]> git.saurik.com Git - bison.git/blame - doc/bison.texi
value type: accept "->" in type tags
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
7d6bad19 36Copyright @copyright{} 1988-1993, 1995, 1998-2013 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
303834cc
JD
189* Semantics:: Semantic values and actions.
190* Tracking Locations:: Locations and actions.
191* Named References:: Using named references in actions.
192* Declarations:: All kinds of Bison declarations are described here.
193* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
194
195Outline of a Bison Grammar
196
f5f419de 197* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 198* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
199* Bison Declarations:: Syntax and usage of the Bison declarations section.
200* Grammar Rules:: Syntax and usage of the grammar rules section.
201* Epilogue:: Syntax and usage of the epilogue.
bfa74976 202
09add9c2
AD
203Grammar Rules
204
205* Rules Syntax:: Syntax of the rules.
206* Empty Rules:: Symbols that can match the empty string.
207* Recursion:: Writing recursive rules.
208
209
bfa74976
RS
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
214* Actions:: An action is the semantic definition of a grammar rule.
215* Action Types:: Specifying data types for actions to operate on.
216* Mid-Rule Actions:: Most actions go at the end of a rule.
217 This says when, why and how to use the exceptional
218 action in the middle of a rule.
219
be22823e
AD
220Actions in Mid-Rule
221
222* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
223* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
224* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
225
93dd49ab
PE
226Tracking Locations
227
228* Location Type:: Specifying a data type for locations.
229* Actions and Locations:: Using locations in actions.
230* Location Default Action:: Defining a general way to compute locations.
231
bfa74976
RS
232Bison Declarations
233
b50d2359 234* Require Decl:: Requiring a Bison version.
bfa74976
RS
235* Token Decl:: Declaring terminal symbols.
236* Precedence Decl:: Declaring terminals with precedence and associativity.
237* Union Decl:: Declaring the set of all semantic value types.
238* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 239* Initial Action Decl:: Code run before parsing starts.
72f889cc 240* Destructor Decl:: Declaring how symbols are freed.
93c150b6 241* Printer Decl:: Declaring how symbol values are displayed.
d6328241 242* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
243* Start Decl:: Specifying the start symbol.
244* Pure Decl:: Requesting a reentrant parser.
9987d1b3 245* Push Decl:: Requesting a push parser.
bfa74976 246* Decl Summary:: Table of all Bison declarations.
35c1e5f0 247* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 248* %code Summary:: Inserting code into the parser source.
bfa74976
RS
249
250Parser C-Language Interface
251
f5f419de
DJ
252* Parser Function:: How to call @code{yyparse} and what it returns.
253* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
254* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
255* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
256* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
257* Lexical:: You must supply a function @code{yylex}
258 which reads tokens.
259* Error Reporting:: You must supply a function @code{yyerror}.
260* Action Features:: Special features for use in actions.
261* Internationalization:: How to let the parser speak in the user's
262 native language.
bfa74976
RS
263
264The Lexical Analyzer Function @code{yylex}
265
266* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
267* Token Values:: How @code{yylex} must return the semantic value
268 of the token it has read.
269* Token Locations:: How @code{yylex} must return the text location
270 (line number, etc.) of the token, if the
271 actions want that.
272* Pure Calling:: How the calling convention differs in a pure parser
273 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 274
13863333 275The Bison Parser Algorithm
bfa74976 276
742e4900 277* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
278* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
279* Precedence:: Operator precedence works by resolving conflicts.
280* Contextual Precedence:: When an operator's precedence depends on context.
281* Parser States:: The parser is a finite-state-machine with stack.
282* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 283* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 284* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 285* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 286* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
287
288Operator Precedence
289
290* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
291* Using Precedence:: How to specify precedence and associativity.
292* Precedence Only:: How to specify precedence only.
bfa74976
RS
293* Precedence Examples:: How these features are used in the previous example.
294* How Precedence:: How they work.
c28cd5dc 295* Non Operators:: Using precedence for general conflicts.
bfa74976 296
7fceb615
JD
297Tuning LR
298
299* LR Table Construction:: Choose a different construction algorithm.
300* Default Reductions:: Disable default reductions.
301* LAC:: Correct lookahead sets in the parser states.
302* Unreachable States:: Keep unreachable parser states for debugging.
303
bfa74976
RS
304Handling Context Dependencies
305
306* Semantic Tokens:: Token parsing can depend on the semantic context.
307* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
308* Tie-in Recovery:: Lexical tie-ins have implications for how
309 error recovery rules must be written.
310
93dd49ab 311Debugging Your Parser
ec3bc396
AD
312
313* Understanding:: Understanding the structure of your parser.
fc4fdd62 314* Graphviz:: Getting a visual representation of the parser.
9c16d399 315* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
316* Tracing:: Tracing the execution of your parser.
317
93c150b6
AD
318Tracing Your Parser
319
320* Enabling Traces:: Activating run-time trace support
321* Mfcalc Traces:: Extending @code{mfcalc} to support traces
322* The YYPRINT Macro:: Obsolete interface for semantic value reports
323
bfa74976
RS
324Invoking Bison
325
13863333 326* Bison Options:: All the options described in detail,
c827f760 327 in alphabetical order by short options.
bfa74976 328* Option Cross Key:: Alphabetical list of long options.
93dd49ab 329* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 330
8405b70c 331Parsers Written In Other Languages
12545799
AD
332
333* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 334* Java Parsers:: The interface to generate Java parser classes
12545799
AD
335
336C++ Parsers
337
338* C++ Bison Interface:: Asking for C++ parser generation
339* C++ Semantic Values:: %union vs. C++
340* C++ Location Values:: The position and location classes
341* C++ Parser Interface:: Instantiating and running the parser
342* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 343* A Complete C++ Example:: Demonstrating their use
12545799 344
936c88d1
AD
345C++ Location Values
346
347* C++ position:: One point in the source file
348* C++ location:: Two points in the source file
db8ab2be 349* User Defined Location Type:: Required interface for locations
936c88d1 350
12545799
AD
351A Complete C++ Example
352
353* Calc++ --- C++ Calculator:: The specifications
354* Calc++ Parsing Driver:: An active parsing context
355* Calc++ Parser:: A parser class
356* Calc++ Scanner:: A pure C++ Flex scanner
357* Calc++ Top Level:: Conducting the band
358
8405b70c
PB
359Java Parsers
360
f5f419de
DJ
361* Java Bison Interface:: Asking for Java parser generation
362* Java Semantic Values:: %type and %token vs. Java
363* Java Location Values:: The position and location classes
364* Java Parser Interface:: Instantiating and running the parser
365* Java Scanner Interface:: Specifying the scanner for the parser
366* Java Action Features:: Special features for use in actions
367* Java Differences:: Differences between C/C++ and Java Grammars
368* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 369
d1a1114f
AD
370Frequently Asked Questions
371
f5f419de
DJ
372* Memory Exhausted:: Breaking the Stack Limits
373* How Can I Reset the Parser:: @code{yyparse} Keeps some State
374* Strings are Destroyed:: @code{yylval} Loses Track of Strings
375* Implementing Gotos/Loops:: Control Flow in the Calculator
376* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 377* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
378* I can't build Bison:: Troubleshooting
379* Where can I find help?:: Troubleshouting
380* Bug Reports:: Troublereporting
381* More Languages:: Parsers in C++, Java, and so on
382* Beta Testing:: Experimenting development versions
383* Mailing Lists:: Meeting other Bison users
d1a1114f 384
f2b5126e
PB
385Copying This Manual
386
f5f419de 387* Copying This Manual:: License for copying this manual.
f2b5126e 388
342b8b6e 389@end detailmenu
bfa74976
RS
390@end menu
391
342b8b6e 392@node Introduction
bfa74976
RS
393@unnumbered Introduction
394@cindex introduction
395
6077da58 396@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
397annotated context-free grammar into a deterministic LR or generalized
398LR (GLR) parser employing LALR(1) parser tables. As an experimental
399feature, Bison can also generate IELR(1) or canonical LR(1) parser
400tables. Once you are proficient with Bison, you can use it to develop
401a wide range of language parsers, from those used in simple desk
402calculators to complex programming languages.
403
404Bison is upward compatible with Yacc: all properly-written Yacc
405grammars ought to work with Bison with no change. Anyone familiar
406with Yacc should be able to use Bison with little trouble. You need
407to be fluent in C or C++ programming in order to use Bison or to
408understand this manual. Java is also supported as an experimental
409feature.
410
411We begin with tutorial chapters that explain the basic concepts of
412using Bison and show three explained examples, each building on the
413last. If you don't know Bison or Yacc, start by reading these
414chapters. Reference chapters follow, which describe specific aspects
415of Bison in detail.
bfa74976 416
679e9935
JD
417Bison was written originally by Robert Corbett. Richard Stallman made
418it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
419added multi-character string literals and other features. Since then,
420Bison has grown more robust and evolved many other new features thanks
421to the hard work of a long list of volunteers. For details, see the
422@file{THANKS} and @file{ChangeLog} files included in the Bison
423distribution.
931c7513 424
df1af54c 425This edition corresponds to version @value{VERSION} of Bison.
bfa74976 426
342b8b6e 427@node Conditions
bfa74976
RS
428@unnumbered Conditions for Using Bison
429
193d7c70
PE
430The distribution terms for Bison-generated parsers permit using the
431parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 432permissions applied only when Bison was generating LALR(1)
193d7c70 433parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 434parsers could be used only in programs that were free software.
a31239f1 435
8a4281b9 436The other GNU programming tools, such as the GNU C
c827f760 437compiler, have never
9ecbd125 438had such a requirement. They could always be used for nonfree
a31239f1
RS
439software. The reason Bison was different was not due to a special
440policy decision; it resulted from applying the usual General Public
441License to all of the Bison source code.
442
ff7571c0
JD
443The main output of the Bison utility---the Bison parser implementation
444file---contains a verbatim copy of a sizable piece of Bison, which is
445the code for the parser's implementation. (The actions from your
446grammar are inserted into this implementation at one point, but most
447of the rest of the implementation is not changed.) When we applied
448the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
449the effect was to restrict the use of Bison output to free software.
450
451We didn't change the terms because of sympathy for people who want to
452make software proprietary. @strong{Software should be free.} But we
453concluded that limiting Bison's use to free software was doing little to
454encourage people to make other software free. So we decided to make the
455practical conditions for using Bison match the practical conditions for
8a4281b9 456using the other GNU tools.
bfa74976 457
193d7c70
PE
458This exception applies when Bison is generating code for a parser.
459You can tell whether the exception applies to a Bison output file by
460inspecting the file for text beginning with ``As a special
461exception@dots{}''. The text spells out the exact terms of the
462exception.
262aa8dd 463
f16b0819
PE
464@node Copying
465@unnumbered GNU GENERAL PUBLIC LICENSE
466@include gpl-3.0.texi
bfa74976 467
342b8b6e 468@node Concepts
bfa74976
RS
469@chapter The Concepts of Bison
470
471This chapter introduces many of the basic concepts without which the
472details of Bison will not make sense. If you do not already know how to
473use Bison or Yacc, we suggest you start by reading this chapter carefully.
474
475@menu
f5f419de
DJ
476* Language and Grammar:: Languages and context-free grammars,
477 as mathematical ideas.
478* Grammar in Bison:: How we represent grammars for Bison's sake.
479* Semantic Values:: Each token or syntactic grouping can have
480 a semantic value (the value of an integer,
481 the name of an identifier, etc.).
482* Semantic Actions:: Each rule can have an action containing C code.
483* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 484* Locations:: Overview of location tracking.
f5f419de
DJ
485* Bison Parser:: What are Bison's input and output,
486 how is the output used?
487* Stages:: Stages in writing and running Bison grammars.
488* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
489@end menu
490
342b8b6e 491@node Language and Grammar
bfa74976
RS
492@section Languages and Context-Free Grammars
493
bfa74976
RS
494@cindex context-free grammar
495@cindex grammar, context-free
496In order for Bison to parse a language, it must be described by a
497@dfn{context-free grammar}. This means that you specify one or more
498@dfn{syntactic groupings} and give rules for constructing them from their
499parts. For example, in the C language, one kind of grouping is called an
500`expression'. One rule for making an expression might be, ``An expression
501can be made of a minus sign and another expression''. Another would be,
502``An expression can be an integer''. As you can see, rules are often
503recursive, but there must be at least one rule which leads out of the
504recursion.
505
8a4281b9 506@cindex BNF
bfa74976
RS
507@cindex Backus-Naur form
508The most common formal system for presenting such rules for humans to read
8a4281b9 509is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 510order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
511BNF is a context-free grammar. The input to Bison is
512essentially machine-readable BNF.
bfa74976 513
7fceb615
JD
514@cindex LALR grammars
515@cindex IELR grammars
516@cindex LR grammars
517There are various important subclasses of context-free grammars. Although
518it can handle almost all context-free grammars, Bison is optimized for what
519are called LR(1) grammars. In brief, in these grammars, it must be possible
520to tell how to parse any portion of an input string with just a single token
521of lookahead. For historical reasons, Bison by default is limited by the
522additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
523@xref{Mysterious Conflicts}, for more information on this. As an
524experimental feature, you can escape these additional restrictions by
525requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
526Construction}, to learn how.
bfa74976 527
8a4281b9
JD
528@cindex GLR parsing
529@cindex generalized LR (GLR) parsing
676385e2 530@cindex ambiguous grammars
9d9b8b70 531@cindex nondeterministic parsing
9501dc6e 532
8a4281b9 533Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
534roughly that the next grammar rule to apply at any point in the input is
535uniquely determined by the preceding input and a fixed, finite portion
742e4900 536(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 537grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 538apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 539grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 540lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 541With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
542general context-free grammars, using a technique known as GLR
543parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
544are able to handle any context-free grammar for which the number of
545possible parses of any given string is finite.
676385e2 546
bfa74976
RS
547@cindex symbols (abstract)
548@cindex token
549@cindex syntactic grouping
550@cindex grouping, syntactic
9501dc6e
AD
551In the formal grammatical rules for a language, each kind of syntactic
552unit or grouping is named by a @dfn{symbol}. Those which are built by
553grouping smaller constructs according to grammatical rules are called
bfa74976
RS
554@dfn{nonterminal symbols}; those which can't be subdivided are called
555@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
556corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 557corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
558
559We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
560nonterminal, mean. The tokens of C are identifiers, constants (numeric
561and string), and the various keywords, arithmetic operators and
562punctuation marks. So the terminal symbols of a grammar for C include
563`identifier', `number', `string', plus one symbol for each keyword,
564operator or punctuation mark: `if', `return', `const', `static', `int',
565`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
566(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
567lexicography, not grammar.)
568
569Here is a simple C function subdivided into tokens:
570
9edcd895
AD
571@example
572int /* @r{keyword `int'} */
14d4662b 573square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
574 @r{identifier, close-paren} */
575@{ /* @r{open-brace} */
aa08666d
AD
576 return x * x; /* @r{keyword `return', identifier, asterisk,}
577 @r{identifier, semicolon} */
9edcd895
AD
578@} /* @r{close-brace} */
579@end example
bfa74976
RS
580
581The syntactic groupings of C include the expression, the statement, the
582declaration, and the function definition. These are represented in the
583grammar of C by nonterminal symbols `expression', `statement',
584`declaration' and `function definition'. The full grammar uses dozens of
585additional language constructs, each with its own nonterminal symbol, in
586order to express the meanings of these four. The example above is a
587function definition; it contains one declaration, and one statement. In
588the statement, each @samp{x} is an expression and so is @samp{x * x}.
589
590Each nonterminal symbol must have grammatical rules showing how it is made
591out of simpler constructs. For example, one kind of C statement is the
592@code{return} statement; this would be described with a grammar rule which
593reads informally as follows:
594
595@quotation
596A `statement' can be made of a `return' keyword, an `expression' and a
597`semicolon'.
598@end quotation
599
600@noindent
601There would be many other rules for `statement', one for each kind of
602statement in C.
603
604@cindex start symbol
605One nonterminal symbol must be distinguished as the special one which
606defines a complete utterance in the language. It is called the @dfn{start
607symbol}. In a compiler, this means a complete input program. In the C
608language, the nonterminal symbol `sequence of definitions and declarations'
609plays this role.
610
611For example, @samp{1 + 2} is a valid C expression---a valid part of a C
612program---but it is not valid as an @emph{entire} C program. In the
613context-free grammar of C, this follows from the fact that `expression' is
614not the start symbol.
615
616The Bison parser reads a sequence of tokens as its input, and groups the
617tokens using the grammar rules. If the input is valid, the end result is
618that the entire token sequence reduces to a single grouping whose symbol is
619the grammar's start symbol. If we use a grammar for C, the entire input
620must be a `sequence of definitions and declarations'. If not, the parser
621reports a syntax error.
622
342b8b6e 623@node Grammar in Bison
bfa74976
RS
624@section From Formal Rules to Bison Input
625@cindex Bison grammar
626@cindex grammar, Bison
627@cindex formal grammar
628
629A formal grammar is a mathematical construct. To define the language
630for Bison, you must write a file expressing the grammar in Bison syntax:
631a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
632
633A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 634as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
635in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
636
637The Bison representation for a terminal symbol is also called a @dfn{token
638type}. Token types as well can be represented as C-like identifiers. By
639convention, these identifiers should be upper case to distinguish them from
640nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
641@code{RETURN}. A terminal symbol that stands for a particular keyword in
642the language should be named after that keyword converted to upper case.
643The terminal symbol @code{error} is reserved for error recovery.
931c7513 644@xref{Symbols}.
bfa74976
RS
645
646A terminal symbol can also be represented as a character literal, just like
647a C character constant. You should do this whenever a token is just a
648single character (parenthesis, plus-sign, etc.): use that same character in
649a literal as the terminal symbol for that token.
650
931c7513
RS
651A third way to represent a terminal symbol is with a C string constant
652containing several characters. @xref{Symbols}, for more information.
653
bfa74976
RS
654The grammar rules also have an expression in Bison syntax. For example,
655here is the Bison rule for a C @code{return} statement. The semicolon in
656quotes is a literal character token, representing part of the C syntax for
657the statement; the naked semicolon, and the colon, are Bison punctuation
658used in every rule.
659
660@example
5e9b6624 661stmt: RETURN expr ';' ;
bfa74976
RS
662@end example
663
664@noindent
665@xref{Rules, ,Syntax of Grammar Rules}.
666
342b8b6e 667@node Semantic Values
bfa74976
RS
668@section Semantic Values
669@cindex semantic value
670@cindex value, semantic
671
672A formal grammar selects tokens only by their classifications: for example,
673if a rule mentions the terminal symbol `integer constant', it means that
674@emph{any} integer constant is grammatically valid in that position. The
675precise value of the constant is irrelevant to how to parse the input: if
676@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 677grammatical.
bfa74976
RS
678
679But the precise value is very important for what the input means once it is
680parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6813989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
682has both a token type and a @dfn{semantic value}. @xref{Semantics,
683,Defining Language Semantics},
bfa74976
RS
684for details.
685
686The token type is a terminal symbol defined in the grammar, such as
687@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
688you need to know to decide where the token may validly appear and how to
689group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 690except their types.
bfa74976
RS
691
692The semantic value has all the rest of the information about the
693meaning of the token, such as the value of an integer, or the name of an
694identifier. (A token such as @code{','} which is just punctuation doesn't
695need to have any semantic value.)
696
697For example, an input token might be classified as token type
698@code{INTEGER} and have the semantic value 4. Another input token might
699have the same token type @code{INTEGER} but value 3989. When a grammar
700rule says that @code{INTEGER} is allowed, either of these tokens is
701acceptable because each is an @code{INTEGER}. When the parser accepts the
702token, it keeps track of the token's semantic value.
703
704Each grouping can also have a semantic value as well as its nonterminal
705symbol. For example, in a calculator, an expression typically has a
706semantic value that is a number. In a compiler for a programming
707language, an expression typically has a semantic value that is a tree
708structure describing the meaning of the expression.
709
342b8b6e 710@node Semantic Actions
bfa74976
RS
711@section Semantic Actions
712@cindex semantic actions
713@cindex actions, semantic
714
715In order to be useful, a program must do more than parse input; it must
716also produce some output based on the input. In a Bison grammar, a grammar
717rule can have an @dfn{action} made up of C statements. Each time the
718parser recognizes a match for that rule, the action is executed.
719@xref{Actions}.
13863333 720
bfa74976
RS
721Most of the time, the purpose of an action is to compute the semantic value
722of the whole construct from the semantic values of its parts. For example,
723suppose we have a rule which says an expression can be the sum of two
724expressions. When the parser recognizes such a sum, each of the
725subexpressions has a semantic value which describes how it was built up.
726The action for this rule should create a similar sort of value for the
727newly recognized larger expression.
728
729For example, here is a rule that says an expression can be the sum of
730two subexpressions:
731
732@example
5e9b6624 733expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
734@end example
735
736@noindent
737The action says how to produce the semantic value of the sum expression
738from the values of the two subexpressions.
739
676385e2 740@node GLR Parsers
8a4281b9
JD
741@section Writing GLR Parsers
742@cindex GLR parsing
743@cindex generalized LR (GLR) parsing
676385e2
PH
744@findex %glr-parser
745@cindex conflicts
746@cindex shift/reduce conflicts
fa7e68c3 747@cindex reduce/reduce conflicts
676385e2 748
eb45ef3b 749In some grammars, Bison's deterministic
8a4281b9 750LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
751certain grammar rule at a given point. That is, it may not be able to
752decide (on the basis of the input read so far) which of two possible
753reductions (applications of a grammar rule) applies, or whether to apply
754a reduction or read more of the input and apply a reduction later in the
755input. These are known respectively as @dfn{reduce/reduce} conflicts
756(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
757(@pxref{Shift/Reduce}).
758
8a4281b9 759To use a grammar that is not easily modified to be LR(1), a
9501dc6e 760more general parsing algorithm is sometimes necessary. If you include
676385e2 761@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
762(@pxref{Grammar Outline}), the result is a Generalized LR
763(GLR) parser. These parsers handle Bison grammars that
9501dc6e 764contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 765declarations) identically to deterministic parsers. However, when
9501dc6e 766faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 767GLR parsers use the simple expedient of doing both,
9501dc6e
AD
768effectively cloning the parser to follow both possibilities. Each of
769the resulting parsers can again split, so that at any given time, there
770can be any number of possible parses being explored. The parsers
676385e2
PH
771proceed in lockstep; that is, all of them consume (shift) a given input
772symbol before any of them proceed to the next. Each of the cloned
773parsers eventually meets one of two possible fates: either it runs into
774a parsing error, in which case it simply vanishes, or it merges with
775another parser, because the two of them have reduced the input to an
776identical set of symbols.
777
778During the time that there are multiple parsers, semantic actions are
779recorded, but not performed. When a parser disappears, its recorded
780semantic actions disappear as well, and are never performed. When a
781reduction makes two parsers identical, causing them to merge, Bison
782records both sets of semantic actions. Whenever the last two parsers
783merge, reverting to the single-parser case, Bison resolves all the
784outstanding actions either by precedences given to the grammar rules
785involved, or by performing both actions, and then calling a designated
786user-defined function on the resulting values to produce an arbitrary
787merged result.
788
fa7e68c3 789@menu
8a4281b9
JD
790* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
791* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 792* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 793* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 794* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
795@end menu
796
797@node Simple GLR Parsers
8a4281b9
JD
798@subsection Using GLR on Unambiguous Grammars
799@cindex GLR parsing, unambiguous grammars
800@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
801@findex %glr-parser
802@findex %expect-rr
803@cindex conflicts
804@cindex reduce/reduce conflicts
805@cindex shift/reduce conflicts
806
8a4281b9
JD
807In the simplest cases, you can use the GLR algorithm
808to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 809Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
810
811Consider a problem that
812arises in the declaration of enumerated and subrange types in the
813programming language Pascal. Here are some examples:
814
815@example
816type subrange = lo .. hi;
817type enum = (a, b, c);
818@end example
819
820@noindent
821The original language standard allows only numeric
822literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 823and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
82410206) and many other
825Pascal implementations allow arbitrary expressions there. This gives
826rise to the following situation, containing a superfluous pair of
827parentheses:
828
829@example
830type subrange = (a) .. b;
831@end example
832
833@noindent
834Compare this to the following declaration of an enumerated
835type with only one value:
836
837@example
838type enum = (a);
839@end example
840
841@noindent
842(These declarations are contrived, but they are syntactically
843valid, and more-complicated cases can come up in practical programs.)
844
845These two declarations look identical until the @samp{..} token.
8a4281b9 846With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
847possible to decide between the two forms when the identifier
848@samp{a} is parsed. It is, however, desirable
849for a parser to decide this, since in the latter case
850@samp{a} must become a new identifier to represent the enumeration
851value, while in the former case @samp{a} must be evaluated with its
852current meaning, which may be a constant or even a function call.
853
854You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
855to be resolved later, but this typically requires substantial
856contortions in both semantic actions and large parts of the
857grammar, where the parentheses are nested in the recursive rules for
858expressions.
859
860You might think of using the lexer to distinguish between the two
861forms by returning different tokens for currently defined and
862undefined identifiers. But if these declarations occur in a local
863scope, and @samp{a} is defined in an outer scope, then both forms
864are possible---either locally redefining @samp{a}, or using the
865value of @samp{a} from the outer scope. So this approach cannot
866work.
867
e757bb10 868A simple solution to this problem is to declare the parser to
8a4281b9
JD
869use the GLR algorithm.
870When the GLR parser reaches the critical state, it
fa7e68c3
PE
871merely splits into two branches and pursues both syntax rules
872simultaneously. Sooner or later, one of them runs into a parsing
873error. If there is a @samp{..} token before the next
874@samp{;}, the rule for enumerated types fails since it cannot
875accept @samp{..} anywhere; otherwise, the subrange type rule
876fails since it requires a @samp{..} token. So one of the branches
877fails silently, and the other one continues normally, performing
878all the intermediate actions that were postponed during the split.
879
880If the input is syntactically incorrect, both branches fail and the parser
881reports a syntax error as usual.
882
883The effect of all this is that the parser seems to ``guess'' the
884correct branch to take, or in other words, it seems to use more
8a4281b9
JD
885lookahead than the underlying LR(1) algorithm actually allows
886for. In this example, LR(2) would suffice, but also some cases
887that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 888
8a4281b9 889In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
890and the current Bison parser even takes exponential time and space
891for some grammars. In practice, this rarely happens, and for many
892grammars it is possible to prove that it cannot happen.
893The present example contains only one conflict between two
894rules, and the type-declaration context containing the conflict
895cannot be nested. So the number of
896branches that can exist at any time is limited by the constant 2,
897and the parsing time is still linear.
898
899Here is a Bison grammar corresponding to the example above. It
900parses a vastly simplified form of Pascal type declarations.
901
902@example
903%token TYPE DOTDOT ID
904
905@group
906%left '+' '-'
907%left '*' '/'
908@end group
909
910%%
5e9b6624 911type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
912
913@group
5e9b6624
AD
914type:
915 '(' id_list ')'
916| expr DOTDOT expr
917;
fa7e68c3
PE
918@end group
919
920@group
5e9b6624
AD
921id_list:
922 ID
923| id_list ',' ID
924;
fa7e68c3
PE
925@end group
926
927@group
5e9b6624
AD
928expr:
929 '(' expr ')'
930| expr '+' expr
931| expr '-' expr
932| expr '*' expr
933| expr '/' expr
934| ID
935;
fa7e68c3
PE
936@end group
937@end example
938
8a4281b9 939When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
940about one reduce/reduce conflict. In the conflicting situation the
941parser chooses one of the alternatives, arbitrarily the one
942declared first. Therefore the following correct input is not
943recognized:
944
945@example
946type t = (a) .. b;
947@end example
948
8a4281b9 949The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
950to be silent about the one known reduce/reduce conflict, by adding
951these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
952@samp{%%}):
953
954@example
955%glr-parser
956%expect-rr 1
957@end example
958
959@noindent
960No change in the grammar itself is required. Now the
961parser recognizes all valid declarations, according to the
962limited syntax above, transparently. In fact, the user does not even
963notice when the parser splits.
964
8a4281b9 965So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
966almost without disadvantages. Even in simple cases like this, however,
967there are at least two potential problems to beware. First, always
8a4281b9
JD
968analyze the conflicts reported by Bison to make sure that GLR
969splitting is only done where it is intended. A GLR parser
f8e1c9e5 970splitting inadvertently may cause problems less obvious than an
8a4281b9 971LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
972conflict. Second, consider interactions with the lexer (@pxref{Semantic
973Tokens}) with great care. Since a split parser consumes tokens without
974performing any actions during the split, the lexer cannot obtain
975information via parser actions. Some cases of lexer interactions can be
8a4281b9 976eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
977lexer to the parser. You must check the remaining cases for
978correctness.
979
980In our example, it would be safe for the lexer to return tokens based on
981their current meanings in some symbol table, because no new symbols are
982defined in the middle of a type declaration. Though it is possible for
983a parser to define the enumeration constants as they are parsed, before
984the type declaration is completed, it actually makes no difference since
985they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
986
987@node Merging GLR Parses
8a4281b9
JD
988@subsection Using GLR to Resolve Ambiguities
989@cindex GLR parsing, ambiguous grammars
990@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
991@findex %dprec
992@findex %merge
993@cindex conflicts
994@cindex reduce/reduce conflicts
995
2a8d363a 996Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
997
998@example
999%@{
38a92d50
PE
1000 #include <stdio.h>
1001 #define YYSTYPE char const *
1002 int yylex (void);
1003 void yyerror (char const *);
676385e2
PH
1004%@}
1005
1006%token TYPENAME ID
1007
1008%right '='
1009%left '+'
1010
1011%glr-parser
1012
1013%%
1014
5e9b6624 1015prog:
6240346a 1016 %empty
5e9b6624
AD
1017| prog stmt @{ printf ("\n"); @}
1018;
676385e2 1019
5e9b6624
AD
1020stmt:
1021 expr ';' %dprec 1
1022| decl %dprec 2
1023;
676385e2 1024
5e9b6624
AD
1025expr:
1026 ID @{ printf ("%s ", $$); @}
1027| TYPENAME '(' expr ')'
1028 @{ printf ("%s <cast> ", $1); @}
1029| expr '+' expr @{ printf ("+ "); @}
1030| expr '=' expr @{ printf ("= "); @}
1031;
676385e2 1032
5e9b6624
AD
1033decl:
1034 TYPENAME declarator ';'
1035 @{ printf ("%s <declare> ", $1); @}
1036| TYPENAME declarator '=' expr ';'
1037 @{ printf ("%s <init-declare> ", $1); @}
1038;
676385e2 1039
5e9b6624
AD
1040declarator:
1041 ID @{ printf ("\"%s\" ", $1); @}
1042| '(' declarator ')'
1043;
676385e2
PH
1044@end example
1045
1046@noindent
1047This models a problematic part of the C++ grammar---the ambiguity between
1048certain declarations and statements. For example,
1049
1050@example
1051T (x) = y+z;
1052@end example
1053
1054@noindent
1055parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1056(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1057@samp{x} as an @code{ID}).
676385e2 1058Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1059@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1060time it encounters @code{x} in the example above. Since this is a
8a4281b9 1061GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1062each choice of resolving the reduce/reduce conflict.
1063Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1064however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1065ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1066the other reduces @code{stmt : decl}, after which both parsers are in an
1067identical state: they've seen @samp{prog stmt} and have the same unprocessed
1068input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1069
8a4281b9 1070At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1071grammar of how to choose between the competing parses.
1072In the example above, the two @code{%dprec}
e757bb10 1073declarations specify that Bison is to give precedence
fa7e68c3 1074to the parse that interprets the example as a
676385e2
PH
1075@code{decl}, which implies that @code{x} is a declarator.
1076The parser therefore prints
1077
1078@example
fae437e8 1079"x" y z + T <init-declare>
676385e2
PH
1080@end example
1081
fa7e68c3
PE
1082The @code{%dprec} declarations only come into play when more than one
1083parse survives. Consider a different input string for this parser:
676385e2
PH
1084
1085@example
1086T (x) + y;
1087@end example
1088
1089@noindent
8a4281b9 1090This is another example of using GLR to parse an unambiguous
fa7e68c3 1091construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1092Here, there is no ambiguity (this cannot be parsed as a declaration).
1093However, at the time the Bison parser encounters @code{x}, it does not
1094have enough information to resolve the reduce/reduce conflict (again,
1095between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1096case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1097into two, one assuming that @code{x} is an @code{expr}, and the other
1098assuming @code{x} is a @code{declarator}. The second of these parsers
1099then vanishes when it sees @code{+}, and the parser prints
1100
1101@example
fae437e8 1102x T <cast> y +
676385e2
PH
1103@end example
1104
1105Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1106the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1107actions of the two possible parsers, rather than choosing one over the
1108other. To do so, you could change the declaration of @code{stmt} as
1109follows:
1110
1111@example
5e9b6624
AD
1112stmt:
1113 expr ';' %merge <stmtMerge>
1114| decl %merge <stmtMerge>
1115;
676385e2
PH
1116@end example
1117
1118@noindent
676385e2
PH
1119and define the @code{stmtMerge} function as:
1120
1121@example
38a92d50
PE
1122static YYSTYPE
1123stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1124@{
1125 printf ("<OR> ");
1126 return "";
1127@}
1128@end example
1129
1130@noindent
1131with an accompanying forward declaration
1132in the C declarations at the beginning of the file:
1133
1134@example
1135%@{
38a92d50 1136 #define YYSTYPE char const *
676385e2
PH
1137 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1138%@}
1139@end example
1140
1141@noindent
fa7e68c3
PE
1142With these declarations, the resulting parser parses the first example
1143as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1144
1145@example
fae437e8 1146"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1147@end example
1148
fa7e68c3 1149Bison requires that all of the
e757bb10 1150productions that participate in any particular merge have identical
fa7e68c3
PE
1151@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1152and the parser will report an error during any parse that results in
1153the offending merge.
9501dc6e 1154
32c29292
JD
1155@node GLR Semantic Actions
1156@subsection GLR Semantic Actions
1157
8a4281b9 1158The nature of GLR parsing and the structure of the generated
20be2f92
PH
1159parsers give rise to certain restrictions on semantic values and actions.
1160
1161@subsubsection Deferred semantic actions
32c29292
JD
1162@cindex deferred semantic actions
1163By definition, a deferred semantic action is not performed at the same time as
1164the associated reduction.
1165This raises caveats for several Bison features you might use in a semantic
8a4281b9 1166action in a GLR parser.
32c29292
JD
1167
1168@vindex yychar
8a4281b9 1169@cindex GLR parsers and @code{yychar}
32c29292 1170@vindex yylval
8a4281b9 1171@cindex GLR parsers and @code{yylval}
32c29292 1172@vindex yylloc
8a4281b9 1173@cindex GLR parsers and @code{yylloc}
32c29292 1174In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1175the lookahead token present at the time of the associated reduction.
32c29292
JD
1176After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1177you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1178lookahead token's semantic value and location, if any.
32c29292
JD
1179In a nondeferred semantic action, you can also modify any of these variables to
1180influence syntax analysis.
742e4900 1181@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1182
1183@findex yyclearin
8a4281b9 1184@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1185In a deferred semantic action, it's too late to influence syntax analysis.
1186In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1187shallow copies of the values they had at the time of the associated reduction.
1188For this reason alone, modifying them is dangerous.
1189Moreover, the result of modifying them is undefined and subject to change with
1190future versions of Bison.
1191For example, if a semantic action might be deferred, you should never write it
1192to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1193memory referenced by @code{yylval}.
1194
20be2f92 1195@subsubsection YYERROR
32c29292 1196@findex YYERROR
8a4281b9 1197@cindex GLR parsers and @code{YYERROR}
32c29292 1198Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1199(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1200initiate error recovery.
8a4281b9 1201During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1202the same as its effect in a deterministic parser.
411614fa
JM
1203The effect in a deferred action is similar, but the precise point of the
1204error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1205selecting an unspecified stack on which to continue with a syntax error.
1206In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1207parsing, @code{YYERROR} silently prunes
1208the parse that invoked the test.
1209
1210@subsubsection Restrictions on semantic values and locations
8a4281b9 1211GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1212semantic values and location types when using the generated parsers as
1213C++ code.
8710fc41 1214
ca2a6d15
PH
1215@node Semantic Predicates
1216@subsection Controlling a Parse with Arbitrary Predicates
1217@findex %?
8a4281b9 1218@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1219
1220In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1221GLR parsers
ca2a6d15
PH
1222allow you to reject parses on the basis of arbitrary computations executed
1223in user code, without having Bison treat this rejection as an error
1224if there are alternative parses. (This feature is experimental and may
1225evolve. We welcome user feedback.) For example,
1226
c93f22fc
AD
1227@example
1228widget:
5e9b6624
AD
1229 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1230| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1231;
c93f22fc 1232@end example
ca2a6d15
PH
1233
1234@noindent
411614fa 1235is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1236widgets. The clause preceded by @code{%?} is treated like an ordinary
1237action, except that its text is treated as an expression and is always
411614fa 1238evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1239expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1240which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1241to die. In a deterministic parser, it acts like YYERROR.
1242
1243As the example shows, predicates otherwise look like semantic actions, and
1244therefore you must be take them into account when determining the numbers
1245to use for denoting the semantic values of right-hand side symbols.
1246Predicate actions, however, have no defined value, and may not be given
1247labels.
1248
1249There is a subtle difference between semantic predicates and ordinary
1250actions in nondeterministic mode, since the latter are deferred.
411614fa 1251For example, we could try to rewrite the previous example as
ca2a6d15 1252
c93f22fc
AD
1253@example
1254widget:
5e9b6624
AD
1255 @{ if (!new_syntax) YYERROR; @}
1256 "widget" id new_args @{ $$ = f($3, $4); @}
1257| @{ if (new_syntax) YYERROR; @}
1258 "widget" id old_args @{ $$ = f($3, $4); @}
1259;
c93f22fc 1260@end example
ca2a6d15
PH
1261
1262@noindent
1263(reversing the sense of the predicate tests to cause an error when they are
1264false). However, this
1265does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1266have overlapping syntax.
411614fa 1267Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1268a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1269for cases where @code{new_args} and @code{old_args} recognize the same string
1270@emph{before} performing the tests of @code{new_syntax}. It therefore
1271reports an error.
1272
1273Finally, be careful in writing predicates: deferred actions have not been
1274evaluated, so that using them in a predicate will have undefined effects.
1275
fa7e68c3 1276@node Compiler Requirements
8a4281b9 1277@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1278@cindex @code{inline}
8a4281b9 1279@cindex GLR parsers and @code{inline}
fa7e68c3 1280
8a4281b9 1281The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1282later. In addition, they use the @code{inline} keyword, which is not
1283C89, but is C99 and is a common extension in pre-C99 compilers. It is
1284up to the user of these parsers to handle
9501dc6e
AD
1285portability issues. For instance, if using Autoconf and the Autoconf
1286macro @code{AC_C_INLINE}, a mere
1287
1288@example
1289%@{
38a92d50 1290 #include <config.h>
9501dc6e
AD
1291%@}
1292@end example
1293
1294@noindent
1295will suffice. Otherwise, we suggest
1296
1297@example
1298%@{
aaaa2aae
AD
1299 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1300 && ! defined inline)
1301 # define inline
38a92d50 1302 #endif
9501dc6e
AD
1303%@}
1304@end example
676385e2 1305
1769eb30 1306@node Locations
847bf1f5
AD
1307@section Locations
1308@cindex location
95923bd6
AD
1309@cindex textual location
1310@cindex location, textual
847bf1f5
AD
1311
1312Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1313and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1314the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1315Bison provides a mechanism for handling these locations.
1316
72d2299c 1317Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1318associated location, but the type of locations is the same for all tokens
1319and groupings. Moreover, the output parser is equipped with a default data
1320structure for storing locations (@pxref{Tracking Locations}, for more
1321details).
847bf1f5
AD
1322
1323Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1324set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1325is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1326@code{@@3}.
1327
1328When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1329of its left hand side (@pxref{Actions}). In the same way, another default
1330action is used for locations. However, the action for locations is general
847bf1f5 1331enough for most cases, meaning there is usually no need to describe for each
72d2299c 1332rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1333grouping, the default behavior of the output parser is to take the beginning
1334of the first symbol, and the end of the last symbol.
1335
342b8b6e 1336@node Bison Parser
ff7571c0 1337@section Bison Output: the Parser Implementation File
bfa74976
RS
1338@cindex Bison parser
1339@cindex Bison utility
1340@cindex lexical analyzer, purpose
1341@cindex parser
1342
ff7571c0
JD
1343When you run Bison, you give it a Bison grammar file as input. The
1344most important output is a C source file that implements a parser for
1345the language described by the grammar. This parser is called a
1346@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1347implementation file}. Keep in mind that the Bison utility and the
1348Bison parser are two distinct programs: the Bison utility is a program
1349whose output is the Bison parser implementation file that becomes part
1350of your program.
bfa74976
RS
1351
1352The job of the Bison parser is to group tokens into groupings according to
1353the grammar rules---for example, to build identifiers and operators into
1354expressions. As it does this, it runs the actions for the grammar rules it
1355uses.
1356
704a47c4
AD
1357The tokens come from a function called the @dfn{lexical analyzer} that
1358you must supply in some fashion (such as by writing it in C). The Bison
1359parser calls the lexical analyzer each time it wants a new token. It
1360doesn't know what is ``inside'' the tokens (though their semantic values
1361may reflect this). Typically the lexical analyzer makes the tokens by
1362parsing characters of text, but Bison does not depend on this.
1363@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1364
ff7571c0
JD
1365The Bison parser implementation file is C code which defines a
1366function named @code{yyparse} which implements that grammar. This
1367function does not make a complete C program: you must supply some
1368additional functions. One is the lexical analyzer. Another is an
1369error-reporting function which the parser calls to report an error.
1370In addition, a complete C program must start with a function called
1371@code{main}; you have to provide this, and arrange for it to call
1372@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1373C-Language Interface}.
bfa74976 1374
f7ab6a50 1375Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1376write, all symbols defined in the Bison parser implementation file
1377itself begin with @samp{yy} or @samp{YY}. This includes interface
1378functions such as the lexical analyzer function @code{yylex}, the
1379error reporting function @code{yyerror} and the parser function
1380@code{yyparse} itself. This also includes numerous identifiers used
1381for internal purposes. Therefore, you should avoid using C
1382identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1383file except for the ones defined in this manual. Also, you should
1384avoid using the C identifiers @samp{malloc} and @samp{free} for
1385anything other than their usual meanings.
1386
1387In some cases the Bison parser implementation file includes system
1388headers, and in those cases your code should respect the identifiers
1389reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1390@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1391included as needed to declare memory allocators and related types.
1392@code{<libintl.h>} is included if message translation is in use
1393(@pxref{Internationalization}). Other system headers may be included
1394if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1395,Tracing Your Parser}).
7093d0f5 1396
342b8b6e 1397@node Stages
bfa74976
RS
1398@section Stages in Using Bison
1399@cindex stages in using Bison
1400@cindex using Bison
1401
1402The actual language-design process using Bison, from grammar specification
1403to a working compiler or interpreter, has these parts:
1404
1405@enumerate
1406@item
1407Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1408(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1409in the language, describe the action that is to be taken when an
1410instance of that rule is recognized. The action is described by a
1411sequence of C statements.
bfa74976
RS
1412
1413@item
704a47c4
AD
1414Write a lexical analyzer to process input and pass tokens to the parser.
1415The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1416Lexical Analyzer Function @code{yylex}}). It could also be produced
1417using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1418
1419@item
1420Write a controlling function that calls the Bison-produced parser.
1421
1422@item
1423Write error-reporting routines.
1424@end enumerate
1425
1426To turn this source code as written into a runnable program, you
1427must follow these steps:
1428
1429@enumerate
1430@item
1431Run Bison on the grammar to produce the parser.
1432
1433@item
1434Compile the code output by Bison, as well as any other source files.
1435
1436@item
1437Link the object files to produce the finished product.
1438@end enumerate
1439
342b8b6e 1440@node Grammar Layout
bfa74976
RS
1441@section The Overall Layout of a Bison Grammar
1442@cindex grammar file
1443@cindex file format
1444@cindex format of grammar file
1445@cindex layout of Bison grammar
1446
1447The input file for the Bison utility is a @dfn{Bison grammar file}. The
1448general form of a Bison grammar file is as follows:
1449
1450@example
1451%@{
08e49d20 1452@var{Prologue}
bfa74976
RS
1453%@}
1454
1455@var{Bison declarations}
1456
1457%%
1458@var{Grammar rules}
1459%%
08e49d20 1460@var{Epilogue}
bfa74976
RS
1461@end example
1462
1463@noindent
1464The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1465in every Bison grammar file to separate the sections.
1466
72d2299c 1467The prologue may define types and variables used in the actions. You can
342b8b6e 1468also use preprocessor commands to define macros used there, and use
bfa74976 1469@code{#include} to include header files that do any of these things.
38a92d50
PE
1470You need to declare the lexical analyzer @code{yylex} and the error
1471printer @code{yyerror} here, along with any other global identifiers
1472used by the actions in the grammar rules.
bfa74976
RS
1473
1474The Bison declarations declare the names of the terminal and nonterminal
1475symbols, and may also describe operator precedence and the data types of
1476semantic values of various symbols.
1477
1478The grammar rules define how to construct each nonterminal symbol from its
1479parts.
1480
38a92d50
PE
1481The epilogue can contain any code you want to use. Often the
1482definitions of functions declared in the prologue go here. In a
1483simple program, all the rest of the program can go here.
bfa74976 1484
342b8b6e 1485@node Examples
bfa74976
RS
1486@chapter Examples
1487@cindex simple examples
1488@cindex examples, simple
1489
aaaa2aae 1490Now we show and explain several sample programs written using Bison: a
bfa74976 1491reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1492calculator --- later extended to track ``locations'' ---
1493and a multi-function calculator. All
1494produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1495
1496These examples are simple, but Bison grammars for real programming
aa08666d
AD
1497languages are written the same way. You can copy these examples into a
1498source file to try them.
bfa74976
RS
1499
1500@menu
f5f419de
DJ
1501* RPN Calc:: Reverse polish notation calculator;
1502 a first example with no operator precedence.
1503* Infix Calc:: Infix (algebraic) notation calculator.
1504 Operator precedence is introduced.
bfa74976 1505* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1506* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1507* Multi-function Calc:: Calculator with memory and trig functions.
1508 It uses multiple data-types for semantic values.
1509* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1510@end menu
1511
342b8b6e 1512@node RPN Calc
bfa74976
RS
1513@section Reverse Polish Notation Calculator
1514@cindex reverse polish notation
1515@cindex polish notation calculator
1516@cindex @code{rpcalc}
1517@cindex calculator, simple
1518
1519The first example is that of a simple double-precision @dfn{reverse polish
1520notation} calculator (a calculator using postfix operators). This example
1521provides a good starting point, since operator precedence is not an issue.
1522The second example will illustrate how operator precedence is handled.
1523
1524The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1525@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1526
1527@menu
f5f419de
DJ
1528* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1529* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1530* Rpcalc Lexer:: The lexical analyzer.
1531* Rpcalc Main:: The controlling function.
1532* Rpcalc Error:: The error reporting function.
1533* Rpcalc Generate:: Running Bison on the grammar file.
1534* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1535@end menu
1536
f5f419de 1537@node Rpcalc Declarations
bfa74976
RS
1538@subsection Declarations for @code{rpcalc}
1539
1540Here are the C and Bison declarations for the reverse polish notation
1541calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1542
24ec0837 1543@comment file: rpcalc.y
bfa74976 1544@example
72d2299c 1545/* Reverse polish notation calculator. */
bfa74976 1546
efbc95a7 1547@group
bfa74976 1548%@{
38a92d50 1549 #define YYSTYPE double
24ec0837 1550 #include <stdio.h>
38a92d50
PE
1551 #include <math.h>
1552 int yylex (void);
1553 void yyerror (char const *);
bfa74976 1554%@}
efbc95a7 1555@end group
bfa74976
RS
1556
1557%token NUM
1558
72d2299c 1559%% /* Grammar rules and actions follow. */
bfa74976
RS
1560@end example
1561
75f5aaea 1562The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1563preprocessor directives and two forward declarations.
bfa74976
RS
1564
1565The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1566specifying the C data type for semantic values of both tokens and
1567groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1568Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1569don't define it, @code{int} is the default. Because we specify
1570@code{double}, each token and each expression has an associated value,
1571which is a floating point number.
bfa74976
RS
1572
1573The @code{#include} directive is used to declare the exponentiation
1574function @code{pow}.
1575
38a92d50
PE
1576The forward declarations for @code{yylex} and @code{yyerror} are
1577needed because the C language requires that functions be declared
1578before they are used. These functions will be defined in the
1579epilogue, but the parser calls them so they must be declared in the
1580prologue.
1581
704a47c4
AD
1582The second section, Bison declarations, provides information to Bison
1583about the token types (@pxref{Bison Declarations, ,The Bison
1584Declarations Section}). Each terminal symbol that is not a
1585single-character literal must be declared here. (Single-character
bfa74976
RS
1586literals normally don't need to be declared.) In this example, all the
1587arithmetic operators are designated by single-character literals, so the
1588only terminal symbol that needs to be declared is @code{NUM}, the token
1589type for numeric constants.
1590
342b8b6e 1591@node Rpcalc Rules
bfa74976
RS
1592@subsection Grammar Rules for @code{rpcalc}
1593
1594Here are the grammar rules for the reverse polish notation calculator.
1595
24ec0837 1596@comment file: rpcalc.y
bfa74976 1597@example
aaaa2aae 1598@group
5e9b6624 1599input:
6240346a 1600 %empty
5e9b6624 1601| input line
bfa74976 1602;
aaaa2aae 1603@end group
bfa74976 1604
aaaa2aae 1605@group
5e9b6624
AD
1606line:
1607 '\n'
1608| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1609;
aaaa2aae 1610@end group
bfa74976 1611
aaaa2aae 1612@group
5e9b6624
AD
1613exp:
1614 NUM @{ $$ = $1; @}
1615| exp exp '+' @{ $$ = $1 + $2; @}
1616| exp exp '-' @{ $$ = $1 - $2; @}
1617| exp exp '*' @{ $$ = $1 * $2; @}
1618| exp exp '/' @{ $$ = $1 / $2; @}
1619| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1620| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1621;
aaaa2aae 1622@end group
bfa74976
RS
1623%%
1624@end example
1625
1626The groupings of the rpcalc ``language'' defined here are the expression
1627(given the name @code{exp}), the line of input (@code{line}), and the
1628complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1629symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1630which is read as ``or''. The following sections explain what these rules
1631mean.
1632
1633The semantics of the language is determined by the actions taken when a
1634grouping is recognized. The actions are the C code that appears inside
1635braces. @xref{Actions}.
1636
1637You must specify these actions in C, but Bison provides the means for
1638passing semantic values between the rules. In each action, the
1639pseudo-variable @code{$$} stands for the semantic value for the grouping
1640that the rule is going to construct. Assigning a value to @code{$$} is the
1641main job of most actions. The semantic values of the components of the
1642rule are referred to as @code{$1}, @code{$2}, and so on.
1643
1644@menu
24ec0837
AD
1645* Rpcalc Input:: Explanation of the @code{input} nonterminal
1646* Rpcalc Line:: Explanation of the @code{line} nonterminal
1647* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1648@end menu
1649
342b8b6e 1650@node Rpcalc Input
bfa74976
RS
1651@subsubsection Explanation of @code{input}
1652
1653Consider the definition of @code{input}:
1654
1655@example
5e9b6624 1656input:
6240346a 1657 %empty
5e9b6624 1658| input line
bfa74976
RS
1659;
1660@end example
1661
1662This definition reads as follows: ``A complete input is either an empty
1663string, or a complete input followed by an input line''. Notice that
1664``complete input'' is defined in terms of itself. This definition is said
1665to be @dfn{left recursive} since @code{input} appears always as the
1666leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1667
1668The first alternative is empty because there are no symbols between the
1669colon and the first @samp{|}; this means that @code{input} can match an
1670empty string of input (no tokens). We write the rules this way because it
1671is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
6240346a
AD
1672It's conventional to put an empty alternative first and to use the
1673(optional) @code{%empty} directive, or to write the comment @samp{/* empty
1674*/} in it (@pxref{Empty Rules}).
bfa74976
RS
1675
1676The second alternate rule (@code{input line}) handles all nontrivial input.
1677It means, ``After reading any number of lines, read one more line if
1678possible.'' The left recursion makes this rule into a loop. Since the
1679first alternative matches empty input, the loop can be executed zero or
1680more times.
1681
1682The parser function @code{yyparse} continues to process input until a
1683grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1684input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1685
342b8b6e 1686@node Rpcalc Line
bfa74976
RS
1687@subsubsection Explanation of @code{line}
1688
1689Now consider the definition of @code{line}:
1690
1691@example
5e9b6624
AD
1692line:
1693 '\n'
1694| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1695;
1696@end example
1697
1698The first alternative is a token which is a newline character; this means
1699that rpcalc accepts a blank line (and ignores it, since there is no
1700action). The second alternative is an expression followed by a newline.
1701This is the alternative that makes rpcalc useful. The semantic value of
1702the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1703question is the first symbol in the alternative. The action prints this
1704value, which is the result of the computation the user asked for.
1705
1706This action is unusual because it does not assign a value to @code{$$}. As
1707a consequence, the semantic value associated with the @code{line} is
1708uninitialized (its value will be unpredictable). This would be a bug if
1709that value were ever used, but we don't use it: once rpcalc has printed the
1710value of the user's input line, that value is no longer needed.
1711
342b8b6e 1712@node Rpcalc Expr
bfa74976
RS
1713@subsubsection Explanation of @code{expr}
1714
1715The @code{exp} grouping has several rules, one for each kind of expression.
1716The first rule handles the simplest expressions: those that are just numbers.
1717The second handles an addition-expression, which looks like two expressions
1718followed by a plus-sign. The third handles subtraction, and so on.
1719
1720@example
5e9b6624
AD
1721exp:
1722 NUM
1723| exp exp '+' @{ $$ = $1 + $2; @}
1724| exp exp '-' @{ $$ = $1 - $2; @}
1725@dots{}
1726;
bfa74976
RS
1727@end example
1728
1729We have used @samp{|} to join all the rules for @code{exp}, but we could
1730equally well have written them separately:
1731
1732@example
5e9b6624
AD
1733exp: NUM ;
1734exp: exp exp '+' @{ $$ = $1 + $2; @};
1735exp: exp exp '-' @{ $$ = $1 - $2; @};
1736@dots{}
bfa74976
RS
1737@end example
1738
1739Most of the rules have actions that compute the value of the expression in
1740terms of the value of its parts. For example, in the rule for addition,
1741@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1742the second one. The third component, @code{'+'}, has no meaningful
1743associated semantic value, but if it had one you could refer to it as
1744@code{$3}. When @code{yyparse} recognizes a sum expression using this
1745rule, the sum of the two subexpressions' values is produced as the value of
1746the entire expression. @xref{Actions}.
1747
1748You don't have to give an action for every rule. When a rule has no
1749action, Bison by default copies the value of @code{$1} into @code{$$}.
1750This is what happens in the first rule (the one that uses @code{NUM}).
1751
1752The formatting shown here is the recommended convention, but Bison does
72d2299c 1753not require it. You can add or change white space as much as you wish.
bfa74976
RS
1754For example, this:
1755
1756@example
5e9b6624 1757exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1758@end example
1759
1760@noindent
1761means the same thing as this:
1762
1763@example
5e9b6624
AD
1764exp:
1765 NUM
1766| exp exp '+' @{ $$ = $1 + $2; @}
1767| @dots{}
99a9344e 1768;
bfa74976
RS
1769@end example
1770
1771@noindent
1772The latter, however, is much more readable.
1773
342b8b6e 1774@node Rpcalc Lexer
bfa74976
RS
1775@subsection The @code{rpcalc} Lexical Analyzer
1776@cindex writing a lexical analyzer
1777@cindex lexical analyzer, writing
1778
704a47c4
AD
1779The lexical analyzer's job is low-level parsing: converting characters
1780or sequences of characters into tokens. The Bison parser gets its
1781tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1782Analyzer Function @code{yylex}}.
bfa74976 1783
8a4281b9 1784Only a simple lexical analyzer is needed for the RPN
c827f760 1785calculator. This
bfa74976
RS
1786lexical analyzer skips blanks and tabs, then reads in numbers as
1787@code{double} and returns them as @code{NUM} tokens. Any other character
1788that isn't part of a number is a separate token. Note that the token-code
1789for such a single-character token is the character itself.
1790
1791The return value of the lexical analyzer function is a numeric code which
1792represents a token type. The same text used in Bison rules to stand for
1793this token type is also a C expression for the numeric code for the type.
1794This works in two ways. If the token type is a character literal, then its
e966383b 1795numeric code is that of the character; you can use the same
bfa74976
RS
1796character literal in the lexical analyzer to express the number. If the
1797token type is an identifier, that identifier is defined by Bison as a C
1798macro whose definition is the appropriate number. In this example,
1799therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1800
1964ad8c
AD
1801The semantic value of the token (if it has one) is stored into the
1802global variable @code{yylval}, which is where the Bison parser will look
1803for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1804defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1805,Declarations for @code{rpcalc}}.)
bfa74976 1806
72d2299c
PE
1807A token type code of zero is returned if the end-of-input is encountered.
1808(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1809
1810Here is the code for the lexical analyzer:
1811
24ec0837 1812@comment file: rpcalc.y
bfa74976
RS
1813@example
1814@group
72d2299c 1815/* The lexical analyzer returns a double floating point
e966383b 1816 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1817 of the character read if not a number. It skips all blanks
1818 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1819
1820#include <ctype.h>
1821@end group
1822
1823@group
13863333
AD
1824int
1825yylex (void)
bfa74976
RS
1826@{
1827 int c;
1828
72d2299c 1829 /* Skip white space. */
13863333 1830 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1831 continue;
bfa74976
RS
1832@end group
1833@group
72d2299c 1834 /* Process numbers. */
13863333 1835 if (c == '.' || isdigit (c))
bfa74976
RS
1836 @{
1837 ungetc (c, stdin);
1838 scanf ("%lf", &yylval);
1839 return NUM;
1840 @}
1841@end group
1842@group
72d2299c 1843 /* Return end-of-input. */
13863333 1844 if (c == EOF)
bfa74976 1845 return 0;
72d2299c 1846 /* Return a single char. */
13863333 1847 return c;
bfa74976
RS
1848@}
1849@end group
1850@end example
1851
342b8b6e 1852@node Rpcalc Main
bfa74976
RS
1853@subsection The Controlling Function
1854@cindex controlling function
1855@cindex main function in simple example
1856
1857In keeping with the spirit of this example, the controlling function is
1858kept to the bare minimum. The only requirement is that it call
1859@code{yyparse} to start the process of parsing.
1860
24ec0837 1861@comment file: rpcalc.y
bfa74976
RS
1862@example
1863@group
13863333
AD
1864int
1865main (void)
bfa74976 1866@{
13863333 1867 return yyparse ();
bfa74976
RS
1868@}
1869@end group
1870@end example
1871
342b8b6e 1872@node Rpcalc Error
bfa74976
RS
1873@subsection The Error Reporting Routine
1874@cindex error reporting routine
1875
1876When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1877function @code{yyerror} to print an error message (usually but not
6e649e65 1878always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1879@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1880here is the definition we will use:
bfa74976 1881
24ec0837 1882@comment file: rpcalc.y
bfa74976 1883@example
bfa74976
RS
1884#include <stdio.h>
1885
aaaa2aae 1886@group
38a92d50 1887/* Called by yyparse on error. */
13863333 1888void
38a92d50 1889yyerror (char const *s)
bfa74976 1890@{
4e03e201 1891 fprintf (stderr, "%s\n", s);
bfa74976
RS
1892@}
1893@end group
1894@end example
1895
1896After @code{yyerror} returns, the Bison parser may recover from the error
1897and continue parsing if the grammar contains a suitable error rule
1898(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1899have not written any error rules in this example, so any invalid input will
1900cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1901real calculator, but it is adequate for the first example.
bfa74976 1902
f5f419de 1903@node Rpcalc Generate
bfa74976
RS
1904@subsection Running Bison to Make the Parser
1905@cindex running Bison (introduction)
1906
ceed8467
AD
1907Before running Bison to produce a parser, we need to decide how to
1908arrange all the source code in one or more source files. For such a
ff7571c0
JD
1909simple example, the easiest thing is to put everything in one file,
1910the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1911@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1912(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1913
1914For a large project, you would probably have several source files, and use
1915@code{make} to arrange to recompile them.
1916
ff7571c0
JD
1917With all the source in the grammar file, you use the following command
1918to convert it into a parser implementation file:
bfa74976
RS
1919
1920@example
fa4d969f 1921bison @var{file}.y
bfa74976
RS
1922@end example
1923
1924@noindent
ff7571c0
JD
1925In this example, the grammar file is called @file{rpcalc.y} (for
1926``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1927implementation file named @file{@var{file}.tab.c}, removing the
1928@samp{.y} from the grammar file name. The parser implementation file
1929contains the source code for @code{yyparse}. The additional functions
1930in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1931copied verbatim to the parser implementation file.
bfa74976 1932
342b8b6e 1933@node Rpcalc Compile
ff7571c0 1934@subsection Compiling the Parser Implementation File
bfa74976
RS
1935@cindex compiling the parser
1936
ff7571c0 1937Here is how to compile and run the parser implementation file:
bfa74976
RS
1938
1939@example
1940@group
1941# @r{List files in current directory.}
9edcd895 1942$ @kbd{ls}
bfa74976
RS
1943rpcalc.tab.c rpcalc.y
1944@end group
1945
1946@group
1947# @r{Compile the Bison parser.}
1948# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1949$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1950@end group
1951
1952@group
1953# @r{List files again.}
9edcd895 1954$ @kbd{ls}
bfa74976
RS
1955rpcalc rpcalc.tab.c rpcalc.y
1956@end group
1957@end example
1958
1959The file @file{rpcalc} now contains the executable code. Here is an
1960example session using @code{rpcalc}.
1961
1962@example
9edcd895
AD
1963$ @kbd{rpcalc}
1964@kbd{4 9 +}
24ec0837 1965@result{} 13
9edcd895 1966@kbd{3 7 + 3 4 5 *+-}
24ec0837 1967@result{} -13
9edcd895 1968@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1969@result{} 13
9edcd895 1970@kbd{5 6 / 4 n +}
24ec0837 1971@result{} -3.166666667
9edcd895 1972@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1973@result{} 81
9edcd895
AD
1974@kbd{^D} @r{End-of-file indicator}
1975$
bfa74976
RS
1976@end example
1977
342b8b6e 1978@node Infix Calc
bfa74976
RS
1979@section Infix Notation Calculator: @code{calc}
1980@cindex infix notation calculator
1981@cindex @code{calc}
1982@cindex calculator, infix notation
1983
1984We now modify rpcalc to handle infix operators instead of postfix. Infix
1985notation involves the concept of operator precedence and the need for
1986parentheses nested to arbitrary depth. Here is the Bison code for
1987@file{calc.y}, an infix desk-top calculator.
1988
1989@example
38a92d50 1990/* Infix notation calculator. */
bfa74976 1991
aaaa2aae 1992@group
bfa74976 1993%@{
38a92d50
PE
1994 #define YYSTYPE double
1995 #include <math.h>
1996 #include <stdio.h>
1997 int yylex (void);
1998 void yyerror (char const *);
bfa74976 1999%@}
aaaa2aae 2000@end group
bfa74976 2001
aaaa2aae 2002@group
38a92d50 2003/* Bison declarations. */
bfa74976
RS
2004%token NUM
2005%left '-' '+'
2006%left '*' '/'
d78f0ac9
AD
2007%precedence NEG /* negation--unary minus */
2008%right '^' /* exponentiation */
aaaa2aae 2009@end group
bfa74976 2010
38a92d50 2011%% /* The grammar follows. */
aaaa2aae 2012@group
5e9b6624 2013input:
6240346a 2014 %empty
5e9b6624 2015| input line
bfa74976 2016;
aaaa2aae 2017@end group
bfa74976 2018
aaaa2aae 2019@group
5e9b6624
AD
2020line:
2021 '\n'
2022| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2023;
aaaa2aae 2024@end group
bfa74976 2025
aaaa2aae 2026@group
5e9b6624
AD
2027exp:
2028 NUM @{ $$ = $1; @}
2029| exp '+' exp @{ $$ = $1 + $3; @}
2030| exp '-' exp @{ $$ = $1 - $3; @}
2031| exp '*' exp @{ $$ = $1 * $3; @}
2032| exp '/' exp @{ $$ = $1 / $3; @}
2033| '-' exp %prec NEG @{ $$ = -$2; @}
2034| exp '^' exp @{ $$ = pow ($1, $3); @}
2035| '(' exp ')' @{ $$ = $2; @}
bfa74976 2036;
aaaa2aae 2037@end group
bfa74976
RS
2038%%
2039@end example
2040
2041@noindent
ceed8467
AD
2042The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2043same as before.
bfa74976
RS
2044
2045There are two important new features shown in this code.
2046
2047In the second section (Bison declarations), @code{%left} declares token
2048types and says they are left-associative operators. The declarations
2049@code{%left} and @code{%right} (right associativity) take the place of
2050@code{%token} which is used to declare a token type name without
d78f0ac9 2051associativity/precedence. (These tokens are single-character literals, which
bfa74976 2052ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2053the associativity/precedence.)
bfa74976
RS
2054
2055Operator precedence is determined by the line ordering of the
2056declarations; the higher the line number of the declaration (lower on
2057the page or screen), the higher the precedence. Hence, exponentiation
2058has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2059by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2060only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2061Precedence}.
bfa74976 2062
704a47c4
AD
2063The other important new feature is the @code{%prec} in the grammar
2064section for the unary minus operator. The @code{%prec} simply instructs
2065Bison that the rule @samp{| '-' exp} has the same precedence as
2066@code{NEG}---in this case the next-to-highest. @xref{Contextual
2067Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2068
2069Here is a sample run of @file{calc.y}:
2070
2071@need 500
2072@example
9edcd895
AD
2073$ @kbd{calc}
2074@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20756.880952381
9edcd895 2076@kbd{-56 + 2}
bfa74976 2077-54
9edcd895 2078@kbd{3 ^ 2}
bfa74976
RS
20799
2080@end example
2081
342b8b6e 2082@node Simple Error Recovery
bfa74976
RS
2083@section Simple Error Recovery
2084@cindex error recovery, simple
2085
2086Up to this point, this manual has not addressed the issue of @dfn{error
2087recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2088error. All we have handled is error reporting with @code{yyerror}.
2089Recall that by default @code{yyparse} returns after calling
2090@code{yyerror}. This means that an erroneous input line causes the
2091calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2092
2093The Bison language itself includes the reserved word @code{error}, which
2094may be included in the grammar rules. In the example below it has
2095been added to one of the alternatives for @code{line}:
2096
2097@example
2098@group
5e9b6624
AD
2099line:
2100 '\n'
2101| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2102| error '\n' @{ yyerrok; @}
bfa74976
RS
2103;
2104@end group
2105@end example
2106
ceed8467 2107This addition to the grammar allows for simple error recovery in the
6e649e65 2108event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2109read, the error will be recognized by the third rule for @code{line},
2110and parsing will continue. (The @code{yyerror} function is still called
2111upon to print its message as well.) The action executes the statement
2112@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2113that error recovery is complete (@pxref{Error Recovery}). Note the
2114difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2115misprint.
bfa74976
RS
2116
2117This form of error recovery deals with syntax errors. There are other
2118kinds of errors; for example, division by zero, which raises an exception
2119signal that is normally fatal. A real calculator program must handle this
2120signal and use @code{longjmp} to return to @code{main} and resume parsing
2121input lines; it would also have to discard the rest of the current line of
2122input. We won't discuss this issue further because it is not specific to
2123Bison programs.
2124
342b8b6e
AD
2125@node Location Tracking Calc
2126@section Location Tracking Calculator: @code{ltcalc}
2127@cindex location tracking calculator
2128@cindex @code{ltcalc}
2129@cindex calculator, location tracking
2130
9edcd895
AD
2131This example extends the infix notation calculator with location
2132tracking. This feature will be used to improve the error messages. For
2133the sake of clarity, this example is a simple integer calculator, since
2134most of the work needed to use locations will be done in the lexical
72d2299c 2135analyzer.
342b8b6e
AD
2136
2137@menu
f5f419de
DJ
2138* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2139* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2140* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2141@end menu
2142
f5f419de 2143@node Ltcalc Declarations
342b8b6e
AD
2144@subsection Declarations for @code{ltcalc}
2145
9edcd895
AD
2146The C and Bison declarations for the location tracking calculator are
2147the same as the declarations for the infix notation calculator.
342b8b6e
AD
2148
2149@example
2150/* Location tracking calculator. */
2151
2152%@{
38a92d50
PE
2153 #define YYSTYPE int
2154 #include <math.h>
2155 int yylex (void);
2156 void yyerror (char const *);
342b8b6e
AD
2157%@}
2158
2159/* Bison declarations. */
2160%token NUM
2161
2162%left '-' '+'
2163%left '*' '/'
d78f0ac9 2164%precedence NEG
342b8b6e
AD
2165%right '^'
2166
38a92d50 2167%% /* The grammar follows. */
342b8b6e
AD
2168@end example
2169
9edcd895
AD
2170@noindent
2171Note there are no declarations specific to locations. Defining a data
2172type for storing locations is not needed: we will use the type provided
2173by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2174four member structure with the following integer fields:
2175@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2176@code{last_column}. By conventions, and in accordance with the GNU
2177Coding Standards and common practice, the line and column count both
2178start at 1.
342b8b6e
AD
2179
2180@node Ltcalc Rules
2181@subsection Grammar Rules for @code{ltcalc}
2182
9edcd895
AD
2183Whether handling locations or not has no effect on the syntax of your
2184language. Therefore, grammar rules for this example will be very close
2185to those of the previous example: we will only modify them to benefit
2186from the new information.
342b8b6e 2187
9edcd895
AD
2188Here, we will use locations to report divisions by zero, and locate the
2189wrong expressions or subexpressions.
342b8b6e
AD
2190
2191@example
2192@group
5e9b6624 2193input:
6240346a 2194 %empty
5e9b6624 2195| input line
342b8b6e
AD
2196;
2197@end group
2198
2199@group
5e9b6624
AD
2200line:
2201 '\n'
2202| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2203;
2204@end group
2205
2206@group
5e9b6624
AD
2207exp:
2208 NUM @{ $$ = $1; @}
2209| exp '+' exp @{ $$ = $1 + $3; @}
2210| exp '-' exp @{ $$ = $1 - $3; @}
2211| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2212@end group
342b8b6e 2213@group
5e9b6624
AD
2214| exp '/' exp
2215 @{
2216 if ($3)
2217 $$ = $1 / $3;
2218 else
2219 @{
2220 $$ = 1;
2221 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2222 @@3.first_line, @@3.first_column,
2223 @@3.last_line, @@3.last_column);
2224 @}
2225 @}
342b8b6e
AD
2226@end group
2227@group
5e9b6624
AD
2228| '-' exp %prec NEG @{ $$ = -$2; @}
2229| exp '^' exp @{ $$ = pow ($1, $3); @}
2230| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2231@end group
2232@end example
2233
2234This code shows how to reach locations inside of semantic actions, by
2235using the pseudo-variables @code{@@@var{n}} for rule components, and the
2236pseudo-variable @code{@@$} for groupings.
2237
9edcd895
AD
2238We don't need to assign a value to @code{@@$}: the output parser does it
2239automatically. By default, before executing the C code of each action,
2240@code{@@$} is set to range from the beginning of @code{@@1} to the end
2241of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2242can be redefined (@pxref{Location Default Action, , Default Action for
2243Locations}), and for very specific rules, @code{@@$} can be computed by
2244hand.
342b8b6e
AD
2245
2246@node Ltcalc Lexer
2247@subsection The @code{ltcalc} Lexical Analyzer.
2248
9edcd895 2249Until now, we relied on Bison's defaults to enable location
72d2299c 2250tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2251able to feed the parser with the token locations, as it already does for
2252semantic values.
342b8b6e 2253
9edcd895
AD
2254To this end, we must take into account every single character of the
2255input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2256
2257@example
2258@group
2259int
2260yylex (void)
2261@{
2262 int c;
18b519c0 2263@end group
342b8b6e 2264
18b519c0 2265@group
72d2299c 2266 /* Skip white space. */
342b8b6e
AD
2267 while ((c = getchar ()) == ' ' || c == '\t')
2268 ++yylloc.last_column;
18b519c0 2269@end group
342b8b6e 2270
18b519c0 2271@group
72d2299c 2272 /* Step. */
342b8b6e
AD
2273 yylloc.first_line = yylloc.last_line;
2274 yylloc.first_column = yylloc.last_column;
2275@end group
2276
2277@group
72d2299c 2278 /* Process numbers. */
342b8b6e
AD
2279 if (isdigit (c))
2280 @{
2281 yylval = c - '0';
2282 ++yylloc.last_column;
2283 while (isdigit (c = getchar ()))
2284 @{
2285 ++yylloc.last_column;
2286 yylval = yylval * 10 + c - '0';
2287 @}
2288 ungetc (c, stdin);
2289 return NUM;
2290 @}
2291@end group
2292
72d2299c 2293 /* Return end-of-input. */
342b8b6e
AD
2294 if (c == EOF)
2295 return 0;
2296
d4fca427 2297@group
72d2299c 2298 /* Return a single char, and update location. */
342b8b6e
AD
2299 if (c == '\n')
2300 @{
2301 ++yylloc.last_line;
2302 yylloc.last_column = 0;
2303 @}
2304 else
2305 ++yylloc.last_column;
2306 return c;
2307@}
d4fca427 2308@end group
342b8b6e
AD
2309@end example
2310
9edcd895
AD
2311Basically, the lexical analyzer performs the same processing as before:
2312it skips blanks and tabs, and reads numbers or single-character tokens.
2313In addition, it updates @code{yylloc}, the global variable (of type
2314@code{YYLTYPE}) containing the token's location.
342b8b6e 2315
9edcd895 2316Now, each time this function returns a token, the parser has its number
72d2299c 2317as well as its semantic value, and its location in the text. The last
9edcd895
AD
2318needed change is to initialize @code{yylloc}, for example in the
2319controlling function:
342b8b6e
AD
2320
2321@example
9edcd895 2322@group
342b8b6e
AD
2323int
2324main (void)
2325@{
2326 yylloc.first_line = yylloc.last_line = 1;
2327 yylloc.first_column = yylloc.last_column = 0;
2328 return yyparse ();
2329@}
9edcd895 2330@end group
342b8b6e
AD
2331@end example
2332
9edcd895
AD
2333Remember that computing locations is not a matter of syntax. Every
2334character must be associated to a location update, whether it is in
2335valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2336
2337@node Multi-function Calc
bfa74976
RS
2338@section Multi-Function Calculator: @code{mfcalc}
2339@cindex multi-function calculator
2340@cindex @code{mfcalc}
2341@cindex calculator, multi-function
2342
2343Now that the basics of Bison have been discussed, it is time to move on to
2344a more advanced problem. The above calculators provided only five
2345functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2346be nice to have a calculator that provides other mathematical functions such
2347as @code{sin}, @code{cos}, etc.
2348
2349It is easy to add new operators to the infix calculator as long as they are
2350only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2351back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2352adding a new operator. But we want something more flexible: built-in
2353functions whose syntax has this form:
2354
2355@example
2356@var{function_name} (@var{argument})
2357@end example
2358
2359@noindent
2360At the same time, we will add memory to the calculator, by allowing you
2361to create named variables, store values in them, and use them later.
2362Here is a sample session with the multi-function calculator:
2363
2364@example
d4fca427 2365@group
9edcd895
AD
2366$ @kbd{mfcalc}
2367@kbd{pi = 3.141592653589}
f9c75dd0 2368@result{} 3.1415926536
d4fca427
AD
2369@end group
2370@group
9edcd895 2371@kbd{sin(pi)}
f9c75dd0 2372@result{} 0.0000000000
d4fca427 2373@end group
9edcd895 2374@kbd{alpha = beta1 = 2.3}
f9c75dd0 2375@result{} 2.3000000000
9edcd895 2376@kbd{alpha}
f9c75dd0 2377@result{} 2.3000000000
9edcd895 2378@kbd{ln(alpha)}
f9c75dd0 2379@result{} 0.8329091229
9edcd895 2380@kbd{exp(ln(beta1))}
f9c75dd0 2381@result{} 2.3000000000
9edcd895 2382$
bfa74976
RS
2383@end example
2384
2385Note that multiple assignment and nested function calls are permitted.
2386
2387@menu
f5f419de
DJ
2388* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2389* Mfcalc Rules:: Grammar rules for the calculator.
2390* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2391* Mfcalc Lexer:: The lexical analyzer.
2392* Mfcalc Main:: The controlling function.
bfa74976
RS
2393@end menu
2394
f5f419de 2395@node Mfcalc Declarations
bfa74976
RS
2396@subsection Declarations for @code{mfcalc}
2397
2398Here are the C and Bison declarations for the multi-function calculator.
2399
93c150b6 2400@comment file: mfcalc.y: 1
c93f22fc 2401@example
18b519c0 2402@group
bfa74976 2403%@{
f9c75dd0 2404 #include <stdio.h> /* For printf, etc. */
578e3413 2405 #include <math.h> /* For pow, used in the grammar. */
4c9b8f13 2406 #include "calc.h" /* Contains definition of 'symrec'. */
38a92d50
PE
2407 int yylex (void);
2408 void yyerror (char const *);
bfa74976 2409%@}
18b519c0 2410@end group
93c150b6 2411
18b519c0 2412@group
bfa74976 2413%union @{
38a92d50
PE
2414 double val; /* For returning numbers. */
2415 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2416@}
18b519c0 2417@end group
38a92d50 2418%token <val> NUM /* Simple double precision number. */
93c150b6 2419%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2420%type <val> exp
2421
18b519c0 2422@group
e8f7155d 2423%precedence '='
bfa74976
RS
2424%left '-' '+'
2425%left '*' '/'
d78f0ac9
AD
2426%precedence NEG /* negation--unary minus */
2427%right '^' /* exponentiation */
18b519c0 2428@end group
c93f22fc 2429@end example
bfa74976
RS
2430
2431The above grammar introduces only two new features of the Bison language.
2432These features allow semantic values to have various data types
2433(@pxref{Multiple Types, ,More Than One Value Type}).
2434
2435The @code{%union} declaration specifies the entire list of possible types;
2436this is instead of defining @code{YYSTYPE}. The allowable types are now
2437double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2438the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2439
2440Since values can now have various types, it is necessary to associate a
2441type with each grammar symbol whose semantic value is used. These symbols
2442are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2443declarations are augmented with information about their data type (placed
2444between angle brackets).
2445
704a47c4
AD
2446The Bison construct @code{%type} is used for declaring nonterminal
2447symbols, just as @code{%token} is used for declaring token types. We
2448have not used @code{%type} before because nonterminal symbols are
2449normally declared implicitly by the rules that define them. But
2450@code{exp} must be declared explicitly so we can specify its value type.
2451@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2452
342b8b6e 2453@node Mfcalc Rules
bfa74976
RS
2454@subsection Grammar Rules for @code{mfcalc}
2455
2456Here are the grammar rules for the multi-function calculator.
2457Most of them are copied directly from @code{calc}; three rules,
2458those which mention @code{VAR} or @code{FNCT}, are new.
2459
93c150b6 2460@comment file: mfcalc.y: 3
c93f22fc 2461@example
93c150b6 2462%% /* The grammar follows. */
18b519c0 2463@group
5e9b6624 2464input:
6240346a 2465 %empty
5e9b6624 2466| input line
bfa74976 2467;
18b519c0 2468@end group
bfa74976 2469
18b519c0 2470@group
bfa74976 2471line:
5e9b6624
AD
2472 '\n'
2473| exp '\n' @{ printf ("%.10g\n", $1); @}
2474| error '\n' @{ yyerrok; @}
bfa74976 2475;
18b519c0 2476@end group
bfa74976 2477
18b519c0 2478@group
5e9b6624
AD
2479exp:
2480 NUM @{ $$ = $1; @}
2481| VAR @{ $$ = $1->value.var; @}
2482| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2483| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2484| exp '+' exp @{ $$ = $1 + $3; @}
2485| exp '-' exp @{ $$ = $1 - $3; @}
2486| exp '*' exp @{ $$ = $1 * $3; @}
2487| exp '/' exp @{ $$ = $1 / $3; @}
2488| '-' exp %prec NEG @{ $$ = -$2; @}
2489| exp '^' exp @{ $$ = pow ($1, $3); @}
2490| '(' exp ')' @{ $$ = $2; @}
bfa74976 2491;
18b519c0 2492@end group
38a92d50 2493/* End of grammar. */
bfa74976 2494%%
c93f22fc 2495@end example
bfa74976 2496
f5f419de 2497@node Mfcalc Symbol Table
bfa74976
RS
2498@subsection The @code{mfcalc} Symbol Table
2499@cindex symbol table example
2500
2501The multi-function calculator requires a symbol table to keep track of the
2502names and meanings of variables and functions. This doesn't affect the
2503grammar rules (except for the actions) or the Bison declarations, but it
2504requires some additional C functions for support.
2505
2506The symbol table itself consists of a linked list of records. Its
2507definition, which is kept in the header @file{calc.h}, is as follows. It
2508provides for either functions or variables to be placed in the table.
2509
f9c75dd0 2510@comment file: calc.h
c93f22fc 2511@example
bfa74976 2512@group
38a92d50 2513/* Function type. */
32dfccf8 2514typedef double (*func_t) (double);
72f889cc 2515@end group
32dfccf8 2516
72f889cc 2517@group
38a92d50 2518/* Data type for links in the chain of symbols. */
bfa74976
RS
2519struct symrec
2520@{
38a92d50 2521 char *name; /* name of symbol */
bfa74976 2522 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2523 union
2524 @{
38a92d50
PE
2525 double var; /* value of a VAR */
2526 func_t fnctptr; /* value of a FNCT */
bfa74976 2527 @} value;
38a92d50 2528 struct symrec *next; /* link field */
bfa74976
RS
2529@};
2530@end group
2531
2532@group
2533typedef struct symrec symrec;
2534
4c9b8f13 2535/* The symbol table: a chain of 'struct symrec'. */
bfa74976
RS
2536extern symrec *sym_table;
2537
a730d142 2538symrec *putsym (char const *, int);
38a92d50 2539symrec *getsym (char const *);
bfa74976 2540@end group
c93f22fc 2541@end example
bfa74976 2542
aeb57fb6
AD
2543The new version of @code{main} will call @code{init_table} to initialize
2544the symbol table:
bfa74976 2545
93c150b6 2546@comment file: mfcalc.y: 3
c93f22fc 2547@example
18b519c0 2548@group
bfa74976
RS
2549struct init
2550@{
38a92d50
PE
2551 char const *fname;
2552 double (*fnct) (double);
bfa74976
RS
2553@};
2554@end group
2555
2556@group
38a92d50 2557struct init const arith_fncts[] =
13863333 2558@{
f9c75dd0
AD
2559 @{ "atan", atan @},
2560 @{ "cos", cos @},
2561 @{ "exp", exp @},
2562 @{ "ln", log @},
2563 @{ "sin", sin @},
2564 @{ "sqrt", sqrt @},
2565 @{ 0, 0 @},
13863333 2566@};
18b519c0 2567@end group
bfa74976 2568
18b519c0 2569@group
4c9b8f13 2570/* The symbol table: a chain of 'struct symrec'. */
38a92d50 2571symrec *sym_table;
bfa74976
RS
2572@end group
2573
2574@group
72d2299c 2575/* Put arithmetic functions in table. */
f9c75dd0 2576static
13863333
AD
2577void
2578init_table (void)
bfa74976
RS
2579@{
2580 int i;
bfa74976
RS
2581 for (i = 0; arith_fncts[i].fname != 0; i++)
2582 @{
aaaa2aae 2583 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2584 ptr->value.fnctptr = arith_fncts[i].fnct;
2585 @}
2586@}
2587@end group
c93f22fc 2588@end example
bfa74976
RS
2589
2590By simply editing the initialization list and adding the necessary include
2591files, you can add additional functions to the calculator.
2592
2593Two important functions allow look-up and installation of symbols in the
2594symbol table. The function @code{putsym} is passed a name and the type
2595(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2596linked to the front of the list, and a pointer to the object is returned.
2597The function @code{getsym} is passed the name of the symbol to look up. If
2598found, a pointer to that symbol is returned; otherwise zero is returned.
2599
93c150b6 2600@comment file: mfcalc.y: 3
c93f22fc 2601@example
f9c75dd0
AD
2602#include <stdlib.h> /* malloc. */
2603#include <string.h> /* strlen. */
2604
d4fca427 2605@group
bfa74976 2606symrec *
38a92d50 2607putsym (char const *sym_name, int sym_type)
bfa74976 2608@{
aaaa2aae 2609 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2610 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2611 strcpy (ptr->name,sym_name);
2612 ptr->type = sym_type;
72d2299c 2613 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2614 ptr->next = (struct symrec *)sym_table;
2615 sym_table = ptr;
2616 return ptr;
2617@}
d4fca427 2618@end group
bfa74976 2619
d4fca427 2620@group
bfa74976 2621symrec *
38a92d50 2622getsym (char const *sym_name)
bfa74976
RS
2623@{
2624 symrec *ptr;
2625 for (ptr = sym_table; ptr != (symrec *) 0;
2626 ptr = (symrec *)ptr->next)
f518dbaf 2627 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2628 return ptr;
2629 return 0;
2630@}
d4fca427 2631@end group
c93f22fc 2632@end example
bfa74976 2633
aeb57fb6
AD
2634@node Mfcalc Lexer
2635@subsection The @code{mfcalc} Lexer
2636
bfa74976
RS
2637The function @code{yylex} must now recognize variables, numeric values, and
2638the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2639characters with a leading letter are recognized as either variables or
bfa74976
RS
2640functions depending on what the symbol table says about them.
2641
2642The string is passed to @code{getsym} for look up in the symbol table. If
2643the name appears in the table, a pointer to its location and its type
2644(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2645already in the table, then it is installed as a @code{VAR} using
2646@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2647returned to @code{yyparse}.
bfa74976
RS
2648
2649No change is needed in the handling of numeric values and arithmetic
2650operators in @code{yylex}.
2651
93c150b6 2652@comment file: mfcalc.y: 3
c93f22fc 2653@example
bfa74976 2654#include <ctype.h>
13863333 2655
18b519c0 2656@group
13863333
AD
2657int
2658yylex (void)
bfa74976
RS
2659@{
2660 int c;
2661
72d2299c 2662 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2663 while ((c = getchar ()) == ' ' || c == '\t')
2664 continue;
bfa74976
RS
2665
2666 if (c == EOF)
2667 return 0;
2668@end group
2669
2670@group
2671 /* Char starts a number => parse the number. */
2672 if (c == '.' || isdigit (c))
2673 @{
2674 ungetc (c, stdin);
2675 scanf ("%lf", &yylval.val);
2676 return NUM;
2677 @}
2678@end group
2679
2680@group
2681 /* Char starts an identifier => read the name. */
2682 if (isalpha (c))
2683 @{
aaaa2aae
AD
2684 /* Initially make the buffer long enough
2685 for a 40-character symbol name. */
2686 static size_t length = 40;
bfa74976 2687 static char *symbuf = 0;
aaaa2aae 2688 symrec *s;
bfa74976
RS
2689 int i;
2690@end group
aaaa2aae
AD
2691 if (!symbuf)
2692 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2693
2694 i = 0;
2695 do
bfa74976
RS
2696@group
2697 @{
2698 /* If buffer is full, make it bigger. */
2699 if (i == length)
2700 @{
2701 length *= 2;
18b519c0 2702 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2703 @}
2704 /* Add this character to the buffer. */
2705 symbuf[i++] = c;
2706 /* Get another character. */
2707 c = getchar ();
2708 @}
2709@end group
2710@group
72d2299c 2711 while (isalnum (c));
bfa74976
RS
2712
2713 ungetc (c, stdin);
2714 symbuf[i] = '\0';
2715@end group
2716
2717@group
2718 s = getsym (symbuf);
2719 if (s == 0)
2720 s = putsym (symbuf, VAR);
2721 yylval.tptr = s;
2722 return s->type;
2723 @}
2724
2725 /* Any other character is a token by itself. */
2726 return c;
2727@}
2728@end group
c93f22fc 2729@end example
bfa74976 2730
aeb57fb6
AD
2731@node Mfcalc Main
2732@subsection The @code{mfcalc} Main
2733
2734The error reporting function is unchanged, and the new version of
93c150b6
AD
2735@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2736on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2737
93c150b6 2738@comment file: mfcalc.y: 3
c93f22fc 2739@example
aeb57fb6
AD
2740@group
2741/* Called by yyparse on error. */
2742void
2743yyerror (char const *s)
2744@{
2745 fprintf (stderr, "%s\n", s);
2746@}
2747@end group
2748
aaaa2aae 2749@group
aeb57fb6
AD
2750int
2751main (int argc, char const* argv[])
2752@{
93c150b6
AD
2753 int i;
2754 /* Enable parse traces on option -p. */
2755 for (i = 1; i < argc; ++i)
2756 if (!strcmp(argv[i], "-p"))
2757 yydebug = 1;
aeb57fb6
AD
2758 init_table ();
2759 return yyparse ();
2760@}
2761@end group
c93f22fc 2762@end example
aeb57fb6 2763
72d2299c 2764This program is both powerful and flexible. You may easily add new
704a47c4
AD
2765functions, and it is a simple job to modify this code to install
2766predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2767
342b8b6e 2768@node Exercises
bfa74976
RS
2769@section Exercises
2770@cindex exercises
2771
2772@enumerate
2773@item
2774Add some new functions from @file{math.h} to the initialization list.
2775
2776@item
2777Add another array that contains constants and their values. Then
2778modify @code{init_table} to add these constants to the symbol table.
2779It will be easiest to give the constants type @code{VAR}.
2780
2781@item
2782Make the program report an error if the user refers to an
2783uninitialized variable in any way except to store a value in it.
2784@end enumerate
2785
342b8b6e 2786@node Grammar File
bfa74976
RS
2787@chapter Bison Grammar Files
2788
2789Bison takes as input a context-free grammar specification and produces a
2790C-language function that recognizes correct instances of the grammar.
2791
ff7571c0 2792The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2793@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2794
2795@menu
303834cc
JD
2796* Grammar Outline:: Overall layout of the grammar file.
2797* Symbols:: Terminal and nonterminal symbols.
2798* Rules:: How to write grammar rules.
303834cc
JD
2799* Semantics:: Semantic values and actions.
2800* Tracking Locations:: Locations and actions.
2801* Named References:: Using named references in actions.
2802* Declarations:: All kinds of Bison declarations are described here.
2803* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2804@end menu
2805
342b8b6e 2806@node Grammar Outline
bfa74976 2807@section Outline of a Bison Grammar
c949ada3
AD
2808@cindex comment
2809@findex // @dots{}
2810@findex /* @dots{} */
bfa74976
RS
2811
2812A Bison grammar file has four main sections, shown here with the
2813appropriate delimiters:
2814
2815@example
2816%@{
38a92d50 2817 @var{Prologue}
bfa74976
RS
2818%@}
2819
2820@var{Bison declarations}
2821
2822%%
2823@var{Grammar rules}
2824%%
2825
75f5aaea 2826@var{Epilogue}
bfa74976
RS
2827@end example
2828
2829Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2830As a GNU extension, @samp{//} introduces a comment that continues until end
2831of line.
bfa74976
RS
2832
2833@menu
f5f419de 2834* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2835* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2836* Bison Declarations:: Syntax and usage of the Bison declarations section.
2837* Grammar Rules:: Syntax and usage of the grammar rules section.
2838* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2839@end menu
2840
38a92d50 2841@node Prologue
75f5aaea
MA
2842@subsection The prologue
2843@cindex declarations section
2844@cindex Prologue
2845@cindex declarations
bfa74976 2846
f8e1c9e5
AD
2847The @var{Prologue} section contains macro definitions and declarations
2848of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2849rules. These are copied to the beginning of the parser implementation
2850file so that they precede the definition of @code{yyparse}. You can
2851use @samp{#include} to get the declarations from a header file. If
2852you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2853@samp{%@}} delimiters that bracket this section.
bfa74976 2854
9c437126 2855The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2856of @samp{%@}} that is outside a comment, a string literal, or a
2857character constant.
2858
c732d2c6
AD
2859You may have more than one @var{Prologue} section, intermixed with the
2860@var{Bison declarations}. This allows you to have C and Bison
2861declarations that refer to each other. For example, the @code{%union}
2862declaration may use types defined in a header file, and you may wish to
2863prototype functions that take arguments of type @code{YYSTYPE}. This
2864can be done with two @var{Prologue} blocks, one before and one after the
2865@code{%union} declaration.
2866
c93f22fc 2867@example
efbc95a7 2868@group
c732d2c6 2869%@{
aef3da86 2870 #define _GNU_SOURCE
38a92d50
PE
2871 #include <stdio.h>
2872 #include "ptypes.h"
c732d2c6 2873%@}
efbc95a7 2874@end group
c732d2c6 2875
efbc95a7 2876@group
c732d2c6 2877%union @{
779e7ceb 2878 long int n;
c732d2c6
AD
2879 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2880@}
efbc95a7 2881@end group
c732d2c6 2882
efbc95a7 2883@group
c732d2c6 2884%@{
38a92d50
PE
2885 static void print_token_value (FILE *, int, YYSTYPE);
2886 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6 2887%@}
efbc95a7 2888@end group
c732d2c6
AD
2889
2890@dots{}
c93f22fc 2891@end example
c732d2c6 2892
aef3da86
PE
2893When in doubt, it is usually safer to put prologue code before all
2894Bison declarations, rather than after. For example, any definitions
2895of feature test macros like @code{_GNU_SOURCE} or
2896@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2897feature test macros can affect the behavior of Bison-generated
2898@code{#include} directives.
2899
2cbe6b7f
JD
2900@node Prologue Alternatives
2901@subsection Prologue Alternatives
2902@cindex Prologue Alternatives
2903
136a0f76 2904@findex %code
16dc6a9e
JD
2905@findex %code requires
2906@findex %code provides
2907@findex %code top
85894313 2908
2cbe6b7f 2909The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2910inflexible. As an alternative, Bison provides a @code{%code}
2911directive with an explicit qualifier field, which identifies the
2912purpose of the code and thus the location(s) where Bison should
2913generate it. For C/C++, the qualifier can be omitted for the default
2914location, or it can be one of @code{requires}, @code{provides},
e0c07222 2915@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2916
2917Look again at the example of the previous section:
2918
c93f22fc 2919@example
efbc95a7 2920@group
2cbe6b7f
JD
2921%@{
2922 #define _GNU_SOURCE
2923 #include <stdio.h>
2924 #include "ptypes.h"
2925%@}
efbc95a7 2926@end group
2cbe6b7f 2927
efbc95a7 2928@group
2cbe6b7f
JD
2929%union @{
2930 long int n;
2931 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2932@}
efbc95a7 2933@end group
2cbe6b7f 2934
efbc95a7 2935@group
2cbe6b7f
JD
2936%@{
2937 static void print_token_value (FILE *, int, YYSTYPE);
2938 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2939%@}
efbc95a7 2940@end group
2cbe6b7f
JD
2941
2942@dots{}
c93f22fc 2943@end example
2cbe6b7f
JD
2944
2945@noindent
ff7571c0
JD
2946Notice that there are two @var{Prologue} sections here, but there's a
2947subtle distinction between their functionality. For example, if you
2948decide to override Bison's default definition for @code{YYLTYPE}, in
2949which @var{Prologue} section should you write your new definition?
2950You should write it in the first since Bison will insert that code
2951into the parser implementation file @emph{before} the default
2952@code{YYLTYPE} definition. In which @var{Prologue} section should you
2953prototype an internal function, @code{trace_token}, that accepts
2954@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2955prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2956@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2957
2958This distinction in functionality between the two @var{Prologue} sections is
2959established by the appearance of the @code{%union} between them.
a501eca9 2960This behavior raises a few questions.
2cbe6b7f
JD
2961First, why should the position of a @code{%union} affect definitions related to
2962@code{YYLTYPE} and @code{yytokentype}?
2963Second, what if there is no @code{%union}?
2964In that case, the second kind of @var{Prologue} section is not available.
2965This behavior is not intuitive.
2966
8e0a5e9e 2967To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2968@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2969Let's go ahead and add the new @code{YYLTYPE} definition and the
2970@code{trace_token} prototype at the same time:
2971
c93f22fc 2972@example
16dc6a9e 2973%code top @{
2cbe6b7f
JD
2974 #define _GNU_SOURCE
2975 #include <stdio.h>
8e0a5e9e
JD
2976
2977 /* WARNING: The following code really belongs
4c9b8f13 2978 * in a '%code requires'; see below. */
8e0a5e9e 2979
2cbe6b7f
JD
2980 #include "ptypes.h"
2981 #define YYLTYPE YYLTYPE
2982 typedef struct YYLTYPE
2983 @{
2984 int first_line;
2985 int first_column;
2986 int last_line;
2987 int last_column;
2988 char *filename;
2989 @} YYLTYPE;
2990@}
2991
efbc95a7 2992@group
2cbe6b7f
JD
2993%union @{
2994 long int n;
2995 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2996@}
efbc95a7 2997@end group
2cbe6b7f 2998
efbc95a7 2999@group
2cbe6b7f
JD
3000%code @{
3001 static void print_token_value (FILE *, int, YYSTYPE);
3002 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3003 static void trace_token (enum yytokentype token, YYLTYPE loc);
3004@}
efbc95a7 3005@end group
2cbe6b7f
JD
3006
3007@dots{}
c93f22fc 3008@end example
2cbe6b7f
JD
3009
3010@noindent
16dc6a9e
JD
3011In this way, @code{%code top} and the unqualified @code{%code} achieve the same
3012functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 3013explicit which kind you intend.
2cbe6b7f
JD
3014Moreover, both kinds are always available even in the absence of @code{%union}.
3015
ff7571c0
JD
3016The @code{%code top} block above logically contains two parts. The
3017first two lines before the warning need to appear near the top of the
3018parser implementation file. The first line after the warning is
3019required by @code{YYSTYPE} and thus also needs to appear in the parser
3020implementation file. However, if you've instructed Bison to generate
3021a parser header file (@pxref{Decl Summary, ,%defines}), you probably
3022want that line to appear before the @code{YYSTYPE} definition in that
3023header file as well. The @code{YYLTYPE} definition should also appear
3024in the parser header file to override the default @code{YYLTYPE}
3025definition there.
2cbe6b7f 3026
16dc6a9e 3027In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3028lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3029definitions.
16dc6a9e 3030Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3031
c93f22fc 3032@example
d4fca427 3033@group
16dc6a9e 3034%code top @{
2cbe6b7f
JD
3035 #define _GNU_SOURCE
3036 #include <stdio.h>
3037@}
d4fca427 3038@end group
2cbe6b7f 3039
d4fca427 3040@group
16dc6a9e 3041%code requires @{
9bc0dd67
JD
3042 #include "ptypes.h"
3043@}
d4fca427
AD
3044@end group
3045@group
9bc0dd67
JD
3046%union @{
3047 long int n;
3048 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3049@}
d4fca427 3050@end group
9bc0dd67 3051
d4fca427 3052@group
16dc6a9e 3053%code requires @{
2cbe6b7f
JD
3054 #define YYLTYPE YYLTYPE
3055 typedef struct YYLTYPE
3056 @{
3057 int first_line;
3058 int first_column;
3059 int last_line;
3060 int last_column;
3061 char *filename;
3062 @} YYLTYPE;
3063@}
d4fca427 3064@end group
2cbe6b7f 3065
d4fca427 3066@group
136a0f76 3067%code @{
2cbe6b7f
JD
3068 static void print_token_value (FILE *, int, YYSTYPE);
3069 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3070 static void trace_token (enum yytokentype token, YYLTYPE loc);
3071@}
d4fca427 3072@end group
2cbe6b7f
JD
3073
3074@dots{}
c93f22fc 3075@end example
2cbe6b7f
JD
3076
3077@noindent
ff7571c0
JD
3078Now Bison will insert @code{#include "ptypes.h"} and the new
3079@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3080and @code{YYLTYPE} definitions in both the parser implementation file
3081and the parser header file. (By the same reasoning, @code{%code
3082requires} would also be the appropriate place to write your own
3083definition for @code{YYSTYPE}.)
3084
3085When you are writing dependency code for @code{YYSTYPE} and
3086@code{YYLTYPE}, you should prefer @code{%code requires} over
3087@code{%code top} regardless of whether you instruct Bison to generate
3088a parser header file. When you are writing code that you need Bison
3089to insert only into the parser implementation file and that has no
3090special need to appear at the top of that file, you should prefer the
3091unqualified @code{%code} over @code{%code top}. These practices will
3092make the purpose of each block of your code explicit to Bison and to
3093other developers reading your grammar file. Following these
3094practices, we expect the unqualified @code{%code} and @code{%code
3095requires} to be the most important of the four @var{Prologue}
16dc6a9e 3096alternatives.
a501eca9 3097
ff7571c0
JD
3098At some point while developing your parser, you might decide to
3099provide @code{trace_token} to modules that are external to your
3100parser. Thus, you might wish for Bison to insert the prototype into
3101both the parser header file and the parser implementation file. Since
3102this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3103@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3104@code{%code requires}. More importantly, since it depends upon
3105@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3106sufficient. Instead, move its prototype from the unqualified
3107@code{%code} to a @code{%code provides}:
2cbe6b7f 3108
c93f22fc 3109@example
d4fca427 3110@group
16dc6a9e 3111%code top @{
2cbe6b7f 3112 #define _GNU_SOURCE
136a0f76 3113 #include <stdio.h>
2cbe6b7f 3114@}
d4fca427 3115@end group
136a0f76 3116
d4fca427 3117@group
16dc6a9e 3118%code requires @{
2cbe6b7f
JD
3119 #include "ptypes.h"
3120@}
d4fca427
AD
3121@end group
3122@group
2cbe6b7f
JD
3123%union @{
3124 long int n;
3125 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3126@}
d4fca427 3127@end group
2cbe6b7f 3128
d4fca427 3129@group
16dc6a9e 3130%code requires @{
2cbe6b7f
JD
3131 #define YYLTYPE YYLTYPE
3132 typedef struct YYLTYPE
3133 @{
3134 int first_line;
3135 int first_column;
3136 int last_line;
3137 int last_column;
3138 char *filename;
3139 @} YYLTYPE;
3140@}
d4fca427 3141@end group
2cbe6b7f 3142
d4fca427 3143@group
16dc6a9e 3144%code provides @{
2cbe6b7f
JD
3145 void trace_token (enum yytokentype token, YYLTYPE loc);
3146@}
d4fca427 3147@end group
2cbe6b7f 3148
d4fca427 3149@group
2cbe6b7f 3150%code @{
9bc0dd67
JD
3151 static void print_token_value (FILE *, int, YYSTYPE);
3152 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3153@}
d4fca427 3154@end group
9bc0dd67
JD
3155
3156@dots{}
c93f22fc 3157@end example
9bc0dd67 3158
2cbe6b7f 3159@noindent
ff7571c0
JD
3160Bison will insert the @code{trace_token} prototype into both the
3161parser header file and the parser implementation file after the
3162definitions for @code{yytokentype}, @code{YYLTYPE}, and
3163@code{YYSTYPE}.
2cbe6b7f 3164
ff7571c0
JD
3165The above examples are careful to write directives in an order that
3166reflects the layout of the generated parser implementation and header
3167files: @code{%code top}, @code{%code requires}, @code{%code provides},
3168and then @code{%code}. While your grammar files may generally be
3169easier to read if you also follow this order, Bison does not require
3170it. Instead, Bison lets you choose an organization that makes sense
3171to you.
2cbe6b7f 3172
a501eca9 3173You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3174In that case, Bison concatenates the contained code in declaration order.
3175This is the only way in which the position of one of these directives within
3176the grammar file affects its functionality.
3177
3178The result of the previous two properties is greater flexibility in how you may
3179organize your grammar file.
3180For example, you may organize semantic-type-related directives by semantic
3181type:
3182
c93f22fc 3183@example
d4fca427 3184@group
16dc6a9e 3185%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3186%union @{ type1 field1; @}
3187%destructor @{ type1_free ($$); @} <field1>
c5026327 3188%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3189@end group
2cbe6b7f 3190
d4fca427 3191@group
16dc6a9e 3192%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3193%union @{ type2 field2; @}
3194%destructor @{ type2_free ($$); @} <field2>
c5026327 3195%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3196@end group
c93f22fc 3197@end example
2cbe6b7f
JD
3198
3199@noindent
3200You could even place each of the above directive groups in the rules section of
3201the grammar file next to the set of rules that uses the associated semantic
3202type.
61fee93e
JD
3203(In the rules section, you must terminate each of those directives with a
3204semicolon.)
2cbe6b7f
JD
3205And you don't have to worry that some directive (like a @code{%union}) in the
3206definitions section is going to adversely affect their functionality in some
3207counter-intuitive manner just because it comes first.
3208Such an organization is not possible using @var{Prologue} sections.
3209
a501eca9 3210This section has been concerned with explaining the advantages of the four
8e0a5e9e 3211@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3212However, in most cases when using these directives, you shouldn't need to
3213think about all the low-level ordering issues discussed here.
3214Instead, you should simply use these directives to label each block of your
3215code according to its purpose and let Bison handle the ordering.
3216@code{%code} is the most generic label.
16dc6a9e
JD
3217Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3218as needed.
a501eca9 3219
342b8b6e 3220@node Bison Declarations
bfa74976
RS
3221@subsection The Bison Declarations Section
3222@cindex Bison declarations (introduction)
3223@cindex declarations, Bison (introduction)
3224
3225The @var{Bison declarations} section contains declarations that define
3226terminal and nonterminal symbols, specify precedence, and so on.
3227In some simple grammars you may not need any declarations.
3228@xref{Declarations, ,Bison Declarations}.
3229
342b8b6e 3230@node Grammar Rules
bfa74976
RS
3231@subsection The Grammar Rules Section
3232@cindex grammar rules section
3233@cindex rules section for grammar
3234
3235The @dfn{grammar rules} section contains one or more Bison grammar
3236rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3237
3238There must always be at least one grammar rule, and the first
3239@samp{%%} (which precedes the grammar rules) may never be omitted even
3240if it is the first thing in the file.
3241
38a92d50 3242@node Epilogue
75f5aaea 3243@subsection The epilogue
bfa74976 3244@cindex additional C code section
75f5aaea 3245@cindex epilogue
bfa74976
RS
3246@cindex C code, section for additional
3247
ff7571c0
JD
3248The @var{Epilogue} is copied verbatim to the end of the parser
3249implementation file, just as the @var{Prologue} is copied to the
3250beginning. This is the most convenient place to put anything that you
3251want to have in the parser implementation file but which need not come
3252before the definition of @code{yyparse}. For example, the definitions
3253of @code{yylex} and @code{yyerror} often go here. Because C requires
3254functions to be declared before being used, you often need to declare
3255functions like @code{yylex} and @code{yyerror} in the Prologue, even
3256if you define them in the Epilogue. @xref{Interface, ,Parser
3257C-Language Interface}.
bfa74976
RS
3258
3259If the last section is empty, you may omit the @samp{%%} that separates it
3260from the grammar rules.
3261
f8e1c9e5
AD
3262The Bison parser itself contains many macros and identifiers whose names
3263start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3264any such names (except those documented in this manual) in the epilogue
3265of the grammar file.
bfa74976 3266
342b8b6e 3267@node Symbols
bfa74976
RS
3268@section Symbols, Terminal and Nonterminal
3269@cindex nonterminal symbol
3270@cindex terminal symbol
3271@cindex token type
3272@cindex symbol
3273
3274@dfn{Symbols} in Bison grammars represent the grammatical classifications
3275of the language.
3276
3277A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3278class of syntactically equivalent tokens. You use the symbol in grammar
3279rules to mean that a token in that class is allowed. The symbol is
3280represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3281function returns a token type code to indicate what kind of token has
3282been read. You don't need to know what the code value is; you can use
3283the symbol to stand for it.
bfa74976 3284
f8e1c9e5
AD
3285A @dfn{nonterminal symbol} stands for a class of syntactically
3286equivalent groupings. The symbol name is used in writing grammar rules.
3287By convention, it should be all lower case.
bfa74976 3288
82f3355e
JD
3289Symbol names can contain letters, underscores, periods, and non-initial
3290digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3291with POSIX Yacc. Periods and dashes make symbol names less convenient to
3292use with named references, which require brackets around such names
3293(@pxref{Named References}). Terminal symbols that contain periods or dashes
3294make little sense: since they are not valid symbols (in most programming
3295languages) they are not exported as token names.
bfa74976 3296
931c7513 3297There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3298
3299@itemize @bullet
3300@item
3301A @dfn{named token type} is written with an identifier, like an
c827f760 3302identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3303such name must be defined with a Bison declaration such as
3304@code{%token}. @xref{Token Decl, ,Token Type Names}.
3305
3306@item
3307@cindex character token
3308@cindex literal token
3309@cindex single-character literal
931c7513
RS
3310A @dfn{character token type} (or @dfn{literal character token}) is
3311written in the grammar using the same syntax used in C for character
3312constants; for example, @code{'+'} is a character token type. A
3313character token type doesn't need to be declared unless you need to
3314specify its semantic value data type (@pxref{Value Type, ,Data Types of
3315Semantic Values}), associativity, or precedence (@pxref{Precedence,
3316,Operator Precedence}).
bfa74976
RS
3317
3318By convention, a character token type is used only to represent a
3319token that consists of that particular character. Thus, the token
3320type @code{'+'} is used to represent the character @samp{+} as a
3321token. Nothing enforces this convention, but if you depart from it,
3322your program will confuse other readers.
3323
3324All the usual escape sequences used in character literals in C can be
3325used in Bison as well, but you must not use the null character as a
72d2299c
PE
3326character literal because its numeric code, zero, signifies
3327end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3328for @code{yylex}}). Also, unlike standard C, trigraphs have no
3329special meaning in Bison character literals, nor is backslash-newline
3330allowed.
931c7513
RS
3331
3332@item
3333@cindex string token
3334@cindex literal string token
9ecbd125 3335@cindex multicharacter literal
931c7513
RS
3336A @dfn{literal string token} is written like a C string constant; for
3337example, @code{"<="} is a literal string token. A literal string token
3338doesn't need to be declared unless you need to specify its semantic
14ded682 3339value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3340(@pxref{Precedence}).
3341
3342You can associate the literal string token with a symbolic name as an
3343alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3344Declarations}). If you don't do that, the lexical analyzer has to
3345retrieve the token number for the literal string token from the
3346@code{yytname} table (@pxref{Calling Convention}).
3347
c827f760 3348@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3349
3350By convention, a literal string token is used only to represent a token
3351that consists of that particular string. Thus, you should use the token
3352type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3353does not enforce this convention, but if you depart from it, people who
931c7513
RS
3354read your program will be confused.
3355
3356All the escape sequences used in string literals in C can be used in
92ac3705
PE
3357Bison as well, except that you must not use a null character within a
3358string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3359meaning in Bison string literals, nor is backslash-newline allowed. A
3360literal string token must contain two or more characters; for a token
3361containing just one character, use a character token (see above).
bfa74976
RS
3362@end itemize
3363
3364How you choose to write a terminal symbol has no effect on its
3365grammatical meaning. That depends only on where it appears in rules and
3366on when the parser function returns that symbol.
3367
72d2299c
PE
3368The value returned by @code{yylex} is always one of the terminal
3369symbols, except that a zero or negative value signifies end-of-input.
3370Whichever way you write the token type in the grammar rules, you write
3371it the same way in the definition of @code{yylex}. The numeric code
3372for a character token type is simply the positive numeric code of the
3373character, so @code{yylex} can use the identical value to generate the
3374requisite code, though you may need to convert it to @code{unsigned
3375char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3376Each named token type becomes a C macro in the parser implementation
3377file, so @code{yylex} can use the name to stand for the code. (This
3378is why periods don't make sense in terminal symbols.) @xref{Calling
3379Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3380
3381If @code{yylex} is defined in a separate file, you need to arrange for the
3382token-type macro definitions to be available there. Use the @samp{-d}
3383option when you run Bison, so that it will write these macro definitions
3384into a separate header file @file{@var{name}.tab.h} which you can include
3385in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3386
72d2299c 3387If you want to write a grammar that is portable to any Standard C
9d9b8b70 3388host, you must use only nonnull character tokens taken from the basic
c827f760 3389execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3390digits, the 52 lower- and upper-case English letters, and the
3391characters in the following C-language string:
3392
3393@example
3394"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3395@end example
3396
f8e1c9e5
AD
3397The @code{yylex} function and Bison must use a consistent character set
3398and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3399ASCII environment, but then compile and run the resulting
f8e1c9e5 3400program in an environment that uses an incompatible character set like
8a4281b9
JD
3401EBCDIC, the resulting program may not work because the tables
3402generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3403character tokens. It is standard practice for software distributions to
3404contain C source files that were generated by Bison in an
8a4281b9
JD
3405ASCII environment, so installers on platforms that are
3406incompatible with ASCII must rebuild those files before
f8e1c9e5 3407compiling them.
e966383b 3408
bfa74976
RS
3409The symbol @code{error} is a terminal symbol reserved for error recovery
3410(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3411In particular, @code{yylex} should never return this value. The default
3412value of the error token is 256, unless you explicitly assigned 256 to
3413one of your tokens with a @code{%token} declaration.
bfa74976 3414
342b8b6e 3415@node Rules
09add9c2
AD
3416@section Grammar Rules
3417
3418A Bison grammar is a list of rules.
3419
3420@menu
3421* Rules Syntax:: Syntax of the rules.
3422* Empty Rules:: Symbols that can match the empty string.
3423* Recursion:: Writing recursive rules.
3424@end menu
3425
3426@node Rules Syntax
3427@subsection Syntax of Grammar Rules
bfa74976
RS
3428@cindex rule syntax
3429@cindex grammar rule syntax
3430@cindex syntax of grammar rules
3431
3432A Bison grammar rule has the following general form:
3433
3434@example
5e9b6624 3435@var{result}: @var{components}@dots{};
bfa74976
RS
3436@end example
3437
3438@noindent
9ecbd125 3439where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3440and @var{components} are various terminal and nonterminal symbols that
13863333 3441are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3442
3443For example,
3444
3445@example
5e9b6624 3446exp: exp '+' exp;
bfa74976
RS
3447@end example
3448
3449@noindent
3450says that two groupings of type @code{exp}, with a @samp{+} token in between,
3451can be combined into a larger grouping of type @code{exp}.
3452
72d2299c
PE
3453White space in rules is significant only to separate symbols. You can add
3454extra white space as you wish.
bfa74976
RS
3455
3456Scattered among the components can be @var{actions} that determine
3457the semantics of the rule. An action looks like this:
3458
3459@example
3460@{@var{C statements}@}
3461@end example
3462
3463@noindent
287c78f6
PE
3464@cindex braced code
3465This is an example of @dfn{braced code}, that is, C code surrounded by
3466braces, much like a compound statement in C@. Braced code can contain
3467any sequence of C tokens, so long as its braces are balanced. Bison
3468does not check the braced code for correctness directly; it merely
ff7571c0
JD
3469copies the code to the parser implementation file, where the C
3470compiler can check it.
287c78f6
PE
3471
3472Within braced code, the balanced-brace count is not affected by braces
3473within comments, string literals, or character constants, but it is
3474affected by the C digraphs @samp{<%} and @samp{%>} that represent
3475braces. At the top level braced code must be terminated by @samp{@}}
3476and not by a digraph. Bison does not look for trigraphs, so if braced
3477code uses trigraphs you should ensure that they do not affect the
3478nesting of braces or the boundaries of comments, string literals, or
3479character constants.
3480
bfa74976
RS
3481Usually there is only one action and it follows the components.
3482@xref{Actions}.
3483
3484@findex |
3485Multiple rules for the same @var{result} can be written separately or can
3486be joined with the vertical-bar character @samp{|} as follows:
3487
bfa74976
RS
3488@example
3489@group
5e9b6624
AD
3490@var{result}:
3491 @var{rule1-components}@dots{}
3492| @var{rule2-components}@dots{}
3493@dots{}
3494;
bfa74976
RS
3495@end group
3496@end example
bfa74976
RS
3497
3498@noindent
3499They are still considered distinct rules even when joined in this way.
3500
09add9c2
AD
3501@node Empty Rules
3502@subsection Empty Rules
3503@cindex empty rule
3504@cindex rule, empty
3505@findex %empty
3506
3507A rule is said to be @dfn{empty} if its right-hand side (@var{components})
3508is empty. It means that @var{result} can match the empty string. For
3509example, here is how to define an optional semicolon:
3510
3511@example
3512semicolon.opt: | ";";
3513@end example
3514
3515@noindent
3516It is easy not to see an empty rule, especially when @code{|} is used. The
3517@code{%empty} directive allows to make explicit that a rule is empty on
3518purpose:
bfa74976
RS
3519
3520@example
3521@group
09add9c2
AD
3522semicolon.opt:
3523 %empty
3524| ";"
5e9b6624 3525;
bfa74976 3526@end group
09add9c2 3527@end example
bfa74976 3528
09add9c2
AD
3529Flagging a non-empty rule with @code{%empty} is an error. If run with
3530@option{-Wempty-rule}, @command{bison} will report empty rules without
3531@code{%empty}. Using @code{%empty} enables this warning, unless
3532@option{-Wno-empty-rule} was specified.
3533
3534The @code{%empty} directive is a Bison extension, it does not work with
3535Yacc. To remain compatible with POSIX Yacc, it is customary to write a
3536comment @samp{/* empty */} in each rule with no components:
3537
3538@example
bfa74976 3539@group
09add9c2
AD
3540semicolon.opt:
3541 /* empty */
3542| ";"
5e9b6624 3543;
bfa74976
RS
3544@end group
3545@end example
3546
bfa74976 3547
342b8b6e 3548@node Recursion
09add9c2 3549@subsection Recursive Rules
bfa74976 3550@cindex recursive rule
09add9c2 3551@cindex rule, recursive
bfa74976 3552
f8e1c9e5
AD
3553A rule is called @dfn{recursive} when its @var{result} nonterminal
3554appears also on its right hand side. Nearly all Bison grammars need to
3555use recursion, because that is the only way to define a sequence of any
3556number of a particular thing. Consider this recursive definition of a
9ecbd125 3557comma-separated sequence of one or more expressions:
bfa74976
RS
3558
3559@example
3560@group
5e9b6624
AD
3561expseq1:
3562 exp
3563| expseq1 ',' exp
3564;
bfa74976
RS
3565@end group
3566@end example
3567
3568@cindex left recursion
3569@cindex right recursion
3570@noindent
3571Since the recursive use of @code{expseq1} is the leftmost symbol in the
3572right hand side, we call this @dfn{left recursion}. By contrast, here
3573the same construct is defined using @dfn{right recursion}:
3574
3575@example
3576@group
5e9b6624
AD
3577expseq1:
3578 exp
3579| exp ',' expseq1
3580;
bfa74976
RS
3581@end group
3582@end example
3583
3584@noindent
ec3bc396
AD
3585Any kind of sequence can be defined using either left recursion or right
3586recursion, but you should always use left recursion, because it can
3587parse a sequence of any number of elements with bounded stack space.
3588Right recursion uses up space on the Bison stack in proportion to the
3589number of elements in the sequence, because all the elements must be
3590shifted onto the stack before the rule can be applied even once.
3591@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3592of this.
bfa74976
RS
3593
3594@cindex mutual recursion
3595@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3596rule does not appear directly on its right hand side, but does appear
3597in rules for other nonterminals which do appear on its right hand
13863333 3598side.
bfa74976
RS
3599
3600For example:
3601
3602@example
3603@group
5e9b6624
AD
3604expr:
3605 primary
3606| primary '+' primary
3607;
bfa74976
RS
3608@end group
3609
3610@group
5e9b6624
AD
3611primary:
3612 constant
3613| '(' expr ')'
3614;
bfa74976
RS
3615@end group
3616@end example
3617
3618@noindent
3619defines two mutually-recursive nonterminals, since each refers to the
3620other.
3621
342b8b6e 3622@node Semantics
bfa74976
RS
3623@section Defining Language Semantics
3624@cindex defining language semantics
13863333 3625@cindex language semantics, defining
bfa74976
RS
3626
3627The grammar rules for a language determine only the syntax. The semantics
3628are determined by the semantic values associated with various tokens and
3629groupings, and by the actions taken when various groupings are recognized.
3630
3631For example, the calculator calculates properly because the value
3632associated with each expression is the proper number; it adds properly
3633because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3634the numbers associated with @var{x} and @var{y}.
3635
3636@menu
3637* Value Type:: Specifying one data type for all semantic values.
3638* Multiple Types:: Specifying several alternative data types.
3639* Actions:: An action is the semantic definition of a grammar rule.
3640* Action Types:: Specifying data types for actions to operate on.
3641* Mid-Rule Actions:: Most actions go at the end of a rule.
3642 This says when, why and how to use the exceptional
3643 action in the middle of a rule.
3644@end menu
3645
342b8b6e 3646@node Value Type
bfa74976
RS
3647@subsection Data Types of Semantic Values
3648@cindex semantic value type
3649@cindex value type, semantic
3650@cindex data types of semantic values
3651@cindex default data type
3652
3653In a simple program it may be sufficient to use the same data type for
3654the semantic values of all language constructs. This was true in the
8a4281b9 3655RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3656Notation Calculator}).
bfa74976 3657
ddc8ede1
PE
3658Bison normally uses the type @code{int} for semantic values if your
3659program uses the same data type for all language constructs. To
bfa74976
RS
3660specify some other type, define @code{YYSTYPE} as a macro, like this:
3661
3662@example
3663#define YYSTYPE double
3664@end example
3665
3666@noindent
50cce58e
PE
3667@code{YYSTYPE}'s replacement list should be a type name
3668that does not contain parentheses or square brackets.
342b8b6e 3669This macro definition must go in the prologue of the grammar file
75f5aaea 3670(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3671
342b8b6e 3672@node Multiple Types
bfa74976
RS
3673@subsection More Than One Value Type
3674
3675In most programs, you will need different data types for different kinds
3676of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3677@code{int} or @code{long int}, while a string constant needs type
3678@code{char *}, and an identifier might need a pointer to an entry in the
3679symbol table.
bfa74976
RS
3680
3681To use more than one data type for semantic values in one parser, Bison
3682requires you to do two things:
3683
3684@itemize @bullet
3685@item
ddc8ede1 3686Specify the entire collection of possible data types, either by using the
704a47c4 3687@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3688Value Types}), or by using a @code{typedef} or a @code{#define} to
3689define @code{YYSTYPE} to be a union type whose member names are
3690the type tags.
bfa74976
RS
3691
3692@item
14ded682
AD
3693Choose one of those types for each symbol (terminal or nonterminal) for
3694which semantic values are used. This is done for tokens with the
3695@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3696and for groupings with the @code{%type} Bison declaration (@pxref{Type
3697Decl, ,Nonterminal Symbols}).
bfa74976
RS
3698@end itemize
3699
342b8b6e 3700@node Actions
bfa74976
RS
3701@subsection Actions
3702@cindex action
3703@vindex $$
3704@vindex $@var{n}
d013372c
AR
3705@vindex $@var{name}
3706@vindex $[@var{name}]
bfa74976
RS
3707
3708An action accompanies a syntactic rule and contains C code to be executed
3709each time an instance of that rule is recognized. The task of most actions
3710is to compute a semantic value for the grouping built by the rule from the
3711semantic values associated with tokens or smaller groupings.
3712
287c78f6
PE
3713An action consists of braced code containing C statements, and can be
3714placed at any position in the rule;
704a47c4
AD
3715it is executed at that position. Most rules have just one action at the
3716end of the rule, following all the components. Actions in the middle of
3717a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3718Actions, ,Actions in Mid-Rule}).
bfa74976 3719
ff7571c0
JD
3720The C code in an action can refer to the semantic values of the
3721components matched by the rule with the construct @code{$@var{n}},
3722which stands for the value of the @var{n}th component. The semantic
3723value for the grouping being constructed is @code{$$}. In addition,
3724the semantic values of symbols can be accessed with the named
3725references construct @code{$@var{name}} or @code{$[@var{name}]}.
3726Bison translates both of these constructs into expressions of the
3727appropriate type when it copies the actions into the parser
3728implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3729for the current grouping) is translated to a modifiable lvalue, so it
3730can be assigned to.
bfa74976
RS
3731
3732Here is a typical example:
3733
3734@example
3735@group
5e9b6624
AD
3736exp:
3737@dots{}
3738| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3739@end group
3740@end example
3741
d013372c
AR
3742Or, in terms of named references:
3743
3744@example
3745@group
5e9b6624
AD
3746exp[result]:
3747@dots{}
3748| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3749@end group
3750@end example
3751
bfa74976
RS
3752@noindent
3753This rule constructs an @code{exp} from two smaller @code{exp} groupings
3754connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3755(@code{$left} and @code{$right})
bfa74976
RS
3756refer to the semantic values of the two component @code{exp} groupings,
3757which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3758The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3759semantic value of
bfa74976
RS
3760the addition-expression just recognized by the rule. If there were a
3761useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3762referred to as @code{$2}.
bfa74976 3763
a7b15ab9
JD
3764@xref{Named References}, for more information about using the named
3765references construct.
d013372c 3766
3ded9a63
AD
3767Note that the vertical-bar character @samp{|} is really a rule
3768separator, and actions are attached to a single rule. This is a
3769difference with tools like Flex, for which @samp{|} stands for either
3770``or'', or ``the same action as that of the next rule''. In the
3771following example, the action is triggered only when @samp{b} is found:
3772
3773@example
3ded9a63 3774a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3775@end example
3776
bfa74976
RS
3777@cindex default action
3778If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3779@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3780becomes the value of the whole rule. Of course, the default action is
3781valid only if the two data types match. There is no meaningful default
3782action for an empty rule; every empty rule must have an explicit action
3783unless the rule's value does not matter.
bfa74976
RS
3784
3785@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3786to tokens and groupings on the stack @emph{before} those that match the
3787current rule. This is a very risky practice, and to use it reliably
3788you must be certain of the context in which the rule is applied. Here
3789is a case in which you can use this reliably:
3790
3791@example
3792@group
5e9b6624
AD
3793foo:
3794 expr bar '+' expr @{ @dots{} @}
3795| expr bar '-' expr @{ @dots{} @}
3796;
bfa74976
RS
3797@end group
3798
3799@group
5e9b6624 3800bar:
6240346a 3801 %empty @{ previous_expr = $0; @}
5e9b6624 3802;
bfa74976
RS
3803@end group
3804@end example
3805
3806As long as @code{bar} is used only in the fashion shown here, @code{$0}
3807always refers to the @code{expr} which precedes @code{bar} in the
3808definition of @code{foo}.
3809
32c29292 3810@vindex yylval
742e4900 3811It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3812any, from a semantic action.
3813This semantic value is stored in @code{yylval}.
3814@xref{Action Features, ,Special Features for Use in Actions}.
3815
342b8b6e 3816@node Action Types
bfa74976
RS
3817@subsection Data Types of Values in Actions
3818@cindex action data types
3819@cindex data types in actions
3820
3821If you have chosen a single data type for semantic values, the @code{$$}
3822and @code{$@var{n}} constructs always have that data type.
3823
3824If you have used @code{%union} to specify a variety of data types, then you
3825must declare a choice among these types for each terminal or nonterminal
3826symbol that can have a semantic value. Then each time you use @code{$$} or
3827@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3828in the rule. In this example,
bfa74976
RS
3829
3830@example
3831@group
5e9b6624
AD
3832exp:
3833 @dots{}
3834| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3835@end group
3836@end example
3837
3838@noindent
3839@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3840have the data type declared for the nonterminal symbol @code{exp}. If
3841@code{$2} were used, it would have the data type declared for the
e0c471a9 3842terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3843
3844Alternatively, you can specify the data type when you refer to the value,
3845by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3846reference. For example, if you have defined types as shown here:
3847
3848@example
3849@group
3850%union @{
3851 int itype;
3852 double dtype;
3853@}
3854@end group
3855@end example
3856
3857@noindent
3858then you can write @code{$<itype>1} to refer to the first subunit of the
3859rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3860
342b8b6e 3861@node Mid-Rule Actions
bfa74976
RS
3862@subsection Actions in Mid-Rule
3863@cindex actions in mid-rule
3864@cindex mid-rule actions
3865
3866Occasionally it is useful to put an action in the middle of a rule.
3867These actions are written just like usual end-of-rule actions, but they
3868are executed before the parser even recognizes the following components.
3869
be22823e
AD
3870@menu
3871* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
3872* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
3873* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
3874@end menu
3875
3876@node Using Mid-Rule Actions
3877@subsubsection Using Mid-Rule Actions
3878
bfa74976
RS
3879A mid-rule action may refer to the components preceding it using
3880@code{$@var{n}}, but it may not refer to subsequent components because
3881it is run before they are parsed.
3882
3883The mid-rule action itself counts as one of the components of the rule.
3884This makes a difference when there is another action later in the same rule
3885(and usually there is another at the end): you have to count the actions
3886along with the symbols when working out which number @var{n} to use in
3887@code{$@var{n}}.
3888
3889The mid-rule action can also have a semantic value. The action can set
3890its value with an assignment to @code{$$}, and actions later in the rule
3891can refer to the value using @code{$@var{n}}. Since there is no symbol
3892to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3893in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3894specify a data type each time you refer to this value.
bfa74976
RS
3895
3896There is no way to set the value of the entire rule with a mid-rule
3897action, because assignments to @code{$$} do not have that effect. The
3898only way to set the value for the entire rule is with an ordinary action
3899at the end of the rule.
3900
3901Here is an example from a hypothetical compiler, handling a @code{let}
3902statement that looks like @samp{let (@var{variable}) @var{statement}} and
3903serves to create a variable named @var{variable} temporarily for the
3904duration of @var{statement}. To parse this construct, we must put
3905@var{variable} into the symbol table while @var{statement} is parsed, then
3906remove it afterward. Here is how it is done:
3907
3908@example
3909@group
5e9b6624 3910stmt:
c949ada3
AD
3911 "let" '(' var ')'
3912 @{
3913 $<context>$ = push_context ();
3914 declare_variable ($3);
3915 @}
5e9b6624 3916 stmt
c949ada3
AD
3917 @{
3918 $$ = $6;
3919 pop_context ($<context>5);
3920 @}
bfa74976
RS
3921@end group
3922@end example
3923
3924@noindent
3925As soon as @samp{let (@var{variable})} has been recognized, the first
3926action is run. It saves a copy of the current semantic context (the
3927list of accessible variables) as its semantic value, using alternative
3928@code{context} in the data-type union. Then it calls
3929@code{declare_variable} to add the new variable to that list. Once the
3930first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
3931parsed.
3932
3933Note that the mid-rule action is component number 5, so the @samp{stmt} is
3934component number 6. Named references can be used to improve the readability
3935and maintainability (@pxref{Named References}):
3936
3937@example
3938@group
3939stmt:
3940 "let" '(' var ')'
3941 @{
3942 $<context>let = push_context ();
3943 declare_variable ($3);
3944 @}[let]
3945 stmt
3946 @{
3947 $$ = $6;
3948 pop_context ($<context>let);
3949 @}
3950@end group
3951@end example
bfa74976
RS
3952
3953After the embedded statement is parsed, its semantic value becomes the
3954value of the entire @code{let}-statement. Then the semantic value from the
3955earlier action is used to restore the prior list of variables. This
3956removes the temporary @code{let}-variable from the list so that it won't
3957appear to exist while the rest of the program is parsed.
3958
841a7737
JD
3959@findex %destructor
3960@cindex discarded symbols, mid-rule actions
3961@cindex error recovery, mid-rule actions
3962In the above example, if the parser initiates error recovery (@pxref{Error
3963Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3964it might discard the previous semantic context @code{$<context>5} without
3965restoring it.
3966Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3967Discarded Symbols}).
ec5479ce
JD
3968However, Bison currently provides no means to declare a destructor specific to
3969a particular mid-rule action's semantic value.
841a7737
JD
3970
3971One solution is to bury the mid-rule action inside a nonterminal symbol and to
3972declare a destructor for that symbol:
3973
3974@example
3975@group
3976%type <context> let
3977%destructor @{ pop_context ($$); @} let
09add9c2 3978@end group
841a7737
JD
3979
3980%%
3981
09add9c2 3982@group
5e9b6624
AD
3983stmt:
3984 let stmt
3985 @{
3986 $$ = $2;
be22823e 3987 pop_context ($let);
5e9b6624 3988 @};
09add9c2 3989@end group
841a7737 3990
09add9c2 3991@group
5e9b6624 3992let:
c949ada3 3993 "let" '(' var ')'
5e9b6624 3994 @{
be22823e 3995 $let = push_context ();
5e9b6624
AD
3996 declare_variable ($3);
3997 @};
841a7737
JD
3998
3999@end group
4000@end example
4001
4002@noindent
4003Note that the action is now at the end of its rule.
4004Any mid-rule action can be converted to an end-of-rule action in this way, and
4005this is what Bison actually does to implement mid-rule actions.
4006
be22823e
AD
4007@node Mid-Rule Action Translation
4008@subsubsection Mid-Rule Action Translation
4009@vindex $@@@var{n}
4010@vindex @@@var{n}
4011
4012As hinted earlier, mid-rule actions are actually transformed into regular
4013rules and actions. The various reports generated by Bison (textual,
4014graphical, etc., see @ref{Understanding, , Understanding Your Parser})
4015reveal this translation, best explained by means of an example. The
4016following rule:
4017
4018@example
4019exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
4020@end example
4021
4022@noindent
4023is translated into:
4024
4025@example
6240346a
AD
4026$@@1: %empty @{ a(); @};
4027$@@2: %empty @{ c(); @};
4028$@@3: %empty @{ d(); @};
be22823e
AD
4029exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
4030@end example
4031
4032@noindent
4033with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
4034
4035A mid-rule action is expected to generate a value if it uses @code{$$}, or
4036the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
4037action. In that case its nonterminal is rather named @code{@@@var{n}}:
4038
4039@example
4040exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4041@end example
4042
4043@noindent
4044is translated into
4045
4046@example
6240346a
AD
4047@@1: %empty @{ a(); @};
4048@@2: %empty @{ $$ = c(); @};
4049$@@3: %empty @{ d(); @};
be22823e
AD
4050exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
4051@end example
4052
4053There are probably two errors in the above example: the first mid-rule
4054action does not generate a value (it does not use @code{$$} although the
4055final action uses it), and the value of the second one is not used (the
4056final action does not use @code{$3}). Bison reports these errors when the
4057@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
4058Bison}):
4059
4060@example
4061$ bison -fcaret -Wmidrule-value mid.y
4062@group
4063mid.y:2.6-13: warning: unset value: $$
4064 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4065 ^^^^^^^^
4066@end group
4067@group
4068mid.y:2.19-31: warning: unused value: $3
4069 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4070 ^^^^^^^^^^^^^
4071@end group
4072@end example
4073
4074
4075@node Mid-Rule Conflicts
4076@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4077Taking action before a rule is completely recognized often leads to
4078conflicts since the parser must commit to a parse in order to execute the
4079action. For example, the following two rules, without mid-rule actions,
4080can coexist in a working parser because the parser can shift the open-brace
4081token and look at what follows before deciding whether there is a
4082declaration or not:
4083
4084@example
4085@group
5e9b6624
AD
4086compound:
4087 '@{' declarations statements '@}'
4088| '@{' statements '@}'
4089;
bfa74976
RS
4090@end group
4091@end example
4092
4093@noindent
4094But when we add a mid-rule action as follows, the rules become nonfunctional:
4095
4096@example
4097@group
5e9b6624
AD
4098compound:
4099 @{ prepare_for_local_variables (); @}
4100 '@{' declarations statements '@}'
bfa74976
RS
4101@end group
4102@group
5e9b6624
AD
4103| '@{' statements '@}'
4104;
bfa74976
RS
4105@end group
4106@end example
4107
4108@noindent
4109Now the parser is forced to decide whether to run the mid-rule action
4110when it has read no farther than the open-brace. In other words, it
4111must commit to using one rule or the other, without sufficient
4112information to do it correctly. (The open-brace token is what is called
742e4900
JD
4113the @dfn{lookahead} token at this time, since the parser is still
4114deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4115
4116You might think that you could correct the problem by putting identical
4117actions into the two rules, like this:
4118
4119@example
4120@group
5e9b6624
AD
4121compound:
4122 @{ prepare_for_local_variables (); @}
4123 '@{' declarations statements '@}'
4124| @{ prepare_for_local_variables (); @}
4125 '@{' statements '@}'
4126;
bfa74976
RS
4127@end group
4128@end example
4129
4130@noindent
4131But this does not help, because Bison does not realize that the two actions
4132are identical. (Bison never tries to understand the C code in an action.)
4133
4134If the grammar is such that a declaration can be distinguished from a
4135statement by the first token (which is true in C), then one solution which
4136does work is to put the action after the open-brace, like this:
4137
4138@example
4139@group
5e9b6624
AD
4140compound:
4141 '@{' @{ prepare_for_local_variables (); @}
4142 declarations statements '@}'
4143| '@{' statements '@}'
4144;
bfa74976
RS
4145@end group
4146@end example
4147
4148@noindent
4149Now the first token of the following declaration or statement,
4150which would in any case tell Bison which rule to use, can still do so.
4151
4152Another solution is to bury the action inside a nonterminal symbol which
4153serves as a subroutine:
4154
4155@example
4156@group
5e9b6624 4157subroutine:
6240346a 4158 %empty @{ prepare_for_local_variables (); @}
5e9b6624 4159;
bfa74976
RS
4160@end group
4161
4162@group
5e9b6624
AD
4163compound:
4164 subroutine '@{' declarations statements '@}'
4165| subroutine '@{' statements '@}'
4166;
bfa74976
RS
4167@end group
4168@end example
4169
4170@noindent
4171Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4172deciding which rule for @code{compound} it will eventually use.
bfa74976 4173
be22823e 4174
303834cc 4175@node Tracking Locations
847bf1f5
AD
4176@section Tracking Locations
4177@cindex location
95923bd6
AD
4178@cindex textual location
4179@cindex location, textual
847bf1f5
AD
4180
4181Though grammar rules and semantic actions are enough to write a fully
72d2299c 4182functional parser, it can be useful to process some additional information,
3e259915
MA
4183especially symbol locations.
4184
704a47c4
AD
4185The way locations are handled is defined by providing a data type, and
4186actions to take when rules are matched.
847bf1f5
AD
4187
4188@menu
4189* Location Type:: Specifying a data type for locations.
4190* Actions and Locations:: Using locations in actions.
4191* Location Default Action:: Defining a general way to compute locations.
4192@end menu
4193
342b8b6e 4194@node Location Type
847bf1f5
AD
4195@subsection Data Type of Locations
4196@cindex data type of locations
4197@cindex default location type
4198
4199Defining a data type for locations is much simpler than for semantic values,
4200since all tokens and groupings always use the same type.
4201
50cce58e
PE
4202You can specify the type of locations by defining a macro called
4203@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4204defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4205When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4206four members:
4207
4208@example
6273355b 4209typedef struct YYLTYPE
847bf1f5
AD
4210@{
4211 int first_line;
4212 int first_column;
4213 int last_line;
4214 int last_column;
6273355b 4215@} YYLTYPE;
847bf1f5
AD
4216@end example
4217
d59e456d
AD
4218When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4219initializes all these fields to 1 for @code{yylloc}. To initialize
4220@code{yylloc} with a custom location type (or to chose a different
4221initialization), use the @code{%initial-action} directive. @xref{Initial
4222Action Decl, , Performing Actions before Parsing}.
cd48d21d 4223
342b8b6e 4224@node Actions and Locations
847bf1f5
AD
4225@subsection Actions and Locations
4226@cindex location actions
4227@cindex actions, location
4228@vindex @@$
4229@vindex @@@var{n}
d013372c
AR
4230@vindex @@@var{name}
4231@vindex @@[@var{name}]
847bf1f5
AD
4232
4233Actions are not only useful for defining language semantics, but also for
4234describing the behavior of the output parser with locations.
4235
4236The most obvious way for building locations of syntactic groupings is very
72d2299c 4237similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4238constructs can be used to access the locations of the elements being matched.
4239The location of the @var{n}th component of the right hand side is
4240@code{@@@var{n}}, while the location of the left hand side grouping is
4241@code{@@$}.
4242
d013372c
AR
4243In addition, the named references construct @code{@@@var{name}} and
4244@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4245@xref{Named References}, for more information about using the named
4246references construct.
d013372c 4247
3e259915 4248Here is a basic example using the default data type for locations:
847bf1f5
AD
4249
4250@example
4251@group
5e9b6624
AD
4252exp:
4253 @dots{}
4254| exp '/' exp
4255 @{
4256 @@$.first_column = @@1.first_column;
4257 @@$.first_line = @@1.first_line;
4258 @@$.last_column = @@3.last_column;
4259 @@$.last_line = @@3.last_line;
4260 if ($3)
4261 $$ = $1 / $3;
4262 else
4263 @{
4264 $$ = 1;
4265 fprintf (stderr,
4266 "Division by zero, l%d,c%d-l%d,c%d",
4267 @@3.first_line, @@3.first_column,
4268 @@3.last_line, @@3.last_column);
4269 @}
4270 @}
847bf1f5
AD
4271@end group
4272@end example
4273
3e259915 4274As for semantic values, there is a default action for locations that is
72d2299c 4275run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4276beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4277last symbol.
3e259915 4278
72d2299c 4279With this default action, the location tracking can be fully automatic. The
3e259915
MA
4280example above simply rewrites this way:
4281
4282@example
4283@group
5e9b6624
AD
4284exp:
4285 @dots{}
4286| exp '/' exp
4287 @{
4288 if ($3)
4289 $$ = $1 / $3;
4290 else
4291 @{
4292 $$ = 1;
4293 fprintf (stderr,
4294 "Division by zero, l%d,c%d-l%d,c%d",
4295 @@3.first_line, @@3.first_column,
4296 @@3.last_line, @@3.last_column);
4297 @}
4298 @}
3e259915
MA
4299@end group
4300@end example
847bf1f5 4301
32c29292 4302@vindex yylloc
742e4900 4303It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4304from a semantic action.
4305This location is stored in @code{yylloc}.
4306@xref{Action Features, ,Special Features for Use in Actions}.
4307
342b8b6e 4308@node Location Default Action
847bf1f5
AD
4309@subsection Default Action for Locations
4310@vindex YYLLOC_DEFAULT
8a4281b9 4311@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4312
72d2299c 4313Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4314locations are much more general than semantic values, there is room in
4315the output parser to redefine the default action to take for each
72d2299c 4316rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4317matched, before the associated action is run. It is also invoked
4318while processing a syntax error, to compute the error's location.
8a4281b9 4319Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4320parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4321of that ambiguity.
847bf1f5 4322
3e259915 4323Most of the time, this macro is general enough to suppress location
79282c6c 4324dedicated code from semantic actions.
847bf1f5 4325
72d2299c 4326The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4327the location of the grouping (the result of the computation). When a
766de5eb 4328rule is matched, the second parameter identifies locations of
96b93a3d 4329all right hand side elements of the rule being matched, and the third
8710fc41 4330parameter is the size of the rule's right hand side.
8a4281b9 4331When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4332right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4333When processing a syntax error, the second parameter identifies locations
4334of the symbols that were discarded during error processing, and the third
96b93a3d 4335parameter is the number of discarded symbols.
847bf1f5 4336
766de5eb 4337By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4338
c93f22fc
AD
4339@example
4340@group
4341# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4342do \
4343 if (N) \
4344 @{ \
4345 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4346 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4347 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4348 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4349 @} \
4350 else \
4351 @{ \
4352 (Cur).first_line = (Cur).last_line = \
4353 YYRHSLOC(Rhs, 0).last_line; \
4354 (Cur).first_column = (Cur).last_column = \
4355 YYRHSLOC(Rhs, 0).last_column; \
4356 @} \
4357while (0)
4358@end group
4359@end example
676385e2 4360
aaaa2aae 4361@noindent
766de5eb
PE
4362where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4363in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4364just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4365
3e259915 4366When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4367
3e259915 4368@itemize @bullet
79282c6c 4369@item
72d2299c 4370All arguments are free of side-effects. However, only the first one (the
3e259915 4371result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4372
3e259915 4373@item
766de5eb
PE
4374For consistency with semantic actions, valid indexes within the
4375right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4376valid index, and it refers to the symbol just before the reduction.
4377During error processing @var{n} is always positive.
0ae99356
PE
4378
4379@item
4380Your macro should parenthesize its arguments, if need be, since the
4381actual arguments may not be surrounded by parentheses. Also, your
4382macro should expand to something that can be used as a single
4383statement when it is followed by a semicolon.
3e259915 4384@end itemize
847bf1f5 4385
378e917c 4386@node Named References
a7b15ab9 4387@section Named References
378e917c
JD
4388@cindex named references
4389
a40e77eb
JD
4390As described in the preceding sections, the traditional way to refer to any
4391semantic value or location is a @dfn{positional reference}, which takes the
4392form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4393such a reference is not very descriptive. Moreover, if you later decide to
4394insert or remove symbols in the right-hand side of a grammar rule, the need
4395to renumber such references can be tedious and error-prone.
4396
4397To avoid these issues, you can also refer to a semantic value or location
4398using a @dfn{named reference}. First of all, original symbol names may be
4399used as named references. For example:
378e917c
JD
4400
4401@example
4402@group
4403invocation: op '(' args ')'
4404 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4405@end group
4406@end example
4407
4408@noindent
a40e77eb 4409Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4410
4411@example
4412@group
4413invocation: op '(' args ')'
4414 @{ $$ = new_invocation ($op, $args, @@$); @}
4415@end group
4416@end example
4417
4418@noindent
4419However, sometimes regular symbol names are not sufficient due to
4420ambiguities:
4421
4422@example
4423@group
4424exp: exp '/' exp
4425 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4426
4427exp: exp '/' exp
4428 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4429
4430exp: exp '/' exp
4431 @{ $$ = $1 / $3; @} // No error.
4432@end group
4433@end example
4434
4435@noindent
4436When ambiguity occurs, explicitly declared names may be used for values and
4437locations. Explicit names are declared as a bracketed name after a symbol
4438appearance in rule definitions. For example:
4439@example
4440@group
4441exp[result]: exp[left] '/' exp[right]
4442 @{ $result = $left / $right; @}
4443@end group
4444@end example
4445
4446@noindent
a7b15ab9
JD
4447In order to access a semantic value generated by a mid-rule action, an
4448explicit name may also be declared by putting a bracketed name after the
4449closing brace of the mid-rule action code:
378e917c
JD
4450@example
4451@group
4452exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4453 @{ $res = $left + $right; @}
4454@end group
4455@end example
4456
4457@noindent
4458
4459In references, in order to specify names containing dots and dashes, an explicit
4460bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4461@example
4462@group
762caaf6 4463if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4464 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4465@end group
4466@end example
4467
4468It often happens that named references are followed by a dot, dash or other
4469C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4470@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4471@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4472value. In order to force Bison to recognize @samp{name.suffix} in its
4473entirety as the name of a semantic value, the bracketed syntax
4474@samp{$[name.suffix]} must be used.
4475
4476The named references feature is experimental. More user feedback will help
4477to stabilize it.
378e917c 4478
342b8b6e 4479@node Declarations
bfa74976
RS
4480@section Bison Declarations
4481@cindex declarations, Bison
4482@cindex Bison declarations
4483
4484The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4485used in formulating the grammar and the data types of semantic values.
4486@xref{Symbols}.
4487
4488All token type names (but not single-character literal tokens such as
4489@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4490declared if you need to specify which data type to use for the semantic
4491value (@pxref{Multiple Types, ,More Than One Value Type}).
4492
ff7571c0
JD
4493The first rule in the grammar file also specifies the start symbol, by
4494default. If you want some other symbol to be the start symbol, you
4495must declare it explicitly (@pxref{Language and Grammar, ,Languages
4496and Context-Free Grammars}).
bfa74976
RS
4497
4498@menu
b50d2359 4499* Require Decl:: Requiring a Bison version.
bfa74976
RS
4500* Token Decl:: Declaring terminal symbols.
4501* Precedence Decl:: Declaring terminals with precedence and associativity.
4502* Union Decl:: Declaring the set of all semantic value types.
4503* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4504* Initial Action Decl:: Code run before parsing starts.
72f889cc 4505* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4506* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4507* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4508* Start Decl:: Specifying the start symbol.
4509* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4510* Push Decl:: Requesting a push parser.
bfa74976 4511* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4512* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4513* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4514@end menu
4515
b50d2359
AD
4516@node Require Decl
4517@subsection Require a Version of Bison
4518@cindex version requirement
4519@cindex requiring a version of Bison
4520@findex %require
4521
4522You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4523the requirement is not met, @command{bison} exits with an error (exit
4524status 63).
b50d2359
AD
4525
4526@example
4527%require "@var{version}"
4528@end example
4529
342b8b6e 4530@node Token Decl
bfa74976
RS
4531@subsection Token Type Names
4532@cindex declaring token type names
4533@cindex token type names, declaring
931c7513 4534@cindex declaring literal string tokens
bfa74976
RS
4535@findex %token
4536
4537The basic way to declare a token type name (terminal symbol) is as follows:
4538
4539@example
4540%token @var{name}
4541@end example
4542
4543Bison will convert this into a @code{#define} directive in
4544the parser, so that the function @code{yylex} (if it is in this file)
4545can use the name @var{name} to stand for this token type's code.
4546
d78f0ac9
AD
4547Alternatively, you can use @code{%left}, @code{%right},
4548@code{%precedence}, or
14ded682
AD
4549@code{%nonassoc} instead of @code{%token}, if you wish to specify
4550associativity and precedence. @xref{Precedence Decl, ,Operator
4551Precedence}.
bfa74976
RS
4552
4553You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4554a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4555following the token name:
bfa74976
RS
4556
4557@example
4558%token NUM 300
1452af69 4559%token XNUM 0x12d // a GNU extension
bfa74976
RS
4560@end example
4561
4562@noindent
4563It is generally best, however, to let Bison choose the numeric codes for
4564all token types. Bison will automatically select codes that don't conflict
e966383b 4565with each other or with normal characters.
bfa74976
RS
4566
4567In the event that the stack type is a union, you must augment the
4568@code{%token} or other token declaration to include the data type
704a47c4
AD
4569alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4570Than One Value Type}).
bfa74976
RS
4571
4572For example:
4573
4574@example
4575@group
4576%union @{ /* define stack type */
4577 double val;
4578 symrec *tptr;
4579@}
4580%token <val> NUM /* define token NUM and its type */
4581@end group
4582@end example
4583
931c7513
RS
4584You can associate a literal string token with a token type name by
4585writing the literal string at the end of a @code{%token}
4586declaration which declares the name. For example:
4587
4588@example
4589%token arrow "=>"
4590@end example
4591
4592@noindent
4593For example, a grammar for the C language might specify these names with
4594equivalent literal string tokens:
4595
4596@example
4597%token <operator> OR "||"
4598%token <operator> LE 134 "<="
4599%left OR "<="
4600@end example
4601
4602@noindent
4603Once you equate the literal string and the token name, you can use them
4604interchangeably in further declarations or the grammar rules. The
4605@code{yylex} function can use the token name or the literal string to
4606obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4607Syntax error messages passed to @code{yyerror} from the parser will reference
4608the literal string instead of the token name.
4609
4610The token numbered as 0 corresponds to end of file; the following line
4611allows for nicer error messages referring to ``end of file'' instead
4612of ``$end'':
4613
4614@example
4615%token END 0 "end of file"
4616@end example
931c7513 4617
342b8b6e 4618@node Precedence Decl
bfa74976
RS
4619@subsection Operator Precedence
4620@cindex precedence declarations
4621@cindex declaring operator precedence
4622@cindex operator precedence, declaring
4623
d78f0ac9
AD
4624Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4625@code{%precedence} declaration to
bfa74976
RS
4626declare a token and specify its precedence and associativity, all at
4627once. These are called @dfn{precedence declarations}.
704a47c4
AD
4628@xref{Precedence, ,Operator Precedence}, for general information on
4629operator precedence.
bfa74976 4630
ab7f29f8 4631The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4632@code{%token}: either
4633
4634@example
4635%left @var{symbols}@dots{}
4636@end example
4637
4638@noindent
4639or
4640
4641@example
4642%left <@var{type}> @var{symbols}@dots{}
4643@end example
4644
4645And indeed any of these declarations serves the purposes of @code{%token}.
4646But in addition, they specify the associativity and relative precedence for
4647all the @var{symbols}:
4648
4649@itemize @bullet
4650@item
4651The associativity of an operator @var{op} determines how repeated uses
4652of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4653@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4654grouping @var{y} with @var{z} first. @code{%left} specifies
4655left-associativity (grouping @var{x} with @var{y} first) and
4656@code{%right} specifies right-associativity (grouping @var{y} with
4657@var{z} first). @code{%nonassoc} specifies no associativity, which
4658means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4659considered a syntax error.
4660
d78f0ac9
AD
4661@code{%precedence} gives only precedence to the @var{symbols}, and
4662defines no associativity at all. Use this to define precedence only,
4663and leave any potential conflict due to associativity enabled.
4664
bfa74976
RS
4665@item
4666The precedence of an operator determines how it nests with other operators.
4667All the tokens declared in a single precedence declaration have equal
4668precedence and nest together according to their associativity.
4669When two tokens declared in different precedence declarations associate,
4670the one declared later has the higher precedence and is grouped first.
4671@end itemize
4672
ab7f29f8
JD
4673For backward compatibility, there is a confusing difference between the
4674argument lists of @code{%token} and precedence declarations.
4675Only a @code{%token} can associate a literal string with a token type name.
4676A precedence declaration always interprets a literal string as a reference to a
4677separate token.
4678For example:
4679
4680@example
4681%left OR "<=" // Does not declare an alias.
4682%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4683@end example
4684
342b8b6e 4685@node Union Decl
bfa74976
RS
4686@subsection The Collection of Value Types
4687@cindex declaring value types
4688@cindex value types, declaring
4689@findex %union
4690
287c78f6
PE
4691The @code{%union} declaration specifies the entire collection of
4692possible data types for semantic values. The keyword @code{%union} is
4693followed by braced code containing the same thing that goes inside a
4694@code{union} in C@.
bfa74976
RS
4695
4696For example:
4697
4698@example
4699@group
4700%union @{
4701 double val;
4702 symrec *tptr;
4703@}
4704@end group
4705@end example
4706
4707@noindent
4708This says that the two alternative types are @code{double} and @code{symrec
4709*}. They are given names @code{val} and @code{tptr}; these names are used
4710in the @code{%token} and @code{%type} declarations to pick one of the types
4711for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4712
8a4281b9 4713As an extension to POSIX, a tag is allowed after the
6273355b
PE
4714@code{union}. For example:
4715
4716@example
4717@group
4718%union value @{
4719 double val;
4720 symrec *tptr;
4721@}
4722@end group
4723@end example
4724
d6ca7905 4725@noindent
6273355b
PE
4726specifies the union tag @code{value}, so the corresponding C type is
4727@code{union value}. If you do not specify a tag, it defaults to
4728@code{YYSTYPE}.
4729
8a4281b9 4730As another extension to POSIX, you may specify multiple
d6ca7905
PE
4731@code{%union} declarations; their contents are concatenated. However,
4732only the first @code{%union} declaration can specify a tag.
4733
6273355b 4734Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4735a semicolon after the closing brace.
4736
ddc8ede1
PE
4737Instead of @code{%union}, you can define and use your own union type
4738@code{YYSTYPE} if your grammar contains at least one
4739@samp{<@var{type}>} tag. For example, you can put the following into
4740a header file @file{parser.h}:
4741
4742@example
4743@group
4744union YYSTYPE @{
4745 double val;
4746 symrec *tptr;
4747@};
4748typedef union YYSTYPE YYSTYPE;
4749@end group
4750@end example
4751
4752@noindent
4753and then your grammar can use the following
4754instead of @code{%union}:
4755
4756@example
4757@group
4758%@{
4759#include "parser.h"
4760%@}
4761%type <val> expr
4762%token <tptr> ID
4763@end group
4764@end example
4765
342b8b6e 4766@node Type Decl
bfa74976
RS
4767@subsection Nonterminal Symbols
4768@cindex declaring value types, nonterminals
4769@cindex value types, nonterminals, declaring
4770@findex %type
4771
4772@noindent
4773When you use @code{%union} to specify multiple value types, you must
4774declare the value type of each nonterminal symbol for which values are
4775used. This is done with a @code{%type} declaration, like this:
4776
4777@example
4778%type <@var{type}> @var{nonterminal}@dots{}
4779@end example
4780
4781@noindent
704a47c4
AD
4782Here @var{nonterminal} is the name of a nonterminal symbol, and
4783@var{type} is the name given in the @code{%union} to the alternative
4784that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4785can give any number of nonterminal symbols in the same @code{%type}
4786declaration, if they have the same value type. Use spaces to separate
4787the symbol names.
bfa74976 4788
931c7513
RS
4789You can also declare the value type of a terminal symbol. To do this,
4790use the same @code{<@var{type}>} construction in a declaration for the
4791terminal symbol. All kinds of token declarations allow
4792@code{<@var{type}>}.
4793
18d192f0
AD
4794@node Initial Action Decl
4795@subsection Performing Actions before Parsing
4796@findex %initial-action
4797
4798Sometimes your parser needs to perform some initializations before
4799parsing. The @code{%initial-action} directive allows for such arbitrary
4800code.
4801
4802@deffn {Directive} %initial-action @{ @var{code} @}
4803@findex %initial-action
287c78f6 4804Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4805@code{yyparse} is called. The @var{code} may use @code{$$} (or
4806@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4807lookahead --- and the @code{%parse-param}.
18d192f0
AD
4808@end deffn
4809
451364ed
AD
4810For instance, if your locations use a file name, you may use
4811
4812@example
48b16bbc 4813%parse-param @{ char const *file_name @};
451364ed
AD
4814%initial-action
4815@{
4626a15d 4816 @@$.initialize (file_name);
451364ed
AD
4817@};
4818@end example
4819
18d192f0 4820
72f889cc
AD
4821@node Destructor Decl
4822@subsection Freeing Discarded Symbols
4823@cindex freeing discarded symbols
4824@findex %destructor
12e35840 4825@findex <*>
3ebecc24 4826@findex <>
a85284cf
AD
4827During error recovery (@pxref{Error Recovery}), symbols already pushed
4828on the stack and tokens coming from the rest of the file are discarded
4829until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4830or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4831symbols on the stack must be discarded. Even if the parser succeeds, it
4832must discard the start symbol.
258b75ca
PE
4833
4834When discarded symbols convey heap based information, this memory is
4835lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4836in traditional compilers, it is unacceptable for programs like shells or
4837protocol implementations that may parse and execute indefinitely.
258b75ca 4838
a85284cf
AD
4839The @code{%destructor} directive defines code that is called when a
4840symbol is automatically discarded.
72f889cc
AD
4841
4842@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4843@findex %destructor
287c78f6 4844Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4845@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4846designates the semantic value associated with the discarded symbol, and
4847@code{@@$} designates its location. The additional parser parameters are
4848also available (@pxref{Parser Function, , The Parser Function
4849@code{yyparse}}).
ec5479ce 4850
b2a0b7ca
JD
4851When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4852per-symbol @code{%destructor}.
4853You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4854tag among @var{symbols}.
b2a0b7ca 4855In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4856grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4857per-symbol @code{%destructor}.
4858
12e35840 4859Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4860(These default forms are experimental.
4861More user feedback will help to determine whether they should become permanent
4862features.)
3ebecc24 4863You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4864exactly one @code{%destructor} declaration in your grammar file.
4865The parser will invoke the @var{code} associated with one of these whenever it
4866discards any user-defined grammar symbol that has no per-symbol and no per-type
4867@code{%destructor}.
4868The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4869symbol for which you have formally declared a semantic type tag (@code{%type}
4870counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4871The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4872symbol that has no declared semantic type tag.
72f889cc
AD
4873@end deffn
4874
b2a0b7ca 4875@noindent
12e35840 4876For example:
72f889cc 4877
c93f22fc 4878@example
ec5479ce
JD
4879%union @{ char *string; @}
4880%token <string> STRING1
4881%token <string> STRING2
4882%type <string> string1
4883%type <string> string2
b2a0b7ca
JD
4884%union @{ char character; @}
4885%token <character> CHR
4886%type <character> chr
12e35840
JD
4887%token TAGLESS
4888
b2a0b7ca 4889%destructor @{ @} <character>
12e35840
JD
4890%destructor @{ free ($$); @} <*>
4891%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4892%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4893@end example
72f889cc
AD
4894
4895@noindent
b2a0b7ca
JD
4896guarantees that, when the parser discards any user-defined symbol that has a
4897semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4898to @code{free} by default.
ec5479ce
JD
4899However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4900prints its line number to @code{stdout}.
4901It performs only the second @code{%destructor} in this case, so it invokes
4902@code{free} only once.
12e35840
JD
4903Finally, the parser merely prints a message whenever it discards any symbol,
4904such as @code{TAGLESS}, that has no semantic type tag.
4905
4906A Bison-generated parser invokes the default @code{%destructor}s only for
4907user-defined as opposed to Bison-defined symbols.
4908For example, the parser will not invoke either kind of default
4909@code{%destructor} for the special Bison-defined symbols @code{$accept},
4910@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4911none of which you can reference in your grammar.
4912It also will not invoke either for the @code{error} token (@pxref{Table of
4913Symbols, ,error}), which is always defined by Bison regardless of whether you
4914reference it in your grammar.
4915However, it may invoke one of them for the end token (token 0) if you
4916redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4917
c93f22fc 4918@example
3508ce36 4919%token END 0
c93f22fc 4920@end example
3508ce36 4921
12e35840
JD
4922@cindex actions in mid-rule
4923@cindex mid-rule actions
4924Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4925mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4926That is, Bison does not consider a mid-rule to have a semantic value if you
4927do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4928(where @var{n} is the right-hand side symbol position of the mid-rule) in
4929any later action in that rule. However, if you do reference either, the
4930Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4931it discards the mid-rule symbol.
12e35840 4932
3508ce36
JD
4933@ignore
4934@noindent
4935In the future, it may be possible to redefine the @code{error} token as a
4936nonterminal that captures the discarded symbols.
4937In that case, the parser will invoke the default destructor for it as well.
4938@end ignore
4939
e757bb10
AD
4940@sp 1
4941
4942@cindex discarded symbols
4943@dfn{Discarded symbols} are the following:
4944
4945@itemize
4946@item
4947stacked symbols popped during the first phase of error recovery,
4948@item
4949incoming terminals during the second phase of error recovery,
4950@item
742e4900 4951the current lookahead and the entire stack (except the current
9d9b8b70 4952right-hand side symbols) when the parser returns immediately, and
258b75ca 4953@item
d3e4409a
AD
4954the current lookahead and the entire stack (including the current right-hand
4955side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4956@code{parse},
4957@item
258b75ca 4958the start symbol, when the parser succeeds.
e757bb10
AD
4959@end itemize
4960
9d9b8b70
PE
4961The parser can @dfn{return immediately} because of an explicit call to
4962@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4963exhaustion.
4964
29553547 4965Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4966error via @code{YYERROR} are not discarded automatically. As a rule
4967of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4968the memory.
e757bb10 4969
93c150b6
AD
4970@node Printer Decl
4971@subsection Printing Semantic Values
4972@cindex printing semantic values
4973@findex %printer
4974@findex <*>
4975@findex <>
4976When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4977the parser reports its actions, such as reductions. When a symbol involved
4978in an action is reported, only its kind is displayed, as the parser cannot
4979know how semantic values should be formatted.
4980
4981The @code{%printer} directive defines code that is called when a symbol is
4982reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4983Decl, , Freeing Discarded Symbols}).
4984
4985@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4986@findex %printer
4987@vindex yyoutput
4988@c This is the same text as for %destructor.
4989Invoke the braced @var{code} whenever the parser displays one of the
4990@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4991(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4992@code{$<@var{tag}>$}) designates the semantic value associated with the
4993symbol, and @code{@@$} its location. The additional parser parameters are
4994also available (@pxref{Parser Function, , The Parser Function
4995@code{yyparse}}).
93c150b6
AD
4996
4997The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4998Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4999@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
5000typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
5001@samp{<>}).
5002@end deffn
5003
5004@noindent
5005For example:
5006
5007@example
5008%union @{ char *string; @}
5009%token <string> STRING1
5010%token <string> STRING2
5011%type <string> string1
5012%type <string> string2
5013%union @{ char character; @}
5014%token <character> CHR
5015%type <character> chr
5016%token TAGLESS
5017
5018%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
5019%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
5020%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
5021%printer @{ fprintf (yyoutput, "<>"); @} <>
5022@end example
5023
5024@noindent
5025guarantees that, when the parser print any symbol that has a semantic type
5026tag other than @code{<character>}, it display the address of the semantic
5027value by default. However, when the parser displays a @code{STRING1} or a
5028@code{string1}, it formats it as a string in double quotes. It performs
5029only the second @code{%printer} in this case, so it prints only once.
5030Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
5031that has no semantic type tag. See also
5032
5033
342b8b6e 5034@node Expect Decl
bfa74976
RS
5035@subsection Suppressing Conflict Warnings
5036@cindex suppressing conflict warnings
5037@cindex preventing warnings about conflicts
5038@cindex warnings, preventing
5039@cindex conflicts, suppressing warnings of
5040@findex %expect
d6328241 5041@findex %expect-rr
bfa74976
RS
5042
5043Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
5044(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
5045have harmless shift/reduce conflicts which are resolved in a predictable
5046way and would be difficult to eliminate. It is desirable to suppress
5047the warning about these conflicts unless the number of conflicts
5048changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
5049
5050The declaration looks like this:
5051
5052@example
5053%expect @var{n}
5054@end example
5055
035aa4a0
PE
5056Here @var{n} is a decimal integer. The declaration says there should
5057be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
5058Bison reports an error if the number of shift/reduce conflicts differs
5059from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 5060
eb45ef3b 5061For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 5062serious, and should be eliminated entirely. Bison will always report
8a4281b9 5063reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5064parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5065there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5066also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5067in GLR parsers, using the declaration:
d6328241
PH
5068
5069@example
5070%expect-rr @var{n}
5071@end example
5072
bfa74976
RS
5073In general, using @code{%expect} involves these steps:
5074
5075@itemize @bullet
5076@item
5077Compile your grammar without @code{%expect}. Use the @samp{-v} option
5078to get a verbose list of where the conflicts occur. Bison will also
5079print the number of conflicts.
5080
5081@item
5082Check each of the conflicts to make sure that Bison's default
5083resolution is what you really want. If not, rewrite the grammar and
5084go back to the beginning.
5085
5086@item
5087Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5088number which Bison printed. With GLR parsers, add an
035aa4a0 5089@code{%expect-rr} declaration as well.
bfa74976
RS
5090@end itemize
5091
93d7dde9
JD
5092Now Bison will report an error if you introduce an unexpected conflict,
5093but will keep silent otherwise.
bfa74976 5094
342b8b6e 5095@node Start Decl
bfa74976
RS
5096@subsection The Start-Symbol
5097@cindex declaring the start symbol
5098@cindex start symbol, declaring
5099@cindex default start symbol
5100@findex %start
5101
5102Bison assumes by default that the start symbol for the grammar is the first
5103nonterminal specified in the grammar specification section. The programmer
5104may override this restriction with the @code{%start} declaration as follows:
5105
5106@example
5107%start @var{symbol}
5108@end example
5109
342b8b6e 5110@node Pure Decl
bfa74976
RS
5111@subsection A Pure (Reentrant) Parser
5112@cindex reentrant parser
5113@cindex pure parser
d9df47b6 5114@findex %define api.pure
bfa74976
RS
5115
5116A @dfn{reentrant} program is one which does not alter in the course of
5117execution; in other words, it consists entirely of @dfn{pure} (read-only)
5118code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5119for example, a nonreentrant program may not be safe to call from a signal
5120handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5121program must be called only within interlocks.
5122
70811b85 5123Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5124suitable for most uses, and it permits compatibility with Yacc. (The
5125standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5126statically allocated variables for communication with @code{yylex},
5127including @code{yylval} and @code{yylloc}.)
bfa74976 5128
70811b85 5129Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5130declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5131reentrant. It looks like this:
bfa74976
RS
5132
5133@example
1f1bd572 5134%define api.pure full
bfa74976
RS
5135@end example
5136
70811b85
RS
5137The result is that the communication variables @code{yylval} and
5138@code{yylloc} become local variables in @code{yyparse}, and a different
5139calling convention is used for the lexical analyzer function
5140@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5141Parsers}, for the details of this. The variable @code{yynerrs}
5142becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5143of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5144Reporting Function @code{yyerror}}). The convention for calling
5145@code{yyparse} itself is unchanged.
5146
5147Whether the parser is pure has nothing to do with the grammar rules.
5148You can generate either a pure parser or a nonreentrant parser from any
5149valid grammar.
bfa74976 5150
9987d1b3
JD
5151@node Push Decl
5152@subsection A Push Parser
5153@cindex push parser
5154@cindex push parser
67212941 5155@findex %define api.push-pull
9987d1b3 5156
59da312b
JD
5157(The current push parsing interface is experimental and may evolve.
5158More user feedback will help to stabilize it.)
5159
f4101aa6
AD
5160A pull parser is called once and it takes control until all its input
5161is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5162each time a new token is made available.
5163
f4101aa6 5164A push parser is typically useful when the parser is part of a
9987d1b3 5165main event loop in the client's application. This is typically
f4101aa6
AD
5166a requirement of a GUI, when the main event loop needs to be triggered
5167within a certain time period.
9987d1b3 5168
d782395d
JD
5169Normally, Bison generates a pull parser.
5170The following Bison declaration says that you want the parser to be a push
35c1e5f0 5171parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5172
5173@example
cf499cff 5174%define api.push-pull push
9987d1b3
JD
5175@end example
5176
5177In almost all cases, you want to ensure that your push parser is also
5178a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5179time you should create an impure push parser is to have backwards
9987d1b3
JD
5180compatibility with the impure Yacc pull mode interface. Unless you know
5181what you are doing, your declarations should look like this:
5182
5183@example
1f1bd572 5184%define api.pure full
cf499cff 5185%define api.push-pull push
9987d1b3
JD
5186@end example
5187
f4101aa6
AD
5188There is a major notable functional difference between the pure push parser
5189and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5190many parser instances, of the same type of parser, in memory at the same time.
5191An impure push parser should only use one parser at a time.
5192
5193When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5194the generated parser. @code{yypstate} is a structure that the generated
5195parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5196function that will create a new parser instance. @code{yypstate_delete}
5197will free the resources associated with the corresponding parser instance.
f4101aa6 5198Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5199token is available to provide the parser. A trivial example
5200of using a pure push parser would look like this:
5201
5202@example
5203int status;
5204yypstate *ps = yypstate_new ();
5205do @{
5206 status = yypush_parse (ps, yylex (), NULL);
5207@} while (status == YYPUSH_MORE);
5208yypstate_delete (ps);
5209@end example
5210
5211If the user decided to use an impure push parser, a few things about
f4101aa6 5212the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5213a global variable instead of a variable in the @code{yypush_parse} function.
5214For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5215changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5216example would thus look like this:
5217
5218@example
5219extern int yychar;
5220int status;
5221yypstate *ps = yypstate_new ();
5222do @{
5223 yychar = yylex ();
5224 status = yypush_parse (ps);
5225@} while (status == YYPUSH_MORE);
5226yypstate_delete (ps);
5227@end example
5228
f4101aa6 5229That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5230for use by the next invocation of the @code{yypush_parse} function.
5231
f4101aa6 5232Bison also supports both the push parser interface along with the pull parser
9987d1b3 5233interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5234you should replace the @samp{%define api.push-pull push} declaration with the
5235@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5236the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5237and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5238would be used. However, the user should note that it is implemented in the
d782395d
JD
5239generated parser by calling @code{yypull_parse}.
5240This makes the @code{yyparse} function that is generated with the
cf499cff 5241@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5242@code{yyparse} function. If the user
5243calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5244stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5245and then @code{yypull_parse} the rest of the input stream. If you would like
5246to switch back and forth between between parsing styles, you would have to
5247write your own @code{yypull_parse} function that knows when to quit looking
5248for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5249like this:
5250
5251@example
5252yypstate *ps = yypstate_new ();
5253yypull_parse (ps); /* Will call the lexer */
5254yypstate_delete (ps);
5255@end example
5256
67501061 5257Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5258the generated parser with @samp{%define api.push-pull both} as it did for
5259@samp{%define api.push-pull push}.
9987d1b3 5260
342b8b6e 5261@node Decl Summary
bfa74976
RS
5262@subsection Bison Declaration Summary
5263@cindex Bison declaration summary
5264@cindex declaration summary
5265@cindex summary, Bison declaration
5266
d8988b2f 5267Here is a summary of the declarations used to define a grammar:
bfa74976 5268
18b519c0 5269@deffn {Directive} %union
bfa74976
RS
5270Declare the collection of data types that semantic values may have
5271(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5272@end deffn
bfa74976 5273
18b519c0 5274@deffn {Directive} %token
bfa74976
RS
5275Declare a terminal symbol (token type name) with no precedence
5276or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5277@end deffn
bfa74976 5278
18b519c0 5279@deffn {Directive} %right
bfa74976
RS
5280Declare a terminal symbol (token type name) that is right-associative
5281(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5282@end deffn
bfa74976 5283
18b519c0 5284@deffn {Directive} %left
bfa74976
RS
5285Declare a terminal symbol (token type name) that is left-associative
5286(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5287@end deffn
bfa74976 5288
18b519c0 5289@deffn {Directive} %nonassoc
bfa74976 5290Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5291(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5292Using it in a way that would be associative is a syntax error.
5293@end deffn
5294
91d2c560 5295@ifset defaultprec
39a06c25 5296@deffn {Directive} %default-prec
22fccf95 5297Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5298(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5299@end deffn
91d2c560 5300@end ifset
bfa74976 5301
18b519c0 5302@deffn {Directive} %type
bfa74976
RS
5303Declare the type of semantic values for a nonterminal symbol
5304(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5305@end deffn
bfa74976 5306
18b519c0 5307@deffn {Directive} %start
89cab50d
AD
5308Specify the grammar's start symbol (@pxref{Start Decl, ,The
5309Start-Symbol}).
18b519c0 5310@end deffn
bfa74976 5311
18b519c0 5312@deffn {Directive} %expect
bfa74976
RS
5313Declare the expected number of shift-reduce conflicts
5314(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5315@end deffn
5316
bfa74976 5317
d8988b2f
AD
5318@sp 1
5319@noindent
5320In order to change the behavior of @command{bison}, use the following
5321directives:
5322
148d66d8 5323@deffn {Directive} %code @{@var{code}@}
e0c07222 5324@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5325@findex %code
e0c07222
JD
5326Insert @var{code} verbatim into the output parser source at the
5327default location or at the location specified by @var{qualifier}.
5328@xref{%code Summary}.
148d66d8
JD
5329@end deffn
5330
18b519c0 5331@deffn {Directive} %debug
60aa04a2 5332Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5333parse.trace}.
ec3bc396 5334@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5335@end deffn
d8988b2f 5336
35c1e5f0
JD
5337@deffn {Directive} %define @var{variable}
5338@deffnx {Directive} %define @var{variable} @var{value}
5339@deffnx {Directive} %define @var{variable} "@var{value}"
5340Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5341@end deffn
5342
5343@deffn {Directive} %defines
5344Write a parser header file containing macro definitions for the token
5345type names defined in the grammar as well as a few other declarations.
5346If the parser implementation file is named @file{@var{name}.c} then
5347the parser header file is named @file{@var{name}.h}.
5348
5349For C parsers, the parser header file declares @code{YYSTYPE} unless
5350@code{YYSTYPE} is already defined as a macro or you have used a
5351@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5352you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5353Value Type}) with components that require other definitions, or if you
5354have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5355Type, ,Data Types of Semantic Values}), you need to arrange for these
5356definitions to be propagated to all modules, e.g., by putting them in
5357a prerequisite header that is included both by your parser and by any
5358other module that needs @code{YYSTYPE}.
5359
5360Unless your parser is pure, the parser header file declares
5361@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5362(Reentrant) Parser}.
5363
5364If you have also used locations, the parser header file declares
303834cc
JD
5365@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5366@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5367
5368This parser header file is normally essential if you wish to put the
5369definition of @code{yylex} in a separate source file, because
5370@code{yylex} typically needs to be able to refer to the
5371above-mentioned declarations and to the token type codes. @xref{Token
5372Values, ,Semantic Values of Tokens}.
5373
5374@findex %code requires
5375@findex %code provides
5376If you have declared @code{%code requires} or @code{%code provides}, the output
5377header also contains their code.
5378@xref{%code Summary}.
c9d5bcc9
AD
5379
5380@cindex Header guard
5381The generated header is protected against multiple inclusions with a C
5382preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5383@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5384,Multiple Parsers in the Same Program}) and generated file name turned
5385uppercase, with each series of non alphanumerical characters converted to a
5386single underscore.
5387
5388For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5389"lib/parse.h"}, the header will be guarded as follows.
5390@example
5391#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5392# define YY_CALC_LIB_PARSE_H_INCLUDED
5393...
5394#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5395@end example
35c1e5f0
JD
5396@end deffn
5397
5398@deffn {Directive} %defines @var{defines-file}
fe65b144 5399Same as above, but save in the file @file{@var{defines-file}}.
35c1e5f0
JD
5400@end deffn
5401
5402@deffn {Directive} %destructor
5403Specify how the parser should reclaim the memory associated to
5404discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5405@end deffn
5406
5407@deffn {Directive} %file-prefix "@var{prefix}"
5408Specify a prefix to use for all Bison output file names. The names
5409are chosen as if the grammar file were named @file{@var{prefix}.y}.
5410@end deffn
5411
5412@deffn {Directive} %language "@var{language}"
5413Specify the programming language for the generated parser. Currently
5414supported languages include C, C++, and Java.
5415@var{language} is case-insensitive.
5416
35c1e5f0
JD
5417@end deffn
5418
5419@deffn {Directive} %locations
5420Generate the code processing the locations (@pxref{Action Features,
5421,Special Features for Use in Actions}). This mode is enabled as soon as
5422the grammar uses the special @samp{@@@var{n}} tokens, but if your
5423grammar does not use it, using @samp{%locations} allows for more
5424accurate syntax error messages.
5425@end deffn
5426
5427@deffn {Directive} %name-prefix "@var{prefix}"
5428Rename the external symbols used in the parser so that they start with
5429@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5430in C parsers
5431is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5432@code{yylval}, @code{yychar}, @code{yydebug}, and
5433(if locations are used) @code{yylloc}. If you use a push parser,
5434@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5435@code{yypstate_new} and @code{yypstate_delete} will
5436also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5437names become @code{c_parse}, @code{c_lex}, and so on.
5438For C++ parsers, see the @samp{%define api.namespace} documentation in this
5439section.
5440@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5441@end deffn
5442
5443@ifset defaultprec
5444@deffn {Directive} %no-default-prec
5445Do not assign a precedence to rules lacking an explicit @code{%prec}
5446modifier (@pxref{Contextual Precedence, ,Context-Dependent
5447Precedence}).
5448@end deffn
5449@end ifset
5450
5451@deffn {Directive} %no-lines
5452Don't generate any @code{#line} preprocessor commands in the parser
5453implementation file. Ordinarily Bison writes these commands in the
5454parser implementation file so that the C compiler and debuggers will
5455associate errors and object code with your source file (the grammar
5456file). This directive causes them to associate errors with the parser
5457implementation file, treating it as an independent source file in its
5458own right.
5459@end deffn
5460
5461@deffn {Directive} %output "@var{file}"
fe65b144 5462Generate the parser implementation in @file{@var{file}}.
35c1e5f0
JD
5463@end deffn
5464
5465@deffn {Directive} %pure-parser
5466Deprecated version of @samp{%define api.pure} (@pxref{%define
5467Summary,,api.pure}), for which Bison is more careful to warn about
5468unreasonable usage.
5469@end deffn
5470
5471@deffn {Directive} %require "@var{version}"
5472Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5473Require a Version of Bison}.
5474@end deffn
5475
5476@deffn {Directive} %skeleton "@var{file}"
5477Specify the skeleton to use.
5478
5479@c You probably don't need this option unless you are developing Bison.
5480@c You should use @code{%language} if you want to specify the skeleton for a
5481@c different language, because it is clearer and because it will always choose the
5482@c correct skeleton for non-deterministic or push parsers.
5483
5484If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5485file in the Bison installation directory.
5486If it does, @var{file} is an absolute file name or a file name relative to the
5487directory of the grammar file.
5488This is similar to how most shells resolve commands.
5489@end deffn
5490
5491@deffn {Directive} %token-table
5492Generate an array of token names in the parser implementation file.
5493The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5494the name of the token whose internal Bison token code number is
5495@var{i}. The first three elements of @code{yytname} correspond to the
5496predefined tokens @code{"$end"}, @code{"error"}, and
5497@code{"$undefined"}; after these come the symbols defined in the
5498grammar file.
5499
5500The name in the table includes all the characters needed to represent
5501the token in Bison. For single-character literals and literal
5502strings, this includes the surrounding quoting characters and any
5503escape sequences. For example, the Bison single-character literal
5504@code{'+'} corresponds to a three-character name, represented in C as
5505@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5506corresponds to a five-character name, represented in C as
5507@code{"\"\\\\/\""}.
5508
5509When you specify @code{%token-table}, Bison also generates macro
5510definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5511@code{YYNRULES}, and @code{YYNSTATES}:
5512
5513@table @code
5514@item YYNTOKENS
5515The highest token number, plus one.
5516@item YYNNTS
5517The number of nonterminal symbols.
5518@item YYNRULES
5519The number of grammar rules,
5520@item YYNSTATES
5521The number of parser states (@pxref{Parser States}).
5522@end table
5523@end deffn
5524
5525@deffn {Directive} %verbose
5526Write an extra output file containing verbose descriptions of the
5527parser states and what is done for each type of lookahead token in
5528that state. @xref{Understanding, , Understanding Your Parser}, for more
5529information.
5530@end deffn
5531
5532@deffn {Directive} %yacc
5533Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5534including its naming conventions. @xref{Bison Options}, for more.
5535@end deffn
5536
5537
5538@node %define Summary
5539@subsection %define Summary
51151d91
JD
5540
5541There are many features of Bison's behavior that can be controlled by
5542assigning the feature a single value. For historical reasons, some
5543such features are assigned values by dedicated directives, such as
5544@code{%start}, which assigns the start symbol. However, newer such
5545features are associated with variables, which are assigned by the
5546@code{%define} directive:
5547
c1d19e10 5548@deffn {Directive} %define @var{variable}
cf499cff 5549@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5550@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5551Define @var{variable} to @var{value}.
9611cfa2 5552
51151d91
JD
5553@var{value} must be placed in quotation marks if it contains any
5554character other than a letter, underscore, period, or non-initial dash
5555or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5556to specifying @code{""}.
9611cfa2 5557
51151d91
JD
5558It is an error if a @var{variable} is defined by @code{%define}
5559multiple times, but see @ref{Bison Options,,-D
5560@var{name}[=@var{value}]}.
5561@end deffn
cf499cff 5562
51151d91
JD
5563The rest of this section summarizes variables and values that
5564@code{%define} accepts.
9611cfa2 5565
51151d91
JD
5566Some @var{variable}s take Boolean values. In this case, Bison will
5567complain if the variable definition does not meet one of the following
5568four conditions:
9611cfa2
JD
5569
5570@enumerate
cf499cff 5571@item @code{@var{value}} is @code{true}
9611cfa2 5572
cf499cff
JD
5573@item @code{@var{value}} is omitted (or @code{""} is specified).
5574This is equivalent to @code{true}.
9611cfa2 5575
cf499cff 5576@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5577
5578@item @var{variable} is never defined.
c6abeab1 5579In this case, Bison selects a default value.
9611cfa2 5580@end enumerate
148d66d8 5581
c6abeab1
JD
5582What @var{variable}s are accepted, as well as their meanings and default
5583values, depend on the selected target language and/or the parser
5584skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5585Summary,,%skeleton}).
5586Unaccepted @var{variable}s produce an error.
dbf3962c 5587Some of the accepted @var{variable}s are described below.
793fbca5 5588
6574576c 5589@c ================================================== api.namespace
eb0e86ac 5590@deffn Directive {%define api.namespace} @{@var{namespace}@}
67501061
AD
5591@itemize
5592@item Languages(s): C++
5593
f1b238df 5594@item Purpose: Specify the namespace for the parser class.
67501061
AD
5595For example, if you specify:
5596
c93f22fc 5597@example
eb0e86ac 5598%define api.namespace @{foo::bar@}
c93f22fc 5599@end example
67501061
AD
5600
5601Bison uses @code{foo::bar} verbatim in references such as:
5602
c93f22fc 5603@example
67501061 5604foo::bar::parser::semantic_type
c93f22fc 5605@end example
67501061
AD
5606
5607However, to open a namespace, Bison removes any leading @code{::} and then
5608splits on any remaining occurrences:
5609
c93f22fc 5610@example
67501061
AD
5611namespace foo @{ namespace bar @{
5612 class position;
5613 class location;
5614@} @}
c93f22fc 5615@end example
67501061
AD
5616
5617@item Accepted Values:
5618Any absolute or relative C++ namespace reference without a trailing
5619@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5620
5621@item Default Value:
5622The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5623This usage of @code{%name-prefix} is for backward compatibility and can
5624be confusing since @code{%name-prefix} also specifies the textual prefix
5625for the lexical analyzer function. Thus, if you specify
5626@code{%name-prefix}, it is best to also specify @samp{%define
5627api.namespace} so that @code{%name-prefix} @emph{only} affects the
5628lexical analyzer function. For example, if you specify:
5629
c93f22fc 5630@example
eb0e86ac 5631%define api.namespace @{foo@}
67501061 5632%name-prefix "bar::"
c93f22fc 5633@end example
67501061
AD
5634
5635The parser namespace is @code{foo} and @code{yylex} is referenced as
5636@code{bar::lex}.
5637@end itemize
dbf3962c
AD
5638@end deffn
5639@c api.namespace
67501061 5640
db8ab2be 5641@c ================================================== api.location.type
dbf3962c 5642@deffn {Directive} {%define api.location.type} @var{type}
db8ab2be
AD
5643
5644@itemize @bullet
7287be84 5645@item Language(s): C++, Java
db8ab2be
AD
5646
5647@item Purpose: Define the location type.
5648@xref{User Defined Location Type}.
5649
5650@item Accepted Values: String
5651
5652@item Default Value: none
5653
a256496a
AD
5654@item History:
5655Introduced in Bison 2.7 for C, C++ and Java. Introduced under the name
5656@code{location_type} for C++ in Bison 2.5 and for Java in Bison 2.4.
db8ab2be 5657@end itemize
dbf3962c 5658@end deffn
67501061 5659
4b3847c3 5660@c ================================================== api.prefix
dbf3962c 5661@deffn {Directive} {%define api.prefix} @var{prefix}
4b3847c3
AD
5662
5663@itemize @bullet
5664@item Language(s): All
5665
db8ab2be 5666@item Purpose: Rename exported symbols.
4b3847c3
AD
5667@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5668
5669@item Accepted Values: String
5670
5671@item Default Value: @code{yy}
e358222b
AD
5672
5673@item History: introduced in Bison 2.6
4b3847c3 5674@end itemize
dbf3962c 5675@end deffn
67501061
AD
5676
5677@c ================================================== api.pure
dbf3962c 5678@deffn Directive {%define api.pure}
d9df47b6
JD
5679
5680@itemize @bullet
5681@item Language(s): C
5682
5683@item Purpose: Request a pure (reentrant) parser program.
5684@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5685
1f1bd572
TR
5686@item Accepted Values: @code{true}, @code{false}, @code{full}
5687
5688The value may be omitted: this is equivalent to specifying @code{true}, as is
5689the case for Boolean values.
5690
5691When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5692changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5693@code{yyerror} when the tracking of locations has been activated, as shown
5694below.
1f1bd572
TR
5695
5696The @code{true} value is very similar to the @code{full} value, the only
5697difference is in the signature of @code{yyerror} on Yacc parsers without
5698@code{%parse-param}, for historical reasons.
5699
5700I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5701@code{yyerror} are:
5702
5703@example
c949ada3
AD
5704void yyerror (char const *msg); // Yacc parsers.
5705void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5706@end example
5707
5708But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5709used, then both parsers have the same signature:
5710
5711@example
5712void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5713@end example
5714
5715(@pxref{Error Reporting, ,The Error
5716Reporting Function @code{yyerror}})
d9df47b6 5717
cf499cff 5718@item Default Value: @code{false}
1f1bd572 5719
a256496a
AD
5720@item History:
5721the @code{full} value was introduced in Bison 2.7
d9df47b6 5722@end itemize
dbf3962c 5723@end deffn
71b00ed8 5724@c api.pure
d9df47b6 5725
67501061
AD
5726
5727
5728@c ================================================== api.push-pull
dbf3962c 5729@deffn Directive {%define api.push-pull} @var{kind}
793fbca5
JD
5730
5731@itemize @bullet
eb45ef3b 5732@item Language(s): C (deterministic parsers only)
793fbca5 5733
f1b238df 5734@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5735@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5736(The current push parsing interface is experimental and may evolve.
5737More user feedback will help to stabilize it.)
793fbca5 5738
cf499cff 5739@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5740
cf499cff 5741@item Default Value: @code{pull}
793fbca5 5742@end itemize
dbf3962c 5743@end deffn
67212941 5744@c api.push-pull
71b00ed8 5745
6b5a0de9
AD
5746
5747
e36ec1f4 5748@c ================================================== api.token.constructor
dbf3962c 5749@deffn Directive {%define api.token.constructor}
e36ec1f4
AD
5750
5751@itemize @bullet
5752@item Language(s):
5753C++
5754
5755@item Purpose:
5756When variant-based semantic values are enabled (@pxref{C++ Variants}),
5757request that symbols be handled as a whole (type, value, and possibly
5758location) in the scanner. @xref{Complete Symbols}, for details.
5759
5760@item Accepted Values:
5761Boolean.
5762
5763@item Default Value:
5764@code{false}
5765@item History:
5766introduced in Bison 2.8
5767@end itemize
dbf3962c 5768@end deffn
e36ec1f4
AD
5769@c api.token.constructor
5770
5771
2a6b66c5 5772@c ================================================== api.token.prefix
dbf3962c 5773@deffn Directive {%define api.token.prefix} @var{prefix}
4c6622c2
AD
5774
5775@itemize
5776@item Languages(s): all
5777
5778@item Purpose:
5779Add a prefix to the token names when generating their definition in the
5780target language. For instance
5781
5782@example
5783%token FILE for ERROR
2a6b66c5 5784%define api.token.prefix "TOK_"
4c6622c2
AD
5785%%
5786start: FILE for ERROR;
5787@end example
5788
5789@noindent
5790generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5791and @code{TOK_ERROR} in the generated source files. In particular, the
5792scanner must use these prefixed token names, while the grammar itself
5793may still use the short names (as in the sample rule given above). The
5794generated informational files (@file{*.output}, @file{*.xml},
5795@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5796and @ref{Calc++ Scanner}, for a complete example.
5797
5798@item Accepted Values:
5799Any string. Should be a valid identifier prefix in the target language,
5800in other words, it should typically be an identifier itself (sequence of
5801letters, underscores, and ---not at the beginning--- digits).
5802
5803@item Default Value:
5804empty
2a6b66c5
AD
5805@item History:
5806introduced in Bison 2.8
4c6622c2 5807@end itemize
dbf3962c 5808@end deffn
2a6b66c5 5809@c api.token.prefix
4c6622c2
AD
5810
5811
ae8880de 5812@c ================================================== api.value.type
dbf3962c 5813@deffn Directive {%define api.value.type} @var{type}
ae8880de
AD
5814@itemize @bullet
5815@item Language(s):
6574576c 5816all
ae8880de
AD
5817
5818@item Purpose:
6574576c
AD
5819The type for semantic values.
5820
5821@item Accepted Values:
5822@table @asis
5823@item @code{""}
5824This grammar has no semantic value at all. This is not properly supported
5825yet.
5826@item @code{%union} (C, C++)
5827The type is defined thanks to the @code{%union} directive. You don't have
5828to define @code{api.value.type} in that case, using @code{%union} suffices.
5829@xref{Union Decl, ,The Collection of Value Types}.
5830For instance:
5831@example
5832%define api.value.type "%union"
5833%union
5834@{
5835 int ival;
5836 char *sval;
5837@}
5838%token <ival> INT "integer"
5839%token <sval> STR "string"
5840@end example
5841
5842@item @code{union} (C, C++)
5843The symbols are defined with type names, from which Bison will generate a
5844@code{union}. For instance:
5845@example
5846%define api.value.type "union"
5847%token <int> INT "integer"
5848%token <char *> STR "string"
5849@end example
5850This feature needs user feedback to stabilize. Note that most C++ objects
5851cannot be stored in a @code{union}.
5852
5853@item @code{variant} (C++)
5854This is similar to @code{union}, but special storage techniques are used to
5855allow any kind of C++ object to be used. For instance:
5856@example
5857%define api.value.type "variant"
5858%token <int> INT "integer"
5859%token <std::string> STR "string"
5860@end example
5861This feature needs user feedback to stabilize.
ae8880de
AD
5862@xref{C++ Variants}.
5863
6574576c
AD
5864@item any other identifier
5865Use this name as semantic value.
5866@example
5867%code requires
5868@{
5869 struct my_value
5870 @{
5871 enum
5872 @{
5873 is_int, is_str
5874 @} kind;
5875 union
5876 @{
5877 int ival;
5878 char *sval;
5879 @} u;
5880 @};
5881@}
5882%define api.value.type "struct my_value"
5883%token <u.ival> INT "integer"
5884%token <u.sval> STR "string"
5885@end example
5886@end table
5887
dbf3962c 5888@item Default Value:
6574576c
AD
5889@itemize @minus
5890@item
5891@code{%union} if @code{%union} is used, otherwise @dots{}
5892@item
5893@code{int} if type tags are used (i.e., @samp{%token <@var{type}>@dots{}} or
5894@samp{%token <@var{type}>@dots{}} is used), otherwise @dots{}
5895@item
5896@code{""}
5897@end itemize
5898
dbf3962c
AD
5899@item History:
5900introduced in Bison 2.8. Was introduced for Java only in 2.3b as
5901@code{stype}.
5902@end itemize
5903@end deffn
ae8880de
AD
5904@c api.value.type
5905
a256496a
AD
5906
5907@c ================================================== location_type
dbf3962c 5908@deffn Directive {%define location_type}
a256496a 5909Obsoleted by @code{api.location.type} since Bison 2.7.
dbf3962c 5910@end deffn
a256496a
AD
5911
5912
f3bc3386 5913@c ================================================== lr.default-reduction
6b5a0de9 5914
dbf3962c 5915@deffn Directive {%define lr.default-reduction} @var{when}
eb45ef3b
JD
5916
5917@itemize @bullet
5918@item Language(s): all
5919
fcf834f9 5920@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5921contain default reductions. @xref{Default Reductions}. (The ability to
5922specify where default reductions should be used is experimental. More user
5923feedback will help to stabilize it.)
eb45ef3b 5924
f0ad1b2f 5925@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5926@item Default Value:
5927@itemize
cf499cff 5928@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5929@item @code{most} otherwise.
eb45ef3b 5930@end itemize
f3bc3386
AD
5931@item History:
5932introduced as @code{lr.default-reduction} in 2.5, renamed as
5933@code{lr.default-reduction} in 2.8.
eb45ef3b 5934@end itemize
dbf3962c 5935@end deffn
eb45ef3b 5936
f3bc3386 5937@c ============================================ lr.keep-unreachable-state
6b5a0de9 5938
dbf3962c 5939@deffn Directive {%define lr.keep-unreachable-state}
31984206
JD
5940
5941@itemize @bullet
5942@item Language(s): all
f1b238df 5943@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5944remain in the parser tables. @xref{Unreachable States}.
31984206 5945@item Accepted Values: Boolean
cf499cff 5946@item Default Value: @code{false}
a256496a 5947@item History:
f3bc3386 5948introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 5949@code{lr.keep-unreachable-states} in 2.5, and as
f3bc3386 5950@code{lr.keep-unreachable-state} in 2.8.
dbf3962c
AD
5951@end itemize
5952@end deffn
f3bc3386 5953@c lr.keep-unreachable-state
31984206 5954
6b5a0de9
AD
5955@c ================================================== lr.type
5956
dbf3962c 5957@deffn Directive {%define lr.type} @var{type}
eb45ef3b
JD
5958
5959@itemize @bullet
5960@item Language(s): all
5961
f1b238df 5962@item Purpose: Specify the type of parser tables within the
7fceb615 5963LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5964More user feedback will help to stabilize it.)
5965
7fceb615 5966@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5967
cf499cff 5968@item Default Value: @code{lalr}
eb45ef3b 5969@end itemize
dbf3962c 5970@end deffn
67501061
AD
5971
5972@c ================================================== namespace
eb0e86ac 5973@deffn Directive %define namespace @{@var{namespace}@}
67501061 5974Obsoleted by @code{api.namespace}
fa819509 5975@c namespace
dbf3962c 5976@end deffn
31b850d2
AD
5977
5978@c ================================================== parse.assert
dbf3962c 5979@deffn Directive {%define parse.assert}
0c90a1f5
AD
5980
5981@itemize
5982@item Languages(s): C++
5983
5984@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5985In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5986constructed and
0c90a1f5
AD
5987destroyed properly. This option checks these constraints.
5988
5989@item Accepted Values: Boolean
5990
5991@item Default Value: @code{false}
5992@end itemize
dbf3962c 5993@end deffn
0c90a1f5
AD
5994@c parse.assert
5995
31b850d2
AD
5996
5997@c ================================================== parse.error
dbf3962c 5998@deffn Directive {%define parse.error}
31b850d2
AD
5999@itemize
6000@item Languages(s):
fcf834f9 6001all
31b850d2
AD
6002@item Purpose:
6003Control the kind of error messages passed to the error reporting
6004function. @xref{Error Reporting, ,The Error Reporting Function
6005@code{yyerror}}.
6006@item Accepted Values:
6007@itemize
cf499cff 6008@item @code{simple}
31b850d2
AD
6009Error messages passed to @code{yyerror} are simply @w{@code{"syntax
6010error"}}.
cf499cff 6011@item @code{verbose}
7fceb615
JD
6012Error messages report the unexpected token, and possibly the expected ones.
6013However, this report can often be incorrect when LAC is not enabled
6014(@pxref{LAC}).
31b850d2
AD
6015@end itemize
6016
6017@item Default Value:
6018@code{simple}
6019@end itemize
dbf3962c 6020@end deffn
31b850d2
AD
6021@c parse.error
6022
6023
fcf834f9 6024@c ================================================== parse.lac
dbf3962c 6025@deffn Directive {%define parse.lac}
fcf834f9
JD
6026
6027@itemize
7fceb615 6028@item Languages(s): C (deterministic parsers only)
fcf834f9 6029
8a4281b9 6030@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 6031syntax error handling. @xref{LAC}.
fcf834f9 6032@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
6033@item Default Value: @code{none}
6034@end itemize
dbf3962c 6035@end deffn
fcf834f9
JD
6036@c parse.lac
6037
31b850d2 6038@c ================================================== parse.trace
dbf3962c 6039@deffn Directive {%define parse.trace}
fa819509
AD
6040
6041@itemize
60aa04a2 6042@item Languages(s): C, C++, Java
fa819509
AD
6043
6044@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
6045@xref{Tracing, ,Tracing Your Parser}.
6046
6047In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
6048@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
6049,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 6050file if it is not already defined, so that the debugging facilities are
60aa04a2 6051compiled.
793fbca5 6052
fa819509
AD
6053@item Accepted Values: Boolean
6054
6055@item Default Value: @code{false}
6056@end itemize
dbf3962c 6057@end deffn
fa819509 6058@c parse.trace
592d0b1e 6059
e0c07222
JD
6060@node %code Summary
6061@subsection %code Summary
e0c07222 6062@findex %code
e0c07222 6063@cindex Prologue
51151d91
JD
6064
6065The @code{%code} directive inserts code verbatim into the output
6066parser source at any of a predefined set of locations. It thus serves
6067as a flexible and user-friendly alternative to the traditional Yacc
6068prologue, @code{%@{@var{code}%@}}. This section summarizes the
6069functionality of @code{%code} for the various target languages
6070supported by Bison. For a detailed discussion of how to use
6071@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
6072is advantageous to do so, @pxref{Prologue Alternatives}.
6073
6074@deffn {Directive} %code @{@var{code}@}
6075This is the unqualified form of the @code{%code} directive. It
6076inserts @var{code} verbatim at a language-dependent default location
6077in the parser implementation.
6078
e0c07222 6079For C/C++, the default location is the parser implementation file
51151d91
JD
6080after the usual contents of the parser header file. Thus, the
6081unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
6082
6083For Java, the default location is inside the parser class.
6084@end deffn
6085
6086@deffn {Directive} %code @var{qualifier} @{@var{code}@}
6087This is the qualified form of the @code{%code} directive.
51151d91
JD
6088@var{qualifier} identifies the purpose of @var{code} and thus the
6089location(s) where Bison should insert it. That is, if you need to
6090specify location-sensitive @var{code} that does not belong at the
6091default location selected by the unqualified @code{%code} form, use
6092this form instead.
6093@end deffn
6094
6095For any particular qualifier or for the unqualified form, if there are
6096multiple occurrences of the @code{%code} directive, Bison concatenates
6097the specified code in the order in which it appears in the grammar
6098file.
e0c07222 6099
51151d91
JD
6100Not all qualifiers are accepted for all target languages. Unaccepted
6101qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 6102
84072495 6103@table @code
e0c07222
JD
6104@item requires
6105@findex %code requires
6106
6107@itemize @bullet
6108@item Language(s): C, C++
6109
6110@item Purpose: This is the best place to write dependency code required for
6111@code{YYSTYPE} and @code{YYLTYPE}.
6112In other words, it's the best place to define types referenced in @code{%union}
6113directives, and it's the best place to override Bison's default @code{YYSTYPE}
6114and @code{YYLTYPE} definitions.
6115
6116@item Location(s): The parser header file and the parser implementation file
6117before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
6118definitions.
6119@end itemize
6120
6121@item provides
6122@findex %code provides
6123
6124@itemize @bullet
6125@item Language(s): C, C++
6126
6127@item Purpose: This is the best place to write additional definitions and
6128declarations that should be provided to other modules.
6129
6130@item Location(s): The parser header file and the parser implementation
6131file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
6132token definitions.
6133@end itemize
6134
6135@item top
6136@findex %code top
6137
6138@itemize @bullet
6139@item Language(s): C, C++
6140
6141@item Purpose: The unqualified @code{%code} or @code{%code requires}
6142should usually be more appropriate than @code{%code top}. However,
6143occasionally it is necessary to insert code much nearer the top of the
6144parser implementation file. For example:
6145
c93f22fc 6146@example
e0c07222
JD
6147%code top @{
6148 #define _GNU_SOURCE
6149 #include <stdio.h>
6150@}
c93f22fc 6151@end example
e0c07222
JD
6152
6153@item Location(s): Near the top of the parser implementation file.
6154@end itemize
6155
6156@item imports
6157@findex %code imports
6158
6159@itemize @bullet
6160@item Language(s): Java
6161
6162@item Purpose: This is the best place to write Java import directives.
6163
6164@item Location(s): The parser Java file after any Java package directive and
6165before any class definitions.
6166@end itemize
84072495 6167@end table
e0c07222 6168
51151d91
JD
6169Though we say the insertion locations are language-dependent, they are
6170technically skeleton-dependent. Writers of non-standard skeletons
6171however should choose their locations consistently with the behavior
6172of the standard Bison skeletons.
e0c07222 6173
d8988b2f 6174
342b8b6e 6175@node Multiple Parsers
bfa74976
RS
6176@section Multiple Parsers in the Same Program
6177
6178Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6179only one Bison parser. But what if you want to parse more than one language
6180with the same program? Then you need to avoid name conflicts between
6181different definitions of functions and variables such as @code{yyparse},
6182@code{yylval}. To use different parsers from the same compilation unit, you
6183also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6184exported in the generated header.
6185
6186The easy way to do this is to define the @code{%define} variable
e358222b
AD
6187@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6188headers do not conflict when included together, and that compiled objects
6189can be linked together too. Specifying @samp{%define api.prefix
6190@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
6191@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6192variables of the Bison parser to start with @var{prefix} instead of
6193@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6194upper-cased) instead of @samp{YY}.
4b3847c3
AD
6195
6196The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6197@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6198@code{yydebug}. If you use a push parser, @code{yypush_parse},
6199@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6200@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6201@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6202specifically --- more about this below.
4b3847c3
AD
6203
6204For example, if you use @samp{%define api.prefix c}, the names become
6205@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6206on.
6207
6208The @code{%define} variable @code{api.prefix} works in two different ways.
6209In the implementation file, it works by adding macro definitions to the
6210beginning of the parser implementation file, defining @code{yyparse} as
6211@code{@var{prefix}parse}, and so on:
6212
6213@example
6214#define YYSTYPE CTYPE
6215#define yyparse cparse
6216#define yylval clval
6217...
6218YYSTYPE yylval;
6219int yyparse (void);
6220@end example
6221
6222This effectively substitutes one name for the other in the entire parser
6223implementation file, thus the ``original'' names (@code{yylex},
6224@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6225
6226However, in the parser header file, the symbols are defined renamed, for
6227instance:
bfa74976 6228
4b3847c3
AD
6229@example
6230extern CSTYPE clval;
6231int cparse (void);
6232@end example
bfa74976 6233
e358222b
AD
6234The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6235parsers. To comply with this tradition, when @code{api.prefix} is used,
6236@code{YYDEBUG} (not renamed) is used as a default value:
6237
6238@example
4d9bdbe3 6239/* Debug traces. */
e358222b
AD
6240#ifndef CDEBUG
6241# if defined YYDEBUG
6242# if YYDEBUG
6243# define CDEBUG 1
6244# else
6245# define CDEBUG 0
6246# endif
6247# else
6248# define CDEBUG 0
6249# endif
6250#endif
6251#if CDEBUG
6252extern int cdebug;
6253#endif
6254@end example
6255
6256@sp 2
6257
6258Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6259the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6260Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6261
342b8b6e 6262@node Interface
bfa74976
RS
6263@chapter Parser C-Language Interface
6264@cindex C-language interface
6265@cindex interface
6266
6267The Bison parser is actually a C function named @code{yyparse}. Here we
6268describe the interface conventions of @code{yyparse} and the other
6269functions that it needs to use.
6270
6271Keep in mind that the parser uses many C identifiers starting with
6272@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6273identifier (aside from those in this manual) in an action or in epilogue
6274in the grammar file, you are likely to run into trouble.
bfa74976
RS
6275
6276@menu
f5f419de
DJ
6277* Parser Function:: How to call @code{yyparse} and what it returns.
6278* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6279* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6280* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6281* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6282* Lexical:: You must supply a function @code{yylex}
6283 which reads tokens.
6284* Error Reporting:: You must supply a function @code{yyerror}.
6285* Action Features:: Special features for use in actions.
6286* Internationalization:: How to let the parser speak in the user's
6287 native language.
bfa74976
RS
6288@end menu
6289
342b8b6e 6290@node Parser Function
bfa74976
RS
6291@section The Parser Function @code{yyparse}
6292@findex yyparse
6293
6294You call the function @code{yyparse} to cause parsing to occur. This
6295function reads tokens, executes actions, and ultimately returns when it
6296encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6297write an action which directs @code{yyparse} to return immediately
6298without reading further.
bfa74976 6299
2a8d363a
AD
6300
6301@deftypefun int yyparse (void)
bfa74976
RS
6302The value returned by @code{yyparse} is 0 if parsing was successful (return
6303is due to end-of-input).
6304
b47dbebe
PE
6305The value is 1 if parsing failed because of invalid input, i.e., input
6306that contains a syntax error or that causes @code{YYABORT} to be
6307invoked.
6308
6309The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6310@end deftypefun
bfa74976
RS
6311
6312In an action, you can cause immediate return from @code{yyparse} by using
6313these macros:
6314
2a8d363a 6315@defmac YYACCEPT
bfa74976
RS
6316@findex YYACCEPT
6317Return immediately with value 0 (to report success).
2a8d363a 6318@end defmac
bfa74976 6319
2a8d363a 6320@defmac YYABORT
bfa74976
RS
6321@findex YYABORT
6322Return immediately with value 1 (to report failure).
2a8d363a
AD
6323@end defmac
6324
6325If you use a reentrant parser, you can optionally pass additional
6326parameter information to it in a reentrant way. To do so, use the
6327declaration @code{%parse-param}:
6328
2055a44e 6329@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6330@findex %parse-param
2055a44e
AD
6331Declare that one or more
6332@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6333The @var{argument-declaration} is used when declaring
feeb0eda
PE
6334functions or prototypes. The last identifier in
6335@var{argument-declaration} must be the argument name.
2a8d363a
AD
6336@end deffn
6337
6338Here's an example. Write this in the parser:
6339
6340@example
2055a44e 6341%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6342@end example
6343
6344@noindent
6345Then call the parser like this:
6346
6347@example
6348@{
6349 int nastiness, randomness;
6350 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6351 value = yyparse (&nastiness, &randomness);
6352 @dots{}
6353@}
6354@end example
6355
6356@noindent
6357In the grammar actions, use expressions like this to refer to the data:
6358
6359@example
6360exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6361@end example
6362
1f1bd572
TR
6363@noindent
6364Using the following:
6365@example
6366%parse-param @{int *randomness@}
6367@end example
6368
6369Results in these signatures:
6370@example
6371void yyerror (int *randomness, const char *msg);
6372int yyparse (int *randomness);
6373@end example
6374
6375@noindent
6376Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6377and @code{%locations} are used:
6378
6379@example
6380void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6381int yyparse (int *randomness);
6382@end example
6383
9987d1b3
JD
6384@node Push Parser Function
6385@section The Push Parser Function @code{yypush_parse}
6386@findex yypush_parse
6387
59da312b
JD
6388(The current push parsing interface is experimental and may evolve.
6389More user feedback will help to stabilize it.)
6390
f4101aa6 6391You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6392function is available if either the @samp{%define api.push-pull push} or
6393@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6394@xref{Push Decl, ,A Push Parser}.
6395
a73aa764 6396@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6397The value returned by @code{yypush_parse} is the same as for yyparse with
6398the following exception: it returns @code{YYPUSH_MORE} if more input is
6399required to finish parsing the grammar.
9987d1b3
JD
6400@end deftypefun
6401
6402@node Pull Parser Function
6403@section The Pull Parser Function @code{yypull_parse}
6404@findex yypull_parse
6405
59da312b
JD
6406(The current push parsing interface is experimental and may evolve.
6407More user feedback will help to stabilize it.)
6408
f4101aa6 6409You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6410stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6411declaration is used.
9987d1b3
JD
6412@xref{Push Decl, ,A Push Parser}.
6413
a73aa764 6414@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6415The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6416@end deftypefun
6417
6418@node Parser Create Function
6419@section The Parser Create Function @code{yystate_new}
6420@findex yypstate_new
6421
59da312b
JD
6422(The current push parsing interface is experimental and may evolve.
6423More user feedback will help to stabilize it.)
6424
f4101aa6 6425You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6426This function is available if either the @samp{%define api.push-pull push} or
6427@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6428@xref{Push Decl, ,A Push Parser}.
6429
34a41a93 6430@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6431The function will return a valid parser instance if there was memory available
333e670c
JD
6432or 0 if no memory was available.
6433In impure mode, it will also return 0 if a parser instance is currently
6434allocated.
9987d1b3
JD
6435@end deftypefun
6436
6437@node Parser Delete Function
6438@section The Parser Delete Function @code{yystate_delete}
6439@findex yypstate_delete
6440
59da312b
JD
6441(The current push parsing interface is experimental and may evolve.
6442More user feedback will help to stabilize it.)
6443
9987d1b3 6444You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6445function is available if either the @samp{%define api.push-pull push} or
6446@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6447@xref{Push Decl, ,A Push Parser}.
6448
a73aa764 6449@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6450This function will reclaim the memory associated with a parser instance.
6451After this call, you should no longer attempt to use the parser instance.
6452@end deftypefun
bfa74976 6453
342b8b6e 6454@node Lexical
bfa74976
RS
6455@section The Lexical Analyzer Function @code{yylex}
6456@findex yylex
6457@cindex lexical analyzer
6458
6459The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6460the input stream and returns them to the parser. Bison does not create
6461this function automatically; you must write it so that @code{yyparse} can
6462call it. The function is sometimes referred to as a lexical scanner.
6463
ff7571c0
JD
6464In simple programs, @code{yylex} is often defined at the end of the
6465Bison grammar file. If @code{yylex} is defined in a separate source
6466file, you need to arrange for the token-type macro definitions to be
6467available there. To do this, use the @samp{-d} option when you run
6468Bison, so that it will write these macro definitions into the separate
6469parser header file, @file{@var{name}.tab.h}, which you can include in
6470the other source files that need it. @xref{Invocation, ,Invoking
6471Bison}.
bfa74976
RS
6472
6473@menu
6474* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6475* Token Values:: How @code{yylex} must return the semantic value
6476 of the token it has read.
6477* Token Locations:: How @code{yylex} must return the text location
6478 (line number, etc.) of the token, if the
6479 actions want that.
6480* Pure Calling:: How the calling convention differs in a pure parser
6481 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6482@end menu
6483
342b8b6e 6484@node Calling Convention
bfa74976
RS
6485@subsection Calling Convention for @code{yylex}
6486
72d2299c
PE
6487The value that @code{yylex} returns must be the positive numeric code
6488for the type of token it has just found; a zero or negative value
6489signifies end-of-input.
bfa74976
RS
6490
6491When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6492in the parser implementation file becomes a C macro whose definition
6493is the proper numeric code for that token type. So @code{yylex} can
6494use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6495
6496When a token is referred to in the grammar rules by a character literal,
6497the numeric code for that character is also the code for the token type.
72d2299c
PE
6498So @code{yylex} can simply return that character code, possibly converted
6499to @code{unsigned char} to avoid sign-extension. The null character
6500must not be used this way, because its code is zero and that
bfa74976
RS
6501signifies end-of-input.
6502
6503Here is an example showing these things:
6504
6505@example
13863333
AD
6506int
6507yylex (void)
bfa74976
RS
6508@{
6509 @dots{}
72d2299c 6510 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6511 return 0;
6512 @dots{}
6513 if (c == '+' || c == '-')
4c9b8f13 6514 return c; /* Assume token type for '+' is '+'. */
bfa74976 6515 @dots{}
72d2299c 6516 return INT; /* Return the type of the token. */
bfa74976
RS
6517 @dots{}
6518@}
6519@end example
6520
6521@noindent
6522This interface has been designed so that the output from the @code{lex}
6523utility can be used without change as the definition of @code{yylex}.
6524
931c7513
RS
6525If the grammar uses literal string tokens, there are two ways that
6526@code{yylex} can determine the token type codes for them:
6527
6528@itemize @bullet
6529@item
6530If the grammar defines symbolic token names as aliases for the
6531literal string tokens, @code{yylex} can use these symbolic names like
6532all others. In this case, the use of the literal string tokens in
6533the grammar file has no effect on @code{yylex}.
6534
6535@item
9ecbd125 6536@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6537table. The index of the token in the table is the token type's code.
9ecbd125 6538The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6539double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6540token's characters are escaped as necessary to be suitable as input
6541to Bison.
931c7513 6542
9e0876fb
PE
6543Here's code for looking up a multicharacter token in @code{yytname},
6544assuming that the characters of the token are stored in
6545@code{token_buffer}, and assuming that the token does not contain any
6546characters like @samp{"} that require escaping.
931c7513 6547
c93f22fc 6548@example
931c7513
RS
6549for (i = 0; i < YYNTOKENS; i++)
6550 @{
6551 if (yytname[i] != 0
6552 && yytname[i][0] == '"'
68449b3a
PE
6553 && ! strncmp (yytname[i] + 1, token_buffer,
6554 strlen (token_buffer))
931c7513
RS
6555 && yytname[i][strlen (token_buffer) + 1] == '"'
6556 && yytname[i][strlen (token_buffer) + 2] == 0)
6557 break;
6558 @}
c93f22fc 6559@end example
931c7513
RS
6560
6561The @code{yytname} table is generated only if you use the
8c9a50be 6562@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6563@end itemize
6564
342b8b6e 6565@node Token Values
bfa74976
RS
6566@subsection Semantic Values of Tokens
6567
6568@vindex yylval
9d9b8b70 6569In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6570be stored into the global variable @code{yylval}. When you are using
6571just one data type for semantic values, @code{yylval} has that type.
6572Thus, if the type is @code{int} (the default), you might write this in
6573@code{yylex}:
6574
6575@example
6576@group
6577 @dots{}
72d2299c
PE
6578 yylval = value; /* Put value onto Bison stack. */
6579 return INT; /* Return the type of the token. */
bfa74976
RS
6580 @dots{}
6581@end group
6582@end example
6583
6584When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6585made from the @code{%union} declaration (@pxref{Union Decl, ,The
6586Collection of Value Types}). So when you store a token's value, you
6587must use the proper member of the union. If the @code{%union}
6588declaration looks like this:
bfa74976
RS
6589
6590@example
6591@group
6592%union @{
6593 int intval;
6594 double val;
6595 symrec *tptr;
6596@}
6597@end group
6598@end example
6599
6600@noindent
6601then the code in @code{yylex} might look like this:
6602
6603@example
6604@group
6605 @dots{}
72d2299c
PE
6606 yylval.intval = value; /* Put value onto Bison stack. */
6607 return INT; /* Return the type of the token. */
bfa74976
RS
6608 @dots{}
6609@end group
6610@end example
6611
95923bd6
AD
6612@node Token Locations
6613@subsection Textual Locations of Tokens
bfa74976
RS
6614
6615@vindex yylloc
303834cc
JD
6616If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6617in actions to keep track of the textual locations of tokens and groupings,
6618then you must provide this information in @code{yylex}. The function
6619@code{yyparse} expects to find the textual location of a token just parsed
6620in the global variable @code{yylloc}. So @code{yylex} must store the proper
6621data in that variable.
847bf1f5
AD
6622
6623By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6624initialize the members that are going to be used by the actions. The
6625four members are called @code{first_line}, @code{first_column},
6626@code{last_line} and @code{last_column}. Note that the use of this
6627feature makes the parser noticeably slower.
bfa74976
RS
6628
6629@tindex YYLTYPE
6630The data type of @code{yylloc} has the name @code{YYLTYPE}.
6631
342b8b6e 6632@node Pure Calling
c656404a 6633@subsection Calling Conventions for Pure Parsers
bfa74976 6634
1f1bd572 6635When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6636pure, reentrant parser, the global communication variables @code{yylval}
6637and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6638Parser}.) In such parsers the two global variables are replaced by
6639pointers passed as arguments to @code{yylex}. You must declare them as
6640shown here, and pass the information back by storing it through those
6641pointers.
bfa74976
RS
6642
6643@example
13863333
AD
6644int
6645yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6646@{
6647 @dots{}
6648 *lvalp = value; /* Put value onto Bison stack. */
6649 return INT; /* Return the type of the token. */
6650 @dots{}
6651@}
6652@end example
6653
6654If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6655textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6656this case, omit the second argument; @code{yylex} will be called with
6657only one argument.
6658
2055a44e 6659If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6660@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6661Function}). To pass additional arguments to both @code{yylex} and
6662@code{yyparse}, use @code{%param}.
e425e872 6663
2055a44e 6664@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6665@findex %lex-param
2055a44e
AD
6666Specify that @var{argument-declaration} are additional @code{yylex} argument
6667declarations. You may pass one or more such declarations, which is
6668equivalent to repeating @code{%lex-param}.
6669@end deffn
6670
6671@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6672@findex %param
6673Specify that @var{argument-declaration} are additional
6674@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6675@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6676@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6677declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6678@end deffn
e425e872 6679
1f1bd572 6680@noindent
2a8d363a 6681For instance:
e425e872
RS
6682
6683@example
2055a44e
AD
6684%lex-param @{scanner_mode *mode@}
6685%parse-param @{parser_mode *mode@}
6686%param @{environment_type *env@}
e425e872
RS
6687@end example
6688
6689@noindent
18ad57b3 6690results in the following signatures:
e425e872
RS
6691
6692@example
2055a44e
AD
6693int yylex (scanner_mode *mode, environment_type *env);
6694int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6695@end example
6696
5807bb91 6697If @samp{%define api.pure full} is added:
c656404a
RS
6698
6699@example
2055a44e
AD
6700int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6701int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6702@end example
6703
2a8d363a 6704@noindent
5807bb91
AD
6705and finally, if both @samp{%define api.pure full} and @code{%locations} are
6706used:
c656404a 6707
2a8d363a 6708@example
2055a44e
AD
6709int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6710 scanner_mode *mode, environment_type *env);
6711int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6712@end example
931c7513 6713
342b8b6e 6714@node Error Reporting
bfa74976
RS
6715@section The Error Reporting Function @code{yyerror}
6716@cindex error reporting function
6717@findex yyerror
6718@cindex parse error
6719@cindex syntax error
6720
31b850d2 6721The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6722whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6723action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6724macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6725in Actions}).
bfa74976
RS
6726
6727The Bison parser expects to report the error by calling an error
6728reporting function named @code{yyerror}, which you must supply. It is
6729called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6730receives one argument. For a syntax error, the string is normally
6731@w{@code{"syntax error"}}.
bfa74976 6732
31b850d2 6733@findex %define parse.error
7fceb615
JD
6734If you invoke @samp{%define parse.error verbose} in the Bison declarations
6735section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6736Bison provides a more verbose and specific error message string instead of
6737just plain @w{@code{"syntax error"}}. However, that message sometimes
6738contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6739
1a059451
PE
6740The parser can detect one other kind of error: memory exhaustion. This
6741can happen when the input contains constructions that are very deeply
bfa74976 6742nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6743parser normally extends its stack automatically up to a very large limit. But
6744if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6745fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6746
6747In some cases diagnostics like @w{@code{"syntax error"}} are
6748translated automatically from English to some other language before
6749they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6750
6751The following definition suffices in simple programs:
6752
6753@example
6754@group
13863333 6755void
38a92d50 6756yyerror (char const *s)
bfa74976
RS
6757@{
6758@end group
6759@group
6760 fprintf (stderr, "%s\n", s);
6761@}
6762@end group
6763@end example
6764
6765After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6766error recovery if you have written suitable error recovery grammar rules
6767(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6768immediately return 1.
6769
93724f13 6770Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6771an access to the current location. With @code{%define api.pure}, this is
6772indeed the case for the GLR parsers, but not for the Yacc parser, for
6773historical reasons, and this is the why @code{%define api.pure full} should be
6774prefered over @code{%define api.pure}.
2a8d363a 6775
1f1bd572
TR
6776When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6777following signature:
2a8d363a
AD
6778
6779@example
1f1bd572 6780void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6781@end example
6782
1c0c3e95 6783@noindent
38a92d50
PE
6784The prototypes are only indications of how the code produced by Bison
6785uses @code{yyerror}. Bison-generated code always ignores the returned
6786value, so @code{yyerror} can return any type, including @code{void}.
6787Also, @code{yyerror} can be a variadic function; that is why the
6788message is always passed last.
6789
6790Traditionally @code{yyerror} returns an @code{int} that is always
6791ignored, but this is purely for historical reasons, and @code{void} is
6792preferable since it more accurately describes the return type for
6793@code{yyerror}.
93724f13 6794
bfa74976
RS
6795@vindex yynerrs
6796The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6797reported so far. Normally this variable is global; but if you
704a47c4
AD
6798request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6799then it is a local variable which only the actions can access.
bfa74976 6800
342b8b6e 6801@node Action Features
bfa74976
RS
6802@section Special Features for Use in Actions
6803@cindex summary, action features
6804@cindex action features summary
6805
6806Here is a table of Bison constructs, variables and macros that
6807are useful in actions.
6808
18b519c0 6809@deffn {Variable} $$
bfa74976
RS
6810Acts like a variable that contains the semantic value for the
6811grouping made by the current rule. @xref{Actions}.
18b519c0 6812@end deffn
bfa74976 6813
18b519c0 6814@deffn {Variable} $@var{n}
bfa74976
RS
6815Acts like a variable that contains the semantic value for the
6816@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6817@end deffn
bfa74976 6818
18b519c0 6819@deffn {Variable} $<@var{typealt}>$
bfa74976 6820Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6821specified by the @code{%union} declaration. @xref{Action Types, ,Data
6822Types of Values in Actions}.
18b519c0 6823@end deffn
bfa74976 6824
18b519c0 6825@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6826Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6827union specified by the @code{%union} declaration.
e0c471a9 6828@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6829@end deffn
bfa74976 6830
34a41a93 6831@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6832Return immediately from @code{yyparse}, indicating failure.
6833@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6834@end deffn
bfa74976 6835
34a41a93 6836@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6837Return immediately from @code{yyparse}, indicating success.
6838@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6839@end deffn
bfa74976 6840
34a41a93 6841@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6842@findex YYBACKUP
6843Unshift a token. This macro is allowed only for rules that reduce
742e4900 6844a single value, and only when there is no lookahead token.
8a4281b9 6845It is also disallowed in GLR parsers.
742e4900 6846It installs a lookahead token with token type @var{token} and
bfa74976
RS
6847semantic value @var{value}; then it discards the value that was
6848going to be reduced by this rule.
6849
6850If the macro is used when it is not valid, such as when there is
742e4900 6851a lookahead token already, then it reports a syntax error with
bfa74976
RS
6852a message @samp{cannot back up} and performs ordinary error
6853recovery.
6854
6855In either case, the rest of the action is not executed.
18b519c0 6856@end deffn
bfa74976 6857
18b519c0 6858@deffn {Macro} YYEMPTY
742e4900 6859Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6860@end deffn
bfa74976 6861
32c29292 6862@deffn {Macro} YYEOF
742e4900 6863Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6864stream.
6865@end deffn
6866
34a41a93 6867@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6868Cause an immediate syntax error. This statement initiates error
6869recovery just as if the parser itself had detected an error; however, it
6870does not call @code{yyerror}, and does not print any message. If you
6871want to print an error message, call @code{yyerror} explicitly before
6872the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6873@end deffn
bfa74976 6874
18b519c0 6875@deffn {Macro} YYRECOVERING
02103984
PE
6876@findex YYRECOVERING
6877The expression @code{YYRECOVERING ()} yields 1 when the parser
6878is recovering from a syntax error, and 0 otherwise.
bfa74976 6879@xref{Error Recovery}.
18b519c0 6880@end deffn
bfa74976 6881
18b519c0 6882@deffn {Variable} yychar
742e4900
JD
6883Variable containing either the lookahead token, or @code{YYEOF} when the
6884lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6885has been performed so the next token is not yet known.
6886Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6887Actions}).
742e4900 6888@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6889@end deffn
bfa74976 6890
34a41a93 6891@deffn {Macro} yyclearin @code{;}
742e4900 6892Discard the current lookahead token. This is useful primarily in
32c29292
JD
6893error rules.
6894Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6895Semantic Actions}).
6896@xref{Error Recovery}.
18b519c0 6897@end deffn
bfa74976 6898
34a41a93 6899@deffn {Macro} yyerrok @code{;}
bfa74976 6900Resume generating error messages immediately for subsequent syntax
13863333 6901errors. This is useful primarily in error rules.
bfa74976 6902@xref{Error Recovery}.
18b519c0 6903@end deffn
bfa74976 6904
32c29292 6905@deffn {Variable} yylloc
742e4900 6906Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6907to @code{YYEMPTY} or @code{YYEOF}.
6908Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6909Actions}).
6910@xref{Actions and Locations, ,Actions and Locations}.
6911@end deffn
6912
6913@deffn {Variable} yylval
742e4900 6914Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6915not set to @code{YYEMPTY} or @code{YYEOF}.
6916Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6917Actions}).
6918@xref{Actions, ,Actions}.
6919@end deffn
6920
18b519c0 6921@deffn {Value} @@$
303834cc
JD
6922Acts like a structure variable containing information on the textual
6923location of the grouping made by the current rule. @xref{Tracking
6924Locations}.
bfa74976 6925
847bf1f5
AD
6926@c Check if those paragraphs are still useful or not.
6927
6928@c @example
6929@c struct @{
6930@c int first_line, last_line;
6931@c int first_column, last_column;
6932@c @};
6933@c @end example
6934
6935@c Thus, to get the starting line number of the third component, you would
6936@c use @samp{@@3.first_line}.
bfa74976 6937
847bf1f5
AD
6938@c In order for the members of this structure to contain valid information,
6939@c you must make @code{yylex} supply this information about each token.
6940@c If you need only certain members, then @code{yylex} need only fill in
6941@c those members.
bfa74976 6942
847bf1f5 6943@c The use of this feature makes the parser noticeably slower.
18b519c0 6944@end deffn
847bf1f5 6945
18b519c0 6946@deffn {Value} @@@var{n}
847bf1f5 6947@findex @@@var{n}
303834cc
JD
6948Acts like a structure variable containing information on the textual
6949location of the @var{n}th component of the current rule. @xref{Tracking
6950Locations}.
18b519c0 6951@end deffn
bfa74976 6952
f7ab6a50
PE
6953@node Internationalization
6954@section Parser Internationalization
6955@cindex internationalization
6956@cindex i18n
6957@cindex NLS
6958@cindex gettext
6959@cindex bison-po
6960
6961A Bison-generated parser can print diagnostics, including error and
6962tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6963also supports outputting diagnostics in the user's native language. To
6964make this work, the user should set the usual environment variables.
6965@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6966For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6967set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6968encoding. The exact set of available locales depends on the user's
6969installation.
6970
6971The maintainer of a package that uses a Bison-generated parser enables
6972the internationalization of the parser's output through the following
8a4281b9
JD
6973steps. Here we assume a package that uses GNU Autoconf and
6974GNU Automake.
f7ab6a50
PE
6975
6976@enumerate
6977@item
30757c8c 6978@cindex bison-i18n.m4
8a4281b9 6979Into the directory containing the GNU Autoconf macros used
c949ada3 6980by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
6981@file{bison-i18n.m4} file installed by Bison under
6982@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6983For example:
6984
6985@example
6986cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6987@end example
6988
6989@item
30757c8c
PE
6990@findex BISON_I18N
6991@vindex BISON_LOCALEDIR
6992@vindex YYENABLE_NLS
f7ab6a50
PE
6993In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6994invocation, add an invocation of @code{BISON_I18N}. This macro is
6995defined in the file @file{bison-i18n.m4} that you copied earlier. It
6996causes @samp{configure} to find the value of the
30757c8c
PE
6997@code{BISON_LOCALEDIR} variable, and it defines the source-language
6998symbol @code{YYENABLE_NLS} to enable translations in the
6999Bison-generated parser.
f7ab6a50
PE
7000
7001@item
7002In the @code{main} function of your program, designate the directory
7003containing Bison's runtime message catalog, through a call to
7004@samp{bindtextdomain} with domain name @samp{bison-runtime}.
7005For example:
7006
7007@example
7008bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
7009@end example
7010
7011Typically this appears after any other call @code{bindtextdomain
7012(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
7013@samp{BISON_LOCALEDIR} to be defined as a string through the
7014@file{Makefile}.
7015
7016@item
7017In the @file{Makefile.am} that controls the compilation of the @code{main}
7018function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
7019either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
7020
7021@example
7022DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7023@end example
7024
7025or:
7026
7027@example
7028AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7029@end example
7030
7031@item
7032Finally, invoke the command @command{autoreconf} to generate the build
7033infrastructure.
7034@end enumerate
7035
bfa74976 7036
342b8b6e 7037@node Algorithm
13863333
AD
7038@chapter The Bison Parser Algorithm
7039@cindex Bison parser algorithm
bfa74976
RS
7040@cindex algorithm of parser
7041@cindex shifting
7042@cindex reduction
7043@cindex parser stack
7044@cindex stack, parser
7045
7046As Bison reads tokens, it pushes them onto a stack along with their
7047semantic values. The stack is called the @dfn{parser stack}. Pushing a
7048token is traditionally called @dfn{shifting}.
7049
7050For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
7051@samp{3} to come. The stack will have four elements, one for each token
7052that was shifted.
7053
7054But the stack does not always have an element for each token read. When
7055the last @var{n} tokens and groupings shifted match the components of a
7056grammar rule, they can be combined according to that rule. This is called
7057@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
7058single grouping whose symbol is the result (left hand side) of that rule.
7059Running the rule's action is part of the process of reduction, because this
7060is what computes the semantic value of the resulting grouping.
7061
7062For example, if the infix calculator's parser stack contains this:
7063
7064@example
70651 + 5 * 3
7066@end example
7067
7068@noindent
7069and the next input token is a newline character, then the last three
7070elements can be reduced to 15 via the rule:
7071
7072@example
7073expr: expr '*' expr;
7074@end example
7075
7076@noindent
7077Then the stack contains just these three elements:
7078
7079@example
70801 + 15
7081@end example
7082
7083@noindent
7084At this point, another reduction can be made, resulting in the single value
708516. Then the newline token can be shifted.
7086
7087The parser tries, by shifts and reductions, to reduce the entire input down
7088to a single grouping whose symbol is the grammar's start-symbol
7089(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
7090
7091This kind of parser is known in the literature as a bottom-up parser.
7092
7093@menu
742e4900 7094* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
7095* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
7096* Precedence:: Operator precedence works by resolving conflicts.
7097* Contextual Precedence:: When an operator's precedence depends on context.
7098* Parser States:: The parser is a finite-state-machine with stack.
7099* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 7100* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 7101* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 7102* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 7103* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
7104@end menu
7105
742e4900
JD
7106@node Lookahead
7107@section Lookahead Tokens
7108@cindex lookahead token
bfa74976
RS
7109
7110The Bison parser does @emph{not} always reduce immediately as soon as the
7111last @var{n} tokens and groupings match a rule. This is because such a
7112simple strategy is inadequate to handle most languages. Instead, when a
7113reduction is possible, the parser sometimes ``looks ahead'' at the next
7114token in order to decide what to do.
7115
7116When a token is read, it is not immediately shifted; first it becomes the
742e4900 7117@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 7118perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
7119the lookahead token remains off to the side. When no more reductions
7120should take place, the lookahead token is shifted onto the stack. This
bfa74976 7121does not mean that all possible reductions have been done; depending on the
742e4900 7122token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
7123application.
7124
742e4900 7125Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
7126expressions which contain binary addition operators and postfix unary
7127factorial operators (@samp{!}), and allow parentheses for grouping.
7128
7129@example
7130@group
5e9b6624
AD
7131expr:
7132 term '+' expr
7133| term
7134;
bfa74976
RS
7135@end group
7136
7137@group
5e9b6624
AD
7138term:
7139 '(' expr ')'
7140| term '!'
534cee7a 7141| "number"
5e9b6624 7142;
bfa74976
RS
7143@end group
7144@end example
7145
7146Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7147should be done? If the following token is @samp{)}, then the first three
7148tokens must be reduced to form an @code{expr}. This is the only valid
7149course, because shifting the @samp{)} would produce a sequence of symbols
7150@w{@code{term ')'}}, and no rule allows this.
7151
7152If the following token is @samp{!}, then it must be shifted immediately so
7153that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7154parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7155@code{expr}. It would then be impossible to shift the @samp{!} because
7156doing so would produce on the stack the sequence of symbols @code{expr
7157'!'}. No rule allows that sequence.
7158
7159@vindex yychar
32c29292
JD
7160@vindex yylval
7161@vindex yylloc
742e4900 7162The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7163Its semantic value and location, if any, are stored in the variables
7164@code{yylval} and @code{yylloc}.
bfa74976
RS
7165@xref{Action Features, ,Special Features for Use in Actions}.
7166
342b8b6e 7167@node Shift/Reduce
bfa74976
RS
7168@section Shift/Reduce Conflicts
7169@cindex conflicts
7170@cindex shift/reduce conflicts
7171@cindex dangling @code{else}
7172@cindex @code{else}, dangling
7173
7174Suppose we are parsing a language which has if-then and if-then-else
7175statements, with a pair of rules like this:
7176
7177@example
7178@group
7179if_stmt:
534cee7a
AD
7180 "if" expr "then" stmt
7181| "if" expr "then" stmt "else" stmt
5e9b6624 7182;
bfa74976
RS
7183@end group
7184@end example
7185
7186@noindent
534cee7a
AD
7187Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7188specific keyword tokens.
bfa74976 7189
534cee7a 7190When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7191contents of the stack (assuming the input is valid) are just right for
7192reduction by the first rule. But it is also legitimate to shift the
534cee7a 7193@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7194rule.
7195
7196This situation, where either a shift or a reduction would be valid, is
7197called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7198these conflicts by choosing to shift, unless otherwise directed by
7199operator precedence declarations. To see the reason for this, let's
7200contrast it with the other alternative.
7201
534cee7a 7202Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7203the else-clause to the innermost if-statement, making these two inputs
7204equivalent:
7205
7206@example
534cee7a 7207if x then if y then win; else lose;
bfa74976 7208
534cee7a 7209if x then do; if y then win; else lose; end;
bfa74976
RS
7210@end example
7211
7212But if the parser chose to reduce when possible rather than shift, the
7213result would be to attach the else-clause to the outermost if-statement,
7214making these two inputs equivalent:
7215
7216@example
534cee7a 7217if x then if y then win; else lose;
bfa74976 7218
534cee7a 7219if x then do; if y then win; end; else lose;
bfa74976
RS
7220@end example
7221
7222The conflict exists because the grammar as written is ambiguous: either
7223parsing of the simple nested if-statement is legitimate. The established
7224convention is that these ambiguities are resolved by attaching the
7225else-clause to the innermost if-statement; this is what Bison accomplishes
7226by choosing to shift rather than reduce. (It would ideally be cleaner to
7227write an unambiguous grammar, but that is very hard to do in this case.)
7228This particular ambiguity was first encountered in the specifications of
7229Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7230
7231To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7232conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7233There will be no warning as long as the number of shift/reduce conflicts
7234is exactly @var{n}, and Bison will report an error if there is a
7235different number.
c28cd5dc
AD
7236@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7237recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7238number of conflicts does not mean that they are the @emph{same}. When
7239possible, you should rather use precedence directives to @emph{fix} the
7240conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7241Operators}).
bfa74976
RS
7242
7243The definition of @code{if_stmt} above is solely to blame for the
7244conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7245rules. Here is a complete Bison grammar file that actually manifests
7246the conflict:
bfa74976
RS
7247
7248@example
bfa74976 7249%%
bfa74976 7250@group
5e9b6624
AD
7251stmt:
7252 expr
7253| if_stmt
7254;
bfa74976
RS
7255@end group
7256
7257@group
7258if_stmt:
534cee7a
AD
7259 "if" expr "then" stmt
7260| "if" expr "then" stmt "else" stmt
5e9b6624 7261;
bfa74976
RS
7262@end group
7263
5e9b6624 7264expr:
534cee7a 7265 "identifier"
5e9b6624 7266;
bfa74976
RS
7267@end example
7268
342b8b6e 7269@node Precedence
bfa74976
RS
7270@section Operator Precedence
7271@cindex operator precedence
7272@cindex precedence of operators
7273
7274Another situation where shift/reduce conflicts appear is in arithmetic
7275expressions. Here shifting is not always the preferred resolution; the
7276Bison declarations for operator precedence allow you to specify when to
7277shift and when to reduce.
7278
7279@menu
7280* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7281* Using Precedence:: How to specify precedence and associativity.
7282* Precedence Only:: How to specify precedence only.
bfa74976
RS
7283* Precedence Examples:: How these features are used in the previous example.
7284* How Precedence:: How they work.
c28cd5dc 7285* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7286@end menu
7287
342b8b6e 7288@node Why Precedence
bfa74976
RS
7289@subsection When Precedence is Needed
7290
7291Consider the following ambiguous grammar fragment (ambiguous because the
7292input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7293
7294@example
7295@group
5e9b6624
AD
7296expr:
7297 expr '-' expr
7298| expr '*' expr
7299| expr '<' expr
7300| '(' expr ')'
7301@dots{}
7302;
bfa74976
RS
7303@end group
7304@end example
7305
7306@noindent
7307Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7308should it reduce them via the rule for the subtraction operator? It
7309depends on the next token. Of course, if the next token is @samp{)}, we
7310must reduce; shifting is invalid because no single rule can reduce the
7311token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7312the next token is @samp{*} or @samp{<}, we have a choice: either
7313shifting or reduction would allow the parse to complete, but with
7314different results.
7315
7316To decide which one Bison should do, we must consider the results. If
7317the next operator token @var{op} is shifted, then it must be reduced
7318first in order to permit another opportunity to reduce the difference.
7319The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7320hand, if the subtraction is reduced before shifting @var{op}, the result
7321is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7322reduce should depend on the relative precedence of the operators
7323@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7324@samp{<}.
bfa74976
RS
7325
7326@cindex associativity
7327What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7328@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7329operators we prefer the former, which is called @dfn{left association}.
7330The latter alternative, @dfn{right association}, is desirable for
7331assignment operators. The choice of left or right association is a
7332matter of whether the parser chooses to shift or reduce when the stack
742e4900 7333contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7334makes right-associativity.
bfa74976 7335
342b8b6e 7336@node Using Precedence
bfa74976
RS
7337@subsection Specifying Operator Precedence
7338@findex %left
bfa74976 7339@findex %nonassoc
d78f0ac9
AD
7340@findex %precedence
7341@findex %right
bfa74976
RS
7342
7343Bison allows you to specify these choices with the operator precedence
7344declarations @code{%left} and @code{%right}. Each such declaration
7345contains a list of tokens, which are operators whose precedence and
7346associativity is being declared. The @code{%left} declaration makes all
7347those operators left-associative and the @code{%right} declaration makes
7348them right-associative. A third alternative is @code{%nonassoc}, which
7349declares that it is a syntax error to find the same operator twice ``in a
7350row''.
d78f0ac9
AD
7351The last alternative, @code{%precedence}, allows to define only
7352precedence and no associativity at all. As a result, any
7353associativity-related conflict that remains will be reported as an
7354compile-time error. The directive @code{%nonassoc} creates run-time
7355error: using the operator in a associative way is a syntax error. The
7356directive @code{%precedence} creates compile-time errors: an operator
7357@emph{can} be involved in an associativity-related conflict, contrary to
7358what expected the grammar author.
bfa74976
RS
7359
7360The relative precedence of different operators is controlled by the
d78f0ac9
AD
7361order in which they are declared. The first precedence/associativity
7362declaration in the file declares the operators whose
bfa74976
RS
7363precedence is lowest, the next such declaration declares the operators
7364whose precedence is a little higher, and so on.
7365
d78f0ac9
AD
7366@node Precedence Only
7367@subsection Specifying Precedence Only
7368@findex %precedence
7369
8a4281b9 7370Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7371@code{%nonassoc}, which all defines precedence and associativity, little
7372attention is paid to the fact that precedence cannot be defined without
7373defining associativity. Yet, sometimes, when trying to solve a
7374conflict, precedence suffices. In such a case, using @code{%left},
7375@code{%right}, or @code{%nonassoc} might hide future (associativity
7376related) conflicts that would remain hidden.
7377
7378The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7379Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7380in the following situation, where the period denotes the current parsing
7381state:
7382
7383@example
7384if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7385@end example
7386
7387The conflict involves the reduction of the rule @samp{IF expr THEN
7388stmt}, which precedence is by default that of its last token
7389(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7390disambiguation (attach the @code{else} to the closest @code{if}),
7391shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7392higher than that of @code{THEN}. But neither is expected to be involved
7393in an associativity related conflict, which can be specified as follows.
7394
7395@example
7396%precedence THEN
7397%precedence ELSE
7398@end example
7399
7400The unary-minus is another typical example where associativity is
7401usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7402Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7403used to declare the precedence of @code{NEG}, which is more than needed
7404since it also defines its associativity. While this is harmless in the
7405traditional example, who knows how @code{NEG} might be used in future
7406evolutions of the grammar@dots{}
7407
342b8b6e 7408@node Precedence Examples
bfa74976
RS
7409@subsection Precedence Examples
7410
7411In our example, we would want the following declarations:
7412
7413@example
7414%left '<'
7415%left '-'
7416%left '*'
7417@end example
7418
7419In a more complete example, which supports other operators as well, we
7420would declare them in groups of equal precedence. For example, @code{'+'} is
7421declared with @code{'-'}:
7422
7423@example
534cee7a 7424%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7425%left '+' '-'
7426%left '*' '/'
7427@end example
7428
342b8b6e 7429@node How Precedence
bfa74976
RS
7430@subsection How Precedence Works
7431
7432The first effect of the precedence declarations is to assign precedence
7433levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7434precedence levels to certain rules: each rule gets its precedence from
7435the last terminal symbol mentioned in the components. (You can also
7436specify explicitly the precedence of a rule. @xref{Contextual
7437Precedence, ,Context-Dependent Precedence}.)
7438
7439Finally, the resolution of conflicts works by comparing the precedence
742e4900 7440of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7441token's precedence is higher, the choice is to shift. If the rule's
7442precedence is higher, the choice is to reduce. If they have equal
7443precedence, the choice is made based on the associativity of that
7444precedence level. The verbose output file made by @samp{-v}
7445(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7446resolved.
bfa74976
RS
7447
7448Not all rules and not all tokens have precedence. If either the rule or
742e4900 7449the lookahead token has no precedence, then the default is to shift.
bfa74976 7450
c28cd5dc
AD
7451@node Non Operators
7452@subsection Using Precedence For Non Operators
7453
7454Using properly precedence and associativity directives can help fixing
7455shift/reduce conflicts that do not involve arithmetics-like operators. For
7456instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7457Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7458
7459In the present case, the conflict is between the token @code{"else"} willing
7460to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7461for reduction. By default, the precedence of a rule is that of its last
7462token, here @code{"then"}, so the conflict will be solved appropriately
7463by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7464instance as follows:
7465
7466@example
7467@group
589149dc
AD
7468%precedence "then"
7469%precedence "else"
c28cd5dc
AD
7470@end group
7471@end example
7472
7473Alternatively, you may give both tokens the same precedence, in which case
7474associativity is used to solve the conflict. To preserve the shift action,
7475use right associativity:
7476
7477@example
7478%right "then" "else"
7479@end example
7480
7481Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7482``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7483of these keywords with respect to the other operators your grammar.
7484Therefore, instead of being warned about new conflicts you would be unaware
7485of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7486being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7487else 2) + 3}?), the conflict will be already ``fixed''.
7488
342b8b6e 7489@node Contextual Precedence
bfa74976
RS
7490@section Context-Dependent Precedence
7491@cindex context-dependent precedence
7492@cindex unary operator precedence
7493@cindex precedence, context-dependent
7494@cindex precedence, unary operator
7495@findex %prec
7496
7497Often the precedence of an operator depends on the context. This sounds
7498outlandish at first, but it is really very common. For example, a minus
7499sign typically has a very high precedence as a unary operator, and a
7500somewhat lower precedence (lower than multiplication) as a binary operator.
7501
d78f0ac9
AD
7502The Bison precedence declarations
7503can only be used once for a given token; so a token has
bfa74976
RS
7504only one precedence declared in this way. For context-dependent
7505precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7506modifier for rules.
bfa74976
RS
7507
7508The @code{%prec} modifier declares the precedence of a particular rule by
7509specifying a terminal symbol whose precedence should be used for that rule.
7510It's not necessary for that symbol to appear otherwise in the rule. The
7511modifier's syntax is:
7512
7513@example
7514%prec @var{terminal-symbol}
7515@end example
7516
7517@noindent
7518and it is written after the components of the rule. Its effect is to
7519assign the rule the precedence of @var{terminal-symbol}, overriding
7520the precedence that would be deduced for it in the ordinary way. The
7521altered rule precedence then affects how conflicts involving that rule
7522are resolved (@pxref{Precedence, ,Operator Precedence}).
7523
7524Here is how @code{%prec} solves the problem of unary minus. First, declare
7525a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7526are no tokens of this type, but the symbol serves to stand for its
7527precedence:
7528
7529@example
7530@dots{}
7531%left '+' '-'
7532%left '*'
7533%left UMINUS
7534@end example
7535
7536Now the precedence of @code{UMINUS} can be used in specific rules:
7537
7538@example
7539@group
5e9b6624
AD
7540exp:
7541 @dots{}
7542| exp '-' exp
7543 @dots{}
7544| '-' exp %prec UMINUS
bfa74976
RS
7545@end group
7546@end example
7547
91d2c560 7548@ifset defaultprec
39a06c25
PE
7549If you forget to append @code{%prec UMINUS} to the rule for unary
7550minus, Bison silently assumes that minus has its usual precedence.
7551This kind of problem can be tricky to debug, since one typically
7552discovers the mistake only by testing the code.
7553
22fccf95 7554The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7555this kind of problem systematically. It causes rules that lack a
7556@code{%prec} modifier to have no precedence, even if the last terminal
7557symbol mentioned in their components has a declared precedence.
7558
22fccf95 7559If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7560for all rules that participate in precedence conflict resolution.
7561Then you will see any shift/reduce conflict until you tell Bison how
7562to resolve it, either by changing your grammar or by adding an
7563explicit precedence. This will probably add declarations to the
7564grammar, but it helps to protect against incorrect rule precedences.
7565
22fccf95
PE
7566The effect of @code{%no-default-prec;} can be reversed by giving
7567@code{%default-prec;}, which is the default.
91d2c560 7568@end ifset
39a06c25 7569
342b8b6e 7570@node Parser States
bfa74976
RS
7571@section Parser States
7572@cindex finite-state machine
7573@cindex parser state
7574@cindex state (of parser)
7575
7576The function @code{yyparse} is implemented using a finite-state machine.
7577The values pushed on the parser stack are not simply token type codes; they
7578represent the entire sequence of terminal and nonterminal symbols at or
7579near the top of the stack. The current state collects all the information
7580about previous input which is relevant to deciding what to do next.
7581
742e4900
JD
7582Each time a lookahead token is read, the current parser state together
7583with the type of lookahead token are looked up in a table. This table
7584entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7585specifies the new parser state, which is pushed onto the top of the
7586parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7587This means that a certain number of tokens or groupings are taken off
7588the top of the stack, and replaced by one grouping. In other words,
7589that number of states are popped from the stack, and one new state is
7590pushed.
7591
742e4900 7592There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7593is erroneous in the current state. This causes error processing to begin
7594(@pxref{Error Recovery}).
7595
342b8b6e 7596@node Reduce/Reduce
bfa74976
RS
7597@section Reduce/Reduce Conflicts
7598@cindex reduce/reduce conflict
7599@cindex conflicts, reduce/reduce
7600
7601A reduce/reduce conflict occurs if there are two or more rules that apply
7602to the same sequence of input. This usually indicates a serious error
7603in the grammar.
7604
7605For example, here is an erroneous attempt to define a sequence
7606of zero or more @code{word} groupings.
7607
7608@example
d4fca427 7609@group
5e9b6624 7610sequence:
6240346a 7611 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7612| maybeword
7613| sequence word @{ printf ("added word %s\n", $2); @}
7614;
d4fca427 7615@end group
bfa74976 7616
d4fca427 7617@group
5e9b6624 7618maybeword:
6240346a
AD
7619 %empty @{ printf ("empty maybeword\n"); @}
7620| word @{ printf ("single word %s\n", $1); @}
5e9b6624 7621;
d4fca427 7622@end group
bfa74976
RS
7623@end example
7624
7625@noindent
7626The error is an ambiguity: there is more than one way to parse a single
7627@code{word} into a @code{sequence}. It could be reduced to a
7628@code{maybeword} and then into a @code{sequence} via the second rule.
7629Alternatively, nothing-at-all could be reduced into a @code{sequence}
7630via the first rule, and this could be combined with the @code{word}
7631using the third rule for @code{sequence}.
7632
7633There is also more than one way to reduce nothing-at-all into a
7634@code{sequence}. This can be done directly via the first rule,
7635or indirectly via @code{maybeword} and then the second rule.
7636
7637You might think that this is a distinction without a difference, because it
7638does not change whether any particular input is valid or not. But it does
7639affect which actions are run. One parsing order runs the second rule's
7640action; the other runs the first rule's action and the third rule's action.
7641In this example, the output of the program changes.
7642
7643Bison resolves a reduce/reduce conflict by choosing to use the rule that
7644appears first in the grammar, but it is very risky to rely on this. Every
7645reduce/reduce conflict must be studied and usually eliminated. Here is the
7646proper way to define @code{sequence}:
7647
7648@example
51356dd2 7649@group
5e9b6624 7650sequence:
6240346a 7651 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7652| sequence word @{ printf ("added word %s\n", $2); @}
7653;
51356dd2 7654@end group
bfa74976
RS
7655@end example
7656
7657Here is another common error that yields a reduce/reduce conflict:
7658
7659@example
51356dd2 7660@group
589149dc 7661sequence:
6240346a 7662 %empty
5e9b6624
AD
7663| sequence words
7664| sequence redirects
7665;
51356dd2 7666@end group
bfa74976 7667
51356dd2 7668@group
5e9b6624 7669words:
6240346a 7670 %empty
5e9b6624
AD
7671| words word
7672;
51356dd2 7673@end group
bfa74976 7674
51356dd2 7675@group
5e9b6624 7676redirects:
6240346a 7677 %empty
5e9b6624
AD
7678| redirects redirect
7679;
51356dd2 7680@end group
bfa74976
RS
7681@end example
7682
7683@noindent
7684The intention here is to define a sequence which can contain either
7685@code{word} or @code{redirect} groupings. The individual definitions of
7686@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7687three together make a subtle ambiguity: even an empty input can be parsed
7688in infinitely many ways!
7689
7690Consider: nothing-at-all could be a @code{words}. Or it could be two
7691@code{words} in a row, or three, or any number. It could equally well be a
7692@code{redirects}, or two, or any number. Or it could be a @code{words}
7693followed by three @code{redirects} and another @code{words}. And so on.
7694
7695Here are two ways to correct these rules. First, to make it a single level
7696of sequence:
7697
7698@example
5e9b6624 7699sequence:
6240346a 7700 %empty
5e9b6624
AD
7701| sequence word
7702| sequence redirect
7703;
bfa74976
RS
7704@end example
7705
7706Second, to prevent either a @code{words} or a @code{redirects}
7707from being empty:
7708
7709@example
d4fca427 7710@group
5e9b6624 7711sequence:
6240346a 7712 %empty
5e9b6624
AD
7713| sequence words
7714| sequence redirects
7715;
d4fca427 7716@end group
bfa74976 7717
d4fca427 7718@group
5e9b6624
AD
7719words:
7720 word
7721| words word
7722;
d4fca427 7723@end group
bfa74976 7724
d4fca427 7725@group
5e9b6624
AD
7726redirects:
7727 redirect
7728| redirects redirect
7729;
d4fca427 7730@end group
bfa74976
RS
7731@end example
7732
53e2cd1e
AD
7733Yet this proposal introduces another kind of ambiguity! The input
7734@samp{word word} can be parsed as a single @code{words} composed of two
7735@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7736@code{redirect}/@code{redirects}). However this ambiguity is now a
7737shift/reduce conflict, and therefore it can now be addressed with precedence
7738directives.
7739
7740To simplify the matter, we will proceed with @code{word} and @code{redirect}
7741being tokens: @code{"word"} and @code{"redirect"}.
7742
7743To prefer the longest @code{words}, the conflict between the token
7744@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7745as a shift. To this end, we use the same techniques as exposed above, see
7746@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7747relies on precedences: use @code{%prec} to give a lower precedence to the
7748rule:
7749
7750@example
589149dc
AD
7751%precedence "word"
7752%precedence "sequence"
53e2cd1e
AD
7753%%
7754@group
7755sequence:
6240346a 7756 %empty
53e2cd1e
AD
7757| sequence word %prec "sequence"
7758| sequence redirect %prec "sequence"
7759;
7760@end group
7761
7762@group
7763words:
7764 word
7765| words "word"
7766;
7767@end group
7768@end example
7769
7770Another solution relies on associativity: provide both the token and the
7771rule with the same precedence, but make them right-associative:
7772
7773@example
7774%right "word" "redirect"
7775%%
7776@group
7777sequence:
6240346a 7778 %empty
53e2cd1e
AD
7779| sequence word %prec "word"
7780| sequence redirect %prec "redirect"
7781;
7782@end group
7783@end example
7784
cc09e5be
JD
7785@node Mysterious Conflicts
7786@section Mysterious Conflicts
7fceb615 7787@cindex Mysterious Conflicts
bfa74976
RS
7788
7789Sometimes reduce/reduce conflicts can occur that don't look warranted.
7790Here is an example:
7791
7792@example
7793@group
bfa74976 7794%%
5e9b6624 7795def: param_spec return_spec ',';
bfa74976 7796param_spec:
5e9b6624
AD
7797 type
7798| name_list ':' type
7799;
bfa74976 7800@end group
589149dc 7801
bfa74976
RS
7802@group
7803return_spec:
5e9b6624
AD
7804 type
7805| name ':' type
7806;
bfa74976 7807@end group
589149dc 7808
534cee7a 7809type: "id";
589149dc 7810
bfa74976 7811@group
534cee7a 7812name: "id";
bfa74976 7813name_list:
5e9b6624
AD
7814 name
7815| name ',' name_list
7816;
bfa74976
RS
7817@end group
7818@end example
7819
534cee7a
AD
7820It would seem that this grammar can be parsed with only a single token of
7821lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7822@code{name} if a comma or colon follows, or a @code{type} if another
7823@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7824
7fceb615
JD
7825@cindex LR
7826@cindex LALR
eb45ef3b 7827However, for historical reasons, Bison cannot by default handle all
8a4281b9 7828LR(1) grammars.
534cee7a 7829In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7830of a @code{param_spec} and likewise at the beginning of a
7831@code{return_spec}, are similar enough that Bison assumes they are the
7832same.
7833They appear similar because the same set of rules would be
bfa74976
RS
7834active---the rule for reducing to a @code{name} and that for reducing to
7835a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7836that the rules would require different lookahead tokens in the two
bfa74976
RS
7837contexts, so it makes a single parser state for them both. Combining
7838the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7839occurrence means that the grammar is not LALR(1).
bfa74976 7840
7fceb615
JD
7841@cindex IELR
7842@cindex canonical LR
7843For many practical grammars (specifically those that fall into the non-LR(1)
7844class), the limitations of LALR(1) result in difficulties beyond just
7845mysterious reduce/reduce conflicts. The best way to fix all these problems
7846is to select a different parser table construction algorithm. Either
7847IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7848and easier to debug during development. @xref{LR Table Construction}, for
7849details. (Bison's IELR(1) and canonical LR(1) implementations are
7850experimental. More user feedback will help to stabilize them.)
eb45ef3b 7851
8a4281b9 7852If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7853can often fix a mysterious conflict by identifying the two parser states
7854that are being confused, and adding something to make them look
7855distinct. In the above example, adding one rule to
bfa74976
RS
7856@code{return_spec} as follows makes the problem go away:
7857
7858@example
7859@group
bfa74976
RS
7860@dots{}
7861return_spec:
5e9b6624
AD
7862 type
7863| name ':' type
534cee7a 7864| "id" "bogus" /* This rule is never used. */
5e9b6624 7865;
bfa74976
RS
7866@end group
7867@end example
7868
7869This corrects the problem because it introduces the possibility of an
534cee7a 7870additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7871@code{return_spec}. This rule is not active in the corresponding context
7872in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7873As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7874the added rule cannot alter the way actual input is parsed.
7875
7876In this particular example, there is another way to solve the problem:
534cee7a 7877rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7878instead of via @code{name}. This also causes the two confusing
7879contexts to have different sets of active rules, because the one for
7880@code{return_spec} activates the altered rule for @code{return_spec}
7881rather than the one for @code{name}.
7882
7883@example
589149dc 7884@group
bfa74976 7885param_spec:
5e9b6624
AD
7886 type
7887| name_list ':' type
7888;
589149dc
AD
7889@end group
7890
7891@group
bfa74976 7892return_spec:
5e9b6624 7893 type
534cee7a 7894| "id" ':' type
5e9b6624 7895;
589149dc 7896@end group
bfa74976
RS
7897@end example
7898
8a4281b9 7899For a more detailed exposition of LALR(1) parsers and parser
5e528941 7900generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7901
7fceb615
JD
7902@node Tuning LR
7903@section Tuning LR
7904
7905The default behavior of Bison's LR-based parsers is chosen mostly for
7906historical reasons, but that behavior is often not robust. For example, in
7907the previous section, we discussed the mysterious conflicts that can be
7908produced by LALR(1), Bison's default parser table construction algorithm.
7909Another example is Bison's @code{%define parse.error verbose} directive,
7910which instructs the generated parser to produce verbose syntax error
7911messages, which can sometimes contain incorrect information.
7912
7913In this section, we explore several modern features of Bison that allow you
7914to tune fundamental aspects of the generated LR-based parsers. Some of
7915these features easily eliminate shortcomings like those mentioned above.
7916Others can be helpful purely for understanding your parser.
7917
7918Most of the features discussed in this section are still experimental. More
7919user feedback will help to stabilize them.
7920
7921@menu
7922* LR Table Construction:: Choose a different construction algorithm.
7923* Default Reductions:: Disable default reductions.
7924* LAC:: Correct lookahead sets in the parser states.
7925* Unreachable States:: Keep unreachable parser states for debugging.
7926@end menu
7927
7928@node LR Table Construction
7929@subsection LR Table Construction
7930@cindex Mysterious Conflict
7931@cindex LALR
7932@cindex IELR
7933@cindex canonical LR
7934@findex %define lr.type
7935
7936For historical reasons, Bison constructs LALR(1) parser tables by default.
7937However, LALR does not possess the full language-recognition power of LR.
7938As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7939mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7940Conflicts}.
7941
7942As we also demonstrated in that example, the traditional approach to
7943eliminating such mysterious behavior is to restructure the grammar.
7944Unfortunately, doing so correctly is often difficult. Moreover, merely
7945discovering that LALR causes mysterious behavior in your parser can be
7946difficult as well.
7947
7948Fortunately, Bison provides an easy way to eliminate the possibility of such
7949mysterious behavior altogether. You simply need to activate a more powerful
7950parser table construction algorithm by using the @code{%define lr.type}
7951directive.
7952
511dd971 7953@deffn {Directive} {%define lr.type} @var{type}
7fceb615 7954Specify the type of parser tables within the LR(1) family. The accepted
511dd971 7955values for @var{type} are:
7fceb615
JD
7956
7957@itemize
7958@item @code{lalr} (default)
7959@item @code{ielr}
7960@item @code{canonical-lr}
7961@end itemize
7962
7963(This feature is experimental. More user feedback will help to stabilize
7964it.)
7965@end deffn
7966
7967For example, to activate IELR, you might add the following directive to you
7968grammar file:
7969
7970@example
7971%define lr.type ielr
7972@end example
7973
cc09e5be 7974@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7975conflict is then eliminated, so there is no need to invest time in
7976comprehending the conflict or restructuring the grammar to fix it. If,
7977during future development, the grammar evolves such that all mysterious
7978behavior would have disappeared using just LALR, you need not fear that
7979continuing to use IELR will result in unnecessarily large parser tables.
7980That is, IELR generates LALR tables when LALR (using a deterministic parsing
7981algorithm) is sufficient to support the full language-recognition power of
7982LR. Thus, by enabling IELR at the start of grammar development, you can
7983safely and completely eliminate the need to consider LALR's shortcomings.
7984
7985While IELR is almost always preferable, there are circumstances where LALR
7986or the canonical LR parser tables described by Knuth
7987(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7988relative advantages of each parser table construction algorithm within
7989Bison:
7990
7991@itemize
7992@item LALR
7993
7994There are at least two scenarios where LALR can be worthwhile:
7995
7996@itemize
7997@item GLR without static conflict resolution.
7998
7999@cindex GLR with LALR
8000When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
8001conflicts statically (for example, with @code{%left} or @code{%precedence}),
8002then
7fceb615
JD
8003the parser explores all potential parses of any given input. In this case,
8004the choice of parser table construction algorithm is guaranteed not to alter
8005the language accepted by the parser. LALR parser tables are the smallest
8006parser tables Bison can currently construct, so they may then be preferable.
8007Nevertheless, once you begin to resolve conflicts statically, GLR behaves
8008more like a deterministic parser in the syntactic contexts where those
8009conflicts appear, and so either IELR or canonical LR can then be helpful to
8010avoid LALR's mysterious behavior.
8011
8012@item Malformed grammars.
8013
8014Occasionally during development, an especially malformed grammar with a
8015major recurring flaw may severely impede the IELR or canonical LR parser
8016table construction algorithm. LALR can be a quick way to construct parser
8017tables in order to investigate such problems while ignoring the more subtle
8018differences from IELR and canonical LR.
8019@end itemize
8020
8021@item IELR
8022
8023IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
8024any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
8025always accept exactly the same set of sentences. However, like LALR, IELR
8026merges parser states during parser table construction so that the number of
8027parser states is often an order of magnitude less than for canonical LR.
8028More importantly, because canonical LR's extra parser states may contain
8029duplicate conflicts in the case of non-LR grammars, the number of conflicts
8030for IELR is often an order of magnitude less as well. This effect can
8031significantly reduce the complexity of developing a grammar.
8032
8033@item Canonical LR
8034
8035@cindex delayed syntax error detection
8036@cindex LAC
8037@findex %nonassoc
8038While inefficient, canonical LR parser tables can be an interesting means to
8039explore a grammar because they possess a property that IELR and LALR tables
8040do not. That is, if @code{%nonassoc} is not used and default reductions are
8041left disabled (@pxref{Default Reductions}), then, for every left context of
8042every canonical LR state, the set of tokens accepted by that state is
8043guaranteed to be the exact set of tokens that is syntactically acceptable in
8044that left context. It might then seem that an advantage of canonical LR
8045parsers in production is that, under the above constraints, they are
8046guaranteed to detect a syntax error as soon as possible without performing
8047any unnecessary reductions. However, IELR parsers that use LAC are also
8048able to achieve this behavior without sacrificing @code{%nonassoc} or
8049default reductions. For details and a few caveats of LAC, @pxref{LAC}.
8050@end itemize
8051
8052For a more detailed exposition of the mysterious behavior in LALR parsers
8053and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
8054@ref{Bibliography,,Denny 2010 November}.
8055
8056@node Default Reductions
8057@subsection Default Reductions
8058@cindex default reductions
f3bc3386 8059@findex %define lr.default-reduction
7fceb615
JD
8060@findex %nonassoc
8061
8062After parser table construction, Bison identifies the reduction with the
8063largest lookahead set in each parser state. To reduce the size of the
8064parser state, traditional Bison behavior is to remove that lookahead set and
8065to assign that reduction to be the default parser action. Such a reduction
8066is known as a @dfn{default reduction}.
8067
8068Default reductions affect more than the size of the parser tables. They
8069also affect the behavior of the parser:
8070
8071@itemize
8072@item Delayed @code{yylex} invocations.
8073
8074@cindex delayed yylex invocations
8075@cindex consistent states
8076@cindex defaulted states
8077A @dfn{consistent state} is a state that has only one possible parser
8078action. If that action is a reduction and is encoded as a default
8079reduction, then that consistent state is called a @dfn{defaulted state}.
8080Upon reaching a defaulted state, a Bison-generated parser does not bother to
8081invoke @code{yylex} to fetch the next token before performing the reduction.
8082In other words, whether default reductions are enabled in consistent states
8083determines how soon a Bison-generated parser invokes @code{yylex} for a
8084token: immediately when it @emph{reaches} that token in the input or when it
8085eventually @emph{needs} that token as a lookahead to determine the next
8086parser action. Traditionally, default reductions are enabled, and so the
8087parser exhibits the latter behavior.
8088
8089The presence of defaulted states is an important consideration when
8090designing @code{yylex} and the grammar file. That is, if the behavior of
8091@code{yylex} can influence or be influenced by the semantic actions
8092associated with the reductions in defaulted states, then the delay of the
8093next @code{yylex} invocation until after those reductions is significant.
8094For example, the semantic actions might pop a scope stack that @code{yylex}
8095uses to determine what token to return. Thus, the delay might be necessary
8096to ensure that @code{yylex} does not look up the next token in a scope that
8097should already be considered closed.
8098
8099@item Delayed syntax error detection.
8100
8101@cindex delayed syntax error detection
8102When the parser fetches a new token by invoking @code{yylex}, it checks
8103whether there is an action for that token in the current parser state. The
8104parser detects a syntax error if and only if either (1) there is no action
8105for that token or (2) the action for that token is the error action (due to
8106the use of @code{%nonassoc}). However, if there is a default reduction in
8107that state (which might or might not be a defaulted state), then it is
8108impossible for condition 1 to exist. That is, all tokens have an action.
8109Thus, the parser sometimes fails to detect the syntax error until it reaches
8110a later state.
8111
8112@cindex LAC
8113@c If there's an infinite loop, default reductions can prevent an incorrect
8114@c sentence from being rejected.
8115While default reductions never cause the parser to accept syntactically
8116incorrect sentences, the delay of syntax error detection can have unexpected
8117effects on the behavior of the parser. However, the delay can be caused
8118anyway by parser state merging and the use of @code{%nonassoc}, and it can
8119be fixed by another Bison feature, LAC. We discuss the effects of delayed
8120syntax error detection and LAC more in the next section (@pxref{LAC}).
8121@end itemize
8122
8123For canonical LR, the only default reduction that Bison enables by default
8124is the accept action, which appears only in the accepting state, which has
8125no other action and is thus a defaulted state. However, the default accept
8126action does not delay any @code{yylex} invocation or syntax error detection
8127because the accept action ends the parse.
8128
8129For LALR and IELR, Bison enables default reductions in nearly all states by
8130default. There are only two exceptions. First, states that have a shift
8131action on the @code{error} token do not have default reductions because
8132delayed syntax error detection could then prevent the @code{error} token
8133from ever being shifted in that state. However, parser state merging can
8134cause the same effect anyway, and LAC fixes it in both cases, so future
8135versions of Bison might drop this exception when LAC is activated. Second,
8136GLR parsers do not record the default reduction as the action on a lookahead
8137token for which there is a conflict. The correct action in this case is to
8138split the parse instead.
8139
8140To adjust which states have default reductions enabled, use the
f3bc3386 8141@code{%define lr.default-reduction} directive.
7fceb615 8142
5807bb91 8143@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8144Specify the kind of states that are permitted to contain default reductions.
511dd971 8145The accepted values of @var{where} are:
7fceb615 8146@itemize
f0ad1b2f 8147@item @code{most} (default for LALR and IELR)
7fceb615
JD
8148@item @code{consistent}
8149@item @code{accepting} (default for canonical LR)
8150@end itemize
8151
8152(The ability to specify where default reductions are permitted is
8153experimental. More user feedback will help to stabilize it.)
8154@end deffn
8155
7fceb615
JD
8156@node LAC
8157@subsection LAC
8158@findex %define parse.lac
8159@cindex LAC
8160@cindex lookahead correction
8161
8162Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8163encountering a syntax error. First, the parser might perform additional
8164parser stack reductions before discovering the syntax error. Such
8165reductions can perform user semantic actions that are unexpected because
8166they are based on an invalid token, and they cause error recovery to begin
8167in a different syntactic context than the one in which the invalid token was
8168encountered. Second, when verbose error messages are enabled (@pxref{Error
8169Reporting}), the expected token list in the syntax error message can both
8170contain invalid tokens and omit valid tokens.
8171
8172The culprits for the above problems are @code{%nonassoc}, default reductions
8173in inconsistent states (@pxref{Default Reductions}), and parser state
8174merging. Because IELR and LALR merge parser states, they suffer the most.
8175Canonical LR can suffer only if @code{%nonassoc} is used or if default
8176reductions are enabled for inconsistent states.
8177
8178LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8179that solves these problems for canonical LR, IELR, and LALR without
8180sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8181enable LAC with the @code{%define parse.lac} directive.
8182
511dd971 8183@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8184Enable LAC to improve syntax error handling.
8185@itemize
8186@item @code{none} (default)
8187@item @code{full}
8188@end itemize
8189(This feature is experimental. More user feedback will help to stabilize
8190it. Moreover, it is currently only available for deterministic parsers in
8191C.)
8192@end deffn
8193
8194Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8195fetches a new token from the scanner so that it can determine the next
8196parser action, it immediately suspends normal parsing and performs an
8197exploratory parse using a temporary copy of the normal parser state stack.
8198During this exploratory parse, the parser does not perform user semantic
8199actions. If the exploratory parse reaches a shift action, normal parsing
8200then resumes on the normal parser stacks. If the exploratory parse reaches
8201an error instead, the parser reports a syntax error. If verbose syntax
8202error messages are enabled, the parser must then discover the list of
8203expected tokens, so it performs a separate exploratory parse for each token
8204in the grammar.
8205
8206There is one subtlety about the use of LAC. That is, when in a consistent
8207parser state with a default reduction, the parser will not attempt to fetch
8208a token from the scanner because no lookahead is needed to determine the
8209next parser action. Thus, whether default reductions are enabled in
8210consistent states (@pxref{Default Reductions}) affects how soon the parser
8211detects a syntax error: immediately when it @emph{reaches} an erroneous
8212token or when it eventually @emph{needs} that token as a lookahead to
8213determine the next parser action. The latter behavior is probably more
8214intuitive, so Bison currently provides no way to achieve the former behavior
8215while default reductions are enabled in consistent states.
8216
8217Thus, when LAC is in use, for some fixed decision of whether to enable
8218default reductions in consistent states, canonical LR and IELR behave almost
8219exactly the same for both syntactically acceptable and syntactically
8220unacceptable input. While LALR still does not support the full
8221language-recognition power of canonical LR and IELR, LAC at least enables
8222LALR's syntax error handling to correctly reflect LALR's
8223language-recognition power.
8224
8225There are a few caveats to consider when using LAC:
8226
8227@itemize
8228@item Infinite parsing loops.
8229
8230IELR plus LAC does have one shortcoming relative to canonical LR. Some
8231parsers generated by Bison can loop infinitely. LAC does not fix infinite
8232parsing loops that occur between encountering a syntax error and detecting
8233it, but enabling canonical LR or disabling default reductions sometimes
8234does.
8235
8236@item Verbose error message limitations.
8237
8238Because of internationalization considerations, Bison-generated parsers
8239limit the size of the expected token list they are willing to report in a
8240verbose syntax error message. If the number of expected tokens exceeds that
8241limit, the list is simply dropped from the message. Enabling LAC can
8242increase the size of the list and thus cause the parser to drop it. Of
8243course, dropping the list is better than reporting an incorrect list.
8244
8245@item Performance.
8246
8247Because LAC requires many parse actions to be performed twice, it can have a
8248performance penalty. However, not all parse actions must be performed
8249twice. Specifically, during a series of default reductions in consistent
8250states and shift actions, the parser never has to initiate an exploratory
8251parse. Moreover, the most time-consuming tasks in a parse are often the
8252file I/O, the lexical analysis performed by the scanner, and the user's
8253semantic actions, but none of these are performed during the exploratory
8254parse. Finally, the base of the temporary stack used during an exploratory
8255parse is a pointer into the normal parser state stack so that the stack is
8256never physically copied. In our experience, the performance penalty of LAC
5a321748 8257has proved insignificant for practical grammars.
7fceb615
JD
8258@end itemize
8259
709c7d11
JD
8260While the LAC algorithm shares techniques that have been recognized in the
8261parser community for years, for the publication that introduces LAC,
8262@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8263
7fceb615
JD
8264@node Unreachable States
8265@subsection Unreachable States
f3bc3386 8266@findex %define lr.keep-unreachable-state
7fceb615
JD
8267@cindex unreachable states
8268
8269If there exists no sequence of transitions from the parser's start state to
8270some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8271state}. A state can become unreachable during conflict resolution if Bison
8272disables a shift action leading to it from a predecessor state.
8273
8274By default, Bison removes unreachable states from the parser after conflict
8275resolution because they are useless in the generated parser. However,
8276keeping unreachable states is sometimes useful when trying to understand the
8277relationship between the parser and the grammar.
8278
5807bb91 8279@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8280Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8281@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8282@end deffn
8283
8284There are a few caveats to consider:
8285
8286@itemize @bullet
8287@item Missing or extraneous warnings.
8288
8289Unreachable states may contain conflicts and may use rules not used in any
8290other state. Thus, keeping unreachable states may induce warnings that are
8291irrelevant to your parser's behavior, and it may eliminate warnings that are
8292relevant. Of course, the change in warnings may actually be relevant to a
8293parser table analysis that wants to keep unreachable states, so this
8294behavior will likely remain in future Bison releases.
8295
8296@item Other useless states.
8297
8298While Bison is able to remove unreachable states, it is not guaranteed to
8299remove other kinds of useless states. Specifically, when Bison disables
8300reduce actions during conflict resolution, some goto actions may become
8301useless, and thus some additional states may become useless. If Bison were
8302to compute which goto actions were useless and then disable those actions,
8303it could identify such states as unreachable and then remove those states.
8304However, Bison does not compute which goto actions are useless.
8305@end itemize
8306
fae437e8 8307@node Generalized LR Parsing
8a4281b9
JD
8308@section Generalized LR (GLR) Parsing
8309@cindex GLR parsing
8310@cindex generalized LR (GLR) parsing
676385e2 8311@cindex ambiguous grammars
9d9b8b70 8312@cindex nondeterministic parsing
676385e2 8313
fae437e8
AD
8314Bison produces @emph{deterministic} parsers that choose uniquely
8315when to reduce and which reduction to apply
742e4900 8316based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8317As a result, normal Bison handles a proper subset of the family of
8318context-free languages.
fae437e8 8319Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8320sequence of reductions cannot have deterministic parsers in this sense.
8321The same is true of languages that require more than one symbol of
742e4900 8322lookahead, since the parser lacks the information necessary to make a
676385e2 8323decision at the point it must be made in a shift-reduce parser.
cc09e5be 8324Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8325there are languages where Bison's default choice of how to
676385e2
PH
8326summarize the input seen so far loses necessary information.
8327
8328When you use the @samp{%glr-parser} declaration in your grammar file,
8329Bison generates a parser that uses a different algorithm, called
8a4281b9 8330Generalized LR (or GLR). A Bison GLR
c827f760 8331parser uses the same basic
676385e2
PH
8332algorithm for parsing as an ordinary Bison parser, but behaves
8333differently in cases where there is a shift-reduce conflict that has not
fae437e8 8334been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8335reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8336situation, it
fae437e8 8337effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8338shift or reduction. These parsers then proceed as usual, consuming
8339tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8340and split further, with the result that instead of a sequence of states,
8a4281b9 8341a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8342
8343In effect, each stack represents a guess as to what the proper parse
8344is. Additional input may indicate that a guess was wrong, in which case
8345the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8346actions generated in each stack are saved, rather than being executed
676385e2 8347immediately. When a stack disappears, its saved semantic actions never
fae437e8 8348get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8349their sets of semantic actions are both saved with the state that
8350results from the reduction. We say that two stacks are equivalent
fae437e8 8351when they both represent the same sequence of states,
676385e2
PH
8352and each pair of corresponding states represents a
8353grammar symbol that produces the same segment of the input token
8354stream.
8355
8356Whenever the parser makes a transition from having multiple
eb45ef3b 8357states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8358algorithm, after resolving and executing the saved-up actions.
8359At this transition, some of the states on the stack will have semantic
8360values that are sets (actually multisets) of possible actions. The
8361parser tries to pick one of the actions by first finding one whose rule
8362has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8363declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8364precedence, but there the same merging function is declared for both
fae437e8 8365rules by the @samp{%merge} declaration,
676385e2
PH
8366Bison resolves and evaluates both and then calls the merge function on
8367the result. Otherwise, it reports an ambiguity.
8368
8a4281b9
JD
8369It is possible to use a data structure for the GLR parsing tree that
8370permits the processing of any LR(1) grammar in linear time (in the
c827f760 8371size of the input), any unambiguous (not necessarily
8a4281b9 8372LR(1)) grammar in
fae437e8 8373quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8374context-free grammar in cubic worst-case time. However, Bison currently
8375uses a simpler data structure that requires time proportional to the
8376length of the input times the maximum number of stacks required for any
9d9b8b70 8377prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8378grammars can require exponential time and space to process. Such badly
8379behaving examples, however, are not generally of practical interest.
9d9b8b70 8380Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8381doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8382structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8383grammar, in particular, it is only slightly slower than with the
8a4281b9 8384deterministic LR(1) Bison parser.
676385e2 8385
5e528941
JD
8386For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
83872000}.
f6481e2f 8388
1a059451
PE
8389@node Memory Management
8390@section Memory Management, and How to Avoid Memory Exhaustion
8391@cindex memory exhaustion
8392@cindex memory management
bfa74976
RS
8393@cindex stack overflow
8394@cindex parser stack overflow
8395@cindex overflow of parser stack
8396
1a059451 8397The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8398not reduced. When this happens, the parser function @code{yyparse}
1a059451 8399calls @code{yyerror} and then returns 2.
bfa74976 8400
c827f760 8401Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8402usually results from using a right recursion instead of a left
188867ac 8403recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8404
bfa74976
RS
8405@vindex YYMAXDEPTH
8406By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8407parser stack can become before memory is exhausted. Define the
bfa74976
RS
8408macro with a value that is an integer. This value is the maximum number
8409of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8410
8411The stack space allowed is not necessarily allocated. If you specify a
1a059451 8412large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8413stack at first, and then makes it bigger by stages as needed. This
8414increasing allocation happens automatically and silently. Therefore,
8415you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8416space for ordinary inputs that do not need much stack.
8417
d7e14fc0
PE
8418However, do not allow @code{YYMAXDEPTH} to be a value so large that
8419arithmetic overflow could occur when calculating the size of the stack
8420space. Also, do not allow @code{YYMAXDEPTH} to be less than
8421@code{YYINITDEPTH}.
8422
bfa74976
RS
8423@cindex default stack limit
8424The default value of @code{YYMAXDEPTH}, if you do not define it, is
842510000.
8426
8427@vindex YYINITDEPTH
8428You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8429macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8430parser in C, this value must be a compile-time constant
d7e14fc0
PE
8431unless you are assuming C99 or some other target language or compiler
8432that allows variable-length arrays. The default is 200.
8433
1a059451 8434Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8435
20be2f92 8436You can generate a deterministic parser containing C++ user code from
411614fa 8437the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8438(@pxref{C++ Parsers}). However, if you do use the default skeleton
8439and want to allow the parsing stack to grow,
8440be careful not to use semantic types or location types that require
8441non-trivial copy constructors.
8442The C skeleton bypasses these constructors when copying data to
8443new, larger stacks.
d1a1114f 8444
342b8b6e 8445@node Error Recovery
bfa74976
RS
8446@chapter Error Recovery
8447@cindex error recovery
8448@cindex recovery from errors
8449
6e649e65 8450It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8451error. For example, a compiler should recover sufficiently to parse the
8452rest of the input file and check it for errors; a calculator should accept
8453another expression.
8454
8455In a simple interactive command parser where each input is one line, it may
8456be sufficient to allow @code{yyparse} to return 1 on error and have the
8457caller ignore the rest of the input line when that happens (and then call
8458@code{yyparse} again). But this is inadequate for a compiler, because it
8459forgets all the syntactic context leading up to the error. A syntax error
8460deep within a function in the compiler input should not cause the compiler
8461to treat the following line like the beginning of a source file.
8462
8463@findex error
8464You can define how to recover from a syntax error by writing rules to
8465recognize the special token @code{error}. This is a terminal symbol that
8466is always defined (you need not declare it) and reserved for error
8467handling. The Bison parser generates an @code{error} token whenever a
8468syntax error happens; if you have provided a rule to recognize this token
13863333 8469in the current context, the parse can continue.
bfa74976
RS
8470
8471For example:
8472
8473@example
0860e383 8474stmts:
6240346a 8475 %empty
0860e383
AD
8476| stmts '\n'
8477| stmts exp '\n'
8478| stmts error '\n'
bfa74976
RS
8479@end example
8480
8481The fourth rule in this example says that an error followed by a newline
0860e383 8482makes a valid addition to any @code{stmts}.
bfa74976
RS
8483
8484What happens if a syntax error occurs in the middle of an @code{exp}? The
8485error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8486of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8487the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8488and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8489will be tokens to read before the next newline. So the rule is not
8490applicable in the ordinary way.
8491
8492But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8493the semantic context and part of the input. First it discards states
8494and objects from the stack until it gets back to a state in which the
bfa74976 8495@code{error} token is acceptable. (This means that the subexpressions
0860e383 8496already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8497At this point the @code{error} token can be shifted. Then, if the old
742e4900 8498lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8499tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8500this example, Bison reads and discards input until the next newline so
8501that the fourth rule can apply. Note that discarded symbols are
8502possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8503Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8504
8505The choice of error rules in the grammar is a choice of strategies for
8506error recovery. A simple and useful strategy is simply to skip the rest of
8507the current input line or current statement if an error is detected:
8508
8509@example
0860e383 8510stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8511@end example
8512
8513It is also useful to recover to the matching close-delimiter of an
8514opening-delimiter that has already been parsed. Otherwise the
8515close-delimiter will probably appear to be unmatched, and generate another,
8516spurious error message:
8517
8518@example
5e9b6624
AD
8519primary:
8520 '(' expr ')'
8521| '(' error ')'
8522@dots{}
8523;
bfa74976
RS
8524@end example
8525
8526Error recovery strategies are necessarily guesses. When they guess wrong,
8527one syntax error often leads to another. In the above example, the error
8528recovery rule guesses that an error is due to bad input within one
0860e383
AD
8529@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8530middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8531from the first error, another syntax error will be found straightaway,
8532since the text following the spurious semicolon is also an invalid
0860e383 8533@code{stmt}.
bfa74976
RS
8534
8535To prevent an outpouring of error messages, the parser will output no error
8536message for another syntax error that happens shortly after the first; only
8537after three consecutive input tokens have been successfully shifted will
8538error messages resume.
8539
8540Note that rules which accept the @code{error} token may have actions, just
8541as any other rules can.
8542
8543@findex yyerrok
8544You can make error messages resume immediately by using the macro
8545@code{yyerrok} in an action. If you do this in the error rule's action, no
8546error messages will be suppressed. This macro requires no arguments;
8547@samp{yyerrok;} is a valid C statement.
8548
8549@findex yyclearin
742e4900 8550The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8551this is unacceptable, then the macro @code{yyclearin} may be used to clear
8552this token. Write the statement @samp{yyclearin;} in the error rule's
8553action.
32c29292 8554@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8555
6e649e65 8556For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8557called that advances the input stream to some point where parsing should
8558once again commence. The next symbol returned by the lexical scanner is
742e4900 8559probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8560with @samp{yyclearin;}.
8561
8562@vindex YYRECOVERING
02103984
PE
8563The expression @code{YYRECOVERING ()} yields 1 when the parser
8564is recovering from a syntax error, and 0 otherwise.
8565Syntax error diagnostics are suppressed while recovering from a syntax
8566error.
bfa74976 8567
342b8b6e 8568@node Context Dependency
bfa74976
RS
8569@chapter Handling Context Dependencies
8570
8571The Bison paradigm is to parse tokens first, then group them into larger
8572syntactic units. In many languages, the meaning of a token is affected by
8573its context. Although this violates the Bison paradigm, certain techniques
8574(known as @dfn{kludges}) may enable you to write Bison parsers for such
8575languages.
8576
8577@menu
8578* Semantic Tokens:: Token parsing can depend on the semantic context.
8579* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8580* Tie-in Recovery:: Lexical tie-ins have implications for how
8581 error recovery rules must be written.
8582@end menu
8583
8584(Actually, ``kludge'' means any technique that gets its job done but is
8585neither clean nor robust.)
8586
342b8b6e 8587@node Semantic Tokens
bfa74976
RS
8588@section Semantic Info in Token Types
8589
8590The C language has a context dependency: the way an identifier is used
8591depends on what its current meaning is. For example, consider this:
8592
8593@example
8594foo (x);
8595@end example
8596
8597This looks like a function call statement, but if @code{foo} is a typedef
8598name, then this is actually a declaration of @code{x}. How can a Bison
8599parser for C decide how to parse this input?
8600
8a4281b9 8601The method used in GNU C is to have two different token types,
bfa74976
RS
8602@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8603identifier, it looks up the current declaration of the identifier in order
8604to decide which token type to return: @code{TYPENAME} if the identifier is
8605declared as a typedef, @code{IDENTIFIER} otherwise.
8606
8607The grammar rules can then express the context dependency by the choice of
8608token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8609but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8610@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8611is @emph{not} significant, such as in declarations that can shadow a
8612typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8613accepted---there is one rule for each of the two token types.
8614
8615This technique is simple to use if the decision of which kinds of
8616identifiers to allow is made at a place close to where the identifier is
8617parsed. But in C this is not always so: C allows a declaration to
8618redeclare a typedef name provided an explicit type has been specified
8619earlier:
8620
8621@example
3a4f411f
PE
8622typedef int foo, bar;
8623int baz (void)
d4fca427 8624@group
3a4f411f
PE
8625@{
8626 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8627 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8628 return foo (bar);
8629@}
d4fca427 8630@end group
bfa74976
RS
8631@end example
8632
8633Unfortunately, the name being declared is separated from the declaration
8634construct itself by a complicated syntactic structure---the ``declarator''.
8635
9ecbd125 8636As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8637all the nonterminal names changed: once for parsing a declaration in
8638which a typedef name can be redefined, and once for parsing a
8639declaration in which that can't be done. Here is a part of the
8640duplication, with actions omitted for brevity:
bfa74976
RS
8641
8642@example
d4fca427 8643@group
bfa74976 8644initdcl:
5e9b6624
AD
8645 declarator maybeasm '=' init
8646| declarator maybeasm
8647;
d4fca427 8648@end group
bfa74976 8649
d4fca427 8650@group
bfa74976 8651notype_initdcl:
5e9b6624
AD
8652 notype_declarator maybeasm '=' init
8653| notype_declarator maybeasm
8654;
d4fca427 8655@end group
bfa74976
RS
8656@end example
8657
8658@noindent
8659Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8660cannot. The distinction between @code{declarator} and
8661@code{notype_declarator} is the same sort of thing.
8662
8663There is some similarity between this technique and a lexical tie-in
8664(described next), in that information which alters the lexical analysis is
8665changed during parsing by other parts of the program. The difference is
8666here the information is global, and is used for other purposes in the
8667program. A true lexical tie-in has a special-purpose flag controlled by
8668the syntactic context.
8669
342b8b6e 8670@node Lexical Tie-ins
bfa74976
RS
8671@section Lexical Tie-ins
8672@cindex lexical tie-in
8673
8674One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8675which is set by Bison actions, whose purpose is to alter the way tokens are
8676parsed.
8677
8678For example, suppose we have a language vaguely like C, but with a special
8679construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8680an expression in parentheses in which all integers are hexadecimal. In
8681particular, the token @samp{a1b} must be treated as an integer rather than
8682as an identifier if it appears in that context. Here is how you can do it:
8683
8684@example
8685@group
8686%@{
38a92d50
PE
8687 int hexflag;
8688 int yylex (void);
8689 void yyerror (char const *);
bfa74976
RS
8690%@}
8691%%
8692@dots{}
8693@end group
8694@group
5e9b6624
AD
8695expr:
8696 IDENTIFIER
8697| constant
8698| HEX '(' @{ hexflag = 1; @}
8699 expr ')' @{ hexflag = 0; $$ = $4; @}
8700| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8701@dots{}
8702;
bfa74976
RS
8703@end group
8704
8705@group
8706constant:
5e9b6624
AD
8707 INTEGER
8708| STRING
8709;
bfa74976
RS
8710@end group
8711@end example
8712
8713@noindent
8714Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8715it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8716with letters are parsed as integers if possible.
8717
ff7571c0
JD
8718The declaration of @code{hexflag} shown in the prologue of the grammar
8719file is needed to make it accessible to the actions (@pxref{Prologue,
8720,The Prologue}). You must also write the code in @code{yylex} to obey
8721the flag.
bfa74976 8722
342b8b6e 8723@node Tie-in Recovery
bfa74976
RS
8724@section Lexical Tie-ins and Error Recovery
8725
8726Lexical tie-ins make strict demands on any error recovery rules you have.
8727@xref{Error Recovery}.
8728
8729The reason for this is that the purpose of an error recovery rule is to
8730abort the parsing of one construct and resume in some larger construct.
8731For example, in C-like languages, a typical error recovery rule is to skip
8732tokens until the next semicolon, and then start a new statement, like this:
8733
8734@example
5e9b6624
AD
8735stmt:
8736 expr ';'
8737| IF '(' expr ')' stmt @{ @dots{} @}
8738@dots{}
8739| error ';' @{ hexflag = 0; @}
8740;
bfa74976
RS
8741@end example
8742
8743If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8744construct, this error rule will apply, and then the action for the
8745completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8746remain set for the entire rest of the input, or until the next @code{hex}
8747keyword, causing identifiers to be misinterpreted as integers.
8748
8749To avoid this problem the error recovery rule itself clears @code{hexflag}.
8750
8751There may also be an error recovery rule that works within expressions.
8752For example, there could be a rule which applies within parentheses
8753and skips to the close-parenthesis:
8754
8755@example
8756@group
5e9b6624
AD
8757expr:
8758 @dots{}
8759| '(' expr ')' @{ $$ = $2; @}
8760| '(' error ')'
8761@dots{}
bfa74976
RS
8762@end group
8763@end example
8764
8765If this rule acts within the @code{hex} construct, it is not going to abort
8766that construct (since it applies to an inner level of parentheses within
8767the construct). Therefore, it should not clear the flag: the rest of
8768the @code{hex} construct should be parsed with the flag still in effect.
8769
8770What if there is an error recovery rule which might abort out of the
8771@code{hex} construct or might not, depending on circumstances? There is no
8772way you can write the action to determine whether a @code{hex} construct is
8773being aborted or not. So if you are using a lexical tie-in, you had better
8774make sure your error recovery rules are not of this kind. Each rule must
8775be such that you can be sure that it always will, or always won't, have to
8776clear the flag.
8777
ec3bc396
AD
8778@c ================================================== Debugging Your Parser
8779
342b8b6e 8780@node Debugging
bfa74976 8781@chapter Debugging Your Parser
ec3bc396 8782
93c150b6
AD
8783Developing a parser can be a challenge, especially if you don't understand
8784the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8785chapter explains how understand and debug a parser.
8786
8787The first sections focus on the static part of the parser: its structure.
8788They explain how to generate and read the detailed description of the
8789automaton. There are several formats available:
8790@itemize @minus
8791@item
8792as text, see @ref{Understanding, , Understanding Your Parser};
8793
8794@item
8795as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8796
8797@item
8798or as a markup report that can be turned, for instance, into HTML, see
8799@ref{Xml,, Visualizing your parser in multiple formats}.
8800@end itemize
8801
8802The last section focuses on the dynamic part of the parser: how to enable
8803and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8804Parser}).
ec3bc396
AD
8805
8806@menu
8807* Understanding:: Understanding the structure of your parser.
fc4fdd62 8808* Graphviz:: Getting a visual representation of the parser.
9c16d399 8809* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8810* Tracing:: Tracing the execution of your parser.
8811@end menu
8812
8813@node Understanding
8814@section Understanding Your Parser
8815
8816As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8817Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8818frequent than one would hope), looking at this automaton is required to
c949ada3 8819tune or simply fix a parser.
ec3bc396
AD
8820
8821The textual file is generated when the options @option{--report} or
e3fd1dcb 8822@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8823Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8824the parser implementation file name, and adding @samp{.output}
8825instead. Therefore, if the grammar file is @file{foo.y}, then the
8826parser implementation file is called @file{foo.tab.c} by default. As
8827a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8828
8829The following grammar file, @file{calc.y}, will be used in the sequel:
8830
8831@example
8832%token NUM STR
c949ada3 8833@group
ec3bc396
AD
8834%left '+' '-'
8835%left '*'
c949ada3 8836@end group
ec3bc396 8837%%
c949ada3 8838@group
5e9b6624
AD
8839exp:
8840 exp '+' exp
8841| exp '-' exp
8842| exp '*' exp
8843| exp '/' exp
8844| NUM
8845;
c949ada3 8846@end group
ec3bc396
AD
8847useless: STR;
8848%%
8849@end example
8850
88bce5a2
AD
8851@command{bison} reports:
8852
8853@example
8f0d265e
JD
8854calc.y: warning: 1 nonterminal useless in grammar
8855calc.y: warning: 1 rule useless in grammar
c949ada3
AD
8856calc.y:12.1-7: warning: nonterminal useless in grammar: useless
8857calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8858calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8859@end example
8860
8861When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8862creates a file @file{calc.output} with contents detailed below. The
8863order of the output and the exact presentation might vary, but the
8864interpretation is the same.
ec3bc396 8865
ec3bc396
AD
8866@noindent
8867@cindex token, useless
8868@cindex useless token
8869@cindex nonterminal, useless
8870@cindex useless nonterminal
8871@cindex rule, useless
8872@cindex useless rule
62243aa5 8873The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8874nonterminals and rules are removed in order to produce a smaller parser, but
8875useless tokens are preserved, since they might be used by the scanner (note
8876the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8877
8878@example
29e20e22 8879Nonterminals useless in grammar
ec3bc396
AD
8880 useless
8881
29e20e22 8882Terminals unused in grammar
ec3bc396
AD
8883 STR
8884
29e20e22
AD
8885Rules useless in grammar
8886 6 useless: STR
ec3bc396
AD
8887@end example
8888
8889@noindent
29e20e22
AD
8890The next section lists states that still have conflicts.
8891
8892@example
8893State 8 conflicts: 1 shift/reduce
8894State 9 conflicts: 1 shift/reduce
8895State 10 conflicts: 1 shift/reduce
8896State 11 conflicts: 4 shift/reduce
8897@end example
8898
8899@noindent
8900Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8901
8902@example
8903Grammar
8904
29e20e22
AD
8905 0 $accept: exp $end
8906
8907 1 exp: exp '+' exp
8908 2 | exp '-' exp
8909 3 | exp '*' exp
8910 4 | exp '/' exp
8911 5 | NUM
ec3bc396
AD
8912@end example
8913
8914@noindent
8915and reports the uses of the symbols:
8916
8917@example
d4fca427 8918@group
ec3bc396
AD
8919Terminals, with rules where they appear
8920
88bce5a2 8921$end (0) 0
ec3bc396
AD
8922'*' (42) 3
8923'+' (43) 1
8924'-' (45) 2
8925'/' (47) 4
8926error (256)
8927NUM (258) 5
29e20e22 8928STR (259)
d4fca427 8929@end group
ec3bc396 8930
d4fca427 8931@group
ec3bc396
AD
8932Nonterminals, with rules where they appear
8933
29e20e22 8934$accept (9)
ec3bc396 8935 on left: 0
29e20e22 8936exp (10)
ec3bc396 8937 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8938@end group
ec3bc396
AD
8939@end example
8940
8941@noindent
8942@cindex item
8943@cindex pointed rule
8944@cindex rule, pointed
8945Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8946with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8947item is a production rule together with a point (@samp{.}) marking
8948the location of the input cursor.
ec3bc396
AD
8949
8950@example
c949ada3 8951State 0
ec3bc396 8952
29e20e22 8953 0 $accept: . exp $end
ec3bc396 8954
29e20e22 8955 NUM shift, and go to state 1
ec3bc396 8956
29e20e22 8957 exp go to state 2
ec3bc396
AD
8958@end example
8959
8960This reads as follows: ``state 0 corresponds to being at the very
8961beginning of the parsing, in the initial rule, right before the start
8962symbol (here, @code{exp}). When the parser returns to this state right
8963after having reduced a rule that produced an @code{exp}, the control
8964flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8965symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8966the parse stack, and the control flow jumps to state 1. Any other
742e4900 8967lookahead triggers a syntax error.''
ec3bc396
AD
8968
8969@cindex core, item set
8970@cindex item set core
8971@cindex kernel, item set
8972@cindex item set core
8973Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8974report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8975at the beginning of any rule deriving an @code{exp}. By default Bison
8976reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8977you want to see more detail you can invoke @command{bison} with
35880c82 8978@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8979
8980@example
c949ada3 8981State 0
ec3bc396 8982
29e20e22
AD
8983 0 $accept: . exp $end
8984 1 exp: . exp '+' exp
8985 2 | . exp '-' exp
8986 3 | . exp '*' exp
8987 4 | . exp '/' exp
8988 5 | . NUM
ec3bc396 8989
29e20e22 8990 NUM shift, and go to state 1
ec3bc396 8991
29e20e22 8992 exp go to state 2
ec3bc396
AD
8993@end example
8994
8995@noindent
29e20e22 8996In the state 1@dots{}
ec3bc396
AD
8997
8998@example
c949ada3 8999State 1
ec3bc396 9000
29e20e22 9001 5 exp: NUM .
ec3bc396 9002
29e20e22 9003 $default reduce using rule 5 (exp)
ec3bc396
AD
9004@end example
9005
9006@noindent
742e4900 9007the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 9008(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 9009State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
9010jump to state 2 (@samp{exp: go to state 2}).
9011
9012@example
c949ada3 9013State 2
ec3bc396 9014
29e20e22
AD
9015 0 $accept: exp . $end
9016 1 exp: exp . '+' exp
9017 2 | exp . '-' exp
9018 3 | exp . '*' exp
9019 4 | exp . '/' exp
ec3bc396 9020
29e20e22
AD
9021 $end shift, and go to state 3
9022 '+' shift, and go to state 4
9023 '-' shift, and go to state 5
9024 '*' shift, and go to state 6
9025 '/' shift, and go to state 7
ec3bc396
AD
9026@end example
9027
9028@noindent
9029In state 2, the automaton can only shift a symbol. For instance,
29e20e22 9030because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 9031@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 9032jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
9033Since there is no default action, any lookahead not listed triggers a syntax
9034error.
ec3bc396 9035
eb45ef3b 9036@cindex accepting state
ec3bc396
AD
9037The state 3 is named the @dfn{final state}, or the @dfn{accepting
9038state}:
9039
9040@example
c949ada3 9041State 3
ec3bc396 9042
29e20e22 9043 0 $accept: exp $end .
ec3bc396 9044
29e20e22 9045 $default accept
ec3bc396
AD
9046@end example
9047
9048@noindent
29e20e22
AD
9049the initial rule is completed (the start symbol and the end-of-input were
9050read), the parsing exits successfully.
ec3bc396
AD
9051
9052The interpretation of states 4 to 7 is straightforward, and is left to
9053the reader.
9054
9055@example
c949ada3 9056State 4
ec3bc396 9057
29e20e22 9058 1 exp: exp '+' . exp
ec3bc396 9059
29e20e22
AD
9060 NUM shift, and go to state 1
9061
9062 exp go to state 8
ec3bc396 9063
ec3bc396 9064
c949ada3 9065State 5
ec3bc396 9066
29e20e22
AD
9067 2 exp: exp '-' . exp
9068
9069 NUM shift, and go to state 1
ec3bc396 9070
29e20e22 9071 exp go to state 9
ec3bc396 9072
ec3bc396 9073
c949ada3 9074State 6
ec3bc396 9075
29e20e22 9076 3 exp: exp '*' . exp
ec3bc396 9077
29e20e22
AD
9078 NUM shift, and go to state 1
9079
9080 exp go to state 10
ec3bc396 9081
ec3bc396 9082
c949ada3 9083State 7
ec3bc396 9084
29e20e22 9085 4 exp: exp '/' . exp
ec3bc396 9086
29e20e22 9087 NUM shift, and go to state 1
ec3bc396 9088
29e20e22 9089 exp go to state 11
ec3bc396
AD
9090@end example
9091
5a99098d
PE
9092As was announced in beginning of the report, @samp{State 8 conflicts:
90931 shift/reduce}:
ec3bc396
AD
9094
9095@example
c949ada3 9096State 8
ec3bc396 9097
29e20e22
AD
9098 1 exp: exp . '+' exp
9099 1 | exp '+' exp .
9100 2 | exp . '-' exp
9101 3 | exp . '*' exp
9102 4 | exp . '/' exp
ec3bc396 9103
29e20e22
AD
9104 '*' shift, and go to state 6
9105 '/' shift, and go to state 7
ec3bc396 9106
29e20e22
AD
9107 '/' [reduce using rule 1 (exp)]
9108 $default reduce using rule 1 (exp)
ec3bc396
AD
9109@end example
9110
742e4900 9111Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
9112either shifting (and going to state 7), or reducing rule 1. The
9113conflict means that either the grammar is ambiguous, or the parser lacks
9114information to make the right decision. Indeed the grammar is
9115ambiguous, as, since we did not specify the precedence of @samp{/}, the
9116sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
9117NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
9118NUM}, which corresponds to reducing rule 1.
9119
eb45ef3b 9120Because in deterministic parsing a single decision can be made, Bison
ec3bc396 9121arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 9122Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
9123square brackets.
9124
9125Note that all the previous states had a single possible action: either
9126shifting the next token and going to the corresponding state, or
9127reducing a single rule. In the other cases, i.e., when shifting
9128@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
9129possible, the lookahead is required to select the action. State 8 is
9130one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
9131is shifting, otherwise the action is reducing rule 1. In other words,
9132the first two items, corresponding to rule 1, are not eligible when the
742e4900 9133lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 9134precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
9135with some set of possible lookahead tokens. When run with
9136@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
9137
9138@example
c949ada3 9139State 8
ec3bc396 9140
29e20e22
AD
9141 1 exp: exp . '+' exp
9142 1 | exp '+' exp . [$end, '+', '-', '/']
9143 2 | exp . '-' exp
9144 3 | exp . '*' exp
9145 4 | exp . '/' exp
9146
9147 '*' shift, and go to state 6
9148 '/' shift, and go to state 7
ec3bc396 9149
29e20e22
AD
9150 '/' [reduce using rule 1 (exp)]
9151 $default reduce using rule 1 (exp)
9152@end example
9153
9154Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9155the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9156solved thanks to associativity and precedence directives. If invoked with
9157@option{--report=solved}, Bison includes information about the solved
9158conflicts in the report:
ec3bc396 9159
29e20e22
AD
9160@example
9161Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9162Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9163Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9164@end example
9165
29e20e22 9166
ec3bc396
AD
9167The remaining states are similar:
9168
9169@example
d4fca427 9170@group
c949ada3 9171State 9
ec3bc396 9172
29e20e22
AD
9173 1 exp: exp . '+' exp
9174 2 | exp . '-' exp
9175 2 | exp '-' exp .
9176 3 | exp . '*' exp
9177 4 | exp . '/' exp
ec3bc396 9178
29e20e22
AD
9179 '*' shift, and go to state 6
9180 '/' shift, and go to state 7
ec3bc396 9181
29e20e22
AD
9182 '/' [reduce using rule 2 (exp)]
9183 $default reduce using rule 2 (exp)
d4fca427 9184@end group
ec3bc396 9185
d4fca427 9186@group
c949ada3 9187State 10
ec3bc396 9188
29e20e22
AD
9189 1 exp: exp . '+' exp
9190 2 | exp . '-' exp
9191 3 | exp . '*' exp
9192 3 | exp '*' exp .
9193 4 | exp . '/' exp
ec3bc396 9194
29e20e22 9195 '/' shift, and go to state 7
ec3bc396 9196
29e20e22
AD
9197 '/' [reduce using rule 3 (exp)]
9198 $default reduce using rule 3 (exp)
d4fca427 9199@end group
ec3bc396 9200
d4fca427 9201@group
c949ada3 9202State 11
ec3bc396 9203
29e20e22
AD
9204 1 exp: exp . '+' exp
9205 2 | exp . '-' exp
9206 3 | exp . '*' exp
9207 4 | exp . '/' exp
9208 4 | exp '/' exp .
9209
9210 '+' shift, and go to state 4
9211 '-' shift, and go to state 5
9212 '*' shift, and go to state 6
9213 '/' shift, and go to state 7
9214
9215 '+' [reduce using rule 4 (exp)]
9216 '-' [reduce using rule 4 (exp)]
9217 '*' [reduce using rule 4 (exp)]
9218 '/' [reduce using rule 4 (exp)]
9219 $default reduce using rule 4 (exp)
d4fca427 9220@end group
ec3bc396
AD
9221@end example
9222
9223@noindent
fa7e68c3 9224Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9225precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9226also because the associativity of @samp{/} is not specified.
ec3bc396 9227
c949ada3
AD
9228Bison may also produce an HTML version of this output, via an XML file and
9229XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9230
fc4fdd62
TR
9231@c ================================================= Graphical Representation
9232
9233@node Graphviz
9234@section Visualizing Your Parser
9235@cindex dot
9236
9237As another means to gain better understanding of the shift/reduce
9238automaton corresponding to the Bison parser, a DOT file can be generated. Note
9239that debugging a real grammar with this is tedious at best, and impractical
9240most of the times, because the generated files are huge (the generation of
9241a PDF or PNG file from it will take very long, and more often than not it will
9242fail due to memory exhaustion). This option was rather designed for beginners,
9243to help them understand LR parsers.
9244
bfdcc3a0
AD
9245This file is generated when the @option{--graph} option is specified
9246(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9247@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9248adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9249Graphviz output file is called @file{foo.dot}. A DOT file may also be
9250produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9251parser in multiple formats}).
9252
fc4fdd62
TR
9253
9254The following grammar file, @file{rr.y}, will be used in the sequel:
9255
9256@example
9257%%
9258@group
9259exp: a ";" | b ".";
9260a: "0";
9261b: "0";
9262@end group
9263@end example
9264
c949ada3
AD
9265The graphical output
9266@ifnotinfo
9267(see @ref{fig:graph})
9268@end ifnotinfo
9269is very similar to the textual one, and as such it is easier understood by
9270making direct comparisons between them. @xref{Debugging, , Debugging Your
9271Parser}, for a detailled analysis of the textual report.
9272
9273@ifnotinfo
9274@float Figure,fig:graph
9275@image{figs/example, 430pt}
9276@caption{A graphical rendering of the parser.}
9277@end float
9278@end ifnotinfo
fc4fdd62
TR
9279
9280@subheading Graphical Representation of States
9281
9282The items (pointed rules) for each state are grouped together in graph nodes.
9283Their numbering is the same as in the verbose file. See the following points,
9284about transitions, for examples
9285
9286When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9287needed, are shown next to the relevant rule between square brackets as a
9288comma separated list. This is the case in the figure for the representation of
9289reductions, below.
9290
9291@sp 1
9292
9293The transitions are represented as directed edges between the current and
9294the target states.
9295
9296@subheading Graphical Representation of Shifts
9297
9298Shifts are shown as solid arrows, labelled with the lookahead token for that
9299shift. The following describes a reduction in the @file{rr.output} file:
9300
9301@example
9302@group
c949ada3 9303State 3
fc4fdd62
TR
9304
9305 1 exp: a . ";"
9306
9307 ";" shift, and go to state 6
9308@end group
9309@end example
9310
9311A Graphviz rendering of this portion of the graph could be:
9312
9313@center @image{figs/example-shift, 100pt}
9314
9315@subheading Graphical Representation of Reductions
9316
9317Reductions are shown as solid arrows, leading to a diamond-shaped node
9318bearing the number of the reduction rule. The arrow is labelled with the
9319appropriate comma separated lookahead tokens. If the reduction is the default
9320action for the given state, there is no such label.
9321
9322This is how reductions are represented in the verbose file @file{rr.output}:
9323@example
c949ada3 9324State 1
fc4fdd62
TR
9325
9326 3 a: "0" . [";"]
9327 4 b: "0" . ["."]
9328
9329 "." reduce using rule 4 (b)
9330 $default reduce using rule 3 (a)
9331@end example
9332
9333A Graphviz rendering of this portion of the graph could be:
9334
9335@center @image{figs/example-reduce, 120pt}
9336
9337When unresolved conflicts are present, because in deterministic parsing
9338a single decision can be made, Bison can arbitrarily choose to disable a
9339reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9340are distinguished by a red filling color on these nodes, just like how they are
9341reported between square brackets in the verbose file.
9342
c949ada3
AD
9343The reduction corresponding to the rule number 0 is the acceptation
9344state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9345
9346@subheading Graphical representation of go tos
9347
9348The @samp{go to} jump transitions are represented as dotted lines bearing
9349the name of the rule being jumped to.
9350
9c16d399
TR
9351@c ================================================= XML
9352
9353@node Xml
9354@section Visualizing your parser in multiple formats
9355@cindex xml
9356
9357Bison supports two major report formats: textual output
c949ada3
AD
9358(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9359with option @option{--verbose}, and DOT
9360(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9361option @option{--graph}. However,
9c16d399
TR
9362another alternative is to output an XML file that may then be, with
9363@command{xsltproc}, rendered as either a raw text format equivalent to the
9364verbose file, or as an HTML version of the same file, with clickable
9365transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9366XSLT have no difference whatsoever with those obtained by invoking
9367@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9368
c949ada3 9369The XML file is generated when the options @option{-x} or
9c16d399
TR
9370@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9371If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9372from the parser implementation file name, and adding @samp{.xml} instead.
9373For instance, if the grammar file is @file{foo.y}, the default XML output
9374file is @file{foo.xml}.
9375
9376Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9377files to apply to the XML file. Their names are non-ambiguous:
9378
9379@table @file
9380@item xml2dot.xsl
be3517b0 9381Used to output a copy of the DOT visualization of the automaton.
9c16d399 9382@item xml2text.xsl
c949ada3 9383Used to output a copy of the @samp{.output} file.
9c16d399 9384@item xml2xhtml.xsl
c949ada3 9385Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9386@end table
9387
c949ada3 9388Sample usage (requires @command{xsltproc}):
9c16d399 9389@example
c949ada3 9390$ bison -x gr.y
9c16d399
TR
9391@group
9392$ bison --print-datadir
9393/usr/local/share/bison
9394@end group
c949ada3 9395$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9396@end example
9397
fc4fdd62 9398@c ================================================= Tracing
ec3bc396
AD
9399
9400@node Tracing
9401@section Tracing Your Parser
bfa74976
RS
9402@findex yydebug
9403@cindex debugging
9404@cindex tracing the parser
9405
93c150b6
AD
9406When a Bison grammar compiles properly but parses ``incorrectly'', the
9407@code{yydebug} parser-trace feature helps figuring out why.
9408
9409@menu
9410* Enabling Traces:: Activating run-time trace support
9411* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9412* The YYPRINT Macro:: Obsolete interface for semantic value reports
9413@end menu
bfa74976 9414
93c150b6
AD
9415@node Enabling Traces
9416@subsection Enabling Traces
3ded9a63
AD
9417There are several means to enable compilation of trace facilities:
9418
9419@table @asis
9420@item the macro @code{YYDEBUG}
9421@findex YYDEBUG
9422Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9423parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9424@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9425YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9426Prologue}).
9427
e6ae99fe 9428If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9429Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9430api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9431tracing feature (enabled if and only if nonzero); otherwise tracing is
9432enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9433
9434@item the option @option{-t} (POSIX Yacc compliant)
9435@itemx the option @option{--debug} (Bison extension)
9436Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
9437Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
9438otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9439
9440@item the directive @samp{%debug}
9441@findex %debug
fa819509
AD
9442Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9443Summary}). This Bison extension is maintained for backward
9444compatibility with previous versions of Bison.
9445
9446@item the variable @samp{parse.trace}
9447@findex %define parse.trace
35c1e5f0
JD
9448Add the @samp{%define parse.trace} directive (@pxref{%define
9449Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9450(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9451useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9452portability matter to you, this is the preferred solution.
3ded9a63
AD
9453@end table
9454
fa819509 9455We suggest that you always enable the trace option so that debugging is
3ded9a63 9456always possible.
bfa74976 9457
93c150b6 9458@findex YYFPRINTF
02a81e05 9459The trace facility outputs messages with macro calls of the form
e2742e46 9460@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9461@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9462arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9463define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9464and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9465
9466Once you have compiled the program with trace facilities, the way to
9467request a trace is to store a nonzero value in the variable @code{yydebug}.
9468You can do this by making the C code do it (in @code{main}, perhaps), or
9469you can alter the value with a C debugger.
9470
9471Each step taken by the parser when @code{yydebug} is nonzero produces a
9472line or two of trace information, written on @code{stderr}. The trace
9473messages tell you these things:
9474
9475@itemize @bullet
9476@item
9477Each time the parser calls @code{yylex}, what kind of token was read.
9478
9479@item
9480Each time a token is shifted, the depth and complete contents of the
9481state stack (@pxref{Parser States}).
9482
9483@item
9484Each time a rule is reduced, which rule it is, and the complete contents
9485of the state stack afterward.
9486@end itemize
9487
93c150b6
AD
9488To make sense of this information, it helps to refer to the automaton
9489description file (@pxref{Understanding, ,Understanding Your Parser}).
9490This file shows the meaning of each state in terms of
704a47c4
AD
9491positions in various rules, and also what each state will do with each
9492possible input token. As you read the successive trace messages, you
9493can see that the parser is functioning according to its specification in
9494the listing file. Eventually you will arrive at the place where
9495something undesirable happens, and you will see which parts of the
9496grammar are to blame.
bfa74976 9497
93c150b6 9498The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9499debuggers on it, but it's not easy to interpret what it is doing. The
9500parser function is a finite-state machine interpreter, and aside from
9501the actions it executes the same code over and over. Only the values
9502of variables show where in the grammar it is working.
bfa74976 9503
93c150b6
AD
9504@node Mfcalc Traces
9505@subsection Enabling Debug Traces for @code{mfcalc}
9506
9507The debugging information normally gives the token type of each token read,
9508but not its semantic value. The @code{%printer} directive allows specify
9509how semantic values are reported, see @ref{Printer Decl, , Printing
9510Semantic Values}. For backward compatibility, Yacc like C parsers may also
9511use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9512Macro}), but its use is discouraged.
9513
9514As a demonstration of @code{%printer}, consider the multi-function
9515calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9516traces, and semantic value reports, insert the following directives in its
9517prologue:
9518
9519@comment file: mfcalc.y: 2
9520@example
9521/* Generate the parser description file. */
9522%verbose
9523/* Enable run-time traces (yydebug). */
9524%define parse.trace
9525
9526/* Formatting semantic values. */
9527%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9528%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
9529%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
9530@end example
9531
9532The @code{%define} directive instructs Bison to generate run-time trace
9533support. Then, activation of these traces is controlled at run-time by the
9534@code{yydebug} variable, which is disabled by default. Because these traces
9535will refer to the ``states'' of the parser, it is helpful to ask for the
9536creation of a description of that parser; this is the purpose of (admittedly
9537ill-named) @code{%verbose} directive.
9538
9539The set of @code{%printer} directives demonstrates how to format the
9540semantic value in the traces. Note that the specification can be done
9541either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
9542tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
9543printer will be used for them.
9544
9545Here is a sample of the information provided by run-time traces. The traces
9546are sent onto standard error.
9547
9548@example
9549$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9550Starting parse
9551Entering state 0
9552Reducing stack by rule 1 (line 34):
9553-> $$ = nterm input ()
9554Stack now 0
9555Entering state 1
9556@end example
9557
9558@noindent
9559This first batch shows a specific feature of this grammar: the first rule
9560(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9561to look for the first token. The resulting left-hand symbol (@code{$$}) is
9562a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9563
9564Then the parser calls the scanner.
9565@example
9566Reading a token: Next token is token FNCT (sin())
9567Shifting token FNCT (sin())
9568Entering state 6
9569@end example
9570
9571@noindent
9572That token (@code{token}) is a function (@code{FNCT}) whose value is
9573@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9574The parser stores (@code{Shifting}) that token, and others, until it can do
9575something about it.
9576
9577@example
9578Reading a token: Next token is token '(' ()
9579Shifting token '(' ()
9580Entering state 14
9581Reading a token: Next token is token NUM (1.000000)
9582Shifting token NUM (1.000000)
9583Entering state 4
9584Reducing stack by rule 6 (line 44):
9585 $1 = token NUM (1.000000)
9586-> $$ = nterm exp (1.000000)
9587Stack now 0 1 6 14
9588Entering state 24
9589@end example
9590
9591@noindent
9592The previous reduction demonstrates the @code{%printer} directive for
c949ada3 9593@code{<val>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9594@code{exp} have @samp{1} as value.
9595
9596@example
9597Reading a token: Next token is token '-' ()
9598Shifting token '-' ()
9599Entering state 17
9600Reading a token: Next token is token NUM (1.000000)
9601Shifting token NUM (1.000000)
9602Entering state 4
9603Reducing stack by rule 6 (line 44):
9604 $1 = token NUM (1.000000)
9605-> $$ = nterm exp (1.000000)
9606Stack now 0 1 6 14 24 17
9607Entering state 26
9608Reading a token: Next token is token ')' ()
9609Reducing stack by rule 11 (line 49):
9610 $1 = nterm exp (1.000000)
9611 $2 = token '-' ()
9612 $3 = nterm exp (1.000000)
9613-> $$ = nterm exp (0.000000)
9614Stack now 0 1 6 14
9615Entering state 24
9616@end example
9617
9618@noindent
9619The rule for the subtraction was just reduced. The parser is about to
9620discover the end of the call to @code{sin}.
9621
9622@example
9623Next token is token ')' ()
9624Shifting token ')' ()
9625Entering state 31
9626Reducing stack by rule 9 (line 47):
9627 $1 = token FNCT (sin())
9628 $2 = token '(' ()
9629 $3 = nterm exp (0.000000)
9630 $4 = token ')' ()
9631-> $$ = nterm exp (0.000000)
9632Stack now 0 1
9633Entering state 11
9634@end example
9635
9636@noindent
9637Finally, the end-of-line allow the parser to complete the computation, and
9638display its result.
9639
9640@example
9641Reading a token: Next token is token '\n' ()
9642Shifting token '\n' ()
9643Entering state 22
9644Reducing stack by rule 4 (line 40):
9645 $1 = nterm exp (0.000000)
9646 $2 = token '\n' ()
9647@result{} 0
9648-> $$ = nterm line ()
9649Stack now 0 1
9650Entering state 10
9651Reducing stack by rule 2 (line 35):
9652 $1 = nterm input ()
9653 $2 = nterm line ()
9654-> $$ = nterm input ()
9655Stack now 0
9656Entering state 1
9657@end example
9658
9659The parser has returned into state 1, in which it is waiting for the next
9660expression to evaluate, or for the end-of-file token, which causes the
9661completion of the parsing.
9662
9663@example
9664Reading a token: Now at end of input.
9665Shifting token $end ()
9666Entering state 2
9667Stack now 0 1 2
9668Cleanup: popping token $end ()
9669Cleanup: popping nterm input ()
9670@end example
9671
9672
9673@node The YYPRINT Macro
9674@subsection The @code{YYPRINT} Macro
9675
bfa74976 9676@findex YYPRINT
93c150b6
AD
9677Before @code{%printer} support, semantic values could be displayed using the
9678@code{YYPRINT} macro, which works only for terminal symbols and only with
9679the @file{yacc.c} skeleton.
9680
9681@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9682@findex YYPRINT
9683If you define @code{YYPRINT}, it should take three arguments. The parser
9684will pass a standard I/O stream, the numeric code for the token type, and
9685the token value (from @code{yylval}).
9686
9687For @file{yacc.c} only. Obsoleted by @code{%printer}.
9688@end deffn
bfa74976
RS
9689
9690Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9691calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9692
c93f22fc 9693@example
38a92d50
PE
9694%@{
9695 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9696 #define YYPRINT(File, Type, Value) \
9697 print_token_value (File, Type, Value)
38a92d50
PE
9698%@}
9699
9700@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9701
9702static void
831d3c99 9703print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9704@{
9705 if (type == VAR)
d3c4e709 9706 fprintf (file, "%s", value.tptr->name);
bfa74976 9707 else if (type == NUM)
d3c4e709 9708 fprintf (file, "%d", value.val);
bfa74976 9709@}
c93f22fc 9710@end example
bfa74976 9711
ec3bc396
AD
9712@c ================================================= Invoking Bison
9713
342b8b6e 9714@node Invocation
bfa74976
RS
9715@chapter Invoking Bison
9716@cindex invoking Bison
9717@cindex Bison invocation
9718@cindex options for invoking Bison
9719
9720The usual way to invoke Bison is as follows:
9721
9722@example
9723bison @var{infile}
9724@end example
9725
9726Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9727@samp{.y}. The parser implementation file's name is made by replacing
9728the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9729Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9730the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9731also possible, in case you are writing C++ code instead of C in your
9732grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9733output files will take an extension like the given one as input
9734(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9735feature takes effect with all options that manipulate file names like
234a3be3
AD
9736@samp{-o} or @samp{-d}.
9737
9738For example :
9739
9740@example
9741bison -d @var{infile.yxx}
9742@end example
84163231 9743@noindent
72d2299c 9744will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9745
9746@example
b56471a6 9747bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9748@end example
84163231 9749@noindent
234a3be3
AD
9750will produce @file{output.c++} and @file{outfile.h++}.
9751
8a4281b9 9752For compatibility with POSIX, the standard Bison
397ec073
PE
9753distribution also contains a shell script called @command{yacc} that
9754invokes Bison with the @option{-y} option.
9755
bfa74976 9756@menu
13863333 9757* Bison Options:: All the options described in detail,
c827f760 9758 in alphabetical order by short options.
bfa74976 9759* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9760* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9761@end menu
9762
342b8b6e 9763@node Bison Options
bfa74976
RS
9764@section Bison Options
9765
9766Bison supports both traditional single-letter options and mnemonic long
9767option names. Long option names are indicated with @samp{--} instead of
9768@samp{-}. Abbreviations for option names are allowed as long as they
9769are unique. When a long option takes an argument, like
9770@samp{--file-prefix}, connect the option name and the argument with
9771@samp{=}.
9772
9773Here is a list of options that can be used with Bison, alphabetized by
9774short option. It is followed by a cross key alphabetized by long
9775option.
9776
4c9b8f13 9777@c Please, keep this ordered as in 'bison --help'.
89cab50d
AD
9778@noindent
9779Operations modes:
9780@table @option
9781@item -h
9782@itemx --help
9783Print a summary of the command-line options to Bison and exit.
bfa74976 9784
89cab50d
AD
9785@item -V
9786@itemx --version
9787Print the version number of Bison and exit.
bfa74976 9788
f7ab6a50
PE
9789@item --print-localedir
9790Print the name of the directory containing locale-dependent data.
9791
a0de5091
JD
9792@item --print-datadir
9793Print the name of the directory containing skeletons and XSLT.
9794
89cab50d
AD
9795@item -y
9796@itemx --yacc
ff7571c0
JD
9797Act more like the traditional Yacc command. This can cause different
9798diagnostics to be generated, and may change behavior in other minor
9799ways. Most importantly, imitate Yacc's output file name conventions,
9800so that the parser implementation file is called @file{y.tab.c}, and
9801the other outputs are called @file{y.output} and @file{y.tab.h}.
9802Also, if generating a deterministic parser in C, generate
9803@code{#define} statements in addition to an @code{enum} to associate
9804token numbers with token names. Thus, the following shell script can
9805substitute for Yacc, and the Bison distribution contains such a script
9806for compatibility with POSIX:
bfa74976 9807
89cab50d 9808@example
397ec073 9809#! /bin/sh
26e06a21 9810bison -y "$@@"
89cab50d 9811@end example
54662697
PE
9812
9813The @option{-y}/@option{--yacc} option is intended for use with
9814traditional Yacc grammars. If your grammar uses a Bison extension
9815like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9816this option is specified.
9817
1d5b3c08
JD
9818@item -W [@var{category}]
9819@itemx --warnings[=@var{category}]
118d4978
AD
9820Output warnings falling in @var{category}. @var{category} can be one
9821of:
9822@table @code
9823@item midrule-values
8e55b3aa
JD
9824Warn about mid-rule values that are set but not used within any of the actions
9825of the parent rule.
9826For example, warn about unused @code{$2} in:
118d4978
AD
9827
9828@example
9829exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9830@end example
9831
8e55b3aa
JD
9832Also warn about mid-rule values that are used but not set.
9833For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9834
9835@example
5e9b6624 9836exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9837@end example
9838
9839These warnings are not enabled by default since they sometimes prove to
9840be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9841@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9842
118d4978 9843@item yacc
8a4281b9 9844Incompatibilities with POSIX Yacc.
118d4978 9845
786743d5
JD
9846@item conflicts-sr
9847@itemx conflicts-rr
9848S/R and R/R conflicts. These warnings are enabled by default. However, if
9849the @code{%expect} or @code{%expect-rr} directive is specified, an
9850unexpected number of conflicts is an error, and an expected number of
9851conflicts is not reported, so @option{-W} and @option{--warning} then have
9852no effect on the conflict report.
9853
518e8830
AD
9854@item deprecated
9855Deprecated constructs whose support will be removed in future versions of
9856Bison.
9857
09add9c2
AD
9858@item empty-rule
9859Empty rules without @code{%empty}. @xref{Empty Rules}. Disabled by
9860default, but enabled by uses of @code{%empty}, unless
9861@option{-Wno-empty-rule} was specified.
9862
cc2235ac
VT
9863@item precedence
9864Useless precedence and associativity directives. Disabled by default.
9865
9866Consider for instance the following grammar:
9867
9868@example
9869@group
9870%nonassoc "="
9871%left "+"
9872%left "*"
9873%precedence "("
9874@end group
9875%%
9876@group
9877stmt:
9878 exp
9879| "var" "=" exp
9880;
9881@end group
9882
9883@group
9884exp:
9885 exp "+" exp
9886| exp "*" "num"
9887| "(" exp ")"
9888| "num"
9889;
9890@end group
9891@end example
9892
9893Bison reports:
9894
9895@c cannot leave the location and the [-Wprecedence] for lack of
9896@c width in PDF.
9897@example
9898@group
9899warning: useless precedence and associativity for "="
9900 %nonassoc "="
9901 ^^^
9902@end group
9903@group
9904warning: useless associativity for "*", use %precedence
9905 %left "*"
9906 ^^^
9907@end group
9908@group
9909warning: useless precedence for "("
9910 %precedence "("
9911 ^^^
9912@end group
9913@end example
9914
9915One would get the exact same parser with the following directives instead:
9916
9917@example
9918@group
9919%left "+"
9920%precedence "*"
9921@end group
9922@end example
9923
c39014ae
JD
9924@item other
9925All warnings not categorized above. These warnings are enabled by default.
9926
9927This category is provided merely for the sake of completeness. Future
9928releases of Bison may move warnings from this category to new, more specific
9929categories.
9930
118d4978 9931@item all
f24695ef
AD
9932All the warnings except @code{yacc}.
9933
118d4978 9934@item none
8e55b3aa 9935Turn off all the warnings.
f24695ef 9936
118d4978 9937@item error
1048a1c9 9938See @option{-Werror}, below.
118d4978
AD
9939@end table
9940
9941A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9942instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9943POSIX Yacc incompatibilities.
1048a1c9
AD
9944
9945@item -Werror[=@var{category}]
9946@itemx -Wno-error[=@var{category}]
9947Enable warnings falling in @var{category}, and treat them as errors. If no
9948@var{category} is given, it defaults to making all enabled warnings into errors.
9949
9950@var{category} is the same as for @option{--warnings}, with the exception that
9951it may not be prefixed with @samp{no-} (see above).
9952
9953Prefixed with @samp{no}, it deactivates the error treatment for this
9954@var{category}. However, the warning itself won't be disabled, or enabled, by
9955this option.
9956
9957Note that the precedence of the @samp{=} and @samp{,} operators is such that
9958the following commands are @emph{not} equivalent, as the first will not treat
9959S/R conflicts as errors.
9960
9961@example
9962$ bison -Werror=yacc,conflicts-sr input.y
9963$ bison -Werror=yacc,error=conflicts-sr input.y
9964@end example
f3ead217 9965
7bada535
TR
9966@item -f [@var{feature}]
9967@itemx --feature[=@var{feature}]
9968Activate miscellaneous @var{feature}. @var{feature} can be one of:
9969@table @code
9970@item caret
9971@itemx diagnostics-show-caret
9972Show caret errors, in a manner similar to GCC's
9973@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
9974location provided with the message is used to quote the corresponding line of
9975the source file, underlining the important part of it with carets (^). Here is
c949ada3 9976an example, using the following file @file{in.y}:
7bada535
TR
9977
9978@example
9979%type <ival> exp
9980%%
9981exp: exp '+' exp @{ $exp = $1 + $2; @};
9982@end example
9983
016426c1 9984When invoked with @option{-fcaret} (or nothing), Bison will report:
7bada535
TR
9985
9986@example
9987@group
c949ada3 9988in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
9989 exp: exp '+' exp @{ $exp = $1 + $2; @};
9990 ^^^^
9991@end group
9992@group
c949ada3 9993in.y:3.1-3: refers to: $exp at $$
7bada535
TR
9994 exp: exp '+' exp @{ $exp = $1 + $2; @};
9995 ^^^
9996@end group
9997@group
c949ada3 9998in.y:3.6-8: refers to: $exp at $1
7bada535
TR
9999 exp: exp '+' exp @{ $exp = $1 + $2; @};
10000 ^^^
10001@end group
10002@group
c949ada3 10003in.y:3.14-16: refers to: $exp at $3
7bada535
TR
10004 exp: exp '+' exp @{ $exp = $1 + $2; @};
10005 ^^^
10006@end group
10007@group
c949ada3 10008in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
10009 exp: exp '+' exp @{ $exp = $1 + $2; @};
10010 ^^
10011@end group
10012@end example
10013
016426c1
TR
10014Whereas, when invoked with @option{-fno-caret}, Bison will only report:
10015
10016@example
10017@group
10018in.y:3.20-23: error: ambiguous reference: ‘$exp’
10019in.y:3.1-3: refers to: $exp at $$
10020in.y:3.6-8: refers to: $exp at $1
10021in.y:3.14-16: refers to: $exp at $3
10022in.y:3.32-33: error: $2 of ‘exp’ has no declared type
10023@end group
10024@end example
10025
10026This option is activated by default.
10027
7bada535 10028@end table
89cab50d
AD
10029@end table
10030
10031@noindent
10032Tuning the parser:
10033
10034@table @option
10035@item -t
10036@itemx --debug
ff7571c0
JD
10037In the parser implementation file, define the macro @code{YYDEBUG} to
100381 if it is not already defined, so that the debugging facilities are
10039compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 10040
58697c6d
AD
10041@item -D @var{name}[=@var{value}]
10042@itemx --define=@var{name}[=@var{value}]
17aed602 10043@itemx -F @var{name}[=@var{value}]
de5ab940
JD
10044@itemx --force-define=@var{name}[=@var{value}]
10045Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 10046(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
10047definitions for the same @var{name} as follows:
10048
10049@itemize
10050@item
0b6d43c5
JD
10051Bison quietly ignores all command-line definitions for @var{name} except
10052the last.
de5ab940 10053@item
0b6d43c5
JD
10054If that command-line definition is specified by a @code{-D} or
10055@code{--define}, Bison reports an error for any @code{%define}
10056definition for @var{name}.
de5ab940 10057@item
0b6d43c5
JD
10058If that command-line definition is specified by a @code{-F} or
10059@code{--force-define} instead, Bison quietly ignores all @code{%define}
10060definitions for @var{name}.
10061@item
10062Otherwise, Bison reports an error if there are multiple @code{%define}
10063definitions for @var{name}.
de5ab940
JD
10064@end itemize
10065
10066You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
10067make files unless you are confident that it is safe to quietly ignore
10068any conflicting @code{%define} that may be added to the grammar file.
58697c6d 10069
0e021770
PE
10070@item -L @var{language}
10071@itemx --language=@var{language}
10072Specify the programming language for the generated parser, as if
10073@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 10074Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 10075@var{language} is case-insensitive.
0e021770 10076
89cab50d 10077@item --locations
d8988b2f 10078Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
10079
10080@item -p @var{prefix}
10081@itemx --name-prefix=@var{prefix}
4b3847c3
AD
10082Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
10083Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
10084Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
10085
10086@item -l
10087@itemx --no-lines
ff7571c0
JD
10088Don't put any @code{#line} preprocessor commands in the parser
10089implementation file. Ordinarily Bison puts them in the parser
10090implementation file so that the C compiler and debuggers will
10091associate errors with your source file, the grammar file. This option
10092causes them to associate errors with the parser implementation file,
10093treating it as an independent source file in its own right.
bfa74976 10094
e6e704dc
JD
10095@item -S @var{file}
10096@itemx --skeleton=@var{file}
a7867f53 10097Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
10098(@pxref{Decl Summary, , Bison Declaration Summary}).
10099
ed4d67dc
JD
10100@c You probably don't need this option unless you are developing Bison.
10101@c You should use @option{--language} if you want to specify the skeleton for a
10102@c different language, because it is clearer and because it will always
10103@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 10104
a7867f53
JD
10105If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
10106file in the Bison installation directory.
10107If it does, @var{file} is an absolute file name or a file name relative to the
10108current working directory.
10109This is similar to how most shells resolve commands.
10110
89cab50d
AD
10111@item -k
10112@itemx --token-table
d8988b2f 10113Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 10114@end table
bfa74976 10115
89cab50d
AD
10116@noindent
10117Adjust the output:
bfa74976 10118
89cab50d 10119@table @option
8e55b3aa 10120@item --defines[=@var{file}]
d8988b2f 10121Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 10122file containing macro definitions for the token type names defined in
4bfd5e4e 10123the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 10124
8e55b3aa
JD
10125@item -d
10126This is the same as @code{--defines} except @code{-d} does not accept a
10127@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
10128with other short options.
342b8b6e 10129
89cab50d
AD
10130@item -b @var{file-prefix}
10131@itemx --file-prefix=@var{prefix}
9c437126 10132Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 10133for all Bison output file names. @xref{Decl Summary}.
bfa74976 10134
ec3bc396
AD
10135@item -r @var{things}
10136@itemx --report=@var{things}
10137Write an extra output file containing verbose description of the comma
10138separated list of @var{things} among:
10139
10140@table @code
10141@item state
10142Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 10143parser's automaton.
ec3bc396 10144
57f8bd8d
AD
10145@item itemset
10146Implies @code{state} and augments the description of the automaton with
10147the full set of items for each state, instead of its core only.
10148
742e4900 10149@item lookahead
ec3bc396 10150Implies @code{state} and augments the description of the automaton with
742e4900 10151each rule's lookahead set.
ec3bc396 10152
57f8bd8d
AD
10153@item solved
10154Implies @code{state}. Explain how conflicts were solved thanks to
10155precedence and associativity directives.
10156
10157@item all
10158Enable all the items.
10159
10160@item none
10161Do not generate the report.
ec3bc396
AD
10162@end table
10163
1bb2bd75
JD
10164@item --report-file=@var{file}
10165Specify the @var{file} for the verbose description.
10166
bfa74976
RS
10167@item -v
10168@itemx --verbose
9c437126 10169Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 10170file containing verbose descriptions of the grammar and
72d2299c 10171parser. @xref{Decl Summary}.
bfa74976 10172
fa4d969f
PE
10173@item -o @var{file}
10174@itemx --output=@var{file}
ff7571c0 10175Specify the @var{file} for the parser implementation file.
bfa74976 10176
fa4d969f 10177The other output files' names are constructed from @var{file} as
d8988b2f 10178described under the @samp{-v} and @samp{-d} options.
342b8b6e 10179
a7c09cba 10180@item -g [@var{file}]
8e55b3aa 10181@itemx --graph[=@var{file}]
eb45ef3b 10182Output a graphical representation of the parser's
35fe0834 10183automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 10184@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
10185@code{@var{file}} is optional.
10186If omitted and the grammar file is @file{foo.y}, the output file will be
10187@file{foo.dot}.
59da312b 10188
a7c09cba 10189@item -x [@var{file}]
8e55b3aa 10190@itemx --xml[=@var{file}]
eb45ef3b 10191Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 10192@code{@var{file}} is optional.
59da312b
JD
10193If omitted and the grammar file is @file{foo.y}, the output file will be
10194@file{foo.xml}.
10195(The current XML schema is experimental and may evolve.
10196More user feedback will help to stabilize it.)
bfa74976
RS
10197@end table
10198
342b8b6e 10199@node Option Cross Key
bfa74976
RS
10200@section Option Cross Key
10201
10202Here is a list of options, alphabetized by long option, to help you find
de5ab940 10203the corresponding short option and directive.
bfa74976 10204
de5ab940 10205@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 10206@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 10207@include cross-options.texi
aa08666d 10208@end multitable
bfa74976 10209
93dd49ab
PE
10210@node Yacc Library
10211@section Yacc Library
10212
10213The Yacc library contains default implementations of the
10214@code{yyerror} and @code{main} functions. These default
8a4281b9 10215implementations are normally not useful, but POSIX requires
93dd49ab
PE
10216them. To use the Yacc library, link your program with the
10217@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 10218library is distributed under the terms of the GNU General
93dd49ab
PE
10219Public License (@pxref{Copying}).
10220
10221If you use the Yacc library's @code{yyerror} function, you should
10222declare @code{yyerror} as follows:
10223
10224@example
10225int yyerror (char const *);
10226@end example
10227
10228Bison ignores the @code{int} value returned by this @code{yyerror}.
10229If you use the Yacc library's @code{main} function, your
10230@code{yyparse} function should have the following type signature:
10231
10232@example
10233int yyparse (void);
10234@end example
10235
12545799
AD
10236@c ================================================= C++ Bison
10237
8405b70c
PB
10238@node Other Languages
10239@chapter Parsers Written In Other Languages
12545799
AD
10240
10241@menu
10242* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10243* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10244@end menu
10245
10246@node C++ Parsers
10247@section C++ Parsers
10248
10249@menu
10250* C++ Bison Interface:: Asking for C++ parser generation
10251* C++ Semantic Values:: %union vs. C++
10252* C++ Location Values:: The position and location classes
10253* C++ Parser Interface:: Instantiating and running the parser
10254* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10255* A Complete C++ Example:: Demonstrating their use
12545799
AD
10256@end menu
10257
10258@node C++ Bison Interface
10259@subsection C++ Bison Interface
ed4d67dc 10260@c - %skeleton "lalr1.cc"
12545799
AD
10261@c - Always pure
10262@c - initial action
10263
eb45ef3b 10264The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10265@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10266@option{--skeleton=lalr1.cc}.
e6e704dc 10267@xref{Decl Summary}.
0e021770 10268
793fbca5
JD
10269When run, @command{bison} will create several entities in the @samp{yy}
10270namespace.
67501061 10271@findex %define api.namespace
35c1e5f0
JD
10272Use the @samp{%define api.namespace} directive to change the namespace name,
10273see @ref{%define Summary,,api.namespace}. The various classes are generated
10274in the following files:
aa08666d 10275
12545799
AD
10276@table @file
10277@item position.hh
10278@itemx location.hh
db8ab2be 10279The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10280location tracking when enabled. These files are not generated if the
10281@code{%define} variable @code{api.location.type} is defined. @xref{C++
10282Location Values}.
12545799
AD
10283
10284@item stack.hh
10285An auxiliary class @code{stack} used by the parser.
10286
fa4d969f
PE
10287@item @var{file}.hh
10288@itemx @var{file}.cc
ff7571c0 10289(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10290declaration and implementation of the C++ parser class. The basename
10291and extension of these two files follow the same rules as with regular C
10292parsers (@pxref{Invocation}).
12545799 10293
cd8b5791
AD
10294The header is @emph{mandatory}; you must either pass
10295@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10296@samp{%defines} directive.
10297@end table
10298
10299All these files are documented using Doxygen; run @command{doxygen}
10300for a complete and accurate documentation.
10301
10302@node C++ Semantic Values
10303@subsection C++ Semantic Values
10304@c - No objects in unions
178e123e 10305@c - YYSTYPE
12545799
AD
10306@c - Printer and destructor
10307
3cdc21cf
AD
10308Bison supports two different means to handle semantic values in C++. One is
10309alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10310practitioners know, unions are inconvenient in C++, therefore another
10311approach is provided, based on variants (@pxref{C++ Variants}).
10312
10313@menu
10314* C++ Unions:: Semantic values cannot be objects
10315* C++ Variants:: Using objects as semantic values
10316@end menu
10317
10318@node C++ Unions
10319@subsubsection C++ Unions
10320
12545799
AD
10321The @code{%union} directive works as for C, see @ref{Union Decl, ,The
10322Collection of Value Types}. In particular it produces a genuine
3cdc21cf 10323@code{union}, which have a few specific features in C++.
12545799
AD
10324@itemize @minus
10325@item
fb9712a9
AD
10326The type @code{YYSTYPE} is defined but its use is discouraged: rather
10327you should refer to the parser's encapsulated type
10328@code{yy::parser::semantic_type}.
12545799
AD
10329@item
10330Non POD (Plain Old Data) types cannot be used. C++ forbids any
10331instance of classes with constructors in unions: only @emph{pointers}
10332to such objects are allowed.
10333@end itemize
10334
10335Because objects have to be stored via pointers, memory is not
10336reclaimed automatically: using the @code{%destructor} directive is the
10337only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10338Symbols}.
10339
3cdc21cf
AD
10340@node C++ Variants
10341@subsubsection C++ Variants
10342
ae8880de
AD
10343Bison provides a @emph{variant} based implementation of semantic values for
10344C++. This alleviates all the limitations reported in the previous section,
10345and in particular, object types can be used without pointers.
3cdc21cf
AD
10346
10347To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10348@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10349@code{%union} is ignored, and instead of using the name of the fields of the
10350@code{%union} to ``type'' the symbols, use genuine types.
10351
10352For instance, instead of
10353
10354@example
10355%union
10356@{
10357 int ival;
10358 std::string* sval;
10359@}
10360%token <ival> NUMBER;
10361%token <sval> STRING;
10362@end example
10363
10364@noindent
10365write
10366
10367@example
10368%token <int> NUMBER;
10369%token <std::string> STRING;
10370@end example
10371
10372@code{STRING} is no longer a pointer, which should fairly simplify the user
10373actions in the grammar and in the scanner (in particular the memory
10374management).
10375
10376Since C++ features destructors, and since it is customary to specialize
10377@code{operator<<} to support uniform printing of values, variants also
10378typically simplify Bison printers and destructors.
10379
10380Variants are stricter than unions. When based on unions, you may play any
10381dirty game with @code{yylval}, say storing an @code{int}, reading a
10382@code{char*}, and then storing a @code{double} in it. This is no longer
10383possible with variants: they must be initialized, then assigned to, and
10384eventually, destroyed.
10385
10386@deftypemethod {semantic_type} {T&} build<T> ()
10387Initialize, but leave empty. Returns the address where the actual value may
10388be stored. Requires that the variant was not initialized yet.
10389@end deftypemethod
10390
10391@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10392Initialize, and copy-construct from @var{t}.
10393@end deftypemethod
10394
10395
10396@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10397appeared unacceptable to require Boost on the user's machine (i.e., the
10398machine on which the generated parser will be compiled, not the machine on
10399which @command{bison} was run). Second, for each possible semantic value,
10400Boost.Variant not only stores the value, but also a tag specifying its
10401type. But the parser already ``knows'' the type of the semantic value, so
10402that would be duplicating the information.
10403
10404Therefore we developed light-weight variants whose type tag is external (so
10405they are really like @code{unions} for C++ actually). But our code is much
10406less mature that Boost.Variant. So there is a number of limitations in
10407(the current implementation of) variants:
10408@itemize
10409@item
10410Alignment must be enforced: values should be aligned in memory according to
10411the most demanding type. Computing the smallest alignment possible requires
10412meta-programming techniques that are not currently implemented in Bison, and
10413therefore, since, as far as we know, @code{double} is the most demanding
10414type on all platforms, alignments are enforced for @code{double} whatever
10415types are actually used. This may waste space in some cases.
10416
3cdc21cf
AD
10417@item
10418There might be portability issues we are not aware of.
10419@end itemize
10420
a6ca4ce2 10421As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10422is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10423
10424@node C++ Location Values
10425@subsection C++ Location Values
10426@c - %locations
10427@c - class Position
10428@c - class Location
16dc6a9e 10429@c - %define filename_type "const symbol::Symbol"
12545799
AD
10430
10431When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10432location tracking, see @ref{Tracking Locations}.
10433
10434By default, two auxiliary classes define a @code{position}, a single point
10435in a file, and a @code{location}, a range composed of a pair of
10436@code{position}s (possibly spanning several files). But if the
10437@code{%define} variable @code{api.location.type} is defined, then these
10438classes will not be generated, and the user defined type will be used.
12545799 10439
936c88d1
AD
10440@tindex uint
10441In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10442genuine code only the latter is used.
10443
10444@menu
10445* C++ position:: One point in the source file
10446* C++ location:: Two points in the source file
db8ab2be 10447* User Defined Location Type:: Required interface for locations
936c88d1
AD
10448@end menu
10449
10450@node C++ position
10451@subsubsection C++ @code{position}
10452
10453@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10454Create a @code{position} denoting a given point. Note that @code{file} is
10455not reclaimed when the @code{position} is destroyed: memory managed must be
10456handled elsewhere.
10457@end deftypeop
10458
10459@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10460Reset the position to the given values.
10461@end deftypemethod
10462
10463@deftypeivar {position} {std::string*} file
12545799
AD
10464The name of the file. It will always be handled as a pointer, the
10465parser will never duplicate nor deallocate it. As an experimental
10466feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10467filename_type "@var{type}"}.
936c88d1 10468@end deftypeivar
12545799 10469
936c88d1 10470@deftypeivar {position} {uint} line
12545799 10471The line, starting at 1.
936c88d1 10472@end deftypeivar
12545799 10473
936c88d1 10474@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
10475Advance by @var{height} lines, resetting the column number.
10476@end deftypemethod
10477
936c88d1
AD
10478@deftypeivar {position} {uint} column
10479The column, starting at 1.
10480@end deftypeivar
12545799 10481
936c88d1 10482@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
10483Advance by @var{width} columns, without changing the line number.
10484@end deftypemethod
10485
936c88d1
AD
10486@deftypemethod {position} {position&} operator+= (int @var{width})
10487@deftypemethodx {position} {position} operator+ (int @var{width})
10488@deftypemethodx {position} {position&} operator-= (int @var{width})
10489@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10490Various forms of syntactic sugar for @code{columns}.
10491@end deftypemethod
10492
936c88d1
AD
10493@deftypemethod {position} {bool} operator== (const position& @var{that})
10494@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10495Whether @code{*this} and @code{that} denote equal/different positions.
10496@end deftypemethod
10497
10498@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10499Report @var{p} on @var{o} like this:
fa4d969f
PE
10500@samp{@var{file}:@var{line}.@var{column}}, or
10501@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10502@end deftypefun
10503
10504@node C++ location
10505@subsubsection C++ @code{location}
10506
10507@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10508Create a @code{Location} from the endpoints of the range.
10509@end deftypeop
10510
10511@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10512@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10513Create a @code{Location} denoting an empty range located at a given point.
10514@end deftypeop
10515
10516@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10517Reset the location to an empty range at the given values.
12545799
AD
10518@end deftypemethod
10519
936c88d1
AD
10520@deftypeivar {location} {position} begin
10521@deftypeivarx {location} {position} end
12545799 10522The first, inclusive, position of the range, and the first beyond.
936c88d1 10523@end deftypeivar
12545799 10524
936c88d1
AD
10525@deftypemethod {location} {uint} columns (int @var{width} = 1)
10526@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
10527Advance the @code{end} position.
10528@end deftypemethod
10529
936c88d1
AD
10530@deftypemethod {location} {location} operator+ (const location& @var{end})
10531@deftypemethodx {location} {location} operator+ (int @var{width})
10532@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
10533Various forms of syntactic sugar.
10534@end deftypemethod
10535
10536@deftypemethod {location} {void} step ()
10537Move @code{begin} onto @code{end}.
10538@end deftypemethod
10539
936c88d1
AD
10540@deftypemethod {location} {bool} operator== (const location& @var{that})
10541@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10542Whether @code{*this} and @code{that} denote equal/different ranges of
10543positions.
10544@end deftypemethod
10545
10546@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10547Report @var{p} on @var{o}, taking care of special cases such as: no
10548@code{filename} defined, or equal filename/line or column.
10549@end deftypefun
12545799 10550
db8ab2be
AD
10551@node User Defined Location Type
10552@subsubsection User Defined Location Type
10553@findex %define api.location.type
10554
10555Instead of using the built-in types you may use the @code{%define} variable
10556@code{api.location.type} to specify your own type:
10557
10558@example
10559%define api.location.type @var{LocationType}
10560@end example
10561
10562The requirements over your @var{LocationType} are:
10563@itemize
10564@item
10565it must be copyable;
10566
10567@item
10568in order to compute the (default) value of @code{@@$} in a reduction, the
10569parser basically runs
10570@example
10571@@$.begin = @@$1.begin;
10572@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10573@end example
10574@noindent
10575so there must be copyable @code{begin} and @code{end} members;
10576
10577@item
10578alternatively you may redefine the computation of the default location, in
10579which case these members are not required (@pxref{Location Default Action});
10580
10581@item
10582if traces are enabled, then there must exist an @samp{std::ostream&
10583 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10584@end itemize
10585
10586@sp 1
10587
10588In programs with several C++ parsers, you may also use the @code{%define}
10589variable @code{api.location.type} to share a common set of built-in
10590definitions for @code{position} and @code{location}. For instance, one
10591parser @file{master/parser.yy} might use:
10592
10593@example
10594%defines
10595%locations
10596%define namespace "master::"
10597@end example
10598
10599@noindent
10600to generate the @file{master/position.hh} and @file{master/location.hh}
10601files, reused by other parsers as follows:
10602
10603@example
7287be84 10604%define api.location.type "master::location"
db8ab2be
AD
10605%code requires @{ #include <master/location.hh> @}
10606@end example
10607
12545799
AD
10608@node C++ Parser Interface
10609@subsection C++ Parser Interface
10610@c - define parser_class_name
10611@c - Ctor
10612@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10613@c debug_stream.
10614@c - Reporting errors
10615
10616The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10617declare and define the parser class in the namespace @code{yy}. The
10618class name defaults to @code{parser}, but may be changed using
16dc6a9e 10619@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 10620this class is detailed below. It can be extended using the
12545799
AD
10621@code{%parse-param} feature: its semantics is slightly changed since
10622it describes an additional member of the parser class, and an
10623additional argument for its constructor.
10624
3cdc21cf
AD
10625@defcv {Type} {parser} {semantic_type}
10626@defcvx {Type} {parser} {location_type}
10627The types for semantic values and locations (if enabled).
10628@end defcv
10629
86e5b440 10630@defcv {Type} {parser} {token}
aaaa2aae
AD
10631A structure that contains (only) the @code{yytokentype} enumeration, which
10632defines the tokens. To refer to the token @code{FOO},
10633use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10634@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10635(@pxref{Calc++ Scanner}).
10636@end defcv
10637
3cdc21cf
AD
10638@defcv {Type} {parser} {syntax_error}
10639This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10640from the scanner or from the user actions to raise parse errors. This is
10641equivalent with first
3cdc21cf
AD
10642invoking @code{error} to report the location and message of the syntax
10643error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10644But contrary to @code{YYERROR} which can only be invoked from user actions
10645(i.e., written in the action itself), the exception can be thrown from
10646function invoked from the user action.
8a0adb01 10647@end defcv
12545799
AD
10648
10649@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10650Build a new parser object. There are no arguments by default, unless
10651@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10652@end deftypemethod
10653
3cdc21cf
AD
10654@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10655@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10656Instantiate a syntax-error exception.
10657@end deftypemethod
10658
12545799
AD
10659@deftypemethod {parser} {int} parse ()
10660Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10661
10662@cindex exceptions
10663The whole function is wrapped in a @code{try}/@code{catch} block, so that
10664when an exception is thrown, the @code{%destructor}s are called to release
10665the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10666@end deftypemethod
10667
10668@deftypemethod {parser} {std::ostream&} debug_stream ()
10669@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10670Get or set the stream used for tracing the parsing. It defaults to
10671@code{std::cerr}.
10672@end deftypemethod
10673
10674@deftypemethod {parser} {debug_level_type} debug_level ()
10675@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10676Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10677or nonzero, full tracing.
12545799
AD
10678@end deftypemethod
10679
10680@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10681@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10682The definition for this member function must be supplied by the user:
10683the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10684described by @var{m}. If location tracking is not enabled, the second
10685signature is used.
12545799
AD
10686@end deftypemethod
10687
10688
10689@node C++ Scanner Interface
10690@subsection C++ Scanner Interface
10691@c - prefix for yylex.
10692@c - Pure interface to yylex
10693@c - %lex-param
10694
10695The parser invokes the scanner by calling @code{yylex}. Contrary to C
10696parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10697@samp{%define api.pure} directive. The actual interface with @code{yylex}
10698depends whether you use unions, or variants.
12545799 10699
3cdc21cf
AD
10700@menu
10701* Split Symbols:: Passing symbols as two/three components
10702* Complete Symbols:: Making symbols a whole
10703@end menu
10704
10705@node Split Symbols
10706@subsubsection Split Symbols
10707
5807bb91 10708The interface is as follows.
3cdc21cf 10709
86e5b440
AD
10710@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10711@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10712Return the next token. Its type is the return value, its semantic value and
10713location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10714@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10715@end deftypemethod
10716
3cdc21cf
AD
10717Note that when using variants, the interface for @code{yylex} is the same,
10718but @code{yylval} is handled differently.
10719
10720Regular union-based code in Lex scanner typically look like:
10721
10722@example
10723[0-9]+ @{
10724 yylval.ival = text_to_int (yytext);
10725 return yy::parser::INTEGER;
10726 @}
10727[a-z]+ @{
10728 yylval.sval = new std::string (yytext);
10729 return yy::parser::IDENTIFIER;
10730 @}
10731@end example
10732
10733Using variants, @code{yylval} is already constructed, but it is not
10734initialized. So the code would look like:
10735
10736@example
10737[0-9]+ @{
10738 yylval.build<int>() = text_to_int (yytext);
10739 return yy::parser::INTEGER;
10740 @}
10741[a-z]+ @{
10742 yylval.build<std::string> = yytext;
10743 return yy::parser::IDENTIFIER;
10744 @}
10745@end example
10746
10747@noindent
10748or
10749
10750@example
10751[0-9]+ @{
10752 yylval.build(text_to_int (yytext));
10753 return yy::parser::INTEGER;
10754 @}
10755[a-z]+ @{
10756 yylval.build(yytext);
10757 return yy::parser::IDENTIFIER;
10758 @}
10759@end example
10760
10761
10762@node Complete Symbols
10763@subsubsection Complete Symbols
10764
ae8880de 10765If you specified both @code{%define api.value.type variant} and
e36ec1f4 10766@code{%define api.token.constructor},
3cdc21cf
AD
10767the @code{parser} class also defines the class @code{parser::symbol_type}
10768which defines a @emph{complete} symbol, aggregating its type (i.e., the
10769traditional value returned by @code{yylex}), its semantic value (i.e., the
10770value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10771
10772@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10773Build a complete terminal symbol which token type is @var{type}, and which
10774semantic value is @var{value}. If location tracking is enabled, also pass
10775the @var{location}.
10776@end deftypemethod
10777
10778This interface is low-level and should not be used for two reasons. First,
10779it is inconvenient, as you still have to build the semantic value, which is
10780a variant, and second, because consistency is not enforced: as with unions,
10781it is still possible to give an integer as semantic value for a string.
10782
10783So for each token type, Bison generates named constructors as follows.
10784
10785@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10786@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10787Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10788including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10789@var{value} of adequate @var{value_type}. If location tracking is enabled,
10790also pass the @var{location}.
10791@end deftypemethod
10792
10793For instance, given the following declarations:
10794
10795@example
2a6b66c5 10796%define api.token.prefix "TOK_"
3cdc21cf
AD
10797%token <std::string> IDENTIFIER;
10798%token <int> INTEGER;
10799%token COLON;
10800@end example
10801
10802@noindent
10803Bison generates the following functions:
10804
10805@example
10806symbol_type make_IDENTIFIER(const std::string& v,
10807 const location_type& l);
10808symbol_type make_INTEGER(const int& v,
10809 const location_type& loc);
10810symbol_type make_COLON(const location_type& loc);
10811@end example
10812
10813@noindent
10814which should be used in a Lex-scanner as follows.
10815
10816@example
10817[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10818[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10819":" return yy::parser::make_COLON(loc);
10820@end example
10821
10822Tokens that do not have an identifier are not accessible: you cannot simply
10823use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10824
10825@node A Complete C++ Example
8405b70c 10826@subsection A Complete C++ Example
12545799
AD
10827
10828This section demonstrates the use of a C++ parser with a simple but
10829complete example. This example should be available on your system,
3cdc21cf 10830ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10831focuses on the use of Bison, therefore the design of the various C++
10832classes is very naive: no accessors, no encapsulation of members etc.
10833We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10834demonstrate the various interactions. A hand-written scanner is
12545799
AD
10835actually easier to interface with.
10836
10837@menu
10838* Calc++ --- C++ Calculator:: The specifications
10839* Calc++ Parsing Driver:: An active parsing context
10840* Calc++ Parser:: A parser class
10841* Calc++ Scanner:: A pure C++ Flex scanner
10842* Calc++ Top Level:: Conducting the band
10843@end menu
10844
10845@node Calc++ --- C++ Calculator
8405b70c 10846@subsubsection Calc++ --- C++ Calculator
12545799
AD
10847
10848Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10849expression, possibly preceded by variable assignments. An
12545799
AD
10850environment containing possibly predefined variables such as
10851@code{one} and @code{two}, is exchanged with the parser. An example
10852of valid input follows.
10853
10854@example
10855three := 3
10856seven := one + two * three
10857seven * seven
10858@end example
10859
10860@node Calc++ Parsing Driver
8405b70c 10861@subsubsection Calc++ Parsing Driver
12545799
AD
10862@c - An env
10863@c - A place to store error messages
10864@c - A place for the result
10865
10866To support a pure interface with the parser (and the scanner) the
10867technique of the ``parsing context'' is convenient: a structure
10868containing all the data to exchange. Since, in addition to simply
10869launch the parsing, there are several auxiliary tasks to execute (open
10870the file for parsing, instantiate the parser etc.), we recommend
10871transforming the simple parsing context structure into a fully blown
10872@dfn{parsing driver} class.
10873
10874The declaration of this driver class, @file{calc++-driver.hh}, is as
10875follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10876required standard library components, and the declaration of the parser
10877class.
12545799 10878
1c59e0a1 10879@comment file: calc++-driver.hh
12545799
AD
10880@example
10881#ifndef CALCXX_DRIVER_HH
10882# define CALCXX_DRIVER_HH
10883# include <string>
10884# include <map>
fb9712a9 10885# include "calc++-parser.hh"
12545799
AD
10886@end example
10887
12545799
AD
10888
10889@noindent
10890Then comes the declaration of the scanning function. Flex expects
10891the signature of @code{yylex} to be defined in the macro
10892@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10893factor both as follows.
1c59e0a1
AD
10894
10895@comment file: calc++-driver.hh
12545799 10896@example
3dc5e96b 10897// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10898# define YY_DECL \
10899 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10900// ... and declare it for the parser's sake.
10901YY_DECL;
10902@end example
10903
10904@noindent
10905The @code{calcxx_driver} class is then declared with its most obvious
10906members.
10907
1c59e0a1 10908@comment file: calc++-driver.hh
12545799
AD
10909@example
10910// Conducting the whole scanning and parsing of Calc++.
10911class calcxx_driver
10912@{
10913public:
10914 calcxx_driver ();
10915 virtual ~calcxx_driver ();
10916
10917 std::map<std::string, int> variables;
10918
10919 int result;
10920@end example
10921
10922@noindent
3cdc21cf
AD
10923To encapsulate the coordination with the Flex scanner, it is useful to have
10924member functions to open and close the scanning phase.
12545799 10925
1c59e0a1 10926@comment file: calc++-driver.hh
12545799
AD
10927@example
10928 // Handling the scanner.
10929 void scan_begin ();
10930 void scan_end ();
10931 bool trace_scanning;
10932@end example
10933
10934@noindent
10935Similarly for the parser itself.
10936
1c59e0a1 10937@comment file: calc++-driver.hh
12545799 10938@example
3cdc21cf
AD
10939 // Run the parser on file F.
10940 // Return 0 on success.
bb32f4f2 10941 int parse (const std::string& f);
3cdc21cf
AD
10942 // The name of the file being parsed.
10943 // Used later to pass the file name to the location tracker.
12545799 10944 std::string file;
3cdc21cf 10945 // Whether parser traces should be generated.
12545799
AD
10946 bool trace_parsing;
10947@end example
10948
10949@noindent
10950To demonstrate pure handling of parse errors, instead of simply
10951dumping them on the standard error output, we will pass them to the
10952compiler driver using the following two member functions. Finally, we
10953close the class declaration and CPP guard.
10954
1c59e0a1 10955@comment file: calc++-driver.hh
12545799
AD
10956@example
10957 // Error handling.
10958 void error (const yy::location& l, const std::string& m);
10959 void error (const std::string& m);
10960@};
10961#endif // ! CALCXX_DRIVER_HH
10962@end example
10963
10964The implementation of the driver is straightforward. The @code{parse}
10965member function deserves some attention. The @code{error} functions
10966are simple stubs, they should actually register the located error
10967messages and set error state.
10968
1c59e0a1 10969@comment file: calc++-driver.cc
12545799
AD
10970@example
10971#include "calc++-driver.hh"
10972#include "calc++-parser.hh"
10973
10974calcxx_driver::calcxx_driver ()
10975 : trace_scanning (false), trace_parsing (false)
10976@{
10977 variables["one"] = 1;
10978 variables["two"] = 2;
10979@}
10980
10981calcxx_driver::~calcxx_driver ()
10982@{
10983@}
10984
bb32f4f2 10985int
12545799
AD
10986calcxx_driver::parse (const std::string &f)
10987@{
10988 file = f;
10989 scan_begin ();
10990 yy::calcxx_parser parser (*this);
10991 parser.set_debug_level (trace_parsing);
bb32f4f2 10992 int res = parser.parse ();
12545799 10993 scan_end ();
bb32f4f2 10994 return res;
12545799
AD
10995@}
10996
10997void
10998calcxx_driver::error (const yy::location& l, const std::string& m)
10999@{
11000 std::cerr << l << ": " << m << std::endl;
11001@}
11002
11003void
11004calcxx_driver::error (const std::string& m)
11005@{
11006 std::cerr << m << std::endl;
11007@}
11008@end example
11009
11010@node Calc++ Parser
8405b70c 11011@subsubsection Calc++ Parser
12545799 11012
ff7571c0
JD
11013The grammar file @file{calc++-parser.yy} starts by asking for the C++
11014deterministic parser skeleton, the creation of the parser header file,
11015and specifies the name of the parser class. Because the C++ skeleton
11016changed several times, it is safer to require the version you designed
11017the grammar for.
1c59e0a1
AD
11018
11019@comment file: calc++-parser.yy
12545799 11020@example
c93f22fc 11021%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 11022%require "@value{VERSION}"
12545799 11023%defines
16dc6a9e 11024%define parser_class_name "calcxx_parser"
fb9712a9
AD
11025@end example
11026
3cdc21cf 11027@noindent
e36ec1f4 11028@findex %define api.token.constructor
ae8880de 11029@findex %define api.value.type variant
3cdc21cf
AD
11030This example will use genuine C++ objects as semantic values, therefore, we
11031require the variant-based interface. To make sure we properly use it, we
11032enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 11033definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
11034
11035@comment file: calc++-parser.yy
11036@example
e36ec1f4 11037%define api.token.constructor
ae8880de 11038%define api.value.type variant
3cdc21cf 11039%define parse.assert
3cdc21cf
AD
11040@end example
11041
fb9712a9 11042@noindent
16dc6a9e 11043@findex %code requires
3cdc21cf
AD
11044Then come the declarations/inclusions needed by the semantic values.
11045Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 11046to include the header of the other, which is, of course, insane. This
3cdc21cf 11047mutual dependency will be broken using forward declarations. Because the
fb9712a9 11048driver's header needs detailed knowledge about the parser class (in
3cdc21cf 11049particular its inner types), it is the parser's header which will use a
e0c07222 11050forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
11051
11052@comment file: calc++-parser.yy
11053@example
3cdc21cf
AD
11054%code requires
11055@{
12545799 11056# include <string>
fb9712a9 11057class calcxx_driver;
9bc0dd67 11058@}
12545799
AD
11059@end example
11060
11061@noindent
11062The driver is passed by reference to the parser and to the scanner.
11063This provides a simple but effective pure interface, not relying on
11064global variables.
11065
1c59e0a1 11066@comment file: calc++-parser.yy
12545799
AD
11067@example
11068// The parsing context.
2055a44e 11069%param @{ calcxx_driver& driver @}
12545799
AD
11070@end example
11071
11072@noindent
2055a44e 11073Then we request location tracking, and initialize the
f50bfcd6 11074first location's file name. Afterward new locations are computed
12545799 11075relatively to the previous locations: the file name will be
2055a44e 11076propagated.
12545799 11077
1c59e0a1 11078@comment file: calc++-parser.yy
12545799
AD
11079@example
11080%locations
11081%initial-action
11082@{
11083 // Initialize the initial location.
b47dbebe 11084 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
11085@};
11086@end example
11087
11088@noindent
7fceb615
JD
11089Use the following two directives to enable parser tracing and verbose error
11090messages. However, verbose error messages can contain incorrect information
11091(@pxref{LAC}).
12545799 11092
1c59e0a1 11093@comment file: calc++-parser.yy
12545799 11094@example
fa819509 11095%define parse.trace
cf499cff 11096%define parse.error verbose
12545799
AD
11097@end example
11098
fb9712a9 11099@noindent
136a0f76
PB
11100@findex %code
11101The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 11102@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
11103
11104@comment file: calc++-parser.yy
11105@example
3cdc21cf
AD
11106%code
11107@{
fb9712a9 11108# include "calc++-driver.hh"
34f98f46 11109@}
fb9712a9
AD
11110@end example
11111
11112
12545799
AD
11113@noindent
11114The token numbered as 0 corresponds to end of file; the following line
99c08fb6 11115allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
11116``$end''. Similarly user friendly names are provided for each symbol. To
11117avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 11118tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 11119
1c59e0a1 11120@comment file: calc++-parser.yy
12545799 11121@example
2a6b66c5 11122%define api.token.prefix "TOK_"
3cdc21cf
AD
11123%token
11124 END 0 "end of file"
11125 ASSIGN ":="
11126 MINUS "-"
11127 PLUS "+"
11128 STAR "*"
11129 SLASH "/"
11130 LPAREN "("
11131 RPAREN ")"
11132;
12545799
AD
11133@end example
11134
11135@noindent
3cdc21cf
AD
11136Since we use variant-based semantic values, @code{%union} is not used, and
11137both @code{%type} and @code{%token} expect genuine types, as opposed to type
11138tags.
12545799 11139
1c59e0a1 11140@comment file: calc++-parser.yy
12545799 11141@example
3cdc21cf
AD
11142%token <std::string> IDENTIFIER "identifier"
11143%token <int> NUMBER "number"
11144%type <int> exp
11145@end example
11146
11147@noindent
11148No @code{%destructor} is needed to enable memory deallocation during error
11149recovery; the memory, for strings for instance, will be reclaimed by the
11150regular destructors. All the values are printed using their
a76c741d 11151@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 11152
3cdc21cf
AD
11153@comment file: calc++-parser.yy
11154@example
c5026327 11155%printer @{ yyoutput << $$; @} <*>;
12545799
AD
11156@end example
11157
11158@noindent
3cdc21cf
AD
11159The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
11160Location Tracking Calculator: @code{ltcalc}}).
12545799 11161
1c59e0a1 11162@comment file: calc++-parser.yy
12545799
AD
11163@example
11164%%
11165%start unit;
11166unit: assignments exp @{ driver.result = $2; @};
11167
99c08fb6 11168assignments:
6240346a 11169 %empty @{@}
5e9b6624 11170| assignments assignment @{@};
12545799 11171
3dc5e96b 11172assignment:
3cdc21cf 11173 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 11174
3cdc21cf
AD
11175%left "+" "-";
11176%left "*" "/";
99c08fb6 11177exp:
3cdc21cf
AD
11178 exp "+" exp @{ $$ = $1 + $3; @}
11179| exp "-" exp @{ $$ = $1 - $3; @}
11180| exp "*" exp @{ $$ = $1 * $3; @}
11181| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 11182| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 11183| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 11184| "number" @{ std::swap ($$, $1); @};
12545799
AD
11185%%
11186@end example
11187
11188@noindent
11189Finally the @code{error} member function registers the errors to the
11190driver.
11191
1c59e0a1 11192@comment file: calc++-parser.yy
12545799
AD
11193@example
11194void
3cdc21cf 11195yy::calcxx_parser::error (const location_type& l,
1c59e0a1 11196 const std::string& m)
12545799
AD
11197@{
11198 driver.error (l, m);
11199@}
11200@end example
11201
11202@node Calc++ Scanner
8405b70c 11203@subsubsection Calc++ Scanner
12545799
AD
11204
11205The Flex scanner first includes the driver declaration, then the
11206parser's to get the set of defined tokens.
11207
1c59e0a1 11208@comment file: calc++-scanner.ll
12545799 11209@example
c93f22fc 11210%@{ /* -*- C++ -*- */
3c248d70
AD
11211# include <cerrno>
11212# include <climits>
3cdc21cf 11213# include <cstdlib>
12545799
AD
11214# include <string>
11215# include "calc++-driver.hh"
11216# include "calc++-parser.hh"
eaea13f5 11217
3cdc21cf
AD
11218// Work around an incompatibility in flex (at least versions
11219// 2.5.31 through 2.5.33): it generates code that does
11220// not conform to C89. See Debian bug 333231
11221// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11222# undef yywrap
11223# define yywrap() 1
eaea13f5 11224
3cdc21cf
AD
11225// The location of the current token.
11226static yy::location loc;
12545799
AD
11227%@}
11228@end example
11229
11230@noindent
11231Because there is no @code{#include}-like feature we don't need
11232@code{yywrap}, we don't need @code{unput} either, and we parse an
11233actual file, this is not an interactive session with the user.
3cdc21cf 11234Finally, we enable scanner tracing.
12545799 11235
1c59e0a1 11236@comment file: calc++-scanner.ll
12545799 11237@example
6908c2e1 11238%option noyywrap nounput batch debug noinput
12545799
AD
11239@end example
11240
11241@noindent
11242Abbreviations allow for more readable rules.
11243
1c59e0a1 11244@comment file: calc++-scanner.ll
12545799
AD
11245@example
11246id [a-zA-Z][a-zA-Z_0-9]*
11247int [0-9]+
11248blank [ \t]
11249@end example
11250
11251@noindent
9d9b8b70 11252The following paragraph suffices to track locations accurately. Each
12545799 11253time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11254position. Then when a pattern is matched, its width is added to the end
11255column. When matching ends of lines, the end
12545799
AD
11256cursor is adjusted, and each time blanks are matched, the begin cursor
11257is moved onto the end cursor to effectively ignore the blanks
11258preceding tokens. Comments would be treated equally.
11259
1c59e0a1 11260@comment file: calc++-scanner.ll
12545799 11261@example
d4fca427 11262@group
828c373b 11263%@{
3cdc21cf
AD
11264 // Code run each time a pattern is matched.
11265 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11266%@}
d4fca427 11267@end group
12545799 11268%%
d4fca427 11269@group
12545799 11270%@{
3cdc21cf
AD
11271 // Code run each time yylex is called.
11272 loc.step ();
12545799 11273%@}
d4fca427 11274@end group
3cdc21cf
AD
11275@{blank@}+ loc.step ();
11276[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11277@end example
11278
11279@noindent
3cdc21cf 11280The rules are simple. The driver is used to report errors.
12545799 11281
1c59e0a1 11282@comment file: calc++-scanner.ll
12545799 11283@example
3cdc21cf
AD
11284"-" return yy::calcxx_parser::make_MINUS(loc);
11285"+" return yy::calcxx_parser::make_PLUS(loc);
11286"*" return yy::calcxx_parser::make_STAR(loc);
11287"/" return yy::calcxx_parser::make_SLASH(loc);
11288"(" return yy::calcxx_parser::make_LPAREN(loc);
11289")" return yy::calcxx_parser::make_RPAREN(loc);
11290":=" return yy::calcxx_parser::make_ASSIGN(loc);
11291
d4fca427 11292@group
04098407
PE
11293@{int@} @{
11294 errno = 0;
11295 long n = strtol (yytext, NULL, 10);
11296 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11297 driver.error (loc, "integer is out of range");
11298 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11299@}
d4fca427 11300@end group
3cdc21cf
AD
11301@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11302. driver.error (loc, "invalid character");
11303<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11304%%
11305@end example
11306
11307@noindent
3cdc21cf 11308Finally, because the scanner-related driver's member-functions depend
12545799
AD
11309on the scanner's data, it is simpler to implement them in this file.
11310
1c59e0a1 11311@comment file: calc++-scanner.ll
12545799 11312@example
d4fca427 11313@group
12545799
AD
11314void
11315calcxx_driver::scan_begin ()
11316@{
11317 yy_flex_debug = trace_scanning;
93c150b6 11318 if (file.empty () || file == "-")
bb32f4f2
AD
11319 yyin = stdin;
11320 else if (!(yyin = fopen (file.c_str (), "r")))
11321 @{
aaaa2aae 11322 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11323 exit (EXIT_FAILURE);
bb32f4f2 11324 @}
12545799 11325@}
d4fca427 11326@end group
12545799 11327
d4fca427 11328@group
12545799
AD
11329void
11330calcxx_driver::scan_end ()
11331@{
11332 fclose (yyin);
11333@}
d4fca427 11334@end group
12545799
AD
11335@end example
11336
11337@node Calc++ Top Level
8405b70c 11338@subsubsection Calc++ Top Level
12545799
AD
11339
11340The top level file, @file{calc++.cc}, poses no problem.
11341
1c59e0a1 11342@comment file: calc++.cc
12545799
AD
11343@example
11344#include <iostream>
11345#include "calc++-driver.hh"
11346
d4fca427 11347@group
12545799 11348int
fa4d969f 11349main (int argc, char *argv[])
12545799 11350@{
414c76a4 11351 int res = 0;
12545799 11352 calcxx_driver driver;
93c150b6
AD
11353 for (int i = 1; i < argc; ++i)
11354 if (argv[i] == std::string ("-p"))
12545799 11355 driver.trace_parsing = true;
93c150b6 11356 else if (argv[i] == std::string ("-s"))
12545799 11357 driver.trace_scanning = true;
93c150b6 11358 else if (!driver.parse (argv[i]))
bb32f4f2 11359 std::cout << driver.result << std::endl;
414c76a4
AD
11360 else
11361 res = 1;
11362 return res;
12545799 11363@}
d4fca427 11364@end group
12545799
AD
11365@end example
11366
8405b70c
PB
11367@node Java Parsers
11368@section Java Parsers
11369
11370@menu
f5f419de
DJ
11371* Java Bison Interface:: Asking for Java parser generation
11372* Java Semantic Values:: %type and %token vs. Java
11373* Java Location Values:: The position and location classes
11374* Java Parser Interface:: Instantiating and running the parser
11375* Java Scanner Interface:: Specifying the scanner for the parser
11376* Java Action Features:: Special features for use in actions
11377* Java Differences:: Differences between C/C++ and Java Grammars
11378* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11379@end menu
11380
11381@node Java Bison Interface
11382@subsection Java Bison Interface
11383@c - %language "Java"
8405b70c 11384
59da312b
JD
11385(The current Java interface is experimental and may evolve.
11386More user feedback will help to stabilize it.)
11387
e254a580
DJ
11388The Java parser skeletons are selected using the @code{%language "Java"}
11389directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11390
e254a580 11391@c FIXME: Documented bug.
ff7571c0
JD
11392When generating a Java parser, @code{bison @var{basename}.y} will
11393create a single Java source file named @file{@var{basename}.java}
11394containing the parser implementation. Using a grammar file without a
11395@file{.y} suffix is currently broken. The basename of the parser
11396implementation file can be changed by the @code{%file-prefix}
11397directive or the @option{-p}/@option{--name-prefix} option. The
11398entire parser implementation file name can be changed by the
11399@code{%output} directive or the @option{-o}/@option{--output} option.
11400The parser implementation file contains a single class for the parser.
8405b70c 11401
e254a580 11402You can create documentation for generated parsers using Javadoc.
8405b70c 11403
e254a580
DJ
11404Contrary to C parsers, Java parsers do not use global variables; the
11405state of the parser is always local to an instance of the parser class.
11406Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11407and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11408
e254a580 11409Push parsers are currently unsupported in Java and @code{%define
67212941 11410api.push-pull} have no effect.
01b477c6 11411
8a4281b9 11412GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11413@code{glr-parser} directive.
11414
11415No header file can be generated for Java parsers. Do not use the
11416@code{%defines} directive or the @option{-d}/@option{--defines} options.
11417
11418@c FIXME: Possible code change.
fa819509
AD
11419Currently, support for tracing is always compiled
11420in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11421directives and the
e254a580
DJ
11422@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11423options have no effect. This may change in the future to eliminate
fa819509
AD
11424unused code in the generated parser, so use @samp{%define parse.trace}
11425explicitly
1979121c 11426if needed. Also, in the future the
e254a580
DJ
11427@code{%token-table} directive might enable a public interface to
11428access the token names and codes.
8405b70c 11429
09ccae9b 11430Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11431hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11432Try reducing the amount of code in actions and static initializers;
11433otherwise, report a bug so that the parser skeleton will be improved.
11434
11435
8405b70c
PB
11436@node Java Semantic Values
11437@subsection Java Semantic Values
11438@c - No %union, specify type in %type/%token.
11439@c - YYSTYPE
11440@c - Printer and destructor
11441
11442There is no @code{%union} directive in Java parsers. Instead, the
11443semantic values' types (class names) should be specified in the
11444@code{%type} or @code{%token} directive:
11445
11446@example
11447%type <Expression> expr assignment_expr term factor
11448%type <Integer> number
11449@end example
11450
11451By default, the semantic stack is declared to have @code{Object} members,
11452which means that the class types you specify can be of any class.
11453To improve the type safety of the parser, you can declare the common
4119d1ea 11454superclass of all the semantic values using the @samp{%define api.value.type}
e254a580 11455directive. For example, after the following declaration:
8405b70c
PB
11456
11457@example
4119d1ea 11458%define api.value.type "ASTNode"
8405b70c
PB
11459@end example
11460
11461@noindent
11462any @code{%type} or @code{%token} specifying a semantic type which
11463is not a subclass of ASTNode, will cause a compile-time error.
11464
e254a580 11465@c FIXME: Documented bug.
8405b70c
PB
11466Types used in the directives may be qualified with a package name.
11467Primitive data types are accepted for Java version 1.5 or later. Note
11468that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11469Generic types may not be used; this is due to a limitation in the
11470implementation of Bison, and may change in future releases.
8405b70c
PB
11471
11472Java parsers do not support @code{%destructor}, since the language
11473adopts garbage collection. The parser will try to hold references
11474to semantic values for as little time as needed.
11475
11476Java parsers do not support @code{%printer}, as @code{toString()}
11477can be used to print the semantic values. This however may change
11478(in a backwards-compatible way) in future versions of Bison.
11479
11480
11481@node Java Location Values
11482@subsection Java Location Values
11483@c - %locations
11484@c - class Position
11485@c - class Location
11486
303834cc
JD
11487When the directive @code{%locations} is used, the Java parser supports
11488location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11489class defines a @dfn{position}, a single point in a file; Bison itself
11490defines a class representing a @dfn{location}, a range composed of a pair of
11491positions (possibly spanning several files). The location class is an inner
11492class of the parser; the name is @code{Location} by default, and may also be
7287be84 11493renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
11494
11495The location class treats the position as a completely opaque value.
11496By default, the class name is @code{Position}, but this can be changed
7287be84 11497with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 11498be supplied by the user.
8405b70c
PB
11499
11500
e254a580
DJ
11501@deftypeivar {Location} {Position} begin
11502@deftypeivarx {Location} {Position} end
8405b70c 11503The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11504@end deftypeivar
11505
11506@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11507Create a @code{Location} denoting an empty range located at a given point.
e254a580 11508@end deftypeop
8405b70c 11509
e254a580
DJ
11510@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11511Create a @code{Location} from the endpoints of the range.
11512@end deftypeop
11513
11514@deftypemethod {Location} {String} toString ()
8405b70c
PB
11515Prints the range represented by the location. For this to work
11516properly, the position class should override the @code{equals} and
11517@code{toString} methods appropriately.
11518@end deftypemethod
11519
11520
11521@node Java Parser Interface
11522@subsection Java Parser Interface
11523@c - define parser_class_name
11524@c - Ctor
11525@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11526@c debug_stream.
11527@c - Reporting errors
11528
e254a580
DJ
11529The name of the generated parser class defaults to @code{YYParser}. The
11530@code{YY} prefix may be changed using the @code{%name-prefix} directive
11531or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 11532@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 11533the class. The interface of this class is detailed below.
8405b70c 11534
e254a580 11535By default, the parser class has package visibility. A declaration
67501061 11536@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11537according to the Java language specification, the name of the @file{.java}
11538file should match the name of the class in this case. Similarly, you can
11539use @code{abstract}, @code{final} and @code{strictfp} with the
11540@code{%define} declaration to add other modifiers to the parser class.
67501061 11541A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 11542be used to add any number of annotations to the parser class.
e254a580
DJ
11543
11544The Java package name of the parser class can be specified using the
67501061 11545@samp{%define package} directive. The superclass and the implemented
e254a580 11546interfaces of the parser class can be specified with the @code{%define
67501061 11547extends} and @samp{%define implements} directives.
e254a580
DJ
11548
11549The parser class defines an inner class, @code{Location}, that is used
11550for location tracking (see @ref{Java Location Values}), and a inner
11551interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11552these inner class/interface, and the members described in the interface
11553below, all the other members and fields are preceded with a @code{yy} or
11554@code{YY} prefix to avoid clashes with user code.
11555
e254a580
DJ
11556The parser class can be extended using the @code{%parse-param}
11557directive. Each occurrence of the directive will add a @code{protected
11558final} field to the parser class, and an argument to its constructor,
11559which initialize them automatically.
11560
e254a580
DJ
11561@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11562Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11563no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11564@code{%lex-param}s are used.
1979121c
DJ
11565
11566Use @code{%code init} for code added to the start of the constructor
11567body. This is especially useful to initialize superclasses. Use
f50bfcd6 11568@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11569@end deftypeop
11570
11571@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11572Build a new parser object using the specified scanner. There are no
2055a44e
AD
11573additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11574used.
e254a580
DJ
11575
11576If the scanner is defined by @code{%code lexer}, this constructor is
11577declared @code{protected} and is called automatically with a scanner
2055a44e 11578created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11579
11580Use @code{%code init} for code added to the start of the constructor
11581body. This is especially useful to initialize superclasses. Use
5a321748 11582@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11583@end deftypeop
8405b70c
PB
11584
11585@deftypemethod {YYParser} {boolean} parse ()
11586Run the syntactic analysis, and return @code{true} on success,
11587@code{false} otherwise.
11588@end deftypemethod
11589
1979121c
DJ
11590@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11591@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11592Get or set the option to produce verbose error messages. These are only
cf499cff 11593available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11594verbose error messages.
11595@end deftypemethod
11596
11597@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11598@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11599@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11600Print an error message using the @code{yyerror} method of the scanner
11601instance in use. The @code{Location} and @code{Position} parameters are
11602available only if location tracking is active.
11603@end deftypemethod
11604
01b477c6 11605@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11606During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11607from a syntax error.
11608@xref{Error Recovery}.
8405b70c
PB
11609@end deftypemethod
11610
11611@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11612@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11613Get or set the stream used for tracing the parsing. It defaults to
11614@code{System.err}.
11615@end deftypemethod
11616
11617@deftypemethod {YYParser} {int} getDebugLevel ()
11618@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11619Get or set the tracing level. Currently its value is either 0, no trace,
11620or nonzero, full tracing.
11621@end deftypemethod
11622
1979121c
DJ
11623@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11624@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11625Identify the Bison version and skeleton used to generate this parser.
11626@end deftypecv
11627
8405b70c
PB
11628
11629@node Java Scanner Interface
11630@subsection Java Scanner Interface
01b477c6 11631@c - %code lexer
8405b70c 11632@c - %lex-param
01b477c6 11633@c - Lexer interface
8405b70c 11634
e254a580
DJ
11635There are two possible ways to interface a Bison-generated Java parser
11636with a scanner: the scanner may be defined by @code{%code lexer}, or
11637defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11638@code{Lexer} inner interface of the parser class. This interface also
11639contain constants for all user-defined token names and the predefined
11640@code{EOF} token.
e254a580
DJ
11641
11642In the first case, the body of the scanner class is placed in
11643@code{%code lexer} blocks. If you want to pass parameters from the
11644parser constructor to the scanner constructor, specify them with
11645@code{%lex-param}; they are passed before @code{%parse-param}s to the
11646constructor.
01b477c6 11647
59c5ac72 11648In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11649which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11650The constructor of the parser object will then accept an object
11651implementing the interface; @code{%lex-param} is not used in this
11652case.
11653
11654In both cases, the scanner has to implement the following methods.
11655
e254a580
DJ
11656@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11657This method is defined by the user to emit an error message. The first
11658parameter is omitted if location tracking is not active. Its type can be
7287be84 11659changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
11660@end deftypemethod
11661
e254a580 11662@deftypemethod {Lexer} {int} yylex ()
8405b70c 11663Return the next token. Its type is the return value, its semantic
f50bfcd6 11664value and location are saved and returned by the their methods in the
e254a580
DJ
11665interface.
11666
67501061 11667Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11668Default is @code{java.io.IOException}.
8405b70c
PB
11669@end deftypemethod
11670
11671@deftypemethod {Lexer} {Position} getStartPos ()
11672@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11673Return respectively the first position of the last token that
11674@code{yylex} returned, and the first position beyond it. These
11675methods are not needed unless location tracking is active.
8405b70c 11676
7287be84 11677The return type can be changed using @code{%define api.position.type
8405b70c
PB
11678"@var{class-name}".}
11679@end deftypemethod
11680
11681@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11682Return the semantic value of the last token that yylex returned.
8405b70c 11683
4119d1ea 11684The return type can be changed using @samp{%define api.value.type
8405b70c
PB
11685"@var{class-name}".}
11686@end deftypemethod
11687
11688
e254a580
DJ
11689@node Java Action Features
11690@subsection Special Features for Use in Java Actions
11691
11692The following special constructs can be uses in Java actions.
11693Other analogous C action features are currently unavailable for Java.
11694
67501061 11695Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11696actions, and initial actions specified by @code{%initial-action}.
11697
11698@defvar $@var{n}
11699The semantic value for the @var{n}th component of the current rule.
11700This may not be assigned to.
11701@xref{Java Semantic Values}.
11702@end defvar
11703
11704@defvar $<@var{typealt}>@var{n}
11705Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11706@xref{Java Semantic Values}.
11707@end defvar
11708
11709@defvar $$
11710The semantic value for the grouping made by the current rule. As a
11711value, this is in the base type (@code{Object} or as specified by
4119d1ea 11712@samp{%define api.value.type}) as in not cast to the declared subtype because
e254a580
DJ
11713casts are not allowed on the left-hand side of Java assignments.
11714Use an explicit Java cast if the correct subtype is needed.
11715@xref{Java Semantic Values}.
11716@end defvar
11717
11718@defvar $<@var{typealt}>$
11719Same as @code{$$} since Java always allow assigning to the base type.
11720Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11721for setting the value but there is currently no easy way to distinguish
11722these constructs.
11723@xref{Java Semantic Values}.
11724@end defvar
11725
11726@defvar @@@var{n}
11727The location information of the @var{n}th component of the current rule.
11728This may not be assigned to.
11729@xref{Java Location Values}.
11730@end defvar
11731
11732@defvar @@$
11733The location information of the grouping made by the current rule.
11734@xref{Java Location Values}.
11735@end defvar
11736
34a41a93 11737@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11738Return immediately from the parser, indicating failure.
11739@xref{Java Parser Interface}.
34a41a93 11740@end deftypefn
8405b70c 11741
34a41a93 11742@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11743Return immediately from the parser, indicating success.
11744@xref{Java Parser Interface}.
34a41a93 11745@end deftypefn
8405b70c 11746
34a41a93 11747@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11748Start error recovery (without printing an error message).
e254a580 11749@xref{Error Recovery}.
34a41a93 11750@end deftypefn
8405b70c 11751
e254a580
DJ
11752@deftypefn {Function} {boolean} recovering ()
11753Return whether error recovery is being done. In this state, the parser
11754reads token until it reaches a known state, and then restarts normal
11755operation.
11756@xref{Error Recovery}.
11757@end deftypefn
8405b70c 11758
1979121c
DJ
11759@deftypefn {Function} {void} yyerror (String @var{msg})
11760@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11761@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11762Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11763instance in use. The @code{Location} and @code{Position} parameters are
11764available only if location tracking is active.
e254a580 11765@end deftypefn
8405b70c 11766
8405b70c 11767
8405b70c
PB
11768@node Java Differences
11769@subsection Differences between C/C++ and Java Grammars
11770
11771The different structure of the Java language forces several differences
11772between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11773section summarizes these differences.
8405b70c
PB
11774
11775@itemize
11776@item
01b477c6 11777Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11778@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11779macros. Instead, they should be preceded by @code{return} when they
11780appear in an action. The actual definition of these symbols is
8405b70c
PB
11781opaque to the Bison grammar, and it might change in the future. The
11782only meaningful operation that you can do, is to return them.
e3fd1dcb 11783@xref{Java Action Features}.
8405b70c
PB
11784
11785Note that of these three symbols, only @code{YYACCEPT} and
11786@code{YYABORT} will cause a return from the @code{yyparse}
11787method@footnote{Java parsers include the actions in a separate
11788method than @code{yyparse} in order to have an intuitive syntax that
11789corresponds to these C macros.}.
11790
e254a580
DJ
11791@item
11792Java lacks unions, so @code{%union} has no effect. Instead, semantic
11793values have a common base type: @code{Object} or as specified by
4119d1ea 11794@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11795@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11796an union. The type of @code{$$}, even with angle brackets, is the base
11797type since Java casts are not allow on the left-hand side of assignments.
11798Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11799left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11800@ref{Java Action Features}.
e254a580 11801
8405b70c 11802@item
f50bfcd6 11803The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11804@table @asis
11805@item @code{%code imports}
11806blocks are placed at the beginning of the Java source code. They may
11807include copyright notices. For a @code{package} declarations, it is
67501061 11808suggested to use @samp{%define package} instead.
8405b70c 11809
01b477c6
PB
11810@item unqualified @code{%code}
11811blocks are placed inside the parser class.
11812
11813@item @code{%code lexer}
11814blocks, if specified, should include the implementation of the
11815scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11816that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11817Interface}).
29553547 11818@end table
8405b70c
PB
11819
11820Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11821In particular, @code{%@{ @dots{} %@}} blocks should not be used
11822and may give an error in future versions of Bison.
11823
01b477c6 11824The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11825be used to define other classes used by the parser @emph{outside}
11826the parser class.
8405b70c
PB
11827@end itemize
11828
e254a580
DJ
11829
11830@node Java Declarations Summary
11831@subsection Java Declarations Summary
11832
11833This summary only include declarations specific to Java or have special
11834meaning when used in a Java parser.
11835
11836@deffn {Directive} {%language "Java"}
11837Generate a Java class for the parser.
11838@end deffn
11839
11840@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11841A parameter for the lexer class defined by @code{%code lexer}
11842@emph{only}, added as parameters to the lexer constructor and the parser
11843constructor that @emph{creates} a lexer. Default is none.
11844@xref{Java Scanner Interface}.
11845@end deffn
11846
11847@deffn {Directive} %name-prefix "@var{prefix}"
11848The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11849@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11850@xref{Java Bison Interface}.
11851@end deffn
11852
11853@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11854A parameter for the parser class added as parameters to constructor(s)
11855and as fields initialized by the constructor(s). Default is none.
11856@xref{Java Parser Interface}.
11857@end deffn
11858
11859@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11860Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11861@xref{Java Semantic Values}.
11862@end deffn
11863
11864@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11865Declare the type of nonterminals. Note that the angle brackets enclose
11866a Java @emph{type}.
11867@xref{Java Semantic Values}.
11868@end deffn
11869
11870@deffn {Directive} %code @{ @var{code} @dots{} @}
11871Code appended to the inside of the parser class.
11872@xref{Java Differences}.
11873@end deffn
11874
11875@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11876Code inserted just after the @code{package} declaration.
11877@xref{Java Differences}.
11878@end deffn
11879
1979121c
DJ
11880@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11881Code inserted at the beginning of the parser constructor body.
11882@xref{Java Parser Interface}.
11883@end deffn
11884
e254a580
DJ
11885@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11886Code added to the body of a inner lexer class within the parser class.
11887@xref{Java Scanner Interface}.
11888@end deffn
11889
11890@deffn {Directive} %% @var{code} @dots{}
11891Code (after the second @code{%%}) appended to the end of the file,
11892@emph{outside} the parser class.
11893@xref{Java Differences}.
11894@end deffn
11895
11896@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11897Not supported. Use @code{%code imports} instead.
e254a580
DJ
11898@xref{Java Differences}.
11899@end deffn
11900
11901@deffn {Directive} {%define abstract}
11902Whether the parser class is declared @code{abstract}. Default is false.
11903@xref{Java Bison Interface}.
11904@end deffn
11905
1979121c
DJ
11906@deffn {Directive} {%define annotations} "@var{annotations}"
11907The Java annotations for the parser class. Default is none.
11908@xref{Java Bison Interface}.
11909@end deffn
11910
e254a580
DJ
11911@deffn {Directive} {%define extends} "@var{superclass}"
11912The superclass of the parser class. Default is none.
11913@xref{Java Bison Interface}.
11914@end deffn
11915
11916@deffn {Directive} {%define final}
11917Whether the parser class is declared @code{final}. Default is false.
11918@xref{Java Bison Interface}.
11919@end deffn
11920
11921@deffn {Directive} {%define implements} "@var{interfaces}"
11922The implemented interfaces of the parser class, a comma-separated list.
11923Default is none.
11924@xref{Java Bison Interface}.
11925@end deffn
11926
1979121c
DJ
11927@deffn {Directive} {%define init_throws} "@var{exceptions}"
11928The exceptions thrown by @code{%code init} from the parser class
11929constructor. Default is none.
11930@xref{Java Parser Interface}.
11931@end deffn
11932
e254a580
DJ
11933@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11934The exceptions thrown by the @code{yylex} method of the lexer, a
11935comma-separated list. Default is @code{java.io.IOException}.
11936@xref{Java Scanner Interface}.
11937@end deffn
11938
7287be84 11939@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
11940The name of the class used for locations (a range between two
11941positions). This class is generated as an inner class of the parser
11942class by @command{bison}. Default is @code{Location}.
7287be84 11943Formerly named @code{location_type}.
e254a580
DJ
11944@xref{Java Location Values}.
11945@end deffn
11946
11947@deffn {Directive} {%define package} "@var{package}"
11948The package to put the parser class in. Default is none.
11949@xref{Java Bison Interface}.
11950@end deffn
11951
11952@deffn {Directive} {%define parser_class_name} "@var{name}"
11953The name of the parser class. Default is @code{YYParser} or
11954@code{@var{name-prefix}Parser}.
11955@xref{Java Bison Interface}.
11956@end deffn
11957
7287be84 11958@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
11959The name of the class used for positions. This class must be supplied by
11960the user. Default is @code{Position}.
7287be84 11961Formerly named @code{position_type}.
e254a580
DJ
11962@xref{Java Location Values}.
11963@end deffn
11964
11965@deffn {Directive} {%define public}
11966Whether the parser class is declared @code{public}. Default is false.
11967@xref{Java Bison Interface}.
11968@end deffn
11969
4119d1ea 11970@deffn {Directive} {%define api.value.type} "@var{class}"
e254a580
DJ
11971The base type of semantic values. Default is @code{Object}.
11972@xref{Java Semantic Values}.
11973@end deffn
11974
11975@deffn {Directive} {%define strictfp}
11976Whether the parser class is declared @code{strictfp}. Default is false.
11977@xref{Java Bison Interface}.
11978@end deffn
11979
11980@deffn {Directive} {%define throws} "@var{exceptions}"
11981The exceptions thrown by user-supplied parser actions and
11982@code{%initial-action}, a comma-separated list. Default is none.
11983@xref{Java Parser Interface}.
11984@end deffn
11985
11986
12545799 11987@c ================================================= FAQ
d1a1114f
AD
11988
11989@node FAQ
11990@chapter Frequently Asked Questions
11991@cindex frequently asked questions
11992@cindex questions
11993
11994Several questions about Bison come up occasionally. Here some of them
11995are addressed.
11996
11997@menu
55ba27be
AD
11998* Memory Exhausted:: Breaking the Stack Limits
11999* How Can I Reset the Parser:: @code{yyparse} Keeps some State
12000* Strings are Destroyed:: @code{yylval} Loses Track of Strings
12001* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 12002* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 12003* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
12004* I can't build Bison:: Troubleshooting
12005* Where can I find help?:: Troubleshouting
12006* Bug Reports:: Troublereporting
8405b70c 12007* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
12008* Beta Testing:: Experimenting development versions
12009* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
12010@end menu
12011
1a059451
PE
12012@node Memory Exhausted
12013@section Memory Exhausted
d1a1114f 12014
71b52b13 12015@quotation
1a059451 12016My parser returns with error with a @samp{memory exhausted}
d1a1114f 12017message. What can I do?
71b52b13 12018@end quotation
d1a1114f 12019
188867ac
AD
12020This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
12021Rules}.
d1a1114f 12022
e64fec0a
PE
12023@node How Can I Reset the Parser
12024@section How Can I Reset the Parser
5b066063 12025
0e14ad77
PE
12026The following phenomenon has several symptoms, resulting in the
12027following typical questions:
5b066063 12028
71b52b13 12029@quotation
5b066063
AD
12030I invoke @code{yyparse} several times, and on correct input it works
12031properly; but when a parse error is found, all the other calls fail
0e14ad77 12032too. How can I reset the error flag of @code{yyparse}?
71b52b13 12033@end quotation
5b066063
AD
12034
12035@noindent
12036or
12037
71b52b13 12038@quotation
0e14ad77 12039My parser includes support for an @samp{#include}-like feature, in
5b066063 12040which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 12041although I did specify @samp{%define api.pure full}.
71b52b13 12042@end quotation
5b066063 12043
0e14ad77
PE
12044These problems typically come not from Bison itself, but from
12045Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
12046speed, they might not notice a change of input file. As a
12047demonstration, consider the following source file,
12048@file{first-line.l}:
12049
d4fca427
AD
12050@example
12051@group
12052%@{
5b066063
AD
12053#include <stdio.h>
12054#include <stdlib.h>
d4fca427
AD
12055%@}
12056@end group
5b066063
AD
12057%%
12058.*\n ECHO; return 1;
12059%%
d4fca427 12060@group
5b066063 12061int
0e14ad77 12062yyparse (char const *file)
d4fca427 12063@{
5b066063
AD
12064 yyin = fopen (file, "r");
12065 if (!yyin)
d4fca427
AD
12066 @{
12067 perror ("fopen");
12068 exit (EXIT_FAILURE);
12069 @}
12070@end group
12071@group
fa7e68c3 12072 /* One token only. */
5b066063 12073 yylex ();
0e14ad77 12074 if (fclose (yyin) != 0)
d4fca427
AD
12075 @{
12076 perror ("fclose");
12077 exit (EXIT_FAILURE);
12078 @}
5b066063 12079 return 0;
d4fca427
AD
12080@}
12081@end group
5b066063 12082
d4fca427 12083@group
5b066063 12084int
0e14ad77 12085main (void)
d4fca427 12086@{
5b066063
AD
12087 yyparse ("input");
12088 yyparse ("input");
12089 return 0;
d4fca427
AD
12090@}
12091@end group
12092@end example
5b066063
AD
12093
12094@noindent
12095If the file @file{input} contains
12096
71b52b13 12097@example
5b066063
AD
12098input:1: Hello,
12099input:2: World!
71b52b13 12100@end example
5b066063
AD
12101
12102@noindent
0e14ad77 12103then instead of getting the first line twice, you get:
5b066063
AD
12104
12105@example
12106$ @kbd{flex -ofirst-line.c first-line.l}
12107$ @kbd{gcc -ofirst-line first-line.c -ll}
12108$ @kbd{./first-line}
12109input:1: Hello,
12110input:2: World!
12111@end example
12112
0e14ad77
PE
12113Therefore, whenever you change @code{yyin}, you must tell the
12114Lex-generated scanner to discard its current buffer and switch to the
12115new one. This depends upon your implementation of Lex; see its
12116documentation for more. For Flex, it suffices to call
12117@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
12118Flex-generated scanner needs to read from several input streams to
12119handle features like include files, you might consider using Flex
12120functions like @samp{yy_switch_to_buffer} that manipulate multiple
12121input buffers.
5b066063 12122
b165c324
AD
12123If your Flex-generated scanner uses start conditions (@pxref{Start
12124conditions, , Start conditions, flex, The Flex Manual}), you might
12125also want to reset the scanner's state, i.e., go back to the initial
12126start condition, through a call to @samp{BEGIN (0)}.
12127
fef4cb51
AD
12128@node Strings are Destroyed
12129@section Strings are Destroyed
12130
71b52b13 12131@quotation
c7e441b4 12132My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
12133them. Instead of reporting @samp{"foo", "bar"}, it reports
12134@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 12135@end quotation
fef4cb51
AD
12136
12137This error is probably the single most frequent ``bug report'' sent to
12138Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 12139of the scanner. Consider the following Lex code:
fef4cb51 12140
71b52b13 12141@example
d4fca427 12142@group
71b52b13 12143%@{
fef4cb51
AD
12144#include <stdio.h>
12145char *yylval = NULL;
71b52b13 12146%@}
d4fca427
AD
12147@end group
12148@group
fef4cb51
AD
12149%%
12150.* yylval = yytext; return 1;
12151\n /* IGNORE */
12152%%
d4fca427
AD
12153@end group
12154@group
fef4cb51
AD
12155int
12156main ()
71b52b13 12157@{
fa7e68c3 12158 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
12159 char *fst = (yylex (), yylval);
12160 char *snd = (yylex (), yylval);
12161 printf ("\"%s\", \"%s\"\n", fst, snd);
12162 return 0;
71b52b13 12163@}
d4fca427 12164@end group
71b52b13 12165@end example
fef4cb51
AD
12166
12167If you compile and run this code, you get:
12168
12169@example
12170$ @kbd{flex -osplit-lines.c split-lines.l}
12171$ @kbd{gcc -osplit-lines split-lines.c -ll}
12172$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12173"one
12174two", "two"
12175@end example
12176
12177@noindent
12178this is because @code{yytext} is a buffer provided for @emph{reading}
12179in the action, but if you want to keep it, you have to duplicate it
12180(e.g., using @code{strdup}). Note that the output may depend on how
12181your implementation of Lex handles @code{yytext}. For instance, when
12182given the Lex compatibility option @option{-l} (which triggers the
12183option @samp{%array}) Flex generates a different behavior:
12184
12185@example
12186$ @kbd{flex -l -osplit-lines.c split-lines.l}
12187$ @kbd{gcc -osplit-lines split-lines.c -ll}
12188$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12189"two", "two"
12190@end example
12191
12192
2fa09258
AD
12193@node Implementing Gotos/Loops
12194@section Implementing Gotos/Loops
a06ea4aa 12195
71b52b13 12196@quotation
a06ea4aa 12197My simple calculator supports variables, assignments, and functions,
2fa09258 12198but how can I implement gotos, or loops?
71b52b13 12199@end quotation
a06ea4aa
AD
12200
12201Although very pedagogical, the examples included in the document blur
a1c84f45 12202the distinction to make between the parser---whose job is to recover
a06ea4aa 12203the structure of a text and to transmit it to subsequent modules of
a1c84f45 12204the program---and the processing (such as the execution) of this
a06ea4aa
AD
12205structure. This works well with so called straight line programs,
12206i.e., precisely those that have a straightforward execution model:
12207execute simple instructions one after the others.
12208
12209@cindex abstract syntax tree
8a4281b9 12210@cindex AST
a06ea4aa
AD
12211If you want a richer model, you will probably need to use the parser
12212to construct a tree that does represent the structure it has
12213recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 12214or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
12215traversing it in various ways, will enable treatments such as its
12216execution or its translation, which will result in an interpreter or a
12217compiler.
12218
12219This topic is way beyond the scope of this manual, and the reader is
12220invited to consult the dedicated literature.
12221
12222
ed2e6384
AD
12223@node Multiple start-symbols
12224@section Multiple start-symbols
12225
71b52b13 12226@quotation
ed2e6384
AD
12227I have several closely related grammars, and I would like to share their
12228implementations. In fact, I could use a single grammar but with
12229multiple entry points.
71b52b13 12230@end quotation
ed2e6384
AD
12231
12232Bison does not support multiple start-symbols, but there is a very
12233simple means to simulate them. If @code{foo} and @code{bar} are the two
12234pseudo start-symbols, then introduce two new tokens, say
12235@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12236real start-symbol:
12237
12238@example
12239%token START_FOO START_BAR;
12240%start start;
5e9b6624
AD
12241start:
12242 START_FOO foo
12243| START_BAR bar;
ed2e6384
AD
12244@end example
12245
12246These tokens prevents the introduction of new conflicts. As far as the
12247parser goes, that is all that is needed.
12248
12249Now the difficult part is ensuring that the scanner will send these
12250tokens first. If your scanner is hand-written, that should be
12251straightforward. If your scanner is generated by Lex, them there is
12252simple means to do it: recall that anything between @samp{%@{ ... %@}}
12253after the first @code{%%} is copied verbatim in the top of the generated
12254@code{yylex} function. Make sure a variable @code{start_token} is
12255available in the scanner (e.g., a global variable or using
12256@code{%lex-param} etc.), and use the following:
12257
12258@example
12259 /* @r{Prologue.} */
12260%%
12261%@{
12262 if (start_token)
12263 @{
12264 int t = start_token;
12265 start_token = 0;
12266 return t;
12267 @}
12268%@}
12269 /* @r{The rules.} */
12270@end example
12271
12272
55ba27be
AD
12273@node Secure? Conform?
12274@section Secure? Conform?
12275
71b52b13 12276@quotation
55ba27be 12277Is Bison secure? Does it conform to POSIX?
71b52b13 12278@end quotation
55ba27be
AD
12279
12280If you're looking for a guarantee or certification, we don't provide it.
12281However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12282POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12283please send us a bug report.
12284
12285@node I can't build Bison
12286@section I can't build Bison
12287
71b52b13 12288@quotation
8c5b881d
PE
12289I can't build Bison because @command{make} complains that
12290@code{msgfmt} is not found.
55ba27be 12291What should I do?
71b52b13 12292@end quotation
55ba27be
AD
12293
12294Like most GNU packages with internationalization support, that feature
12295is turned on by default. If you have problems building in the @file{po}
12296subdirectory, it indicates that your system's internationalization
12297support is lacking. You can re-configure Bison with
12298@option{--disable-nls} to turn off this support, or you can install GNU
12299gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12300Bison. See the file @file{ABOUT-NLS} for more information.
12301
12302
12303@node Where can I find help?
12304@section Where can I find help?
12305
71b52b13 12306@quotation
55ba27be 12307I'm having trouble using Bison. Where can I find help?
71b52b13 12308@end quotation
55ba27be
AD
12309
12310First, read this fine manual. Beyond that, you can send mail to
12311@email{help-bison@@gnu.org}. This mailing list is intended to be
12312populated with people who are willing to answer questions about using
12313and installing Bison. Please keep in mind that (most of) the people on
12314the list have aspects of their lives which are not related to Bison (!),
12315so you may not receive an answer to your question right away. This can
12316be frustrating, but please try not to honk them off; remember that any
12317help they provide is purely voluntary and out of the kindness of their
12318hearts.
12319
12320@node Bug Reports
12321@section Bug Reports
12322
71b52b13 12323@quotation
55ba27be 12324I found a bug. What should I include in the bug report?
71b52b13 12325@end quotation
55ba27be
AD
12326
12327Before you send a bug report, make sure you are using the latest
12328version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12329mirrors. Be sure to include the version number in your bug report. If
12330the bug is present in the latest version but not in a previous version,
12331try to determine the most recent version which did not contain the bug.
12332
12333If the bug is parser-related, you should include the smallest grammar
12334you can which demonstrates the bug. The grammar file should also be
12335complete (i.e., I should be able to run it through Bison without having
12336to edit or add anything). The smaller and simpler the grammar, the
12337easier it will be to fix the bug.
12338
12339Include information about your compilation environment, including your
12340operating system's name and version and your compiler's name and
12341version. If you have trouble compiling, you should also include a
12342transcript of the build session, starting with the invocation of
12343`configure'. Depending on the nature of the bug, you may be asked to
4c9b8f13 12344send additional files as well (such as @file{config.h} or @file{config.cache}).
55ba27be
AD
12345
12346Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12347send a bug report just because you cannot provide a fix.
55ba27be
AD
12348
12349Send bug reports to @email{bug-bison@@gnu.org}.
12350
8405b70c
PB
12351@node More Languages
12352@section More Languages
55ba27be 12353
71b52b13 12354@quotation
8405b70c 12355Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12356favorite language here}?
71b52b13 12357@end quotation
55ba27be 12358
8405b70c 12359C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12360languages; contributions are welcome.
12361
12362@node Beta Testing
12363@section Beta Testing
12364
71b52b13 12365@quotation
55ba27be 12366What is involved in being a beta tester?
71b52b13 12367@end quotation
55ba27be
AD
12368
12369It's not terribly involved. Basically, you would download a test
12370release, compile it, and use it to build and run a parser or two. After
12371that, you would submit either a bug report or a message saying that
12372everything is okay. It is important to report successes as well as
12373failures because test releases eventually become mainstream releases,
12374but only if they are adequately tested. If no one tests, development is
12375essentially halted.
12376
12377Beta testers are particularly needed for operating systems to which the
12378developers do not have easy access. They currently have easy access to
12379recent GNU/Linux and Solaris versions. Reports about other operating
12380systems are especially welcome.
12381
12382@node Mailing Lists
12383@section Mailing Lists
12384
71b52b13 12385@quotation
55ba27be 12386How do I join the help-bison and bug-bison mailing lists?
71b52b13 12387@end quotation
55ba27be
AD
12388
12389See @url{http://lists.gnu.org/}.
a06ea4aa 12390
d1a1114f
AD
12391@c ================================================= Table of Symbols
12392
342b8b6e 12393@node Table of Symbols
bfa74976
RS
12394@appendix Bison Symbols
12395@cindex Bison symbols, table of
12396@cindex symbols in Bison, table of
12397
18b519c0 12398@deffn {Variable} @@$
3ded9a63 12399In an action, the location of the left-hand side of the rule.
303834cc 12400@xref{Tracking Locations}.
18b519c0 12401@end deffn
3ded9a63 12402
18b519c0 12403@deffn {Variable} @@@var{n}
be22823e 12404@deffnx {Symbol} @@@var{n}
303834cc
JD
12405In an action, the location of the @var{n}-th symbol of the right-hand side
12406of the rule. @xref{Tracking Locations}.
be22823e
AD
12407
12408In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12409with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12410@end deffn
3ded9a63 12411
d013372c 12412@deffn {Variable} @@@var{name}
c949ada3
AD
12413@deffnx {Variable} @@[@var{name}]
12414In an action, the location of a symbol addressed by @var{name}.
12415@xref{Tracking Locations}.
d013372c
AR
12416@end deffn
12417
be22823e
AD
12418@deffn {Symbol} $@@@var{n}
12419In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12420with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12421@end deffn
12422
18b519c0 12423@deffn {Variable} $$
3ded9a63
AD
12424In an action, the semantic value of the left-hand side of the rule.
12425@xref{Actions}.
18b519c0 12426@end deffn
3ded9a63 12427
18b519c0 12428@deffn {Variable} $@var{n}
3ded9a63
AD
12429In an action, the semantic value of the @var{n}-th symbol of the
12430right-hand side of the rule. @xref{Actions}.
18b519c0 12431@end deffn
3ded9a63 12432
d013372c 12433@deffn {Variable} $@var{name}
c949ada3
AD
12434@deffnx {Variable} $[@var{name}]
12435In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12436@xref{Actions}.
12437@end deffn
12438
dd8d9022
AD
12439@deffn {Delimiter} %%
12440Delimiter used to separate the grammar rule section from the
12441Bison declarations section or the epilogue.
12442@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12443@end deffn
bfa74976 12444
dd8d9022
AD
12445@c Don't insert spaces, or check the DVI output.
12446@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12447All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12448to the parser implementation file. Such code forms the prologue of
12449the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12450Grammar}.
18b519c0 12451@end deffn
bfa74976 12452
ca2a6d15
PH
12453@deffn {Directive} %?@{@var{expression}@}
12454Predicate actions. This is a type of action clause that may appear in
12455rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12456GLR parsers during nondeterministic operation,
ca2a6d15
PH
12457this silently causes an alternative parse to die. During deterministic
12458operation, it is the same as the effect of YYERROR.
12459@xref{Semantic Predicates}.
12460
12461This feature is experimental.
12462More user feedback will help to determine whether it should become a permanent
12463feature.
12464@end deffn
12465
c949ada3
AD
12466@deffn {Construct} /* @dots{} */
12467@deffnx {Construct} // @dots{}
12468Comments, as in C/C++.
18b519c0 12469@end deffn
bfa74976 12470
dd8d9022
AD
12471@deffn {Delimiter} :
12472Separates a rule's result from its components. @xref{Rules, ,Syntax of
12473Grammar Rules}.
18b519c0 12474@end deffn
bfa74976 12475
dd8d9022
AD
12476@deffn {Delimiter} ;
12477Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12478@end deffn
bfa74976 12479
dd8d9022
AD
12480@deffn {Delimiter} |
12481Separates alternate rules for the same result nonterminal.
12482@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12483@end deffn
bfa74976 12484
12e35840
JD
12485@deffn {Directive} <*>
12486Used to define a default tagged @code{%destructor} or default tagged
12487@code{%printer}.
85894313
JD
12488
12489This feature is experimental.
12490More user feedback will help to determine whether it should become a permanent
12491feature.
12492
12e35840
JD
12493@xref{Destructor Decl, , Freeing Discarded Symbols}.
12494@end deffn
12495
3ebecc24 12496@deffn {Directive} <>
12e35840
JD
12497Used to define a default tagless @code{%destructor} or default tagless
12498@code{%printer}.
85894313
JD
12499
12500This feature is experimental.
12501More user feedback will help to determine whether it should become a permanent
12502feature.
12503
12e35840
JD
12504@xref{Destructor Decl, , Freeing Discarded Symbols}.
12505@end deffn
12506
dd8d9022
AD
12507@deffn {Symbol} $accept
12508The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12509$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12510Start-Symbol}. It cannot be used in the grammar.
18b519c0 12511@end deffn
bfa74976 12512
136a0f76 12513@deffn {Directive} %code @{@var{code}@}
148d66d8 12514@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12515Insert @var{code} verbatim into the output parser source at the
12516default location or at the location specified by @var{qualifier}.
e0c07222 12517@xref{%code Summary}.
9bc0dd67
JD
12518@end deffn
12519
12520@deffn {Directive} %debug
12521Equip the parser for debugging. @xref{Decl Summary}.
12522@end deffn
12523
91d2c560 12524@ifset defaultprec
22fccf95
PE
12525@deffn {Directive} %default-prec
12526Assign a precedence to rules that lack an explicit @samp{%prec}
12527modifier. @xref{Contextual Precedence, ,Context-Dependent
12528Precedence}.
39a06c25 12529@end deffn
91d2c560 12530@end ifset
39a06c25 12531
7fceb615
JD
12532@deffn {Directive} %define @var{variable}
12533@deffnx {Directive} %define @var{variable} @var{value}
12534@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12535Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12536@end deffn
12537
18b519c0 12538@deffn {Directive} %defines
ff7571c0
JD
12539Bison declaration to create a parser header file, which is usually
12540meant for the scanner. @xref{Decl Summary}.
18b519c0 12541@end deffn
6deb4447 12542
02975b9a
JD
12543@deffn {Directive} %defines @var{defines-file}
12544Same as above, but save in the file @var{defines-file}.
12545@xref{Decl Summary}.
12546@end deffn
12547
18b519c0 12548@deffn {Directive} %destructor
258b75ca 12549Specify how the parser should reclaim the memory associated to
fa7e68c3 12550discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12551@end deffn
72f889cc 12552
18b519c0 12553@deffn {Directive} %dprec
676385e2 12554Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12555time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12556GLR Parsers}.
18b519c0 12557@end deffn
676385e2 12558
09add9c2
AD
12559@deffn {Directive} %empty
12560Bison declaration to declare make explicit that a rule has an empty
12561right-hand side. @xref{Empty Rules}.
12562@end deffn
12563
dd8d9022
AD
12564@deffn {Symbol} $end
12565The predefined token marking the end of the token stream. It cannot be
12566used in the grammar.
12567@end deffn
12568
12569@deffn {Symbol} error
12570A token name reserved for error recovery. This token may be used in
12571grammar rules so as to allow the Bison parser to recognize an error in
12572the grammar without halting the process. In effect, a sentence
12573containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12574token @code{error} becomes the current lookahead token. Actions
12575corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12576token is reset to the token that originally caused the violation.
12577@xref{Error Recovery}.
18d192f0
AD
12578@end deffn
12579
18b519c0 12580@deffn {Directive} %error-verbose
7fceb615
JD
12581An obsolete directive standing for @samp{%define parse.error verbose}
12582(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12583@end deffn
2a8d363a 12584
02975b9a 12585@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12586Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12587Summary}.
18b519c0 12588@end deffn
d8988b2f 12589
18b519c0 12590@deffn {Directive} %glr-parser
8a4281b9
JD
12591Bison declaration to produce a GLR parser. @xref{GLR
12592Parsers, ,Writing GLR Parsers}.
18b519c0 12593@end deffn
676385e2 12594
dd8d9022
AD
12595@deffn {Directive} %initial-action
12596Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12597@end deffn
12598
e6e704dc
JD
12599@deffn {Directive} %language
12600Specify the programming language for the generated parser.
12601@xref{Decl Summary}.
12602@end deffn
12603
18b519c0 12604@deffn {Directive} %left
d78f0ac9 12605Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12606@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12607@end deffn
bfa74976 12608
2055a44e
AD
12609@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12610Bison declaration to specifying additional arguments that
2a8d363a
AD
12611@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12612for Pure Parsers}.
18b519c0 12613@end deffn
2a8d363a 12614
18b519c0 12615@deffn {Directive} %merge
676385e2 12616Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12617reduce/reduce conflict with a rule having the same merging function, the
676385e2 12618function is applied to the two semantic values to get a single result.
8a4281b9 12619@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12620@end deffn
676385e2 12621
02975b9a 12622@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12623Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12624Parsers, ,Multiple Parsers in the Same Program}).
12625
12626Rename the external symbols (variables and functions) used in the parser so
12627that they start with @var{prefix} instead of @samp{yy}. Contrary to
12628@code{api.prefix}, do no rename types and macros.
12629
12630The precise list of symbols renamed in C parsers is @code{yyparse},
12631@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12632@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12633push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12634@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12635example, if you use @samp{%name-prefix "c_"}, the names become
12636@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
12637@code{%define namespace} documentation in this section.
18b519c0 12638@end deffn
d8988b2f 12639
4b3847c3 12640
91d2c560 12641@ifset defaultprec
22fccf95
PE
12642@deffn {Directive} %no-default-prec
12643Do not assign a precedence to rules that lack an explicit @samp{%prec}
12644modifier. @xref{Contextual Precedence, ,Context-Dependent
12645Precedence}.
12646@end deffn
91d2c560 12647@end ifset
22fccf95 12648
18b519c0 12649@deffn {Directive} %no-lines
931c7513 12650Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12651parser implementation file. @xref{Decl Summary}.
18b519c0 12652@end deffn
931c7513 12653
18b519c0 12654@deffn {Directive} %nonassoc
d78f0ac9 12655Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12656@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12657@end deffn
bfa74976 12658
02975b9a 12659@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12660Bison declaration to set the name of the parser implementation file.
12661@xref{Decl Summary}.
18b519c0 12662@end deffn
d8988b2f 12663
2055a44e
AD
12664@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12665Bison declaration to specify additional arguments that both
12666@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12667Parser Function @code{yyparse}}.
12668@end deffn
12669
12670@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12671Bison declaration to specify additional arguments that @code{yyparse}
12672should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12673@end deffn
2a8d363a 12674
18b519c0 12675@deffn {Directive} %prec
bfa74976
RS
12676Bison declaration to assign a precedence to a specific rule.
12677@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12678@end deffn
bfa74976 12679
d78f0ac9
AD
12680@deffn {Directive} %precedence
12681Bison declaration to assign precedence to token(s), but no associativity
12682@xref{Precedence Decl, ,Operator Precedence}.
12683@end deffn
12684
18b519c0 12685@deffn {Directive} %pure-parser
35c1e5f0
JD
12686Deprecated version of @samp{%define api.pure} (@pxref{%define
12687Summary,,api.pure}), for which Bison is more careful to warn about
12688unreasonable usage.
18b519c0 12689@end deffn
bfa74976 12690
b50d2359 12691@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12692Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12693Require a Version of Bison}.
b50d2359
AD
12694@end deffn
12695
18b519c0 12696@deffn {Directive} %right
d78f0ac9 12697Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12698@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12699@end deffn
bfa74976 12700
e6e704dc
JD
12701@deffn {Directive} %skeleton
12702Specify the skeleton to use; usually for development.
12703@xref{Decl Summary}.
12704@end deffn
12705
18b519c0 12706@deffn {Directive} %start
704a47c4
AD
12707Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12708Start-Symbol}.
18b519c0 12709@end deffn
bfa74976 12710
18b519c0 12711@deffn {Directive} %token
bfa74976
RS
12712Bison declaration to declare token(s) without specifying precedence.
12713@xref{Token Decl, ,Token Type Names}.
18b519c0 12714@end deffn
bfa74976 12715
18b519c0 12716@deffn {Directive} %token-table
ff7571c0
JD
12717Bison declaration to include a token name table in the parser
12718implementation file. @xref{Decl Summary}.
18b519c0 12719@end deffn
931c7513 12720
18b519c0 12721@deffn {Directive} %type
704a47c4
AD
12722Bison declaration to declare nonterminals. @xref{Type Decl,
12723,Nonterminal Symbols}.
18b519c0 12724@end deffn
bfa74976 12725
dd8d9022
AD
12726@deffn {Symbol} $undefined
12727The predefined token onto which all undefined values returned by
12728@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12729@code{error}.
12730@end deffn
12731
18b519c0 12732@deffn {Directive} %union
bfa74976
RS
12733Bison declaration to specify several possible data types for semantic
12734values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 12735@end deffn
bfa74976 12736
dd8d9022
AD
12737@deffn {Macro} YYABORT
12738Macro to pretend that an unrecoverable syntax error has occurred, by
12739making @code{yyparse} return 1 immediately. The error reporting
12740function @code{yyerror} is not called. @xref{Parser Function, ,The
12741Parser Function @code{yyparse}}.
8405b70c
PB
12742
12743For Java parsers, this functionality is invoked using @code{return YYABORT;}
12744instead.
dd8d9022 12745@end deffn
3ded9a63 12746
dd8d9022
AD
12747@deffn {Macro} YYACCEPT
12748Macro to pretend that a complete utterance of the language has been
12749read, by making @code{yyparse} return 0 immediately.
12750@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12751
12752For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12753instead.
dd8d9022 12754@end deffn
bfa74976 12755
dd8d9022 12756@deffn {Macro} YYBACKUP
742e4900 12757Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12758token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12759@end deffn
bfa74976 12760
dd8d9022 12761@deffn {Variable} yychar
32c29292 12762External integer variable that contains the integer value of the
742e4900 12763lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12764@code{yyparse}.) Error-recovery rule actions may examine this variable.
12765@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12766@end deffn
bfa74976 12767
dd8d9022
AD
12768@deffn {Variable} yyclearin
12769Macro used in error-recovery rule actions. It clears the previous
742e4900 12770lookahead token. @xref{Error Recovery}.
18b519c0 12771@end deffn
bfa74976 12772
dd8d9022
AD
12773@deffn {Macro} YYDEBUG
12774Macro to define to equip the parser with tracing code. @xref{Tracing,
12775,Tracing Your Parser}.
18b519c0 12776@end deffn
bfa74976 12777
dd8d9022
AD
12778@deffn {Variable} yydebug
12779External integer variable set to zero by default. If @code{yydebug}
12780is given a nonzero value, the parser will output information on input
12781symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12782@end deffn
bfa74976 12783
dd8d9022
AD
12784@deffn {Macro} yyerrok
12785Macro to cause parser to recover immediately to its normal mode
12786after a syntax error. @xref{Error Recovery}.
12787@end deffn
12788
12789@deffn {Macro} YYERROR
4a11b852
AD
12790Cause an immediate syntax error. This statement initiates error
12791recovery just as if the parser itself had detected an error; however, it
12792does not call @code{yyerror}, and does not print any message. If you
12793want to print an error message, call @code{yyerror} explicitly before
12794the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12795
12796For Java parsers, this functionality is invoked using @code{return YYERROR;}
12797instead.
dd8d9022
AD
12798@end deffn
12799
12800@deffn {Function} yyerror
12801User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12802@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12803@end deffn
12804
12805@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12806An obsolete macro used in the @file{yacc.c} skeleton, that you define
12807with @code{#define} in the prologue to request verbose, specific error
12808message strings when @code{yyerror} is called. It doesn't matter what
12809definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12810it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12811(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12812@end deffn
12813
93c150b6
AD
12814@deffn {Macro} YYFPRINTF
12815Macro used to output run-time traces.
12816@xref{Enabling Traces}.
12817@end deffn
12818
dd8d9022
AD
12819@deffn {Macro} YYINITDEPTH
12820Macro for specifying the initial size of the parser stack.
1a059451 12821@xref{Memory Management}.
dd8d9022
AD
12822@end deffn
12823
12824@deffn {Function} yylex
12825User-supplied lexical analyzer function, called with no arguments to get
12826the next token. @xref{Lexical, ,The Lexical Analyzer Function
12827@code{yylex}}.
12828@end deffn
12829
dd8d9022
AD
12830@deffn {Variable} yylloc
12831External variable in which @code{yylex} should place the line and column
12832numbers associated with a token. (In a pure parser, it is a local
12833variable within @code{yyparse}, and its address is passed to
32c29292
JD
12834@code{yylex}.)
12835You can ignore this variable if you don't use the @samp{@@} feature in the
12836grammar actions.
12837@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12838In semantic actions, it stores the location of the lookahead token.
32c29292 12839@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12840@end deffn
12841
12842@deffn {Type} YYLTYPE
12843Data type of @code{yylloc}; by default, a structure with four
12844members. @xref{Location Type, , Data Types of Locations}.
12845@end deffn
12846
12847@deffn {Variable} yylval
12848External variable in which @code{yylex} should place the semantic
12849value associated with a token. (In a pure parser, it is a local
12850variable within @code{yyparse}, and its address is passed to
32c29292
JD
12851@code{yylex}.)
12852@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12853In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12854@xref{Actions, ,Actions}.
dd8d9022
AD
12855@end deffn
12856
12857@deffn {Macro} YYMAXDEPTH
1a059451
PE
12858Macro for specifying the maximum size of the parser stack. @xref{Memory
12859Management}.
dd8d9022
AD
12860@end deffn
12861
12862@deffn {Variable} yynerrs
8a2800e7 12863Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12864(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 12865pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
12866@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12867@end deffn
12868
12869@deffn {Function} yyparse
12870The parser function produced by Bison; call this function to start
12871parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12872@end deffn
12873
93c150b6
AD
12874@deffn {Macro} YYPRINT
12875Macro used to output token semantic values. For @file{yacc.c} only.
12876Obsoleted by @code{%printer}.
12877@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12878@end deffn
12879
9987d1b3 12880@deffn {Function} yypstate_delete
f4101aa6 12881The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12882call this function to delete the memory associated with a parser.
f4101aa6 12883@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12884@code{yypstate_delete}}.
59da312b
JD
12885(The current push parsing interface is experimental and may evolve.
12886More user feedback will help to stabilize it.)
9987d1b3
JD
12887@end deffn
12888
12889@deffn {Function} yypstate_new
f4101aa6 12890The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12891call this function to create a new parser.
f4101aa6 12892@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12893@code{yypstate_new}}.
59da312b
JD
12894(The current push parsing interface is experimental and may evolve.
12895More user feedback will help to stabilize it.)
9987d1b3
JD
12896@end deffn
12897
12898@deffn {Function} yypull_parse
f4101aa6
AD
12899The parser function produced by Bison in push mode; call this function to
12900parse the rest of the input stream.
12901@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12902@code{yypull_parse}}.
59da312b
JD
12903(The current push parsing interface is experimental and may evolve.
12904More user feedback will help to stabilize it.)
9987d1b3
JD
12905@end deffn
12906
12907@deffn {Function} yypush_parse
f4101aa6
AD
12908The parser function produced by Bison in push mode; call this function to
12909parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12910@code{yypush_parse}}.
59da312b
JD
12911(The current push parsing interface is experimental and may evolve.
12912More user feedback will help to stabilize it.)
9987d1b3
JD
12913@end deffn
12914
dd8d9022 12915@deffn {Macro} YYRECOVERING
02103984
PE
12916The expression @code{YYRECOVERING ()} yields 1 when the parser
12917is recovering from a syntax error, and 0 otherwise.
12918@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12919@end deffn
12920
12921@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12922Macro used to control the use of @code{alloca} when the
12923deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12924the parser will use @code{malloc} to extend its stacks. If defined to
129251, the parser will use @code{alloca}. Values other than 0 and 1 are
12926reserved for future Bison extensions. If not defined,
12927@code{YYSTACK_USE_ALLOCA} defaults to 0.
12928
55289366 12929In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12930limited stack and with unreliable stack-overflow checking, you should
12931set @code{YYMAXDEPTH} to a value that cannot possibly result in
12932unchecked stack overflow on any of your target hosts when
12933@code{alloca} is called. You can inspect the code that Bison
12934generates in order to determine the proper numeric values. This will
12935require some expertise in low-level implementation details.
dd8d9022
AD
12936@end deffn
12937
12938@deffn {Type} YYSTYPE
12939Data type of semantic values; @code{int} by default.
12940@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12941@end deffn
bfa74976 12942
342b8b6e 12943@node Glossary
bfa74976
RS
12944@appendix Glossary
12945@cindex glossary
12946
12947@table @asis
7fceb615 12948@item Accepting state
eb45ef3b
JD
12949A state whose only action is the accept action.
12950The accepting state is thus a consistent state.
c949ada3 12951@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 12952
8a4281b9 12953@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12954Formal method of specifying context-free grammars originally proposed
12955by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12956committee document contributing to what became the Algol 60 report.
12957@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12958
7fceb615
JD
12959@item Consistent state
12960A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12961
bfa74976
RS
12962@item Context-free grammars
12963Grammars specified as rules that can be applied regardless of context.
12964Thus, if there is a rule which says that an integer can be used as an
12965expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12966permitted. @xref{Language and Grammar, ,Languages and Context-Free
12967Grammars}.
bfa74976 12968
7fceb615 12969@item Default reduction
110ef36a 12970The reduction that a parser should perform if the current parser state
35c1e5f0 12971contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12972states, Bison declares the reduction with the largest lookahead set to be
12973the default reduction and removes that lookahead set. @xref{Default
12974Reductions}.
12975
12976@item Defaulted state
12977A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12978
bfa74976
RS
12979@item Dynamic allocation
12980Allocation of memory that occurs during execution, rather than at
12981compile time or on entry to a function.
12982
12983@item Empty string
12984Analogous to the empty set in set theory, the empty string is a
12985character string of length zero.
12986
12987@item Finite-state stack machine
12988A ``machine'' that has discrete states in which it is said to exist at
12989each instant in time. As input to the machine is processed, the
12990machine moves from state to state as specified by the logic of the
12991machine. In the case of the parser, the input is the language being
12992parsed, and the states correspond to various stages in the grammar
c827f760 12993rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12994
8a4281b9 12995@item Generalized LR (GLR)
676385e2 12996A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12997that are not LR(1). It resolves situations that Bison's
eb45ef3b 12998deterministic parsing
676385e2
PH
12999algorithm cannot by effectively splitting off multiple parsers, trying all
13000possible parsers, and discarding those that fail in the light of additional
c827f760 13001right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 13002LR Parsing}.
676385e2 13003
bfa74976
RS
13004@item Grouping
13005A language construct that is (in general) grammatically divisible;
c827f760 13006for example, `expression' or `declaration' in C@.
bfa74976
RS
13007@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13008
7fceb615
JD
13009@item IELR(1) (Inadequacy Elimination LR(1))
13010A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 13011context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
13012language-recognition power of canonical LR(1) but with nearly the same
13013number of parser states as LALR(1). This reduction in parser states is
13014often an order of magnitude. More importantly, because canonical LR(1)'s
13015extra parser states may contain duplicate conflicts in the case of non-LR(1)
13016grammars, the number of conflicts for IELR(1) is often an order of magnitude
13017less as well. This can significantly reduce the complexity of developing a
13018grammar. @xref{LR Table Construction}.
eb45ef3b 13019
bfa74976
RS
13020@item Infix operator
13021An arithmetic operator that is placed between the operands on which it
13022performs some operation.
13023
13024@item Input stream
13025A continuous flow of data between devices or programs.
13026
8a4281b9 13027@item LAC (Lookahead Correction)
fcf834f9 13028A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
13029detection, which is caused by LR state merging, default reductions, and the
13030use of @code{%nonassoc}. Delayed syntax error detection results in
13031unexpected semantic actions, initiation of error recovery in the wrong
13032syntactic context, and an incorrect list of expected tokens in a verbose
13033syntax error message. @xref{LAC}.
fcf834f9 13034
bfa74976
RS
13035@item Language construct
13036One of the typical usage schemas of the language. For example, one of
13037the constructs of the C language is the @code{if} statement.
13038@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13039
13040@item Left associativity
13041Operators having left associativity are analyzed from left to right:
13042@samp{a+b+c} first computes @samp{a+b} and then combines with
13043@samp{c}. @xref{Precedence, ,Operator Precedence}.
13044
13045@item Left recursion
89cab50d
AD
13046A rule whose result symbol is also its first component symbol; for
13047example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
13048Rules}.
bfa74976
RS
13049
13050@item Left-to-right parsing
13051Parsing a sentence of a language by analyzing it token by token from
c827f760 13052left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13053
13054@item Lexical analyzer (scanner)
13055A function that reads an input stream and returns tokens one by one.
13056@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
13057
13058@item Lexical tie-in
13059A flag, set by actions in the grammar rules, which alters the way
13060tokens are parsed. @xref{Lexical Tie-ins}.
13061
931c7513 13062@item Literal string token
14ded682 13063A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 13064
742e4900
JD
13065@item Lookahead token
13066A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 13067Tokens}.
bfa74976 13068
8a4281b9 13069@item LALR(1)
bfa74976 13070The class of context-free grammars that Bison (like most other parser
8a4281b9 13071generators) can handle by default; a subset of LR(1).
cc09e5be 13072@xref{Mysterious Conflicts}.
bfa74976 13073
8a4281b9 13074@item LR(1)
bfa74976 13075The class of context-free grammars in which at most one token of
742e4900 13076lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
13077
13078@item Nonterminal symbol
13079A grammar symbol standing for a grammatical construct that can
13080be expressed through rules in terms of smaller constructs; in other
13081words, a construct that is not a token. @xref{Symbols}.
13082
bfa74976
RS
13083@item Parser
13084A function that recognizes valid sentences of a language by analyzing
13085the syntax structure of a set of tokens passed to it from a lexical
13086analyzer.
13087
13088@item Postfix operator
13089An arithmetic operator that is placed after the operands upon which it
13090performs some operation.
13091
13092@item Reduction
13093Replacing a string of nonterminals and/or terminals with a single
89cab50d 13094nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 13095Parser Algorithm}.
bfa74976
RS
13096
13097@item Reentrant
13098A reentrant subprogram is a subprogram which can be in invoked any
13099number of times in parallel, without interference between the various
13100invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
13101
13102@item Reverse polish notation
13103A language in which all operators are postfix operators.
13104
13105@item Right recursion
89cab50d
AD
13106A rule whose result symbol is also its last component symbol; for
13107example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
13108Rules}.
bfa74976
RS
13109
13110@item Semantics
13111In computer languages, the semantics are specified by the actions
13112taken for each instance of the language, i.e., the meaning of
13113each statement. @xref{Semantics, ,Defining Language Semantics}.
13114
13115@item Shift
13116A parser is said to shift when it makes the choice of analyzing
13117further input from the stream rather than reducing immediately some
c827f760 13118already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13119
13120@item Single-character literal
13121A single character that is recognized and interpreted as is.
13122@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
13123
13124@item Start symbol
13125The nonterminal symbol that stands for a complete valid utterance in
13126the language being parsed. The start symbol is usually listed as the
13863333 13127first nonterminal symbol in a language specification.
bfa74976
RS
13128@xref{Start Decl, ,The Start-Symbol}.
13129
13130@item Symbol table
13131A data structure where symbol names and associated data are stored
13132during parsing to allow for recognition and use of existing
13133information in repeated uses of a symbol. @xref{Multi-function Calc}.
13134
6e649e65
PE
13135@item Syntax error
13136An error encountered during parsing of an input stream due to invalid
13137syntax. @xref{Error Recovery}.
13138
bfa74976
RS
13139@item Token
13140A basic, grammatically indivisible unit of a language. The symbol
13141that describes a token in the grammar is a terminal symbol.
13142The input of the Bison parser is a stream of tokens which comes from
13143the lexical analyzer. @xref{Symbols}.
13144
13145@item Terminal symbol
89cab50d
AD
13146A grammar symbol that has no rules in the grammar and therefore is
13147grammatically indivisible. The piece of text it represents is a token.
13148@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
13149
13150@item Unreachable state
13151A parser state to which there does not exist a sequence of transitions from
13152the parser's start state. A state can become unreachable during conflict
13153resolution. @xref{Unreachable States}.
bfa74976
RS
13154@end table
13155
342b8b6e 13156@node Copying This Manual
f2b5126e 13157@appendix Copying This Manual
f2b5126e
PB
13158@include fdl.texi
13159
5e528941
JD
13160@node Bibliography
13161@unnumbered Bibliography
13162
13163@table @asis
13164@item [Denny 2008]
13165Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
13166for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
131672008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
13168pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
13169
13170@item [Denny 2010 May]
13171Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
13172Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
13173University, Clemson, SC, USA (May 2010).
13174@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
13175
13176@item [Denny 2010 November]
13177Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
13178Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
13179in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
131802010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
13181
13182@item [DeRemer 1982]
13183Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
13184Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
13185Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
13186615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
13187
13188@item [Knuth 1965]
13189Donald E. Knuth, On the Translation of Languages from Left to Right, in
13190@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
13191607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
13192
13193@item [Scott 2000]
13194Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
13195@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
13196London, Department of Computer Science, TR-00-12 (December 2000).
13197@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
13198@end table
13199
f9b86351
AD
13200@node Index of Terms
13201@unnumbered Index of Terms
bfa74976
RS
13202
13203@printindex cp
13204
bfa74976 13205@bye
a06ea4aa 13206
6b5a0de9
AD
13207@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
13208@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
13209@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
13210@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
13211@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
13212@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
13213@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
13214@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
13215@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
13216@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
13217@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
13218@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
13219@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 13220@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
13221@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
13222@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13223@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13224@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13225@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13226@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13227@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13228@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13229@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13230@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13231@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13232@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13233@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13234@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13235@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13236@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13237@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13238@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13239@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13240@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13241@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13242@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13243@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13244@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13245@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13246@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13247@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13248@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13249@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13250@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13251@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13252@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13253@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13254@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13255@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13256@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13257@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13258@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13259@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13260@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13261@c LocalWords: parsers parser's
13262@c LocalWords: associativity subclasses precedences unresolvable runnable
13263@c LocalWords: allocators subunit initializations unreferenced untyped
13264@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13265
13266@c Local Variables:
13267@c ispell-dictionary: "american"
13268@c fill-column: 76
13269@c End: