]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: discuss named references after locations.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
575619af
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
13863333
AD
166* Rpcalc Input::
167* Rpcalc Line::
168* Rpcalc Expr::
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
181
182Bison Grammar Files
183
184* Grammar Outline:: Overall layout of the grammar file.
185* Symbols:: Terminal and nonterminal symbols.
186* Rules:: How to write grammar rules.
187* Recursion:: Writing recursive rules.
188* Semantics:: Semantic values and actions.
93dd49ab 189* Locations:: Locations and actions.
378e917c 190* Named References:: Using named references in actions.
bfa74976
RS
191* Declarations:: All kinds of Bison declarations are described here.
192* Multiple Parsers:: Putting more than one Bison parser in one program.
193
194Outline of a Bison Grammar
195
f5f419de 196* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 197* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
198* Bison Declarations:: Syntax and usage of the Bison declarations section.
199* Grammar Rules:: Syntax and usage of the grammar rules section.
200* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
201
202Defining Language Semantics
203
204* Value Type:: Specifying one data type for all semantic values.
205* Multiple Types:: Specifying several alternative data types.
206* Actions:: An action is the semantic definition of a grammar rule.
207* Action Types:: Specifying data types for actions to operate on.
208* Mid-Rule Actions:: Most actions go at the end of a rule.
209 This says when, why and how to use the exceptional
210 action in the middle of a rule.
211
93dd49ab
PE
212Tracking Locations
213
214* Location Type:: Specifying a data type for locations.
215* Actions and Locations:: Using locations in actions.
216* Location Default Action:: Defining a general way to compute locations.
217
bfa74976
RS
218Bison Declarations
219
b50d2359 220* Require Decl:: Requiring a Bison version.
bfa74976
RS
221* Token Decl:: Declaring terminal symbols.
222* Precedence Decl:: Declaring terminals with precedence and associativity.
223* Union Decl:: Declaring the set of all semantic value types.
224* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 225* Initial Action Decl:: Code run before parsing starts.
72f889cc 226* Destructor Decl:: Declaring how symbols are freed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976 231* Decl Summary:: Table of all Bison declarations.
35c1e5f0 232* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 233* %code Summary:: Inserting code into the parser source.
bfa74976
RS
234
235Parser C-Language Interface
236
f5f419de
DJ
237* Parser Function:: How to call @code{yyparse} and what it returns.
238* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
239* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
240* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
241* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
242* Lexical:: You must supply a function @code{yylex}
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
254* Token Locations:: How @code{yylex} must return the text location
255 (line number, etc.) of the token, if the
256 actions want that.
257* Pure Calling:: How the calling convention differs in a pure parser
258 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 259
13863333 260The Bison Parser Algorithm
bfa74976 261
742e4900 262* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 268* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 269* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 270* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 271* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
272
273Operator Precedence
274
275* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
276* Using Precedence:: How to specify precedence and associativity.
277* Precedence Only:: How to specify precedence only.
bfa74976
RS
278* Precedence Examples:: How these features are used in the previous example.
279* How Precedence:: How they work.
280
7fceb615
JD
281Tuning LR
282
283* LR Table Construction:: Choose a different construction algorithm.
284* Default Reductions:: Disable default reductions.
285* LAC:: Correct lookahead sets in the parser states.
286* Unreachable States:: Keep unreachable parser states for debugging.
287
bfa74976
RS
288Handling Context Dependencies
289
290* Semantic Tokens:: Token parsing can depend on the semantic context.
291* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
292* Tie-in Recovery:: Lexical tie-ins have implications for how
293 error recovery rules must be written.
294
93dd49ab 295Debugging Your Parser
ec3bc396
AD
296
297* Understanding:: Understanding the structure of your parser.
298* Tracing:: Tracing the execution of your parser.
299
bfa74976
RS
300Invoking Bison
301
13863333 302* Bison Options:: All the options described in detail,
c827f760 303 in alphabetical order by short options.
bfa74976 304* Option Cross Key:: Alphabetical list of long options.
93dd49ab 305* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 306
8405b70c 307Parsers Written In Other Languages
12545799
AD
308
309* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 310* Java Parsers:: The interface to generate Java parser classes
12545799
AD
311
312C++ Parsers
313
314* C++ Bison Interface:: Asking for C++ parser generation
315* C++ Semantic Values:: %union vs. C++
316* C++ Location Values:: The position and location classes
317* C++ Parser Interface:: Instantiating and running the parser
318* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 319* A Complete C++ Example:: Demonstrating their use
12545799
AD
320
321A Complete C++ Example
322
323* Calc++ --- C++ Calculator:: The specifications
324* Calc++ Parsing Driver:: An active parsing context
325* Calc++ Parser:: A parser class
326* Calc++ Scanner:: A pure C++ Flex scanner
327* Calc++ Top Level:: Conducting the band
328
8405b70c
PB
329Java Parsers
330
f5f419de
DJ
331* Java Bison Interface:: Asking for Java parser generation
332* Java Semantic Values:: %type and %token vs. Java
333* Java Location Values:: The position and location classes
334* Java Parser Interface:: Instantiating and running the parser
335* Java Scanner Interface:: Specifying the scanner for the parser
336* Java Action Features:: Special features for use in actions
337* Java Differences:: Differences between C/C++ and Java Grammars
338* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 339
d1a1114f
AD
340Frequently Asked Questions
341
f5f419de
DJ
342* Memory Exhausted:: Breaking the Stack Limits
343* How Can I Reset the Parser:: @code{yyparse} Keeps some State
344* Strings are Destroyed:: @code{yylval} Loses Track of Strings
345* Implementing Gotos/Loops:: Control Flow in the Calculator
346* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 347* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
348* I can't build Bison:: Troubleshooting
349* Where can I find help?:: Troubleshouting
350* Bug Reports:: Troublereporting
351* More Languages:: Parsers in C++, Java, and so on
352* Beta Testing:: Experimenting development versions
353* Mailing Lists:: Meeting other Bison users
d1a1114f 354
f2b5126e
PB
355Copying This Manual
356
f5f419de 357* Copying This Manual:: License for copying this manual.
f2b5126e 358
342b8b6e 359@end detailmenu
bfa74976
RS
360@end menu
361
342b8b6e 362@node Introduction
bfa74976
RS
363@unnumbered Introduction
364@cindex introduction
365
6077da58 366@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
367annotated context-free grammar into a deterministic LR or generalized
368LR (GLR) parser employing LALR(1) parser tables. As an experimental
369feature, Bison can also generate IELR(1) or canonical LR(1) parser
370tables. Once you are proficient with Bison, you can use it to develop
371a wide range of language parsers, from those used in simple desk
372calculators to complex programming languages.
373
374Bison is upward compatible with Yacc: all properly-written Yacc
375grammars ought to work with Bison with no change. Anyone familiar
376with Yacc should be able to use Bison with little trouble. You need
377to be fluent in C or C++ programming in order to use Bison or to
378understand this manual. Java is also supported as an experimental
379feature.
380
381We begin with tutorial chapters that explain the basic concepts of
382using Bison and show three explained examples, each building on the
383last. If you don't know Bison or Yacc, start by reading these
384chapters. Reference chapters follow, which describe specific aspects
385of Bison in detail.
bfa74976 386
679e9935
JD
387Bison was written originally by Robert Corbett. Richard Stallman made
388it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
389added multi-character string literals and other features. Since then,
390Bison has grown more robust and evolved many other new features thanks
391to the hard work of a long list of volunteers. For details, see the
392@file{THANKS} and @file{ChangeLog} files included in the Bison
393distribution.
931c7513 394
df1af54c 395This edition corresponds to version @value{VERSION} of Bison.
bfa74976 396
342b8b6e 397@node Conditions
bfa74976
RS
398@unnumbered Conditions for Using Bison
399
193d7c70
PE
400The distribution terms for Bison-generated parsers permit using the
401parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 402permissions applied only when Bison was generating LALR(1)
193d7c70 403parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 404parsers could be used only in programs that were free software.
a31239f1 405
8a4281b9 406The other GNU programming tools, such as the GNU C
c827f760 407compiler, have never
9ecbd125 408had such a requirement. They could always be used for nonfree
a31239f1
RS
409software. The reason Bison was different was not due to a special
410policy decision; it resulted from applying the usual General Public
411License to all of the Bison source code.
412
ff7571c0
JD
413The main output of the Bison utility---the Bison parser implementation
414file---contains a verbatim copy of a sizable piece of Bison, which is
415the code for the parser's implementation. (The actions from your
416grammar are inserted into this implementation at one point, but most
417of the rest of the implementation is not changed.) When we applied
418the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
419the effect was to restrict the use of Bison output to free software.
420
421We didn't change the terms because of sympathy for people who want to
422make software proprietary. @strong{Software should be free.} But we
423concluded that limiting Bison's use to free software was doing little to
424encourage people to make other software free. So we decided to make the
425practical conditions for using Bison match the practical conditions for
8a4281b9 426using the other GNU tools.
bfa74976 427
193d7c70
PE
428This exception applies when Bison is generating code for a parser.
429You can tell whether the exception applies to a Bison output file by
430inspecting the file for text beginning with ``As a special
431exception@dots{}''. The text spells out the exact terms of the
432exception.
262aa8dd 433
f16b0819
PE
434@node Copying
435@unnumbered GNU GENERAL PUBLIC LICENSE
436@include gpl-3.0.texi
bfa74976 437
342b8b6e 438@node Concepts
bfa74976
RS
439@chapter The Concepts of Bison
440
441This chapter introduces many of the basic concepts without which the
442details of Bison will not make sense. If you do not already know how to
443use Bison or Yacc, we suggest you start by reading this chapter carefully.
444
445@menu
f5f419de
DJ
446* Language and Grammar:: Languages and context-free grammars,
447 as mathematical ideas.
448* Grammar in Bison:: How we represent grammars for Bison's sake.
449* Semantic Values:: Each token or syntactic grouping can have
450 a semantic value (the value of an integer,
451 the name of an identifier, etc.).
452* Semantic Actions:: Each rule can have an action containing C code.
453* GLR Parsers:: Writing parsers for general context-free languages.
454* Locations Overview:: Tracking Locations.
455* Bison Parser:: What are Bison's input and output,
456 how is the output used?
457* Stages:: Stages in writing and running Bison grammars.
458* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
459@end menu
460
342b8b6e 461@node Language and Grammar
bfa74976
RS
462@section Languages and Context-Free Grammars
463
bfa74976
RS
464@cindex context-free grammar
465@cindex grammar, context-free
466In order for Bison to parse a language, it must be described by a
467@dfn{context-free grammar}. This means that you specify one or more
468@dfn{syntactic groupings} and give rules for constructing them from their
469parts. For example, in the C language, one kind of grouping is called an
470`expression'. One rule for making an expression might be, ``An expression
471can be made of a minus sign and another expression''. Another would be,
472``An expression can be an integer''. As you can see, rules are often
473recursive, but there must be at least one rule which leads out of the
474recursion.
475
8a4281b9 476@cindex BNF
bfa74976
RS
477@cindex Backus-Naur form
478The most common formal system for presenting such rules for humans to read
8a4281b9 479is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 480order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
481BNF is a context-free grammar. The input to Bison is
482essentially machine-readable BNF.
bfa74976 483
7fceb615
JD
484@cindex LALR grammars
485@cindex IELR grammars
486@cindex LR grammars
487There are various important subclasses of context-free grammars. Although
488it can handle almost all context-free grammars, Bison is optimized for what
489are called LR(1) grammars. In brief, in these grammars, it must be possible
490to tell how to parse any portion of an input string with just a single token
491of lookahead. For historical reasons, Bison by default is limited by the
492additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
493@xref{Mysterious Conflicts}, for more information on this. As an
494experimental feature, you can escape these additional restrictions by
495requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
496Construction}, to learn how.
bfa74976 497
8a4281b9
JD
498@cindex GLR parsing
499@cindex generalized LR (GLR) parsing
676385e2 500@cindex ambiguous grammars
9d9b8b70 501@cindex nondeterministic parsing
9501dc6e 502
8a4281b9 503Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
504roughly that the next grammar rule to apply at any point in the input is
505uniquely determined by the preceding input and a fixed, finite portion
742e4900 506(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 507grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 508apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 509grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 510lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 511With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
512general context-free grammars, using a technique known as GLR
513parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
514are able to handle any context-free grammar for which the number of
515possible parses of any given string is finite.
676385e2 516
bfa74976
RS
517@cindex symbols (abstract)
518@cindex token
519@cindex syntactic grouping
520@cindex grouping, syntactic
9501dc6e
AD
521In the formal grammatical rules for a language, each kind of syntactic
522unit or grouping is named by a @dfn{symbol}. Those which are built by
523grouping smaller constructs according to grammatical rules are called
bfa74976
RS
524@dfn{nonterminal symbols}; those which can't be subdivided are called
525@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
526corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 527corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
528
529We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
530nonterminal, mean. The tokens of C are identifiers, constants (numeric
531and string), and the various keywords, arithmetic operators and
532punctuation marks. So the terminal symbols of a grammar for C include
533`identifier', `number', `string', plus one symbol for each keyword,
534operator or punctuation mark: `if', `return', `const', `static', `int',
535`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
536(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
537lexicography, not grammar.)
538
539Here is a simple C function subdivided into tokens:
540
9edcd895
AD
541@ifinfo
542@example
543int /* @r{keyword `int'} */
14d4662b 544square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
545 @r{identifier, close-paren} */
546@{ /* @r{open-brace} */
aa08666d
AD
547 return x * x; /* @r{keyword `return', identifier, asterisk,}
548 @r{identifier, semicolon} */
9edcd895
AD
549@} /* @r{close-brace} */
550@end example
551@end ifinfo
552@ifnotinfo
bfa74976
RS
553@example
554int /* @r{keyword `int'} */
14d4662b 555square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 556@{ /* @r{open-brace} */
9edcd895 557 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
558@} /* @r{close-brace} */
559@end example
9edcd895 560@end ifnotinfo
bfa74976
RS
561
562The syntactic groupings of C include the expression, the statement, the
563declaration, and the function definition. These are represented in the
564grammar of C by nonterminal symbols `expression', `statement',
565`declaration' and `function definition'. The full grammar uses dozens of
566additional language constructs, each with its own nonterminal symbol, in
567order to express the meanings of these four. The example above is a
568function definition; it contains one declaration, and one statement. In
569the statement, each @samp{x} is an expression and so is @samp{x * x}.
570
571Each nonterminal symbol must have grammatical rules showing how it is made
572out of simpler constructs. For example, one kind of C statement is the
573@code{return} statement; this would be described with a grammar rule which
574reads informally as follows:
575
576@quotation
577A `statement' can be made of a `return' keyword, an `expression' and a
578`semicolon'.
579@end quotation
580
581@noindent
582There would be many other rules for `statement', one for each kind of
583statement in C.
584
585@cindex start symbol
586One nonterminal symbol must be distinguished as the special one which
587defines a complete utterance in the language. It is called the @dfn{start
588symbol}. In a compiler, this means a complete input program. In the C
589language, the nonterminal symbol `sequence of definitions and declarations'
590plays this role.
591
592For example, @samp{1 + 2} is a valid C expression---a valid part of a C
593program---but it is not valid as an @emph{entire} C program. In the
594context-free grammar of C, this follows from the fact that `expression' is
595not the start symbol.
596
597The Bison parser reads a sequence of tokens as its input, and groups the
598tokens using the grammar rules. If the input is valid, the end result is
599that the entire token sequence reduces to a single grouping whose symbol is
600the grammar's start symbol. If we use a grammar for C, the entire input
601must be a `sequence of definitions and declarations'. If not, the parser
602reports a syntax error.
603
342b8b6e 604@node Grammar in Bison
bfa74976
RS
605@section From Formal Rules to Bison Input
606@cindex Bison grammar
607@cindex grammar, Bison
608@cindex formal grammar
609
610A formal grammar is a mathematical construct. To define the language
611for Bison, you must write a file expressing the grammar in Bison syntax:
612a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
613
614A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 615as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
616in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
617
618The Bison representation for a terminal symbol is also called a @dfn{token
619type}. Token types as well can be represented as C-like identifiers. By
620convention, these identifiers should be upper case to distinguish them from
621nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
622@code{RETURN}. A terminal symbol that stands for a particular keyword in
623the language should be named after that keyword converted to upper case.
624The terminal symbol @code{error} is reserved for error recovery.
931c7513 625@xref{Symbols}.
bfa74976
RS
626
627A terminal symbol can also be represented as a character literal, just like
628a C character constant. You should do this whenever a token is just a
629single character (parenthesis, plus-sign, etc.): use that same character in
630a literal as the terminal symbol for that token.
631
931c7513
RS
632A third way to represent a terminal symbol is with a C string constant
633containing several characters. @xref{Symbols}, for more information.
634
bfa74976
RS
635The grammar rules also have an expression in Bison syntax. For example,
636here is the Bison rule for a C @code{return} statement. The semicolon in
637quotes is a literal character token, representing part of the C syntax for
638the statement; the naked semicolon, and the colon, are Bison punctuation
639used in every rule.
640
641@example
642stmt: RETURN expr ';'
643 ;
644@end example
645
646@noindent
647@xref{Rules, ,Syntax of Grammar Rules}.
648
342b8b6e 649@node Semantic Values
bfa74976
RS
650@section Semantic Values
651@cindex semantic value
652@cindex value, semantic
653
654A formal grammar selects tokens only by their classifications: for example,
655if a rule mentions the terminal symbol `integer constant', it means that
656@emph{any} integer constant is grammatically valid in that position. The
657precise value of the constant is irrelevant to how to parse the input: if
658@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 659grammatical.
bfa74976
RS
660
661But the precise value is very important for what the input means once it is
662parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6633989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
664has both a token type and a @dfn{semantic value}. @xref{Semantics,
665,Defining Language Semantics},
bfa74976
RS
666for details.
667
668The token type is a terminal symbol defined in the grammar, such as
669@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
670you need to know to decide where the token may validly appear and how to
671group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 672except their types.
bfa74976
RS
673
674The semantic value has all the rest of the information about the
675meaning of the token, such as the value of an integer, or the name of an
676identifier. (A token such as @code{','} which is just punctuation doesn't
677need to have any semantic value.)
678
679For example, an input token might be classified as token type
680@code{INTEGER} and have the semantic value 4. Another input token might
681have the same token type @code{INTEGER} but value 3989. When a grammar
682rule says that @code{INTEGER} is allowed, either of these tokens is
683acceptable because each is an @code{INTEGER}. When the parser accepts the
684token, it keeps track of the token's semantic value.
685
686Each grouping can also have a semantic value as well as its nonterminal
687symbol. For example, in a calculator, an expression typically has a
688semantic value that is a number. In a compiler for a programming
689language, an expression typically has a semantic value that is a tree
690structure describing the meaning of the expression.
691
342b8b6e 692@node Semantic Actions
bfa74976
RS
693@section Semantic Actions
694@cindex semantic actions
695@cindex actions, semantic
696
697In order to be useful, a program must do more than parse input; it must
698also produce some output based on the input. In a Bison grammar, a grammar
699rule can have an @dfn{action} made up of C statements. Each time the
700parser recognizes a match for that rule, the action is executed.
701@xref{Actions}.
13863333 702
bfa74976
RS
703Most of the time, the purpose of an action is to compute the semantic value
704of the whole construct from the semantic values of its parts. For example,
705suppose we have a rule which says an expression can be the sum of two
706expressions. When the parser recognizes such a sum, each of the
707subexpressions has a semantic value which describes how it was built up.
708The action for this rule should create a similar sort of value for the
709newly recognized larger expression.
710
711For example, here is a rule that says an expression can be the sum of
712two subexpressions:
713
714@example
715expr: expr '+' expr @{ $$ = $1 + $3; @}
716 ;
717@end example
718
719@noindent
720The action says how to produce the semantic value of the sum expression
721from the values of the two subexpressions.
722
676385e2 723@node GLR Parsers
8a4281b9
JD
724@section Writing GLR Parsers
725@cindex GLR parsing
726@cindex generalized LR (GLR) parsing
676385e2
PH
727@findex %glr-parser
728@cindex conflicts
729@cindex shift/reduce conflicts
fa7e68c3 730@cindex reduce/reduce conflicts
676385e2 731
eb45ef3b 732In some grammars, Bison's deterministic
8a4281b9 733LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
734certain grammar rule at a given point. That is, it may not be able to
735decide (on the basis of the input read so far) which of two possible
736reductions (applications of a grammar rule) applies, or whether to apply
737a reduction or read more of the input and apply a reduction later in the
738input. These are known respectively as @dfn{reduce/reduce} conflicts
739(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
740(@pxref{Shift/Reduce}).
741
8a4281b9 742To use a grammar that is not easily modified to be LR(1), a
9501dc6e 743more general parsing algorithm is sometimes necessary. If you include
676385e2 744@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
745(@pxref{Grammar Outline}), the result is a Generalized LR
746(GLR) parser. These parsers handle Bison grammars that
9501dc6e 747contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 748declarations) identically to deterministic parsers. However, when
9501dc6e 749faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 750GLR parsers use the simple expedient of doing both,
9501dc6e
AD
751effectively cloning the parser to follow both possibilities. Each of
752the resulting parsers can again split, so that at any given time, there
753can be any number of possible parses being explored. The parsers
676385e2
PH
754proceed in lockstep; that is, all of them consume (shift) a given input
755symbol before any of them proceed to the next. Each of the cloned
756parsers eventually meets one of two possible fates: either it runs into
757a parsing error, in which case it simply vanishes, or it merges with
758another parser, because the two of them have reduced the input to an
759identical set of symbols.
760
761During the time that there are multiple parsers, semantic actions are
762recorded, but not performed. When a parser disappears, its recorded
763semantic actions disappear as well, and are never performed. When a
764reduction makes two parsers identical, causing them to merge, Bison
765records both sets of semantic actions. Whenever the last two parsers
766merge, reverting to the single-parser case, Bison resolves all the
767outstanding actions either by precedences given to the grammar rules
768involved, or by performing both actions, and then calling a designated
769user-defined function on the resulting values to produce an arbitrary
770merged result.
771
fa7e68c3 772@menu
8a4281b9
JD
773* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
774* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 775* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 776* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 777* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
778@end menu
779
780@node Simple GLR Parsers
8a4281b9
JD
781@subsection Using GLR on Unambiguous Grammars
782@cindex GLR parsing, unambiguous grammars
783@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
784@findex %glr-parser
785@findex %expect-rr
786@cindex conflicts
787@cindex reduce/reduce conflicts
788@cindex shift/reduce conflicts
789
8a4281b9
JD
790In the simplest cases, you can use the GLR algorithm
791to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 792Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
793
794Consider a problem that
795arises in the declaration of enumerated and subrange types in the
796programming language Pascal. Here are some examples:
797
798@example
799type subrange = lo .. hi;
800type enum = (a, b, c);
801@end example
802
803@noindent
804The original language standard allows only numeric
805literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 806and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80710206) and many other
808Pascal implementations allow arbitrary expressions there. This gives
809rise to the following situation, containing a superfluous pair of
810parentheses:
811
812@example
813type subrange = (a) .. b;
814@end example
815
816@noindent
817Compare this to the following declaration of an enumerated
818type with only one value:
819
820@example
821type enum = (a);
822@end example
823
824@noindent
825(These declarations are contrived, but they are syntactically
826valid, and more-complicated cases can come up in practical programs.)
827
828These two declarations look identical until the @samp{..} token.
8a4281b9 829With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
830possible to decide between the two forms when the identifier
831@samp{a} is parsed. It is, however, desirable
832for a parser to decide this, since in the latter case
833@samp{a} must become a new identifier to represent the enumeration
834value, while in the former case @samp{a} must be evaluated with its
835current meaning, which may be a constant or even a function call.
836
837You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
838to be resolved later, but this typically requires substantial
839contortions in both semantic actions and large parts of the
840grammar, where the parentheses are nested in the recursive rules for
841expressions.
842
843You might think of using the lexer to distinguish between the two
844forms by returning different tokens for currently defined and
845undefined identifiers. But if these declarations occur in a local
846scope, and @samp{a} is defined in an outer scope, then both forms
847are possible---either locally redefining @samp{a}, or using the
848value of @samp{a} from the outer scope. So this approach cannot
849work.
850
e757bb10 851A simple solution to this problem is to declare the parser to
8a4281b9
JD
852use the GLR algorithm.
853When the GLR parser reaches the critical state, it
fa7e68c3
PE
854merely splits into two branches and pursues both syntax rules
855simultaneously. Sooner or later, one of them runs into a parsing
856error. If there is a @samp{..} token before the next
857@samp{;}, the rule for enumerated types fails since it cannot
858accept @samp{..} anywhere; otherwise, the subrange type rule
859fails since it requires a @samp{..} token. So one of the branches
860fails silently, and the other one continues normally, performing
861all the intermediate actions that were postponed during the split.
862
863If the input is syntactically incorrect, both branches fail and the parser
864reports a syntax error as usual.
865
866The effect of all this is that the parser seems to ``guess'' the
867correct branch to take, or in other words, it seems to use more
8a4281b9
JD
868lookahead than the underlying LR(1) algorithm actually allows
869for. In this example, LR(2) would suffice, but also some cases
870that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 871
8a4281b9 872In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
873and the current Bison parser even takes exponential time and space
874for some grammars. In practice, this rarely happens, and for many
875grammars it is possible to prove that it cannot happen.
876The present example contains only one conflict between two
877rules, and the type-declaration context containing the conflict
878cannot be nested. So the number of
879branches that can exist at any time is limited by the constant 2,
880and the parsing time is still linear.
881
882Here is a Bison grammar corresponding to the example above. It
883parses a vastly simplified form of Pascal type declarations.
884
885@example
886%token TYPE DOTDOT ID
887
888@group
889%left '+' '-'
890%left '*' '/'
891@end group
892
893%%
894
895@group
896type_decl : TYPE ID '=' type ';'
897 ;
898@end group
899
900@group
901type : '(' id_list ')'
902 | expr DOTDOT expr
903 ;
904@end group
905
906@group
907id_list : ID
908 | id_list ',' ID
909 ;
910@end group
911
912@group
913expr : '(' expr ')'
914 | expr '+' expr
915 | expr '-' expr
916 | expr '*' expr
917 | expr '/' expr
918 | ID
919 ;
920@end group
921@end example
922
8a4281b9 923When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
924about one reduce/reduce conflict. In the conflicting situation the
925parser chooses one of the alternatives, arbitrarily the one
926declared first. Therefore the following correct input is not
927recognized:
928
929@example
930type t = (a) .. b;
931@end example
932
8a4281b9 933The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
934to be silent about the one known reduce/reduce conflict, by adding
935these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
936@samp{%%}):
937
938@example
939%glr-parser
940%expect-rr 1
941@end example
942
943@noindent
944No change in the grammar itself is required. Now the
945parser recognizes all valid declarations, according to the
946limited syntax above, transparently. In fact, the user does not even
947notice when the parser splits.
948
8a4281b9 949So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
950almost without disadvantages. Even in simple cases like this, however,
951there are at least two potential problems to beware. First, always
8a4281b9
JD
952analyze the conflicts reported by Bison to make sure that GLR
953splitting is only done where it is intended. A GLR parser
f8e1c9e5 954splitting inadvertently may cause problems less obvious than an
8a4281b9 955LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
956conflict. Second, consider interactions with the lexer (@pxref{Semantic
957Tokens}) with great care. Since a split parser consumes tokens without
958performing any actions during the split, the lexer cannot obtain
959information via parser actions. Some cases of lexer interactions can be
8a4281b9 960eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
961lexer to the parser. You must check the remaining cases for
962correctness.
963
964In our example, it would be safe for the lexer to return tokens based on
965their current meanings in some symbol table, because no new symbols are
966defined in the middle of a type declaration. Though it is possible for
967a parser to define the enumeration constants as they are parsed, before
968the type declaration is completed, it actually makes no difference since
969they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
970
971@node Merging GLR Parses
8a4281b9
JD
972@subsection Using GLR to Resolve Ambiguities
973@cindex GLR parsing, ambiguous grammars
974@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
975@findex %dprec
976@findex %merge
977@cindex conflicts
978@cindex reduce/reduce conflicts
979
2a8d363a 980Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
981
982@example
983%@{
38a92d50
PE
984 #include <stdio.h>
985 #define YYSTYPE char const *
986 int yylex (void);
987 void yyerror (char const *);
676385e2
PH
988%@}
989
990%token TYPENAME ID
991
992%right '='
993%left '+'
994
995%glr-parser
996
997%%
998
fae437e8 999prog :
676385e2
PH
1000 | prog stmt @{ printf ("\n"); @}
1001 ;
1002
1003stmt : expr ';' %dprec 1
1004 | decl %dprec 2
1005 ;
1006
2a8d363a 1007expr : ID @{ printf ("%s ", $$); @}
fae437e8 1008 | TYPENAME '(' expr ')'
2a8d363a
AD
1009 @{ printf ("%s <cast> ", $1); @}
1010 | expr '+' expr @{ printf ("+ "); @}
1011 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1012 ;
1013
fae437e8 1014decl : TYPENAME declarator ';'
2a8d363a 1015 @{ printf ("%s <declare> ", $1); @}
676385e2 1016 | TYPENAME declarator '=' expr ';'
2a8d363a 1017 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1018 ;
1019
2a8d363a 1020declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1021 | '(' declarator ')'
1022 ;
1023@end example
1024
1025@noindent
1026This models a problematic part of the C++ grammar---the ambiguity between
1027certain declarations and statements. For example,
1028
1029@example
1030T (x) = y+z;
1031@end example
1032
1033@noindent
1034parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1035(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1036@samp{x} as an @code{ID}).
676385e2 1037Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1038@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1039time it encounters @code{x} in the example above. Since this is a
8a4281b9 1040GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1041each choice of resolving the reduce/reduce conflict.
1042Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1043however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1044ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1045the other reduces @code{stmt : decl}, after which both parsers are in an
1046identical state: they've seen @samp{prog stmt} and have the same unprocessed
1047input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1048
8a4281b9 1049At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1050grammar of how to choose between the competing parses.
1051In the example above, the two @code{%dprec}
e757bb10 1052declarations specify that Bison is to give precedence
fa7e68c3 1053to the parse that interprets the example as a
676385e2
PH
1054@code{decl}, which implies that @code{x} is a declarator.
1055The parser therefore prints
1056
1057@example
fae437e8 1058"x" y z + T <init-declare>
676385e2
PH
1059@end example
1060
fa7e68c3
PE
1061The @code{%dprec} declarations only come into play when more than one
1062parse survives. Consider a different input string for this parser:
676385e2
PH
1063
1064@example
1065T (x) + y;
1066@end example
1067
1068@noindent
8a4281b9 1069This is another example of using GLR to parse an unambiguous
fa7e68c3 1070construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1071Here, there is no ambiguity (this cannot be parsed as a declaration).
1072However, at the time the Bison parser encounters @code{x}, it does not
1073have enough information to resolve the reduce/reduce conflict (again,
1074between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1075case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1076into two, one assuming that @code{x} is an @code{expr}, and the other
1077assuming @code{x} is a @code{declarator}. The second of these parsers
1078then vanishes when it sees @code{+}, and the parser prints
1079
1080@example
fae437e8 1081x T <cast> y +
676385e2
PH
1082@end example
1083
1084Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1085the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1086actions of the two possible parsers, rather than choosing one over the
1087other. To do so, you could change the declaration of @code{stmt} as
1088follows:
1089
1090@example
1091stmt : expr ';' %merge <stmtMerge>
1092 | decl %merge <stmtMerge>
1093 ;
1094@end example
1095
1096@noindent
676385e2
PH
1097and define the @code{stmtMerge} function as:
1098
1099@example
38a92d50
PE
1100static YYSTYPE
1101stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1102@{
1103 printf ("<OR> ");
1104 return "";
1105@}
1106@end example
1107
1108@noindent
1109with an accompanying forward declaration
1110in the C declarations at the beginning of the file:
1111
1112@example
1113%@{
38a92d50 1114 #define YYSTYPE char const *
676385e2
PH
1115 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1116%@}
1117@end example
1118
1119@noindent
fa7e68c3
PE
1120With these declarations, the resulting parser parses the first example
1121as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1122
1123@example
fae437e8 1124"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1125@end example
1126
fa7e68c3 1127Bison requires that all of the
e757bb10 1128productions that participate in any particular merge have identical
fa7e68c3
PE
1129@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1130and the parser will report an error during any parse that results in
1131the offending merge.
9501dc6e 1132
32c29292
JD
1133@node GLR Semantic Actions
1134@subsection GLR Semantic Actions
1135
8a4281b9 1136The nature of GLR parsing and the structure of the generated
20be2f92
PH
1137parsers give rise to certain restrictions on semantic values and actions.
1138
1139@subsubsection Deferred semantic actions
32c29292
JD
1140@cindex deferred semantic actions
1141By definition, a deferred semantic action is not performed at the same time as
1142the associated reduction.
1143This raises caveats for several Bison features you might use in a semantic
8a4281b9 1144action in a GLR parser.
32c29292
JD
1145
1146@vindex yychar
8a4281b9 1147@cindex GLR parsers and @code{yychar}
32c29292 1148@vindex yylval
8a4281b9 1149@cindex GLR parsers and @code{yylval}
32c29292 1150@vindex yylloc
8a4281b9 1151@cindex GLR parsers and @code{yylloc}
32c29292 1152In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1153the lookahead token present at the time of the associated reduction.
32c29292
JD
1154After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1155you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1156lookahead token's semantic value and location, if any.
32c29292
JD
1157In a nondeferred semantic action, you can also modify any of these variables to
1158influence syntax analysis.
742e4900 1159@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1160
1161@findex yyclearin
8a4281b9 1162@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1163In a deferred semantic action, it's too late to influence syntax analysis.
1164In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1165shallow copies of the values they had at the time of the associated reduction.
1166For this reason alone, modifying them is dangerous.
1167Moreover, the result of modifying them is undefined and subject to change with
1168future versions of Bison.
1169For example, if a semantic action might be deferred, you should never write it
1170to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1171memory referenced by @code{yylval}.
1172
20be2f92 1173@subsubsection YYERROR
32c29292 1174@findex YYERROR
8a4281b9 1175@cindex GLR parsers and @code{YYERROR}
32c29292 1176Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1177(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1178initiate error recovery.
8a4281b9 1179During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1180the same as its effect in a deterministic parser.
20be2f92
PH
1181The effect in a deferred action is similar, but the precise point of the
1182error is undefined; instead, the parser reverts to deterministic operation,
1183selecting an unspecified stack on which to continue with a syntax error.
1184In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1185parsing, @code{YYERROR} silently prunes
1186the parse that invoked the test.
1187
1188@subsubsection Restrictions on semantic values and locations
8a4281b9 1189GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1190semantic values and location types when using the generated parsers as
1191C++ code.
8710fc41 1192
ca2a6d15
PH
1193@node Semantic Predicates
1194@subsection Controlling a Parse with Arbitrary Predicates
1195@findex %?
8a4281b9 1196@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1197
1198In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1199GLR parsers
ca2a6d15
PH
1200allow you to reject parses on the basis of arbitrary computations executed
1201in user code, without having Bison treat this rejection as an error
1202if there are alternative parses. (This feature is experimental and may
1203evolve. We welcome user feedback.) For example,
1204
1205@smallexample
1206widget :
1207 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1208 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1209 ;
1210@end smallexample
1211
1212@noindent
1213is one way to allow the same parser to handle two different syntaxes for
1214widgets. The clause preceded by @code{%?} is treated like an ordinary
1215action, except that its text is treated as an expression and is always
1216evaluated immediately (even when in nondeterministic mode). If the
1217expression yields 0 (false), the clause is treated as a syntax error,
1218which, in a nondeterministic parser, causes the stack in which it is reduced
1219to die. In a deterministic parser, it acts like YYERROR.
1220
1221As the example shows, predicates otherwise look like semantic actions, and
1222therefore you must be take them into account when determining the numbers
1223to use for denoting the semantic values of right-hand side symbols.
1224Predicate actions, however, have no defined value, and may not be given
1225labels.
1226
1227There is a subtle difference between semantic predicates and ordinary
1228actions in nondeterministic mode, since the latter are deferred.
1229For example, we could try to rewrite the previous example as
1230
1231@smallexample
1232widget :
1233 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1234 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1235 ;
1236@end smallexample
1237
1238@noindent
1239(reversing the sense of the predicate tests to cause an error when they are
1240false). However, this
1241does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1242have overlapping syntax.
1243Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1244a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1245for cases where @code{new_args} and @code{old_args} recognize the same string
1246@emph{before} performing the tests of @code{new_syntax}. It therefore
1247reports an error.
1248
1249Finally, be careful in writing predicates: deferred actions have not been
1250evaluated, so that using them in a predicate will have undefined effects.
1251
fa7e68c3 1252@node Compiler Requirements
8a4281b9 1253@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1254@cindex @code{inline}
8a4281b9 1255@cindex GLR parsers and @code{inline}
fa7e68c3 1256
8a4281b9 1257The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1258later. In addition, they use the @code{inline} keyword, which is not
1259C89, but is C99 and is a common extension in pre-C99 compilers. It is
1260up to the user of these parsers to handle
9501dc6e
AD
1261portability issues. For instance, if using Autoconf and the Autoconf
1262macro @code{AC_C_INLINE}, a mere
1263
1264@example
1265%@{
38a92d50 1266 #include <config.h>
9501dc6e
AD
1267%@}
1268@end example
1269
1270@noindent
1271will suffice. Otherwise, we suggest
1272
1273@example
1274%@{
38a92d50
PE
1275 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1276 #define inline
1277 #endif
9501dc6e
AD
1278%@}
1279@end example
676385e2 1280
342b8b6e 1281@node Locations Overview
847bf1f5
AD
1282@section Locations
1283@cindex location
95923bd6
AD
1284@cindex textual location
1285@cindex location, textual
847bf1f5
AD
1286
1287Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1288and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1289the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1290Bison provides a mechanism for handling these locations.
1291
72d2299c 1292Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1293associated location, but the type of locations is the same for all tokens and
72d2299c 1294groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1295structure for storing locations (@pxref{Locations}, for more details).
1296
1297Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1298set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1299is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1300@code{@@3}.
1301
1302When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1303of its left hand side (@pxref{Actions}). In the same way, another default
1304action is used for locations. However, the action for locations is general
847bf1f5 1305enough for most cases, meaning there is usually no need to describe for each
72d2299c 1306rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1307grouping, the default behavior of the output parser is to take the beginning
1308of the first symbol, and the end of the last symbol.
1309
342b8b6e 1310@node Bison Parser
ff7571c0 1311@section Bison Output: the Parser Implementation File
bfa74976
RS
1312@cindex Bison parser
1313@cindex Bison utility
1314@cindex lexical analyzer, purpose
1315@cindex parser
1316
ff7571c0
JD
1317When you run Bison, you give it a Bison grammar file as input. The
1318most important output is a C source file that implements a parser for
1319the language described by the grammar. This parser is called a
1320@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1321implementation file}. Keep in mind that the Bison utility and the
1322Bison parser are two distinct programs: the Bison utility is a program
1323whose output is the Bison parser implementation file that becomes part
1324of your program.
bfa74976
RS
1325
1326The job of the Bison parser is to group tokens into groupings according to
1327the grammar rules---for example, to build identifiers and operators into
1328expressions. As it does this, it runs the actions for the grammar rules it
1329uses.
1330
704a47c4
AD
1331The tokens come from a function called the @dfn{lexical analyzer} that
1332you must supply in some fashion (such as by writing it in C). The Bison
1333parser calls the lexical analyzer each time it wants a new token. It
1334doesn't know what is ``inside'' the tokens (though their semantic values
1335may reflect this). Typically the lexical analyzer makes the tokens by
1336parsing characters of text, but Bison does not depend on this.
1337@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1338
ff7571c0
JD
1339The Bison parser implementation file is C code which defines a
1340function named @code{yyparse} which implements that grammar. This
1341function does not make a complete C program: you must supply some
1342additional functions. One is the lexical analyzer. Another is an
1343error-reporting function which the parser calls to report an error.
1344In addition, a complete C program must start with a function called
1345@code{main}; you have to provide this, and arrange for it to call
1346@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1347C-Language Interface}.
bfa74976 1348
f7ab6a50 1349Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1350write, all symbols defined in the Bison parser implementation file
1351itself begin with @samp{yy} or @samp{YY}. This includes interface
1352functions such as the lexical analyzer function @code{yylex}, the
1353error reporting function @code{yyerror} and the parser function
1354@code{yyparse} itself. This also includes numerous identifiers used
1355for internal purposes. Therefore, you should avoid using C
1356identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1357file except for the ones defined in this manual. Also, you should
1358avoid using the C identifiers @samp{malloc} and @samp{free} for
1359anything other than their usual meanings.
1360
1361In some cases the Bison parser implementation file includes system
1362headers, and in those cases your code should respect the identifiers
1363reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1364@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1365included as needed to declare memory allocators and related types.
1366@code{<libintl.h>} is included if message translation is in use
1367(@pxref{Internationalization}). Other system headers may be included
1368if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1369,Tracing Your Parser}).
7093d0f5 1370
342b8b6e 1371@node Stages
bfa74976
RS
1372@section Stages in Using Bison
1373@cindex stages in using Bison
1374@cindex using Bison
1375
1376The actual language-design process using Bison, from grammar specification
1377to a working compiler or interpreter, has these parts:
1378
1379@enumerate
1380@item
1381Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1382(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1383in the language, describe the action that is to be taken when an
1384instance of that rule is recognized. The action is described by a
1385sequence of C statements.
bfa74976
RS
1386
1387@item
704a47c4
AD
1388Write a lexical analyzer to process input and pass tokens to the parser.
1389The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1390Lexical Analyzer Function @code{yylex}}). It could also be produced
1391using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1392
1393@item
1394Write a controlling function that calls the Bison-produced parser.
1395
1396@item
1397Write error-reporting routines.
1398@end enumerate
1399
1400To turn this source code as written into a runnable program, you
1401must follow these steps:
1402
1403@enumerate
1404@item
1405Run Bison on the grammar to produce the parser.
1406
1407@item
1408Compile the code output by Bison, as well as any other source files.
1409
1410@item
1411Link the object files to produce the finished product.
1412@end enumerate
1413
342b8b6e 1414@node Grammar Layout
bfa74976
RS
1415@section The Overall Layout of a Bison Grammar
1416@cindex grammar file
1417@cindex file format
1418@cindex format of grammar file
1419@cindex layout of Bison grammar
1420
1421The input file for the Bison utility is a @dfn{Bison grammar file}. The
1422general form of a Bison grammar file is as follows:
1423
1424@example
1425%@{
08e49d20 1426@var{Prologue}
bfa74976
RS
1427%@}
1428
1429@var{Bison declarations}
1430
1431%%
1432@var{Grammar rules}
1433%%
08e49d20 1434@var{Epilogue}
bfa74976
RS
1435@end example
1436
1437@noindent
1438The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1439in every Bison grammar file to separate the sections.
1440
72d2299c 1441The prologue may define types and variables used in the actions. You can
342b8b6e 1442also use preprocessor commands to define macros used there, and use
bfa74976 1443@code{#include} to include header files that do any of these things.
38a92d50
PE
1444You need to declare the lexical analyzer @code{yylex} and the error
1445printer @code{yyerror} here, along with any other global identifiers
1446used by the actions in the grammar rules.
bfa74976
RS
1447
1448The Bison declarations declare the names of the terminal and nonterminal
1449symbols, and may also describe operator precedence and the data types of
1450semantic values of various symbols.
1451
1452The grammar rules define how to construct each nonterminal symbol from its
1453parts.
1454
38a92d50
PE
1455The epilogue can contain any code you want to use. Often the
1456definitions of functions declared in the prologue go here. In a
1457simple program, all the rest of the program can go here.
bfa74976 1458
342b8b6e 1459@node Examples
bfa74976
RS
1460@chapter Examples
1461@cindex simple examples
1462@cindex examples, simple
1463
1464Now we show and explain three sample programs written using Bison: a
1465reverse polish notation calculator, an algebraic (infix) notation
1466calculator, and a multi-function calculator. All three have been tested
1467under BSD Unix 4.3; each produces a usable, though limited, interactive
1468desk-top calculator.
1469
1470These examples are simple, but Bison grammars for real programming
aa08666d
AD
1471languages are written the same way. You can copy these examples into a
1472source file to try them.
bfa74976
RS
1473
1474@menu
f5f419de
DJ
1475* RPN Calc:: Reverse polish notation calculator;
1476 a first example with no operator precedence.
1477* Infix Calc:: Infix (algebraic) notation calculator.
1478 Operator precedence is introduced.
bfa74976 1479* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1480* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1481* Multi-function Calc:: Calculator with memory and trig functions.
1482 It uses multiple data-types for semantic values.
1483* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1484@end menu
1485
342b8b6e 1486@node RPN Calc
bfa74976
RS
1487@section Reverse Polish Notation Calculator
1488@cindex reverse polish notation
1489@cindex polish notation calculator
1490@cindex @code{rpcalc}
1491@cindex calculator, simple
1492
1493The first example is that of a simple double-precision @dfn{reverse polish
1494notation} calculator (a calculator using postfix operators). This example
1495provides a good starting point, since operator precedence is not an issue.
1496The second example will illustrate how operator precedence is handled.
1497
1498The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1499@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1500
1501@menu
f5f419de
DJ
1502* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1503* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1504* Rpcalc Lexer:: The lexical analyzer.
1505* Rpcalc Main:: The controlling function.
1506* Rpcalc Error:: The error reporting function.
1507* Rpcalc Generate:: Running Bison on the grammar file.
1508* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1509@end menu
1510
f5f419de 1511@node Rpcalc Declarations
bfa74976
RS
1512@subsection Declarations for @code{rpcalc}
1513
1514Here are the C and Bison declarations for the reverse polish notation
1515calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1516
1517@example
72d2299c 1518/* Reverse polish notation calculator. */
bfa74976
RS
1519
1520%@{
38a92d50
PE
1521 #define YYSTYPE double
1522 #include <math.h>
1523 int yylex (void);
1524 void yyerror (char const *);
bfa74976
RS
1525%@}
1526
1527%token NUM
1528
72d2299c 1529%% /* Grammar rules and actions follow. */
bfa74976
RS
1530@end example
1531
75f5aaea 1532The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1533preprocessor directives and two forward declarations.
bfa74976
RS
1534
1535The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1536specifying the C data type for semantic values of both tokens and
1537groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1538Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1539don't define it, @code{int} is the default. Because we specify
1540@code{double}, each token and each expression has an associated value,
1541which is a floating point number.
bfa74976
RS
1542
1543The @code{#include} directive is used to declare the exponentiation
1544function @code{pow}.
1545
38a92d50
PE
1546The forward declarations for @code{yylex} and @code{yyerror} are
1547needed because the C language requires that functions be declared
1548before they are used. These functions will be defined in the
1549epilogue, but the parser calls them so they must be declared in the
1550prologue.
1551
704a47c4
AD
1552The second section, Bison declarations, provides information to Bison
1553about the token types (@pxref{Bison Declarations, ,The Bison
1554Declarations Section}). Each terminal symbol that is not a
1555single-character literal must be declared here. (Single-character
bfa74976
RS
1556literals normally don't need to be declared.) In this example, all the
1557arithmetic operators are designated by single-character literals, so the
1558only terminal symbol that needs to be declared is @code{NUM}, the token
1559type for numeric constants.
1560
342b8b6e 1561@node Rpcalc Rules
bfa74976
RS
1562@subsection Grammar Rules for @code{rpcalc}
1563
1564Here are the grammar rules for the reverse polish notation calculator.
1565
1566@example
1567input: /* empty */
1568 | input line
1569;
1570
1571line: '\n'
18b519c0 1572 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1573;
1574
18b519c0
AD
1575exp: NUM @{ $$ = $1; @}
1576 | exp exp '+' @{ $$ = $1 + $2; @}
1577 | exp exp '-' @{ $$ = $1 - $2; @}
1578 | exp exp '*' @{ $$ = $1 * $2; @}
1579 | exp exp '/' @{ $$ = $1 / $2; @}
1580 /* Exponentiation */
1581 | exp exp '^' @{ $$ = pow ($1, $2); @}
1582 /* Unary minus */
1583 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1584;
1585%%
1586@end example
1587
1588The groupings of the rpcalc ``language'' defined here are the expression
1589(given the name @code{exp}), the line of input (@code{line}), and the
1590complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1591symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1592which is read as ``or''. The following sections explain what these rules
1593mean.
1594
1595The semantics of the language is determined by the actions taken when a
1596grouping is recognized. The actions are the C code that appears inside
1597braces. @xref{Actions}.
1598
1599You must specify these actions in C, but Bison provides the means for
1600passing semantic values between the rules. In each action, the
1601pseudo-variable @code{$$} stands for the semantic value for the grouping
1602that the rule is going to construct. Assigning a value to @code{$$} is the
1603main job of most actions. The semantic values of the components of the
1604rule are referred to as @code{$1}, @code{$2}, and so on.
1605
1606@menu
13863333
AD
1607* Rpcalc Input::
1608* Rpcalc Line::
1609* Rpcalc Expr::
bfa74976
RS
1610@end menu
1611
342b8b6e 1612@node Rpcalc Input
bfa74976
RS
1613@subsubsection Explanation of @code{input}
1614
1615Consider the definition of @code{input}:
1616
1617@example
1618input: /* empty */
1619 | input line
1620;
1621@end example
1622
1623This definition reads as follows: ``A complete input is either an empty
1624string, or a complete input followed by an input line''. Notice that
1625``complete input'' is defined in terms of itself. This definition is said
1626to be @dfn{left recursive} since @code{input} appears always as the
1627leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1628
1629The first alternative is empty because there are no symbols between the
1630colon and the first @samp{|}; this means that @code{input} can match an
1631empty string of input (no tokens). We write the rules this way because it
1632is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1633It's conventional to put an empty alternative first and write the comment
1634@samp{/* empty */} in it.
1635
1636The second alternate rule (@code{input line}) handles all nontrivial input.
1637It means, ``After reading any number of lines, read one more line if
1638possible.'' The left recursion makes this rule into a loop. Since the
1639first alternative matches empty input, the loop can be executed zero or
1640more times.
1641
1642The parser function @code{yyparse} continues to process input until a
1643grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1644input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1645
342b8b6e 1646@node Rpcalc Line
bfa74976
RS
1647@subsubsection Explanation of @code{line}
1648
1649Now consider the definition of @code{line}:
1650
1651@example
1652line: '\n'
1653 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1654;
1655@end example
1656
1657The first alternative is a token which is a newline character; this means
1658that rpcalc accepts a blank line (and ignores it, since there is no
1659action). The second alternative is an expression followed by a newline.
1660This is the alternative that makes rpcalc useful. The semantic value of
1661the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1662question is the first symbol in the alternative. The action prints this
1663value, which is the result of the computation the user asked for.
1664
1665This action is unusual because it does not assign a value to @code{$$}. As
1666a consequence, the semantic value associated with the @code{line} is
1667uninitialized (its value will be unpredictable). This would be a bug if
1668that value were ever used, but we don't use it: once rpcalc has printed the
1669value of the user's input line, that value is no longer needed.
1670
342b8b6e 1671@node Rpcalc Expr
bfa74976
RS
1672@subsubsection Explanation of @code{expr}
1673
1674The @code{exp} grouping has several rules, one for each kind of expression.
1675The first rule handles the simplest expressions: those that are just numbers.
1676The second handles an addition-expression, which looks like two expressions
1677followed by a plus-sign. The third handles subtraction, and so on.
1678
1679@example
1680exp: NUM
1681 | exp exp '+' @{ $$ = $1 + $2; @}
1682 | exp exp '-' @{ $$ = $1 - $2; @}
1683 @dots{}
1684 ;
1685@end example
1686
1687We have used @samp{|} to join all the rules for @code{exp}, but we could
1688equally well have written them separately:
1689
1690@example
1691exp: NUM ;
1692exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1693exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1694 @dots{}
1695@end example
1696
1697Most of the rules have actions that compute the value of the expression in
1698terms of the value of its parts. For example, in the rule for addition,
1699@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1700the second one. The third component, @code{'+'}, has no meaningful
1701associated semantic value, but if it had one you could refer to it as
1702@code{$3}. When @code{yyparse} recognizes a sum expression using this
1703rule, the sum of the two subexpressions' values is produced as the value of
1704the entire expression. @xref{Actions}.
1705
1706You don't have to give an action for every rule. When a rule has no
1707action, Bison by default copies the value of @code{$1} into @code{$$}.
1708This is what happens in the first rule (the one that uses @code{NUM}).
1709
1710The formatting shown here is the recommended convention, but Bison does
72d2299c 1711not require it. You can add or change white space as much as you wish.
bfa74976
RS
1712For example, this:
1713
1714@example
99a9344e 1715exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1716@end example
1717
1718@noindent
1719means the same thing as this:
1720
1721@example
1722exp: NUM
1723 | exp exp '+' @{ $$ = $1 + $2; @}
1724 | @dots{}
99a9344e 1725;
bfa74976
RS
1726@end example
1727
1728@noindent
1729The latter, however, is much more readable.
1730
342b8b6e 1731@node Rpcalc Lexer
bfa74976
RS
1732@subsection The @code{rpcalc} Lexical Analyzer
1733@cindex writing a lexical analyzer
1734@cindex lexical analyzer, writing
1735
704a47c4
AD
1736The lexical analyzer's job is low-level parsing: converting characters
1737or sequences of characters into tokens. The Bison parser gets its
1738tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1739Analyzer Function @code{yylex}}.
bfa74976 1740
8a4281b9 1741Only a simple lexical analyzer is needed for the RPN
c827f760 1742calculator. This
bfa74976
RS
1743lexical analyzer skips blanks and tabs, then reads in numbers as
1744@code{double} and returns them as @code{NUM} tokens. Any other character
1745that isn't part of a number is a separate token. Note that the token-code
1746for such a single-character token is the character itself.
1747
1748The return value of the lexical analyzer function is a numeric code which
1749represents a token type. The same text used in Bison rules to stand for
1750this token type is also a C expression for the numeric code for the type.
1751This works in two ways. If the token type is a character literal, then its
e966383b 1752numeric code is that of the character; you can use the same
bfa74976
RS
1753character literal in the lexical analyzer to express the number. If the
1754token type is an identifier, that identifier is defined by Bison as a C
1755macro whose definition is the appropriate number. In this example,
1756therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1757
1964ad8c
AD
1758The semantic value of the token (if it has one) is stored into the
1759global variable @code{yylval}, which is where the Bison parser will look
1760for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1761defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1762,Declarations for @code{rpcalc}}.)
bfa74976 1763
72d2299c
PE
1764A token type code of zero is returned if the end-of-input is encountered.
1765(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1766
1767Here is the code for the lexical analyzer:
1768
1769@example
1770@group
72d2299c 1771/* The lexical analyzer returns a double floating point
e966383b 1772 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1773 of the character read if not a number. It skips all blanks
1774 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1775
1776#include <ctype.h>
1777@end group
1778
1779@group
13863333
AD
1780int
1781yylex (void)
bfa74976
RS
1782@{
1783 int c;
1784
72d2299c 1785 /* Skip white space. */
13863333 1786 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1787 ;
1788@end group
1789@group
72d2299c 1790 /* Process numbers. */
13863333 1791 if (c == '.' || isdigit (c))
bfa74976
RS
1792 @{
1793 ungetc (c, stdin);
1794 scanf ("%lf", &yylval);
1795 return NUM;
1796 @}
1797@end group
1798@group
72d2299c 1799 /* Return end-of-input. */
13863333 1800 if (c == EOF)
bfa74976 1801 return 0;
72d2299c 1802 /* Return a single char. */
13863333 1803 return c;
bfa74976
RS
1804@}
1805@end group
1806@end example
1807
342b8b6e 1808@node Rpcalc Main
bfa74976
RS
1809@subsection The Controlling Function
1810@cindex controlling function
1811@cindex main function in simple example
1812
1813In keeping with the spirit of this example, the controlling function is
1814kept to the bare minimum. The only requirement is that it call
1815@code{yyparse} to start the process of parsing.
1816
1817@example
1818@group
13863333
AD
1819int
1820main (void)
bfa74976 1821@{
13863333 1822 return yyparse ();
bfa74976
RS
1823@}
1824@end group
1825@end example
1826
342b8b6e 1827@node Rpcalc Error
bfa74976
RS
1828@subsection The Error Reporting Routine
1829@cindex error reporting routine
1830
1831When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1832function @code{yyerror} to print an error message (usually but not
6e649e65 1833always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1834@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1835here is the definition we will use:
bfa74976
RS
1836
1837@example
1838@group
1839#include <stdio.h>
1840
38a92d50 1841/* Called by yyparse on error. */
13863333 1842void
38a92d50 1843yyerror (char const *s)
bfa74976 1844@{
4e03e201 1845 fprintf (stderr, "%s\n", s);
bfa74976
RS
1846@}
1847@end group
1848@end example
1849
1850After @code{yyerror} returns, the Bison parser may recover from the error
1851and continue parsing if the grammar contains a suitable error rule
1852(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1853have not written any error rules in this example, so any invalid input will
1854cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1855real calculator, but it is adequate for the first example.
bfa74976 1856
f5f419de 1857@node Rpcalc Generate
bfa74976
RS
1858@subsection Running Bison to Make the Parser
1859@cindex running Bison (introduction)
1860
ceed8467
AD
1861Before running Bison to produce a parser, we need to decide how to
1862arrange all the source code in one or more source files. For such a
ff7571c0
JD
1863simple example, the easiest thing is to put everything in one file,
1864the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1865@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1866(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1867
1868For a large project, you would probably have several source files, and use
1869@code{make} to arrange to recompile them.
1870
ff7571c0
JD
1871With all the source in the grammar file, you use the following command
1872to convert it into a parser implementation file:
bfa74976
RS
1873
1874@example
fa4d969f 1875bison @var{file}.y
bfa74976
RS
1876@end example
1877
1878@noindent
ff7571c0
JD
1879In this example, the grammar file is called @file{rpcalc.y} (for
1880``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1881implementation file named @file{@var{file}.tab.c}, removing the
1882@samp{.y} from the grammar file name. The parser implementation file
1883contains the source code for @code{yyparse}. The additional functions
1884in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1885copied verbatim to the parser implementation file.
bfa74976 1886
342b8b6e 1887@node Rpcalc Compile
ff7571c0 1888@subsection Compiling the Parser Implementation File
bfa74976
RS
1889@cindex compiling the parser
1890
ff7571c0 1891Here is how to compile and run the parser implementation file:
bfa74976
RS
1892
1893@example
1894@group
1895# @r{List files in current directory.}
9edcd895 1896$ @kbd{ls}
bfa74976
RS
1897rpcalc.tab.c rpcalc.y
1898@end group
1899
1900@group
1901# @r{Compile the Bison parser.}
1902# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1903$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1904@end group
1905
1906@group
1907# @r{List files again.}
9edcd895 1908$ @kbd{ls}
bfa74976
RS
1909rpcalc rpcalc.tab.c rpcalc.y
1910@end group
1911@end example
1912
1913The file @file{rpcalc} now contains the executable code. Here is an
1914example session using @code{rpcalc}.
1915
1916@example
9edcd895
AD
1917$ @kbd{rpcalc}
1918@kbd{4 9 +}
bfa74976 191913
9edcd895 1920@kbd{3 7 + 3 4 5 *+-}
bfa74976 1921-13
9edcd895 1922@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 192313
9edcd895 1924@kbd{5 6 / 4 n +}
bfa74976 1925-3.166666667
9edcd895 1926@kbd{3 4 ^} @r{Exponentiation}
bfa74976 192781
9edcd895
AD
1928@kbd{^D} @r{End-of-file indicator}
1929$
bfa74976
RS
1930@end example
1931
342b8b6e 1932@node Infix Calc
bfa74976
RS
1933@section Infix Notation Calculator: @code{calc}
1934@cindex infix notation calculator
1935@cindex @code{calc}
1936@cindex calculator, infix notation
1937
1938We now modify rpcalc to handle infix operators instead of postfix. Infix
1939notation involves the concept of operator precedence and the need for
1940parentheses nested to arbitrary depth. Here is the Bison code for
1941@file{calc.y}, an infix desk-top calculator.
1942
1943@example
38a92d50 1944/* Infix notation calculator. */
bfa74976
RS
1945
1946%@{
38a92d50
PE
1947 #define YYSTYPE double
1948 #include <math.h>
1949 #include <stdio.h>
1950 int yylex (void);
1951 void yyerror (char const *);
bfa74976
RS
1952%@}
1953
38a92d50 1954/* Bison declarations. */
bfa74976
RS
1955%token NUM
1956%left '-' '+'
1957%left '*' '/'
d78f0ac9
AD
1958%precedence NEG /* negation--unary minus */
1959%right '^' /* exponentiation */
bfa74976 1960
38a92d50
PE
1961%% /* The grammar follows. */
1962input: /* empty */
bfa74976
RS
1963 | input line
1964;
1965
1966line: '\n'
1967 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1968;
1969
1970exp: NUM @{ $$ = $1; @}
1971 | exp '+' exp @{ $$ = $1 + $3; @}
1972 | exp '-' exp @{ $$ = $1 - $3; @}
1973 | exp '*' exp @{ $$ = $1 * $3; @}
1974 | exp '/' exp @{ $$ = $1 / $3; @}
1975 | '-' exp %prec NEG @{ $$ = -$2; @}
1976 | exp '^' exp @{ $$ = pow ($1, $3); @}
1977 | '(' exp ')' @{ $$ = $2; @}
1978;
1979%%
1980@end example
1981
1982@noindent
ceed8467
AD
1983The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1984same as before.
bfa74976
RS
1985
1986There are two important new features shown in this code.
1987
1988In the second section (Bison declarations), @code{%left} declares token
1989types and says they are left-associative operators. The declarations
1990@code{%left} and @code{%right} (right associativity) take the place of
1991@code{%token} which is used to declare a token type name without
d78f0ac9 1992associativity/precedence. (These tokens are single-character literals, which
bfa74976 1993ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1994the associativity/precedence.)
bfa74976
RS
1995
1996Operator precedence is determined by the line ordering of the
1997declarations; the higher the line number of the declaration (lower on
1998the page or screen), the higher the precedence. Hence, exponentiation
1999has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2000by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2001only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2002Precedence}.
bfa74976 2003
704a47c4
AD
2004The other important new feature is the @code{%prec} in the grammar
2005section for the unary minus operator. The @code{%prec} simply instructs
2006Bison that the rule @samp{| '-' exp} has the same precedence as
2007@code{NEG}---in this case the next-to-highest. @xref{Contextual
2008Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2009
2010Here is a sample run of @file{calc.y}:
2011
2012@need 500
2013@example
9edcd895
AD
2014$ @kbd{calc}
2015@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20166.880952381
9edcd895 2017@kbd{-56 + 2}
bfa74976 2018-54
9edcd895 2019@kbd{3 ^ 2}
bfa74976
RS
20209
2021@end example
2022
342b8b6e 2023@node Simple Error Recovery
bfa74976
RS
2024@section Simple Error Recovery
2025@cindex error recovery, simple
2026
2027Up to this point, this manual has not addressed the issue of @dfn{error
2028recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2029error. All we have handled is error reporting with @code{yyerror}.
2030Recall that by default @code{yyparse} returns after calling
2031@code{yyerror}. This means that an erroneous input line causes the
2032calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2033
2034The Bison language itself includes the reserved word @code{error}, which
2035may be included in the grammar rules. In the example below it has
2036been added to one of the alternatives for @code{line}:
2037
2038@example
2039@group
2040line: '\n'
2041 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2042 | error '\n' @{ yyerrok; @}
2043;
2044@end group
2045@end example
2046
ceed8467 2047This addition to the grammar allows for simple error recovery in the
6e649e65 2048event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2049read, the error will be recognized by the third rule for @code{line},
2050and parsing will continue. (The @code{yyerror} function is still called
2051upon to print its message as well.) The action executes the statement
2052@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2053that error recovery is complete (@pxref{Error Recovery}). Note the
2054difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2055misprint.
bfa74976
RS
2056
2057This form of error recovery deals with syntax errors. There are other
2058kinds of errors; for example, division by zero, which raises an exception
2059signal that is normally fatal. A real calculator program must handle this
2060signal and use @code{longjmp} to return to @code{main} and resume parsing
2061input lines; it would also have to discard the rest of the current line of
2062input. We won't discuss this issue further because it is not specific to
2063Bison programs.
2064
342b8b6e
AD
2065@node Location Tracking Calc
2066@section Location Tracking Calculator: @code{ltcalc}
2067@cindex location tracking calculator
2068@cindex @code{ltcalc}
2069@cindex calculator, location tracking
2070
9edcd895
AD
2071This example extends the infix notation calculator with location
2072tracking. This feature will be used to improve the error messages. For
2073the sake of clarity, this example is a simple integer calculator, since
2074most of the work needed to use locations will be done in the lexical
72d2299c 2075analyzer.
342b8b6e
AD
2076
2077@menu
f5f419de
DJ
2078* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2079* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2080* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2081@end menu
2082
f5f419de 2083@node Ltcalc Declarations
342b8b6e
AD
2084@subsection Declarations for @code{ltcalc}
2085
9edcd895
AD
2086The C and Bison declarations for the location tracking calculator are
2087the same as the declarations for the infix notation calculator.
342b8b6e
AD
2088
2089@example
2090/* Location tracking calculator. */
2091
2092%@{
38a92d50
PE
2093 #define YYSTYPE int
2094 #include <math.h>
2095 int yylex (void);
2096 void yyerror (char const *);
342b8b6e
AD
2097%@}
2098
2099/* Bison declarations. */
2100%token NUM
2101
2102%left '-' '+'
2103%left '*' '/'
d78f0ac9 2104%precedence NEG
342b8b6e
AD
2105%right '^'
2106
38a92d50 2107%% /* The grammar follows. */
342b8b6e
AD
2108@end example
2109
9edcd895
AD
2110@noindent
2111Note there are no declarations specific to locations. Defining a data
2112type for storing locations is not needed: we will use the type provided
2113by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2114four member structure with the following integer fields:
2115@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2116@code{last_column}. By conventions, and in accordance with the GNU
2117Coding Standards and common practice, the line and column count both
2118start at 1.
342b8b6e
AD
2119
2120@node Ltcalc Rules
2121@subsection Grammar Rules for @code{ltcalc}
2122
9edcd895
AD
2123Whether handling locations or not has no effect on the syntax of your
2124language. Therefore, grammar rules for this example will be very close
2125to those of the previous example: we will only modify them to benefit
2126from the new information.
342b8b6e 2127
9edcd895
AD
2128Here, we will use locations to report divisions by zero, and locate the
2129wrong expressions or subexpressions.
342b8b6e
AD
2130
2131@example
2132@group
2133input : /* empty */
2134 | input line
2135;
2136@end group
2137
2138@group
2139line : '\n'
2140 | exp '\n' @{ printf ("%d\n", $1); @}
2141;
2142@end group
2143
2144@group
2145exp : NUM @{ $$ = $1; @}
2146 | exp '+' exp @{ $$ = $1 + $3; @}
2147 | exp '-' exp @{ $$ = $1 - $3; @}
2148 | exp '*' exp @{ $$ = $1 * $3; @}
2149@end group
342b8b6e 2150@group
9edcd895 2151 | exp '/' exp
342b8b6e
AD
2152 @{
2153 if ($3)
2154 $$ = $1 / $3;
2155 else
2156 @{
2157 $$ = 1;
9edcd895
AD
2158 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2159 @@3.first_line, @@3.first_column,
2160 @@3.last_line, @@3.last_column);
342b8b6e
AD
2161 @}
2162 @}
2163@end group
2164@group
178e123e 2165 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2166 | exp '^' exp @{ $$ = pow ($1, $3); @}
2167 | '(' exp ')' @{ $$ = $2; @}
2168@end group
2169@end example
2170
2171This code shows how to reach locations inside of semantic actions, by
2172using the pseudo-variables @code{@@@var{n}} for rule components, and the
2173pseudo-variable @code{@@$} for groupings.
2174
9edcd895
AD
2175We don't need to assign a value to @code{@@$}: the output parser does it
2176automatically. By default, before executing the C code of each action,
2177@code{@@$} is set to range from the beginning of @code{@@1} to the end
2178of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2179can be redefined (@pxref{Location Default Action, , Default Action for
2180Locations}), and for very specific rules, @code{@@$} can be computed by
2181hand.
342b8b6e
AD
2182
2183@node Ltcalc Lexer
2184@subsection The @code{ltcalc} Lexical Analyzer.
2185
9edcd895 2186Until now, we relied on Bison's defaults to enable location
72d2299c 2187tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2188able to feed the parser with the token locations, as it already does for
2189semantic values.
342b8b6e 2190
9edcd895
AD
2191To this end, we must take into account every single character of the
2192input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2193
2194@example
2195@group
2196int
2197yylex (void)
2198@{
2199 int c;
18b519c0 2200@end group
342b8b6e 2201
18b519c0 2202@group
72d2299c 2203 /* Skip white space. */
342b8b6e
AD
2204 while ((c = getchar ()) == ' ' || c == '\t')
2205 ++yylloc.last_column;
18b519c0 2206@end group
342b8b6e 2207
18b519c0 2208@group
72d2299c 2209 /* Step. */
342b8b6e
AD
2210 yylloc.first_line = yylloc.last_line;
2211 yylloc.first_column = yylloc.last_column;
2212@end group
2213
2214@group
72d2299c 2215 /* Process numbers. */
342b8b6e
AD
2216 if (isdigit (c))
2217 @{
2218 yylval = c - '0';
2219 ++yylloc.last_column;
2220 while (isdigit (c = getchar ()))
2221 @{
2222 ++yylloc.last_column;
2223 yylval = yylval * 10 + c - '0';
2224 @}
2225 ungetc (c, stdin);
2226 return NUM;
2227 @}
2228@end group
2229
72d2299c 2230 /* Return end-of-input. */
342b8b6e
AD
2231 if (c == EOF)
2232 return 0;
2233
72d2299c 2234 /* Return a single char, and update location. */
342b8b6e
AD
2235 if (c == '\n')
2236 @{
2237 ++yylloc.last_line;
2238 yylloc.last_column = 0;
2239 @}
2240 else
2241 ++yylloc.last_column;
2242 return c;
2243@}
2244@end example
2245
9edcd895
AD
2246Basically, the lexical analyzer performs the same processing as before:
2247it skips blanks and tabs, and reads numbers or single-character tokens.
2248In addition, it updates @code{yylloc}, the global variable (of type
2249@code{YYLTYPE}) containing the token's location.
342b8b6e 2250
9edcd895 2251Now, each time this function returns a token, the parser has its number
72d2299c 2252as well as its semantic value, and its location in the text. The last
9edcd895
AD
2253needed change is to initialize @code{yylloc}, for example in the
2254controlling function:
342b8b6e
AD
2255
2256@example
9edcd895 2257@group
342b8b6e
AD
2258int
2259main (void)
2260@{
2261 yylloc.first_line = yylloc.last_line = 1;
2262 yylloc.first_column = yylloc.last_column = 0;
2263 return yyparse ();
2264@}
9edcd895 2265@end group
342b8b6e
AD
2266@end example
2267
9edcd895
AD
2268Remember that computing locations is not a matter of syntax. Every
2269character must be associated to a location update, whether it is in
2270valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2271
2272@node Multi-function Calc
bfa74976
RS
2273@section Multi-Function Calculator: @code{mfcalc}
2274@cindex multi-function calculator
2275@cindex @code{mfcalc}
2276@cindex calculator, multi-function
2277
2278Now that the basics of Bison have been discussed, it is time to move on to
2279a more advanced problem. The above calculators provided only five
2280functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2281be nice to have a calculator that provides other mathematical functions such
2282as @code{sin}, @code{cos}, etc.
2283
2284It is easy to add new operators to the infix calculator as long as they are
2285only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2286back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2287adding a new operator. But we want something more flexible: built-in
2288functions whose syntax has this form:
2289
2290@example
2291@var{function_name} (@var{argument})
2292@end example
2293
2294@noindent
2295At the same time, we will add memory to the calculator, by allowing you
2296to create named variables, store values in them, and use them later.
2297Here is a sample session with the multi-function calculator:
2298
2299@example
9edcd895
AD
2300$ @kbd{mfcalc}
2301@kbd{pi = 3.141592653589}
bfa74976 23023.1415926536
9edcd895 2303@kbd{sin(pi)}
bfa74976 23040.0000000000
9edcd895 2305@kbd{alpha = beta1 = 2.3}
bfa74976 23062.3000000000
9edcd895 2307@kbd{alpha}
bfa74976 23082.3000000000
9edcd895 2309@kbd{ln(alpha)}
bfa74976 23100.8329091229
9edcd895 2311@kbd{exp(ln(beta1))}
bfa74976 23122.3000000000
9edcd895 2313$
bfa74976
RS
2314@end example
2315
2316Note that multiple assignment and nested function calls are permitted.
2317
2318@menu
f5f419de
DJ
2319* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2320* Mfcalc Rules:: Grammar rules for the calculator.
2321* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2322@end menu
2323
f5f419de 2324@node Mfcalc Declarations
bfa74976
RS
2325@subsection Declarations for @code{mfcalc}
2326
2327Here are the C and Bison declarations for the multi-function calculator.
2328
2329@smallexample
18b519c0 2330@group
bfa74976 2331%@{
38a92d50
PE
2332 #include <math.h> /* For math functions, cos(), sin(), etc. */
2333 #include "calc.h" /* Contains definition of `symrec'. */
2334 int yylex (void);
2335 void yyerror (char const *);
bfa74976 2336%@}
18b519c0
AD
2337@end group
2338@group
bfa74976 2339%union @{
38a92d50
PE
2340 double val; /* For returning numbers. */
2341 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2342@}
18b519c0 2343@end group
38a92d50
PE
2344%token <val> NUM /* Simple double precision number. */
2345%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2346%type <val> exp
2347
18b519c0 2348@group
bfa74976
RS
2349%right '='
2350%left '-' '+'
2351%left '*' '/'
d78f0ac9
AD
2352%precedence NEG /* negation--unary minus */
2353%right '^' /* exponentiation */
18b519c0 2354@end group
38a92d50 2355%% /* The grammar follows. */
bfa74976
RS
2356@end smallexample
2357
2358The above grammar introduces only two new features of the Bison language.
2359These features allow semantic values to have various data types
2360(@pxref{Multiple Types, ,More Than One Value Type}).
2361
2362The @code{%union} declaration specifies the entire list of possible types;
2363this is instead of defining @code{YYSTYPE}. The allowable types are now
2364double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2365the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2366
2367Since values can now have various types, it is necessary to associate a
2368type with each grammar symbol whose semantic value is used. These symbols
2369are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2370declarations are augmented with information about their data type (placed
2371between angle brackets).
2372
704a47c4
AD
2373The Bison construct @code{%type} is used for declaring nonterminal
2374symbols, just as @code{%token} is used for declaring token types. We
2375have not used @code{%type} before because nonterminal symbols are
2376normally declared implicitly by the rules that define them. But
2377@code{exp} must be declared explicitly so we can specify its value type.
2378@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2379
342b8b6e 2380@node Mfcalc Rules
bfa74976
RS
2381@subsection Grammar Rules for @code{mfcalc}
2382
2383Here are the grammar rules for the multi-function calculator.
2384Most of them are copied directly from @code{calc}; three rules,
2385those which mention @code{VAR} or @code{FNCT}, are new.
2386
2387@smallexample
18b519c0 2388@group
bfa74976
RS
2389input: /* empty */
2390 | input line
2391;
18b519c0 2392@end group
bfa74976 2393
18b519c0 2394@group
bfa74976
RS
2395line:
2396 '\n'
2397 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2398 | error '\n' @{ yyerrok; @}
2399;
18b519c0 2400@end group
bfa74976 2401
18b519c0 2402@group
bfa74976
RS
2403exp: NUM @{ $$ = $1; @}
2404 | VAR @{ $$ = $1->value.var; @}
2405 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2406 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2407 | exp '+' exp @{ $$ = $1 + $3; @}
2408 | exp '-' exp @{ $$ = $1 - $3; @}
2409 | exp '*' exp @{ $$ = $1 * $3; @}
2410 | exp '/' exp @{ $$ = $1 / $3; @}
2411 | '-' exp %prec NEG @{ $$ = -$2; @}
2412 | exp '^' exp @{ $$ = pow ($1, $3); @}
2413 | '(' exp ')' @{ $$ = $2; @}
2414;
18b519c0 2415@end group
38a92d50 2416/* End of grammar. */
bfa74976
RS
2417%%
2418@end smallexample
2419
f5f419de 2420@node Mfcalc Symbol Table
bfa74976
RS
2421@subsection The @code{mfcalc} Symbol Table
2422@cindex symbol table example
2423
2424The multi-function calculator requires a symbol table to keep track of the
2425names and meanings of variables and functions. This doesn't affect the
2426grammar rules (except for the actions) or the Bison declarations, but it
2427requires some additional C functions for support.
2428
2429The symbol table itself consists of a linked list of records. Its
2430definition, which is kept in the header @file{calc.h}, is as follows. It
2431provides for either functions or variables to be placed in the table.
2432
2433@smallexample
2434@group
38a92d50 2435/* Function type. */
32dfccf8 2436typedef double (*func_t) (double);
72f889cc 2437@end group
32dfccf8 2438
72f889cc 2439@group
38a92d50 2440/* Data type for links in the chain of symbols. */
bfa74976
RS
2441struct symrec
2442@{
38a92d50 2443 char *name; /* name of symbol */
bfa74976 2444 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2445 union
2446 @{
38a92d50
PE
2447 double var; /* value of a VAR */
2448 func_t fnctptr; /* value of a FNCT */
bfa74976 2449 @} value;
38a92d50 2450 struct symrec *next; /* link field */
bfa74976
RS
2451@};
2452@end group
2453
2454@group
2455typedef struct symrec symrec;
2456
38a92d50 2457/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2458extern symrec *sym_table;
2459
a730d142 2460symrec *putsym (char const *, int);
38a92d50 2461symrec *getsym (char const *);
bfa74976
RS
2462@end group
2463@end smallexample
2464
2465The new version of @code{main} includes a call to @code{init_table}, a
2466function that initializes the symbol table. Here it is, and
2467@code{init_table} as well:
2468
2469@smallexample
bfa74976
RS
2470#include <stdio.h>
2471
18b519c0 2472@group
38a92d50 2473/* Called by yyparse on error. */
13863333 2474void
38a92d50 2475yyerror (char const *s)
bfa74976
RS
2476@{
2477 printf ("%s\n", s);
2478@}
18b519c0 2479@end group
bfa74976 2480
18b519c0 2481@group
bfa74976
RS
2482struct init
2483@{
38a92d50
PE
2484 char const *fname;
2485 double (*fnct) (double);
bfa74976
RS
2486@};
2487@end group
2488
2489@group
38a92d50 2490struct init const arith_fncts[] =
13863333 2491@{
32dfccf8
AD
2492 "sin", sin,
2493 "cos", cos,
13863333 2494 "atan", atan,
32dfccf8
AD
2495 "ln", log,
2496 "exp", exp,
13863333
AD
2497 "sqrt", sqrt,
2498 0, 0
2499@};
18b519c0 2500@end group
bfa74976 2501
18b519c0 2502@group
bfa74976 2503/* The symbol table: a chain of `struct symrec'. */
38a92d50 2504symrec *sym_table;
bfa74976
RS
2505@end group
2506
2507@group
72d2299c 2508/* Put arithmetic functions in table. */
13863333
AD
2509void
2510init_table (void)
bfa74976
RS
2511@{
2512 int i;
2513 symrec *ptr;
2514 for (i = 0; arith_fncts[i].fname != 0; i++)
2515 @{
2516 ptr = putsym (arith_fncts[i].fname, FNCT);
2517 ptr->value.fnctptr = arith_fncts[i].fnct;
2518 @}
2519@}
2520@end group
38a92d50
PE
2521
2522@group
2523int
2524main (void)
2525@{
2526 init_table ();
2527 return yyparse ();
2528@}
2529@end group
bfa74976
RS
2530@end smallexample
2531
2532By simply editing the initialization list and adding the necessary include
2533files, you can add additional functions to the calculator.
2534
2535Two important functions allow look-up and installation of symbols in the
2536symbol table. The function @code{putsym} is passed a name and the type
2537(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2538linked to the front of the list, and a pointer to the object is returned.
2539The function @code{getsym} is passed the name of the symbol to look up. If
2540found, a pointer to that symbol is returned; otherwise zero is returned.
2541
2542@smallexample
2543symrec *
38a92d50 2544putsym (char const *sym_name, int sym_type)
bfa74976
RS
2545@{
2546 symrec *ptr;
2547 ptr = (symrec *) malloc (sizeof (symrec));
2548 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2549 strcpy (ptr->name,sym_name);
2550 ptr->type = sym_type;
72d2299c 2551 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2552 ptr->next = (struct symrec *)sym_table;
2553 sym_table = ptr;
2554 return ptr;
2555@}
2556
2557symrec *
38a92d50 2558getsym (char const *sym_name)
bfa74976
RS
2559@{
2560 symrec *ptr;
2561 for (ptr = sym_table; ptr != (symrec *) 0;
2562 ptr = (symrec *)ptr->next)
2563 if (strcmp (ptr->name,sym_name) == 0)
2564 return ptr;
2565 return 0;
2566@}
2567@end smallexample
2568
2569The function @code{yylex} must now recognize variables, numeric values, and
2570the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2571characters with a leading letter are recognized as either variables or
bfa74976
RS
2572functions depending on what the symbol table says about them.
2573
2574The string is passed to @code{getsym} for look up in the symbol table. If
2575the name appears in the table, a pointer to its location and its type
2576(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2577already in the table, then it is installed as a @code{VAR} using
2578@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2579returned to @code{yyparse}.
bfa74976
RS
2580
2581No change is needed in the handling of numeric values and arithmetic
2582operators in @code{yylex}.
2583
2584@smallexample
2585@group
2586#include <ctype.h>
18b519c0 2587@end group
13863333 2588
18b519c0 2589@group
13863333
AD
2590int
2591yylex (void)
bfa74976
RS
2592@{
2593 int c;
2594
72d2299c 2595 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2596 while ((c = getchar ()) == ' ' || c == '\t');
2597
2598 if (c == EOF)
2599 return 0;
2600@end group
2601
2602@group
2603 /* Char starts a number => parse the number. */
2604 if (c == '.' || isdigit (c))
2605 @{
2606 ungetc (c, stdin);
2607 scanf ("%lf", &yylval.val);
2608 return NUM;
2609 @}
2610@end group
2611
2612@group
2613 /* Char starts an identifier => read the name. */
2614 if (isalpha (c))
2615 @{
2616 symrec *s;
2617 static char *symbuf = 0;
2618 static int length = 0;
2619 int i;
2620@end group
2621
2622@group
2623 /* Initially make the buffer long enough
2624 for a 40-character symbol name. */
2625 if (length == 0)
2626 length = 40, symbuf = (char *)malloc (length + 1);
2627
2628 i = 0;
2629 do
2630@end group
2631@group
2632 @{
2633 /* If buffer is full, make it bigger. */
2634 if (i == length)
2635 @{
2636 length *= 2;
18b519c0 2637 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2638 @}
2639 /* Add this character to the buffer. */
2640 symbuf[i++] = c;
2641 /* Get another character. */
2642 c = getchar ();
2643 @}
2644@end group
2645@group
72d2299c 2646 while (isalnum (c));
bfa74976
RS
2647
2648 ungetc (c, stdin);
2649 symbuf[i] = '\0';
2650@end group
2651
2652@group
2653 s = getsym (symbuf);
2654 if (s == 0)
2655 s = putsym (symbuf, VAR);
2656 yylval.tptr = s;
2657 return s->type;
2658 @}
2659
2660 /* Any other character is a token by itself. */
2661 return c;
2662@}
2663@end group
2664@end smallexample
2665
72d2299c 2666This program is both powerful and flexible. You may easily add new
704a47c4
AD
2667functions, and it is a simple job to modify this code to install
2668predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2669
342b8b6e 2670@node Exercises
bfa74976
RS
2671@section Exercises
2672@cindex exercises
2673
2674@enumerate
2675@item
2676Add some new functions from @file{math.h} to the initialization list.
2677
2678@item
2679Add another array that contains constants and their values. Then
2680modify @code{init_table} to add these constants to the symbol table.
2681It will be easiest to give the constants type @code{VAR}.
2682
2683@item
2684Make the program report an error if the user refers to an
2685uninitialized variable in any way except to store a value in it.
2686@end enumerate
2687
342b8b6e 2688@node Grammar File
bfa74976
RS
2689@chapter Bison Grammar Files
2690
2691Bison takes as input a context-free grammar specification and produces a
2692C-language function that recognizes correct instances of the grammar.
2693
ff7571c0 2694The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2695@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2696
2697@menu
2698* Grammar Outline:: Overall layout of the grammar file.
2699* Symbols:: Terminal and nonterminal symbols.
2700* Rules:: How to write grammar rules.
2701* Recursion:: Writing recursive rules.
2702* Semantics:: Semantic values and actions.
847bf1f5 2703* Locations:: Locations and actions.
378e917c 2704* Named References:: Using named references in actions.
bfa74976
RS
2705* Declarations:: All kinds of Bison declarations are described here.
2706* Multiple Parsers:: Putting more than one Bison parser in one program.
2707@end menu
2708
342b8b6e 2709@node Grammar Outline
bfa74976
RS
2710@section Outline of a Bison Grammar
2711
2712A Bison grammar file has four main sections, shown here with the
2713appropriate delimiters:
2714
2715@example
2716%@{
38a92d50 2717 @var{Prologue}
bfa74976
RS
2718%@}
2719
2720@var{Bison declarations}
2721
2722%%
2723@var{Grammar rules}
2724%%
2725
75f5aaea 2726@var{Epilogue}
bfa74976
RS
2727@end example
2728
2729Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2730As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2731continues until end of line.
bfa74976
RS
2732
2733@menu
f5f419de 2734* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2735* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2736* Bison Declarations:: Syntax and usage of the Bison declarations section.
2737* Grammar Rules:: Syntax and usage of the grammar rules section.
2738* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2739@end menu
2740
38a92d50 2741@node Prologue
75f5aaea
MA
2742@subsection The prologue
2743@cindex declarations section
2744@cindex Prologue
2745@cindex declarations
bfa74976 2746
f8e1c9e5
AD
2747The @var{Prologue} section contains macro definitions and declarations
2748of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2749rules. These are copied to the beginning of the parser implementation
2750file so that they precede the definition of @code{yyparse}. You can
2751use @samp{#include} to get the declarations from a header file. If
2752you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2753@samp{%@}} delimiters that bracket this section.
bfa74976 2754
9c437126 2755The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2756of @samp{%@}} that is outside a comment, a string literal, or a
2757character constant.
2758
c732d2c6
AD
2759You may have more than one @var{Prologue} section, intermixed with the
2760@var{Bison declarations}. This allows you to have C and Bison
2761declarations that refer to each other. For example, the @code{%union}
2762declaration may use types defined in a header file, and you may wish to
2763prototype functions that take arguments of type @code{YYSTYPE}. This
2764can be done with two @var{Prologue} blocks, one before and one after the
2765@code{%union} declaration.
2766
2767@smallexample
2768%@{
aef3da86 2769 #define _GNU_SOURCE
38a92d50
PE
2770 #include <stdio.h>
2771 #include "ptypes.h"
c732d2c6
AD
2772%@}
2773
2774%union @{
779e7ceb 2775 long int n;
c732d2c6
AD
2776 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2777@}
2778
2779%@{
38a92d50
PE
2780 static void print_token_value (FILE *, int, YYSTYPE);
2781 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2782%@}
2783
2784@dots{}
2785@end smallexample
2786
aef3da86
PE
2787When in doubt, it is usually safer to put prologue code before all
2788Bison declarations, rather than after. For example, any definitions
2789of feature test macros like @code{_GNU_SOURCE} or
2790@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2791feature test macros can affect the behavior of Bison-generated
2792@code{#include} directives.
2793
2cbe6b7f
JD
2794@node Prologue Alternatives
2795@subsection Prologue Alternatives
2796@cindex Prologue Alternatives
2797
136a0f76 2798@findex %code
16dc6a9e
JD
2799@findex %code requires
2800@findex %code provides
2801@findex %code top
85894313 2802
2cbe6b7f 2803The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2804inflexible. As an alternative, Bison provides a @code{%code}
2805directive with an explicit qualifier field, which identifies the
2806purpose of the code and thus the location(s) where Bison should
2807generate it. For C/C++, the qualifier can be omitted for the default
2808location, or it can be one of @code{requires}, @code{provides},
e0c07222 2809@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2810
2811Look again at the example of the previous section:
2812
2813@smallexample
2814%@{
2815 #define _GNU_SOURCE
2816 #include <stdio.h>
2817 #include "ptypes.h"
2818%@}
2819
2820%union @{
2821 long int n;
2822 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2823@}
2824
2825%@{
2826 static void print_token_value (FILE *, int, YYSTYPE);
2827 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2828%@}
2829
2830@dots{}
2831@end smallexample
2832
2833@noindent
ff7571c0
JD
2834Notice that there are two @var{Prologue} sections here, but there's a
2835subtle distinction between their functionality. For example, if you
2836decide to override Bison's default definition for @code{YYLTYPE}, in
2837which @var{Prologue} section should you write your new definition?
2838You should write it in the first since Bison will insert that code
2839into the parser implementation file @emph{before} the default
2840@code{YYLTYPE} definition. In which @var{Prologue} section should you
2841prototype an internal function, @code{trace_token}, that accepts
2842@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2843prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2844@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2845
2846This distinction in functionality between the two @var{Prologue} sections is
2847established by the appearance of the @code{%union} between them.
a501eca9 2848This behavior raises a few questions.
2cbe6b7f
JD
2849First, why should the position of a @code{%union} affect definitions related to
2850@code{YYLTYPE} and @code{yytokentype}?
2851Second, what if there is no @code{%union}?
2852In that case, the second kind of @var{Prologue} section is not available.
2853This behavior is not intuitive.
2854
8e0a5e9e 2855To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2856@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2857Let's go ahead and add the new @code{YYLTYPE} definition and the
2858@code{trace_token} prototype at the same time:
2859
2860@smallexample
16dc6a9e 2861%code top @{
2cbe6b7f
JD
2862 #define _GNU_SOURCE
2863 #include <stdio.h>
8e0a5e9e
JD
2864
2865 /* WARNING: The following code really belongs
16dc6a9e 2866 * in a `%code requires'; see below. */
8e0a5e9e 2867
2cbe6b7f
JD
2868 #include "ptypes.h"
2869 #define YYLTYPE YYLTYPE
2870 typedef struct YYLTYPE
2871 @{
2872 int first_line;
2873 int first_column;
2874 int last_line;
2875 int last_column;
2876 char *filename;
2877 @} YYLTYPE;
2878@}
2879
2880%union @{
2881 long int n;
2882 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2883@}
2884
2885%code @{
2886 static void print_token_value (FILE *, int, YYSTYPE);
2887 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2888 static void trace_token (enum yytokentype token, YYLTYPE loc);
2889@}
2890
2891@dots{}
2892@end smallexample
2893
2894@noindent
16dc6a9e
JD
2895In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2896functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2897explicit which kind you intend.
2cbe6b7f
JD
2898Moreover, both kinds are always available even in the absence of @code{%union}.
2899
ff7571c0
JD
2900The @code{%code top} block above logically contains two parts. The
2901first two lines before the warning need to appear near the top of the
2902parser implementation file. The first line after the warning is
2903required by @code{YYSTYPE} and thus also needs to appear in the parser
2904implementation file. However, if you've instructed Bison to generate
2905a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2906want that line to appear before the @code{YYSTYPE} definition in that
2907header file as well. The @code{YYLTYPE} definition should also appear
2908in the parser header file to override the default @code{YYLTYPE}
2909definition there.
2cbe6b7f 2910
16dc6a9e 2911In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2912lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2913definitions.
16dc6a9e 2914Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2915
2916@smallexample
16dc6a9e 2917%code top @{
2cbe6b7f
JD
2918 #define _GNU_SOURCE
2919 #include <stdio.h>
2920@}
2921
16dc6a9e 2922%code requires @{
9bc0dd67
JD
2923 #include "ptypes.h"
2924@}
2925%union @{
2926 long int n;
2927 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2928@}
2929
16dc6a9e 2930%code requires @{
2cbe6b7f
JD
2931 #define YYLTYPE YYLTYPE
2932 typedef struct YYLTYPE
2933 @{
2934 int first_line;
2935 int first_column;
2936 int last_line;
2937 int last_column;
2938 char *filename;
2939 @} YYLTYPE;
2940@}
2941
136a0f76 2942%code @{
2cbe6b7f
JD
2943 static void print_token_value (FILE *, int, YYSTYPE);
2944 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2945 static void trace_token (enum yytokentype token, YYLTYPE loc);
2946@}
2947
2948@dots{}
2949@end smallexample
2950
2951@noindent
ff7571c0
JD
2952Now Bison will insert @code{#include "ptypes.h"} and the new
2953@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2954and @code{YYLTYPE} definitions in both the parser implementation file
2955and the parser header file. (By the same reasoning, @code{%code
2956requires} would also be the appropriate place to write your own
2957definition for @code{YYSTYPE}.)
2958
2959When you are writing dependency code for @code{YYSTYPE} and
2960@code{YYLTYPE}, you should prefer @code{%code requires} over
2961@code{%code top} regardless of whether you instruct Bison to generate
2962a parser header file. When you are writing code that you need Bison
2963to insert only into the parser implementation file and that has no
2964special need to appear at the top of that file, you should prefer the
2965unqualified @code{%code} over @code{%code top}. These practices will
2966make the purpose of each block of your code explicit to Bison and to
2967other developers reading your grammar file. Following these
2968practices, we expect the unqualified @code{%code} and @code{%code
2969requires} to be the most important of the four @var{Prologue}
16dc6a9e 2970alternatives.
a501eca9 2971
ff7571c0
JD
2972At some point while developing your parser, you might decide to
2973provide @code{trace_token} to modules that are external to your
2974parser. Thus, you might wish for Bison to insert the prototype into
2975both the parser header file and the parser implementation file. Since
2976this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2977@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
2978@code{%code requires}. More importantly, since it depends upon
2979@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2980sufficient. Instead, move its prototype from the unqualified
2981@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
2982
2983@smallexample
16dc6a9e 2984%code top @{
2cbe6b7f 2985 #define _GNU_SOURCE
136a0f76 2986 #include <stdio.h>
2cbe6b7f 2987@}
136a0f76 2988
16dc6a9e 2989%code requires @{
2cbe6b7f
JD
2990 #include "ptypes.h"
2991@}
2992%union @{
2993 long int n;
2994 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2995@}
2996
16dc6a9e 2997%code requires @{
2cbe6b7f
JD
2998 #define YYLTYPE YYLTYPE
2999 typedef struct YYLTYPE
3000 @{
3001 int first_line;
3002 int first_column;
3003 int last_line;
3004 int last_column;
3005 char *filename;
3006 @} YYLTYPE;
3007@}
3008
16dc6a9e 3009%code provides @{
2cbe6b7f
JD
3010 void trace_token (enum yytokentype token, YYLTYPE loc);
3011@}
3012
3013%code @{
9bc0dd67
JD
3014 static void print_token_value (FILE *, int, YYSTYPE);
3015 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3016@}
9bc0dd67
JD
3017
3018@dots{}
3019@end smallexample
3020
2cbe6b7f 3021@noindent
ff7571c0
JD
3022Bison will insert the @code{trace_token} prototype into both the
3023parser header file and the parser implementation file after the
3024definitions for @code{yytokentype}, @code{YYLTYPE}, and
3025@code{YYSTYPE}.
2cbe6b7f 3026
ff7571c0
JD
3027The above examples are careful to write directives in an order that
3028reflects the layout of the generated parser implementation and header
3029files: @code{%code top}, @code{%code requires}, @code{%code provides},
3030and then @code{%code}. While your grammar files may generally be
3031easier to read if you also follow this order, Bison does not require
3032it. Instead, Bison lets you choose an organization that makes sense
3033to you.
2cbe6b7f 3034
a501eca9 3035You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3036In that case, Bison concatenates the contained code in declaration order.
3037This is the only way in which the position of one of these directives within
3038the grammar file affects its functionality.
3039
3040The result of the previous two properties is greater flexibility in how you may
3041organize your grammar file.
3042For example, you may organize semantic-type-related directives by semantic
3043type:
3044
3045@smallexample
16dc6a9e 3046%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3047%union @{ type1 field1; @}
3048%destructor @{ type1_free ($$); @} <field1>
3049%printer @{ type1_print ($$); @} <field1>
3050
16dc6a9e 3051%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3052%union @{ type2 field2; @}
3053%destructor @{ type2_free ($$); @} <field2>
3054%printer @{ type2_print ($$); @} <field2>
3055@end smallexample
3056
3057@noindent
3058You could even place each of the above directive groups in the rules section of
3059the grammar file next to the set of rules that uses the associated semantic
3060type.
61fee93e
JD
3061(In the rules section, you must terminate each of those directives with a
3062semicolon.)
2cbe6b7f
JD
3063And you don't have to worry that some directive (like a @code{%union}) in the
3064definitions section is going to adversely affect their functionality in some
3065counter-intuitive manner just because it comes first.
3066Such an organization is not possible using @var{Prologue} sections.
3067
a501eca9 3068This section has been concerned with explaining the advantages of the four
8e0a5e9e 3069@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3070However, in most cases when using these directives, you shouldn't need to
3071think about all the low-level ordering issues discussed here.
3072Instead, you should simply use these directives to label each block of your
3073code according to its purpose and let Bison handle the ordering.
3074@code{%code} is the most generic label.
16dc6a9e
JD
3075Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3076as needed.
a501eca9 3077
342b8b6e 3078@node Bison Declarations
bfa74976
RS
3079@subsection The Bison Declarations Section
3080@cindex Bison declarations (introduction)
3081@cindex declarations, Bison (introduction)
3082
3083The @var{Bison declarations} section contains declarations that define
3084terminal and nonterminal symbols, specify precedence, and so on.
3085In some simple grammars you may not need any declarations.
3086@xref{Declarations, ,Bison Declarations}.
3087
342b8b6e 3088@node Grammar Rules
bfa74976
RS
3089@subsection The Grammar Rules Section
3090@cindex grammar rules section
3091@cindex rules section for grammar
3092
3093The @dfn{grammar rules} section contains one or more Bison grammar
3094rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3095
3096There must always be at least one grammar rule, and the first
3097@samp{%%} (which precedes the grammar rules) may never be omitted even
3098if it is the first thing in the file.
3099
38a92d50 3100@node Epilogue
75f5aaea 3101@subsection The epilogue
bfa74976 3102@cindex additional C code section
75f5aaea 3103@cindex epilogue
bfa74976
RS
3104@cindex C code, section for additional
3105
ff7571c0
JD
3106The @var{Epilogue} is copied verbatim to the end of the parser
3107implementation file, just as the @var{Prologue} is copied to the
3108beginning. This is the most convenient place to put anything that you
3109want to have in the parser implementation file but which need not come
3110before the definition of @code{yyparse}. For example, the definitions
3111of @code{yylex} and @code{yyerror} often go here. Because C requires
3112functions to be declared before being used, you often need to declare
3113functions like @code{yylex} and @code{yyerror} in the Prologue, even
3114if you define them in the Epilogue. @xref{Interface, ,Parser
3115C-Language Interface}.
bfa74976
RS
3116
3117If the last section is empty, you may omit the @samp{%%} that separates it
3118from the grammar rules.
3119
f8e1c9e5
AD
3120The Bison parser itself contains many macros and identifiers whose names
3121start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3122any such names (except those documented in this manual) in the epilogue
3123of the grammar file.
bfa74976 3124
342b8b6e 3125@node Symbols
bfa74976
RS
3126@section Symbols, Terminal and Nonterminal
3127@cindex nonterminal symbol
3128@cindex terminal symbol
3129@cindex token type
3130@cindex symbol
3131
3132@dfn{Symbols} in Bison grammars represent the grammatical classifications
3133of the language.
3134
3135A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3136class of syntactically equivalent tokens. You use the symbol in grammar
3137rules to mean that a token in that class is allowed. The symbol is
3138represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3139function returns a token type code to indicate what kind of token has
3140been read. You don't need to know what the code value is; you can use
3141the symbol to stand for it.
bfa74976 3142
f8e1c9e5
AD
3143A @dfn{nonterminal symbol} stands for a class of syntactically
3144equivalent groupings. The symbol name is used in writing grammar rules.
3145By convention, it should be all lower case.
bfa74976 3146
82f3355e
JD
3147Symbol names can contain letters, underscores, periods, and non-initial
3148digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3149with POSIX Yacc. Periods and dashes make symbol names less convenient to
3150use with named references, which require brackets around such names
3151(@pxref{Named References}). Terminal symbols that contain periods or dashes
3152make little sense: since they are not valid symbols (in most programming
3153languages) they are not exported as token names.
bfa74976 3154
931c7513 3155There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3156
3157@itemize @bullet
3158@item
3159A @dfn{named token type} is written with an identifier, like an
c827f760 3160identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3161such name must be defined with a Bison declaration such as
3162@code{%token}. @xref{Token Decl, ,Token Type Names}.
3163
3164@item
3165@cindex character token
3166@cindex literal token
3167@cindex single-character literal
931c7513
RS
3168A @dfn{character token type} (or @dfn{literal character token}) is
3169written in the grammar using the same syntax used in C for character
3170constants; for example, @code{'+'} is a character token type. A
3171character token type doesn't need to be declared unless you need to
3172specify its semantic value data type (@pxref{Value Type, ,Data Types of
3173Semantic Values}), associativity, or precedence (@pxref{Precedence,
3174,Operator Precedence}).
bfa74976
RS
3175
3176By convention, a character token type is used only to represent a
3177token that consists of that particular character. Thus, the token
3178type @code{'+'} is used to represent the character @samp{+} as a
3179token. Nothing enforces this convention, but if you depart from it,
3180your program will confuse other readers.
3181
3182All the usual escape sequences used in character literals in C can be
3183used in Bison as well, but you must not use the null character as a
72d2299c
PE
3184character literal because its numeric code, zero, signifies
3185end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3186for @code{yylex}}). Also, unlike standard C, trigraphs have no
3187special meaning in Bison character literals, nor is backslash-newline
3188allowed.
931c7513
RS
3189
3190@item
3191@cindex string token
3192@cindex literal string token
9ecbd125 3193@cindex multicharacter literal
931c7513
RS
3194A @dfn{literal string token} is written like a C string constant; for
3195example, @code{"<="} is a literal string token. A literal string token
3196doesn't need to be declared unless you need to specify its semantic
14ded682 3197value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3198(@pxref{Precedence}).
3199
3200You can associate the literal string token with a symbolic name as an
3201alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3202Declarations}). If you don't do that, the lexical analyzer has to
3203retrieve the token number for the literal string token from the
3204@code{yytname} table (@pxref{Calling Convention}).
3205
c827f760 3206@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3207
3208By convention, a literal string token is used only to represent a token
3209that consists of that particular string. Thus, you should use the token
3210type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3211does not enforce this convention, but if you depart from it, people who
931c7513
RS
3212read your program will be confused.
3213
3214All the escape sequences used in string literals in C can be used in
92ac3705
PE
3215Bison as well, except that you must not use a null character within a
3216string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3217meaning in Bison string literals, nor is backslash-newline allowed. A
3218literal string token must contain two or more characters; for a token
3219containing just one character, use a character token (see above).
bfa74976
RS
3220@end itemize
3221
3222How you choose to write a terminal symbol has no effect on its
3223grammatical meaning. That depends only on where it appears in rules and
3224on when the parser function returns that symbol.
3225
72d2299c
PE
3226The value returned by @code{yylex} is always one of the terminal
3227symbols, except that a zero or negative value signifies end-of-input.
3228Whichever way you write the token type in the grammar rules, you write
3229it the same way in the definition of @code{yylex}. The numeric code
3230for a character token type is simply the positive numeric code of the
3231character, so @code{yylex} can use the identical value to generate the
3232requisite code, though you may need to convert it to @code{unsigned
3233char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3234Each named token type becomes a C macro in the parser implementation
3235file, so @code{yylex} can use the name to stand for the code. (This
3236is why periods don't make sense in terminal symbols.) @xref{Calling
3237Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3238
3239If @code{yylex} is defined in a separate file, you need to arrange for the
3240token-type macro definitions to be available there. Use the @samp{-d}
3241option when you run Bison, so that it will write these macro definitions
3242into a separate header file @file{@var{name}.tab.h} which you can include
3243in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3244
72d2299c 3245If you want to write a grammar that is portable to any Standard C
9d9b8b70 3246host, you must use only nonnull character tokens taken from the basic
c827f760 3247execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3248digits, the 52 lower- and upper-case English letters, and the
3249characters in the following C-language string:
3250
3251@example
3252"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3253@end example
3254
f8e1c9e5
AD
3255The @code{yylex} function and Bison must use a consistent character set
3256and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3257ASCII environment, but then compile and run the resulting
f8e1c9e5 3258program in an environment that uses an incompatible character set like
8a4281b9
JD
3259EBCDIC, the resulting program may not work because the tables
3260generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3261character tokens. It is standard practice for software distributions to
3262contain C source files that were generated by Bison in an
8a4281b9
JD
3263ASCII environment, so installers on platforms that are
3264incompatible with ASCII must rebuild those files before
f8e1c9e5 3265compiling them.
e966383b 3266
bfa74976
RS
3267The symbol @code{error} is a terminal symbol reserved for error recovery
3268(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3269In particular, @code{yylex} should never return this value. The default
3270value of the error token is 256, unless you explicitly assigned 256 to
3271one of your tokens with a @code{%token} declaration.
bfa74976 3272
342b8b6e 3273@node Rules
bfa74976
RS
3274@section Syntax of Grammar Rules
3275@cindex rule syntax
3276@cindex grammar rule syntax
3277@cindex syntax of grammar rules
3278
3279A Bison grammar rule has the following general form:
3280
3281@example
e425e872 3282@group
bfa74976
RS
3283@var{result}: @var{components}@dots{}
3284 ;
e425e872 3285@end group
bfa74976
RS
3286@end example
3287
3288@noindent
9ecbd125 3289where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3290and @var{components} are various terminal and nonterminal symbols that
13863333 3291are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3292
3293For example,
3294
3295@example
3296@group
3297exp: exp '+' exp
3298 ;
3299@end group
3300@end example
3301
3302@noindent
3303says that two groupings of type @code{exp}, with a @samp{+} token in between,
3304can be combined into a larger grouping of type @code{exp}.
3305
72d2299c
PE
3306White space in rules is significant only to separate symbols. You can add
3307extra white space as you wish.
bfa74976
RS
3308
3309Scattered among the components can be @var{actions} that determine
3310the semantics of the rule. An action looks like this:
3311
3312@example
3313@{@var{C statements}@}
3314@end example
3315
3316@noindent
287c78f6
PE
3317@cindex braced code
3318This is an example of @dfn{braced code}, that is, C code surrounded by
3319braces, much like a compound statement in C@. Braced code can contain
3320any sequence of C tokens, so long as its braces are balanced. Bison
3321does not check the braced code for correctness directly; it merely
ff7571c0
JD
3322copies the code to the parser implementation file, where the C
3323compiler can check it.
287c78f6
PE
3324
3325Within braced code, the balanced-brace count is not affected by braces
3326within comments, string literals, or character constants, but it is
3327affected by the C digraphs @samp{<%} and @samp{%>} that represent
3328braces. At the top level braced code must be terminated by @samp{@}}
3329and not by a digraph. Bison does not look for trigraphs, so if braced
3330code uses trigraphs you should ensure that they do not affect the
3331nesting of braces or the boundaries of comments, string literals, or
3332character constants.
3333
bfa74976
RS
3334Usually there is only one action and it follows the components.
3335@xref{Actions}.
3336
3337@findex |
3338Multiple rules for the same @var{result} can be written separately or can
3339be joined with the vertical-bar character @samp{|} as follows:
3340
bfa74976
RS
3341@example
3342@group
3343@var{result}: @var{rule1-components}@dots{}
3344 | @var{rule2-components}@dots{}
3345 @dots{}
3346 ;
3347@end group
3348@end example
bfa74976
RS
3349
3350@noindent
3351They are still considered distinct rules even when joined in this way.
3352
3353If @var{components} in a rule is empty, it means that @var{result} can
3354match the empty string. For example, here is how to define a
3355comma-separated sequence of zero or more @code{exp} groupings:
3356
3357@example
3358@group
3359expseq: /* empty */
3360 | expseq1
3361 ;
3362@end group
3363
3364@group
3365expseq1: exp
3366 | expseq1 ',' exp
3367 ;
3368@end group
3369@end example
3370
3371@noindent
3372It is customary to write a comment @samp{/* empty */} in each rule
3373with no components.
3374
342b8b6e 3375@node Recursion
bfa74976
RS
3376@section Recursive Rules
3377@cindex recursive rule
3378
f8e1c9e5
AD
3379A rule is called @dfn{recursive} when its @var{result} nonterminal
3380appears also on its right hand side. Nearly all Bison grammars need to
3381use recursion, because that is the only way to define a sequence of any
3382number of a particular thing. Consider this recursive definition of a
9ecbd125 3383comma-separated sequence of one or more expressions:
bfa74976
RS
3384
3385@example
3386@group
3387expseq1: exp
3388 | expseq1 ',' exp
3389 ;
3390@end group
3391@end example
3392
3393@cindex left recursion
3394@cindex right recursion
3395@noindent
3396Since the recursive use of @code{expseq1} is the leftmost symbol in the
3397right hand side, we call this @dfn{left recursion}. By contrast, here
3398the same construct is defined using @dfn{right recursion}:
3399
3400@example
3401@group
3402expseq1: exp
3403 | exp ',' expseq1
3404 ;
3405@end group
3406@end example
3407
3408@noindent
ec3bc396
AD
3409Any kind of sequence can be defined using either left recursion or right
3410recursion, but you should always use left recursion, because it can
3411parse a sequence of any number of elements with bounded stack space.
3412Right recursion uses up space on the Bison stack in proportion to the
3413number of elements in the sequence, because all the elements must be
3414shifted onto the stack before the rule can be applied even once.
3415@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3416of this.
bfa74976
RS
3417
3418@cindex mutual recursion
3419@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3420rule does not appear directly on its right hand side, but does appear
3421in rules for other nonterminals which do appear on its right hand
13863333 3422side.
bfa74976
RS
3423
3424For example:
3425
3426@example
3427@group
3428expr: primary
3429 | primary '+' primary
3430 ;
3431@end group
3432
3433@group
3434primary: constant
3435 | '(' expr ')'
3436 ;
3437@end group
3438@end example
3439
3440@noindent
3441defines two mutually-recursive nonterminals, since each refers to the
3442other.
3443
342b8b6e 3444@node Semantics
bfa74976
RS
3445@section Defining Language Semantics
3446@cindex defining language semantics
13863333 3447@cindex language semantics, defining
bfa74976
RS
3448
3449The grammar rules for a language determine only the syntax. The semantics
3450are determined by the semantic values associated with various tokens and
3451groupings, and by the actions taken when various groupings are recognized.
3452
3453For example, the calculator calculates properly because the value
3454associated with each expression is the proper number; it adds properly
3455because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3456the numbers associated with @var{x} and @var{y}.
3457
3458@menu
3459* Value Type:: Specifying one data type for all semantic values.
3460* Multiple Types:: Specifying several alternative data types.
3461* Actions:: An action is the semantic definition of a grammar rule.
3462* Action Types:: Specifying data types for actions to operate on.
3463* Mid-Rule Actions:: Most actions go at the end of a rule.
3464 This says when, why and how to use the exceptional
3465 action in the middle of a rule.
3466@end menu
3467
342b8b6e 3468@node Value Type
bfa74976
RS
3469@subsection Data Types of Semantic Values
3470@cindex semantic value type
3471@cindex value type, semantic
3472@cindex data types of semantic values
3473@cindex default data type
3474
3475In a simple program it may be sufficient to use the same data type for
3476the semantic values of all language constructs. This was true in the
8a4281b9 3477RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3478Notation Calculator}).
bfa74976 3479
ddc8ede1
PE
3480Bison normally uses the type @code{int} for semantic values if your
3481program uses the same data type for all language constructs. To
bfa74976
RS
3482specify some other type, define @code{YYSTYPE} as a macro, like this:
3483
3484@example
3485#define YYSTYPE double
3486@end example
3487
3488@noindent
50cce58e
PE
3489@code{YYSTYPE}'s replacement list should be a type name
3490that does not contain parentheses or square brackets.
342b8b6e 3491This macro definition must go in the prologue of the grammar file
75f5aaea 3492(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3493
342b8b6e 3494@node Multiple Types
bfa74976
RS
3495@subsection More Than One Value Type
3496
3497In most programs, you will need different data types for different kinds
3498of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3499@code{int} or @code{long int}, while a string constant needs type
3500@code{char *}, and an identifier might need a pointer to an entry in the
3501symbol table.
bfa74976
RS
3502
3503To use more than one data type for semantic values in one parser, Bison
3504requires you to do two things:
3505
3506@itemize @bullet
3507@item
ddc8ede1 3508Specify the entire collection of possible data types, either by using the
704a47c4 3509@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3510Value Types}), or by using a @code{typedef} or a @code{#define} to
3511define @code{YYSTYPE} to be a union type whose member names are
3512the type tags.
bfa74976
RS
3513
3514@item
14ded682
AD
3515Choose one of those types for each symbol (terminal or nonterminal) for
3516which semantic values are used. This is done for tokens with the
3517@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3518and for groupings with the @code{%type} Bison declaration (@pxref{Type
3519Decl, ,Nonterminal Symbols}).
bfa74976
RS
3520@end itemize
3521
342b8b6e 3522@node Actions
bfa74976
RS
3523@subsection Actions
3524@cindex action
3525@vindex $$
3526@vindex $@var{n}
d013372c
AR
3527@vindex $@var{name}
3528@vindex $[@var{name}]
bfa74976
RS
3529
3530An action accompanies a syntactic rule and contains C code to be executed
3531each time an instance of that rule is recognized. The task of most actions
3532is to compute a semantic value for the grouping built by the rule from the
3533semantic values associated with tokens or smaller groupings.
3534
287c78f6
PE
3535An action consists of braced code containing C statements, and can be
3536placed at any position in the rule;
704a47c4
AD
3537it is executed at that position. Most rules have just one action at the
3538end of the rule, following all the components. Actions in the middle of
3539a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3540Actions, ,Actions in Mid-Rule}).
bfa74976 3541
ff7571c0
JD
3542The C code in an action can refer to the semantic values of the
3543components matched by the rule with the construct @code{$@var{n}},
3544which stands for the value of the @var{n}th component. The semantic
3545value for the grouping being constructed is @code{$$}. In addition,
3546the semantic values of symbols can be accessed with the named
3547references construct @code{$@var{name}} or @code{$[@var{name}]}.
3548Bison translates both of these constructs into expressions of the
3549appropriate type when it copies the actions into the parser
3550implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3551for the current grouping) is translated to a modifiable lvalue, so it
3552can be assigned to.
bfa74976
RS
3553
3554Here is a typical example:
3555
3556@example
3557@group
3558exp: @dots{}
3559 | exp '+' exp
3560 @{ $$ = $1 + $3; @}
3561@end group
3562@end example
3563
d013372c
AR
3564Or, in terms of named references:
3565
3566@example
3567@group
3568exp[result]: @dots{}
3569 | exp[left] '+' exp[right]
3570 @{ $result = $left + $right; @}
3571@end group
3572@end example
3573
bfa74976
RS
3574@noindent
3575This rule constructs an @code{exp} from two smaller @code{exp} groupings
3576connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3577(@code{$left} and @code{$right})
bfa74976
RS
3578refer to the semantic values of the two component @code{exp} groupings,
3579which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3580The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3581semantic value of
bfa74976
RS
3582the addition-expression just recognized by the rule. If there were a
3583useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3584referred to as @code{$2}.
bfa74976 3585
d013372c
AR
3586@xref{Named References,,Using Named References}, for more information
3587about using the named references construct.
3588
3ded9a63
AD
3589Note that the vertical-bar character @samp{|} is really a rule
3590separator, and actions are attached to a single rule. This is a
3591difference with tools like Flex, for which @samp{|} stands for either
3592``or'', or ``the same action as that of the next rule''. In the
3593following example, the action is triggered only when @samp{b} is found:
3594
3595@example
3596@group
3597a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3598@end group
3599@end example
3600
bfa74976
RS
3601@cindex default action
3602If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3603@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3604becomes the value of the whole rule. Of course, the default action is
3605valid only if the two data types match. There is no meaningful default
3606action for an empty rule; every empty rule must have an explicit action
3607unless the rule's value does not matter.
bfa74976
RS
3608
3609@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3610to tokens and groupings on the stack @emph{before} those that match the
3611current rule. This is a very risky practice, and to use it reliably
3612you must be certain of the context in which the rule is applied. Here
3613is a case in which you can use this reliably:
3614
3615@example
3616@group
3617foo: expr bar '+' expr @{ @dots{} @}
3618 | expr bar '-' expr @{ @dots{} @}
3619 ;
3620@end group
3621
3622@group
3623bar: /* empty */
3624 @{ previous_expr = $0; @}
3625 ;
3626@end group
3627@end example
3628
3629As long as @code{bar} is used only in the fashion shown here, @code{$0}
3630always refers to the @code{expr} which precedes @code{bar} in the
3631definition of @code{foo}.
3632
32c29292 3633@vindex yylval
742e4900 3634It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3635any, from a semantic action.
3636This semantic value is stored in @code{yylval}.
3637@xref{Action Features, ,Special Features for Use in Actions}.
3638
342b8b6e 3639@node Action Types
bfa74976
RS
3640@subsection Data Types of Values in Actions
3641@cindex action data types
3642@cindex data types in actions
3643
3644If you have chosen a single data type for semantic values, the @code{$$}
3645and @code{$@var{n}} constructs always have that data type.
3646
3647If you have used @code{%union} to specify a variety of data types, then you
3648must declare a choice among these types for each terminal or nonterminal
3649symbol that can have a semantic value. Then each time you use @code{$$} or
3650@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3651in the rule. In this example,
bfa74976
RS
3652
3653@example
3654@group
3655exp: @dots{}
3656 | exp '+' exp
3657 @{ $$ = $1 + $3; @}
3658@end group
3659@end example
3660
3661@noindent
3662@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3663have the data type declared for the nonterminal symbol @code{exp}. If
3664@code{$2} were used, it would have the data type declared for the
e0c471a9 3665terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3666
3667Alternatively, you can specify the data type when you refer to the value,
3668by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3669reference. For example, if you have defined types as shown here:
3670
3671@example
3672@group
3673%union @{
3674 int itype;
3675 double dtype;
3676@}
3677@end group
3678@end example
3679
3680@noindent
3681then you can write @code{$<itype>1} to refer to the first subunit of the
3682rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3683
342b8b6e 3684@node Mid-Rule Actions
bfa74976
RS
3685@subsection Actions in Mid-Rule
3686@cindex actions in mid-rule
3687@cindex mid-rule actions
3688
3689Occasionally it is useful to put an action in the middle of a rule.
3690These actions are written just like usual end-of-rule actions, but they
3691are executed before the parser even recognizes the following components.
3692
3693A mid-rule action may refer to the components preceding it using
3694@code{$@var{n}}, but it may not refer to subsequent components because
3695it is run before they are parsed.
3696
3697The mid-rule action itself counts as one of the components of the rule.
3698This makes a difference when there is another action later in the same rule
3699(and usually there is another at the end): you have to count the actions
3700along with the symbols when working out which number @var{n} to use in
3701@code{$@var{n}}.
3702
3703The mid-rule action can also have a semantic value. The action can set
3704its value with an assignment to @code{$$}, and actions later in the rule
3705can refer to the value using @code{$@var{n}}. Since there is no symbol
3706to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3707in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3708specify a data type each time you refer to this value.
bfa74976
RS
3709
3710There is no way to set the value of the entire rule with a mid-rule
3711action, because assignments to @code{$$} do not have that effect. The
3712only way to set the value for the entire rule is with an ordinary action
3713at the end of the rule.
3714
3715Here is an example from a hypothetical compiler, handling a @code{let}
3716statement that looks like @samp{let (@var{variable}) @var{statement}} and
3717serves to create a variable named @var{variable} temporarily for the
3718duration of @var{statement}. To parse this construct, we must put
3719@var{variable} into the symbol table while @var{statement} is parsed, then
3720remove it afterward. Here is how it is done:
3721
3722@example
3723@group
3724stmt: LET '(' var ')'
3725 @{ $<context>$ = push_context ();
3726 declare_variable ($3); @}
3727 stmt @{ $$ = $6;
3728 pop_context ($<context>5); @}
3729@end group
3730@end example
3731
3732@noindent
3733As soon as @samp{let (@var{variable})} has been recognized, the first
3734action is run. It saves a copy of the current semantic context (the
3735list of accessible variables) as its semantic value, using alternative
3736@code{context} in the data-type union. Then it calls
3737@code{declare_variable} to add the new variable to that list. Once the
3738first action is finished, the embedded statement @code{stmt} can be
3739parsed. Note that the mid-rule action is component number 5, so the
3740@samp{stmt} is component number 6.
3741
3742After the embedded statement is parsed, its semantic value becomes the
3743value of the entire @code{let}-statement. Then the semantic value from the
3744earlier action is used to restore the prior list of variables. This
3745removes the temporary @code{let}-variable from the list so that it won't
3746appear to exist while the rest of the program is parsed.
3747
841a7737
JD
3748@findex %destructor
3749@cindex discarded symbols, mid-rule actions
3750@cindex error recovery, mid-rule actions
3751In the above example, if the parser initiates error recovery (@pxref{Error
3752Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3753it might discard the previous semantic context @code{$<context>5} without
3754restoring it.
3755Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3756Discarded Symbols}).
ec5479ce
JD
3757However, Bison currently provides no means to declare a destructor specific to
3758a particular mid-rule action's semantic value.
841a7737
JD
3759
3760One solution is to bury the mid-rule action inside a nonterminal symbol and to
3761declare a destructor for that symbol:
3762
3763@example
3764@group
3765%type <context> let
3766%destructor @{ pop_context ($$); @} let
3767
3768%%
3769
3770stmt: let stmt
3771 @{ $$ = $2;
3772 pop_context ($1); @}
3773 ;
3774
3775let: LET '(' var ')'
3776 @{ $$ = push_context ();
3777 declare_variable ($3); @}
3778 ;
3779
3780@end group
3781@end example
3782
3783@noindent
3784Note that the action is now at the end of its rule.
3785Any mid-rule action can be converted to an end-of-rule action in this way, and
3786this is what Bison actually does to implement mid-rule actions.
3787
bfa74976
RS
3788Taking action before a rule is completely recognized often leads to
3789conflicts since the parser must commit to a parse in order to execute the
3790action. For example, the following two rules, without mid-rule actions,
3791can coexist in a working parser because the parser can shift the open-brace
3792token and look at what follows before deciding whether there is a
3793declaration or not:
3794
3795@example
3796@group
3797compound: '@{' declarations statements '@}'
3798 | '@{' statements '@}'
3799 ;
3800@end group
3801@end example
3802
3803@noindent
3804But when we add a mid-rule action as follows, the rules become nonfunctional:
3805
3806@example
3807@group
3808compound: @{ prepare_for_local_variables (); @}
3809 '@{' declarations statements '@}'
3810@end group
3811@group
3812 | '@{' statements '@}'
3813 ;
3814@end group
3815@end example
3816
3817@noindent
3818Now the parser is forced to decide whether to run the mid-rule action
3819when it has read no farther than the open-brace. In other words, it
3820must commit to using one rule or the other, without sufficient
3821information to do it correctly. (The open-brace token is what is called
742e4900
JD
3822the @dfn{lookahead} token at this time, since the parser is still
3823deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3824
3825You might think that you could correct the problem by putting identical
3826actions into the two rules, like this:
3827
3828@example
3829@group
3830compound: @{ prepare_for_local_variables (); @}
3831 '@{' declarations statements '@}'
3832 | @{ prepare_for_local_variables (); @}
3833 '@{' statements '@}'
3834 ;
3835@end group
3836@end example
3837
3838@noindent
3839But this does not help, because Bison does not realize that the two actions
3840are identical. (Bison never tries to understand the C code in an action.)
3841
3842If the grammar is such that a declaration can be distinguished from a
3843statement by the first token (which is true in C), then one solution which
3844does work is to put the action after the open-brace, like this:
3845
3846@example
3847@group
3848compound: '@{' @{ prepare_for_local_variables (); @}
3849 declarations statements '@}'
3850 | '@{' statements '@}'
3851 ;
3852@end group
3853@end example
3854
3855@noindent
3856Now the first token of the following declaration or statement,
3857which would in any case tell Bison which rule to use, can still do so.
3858
3859Another solution is to bury the action inside a nonterminal symbol which
3860serves as a subroutine:
3861
3862@example
3863@group
3864subroutine: /* empty */
3865 @{ prepare_for_local_variables (); @}
3866 ;
3867
3868@end group
3869
3870@group
3871compound: subroutine
3872 '@{' declarations statements '@}'
3873 | subroutine
3874 '@{' statements '@}'
3875 ;
3876@end group
3877@end example
3878
3879@noindent
3880Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3881deciding which rule for @code{compound} it will eventually use.
bfa74976 3882
342b8b6e 3883@node Locations
847bf1f5
AD
3884@section Tracking Locations
3885@cindex location
95923bd6
AD
3886@cindex textual location
3887@cindex location, textual
847bf1f5
AD
3888
3889Though grammar rules and semantic actions are enough to write a fully
72d2299c 3890functional parser, it can be useful to process some additional information,
3e259915
MA
3891especially symbol locations.
3892
704a47c4
AD
3893The way locations are handled is defined by providing a data type, and
3894actions to take when rules are matched.
847bf1f5
AD
3895
3896@menu
3897* Location Type:: Specifying a data type for locations.
3898* Actions and Locations:: Using locations in actions.
3899* Location Default Action:: Defining a general way to compute locations.
3900@end menu
3901
342b8b6e 3902@node Location Type
847bf1f5
AD
3903@subsection Data Type of Locations
3904@cindex data type of locations
3905@cindex default location type
3906
3907Defining a data type for locations is much simpler than for semantic values,
3908since all tokens and groupings always use the same type.
3909
50cce58e
PE
3910You can specify the type of locations by defining a macro called
3911@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3912defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3913When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3914four members:
3915
3916@example
6273355b 3917typedef struct YYLTYPE
847bf1f5
AD
3918@{
3919 int first_line;
3920 int first_column;
3921 int last_line;
3922 int last_column;
6273355b 3923@} YYLTYPE;
847bf1f5
AD
3924@end example
3925
d59e456d
AD
3926When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3927initializes all these fields to 1 for @code{yylloc}. To initialize
3928@code{yylloc} with a custom location type (or to chose a different
3929initialization), use the @code{%initial-action} directive. @xref{Initial
3930Action Decl, , Performing Actions before Parsing}.
cd48d21d 3931
342b8b6e 3932@node Actions and Locations
847bf1f5
AD
3933@subsection Actions and Locations
3934@cindex location actions
3935@cindex actions, location
3936@vindex @@$
3937@vindex @@@var{n}
d013372c
AR
3938@vindex @@@var{name}
3939@vindex @@[@var{name}]
847bf1f5
AD
3940
3941Actions are not only useful for defining language semantics, but also for
3942describing the behavior of the output parser with locations.
3943
3944The most obvious way for building locations of syntactic groupings is very
72d2299c 3945similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3946constructs can be used to access the locations of the elements being matched.
3947The location of the @var{n}th component of the right hand side is
3948@code{@@@var{n}}, while the location of the left hand side grouping is
3949@code{@@$}.
3950
d013372c
AR
3951In addition, the named references construct @code{@@@var{name}} and
3952@code{@@[@var{name}]} may also be used to address the symbol locations.
3953@xref{Named References,,Using Named References}, for more information
3954about using the named references construct.
3955
3e259915 3956Here is a basic example using the default data type for locations:
847bf1f5
AD
3957
3958@example
3959@group
3960exp: @dots{}
3e259915 3961 | exp '/' exp
847bf1f5 3962 @{
3e259915
MA
3963 @@$.first_column = @@1.first_column;
3964 @@$.first_line = @@1.first_line;
847bf1f5
AD
3965 @@$.last_column = @@3.last_column;
3966 @@$.last_line = @@3.last_line;
3e259915
MA
3967 if ($3)
3968 $$ = $1 / $3;
3969 else
3970 @{
3971 $$ = 1;
4e03e201
AD
3972 fprintf (stderr,
3973 "Division by zero, l%d,c%d-l%d,c%d",
3974 @@3.first_line, @@3.first_column,
3975 @@3.last_line, @@3.last_column);
3e259915 3976 @}
847bf1f5
AD
3977 @}
3978@end group
3979@end example
3980
3e259915 3981As for semantic values, there is a default action for locations that is
72d2299c 3982run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3983beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3984last symbol.
3e259915 3985
72d2299c 3986With this default action, the location tracking can be fully automatic. The
3e259915
MA
3987example above simply rewrites this way:
3988
3989@example
3990@group
3991exp: @dots{}
3992 | exp '/' exp
3993 @{
3994 if ($3)
3995 $$ = $1 / $3;
3996 else
3997 @{
3998 $$ = 1;
4e03e201
AD
3999 fprintf (stderr,
4000 "Division by zero, l%d,c%d-l%d,c%d",
4001 @@3.first_line, @@3.first_column,
4002 @@3.last_line, @@3.last_column);
3e259915
MA
4003 @}
4004 @}
4005@end group
4006@end example
847bf1f5 4007
32c29292 4008@vindex yylloc
742e4900 4009It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4010from a semantic action.
4011This location is stored in @code{yylloc}.
4012@xref{Action Features, ,Special Features for Use in Actions}.
4013
342b8b6e 4014@node Location Default Action
847bf1f5
AD
4015@subsection Default Action for Locations
4016@vindex YYLLOC_DEFAULT
8a4281b9 4017@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4018
72d2299c 4019Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4020locations are much more general than semantic values, there is room in
4021the output parser to redefine the default action to take for each
72d2299c 4022rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4023matched, before the associated action is run. It is also invoked
4024while processing a syntax error, to compute the error's location.
8a4281b9 4025Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4026parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4027of that ambiguity.
847bf1f5 4028
3e259915 4029Most of the time, this macro is general enough to suppress location
79282c6c 4030dedicated code from semantic actions.
847bf1f5 4031
72d2299c 4032The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4033the location of the grouping (the result of the computation). When a
766de5eb 4034rule is matched, the second parameter identifies locations of
96b93a3d 4035all right hand side elements of the rule being matched, and the third
8710fc41 4036parameter is the size of the rule's right hand side.
8a4281b9 4037When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4038right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4039When processing a syntax error, the second parameter identifies locations
4040of the symbols that were discarded during error processing, and the third
96b93a3d 4041parameter is the number of discarded symbols.
847bf1f5 4042
766de5eb 4043By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4044
766de5eb 4045@smallexample
847bf1f5 4046@group
766de5eb
PE
4047# define YYLLOC_DEFAULT(Current, Rhs, N) \
4048 do \
4049 if (N) \
4050 @{ \
4051 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4052 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4053 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4054 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4055 @} \
4056 else \
4057 @{ \
4058 (Current).first_line = (Current).last_line = \
4059 YYRHSLOC(Rhs, 0).last_line; \
4060 (Current).first_column = (Current).last_column = \
4061 YYRHSLOC(Rhs, 0).last_column; \
4062 @} \
4063 while (0)
847bf1f5 4064@end group
766de5eb 4065@end smallexample
676385e2 4066
766de5eb
PE
4067where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4068in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4069just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4070
3e259915 4071When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4072
3e259915 4073@itemize @bullet
79282c6c 4074@item
72d2299c 4075All arguments are free of side-effects. However, only the first one (the
3e259915 4076result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4077
3e259915 4078@item
766de5eb
PE
4079For consistency with semantic actions, valid indexes within the
4080right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4081valid index, and it refers to the symbol just before the reduction.
4082During error processing @var{n} is always positive.
0ae99356
PE
4083
4084@item
4085Your macro should parenthesize its arguments, if need be, since the
4086actual arguments may not be surrounded by parentheses. Also, your
4087macro should expand to something that can be used as a single
4088statement when it is followed by a semicolon.
3e259915 4089@end itemize
847bf1f5 4090
378e917c
JD
4091@node Named References
4092@section Using Named References
4093@cindex named references
4094
4095While every semantic value can be accessed with positional references
4096@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
4097them by name. First of all, original symbol names may be used as named
4098references. For example:
4099
4100@example
4101@group
4102invocation: op '(' args ')'
4103 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4104@end group
4105@end example
4106
4107@noindent
4108The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
4109mixed with @code{$name} and @code{@@name} arbitrarily. For example:
4110
4111@example
4112@group
4113invocation: op '(' args ')'
4114 @{ $$ = new_invocation ($op, $args, @@$); @}
4115@end group
4116@end example
4117
4118@noindent
4119However, sometimes regular symbol names are not sufficient due to
4120ambiguities:
4121
4122@example
4123@group
4124exp: exp '/' exp
4125 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4126
4127exp: exp '/' exp
4128 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4129
4130exp: exp '/' exp
4131 @{ $$ = $1 / $3; @} // No error.
4132@end group
4133@end example
4134
4135@noindent
4136When ambiguity occurs, explicitly declared names may be used for values and
4137locations. Explicit names are declared as a bracketed name after a symbol
4138appearance in rule definitions. For example:
4139@example
4140@group
4141exp[result]: exp[left] '/' exp[right]
4142 @{ $result = $left / $right; @}
4143@end group
4144@end example
4145
4146@noindent
4147Explicit names may be declared for RHS and for LHS symbols as well. In order
4148to access a semantic value generated by a mid-rule action, an explicit name
4149may also be declared by putting a bracketed name after the closing brace of
4150the mid-rule action code:
4151@example
4152@group
4153exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4154 @{ $res = $left + $right; @}
4155@end group
4156@end example
4157
4158@noindent
4159
4160In references, in order to specify names containing dots and dashes, an explicit
4161bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4162@example
4163@group
4164if-stmt: IF '(' expr ')' THEN then.stmt ';'
4165 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4166@end group
4167@end example
4168
4169It often happens that named references are followed by a dot, dash or other
4170C punctuation marks and operators. By default, Bison will read
4171@code{$name.suffix} as a reference to symbol value @code{$name} followed by
4172@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
4173value. In order to force Bison to recognize @code{name.suffix} in its entirety
4174as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
4175must be used.
4176
342b8b6e 4177@node Declarations
bfa74976
RS
4178@section Bison Declarations
4179@cindex declarations, Bison
4180@cindex Bison declarations
4181
4182The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4183used in formulating the grammar and the data types of semantic values.
4184@xref{Symbols}.
4185
4186All token type names (but not single-character literal tokens such as
4187@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4188declared if you need to specify which data type to use for the semantic
4189value (@pxref{Multiple Types, ,More Than One Value Type}).
4190
ff7571c0
JD
4191The first rule in the grammar file also specifies the start symbol, by
4192default. If you want some other symbol to be the start symbol, you
4193must declare it explicitly (@pxref{Language and Grammar, ,Languages
4194and Context-Free Grammars}).
bfa74976
RS
4195
4196@menu
b50d2359 4197* Require Decl:: Requiring a Bison version.
bfa74976
RS
4198* Token Decl:: Declaring terminal symbols.
4199* Precedence Decl:: Declaring terminals with precedence and associativity.
4200* Union Decl:: Declaring the set of all semantic value types.
4201* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4202* Initial Action Decl:: Code run before parsing starts.
72f889cc 4203* Destructor Decl:: Declaring how symbols are freed.
d6328241 4204* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4205* Start Decl:: Specifying the start symbol.
4206* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4207* Push Decl:: Requesting a push parser.
bfa74976 4208* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4209* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4210* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4211@end menu
4212
b50d2359
AD
4213@node Require Decl
4214@subsection Require a Version of Bison
4215@cindex version requirement
4216@cindex requiring a version of Bison
4217@findex %require
4218
4219You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4220the requirement is not met, @command{bison} exits with an error (exit
4221status 63).
b50d2359
AD
4222
4223@example
4224%require "@var{version}"
4225@end example
4226
342b8b6e 4227@node Token Decl
bfa74976
RS
4228@subsection Token Type Names
4229@cindex declaring token type names
4230@cindex token type names, declaring
931c7513 4231@cindex declaring literal string tokens
bfa74976
RS
4232@findex %token
4233
4234The basic way to declare a token type name (terminal symbol) is as follows:
4235
4236@example
4237%token @var{name}
4238@end example
4239
4240Bison will convert this into a @code{#define} directive in
4241the parser, so that the function @code{yylex} (if it is in this file)
4242can use the name @var{name} to stand for this token type's code.
4243
d78f0ac9
AD
4244Alternatively, you can use @code{%left}, @code{%right},
4245@code{%precedence}, or
14ded682
AD
4246@code{%nonassoc} instead of @code{%token}, if you wish to specify
4247associativity and precedence. @xref{Precedence Decl, ,Operator
4248Precedence}.
bfa74976
RS
4249
4250You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4251a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4252following the token name:
bfa74976
RS
4253
4254@example
4255%token NUM 300
1452af69 4256%token XNUM 0x12d // a GNU extension
bfa74976
RS
4257@end example
4258
4259@noindent
4260It is generally best, however, to let Bison choose the numeric codes for
4261all token types. Bison will automatically select codes that don't conflict
e966383b 4262with each other or with normal characters.
bfa74976
RS
4263
4264In the event that the stack type is a union, you must augment the
4265@code{%token} or other token declaration to include the data type
704a47c4
AD
4266alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4267Than One Value Type}).
bfa74976
RS
4268
4269For example:
4270
4271@example
4272@group
4273%union @{ /* define stack type */
4274 double val;
4275 symrec *tptr;
4276@}
4277%token <val> NUM /* define token NUM and its type */
4278@end group
4279@end example
4280
931c7513
RS
4281You can associate a literal string token with a token type name by
4282writing the literal string at the end of a @code{%token}
4283declaration which declares the name. For example:
4284
4285@example
4286%token arrow "=>"
4287@end example
4288
4289@noindent
4290For example, a grammar for the C language might specify these names with
4291equivalent literal string tokens:
4292
4293@example
4294%token <operator> OR "||"
4295%token <operator> LE 134 "<="
4296%left OR "<="
4297@end example
4298
4299@noindent
4300Once you equate the literal string and the token name, you can use them
4301interchangeably in further declarations or the grammar rules. The
4302@code{yylex} function can use the token name or the literal string to
4303obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4304Syntax error messages passed to @code{yyerror} from the parser will reference
4305the literal string instead of the token name.
4306
4307The token numbered as 0 corresponds to end of file; the following line
4308allows for nicer error messages referring to ``end of file'' instead
4309of ``$end'':
4310
4311@example
4312%token END 0 "end of file"
4313@end example
931c7513 4314
342b8b6e 4315@node Precedence Decl
bfa74976
RS
4316@subsection Operator Precedence
4317@cindex precedence declarations
4318@cindex declaring operator precedence
4319@cindex operator precedence, declaring
4320
d78f0ac9
AD
4321Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4322@code{%precedence} declaration to
bfa74976
RS
4323declare a token and specify its precedence and associativity, all at
4324once. These are called @dfn{precedence declarations}.
704a47c4
AD
4325@xref{Precedence, ,Operator Precedence}, for general information on
4326operator precedence.
bfa74976 4327
ab7f29f8 4328The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4329@code{%token}: either
4330
4331@example
4332%left @var{symbols}@dots{}
4333@end example
4334
4335@noindent
4336or
4337
4338@example
4339%left <@var{type}> @var{symbols}@dots{}
4340@end example
4341
4342And indeed any of these declarations serves the purposes of @code{%token}.
4343But in addition, they specify the associativity and relative precedence for
4344all the @var{symbols}:
4345
4346@itemize @bullet
4347@item
4348The associativity of an operator @var{op} determines how repeated uses
4349of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4350@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4351grouping @var{y} with @var{z} first. @code{%left} specifies
4352left-associativity (grouping @var{x} with @var{y} first) and
4353@code{%right} specifies right-associativity (grouping @var{y} with
4354@var{z} first). @code{%nonassoc} specifies no associativity, which
4355means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4356considered a syntax error.
4357
d78f0ac9
AD
4358@code{%precedence} gives only precedence to the @var{symbols}, and
4359defines no associativity at all. Use this to define precedence only,
4360and leave any potential conflict due to associativity enabled.
4361
bfa74976
RS
4362@item
4363The precedence of an operator determines how it nests with other operators.
4364All the tokens declared in a single precedence declaration have equal
4365precedence and nest together according to their associativity.
4366When two tokens declared in different precedence declarations associate,
4367the one declared later has the higher precedence and is grouped first.
4368@end itemize
4369
ab7f29f8
JD
4370For backward compatibility, there is a confusing difference between the
4371argument lists of @code{%token} and precedence declarations.
4372Only a @code{%token} can associate a literal string with a token type name.
4373A precedence declaration always interprets a literal string as a reference to a
4374separate token.
4375For example:
4376
4377@example
4378%left OR "<=" // Does not declare an alias.
4379%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4380@end example
4381
342b8b6e 4382@node Union Decl
bfa74976
RS
4383@subsection The Collection of Value Types
4384@cindex declaring value types
4385@cindex value types, declaring
4386@findex %union
4387
287c78f6
PE
4388The @code{%union} declaration specifies the entire collection of
4389possible data types for semantic values. The keyword @code{%union} is
4390followed by braced code containing the same thing that goes inside a
4391@code{union} in C@.
bfa74976
RS
4392
4393For example:
4394
4395@example
4396@group
4397%union @{
4398 double val;
4399 symrec *tptr;
4400@}
4401@end group
4402@end example
4403
4404@noindent
4405This says that the two alternative types are @code{double} and @code{symrec
4406*}. They are given names @code{val} and @code{tptr}; these names are used
4407in the @code{%token} and @code{%type} declarations to pick one of the types
4408for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4409
8a4281b9 4410As an extension to POSIX, a tag is allowed after the
6273355b
PE
4411@code{union}. For example:
4412
4413@example
4414@group
4415%union value @{
4416 double val;
4417 symrec *tptr;
4418@}
4419@end group
4420@end example
4421
d6ca7905 4422@noindent
6273355b
PE
4423specifies the union tag @code{value}, so the corresponding C type is
4424@code{union value}. If you do not specify a tag, it defaults to
4425@code{YYSTYPE}.
4426
8a4281b9 4427As another extension to POSIX, you may specify multiple
d6ca7905
PE
4428@code{%union} declarations; their contents are concatenated. However,
4429only the first @code{%union} declaration can specify a tag.
4430
6273355b 4431Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4432a semicolon after the closing brace.
4433
ddc8ede1
PE
4434Instead of @code{%union}, you can define and use your own union type
4435@code{YYSTYPE} if your grammar contains at least one
4436@samp{<@var{type}>} tag. For example, you can put the following into
4437a header file @file{parser.h}:
4438
4439@example
4440@group
4441union YYSTYPE @{
4442 double val;
4443 symrec *tptr;
4444@};
4445typedef union YYSTYPE YYSTYPE;
4446@end group
4447@end example
4448
4449@noindent
4450and then your grammar can use the following
4451instead of @code{%union}:
4452
4453@example
4454@group
4455%@{
4456#include "parser.h"
4457%@}
4458%type <val> expr
4459%token <tptr> ID
4460@end group
4461@end example
4462
342b8b6e 4463@node Type Decl
bfa74976
RS
4464@subsection Nonterminal Symbols
4465@cindex declaring value types, nonterminals
4466@cindex value types, nonterminals, declaring
4467@findex %type
4468
4469@noindent
4470When you use @code{%union} to specify multiple value types, you must
4471declare the value type of each nonterminal symbol for which values are
4472used. This is done with a @code{%type} declaration, like this:
4473
4474@example
4475%type <@var{type}> @var{nonterminal}@dots{}
4476@end example
4477
4478@noindent
704a47c4
AD
4479Here @var{nonterminal} is the name of a nonterminal symbol, and
4480@var{type} is the name given in the @code{%union} to the alternative
4481that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4482can give any number of nonterminal symbols in the same @code{%type}
4483declaration, if they have the same value type. Use spaces to separate
4484the symbol names.
bfa74976 4485
931c7513
RS
4486You can also declare the value type of a terminal symbol. To do this,
4487use the same @code{<@var{type}>} construction in a declaration for the
4488terminal symbol. All kinds of token declarations allow
4489@code{<@var{type}>}.
4490
18d192f0
AD
4491@node Initial Action Decl
4492@subsection Performing Actions before Parsing
4493@findex %initial-action
4494
4495Sometimes your parser needs to perform some initializations before
4496parsing. The @code{%initial-action} directive allows for such arbitrary
4497code.
4498
4499@deffn {Directive} %initial-action @{ @var{code} @}
4500@findex %initial-action
287c78f6 4501Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4502@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4503@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4504@code{%parse-param}.
18d192f0
AD
4505@end deffn
4506
451364ed
AD
4507For instance, if your locations use a file name, you may use
4508
4509@example
48b16bbc 4510%parse-param @{ char const *file_name @};
451364ed
AD
4511%initial-action
4512@{
4626a15d 4513 @@$.initialize (file_name);
451364ed
AD
4514@};
4515@end example
4516
18d192f0 4517
72f889cc
AD
4518@node Destructor Decl
4519@subsection Freeing Discarded Symbols
4520@cindex freeing discarded symbols
4521@findex %destructor
12e35840 4522@findex <*>
3ebecc24 4523@findex <>
a85284cf
AD
4524During error recovery (@pxref{Error Recovery}), symbols already pushed
4525on the stack and tokens coming from the rest of the file are discarded
4526until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4527or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4528symbols on the stack must be discarded. Even if the parser succeeds, it
4529must discard the start symbol.
258b75ca
PE
4530
4531When discarded symbols convey heap based information, this memory is
4532lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4533in traditional compilers, it is unacceptable for programs like shells or
4534protocol implementations that may parse and execute indefinitely.
258b75ca 4535
a85284cf
AD
4536The @code{%destructor} directive defines code that is called when a
4537symbol is automatically discarded.
72f889cc
AD
4538
4539@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4540@findex %destructor
287c78f6
PE
4541Invoke the braced @var{code} whenever the parser discards one of the
4542@var{symbols}.
4b367315 4543Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4544with the discarded symbol, and @code{@@$} designates its location.
4545The additional parser parameters are also available (@pxref{Parser Function, ,
4546The Parser Function @code{yyparse}}).
ec5479ce 4547
b2a0b7ca
JD
4548When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4549per-symbol @code{%destructor}.
4550You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4551tag among @var{symbols}.
b2a0b7ca 4552In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4553grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4554per-symbol @code{%destructor}.
4555
12e35840 4556Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4557(These default forms are experimental.
4558More user feedback will help to determine whether they should become permanent
4559features.)
3ebecc24 4560You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4561exactly one @code{%destructor} declaration in your grammar file.
4562The parser will invoke the @var{code} associated with one of these whenever it
4563discards any user-defined grammar symbol that has no per-symbol and no per-type
4564@code{%destructor}.
4565The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4566symbol for which you have formally declared a semantic type tag (@code{%type}
4567counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4568The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4569symbol that has no declared semantic type tag.
72f889cc
AD
4570@end deffn
4571
b2a0b7ca 4572@noindent
12e35840 4573For example:
72f889cc
AD
4574
4575@smallexample
ec5479ce
JD
4576%union @{ char *string; @}
4577%token <string> STRING1
4578%token <string> STRING2
4579%type <string> string1
4580%type <string> string2
b2a0b7ca
JD
4581%union @{ char character; @}
4582%token <character> CHR
4583%type <character> chr
12e35840
JD
4584%token TAGLESS
4585
b2a0b7ca 4586%destructor @{ @} <character>
12e35840
JD
4587%destructor @{ free ($$); @} <*>
4588%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4589%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4590@end smallexample
4591
4592@noindent
b2a0b7ca
JD
4593guarantees that, when the parser discards any user-defined symbol that has a
4594semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4595to @code{free} by default.
ec5479ce
JD
4596However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4597prints its line number to @code{stdout}.
4598It performs only the second @code{%destructor} in this case, so it invokes
4599@code{free} only once.
12e35840
JD
4600Finally, the parser merely prints a message whenever it discards any symbol,
4601such as @code{TAGLESS}, that has no semantic type tag.
4602
4603A Bison-generated parser invokes the default @code{%destructor}s only for
4604user-defined as opposed to Bison-defined symbols.
4605For example, the parser will not invoke either kind of default
4606@code{%destructor} for the special Bison-defined symbols @code{$accept},
4607@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4608none of which you can reference in your grammar.
4609It also will not invoke either for the @code{error} token (@pxref{Table of
4610Symbols, ,error}), which is always defined by Bison regardless of whether you
4611reference it in your grammar.
4612However, it may invoke one of them for the end token (token 0) if you
4613redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4614
4615@smallexample
4616%token END 0
4617@end smallexample
4618
12e35840
JD
4619@cindex actions in mid-rule
4620@cindex mid-rule actions
4621Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4622mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4623That is, Bison does not consider a mid-rule to have a semantic value if you do
4624not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4625@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4626rule.
4627However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4628@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4629
3508ce36
JD
4630@ignore
4631@noindent
4632In the future, it may be possible to redefine the @code{error} token as a
4633nonterminal that captures the discarded symbols.
4634In that case, the parser will invoke the default destructor for it as well.
4635@end ignore
4636
e757bb10
AD
4637@sp 1
4638
4639@cindex discarded symbols
4640@dfn{Discarded symbols} are the following:
4641
4642@itemize
4643@item
4644stacked symbols popped during the first phase of error recovery,
4645@item
4646incoming terminals during the second phase of error recovery,
4647@item
742e4900 4648the current lookahead and the entire stack (except the current
9d9b8b70 4649right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4650@item
4651the start symbol, when the parser succeeds.
e757bb10
AD
4652@end itemize
4653
9d9b8b70
PE
4654The parser can @dfn{return immediately} because of an explicit call to
4655@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4656exhaustion.
4657
29553547 4658Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4659error via @code{YYERROR} are not discarded automatically. As a rule
4660of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4661the memory.
e757bb10 4662
342b8b6e 4663@node Expect Decl
bfa74976
RS
4664@subsection Suppressing Conflict Warnings
4665@cindex suppressing conflict warnings
4666@cindex preventing warnings about conflicts
4667@cindex warnings, preventing
4668@cindex conflicts, suppressing warnings of
4669@findex %expect
d6328241 4670@findex %expect-rr
bfa74976
RS
4671
4672Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4673(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4674have harmless shift/reduce conflicts which are resolved in a predictable
4675way and would be difficult to eliminate. It is desirable to suppress
4676the warning about these conflicts unless the number of conflicts
4677changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4678
4679The declaration looks like this:
4680
4681@example
4682%expect @var{n}
4683@end example
4684
035aa4a0
PE
4685Here @var{n} is a decimal integer. The declaration says there should
4686be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4687Bison reports an error if the number of shift/reduce conflicts differs
4688from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4689
eb45ef3b 4690For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4691serious, and should be eliminated entirely. Bison will always report
8a4281b9 4692reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4693parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4694there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4695also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4696in GLR parsers, using the declaration:
d6328241
PH
4697
4698@example
4699%expect-rr @var{n}
4700@end example
4701
bfa74976
RS
4702In general, using @code{%expect} involves these steps:
4703
4704@itemize @bullet
4705@item
4706Compile your grammar without @code{%expect}. Use the @samp{-v} option
4707to get a verbose list of where the conflicts occur. Bison will also
4708print the number of conflicts.
4709
4710@item
4711Check each of the conflicts to make sure that Bison's default
4712resolution is what you really want. If not, rewrite the grammar and
4713go back to the beginning.
4714
4715@item
4716Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4717number which Bison printed. With GLR parsers, add an
035aa4a0 4718@code{%expect-rr} declaration as well.
bfa74976
RS
4719@end itemize
4720
93d7dde9
JD
4721Now Bison will report an error if you introduce an unexpected conflict,
4722but will keep silent otherwise.
bfa74976 4723
342b8b6e 4724@node Start Decl
bfa74976
RS
4725@subsection The Start-Symbol
4726@cindex declaring the start symbol
4727@cindex start symbol, declaring
4728@cindex default start symbol
4729@findex %start
4730
4731Bison assumes by default that the start symbol for the grammar is the first
4732nonterminal specified in the grammar specification section. The programmer
4733may override this restriction with the @code{%start} declaration as follows:
4734
4735@example
4736%start @var{symbol}
4737@end example
4738
342b8b6e 4739@node Pure Decl
bfa74976
RS
4740@subsection A Pure (Reentrant) Parser
4741@cindex reentrant parser
4742@cindex pure parser
d9df47b6 4743@findex %define api.pure
bfa74976
RS
4744
4745A @dfn{reentrant} program is one which does not alter in the course of
4746execution; in other words, it consists entirely of @dfn{pure} (read-only)
4747code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4748for example, a nonreentrant program may not be safe to call from a signal
4749handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4750program must be called only within interlocks.
4751
70811b85 4752Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4753suitable for most uses, and it permits compatibility with Yacc. (The
4754standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4755statically allocated variables for communication with @code{yylex},
4756including @code{yylval} and @code{yylloc}.)
bfa74976 4757
70811b85 4758Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4759declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4760reentrant. It looks like this:
bfa74976
RS
4761
4762@example
d9df47b6 4763%define api.pure
bfa74976
RS
4764@end example
4765
70811b85
RS
4766The result is that the communication variables @code{yylval} and
4767@code{yylloc} become local variables in @code{yyparse}, and a different
4768calling convention is used for the lexical analyzer function
4769@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4770Parsers}, for the details of this. The variable @code{yynerrs}
4771becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4772of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4773Reporting Function @code{yyerror}}). The convention for calling
4774@code{yyparse} itself is unchanged.
4775
4776Whether the parser is pure has nothing to do with the grammar rules.
4777You can generate either a pure parser or a nonreentrant parser from any
4778valid grammar.
bfa74976 4779
9987d1b3
JD
4780@node Push Decl
4781@subsection A Push Parser
4782@cindex push parser
4783@cindex push parser
67212941 4784@findex %define api.push-pull
9987d1b3 4785
59da312b
JD
4786(The current push parsing interface is experimental and may evolve.
4787More user feedback will help to stabilize it.)
4788
f4101aa6
AD
4789A pull parser is called once and it takes control until all its input
4790is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4791each time a new token is made available.
4792
f4101aa6 4793A push parser is typically useful when the parser is part of a
9987d1b3 4794main event loop in the client's application. This is typically
f4101aa6
AD
4795a requirement of a GUI, when the main event loop needs to be triggered
4796within a certain time period.
9987d1b3 4797
d782395d
JD
4798Normally, Bison generates a pull parser.
4799The following Bison declaration says that you want the parser to be a push
35c1e5f0 4800parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4801
4802@example
cf499cff 4803%define api.push-pull push
9987d1b3
JD
4804@end example
4805
4806In almost all cases, you want to ensure that your push parser is also
4807a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4808time you should create an impure push parser is to have backwards
9987d1b3
JD
4809compatibility with the impure Yacc pull mode interface. Unless you know
4810what you are doing, your declarations should look like this:
4811
4812@example
d9df47b6 4813%define api.pure
cf499cff 4814%define api.push-pull push
9987d1b3
JD
4815@end example
4816
f4101aa6
AD
4817There is a major notable functional difference between the pure push parser
4818and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4819many parser instances, of the same type of parser, in memory at the same time.
4820An impure push parser should only use one parser at a time.
4821
4822When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4823the generated parser. @code{yypstate} is a structure that the generated
4824parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4825function that will create a new parser instance. @code{yypstate_delete}
4826will free the resources associated with the corresponding parser instance.
f4101aa6 4827Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4828token is available to provide the parser. A trivial example
4829of using a pure push parser would look like this:
4830
4831@example
4832int status;
4833yypstate *ps = yypstate_new ();
4834do @{
4835 status = yypush_parse (ps, yylex (), NULL);
4836@} while (status == YYPUSH_MORE);
4837yypstate_delete (ps);
4838@end example
4839
4840If the user decided to use an impure push parser, a few things about
f4101aa6 4841the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4842a global variable instead of a variable in the @code{yypush_parse} function.
4843For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4844changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4845example would thus look like this:
4846
4847@example
4848extern int yychar;
4849int status;
4850yypstate *ps = yypstate_new ();
4851do @{
4852 yychar = yylex ();
4853 status = yypush_parse (ps);
4854@} while (status == YYPUSH_MORE);
4855yypstate_delete (ps);
4856@end example
4857
f4101aa6 4858That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4859for use by the next invocation of the @code{yypush_parse} function.
4860
f4101aa6 4861Bison also supports both the push parser interface along with the pull parser
9987d1b3 4862interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4863you should replace the @samp{%define api.push-pull push} declaration with the
4864@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4865the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4866and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4867would be used. However, the user should note that it is implemented in the
d782395d
JD
4868generated parser by calling @code{yypull_parse}.
4869This makes the @code{yyparse} function that is generated with the
cf499cff 4870@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4871@code{yyparse} function. If the user
4872calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4873stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4874and then @code{yypull_parse} the rest of the input stream. If you would like
4875to switch back and forth between between parsing styles, you would have to
4876write your own @code{yypull_parse} function that knows when to quit looking
4877for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4878like this:
4879
4880@example
4881yypstate *ps = yypstate_new ();
4882yypull_parse (ps); /* Will call the lexer */
4883yypstate_delete (ps);
4884@end example
4885
67501061 4886Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4887the generated parser with @samp{%define api.push-pull both} as it did for
4888@samp{%define api.push-pull push}.
9987d1b3 4889
342b8b6e 4890@node Decl Summary
bfa74976
RS
4891@subsection Bison Declaration Summary
4892@cindex Bison declaration summary
4893@cindex declaration summary
4894@cindex summary, Bison declaration
4895
d8988b2f 4896Here is a summary of the declarations used to define a grammar:
bfa74976 4897
18b519c0 4898@deffn {Directive} %union
bfa74976
RS
4899Declare the collection of data types that semantic values may have
4900(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4901@end deffn
bfa74976 4902
18b519c0 4903@deffn {Directive} %token
bfa74976
RS
4904Declare a terminal symbol (token type name) with no precedence
4905or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4906@end deffn
bfa74976 4907
18b519c0 4908@deffn {Directive} %right
bfa74976
RS
4909Declare a terminal symbol (token type name) that is right-associative
4910(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4911@end deffn
bfa74976 4912
18b519c0 4913@deffn {Directive} %left
bfa74976
RS
4914Declare a terminal symbol (token type name) that is left-associative
4915(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4916@end deffn
bfa74976 4917
18b519c0 4918@deffn {Directive} %nonassoc
bfa74976 4919Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4920(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4921Using it in a way that would be associative is a syntax error.
4922@end deffn
4923
91d2c560 4924@ifset defaultprec
39a06c25 4925@deffn {Directive} %default-prec
22fccf95 4926Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4927(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4928@end deffn
91d2c560 4929@end ifset
bfa74976 4930
18b519c0 4931@deffn {Directive} %type
bfa74976
RS
4932Declare the type of semantic values for a nonterminal symbol
4933(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4934@end deffn
bfa74976 4935
18b519c0 4936@deffn {Directive} %start
89cab50d
AD
4937Specify the grammar's start symbol (@pxref{Start Decl, ,The
4938Start-Symbol}).
18b519c0 4939@end deffn
bfa74976 4940
18b519c0 4941@deffn {Directive} %expect
bfa74976
RS
4942Declare the expected number of shift-reduce conflicts
4943(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4944@end deffn
4945
bfa74976 4946
d8988b2f
AD
4947@sp 1
4948@noindent
4949In order to change the behavior of @command{bison}, use the following
4950directives:
4951
148d66d8 4952@deffn {Directive} %code @{@var{code}@}
e0c07222 4953@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4954@findex %code
e0c07222
JD
4955Insert @var{code} verbatim into the output parser source at the
4956default location or at the location specified by @var{qualifier}.
4957@xref{%code Summary}.
148d66d8
JD
4958@end deffn
4959
18b519c0 4960@deffn {Directive} %debug
fa819509
AD
4961Instrument the output parser for traces. Obsoleted by @samp{%define
4962parse.trace}.
ec3bc396 4963@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 4964@end deffn
d8988b2f 4965
35c1e5f0
JD
4966@deffn {Directive} %define @var{variable}
4967@deffnx {Directive} %define @var{variable} @var{value}
4968@deffnx {Directive} %define @var{variable} "@var{value}"
4969Define a variable to adjust Bison's behavior. @xref{%define Summary}.
4970@end deffn
4971
4972@deffn {Directive} %defines
4973Write a parser header file containing macro definitions for the token
4974type names defined in the grammar as well as a few other declarations.
4975If the parser implementation file is named @file{@var{name}.c} then
4976the parser header file is named @file{@var{name}.h}.
4977
4978For C parsers, the parser header file declares @code{YYSTYPE} unless
4979@code{YYSTYPE} is already defined as a macro or you have used a
4980@code{<@var{type}>} tag without using @code{%union}. Therefore, if
4981you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
4982Value Type}) with components that require other definitions, or if you
4983have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
4984Type, ,Data Types of Semantic Values}), you need to arrange for these
4985definitions to be propagated to all modules, e.g., by putting them in
4986a prerequisite header that is included both by your parser and by any
4987other module that needs @code{YYSTYPE}.
4988
4989Unless your parser is pure, the parser header file declares
4990@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
4991(Reentrant) Parser}.
4992
4993If you have also used locations, the parser header file declares
4994@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4995the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations,
4996,Tracking Locations}.
4997
4998This parser header file is normally essential if you wish to put the
4999definition of @code{yylex} in a separate source file, because
5000@code{yylex} typically needs to be able to refer to the
5001above-mentioned declarations and to the token type codes. @xref{Token
5002Values, ,Semantic Values of Tokens}.
5003
5004@findex %code requires
5005@findex %code provides
5006If you have declared @code{%code requires} or @code{%code provides}, the output
5007header also contains their code.
5008@xref{%code Summary}.
5009@end deffn
5010
5011@deffn {Directive} %defines @var{defines-file}
5012Same as above, but save in the file @var{defines-file}.
5013@end deffn
5014
5015@deffn {Directive} %destructor
5016Specify how the parser should reclaim the memory associated to
5017discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5018@end deffn
5019
5020@deffn {Directive} %file-prefix "@var{prefix}"
5021Specify a prefix to use for all Bison output file names. The names
5022are chosen as if the grammar file were named @file{@var{prefix}.y}.
5023@end deffn
5024
5025@deffn {Directive} %language "@var{language}"
5026Specify the programming language for the generated parser. Currently
5027supported languages include C, C++, and Java.
5028@var{language} is case-insensitive.
5029
5030This directive is experimental and its effect may be modified in future
5031releases.
5032@end deffn
5033
5034@deffn {Directive} %locations
5035Generate the code processing the locations (@pxref{Action Features,
5036,Special Features for Use in Actions}). This mode is enabled as soon as
5037the grammar uses the special @samp{@@@var{n}} tokens, but if your
5038grammar does not use it, using @samp{%locations} allows for more
5039accurate syntax error messages.
5040@end deffn
5041
5042@deffn {Directive} %name-prefix "@var{prefix}"
5043Rename the external symbols used in the parser so that they start with
5044@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5045in C parsers
5046is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5047@code{yylval}, @code{yychar}, @code{yydebug}, and
5048(if locations are used) @code{yylloc}. If you use a push parser,
5049@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5050@code{yypstate_new} and @code{yypstate_delete} will
5051also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5052names become @code{c_parse}, @code{c_lex}, and so on.
5053For C++ parsers, see the @samp{%define api.namespace} documentation in this
5054section.
5055@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5056@end deffn
5057
5058@ifset defaultprec
5059@deffn {Directive} %no-default-prec
5060Do not assign a precedence to rules lacking an explicit @code{%prec}
5061modifier (@pxref{Contextual Precedence, ,Context-Dependent
5062Precedence}).
5063@end deffn
5064@end ifset
5065
5066@deffn {Directive} %no-lines
5067Don't generate any @code{#line} preprocessor commands in the parser
5068implementation file. Ordinarily Bison writes these commands in the
5069parser implementation file so that the C compiler and debuggers will
5070associate errors and object code with your source file (the grammar
5071file). This directive causes them to associate errors with the parser
5072implementation file, treating it as an independent source file in its
5073own right.
5074@end deffn
5075
5076@deffn {Directive} %output "@var{file}"
5077Specify @var{file} for the parser implementation file.
5078@end deffn
5079
5080@deffn {Directive} %pure-parser
5081Deprecated version of @samp{%define api.pure} (@pxref{%define
5082Summary,,api.pure}), for which Bison is more careful to warn about
5083unreasonable usage.
5084@end deffn
5085
5086@deffn {Directive} %require "@var{version}"
5087Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5088Require a Version of Bison}.
5089@end deffn
5090
5091@deffn {Directive} %skeleton "@var{file}"
5092Specify the skeleton to use.
5093
5094@c You probably don't need this option unless you are developing Bison.
5095@c You should use @code{%language} if you want to specify the skeleton for a
5096@c different language, because it is clearer and because it will always choose the
5097@c correct skeleton for non-deterministic or push parsers.
5098
5099If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5100file in the Bison installation directory.
5101If it does, @var{file} is an absolute file name or a file name relative to the
5102directory of the grammar file.
5103This is similar to how most shells resolve commands.
5104@end deffn
5105
5106@deffn {Directive} %token-table
5107Generate an array of token names in the parser implementation file.
5108The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5109the name of the token whose internal Bison token code number is
5110@var{i}. The first three elements of @code{yytname} correspond to the
5111predefined tokens @code{"$end"}, @code{"error"}, and
5112@code{"$undefined"}; after these come the symbols defined in the
5113grammar file.
5114
5115The name in the table includes all the characters needed to represent
5116the token in Bison. For single-character literals and literal
5117strings, this includes the surrounding quoting characters and any
5118escape sequences. For example, the Bison single-character literal
5119@code{'+'} corresponds to a three-character name, represented in C as
5120@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5121corresponds to a five-character name, represented in C as
5122@code{"\"\\\\/\""}.
5123
5124When you specify @code{%token-table}, Bison also generates macro
5125definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5126@code{YYNRULES}, and @code{YYNSTATES}:
5127
5128@table @code
5129@item YYNTOKENS
5130The highest token number, plus one.
5131@item YYNNTS
5132The number of nonterminal symbols.
5133@item YYNRULES
5134The number of grammar rules,
5135@item YYNSTATES
5136The number of parser states (@pxref{Parser States}).
5137@end table
5138@end deffn
5139
5140@deffn {Directive} %verbose
5141Write an extra output file containing verbose descriptions of the
5142parser states and what is done for each type of lookahead token in
5143that state. @xref{Understanding, , Understanding Your Parser}, for more
5144information.
5145@end deffn
5146
5147@deffn {Directive} %yacc
5148Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5149including its naming conventions. @xref{Bison Options}, for more.
5150@end deffn
5151
5152
5153@node %define Summary
5154@subsection %define Summary
51151d91
JD
5155
5156There are many features of Bison's behavior that can be controlled by
5157assigning the feature a single value. For historical reasons, some
5158such features are assigned values by dedicated directives, such as
5159@code{%start}, which assigns the start symbol. However, newer such
5160features are associated with variables, which are assigned by the
5161@code{%define} directive:
5162
c1d19e10 5163@deffn {Directive} %define @var{variable}
cf499cff 5164@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5165@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5166Define @var{variable} to @var{value}.
9611cfa2 5167
51151d91
JD
5168@var{value} must be placed in quotation marks if it contains any
5169character other than a letter, underscore, period, or non-initial dash
5170or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5171to specifying @code{""}.
9611cfa2 5172
51151d91
JD
5173It is an error if a @var{variable} is defined by @code{%define}
5174multiple times, but see @ref{Bison Options,,-D
5175@var{name}[=@var{value}]}.
5176@end deffn
cf499cff 5177
51151d91
JD
5178The rest of this section summarizes variables and values that
5179@code{%define} accepts.
9611cfa2 5180
51151d91
JD
5181Some @var{variable}s take Boolean values. In this case, Bison will
5182complain if the variable definition does not meet one of the following
5183four conditions:
9611cfa2
JD
5184
5185@enumerate
cf499cff 5186@item @code{@var{value}} is @code{true}
9611cfa2 5187
cf499cff
JD
5188@item @code{@var{value}} is omitted (or @code{""} is specified).
5189This is equivalent to @code{true}.
9611cfa2 5190
cf499cff 5191@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5192
5193@item @var{variable} is never defined.
c6abeab1 5194In this case, Bison selects a default value.
9611cfa2 5195@end enumerate
148d66d8 5196
c6abeab1
JD
5197What @var{variable}s are accepted, as well as their meanings and default
5198values, depend on the selected target language and/or the parser
5199skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5200Summary,,%skeleton}).
5201Unaccepted @var{variable}s produce an error.
793fbca5
JD
5202Some of the accepted @var{variable}s are:
5203
fa819509 5204@table @code
6b5a0de9 5205@c ================================================== api.namespace
67501061
AD
5206@item api.namespace
5207@findex %define api.namespace
5208@itemize
5209@item Languages(s): C++
5210
f1b238df 5211@item Purpose: Specify the namespace for the parser class.
67501061
AD
5212For example, if you specify:
5213
5214@smallexample
5215%define api.namespace "foo::bar"
5216@end smallexample
5217
5218Bison uses @code{foo::bar} verbatim in references such as:
5219
5220@smallexample
5221foo::bar::parser::semantic_type
5222@end smallexample
5223
5224However, to open a namespace, Bison removes any leading @code{::} and then
5225splits on any remaining occurrences:
5226
5227@smallexample
5228namespace foo @{ namespace bar @{
5229 class position;
5230 class location;
5231@} @}
5232@end smallexample
5233
5234@item Accepted Values:
5235Any absolute or relative C++ namespace reference without a trailing
5236@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5237
5238@item Default Value:
5239The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5240This usage of @code{%name-prefix} is for backward compatibility and can
5241be confusing since @code{%name-prefix} also specifies the textual prefix
5242for the lexical analyzer function. Thus, if you specify
5243@code{%name-prefix}, it is best to also specify @samp{%define
5244api.namespace} so that @code{%name-prefix} @emph{only} affects the
5245lexical analyzer function. For example, if you specify:
5246
5247@smallexample
5248%define api.namespace "foo"
5249%name-prefix "bar::"
5250@end smallexample
5251
5252The parser namespace is @code{foo} and @code{yylex} is referenced as
5253@code{bar::lex}.
5254@end itemize
5255@c namespace
5256
5257
5258
5259@c ================================================== api.pure
d9df47b6
JD
5260@item api.pure
5261@findex %define api.pure
5262
5263@itemize @bullet
5264@item Language(s): C
5265
5266@item Purpose: Request a pure (reentrant) parser program.
5267@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5268
5269@item Accepted Values: Boolean
5270
cf499cff 5271@item Default Value: @code{false}
d9df47b6 5272@end itemize
71b00ed8 5273@c api.pure
d9df47b6 5274
67501061
AD
5275
5276
5277@c ================================================== api.push-pull
67212941
JD
5278@item api.push-pull
5279@findex %define api.push-pull
793fbca5
JD
5280
5281@itemize @bullet
eb45ef3b 5282@item Language(s): C (deterministic parsers only)
793fbca5 5283
f1b238df 5284@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5285@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5286(The current push parsing interface is experimental and may evolve.
5287More user feedback will help to stabilize it.)
793fbca5 5288
cf499cff 5289@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5290
cf499cff 5291@item Default Value: @code{pull}
793fbca5 5292@end itemize
67212941 5293@c api.push-pull
71b00ed8 5294
6b5a0de9
AD
5295
5296
5297@c ================================================== api.tokens.prefix
4c6622c2
AD
5298@item api.tokens.prefix
5299@findex %define api.tokens.prefix
5300
5301@itemize
5302@item Languages(s): all
5303
5304@item Purpose:
5305Add a prefix to the token names when generating their definition in the
5306target language. For instance
5307
5308@example
5309%token FILE for ERROR
5310%define api.tokens.prefix "TOK_"
5311%%
5312start: FILE for ERROR;
5313@end example
5314
5315@noindent
5316generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5317and @code{TOK_ERROR} in the generated source files. In particular, the
5318scanner must use these prefixed token names, while the grammar itself
5319may still use the short names (as in the sample rule given above). The
5320generated informational files (@file{*.output}, @file{*.xml},
5321@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5322and @ref{Calc++ Scanner}, for a complete example.
5323
5324@item Accepted Values:
5325Any string. Should be a valid identifier prefix in the target language,
5326in other words, it should typically be an identifier itself (sequence of
5327letters, underscores, and ---not at the beginning--- digits).
5328
5329@item Default Value:
5330empty
5331@end itemize
5332@c api.tokens.prefix
5333
5334
3cdc21cf 5335@c ================================================== lex_symbol
84072495 5336@item lex_symbol
3cdc21cf
AD
5337@findex %define lex_symbol
5338
5339@itemize @bullet
5340@item Language(s):
5341C++
5342
5343@item Purpose:
5344When variant-based semantic values are enabled (@pxref{C++ Variants}),
5345request that symbols be handled as a whole (type, value, and possibly
5346location) in the scanner. @xref{Complete Symbols}, for details.
5347
5348@item Accepted Values:
5349Boolean.
5350
5351@item Default Value:
5352@code{false}
5353@end itemize
5354@c lex_symbol
5355
5356
6b5a0de9
AD
5357@c ================================================== lr.default-reductions
5358
5bab9d08 5359@item lr.default-reductions
5bab9d08 5360@findex %define lr.default-reductions
eb45ef3b
JD
5361
5362@itemize @bullet
5363@item Language(s): all
5364
fcf834f9 5365@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5366contain default reductions. @xref{Default Reductions}. (The ability to
5367specify where default reductions should be used is experimental. More user
5368feedback will help to stabilize it.)
eb45ef3b 5369
f0ad1b2f 5370@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5371@item Default Value:
5372@itemize
cf499cff 5373@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5374@item @code{most} otherwise.
eb45ef3b
JD
5375@end itemize
5376@end itemize
5377
6b5a0de9
AD
5378@c ============================================ lr.keep-unreachable-states
5379
67212941
JD
5380@item lr.keep-unreachable-states
5381@findex %define lr.keep-unreachable-states
31984206
JD
5382
5383@itemize @bullet
5384@item Language(s): all
f1b238df 5385@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5386remain in the parser tables. @xref{Unreachable States}.
31984206 5387@item Accepted Values: Boolean
cf499cff 5388@item Default Value: @code{false}
31984206 5389@end itemize
67212941 5390@c lr.keep-unreachable-states
31984206 5391
6b5a0de9
AD
5392@c ================================================== lr.type
5393
eb45ef3b
JD
5394@item lr.type
5395@findex %define lr.type
eb45ef3b
JD
5396
5397@itemize @bullet
5398@item Language(s): all
5399
f1b238df 5400@item Purpose: Specify the type of parser tables within the
7fceb615 5401LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5402More user feedback will help to stabilize it.)
5403
7fceb615 5404@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5405
cf499cff 5406@item Default Value: @code{lalr}
eb45ef3b
JD
5407@end itemize
5408
67501061
AD
5409
5410@c ================================================== namespace
793fbca5
JD
5411@item namespace
5412@findex %define namespace
67501061 5413Obsoleted by @code{api.namespace}
fa819509
AD
5414@c namespace
5415
31b850d2
AD
5416
5417@c ================================================== parse.assert
0c90a1f5
AD
5418@item parse.assert
5419@findex %define parse.assert
5420
5421@itemize
5422@item Languages(s): C++
5423
5424@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5425In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5426constructed and
0c90a1f5
AD
5427destroyed properly. This option checks these constraints.
5428
5429@item Accepted Values: Boolean
5430
5431@item Default Value: @code{false}
5432@end itemize
5433@c parse.assert
5434
31b850d2
AD
5435
5436@c ================================================== parse.error
5437@item parse.error
5438@findex %define parse.error
5439@itemize
5440@item Languages(s):
fcf834f9 5441all
31b850d2
AD
5442@item Purpose:
5443Control the kind of error messages passed to the error reporting
5444function. @xref{Error Reporting, ,The Error Reporting Function
5445@code{yyerror}}.
5446@item Accepted Values:
5447@itemize
cf499cff 5448@item @code{simple}
31b850d2
AD
5449Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5450error"}}.
cf499cff 5451@item @code{verbose}
7fceb615
JD
5452Error messages report the unexpected token, and possibly the expected ones.
5453However, this report can often be incorrect when LAC is not enabled
5454(@pxref{LAC}).
31b850d2
AD
5455@end itemize
5456
5457@item Default Value:
5458@code{simple}
5459@end itemize
5460@c parse.error
5461
5462
fcf834f9
JD
5463@c ================================================== parse.lac
5464@item parse.lac
5465@findex %define parse.lac
fcf834f9
JD
5466
5467@itemize
7fceb615 5468@item Languages(s): C (deterministic parsers only)
fcf834f9 5469
8a4281b9 5470@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5471syntax error handling. @xref{LAC}.
fcf834f9 5472@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5473@item Default Value: @code{none}
5474@end itemize
5475@c parse.lac
5476
31b850d2 5477@c ================================================== parse.trace
fa819509
AD
5478@item parse.trace
5479@findex %define parse.trace
5480
5481@itemize
5482@item Languages(s): C, C++
5483
5484@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5485In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5486file if it is not already defined, so that the debugging facilities are
5487compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5488
fa819509
AD
5489@item Accepted Values: Boolean
5490
5491@item Default Value: @code{false}
5492@end itemize
fa819509 5493@c parse.trace
99c08fb6 5494
3cdc21cf
AD
5495@c ================================================== variant
5496@item variant
5497@findex %define variant
5498
5499@itemize @bullet
5500@item Language(s):
5501C++
5502
5503@item Purpose:
f1b238df 5504Request variant-based semantic values.
3cdc21cf
AD
5505@xref{C++ Variants}.
5506
5507@item Accepted Values:
5508Boolean.
5509
5510@item Default Value:
5511@code{false}
5512@end itemize
5513@c variant
99c08fb6 5514@end table
592d0b1e 5515
d8988b2f 5516
e0c07222
JD
5517@node %code Summary
5518@subsection %code Summary
e0c07222 5519@findex %code
e0c07222 5520@cindex Prologue
51151d91
JD
5521
5522The @code{%code} directive inserts code verbatim into the output
5523parser source at any of a predefined set of locations. It thus serves
5524as a flexible and user-friendly alternative to the traditional Yacc
5525prologue, @code{%@{@var{code}%@}}. This section summarizes the
5526functionality of @code{%code} for the various target languages
5527supported by Bison. For a detailed discussion of how to use
5528@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5529is advantageous to do so, @pxref{Prologue Alternatives}.
5530
5531@deffn {Directive} %code @{@var{code}@}
5532This is the unqualified form of the @code{%code} directive. It
5533inserts @var{code} verbatim at a language-dependent default location
5534in the parser implementation.
5535
e0c07222 5536For C/C++, the default location is the parser implementation file
51151d91
JD
5537after the usual contents of the parser header file. Thus, the
5538unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5539
5540For Java, the default location is inside the parser class.
5541@end deffn
5542
5543@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5544This is the qualified form of the @code{%code} directive.
51151d91
JD
5545@var{qualifier} identifies the purpose of @var{code} and thus the
5546location(s) where Bison should insert it. That is, if you need to
5547specify location-sensitive @var{code} that does not belong at the
5548default location selected by the unqualified @code{%code} form, use
5549this form instead.
5550@end deffn
5551
5552For any particular qualifier or for the unqualified form, if there are
5553multiple occurrences of the @code{%code} directive, Bison concatenates
5554the specified code in the order in which it appears in the grammar
5555file.
e0c07222 5556
51151d91
JD
5557Not all qualifiers are accepted for all target languages. Unaccepted
5558qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5559
84072495 5560@table @code
e0c07222
JD
5561@item requires
5562@findex %code requires
5563
5564@itemize @bullet
5565@item Language(s): C, C++
5566
5567@item Purpose: This is the best place to write dependency code required for
5568@code{YYSTYPE} and @code{YYLTYPE}.
5569In other words, it's the best place to define types referenced in @code{%union}
5570directives, and it's the best place to override Bison's default @code{YYSTYPE}
5571and @code{YYLTYPE} definitions.
5572
5573@item Location(s): The parser header file and the parser implementation file
5574before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5575definitions.
5576@end itemize
5577
5578@item provides
5579@findex %code provides
5580
5581@itemize @bullet
5582@item Language(s): C, C++
5583
5584@item Purpose: This is the best place to write additional definitions and
5585declarations that should be provided to other modules.
5586
5587@item Location(s): The parser header file and the parser implementation
5588file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5589token definitions.
5590@end itemize
5591
5592@item top
5593@findex %code top
5594
5595@itemize @bullet
5596@item Language(s): C, C++
5597
5598@item Purpose: The unqualified @code{%code} or @code{%code requires}
5599should usually be more appropriate than @code{%code top}. However,
5600occasionally it is necessary to insert code much nearer the top of the
5601parser implementation file. For example:
5602
5603@smallexample
5604%code top @{
5605 #define _GNU_SOURCE
5606 #include <stdio.h>
5607@}
5608@end smallexample
5609
5610@item Location(s): Near the top of the parser implementation file.
5611@end itemize
5612
5613@item imports
5614@findex %code imports
5615
5616@itemize @bullet
5617@item Language(s): Java
5618
5619@item Purpose: This is the best place to write Java import directives.
5620
5621@item Location(s): The parser Java file after any Java package directive and
5622before any class definitions.
5623@end itemize
84072495 5624@end table
e0c07222 5625
51151d91
JD
5626Though we say the insertion locations are language-dependent, they are
5627technically skeleton-dependent. Writers of non-standard skeletons
5628however should choose their locations consistently with the behavior
5629of the standard Bison skeletons.
e0c07222 5630
d8988b2f 5631
342b8b6e 5632@node Multiple Parsers
bfa74976
RS
5633@section Multiple Parsers in the Same Program
5634
5635Most programs that use Bison parse only one language and therefore contain
5636only one Bison parser. But what if you want to parse more than one
5637language with the same program? Then you need to avoid a name conflict
5638between different definitions of @code{yyparse}, @code{yylval}, and so on.
5639
5640The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5641(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5642functions and variables of the Bison parser to start with @var{prefix}
5643instead of @samp{yy}. You can use this to give each parser distinct
5644names that do not conflict.
bfa74976
RS
5645
5646The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5647@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5648@code{yychar} and @code{yydebug}. If you use a push parser,
5649@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5650@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5651For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5652@code{clex}, and so on.
bfa74976
RS
5653
5654@strong{All the other variables and macros associated with Bison are not
5655renamed.} These others are not global; there is no conflict if the same
5656name is used in different parsers. For example, @code{YYSTYPE} is not
5657renamed, but defining this in different ways in different parsers causes
5658no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5659
ff7571c0
JD
5660The @samp{-p} option works by adding macro definitions to the
5661beginning of the parser implementation file, defining @code{yyparse}
5662as @code{@var{prefix}parse}, and so on. This effectively substitutes
5663one name for the other in the entire parser implementation file.
bfa74976 5664
342b8b6e 5665@node Interface
bfa74976
RS
5666@chapter Parser C-Language Interface
5667@cindex C-language interface
5668@cindex interface
5669
5670The Bison parser is actually a C function named @code{yyparse}. Here we
5671describe the interface conventions of @code{yyparse} and the other
5672functions that it needs to use.
5673
5674Keep in mind that the parser uses many C identifiers starting with
5675@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5676identifier (aside from those in this manual) in an action or in epilogue
5677in the grammar file, you are likely to run into trouble.
bfa74976
RS
5678
5679@menu
f5f419de
DJ
5680* Parser Function:: How to call @code{yyparse} and what it returns.
5681* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5682* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5683* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5684* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5685* Lexical:: You must supply a function @code{yylex}
5686 which reads tokens.
5687* Error Reporting:: You must supply a function @code{yyerror}.
5688* Action Features:: Special features for use in actions.
5689* Internationalization:: How to let the parser speak in the user's
5690 native language.
bfa74976
RS
5691@end menu
5692
342b8b6e 5693@node Parser Function
bfa74976
RS
5694@section The Parser Function @code{yyparse}
5695@findex yyparse
5696
5697You call the function @code{yyparse} to cause parsing to occur. This
5698function reads tokens, executes actions, and ultimately returns when it
5699encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5700write an action which directs @code{yyparse} to return immediately
5701without reading further.
bfa74976 5702
2a8d363a
AD
5703
5704@deftypefun int yyparse (void)
bfa74976
RS
5705The value returned by @code{yyparse} is 0 if parsing was successful (return
5706is due to end-of-input).
5707
b47dbebe
PE
5708The value is 1 if parsing failed because of invalid input, i.e., input
5709that contains a syntax error or that causes @code{YYABORT} to be
5710invoked.
5711
5712The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5713@end deftypefun
bfa74976
RS
5714
5715In an action, you can cause immediate return from @code{yyparse} by using
5716these macros:
5717
2a8d363a 5718@defmac YYACCEPT
bfa74976
RS
5719@findex YYACCEPT
5720Return immediately with value 0 (to report success).
2a8d363a 5721@end defmac
bfa74976 5722
2a8d363a 5723@defmac YYABORT
bfa74976
RS
5724@findex YYABORT
5725Return immediately with value 1 (to report failure).
2a8d363a
AD
5726@end defmac
5727
5728If you use a reentrant parser, you can optionally pass additional
5729parameter information to it in a reentrant way. To do so, use the
5730declaration @code{%parse-param}:
5731
2055a44e 5732@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5733@findex %parse-param
2055a44e
AD
5734Declare that one or more
5735@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5736The @var{argument-declaration} is used when declaring
feeb0eda
PE
5737functions or prototypes. The last identifier in
5738@var{argument-declaration} must be the argument name.
2a8d363a
AD
5739@end deffn
5740
5741Here's an example. Write this in the parser:
5742
5743@example
2055a44e 5744%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5745@end example
5746
5747@noindent
5748Then call the parser like this:
5749
5750@example
5751@{
5752 int nastiness, randomness;
5753 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5754 value = yyparse (&nastiness, &randomness);
5755 @dots{}
5756@}
5757@end example
5758
5759@noindent
5760In the grammar actions, use expressions like this to refer to the data:
5761
5762@example
5763exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5764@end example
5765
9987d1b3
JD
5766@node Push Parser Function
5767@section The Push Parser Function @code{yypush_parse}
5768@findex yypush_parse
5769
59da312b
JD
5770(The current push parsing interface is experimental and may evolve.
5771More user feedback will help to stabilize it.)
5772
f4101aa6 5773You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5774function is available if either the @samp{%define api.push-pull push} or
5775@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5776@xref{Push Decl, ,A Push Parser}.
5777
5778@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5779The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5780following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5781is required to finish parsing the grammar.
5782@end deftypefun
5783
5784@node Pull Parser Function
5785@section The Pull Parser Function @code{yypull_parse}
5786@findex yypull_parse
5787
59da312b
JD
5788(The current push parsing interface is experimental and may evolve.
5789More user feedback will help to stabilize it.)
5790
f4101aa6 5791You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5792stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5793declaration is used.
9987d1b3
JD
5794@xref{Push Decl, ,A Push Parser}.
5795
5796@deftypefun int yypull_parse (yypstate *yyps)
5797The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5798@end deftypefun
5799
5800@node Parser Create Function
5801@section The Parser Create Function @code{yystate_new}
5802@findex yypstate_new
5803
59da312b
JD
5804(The current push parsing interface is experimental and may evolve.
5805More user feedback will help to stabilize it.)
5806
f4101aa6 5807You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5808This function is available if either the @samp{%define api.push-pull push} or
5809@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5810@xref{Push Decl, ,A Push Parser}.
5811
5812@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5813The function will return a valid parser instance if there was memory available
333e670c
JD
5814or 0 if no memory was available.
5815In impure mode, it will also return 0 if a parser instance is currently
5816allocated.
9987d1b3
JD
5817@end deftypefun
5818
5819@node Parser Delete Function
5820@section The Parser Delete Function @code{yystate_delete}
5821@findex yypstate_delete
5822
59da312b
JD
5823(The current push parsing interface is experimental and may evolve.
5824More user feedback will help to stabilize it.)
5825
9987d1b3 5826You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5827function is available if either the @samp{%define api.push-pull push} or
5828@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5829@xref{Push Decl, ,A Push Parser}.
5830
5831@deftypefun void yypstate_delete (yypstate *yyps)
5832This function will reclaim the memory associated with a parser instance.
5833After this call, you should no longer attempt to use the parser instance.
5834@end deftypefun
bfa74976 5835
342b8b6e 5836@node Lexical
bfa74976
RS
5837@section The Lexical Analyzer Function @code{yylex}
5838@findex yylex
5839@cindex lexical analyzer
5840
5841The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5842the input stream and returns them to the parser. Bison does not create
5843this function automatically; you must write it so that @code{yyparse} can
5844call it. The function is sometimes referred to as a lexical scanner.
5845
ff7571c0
JD
5846In simple programs, @code{yylex} is often defined at the end of the
5847Bison grammar file. If @code{yylex} is defined in a separate source
5848file, you need to arrange for the token-type macro definitions to be
5849available there. To do this, use the @samp{-d} option when you run
5850Bison, so that it will write these macro definitions into the separate
5851parser header file, @file{@var{name}.tab.h}, which you can include in
5852the other source files that need it. @xref{Invocation, ,Invoking
5853Bison}.
bfa74976
RS
5854
5855@menu
5856* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5857* Token Values:: How @code{yylex} must return the semantic value
5858 of the token it has read.
5859* Token Locations:: How @code{yylex} must return the text location
5860 (line number, etc.) of the token, if the
5861 actions want that.
5862* Pure Calling:: How the calling convention differs in a pure parser
5863 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5864@end menu
5865
342b8b6e 5866@node Calling Convention
bfa74976
RS
5867@subsection Calling Convention for @code{yylex}
5868
72d2299c
PE
5869The value that @code{yylex} returns must be the positive numeric code
5870for the type of token it has just found; a zero or negative value
5871signifies end-of-input.
bfa74976
RS
5872
5873When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
5874in the parser implementation file becomes a C macro whose definition
5875is the proper numeric code for that token type. So @code{yylex} can
5876use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5877
5878When a token is referred to in the grammar rules by a character literal,
5879the numeric code for that character is also the code for the token type.
72d2299c
PE
5880So @code{yylex} can simply return that character code, possibly converted
5881to @code{unsigned char} to avoid sign-extension. The null character
5882must not be used this way, because its code is zero and that
bfa74976
RS
5883signifies end-of-input.
5884
5885Here is an example showing these things:
5886
5887@example
13863333
AD
5888int
5889yylex (void)
bfa74976
RS
5890@{
5891 @dots{}
72d2299c 5892 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5893 return 0;
5894 @dots{}
5895 if (c == '+' || c == '-')
72d2299c 5896 return c; /* Assume token type for `+' is '+'. */
bfa74976 5897 @dots{}
72d2299c 5898 return INT; /* Return the type of the token. */
bfa74976
RS
5899 @dots{}
5900@}
5901@end example
5902
5903@noindent
5904This interface has been designed so that the output from the @code{lex}
5905utility can be used without change as the definition of @code{yylex}.
5906
931c7513
RS
5907If the grammar uses literal string tokens, there are two ways that
5908@code{yylex} can determine the token type codes for them:
5909
5910@itemize @bullet
5911@item
5912If the grammar defines symbolic token names as aliases for the
5913literal string tokens, @code{yylex} can use these symbolic names like
5914all others. In this case, the use of the literal string tokens in
5915the grammar file has no effect on @code{yylex}.
5916
5917@item
9ecbd125 5918@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5919table. The index of the token in the table is the token type's code.
9ecbd125 5920The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5921double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5922token's characters are escaped as necessary to be suitable as input
5923to Bison.
931c7513 5924
9e0876fb
PE
5925Here's code for looking up a multicharacter token in @code{yytname},
5926assuming that the characters of the token are stored in
5927@code{token_buffer}, and assuming that the token does not contain any
5928characters like @samp{"} that require escaping.
931c7513
RS
5929
5930@smallexample
5931for (i = 0; i < YYNTOKENS; i++)
5932 @{
5933 if (yytname[i] != 0
5934 && yytname[i][0] == '"'
68449b3a
PE
5935 && ! strncmp (yytname[i] + 1, token_buffer,
5936 strlen (token_buffer))
931c7513
RS
5937 && yytname[i][strlen (token_buffer) + 1] == '"'
5938 && yytname[i][strlen (token_buffer) + 2] == 0)
5939 break;
5940 @}
5941@end smallexample
5942
5943The @code{yytname} table is generated only if you use the
8c9a50be 5944@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5945@end itemize
5946
342b8b6e 5947@node Token Values
bfa74976
RS
5948@subsection Semantic Values of Tokens
5949
5950@vindex yylval
9d9b8b70 5951In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5952be stored into the global variable @code{yylval}. When you are using
5953just one data type for semantic values, @code{yylval} has that type.
5954Thus, if the type is @code{int} (the default), you might write this in
5955@code{yylex}:
5956
5957@example
5958@group
5959 @dots{}
72d2299c
PE
5960 yylval = value; /* Put value onto Bison stack. */
5961 return INT; /* Return the type of the token. */
bfa74976
RS
5962 @dots{}
5963@end group
5964@end example
5965
5966When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5967made from the @code{%union} declaration (@pxref{Union Decl, ,The
5968Collection of Value Types}). So when you store a token's value, you
5969must use the proper member of the union. If the @code{%union}
5970declaration looks like this:
bfa74976
RS
5971
5972@example
5973@group
5974%union @{
5975 int intval;
5976 double val;
5977 symrec *tptr;
5978@}
5979@end group
5980@end example
5981
5982@noindent
5983then the code in @code{yylex} might look like this:
5984
5985@example
5986@group
5987 @dots{}
72d2299c
PE
5988 yylval.intval = value; /* Put value onto Bison stack. */
5989 return INT; /* Return the type of the token. */
bfa74976
RS
5990 @dots{}
5991@end group
5992@end example
5993
95923bd6
AD
5994@node Token Locations
5995@subsection Textual Locations of Tokens
bfa74976
RS
5996
5997@vindex yylloc
847bf1f5 5998If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5999Tracking Locations}) in actions to keep track of the textual locations
6000of tokens and groupings, then you must provide this information in
6001@code{yylex}. The function @code{yyparse} expects to find the textual
6002location of a token just parsed in the global variable @code{yylloc}.
6003So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
6004
6005By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6006initialize the members that are going to be used by the actions. The
6007four members are called @code{first_line}, @code{first_column},
6008@code{last_line} and @code{last_column}. Note that the use of this
6009feature makes the parser noticeably slower.
bfa74976
RS
6010
6011@tindex YYLTYPE
6012The data type of @code{yylloc} has the name @code{YYLTYPE}.
6013
342b8b6e 6014@node Pure Calling
c656404a 6015@subsection Calling Conventions for Pure Parsers
bfa74976 6016
67501061 6017When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6018pure, reentrant parser, the global communication variables @code{yylval}
6019and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6020Parser}.) In such parsers the two global variables are replaced by
6021pointers passed as arguments to @code{yylex}. You must declare them as
6022shown here, and pass the information back by storing it through those
6023pointers.
bfa74976
RS
6024
6025@example
13863333
AD
6026int
6027yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6028@{
6029 @dots{}
6030 *lvalp = value; /* Put value onto Bison stack. */
6031 return INT; /* Return the type of the token. */
6032 @dots{}
6033@}
6034@end example
6035
6036If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6037textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6038this case, omit the second argument; @code{yylex} will be called with
6039only one argument.
6040
2055a44e 6041If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6042@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6043Function}). To pass additional arguments to both @code{yylex} and
6044@code{yyparse}, use @code{%param}.
e425e872 6045
2055a44e 6046@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6047@findex %lex-param
2055a44e
AD
6048Specify that @var{argument-declaration} are additional @code{yylex} argument
6049declarations. You may pass one or more such declarations, which is
6050equivalent to repeating @code{%lex-param}.
6051@end deffn
6052
6053@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6054@findex %param
6055Specify that @var{argument-declaration} are additional
6056@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6057@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6058@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6059declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6060@end deffn
e425e872 6061
2a8d363a 6062For instance:
e425e872
RS
6063
6064@example
2055a44e
AD
6065%lex-param @{scanner_mode *mode@}
6066%parse-param @{parser_mode *mode@}
6067%param @{environment_type *env@}
e425e872
RS
6068@end example
6069
6070@noindent
2a8d363a 6071results in the following signature:
e425e872
RS
6072
6073@example
2055a44e
AD
6074int yylex (scanner_mode *mode, environment_type *env);
6075int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6076@end example
6077
67501061 6078If @samp{%define api.pure} is added:
c656404a
RS
6079
6080@example
2055a44e
AD
6081int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6082int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6083@end example
6084
2a8d363a 6085@noindent
67501061 6086and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6087
2a8d363a 6088@example
2055a44e
AD
6089int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6090 scanner_mode *mode, environment_type *env);
6091int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6092@end example
931c7513 6093
342b8b6e 6094@node Error Reporting
bfa74976
RS
6095@section The Error Reporting Function @code{yyerror}
6096@cindex error reporting function
6097@findex yyerror
6098@cindex parse error
6099@cindex syntax error
6100
31b850d2 6101The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6102whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6103action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6104macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6105in Actions}).
bfa74976
RS
6106
6107The Bison parser expects to report the error by calling an error
6108reporting function named @code{yyerror}, which you must supply. It is
6109called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6110receives one argument. For a syntax error, the string is normally
6111@w{@code{"syntax error"}}.
bfa74976 6112
31b850d2 6113@findex %define parse.error
7fceb615
JD
6114If you invoke @samp{%define parse.error verbose} in the Bison declarations
6115section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6116Bison provides a more verbose and specific error message string instead of
6117just plain @w{@code{"syntax error"}}. However, that message sometimes
6118contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6119
1a059451
PE
6120The parser can detect one other kind of error: memory exhaustion. This
6121can happen when the input contains constructions that are very deeply
bfa74976 6122nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6123parser normally extends its stack automatically up to a very large limit. But
6124if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6125fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6126
6127In some cases diagnostics like @w{@code{"syntax error"}} are
6128translated automatically from English to some other language before
6129they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6130
6131The following definition suffices in simple programs:
6132
6133@example
6134@group
13863333 6135void
38a92d50 6136yyerror (char const *s)
bfa74976
RS
6137@{
6138@end group
6139@group
6140 fprintf (stderr, "%s\n", s);
6141@}
6142@end group
6143@end example
6144
6145After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6146error recovery if you have written suitable error recovery grammar rules
6147(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6148immediately return 1.
6149
93724f13 6150Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6151an access to the current location.
8a4281b9 6152This is indeed the case for the GLR
2a8d363a 6153parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6154@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6155@code{yyerror} are:
6156
6157@example
38a92d50
PE
6158void yyerror (char const *msg); /* Yacc parsers. */
6159void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6160@end example
6161
feeb0eda 6162If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6163
6164@example
b317297e
PE
6165void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6166void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6167@end example
6168
8a4281b9 6169Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6170convention for absolutely pure parsers, i.e., when the calling
6171convention of @code{yylex} @emph{and} the calling convention of
67501061 6172@samp{%define api.pure} are pure.
d9df47b6 6173I.e.:
2a8d363a
AD
6174
6175@example
6176/* Location tracking. */
6177%locations
6178/* Pure yylex. */
d9df47b6 6179%define api.pure
feeb0eda 6180%lex-param @{int *nastiness@}
2a8d363a 6181/* Pure yyparse. */
feeb0eda
PE
6182%parse-param @{int *nastiness@}
6183%parse-param @{int *randomness@}
2a8d363a
AD
6184@end example
6185
6186@noindent
6187results in the following signatures for all the parser kinds:
6188
6189@example
6190int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6191int yyparse (int *nastiness, int *randomness);
93724f13
AD
6192void yyerror (YYLTYPE *locp,
6193 int *nastiness, int *randomness,
38a92d50 6194 char const *msg);
2a8d363a
AD
6195@end example
6196
1c0c3e95 6197@noindent
38a92d50
PE
6198The prototypes are only indications of how the code produced by Bison
6199uses @code{yyerror}. Bison-generated code always ignores the returned
6200value, so @code{yyerror} can return any type, including @code{void}.
6201Also, @code{yyerror} can be a variadic function; that is why the
6202message is always passed last.
6203
6204Traditionally @code{yyerror} returns an @code{int} that is always
6205ignored, but this is purely for historical reasons, and @code{void} is
6206preferable since it more accurately describes the return type for
6207@code{yyerror}.
93724f13 6208
bfa74976
RS
6209@vindex yynerrs
6210The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6211reported so far. Normally this variable is global; but if you
704a47c4
AD
6212request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6213then it is a local variable which only the actions can access.
bfa74976 6214
342b8b6e 6215@node Action Features
bfa74976
RS
6216@section Special Features for Use in Actions
6217@cindex summary, action features
6218@cindex action features summary
6219
6220Here is a table of Bison constructs, variables and macros that
6221are useful in actions.
6222
18b519c0 6223@deffn {Variable} $$
bfa74976
RS
6224Acts like a variable that contains the semantic value for the
6225grouping made by the current rule. @xref{Actions}.
18b519c0 6226@end deffn
bfa74976 6227
18b519c0 6228@deffn {Variable} $@var{n}
bfa74976
RS
6229Acts like a variable that contains the semantic value for the
6230@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6231@end deffn
bfa74976 6232
18b519c0 6233@deffn {Variable} $<@var{typealt}>$
bfa74976 6234Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6235specified by the @code{%union} declaration. @xref{Action Types, ,Data
6236Types of Values in Actions}.
18b519c0 6237@end deffn
bfa74976 6238
18b519c0 6239@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6240Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6241union specified by the @code{%union} declaration.
e0c471a9 6242@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6243@end deffn
bfa74976 6244
18b519c0 6245@deffn {Macro} YYABORT;
bfa74976
RS
6246Return immediately from @code{yyparse}, indicating failure.
6247@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6248@end deffn
bfa74976 6249
18b519c0 6250@deffn {Macro} YYACCEPT;
bfa74976
RS
6251Return immediately from @code{yyparse}, indicating success.
6252@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6253@end deffn
bfa74976 6254
18b519c0 6255@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6256@findex YYBACKUP
6257Unshift a token. This macro is allowed only for rules that reduce
742e4900 6258a single value, and only when there is no lookahead token.
8a4281b9 6259It is also disallowed in GLR parsers.
742e4900 6260It installs a lookahead token with token type @var{token} and
bfa74976
RS
6261semantic value @var{value}; then it discards the value that was
6262going to be reduced by this rule.
6263
6264If the macro is used when it is not valid, such as when there is
742e4900 6265a lookahead token already, then it reports a syntax error with
bfa74976
RS
6266a message @samp{cannot back up} and performs ordinary error
6267recovery.
6268
6269In either case, the rest of the action is not executed.
18b519c0 6270@end deffn
bfa74976 6271
18b519c0 6272@deffn {Macro} YYEMPTY
bfa74976 6273@vindex YYEMPTY
742e4900 6274Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6275@end deffn
bfa74976 6276
32c29292
JD
6277@deffn {Macro} YYEOF
6278@vindex YYEOF
742e4900 6279Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6280stream.
6281@end deffn
6282
18b519c0 6283@deffn {Macro} YYERROR;
bfa74976
RS
6284@findex YYERROR
6285Cause an immediate syntax error. This statement initiates error
6286recovery just as if the parser itself had detected an error; however, it
6287does not call @code{yyerror}, and does not print any message. If you
6288want to print an error message, call @code{yyerror} explicitly before
6289the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6290@end deffn
bfa74976 6291
18b519c0 6292@deffn {Macro} YYRECOVERING
02103984
PE
6293@findex YYRECOVERING
6294The expression @code{YYRECOVERING ()} yields 1 when the parser
6295is recovering from a syntax error, and 0 otherwise.
bfa74976 6296@xref{Error Recovery}.
18b519c0 6297@end deffn
bfa74976 6298
18b519c0 6299@deffn {Variable} yychar
742e4900
JD
6300Variable containing either the lookahead token, or @code{YYEOF} when the
6301lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6302has been performed so the next token is not yet known.
6303Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6304Actions}).
742e4900 6305@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6306@end deffn
bfa74976 6307
18b519c0 6308@deffn {Macro} yyclearin;
742e4900 6309Discard the current lookahead token. This is useful primarily in
32c29292
JD
6310error rules.
6311Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6312Semantic Actions}).
6313@xref{Error Recovery}.
18b519c0 6314@end deffn
bfa74976 6315
18b519c0 6316@deffn {Macro} yyerrok;
bfa74976 6317Resume generating error messages immediately for subsequent syntax
13863333 6318errors. This is useful primarily in error rules.
bfa74976 6319@xref{Error Recovery}.
18b519c0 6320@end deffn
bfa74976 6321
32c29292 6322@deffn {Variable} yylloc
742e4900 6323Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6324to @code{YYEMPTY} or @code{YYEOF}.
6325Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6326Actions}).
6327@xref{Actions and Locations, ,Actions and Locations}.
6328@end deffn
6329
6330@deffn {Variable} yylval
742e4900 6331Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6332not set to @code{YYEMPTY} or @code{YYEOF}.
6333Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6334Actions}).
6335@xref{Actions, ,Actions}.
6336@end deffn
6337
18b519c0 6338@deffn {Value} @@$
847bf1f5 6339@findex @@$
95923bd6 6340Acts like a structure variable containing information on the textual location
847bf1f5
AD
6341of the grouping made by the current rule. @xref{Locations, ,
6342Tracking Locations}.
bfa74976 6343
847bf1f5
AD
6344@c Check if those paragraphs are still useful or not.
6345
6346@c @example
6347@c struct @{
6348@c int first_line, last_line;
6349@c int first_column, last_column;
6350@c @};
6351@c @end example
6352
6353@c Thus, to get the starting line number of the third component, you would
6354@c use @samp{@@3.first_line}.
bfa74976 6355
847bf1f5
AD
6356@c In order for the members of this structure to contain valid information,
6357@c you must make @code{yylex} supply this information about each token.
6358@c If you need only certain members, then @code{yylex} need only fill in
6359@c those members.
bfa74976 6360
847bf1f5 6361@c The use of this feature makes the parser noticeably slower.
18b519c0 6362@end deffn
847bf1f5 6363
18b519c0 6364@deffn {Value} @@@var{n}
847bf1f5 6365@findex @@@var{n}
95923bd6 6366Acts like a structure variable containing information on the textual location
847bf1f5
AD
6367of the @var{n}th component of the current rule. @xref{Locations, ,
6368Tracking Locations}.
18b519c0 6369@end deffn
bfa74976 6370
f7ab6a50
PE
6371@node Internationalization
6372@section Parser Internationalization
6373@cindex internationalization
6374@cindex i18n
6375@cindex NLS
6376@cindex gettext
6377@cindex bison-po
6378
6379A Bison-generated parser can print diagnostics, including error and
6380tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6381also supports outputting diagnostics in the user's native language. To
6382make this work, the user should set the usual environment variables.
6383@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6384For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6385set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6386encoding. The exact set of available locales depends on the user's
6387installation.
6388
6389The maintainer of a package that uses a Bison-generated parser enables
6390the internationalization of the parser's output through the following
8a4281b9
JD
6391steps. Here we assume a package that uses GNU Autoconf and
6392GNU Automake.
f7ab6a50
PE
6393
6394@enumerate
6395@item
30757c8c 6396@cindex bison-i18n.m4
8a4281b9 6397Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6398by the package---often called @file{m4}---copy the
6399@file{bison-i18n.m4} file installed by Bison under
6400@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6401For example:
6402
6403@example
6404cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6405@end example
6406
6407@item
30757c8c
PE
6408@findex BISON_I18N
6409@vindex BISON_LOCALEDIR
6410@vindex YYENABLE_NLS
f7ab6a50
PE
6411In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6412invocation, add an invocation of @code{BISON_I18N}. This macro is
6413defined in the file @file{bison-i18n.m4} that you copied earlier. It
6414causes @samp{configure} to find the value of the
30757c8c
PE
6415@code{BISON_LOCALEDIR} variable, and it defines the source-language
6416symbol @code{YYENABLE_NLS} to enable translations in the
6417Bison-generated parser.
f7ab6a50
PE
6418
6419@item
6420In the @code{main} function of your program, designate the directory
6421containing Bison's runtime message catalog, through a call to
6422@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6423For example:
6424
6425@example
6426bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6427@end example
6428
6429Typically this appears after any other call @code{bindtextdomain
6430(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6431@samp{BISON_LOCALEDIR} to be defined as a string through the
6432@file{Makefile}.
6433
6434@item
6435In the @file{Makefile.am} that controls the compilation of the @code{main}
6436function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6437either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6438
6439@example
6440DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6441@end example
6442
6443or:
6444
6445@example
6446AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6447@end example
6448
6449@item
6450Finally, invoke the command @command{autoreconf} to generate the build
6451infrastructure.
6452@end enumerate
6453
bfa74976 6454
342b8b6e 6455@node Algorithm
13863333
AD
6456@chapter The Bison Parser Algorithm
6457@cindex Bison parser algorithm
bfa74976
RS
6458@cindex algorithm of parser
6459@cindex shifting
6460@cindex reduction
6461@cindex parser stack
6462@cindex stack, parser
6463
6464As Bison reads tokens, it pushes them onto a stack along with their
6465semantic values. The stack is called the @dfn{parser stack}. Pushing a
6466token is traditionally called @dfn{shifting}.
6467
6468For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6469@samp{3} to come. The stack will have four elements, one for each token
6470that was shifted.
6471
6472But the stack does not always have an element for each token read. When
6473the last @var{n} tokens and groupings shifted match the components of a
6474grammar rule, they can be combined according to that rule. This is called
6475@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6476single grouping whose symbol is the result (left hand side) of that rule.
6477Running the rule's action is part of the process of reduction, because this
6478is what computes the semantic value of the resulting grouping.
6479
6480For example, if the infix calculator's parser stack contains this:
6481
6482@example
64831 + 5 * 3
6484@end example
6485
6486@noindent
6487and the next input token is a newline character, then the last three
6488elements can be reduced to 15 via the rule:
6489
6490@example
6491expr: expr '*' expr;
6492@end example
6493
6494@noindent
6495Then the stack contains just these three elements:
6496
6497@example
64981 + 15
6499@end example
6500
6501@noindent
6502At this point, another reduction can be made, resulting in the single value
650316. Then the newline token can be shifted.
6504
6505The parser tries, by shifts and reductions, to reduce the entire input down
6506to a single grouping whose symbol is the grammar's start-symbol
6507(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6508
6509This kind of parser is known in the literature as a bottom-up parser.
6510
6511@menu
742e4900 6512* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6513* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6514* Precedence:: Operator precedence works by resolving conflicts.
6515* Contextual Precedence:: When an operator's precedence depends on context.
6516* Parser States:: The parser is a finite-state-machine with stack.
6517* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6518* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6519* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6520* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6521* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6522@end menu
6523
742e4900
JD
6524@node Lookahead
6525@section Lookahead Tokens
6526@cindex lookahead token
bfa74976
RS
6527
6528The Bison parser does @emph{not} always reduce immediately as soon as the
6529last @var{n} tokens and groupings match a rule. This is because such a
6530simple strategy is inadequate to handle most languages. Instead, when a
6531reduction is possible, the parser sometimes ``looks ahead'' at the next
6532token in order to decide what to do.
6533
6534When a token is read, it is not immediately shifted; first it becomes the
742e4900 6535@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6536perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6537the lookahead token remains off to the side. When no more reductions
6538should take place, the lookahead token is shifted onto the stack. This
bfa74976 6539does not mean that all possible reductions have been done; depending on the
742e4900 6540token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6541application.
6542
742e4900 6543Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6544expressions which contain binary addition operators and postfix unary
6545factorial operators (@samp{!}), and allow parentheses for grouping.
6546
6547@example
6548@group
6549expr: term '+' expr
6550 | term
6551 ;
6552@end group
6553
6554@group
6555term: '(' expr ')'
6556 | term '!'
6557 | NUMBER
6558 ;
6559@end group
6560@end example
6561
6562Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6563should be done? If the following token is @samp{)}, then the first three
6564tokens must be reduced to form an @code{expr}. This is the only valid
6565course, because shifting the @samp{)} would produce a sequence of symbols
6566@w{@code{term ')'}}, and no rule allows this.
6567
6568If the following token is @samp{!}, then it must be shifted immediately so
6569that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6570parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6571@code{expr}. It would then be impossible to shift the @samp{!} because
6572doing so would produce on the stack the sequence of symbols @code{expr
6573'!'}. No rule allows that sequence.
6574
6575@vindex yychar
32c29292
JD
6576@vindex yylval
6577@vindex yylloc
742e4900 6578The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6579Its semantic value and location, if any, are stored in the variables
6580@code{yylval} and @code{yylloc}.
bfa74976
RS
6581@xref{Action Features, ,Special Features for Use in Actions}.
6582
342b8b6e 6583@node Shift/Reduce
bfa74976
RS
6584@section Shift/Reduce Conflicts
6585@cindex conflicts
6586@cindex shift/reduce conflicts
6587@cindex dangling @code{else}
6588@cindex @code{else}, dangling
6589
6590Suppose we are parsing a language which has if-then and if-then-else
6591statements, with a pair of rules like this:
6592
6593@example
6594@group
6595if_stmt:
6596 IF expr THEN stmt
6597 | IF expr THEN stmt ELSE stmt
6598 ;
6599@end group
6600@end example
6601
6602@noindent
6603Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6604terminal symbols for specific keyword tokens.
6605
742e4900 6606When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6607contents of the stack (assuming the input is valid) are just right for
6608reduction by the first rule. But it is also legitimate to shift the
6609@code{ELSE}, because that would lead to eventual reduction by the second
6610rule.
6611
6612This situation, where either a shift or a reduction would be valid, is
6613called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6614these conflicts by choosing to shift, unless otherwise directed by
6615operator precedence declarations. To see the reason for this, let's
6616contrast it with the other alternative.
6617
6618Since the parser prefers to shift the @code{ELSE}, the result is to attach
6619the else-clause to the innermost if-statement, making these two inputs
6620equivalent:
6621
6622@example
6623if x then if y then win (); else lose;
6624
6625if x then do; if y then win (); else lose; end;
6626@end example
6627
6628But if the parser chose to reduce when possible rather than shift, the
6629result would be to attach the else-clause to the outermost if-statement,
6630making these two inputs equivalent:
6631
6632@example
6633if x then if y then win (); else lose;
6634
6635if x then do; if y then win (); end; else lose;
6636@end example
6637
6638The conflict exists because the grammar as written is ambiguous: either
6639parsing of the simple nested if-statement is legitimate. The established
6640convention is that these ambiguities are resolved by attaching the
6641else-clause to the innermost if-statement; this is what Bison accomplishes
6642by choosing to shift rather than reduce. (It would ideally be cleaner to
6643write an unambiguous grammar, but that is very hard to do in this case.)
6644This particular ambiguity was first encountered in the specifications of
6645Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6646
6647To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6648conflicts, use the @code{%expect @var{n}} declaration.
6649There will be no warning as long as the number of shift/reduce conflicts
6650is exactly @var{n}, and Bison will report an error if there is a
6651different number.
bfa74976
RS
6652@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6653
6654The definition of @code{if_stmt} above is solely to blame for the
6655conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6656rules. Here is a complete Bison grammar file that actually manifests
6657the conflict:
bfa74976
RS
6658
6659@example
6660@group
6661%token IF THEN ELSE variable
6662%%
6663@end group
6664@group
6665stmt: expr
6666 | if_stmt
6667 ;
6668@end group
6669
6670@group
6671if_stmt:
6672 IF expr THEN stmt
6673 | IF expr THEN stmt ELSE stmt
6674 ;
6675@end group
6676
6677expr: variable
6678 ;
6679@end example
6680
342b8b6e 6681@node Precedence
bfa74976
RS
6682@section Operator Precedence
6683@cindex operator precedence
6684@cindex precedence of operators
6685
6686Another situation where shift/reduce conflicts appear is in arithmetic
6687expressions. Here shifting is not always the preferred resolution; the
6688Bison declarations for operator precedence allow you to specify when to
6689shift and when to reduce.
6690
6691@menu
6692* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6693* Using Precedence:: How to specify precedence and associativity.
6694* Precedence Only:: How to specify precedence only.
bfa74976
RS
6695* Precedence Examples:: How these features are used in the previous example.
6696* How Precedence:: How they work.
6697@end menu
6698
342b8b6e 6699@node Why Precedence
bfa74976
RS
6700@subsection When Precedence is Needed
6701
6702Consider the following ambiguous grammar fragment (ambiguous because the
6703input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6704
6705@example
6706@group
6707expr: expr '-' expr
6708 | expr '*' expr
6709 | expr '<' expr
6710 | '(' expr ')'
6711 @dots{}
6712 ;
6713@end group
6714@end example
6715
6716@noindent
6717Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6718should it reduce them via the rule for the subtraction operator? It
6719depends on the next token. Of course, if the next token is @samp{)}, we
6720must reduce; shifting is invalid because no single rule can reduce the
6721token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6722the next token is @samp{*} or @samp{<}, we have a choice: either
6723shifting or reduction would allow the parse to complete, but with
6724different results.
6725
6726To decide which one Bison should do, we must consider the results. If
6727the next operator token @var{op} is shifted, then it must be reduced
6728first in order to permit another opportunity to reduce the difference.
6729The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6730hand, if the subtraction is reduced before shifting @var{op}, the result
6731is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6732reduce should depend on the relative precedence of the operators
6733@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6734@samp{<}.
bfa74976
RS
6735
6736@cindex associativity
6737What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6738@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6739operators we prefer the former, which is called @dfn{left association}.
6740The latter alternative, @dfn{right association}, is desirable for
6741assignment operators. The choice of left or right association is a
6742matter of whether the parser chooses to shift or reduce when the stack
742e4900 6743contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6744makes right-associativity.
bfa74976 6745
342b8b6e 6746@node Using Precedence
bfa74976
RS
6747@subsection Specifying Operator Precedence
6748@findex %left
bfa74976 6749@findex %nonassoc
d78f0ac9
AD
6750@findex %precedence
6751@findex %right
bfa74976
RS
6752
6753Bison allows you to specify these choices with the operator precedence
6754declarations @code{%left} and @code{%right}. Each such declaration
6755contains a list of tokens, which are operators whose precedence and
6756associativity is being declared. The @code{%left} declaration makes all
6757those operators left-associative and the @code{%right} declaration makes
6758them right-associative. A third alternative is @code{%nonassoc}, which
6759declares that it is a syntax error to find the same operator twice ``in a
6760row''.
d78f0ac9
AD
6761The last alternative, @code{%precedence}, allows to define only
6762precedence and no associativity at all. As a result, any
6763associativity-related conflict that remains will be reported as an
6764compile-time error. The directive @code{%nonassoc} creates run-time
6765error: using the operator in a associative way is a syntax error. The
6766directive @code{%precedence} creates compile-time errors: an operator
6767@emph{can} be involved in an associativity-related conflict, contrary to
6768what expected the grammar author.
bfa74976
RS
6769
6770The relative precedence of different operators is controlled by the
d78f0ac9
AD
6771order in which they are declared. The first precedence/associativity
6772declaration in the file declares the operators whose
bfa74976
RS
6773precedence is lowest, the next such declaration declares the operators
6774whose precedence is a little higher, and so on.
6775
d78f0ac9
AD
6776@node Precedence Only
6777@subsection Specifying Precedence Only
6778@findex %precedence
6779
8a4281b9 6780Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6781@code{%nonassoc}, which all defines precedence and associativity, little
6782attention is paid to the fact that precedence cannot be defined without
6783defining associativity. Yet, sometimes, when trying to solve a
6784conflict, precedence suffices. In such a case, using @code{%left},
6785@code{%right}, or @code{%nonassoc} might hide future (associativity
6786related) conflicts that would remain hidden.
6787
6788The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6789Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6790in the following situation, where the period denotes the current parsing
6791state:
6792
6793@example
6794if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6795@end example
6796
6797The conflict involves the reduction of the rule @samp{IF expr THEN
6798stmt}, which precedence is by default that of its last token
6799(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6800disambiguation (attach the @code{else} to the closest @code{if}),
6801shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6802higher than that of @code{THEN}. But neither is expected to be involved
6803in an associativity related conflict, which can be specified as follows.
6804
6805@example
6806%precedence THEN
6807%precedence ELSE
6808@end example
6809
6810The unary-minus is another typical example where associativity is
6811usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6812Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6813used to declare the precedence of @code{NEG}, which is more than needed
6814since it also defines its associativity. While this is harmless in the
6815traditional example, who knows how @code{NEG} might be used in future
6816evolutions of the grammar@dots{}
6817
342b8b6e 6818@node Precedence Examples
bfa74976
RS
6819@subsection Precedence Examples
6820
6821In our example, we would want the following declarations:
6822
6823@example
6824%left '<'
6825%left '-'
6826%left '*'
6827@end example
6828
6829In a more complete example, which supports other operators as well, we
6830would declare them in groups of equal precedence. For example, @code{'+'} is
6831declared with @code{'-'}:
6832
6833@example
6834%left '<' '>' '=' NE LE GE
6835%left '+' '-'
6836%left '*' '/'
6837@end example
6838
6839@noindent
6840(Here @code{NE} and so on stand for the operators for ``not equal''
6841and so on. We assume that these tokens are more than one character long
6842and therefore are represented by names, not character literals.)
6843
342b8b6e 6844@node How Precedence
bfa74976
RS
6845@subsection How Precedence Works
6846
6847The first effect of the precedence declarations is to assign precedence
6848levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6849precedence levels to certain rules: each rule gets its precedence from
6850the last terminal symbol mentioned in the components. (You can also
6851specify explicitly the precedence of a rule. @xref{Contextual
6852Precedence, ,Context-Dependent Precedence}.)
6853
6854Finally, the resolution of conflicts works by comparing the precedence
742e4900 6855of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6856token's precedence is higher, the choice is to shift. If the rule's
6857precedence is higher, the choice is to reduce. If they have equal
6858precedence, the choice is made based on the associativity of that
6859precedence level. The verbose output file made by @samp{-v}
6860(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6861resolved.
bfa74976
RS
6862
6863Not all rules and not all tokens have precedence. If either the rule or
742e4900 6864the lookahead token has no precedence, then the default is to shift.
bfa74976 6865
342b8b6e 6866@node Contextual Precedence
bfa74976
RS
6867@section Context-Dependent Precedence
6868@cindex context-dependent precedence
6869@cindex unary operator precedence
6870@cindex precedence, context-dependent
6871@cindex precedence, unary operator
6872@findex %prec
6873
6874Often the precedence of an operator depends on the context. This sounds
6875outlandish at first, but it is really very common. For example, a minus
6876sign typically has a very high precedence as a unary operator, and a
6877somewhat lower precedence (lower than multiplication) as a binary operator.
6878
d78f0ac9
AD
6879The Bison precedence declarations
6880can only be used once for a given token; so a token has
bfa74976
RS
6881only one precedence declared in this way. For context-dependent
6882precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6883modifier for rules.
bfa74976
RS
6884
6885The @code{%prec} modifier declares the precedence of a particular rule by
6886specifying a terminal symbol whose precedence should be used for that rule.
6887It's not necessary for that symbol to appear otherwise in the rule. The
6888modifier's syntax is:
6889
6890@example
6891%prec @var{terminal-symbol}
6892@end example
6893
6894@noindent
6895and it is written after the components of the rule. Its effect is to
6896assign the rule the precedence of @var{terminal-symbol}, overriding
6897the precedence that would be deduced for it in the ordinary way. The
6898altered rule precedence then affects how conflicts involving that rule
6899are resolved (@pxref{Precedence, ,Operator Precedence}).
6900
6901Here is how @code{%prec} solves the problem of unary minus. First, declare
6902a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6903are no tokens of this type, but the symbol serves to stand for its
6904precedence:
6905
6906@example
6907@dots{}
6908%left '+' '-'
6909%left '*'
6910%left UMINUS
6911@end example
6912
6913Now the precedence of @code{UMINUS} can be used in specific rules:
6914
6915@example
6916@group
6917exp: @dots{}
6918 | exp '-' exp
6919 @dots{}
6920 | '-' exp %prec UMINUS
6921@end group
6922@end example
6923
91d2c560 6924@ifset defaultprec
39a06c25
PE
6925If you forget to append @code{%prec UMINUS} to the rule for unary
6926minus, Bison silently assumes that minus has its usual precedence.
6927This kind of problem can be tricky to debug, since one typically
6928discovers the mistake only by testing the code.
6929
22fccf95 6930The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6931this kind of problem systematically. It causes rules that lack a
6932@code{%prec} modifier to have no precedence, even if the last terminal
6933symbol mentioned in their components has a declared precedence.
6934
22fccf95 6935If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6936for all rules that participate in precedence conflict resolution.
6937Then you will see any shift/reduce conflict until you tell Bison how
6938to resolve it, either by changing your grammar or by adding an
6939explicit precedence. This will probably add declarations to the
6940grammar, but it helps to protect against incorrect rule precedences.
6941
22fccf95
PE
6942The effect of @code{%no-default-prec;} can be reversed by giving
6943@code{%default-prec;}, which is the default.
91d2c560 6944@end ifset
39a06c25 6945
342b8b6e 6946@node Parser States
bfa74976
RS
6947@section Parser States
6948@cindex finite-state machine
6949@cindex parser state
6950@cindex state (of parser)
6951
6952The function @code{yyparse} is implemented using a finite-state machine.
6953The values pushed on the parser stack are not simply token type codes; they
6954represent the entire sequence of terminal and nonterminal symbols at or
6955near the top of the stack. The current state collects all the information
6956about previous input which is relevant to deciding what to do next.
6957
742e4900
JD
6958Each time a lookahead token is read, the current parser state together
6959with the type of lookahead token are looked up in a table. This table
6960entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6961specifies the new parser state, which is pushed onto the top of the
6962parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6963This means that a certain number of tokens or groupings are taken off
6964the top of the stack, and replaced by one grouping. In other words,
6965that number of states are popped from the stack, and one new state is
6966pushed.
6967
742e4900 6968There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6969is erroneous in the current state. This causes error processing to begin
6970(@pxref{Error Recovery}).
6971
342b8b6e 6972@node Reduce/Reduce
bfa74976
RS
6973@section Reduce/Reduce Conflicts
6974@cindex reduce/reduce conflict
6975@cindex conflicts, reduce/reduce
6976
6977A reduce/reduce conflict occurs if there are two or more rules that apply
6978to the same sequence of input. This usually indicates a serious error
6979in the grammar.
6980
6981For example, here is an erroneous attempt to define a sequence
6982of zero or more @code{word} groupings.
6983
6984@example
6985sequence: /* empty */
6986 @{ printf ("empty sequence\n"); @}
6987 | maybeword
6988 | sequence word
6989 @{ printf ("added word %s\n", $2); @}
6990 ;
6991
6992maybeword: /* empty */
6993 @{ printf ("empty maybeword\n"); @}
6994 | word
6995 @{ printf ("single word %s\n", $1); @}
6996 ;
6997@end example
6998
6999@noindent
7000The error is an ambiguity: there is more than one way to parse a single
7001@code{word} into a @code{sequence}. It could be reduced to a
7002@code{maybeword} and then into a @code{sequence} via the second rule.
7003Alternatively, nothing-at-all could be reduced into a @code{sequence}
7004via the first rule, and this could be combined with the @code{word}
7005using the third rule for @code{sequence}.
7006
7007There is also more than one way to reduce nothing-at-all into a
7008@code{sequence}. This can be done directly via the first rule,
7009or indirectly via @code{maybeword} and then the second rule.
7010
7011You might think that this is a distinction without a difference, because it
7012does not change whether any particular input is valid or not. But it does
7013affect which actions are run. One parsing order runs the second rule's
7014action; the other runs the first rule's action and the third rule's action.
7015In this example, the output of the program changes.
7016
7017Bison resolves a reduce/reduce conflict by choosing to use the rule that
7018appears first in the grammar, but it is very risky to rely on this. Every
7019reduce/reduce conflict must be studied and usually eliminated. Here is the
7020proper way to define @code{sequence}:
7021
7022@example
7023sequence: /* empty */
7024 @{ printf ("empty sequence\n"); @}
7025 | sequence word
7026 @{ printf ("added word %s\n", $2); @}
7027 ;
7028@end example
7029
7030Here is another common error that yields a reduce/reduce conflict:
7031
7032@example
7033sequence: /* empty */
7034 | sequence words
7035 | sequence redirects
7036 ;
7037
7038words: /* empty */
7039 | words word
7040 ;
7041
7042redirects:/* empty */
7043 | redirects redirect
7044 ;
7045@end example
7046
7047@noindent
7048The intention here is to define a sequence which can contain either
7049@code{word} or @code{redirect} groupings. The individual definitions of
7050@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7051three together make a subtle ambiguity: even an empty input can be parsed
7052in infinitely many ways!
7053
7054Consider: nothing-at-all could be a @code{words}. Or it could be two
7055@code{words} in a row, or three, or any number. It could equally well be a
7056@code{redirects}, or two, or any number. Or it could be a @code{words}
7057followed by three @code{redirects} and another @code{words}. And so on.
7058
7059Here are two ways to correct these rules. First, to make it a single level
7060of sequence:
7061
7062@example
7063sequence: /* empty */
7064 | sequence word
7065 | sequence redirect
7066 ;
7067@end example
7068
7069Second, to prevent either a @code{words} or a @code{redirects}
7070from being empty:
7071
7072@example
7073sequence: /* empty */
7074 | sequence words
7075 | sequence redirects
7076 ;
7077
7078words: word
7079 | words word
7080 ;
7081
7082redirects:redirect
7083 | redirects redirect
7084 ;
7085@end example
7086
cc09e5be
JD
7087@node Mysterious Conflicts
7088@section Mysterious Conflicts
7fceb615 7089@cindex Mysterious Conflicts
bfa74976
RS
7090
7091Sometimes reduce/reduce conflicts can occur that don't look warranted.
7092Here is an example:
7093
7094@example
7095@group
7096%token ID
7097
7098%%
7099def: param_spec return_spec ','
7100 ;
7101param_spec:
7102 type
7103 | name_list ':' type
7104 ;
7105@end group
7106@group
7107return_spec:
7108 type
7109 | name ':' type
7110 ;
7111@end group
7112@group
7113type: ID
7114 ;
7115@end group
7116@group
7117name: ID
7118 ;
7119name_list:
7120 name
7121 | name ',' name_list
7122 ;
7123@end group
7124@end example
7125
7126It would seem that this grammar can be parsed with only a single token
742e4900 7127of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7128a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7129@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7130
7fceb615
JD
7131@cindex LR
7132@cindex LALR
eb45ef3b 7133However, for historical reasons, Bison cannot by default handle all
8a4281b9 7134LR(1) grammars.
eb45ef3b
JD
7135In this grammar, two contexts, that after an @code{ID} at the beginning
7136of a @code{param_spec} and likewise at the beginning of a
7137@code{return_spec}, are similar enough that Bison assumes they are the
7138same.
7139They appear similar because the same set of rules would be
bfa74976
RS
7140active---the rule for reducing to a @code{name} and that for reducing to
7141a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7142that the rules would require different lookahead tokens in the two
bfa74976
RS
7143contexts, so it makes a single parser state for them both. Combining
7144the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7145occurrence means that the grammar is not LALR(1).
bfa74976 7146
7fceb615
JD
7147@cindex IELR
7148@cindex canonical LR
7149For many practical grammars (specifically those that fall into the non-LR(1)
7150class), the limitations of LALR(1) result in difficulties beyond just
7151mysterious reduce/reduce conflicts. The best way to fix all these problems
7152is to select a different parser table construction algorithm. Either
7153IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7154and easier to debug during development. @xref{LR Table Construction}, for
7155details. (Bison's IELR(1) and canonical LR(1) implementations are
7156experimental. More user feedback will help to stabilize them.)
eb45ef3b 7157
8a4281b9 7158If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7159can often fix a mysterious conflict by identifying the two parser states
7160that are being confused, and adding something to make them look
7161distinct. In the above example, adding one rule to
bfa74976
RS
7162@code{return_spec} as follows makes the problem go away:
7163
7164@example
7165@group
7166%token BOGUS
7167@dots{}
7168%%
7169@dots{}
7170return_spec:
7171 type
7172 | name ':' type
7173 /* This rule is never used. */
7174 | ID BOGUS
7175 ;
7176@end group
7177@end example
7178
7179This corrects the problem because it introduces the possibility of an
7180additional active rule in the context after the @code{ID} at the beginning of
7181@code{return_spec}. This rule is not active in the corresponding context
7182in a @code{param_spec}, so the two contexts receive distinct parser states.
7183As long as the token @code{BOGUS} is never generated by @code{yylex},
7184the added rule cannot alter the way actual input is parsed.
7185
7186In this particular example, there is another way to solve the problem:
7187rewrite the rule for @code{return_spec} to use @code{ID} directly
7188instead of via @code{name}. This also causes the two confusing
7189contexts to have different sets of active rules, because the one for
7190@code{return_spec} activates the altered rule for @code{return_spec}
7191rather than the one for @code{name}.
7192
7193@example
7194param_spec:
7195 type
7196 | name_list ':' type
7197 ;
7198return_spec:
7199 type
7200 | ID ':' type
7201 ;
7202@end example
7203
8a4281b9 7204For a more detailed exposition of LALR(1) parsers and parser
5e528941 7205generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7206
7fceb615
JD
7207@node Tuning LR
7208@section Tuning LR
7209
7210The default behavior of Bison's LR-based parsers is chosen mostly for
7211historical reasons, but that behavior is often not robust. For example, in
7212the previous section, we discussed the mysterious conflicts that can be
7213produced by LALR(1), Bison's default parser table construction algorithm.
7214Another example is Bison's @code{%define parse.error verbose} directive,
7215which instructs the generated parser to produce verbose syntax error
7216messages, which can sometimes contain incorrect information.
7217
7218In this section, we explore several modern features of Bison that allow you
7219to tune fundamental aspects of the generated LR-based parsers. Some of
7220these features easily eliminate shortcomings like those mentioned above.
7221Others can be helpful purely for understanding your parser.
7222
7223Most of the features discussed in this section are still experimental. More
7224user feedback will help to stabilize them.
7225
7226@menu
7227* LR Table Construction:: Choose a different construction algorithm.
7228* Default Reductions:: Disable default reductions.
7229* LAC:: Correct lookahead sets in the parser states.
7230* Unreachable States:: Keep unreachable parser states for debugging.
7231@end menu
7232
7233@node LR Table Construction
7234@subsection LR Table Construction
7235@cindex Mysterious Conflict
7236@cindex LALR
7237@cindex IELR
7238@cindex canonical LR
7239@findex %define lr.type
7240
7241For historical reasons, Bison constructs LALR(1) parser tables by default.
7242However, LALR does not possess the full language-recognition power of LR.
7243As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7244mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7245Conflicts}.
7246
7247As we also demonstrated in that example, the traditional approach to
7248eliminating such mysterious behavior is to restructure the grammar.
7249Unfortunately, doing so correctly is often difficult. Moreover, merely
7250discovering that LALR causes mysterious behavior in your parser can be
7251difficult as well.
7252
7253Fortunately, Bison provides an easy way to eliminate the possibility of such
7254mysterious behavior altogether. You simply need to activate a more powerful
7255parser table construction algorithm by using the @code{%define lr.type}
7256directive.
7257
7258@deffn {Directive} {%define lr.type @var{TYPE}}
7259Specify the type of parser tables within the LR(1) family. The accepted
7260values for @var{TYPE} are:
7261
7262@itemize
7263@item @code{lalr} (default)
7264@item @code{ielr}
7265@item @code{canonical-lr}
7266@end itemize
7267
7268(This feature is experimental. More user feedback will help to stabilize
7269it.)
7270@end deffn
7271
7272For example, to activate IELR, you might add the following directive to you
7273grammar file:
7274
7275@example
7276%define lr.type ielr
7277@end example
7278
cc09e5be 7279@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7280conflict is then eliminated, so there is no need to invest time in
7281comprehending the conflict or restructuring the grammar to fix it. If,
7282during future development, the grammar evolves such that all mysterious
7283behavior would have disappeared using just LALR, you need not fear that
7284continuing to use IELR will result in unnecessarily large parser tables.
7285That is, IELR generates LALR tables when LALR (using a deterministic parsing
7286algorithm) is sufficient to support the full language-recognition power of
7287LR. Thus, by enabling IELR at the start of grammar development, you can
7288safely and completely eliminate the need to consider LALR's shortcomings.
7289
7290While IELR is almost always preferable, there are circumstances where LALR
7291or the canonical LR parser tables described by Knuth
7292(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7293relative advantages of each parser table construction algorithm within
7294Bison:
7295
7296@itemize
7297@item LALR
7298
7299There are at least two scenarios where LALR can be worthwhile:
7300
7301@itemize
7302@item GLR without static conflict resolution.
7303
7304@cindex GLR with LALR
7305When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7306conflicts statically (for example, with @code{%left} or @code{%prec}), then
7307the parser explores all potential parses of any given input. In this case,
7308the choice of parser table construction algorithm is guaranteed not to alter
7309the language accepted by the parser. LALR parser tables are the smallest
7310parser tables Bison can currently construct, so they may then be preferable.
7311Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7312more like a deterministic parser in the syntactic contexts where those
7313conflicts appear, and so either IELR or canonical LR can then be helpful to
7314avoid LALR's mysterious behavior.
7315
7316@item Malformed grammars.
7317
7318Occasionally during development, an especially malformed grammar with a
7319major recurring flaw may severely impede the IELR or canonical LR parser
7320table construction algorithm. LALR can be a quick way to construct parser
7321tables in order to investigate such problems while ignoring the more subtle
7322differences from IELR and canonical LR.
7323@end itemize
7324
7325@item IELR
7326
7327IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7328any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7329always accept exactly the same set of sentences. However, like LALR, IELR
7330merges parser states during parser table construction so that the number of
7331parser states is often an order of magnitude less than for canonical LR.
7332More importantly, because canonical LR's extra parser states may contain
7333duplicate conflicts in the case of non-LR grammars, the number of conflicts
7334for IELR is often an order of magnitude less as well. This effect can
7335significantly reduce the complexity of developing a grammar.
7336
7337@item Canonical LR
7338
7339@cindex delayed syntax error detection
7340@cindex LAC
7341@findex %nonassoc
7342While inefficient, canonical LR parser tables can be an interesting means to
7343explore a grammar because they possess a property that IELR and LALR tables
7344do not. That is, if @code{%nonassoc} is not used and default reductions are
7345left disabled (@pxref{Default Reductions}), then, for every left context of
7346every canonical LR state, the set of tokens accepted by that state is
7347guaranteed to be the exact set of tokens that is syntactically acceptable in
7348that left context. It might then seem that an advantage of canonical LR
7349parsers in production is that, under the above constraints, they are
7350guaranteed to detect a syntax error as soon as possible without performing
7351any unnecessary reductions. However, IELR parsers that use LAC are also
7352able to achieve this behavior without sacrificing @code{%nonassoc} or
7353default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7354@end itemize
7355
7356For a more detailed exposition of the mysterious behavior in LALR parsers
7357and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7358@ref{Bibliography,,Denny 2010 November}.
7359
7360@node Default Reductions
7361@subsection Default Reductions
7362@cindex default reductions
7363@findex %define lr.default-reductions
7364@findex %nonassoc
7365
7366After parser table construction, Bison identifies the reduction with the
7367largest lookahead set in each parser state. To reduce the size of the
7368parser state, traditional Bison behavior is to remove that lookahead set and
7369to assign that reduction to be the default parser action. Such a reduction
7370is known as a @dfn{default reduction}.
7371
7372Default reductions affect more than the size of the parser tables. They
7373also affect the behavior of the parser:
7374
7375@itemize
7376@item Delayed @code{yylex} invocations.
7377
7378@cindex delayed yylex invocations
7379@cindex consistent states
7380@cindex defaulted states
7381A @dfn{consistent state} is a state that has only one possible parser
7382action. If that action is a reduction and is encoded as a default
7383reduction, then that consistent state is called a @dfn{defaulted state}.
7384Upon reaching a defaulted state, a Bison-generated parser does not bother to
7385invoke @code{yylex} to fetch the next token before performing the reduction.
7386In other words, whether default reductions are enabled in consistent states
7387determines how soon a Bison-generated parser invokes @code{yylex} for a
7388token: immediately when it @emph{reaches} that token in the input or when it
7389eventually @emph{needs} that token as a lookahead to determine the next
7390parser action. Traditionally, default reductions are enabled, and so the
7391parser exhibits the latter behavior.
7392
7393The presence of defaulted states is an important consideration when
7394designing @code{yylex} and the grammar file. That is, if the behavior of
7395@code{yylex} can influence or be influenced by the semantic actions
7396associated with the reductions in defaulted states, then the delay of the
7397next @code{yylex} invocation until after those reductions is significant.
7398For example, the semantic actions might pop a scope stack that @code{yylex}
7399uses to determine what token to return. Thus, the delay might be necessary
7400to ensure that @code{yylex} does not look up the next token in a scope that
7401should already be considered closed.
7402
7403@item Delayed syntax error detection.
7404
7405@cindex delayed syntax error detection
7406When the parser fetches a new token by invoking @code{yylex}, it checks
7407whether there is an action for that token in the current parser state. The
7408parser detects a syntax error if and only if either (1) there is no action
7409for that token or (2) the action for that token is the error action (due to
7410the use of @code{%nonassoc}). However, if there is a default reduction in
7411that state (which might or might not be a defaulted state), then it is
7412impossible for condition 1 to exist. That is, all tokens have an action.
7413Thus, the parser sometimes fails to detect the syntax error until it reaches
7414a later state.
7415
7416@cindex LAC
7417@c If there's an infinite loop, default reductions can prevent an incorrect
7418@c sentence from being rejected.
7419While default reductions never cause the parser to accept syntactically
7420incorrect sentences, the delay of syntax error detection can have unexpected
7421effects on the behavior of the parser. However, the delay can be caused
7422anyway by parser state merging and the use of @code{%nonassoc}, and it can
7423be fixed by another Bison feature, LAC. We discuss the effects of delayed
7424syntax error detection and LAC more in the next section (@pxref{LAC}).
7425@end itemize
7426
7427For canonical LR, the only default reduction that Bison enables by default
7428is the accept action, which appears only in the accepting state, which has
7429no other action and is thus a defaulted state. However, the default accept
7430action does not delay any @code{yylex} invocation or syntax error detection
7431because the accept action ends the parse.
7432
7433For LALR and IELR, Bison enables default reductions in nearly all states by
7434default. There are only two exceptions. First, states that have a shift
7435action on the @code{error} token do not have default reductions because
7436delayed syntax error detection could then prevent the @code{error} token
7437from ever being shifted in that state. However, parser state merging can
7438cause the same effect anyway, and LAC fixes it in both cases, so future
7439versions of Bison might drop this exception when LAC is activated. Second,
7440GLR parsers do not record the default reduction as the action on a lookahead
7441token for which there is a conflict. The correct action in this case is to
7442split the parse instead.
7443
7444To adjust which states have default reductions enabled, use the
7445@code{%define lr.default-reductions} directive.
7446
7447@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7448Specify the kind of states that are permitted to contain default reductions.
7449The accepted values of @var{WHERE} are:
7450@itemize
f0ad1b2f 7451@item @code{most} (default for LALR and IELR)
7fceb615
JD
7452@item @code{consistent}
7453@item @code{accepting} (default for canonical LR)
7454@end itemize
7455
7456(The ability to specify where default reductions are permitted is
7457experimental. More user feedback will help to stabilize it.)
7458@end deffn
7459
7fceb615
JD
7460@node LAC
7461@subsection LAC
7462@findex %define parse.lac
7463@cindex LAC
7464@cindex lookahead correction
7465
7466Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7467encountering a syntax error. First, the parser might perform additional
7468parser stack reductions before discovering the syntax error. Such
7469reductions can perform user semantic actions that are unexpected because
7470they are based on an invalid token, and they cause error recovery to begin
7471in a different syntactic context than the one in which the invalid token was
7472encountered. Second, when verbose error messages are enabled (@pxref{Error
7473Reporting}), the expected token list in the syntax error message can both
7474contain invalid tokens and omit valid tokens.
7475
7476The culprits for the above problems are @code{%nonassoc}, default reductions
7477in inconsistent states (@pxref{Default Reductions}), and parser state
7478merging. Because IELR and LALR merge parser states, they suffer the most.
7479Canonical LR can suffer only if @code{%nonassoc} is used or if default
7480reductions are enabled for inconsistent states.
7481
7482LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7483that solves these problems for canonical LR, IELR, and LALR without
7484sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7485enable LAC with the @code{%define parse.lac} directive.
7486
7487@deffn {Directive} {%define parse.lac @var{VALUE}}
7488Enable LAC to improve syntax error handling.
7489@itemize
7490@item @code{none} (default)
7491@item @code{full}
7492@end itemize
7493(This feature is experimental. More user feedback will help to stabilize
7494it. Moreover, it is currently only available for deterministic parsers in
7495C.)
7496@end deffn
7497
7498Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7499fetches a new token from the scanner so that it can determine the next
7500parser action, it immediately suspends normal parsing and performs an
7501exploratory parse using a temporary copy of the normal parser state stack.
7502During this exploratory parse, the parser does not perform user semantic
7503actions. If the exploratory parse reaches a shift action, normal parsing
7504then resumes on the normal parser stacks. If the exploratory parse reaches
7505an error instead, the parser reports a syntax error. If verbose syntax
7506error messages are enabled, the parser must then discover the list of
7507expected tokens, so it performs a separate exploratory parse for each token
7508in the grammar.
7509
7510There is one subtlety about the use of LAC. That is, when in a consistent
7511parser state with a default reduction, the parser will not attempt to fetch
7512a token from the scanner because no lookahead is needed to determine the
7513next parser action. Thus, whether default reductions are enabled in
7514consistent states (@pxref{Default Reductions}) affects how soon the parser
7515detects a syntax error: immediately when it @emph{reaches} an erroneous
7516token or when it eventually @emph{needs} that token as a lookahead to
7517determine the next parser action. The latter behavior is probably more
7518intuitive, so Bison currently provides no way to achieve the former behavior
7519while default reductions are enabled in consistent states.
7520
7521Thus, when LAC is in use, for some fixed decision of whether to enable
7522default reductions in consistent states, canonical LR and IELR behave almost
7523exactly the same for both syntactically acceptable and syntactically
7524unacceptable input. While LALR still does not support the full
7525language-recognition power of canonical LR and IELR, LAC at least enables
7526LALR's syntax error handling to correctly reflect LALR's
7527language-recognition power.
7528
7529There are a few caveats to consider when using LAC:
7530
7531@itemize
7532@item Infinite parsing loops.
7533
7534IELR plus LAC does have one shortcoming relative to canonical LR. Some
7535parsers generated by Bison can loop infinitely. LAC does not fix infinite
7536parsing loops that occur between encountering a syntax error and detecting
7537it, but enabling canonical LR or disabling default reductions sometimes
7538does.
7539
7540@item Verbose error message limitations.
7541
7542Because of internationalization considerations, Bison-generated parsers
7543limit the size of the expected token list they are willing to report in a
7544verbose syntax error message. If the number of expected tokens exceeds that
7545limit, the list is simply dropped from the message. Enabling LAC can
7546increase the size of the list and thus cause the parser to drop it. Of
7547course, dropping the list is better than reporting an incorrect list.
7548
7549@item Performance.
7550
7551Because LAC requires many parse actions to be performed twice, it can have a
7552performance penalty. However, not all parse actions must be performed
7553twice. Specifically, during a series of default reductions in consistent
7554states and shift actions, the parser never has to initiate an exploratory
7555parse. Moreover, the most time-consuming tasks in a parse are often the
7556file I/O, the lexical analysis performed by the scanner, and the user's
7557semantic actions, but none of these are performed during the exploratory
7558parse. Finally, the base of the temporary stack used during an exploratory
7559parse is a pointer into the normal parser state stack so that the stack is
7560never physically copied. In our experience, the performance penalty of LAC
7561has proven insignificant for practical grammars.
7562@end itemize
7563
709c7d11
JD
7564While the LAC algorithm shares techniques that have been recognized in the
7565parser community for years, for the publication that introduces LAC,
7566@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7567
7fceb615
JD
7568@node Unreachable States
7569@subsection Unreachable States
7570@findex %define lr.keep-unreachable-states
7571@cindex unreachable states
7572
7573If there exists no sequence of transitions from the parser's start state to
7574some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7575state}. A state can become unreachable during conflict resolution if Bison
7576disables a shift action leading to it from a predecessor state.
7577
7578By default, Bison removes unreachable states from the parser after conflict
7579resolution because they are useless in the generated parser. However,
7580keeping unreachable states is sometimes useful when trying to understand the
7581relationship between the parser and the grammar.
7582
7583@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7584Request that Bison allow unreachable states to remain in the parser tables.
7585@var{VALUE} must be a Boolean. The default is @code{false}.
7586@end deffn
7587
7588There are a few caveats to consider:
7589
7590@itemize @bullet
7591@item Missing or extraneous warnings.
7592
7593Unreachable states may contain conflicts and may use rules not used in any
7594other state. Thus, keeping unreachable states may induce warnings that are
7595irrelevant to your parser's behavior, and it may eliminate warnings that are
7596relevant. Of course, the change in warnings may actually be relevant to a
7597parser table analysis that wants to keep unreachable states, so this
7598behavior will likely remain in future Bison releases.
7599
7600@item Other useless states.
7601
7602While Bison is able to remove unreachable states, it is not guaranteed to
7603remove other kinds of useless states. Specifically, when Bison disables
7604reduce actions during conflict resolution, some goto actions may become
7605useless, and thus some additional states may become useless. If Bison were
7606to compute which goto actions were useless and then disable those actions,
7607it could identify such states as unreachable and then remove those states.
7608However, Bison does not compute which goto actions are useless.
7609@end itemize
7610
fae437e8 7611@node Generalized LR Parsing
8a4281b9
JD
7612@section Generalized LR (GLR) Parsing
7613@cindex GLR parsing
7614@cindex generalized LR (GLR) parsing
676385e2 7615@cindex ambiguous grammars
9d9b8b70 7616@cindex nondeterministic parsing
676385e2 7617
fae437e8
AD
7618Bison produces @emph{deterministic} parsers that choose uniquely
7619when to reduce and which reduction to apply
742e4900 7620based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7621As a result, normal Bison handles a proper subset of the family of
7622context-free languages.
fae437e8 7623Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7624sequence of reductions cannot have deterministic parsers in this sense.
7625The same is true of languages that require more than one symbol of
742e4900 7626lookahead, since the parser lacks the information necessary to make a
676385e2 7627decision at the point it must be made in a shift-reduce parser.
cc09e5be 7628Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7629there are languages where Bison's default choice of how to
676385e2
PH
7630summarize the input seen so far loses necessary information.
7631
7632When you use the @samp{%glr-parser} declaration in your grammar file,
7633Bison generates a parser that uses a different algorithm, called
8a4281b9 7634Generalized LR (or GLR). A Bison GLR
c827f760 7635parser uses the same basic
676385e2
PH
7636algorithm for parsing as an ordinary Bison parser, but behaves
7637differently in cases where there is a shift-reduce conflict that has not
fae437e8 7638been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7639reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7640situation, it
fae437e8 7641effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7642shift or reduction. These parsers then proceed as usual, consuming
7643tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7644and split further, with the result that instead of a sequence of states,
8a4281b9 7645a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7646
7647In effect, each stack represents a guess as to what the proper parse
7648is. Additional input may indicate that a guess was wrong, in which case
7649the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7650actions generated in each stack are saved, rather than being executed
676385e2 7651immediately. When a stack disappears, its saved semantic actions never
fae437e8 7652get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7653their sets of semantic actions are both saved with the state that
7654results from the reduction. We say that two stacks are equivalent
fae437e8 7655when they both represent the same sequence of states,
676385e2
PH
7656and each pair of corresponding states represents a
7657grammar symbol that produces the same segment of the input token
7658stream.
7659
7660Whenever the parser makes a transition from having multiple
eb45ef3b 7661states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7662algorithm, after resolving and executing the saved-up actions.
7663At this transition, some of the states on the stack will have semantic
7664values that are sets (actually multisets) of possible actions. The
7665parser tries to pick one of the actions by first finding one whose rule
7666has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7667declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7668precedence, but there the same merging function is declared for both
fae437e8 7669rules by the @samp{%merge} declaration,
676385e2
PH
7670Bison resolves and evaluates both and then calls the merge function on
7671the result. Otherwise, it reports an ambiguity.
7672
8a4281b9
JD
7673It is possible to use a data structure for the GLR parsing tree that
7674permits the processing of any LR(1) grammar in linear time (in the
c827f760 7675size of the input), any unambiguous (not necessarily
8a4281b9 7676LR(1)) grammar in
fae437e8 7677quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7678context-free grammar in cubic worst-case time. However, Bison currently
7679uses a simpler data structure that requires time proportional to the
7680length of the input times the maximum number of stacks required for any
9d9b8b70 7681prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7682grammars can require exponential time and space to process. Such badly
7683behaving examples, however, are not generally of practical interest.
9d9b8b70 7684Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7685doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7686structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7687grammar, in particular, it is only slightly slower than with the
8a4281b9 7688deterministic LR(1) Bison parser.
676385e2 7689
5e528941
JD
7690For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
76912000}.
f6481e2f 7692
1a059451
PE
7693@node Memory Management
7694@section Memory Management, and How to Avoid Memory Exhaustion
7695@cindex memory exhaustion
7696@cindex memory management
bfa74976
RS
7697@cindex stack overflow
7698@cindex parser stack overflow
7699@cindex overflow of parser stack
7700
1a059451 7701The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7702not reduced. When this happens, the parser function @code{yyparse}
1a059451 7703calls @code{yyerror} and then returns 2.
bfa74976 7704
c827f760 7705Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7706usually results from using a right recursion instead of a left
7707recursion, @xref{Recursion, ,Recursive Rules}.
7708
bfa74976
RS
7709@vindex YYMAXDEPTH
7710By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7711parser stack can become before memory is exhausted. Define the
bfa74976
RS
7712macro with a value that is an integer. This value is the maximum number
7713of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7714
7715The stack space allowed is not necessarily allocated. If you specify a
1a059451 7716large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7717stack at first, and then makes it bigger by stages as needed. This
7718increasing allocation happens automatically and silently. Therefore,
7719you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7720space for ordinary inputs that do not need much stack.
7721
d7e14fc0
PE
7722However, do not allow @code{YYMAXDEPTH} to be a value so large that
7723arithmetic overflow could occur when calculating the size of the stack
7724space. Also, do not allow @code{YYMAXDEPTH} to be less than
7725@code{YYINITDEPTH}.
7726
bfa74976
RS
7727@cindex default stack limit
7728The default value of @code{YYMAXDEPTH}, if you do not define it, is
772910000.
7730
7731@vindex YYINITDEPTH
7732You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7733macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7734parser in C, this value must be a compile-time constant
d7e14fc0
PE
7735unless you are assuming C99 or some other target language or compiler
7736that allows variable-length arrays. The default is 200.
7737
1a059451 7738Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7739
20be2f92
PH
7740You can generate a deterministic parser containing C++ user code from
7741the default (C) skeleton, as well as from the C++ skeleton
7742(@pxref{C++ Parsers}). However, if you do use the default skeleton
7743and want to allow the parsing stack to grow,
7744be careful not to use semantic types or location types that require
7745non-trivial copy constructors.
7746The C skeleton bypasses these constructors when copying data to
7747new, larger stacks.
d1a1114f 7748
342b8b6e 7749@node Error Recovery
bfa74976
RS
7750@chapter Error Recovery
7751@cindex error recovery
7752@cindex recovery from errors
7753
6e649e65 7754It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7755error. For example, a compiler should recover sufficiently to parse the
7756rest of the input file and check it for errors; a calculator should accept
7757another expression.
7758
7759In a simple interactive command parser where each input is one line, it may
7760be sufficient to allow @code{yyparse} to return 1 on error and have the
7761caller ignore the rest of the input line when that happens (and then call
7762@code{yyparse} again). But this is inadequate for a compiler, because it
7763forgets all the syntactic context leading up to the error. A syntax error
7764deep within a function in the compiler input should not cause the compiler
7765to treat the following line like the beginning of a source file.
7766
7767@findex error
7768You can define how to recover from a syntax error by writing rules to
7769recognize the special token @code{error}. This is a terminal symbol that
7770is always defined (you need not declare it) and reserved for error
7771handling. The Bison parser generates an @code{error} token whenever a
7772syntax error happens; if you have provided a rule to recognize this token
13863333 7773in the current context, the parse can continue.
bfa74976
RS
7774
7775For example:
7776
7777@example
7778stmnts: /* empty string */
7779 | stmnts '\n'
7780 | stmnts exp '\n'
7781 | stmnts error '\n'
7782@end example
7783
7784The fourth rule in this example says that an error followed by a newline
7785makes a valid addition to any @code{stmnts}.
7786
7787What happens if a syntax error occurs in the middle of an @code{exp}? The
7788error recovery rule, interpreted strictly, applies to the precise sequence
7789of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7790the middle of an @code{exp}, there will probably be some additional tokens
7791and subexpressions on the stack after the last @code{stmnts}, and there
7792will be tokens to read before the next newline. So the rule is not
7793applicable in the ordinary way.
7794
7795But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7796the semantic context and part of the input. First it discards states
7797and objects from the stack until it gets back to a state in which the
bfa74976 7798@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7799already parsed are discarded, back to the last complete @code{stmnts}.)
7800At this point the @code{error} token can be shifted. Then, if the old
742e4900 7801lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7802tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7803this example, Bison reads and discards input until the next newline so
7804that the fourth rule can apply. Note that discarded symbols are
7805possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7806Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7807
7808The choice of error rules in the grammar is a choice of strategies for
7809error recovery. A simple and useful strategy is simply to skip the rest of
7810the current input line or current statement if an error is detected:
7811
7812@example
72d2299c 7813stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7814@end example
7815
7816It is also useful to recover to the matching close-delimiter of an
7817opening-delimiter that has already been parsed. Otherwise the
7818close-delimiter will probably appear to be unmatched, and generate another,
7819spurious error message:
7820
7821@example
7822primary: '(' expr ')'
7823 | '(' error ')'
7824 @dots{}
7825 ;
7826@end example
7827
7828Error recovery strategies are necessarily guesses. When they guess wrong,
7829one syntax error often leads to another. In the above example, the error
7830recovery rule guesses that an error is due to bad input within one
7831@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7832middle of a valid @code{stmnt}. After the error recovery rule recovers
7833from the first error, another syntax error will be found straightaway,
7834since the text following the spurious semicolon is also an invalid
7835@code{stmnt}.
7836
7837To prevent an outpouring of error messages, the parser will output no error
7838message for another syntax error that happens shortly after the first; only
7839after three consecutive input tokens have been successfully shifted will
7840error messages resume.
7841
7842Note that rules which accept the @code{error} token may have actions, just
7843as any other rules can.
7844
7845@findex yyerrok
7846You can make error messages resume immediately by using the macro
7847@code{yyerrok} in an action. If you do this in the error rule's action, no
7848error messages will be suppressed. This macro requires no arguments;
7849@samp{yyerrok;} is a valid C statement.
7850
7851@findex yyclearin
742e4900 7852The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7853this is unacceptable, then the macro @code{yyclearin} may be used to clear
7854this token. Write the statement @samp{yyclearin;} in the error rule's
7855action.
32c29292 7856@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7857
6e649e65 7858For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7859called that advances the input stream to some point where parsing should
7860once again commence. The next symbol returned by the lexical scanner is
742e4900 7861probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7862with @samp{yyclearin;}.
7863
7864@vindex YYRECOVERING
02103984
PE
7865The expression @code{YYRECOVERING ()} yields 1 when the parser
7866is recovering from a syntax error, and 0 otherwise.
7867Syntax error diagnostics are suppressed while recovering from a syntax
7868error.
bfa74976 7869
342b8b6e 7870@node Context Dependency
bfa74976
RS
7871@chapter Handling Context Dependencies
7872
7873The Bison paradigm is to parse tokens first, then group them into larger
7874syntactic units. In many languages, the meaning of a token is affected by
7875its context. Although this violates the Bison paradigm, certain techniques
7876(known as @dfn{kludges}) may enable you to write Bison parsers for such
7877languages.
7878
7879@menu
7880* Semantic Tokens:: Token parsing can depend on the semantic context.
7881* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7882* Tie-in Recovery:: Lexical tie-ins have implications for how
7883 error recovery rules must be written.
7884@end menu
7885
7886(Actually, ``kludge'' means any technique that gets its job done but is
7887neither clean nor robust.)
7888
342b8b6e 7889@node Semantic Tokens
bfa74976
RS
7890@section Semantic Info in Token Types
7891
7892The C language has a context dependency: the way an identifier is used
7893depends on what its current meaning is. For example, consider this:
7894
7895@example
7896foo (x);
7897@end example
7898
7899This looks like a function call statement, but if @code{foo} is a typedef
7900name, then this is actually a declaration of @code{x}. How can a Bison
7901parser for C decide how to parse this input?
7902
8a4281b9 7903The method used in GNU C is to have two different token types,
bfa74976
RS
7904@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7905identifier, it looks up the current declaration of the identifier in order
7906to decide which token type to return: @code{TYPENAME} if the identifier is
7907declared as a typedef, @code{IDENTIFIER} otherwise.
7908
7909The grammar rules can then express the context dependency by the choice of
7910token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7911but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7912@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7913is @emph{not} significant, such as in declarations that can shadow a
7914typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7915accepted---there is one rule for each of the two token types.
7916
7917This technique is simple to use if the decision of which kinds of
7918identifiers to allow is made at a place close to where the identifier is
7919parsed. But in C this is not always so: C allows a declaration to
7920redeclare a typedef name provided an explicit type has been specified
7921earlier:
7922
7923@example
3a4f411f
PE
7924typedef int foo, bar;
7925int baz (void)
7926@{
7927 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7928 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7929 return foo (bar);
7930@}
bfa74976
RS
7931@end example
7932
7933Unfortunately, the name being declared is separated from the declaration
7934construct itself by a complicated syntactic structure---the ``declarator''.
7935
9ecbd125 7936As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7937all the nonterminal names changed: once for parsing a declaration in
7938which a typedef name can be redefined, and once for parsing a
7939declaration in which that can't be done. Here is a part of the
7940duplication, with actions omitted for brevity:
bfa74976
RS
7941
7942@example
7943initdcl:
7944 declarator maybeasm '='
7945 init
7946 | declarator maybeasm
7947 ;
7948
7949notype_initdcl:
7950 notype_declarator maybeasm '='
7951 init
7952 | notype_declarator maybeasm
7953 ;
7954@end example
7955
7956@noindent
7957Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7958cannot. The distinction between @code{declarator} and
7959@code{notype_declarator} is the same sort of thing.
7960
7961There is some similarity between this technique and a lexical tie-in
7962(described next), in that information which alters the lexical analysis is
7963changed during parsing by other parts of the program. The difference is
7964here the information is global, and is used for other purposes in the
7965program. A true lexical tie-in has a special-purpose flag controlled by
7966the syntactic context.
7967
342b8b6e 7968@node Lexical Tie-ins
bfa74976
RS
7969@section Lexical Tie-ins
7970@cindex lexical tie-in
7971
7972One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7973which is set by Bison actions, whose purpose is to alter the way tokens are
7974parsed.
7975
7976For example, suppose we have a language vaguely like C, but with a special
7977construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7978an expression in parentheses in which all integers are hexadecimal. In
7979particular, the token @samp{a1b} must be treated as an integer rather than
7980as an identifier if it appears in that context. Here is how you can do it:
7981
7982@example
7983@group
7984%@{
38a92d50
PE
7985 int hexflag;
7986 int yylex (void);
7987 void yyerror (char const *);
bfa74976
RS
7988%@}
7989%%
7990@dots{}
7991@end group
7992@group
7993expr: IDENTIFIER
7994 | constant
7995 | HEX '('
7996 @{ hexflag = 1; @}
7997 expr ')'
7998 @{ hexflag = 0;
7999 $$ = $4; @}
8000 | expr '+' expr
8001 @{ $$ = make_sum ($1, $3); @}
8002 @dots{}
8003 ;
8004@end group
8005
8006@group
8007constant:
8008 INTEGER
8009 | STRING
8010 ;
8011@end group
8012@end example
8013
8014@noindent
8015Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8016it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8017with letters are parsed as integers if possible.
8018
ff7571c0
JD
8019The declaration of @code{hexflag} shown in the prologue of the grammar
8020file is needed to make it accessible to the actions (@pxref{Prologue,
8021,The Prologue}). You must also write the code in @code{yylex} to obey
8022the flag.
bfa74976 8023
342b8b6e 8024@node Tie-in Recovery
bfa74976
RS
8025@section Lexical Tie-ins and Error Recovery
8026
8027Lexical tie-ins make strict demands on any error recovery rules you have.
8028@xref{Error Recovery}.
8029
8030The reason for this is that the purpose of an error recovery rule is to
8031abort the parsing of one construct and resume in some larger construct.
8032For example, in C-like languages, a typical error recovery rule is to skip
8033tokens until the next semicolon, and then start a new statement, like this:
8034
8035@example
8036stmt: expr ';'
8037 | IF '(' expr ')' stmt @{ @dots{} @}
8038 @dots{}
8039 error ';'
8040 @{ hexflag = 0; @}
8041 ;
8042@end example
8043
8044If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8045construct, this error rule will apply, and then the action for the
8046completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8047remain set for the entire rest of the input, or until the next @code{hex}
8048keyword, causing identifiers to be misinterpreted as integers.
8049
8050To avoid this problem the error recovery rule itself clears @code{hexflag}.
8051
8052There may also be an error recovery rule that works within expressions.
8053For example, there could be a rule which applies within parentheses
8054and skips to the close-parenthesis:
8055
8056@example
8057@group
8058expr: @dots{}
8059 | '(' expr ')'
8060 @{ $$ = $2; @}
8061 | '(' error ')'
8062 @dots{}
8063@end group
8064@end example
8065
8066If this rule acts within the @code{hex} construct, it is not going to abort
8067that construct (since it applies to an inner level of parentheses within
8068the construct). Therefore, it should not clear the flag: the rest of
8069the @code{hex} construct should be parsed with the flag still in effect.
8070
8071What if there is an error recovery rule which might abort out of the
8072@code{hex} construct or might not, depending on circumstances? There is no
8073way you can write the action to determine whether a @code{hex} construct is
8074being aborted or not. So if you are using a lexical tie-in, you had better
8075make sure your error recovery rules are not of this kind. Each rule must
8076be such that you can be sure that it always will, or always won't, have to
8077clear the flag.
8078
ec3bc396
AD
8079@c ================================================== Debugging Your Parser
8080
342b8b6e 8081@node Debugging
bfa74976 8082@chapter Debugging Your Parser
ec3bc396
AD
8083
8084Developing a parser can be a challenge, especially if you don't
8085understand the algorithm (@pxref{Algorithm, ,The Bison Parser
8086Algorithm}). Even so, sometimes a detailed description of the automaton
8087can help (@pxref{Understanding, , Understanding Your Parser}), or
8088tracing the execution of the parser can give some insight on why it
8089behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
8090
8091@menu
8092* Understanding:: Understanding the structure of your parser.
8093* Tracing:: Tracing the execution of your parser.
8094@end menu
8095
8096@node Understanding
8097@section Understanding Your Parser
8098
8099As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8100Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8101frequent than one would hope), looking at this automaton is required to
8102tune or simply fix a parser. Bison provides two different
35fe0834 8103representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8104
8105The textual file is generated when the options @option{--report} or
8106@option{--verbose} are specified, see @xref{Invocation, , Invoking
8107Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8108the parser implementation file name, and adding @samp{.output}
8109instead. Therefore, if the grammar file is @file{foo.y}, then the
8110parser implementation file is called @file{foo.tab.c} by default. As
8111a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8112
8113The following grammar file, @file{calc.y}, will be used in the sequel:
8114
8115@example
8116%token NUM STR
8117%left '+' '-'
8118%left '*'
8119%%
8120exp: exp '+' exp
8121 | exp '-' exp
8122 | exp '*' exp
8123 | exp '/' exp
8124 | NUM
8125 ;
8126useless: STR;
8127%%
8128@end example
8129
88bce5a2
AD
8130@command{bison} reports:
8131
8132@example
8f0d265e
JD
8133calc.y: warning: 1 nonterminal useless in grammar
8134calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8135calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8136calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8137calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8138@end example
8139
8140When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8141creates a file @file{calc.output} with contents detailed below. The
8142order of the output and the exact presentation might vary, but the
8143interpretation is the same.
ec3bc396
AD
8144
8145The first section includes details on conflicts that were solved thanks
8146to precedence and/or associativity:
8147
8148@example
8149Conflict in state 8 between rule 2 and token '+' resolved as reduce.
8150Conflict in state 8 between rule 2 and token '-' resolved as reduce.
8151Conflict in state 8 between rule 2 and token '*' resolved as shift.
8152@exdent @dots{}
8153@end example
8154
8155@noindent
8156The next section lists states that still have conflicts.
8157
8158@example
5a99098d
PE
8159State 8 conflicts: 1 shift/reduce
8160State 9 conflicts: 1 shift/reduce
8161State 10 conflicts: 1 shift/reduce
8162State 11 conflicts: 4 shift/reduce
ec3bc396
AD
8163@end example
8164
8165@noindent
8166@cindex token, useless
8167@cindex useless token
8168@cindex nonterminal, useless
8169@cindex useless nonterminal
8170@cindex rule, useless
8171@cindex useless rule
8172The next section reports useless tokens, nonterminal and rules. Useless
8173nonterminals and rules are removed in order to produce a smaller parser,
8174but useless tokens are preserved, since they might be used by the
d80fb37a 8175scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
8176below):
8177
8178@example
d80fb37a 8179Nonterminals useless in grammar:
ec3bc396
AD
8180 useless
8181
d80fb37a 8182Terminals unused in grammar:
ec3bc396
AD
8183 STR
8184
cff03fb2 8185Rules useless in grammar:
ec3bc396
AD
8186#6 useless: STR;
8187@end example
8188
8189@noindent
8190The next section reproduces the exact grammar that Bison used:
8191
8192@example
8193Grammar
8194
8195 Number, Line, Rule
88bce5a2 8196 0 5 $accept -> exp $end
ec3bc396
AD
8197 1 5 exp -> exp '+' exp
8198 2 6 exp -> exp '-' exp
8199 3 7 exp -> exp '*' exp
8200 4 8 exp -> exp '/' exp
8201 5 9 exp -> NUM
8202@end example
8203
8204@noindent
8205and reports the uses of the symbols:
8206
8207@example
8208Terminals, with rules where they appear
8209
88bce5a2 8210$end (0) 0
ec3bc396
AD
8211'*' (42) 3
8212'+' (43) 1
8213'-' (45) 2
8214'/' (47) 4
8215error (256)
8216NUM (258) 5
8217
8218Nonterminals, with rules where they appear
8219
88bce5a2 8220$accept (8)
ec3bc396
AD
8221 on left: 0
8222exp (9)
8223 on left: 1 2 3 4 5, on right: 0 1 2 3 4
8224@end example
8225
8226@noindent
8227@cindex item
8228@cindex pointed rule
8229@cindex rule, pointed
8230Bison then proceeds onto the automaton itself, describing each state
8231with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
8232item is a production rule together with a point (marked by @samp{.})
8233that the input cursor.
8234
8235@example
8236state 0
8237
88bce5a2 8238 $accept -> . exp $ (rule 0)
ec3bc396 8239
2a8d363a 8240 NUM shift, and go to state 1
ec3bc396 8241
2a8d363a 8242 exp go to state 2
ec3bc396
AD
8243@end example
8244
8245This reads as follows: ``state 0 corresponds to being at the very
8246beginning of the parsing, in the initial rule, right before the start
8247symbol (here, @code{exp}). When the parser returns to this state right
8248after having reduced a rule that produced an @code{exp}, the control
8249flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 8250symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 8251the parse stack, and the control flow jumps to state 1. Any other
742e4900 8252lookahead triggers a syntax error.''
ec3bc396
AD
8253
8254@cindex core, item set
8255@cindex item set core
8256@cindex kernel, item set
8257@cindex item set core
8258Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8259report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8260at the beginning of any rule deriving an @code{exp}. By default Bison
8261reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8262you want to see more detail you can invoke @command{bison} with
8263@option{--report=itemset} to list all the items, include those that can
8264be derived:
8265
8266@example
8267state 0
8268
88bce5a2 8269 $accept -> . exp $ (rule 0)
ec3bc396
AD
8270 exp -> . exp '+' exp (rule 1)
8271 exp -> . exp '-' exp (rule 2)
8272 exp -> . exp '*' exp (rule 3)
8273 exp -> . exp '/' exp (rule 4)
8274 exp -> . NUM (rule 5)
8275
8276 NUM shift, and go to state 1
8277
8278 exp go to state 2
8279@end example
8280
8281@noindent
8282In the state 1...
8283
8284@example
8285state 1
8286
8287 exp -> NUM . (rule 5)
8288
2a8d363a 8289 $default reduce using rule 5 (exp)
ec3bc396
AD
8290@end example
8291
8292@noindent
742e4900 8293the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8294(@samp{$default}), the parser will reduce it. If it was coming from
8295state 0, then, after this reduction it will return to state 0, and will
8296jump to state 2 (@samp{exp: go to state 2}).
8297
8298@example
8299state 2
8300
88bce5a2 8301 $accept -> exp . $ (rule 0)
ec3bc396
AD
8302 exp -> exp . '+' exp (rule 1)
8303 exp -> exp . '-' exp (rule 2)
8304 exp -> exp . '*' exp (rule 3)
8305 exp -> exp . '/' exp (rule 4)
8306
2a8d363a
AD
8307 $ shift, and go to state 3
8308 '+' shift, and go to state 4
8309 '-' shift, and go to state 5
8310 '*' shift, and go to state 6
8311 '/' shift, and go to state 7
ec3bc396
AD
8312@end example
8313
8314@noindent
8315In state 2, the automaton can only shift a symbol. For instance,
742e4900 8316because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8317@samp{+}, it will be shifted on the parse stack, and the automaton
8318control will jump to state 4, corresponding to the item @samp{exp -> exp
8319'+' . exp}. Since there is no default action, any other token than
6e649e65 8320those listed above will trigger a syntax error.
ec3bc396 8321
eb45ef3b 8322@cindex accepting state
ec3bc396
AD
8323The state 3 is named the @dfn{final state}, or the @dfn{accepting
8324state}:
8325
8326@example
8327state 3
8328
88bce5a2 8329 $accept -> exp $ . (rule 0)
ec3bc396 8330
2a8d363a 8331 $default accept
ec3bc396
AD
8332@end example
8333
8334@noindent
8335the initial rule is completed (the start symbol and the end
8336of input were read), the parsing exits successfully.
8337
8338The interpretation of states 4 to 7 is straightforward, and is left to
8339the reader.
8340
8341@example
8342state 4
8343
8344 exp -> exp '+' . exp (rule 1)
8345
2a8d363a 8346 NUM shift, and go to state 1
ec3bc396 8347
2a8d363a 8348 exp go to state 8
ec3bc396
AD
8349
8350state 5
8351
8352 exp -> exp '-' . exp (rule 2)
8353
2a8d363a 8354 NUM shift, and go to state 1
ec3bc396 8355
2a8d363a 8356 exp go to state 9
ec3bc396
AD
8357
8358state 6
8359
8360 exp -> exp '*' . exp (rule 3)
8361
2a8d363a 8362 NUM shift, and go to state 1
ec3bc396 8363
2a8d363a 8364 exp go to state 10
ec3bc396
AD
8365
8366state 7
8367
8368 exp -> exp '/' . exp (rule 4)
8369
2a8d363a 8370 NUM shift, and go to state 1
ec3bc396 8371
2a8d363a 8372 exp go to state 11
ec3bc396
AD
8373@end example
8374
5a99098d
PE
8375As was announced in beginning of the report, @samp{State 8 conflicts:
83761 shift/reduce}:
ec3bc396
AD
8377
8378@example
8379state 8
8380
8381 exp -> exp . '+' exp (rule 1)
8382 exp -> exp '+' exp . (rule 1)
8383 exp -> exp . '-' exp (rule 2)
8384 exp -> exp . '*' exp (rule 3)
8385 exp -> exp . '/' exp (rule 4)
8386
2a8d363a
AD
8387 '*' shift, and go to state 6
8388 '/' shift, and go to state 7
ec3bc396 8389
2a8d363a
AD
8390 '/' [reduce using rule 1 (exp)]
8391 $default reduce using rule 1 (exp)
ec3bc396
AD
8392@end example
8393
742e4900 8394Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8395either shifting (and going to state 7), or reducing rule 1. The
8396conflict means that either the grammar is ambiguous, or the parser lacks
8397information to make the right decision. Indeed the grammar is
8398ambiguous, as, since we did not specify the precedence of @samp{/}, the
8399sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8400NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8401NUM}, which corresponds to reducing rule 1.
8402
eb45ef3b 8403Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8404arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8405Shift/Reduce Conflicts}. Discarded actions are reported in between
8406square brackets.
8407
8408Note that all the previous states had a single possible action: either
8409shifting the next token and going to the corresponding state, or
8410reducing a single rule. In the other cases, i.e., when shifting
8411@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8412possible, the lookahead is required to select the action. State 8 is
8413one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8414is shifting, otherwise the action is reducing rule 1. In other words,
8415the first two items, corresponding to rule 1, are not eligible when the
742e4900 8416lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8417precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8418with some set of possible lookahead tokens. When run with
8419@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8420
8421@example
8422state 8
8423
88c78747 8424 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8425 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8426 exp -> exp . '-' exp (rule 2)
8427 exp -> exp . '*' exp (rule 3)
8428 exp -> exp . '/' exp (rule 4)
8429
8430 '*' shift, and go to state 6
8431 '/' shift, and go to state 7
8432
8433 '/' [reduce using rule 1 (exp)]
8434 $default reduce using rule 1 (exp)
8435@end example
8436
8437The remaining states are similar:
8438
8439@example
8440state 9
8441
8442 exp -> exp . '+' exp (rule 1)
8443 exp -> exp . '-' exp (rule 2)
8444 exp -> exp '-' exp . (rule 2)
8445 exp -> exp . '*' exp (rule 3)
8446 exp -> exp . '/' exp (rule 4)
8447
2a8d363a
AD
8448 '*' shift, and go to state 6
8449 '/' shift, and go to state 7
ec3bc396 8450
2a8d363a
AD
8451 '/' [reduce using rule 2 (exp)]
8452 $default reduce using rule 2 (exp)
ec3bc396
AD
8453
8454state 10
8455
8456 exp -> exp . '+' exp (rule 1)
8457 exp -> exp . '-' exp (rule 2)
8458 exp -> exp . '*' exp (rule 3)
8459 exp -> exp '*' exp . (rule 3)
8460 exp -> exp . '/' exp (rule 4)
8461
2a8d363a 8462 '/' shift, and go to state 7
ec3bc396 8463
2a8d363a
AD
8464 '/' [reduce using rule 3 (exp)]
8465 $default reduce using rule 3 (exp)
ec3bc396
AD
8466
8467state 11
8468
8469 exp -> exp . '+' exp (rule 1)
8470 exp -> exp . '-' exp (rule 2)
8471 exp -> exp . '*' exp (rule 3)
8472 exp -> exp . '/' exp (rule 4)
8473 exp -> exp '/' exp . (rule 4)
8474
2a8d363a
AD
8475 '+' shift, and go to state 4
8476 '-' shift, and go to state 5
8477 '*' shift, and go to state 6
8478 '/' shift, and go to state 7
ec3bc396 8479
2a8d363a
AD
8480 '+' [reduce using rule 4 (exp)]
8481 '-' [reduce using rule 4 (exp)]
8482 '*' [reduce using rule 4 (exp)]
8483 '/' [reduce using rule 4 (exp)]
8484 $default reduce using rule 4 (exp)
ec3bc396
AD
8485@end example
8486
8487@noindent
fa7e68c3
PE
8488Observe that state 11 contains conflicts not only due to the lack of
8489precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8490@samp{*}, but also because the
ec3bc396
AD
8491associativity of @samp{/} is not specified.
8492
8493
8494@node Tracing
8495@section Tracing Your Parser
bfa74976
RS
8496@findex yydebug
8497@cindex debugging
8498@cindex tracing the parser
8499
8500If a Bison grammar compiles properly but doesn't do what you want when it
8501runs, the @code{yydebug} parser-trace feature can help you figure out why.
8502
3ded9a63
AD
8503There are several means to enable compilation of trace facilities:
8504
8505@table @asis
8506@item the macro @code{YYDEBUG}
8507@findex YYDEBUG
8508Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8509parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8510@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8511YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8512Prologue}).
8513
8514@item the option @option{-t}, @option{--debug}
8515Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8516,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8517
8518@item the directive @samp{%debug}
8519@findex %debug
fa819509
AD
8520Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8521Summary}). This Bison extension is maintained for backward
8522compatibility with previous versions of Bison.
8523
8524@item the variable @samp{parse.trace}
8525@findex %define parse.trace
35c1e5f0
JD
8526Add the @samp{%define parse.trace} directive (@pxref{%define
8527Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8528(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8529useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8530portability matter to you, this is the preferred solution.
3ded9a63
AD
8531@end table
8532
fa819509 8533We suggest that you always enable the trace option so that debugging is
3ded9a63 8534always possible.
bfa74976 8535
02a81e05 8536The trace facility outputs messages with macro calls of the form
e2742e46 8537@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8538@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8539arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8540define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8541and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8542
8543Once you have compiled the program with trace facilities, the way to
8544request a trace is to store a nonzero value in the variable @code{yydebug}.
8545You can do this by making the C code do it (in @code{main}, perhaps), or
8546you can alter the value with a C debugger.
8547
8548Each step taken by the parser when @code{yydebug} is nonzero produces a
8549line or two of trace information, written on @code{stderr}. The trace
8550messages tell you these things:
8551
8552@itemize @bullet
8553@item
8554Each time the parser calls @code{yylex}, what kind of token was read.
8555
8556@item
8557Each time a token is shifted, the depth and complete contents of the
8558state stack (@pxref{Parser States}).
8559
8560@item
8561Each time a rule is reduced, which rule it is, and the complete contents
8562of the state stack afterward.
8563@end itemize
8564
8565To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8566produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8567Bison}). This file shows the meaning of each state in terms of
8568positions in various rules, and also what each state will do with each
8569possible input token. As you read the successive trace messages, you
8570can see that the parser is functioning according to its specification in
8571the listing file. Eventually you will arrive at the place where
8572something undesirable happens, and you will see which parts of the
8573grammar are to blame.
bfa74976 8574
ff7571c0
JD
8575The parser implementation file is a C program and you can use C
8576debuggers on it, but it's not easy to interpret what it is doing. The
8577parser function is a finite-state machine interpreter, and aside from
8578the actions it executes the same code over and over. Only the values
8579of variables show where in the grammar it is working.
bfa74976
RS
8580
8581@findex YYPRINT
8582The debugging information normally gives the token type of each token
8583read, but not its semantic value. You can optionally define a macro
8584named @code{YYPRINT} to provide a way to print the value. If you define
8585@code{YYPRINT}, it should take three arguments. The parser will pass a
8586standard I/O stream, the numeric code for the token type, and the token
8587value (from @code{yylval}).
8588
8589Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8590calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8591
8592@smallexample
38a92d50
PE
8593%@{
8594 static void print_token_value (FILE *, int, YYSTYPE);
8595 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8596%@}
8597
8598@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8599
8600static void
831d3c99 8601print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8602@{
8603 if (type == VAR)
d3c4e709 8604 fprintf (file, "%s", value.tptr->name);
bfa74976 8605 else if (type == NUM)
d3c4e709 8606 fprintf (file, "%d", value.val);
bfa74976
RS
8607@}
8608@end smallexample
8609
ec3bc396
AD
8610@c ================================================= Invoking Bison
8611
342b8b6e 8612@node Invocation
bfa74976
RS
8613@chapter Invoking Bison
8614@cindex invoking Bison
8615@cindex Bison invocation
8616@cindex options for invoking Bison
8617
8618The usual way to invoke Bison is as follows:
8619
8620@example
8621bison @var{infile}
8622@end example
8623
8624Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8625@samp{.y}. The parser implementation file's name is made by replacing
8626the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8627Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8628the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8629also possible, in case you are writing C++ code instead of C in your
8630grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8631output files will take an extension like the given one as input
8632(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8633feature takes effect with all options that manipulate file names like
234a3be3
AD
8634@samp{-o} or @samp{-d}.
8635
8636For example :
8637
8638@example
8639bison -d @var{infile.yxx}
8640@end example
84163231 8641@noindent
72d2299c 8642will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8643
8644@example
b56471a6 8645bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8646@end example
84163231 8647@noindent
234a3be3
AD
8648will produce @file{output.c++} and @file{outfile.h++}.
8649
8a4281b9 8650For compatibility with POSIX, the standard Bison
397ec073
PE
8651distribution also contains a shell script called @command{yacc} that
8652invokes Bison with the @option{-y} option.
8653
bfa74976 8654@menu
13863333 8655* Bison Options:: All the options described in detail,
c827f760 8656 in alphabetical order by short options.
bfa74976 8657* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8658* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8659@end menu
8660
342b8b6e 8661@node Bison Options
bfa74976
RS
8662@section Bison Options
8663
8664Bison supports both traditional single-letter options and mnemonic long
8665option names. Long option names are indicated with @samp{--} instead of
8666@samp{-}. Abbreviations for option names are allowed as long as they
8667are unique. When a long option takes an argument, like
8668@samp{--file-prefix}, connect the option name and the argument with
8669@samp{=}.
8670
8671Here is a list of options that can be used with Bison, alphabetized by
8672short option. It is followed by a cross key alphabetized by long
8673option.
8674
89cab50d
AD
8675@c Please, keep this ordered as in `bison --help'.
8676@noindent
8677Operations modes:
8678@table @option
8679@item -h
8680@itemx --help
8681Print a summary of the command-line options to Bison and exit.
bfa74976 8682
89cab50d
AD
8683@item -V
8684@itemx --version
8685Print the version number of Bison and exit.
bfa74976 8686
f7ab6a50
PE
8687@item --print-localedir
8688Print the name of the directory containing locale-dependent data.
8689
a0de5091
JD
8690@item --print-datadir
8691Print the name of the directory containing skeletons and XSLT.
8692
89cab50d
AD
8693@item -y
8694@itemx --yacc
ff7571c0
JD
8695Act more like the traditional Yacc command. This can cause different
8696diagnostics to be generated, and may change behavior in other minor
8697ways. Most importantly, imitate Yacc's output file name conventions,
8698so that the parser implementation file is called @file{y.tab.c}, and
8699the other outputs are called @file{y.output} and @file{y.tab.h}.
8700Also, if generating a deterministic parser in C, generate
8701@code{#define} statements in addition to an @code{enum} to associate
8702token numbers with token names. Thus, the following shell script can
8703substitute for Yacc, and the Bison distribution contains such a script
8704for compatibility with POSIX:
bfa74976 8705
89cab50d 8706@example
397ec073 8707#! /bin/sh
26e06a21 8708bison -y "$@@"
89cab50d 8709@end example
54662697
PE
8710
8711The @option{-y}/@option{--yacc} option is intended for use with
8712traditional Yacc grammars. If your grammar uses a Bison extension
8713like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8714this option is specified.
8715
1d5b3c08
JD
8716@item -W [@var{category}]
8717@itemx --warnings[=@var{category}]
118d4978
AD
8718Output warnings falling in @var{category}. @var{category} can be one
8719of:
8720@table @code
8721@item midrule-values
8e55b3aa
JD
8722Warn about mid-rule values that are set but not used within any of the actions
8723of the parent rule.
8724For example, warn about unused @code{$2} in:
118d4978
AD
8725
8726@example
8727exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8728@end example
8729
8e55b3aa
JD
8730Also warn about mid-rule values that are used but not set.
8731For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8732
8733@example
8734 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8735@end example
8736
8737These warnings are not enabled by default since they sometimes prove to
8738be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8739@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8740
118d4978 8741@item yacc
8a4281b9 8742Incompatibilities with POSIX Yacc.
118d4978 8743
786743d5
JD
8744@item conflicts-sr
8745@itemx conflicts-rr
8746S/R and R/R conflicts. These warnings are enabled by default. However, if
8747the @code{%expect} or @code{%expect-rr} directive is specified, an
8748unexpected number of conflicts is an error, and an expected number of
8749conflicts is not reported, so @option{-W} and @option{--warning} then have
8750no effect on the conflict report.
8751
c39014ae
JD
8752@item other
8753All warnings not categorized above. These warnings are enabled by default.
8754
8755This category is provided merely for the sake of completeness. Future
8756releases of Bison may move warnings from this category to new, more specific
8757categories.
8758
118d4978 8759@item all
8e55b3aa 8760All the warnings.
118d4978 8761@item none
8e55b3aa 8762Turn off all the warnings.
118d4978 8763@item error
8e55b3aa 8764Treat warnings as errors.
118d4978
AD
8765@end table
8766
8767A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8768instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8769POSIX Yacc incompatibilities.
89cab50d
AD
8770@end table
8771
8772@noindent
8773Tuning the parser:
8774
8775@table @option
8776@item -t
8777@itemx --debug
ff7571c0
JD
8778In the parser implementation file, define the macro @code{YYDEBUG} to
87791 if it is not already defined, so that the debugging facilities are
8780compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8781
58697c6d
AD
8782@item -D @var{name}[=@var{value}]
8783@itemx --define=@var{name}[=@var{value}]
17aed602 8784@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8785@itemx --force-define=@var{name}[=@var{value}]
8786Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 8787(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
8788definitions for the same @var{name} as follows:
8789
8790@itemize
8791@item
0b6d43c5
JD
8792Bison quietly ignores all command-line definitions for @var{name} except
8793the last.
de5ab940 8794@item
0b6d43c5
JD
8795If that command-line definition is specified by a @code{-D} or
8796@code{--define}, Bison reports an error for any @code{%define}
8797definition for @var{name}.
de5ab940 8798@item
0b6d43c5
JD
8799If that command-line definition is specified by a @code{-F} or
8800@code{--force-define} instead, Bison quietly ignores all @code{%define}
8801definitions for @var{name}.
8802@item
8803Otherwise, Bison reports an error if there are multiple @code{%define}
8804definitions for @var{name}.
de5ab940
JD
8805@end itemize
8806
8807You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8808make files unless you are confident that it is safe to quietly ignore
8809any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8810
0e021770
PE
8811@item -L @var{language}
8812@itemx --language=@var{language}
8813Specify the programming language for the generated parser, as if
8814@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8815Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8816@var{language} is case-insensitive.
0e021770 8817
ed4d67dc
JD
8818This option is experimental and its effect may be modified in future
8819releases.
8820
89cab50d 8821@item --locations
d8988b2f 8822Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8823
8824@item -p @var{prefix}
8825@itemx --name-prefix=@var{prefix}
02975b9a 8826Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8827@xref{Decl Summary}.
bfa74976
RS
8828
8829@item -l
8830@itemx --no-lines
ff7571c0
JD
8831Don't put any @code{#line} preprocessor commands in the parser
8832implementation file. Ordinarily Bison puts them in the parser
8833implementation file so that the C compiler and debuggers will
8834associate errors with your source file, the grammar file. This option
8835causes them to associate errors with the parser implementation file,
8836treating it as an independent source file in its own right.
bfa74976 8837
e6e704dc
JD
8838@item -S @var{file}
8839@itemx --skeleton=@var{file}
a7867f53 8840Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8841(@pxref{Decl Summary, , Bison Declaration Summary}).
8842
ed4d67dc
JD
8843@c You probably don't need this option unless you are developing Bison.
8844@c You should use @option{--language} if you want to specify the skeleton for a
8845@c different language, because it is clearer and because it will always
8846@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8847
a7867f53
JD
8848If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8849file in the Bison installation directory.
8850If it does, @var{file} is an absolute file name or a file name relative to the
8851current working directory.
8852This is similar to how most shells resolve commands.
8853
89cab50d
AD
8854@item -k
8855@itemx --token-table
d8988b2f 8856Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8857@end table
bfa74976 8858
89cab50d
AD
8859@noindent
8860Adjust the output:
bfa74976 8861
89cab50d 8862@table @option
8e55b3aa 8863@item --defines[=@var{file}]
d8988b2f 8864Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8865file containing macro definitions for the token type names defined in
4bfd5e4e 8866the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8867
8e55b3aa
JD
8868@item -d
8869This is the same as @code{--defines} except @code{-d} does not accept a
8870@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8871with other short options.
342b8b6e 8872
89cab50d
AD
8873@item -b @var{file-prefix}
8874@itemx --file-prefix=@var{prefix}
9c437126 8875Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8876for all Bison output file names. @xref{Decl Summary}.
bfa74976 8877
ec3bc396
AD
8878@item -r @var{things}
8879@itemx --report=@var{things}
8880Write an extra output file containing verbose description of the comma
8881separated list of @var{things} among:
8882
8883@table @code
8884@item state
8885Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8886parser's automaton.
ec3bc396 8887
742e4900 8888@item lookahead
ec3bc396 8889Implies @code{state} and augments the description of the automaton with
742e4900 8890each rule's lookahead set.
ec3bc396
AD
8891
8892@item itemset
8893Implies @code{state} and augments the description of the automaton with
8894the full set of items for each state, instead of its core only.
8895@end table
8896
1bb2bd75
JD
8897@item --report-file=@var{file}
8898Specify the @var{file} for the verbose description.
8899
bfa74976
RS
8900@item -v
8901@itemx --verbose
9c437126 8902Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8903file containing verbose descriptions of the grammar and
72d2299c 8904parser. @xref{Decl Summary}.
bfa74976 8905
fa4d969f
PE
8906@item -o @var{file}
8907@itemx --output=@var{file}
ff7571c0 8908Specify the @var{file} for the parser implementation file.
bfa74976 8909
fa4d969f 8910The other output files' names are constructed from @var{file} as
d8988b2f 8911described under the @samp{-v} and @samp{-d} options.
342b8b6e 8912
a7c09cba 8913@item -g [@var{file}]
8e55b3aa 8914@itemx --graph[=@var{file}]
eb45ef3b 8915Output a graphical representation of the parser's
35fe0834 8916automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 8917@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8918@code{@var{file}} is optional.
8919If omitted and the grammar file is @file{foo.y}, the output file will be
8920@file{foo.dot}.
59da312b 8921
a7c09cba 8922@item -x [@var{file}]
8e55b3aa 8923@itemx --xml[=@var{file}]
eb45ef3b 8924Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8925@code{@var{file}} is optional.
59da312b
JD
8926If omitted and the grammar file is @file{foo.y}, the output file will be
8927@file{foo.xml}.
8928(The current XML schema is experimental and may evolve.
8929More user feedback will help to stabilize it.)
bfa74976
RS
8930@end table
8931
342b8b6e 8932@node Option Cross Key
bfa74976
RS
8933@section Option Cross Key
8934
8935Here is a list of options, alphabetized by long option, to help you find
de5ab940 8936the corresponding short option and directive.
bfa74976 8937
de5ab940 8938@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8939@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8940@include cross-options.texi
aa08666d 8941@end multitable
bfa74976 8942
93dd49ab
PE
8943@node Yacc Library
8944@section Yacc Library
8945
8946The Yacc library contains default implementations of the
8947@code{yyerror} and @code{main} functions. These default
8a4281b9 8948implementations are normally not useful, but POSIX requires
93dd49ab
PE
8949them. To use the Yacc library, link your program with the
8950@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 8951library is distributed under the terms of the GNU General
93dd49ab
PE
8952Public License (@pxref{Copying}).
8953
8954If you use the Yacc library's @code{yyerror} function, you should
8955declare @code{yyerror} as follows:
8956
8957@example
8958int yyerror (char const *);
8959@end example
8960
8961Bison ignores the @code{int} value returned by this @code{yyerror}.
8962If you use the Yacc library's @code{main} function, your
8963@code{yyparse} function should have the following type signature:
8964
8965@example
8966int yyparse (void);
8967@end example
8968
12545799
AD
8969@c ================================================= C++ Bison
8970
8405b70c
PB
8971@node Other Languages
8972@chapter Parsers Written In Other Languages
12545799
AD
8973
8974@menu
8975* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8976* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8977@end menu
8978
8979@node C++ Parsers
8980@section C++ Parsers
8981
8982@menu
8983* C++ Bison Interface:: Asking for C++ parser generation
8984* C++ Semantic Values:: %union vs. C++
8985* C++ Location Values:: The position and location classes
8986* C++ Parser Interface:: Instantiating and running the parser
8987* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8988* A Complete C++ Example:: Demonstrating their use
12545799
AD
8989@end menu
8990
8991@node C++ Bison Interface
8992@subsection C++ Bison Interface
ed4d67dc 8993@c - %skeleton "lalr1.cc"
12545799
AD
8994@c - Always pure
8995@c - initial action
8996
eb45ef3b 8997The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
8998@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8999@option{--skeleton=lalr1.cc}.
e6e704dc 9000@xref{Decl Summary}.
0e021770 9001
793fbca5
JD
9002When run, @command{bison} will create several entities in the @samp{yy}
9003namespace.
67501061 9004@findex %define api.namespace
35c1e5f0
JD
9005Use the @samp{%define api.namespace} directive to change the namespace name,
9006see @ref{%define Summary,,api.namespace}. The various classes are generated
9007in the following files:
aa08666d 9008
12545799
AD
9009@table @file
9010@item position.hh
9011@itemx location.hh
9012The definition of the classes @code{position} and @code{location},
3cdc21cf 9013used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9014
9015@item stack.hh
9016An auxiliary class @code{stack} used by the parser.
9017
fa4d969f
PE
9018@item @var{file}.hh
9019@itemx @var{file}.cc
ff7571c0 9020(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9021declaration and implementation of the C++ parser class. The basename
9022and extension of these two files follow the same rules as with regular C
9023parsers (@pxref{Invocation}).
12545799 9024
cd8b5791
AD
9025The header is @emph{mandatory}; you must either pass
9026@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9027@samp{%defines} directive.
9028@end table
9029
9030All these files are documented using Doxygen; run @command{doxygen}
9031for a complete and accurate documentation.
9032
9033@node C++ Semantic Values
9034@subsection C++ Semantic Values
9035@c - No objects in unions
178e123e 9036@c - YYSTYPE
12545799
AD
9037@c - Printer and destructor
9038
3cdc21cf
AD
9039Bison supports two different means to handle semantic values in C++. One is
9040alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9041practitioners know, unions are inconvenient in C++, therefore another
9042approach is provided, based on variants (@pxref{C++ Variants}).
9043
9044@menu
9045* C++ Unions:: Semantic values cannot be objects
9046* C++ Variants:: Using objects as semantic values
9047@end menu
9048
9049@node C++ Unions
9050@subsubsection C++ Unions
9051
12545799
AD
9052The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9053Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9054@code{union}, which have a few specific features in C++.
12545799
AD
9055@itemize @minus
9056@item
fb9712a9
AD
9057The type @code{YYSTYPE} is defined but its use is discouraged: rather
9058you should refer to the parser's encapsulated type
9059@code{yy::parser::semantic_type}.
12545799
AD
9060@item
9061Non POD (Plain Old Data) types cannot be used. C++ forbids any
9062instance of classes with constructors in unions: only @emph{pointers}
9063to such objects are allowed.
9064@end itemize
9065
9066Because objects have to be stored via pointers, memory is not
9067reclaimed automatically: using the @code{%destructor} directive is the
9068only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9069Symbols}.
9070
3cdc21cf
AD
9071@node C++ Variants
9072@subsubsection C++ Variants
9073
9074Starting with version 2.6, Bison provides a @emph{variant} based
9075implementation of semantic values for C++. This alleviates all the
9076limitations reported in the previous section, and in particular, object
9077types can be used without pointers.
9078
9079To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9080@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9081@code{%union} is ignored, and instead of using the name of the fields of the
9082@code{%union} to ``type'' the symbols, use genuine types.
9083
9084For instance, instead of
9085
9086@example
9087%union
9088@{
9089 int ival;
9090 std::string* sval;
9091@}
9092%token <ival> NUMBER;
9093%token <sval> STRING;
9094@end example
9095
9096@noindent
9097write
9098
9099@example
9100%token <int> NUMBER;
9101%token <std::string> STRING;
9102@end example
9103
9104@code{STRING} is no longer a pointer, which should fairly simplify the user
9105actions in the grammar and in the scanner (in particular the memory
9106management).
9107
9108Since C++ features destructors, and since it is customary to specialize
9109@code{operator<<} to support uniform printing of values, variants also
9110typically simplify Bison printers and destructors.
9111
9112Variants are stricter than unions. When based on unions, you may play any
9113dirty game with @code{yylval}, say storing an @code{int}, reading a
9114@code{char*}, and then storing a @code{double} in it. This is no longer
9115possible with variants: they must be initialized, then assigned to, and
9116eventually, destroyed.
9117
9118@deftypemethod {semantic_type} {T&} build<T> ()
9119Initialize, but leave empty. Returns the address where the actual value may
9120be stored. Requires that the variant was not initialized yet.
9121@end deftypemethod
9122
9123@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9124Initialize, and copy-construct from @var{t}.
9125@end deftypemethod
9126
9127
9128@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9129appeared unacceptable to require Boost on the user's machine (i.e., the
9130machine on which the generated parser will be compiled, not the machine on
9131which @command{bison} was run). Second, for each possible semantic value,
9132Boost.Variant not only stores the value, but also a tag specifying its
9133type. But the parser already ``knows'' the type of the semantic value, so
9134that would be duplicating the information.
9135
9136Therefore we developed light-weight variants whose type tag is external (so
9137they are really like @code{unions} for C++ actually). But our code is much
9138less mature that Boost.Variant. So there is a number of limitations in
9139(the current implementation of) variants:
9140@itemize
9141@item
9142Alignment must be enforced: values should be aligned in memory according to
9143the most demanding type. Computing the smallest alignment possible requires
9144meta-programming techniques that are not currently implemented in Bison, and
9145therefore, since, as far as we know, @code{double} is the most demanding
9146type on all platforms, alignments are enforced for @code{double} whatever
9147types are actually used. This may waste space in some cases.
9148
9149@item
9150Our implementation is not conforming with strict aliasing rules. Alias
9151analysis is a technique used in optimizing compilers to detect when two
9152pointers are disjoint (they cannot ``meet''). Our implementation breaks
9153some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9154alias analysis must be disabled}. Use the option
9155@option{-fno-strict-aliasing} to compile the generated parser.
9156
9157@item
9158There might be portability issues we are not aware of.
9159@end itemize
9160
a6ca4ce2 9161As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9162is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9163
9164@node C++ Location Values
9165@subsection C++ Location Values
9166@c - %locations
9167@c - class Position
9168@c - class Location
16dc6a9e 9169@c - %define filename_type "const symbol::Symbol"
12545799
AD
9170
9171When the directive @code{%locations} is used, the C++ parser supports
9172location tracking, see @ref{Locations, , Locations Overview}. Two
9173auxiliary classes define a @code{position}, a single point in a file,
9174and a @code{location}, a range composed of a pair of
9175@code{position}s (possibly spanning several files).
9176
fa4d969f 9177@deftypemethod {position} {std::string*} file
12545799
AD
9178The name of the file. It will always be handled as a pointer, the
9179parser will never duplicate nor deallocate it. As an experimental
9180feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9181filename_type "@var{type}"}.
12545799
AD
9182@end deftypemethod
9183
9184@deftypemethod {position} {unsigned int} line
9185The line, starting at 1.
9186@end deftypemethod
9187
9188@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
9189Advance by @var{height} lines, resetting the column number.
9190@end deftypemethod
9191
9192@deftypemethod {position} {unsigned int} column
9193The column, starting at 0.
9194@end deftypemethod
9195
9196@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
9197Advance by @var{width} columns, without changing the line number.
9198@end deftypemethod
9199
9200@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
9201@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
9202@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
9203@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
9204Various forms of syntactic sugar for @code{columns}.
9205@end deftypemethod
9206
9207@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
9208Report @var{p} on @var{o} like this:
fa4d969f
PE
9209@samp{@var{file}:@var{line}.@var{column}}, or
9210@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
9211@end deftypemethod
9212
9213@deftypemethod {location} {position} begin
9214@deftypemethodx {location} {position} end
9215The first, inclusive, position of the range, and the first beyond.
9216@end deftypemethod
9217
9218@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
9219@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
9220Advance the @code{end} position.
9221@end deftypemethod
9222
9223@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
9224@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
9225@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
9226Various forms of syntactic sugar.
9227@end deftypemethod
9228
9229@deftypemethod {location} {void} step ()
9230Move @code{begin} onto @code{end}.
9231@end deftypemethod
9232
9233
9234@node C++ Parser Interface
9235@subsection C++ Parser Interface
9236@c - define parser_class_name
9237@c - Ctor
9238@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9239@c debug_stream.
9240@c - Reporting errors
9241
9242The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9243declare and define the parser class in the namespace @code{yy}. The
9244class name defaults to @code{parser}, but may be changed using
16dc6a9e 9245@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9246this class is detailed below. It can be extended using the
12545799
AD
9247@code{%parse-param} feature: its semantics is slightly changed since
9248it describes an additional member of the parser class, and an
9249additional argument for its constructor.
9250
3cdc21cf
AD
9251@defcv {Type} {parser} {semantic_type}
9252@defcvx {Type} {parser} {location_type}
9253The types for semantic values and locations (if enabled).
9254@end defcv
9255
86e5b440
AD
9256@defcv {Type} {parser} {token}
9257A structure that contains (only) the definition of the tokens as the
9258@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
9259scanner should use @code{yy::parser::token::FOO}. The scanner can use
9260@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9261(@pxref{Calc++ Scanner}).
9262@end defcv
9263
3cdc21cf
AD
9264@defcv {Type} {parser} {syntax_error}
9265This class derives from @code{std::runtime_error}. Throw instances of it
9266from user actions to raise parse errors. This is equivalent with first
9267invoking @code{error} to report the location and message of the syntax
9268error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9269But contrary to @code{YYERROR} which can only be invoked from user actions
9270(i.e., written in the action itself), the exception can be thrown from
9271function invoked from the user action.
8a0adb01 9272@end defcv
12545799
AD
9273
9274@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9275Build a new parser object. There are no arguments by default, unless
9276@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9277@end deftypemethod
9278
3cdc21cf
AD
9279@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9280@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9281Instantiate a syntax-error exception.
9282@end deftypemethod
9283
12545799
AD
9284@deftypemethod {parser} {int} parse ()
9285Run the syntactic analysis, and return 0 on success, 1 otherwise.
9286@end deftypemethod
9287
9288@deftypemethod {parser} {std::ostream&} debug_stream ()
9289@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9290Get or set the stream used for tracing the parsing. It defaults to
9291@code{std::cerr}.
9292@end deftypemethod
9293
9294@deftypemethod {parser} {debug_level_type} debug_level ()
9295@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9296Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9297or nonzero, full tracing.
12545799
AD
9298@end deftypemethod
9299
9300@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9301@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9302The definition for this member function must be supplied by the user:
9303the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9304described by @var{m}. If location tracking is not enabled, the second
9305signature is used.
12545799
AD
9306@end deftypemethod
9307
9308
9309@node C++ Scanner Interface
9310@subsection C++ Scanner Interface
9311@c - prefix for yylex.
9312@c - Pure interface to yylex
9313@c - %lex-param
9314
9315The parser invokes the scanner by calling @code{yylex}. Contrary to C
9316parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9317@samp{%define api.pure} directive. The actual interface with @code{yylex}
9318depends whether you use unions, or variants.
12545799 9319
3cdc21cf
AD
9320@menu
9321* Split Symbols:: Passing symbols as two/three components
9322* Complete Symbols:: Making symbols a whole
9323@end menu
9324
9325@node Split Symbols
9326@subsubsection Split Symbols
9327
9328Therefore the interface is as follows.
9329
86e5b440
AD
9330@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9331@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9332Return the next token. Its type is the return value, its semantic value and
9333location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9334@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9335@end deftypemethod
9336
3cdc21cf
AD
9337Note that when using variants, the interface for @code{yylex} is the same,
9338but @code{yylval} is handled differently.
9339
9340Regular union-based code in Lex scanner typically look like:
9341
9342@example
9343[0-9]+ @{
9344 yylval.ival = text_to_int (yytext);
9345 return yy::parser::INTEGER;
9346 @}
9347[a-z]+ @{
9348 yylval.sval = new std::string (yytext);
9349 return yy::parser::IDENTIFIER;
9350 @}
9351@end example
9352
9353Using variants, @code{yylval} is already constructed, but it is not
9354initialized. So the code would look like:
9355
9356@example
9357[0-9]+ @{
9358 yylval.build<int>() = text_to_int (yytext);
9359 return yy::parser::INTEGER;
9360 @}
9361[a-z]+ @{
9362 yylval.build<std::string> = yytext;
9363 return yy::parser::IDENTIFIER;
9364 @}
9365@end example
9366
9367@noindent
9368or
9369
9370@example
9371[0-9]+ @{
9372 yylval.build(text_to_int (yytext));
9373 return yy::parser::INTEGER;
9374 @}
9375[a-z]+ @{
9376 yylval.build(yytext);
9377 return yy::parser::IDENTIFIER;
9378 @}
9379@end example
9380
9381
9382@node Complete Symbols
9383@subsubsection Complete Symbols
9384
9385If you specified both @code{%define variant} and @code{%define lex_symbol},
9386the @code{parser} class also defines the class @code{parser::symbol_type}
9387which defines a @emph{complete} symbol, aggregating its type (i.e., the
9388traditional value returned by @code{yylex}), its semantic value (i.e., the
9389value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9390
9391@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9392Build a complete terminal symbol which token type is @var{type}, and which
9393semantic value is @var{value}. If location tracking is enabled, also pass
9394the @var{location}.
9395@end deftypemethod
9396
9397This interface is low-level and should not be used for two reasons. First,
9398it is inconvenient, as you still have to build the semantic value, which is
9399a variant, and second, because consistency is not enforced: as with unions,
9400it is still possible to give an integer as semantic value for a string.
9401
9402So for each token type, Bison generates named constructors as follows.
9403
9404@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9405@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9406Build a complete terminal symbol for the token type @var{token} (not
9407including the @code{api.tokens.prefix}) whose possible semantic value is
9408@var{value} of adequate @var{value_type}. If location tracking is enabled,
9409also pass the @var{location}.
9410@end deftypemethod
9411
9412For instance, given the following declarations:
9413
9414@example
9415%define api.tokens.prefix "TOK_"
9416%token <std::string> IDENTIFIER;
9417%token <int> INTEGER;
9418%token COLON;
9419@end example
9420
9421@noindent
9422Bison generates the following functions:
9423
9424@example
9425symbol_type make_IDENTIFIER(const std::string& v,
9426 const location_type& l);
9427symbol_type make_INTEGER(const int& v,
9428 const location_type& loc);
9429symbol_type make_COLON(const location_type& loc);
9430@end example
9431
9432@noindent
9433which should be used in a Lex-scanner as follows.
9434
9435@example
9436[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9437[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9438":" return yy::parser::make_COLON(loc);
9439@end example
9440
9441Tokens that do not have an identifier are not accessible: you cannot simply
9442use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9443
9444@node A Complete C++ Example
8405b70c 9445@subsection A Complete C++ Example
12545799
AD
9446
9447This section demonstrates the use of a C++ parser with a simple but
9448complete example. This example should be available on your system,
3cdc21cf 9449ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9450focuses on the use of Bison, therefore the design of the various C++
9451classes is very naive: no accessors, no encapsulation of members etc.
9452We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9453demonstrate the various interactions. A hand-written scanner is
12545799
AD
9454actually easier to interface with.
9455
9456@menu
9457* Calc++ --- C++ Calculator:: The specifications
9458* Calc++ Parsing Driver:: An active parsing context
9459* Calc++ Parser:: A parser class
9460* Calc++ Scanner:: A pure C++ Flex scanner
9461* Calc++ Top Level:: Conducting the band
9462@end menu
9463
9464@node Calc++ --- C++ Calculator
8405b70c 9465@subsubsection Calc++ --- C++ Calculator
12545799
AD
9466
9467Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9468expression, possibly preceded by variable assignments. An
12545799
AD
9469environment containing possibly predefined variables such as
9470@code{one} and @code{two}, is exchanged with the parser. An example
9471of valid input follows.
9472
9473@example
9474three := 3
9475seven := one + two * three
9476seven * seven
9477@end example
9478
9479@node Calc++ Parsing Driver
8405b70c 9480@subsubsection Calc++ Parsing Driver
12545799
AD
9481@c - An env
9482@c - A place to store error messages
9483@c - A place for the result
9484
9485To support a pure interface with the parser (and the scanner) the
9486technique of the ``parsing context'' is convenient: a structure
9487containing all the data to exchange. Since, in addition to simply
9488launch the parsing, there are several auxiliary tasks to execute (open
9489the file for parsing, instantiate the parser etc.), we recommend
9490transforming the simple parsing context structure into a fully blown
9491@dfn{parsing driver} class.
9492
9493The declaration of this driver class, @file{calc++-driver.hh}, is as
9494follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9495required standard library components, and the declaration of the parser
9496class.
12545799 9497
1c59e0a1 9498@comment file: calc++-driver.hh
12545799
AD
9499@example
9500#ifndef CALCXX_DRIVER_HH
9501# define CALCXX_DRIVER_HH
9502# include <string>
9503# include <map>
fb9712a9 9504# include "calc++-parser.hh"
12545799
AD
9505@end example
9506
12545799
AD
9507
9508@noindent
9509Then comes the declaration of the scanning function. Flex expects
9510the signature of @code{yylex} to be defined in the macro
9511@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9512factor both as follows.
1c59e0a1
AD
9513
9514@comment file: calc++-driver.hh
12545799 9515@example
3dc5e96b 9516// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9517# define YY_DECL \
9518 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9519// ... and declare it for the parser's sake.
9520YY_DECL;
9521@end example
9522
9523@noindent
9524The @code{calcxx_driver} class is then declared with its most obvious
9525members.
9526
1c59e0a1 9527@comment file: calc++-driver.hh
12545799
AD
9528@example
9529// Conducting the whole scanning and parsing of Calc++.
9530class calcxx_driver
9531@{
9532public:
9533 calcxx_driver ();
9534 virtual ~calcxx_driver ();
9535
9536 std::map<std::string, int> variables;
9537
9538 int result;
9539@end example
9540
9541@noindent
3cdc21cf
AD
9542To encapsulate the coordination with the Flex scanner, it is useful to have
9543member functions to open and close the scanning phase.
12545799 9544
1c59e0a1 9545@comment file: calc++-driver.hh
12545799
AD
9546@example
9547 // Handling the scanner.
9548 void scan_begin ();
9549 void scan_end ();
9550 bool trace_scanning;
9551@end example
9552
9553@noindent
9554Similarly for the parser itself.
9555
1c59e0a1 9556@comment file: calc++-driver.hh
12545799 9557@example
3cdc21cf
AD
9558 // Run the parser on file F.
9559 // Return 0 on success.
bb32f4f2 9560 int parse (const std::string& f);
3cdc21cf
AD
9561 // The name of the file being parsed.
9562 // Used later to pass the file name to the location tracker.
12545799 9563 std::string file;
3cdc21cf 9564 // Whether parser traces should be generated.
12545799
AD
9565 bool trace_parsing;
9566@end example
9567
9568@noindent
9569To demonstrate pure handling of parse errors, instead of simply
9570dumping them on the standard error output, we will pass them to the
9571compiler driver using the following two member functions. Finally, we
9572close the class declaration and CPP guard.
9573
1c59e0a1 9574@comment file: calc++-driver.hh
12545799
AD
9575@example
9576 // Error handling.
9577 void error (const yy::location& l, const std::string& m);
9578 void error (const std::string& m);
9579@};
9580#endif // ! CALCXX_DRIVER_HH
9581@end example
9582
9583The implementation of the driver is straightforward. The @code{parse}
9584member function deserves some attention. The @code{error} functions
9585are simple stubs, they should actually register the located error
9586messages and set error state.
9587
1c59e0a1 9588@comment file: calc++-driver.cc
12545799
AD
9589@example
9590#include "calc++-driver.hh"
9591#include "calc++-parser.hh"
9592
9593calcxx_driver::calcxx_driver ()
9594 : trace_scanning (false), trace_parsing (false)
9595@{
9596 variables["one"] = 1;
9597 variables["two"] = 2;
9598@}
9599
9600calcxx_driver::~calcxx_driver ()
9601@{
9602@}
9603
bb32f4f2 9604int
12545799
AD
9605calcxx_driver::parse (const std::string &f)
9606@{
9607 file = f;
9608 scan_begin ();
9609 yy::calcxx_parser parser (*this);
9610 parser.set_debug_level (trace_parsing);
bb32f4f2 9611 int res = parser.parse ();
12545799 9612 scan_end ();
bb32f4f2 9613 return res;
12545799
AD
9614@}
9615
9616void
9617calcxx_driver::error (const yy::location& l, const std::string& m)
9618@{
9619 std::cerr << l << ": " << m << std::endl;
9620@}
9621
9622void
9623calcxx_driver::error (const std::string& m)
9624@{
9625 std::cerr << m << std::endl;
9626@}
9627@end example
9628
9629@node Calc++ Parser
8405b70c 9630@subsubsection Calc++ Parser
12545799 9631
ff7571c0
JD
9632The grammar file @file{calc++-parser.yy} starts by asking for the C++
9633deterministic parser skeleton, the creation of the parser header file,
9634and specifies the name of the parser class. Because the C++ skeleton
9635changed several times, it is safer to require the version you designed
9636the grammar for.
1c59e0a1
AD
9637
9638@comment file: calc++-parser.yy
12545799 9639@example
ed4d67dc 9640%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9641%require "@value{VERSION}"
12545799 9642%defines
16dc6a9e 9643%define parser_class_name "calcxx_parser"
fb9712a9
AD
9644@end example
9645
3cdc21cf
AD
9646@noindent
9647@findex %define variant
9648@findex %define lex_symbol
9649This example will use genuine C++ objects as semantic values, therefore, we
9650require the variant-based interface. To make sure we properly use it, we
9651enable assertions. To fully benefit from type-safety and more natural
9652definition of ``symbol'', we enable @code{lex_symbol}.
9653
9654@comment file: calc++-parser.yy
9655@example
9656%define variant
9657%define parse.assert
9658%define lex_symbol
9659@end example
9660
fb9712a9 9661@noindent
16dc6a9e 9662@findex %code requires
3cdc21cf
AD
9663Then come the declarations/inclusions needed by the semantic values.
9664Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9665to include the header of the other, which is, of course, insane. This
3cdc21cf 9666mutual dependency will be broken using forward declarations. Because the
fb9712a9 9667driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9668particular its inner types), it is the parser's header which will use a
e0c07222 9669forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9670
9671@comment file: calc++-parser.yy
9672@example
3cdc21cf
AD
9673%code requires
9674@{
12545799 9675# include <string>
fb9712a9 9676class calcxx_driver;
9bc0dd67 9677@}
12545799
AD
9678@end example
9679
9680@noindent
9681The driver is passed by reference to the parser and to the scanner.
9682This provides a simple but effective pure interface, not relying on
9683global variables.
9684
1c59e0a1 9685@comment file: calc++-parser.yy
12545799
AD
9686@example
9687// The parsing context.
2055a44e 9688%param @{ calcxx_driver& driver @}
12545799
AD
9689@end example
9690
9691@noindent
2055a44e 9692Then we request location tracking, and initialize the
f50bfcd6 9693first location's file name. Afterward new locations are computed
12545799 9694relatively to the previous locations: the file name will be
2055a44e 9695propagated.
12545799 9696
1c59e0a1 9697@comment file: calc++-parser.yy
12545799
AD
9698@example
9699%locations
9700%initial-action
9701@{
9702 // Initialize the initial location.
b47dbebe 9703 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9704@};
9705@end example
9706
9707@noindent
7fceb615
JD
9708Use the following two directives to enable parser tracing and verbose error
9709messages. However, verbose error messages can contain incorrect information
9710(@pxref{LAC}).
12545799 9711
1c59e0a1 9712@comment file: calc++-parser.yy
12545799 9713@example
fa819509 9714%define parse.trace
cf499cff 9715%define parse.error verbose
12545799
AD
9716@end example
9717
fb9712a9 9718@noindent
136a0f76
PB
9719@findex %code
9720The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9721@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9722
9723@comment file: calc++-parser.yy
9724@example
3cdc21cf
AD
9725%code
9726@{
fb9712a9 9727# include "calc++-driver.hh"
34f98f46 9728@}
fb9712a9
AD
9729@end example
9730
9731
12545799
AD
9732@noindent
9733The token numbered as 0 corresponds to end of file; the following line
99c08fb6 9734allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
9735``$end''. Similarly user friendly names are provided for each symbol. To
9736avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
9737tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 9738
1c59e0a1 9739@comment file: calc++-parser.yy
12545799 9740@example
4c6622c2 9741%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9742%token
9743 END 0 "end of file"
9744 ASSIGN ":="
9745 MINUS "-"
9746 PLUS "+"
9747 STAR "*"
9748 SLASH "/"
9749 LPAREN "("
9750 RPAREN ")"
9751;
12545799
AD
9752@end example
9753
9754@noindent
3cdc21cf
AD
9755Since we use variant-based semantic values, @code{%union} is not used, and
9756both @code{%type} and @code{%token} expect genuine types, as opposed to type
9757tags.
12545799 9758
1c59e0a1 9759@comment file: calc++-parser.yy
12545799 9760@example
3cdc21cf
AD
9761%token <std::string> IDENTIFIER "identifier"
9762%token <int> NUMBER "number"
9763%type <int> exp
9764@end example
9765
9766@noindent
9767No @code{%destructor} is needed to enable memory deallocation during error
9768recovery; the memory, for strings for instance, will be reclaimed by the
9769regular destructors. All the values are printed using their
9770@code{operator<<}.
12545799 9771
3cdc21cf
AD
9772@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9773@comment file: calc++-parser.yy
9774@example
9775%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9776@end example
9777
9778@noindent
3cdc21cf
AD
9779The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9780Location Tracking Calculator: @code{ltcalc}}).
12545799 9781
1c59e0a1 9782@comment file: calc++-parser.yy
12545799
AD
9783@example
9784%%
9785%start unit;
9786unit: assignments exp @{ driver.result = $2; @};
9787
99c08fb6
AD
9788assignments:
9789 assignments assignment @{@}
9790| /* Nothing. */ @{@};
12545799 9791
3dc5e96b 9792assignment:
3cdc21cf 9793 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9794
3cdc21cf
AD
9795%left "+" "-";
9796%left "*" "/";
99c08fb6 9797exp:
3cdc21cf
AD
9798 exp "+" exp @{ $$ = $1 + $3; @}
9799| exp "-" exp @{ $$ = $1 - $3; @}
9800| exp "*" exp @{ $$ = $1 * $3; @}
9801| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9802| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9803| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9804| "number" @{ std::swap ($$, $1); @};
12545799
AD
9805%%
9806@end example
9807
9808@noindent
9809Finally the @code{error} member function registers the errors to the
9810driver.
9811
1c59e0a1 9812@comment file: calc++-parser.yy
12545799
AD
9813@example
9814void
3cdc21cf 9815yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9816 const std::string& m)
12545799
AD
9817@{
9818 driver.error (l, m);
9819@}
9820@end example
9821
9822@node Calc++ Scanner
8405b70c 9823@subsubsection Calc++ Scanner
12545799
AD
9824
9825The Flex scanner first includes the driver declaration, then the
9826parser's to get the set of defined tokens.
9827
1c59e0a1 9828@comment file: calc++-scanner.ll
12545799
AD
9829@example
9830%@{ /* -*- C++ -*- */
3c248d70
AD
9831# include <cerrno>
9832# include <climits>
3cdc21cf 9833# include <cstdlib>
12545799
AD
9834# include <string>
9835# include "calc++-driver.hh"
9836# include "calc++-parser.hh"
eaea13f5 9837
3cdc21cf
AD
9838// Work around an incompatibility in flex (at least versions
9839// 2.5.31 through 2.5.33): it generates code that does
9840// not conform to C89. See Debian bug 333231
9841// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9842# undef yywrap
9843# define yywrap() 1
eaea13f5 9844
3cdc21cf
AD
9845// The location of the current token.
9846static yy::location loc;
12545799
AD
9847%@}
9848@end example
9849
9850@noindent
9851Because there is no @code{#include}-like feature we don't need
9852@code{yywrap}, we don't need @code{unput} either, and we parse an
9853actual file, this is not an interactive session with the user.
3cdc21cf 9854Finally, we enable scanner tracing.
12545799 9855
1c59e0a1 9856@comment file: calc++-scanner.ll
12545799
AD
9857@example
9858%option noyywrap nounput batch debug
9859@end example
9860
9861@noindent
9862Abbreviations allow for more readable rules.
9863
1c59e0a1 9864@comment file: calc++-scanner.ll
12545799
AD
9865@example
9866id [a-zA-Z][a-zA-Z_0-9]*
9867int [0-9]+
9868blank [ \t]
9869@end example
9870
9871@noindent
9d9b8b70 9872The following paragraph suffices to track locations accurately. Each
12545799 9873time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9874position. Then when a pattern is matched, its width is added to the end
9875column. When matching ends of lines, the end
12545799
AD
9876cursor is adjusted, and each time blanks are matched, the begin cursor
9877is moved onto the end cursor to effectively ignore the blanks
9878preceding tokens. Comments would be treated equally.
9879
1c59e0a1 9880@comment file: calc++-scanner.ll
12545799 9881@example
828c373b 9882%@{
3cdc21cf
AD
9883 // Code run each time a pattern is matched.
9884 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9885%@}
12545799
AD
9886%%
9887%@{
3cdc21cf
AD
9888 // Code run each time yylex is called.
9889 loc.step ();
12545799 9890%@}
3cdc21cf
AD
9891@{blank@}+ loc.step ();
9892[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9893@end example
9894
9895@noindent
3cdc21cf 9896The rules are simple. The driver is used to report errors.
12545799 9897
1c59e0a1 9898@comment file: calc++-scanner.ll
12545799 9899@example
3cdc21cf
AD
9900"-" return yy::calcxx_parser::make_MINUS(loc);
9901"+" return yy::calcxx_parser::make_PLUS(loc);
9902"*" return yy::calcxx_parser::make_STAR(loc);
9903"/" return yy::calcxx_parser::make_SLASH(loc);
9904"(" return yy::calcxx_parser::make_LPAREN(loc);
9905")" return yy::calcxx_parser::make_RPAREN(loc);
9906":=" return yy::calcxx_parser::make_ASSIGN(loc);
9907
04098407
PE
9908@{int@} @{
9909 errno = 0;
9910 long n = strtol (yytext, NULL, 10);
9911 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9912 driver.error (loc, "integer is out of range");
9913 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9914@}
3cdc21cf
AD
9915@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9916. driver.error (loc, "invalid character");
9917<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9918%%
9919@end example
9920
9921@noindent
3cdc21cf 9922Finally, because the scanner-related driver's member-functions depend
12545799
AD
9923on the scanner's data, it is simpler to implement them in this file.
9924
1c59e0a1 9925@comment file: calc++-scanner.ll
12545799
AD
9926@example
9927void
9928calcxx_driver::scan_begin ()
9929@{
9930 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9931 if (file == "-")
9932 yyin = stdin;
9933 else if (!(yyin = fopen (file.c_str (), "r")))
9934 @{
3cdc21cf 9935 error (std::string ("cannot open ") + file + ": " + strerror(errno));
bb32f4f2
AD
9936 exit (1);
9937 @}
12545799
AD
9938@}
9939
9940void
9941calcxx_driver::scan_end ()
9942@{
9943 fclose (yyin);
9944@}
9945@end example
9946
9947@node Calc++ Top Level
8405b70c 9948@subsubsection Calc++ Top Level
12545799
AD
9949
9950The top level file, @file{calc++.cc}, poses no problem.
9951
1c59e0a1 9952@comment file: calc++.cc
12545799
AD
9953@example
9954#include <iostream>
9955#include "calc++-driver.hh"
9956
9957int
fa4d969f 9958main (int argc, char *argv[])
12545799 9959@{
414c76a4 9960 int res = 0;
12545799
AD
9961 calcxx_driver driver;
9962 for (++argv; argv[0]; ++argv)
9963 if (*argv == std::string ("-p"))
9964 driver.trace_parsing = true;
9965 else if (*argv == std::string ("-s"))
9966 driver.trace_scanning = true;
bb32f4f2
AD
9967 else if (!driver.parse (*argv))
9968 std::cout << driver.result << std::endl;
414c76a4
AD
9969 else
9970 res = 1;
9971 return res;
12545799
AD
9972@}
9973@end example
9974
8405b70c
PB
9975@node Java Parsers
9976@section Java Parsers
9977
9978@menu
f5f419de
DJ
9979* Java Bison Interface:: Asking for Java parser generation
9980* Java Semantic Values:: %type and %token vs. Java
9981* Java Location Values:: The position and location classes
9982* Java Parser Interface:: Instantiating and running the parser
9983* Java Scanner Interface:: Specifying the scanner for the parser
9984* Java Action Features:: Special features for use in actions
9985* Java Differences:: Differences between C/C++ and Java Grammars
9986* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9987@end menu
9988
9989@node Java Bison Interface
9990@subsection Java Bison Interface
9991@c - %language "Java"
8405b70c 9992
59da312b
JD
9993(The current Java interface is experimental and may evolve.
9994More user feedback will help to stabilize it.)
9995
e254a580
DJ
9996The Java parser skeletons are selected using the @code{%language "Java"}
9997directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9998
e254a580 9999@c FIXME: Documented bug.
ff7571c0
JD
10000When generating a Java parser, @code{bison @var{basename}.y} will
10001create a single Java source file named @file{@var{basename}.java}
10002containing the parser implementation. Using a grammar file without a
10003@file{.y} suffix is currently broken. The basename of the parser
10004implementation file can be changed by the @code{%file-prefix}
10005directive or the @option{-p}/@option{--name-prefix} option. The
10006entire parser implementation file name can be changed by the
10007@code{%output} directive or the @option{-o}/@option{--output} option.
10008The parser implementation file contains a single class for the parser.
8405b70c 10009
e254a580 10010You can create documentation for generated parsers using Javadoc.
8405b70c 10011
e254a580
DJ
10012Contrary to C parsers, Java parsers do not use global variables; the
10013state of the parser is always local to an instance of the parser class.
10014Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10015and @samp{%define api.pure} directives does not do anything when used in
e254a580 10016Java.
8405b70c 10017
e254a580 10018Push parsers are currently unsupported in Java and @code{%define
67212941 10019api.push-pull} have no effect.
01b477c6 10020
8a4281b9 10021GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10022@code{glr-parser} directive.
10023
10024No header file can be generated for Java parsers. Do not use the
10025@code{%defines} directive or the @option{-d}/@option{--defines} options.
10026
10027@c FIXME: Possible code change.
fa819509
AD
10028Currently, support for tracing is always compiled
10029in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10030directives and the
e254a580
DJ
10031@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10032options have no effect. This may change in the future to eliminate
fa819509
AD
10033unused code in the generated parser, so use @samp{%define parse.trace}
10034explicitly
1979121c 10035if needed. Also, in the future the
e254a580
DJ
10036@code{%token-table} directive might enable a public interface to
10037access the token names and codes.
8405b70c 10038
09ccae9b 10039Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10040hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10041Try reducing the amount of code in actions and static initializers;
10042otherwise, report a bug so that the parser skeleton will be improved.
10043
10044
8405b70c
PB
10045@node Java Semantic Values
10046@subsection Java Semantic Values
10047@c - No %union, specify type in %type/%token.
10048@c - YYSTYPE
10049@c - Printer and destructor
10050
10051There is no @code{%union} directive in Java parsers. Instead, the
10052semantic values' types (class names) should be specified in the
10053@code{%type} or @code{%token} directive:
10054
10055@example
10056%type <Expression> expr assignment_expr term factor
10057%type <Integer> number
10058@end example
10059
10060By default, the semantic stack is declared to have @code{Object} members,
10061which means that the class types you specify can be of any class.
10062To improve the type safety of the parser, you can declare the common
67501061 10063superclass of all the semantic values using the @samp{%define stype}
e254a580 10064directive. For example, after the following declaration:
8405b70c
PB
10065
10066@example
e254a580 10067%define stype "ASTNode"
8405b70c
PB
10068@end example
10069
10070@noindent
10071any @code{%type} or @code{%token} specifying a semantic type which
10072is not a subclass of ASTNode, will cause a compile-time error.
10073
e254a580 10074@c FIXME: Documented bug.
8405b70c
PB
10075Types used in the directives may be qualified with a package name.
10076Primitive data types are accepted for Java version 1.5 or later. Note
10077that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10078Generic types may not be used; this is due to a limitation in the
10079implementation of Bison, and may change in future releases.
8405b70c
PB
10080
10081Java parsers do not support @code{%destructor}, since the language
10082adopts garbage collection. The parser will try to hold references
10083to semantic values for as little time as needed.
10084
10085Java parsers do not support @code{%printer}, as @code{toString()}
10086can be used to print the semantic values. This however may change
10087(in a backwards-compatible way) in future versions of Bison.
10088
10089
10090@node Java Location Values
10091@subsection Java Location Values
10092@c - %locations
10093@c - class Position
10094@c - class Location
10095
10096When the directive @code{%locations} is used, the Java parser
10097supports location tracking, see @ref{Locations, , Locations Overview}.
10098An auxiliary user-defined class defines a @dfn{position}, a single point
10099in a file; Bison itself defines a class representing a @dfn{location},
10100a range composed of a pair of positions (possibly spanning several
10101files). The location class is an inner class of the parser; the name
e254a580 10102is @code{Location} by default, and may also be renamed using
cf499cff 10103@samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10104
10105The location class treats the position as a completely opaque value.
10106By default, the class name is @code{Position}, but this can be changed
67501061 10107with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10108be supplied by the user.
8405b70c
PB
10109
10110
e254a580
DJ
10111@deftypeivar {Location} {Position} begin
10112@deftypeivarx {Location} {Position} end
8405b70c 10113The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10114@end deftypeivar
10115
10116@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10117Create a @code{Location} denoting an empty range located at a given point.
e254a580 10118@end deftypeop
8405b70c 10119
e254a580
DJ
10120@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10121Create a @code{Location} from the endpoints of the range.
10122@end deftypeop
10123
10124@deftypemethod {Location} {String} toString ()
8405b70c
PB
10125Prints the range represented by the location. For this to work
10126properly, the position class should override the @code{equals} and
10127@code{toString} methods appropriately.
10128@end deftypemethod
10129
10130
10131@node Java Parser Interface
10132@subsection Java Parser Interface
10133@c - define parser_class_name
10134@c - Ctor
10135@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10136@c debug_stream.
10137@c - Reporting errors
10138
e254a580
DJ
10139The name of the generated parser class defaults to @code{YYParser}. The
10140@code{YY} prefix may be changed using the @code{%name-prefix} directive
10141or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10142@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10143the class. The interface of this class is detailed below.
8405b70c 10144
e254a580 10145By default, the parser class has package visibility. A declaration
67501061 10146@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10147according to the Java language specification, the name of the @file{.java}
10148file should match the name of the class in this case. Similarly, you can
10149use @code{abstract}, @code{final} and @code{strictfp} with the
10150@code{%define} declaration to add other modifiers to the parser class.
67501061 10151A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10152be used to add any number of annotations to the parser class.
e254a580
DJ
10153
10154The Java package name of the parser class can be specified using the
67501061 10155@samp{%define package} directive. The superclass and the implemented
e254a580 10156interfaces of the parser class can be specified with the @code{%define
67501061 10157extends} and @samp{%define implements} directives.
e254a580
DJ
10158
10159The parser class defines an inner class, @code{Location}, that is used
10160for location tracking (see @ref{Java Location Values}), and a inner
10161interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10162these inner class/interface, and the members described in the interface
10163below, all the other members and fields are preceded with a @code{yy} or
10164@code{YY} prefix to avoid clashes with user code.
10165
e254a580
DJ
10166The parser class can be extended using the @code{%parse-param}
10167directive. Each occurrence of the directive will add a @code{protected
10168final} field to the parser class, and an argument to its constructor,
10169which initialize them automatically.
10170
e254a580
DJ
10171@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10172Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10173no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10174@code{%lex-param}s are used.
1979121c
DJ
10175
10176Use @code{%code init} for code added to the start of the constructor
10177body. This is especially useful to initialize superclasses. Use
f50bfcd6 10178@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10179@end deftypeop
10180
10181@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10182Build a new parser object using the specified scanner. There are no
2055a44e
AD
10183additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10184used.
e254a580
DJ
10185
10186If the scanner is defined by @code{%code lexer}, this constructor is
10187declared @code{protected} and is called automatically with a scanner
2055a44e 10188created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10189
10190Use @code{%code init} for code added to the start of the constructor
10191body. This is especially useful to initialize superclasses. Use
67501061 10192@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 10193@end deftypeop
8405b70c
PB
10194
10195@deftypemethod {YYParser} {boolean} parse ()
10196Run the syntactic analysis, and return @code{true} on success,
10197@code{false} otherwise.
10198@end deftypemethod
10199
1979121c
DJ
10200@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10201@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10202Get or set the option to produce verbose error messages. These are only
cf499cff 10203available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10204verbose error messages.
10205@end deftypemethod
10206
10207@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10208@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10209@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10210Print an error message using the @code{yyerror} method of the scanner
10211instance in use. The @code{Location} and @code{Position} parameters are
10212available only if location tracking is active.
10213@end deftypemethod
10214
01b477c6 10215@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10216During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10217from a syntax error.
10218@xref{Error Recovery}.
8405b70c
PB
10219@end deftypemethod
10220
10221@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10222@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10223Get or set the stream used for tracing the parsing. It defaults to
10224@code{System.err}.
10225@end deftypemethod
10226
10227@deftypemethod {YYParser} {int} getDebugLevel ()
10228@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10229Get or set the tracing level. Currently its value is either 0, no trace,
10230or nonzero, full tracing.
10231@end deftypemethod
10232
1979121c
DJ
10233@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10234@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10235Identify the Bison version and skeleton used to generate this parser.
10236@end deftypecv
10237
8405b70c
PB
10238
10239@node Java Scanner Interface
10240@subsection Java Scanner Interface
01b477c6 10241@c - %code lexer
8405b70c 10242@c - %lex-param
01b477c6 10243@c - Lexer interface
8405b70c 10244
e254a580
DJ
10245There are two possible ways to interface a Bison-generated Java parser
10246with a scanner: the scanner may be defined by @code{%code lexer}, or
10247defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10248@code{Lexer} inner interface of the parser class. This interface also
10249contain constants for all user-defined token names and the predefined
10250@code{EOF} token.
e254a580
DJ
10251
10252In the first case, the body of the scanner class is placed in
10253@code{%code lexer} blocks. If you want to pass parameters from the
10254parser constructor to the scanner constructor, specify them with
10255@code{%lex-param}; they are passed before @code{%parse-param}s to the
10256constructor.
01b477c6 10257
59c5ac72 10258In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10259which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10260The constructor of the parser object will then accept an object
10261implementing the interface; @code{%lex-param} is not used in this
10262case.
10263
10264In both cases, the scanner has to implement the following methods.
10265
e254a580
DJ
10266@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10267This method is defined by the user to emit an error message. The first
10268parameter is omitted if location tracking is not active. Its type can be
67501061 10269changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10270@end deftypemethod
10271
e254a580 10272@deftypemethod {Lexer} {int} yylex ()
8405b70c 10273Return the next token. Its type is the return value, its semantic
f50bfcd6 10274value and location are saved and returned by the their methods in the
e254a580
DJ
10275interface.
10276
67501061 10277Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10278Default is @code{java.io.IOException}.
8405b70c
PB
10279@end deftypemethod
10280
10281@deftypemethod {Lexer} {Position} getStartPos ()
10282@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10283Return respectively the first position of the last token that
10284@code{yylex} returned, and the first position beyond it. These
10285methods are not needed unless location tracking is active.
8405b70c 10286
67501061 10287The return type can be changed using @samp{%define position_type
8405b70c
PB
10288"@var{class-name}".}
10289@end deftypemethod
10290
10291@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10292Return the semantic value of the last token that yylex returned.
8405b70c 10293
67501061 10294The return type can be changed using @samp{%define stype
8405b70c
PB
10295"@var{class-name}".}
10296@end deftypemethod
10297
10298
e254a580
DJ
10299@node Java Action Features
10300@subsection Special Features for Use in Java Actions
10301
10302The following special constructs can be uses in Java actions.
10303Other analogous C action features are currently unavailable for Java.
10304
67501061 10305Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10306actions, and initial actions specified by @code{%initial-action}.
10307
10308@defvar $@var{n}
10309The semantic value for the @var{n}th component of the current rule.
10310This may not be assigned to.
10311@xref{Java Semantic Values}.
10312@end defvar
10313
10314@defvar $<@var{typealt}>@var{n}
10315Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10316@xref{Java Semantic Values}.
10317@end defvar
10318
10319@defvar $$
10320The semantic value for the grouping made by the current rule. As a
10321value, this is in the base type (@code{Object} or as specified by
67501061 10322@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10323casts are not allowed on the left-hand side of Java assignments.
10324Use an explicit Java cast if the correct subtype is needed.
10325@xref{Java Semantic Values}.
10326@end defvar
10327
10328@defvar $<@var{typealt}>$
10329Same as @code{$$} since Java always allow assigning to the base type.
10330Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10331for setting the value but there is currently no easy way to distinguish
10332these constructs.
10333@xref{Java Semantic Values}.
10334@end defvar
10335
10336@defvar @@@var{n}
10337The location information of the @var{n}th component of the current rule.
10338This may not be assigned to.
10339@xref{Java Location Values}.
10340@end defvar
10341
10342@defvar @@$
10343The location information of the grouping made by the current rule.
10344@xref{Java Location Values}.
10345@end defvar
10346
10347@deffn {Statement} {return YYABORT;}
10348Return immediately from the parser, indicating failure.
10349@xref{Java Parser Interface}.
10350@end deffn
8405b70c 10351
e254a580
DJ
10352@deffn {Statement} {return YYACCEPT;}
10353Return immediately from the parser, indicating success.
10354@xref{Java Parser Interface}.
10355@end deffn
8405b70c 10356
e254a580 10357@deffn {Statement} {return YYERROR;}
c265fd6b 10358Start error recovery without printing an error message.
e254a580
DJ
10359@xref{Error Recovery}.
10360@end deffn
8405b70c 10361
e254a580
DJ
10362@deftypefn {Function} {boolean} recovering ()
10363Return whether error recovery is being done. In this state, the parser
10364reads token until it reaches a known state, and then restarts normal
10365operation.
10366@xref{Error Recovery}.
10367@end deftypefn
8405b70c 10368
1979121c
DJ
10369@deftypefn {Function} {void} yyerror (String @var{msg})
10370@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10371@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10372Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10373instance in use. The @code{Location} and @code{Position} parameters are
10374available only if location tracking is active.
e254a580 10375@end deftypefn
8405b70c 10376
8405b70c 10377
8405b70c
PB
10378@node Java Differences
10379@subsection Differences between C/C++ and Java Grammars
10380
10381The different structure of the Java language forces several differences
10382between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10383section summarizes these differences.
8405b70c
PB
10384
10385@itemize
10386@item
01b477c6 10387Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10388@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10389macros. Instead, they should be preceded by @code{return} when they
10390appear in an action. The actual definition of these symbols is
8405b70c
PB
10391opaque to the Bison grammar, and it might change in the future. The
10392only meaningful operation that you can do, is to return them.
e254a580 10393See @pxref{Java Action Features}.
8405b70c
PB
10394
10395Note that of these three symbols, only @code{YYACCEPT} and
10396@code{YYABORT} will cause a return from the @code{yyparse}
10397method@footnote{Java parsers include the actions in a separate
10398method than @code{yyparse} in order to have an intuitive syntax that
10399corresponds to these C macros.}.
10400
e254a580
DJ
10401@item
10402Java lacks unions, so @code{%union} has no effect. Instead, semantic
10403values have a common base type: @code{Object} or as specified by
f50bfcd6 10404@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10405@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10406an union. The type of @code{$$}, even with angle brackets, is the base
10407type since Java casts are not allow on the left-hand side of assignments.
10408Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10409left-hand side of assignments. See @pxref{Java Semantic Values} and
10410@pxref{Java Action Features}.
10411
8405b70c 10412@item
f50bfcd6 10413The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10414@table @asis
10415@item @code{%code imports}
10416blocks are placed at the beginning of the Java source code. They may
10417include copyright notices. For a @code{package} declarations, it is
67501061 10418suggested to use @samp{%define package} instead.
8405b70c 10419
01b477c6
PB
10420@item unqualified @code{%code}
10421blocks are placed inside the parser class.
10422
10423@item @code{%code lexer}
10424blocks, if specified, should include the implementation of the
10425scanner. If there is no such block, the scanner can be any class
10426that implements the appropriate interface (see @pxref{Java Scanner
10427Interface}).
29553547 10428@end table
8405b70c
PB
10429
10430Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10431In particular, @code{%@{ @dots{} %@}} blocks should not be used
10432and may give an error in future versions of Bison.
10433
01b477c6 10434The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10435be used to define other classes used by the parser @emph{outside}
10436the parser class.
8405b70c
PB
10437@end itemize
10438
e254a580
DJ
10439
10440@node Java Declarations Summary
10441@subsection Java Declarations Summary
10442
10443This summary only include declarations specific to Java or have special
10444meaning when used in a Java parser.
10445
10446@deffn {Directive} {%language "Java"}
10447Generate a Java class for the parser.
10448@end deffn
10449
10450@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10451A parameter for the lexer class defined by @code{%code lexer}
10452@emph{only}, added as parameters to the lexer constructor and the parser
10453constructor that @emph{creates} a lexer. Default is none.
10454@xref{Java Scanner Interface}.
10455@end deffn
10456
10457@deffn {Directive} %name-prefix "@var{prefix}"
10458The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10459@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10460@xref{Java Bison Interface}.
10461@end deffn
10462
10463@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10464A parameter for the parser class added as parameters to constructor(s)
10465and as fields initialized by the constructor(s). Default is none.
10466@xref{Java Parser Interface}.
10467@end deffn
10468
10469@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10470Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10471@xref{Java Semantic Values}.
10472@end deffn
10473
10474@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10475Declare the type of nonterminals. Note that the angle brackets enclose
10476a Java @emph{type}.
10477@xref{Java Semantic Values}.
10478@end deffn
10479
10480@deffn {Directive} %code @{ @var{code} @dots{} @}
10481Code appended to the inside of the parser class.
10482@xref{Java Differences}.
10483@end deffn
10484
10485@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10486Code inserted just after the @code{package} declaration.
10487@xref{Java Differences}.
10488@end deffn
10489
1979121c
DJ
10490@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10491Code inserted at the beginning of the parser constructor body.
10492@xref{Java Parser Interface}.
10493@end deffn
10494
e254a580
DJ
10495@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10496Code added to the body of a inner lexer class within the parser class.
10497@xref{Java Scanner Interface}.
10498@end deffn
10499
10500@deffn {Directive} %% @var{code} @dots{}
10501Code (after the second @code{%%}) appended to the end of the file,
10502@emph{outside} the parser class.
10503@xref{Java Differences}.
10504@end deffn
10505
10506@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10507Not supported. Use @code{%code imports} instead.
e254a580
DJ
10508@xref{Java Differences}.
10509@end deffn
10510
10511@deffn {Directive} {%define abstract}
10512Whether the parser class is declared @code{abstract}. Default is false.
10513@xref{Java Bison Interface}.
10514@end deffn
10515
1979121c
DJ
10516@deffn {Directive} {%define annotations} "@var{annotations}"
10517The Java annotations for the parser class. Default is none.
10518@xref{Java Bison Interface}.
10519@end deffn
10520
e254a580
DJ
10521@deffn {Directive} {%define extends} "@var{superclass}"
10522The superclass of the parser class. Default is none.
10523@xref{Java Bison Interface}.
10524@end deffn
10525
10526@deffn {Directive} {%define final}
10527Whether the parser class is declared @code{final}. Default is false.
10528@xref{Java Bison Interface}.
10529@end deffn
10530
10531@deffn {Directive} {%define implements} "@var{interfaces}"
10532The implemented interfaces of the parser class, a comma-separated list.
10533Default is none.
10534@xref{Java Bison Interface}.
10535@end deffn
10536
1979121c
DJ
10537@deffn {Directive} {%define init_throws} "@var{exceptions}"
10538The exceptions thrown by @code{%code init} from the parser class
10539constructor. Default is none.
10540@xref{Java Parser Interface}.
10541@end deffn
10542
e254a580
DJ
10543@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10544The exceptions thrown by the @code{yylex} method of the lexer, a
10545comma-separated list. Default is @code{java.io.IOException}.
10546@xref{Java Scanner Interface}.
10547@end deffn
10548
10549@deffn {Directive} {%define location_type} "@var{class}"
10550The name of the class used for locations (a range between two
10551positions). This class is generated as an inner class of the parser
10552class by @command{bison}. Default is @code{Location}.
10553@xref{Java Location Values}.
10554@end deffn
10555
10556@deffn {Directive} {%define package} "@var{package}"
10557The package to put the parser class in. Default is none.
10558@xref{Java Bison Interface}.
10559@end deffn
10560
10561@deffn {Directive} {%define parser_class_name} "@var{name}"
10562The name of the parser class. Default is @code{YYParser} or
10563@code{@var{name-prefix}Parser}.
10564@xref{Java Bison Interface}.
10565@end deffn
10566
10567@deffn {Directive} {%define position_type} "@var{class}"
10568The name of the class used for positions. This class must be supplied by
10569the user. Default is @code{Position}.
10570@xref{Java Location Values}.
10571@end deffn
10572
10573@deffn {Directive} {%define public}
10574Whether the parser class is declared @code{public}. Default is false.
10575@xref{Java Bison Interface}.
10576@end deffn
10577
10578@deffn {Directive} {%define stype} "@var{class}"
10579The base type of semantic values. Default is @code{Object}.
10580@xref{Java Semantic Values}.
10581@end deffn
10582
10583@deffn {Directive} {%define strictfp}
10584Whether the parser class is declared @code{strictfp}. Default is false.
10585@xref{Java Bison Interface}.
10586@end deffn
10587
10588@deffn {Directive} {%define throws} "@var{exceptions}"
10589The exceptions thrown by user-supplied parser actions and
10590@code{%initial-action}, a comma-separated list. Default is none.
10591@xref{Java Parser Interface}.
10592@end deffn
10593
10594
12545799 10595@c ================================================= FAQ
d1a1114f
AD
10596
10597@node FAQ
10598@chapter Frequently Asked Questions
10599@cindex frequently asked questions
10600@cindex questions
10601
10602Several questions about Bison come up occasionally. Here some of them
10603are addressed.
10604
10605@menu
55ba27be
AD
10606* Memory Exhausted:: Breaking the Stack Limits
10607* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10608* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10609* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10610* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10611* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10612* I can't build Bison:: Troubleshooting
10613* Where can I find help?:: Troubleshouting
10614* Bug Reports:: Troublereporting
8405b70c 10615* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10616* Beta Testing:: Experimenting development versions
10617* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10618@end menu
10619
1a059451
PE
10620@node Memory Exhausted
10621@section Memory Exhausted
d1a1114f
AD
10622
10623@display
1a059451 10624My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10625message. What can I do?
10626@end display
10627
10628This question is already addressed elsewhere, @xref{Recursion,
10629,Recursive Rules}.
10630
e64fec0a
PE
10631@node How Can I Reset the Parser
10632@section How Can I Reset the Parser
5b066063 10633
0e14ad77
PE
10634The following phenomenon has several symptoms, resulting in the
10635following typical questions:
5b066063
AD
10636
10637@display
10638I invoke @code{yyparse} several times, and on correct input it works
10639properly; but when a parse error is found, all the other calls fail
0e14ad77 10640too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10641@end display
10642
10643@noindent
10644or
10645
10646@display
0e14ad77 10647My parser includes support for an @samp{#include}-like feature, in
5b066063 10648which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10649although I did specify @samp{%define api.pure}.
5b066063
AD
10650@end display
10651
0e14ad77
PE
10652These problems typically come not from Bison itself, but from
10653Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10654speed, they might not notice a change of input file. As a
10655demonstration, consider the following source file,
10656@file{first-line.l}:
10657
10658@verbatim
10659%{
10660#include <stdio.h>
10661#include <stdlib.h>
10662%}
10663%%
10664.*\n ECHO; return 1;
10665%%
10666int
0e14ad77 10667yyparse (char const *file)
5b066063
AD
10668{
10669 yyin = fopen (file, "r");
10670 if (!yyin)
10671 exit (2);
fa7e68c3 10672 /* One token only. */
5b066063 10673 yylex ();
0e14ad77 10674 if (fclose (yyin) != 0)
5b066063
AD
10675 exit (3);
10676 return 0;
10677}
10678
10679int
0e14ad77 10680main (void)
5b066063
AD
10681{
10682 yyparse ("input");
10683 yyparse ("input");
10684 return 0;
10685}
10686@end verbatim
10687
10688@noindent
10689If the file @file{input} contains
10690
10691@verbatim
10692input:1: Hello,
10693input:2: World!
10694@end verbatim
10695
10696@noindent
0e14ad77 10697then instead of getting the first line twice, you get:
5b066063
AD
10698
10699@example
10700$ @kbd{flex -ofirst-line.c first-line.l}
10701$ @kbd{gcc -ofirst-line first-line.c -ll}
10702$ @kbd{./first-line}
10703input:1: Hello,
10704input:2: World!
10705@end example
10706
0e14ad77
PE
10707Therefore, whenever you change @code{yyin}, you must tell the
10708Lex-generated scanner to discard its current buffer and switch to the
10709new one. This depends upon your implementation of Lex; see its
10710documentation for more. For Flex, it suffices to call
10711@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10712Flex-generated scanner needs to read from several input streams to
10713handle features like include files, you might consider using Flex
10714functions like @samp{yy_switch_to_buffer} that manipulate multiple
10715input buffers.
5b066063 10716
b165c324
AD
10717If your Flex-generated scanner uses start conditions (@pxref{Start
10718conditions, , Start conditions, flex, The Flex Manual}), you might
10719also want to reset the scanner's state, i.e., go back to the initial
10720start condition, through a call to @samp{BEGIN (0)}.
10721
fef4cb51
AD
10722@node Strings are Destroyed
10723@section Strings are Destroyed
10724
10725@display
c7e441b4 10726My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10727them. Instead of reporting @samp{"foo", "bar"}, it reports
10728@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10729@end display
10730
10731This error is probably the single most frequent ``bug report'' sent to
10732Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10733of the scanner. Consider the following Lex code:
fef4cb51
AD
10734
10735@verbatim
10736%{
10737#include <stdio.h>
10738char *yylval = NULL;
10739%}
10740%%
10741.* yylval = yytext; return 1;
10742\n /* IGNORE */
10743%%
10744int
10745main ()
10746{
fa7e68c3 10747 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10748 char *fst = (yylex (), yylval);
10749 char *snd = (yylex (), yylval);
10750 printf ("\"%s\", \"%s\"\n", fst, snd);
10751 return 0;
10752}
10753@end verbatim
10754
10755If you compile and run this code, you get:
10756
10757@example
10758$ @kbd{flex -osplit-lines.c split-lines.l}
10759$ @kbd{gcc -osplit-lines split-lines.c -ll}
10760$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10761"one
10762two", "two"
10763@end example
10764
10765@noindent
10766this is because @code{yytext} is a buffer provided for @emph{reading}
10767in the action, but if you want to keep it, you have to duplicate it
10768(e.g., using @code{strdup}). Note that the output may depend on how
10769your implementation of Lex handles @code{yytext}. For instance, when
10770given the Lex compatibility option @option{-l} (which triggers the
10771option @samp{%array}) Flex generates a different behavior:
10772
10773@example
10774$ @kbd{flex -l -osplit-lines.c split-lines.l}
10775$ @kbd{gcc -osplit-lines split-lines.c -ll}
10776$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10777"two", "two"
10778@end example
10779
10780
2fa09258
AD
10781@node Implementing Gotos/Loops
10782@section Implementing Gotos/Loops
a06ea4aa
AD
10783
10784@display
10785My simple calculator supports variables, assignments, and functions,
2fa09258 10786but how can I implement gotos, or loops?
a06ea4aa
AD
10787@end display
10788
10789Although very pedagogical, the examples included in the document blur
a1c84f45 10790the distinction to make between the parser---whose job is to recover
a06ea4aa 10791the structure of a text and to transmit it to subsequent modules of
a1c84f45 10792the program---and the processing (such as the execution) of this
a06ea4aa
AD
10793structure. This works well with so called straight line programs,
10794i.e., precisely those that have a straightforward execution model:
10795execute simple instructions one after the others.
10796
10797@cindex abstract syntax tree
8a4281b9 10798@cindex AST
a06ea4aa
AD
10799If you want a richer model, you will probably need to use the parser
10800to construct a tree that does represent the structure it has
10801recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10802or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10803traversing it in various ways, will enable treatments such as its
10804execution or its translation, which will result in an interpreter or a
10805compiler.
10806
10807This topic is way beyond the scope of this manual, and the reader is
10808invited to consult the dedicated literature.
10809
10810
ed2e6384
AD
10811@node Multiple start-symbols
10812@section Multiple start-symbols
10813
10814@display
10815I have several closely related grammars, and I would like to share their
10816implementations. In fact, I could use a single grammar but with
10817multiple entry points.
10818@end display
10819
10820Bison does not support multiple start-symbols, but there is a very
10821simple means to simulate them. If @code{foo} and @code{bar} are the two
10822pseudo start-symbols, then introduce two new tokens, say
10823@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10824real start-symbol:
10825
10826@example
10827%token START_FOO START_BAR;
10828%start start;
10829start: START_FOO foo
10830 | START_BAR bar;
10831@end example
10832
10833These tokens prevents the introduction of new conflicts. As far as the
10834parser goes, that is all that is needed.
10835
10836Now the difficult part is ensuring that the scanner will send these
10837tokens first. If your scanner is hand-written, that should be
10838straightforward. If your scanner is generated by Lex, them there is
10839simple means to do it: recall that anything between @samp{%@{ ... %@}}
10840after the first @code{%%} is copied verbatim in the top of the generated
10841@code{yylex} function. Make sure a variable @code{start_token} is
10842available in the scanner (e.g., a global variable or using
10843@code{%lex-param} etc.), and use the following:
10844
10845@example
10846 /* @r{Prologue.} */
10847%%
10848%@{
10849 if (start_token)
10850 @{
10851 int t = start_token;
10852 start_token = 0;
10853 return t;
10854 @}
10855%@}
10856 /* @r{The rules.} */
10857@end example
10858
10859
55ba27be
AD
10860@node Secure? Conform?
10861@section Secure? Conform?
10862
10863@display
10864Is Bison secure? Does it conform to POSIX?
10865@end display
10866
10867If you're looking for a guarantee or certification, we don't provide it.
10868However, Bison is intended to be a reliable program that conforms to the
8a4281b9 10869POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10870please send us a bug report.
10871
10872@node I can't build Bison
10873@section I can't build Bison
10874
10875@display
8c5b881d
PE
10876I can't build Bison because @command{make} complains that
10877@code{msgfmt} is not found.
55ba27be
AD
10878What should I do?
10879@end display
10880
10881Like most GNU packages with internationalization support, that feature
10882is turned on by default. If you have problems building in the @file{po}
10883subdirectory, it indicates that your system's internationalization
10884support is lacking. You can re-configure Bison with
10885@option{--disable-nls} to turn off this support, or you can install GNU
10886gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10887Bison. See the file @file{ABOUT-NLS} for more information.
10888
10889
10890@node Where can I find help?
10891@section Where can I find help?
10892
10893@display
10894I'm having trouble using Bison. Where can I find help?
10895@end display
10896
10897First, read this fine manual. Beyond that, you can send mail to
10898@email{help-bison@@gnu.org}. This mailing list is intended to be
10899populated with people who are willing to answer questions about using
10900and installing Bison. Please keep in mind that (most of) the people on
10901the list have aspects of their lives which are not related to Bison (!),
10902so you may not receive an answer to your question right away. This can
10903be frustrating, but please try not to honk them off; remember that any
10904help they provide is purely voluntary and out of the kindness of their
10905hearts.
10906
10907@node Bug Reports
10908@section Bug Reports
10909
10910@display
10911I found a bug. What should I include in the bug report?
10912@end display
10913
10914Before you send a bug report, make sure you are using the latest
10915version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10916mirrors. Be sure to include the version number in your bug report. If
10917the bug is present in the latest version but not in a previous version,
10918try to determine the most recent version which did not contain the bug.
10919
10920If the bug is parser-related, you should include the smallest grammar
10921you can which demonstrates the bug. The grammar file should also be
10922complete (i.e., I should be able to run it through Bison without having
10923to edit or add anything). The smaller and simpler the grammar, the
10924easier it will be to fix the bug.
10925
10926Include information about your compilation environment, including your
10927operating system's name and version and your compiler's name and
10928version. If you have trouble compiling, you should also include a
10929transcript of the build session, starting with the invocation of
10930`configure'. Depending on the nature of the bug, you may be asked to
10931send additional files as well (such as `config.h' or `config.cache').
10932
10933Patches are most welcome, but not required. That is, do not hesitate to
10934send a bug report just because you can not provide a fix.
10935
10936Send bug reports to @email{bug-bison@@gnu.org}.
10937
8405b70c
PB
10938@node More Languages
10939@section More Languages
55ba27be
AD
10940
10941@display
8405b70c 10942Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10943favorite language here}?
10944@end display
10945
8405b70c 10946C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10947languages; contributions are welcome.
10948
10949@node Beta Testing
10950@section Beta Testing
10951
10952@display
10953What is involved in being a beta tester?
10954@end display
10955
10956It's not terribly involved. Basically, you would download a test
10957release, compile it, and use it to build and run a parser or two. After
10958that, you would submit either a bug report or a message saying that
10959everything is okay. It is important to report successes as well as
10960failures because test releases eventually become mainstream releases,
10961but only if they are adequately tested. If no one tests, development is
10962essentially halted.
10963
10964Beta testers are particularly needed for operating systems to which the
10965developers do not have easy access. They currently have easy access to
10966recent GNU/Linux and Solaris versions. Reports about other operating
10967systems are especially welcome.
10968
10969@node Mailing Lists
10970@section Mailing Lists
10971
10972@display
10973How do I join the help-bison and bug-bison mailing lists?
10974@end display
10975
10976See @url{http://lists.gnu.org/}.
a06ea4aa 10977
d1a1114f
AD
10978@c ================================================= Table of Symbols
10979
342b8b6e 10980@node Table of Symbols
bfa74976
RS
10981@appendix Bison Symbols
10982@cindex Bison symbols, table of
10983@cindex symbols in Bison, table of
10984
18b519c0 10985@deffn {Variable} @@$
3ded9a63 10986In an action, the location of the left-hand side of the rule.
88bce5a2 10987@xref{Locations, , Locations Overview}.
18b519c0 10988@end deffn
3ded9a63 10989
18b519c0 10990@deffn {Variable} @@@var{n}
3ded9a63
AD
10991In an action, the location of the @var{n}-th symbol of the right-hand
10992side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10993@end deffn
3ded9a63 10994
d013372c
AR
10995@deffn {Variable} @@@var{name}
10996In an action, the location of a symbol addressed by name.
10997@xref{Locations, , Locations Overview}.
10998@end deffn
10999
11000@deffn {Variable} @@[@var{name}]
11001In an action, the location of a symbol addressed by name.
11002@xref{Locations, , Locations Overview}.
11003@end deffn
11004
18b519c0 11005@deffn {Variable} $$
3ded9a63
AD
11006In an action, the semantic value of the left-hand side of the rule.
11007@xref{Actions}.
18b519c0 11008@end deffn
3ded9a63 11009
18b519c0 11010@deffn {Variable} $@var{n}
3ded9a63
AD
11011In an action, the semantic value of the @var{n}-th symbol of the
11012right-hand side of the rule. @xref{Actions}.
18b519c0 11013@end deffn
3ded9a63 11014
d013372c
AR
11015@deffn {Variable} $@var{name}
11016In an action, the semantic value of a symbol addressed by name.
11017@xref{Actions}.
11018@end deffn
11019
11020@deffn {Variable} $[@var{name}]
11021In an action, the semantic value of a symbol addressed by name.
11022@xref{Actions}.
11023@end deffn
11024
dd8d9022
AD
11025@deffn {Delimiter} %%
11026Delimiter used to separate the grammar rule section from the
11027Bison declarations section or the epilogue.
11028@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11029@end deffn
bfa74976 11030
dd8d9022
AD
11031@c Don't insert spaces, or check the DVI output.
11032@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11033All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11034to the parser implementation file. Such code forms the prologue of
11035the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11036Grammar}.
18b519c0 11037@end deffn
bfa74976 11038
ca2a6d15
PH
11039@deffn {Directive} %?@{@var{expression}@}
11040Predicate actions. This is a type of action clause that may appear in
11041rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11042GLR parsers during nondeterministic operation,
ca2a6d15
PH
11043this silently causes an alternative parse to die. During deterministic
11044operation, it is the same as the effect of YYERROR.
11045@xref{Semantic Predicates}.
11046
11047This feature is experimental.
11048More user feedback will help to determine whether it should become a permanent
11049feature.
11050@end deffn
11051
dd8d9022
AD
11052@deffn {Construct} /*@dots{}*/
11053Comment delimiters, as in C.
18b519c0 11054@end deffn
bfa74976 11055
dd8d9022
AD
11056@deffn {Delimiter} :
11057Separates a rule's result from its components. @xref{Rules, ,Syntax of
11058Grammar Rules}.
18b519c0 11059@end deffn
bfa74976 11060
dd8d9022
AD
11061@deffn {Delimiter} ;
11062Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11063@end deffn
bfa74976 11064
dd8d9022
AD
11065@deffn {Delimiter} |
11066Separates alternate rules for the same result nonterminal.
11067@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11068@end deffn
bfa74976 11069
12e35840
JD
11070@deffn {Directive} <*>
11071Used to define a default tagged @code{%destructor} or default tagged
11072@code{%printer}.
85894313
JD
11073
11074This feature is experimental.
11075More user feedback will help to determine whether it should become a permanent
11076feature.
11077
12e35840
JD
11078@xref{Destructor Decl, , Freeing Discarded Symbols}.
11079@end deffn
11080
3ebecc24 11081@deffn {Directive} <>
12e35840
JD
11082Used to define a default tagless @code{%destructor} or default tagless
11083@code{%printer}.
85894313
JD
11084
11085This feature is experimental.
11086More user feedback will help to determine whether it should become a permanent
11087feature.
11088
12e35840
JD
11089@xref{Destructor Decl, , Freeing Discarded Symbols}.
11090@end deffn
11091
dd8d9022
AD
11092@deffn {Symbol} $accept
11093The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11094$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11095Start-Symbol}. It cannot be used in the grammar.
18b519c0 11096@end deffn
bfa74976 11097
136a0f76 11098@deffn {Directive} %code @{@var{code}@}
148d66d8 11099@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11100Insert @var{code} verbatim into the output parser source at the
11101default location or at the location specified by @var{qualifier}.
e0c07222 11102@xref{%code Summary}.
9bc0dd67
JD
11103@end deffn
11104
11105@deffn {Directive} %debug
11106Equip the parser for debugging. @xref{Decl Summary}.
11107@end deffn
11108
91d2c560 11109@ifset defaultprec
22fccf95
PE
11110@deffn {Directive} %default-prec
11111Assign a precedence to rules that lack an explicit @samp{%prec}
11112modifier. @xref{Contextual Precedence, ,Context-Dependent
11113Precedence}.
39a06c25 11114@end deffn
91d2c560 11115@end ifset
39a06c25 11116
7fceb615
JD
11117@deffn {Directive} %define @var{variable}
11118@deffnx {Directive} %define @var{variable} @var{value}
11119@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11120Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11121@end deffn
11122
18b519c0 11123@deffn {Directive} %defines
ff7571c0
JD
11124Bison declaration to create a parser header file, which is usually
11125meant for the scanner. @xref{Decl Summary}.
18b519c0 11126@end deffn
6deb4447 11127
02975b9a
JD
11128@deffn {Directive} %defines @var{defines-file}
11129Same as above, but save in the file @var{defines-file}.
11130@xref{Decl Summary}.
11131@end deffn
11132
18b519c0 11133@deffn {Directive} %destructor
258b75ca 11134Specify how the parser should reclaim the memory associated to
fa7e68c3 11135discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11136@end deffn
72f889cc 11137
18b519c0 11138@deffn {Directive} %dprec
676385e2 11139Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11140time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11141GLR Parsers}.
18b519c0 11142@end deffn
676385e2 11143
dd8d9022
AD
11144@deffn {Symbol} $end
11145The predefined token marking the end of the token stream. It cannot be
11146used in the grammar.
11147@end deffn
11148
11149@deffn {Symbol} error
11150A token name reserved for error recovery. This token may be used in
11151grammar rules so as to allow the Bison parser to recognize an error in
11152the grammar without halting the process. In effect, a sentence
11153containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11154token @code{error} becomes the current lookahead token. Actions
11155corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11156token is reset to the token that originally caused the violation.
11157@xref{Error Recovery}.
18d192f0
AD
11158@end deffn
11159
18b519c0 11160@deffn {Directive} %error-verbose
7fceb615
JD
11161An obsolete directive standing for @samp{%define parse.error verbose}
11162(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11163@end deffn
2a8d363a 11164
02975b9a 11165@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11166Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11167Summary}.
18b519c0 11168@end deffn
d8988b2f 11169
18b519c0 11170@deffn {Directive} %glr-parser
8a4281b9
JD
11171Bison declaration to produce a GLR parser. @xref{GLR
11172Parsers, ,Writing GLR Parsers}.
18b519c0 11173@end deffn
676385e2 11174
dd8d9022
AD
11175@deffn {Directive} %initial-action
11176Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11177@end deffn
11178
e6e704dc
JD
11179@deffn {Directive} %language
11180Specify the programming language for the generated parser.
11181@xref{Decl Summary}.
11182@end deffn
11183
18b519c0 11184@deffn {Directive} %left
d78f0ac9 11185Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11186@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11187@end deffn
bfa74976 11188
2055a44e
AD
11189@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11190Bison declaration to specifying additional arguments that
2a8d363a
AD
11191@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11192for Pure Parsers}.
18b519c0 11193@end deffn
2a8d363a 11194
18b519c0 11195@deffn {Directive} %merge
676385e2 11196Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11197reduce/reduce conflict with a rule having the same merging function, the
676385e2 11198function is applied to the two semantic values to get a single result.
8a4281b9 11199@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11200@end deffn
676385e2 11201
02975b9a 11202@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11203Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11204@end deffn
d8988b2f 11205
91d2c560 11206@ifset defaultprec
22fccf95
PE
11207@deffn {Directive} %no-default-prec
11208Do not assign a precedence to rules that lack an explicit @samp{%prec}
11209modifier. @xref{Contextual Precedence, ,Context-Dependent
11210Precedence}.
11211@end deffn
91d2c560 11212@end ifset
22fccf95 11213
18b519c0 11214@deffn {Directive} %no-lines
931c7513 11215Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11216parser implementation file. @xref{Decl Summary}.
18b519c0 11217@end deffn
931c7513 11218
18b519c0 11219@deffn {Directive} %nonassoc
d78f0ac9 11220Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11221@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11222@end deffn
bfa74976 11223
02975b9a 11224@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11225Bison declaration to set the name of the parser implementation file.
11226@xref{Decl Summary}.
18b519c0 11227@end deffn
d8988b2f 11228
2055a44e
AD
11229@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11230Bison declaration to specify additional arguments that both
11231@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11232Parser Function @code{yyparse}}.
11233@end deffn
11234
11235@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11236Bison declaration to specify additional arguments that @code{yyparse}
11237should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11238@end deffn
2a8d363a 11239
18b519c0 11240@deffn {Directive} %prec
bfa74976
RS
11241Bison declaration to assign a precedence to a specific rule.
11242@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11243@end deffn
bfa74976 11244
d78f0ac9
AD
11245@deffn {Directive} %precedence
11246Bison declaration to assign precedence to token(s), but no associativity
11247@xref{Precedence Decl, ,Operator Precedence}.
11248@end deffn
11249
18b519c0 11250@deffn {Directive} %pure-parser
35c1e5f0
JD
11251Deprecated version of @samp{%define api.pure} (@pxref{%define
11252Summary,,api.pure}), for which Bison is more careful to warn about
11253unreasonable usage.
18b519c0 11254@end deffn
bfa74976 11255
b50d2359 11256@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11257Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11258Require a Version of Bison}.
b50d2359
AD
11259@end deffn
11260
18b519c0 11261@deffn {Directive} %right
d78f0ac9 11262Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11263@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11264@end deffn
bfa74976 11265
e6e704dc
JD
11266@deffn {Directive} %skeleton
11267Specify the skeleton to use; usually for development.
11268@xref{Decl Summary}.
11269@end deffn
11270
18b519c0 11271@deffn {Directive} %start
704a47c4
AD
11272Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11273Start-Symbol}.
18b519c0 11274@end deffn
bfa74976 11275
18b519c0 11276@deffn {Directive} %token
bfa74976
RS
11277Bison declaration to declare token(s) without specifying precedence.
11278@xref{Token Decl, ,Token Type Names}.
18b519c0 11279@end deffn
bfa74976 11280
18b519c0 11281@deffn {Directive} %token-table
ff7571c0
JD
11282Bison declaration to include a token name table in the parser
11283implementation file. @xref{Decl Summary}.
18b519c0 11284@end deffn
931c7513 11285
18b519c0 11286@deffn {Directive} %type
704a47c4
AD
11287Bison declaration to declare nonterminals. @xref{Type Decl,
11288,Nonterminal Symbols}.
18b519c0 11289@end deffn
bfa74976 11290
dd8d9022
AD
11291@deffn {Symbol} $undefined
11292The predefined token onto which all undefined values returned by
11293@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11294@code{error}.
11295@end deffn
11296
18b519c0 11297@deffn {Directive} %union
bfa74976
RS
11298Bison declaration to specify several possible data types for semantic
11299values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11300@end deffn
bfa74976 11301
dd8d9022
AD
11302@deffn {Macro} YYABORT
11303Macro to pretend that an unrecoverable syntax error has occurred, by
11304making @code{yyparse} return 1 immediately. The error reporting
11305function @code{yyerror} is not called. @xref{Parser Function, ,The
11306Parser Function @code{yyparse}}.
8405b70c
PB
11307
11308For Java parsers, this functionality is invoked using @code{return YYABORT;}
11309instead.
dd8d9022 11310@end deffn
3ded9a63 11311
dd8d9022
AD
11312@deffn {Macro} YYACCEPT
11313Macro to pretend that a complete utterance of the language has been
11314read, by making @code{yyparse} return 0 immediately.
11315@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11316
11317For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11318instead.
dd8d9022 11319@end deffn
bfa74976 11320
dd8d9022 11321@deffn {Macro} YYBACKUP
742e4900 11322Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11323token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11324@end deffn
bfa74976 11325
dd8d9022 11326@deffn {Variable} yychar
32c29292 11327External integer variable that contains the integer value of the
742e4900 11328lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11329@code{yyparse}.) Error-recovery rule actions may examine this variable.
11330@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11331@end deffn
bfa74976 11332
dd8d9022
AD
11333@deffn {Variable} yyclearin
11334Macro used in error-recovery rule actions. It clears the previous
742e4900 11335lookahead token. @xref{Error Recovery}.
18b519c0 11336@end deffn
bfa74976 11337
dd8d9022
AD
11338@deffn {Macro} YYDEBUG
11339Macro to define to equip the parser with tracing code. @xref{Tracing,
11340,Tracing Your Parser}.
18b519c0 11341@end deffn
bfa74976 11342
dd8d9022
AD
11343@deffn {Variable} yydebug
11344External integer variable set to zero by default. If @code{yydebug}
11345is given a nonzero value, the parser will output information on input
11346symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11347@end deffn
bfa74976 11348
dd8d9022
AD
11349@deffn {Macro} yyerrok
11350Macro to cause parser to recover immediately to its normal mode
11351after a syntax error. @xref{Error Recovery}.
11352@end deffn
11353
11354@deffn {Macro} YYERROR
11355Macro to pretend that a syntax error has just been detected: call
11356@code{yyerror} and then perform normal error recovery if possible
11357(@pxref{Error Recovery}), or (if recovery is impossible) make
11358@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11359
11360For Java parsers, this functionality is invoked using @code{return YYERROR;}
11361instead.
dd8d9022
AD
11362@end deffn
11363
11364@deffn {Function} yyerror
11365User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11366@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11367@end deffn
11368
11369@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11370An obsolete macro used in the @file{yacc.c} skeleton, that you define
11371with @code{#define} in the prologue to request verbose, specific error
11372message strings when @code{yyerror} is called. It doesn't matter what
11373definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11374it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11375(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11376@end deffn
11377
11378@deffn {Macro} YYINITDEPTH
11379Macro for specifying the initial size of the parser stack.
1a059451 11380@xref{Memory Management}.
dd8d9022
AD
11381@end deffn
11382
11383@deffn {Function} yylex
11384User-supplied lexical analyzer function, called with no arguments to get
11385the next token. @xref{Lexical, ,The Lexical Analyzer Function
11386@code{yylex}}.
11387@end deffn
11388
11389@deffn {Macro} YYLEX_PARAM
11390An obsolete macro for specifying an extra argument (or list of extra
32c29292 11391arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11392macro is deprecated, and is supported only for Yacc like parsers.
11393@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11394@end deffn
11395
11396@deffn {Variable} yylloc
11397External variable in which @code{yylex} should place the line and column
11398numbers associated with a token. (In a pure parser, it is a local
11399variable within @code{yyparse}, and its address is passed to
32c29292
JD
11400@code{yylex}.)
11401You can ignore this variable if you don't use the @samp{@@} feature in the
11402grammar actions.
11403@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11404In semantic actions, it stores the location of the lookahead token.
32c29292 11405@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11406@end deffn
11407
11408@deffn {Type} YYLTYPE
11409Data type of @code{yylloc}; by default, a structure with four
11410members. @xref{Location Type, , Data Types of Locations}.
11411@end deffn
11412
11413@deffn {Variable} yylval
11414External variable in which @code{yylex} should place the semantic
11415value associated with a token. (In a pure parser, it is a local
11416variable within @code{yyparse}, and its address is passed to
32c29292
JD
11417@code{yylex}.)
11418@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11419In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11420@xref{Actions, ,Actions}.
dd8d9022
AD
11421@end deffn
11422
11423@deffn {Macro} YYMAXDEPTH
1a059451
PE
11424Macro for specifying the maximum size of the parser stack. @xref{Memory
11425Management}.
dd8d9022
AD
11426@end deffn
11427
11428@deffn {Variable} yynerrs
8a2800e7 11429Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11430(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11431pure push parser, it is a member of yypstate.)
dd8d9022
AD
11432@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11433@end deffn
11434
11435@deffn {Function} yyparse
11436The parser function produced by Bison; call this function to start
11437parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11438@end deffn
11439
9987d1b3 11440@deffn {Function} yypstate_delete
f4101aa6 11441The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11442call this function to delete the memory associated with a parser.
f4101aa6 11443@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11444@code{yypstate_delete}}.
59da312b
JD
11445(The current push parsing interface is experimental and may evolve.
11446More user feedback will help to stabilize it.)
9987d1b3
JD
11447@end deffn
11448
11449@deffn {Function} yypstate_new
f4101aa6 11450The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11451call this function to create a new parser.
f4101aa6 11452@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11453@code{yypstate_new}}.
59da312b
JD
11454(The current push parsing interface is experimental and may evolve.
11455More user feedback will help to stabilize it.)
9987d1b3
JD
11456@end deffn
11457
11458@deffn {Function} yypull_parse
f4101aa6
AD
11459The parser function produced by Bison in push mode; call this function to
11460parse the rest of the input stream.
11461@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11462@code{yypull_parse}}.
59da312b
JD
11463(The current push parsing interface is experimental and may evolve.
11464More user feedback will help to stabilize it.)
9987d1b3
JD
11465@end deffn
11466
11467@deffn {Function} yypush_parse
f4101aa6
AD
11468The parser function produced by Bison in push mode; call this function to
11469parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11470@code{yypush_parse}}.
59da312b
JD
11471(The current push parsing interface is experimental and may evolve.
11472More user feedback will help to stabilize it.)
9987d1b3
JD
11473@end deffn
11474
dd8d9022
AD
11475@deffn {Macro} YYPARSE_PARAM
11476An obsolete macro for specifying the name of a parameter that
11477@code{yyparse} should accept. The use of this macro is deprecated, and
11478is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11479Conventions for Pure Parsers}.
11480@end deffn
11481
11482@deffn {Macro} YYRECOVERING
02103984
PE
11483The expression @code{YYRECOVERING ()} yields 1 when the parser
11484is recovering from a syntax error, and 0 otherwise.
11485@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11486@end deffn
11487
11488@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11489Macro used to control the use of @code{alloca} when the
11490deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11491the parser will use @code{malloc} to extend its stacks. If defined to
114921, the parser will use @code{alloca}. Values other than 0 and 1 are
11493reserved for future Bison extensions. If not defined,
11494@code{YYSTACK_USE_ALLOCA} defaults to 0.
11495
55289366 11496In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11497limited stack and with unreliable stack-overflow checking, you should
11498set @code{YYMAXDEPTH} to a value that cannot possibly result in
11499unchecked stack overflow on any of your target hosts when
11500@code{alloca} is called. You can inspect the code that Bison
11501generates in order to determine the proper numeric values. This will
11502require some expertise in low-level implementation details.
dd8d9022
AD
11503@end deffn
11504
11505@deffn {Type} YYSTYPE
11506Data type of semantic values; @code{int} by default.
11507@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11508@end deffn
bfa74976 11509
342b8b6e 11510@node Glossary
bfa74976
RS
11511@appendix Glossary
11512@cindex glossary
11513
11514@table @asis
7fceb615 11515@item Accepting state
eb45ef3b
JD
11516A state whose only action is the accept action.
11517The accepting state is thus a consistent state.
11518@xref{Understanding,,}.
11519
8a4281b9 11520@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11521Formal method of specifying context-free grammars originally proposed
11522by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11523committee document contributing to what became the Algol 60 report.
11524@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11525
7fceb615
JD
11526@item Consistent state
11527A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 11528
bfa74976
RS
11529@item Context-free grammars
11530Grammars specified as rules that can be applied regardless of context.
11531Thus, if there is a rule which says that an integer can be used as an
11532expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11533permitted. @xref{Language and Grammar, ,Languages and Context-Free
11534Grammars}.
bfa74976 11535
7fceb615 11536@item Default reduction
110ef36a 11537The reduction that a parser should perform if the current parser state
35c1e5f0 11538contains no other action for the lookahead token. In permitted parser
7fceb615
JD
11539states, Bison declares the reduction with the largest lookahead set to be
11540the default reduction and removes that lookahead set. @xref{Default
11541Reductions}.
11542
11543@item Defaulted state
11544A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 11545
bfa74976
RS
11546@item Dynamic allocation
11547Allocation of memory that occurs during execution, rather than at
11548compile time or on entry to a function.
11549
11550@item Empty string
11551Analogous to the empty set in set theory, the empty string is a
11552character string of length zero.
11553
11554@item Finite-state stack machine
11555A ``machine'' that has discrete states in which it is said to exist at
11556each instant in time. As input to the machine is processed, the
11557machine moves from state to state as specified by the logic of the
11558machine. In the case of the parser, the input is the language being
11559parsed, and the states correspond to various stages in the grammar
c827f760 11560rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11561
8a4281b9 11562@item Generalized LR (GLR)
676385e2 11563A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11564that are not LR(1). It resolves situations that Bison's
eb45ef3b 11565deterministic parsing
676385e2
PH
11566algorithm cannot by effectively splitting off multiple parsers, trying all
11567possible parsers, and discarding those that fail in the light of additional
c827f760 11568right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11569LR Parsing}.
676385e2 11570
bfa74976
RS
11571@item Grouping
11572A language construct that is (in general) grammatically divisible;
c827f760 11573for example, `expression' or `declaration' in C@.
bfa74976
RS
11574@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11575
7fceb615
JD
11576@item IELR(1) (Inadequacy Elimination LR(1))
11577A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 11578context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
11579language-recognition power of canonical LR(1) but with nearly the same
11580number of parser states as LALR(1). This reduction in parser states is
11581often an order of magnitude. More importantly, because canonical LR(1)'s
11582extra parser states may contain duplicate conflicts in the case of non-LR(1)
11583grammars, the number of conflicts for IELR(1) is often an order of magnitude
11584less as well. This can significantly reduce the complexity of developing a
11585grammar. @xref{LR Table Construction}.
eb45ef3b 11586
bfa74976
RS
11587@item Infix operator
11588An arithmetic operator that is placed between the operands on which it
11589performs some operation.
11590
11591@item Input stream
11592A continuous flow of data between devices or programs.
11593
8a4281b9 11594@item LAC (Lookahead Correction)
fcf834f9 11595A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
11596detection, which is caused by LR state merging, default reductions, and the
11597use of @code{%nonassoc}. Delayed syntax error detection results in
11598unexpected semantic actions, initiation of error recovery in the wrong
11599syntactic context, and an incorrect list of expected tokens in a verbose
11600syntax error message. @xref{LAC}.
fcf834f9 11601
bfa74976
RS
11602@item Language construct
11603One of the typical usage schemas of the language. For example, one of
11604the constructs of the C language is the @code{if} statement.
11605@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11606
11607@item Left associativity
11608Operators having left associativity are analyzed from left to right:
11609@samp{a+b+c} first computes @samp{a+b} and then combines with
11610@samp{c}. @xref{Precedence, ,Operator Precedence}.
11611
11612@item Left recursion
89cab50d
AD
11613A rule whose result symbol is also its first component symbol; for
11614example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11615Rules}.
bfa74976
RS
11616
11617@item Left-to-right parsing
11618Parsing a sentence of a language by analyzing it token by token from
c827f760 11619left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11620
11621@item Lexical analyzer (scanner)
11622A function that reads an input stream and returns tokens one by one.
11623@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11624
11625@item Lexical tie-in
11626A flag, set by actions in the grammar rules, which alters the way
11627tokens are parsed. @xref{Lexical Tie-ins}.
11628
931c7513 11629@item Literal string token
14ded682 11630A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11631
742e4900
JD
11632@item Lookahead token
11633A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11634Tokens}.
bfa74976 11635
8a4281b9 11636@item LALR(1)
bfa74976 11637The class of context-free grammars that Bison (like most other parser
8a4281b9 11638generators) can handle by default; a subset of LR(1).
cc09e5be 11639@xref{Mysterious Conflicts}.
bfa74976 11640
8a4281b9 11641@item LR(1)
bfa74976 11642The class of context-free grammars in which at most one token of
742e4900 11643lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11644
11645@item Nonterminal symbol
11646A grammar symbol standing for a grammatical construct that can
11647be expressed through rules in terms of smaller constructs; in other
11648words, a construct that is not a token. @xref{Symbols}.
11649
bfa74976
RS
11650@item Parser
11651A function that recognizes valid sentences of a language by analyzing
11652the syntax structure of a set of tokens passed to it from a lexical
11653analyzer.
11654
11655@item Postfix operator
11656An arithmetic operator that is placed after the operands upon which it
11657performs some operation.
11658
11659@item Reduction
11660Replacing a string of nonterminals and/or terminals with a single
89cab50d 11661nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11662Parser Algorithm}.
bfa74976
RS
11663
11664@item Reentrant
11665A reentrant subprogram is a subprogram which can be in invoked any
11666number of times in parallel, without interference between the various
11667invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11668
11669@item Reverse polish notation
11670A language in which all operators are postfix operators.
11671
11672@item Right recursion
89cab50d
AD
11673A rule whose result symbol is also its last component symbol; for
11674example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11675Rules}.
bfa74976
RS
11676
11677@item Semantics
11678In computer languages, the semantics are specified by the actions
11679taken for each instance of the language, i.e., the meaning of
11680each statement. @xref{Semantics, ,Defining Language Semantics}.
11681
11682@item Shift
11683A parser is said to shift when it makes the choice of analyzing
11684further input from the stream rather than reducing immediately some
c827f760 11685already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11686
11687@item Single-character literal
11688A single character that is recognized and interpreted as is.
11689@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11690
11691@item Start symbol
11692The nonterminal symbol that stands for a complete valid utterance in
11693the language being parsed. The start symbol is usually listed as the
13863333 11694first nonterminal symbol in a language specification.
bfa74976
RS
11695@xref{Start Decl, ,The Start-Symbol}.
11696
11697@item Symbol table
11698A data structure where symbol names and associated data are stored
11699during parsing to allow for recognition and use of existing
11700information in repeated uses of a symbol. @xref{Multi-function Calc}.
11701
6e649e65
PE
11702@item Syntax error
11703An error encountered during parsing of an input stream due to invalid
11704syntax. @xref{Error Recovery}.
11705
bfa74976
RS
11706@item Token
11707A basic, grammatically indivisible unit of a language. The symbol
11708that describes a token in the grammar is a terminal symbol.
11709The input of the Bison parser is a stream of tokens which comes from
11710the lexical analyzer. @xref{Symbols}.
11711
11712@item Terminal symbol
89cab50d
AD
11713A grammar symbol that has no rules in the grammar and therefore is
11714grammatically indivisible. The piece of text it represents is a token.
11715@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
11716
11717@item Unreachable state
11718A parser state to which there does not exist a sequence of transitions from
11719the parser's start state. A state can become unreachable during conflict
11720resolution. @xref{Unreachable States}.
bfa74976
RS
11721@end table
11722
342b8b6e 11723@node Copying This Manual
f2b5126e 11724@appendix Copying This Manual
f2b5126e
PB
11725@include fdl.texi
11726
5e528941
JD
11727@node Bibliography
11728@unnumbered Bibliography
11729
11730@table @asis
11731@item [Denny 2008]
11732Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11733for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
117342008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11735pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11736
11737@item [Denny 2010 May]
11738Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11739Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11740University, Clemson, SC, USA (May 2010).
11741@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11742
11743@item [Denny 2010 November]
11744Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11745Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11746in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
117472010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11748
11749@item [DeRemer 1982]
11750Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11751Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11752Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11753615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11754
11755@item [Knuth 1965]
11756Donald E. Knuth, On the Translation of Languages from Left to Right, in
11757@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11758607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11759
11760@item [Scott 2000]
11761Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11762@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11763London, Department of Computer Science, TR-00-12 (December 2000).
11764@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11765@end table
11766
342b8b6e 11767@node Index
bfa74976
RS
11768@unnumbered Index
11769
11770@printindex cp
11771
bfa74976 11772@bye
a06ea4aa 11773
6b5a0de9
AD
11774@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11775@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11776@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11777@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11778@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11779@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11780@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11781@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11782@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11783@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11784@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11785@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11786@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11787@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11788@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11789@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11790@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11791@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11792@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11793@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11794@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11795@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11796@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11797@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11798@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11799@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11800@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11801@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11802@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11803@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9 11804@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
ff7571c0 11805@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
6b5a0de9
AD
11806@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11807@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11808@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11809@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11810@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11811@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11812@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
ff7571c0 11813@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
6b5a0de9
AD
11814@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11815@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11816@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11817@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11818@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11819@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11820@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11821@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11822@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11823@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
679e9935 11824@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
6b5a0de9 11825@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11826
11827@c Local Variables:
11828@c ispell-dictionary: "american"
11829@c fill-column: 76
11830@c End: