set core
6973@cindex kernel, item set
6974@cindex item set core
6975Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6976report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6977at the beginning of any rule deriving an @code{exp}. By default Bison
6978reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6979you want to see more detail you can invoke @command{bison} with
6980@option{--report=itemset} to list all the items, include those that can
6981be derived:
6982
6983@example
6984state 0
6985
88bce5a2 6986 $accept -> . exp $ (rule 0)
ec3bc396
AD
6987 exp -> . exp '+' exp (rule 1)
6988 exp -> . exp '-' exp (rule 2)
6989 exp -> . exp '*' exp (rule 3)
6990 exp -> . exp '/' exp (rule 4)
6991 exp -> . NUM (rule 5)
6992
6993 NUM shift, and go to state 1
6994
6995 exp go to state 2
6996@end example
6997
6998@noindent
6999In the state 1...
7000
7001@example
7002state 1
7003
7004 exp -> NUM . (rule 5)
7005
2a8d363a 7006 $default reduce using rule 5 (exp)
ec3bc396
AD
7007@end example
7008
7009@noindent
742e4900 7010the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7011(@samp{$default}), the parser will reduce it. If it was coming from
7012state 0, then, after this reduction it will return to state 0, and will
7013jump to state 2 (@samp{exp: go to state 2}).
7014
7015@example
7016state 2
7017
88bce5a2 7018 $accept -> exp . $ (rule 0)
ec3bc396
AD
7019 exp -> exp . '+' exp (rule 1)
7020 exp -> exp . '-' exp (rule 2)
7021 exp -> exp . '*' exp (rule 3)
7022 exp -> exp . '/' exp (rule 4)
7023
2a8d363a
AD
7024 $ shift, and go to state 3
7025 '+' shift, and go to state 4
7026 '-' shift, and go to state 5
7027 '*' shift, and go to state 6
7028 '/' shift, and go to state 7
ec3bc396
AD
7029@end example
7030
7031@noindent
7032In state 2, the automaton can only shift a symbol. For instance,
742e4900 7033because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7034@samp{+}, it will be shifted on the parse stack, and the automaton
7035control will jump to state 4, corresponding to the item @samp{exp -> exp
7036'+' . exp}. Since there is no default action, any other token than
6e649e65 7037those listed above will trigger a syntax error.
ec3bc396
AD
7038
7039The state 3 is named the @dfn{final state}, or the @dfn{accepting
7040state}:
7041
7042@example
7043state 3
7044
88bce5a2 7045 $accept -> exp $ . (rule 0)
ec3bc396 7046
2a8d363a 7047 $default accept
ec3bc396
AD
7048@end example
7049
7050@noindent
7051the initial rule is completed (the start symbol and the end
7052of input were read), the parsing exits successfully.
7053
7054The interpretation of states 4 to 7 is straightforward, and is left to
7055the reader.
7056
7057@example
7058state 4
7059
7060 exp -> exp '+' . exp (rule 1)
7061
2a8d363a 7062 NUM shift, and go to state 1
ec3bc396 7063
2a8d363a 7064 exp go to state 8
ec3bc396
AD
7065
7066state 5
7067
7068 exp -> exp '-' . exp (rule 2)
7069
2a8d363a 7070 NUM shift, and go to state 1
ec3bc396 7071
2a8d363a 7072 exp go to state 9
ec3bc396
AD
7073
7074state 6
7075
7076 exp -> exp '*' . exp (rule 3)
7077
2a8d363a 7078 NUM shift, and go to state 1
ec3bc396 7079
2a8d363a 7080 exp go to state 10
ec3bc396
AD
7081
7082state 7
7083
7084 exp -> exp '/' . exp (rule 4)
7085
2a8d363a 7086 NUM shift, and go to state 1
ec3bc396 7087
2a8d363a 7088 exp go to state 11
ec3bc396
AD
7089@end example
7090
5a99098d
PE
7091As was announced in beginning of the report, @samp{State 8 conflicts:
70921 shift/reduce}:
ec3bc396
AD
7093
7094@example
7095state 8
7096
7097 exp -> exp . '+' exp (rule 1)
7098 exp -> exp '+' exp . (rule 1)
7099 exp -> exp . '-' exp (rule 2)
7100 exp -> exp . '*' exp (rule 3)
7101 exp -> exp . '/' exp (rule 4)
7102
2a8d363a
AD
7103 '*' shift, and go to state 6
7104 '/' shift, and go to state 7
ec3bc396 7105
2a8d363a
AD
7106 '/' [reduce using rule 1 (exp)]
7107 $default reduce using rule 1 (exp)
ec3bc396
AD
7108@end example
7109
742e4900 7110Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7111either shifting (and going to state 7), or reducing rule 1. The
7112conflict means that either the grammar is ambiguous, or the parser lacks
7113information to make the right decision. Indeed the grammar is
7114ambiguous, as, since we did not specify the precedence of @samp{/}, the
7115sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7116NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7117NUM}, which corresponds to reducing rule 1.
7118
c827f760 7119Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7120arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7121Shift/Reduce Conflicts}. Discarded actions are reported in between
7122square brackets.
7123
7124Note that all the previous states had a single possible action: either
7125shifting the next token and going to the corresponding state, or
7126reducing a single rule. In the other cases, i.e., when shifting
7127@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7128possible, the lookahead is required to select the action. State 8 is
7129one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7130is shifting, otherwise the action is reducing rule 1. In other words,
7131the first two items, corresponding to rule 1, are not eligible when the
742e4900 7132lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7133precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7134with some set of possible lookahead tokens. When run with
7135@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7136
7137@example
7138state 8
7139
7140 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
7141 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7142 exp -> exp . '-' exp (rule 2)
7143 exp -> exp . '*' exp (rule 3)
7144 exp -> exp . '/' exp (rule 4)
7145
7146 '*' shift, and go to state 6
7147 '/' shift, and go to state 7
7148
7149 '/' [reduce using rule 1 (exp)]
7150 $default reduce using rule 1 (exp)
7151@end example
7152
7153The remaining states are similar:
7154
7155@example
7156state 9
7157
7158 exp -> exp . '+' exp (rule 1)
7159 exp -> exp . '-' exp (rule 2)
7160 exp -> exp '-' exp . (rule 2)
7161 exp -> exp . '*' exp (rule 3)
7162 exp -> exp . '/' exp (rule 4)
7163
2a8d363a
AD
7164 '*' shift, and go to state 6
7165 '/' shift, and go to state 7
ec3bc396 7166
2a8d363a
AD
7167 '/' [reduce using rule 2 (exp)]
7168 $default reduce using rule 2 (exp)
ec3bc396
AD
7169
7170state 10
7171
7172 exp -> exp . '+' exp (rule 1)
7173 exp -> exp . '-' exp (rule 2)
7174 exp -> exp . '*' exp (rule 3)
7175 exp -> exp '*' exp . (rule 3)
7176 exp -> exp . '/' exp (rule 4)
7177
2a8d363a 7178 '/' shift, and go to state 7
ec3bc396 7179
2a8d363a
AD
7180 '/' [reduce using rule 3 (exp)]
7181 $default reduce using rule 3 (exp)
ec3bc396
AD
7182
7183state 11
7184
7185 exp -> exp . '+' exp (rule 1)
7186 exp -> exp . '-' exp (rule 2)
7187 exp -> exp . '*' exp (rule 3)
7188 exp -> exp . '/' exp (rule 4)
7189 exp -> exp '/' exp . (rule 4)
7190
2a8d363a
AD
7191 '+' shift, and go to state 4
7192 '-' shift, and go to state 5
7193 '*' shift, and go to state 6
7194 '/' shift, and go to state 7
ec3bc396 7195
2a8d363a
AD
7196 '+' [reduce using rule 4 (exp)]
7197 '-' [reduce using rule 4 (exp)]
7198 '*' [reduce using rule 4 (exp)]
7199 '/' [reduce using rule 4 (exp)]
7200 $default reduce using rule 4 (exp)
ec3bc396
AD
7201@end example
7202
7203@noindent
fa7e68c3
PE
7204Observe that state 11 contains conflicts not only due to the lack of
7205precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7206@samp{*}, but also because the
ec3bc396
AD
7207associativity of @samp{/} is not specified.
7208
7209
7210@node Tracing
7211@section Tracing Your Parser
bfa74976
RS
7212@findex yydebug
7213@cindex debugging
7214@cindex tracing the parser
7215
7216If a Bison grammar compiles properly but doesn't do what you want when it
7217runs, the @code{yydebug} parser-trace feature can help you figure out why.
7218
3ded9a63
AD
7219There are several means to enable compilation of trace facilities:
7220
7221@table @asis
7222@item the macro @code{YYDEBUG}
7223@findex YYDEBUG
7224Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7225parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7226@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7227YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7228Prologue}).
7229
7230@item the option @option{-t}, @option{--debug}
7231Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7232,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7233
7234@item the directive @samp{%debug}
7235@findex %debug
7236Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7237Declaration Summary}). This is a Bison extension, which will prove
7238useful when Bison will output parsers for languages that don't use a
c827f760
PE
7239preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7240you, this is
3ded9a63
AD
7241the preferred solution.
7242@end table
7243
7244We suggest that you always enable the debug option so that debugging is
7245always possible.
bfa74976 7246
02a81e05 7247The trace facility outputs messages with macro calls of the form
e2742e46 7248@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7249@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7250arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7251define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7252and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7253
7254Once you have compiled the program with trace facilities, the way to
7255request a trace is to store a nonzero value in the variable @code{yydebug}.
7256You can do this by making the C code do it (in @code{main}, perhaps), or
7257you can alter the value with a C debugger.
7258
7259Each step taken by the parser when @code{yydebug} is nonzero produces a
7260line or two of trace information, written on @code{stderr}. The trace
7261messages tell you these things:
7262
7263@itemize @bullet
7264@item
7265Each time the parser calls @code{yylex}, what kind of token was read.
7266
7267@item
7268Each time a token is shifted, the depth and complete contents of the
7269state stack (@pxref{Parser States}).
7270
7271@item
7272Each time a rule is reduced, which rule it is, and the complete contents
7273of the state stack afterward.
7274@end itemize
7275
7276To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7277produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7278Bison}). This file shows the meaning of each state in terms of
7279positions in various rules, and also what each state will do with each
7280possible input token. As you read the successive trace messages, you
7281can see that the parser is functioning according to its specification in
7282the listing file. Eventually you will arrive at the place where
7283something undesirable happens, and you will see which parts of the
7284grammar are to blame.
bfa74976
RS
7285
7286The parser file is a C program and you can use C debuggers on it, but it's
7287not easy to interpret what it is doing. The parser function is a
7288finite-state machine interpreter, and aside from the actions it executes
7289the same code over and over. Only the values of variables show where in
7290the grammar it is working.
7291
7292@findex YYPRINT
7293The debugging information normally gives the token type of each token
7294read, but not its semantic value. You can optionally define a macro
7295named @code{YYPRINT} to provide a way to print the value. If you define
7296@code{YYPRINT}, it should take three arguments. The parser will pass a
7297standard I/O stream, the numeric code for the token type, and the token
7298value (from @code{yylval}).
7299
7300Here is an example of @code{YYPRINT} suitable for the multi-function
7301calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7302
7303@smallexample
38a92d50
PE
7304%@{
7305 static void print_token_value (FILE *, int, YYSTYPE);
7306 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7307%@}
7308
7309@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7310
7311static void
831d3c99 7312print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7313@{
7314 if (type == VAR)
d3c4e709 7315 fprintf (file, "%s", value.tptr->name);
bfa74976 7316 else if (type == NUM)
d3c4e709 7317 fprintf (file, "%d", value.val);
bfa74976
RS
7318@}
7319@end smallexample
7320
ec3bc396
AD
7321@c ================================================= Invoking Bison
7322
342b8b6e 7323@node Invocation
bfa74976
RS
7324@chapter Invoking Bison
7325@cindex invoking Bison
7326@cindex Bison invocation
7327@cindex options for invoking Bison
7328
7329The usual way to invoke Bison is as follows:
7330
7331@example
7332bison @var{infile}
7333@end example
7334
7335Here @var{infile} is the grammar file name, which usually ends in
7336@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7337with @samp{.tab.c} and removing any leading directory. Thus, the
7338@samp{bison foo.y} file name yields
7339@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7340@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7341C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7342or @file{foo.y++}. Then, the output files will take an extension like
7343the given one as input (respectively @file{foo.tab.cpp} and
7344@file{foo.tab.c++}).
fa4d969f 7345This feature takes effect with all options that manipulate file names like
234a3be3
AD
7346@samp{-o} or @samp{-d}.
7347
7348For example :
7349
7350@example
7351bison -d @var{infile.yxx}
7352@end example
84163231 7353@noindent
72d2299c 7354will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7355
7356@example
b56471a6 7357bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7358@end example
84163231 7359@noindent
234a3be3
AD
7360will produce @file{output.c++} and @file{outfile.h++}.
7361
397ec073
PE
7362For compatibility with @acronym{POSIX}, the standard Bison
7363distribution also contains a shell script called @command{yacc} that
7364invokes Bison with the @option{-y} option.
7365
bfa74976 7366@menu
13863333 7367* Bison Options:: All the options described in detail,
c827f760 7368 in alphabetical order by short options.
bfa74976 7369* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7370* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7371@end menu
7372
342b8b6e 7373@node Bison Options
bfa74976
RS
7374@section Bison Options
7375
7376Bison supports both traditional single-letter options and mnemonic long
7377option names. Long option names are indicated with @samp{--} instead of
7378@samp{-}. Abbreviations for option names are allowed as long as they
7379are unique. When a long option takes an argument, like
7380@samp{--file-prefix}, connect the option name and the argument with
7381@samp{=}.
7382
7383Here is a list of options that can be used with Bison, alphabetized by
7384short option. It is followed by a cross key alphabetized by long
7385option.
7386
89cab50d
AD
7387@c Please, keep this ordered as in `bison --help'.
7388@noindent
7389Operations modes:
7390@table @option
7391@item -h
7392@itemx --help
7393Print a summary of the command-line options to Bison and exit.
bfa74976 7394
89cab50d
AD
7395@item -V
7396@itemx --version
7397Print the version number of Bison and exit.
bfa74976 7398
f7ab6a50
PE
7399@item --print-localedir
7400Print the name of the directory containing locale-dependent data.
7401
89cab50d
AD
7402@item -y
7403@itemx --yacc
54662697
PE
7404Act more like the traditional Yacc command. This can cause
7405different diagnostics to be generated, and may change behavior in
7406other minor ways. Most importantly, imitate Yacc's output
7407file name conventions, so that the parser output file is called
89cab50d 7408@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7409@file{y.tab.h}.
7410Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7411statements in addition to an @code{enum} to associate token numbers with token
7412names.
7413Thus, the following shell script can substitute for Yacc, and the Bison
7414distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7415
89cab50d 7416@example
397ec073 7417#! /bin/sh
26e06a21 7418bison -y "$@@"
89cab50d 7419@end example
54662697
PE
7420
7421The @option{-y}/@option{--yacc} option is intended for use with
7422traditional Yacc grammars. If your grammar uses a Bison extension
7423like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7424this option is specified.
7425
89cab50d
AD
7426@end table
7427
7428@noindent
7429Tuning the parser:
7430
7431@table @option
7432@item -t
7433@itemx --debug
4947ebdb
PE
7434In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7435already defined, so that the debugging facilities are compiled.
ec3bc396 7436@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7437
0e021770
PE
7438@item -L @var{language}
7439@itemx --language=@var{language}
7440Specify the programming language for the generated parser, as if
7441@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
7442Summary}). Currently supported languages include C and C++.
e6e704dc 7443@var{language} is case-insensitive.
0e021770 7444
89cab50d 7445@item --locations
d8988b2f 7446Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7447
7448@item -p @var{prefix}
7449@itemx --name-prefix=@var{prefix}
02975b9a 7450Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7451@xref{Decl Summary}.
bfa74976
RS
7452
7453@item -l
7454@itemx --no-lines
7455Don't put any @code{#line} preprocessor commands in the parser file.
7456Ordinarily Bison puts them in the parser file so that the C compiler
7457and debuggers will associate errors with your source file, the
7458grammar file. This option causes them to associate errors with the
95e742f7 7459parser file, treating it as an independent source file in its own right.
bfa74976 7460
e6e704dc
JD
7461@item -S @var{file}
7462@itemx --skeleton=@var{file}
a7867f53 7463Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7464(@pxref{Decl Summary, , Bison Declaration Summary}).
7465
a7867f53
JD
7466You probably don't need this option unless you are developing Bison.
7467You should use @option{--language} if you want to specify the skeleton for a
e6e704dc
JD
7468different language, because it is clearer and because it will always
7469choose the correct skeleton for non-deterministic or push parsers.
7470
a7867f53
JD
7471If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7472file in the Bison installation directory.
7473If it does, @var{file} is an absolute file name or a file name relative to the
7474current working directory.
7475This is similar to how most shells resolve commands.
7476
89cab50d
AD
7477@item -k
7478@itemx --token-table
d8988b2f 7479Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7480@end table
bfa74976 7481
89cab50d
AD
7482@noindent
7483Adjust the output:
bfa74976 7484
89cab50d
AD
7485@table @option
7486@item -d
d8988b2f
AD
7487@itemx --defines
7488Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7489file containing macro definitions for the token type names defined in
4bfd5e4e 7490the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7491
342b8b6e 7492@item --defines=@var{defines-file}
d8988b2f 7493Same as above, but save in the file @var{defines-file}.
342b8b6e 7494
89cab50d
AD
7495@item -b @var{file-prefix}
7496@itemx --file-prefix=@var{prefix}
9c437126 7497Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7498for all Bison output file names. @xref{Decl Summary}.
bfa74976 7499
ec3bc396
AD
7500@item -r @var{things}
7501@itemx --report=@var{things}
7502Write an extra output file containing verbose description of the comma
7503separated list of @var{things} among:
7504
7505@table @code
7506@item state
7507Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7508@acronym{LALR} automaton.
ec3bc396 7509
742e4900 7510@item lookahead
ec3bc396 7511Implies @code{state} and augments the description of the automaton with
742e4900 7512each rule's lookahead set.
ec3bc396
AD
7513
7514@item itemset
7515Implies @code{state} and augments the description of the automaton with
7516the full set of items for each state, instead of its core only.
7517@end table
7518
bfa74976
RS
7519@item -v
7520@itemx --verbose
9c437126 7521Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7522file containing verbose descriptions of the grammar and
72d2299c 7523parser. @xref{Decl Summary}.
bfa74976 7524
fa4d969f
PE
7525@item -o @var{file}
7526@itemx --output=@var{file}
7527Specify the @var{file} for the parser file.
bfa74976 7528
fa4d969f 7529The other output files' names are constructed from @var{file} as
d8988b2f 7530described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7531
7532@item -g
35fe0834
PE
7533Output a graphical representation of the @acronym{LALR}(1) grammar
7534automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7535@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7536If the grammar file is @file{foo.y}, the output file will
7537be @file{foo.dot}.
342b8b6e
AD
7538
7539@item --graph=@var{graph-file}
72d2299c
PE
7540The behavior of @var{--graph} is the same than @samp{-g}. The only
7541difference is that it has an optional argument which is the name of
fa4d969f 7542the output graph file.
bfa74976
RS
7543@end table
7544
342b8b6e 7545@node Option Cross Key
bfa74976
RS
7546@section Option Cross Key
7547
aa08666d 7548@c FIXME: How about putting the directives too?
bfa74976
RS
7549Here is a list of options, alphabetized by long option, to help you find
7550the corresponding short option.
7551
aa08666d
AD
7552@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7553@headitem Long Option @tab Short Option
7554@item @option{--debug} @tab @option{-t}
7555@item @option{--defines=@var{defines-file}} @tab @option{-d}
7556@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7557@item @option{--graph=@var{graph-file}} @tab @option{-d}
7558@item @option{--help} @tab @option{-h}
7559@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7560@item @option{--no-lines} @tab @option{-l}
aa08666d
AD
7561@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7562@item @option{--print-localedir} @tab
7563@item @option{--token-table} @tab @option{-k}
7564@item @option{--verbose} @tab @option{-v}
7565@item @option{--version} @tab @option{-V}
7566@item @option{--yacc} @tab @option{-y}
7567@end multitable
bfa74976 7568
93dd49ab
PE
7569@node Yacc Library
7570@section Yacc Library
7571
7572The Yacc library contains default implementations of the
7573@code{yyerror} and @code{main} functions. These default
7574implementations are normally not useful, but @acronym{POSIX} requires
7575them. To use the Yacc library, link your program with the
7576@option{-ly} option. Note that Bison's implementation of the Yacc
7577library is distributed under the terms of the @acronym{GNU} General
7578Public License (@pxref{Copying}).
7579
7580If you use the Yacc library's @code{yyerror} function, you should
7581declare @code{yyerror} as follows:
7582
7583@example
7584int yyerror (char const *);
7585@end example
7586
7587Bison ignores the @code{int} value returned by this @code{yyerror}.
7588If you use the Yacc library's @code{main} function, your
7589@code{yyparse} function should have the following type signature:
7590
7591@example
7592int yyparse (void);
7593@end example
7594
12545799
AD
7595@c ================================================= C++ Bison
7596
8405b70c
PB
7597@node Other Languages
7598@chapter Parsers Written In Other Languages
12545799
AD
7599
7600@menu
7601* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 7602* Java Parsers:: The interface to generate Java parser classes
12545799
AD
7603@end menu
7604
7605@node C++ Parsers
7606@section C++ Parsers
7607
7608@menu
7609* C++ Bison Interface:: Asking for C++ parser generation
7610* C++ Semantic Values:: %union vs. C++
7611* C++ Location Values:: The position and location classes
7612* C++ Parser Interface:: Instantiating and running the parser
7613* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 7614* A Complete C++ Example:: Demonstrating their use
12545799
AD
7615@end menu
7616
7617@node C++ Bison Interface
7618@subsection C++ Bison Interface
0e021770 7619@c - %language "C++"
12545799
AD
7620@c - Always pure
7621@c - initial action
7622
e6e704dc
JD
7623The C++ @acronym{LALR}(1) parser is selected using the language directive,
7624@samp{%language "C++"}, or the synonymous command-line option
7625@option{--language=c++}.
7626@xref{Decl Summary}.
0e021770
PE
7627
7628When run, @command{bison} will create several
aa08666d
AD
7629entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7630directive to change the namespace name, see @ref{Decl Summary}. The
7631various classes are generated in the following files:
7632
12545799
AD
7633@table @file
7634@item position.hh
7635@itemx location.hh
7636The definition of the classes @code{position} and @code{location},
7637used for location tracking. @xref{C++ Location Values}.
7638
7639@item stack.hh
7640An auxiliary class @code{stack} used by the parser.
7641
fa4d969f
PE
7642@item @var{file}.hh
7643@itemx @var{file}.cc
cd8b5791
AD
7644(Assuming the extension of the input file was @samp{.yy}.) The
7645declaration and implementation of the C++ parser class. The basename
7646and extension of these two files follow the same rules as with regular C
7647parsers (@pxref{Invocation}).
12545799 7648
cd8b5791
AD
7649The header is @emph{mandatory}; you must either pass
7650@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7651@samp{%defines} directive.
7652@end table
7653
7654All these files are documented using Doxygen; run @command{doxygen}
7655for a complete and accurate documentation.
7656
7657@node C++ Semantic Values
7658@subsection C++ Semantic Values
7659@c - No objects in unions
178e123e 7660@c - YYSTYPE
12545799
AD
7661@c - Printer and destructor
7662
7663The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7664Collection of Value Types}. In particular it produces a genuine
7665@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7666within pseudo-unions (similar to Boost variants) might be implemented to
7667alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7668@itemize @minus
7669@item
fb9712a9
AD
7670The type @code{YYSTYPE} is defined but its use is discouraged: rather
7671you should refer to the parser's encapsulated type
7672@code{yy::parser::semantic_type}.
12545799
AD
7673@item
7674Non POD (Plain Old Data) types cannot be used. C++ forbids any
7675instance of classes with constructors in unions: only @emph{pointers}
7676to such objects are allowed.
7677@end itemize
7678
7679Because objects have to be stored via pointers, memory is not
7680reclaimed automatically: using the @code{%destructor} directive is the
7681only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7682Symbols}.
7683
7684
7685@node C++ Location Values
7686@subsection C++ Location Values
7687@c - %locations
7688@c - class Position
7689@c - class Location
16dc6a9e 7690@c - %define filename_type "const symbol::Symbol"
12545799
AD
7691
7692When the directive @code{%locations} is used, the C++ parser supports
7693location tracking, see @ref{Locations, , Locations Overview}. Two
7694auxiliary classes define a @code{position}, a single point in a file,
7695and a @code{location}, a range composed of a pair of
7696@code{position}s (possibly spanning several files).
7697
fa4d969f 7698@deftypemethod {position} {std::string*} file
12545799
AD
7699The name of the file. It will always be handled as a pointer, the
7700parser will never duplicate nor deallocate it. As an experimental
7701feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 7702filename_type "@var{type}"}.
12545799
AD
7703@end deftypemethod
7704
7705@deftypemethod {position} {unsigned int} line
7706The line, starting at 1.
7707@end deftypemethod
7708
7709@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7710Advance by @var{height} lines, resetting the column number.
7711@end deftypemethod
7712
7713@deftypemethod {position} {unsigned int} column
7714The column, starting at 0.
7715@end deftypemethod
7716
7717@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7718Advance by @var{width} columns, without changing the line number.
7719@end deftypemethod
7720
7721@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7722@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7723@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7724@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7725Various forms of syntactic sugar for @code{columns}.
7726@end deftypemethod
7727
7728@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7729Report @var{p} on @var{o} like this:
fa4d969f
PE
7730@samp{@var{file}:@var{line}.@var{column}}, or
7731@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7732@end deftypemethod
7733
7734@deftypemethod {location} {position} begin
7735@deftypemethodx {location} {position} end
7736The first, inclusive, position of the range, and the first beyond.
7737@end deftypemethod
7738
7739@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7740@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7741Advance the @code{end} position.
7742@end deftypemethod
7743
7744@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7745@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7746@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7747Various forms of syntactic sugar.
7748@end deftypemethod
7749
7750@deftypemethod {location} {void} step ()
7751Move @code{begin} onto @code{end}.
7752@end deftypemethod
7753
7754
7755@node C++ Parser Interface
7756@subsection C++ Parser Interface
7757@c - define parser_class_name
7758@c - Ctor
7759@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7760@c debug_stream.
7761@c - Reporting errors
7762
7763The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7764declare and define the parser class in the namespace @code{yy}. The
7765class name defaults to @code{parser}, but may be changed using
16dc6a9e 7766@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 7767this class is detailed below. It can be extended using the
12545799
AD
7768@code{%parse-param} feature: its semantics is slightly changed since
7769it describes an additional member of the parser class, and an
7770additional argument for its constructor.
7771
8a0adb01
AD
7772@defcv {Type} {parser} {semantic_value_type}
7773@defcvx {Type} {parser} {location_value_type}
12545799 7774The types for semantics value and locations.
8a0adb01 7775@end defcv
12545799
AD
7776
7777@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7778Build a new parser object. There are no arguments by default, unless
7779@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7780@end deftypemethod
7781
7782@deftypemethod {parser} {int} parse ()
7783Run the syntactic analysis, and return 0 on success, 1 otherwise.
7784@end deftypemethod
7785
7786@deftypemethod {parser} {std::ostream&} debug_stream ()
7787@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7788Get or set the stream used for tracing the parsing. It defaults to
7789@code{std::cerr}.
7790@end deftypemethod
7791
7792@deftypemethod {parser} {debug_level_type} debug_level ()
7793@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7794Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7795or nonzero, full tracing.
12545799
AD
7796@end deftypemethod
7797
7798@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7799The definition for this member function must be supplied by the user:
7800the parser uses it to report a parser error occurring at @var{l},
7801described by @var{m}.
7802@end deftypemethod
7803
7804
7805@node C++ Scanner Interface
7806@subsection C++ Scanner Interface
7807@c - prefix for yylex.
7808@c - Pure interface to yylex
7809@c - %lex-param
7810
7811The parser invokes the scanner by calling @code{yylex}. Contrary to C
7812parsers, C++ parsers are always pure: there is no point in using the
7813@code{%pure-parser} directive. Therefore the interface is as follows.
7814
7815@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7816Return the next token. Its type is the return value, its semantic
7817value and location being @var{yylval} and @var{yylloc}. Invocations of
7818@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7819@end deftypemethod
7820
7821
7822@node A Complete C++ Example
8405b70c 7823@subsection A Complete C++ Example
12545799
AD
7824
7825This section demonstrates the use of a C++ parser with a simple but
7826complete example. This example should be available on your system,
7827ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7828focuses on the use of Bison, therefore the design of the various C++
7829classes is very naive: no accessors, no encapsulation of members etc.
7830We will use a Lex scanner, and more precisely, a Flex scanner, to
7831demonstrate the various interaction. A hand written scanner is
7832actually easier to interface with.
7833
7834@menu
7835* Calc++ --- C++ Calculator:: The specifications
7836* Calc++ Parsing Driver:: An active parsing context
7837* Calc++ Parser:: A parser class
7838* Calc++ Scanner:: A pure C++ Flex scanner
7839* Calc++ Top Level:: Conducting the band
7840@end menu
7841
7842@node Calc++ --- C++ Calculator
8405b70c 7843@subsubsection Calc++ --- C++ Calculator
12545799
AD
7844
7845Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7846expression, possibly preceded by variable assignments. An
12545799
AD
7847environment containing possibly predefined variables such as
7848@code{one} and @code{two}, is exchanged with the parser. An example
7849of valid input follows.
7850
7851@example
7852three := 3
7853seven := one + two * three
7854seven * seven
7855@end example
7856
7857@node Calc++ Parsing Driver
8405b70c 7858@subsubsection Calc++ Parsing Driver
12545799
AD
7859@c - An env
7860@c - A place to store error messages
7861@c - A place for the result
7862
7863To support a pure interface with the parser (and the scanner) the
7864technique of the ``parsing context'' is convenient: a structure
7865containing all the data to exchange. Since, in addition to simply
7866launch the parsing, there are several auxiliary tasks to execute (open
7867the file for parsing, instantiate the parser etc.), we recommend
7868transforming the simple parsing context structure into a fully blown
7869@dfn{parsing driver} class.
7870
7871The declaration of this driver class, @file{calc++-driver.hh}, is as
7872follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7873required standard library components, and the declaration of the parser
7874class.
12545799 7875
1c59e0a1 7876@comment file: calc++-driver.hh
12545799
AD
7877@example
7878#ifndef CALCXX_DRIVER_HH
7879# define CALCXX_DRIVER_HH
7880# include <string>
7881# include <map>
fb9712a9 7882# include "calc++-parser.hh"
12545799
AD
7883@end example
7884
12545799
AD
7885
7886@noindent
7887Then comes the declaration of the scanning function. Flex expects
7888the signature of @code{yylex} to be defined in the macro
7889@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7890factor both as follows.
1c59e0a1
AD
7891
7892@comment file: calc++-driver.hh
12545799 7893@example
3dc5e96b
PE
7894// Tell Flex the lexer's prototype ...
7895# define YY_DECL \
c095d689
AD
7896 yy::calcxx_parser::token_type \
7897 yylex (yy::calcxx_parser::semantic_type* yylval, \
7898 yy::calcxx_parser::location_type* yylloc, \
7899 calcxx_driver& driver)
12545799
AD
7900// ... and declare it for the parser's sake.
7901YY_DECL;
7902@end example
7903
7904@noindent
7905The @code{calcxx_driver} class is then declared with its most obvious
7906members.
7907
1c59e0a1 7908@comment file: calc++-driver.hh
12545799
AD
7909@example
7910// Conducting the whole scanning and parsing of Calc++.
7911class calcxx_driver
7912@{
7913public:
7914 calcxx_driver ();
7915 virtual ~calcxx_driver ();
7916
7917 std::map<std::string, int> variables;
7918
7919 int result;
7920@end example
7921
7922@noindent
7923To encapsulate the coordination with the Flex scanner, it is useful to
7924have two members function to open and close the scanning phase.
12545799 7925
1c59e0a1 7926@comment file: calc++-driver.hh
12545799
AD
7927@example
7928 // Handling the scanner.
7929 void scan_begin ();
7930 void scan_end ();
7931 bool trace_scanning;
7932@end example
7933
7934@noindent
7935Similarly for the parser itself.
7936
1c59e0a1 7937@comment file: calc++-driver.hh
12545799 7938@example
bb32f4f2
AD
7939 // Run the parser. Return 0 on success.
7940 int parse (const std::string& f);
12545799
AD
7941 std::string file;
7942 bool trace_parsing;
7943@end example
7944
7945@noindent
7946To demonstrate pure handling of parse errors, instead of simply
7947dumping them on the standard error output, we will pass them to the
7948compiler driver using the following two member functions. Finally, we
7949close the class declaration and CPP guard.
7950
1c59e0a1 7951@comment file: calc++-driver.hh
12545799
AD
7952@example
7953 // Error handling.
7954 void error (const yy::location& l, const std::string& m);
7955 void error (const std::string& m);
7956@};
7957#endif // ! CALCXX_DRIVER_HH
7958@end example
7959
7960The implementation of the driver is straightforward. The @code{parse}
7961member function deserves some attention. The @code{error} functions
7962are simple stubs, they should actually register the located error
7963messages and set error state.
7964
1c59e0a1 7965@comment file: calc++-driver.cc
12545799
AD
7966@example
7967#include "calc++-driver.hh"
7968#include "calc++-parser.hh"
7969
7970calcxx_driver::calcxx_driver ()
7971 : trace_scanning (false), trace_parsing (false)
7972@{
7973 variables["one"] = 1;
7974 variables["two"] = 2;
7975@}
7976
7977calcxx_driver::~calcxx_driver ()
7978@{
7979@}
7980
bb32f4f2 7981int
12545799
AD
7982calcxx_driver::parse (const std::string &f)
7983@{
7984 file = f;
7985 scan_begin ();
7986 yy::calcxx_parser parser (*this);
7987 parser.set_debug_level (trace_parsing);
bb32f4f2 7988 int res = parser.parse ();
12545799 7989 scan_end ();
bb32f4f2 7990 return res;
12545799
AD
7991@}
7992
7993void
7994calcxx_driver::error (const yy::location& l, const std::string& m)
7995@{
7996 std::cerr << l << ": " << m << std::endl;
7997@}
7998
7999void
8000calcxx_driver::error (const std::string& m)
8001@{
8002 std::cerr << m << std::endl;
8003@}
8004@end example
8005
8006@node Calc++ Parser
8405b70c 8007@subsubsection Calc++ Parser
12545799 8008
b50d2359
AD
8009The parser definition file @file{calc++-parser.yy} starts by asking for
8010the C++ LALR(1) skeleton, the creation of the parser header file, and
8011specifies the name of the parser class. Because the C++ skeleton
8012changed several times, it is safer to require the version you designed
8013the grammar for.
1c59e0a1
AD
8014
8015@comment file: calc++-parser.yy
12545799 8016@example
0e021770 8017%language "C++" /* -*- C++ -*- */
e6e704dc 8018%require "@value{VERSION}"
12545799 8019%defines
16dc6a9e 8020%define parser_class_name "calcxx_parser"
fb9712a9
AD
8021@end example
8022
8023@noindent
16dc6a9e 8024@findex %code requires
fb9712a9
AD
8025Then come the declarations/inclusions needed to define the
8026@code{%union}. Because the parser uses the parsing driver and
8027reciprocally, both cannot include the header of the other. Because the
8028driver's header needs detailed knowledge about the parser class (in
8029particular its inner types), it is the parser's header which will simply
8030use a forward declaration of the driver.
148d66d8 8031@xref{Decl Summary, ,%code}.
fb9712a9
AD
8032
8033@comment file: calc++-parser.yy
8034@example
16dc6a9e 8035%code requires @{
12545799 8036# include <string>
fb9712a9 8037class calcxx_driver;
9bc0dd67 8038@}
12545799
AD
8039@end example
8040
8041@noindent
8042The driver is passed by reference to the parser and to the scanner.
8043This provides a simple but effective pure interface, not relying on
8044global variables.
8045
1c59e0a1 8046@comment file: calc++-parser.yy
12545799
AD
8047@example
8048// The parsing context.
8049%parse-param @{ calcxx_driver& driver @}
8050%lex-param @{ calcxx_driver& driver @}
8051@end example
8052
8053@noindent
8054Then we request the location tracking feature, and initialize the
8055first location's file name. Afterwards new locations are computed
8056relatively to the previous locations: the file name will be
8057automatically propagated.
8058
1c59e0a1 8059@comment file: calc++-parser.yy
12545799
AD
8060@example
8061%locations
8062%initial-action
8063@{
8064 // Initialize the initial location.
b47dbebe 8065 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8066@};
8067@end example
8068
8069@noindent
8070Use the two following directives to enable parser tracing and verbose
8071error messages.
8072
1c59e0a1 8073@comment file: calc++-parser.yy
12545799
AD
8074@example
8075%debug
8076%error-verbose
8077@end example
8078
8079@noindent
8080Semantic values cannot use ``real'' objects, but only pointers to
8081them.
8082
1c59e0a1 8083@comment file: calc++-parser.yy
12545799
AD
8084@example
8085// Symbols.
8086%union
8087@{
8088 int ival;
8089 std::string *sval;
8090@};
8091@end example
8092
fb9712a9 8093@noindent
136a0f76
PB
8094@findex %code
8095The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8096@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8097
8098@comment file: calc++-parser.yy
8099@example
136a0f76 8100%code @{
fb9712a9 8101# include "calc++-driver.hh"
34f98f46 8102@}
fb9712a9
AD
8103@end example
8104
8105
12545799
AD
8106@noindent
8107The token numbered as 0 corresponds to end of file; the following line
8108allows for nicer error messages referring to ``end of file'' instead
8109of ``$end''. Similarly user friendly named are provided for each
8110symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8111avoid name clashes.
8112
1c59e0a1 8113@comment file: calc++-parser.yy
12545799 8114@example
fb9712a9
AD
8115%token END 0 "end of file"
8116%token ASSIGN ":="
8117%token <sval> IDENTIFIER "identifier"
8118%token <ival> NUMBER "number"
a8c2e813 8119%type <ival> exp
12545799
AD
8120@end example
8121
8122@noindent
8123To enable memory deallocation during error recovery, use
8124@code{%destructor}.
8125
287c78f6 8126@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8127@comment file: calc++-parser.yy
12545799
AD
8128@example
8129%printer @{ debug_stream () << *$$; @} "identifier"
8130%destructor @{ delete $$; @} "identifier"
8131
a8c2e813 8132%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8133@end example
8134
8135@noindent
8136The grammar itself is straightforward.
8137
1c59e0a1 8138@comment file: calc++-parser.yy
12545799
AD
8139@example
8140%%
8141%start unit;
8142unit: assignments exp @{ driver.result = $2; @};
8143
8144assignments: assignments assignment @{@}
9d9b8b70 8145 | /* Nothing. */ @{@};
12545799 8146
3dc5e96b
PE
8147assignment:
8148 "identifier" ":=" exp
8149 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8150
8151%left '+' '-';
8152%left '*' '/';
8153exp: exp '+' exp @{ $$ = $1 + $3; @}
8154 | exp '-' exp @{ $$ = $1 - $3; @}
8155 | exp '*' exp @{ $$ = $1 * $3; @}
8156 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8157 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8158 | "number" @{ $$ = $1; @};
12545799
AD
8159%%
8160@end example
8161
8162@noindent
8163Finally the @code{error} member function registers the errors to the
8164driver.
8165
1c59e0a1 8166@comment file: calc++-parser.yy
12545799
AD
8167@example
8168void
1c59e0a1
AD
8169yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8170 const std::string& m)
12545799
AD
8171@{
8172 driver.error (l, m);
8173@}
8174@end example
8175
8176@node Calc++ Scanner
8405b70c 8177@subsubsection Calc++ Scanner
12545799
AD
8178
8179The Flex scanner first includes the driver declaration, then the
8180parser's to get the set of defined tokens.
8181
1c59e0a1 8182@comment file: calc++-scanner.ll
12545799
AD
8183@example
8184%@{ /* -*- C++ -*- */
04098407
PE
8185# include <cstdlib>
8186# include <errno.h>
8187# include <limits.h>
12545799
AD
8188# include <string>
8189# include "calc++-driver.hh"
8190# include "calc++-parser.hh"
eaea13f5
PE
8191
8192/* Work around an incompatibility in flex (at least versions
8193 2.5.31 through 2.5.33): it generates code that does
8194 not conform to C89. See Debian bug 333231
8195 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8196# undef yywrap
8197# define yywrap() 1
eaea13f5 8198
c095d689
AD
8199/* By default yylex returns int, we use token_type.
8200 Unfortunately yyterminate by default returns 0, which is
8201 not of token_type. */
8c5b881d 8202#define yyterminate() return token::END
12545799
AD
8203%@}
8204@end example
8205
8206@noindent
8207Because there is no @code{#include}-like feature we don't need
8208@code{yywrap}, we don't need @code{unput} either, and we parse an
8209actual file, this is not an interactive session with the user.
8210Finally we enable the scanner tracing features.
8211
1c59e0a1 8212@comment file: calc++-scanner.ll
12545799
AD
8213@example
8214%option noyywrap nounput batch debug
8215@end example
8216
8217@noindent
8218Abbreviations allow for more readable rules.
8219
1c59e0a1 8220@comment file: calc++-scanner.ll
12545799
AD
8221@example
8222id [a-zA-Z][a-zA-Z_0-9]*
8223int [0-9]+
8224blank [ \t]
8225@end example
8226
8227@noindent
9d9b8b70 8228The following paragraph suffices to track locations accurately. Each
12545799
AD
8229time @code{yylex} is invoked, the begin position is moved onto the end
8230position. Then when a pattern is matched, the end position is
8231advanced of its width. In case it matched ends of lines, the end
8232cursor is adjusted, and each time blanks are matched, the begin cursor
8233is moved onto the end cursor to effectively ignore the blanks
8234preceding tokens. Comments would be treated equally.
8235
1c59e0a1 8236@comment file: calc++-scanner.ll
12545799 8237@example
828c373b
AD
8238%@{
8239# define YY_USER_ACTION yylloc->columns (yyleng);
8240%@}
12545799
AD
8241%%
8242%@{
8243 yylloc->step ();
12545799
AD
8244%@}
8245@{blank@}+ yylloc->step ();
8246[\n]+ yylloc->lines (yyleng); yylloc->step ();
8247@end example
8248
8249@noindent
fb9712a9
AD
8250The rules are simple, just note the use of the driver to report errors.
8251It is convenient to use a typedef to shorten
8252@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8253@code{token::identifier} for instance.
12545799 8254
1c59e0a1 8255@comment file: calc++-scanner.ll
12545799 8256@example
fb9712a9
AD
8257%@{
8258 typedef yy::calcxx_parser::token token;
8259%@}
8c5b881d 8260 /* Convert ints to the actual type of tokens. */
c095d689 8261[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8262":=" return token::ASSIGN;
04098407
PE
8263@{int@} @{
8264 errno = 0;
8265 long n = strtol (yytext, NULL, 10);
8266 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8267 driver.error (*yylloc, "integer is out of range");
8268 yylval->ival = n;
fb9712a9 8269 return token::NUMBER;
04098407 8270@}
fb9712a9 8271@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8272. driver.error (*yylloc, "invalid character");
8273%%
8274@end example
8275
8276@noindent
8277Finally, because the scanner related driver's member function depend
8278on the scanner's data, it is simpler to implement them in this file.
8279
1c59e0a1 8280@comment file: calc++-scanner.ll
12545799
AD
8281@example
8282void
8283calcxx_driver::scan_begin ()
8284@{
8285 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8286 if (file == "-")
8287 yyin = stdin;
8288 else if (!(yyin = fopen (file.c_str (), "r")))
8289 @{
8290 error (std::string ("cannot open ") + file);
8291 exit (1);
8292 @}
12545799
AD
8293@}
8294
8295void
8296calcxx_driver::scan_end ()
8297@{
8298 fclose (yyin);
8299@}
8300@end example
8301
8302@node Calc++ Top Level
8405b70c 8303@subsubsection Calc++ Top Level
12545799
AD
8304
8305The top level file, @file{calc++.cc}, poses no problem.
8306
1c59e0a1 8307@comment file: calc++.cc
12545799
AD
8308@example
8309#include <iostream>
8310#include "calc++-driver.hh"
8311
8312int
fa4d969f 8313main (int argc, char *argv[])
12545799
AD
8314@{
8315 calcxx_driver driver;
8316 for (++argv; argv[0]; ++argv)
8317 if (*argv == std::string ("-p"))
8318 driver.trace_parsing = true;
8319 else if (*argv == std::string ("-s"))
8320 driver.trace_scanning = true;
bb32f4f2
AD
8321 else if (!driver.parse (*argv))
8322 std::cout << driver.result << std::endl;
12545799
AD
8323@}
8324@end example
8325
8405b70c
PB
8326@node Java Parsers
8327@section Java Parsers
8328
8329@menu
8330* Java Bison Interface:: Asking for Java parser generation
8331* Java Semantic Values:: %type and %token vs. Java
8332* Java Location Values:: The position and location classes
8333* Java Parser Interface:: Instantiating and running the parser
8334* Java Scanner Interface:: Java scanners, and pure parsers
8335* Java Differences:: Differences between C/C++ and Java Grammars
8336@end menu
8337
8338@node Java Bison Interface
8339@subsection Java Bison Interface
8340@c - %language "Java"
8341@c - initial action
8342
8343The Java parser skeletons are selected using a language directive,
8344@samp{%language "Java"}, or the synonymous command-line option
8345@option{--language=java}.
8346
8347When run, @command{bison} will create several entities whose name
8348starts with @samp{YY}. Use the @samp{%name-prefix} directive to
8349change the prefix, see @ref{Decl Summary}; classes can be placed
8350in an arbitrary Java package using a @samp{%define package} section.
8351
8352The parser class defines an inner class, @code{Location}, that is used
8353for location tracking. If the parser is pure, it also defines an
8354inner interface, @code{Lexer}; see~@ref{Java Scanner Interface} for the
8355meaning of pure parsers when the Java language is chosen. Other than
8356these inner class/interface, and the members described in~@ref{Java
8357Parser Interface}, all the other members and fields are preceded
8358with a @code{yy} prefix to avoid clashes with user code.
8359
8360No header file can be generated for Java parsers; you must not pass
8361@option{-d}/@option{--defines} to @command{bison}, nor use the
8362@samp{%defines} directive.
8363
8364By default, the @samp{YYParser} class has package visibility. A
8365declaration @samp{%define "public"} will change to public visibility.
8366Remember that, according to the Java language specification, the name
8367of the @file{.java} file should match the name of the class in this
8368case.
8369
01b477c6
PB
8370Similarly, a declaration @samp{%define "abstract"} will make your
8371class abstract.
8372
8373You can create documentation for generated parsers using Javadoc.
8405b70c
PB
8374
8375@node Java Semantic Values
8376@subsection Java Semantic Values
8377@c - No %union, specify type in %type/%token.
8378@c - YYSTYPE
8379@c - Printer and destructor
8380
8381There is no @code{%union} directive in Java parsers. Instead, the
8382semantic values' types (class names) should be specified in the
8383@code{%type} or @code{%token} directive:
8384
8385@example
8386%type <Expression> expr assignment_expr term factor
8387%type <Integer> number
8388@end example
8389
8390By default, the semantic stack is declared to have @code{Object} members,
8391which means that the class types you specify can be of any class.
8392To improve the type safety of the parser, you can declare the common
8393superclass of all the semantic values using the @samp{%define} directive.
8394For example, after the following declaration:
8395
8396@example
01b477c6 8397%define "stype" "ASTNode"
8405b70c
PB
8398@end example
8399
8400@noindent
8401any @code{%type} or @code{%token} specifying a semantic type which
8402is not a subclass of ASTNode, will cause a compile-time error.
8403
8404Types used in the directives may be qualified with a package name.
8405Primitive data types are accepted for Java version 1.5 or later. Note
8406that in this case the autoboxing feature of Java 1.5 will be used.
8407
8408Java parsers do not support @code{%destructor}, since the language
8409adopts garbage collection. The parser will try to hold references
8410to semantic values for as little time as needed.
8411
8412Java parsers do not support @code{%printer}, as @code{toString()}
8413can be used to print the semantic values. This however may change
8414(in a backwards-compatible way) in future versions of Bison.
8415
8416
8417@node Java Location Values
8418@subsection Java Location Values
8419@c - %locations
8420@c - class Position
8421@c - class Location
8422
8423When the directive @code{%locations} is used, the Java parser
8424supports location tracking, see @ref{Locations, , Locations Overview}.
8425An auxiliary user-defined class defines a @dfn{position}, a single point
8426in a file; Bison itself defines a class representing a @dfn{location},
8427a range composed of a pair of positions (possibly spanning several
8428files). The location class is an inner class of the parser; the name
8429is @code{Location} by default, may also be renamed using @code{%define
8430"location_type" "@var{class-name}}.
8431
8432The location class treats the position as a completely opaque value.
8433By default, the class name is @code{Position}, but this can be changed
8434with @code{%define "position_type" "@var{class-name}"}.
8435
8436
8437@deftypemethod {Location} {Position} begin
8438@deftypemethodx {Location} {Position} end
8439The first, inclusive, position of the range, and the first beyond.
8440@end deftypemethod
8441
8442@deftypemethod {Location} {void} toString ()
8443Prints the range represented by the location. For this to work
8444properly, the position class should override the @code{equals} and
8445@code{toString} methods appropriately.
8446@end deftypemethod
8447
8448
8449@node Java Parser Interface
8450@subsection Java Parser Interface
8451@c - define parser_class_name
8452@c - Ctor
8453@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8454@c debug_stream.
8455@c - Reporting errors
8456
8457The output file defines the parser class in the package optionally
8458indicated in the @code{%define package} section. The class name defaults
8459to @code{YYParser}. The @code{YY} prefix may be changed using
8460@samp{%name-prefix}; alternatively, you can use @samp{%define
8461"parser_class_name" "@var{name}"} to give a custom name to the class.
8462The interface of this class is detailed below. It can be extended using
8463the @code{%parse-param} directive; each occurrence of the directive will
8464add a field to the parser class, and an argument to its constructor.
8465
8466@deftypemethod {YYParser} {} YYParser (@var{type1} @var{arg1}, ...)
8467Build a new parser object. There are no arguments by default, unless
8468@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8469@end deftypemethod
8470
8471@deftypemethod {YYParser} {boolean} parse ()
8472Run the syntactic analysis, and return @code{true} on success,
8473@code{false} otherwise.
8474@end deftypemethod
8475
01b477c6 8476@deftypemethod {YYParser} {boolean} recovering ()
8405b70c
PB
8477During the syntactic analysis, return @code{true} if recovering
8478from a syntax error. @xref{Error Recovery}.
8479@end deftypemethod
8480
8481@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
8482@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
8483Get or set the stream used for tracing the parsing. It defaults to
8484@code{System.err}.
8485@end deftypemethod
8486
8487@deftypemethod {YYParser} {int} getDebugLevel ()
8488@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
8489Get or set the tracing level. Currently its value is either 0, no trace,
8490or nonzero, full tracing.
8491@end deftypemethod
8492
8493@deftypemethod {YYParser} {void} error (Location @var{l}, String @var{m})
8494The definition for this member function must be supplied by the user
8495in the same way as the scanner interface (@pxref{Java Scanner
8496Interface}); the parser uses it to report a parser error occurring at
8497@var{l}, described by @var{m}.
8498@end deftypemethod
8499
8500
8501@node Java Scanner Interface
8502@subsection Java Scanner Interface
01b477c6 8503@c - %code lexer
8405b70c 8504@c - %lex-param
01b477c6 8505@c - Lexer interface
8405b70c 8506
8405b70c
PB
8507Contrary to C parsers, Java parsers do not use global variables; the
8508state of the parser is always local to an instance of the parser class.
01b477c6
PB
8509Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8510directive does not do anything when used in Java.
8511
8512The scanner always resides in a separate class than the parser.
8513Still, Java also two possible ways to interface a Bison-generated Java
8514parser with a scanner, that is, the scanner may reside in a separate file
8515than the Bison grammar, or in the same file. The interface
8516to the scanner is similar in the two cases.
8517
8518In the first case, where the scanner in the same file as the grammar, the
8519scanner code has to be placed in @code{%code lexer} blocks. If you want
8520to pass parameters from the parser constructor to the scanner constructor,
8521specify them with @code{%lex-param}; they are passed before
8522@code{%parse-param}s to the constructor.
8523
8524In the second case, the scanner has to implement interface @code{Lexer},
8525which is defined within the parser class (e.g., @code{YYParser.Lexer}).
8526The constructor of the parser object will then accept an object
8527implementing the interface; @code{%lex-param} is not used in this
8528case.
8529
8530In both cases, the scanner has to implement the following methods.
8531
8532@deftypemethod {Lexer} {void} yyerror (Location @var{l}, String @var{m})
8405b70c 8533As explained in @pxref{Java Parser Interface}, this method is defined
01b477c6
PB
8534by the user to emit an error message. The first parameter is omitted
8535if location tracking is not active. Its type can be changed using
8405b70c
PB
8536@samp{%define "location_type" "@var{class-name}".}
8537@end deftypemethod
8538
8539@deftypemethod {Lexer} {int} yylex (@var{type1} @var{arg1}, ...)
8540Return the next token. Its type is the return value, its semantic
8541value and location are saved and returned by the ther methods in the
8542interface. Invocations of @samp{%lex-param @{@var{type1}
8543@var{arg1}@}} yield additional arguments.
8544@end deftypemethod
8545
8546@deftypemethod {Lexer} {Position} getStartPos ()
8547@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
8548Return respectively the first position of the last token that
8549@code{yylex} returned, and the first position beyond it. These
8550methods are not needed unless location tracking is active.
8405b70c
PB
8551
8552The return type can be changed using @samp{%define "position_type"
8553"@var{class-name}".}
8554@end deftypemethod
8555
8556@deftypemethod {Lexer} {Object} getLVal ()
8557Return respectively the first position of the last token that yylex
8558returned, and the first position beyond it.
8559
01b477c6 8560The return type can be changed using @samp{%define "stype"
8405b70c
PB
8561"@var{class-name}".}
8562@end deftypemethod
8563
8564
8565If @code{%pure-parser} is not specified, the lexer interface
8566resides in the same class (@code{YYParser}) as the Bison-generated
8567parser. The fields and methods that are provided to
8568this end are as follows.
8569
8570@deftypemethod {YYParser} {void} error (Location @var{l}, String @var{m})
8571As explained in @pxref{Java Parser Interface}, this method is defined
8572by the user to emit an error message. The first parameter is not used
8573unless location tracking is active. Its type can be changed using
8574@samp{%define "location_type" "@var{class-name}".}
8575@end deftypemethod
8576
8577@deftypemethod {YYParser} {int} yylex (@var{type1} @var{arg1}, ...)
8578Return the next token. Its type is the return value, its semantic
8579value and location are saved into @code{yylval}, @code{yystartpos},
8580@code{yyendpos}. Invocations of @samp{%lex-param @{@var{type1}
8581@var{arg1}@}} yield additional arguments.
8582@end deftypemethod
8583
8584@deftypecv {Field} {YYParser} Position yystartpos
8585@deftypecvx {Field} {YYParser} Position yyendpos
8586Contain respectively the first position of the last token that yylex
8587returned, and the first position beyond it. These methods are not
8588needed unless location tracking is active.
8589
8590The field's type can be changed using @samp{%define "position_type"
8591"@var{class-name}".}
8592@end deftypecv
8593
8594@deftypecv {Field} {YYParser} Object yylval
8595Return respectively the first position of the last token that yylex
8596returned, and the first position beyond it.
8597
01b477c6 8598The field's type can be changed using @samp{%define "stype"
8405b70c
PB
8599"@var{class-name}".}
8600@end deftypecv
8601
8405b70c
PB
8602@node Java Differences
8603@subsection Differences between C/C++ and Java Grammars
8604
8605The different structure of the Java language forces several differences
8606between C/C++ grammars, and grammars designed for Java parsers. This
29553547 8607section summarizes these differences.
8405b70c
PB
8608
8609@itemize
8610@item
01b477c6 8611Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 8612@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
8613macros. Instead, they should be preceded by @code{return} when they
8614appear in an action. The actual definition of these symbols is
8405b70c
PB
8615opaque to the Bison grammar, and it might change in the future. The
8616only meaningful operation that you can do, is to return them.
8617
8618Note that of these three symbols, only @code{YYACCEPT} and
8619@code{YYABORT} will cause a return from the @code{yyparse}
8620method@footnote{Java parsers include the actions in a separate
8621method than @code{yyparse} in order to have an intuitive syntax that
8622corresponds to these C macros.}.
8623
8624@item
8625The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
8626@table @asis
8627@item @code{%code imports}
8628blocks are placed at the beginning of the Java source code. They may
8629include copyright notices. For a @code{package} declarations, it is
8630suggested to use @code{%define package} instead.
8405b70c 8631
01b477c6
PB
8632@item unqualified @code{%code}
8633blocks are placed inside the parser class.
8634
8635@item @code{%code lexer}
8636blocks, if specified, should include the implementation of the
8637scanner. If there is no such block, the scanner can be any class
8638that implements the appropriate interface (see @pxref{Java Scanner
8639Interface}).
29553547 8640@end table
8405b70c
PB
8641
8642Other @code{%code} blocks are not supported in Java parsers.
01b477c6
PB
8643The epilogue has the same meaning as in C/C++ code and it can
8644be used to define other classes used by the parser.
8405b70c
PB
8645@end itemize
8646
12545799 8647@c ================================================= FAQ
d1a1114f
AD
8648
8649@node FAQ
8650@chapter Frequently Asked Questions
8651@cindex frequently asked questions
8652@cindex questions
8653
8654Several questions about Bison come up occasionally. Here some of them
8655are addressed.
8656
8657@menu
55ba27be
AD
8658* Memory Exhausted:: Breaking the Stack Limits
8659* How Can I Reset the Parser:: @code{yyparse} Keeps some State
8660* Strings are Destroyed:: @code{yylval} Loses Track of Strings
8661* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 8662* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
8663* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
8664* I can't build Bison:: Troubleshooting
8665* Where can I find help?:: Troubleshouting
8666* Bug Reports:: Troublereporting
8405b70c 8667* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
8668* Beta Testing:: Experimenting development versions
8669* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
8670@end menu
8671
1a059451
PE
8672@node Memory Exhausted
8673@section Memory Exhausted
d1a1114f
AD
8674
8675@display
1a059451 8676My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
8677message. What can I do?
8678@end display
8679
8680This question is already addressed elsewhere, @xref{Recursion,
8681,Recursive Rules}.
8682
e64fec0a
PE
8683@node How Can I Reset the Parser
8684@section How Can I Reset the Parser
5b066063 8685
0e14ad77
PE
8686The following phenomenon has several symptoms, resulting in the
8687following typical questions:
5b066063
AD
8688
8689@display
8690I invoke @code{yyparse} several times, and on correct input it works
8691properly; but when a parse error is found, all the other calls fail
0e14ad77 8692too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
8693@end display
8694
8695@noindent
8696or
8697
8698@display
0e14ad77 8699My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
8700which case I run @code{yyparse} from @code{yyparse}. This fails
8701although I did specify I needed a @code{%pure-parser}.
8702@end display
8703
0e14ad77
PE
8704These problems typically come not from Bison itself, but from
8705Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
8706speed, they might not notice a change of input file. As a
8707demonstration, consider the following source file,
8708@file{first-line.l}:
8709
8710@verbatim
8711%{
8712#include <stdio.h>
8713#include <stdlib.h>
8714%}
8715%%
8716.*\n ECHO; return 1;
8717%%
8718int
0e14ad77 8719yyparse (char const *file)
5b066063
AD
8720{
8721 yyin = fopen (file, "r");
8722 if (!yyin)
8723 exit (2);
fa7e68c3 8724 /* One token only. */
5b066063 8725 yylex ();
0e14ad77 8726 if (fclose (yyin) != 0)
5b066063
AD
8727 exit (3);
8728 return 0;
8729}
8730
8731int
0e14ad77 8732main (void)
5b066063
AD
8733{
8734 yyparse ("input");
8735 yyparse ("input");
8736 return 0;
8737}
8738@end verbatim
8739
8740@noindent
8741If the file @file{input} contains
8742
8743@verbatim
8744input:1: Hello,
8745input:2: World!
8746@end verbatim
8747
8748@noindent
0e14ad77 8749then instead of getting the first line twice, you get:
5b066063
AD
8750
8751@example
8752$ @kbd{flex -ofirst-line.c first-line.l}
8753$ @kbd{gcc -ofirst-line first-line.c -ll}
8754$ @kbd{./first-line}
8755input:1: Hello,
8756input:2: World!
8757@end example
8758
0e14ad77
PE
8759Therefore, whenever you change @code{yyin}, you must tell the
8760Lex-generated scanner to discard its current buffer and switch to the
8761new one. This depends upon your implementation of Lex; see its
8762documentation for more. For Flex, it suffices to call
8763@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
8764Flex-generated scanner needs to read from several input streams to
8765handle features like include files, you might consider using Flex
8766functions like @samp{yy_switch_to_buffer} that manipulate multiple
8767input buffers.
5b066063 8768
b165c324
AD
8769If your Flex-generated scanner uses start conditions (@pxref{Start
8770conditions, , Start conditions, flex, The Flex Manual}), you might
8771also want to reset the scanner's state, i.e., go back to the initial
8772start condition, through a call to @samp{BEGIN (0)}.
8773
fef4cb51
AD
8774@node Strings are Destroyed
8775@section Strings are Destroyed
8776
8777@display
c7e441b4 8778My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
8779them. Instead of reporting @samp{"foo", "bar"}, it reports
8780@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
8781@end display
8782
8783This error is probably the single most frequent ``bug report'' sent to
8784Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 8785of the scanner. Consider the following Lex code:
fef4cb51
AD
8786
8787@verbatim
8788%{
8789#include <stdio.h>
8790char *yylval = NULL;
8791%}
8792%%
8793.* yylval = yytext; return 1;
8794\n /* IGNORE */
8795%%
8796int
8797main ()
8798{
fa7e68c3 8799 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
8800 char *fst = (yylex (), yylval);
8801 char *snd = (yylex (), yylval);
8802 printf ("\"%s\", \"%s\"\n", fst, snd);
8803 return 0;
8804}
8805@end verbatim
8806
8807If you compile and run this code, you get:
8808
8809@example
8810$ @kbd{flex -osplit-lines.c split-lines.l}
8811$ @kbd{gcc -osplit-lines split-lines.c -ll}
8812$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8813"one
8814two", "two"
8815@end example
8816
8817@noindent
8818this is because @code{yytext} is a buffer provided for @emph{reading}
8819in the action, but if you want to keep it, you have to duplicate it
8820(e.g., using @code{strdup}). Note that the output may depend on how
8821your implementation of Lex handles @code{yytext}. For instance, when
8822given the Lex compatibility option @option{-l} (which triggers the
8823option @samp{%array}) Flex generates a different behavior:
8824
8825@example
8826$ @kbd{flex -l -osplit-lines.c split-lines.l}
8827$ @kbd{gcc -osplit-lines split-lines.c -ll}
8828$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8829"two", "two"
8830@end example
8831
8832
2fa09258
AD
8833@node Implementing Gotos/Loops
8834@section Implementing Gotos/Loops
a06ea4aa
AD
8835
8836@display
8837My simple calculator supports variables, assignments, and functions,
2fa09258 8838but how can I implement gotos, or loops?
a06ea4aa
AD
8839@end display
8840
8841Although very pedagogical, the examples included in the document blur
a1c84f45 8842the distinction to make between the parser---whose job is to recover
a06ea4aa 8843the structure of a text and to transmit it to subsequent modules of
a1c84f45 8844the program---and the processing (such as the execution) of this
a06ea4aa
AD
8845structure. This works well with so called straight line programs,
8846i.e., precisely those that have a straightforward execution model:
8847execute simple instructions one after the others.
8848
8849@cindex abstract syntax tree
8850@cindex @acronym{AST}
8851If you want a richer model, you will probably need to use the parser
8852to construct a tree that does represent the structure it has
8853recovered; this tree is usually called the @dfn{abstract syntax tree},
8854or @dfn{@acronym{AST}} for short. Then, walking through this tree,
8855traversing it in various ways, will enable treatments such as its
8856execution or its translation, which will result in an interpreter or a
8857compiler.
8858
8859This topic is way beyond the scope of this manual, and the reader is
8860invited to consult the dedicated literature.
8861
8862
ed2e6384
AD
8863@node Multiple start-symbols
8864@section Multiple start-symbols
8865
8866@display
8867I have several closely related grammars, and I would like to share their
8868implementations. In fact, I could use a single grammar but with
8869multiple entry points.
8870@end display
8871
8872Bison does not support multiple start-symbols, but there is a very
8873simple means to simulate them. If @code{foo} and @code{bar} are the two
8874pseudo start-symbols, then introduce two new tokens, say
8875@code{START_FOO} and @code{START_BAR}, and use them as switches from the
8876real start-symbol:
8877
8878@example
8879%token START_FOO START_BAR;
8880%start start;
8881start: START_FOO foo
8882 | START_BAR bar;
8883@end example
8884
8885These tokens prevents the introduction of new conflicts. As far as the
8886parser goes, that is all that is needed.
8887
8888Now the difficult part is ensuring that the scanner will send these
8889tokens first. If your scanner is hand-written, that should be
8890straightforward. If your scanner is generated by Lex, them there is
8891simple means to do it: recall that anything between @samp{%@{ ... %@}}
8892after the first @code{%%} is copied verbatim in the top of the generated
8893@code{yylex} function. Make sure a variable @code{start_token} is
8894available in the scanner (e.g., a global variable or using
8895@code{%lex-param} etc.), and use the following:
8896
8897@example
8898 /* @r{Prologue.} */
8899%%
8900%@{
8901 if (start_token)
8902 @{
8903 int t = start_token;
8904 start_token = 0;
8905 return t;
8906 @}
8907%@}
8908 /* @r{The rules.} */
8909@end example
8910
8911
55ba27be
AD
8912@node Secure? Conform?
8913@section Secure? Conform?
8914
8915@display
8916Is Bison secure? Does it conform to POSIX?
8917@end display
8918
8919If you're looking for a guarantee or certification, we don't provide it.
8920However, Bison is intended to be a reliable program that conforms to the
8921@acronym{POSIX} specification for Yacc. If you run into problems,
8922please send us a bug report.
8923
8924@node I can't build Bison
8925@section I can't build Bison
8926
8927@display
8c5b881d
PE
8928I can't build Bison because @command{make} complains that
8929@code{msgfmt} is not found.
55ba27be
AD
8930What should I do?
8931@end display
8932
8933Like most GNU packages with internationalization support, that feature
8934is turned on by default. If you have problems building in the @file{po}
8935subdirectory, it indicates that your system's internationalization
8936support is lacking. You can re-configure Bison with
8937@option{--disable-nls} to turn off this support, or you can install GNU
8938gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8939Bison. See the file @file{ABOUT-NLS} for more information.
8940
8941
8942@node Where can I find help?
8943@section Where can I find help?
8944
8945@display
8946I'm having trouble using Bison. Where can I find help?
8947@end display
8948
8949First, read this fine manual. Beyond that, you can send mail to
8950@email{help-bison@@gnu.org}. This mailing list is intended to be
8951populated with people who are willing to answer questions about using
8952and installing Bison. Please keep in mind that (most of) the people on
8953the list have aspects of their lives which are not related to Bison (!),
8954so you may not receive an answer to your question right away. This can
8955be frustrating, but please try not to honk them off; remember that any
8956help they provide is purely voluntary and out of the kindness of their
8957hearts.
8958
8959@node Bug Reports
8960@section Bug Reports
8961
8962@display
8963I found a bug. What should I include in the bug report?
8964@end display
8965
8966Before you send a bug report, make sure you are using the latest
8967version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8968mirrors. Be sure to include the version number in your bug report. If
8969the bug is present in the latest version but not in a previous version,
8970try to determine the most recent version which did not contain the bug.
8971
8972If the bug is parser-related, you should include the smallest grammar
8973you can which demonstrates the bug. The grammar file should also be
8974complete (i.e., I should be able to run it through Bison without having
8975to edit or add anything). The smaller and simpler the grammar, the
8976easier it will be to fix the bug.
8977
8978Include information about your compilation environment, including your
8979operating system's name and version and your compiler's name and
8980version. If you have trouble compiling, you should also include a
8981transcript of the build session, starting with the invocation of
8982`configure'. Depending on the nature of the bug, you may be asked to
8983send additional files as well (such as `config.h' or `config.cache').
8984
8985Patches are most welcome, but not required. That is, do not hesitate to
8986send a bug report just because you can not provide a fix.
8987
8988Send bug reports to @email{bug-bison@@gnu.org}.
8989
8405b70c
PB
8990@node More Languages
8991@section More Languages
55ba27be
AD
8992
8993@display
8405b70c 8994Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
8995favorite language here}?
8996@end display
8997
8405b70c 8998C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
8999languages; contributions are welcome.
9000
9001@node Beta Testing
9002@section Beta Testing
9003
9004@display
9005What is involved in being a beta tester?
9006@end display
9007
9008It's not terribly involved. Basically, you would download a test
9009release, compile it, and use it to build and run a parser or two. After
9010that, you would submit either a bug report or a message saying that
9011everything is okay. It is important to report successes as well as
9012failures because test releases eventually become mainstream releases,
9013but only if they are adequately tested. If no one tests, development is
9014essentially halted.
9015
9016Beta testers are particularly needed for operating systems to which the
9017developers do not have easy access. They currently have easy access to
9018recent GNU/Linux and Solaris versions. Reports about other operating
9019systems are especially welcome.
9020
9021@node Mailing Lists
9022@section Mailing Lists
9023
9024@display
9025How do I join the help-bison and bug-bison mailing lists?
9026@end display
9027
9028See @url{http://lists.gnu.org/}.
a06ea4aa 9029
d1a1114f
AD
9030@c ================================================= Table of Symbols
9031
342b8b6e 9032@node Table of Symbols
bfa74976
RS
9033@appendix Bison Symbols
9034@cindex Bison symbols, table of
9035@cindex symbols in Bison, table of
9036
18b519c0 9037@deffn {Variable} @@$
3ded9a63 9038In an action, the location of the left-hand side of the rule.
88bce5a2 9039@xref{Locations, , Locations Overview}.
18b519c0 9040@end deffn
3ded9a63 9041
18b519c0 9042@deffn {Variable} @@@var{n}
3ded9a63
AD
9043In an action, the location of the @var{n}-th symbol of the right-hand
9044side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9045@end deffn
3ded9a63 9046
18b519c0 9047@deffn {Variable} $$
3ded9a63
AD
9048In an action, the semantic value of the left-hand side of the rule.
9049@xref{Actions}.
18b519c0 9050@end deffn
3ded9a63 9051
18b519c0 9052@deffn {Variable} $@var{n}
3ded9a63
AD
9053In an action, the semantic value of the @var{n}-th symbol of the
9054right-hand side of the rule. @xref{Actions}.
18b519c0 9055@end deffn
3ded9a63 9056
dd8d9022
AD
9057@deffn {Delimiter} %%
9058Delimiter used to separate the grammar rule section from the
9059Bison declarations section or the epilogue.
9060@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9061@end deffn
bfa74976 9062
dd8d9022
AD
9063@c Don't insert spaces, or check the DVI output.
9064@deffn {Delimiter} %@{@var{code}%@}
9065All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9066the output file uninterpreted. Such code forms the prologue of the input
9067file. @xref{Grammar Outline, ,Outline of a Bison
9068Grammar}.
18b519c0 9069@end deffn
bfa74976 9070
dd8d9022
AD
9071@deffn {Construct} /*@dots{}*/
9072Comment delimiters, as in C.
18b519c0 9073@end deffn
bfa74976 9074
dd8d9022
AD
9075@deffn {Delimiter} :
9076Separates a rule's result from its components. @xref{Rules, ,Syntax of
9077Grammar Rules}.
18b519c0 9078@end deffn
bfa74976 9079
dd8d9022
AD
9080@deffn {Delimiter} ;
9081Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9082@end deffn
bfa74976 9083
dd8d9022
AD
9084@deffn {Delimiter} |
9085Separates alternate rules for the same result nonterminal.
9086@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9087@end deffn
bfa74976 9088
12e35840
JD
9089@deffn {Directive} <*>
9090Used to define a default tagged @code{%destructor} or default tagged
9091@code{%printer}.
85894313
JD
9092
9093This feature is experimental.
9094More user feedback will help to determine whether it should become a permanent
9095feature.
9096
12e35840
JD
9097@xref{Destructor Decl, , Freeing Discarded Symbols}.
9098@end deffn
9099
3ebecc24 9100@deffn {Directive} <>
12e35840
JD
9101Used to define a default tagless @code{%destructor} or default tagless
9102@code{%printer}.
85894313
JD
9103
9104This feature is experimental.
9105More user feedback will help to determine whether it should become a permanent
9106feature.
9107
12e35840
JD
9108@xref{Destructor Decl, , Freeing Discarded Symbols}.
9109@end deffn
9110
dd8d9022
AD
9111@deffn {Symbol} $accept
9112The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9113$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9114Start-Symbol}. It cannot be used in the grammar.
18b519c0 9115@end deffn
bfa74976 9116
136a0f76 9117@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9118@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9119Insert @var{code} verbatim into output parser source.
9120@xref{Decl Summary,,%code}.
9bc0dd67
JD
9121@end deffn
9122
9123@deffn {Directive} %debug
9124Equip the parser for debugging. @xref{Decl Summary}.
9125@end deffn
9126
18b519c0 9127@deffn {Directive} %debug
6deb4447 9128Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9129@end deffn
6deb4447 9130
91d2c560 9131@ifset defaultprec
22fccf95
PE
9132@deffn {Directive} %default-prec
9133Assign a precedence to rules that lack an explicit @samp{%prec}
9134modifier. @xref{Contextual Precedence, ,Context-Dependent
9135Precedence}.
39a06c25 9136@end deffn
91d2c560 9137@end ifset
39a06c25 9138
148d66d8
JD
9139@deffn {Directive} %define @var{define-variable}
9140@deffnx {Directive} %define @var{define-variable} @var{value}
9141Define a variable to adjust Bison's behavior.
9142@xref{Decl Summary,,%define}.
9143@end deffn
9144
18b519c0 9145@deffn {Directive} %defines
6deb4447
AD
9146Bison declaration to create a header file meant for the scanner.
9147@xref{Decl Summary}.
18b519c0 9148@end deffn
6deb4447 9149
02975b9a
JD
9150@deffn {Directive} %defines @var{defines-file}
9151Same as above, but save in the file @var{defines-file}.
9152@xref{Decl Summary}.
9153@end deffn
9154
18b519c0 9155@deffn {Directive} %destructor
258b75ca 9156Specify how the parser should reclaim the memory associated to
fa7e68c3 9157discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9158@end deffn
72f889cc 9159
18b519c0 9160@deffn {Directive} %dprec
676385e2 9161Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9162time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9163@acronym{GLR} Parsers}.
18b519c0 9164@end deffn
676385e2 9165
dd8d9022
AD
9166@deffn {Symbol} $end
9167The predefined token marking the end of the token stream. It cannot be
9168used in the grammar.
9169@end deffn
9170
9171@deffn {Symbol} error
9172A token name reserved for error recovery. This token may be used in
9173grammar rules so as to allow the Bison parser to recognize an error in
9174the grammar without halting the process. In effect, a sentence
9175containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9176token @code{error} becomes the current lookahead token. Actions
9177corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9178token is reset to the token that originally caused the violation.
9179@xref{Error Recovery}.
18d192f0
AD
9180@end deffn
9181
18b519c0 9182@deffn {Directive} %error-verbose
2a8d363a
AD
9183Bison declaration to request verbose, specific error message strings
9184when @code{yyerror} is called.
18b519c0 9185@end deffn
2a8d363a 9186
02975b9a 9187@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9188Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9189Summary}.
18b519c0 9190@end deffn
d8988b2f 9191
18b519c0 9192@deffn {Directive} %glr-parser
c827f760
PE
9193Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
9194Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9195@end deffn
676385e2 9196
dd8d9022
AD
9197@deffn {Directive} %initial-action
9198Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
9199@end deffn
9200
e6e704dc
JD
9201@deffn {Directive} %language
9202Specify the programming language for the generated parser.
9203@xref{Decl Summary}.
9204@end deffn
9205
18b519c0 9206@deffn {Directive} %left
bfa74976
RS
9207Bison declaration to assign left associativity to token(s).
9208@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9209@end deffn
bfa74976 9210
feeb0eda 9211@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
9212Bison declaration to specifying an additional parameter that
9213@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
9214for Pure Parsers}.
18b519c0 9215@end deffn
2a8d363a 9216
18b519c0 9217@deffn {Directive} %merge
676385e2 9218Bison declaration to assign a merging function to a rule. If there is a
fae437e8 9219reduce/reduce conflict with a rule having the same merging function, the
676385e2 9220function is applied to the two semantic values to get a single result.
c827f760 9221@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9222@end deffn
676385e2 9223
02975b9a 9224@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 9225Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 9226@end deffn
d8988b2f 9227
91d2c560 9228@ifset defaultprec
22fccf95
PE
9229@deffn {Directive} %no-default-prec
9230Do not assign a precedence to rules that lack an explicit @samp{%prec}
9231modifier. @xref{Contextual Precedence, ,Context-Dependent
9232Precedence}.
9233@end deffn
91d2c560 9234@end ifset
22fccf95 9235
18b519c0 9236@deffn {Directive} %no-lines
931c7513
RS
9237Bison declaration to avoid generating @code{#line} directives in the
9238parser file. @xref{Decl Summary}.
18b519c0 9239@end deffn
931c7513 9240
18b519c0 9241@deffn {Directive} %nonassoc
9d9b8b70 9242Bison declaration to assign nonassociativity to token(s).
bfa74976 9243@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9244@end deffn
bfa74976 9245
02975b9a 9246@deffn {Directive} %output "@var{file}"
72d2299c 9247Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 9248Summary}.
18b519c0 9249@end deffn
d8988b2f 9250
feeb0eda 9251@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
9252Bison declaration to specifying an additional parameter that
9253@code{yyparse} should accept. @xref{Parser Function,, The Parser
9254Function @code{yyparse}}.
18b519c0 9255@end deffn
2a8d363a 9256
18b519c0 9257@deffn {Directive} %prec
bfa74976
RS
9258Bison declaration to assign a precedence to a specific rule.
9259@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 9260@end deffn
bfa74976 9261
18b519c0 9262@deffn {Directive} %pure-parser
bfa74976
RS
9263Bison declaration to request a pure (reentrant) parser.
9264@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 9265@end deffn
bfa74976 9266
b50d2359 9267@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
9268Require version @var{version} or higher of Bison. @xref{Require Decl, ,
9269Require a Version of Bison}.
b50d2359
AD
9270@end deffn
9271
18b519c0 9272@deffn {Directive} %right
bfa74976
RS
9273Bison declaration to assign right associativity to token(s).
9274@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9275@end deffn
bfa74976 9276
e6e704dc
JD
9277@deffn {Directive} %skeleton
9278Specify the skeleton to use; usually for development.
9279@xref{Decl Summary}.
9280@end deffn
9281
18b519c0 9282@deffn {Directive} %start
704a47c4
AD
9283Bison declaration to specify the start symbol. @xref{Start Decl, ,The
9284Start-Symbol}.
18b519c0 9285@end deffn
bfa74976 9286
18b519c0 9287@deffn {Directive} %token
bfa74976
RS
9288Bison declaration to declare token(s) without specifying precedence.
9289@xref{Token Decl, ,Token Type Names}.
18b519c0 9290@end deffn
bfa74976 9291
18b519c0 9292@deffn {Directive} %token-table
931c7513
RS
9293Bison declaration to include a token name table in the parser file.
9294@xref{Decl Summary}.
18b519c0 9295@end deffn
931c7513 9296
18b519c0 9297@deffn {Directive} %type
704a47c4
AD
9298Bison declaration to declare nonterminals. @xref{Type Decl,
9299,Nonterminal Symbols}.
18b519c0 9300@end deffn
bfa74976 9301
dd8d9022
AD
9302@deffn {Symbol} $undefined
9303The predefined token onto which all undefined values returned by
9304@code{yylex} are mapped. It cannot be used in the grammar, rather, use
9305@code{error}.
9306@end deffn
9307
18b519c0 9308@deffn {Directive} %union
bfa74976
RS
9309Bison declaration to specify several possible data types for semantic
9310values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 9311@end deffn
bfa74976 9312
dd8d9022
AD
9313@deffn {Macro} YYABORT
9314Macro to pretend that an unrecoverable syntax error has occurred, by
9315making @code{yyparse} return 1 immediately. The error reporting
9316function @code{yyerror} is not called. @xref{Parser Function, ,The
9317Parser Function @code{yyparse}}.
8405b70c
PB
9318
9319For Java parsers, this functionality is invoked using @code{return YYABORT;}
9320instead.
dd8d9022 9321@end deffn
3ded9a63 9322
dd8d9022
AD
9323@deffn {Macro} YYACCEPT
9324Macro to pretend that a complete utterance of the language has been
9325read, by making @code{yyparse} return 0 immediately.
9326@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
9327
9328For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
9329instead.
dd8d9022 9330@end deffn
bfa74976 9331
dd8d9022 9332@deffn {Macro} YYBACKUP
742e4900 9333Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 9334token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9335@end deffn
bfa74976 9336
dd8d9022 9337@deffn {Variable} yychar
32c29292 9338External integer variable that contains the integer value of the
742e4900 9339lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
9340@code{yyparse}.) Error-recovery rule actions may examine this variable.
9341@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9342@end deffn
bfa74976 9343
dd8d9022
AD
9344@deffn {Variable} yyclearin
9345Macro used in error-recovery rule actions. It clears the previous
742e4900 9346lookahead token. @xref{Error Recovery}.
18b519c0 9347@end deffn
bfa74976 9348
dd8d9022
AD
9349@deffn {Macro} YYDEBUG
9350Macro to define to equip the parser with tracing code. @xref{Tracing,
9351,Tracing Your Parser}.
18b519c0 9352@end deffn
bfa74976 9353
dd8d9022
AD
9354@deffn {Variable} yydebug
9355External integer variable set to zero by default. If @code{yydebug}
9356is given a nonzero value, the parser will output information on input
9357symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 9358@end deffn
bfa74976 9359
dd8d9022
AD
9360@deffn {Macro} yyerrok
9361Macro to cause parser to recover immediately to its normal mode
9362after a syntax error. @xref{Error Recovery}.
9363@end deffn
9364
9365@deffn {Macro} YYERROR
9366Macro to pretend that a syntax error has just been detected: call
9367@code{yyerror} and then perform normal error recovery if possible
9368(@pxref{Error Recovery}), or (if recovery is impossible) make
9369@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
9370
9371For Java parsers, this functionality is invoked using @code{return YYERROR;}
9372instead.
dd8d9022
AD
9373@end deffn
9374
9375@deffn {Function} yyerror
9376User-supplied function to be called by @code{yyparse} on error.
9377@xref{Error Reporting, ,The Error
9378Reporting Function @code{yyerror}}.
9379@end deffn
9380
9381@deffn {Macro} YYERROR_VERBOSE
9382An obsolete macro that you define with @code{#define} in the prologue
9383to request verbose, specific error message strings
9384when @code{yyerror} is called. It doesn't matter what definition you
9385use for @code{YYERROR_VERBOSE}, just whether you define it. Using
9386@code{%error-verbose} is preferred.
9387@end deffn
9388
9389@deffn {Macro} YYINITDEPTH
9390Macro for specifying the initial size of the parser stack.
1a059451 9391@xref{Memory Management}.
dd8d9022
AD
9392@end deffn
9393
9394@deffn {Function} yylex
9395User-supplied lexical analyzer function, called with no arguments to get
9396the next token. @xref{Lexical, ,The Lexical Analyzer Function
9397@code{yylex}}.
9398@end deffn
9399
9400@deffn {Macro} YYLEX_PARAM
9401An obsolete macro for specifying an extra argument (or list of extra
32c29292 9402arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
9403macro is deprecated, and is supported only for Yacc like parsers.
9404@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
9405@end deffn
9406
9407@deffn {Variable} yylloc
9408External variable in which @code{yylex} should place the line and column
9409numbers associated with a token. (In a pure parser, it is a local
9410variable within @code{yyparse}, and its address is passed to
32c29292
JD
9411@code{yylex}.)
9412You can ignore this variable if you don't use the @samp{@@} feature in the
9413grammar actions.
9414@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 9415In semantic actions, it stores the location of the lookahead token.
32c29292 9416@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
9417@end deffn
9418
9419@deffn {Type} YYLTYPE
9420Data type of @code{yylloc}; by default, a structure with four
9421members. @xref{Location Type, , Data Types of Locations}.
9422@end deffn
9423
9424@deffn {Variable} yylval
9425External variable in which @code{yylex} should place the semantic
9426value associated with a token. (In a pure parser, it is a local
9427variable within @code{yyparse}, and its address is passed to
32c29292
JD
9428@code{yylex}.)
9429@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 9430In semantic actions, it stores the semantic value of the lookahead token.
32c29292 9431@xref{Actions, ,Actions}.
dd8d9022
AD
9432@end deffn
9433
9434@deffn {Macro} YYMAXDEPTH
1a059451
PE
9435Macro for specifying the maximum size of the parser stack. @xref{Memory
9436Management}.
dd8d9022
AD
9437@end deffn
9438
9439@deffn {Variable} yynerrs
8a2800e7 9440Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
9441(In a pure parser, it is a local variable within @code{yyparse}.)
9442@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
9443@end deffn
9444
9445@deffn {Function} yyparse
9446The parser function produced by Bison; call this function to start
9447parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
9448@end deffn
9449
9450@deffn {Macro} YYPARSE_PARAM
9451An obsolete macro for specifying the name of a parameter that
9452@code{yyparse} should accept. The use of this macro is deprecated, and
9453is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
9454Conventions for Pure Parsers}.
9455@end deffn
9456
9457@deffn {Macro} YYRECOVERING
02103984
PE
9458The expression @code{YYRECOVERING ()} yields 1 when the parser
9459is recovering from a syntax error, and 0 otherwise.
9460@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
9461@end deffn
9462
9463@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
9464Macro used to control the use of @code{alloca} when the C
9465@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
9466the parser will use @code{malloc} to extend its stacks. If defined to
94671, the parser will use @code{alloca}. Values other than 0 and 1 are
9468reserved for future Bison extensions. If not defined,
9469@code{YYSTACK_USE_ALLOCA} defaults to 0.
9470
55289366 9471In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
9472limited stack and with unreliable stack-overflow checking, you should
9473set @code{YYMAXDEPTH} to a value that cannot possibly result in
9474unchecked stack overflow on any of your target hosts when
9475@code{alloca} is called. You can inspect the code that Bison
9476generates in order to determine the proper numeric values. This will
9477require some expertise in low-level implementation details.
dd8d9022
AD
9478@end deffn
9479
9480@deffn {Type} YYSTYPE
9481Data type of semantic values; @code{int} by default.
9482@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 9483@end deffn
bfa74976 9484
342b8b6e 9485@node Glossary
bfa74976
RS
9486@appendix Glossary
9487@cindex glossary
9488
9489@table @asis
c827f760
PE
9490@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
9491Formal method of specifying context-free grammars originally proposed
9492by John Backus, and slightly improved by Peter Naur in his 1960-01-02
9493committee document contributing to what became the Algol 60 report.
9494@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9495
9496@item Context-free grammars
9497Grammars specified as rules that can be applied regardless of context.
9498Thus, if there is a rule which says that an integer can be used as an
9499expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
9500permitted. @xref{Language and Grammar, ,Languages and Context-Free
9501Grammars}.
bfa74976
RS
9502
9503@item Dynamic allocation
9504Allocation of memory that occurs during execution, rather than at
9505compile time or on entry to a function.
9506
9507@item Empty string
9508Analogous to the empty set in set theory, the empty string is a
9509character string of length zero.
9510
9511@item Finite-state stack machine
9512A ``machine'' that has discrete states in which it is said to exist at
9513each instant in time. As input to the machine is processed, the
9514machine moves from state to state as specified by the logic of the
9515machine. In the case of the parser, the input is the language being
9516parsed, and the states correspond to various stages in the grammar
c827f760 9517rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 9518
c827f760 9519@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 9520A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
9521that are not @acronym{LALR}(1). It resolves situations that Bison's
9522usual @acronym{LALR}(1)
676385e2
PH
9523algorithm cannot by effectively splitting off multiple parsers, trying all
9524possible parsers, and discarding those that fail in the light of additional
c827f760
PE
9525right context. @xref{Generalized LR Parsing, ,Generalized
9526@acronym{LR} Parsing}.
676385e2 9527
bfa74976
RS
9528@item Grouping
9529A language construct that is (in general) grammatically divisible;
c827f760 9530for example, `expression' or `declaration' in C@.
bfa74976
RS
9531@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9532
9533@item Infix operator
9534An arithmetic operator that is placed between the operands on which it
9535performs some operation.
9536
9537@item Input stream
9538A continuous flow of data between devices or programs.
9539
9540@item Language construct
9541One of the typical usage schemas of the language. For example, one of
9542the constructs of the C language is the @code{if} statement.
9543@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9544
9545@item Left associativity
9546Operators having left associativity are analyzed from left to right:
9547@samp{a+b+c} first computes @samp{a+b} and then combines with
9548@samp{c}. @xref{Precedence, ,Operator Precedence}.
9549
9550@item Left recursion
89cab50d
AD
9551A rule whose result symbol is also its first component symbol; for
9552example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
9553Rules}.
bfa74976
RS
9554
9555@item Left-to-right parsing
9556Parsing a sentence of a language by analyzing it token by token from
c827f760 9557left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9558
9559@item Lexical analyzer (scanner)
9560A function that reads an input stream and returns tokens one by one.
9561@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
9562
9563@item Lexical tie-in
9564A flag, set by actions in the grammar rules, which alters the way
9565tokens are parsed. @xref{Lexical Tie-ins}.
9566
931c7513 9567@item Literal string token
14ded682 9568A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 9569
742e4900
JD
9570@item Lookahead token
9571A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 9572Tokens}.
bfa74976 9573
c827f760 9574@item @acronym{LALR}(1)
bfa74976 9575The class of context-free grammars that Bison (like most other parser
c827f760
PE
9576generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
9577Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 9578
c827f760 9579@item @acronym{LR}(1)
bfa74976 9580The class of context-free grammars in which at most one token of
742e4900 9581lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
9582
9583@item Nonterminal symbol
9584A grammar symbol standing for a grammatical construct that can
9585be expressed through rules in terms of smaller constructs; in other
9586words, a construct that is not a token. @xref{Symbols}.
9587
bfa74976
RS
9588@item Parser
9589A function that recognizes valid sentences of a language by analyzing
9590the syntax structure of a set of tokens passed to it from a lexical
9591analyzer.
9592
9593@item Postfix operator
9594An arithmetic operator that is placed after the operands upon which it
9595performs some operation.
9596
9597@item Reduction
9598Replacing a string of nonterminals and/or terminals with a single
89cab50d 9599nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 9600Parser Algorithm}.
bfa74976
RS
9601
9602@item Reentrant
9603A reentrant subprogram is a subprogram which can be in invoked any
9604number of times in parallel, without interference between the various
9605invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
9606
9607@item Reverse polish notation
9608A language in which all operators are postfix operators.
9609
9610@item Right recursion
89cab50d
AD
9611A rule whose result symbol is also its last component symbol; for
9612example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
9613Rules}.
bfa74976
RS
9614
9615@item Semantics
9616In computer languages, the semantics are specified by the actions
9617taken for each instance of the language, i.e., the meaning of
9618each statement. @xref{Semantics, ,Defining Language Semantics}.
9619
9620@item Shift
9621A parser is said to shift when it makes the choice of analyzing
9622further input from the stream rather than reducing immediately some
c827f760 9623already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9624
9625@item Single-character literal
9626A single character that is recognized and interpreted as is.
9627@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
9628
9629@item Start symbol
9630The nonterminal symbol that stands for a complete valid utterance in
9631the language being parsed. The start symbol is usually listed as the
13863333 9632first nonterminal symbol in a language specification.
bfa74976
RS
9633@xref{Start Decl, ,The Start-Symbol}.
9634
9635@item Symbol table
9636A data structure where symbol names and associated data are stored
9637during parsing to allow for recognition and use of existing
9638information in repeated uses of a symbol. @xref{Multi-function Calc}.
9639
6e649e65
PE
9640@item Syntax error
9641An error encountered during parsing of an input stream due to invalid
9642syntax. @xref{Error Recovery}.
9643
bfa74976
RS
9644@item Token
9645A basic, grammatically indivisible unit of a language. The symbol
9646that describes a token in the grammar is a terminal symbol.
9647The input of the Bison parser is a stream of tokens which comes from
9648the lexical analyzer. @xref{Symbols}.
9649
9650@item Terminal symbol
89cab50d
AD
9651A grammar symbol that has no rules in the grammar and therefore is
9652grammatically indivisible. The piece of text it represents is a token.
9653@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9654@end table
9655
342b8b6e 9656@node Copying This Manual
f2b5126e 9657@appendix Copying This Manual
f9a8293a 9658
f2b5126e
PB
9659@menu
9660* GNU Free Documentation License:: License for copying this manual.
9661@end menu
f9a8293a 9662
f2b5126e
PB
9663@include fdl.texi
9664
342b8b6e 9665@node Index
bfa74976
RS
9666@unnumbered Index
9667
9668@printindex cp
9669
bfa74976 9670@bye
a06ea4aa
AD
9671
9672@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
9673@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
9674@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
9675@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
9676@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
9677@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
9678@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
9679@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
9680@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
9681@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
9682@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
9683@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 9684@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
9685@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
9686@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
9687@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
9688@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 9689@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
9690@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
9691@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
9692@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 9693@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 9694@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 9695@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 9696@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 9697@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 9698@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 9699@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 9700@c LocalWords: YYSTACK DVI fdl printindex