]> git.saurik.com Git - bison.git/blame - doc/bison.texi
grammar: do not add a \n at the end of blocks of code
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
7d6bad19 36Copyright @copyright{} 1988-1993, 1995, 1998-2013 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
303834cc
JD
189* Semantics:: Semantic values and actions.
190* Tracking Locations:: Locations and actions.
191* Named References:: Using named references in actions.
192* Declarations:: All kinds of Bison declarations are described here.
193* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
194
195Outline of a Bison Grammar
196
f5f419de 197* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 198* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
199* Bison Declarations:: Syntax and usage of the Bison declarations section.
200* Grammar Rules:: Syntax and usage of the grammar rules section.
201* Epilogue:: Syntax and usage of the epilogue.
bfa74976 202
09add9c2
AD
203Grammar Rules
204
205* Rules Syntax:: Syntax of the rules.
206* Empty Rules:: Symbols that can match the empty string.
207* Recursion:: Writing recursive rules.
208
209
bfa74976
RS
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
214* Actions:: An action is the semantic definition of a grammar rule.
215* Action Types:: Specifying data types for actions to operate on.
216* Mid-Rule Actions:: Most actions go at the end of a rule.
217 This says when, why and how to use the exceptional
218 action in the middle of a rule.
219
be22823e
AD
220Actions in Mid-Rule
221
222* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
223* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
224* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
225
93dd49ab
PE
226Tracking Locations
227
228* Location Type:: Specifying a data type for locations.
229* Actions and Locations:: Using locations in actions.
230* Location Default Action:: Defining a general way to compute locations.
231
bfa74976
RS
232Bison Declarations
233
b50d2359 234* Require Decl:: Requiring a Bison version.
bfa74976
RS
235* Token Decl:: Declaring terminal symbols.
236* Precedence Decl:: Declaring terminals with precedence and associativity.
237* Union Decl:: Declaring the set of all semantic value types.
238* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 239* Initial Action Decl:: Code run before parsing starts.
72f889cc 240* Destructor Decl:: Declaring how symbols are freed.
93c150b6 241* Printer Decl:: Declaring how symbol values are displayed.
d6328241 242* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
243* Start Decl:: Specifying the start symbol.
244* Pure Decl:: Requesting a reentrant parser.
9987d1b3 245* Push Decl:: Requesting a push parser.
bfa74976 246* Decl Summary:: Table of all Bison declarations.
35c1e5f0 247* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 248* %code Summary:: Inserting code into the parser source.
bfa74976
RS
249
250Parser C-Language Interface
251
f5f419de
DJ
252* Parser Function:: How to call @code{yyparse} and what it returns.
253* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
254* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
255* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
256* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
257* Lexical:: You must supply a function @code{yylex}
258 which reads tokens.
259* Error Reporting:: You must supply a function @code{yyerror}.
260* Action Features:: Special features for use in actions.
261* Internationalization:: How to let the parser speak in the user's
262 native language.
bfa74976
RS
263
264The Lexical Analyzer Function @code{yylex}
265
266* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
267* Token Values:: How @code{yylex} must return the semantic value
268 of the token it has read.
269* Token Locations:: How @code{yylex} must return the text location
270 (line number, etc.) of the token, if the
271 actions want that.
272* Pure Calling:: How the calling convention differs in a pure parser
273 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 274
13863333 275The Bison Parser Algorithm
bfa74976 276
742e4900 277* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
278* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
279* Precedence:: Operator precedence works by resolving conflicts.
280* Contextual Precedence:: When an operator's precedence depends on context.
281* Parser States:: The parser is a finite-state-machine with stack.
282* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 283* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 284* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 285* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 286* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
287
288Operator Precedence
289
290* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
291* Using Precedence:: How to specify precedence and associativity.
292* Precedence Only:: How to specify precedence only.
bfa74976
RS
293* Precedence Examples:: How these features are used in the previous example.
294* How Precedence:: How they work.
c28cd5dc 295* Non Operators:: Using precedence for general conflicts.
bfa74976 296
7fceb615
JD
297Tuning LR
298
299* LR Table Construction:: Choose a different construction algorithm.
300* Default Reductions:: Disable default reductions.
301* LAC:: Correct lookahead sets in the parser states.
302* Unreachable States:: Keep unreachable parser states for debugging.
303
bfa74976
RS
304Handling Context Dependencies
305
306* Semantic Tokens:: Token parsing can depend on the semantic context.
307* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
308* Tie-in Recovery:: Lexical tie-ins have implications for how
309 error recovery rules must be written.
310
93dd49ab 311Debugging Your Parser
ec3bc396
AD
312
313* Understanding:: Understanding the structure of your parser.
fc4fdd62 314* Graphviz:: Getting a visual representation of the parser.
9c16d399 315* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
316* Tracing:: Tracing the execution of your parser.
317
93c150b6
AD
318Tracing Your Parser
319
320* Enabling Traces:: Activating run-time trace support
321* Mfcalc Traces:: Extending @code{mfcalc} to support traces
322* The YYPRINT Macro:: Obsolete interface for semantic value reports
323
bfa74976
RS
324Invoking Bison
325
13863333 326* Bison Options:: All the options described in detail,
c827f760 327 in alphabetical order by short options.
bfa74976 328* Option Cross Key:: Alphabetical list of long options.
93dd49ab 329* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 330
8405b70c 331Parsers Written In Other Languages
12545799
AD
332
333* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 334* Java Parsers:: The interface to generate Java parser classes
12545799
AD
335
336C++ Parsers
337
338* C++ Bison Interface:: Asking for C++ parser generation
339* C++ Semantic Values:: %union vs. C++
340* C++ Location Values:: The position and location classes
341* C++ Parser Interface:: Instantiating and running the parser
342* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 343* A Complete C++ Example:: Demonstrating their use
12545799 344
936c88d1
AD
345C++ Location Values
346
347* C++ position:: One point in the source file
348* C++ location:: Two points in the source file
db8ab2be 349* User Defined Location Type:: Required interface for locations
936c88d1 350
12545799
AD
351A Complete C++ Example
352
353* Calc++ --- C++ Calculator:: The specifications
354* Calc++ Parsing Driver:: An active parsing context
355* Calc++ Parser:: A parser class
356* Calc++ Scanner:: A pure C++ Flex scanner
357* Calc++ Top Level:: Conducting the band
358
8405b70c
PB
359Java Parsers
360
f5f419de
DJ
361* Java Bison Interface:: Asking for Java parser generation
362* Java Semantic Values:: %type and %token vs. Java
363* Java Location Values:: The position and location classes
364* Java Parser Interface:: Instantiating and running the parser
365* Java Scanner Interface:: Specifying the scanner for the parser
366* Java Action Features:: Special features for use in actions
367* Java Differences:: Differences between C/C++ and Java Grammars
368* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 369
d1a1114f
AD
370Frequently Asked Questions
371
f5f419de
DJ
372* Memory Exhausted:: Breaking the Stack Limits
373* How Can I Reset the Parser:: @code{yyparse} Keeps some State
374* Strings are Destroyed:: @code{yylval} Loses Track of Strings
375* Implementing Gotos/Loops:: Control Flow in the Calculator
376* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 377* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
378* I can't build Bison:: Troubleshooting
379* Where can I find help?:: Troubleshouting
380* Bug Reports:: Troublereporting
381* More Languages:: Parsers in C++, Java, and so on
382* Beta Testing:: Experimenting development versions
383* Mailing Lists:: Meeting other Bison users
d1a1114f 384
f2b5126e
PB
385Copying This Manual
386
f5f419de 387* Copying This Manual:: License for copying this manual.
f2b5126e 388
342b8b6e 389@end detailmenu
bfa74976
RS
390@end menu
391
342b8b6e 392@node Introduction
bfa74976
RS
393@unnumbered Introduction
394@cindex introduction
395
6077da58 396@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
397annotated context-free grammar into a deterministic LR or generalized
398LR (GLR) parser employing LALR(1) parser tables. As an experimental
399feature, Bison can also generate IELR(1) or canonical LR(1) parser
400tables. Once you are proficient with Bison, you can use it to develop
401a wide range of language parsers, from those used in simple desk
402calculators to complex programming languages.
403
404Bison is upward compatible with Yacc: all properly-written Yacc
405grammars ought to work with Bison with no change. Anyone familiar
406with Yacc should be able to use Bison with little trouble. You need
407to be fluent in C or C++ programming in order to use Bison or to
408understand this manual. Java is also supported as an experimental
409feature.
410
411We begin with tutorial chapters that explain the basic concepts of
412using Bison and show three explained examples, each building on the
413last. If you don't know Bison or Yacc, start by reading these
414chapters. Reference chapters follow, which describe specific aspects
415of Bison in detail.
bfa74976 416
679e9935
JD
417Bison was written originally by Robert Corbett. Richard Stallman made
418it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
419added multi-character string literals and other features. Since then,
420Bison has grown more robust and evolved many other new features thanks
421to the hard work of a long list of volunteers. For details, see the
422@file{THANKS} and @file{ChangeLog} files included in the Bison
423distribution.
931c7513 424
df1af54c 425This edition corresponds to version @value{VERSION} of Bison.
bfa74976 426
342b8b6e 427@node Conditions
bfa74976
RS
428@unnumbered Conditions for Using Bison
429
193d7c70
PE
430The distribution terms for Bison-generated parsers permit using the
431parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 432permissions applied only when Bison was generating LALR(1)
193d7c70 433parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 434parsers could be used only in programs that were free software.
a31239f1 435
8a4281b9 436The other GNU programming tools, such as the GNU C
c827f760 437compiler, have never
9ecbd125 438had such a requirement. They could always be used for nonfree
a31239f1
RS
439software. The reason Bison was different was not due to a special
440policy decision; it resulted from applying the usual General Public
441License to all of the Bison source code.
442
ff7571c0
JD
443The main output of the Bison utility---the Bison parser implementation
444file---contains a verbatim copy of a sizable piece of Bison, which is
445the code for the parser's implementation. (The actions from your
446grammar are inserted into this implementation at one point, but most
447of the rest of the implementation is not changed.) When we applied
448the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
449the effect was to restrict the use of Bison output to free software.
450
451We didn't change the terms because of sympathy for people who want to
452make software proprietary. @strong{Software should be free.} But we
453concluded that limiting Bison's use to free software was doing little to
454encourage people to make other software free. So we decided to make the
455practical conditions for using Bison match the practical conditions for
8a4281b9 456using the other GNU tools.
bfa74976 457
193d7c70
PE
458This exception applies when Bison is generating code for a parser.
459You can tell whether the exception applies to a Bison output file by
460inspecting the file for text beginning with ``As a special
461exception@dots{}''. The text spells out the exact terms of the
462exception.
262aa8dd 463
f16b0819
PE
464@node Copying
465@unnumbered GNU GENERAL PUBLIC LICENSE
466@include gpl-3.0.texi
bfa74976 467
342b8b6e 468@node Concepts
bfa74976
RS
469@chapter The Concepts of Bison
470
471This chapter introduces many of the basic concepts without which the
472details of Bison will not make sense. If you do not already know how to
473use Bison or Yacc, we suggest you start by reading this chapter carefully.
474
475@menu
f5f419de
DJ
476* Language and Grammar:: Languages and context-free grammars,
477 as mathematical ideas.
478* Grammar in Bison:: How we represent grammars for Bison's sake.
479* Semantic Values:: Each token or syntactic grouping can have
480 a semantic value (the value of an integer,
481 the name of an identifier, etc.).
482* Semantic Actions:: Each rule can have an action containing C code.
483* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 484* Locations:: Overview of location tracking.
f5f419de
DJ
485* Bison Parser:: What are Bison's input and output,
486 how is the output used?
487* Stages:: Stages in writing and running Bison grammars.
488* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
489@end menu
490
342b8b6e 491@node Language and Grammar
bfa74976
RS
492@section Languages and Context-Free Grammars
493
bfa74976
RS
494@cindex context-free grammar
495@cindex grammar, context-free
496In order for Bison to parse a language, it must be described by a
497@dfn{context-free grammar}. This means that you specify one or more
498@dfn{syntactic groupings} and give rules for constructing them from their
499parts. For example, in the C language, one kind of grouping is called an
500`expression'. One rule for making an expression might be, ``An expression
501can be made of a minus sign and another expression''. Another would be,
502``An expression can be an integer''. As you can see, rules are often
503recursive, but there must be at least one rule which leads out of the
504recursion.
505
8a4281b9 506@cindex BNF
bfa74976
RS
507@cindex Backus-Naur form
508The most common formal system for presenting such rules for humans to read
8a4281b9 509is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 510order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
511BNF is a context-free grammar. The input to Bison is
512essentially machine-readable BNF.
bfa74976 513
7fceb615
JD
514@cindex LALR grammars
515@cindex IELR grammars
516@cindex LR grammars
517There are various important subclasses of context-free grammars. Although
518it can handle almost all context-free grammars, Bison is optimized for what
519are called LR(1) grammars. In brief, in these grammars, it must be possible
520to tell how to parse any portion of an input string with just a single token
521of lookahead. For historical reasons, Bison by default is limited by the
522additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
523@xref{Mysterious Conflicts}, for more information on this. As an
524experimental feature, you can escape these additional restrictions by
525requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
526Construction}, to learn how.
bfa74976 527
8a4281b9
JD
528@cindex GLR parsing
529@cindex generalized LR (GLR) parsing
676385e2 530@cindex ambiguous grammars
9d9b8b70 531@cindex nondeterministic parsing
9501dc6e 532
8a4281b9 533Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
534roughly that the next grammar rule to apply at any point in the input is
535uniquely determined by the preceding input and a fixed, finite portion
742e4900 536(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 537grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 538apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 539grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 540lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 541With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
542general context-free grammars, using a technique known as GLR
543parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
544are able to handle any context-free grammar for which the number of
545possible parses of any given string is finite.
676385e2 546
bfa74976
RS
547@cindex symbols (abstract)
548@cindex token
549@cindex syntactic grouping
550@cindex grouping, syntactic
9501dc6e
AD
551In the formal grammatical rules for a language, each kind of syntactic
552unit or grouping is named by a @dfn{symbol}. Those which are built by
553grouping smaller constructs according to grammatical rules are called
bfa74976
RS
554@dfn{nonterminal symbols}; those which can't be subdivided are called
555@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
556corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 557corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
558
559We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
560nonterminal, mean. The tokens of C are identifiers, constants (numeric
561and string), and the various keywords, arithmetic operators and
562punctuation marks. So the terminal symbols of a grammar for C include
563`identifier', `number', `string', plus one symbol for each keyword,
564operator or punctuation mark: `if', `return', `const', `static', `int',
565`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
566(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
567lexicography, not grammar.)
568
569Here is a simple C function subdivided into tokens:
570
9edcd895
AD
571@example
572int /* @r{keyword `int'} */
14d4662b 573square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
574 @r{identifier, close-paren} */
575@{ /* @r{open-brace} */
aa08666d
AD
576 return x * x; /* @r{keyword `return', identifier, asterisk,}
577 @r{identifier, semicolon} */
9edcd895
AD
578@} /* @r{close-brace} */
579@end example
bfa74976
RS
580
581The syntactic groupings of C include the expression, the statement, the
582declaration, and the function definition. These are represented in the
583grammar of C by nonterminal symbols `expression', `statement',
584`declaration' and `function definition'. The full grammar uses dozens of
585additional language constructs, each with its own nonterminal symbol, in
586order to express the meanings of these four. The example above is a
587function definition; it contains one declaration, and one statement. In
588the statement, each @samp{x} is an expression and so is @samp{x * x}.
589
590Each nonterminal symbol must have grammatical rules showing how it is made
591out of simpler constructs. For example, one kind of C statement is the
592@code{return} statement; this would be described with a grammar rule which
593reads informally as follows:
594
595@quotation
596A `statement' can be made of a `return' keyword, an `expression' and a
597`semicolon'.
598@end quotation
599
600@noindent
601There would be many other rules for `statement', one for each kind of
602statement in C.
603
604@cindex start symbol
605One nonterminal symbol must be distinguished as the special one which
606defines a complete utterance in the language. It is called the @dfn{start
607symbol}. In a compiler, this means a complete input program. In the C
608language, the nonterminal symbol `sequence of definitions and declarations'
609plays this role.
610
611For example, @samp{1 + 2} is a valid C expression---a valid part of a C
612program---but it is not valid as an @emph{entire} C program. In the
613context-free grammar of C, this follows from the fact that `expression' is
614not the start symbol.
615
616The Bison parser reads a sequence of tokens as its input, and groups the
617tokens using the grammar rules. If the input is valid, the end result is
618that the entire token sequence reduces to a single grouping whose symbol is
619the grammar's start symbol. If we use a grammar for C, the entire input
620must be a `sequence of definitions and declarations'. If not, the parser
621reports a syntax error.
622
342b8b6e 623@node Grammar in Bison
bfa74976
RS
624@section From Formal Rules to Bison Input
625@cindex Bison grammar
626@cindex grammar, Bison
627@cindex formal grammar
628
629A formal grammar is a mathematical construct. To define the language
630for Bison, you must write a file expressing the grammar in Bison syntax:
631a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
632
633A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 634as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
635in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
636
637The Bison representation for a terminal symbol is also called a @dfn{token
638type}. Token types as well can be represented as C-like identifiers. By
639convention, these identifiers should be upper case to distinguish them from
640nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
641@code{RETURN}. A terminal symbol that stands for a particular keyword in
642the language should be named after that keyword converted to upper case.
643The terminal symbol @code{error} is reserved for error recovery.
931c7513 644@xref{Symbols}.
bfa74976
RS
645
646A terminal symbol can also be represented as a character literal, just like
647a C character constant. You should do this whenever a token is just a
648single character (parenthesis, plus-sign, etc.): use that same character in
649a literal as the terminal symbol for that token.
650
931c7513
RS
651A third way to represent a terminal symbol is with a C string constant
652containing several characters. @xref{Symbols}, for more information.
653
bfa74976
RS
654The grammar rules also have an expression in Bison syntax. For example,
655here is the Bison rule for a C @code{return} statement. The semicolon in
656quotes is a literal character token, representing part of the C syntax for
657the statement; the naked semicolon, and the colon, are Bison punctuation
658used in every rule.
659
660@example
5e9b6624 661stmt: RETURN expr ';' ;
bfa74976
RS
662@end example
663
664@noindent
665@xref{Rules, ,Syntax of Grammar Rules}.
666
342b8b6e 667@node Semantic Values
bfa74976
RS
668@section Semantic Values
669@cindex semantic value
670@cindex value, semantic
671
672A formal grammar selects tokens only by their classifications: for example,
673if a rule mentions the terminal symbol `integer constant', it means that
674@emph{any} integer constant is grammatically valid in that position. The
675precise value of the constant is irrelevant to how to parse the input: if
676@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 677grammatical.
bfa74976
RS
678
679But the precise value is very important for what the input means once it is
680parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6813989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
682has both a token type and a @dfn{semantic value}. @xref{Semantics,
683,Defining Language Semantics},
bfa74976
RS
684for details.
685
686The token type is a terminal symbol defined in the grammar, such as
687@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
688you need to know to decide where the token may validly appear and how to
689group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 690except their types.
bfa74976
RS
691
692The semantic value has all the rest of the information about the
693meaning of the token, such as the value of an integer, or the name of an
694identifier. (A token such as @code{','} which is just punctuation doesn't
695need to have any semantic value.)
696
697For example, an input token might be classified as token type
698@code{INTEGER} and have the semantic value 4. Another input token might
699have the same token type @code{INTEGER} but value 3989. When a grammar
700rule says that @code{INTEGER} is allowed, either of these tokens is
701acceptable because each is an @code{INTEGER}. When the parser accepts the
702token, it keeps track of the token's semantic value.
703
704Each grouping can also have a semantic value as well as its nonterminal
705symbol. For example, in a calculator, an expression typically has a
706semantic value that is a number. In a compiler for a programming
707language, an expression typically has a semantic value that is a tree
708structure describing the meaning of the expression.
709
342b8b6e 710@node Semantic Actions
bfa74976
RS
711@section Semantic Actions
712@cindex semantic actions
713@cindex actions, semantic
714
715In order to be useful, a program must do more than parse input; it must
716also produce some output based on the input. In a Bison grammar, a grammar
717rule can have an @dfn{action} made up of C statements. Each time the
718parser recognizes a match for that rule, the action is executed.
719@xref{Actions}.
13863333 720
bfa74976
RS
721Most of the time, the purpose of an action is to compute the semantic value
722of the whole construct from the semantic values of its parts. For example,
723suppose we have a rule which says an expression can be the sum of two
724expressions. When the parser recognizes such a sum, each of the
725subexpressions has a semantic value which describes how it was built up.
726The action for this rule should create a similar sort of value for the
727newly recognized larger expression.
728
729For example, here is a rule that says an expression can be the sum of
730two subexpressions:
731
732@example
5e9b6624 733expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
734@end example
735
736@noindent
737The action says how to produce the semantic value of the sum expression
738from the values of the two subexpressions.
739
676385e2 740@node GLR Parsers
8a4281b9
JD
741@section Writing GLR Parsers
742@cindex GLR parsing
743@cindex generalized LR (GLR) parsing
676385e2
PH
744@findex %glr-parser
745@cindex conflicts
746@cindex shift/reduce conflicts
fa7e68c3 747@cindex reduce/reduce conflicts
676385e2 748
eb45ef3b 749In some grammars, Bison's deterministic
8a4281b9 750LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
751certain grammar rule at a given point. That is, it may not be able to
752decide (on the basis of the input read so far) which of two possible
753reductions (applications of a grammar rule) applies, or whether to apply
754a reduction or read more of the input and apply a reduction later in the
755input. These are known respectively as @dfn{reduce/reduce} conflicts
756(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
757(@pxref{Shift/Reduce}).
758
8a4281b9 759To use a grammar that is not easily modified to be LR(1), a
9501dc6e 760more general parsing algorithm is sometimes necessary. If you include
676385e2 761@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
762(@pxref{Grammar Outline}), the result is a Generalized LR
763(GLR) parser. These parsers handle Bison grammars that
9501dc6e 764contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 765declarations) identically to deterministic parsers. However, when
9501dc6e 766faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 767GLR parsers use the simple expedient of doing both,
9501dc6e
AD
768effectively cloning the parser to follow both possibilities. Each of
769the resulting parsers can again split, so that at any given time, there
770can be any number of possible parses being explored. The parsers
676385e2
PH
771proceed in lockstep; that is, all of them consume (shift) a given input
772symbol before any of them proceed to the next. Each of the cloned
773parsers eventually meets one of two possible fates: either it runs into
774a parsing error, in which case it simply vanishes, or it merges with
775another parser, because the two of them have reduced the input to an
776identical set of symbols.
777
778During the time that there are multiple parsers, semantic actions are
779recorded, but not performed. When a parser disappears, its recorded
780semantic actions disappear as well, and are never performed. When a
781reduction makes two parsers identical, causing them to merge, Bison
782records both sets of semantic actions. Whenever the last two parsers
783merge, reverting to the single-parser case, Bison resolves all the
784outstanding actions either by precedences given to the grammar rules
785involved, or by performing both actions, and then calling a designated
786user-defined function on the resulting values to produce an arbitrary
787merged result.
788
fa7e68c3 789@menu
8a4281b9
JD
790* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
791* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 792* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 793* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 794* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
795@end menu
796
797@node Simple GLR Parsers
8a4281b9
JD
798@subsection Using GLR on Unambiguous Grammars
799@cindex GLR parsing, unambiguous grammars
800@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
801@findex %glr-parser
802@findex %expect-rr
803@cindex conflicts
804@cindex reduce/reduce conflicts
805@cindex shift/reduce conflicts
806
8a4281b9
JD
807In the simplest cases, you can use the GLR algorithm
808to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 809Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
810
811Consider a problem that
812arises in the declaration of enumerated and subrange types in the
813programming language Pascal. Here are some examples:
814
815@example
816type subrange = lo .. hi;
817type enum = (a, b, c);
818@end example
819
820@noindent
821The original language standard allows only numeric
822literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 823and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
82410206) and many other
825Pascal implementations allow arbitrary expressions there. This gives
826rise to the following situation, containing a superfluous pair of
827parentheses:
828
829@example
830type subrange = (a) .. b;
831@end example
832
833@noindent
834Compare this to the following declaration of an enumerated
835type with only one value:
836
837@example
838type enum = (a);
839@end example
840
841@noindent
842(These declarations are contrived, but they are syntactically
843valid, and more-complicated cases can come up in practical programs.)
844
845These two declarations look identical until the @samp{..} token.
8a4281b9 846With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
847possible to decide between the two forms when the identifier
848@samp{a} is parsed. It is, however, desirable
849for a parser to decide this, since in the latter case
850@samp{a} must become a new identifier to represent the enumeration
851value, while in the former case @samp{a} must be evaluated with its
852current meaning, which may be a constant or even a function call.
853
854You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
855to be resolved later, but this typically requires substantial
856contortions in both semantic actions and large parts of the
857grammar, where the parentheses are nested in the recursive rules for
858expressions.
859
860You might think of using the lexer to distinguish between the two
861forms by returning different tokens for currently defined and
862undefined identifiers. But if these declarations occur in a local
863scope, and @samp{a} is defined in an outer scope, then both forms
864are possible---either locally redefining @samp{a}, or using the
865value of @samp{a} from the outer scope. So this approach cannot
866work.
867
e757bb10 868A simple solution to this problem is to declare the parser to
8a4281b9
JD
869use the GLR algorithm.
870When the GLR parser reaches the critical state, it
fa7e68c3
PE
871merely splits into two branches and pursues both syntax rules
872simultaneously. Sooner or later, one of them runs into a parsing
873error. If there is a @samp{..} token before the next
874@samp{;}, the rule for enumerated types fails since it cannot
875accept @samp{..} anywhere; otherwise, the subrange type rule
876fails since it requires a @samp{..} token. So one of the branches
877fails silently, and the other one continues normally, performing
878all the intermediate actions that were postponed during the split.
879
880If the input is syntactically incorrect, both branches fail and the parser
881reports a syntax error as usual.
882
883The effect of all this is that the parser seems to ``guess'' the
884correct branch to take, or in other words, it seems to use more
8a4281b9
JD
885lookahead than the underlying LR(1) algorithm actually allows
886for. In this example, LR(2) would suffice, but also some cases
887that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 888
8a4281b9 889In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
890and the current Bison parser even takes exponential time and space
891for some grammars. In practice, this rarely happens, and for many
892grammars it is possible to prove that it cannot happen.
893The present example contains only one conflict between two
894rules, and the type-declaration context containing the conflict
895cannot be nested. So the number of
896branches that can exist at any time is limited by the constant 2,
897and the parsing time is still linear.
898
899Here is a Bison grammar corresponding to the example above. It
900parses a vastly simplified form of Pascal type declarations.
901
902@example
903%token TYPE DOTDOT ID
904
905@group
906%left '+' '-'
907%left '*' '/'
908@end group
909
910%%
5e9b6624 911type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
912
913@group
5e9b6624
AD
914type:
915 '(' id_list ')'
916| expr DOTDOT expr
917;
fa7e68c3
PE
918@end group
919
920@group
5e9b6624
AD
921id_list:
922 ID
923| id_list ',' ID
924;
fa7e68c3
PE
925@end group
926
927@group
5e9b6624
AD
928expr:
929 '(' expr ')'
930| expr '+' expr
931| expr '-' expr
932| expr '*' expr
933| expr '/' expr
934| ID
935;
fa7e68c3
PE
936@end group
937@end example
938
8a4281b9 939When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
940about one reduce/reduce conflict. In the conflicting situation the
941parser chooses one of the alternatives, arbitrarily the one
942declared first. Therefore the following correct input is not
943recognized:
944
945@example
946type t = (a) .. b;
947@end example
948
8a4281b9 949The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
950to be silent about the one known reduce/reduce conflict, by adding
951these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
952@samp{%%}):
953
954@example
955%glr-parser
956%expect-rr 1
957@end example
958
959@noindent
960No change in the grammar itself is required. Now the
961parser recognizes all valid declarations, according to the
962limited syntax above, transparently. In fact, the user does not even
963notice when the parser splits.
964
8a4281b9 965So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
966almost without disadvantages. Even in simple cases like this, however,
967there are at least two potential problems to beware. First, always
8a4281b9
JD
968analyze the conflicts reported by Bison to make sure that GLR
969splitting is only done where it is intended. A GLR parser
f8e1c9e5 970splitting inadvertently may cause problems less obvious than an
8a4281b9 971LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
972conflict. Second, consider interactions with the lexer (@pxref{Semantic
973Tokens}) with great care. Since a split parser consumes tokens without
974performing any actions during the split, the lexer cannot obtain
975information via parser actions. Some cases of lexer interactions can be
8a4281b9 976eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
977lexer to the parser. You must check the remaining cases for
978correctness.
979
980In our example, it would be safe for the lexer to return tokens based on
981their current meanings in some symbol table, because no new symbols are
982defined in the middle of a type declaration. Though it is possible for
983a parser to define the enumeration constants as they are parsed, before
984the type declaration is completed, it actually makes no difference since
985they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
986
987@node Merging GLR Parses
8a4281b9
JD
988@subsection Using GLR to Resolve Ambiguities
989@cindex GLR parsing, ambiguous grammars
990@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
991@findex %dprec
992@findex %merge
993@cindex conflicts
994@cindex reduce/reduce conflicts
995
2a8d363a 996Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
997
998@example
999%@{
38a92d50
PE
1000 #include <stdio.h>
1001 #define YYSTYPE char const *
1002 int yylex (void);
1003 void yyerror (char const *);
676385e2
PH
1004%@}
1005
1006%token TYPENAME ID
1007
1008%right '='
1009%left '+'
1010
1011%glr-parser
1012
1013%%
1014
5e9b6624 1015prog:
6240346a 1016 %empty
5e9b6624
AD
1017| prog stmt @{ printf ("\n"); @}
1018;
676385e2 1019
5e9b6624
AD
1020stmt:
1021 expr ';' %dprec 1
1022| decl %dprec 2
1023;
676385e2 1024
5e9b6624
AD
1025expr:
1026 ID @{ printf ("%s ", $$); @}
1027| TYPENAME '(' expr ')'
1028 @{ printf ("%s <cast> ", $1); @}
1029| expr '+' expr @{ printf ("+ "); @}
1030| expr '=' expr @{ printf ("= "); @}
1031;
676385e2 1032
5e9b6624
AD
1033decl:
1034 TYPENAME declarator ';'
1035 @{ printf ("%s <declare> ", $1); @}
1036| TYPENAME declarator '=' expr ';'
1037 @{ printf ("%s <init-declare> ", $1); @}
1038;
676385e2 1039
5e9b6624
AD
1040declarator:
1041 ID @{ printf ("\"%s\" ", $1); @}
1042| '(' declarator ')'
1043;
676385e2
PH
1044@end example
1045
1046@noindent
1047This models a problematic part of the C++ grammar---the ambiguity between
1048certain declarations and statements. For example,
1049
1050@example
1051T (x) = y+z;
1052@end example
1053
1054@noindent
1055parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1056(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1057@samp{x} as an @code{ID}).
676385e2 1058Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1059@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1060time it encounters @code{x} in the example above. Since this is a
8a4281b9 1061GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1062each choice of resolving the reduce/reduce conflict.
1063Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1064however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1065ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1066the other reduces @code{stmt : decl}, after which both parsers are in an
1067identical state: they've seen @samp{prog stmt} and have the same unprocessed
1068input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1069
8a4281b9 1070At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1071grammar of how to choose between the competing parses.
1072In the example above, the two @code{%dprec}
e757bb10 1073declarations specify that Bison is to give precedence
fa7e68c3 1074to the parse that interprets the example as a
676385e2
PH
1075@code{decl}, which implies that @code{x} is a declarator.
1076The parser therefore prints
1077
1078@example
fae437e8 1079"x" y z + T <init-declare>
676385e2
PH
1080@end example
1081
fa7e68c3
PE
1082The @code{%dprec} declarations only come into play when more than one
1083parse survives. Consider a different input string for this parser:
676385e2
PH
1084
1085@example
1086T (x) + y;
1087@end example
1088
1089@noindent
8a4281b9 1090This is another example of using GLR to parse an unambiguous
fa7e68c3 1091construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1092Here, there is no ambiguity (this cannot be parsed as a declaration).
1093However, at the time the Bison parser encounters @code{x}, it does not
1094have enough information to resolve the reduce/reduce conflict (again,
1095between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1096case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1097into two, one assuming that @code{x} is an @code{expr}, and the other
1098assuming @code{x} is a @code{declarator}. The second of these parsers
1099then vanishes when it sees @code{+}, and the parser prints
1100
1101@example
fae437e8 1102x T <cast> y +
676385e2
PH
1103@end example
1104
1105Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1106the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1107actions of the two possible parsers, rather than choosing one over the
1108other. To do so, you could change the declaration of @code{stmt} as
1109follows:
1110
1111@example
5e9b6624
AD
1112stmt:
1113 expr ';' %merge <stmtMerge>
1114| decl %merge <stmtMerge>
1115;
676385e2
PH
1116@end example
1117
1118@noindent
676385e2
PH
1119and define the @code{stmtMerge} function as:
1120
1121@example
38a92d50
PE
1122static YYSTYPE
1123stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1124@{
1125 printf ("<OR> ");
1126 return "";
1127@}
1128@end example
1129
1130@noindent
1131with an accompanying forward declaration
1132in the C declarations at the beginning of the file:
1133
1134@example
1135%@{
38a92d50 1136 #define YYSTYPE char const *
676385e2
PH
1137 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1138%@}
1139@end example
1140
1141@noindent
fa7e68c3
PE
1142With these declarations, the resulting parser parses the first example
1143as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1144
1145@example
fae437e8 1146"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1147@end example
1148
fa7e68c3 1149Bison requires that all of the
e757bb10 1150productions that participate in any particular merge have identical
fa7e68c3
PE
1151@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1152and the parser will report an error during any parse that results in
1153the offending merge.
9501dc6e 1154
32c29292
JD
1155@node GLR Semantic Actions
1156@subsection GLR Semantic Actions
1157
8a4281b9 1158The nature of GLR parsing and the structure of the generated
20be2f92
PH
1159parsers give rise to certain restrictions on semantic values and actions.
1160
1161@subsubsection Deferred semantic actions
32c29292
JD
1162@cindex deferred semantic actions
1163By definition, a deferred semantic action is not performed at the same time as
1164the associated reduction.
1165This raises caveats for several Bison features you might use in a semantic
8a4281b9 1166action in a GLR parser.
32c29292
JD
1167
1168@vindex yychar
8a4281b9 1169@cindex GLR parsers and @code{yychar}
32c29292 1170@vindex yylval
8a4281b9 1171@cindex GLR parsers and @code{yylval}
32c29292 1172@vindex yylloc
8a4281b9 1173@cindex GLR parsers and @code{yylloc}
32c29292 1174In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1175the lookahead token present at the time of the associated reduction.
32c29292
JD
1176After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1177you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1178lookahead token's semantic value and location, if any.
32c29292
JD
1179In a nondeferred semantic action, you can also modify any of these variables to
1180influence syntax analysis.
742e4900 1181@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1182
1183@findex yyclearin
8a4281b9 1184@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1185In a deferred semantic action, it's too late to influence syntax analysis.
1186In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1187shallow copies of the values they had at the time of the associated reduction.
1188For this reason alone, modifying them is dangerous.
1189Moreover, the result of modifying them is undefined and subject to change with
1190future versions of Bison.
1191For example, if a semantic action might be deferred, you should never write it
1192to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1193memory referenced by @code{yylval}.
1194
20be2f92 1195@subsubsection YYERROR
32c29292 1196@findex YYERROR
8a4281b9 1197@cindex GLR parsers and @code{YYERROR}
32c29292 1198Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1199(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1200initiate error recovery.
8a4281b9 1201During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1202the same as its effect in a deterministic parser.
411614fa
JM
1203The effect in a deferred action is similar, but the precise point of the
1204error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1205selecting an unspecified stack on which to continue with a syntax error.
1206In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1207parsing, @code{YYERROR} silently prunes
1208the parse that invoked the test.
1209
1210@subsubsection Restrictions on semantic values and locations
8a4281b9 1211GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1212semantic values and location types when using the generated parsers as
1213C++ code.
8710fc41 1214
ca2a6d15
PH
1215@node Semantic Predicates
1216@subsection Controlling a Parse with Arbitrary Predicates
1217@findex %?
8a4281b9 1218@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1219
1220In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1221GLR parsers
ca2a6d15
PH
1222allow you to reject parses on the basis of arbitrary computations executed
1223in user code, without having Bison treat this rejection as an error
1224if there are alternative parses. (This feature is experimental and may
1225evolve. We welcome user feedback.) For example,
1226
c93f22fc
AD
1227@example
1228widget:
5e9b6624
AD
1229 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1230| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1231;
c93f22fc 1232@end example
ca2a6d15
PH
1233
1234@noindent
411614fa 1235is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1236widgets. The clause preceded by @code{%?} is treated like an ordinary
1237action, except that its text is treated as an expression and is always
411614fa 1238evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1239expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1240which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1241to die. In a deterministic parser, it acts like YYERROR.
1242
1243As the example shows, predicates otherwise look like semantic actions, and
1244therefore you must be take them into account when determining the numbers
1245to use for denoting the semantic values of right-hand side symbols.
1246Predicate actions, however, have no defined value, and may not be given
1247labels.
1248
1249There is a subtle difference between semantic predicates and ordinary
1250actions in nondeterministic mode, since the latter are deferred.
411614fa 1251For example, we could try to rewrite the previous example as
ca2a6d15 1252
c93f22fc
AD
1253@example
1254widget:
5e9b6624
AD
1255 @{ if (!new_syntax) YYERROR; @}
1256 "widget" id new_args @{ $$ = f($3, $4); @}
1257| @{ if (new_syntax) YYERROR; @}
1258 "widget" id old_args @{ $$ = f($3, $4); @}
1259;
c93f22fc 1260@end example
ca2a6d15
PH
1261
1262@noindent
1263(reversing the sense of the predicate tests to cause an error when they are
1264false). However, this
1265does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1266have overlapping syntax.
411614fa 1267Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1268a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1269for cases where @code{new_args} and @code{old_args} recognize the same string
1270@emph{before} performing the tests of @code{new_syntax}. It therefore
1271reports an error.
1272
1273Finally, be careful in writing predicates: deferred actions have not been
1274evaluated, so that using them in a predicate will have undefined effects.
1275
fa7e68c3 1276@node Compiler Requirements
8a4281b9 1277@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1278@cindex @code{inline}
8a4281b9 1279@cindex GLR parsers and @code{inline}
fa7e68c3 1280
8a4281b9 1281The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1282later. In addition, they use the @code{inline} keyword, which is not
1283C89, but is C99 and is a common extension in pre-C99 compilers. It is
1284up to the user of these parsers to handle
9501dc6e
AD
1285portability issues. For instance, if using Autoconf and the Autoconf
1286macro @code{AC_C_INLINE}, a mere
1287
1288@example
1289%@{
38a92d50 1290 #include <config.h>
9501dc6e
AD
1291%@}
1292@end example
1293
1294@noindent
1295will suffice. Otherwise, we suggest
1296
1297@example
1298%@{
aaaa2aae
AD
1299 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1300 && ! defined inline)
1301 # define inline
38a92d50 1302 #endif
9501dc6e
AD
1303%@}
1304@end example
676385e2 1305
1769eb30 1306@node Locations
847bf1f5
AD
1307@section Locations
1308@cindex location
95923bd6
AD
1309@cindex textual location
1310@cindex location, textual
847bf1f5
AD
1311
1312Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1313and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1314the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1315Bison provides a mechanism for handling these locations.
1316
72d2299c 1317Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1318associated location, but the type of locations is the same for all tokens
1319and groupings. Moreover, the output parser is equipped with a default data
1320structure for storing locations (@pxref{Tracking Locations}, for more
1321details).
847bf1f5
AD
1322
1323Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1324set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1325is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1326@code{@@3}.
1327
1328When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1329of its left hand side (@pxref{Actions}). In the same way, another default
1330action is used for locations. However, the action for locations is general
847bf1f5 1331enough for most cases, meaning there is usually no need to describe for each
72d2299c 1332rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1333grouping, the default behavior of the output parser is to take the beginning
1334of the first symbol, and the end of the last symbol.
1335
342b8b6e 1336@node Bison Parser
ff7571c0 1337@section Bison Output: the Parser Implementation File
bfa74976
RS
1338@cindex Bison parser
1339@cindex Bison utility
1340@cindex lexical analyzer, purpose
1341@cindex parser
1342
ff7571c0
JD
1343When you run Bison, you give it a Bison grammar file as input. The
1344most important output is a C source file that implements a parser for
1345the language described by the grammar. This parser is called a
1346@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1347implementation file}. Keep in mind that the Bison utility and the
1348Bison parser are two distinct programs: the Bison utility is a program
1349whose output is the Bison parser implementation file that becomes part
1350of your program.
bfa74976
RS
1351
1352The job of the Bison parser is to group tokens into groupings according to
1353the grammar rules---for example, to build identifiers and operators into
1354expressions. As it does this, it runs the actions for the grammar rules it
1355uses.
1356
704a47c4
AD
1357The tokens come from a function called the @dfn{lexical analyzer} that
1358you must supply in some fashion (such as by writing it in C). The Bison
1359parser calls the lexical analyzer each time it wants a new token. It
1360doesn't know what is ``inside'' the tokens (though their semantic values
1361may reflect this). Typically the lexical analyzer makes the tokens by
1362parsing characters of text, but Bison does not depend on this.
1363@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1364
ff7571c0
JD
1365The Bison parser implementation file is C code which defines a
1366function named @code{yyparse} which implements that grammar. This
1367function does not make a complete C program: you must supply some
1368additional functions. One is the lexical analyzer. Another is an
1369error-reporting function which the parser calls to report an error.
1370In addition, a complete C program must start with a function called
1371@code{main}; you have to provide this, and arrange for it to call
1372@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1373C-Language Interface}.
bfa74976 1374
f7ab6a50 1375Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1376write, all symbols defined in the Bison parser implementation file
1377itself begin with @samp{yy} or @samp{YY}. This includes interface
1378functions such as the lexical analyzer function @code{yylex}, the
1379error reporting function @code{yyerror} and the parser function
1380@code{yyparse} itself. This also includes numerous identifiers used
1381for internal purposes. Therefore, you should avoid using C
1382identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1383file except for the ones defined in this manual. Also, you should
1384avoid using the C identifiers @samp{malloc} and @samp{free} for
1385anything other than their usual meanings.
1386
1387In some cases the Bison parser implementation file includes system
1388headers, and in those cases your code should respect the identifiers
1389reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1390@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1391included as needed to declare memory allocators and related types.
1392@code{<libintl.h>} is included if message translation is in use
1393(@pxref{Internationalization}). Other system headers may be included
1394if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1395,Tracing Your Parser}).
7093d0f5 1396
342b8b6e 1397@node Stages
bfa74976
RS
1398@section Stages in Using Bison
1399@cindex stages in using Bison
1400@cindex using Bison
1401
1402The actual language-design process using Bison, from grammar specification
1403to a working compiler or interpreter, has these parts:
1404
1405@enumerate
1406@item
1407Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1408(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1409in the language, describe the action that is to be taken when an
1410instance of that rule is recognized. The action is described by a
1411sequence of C statements.
bfa74976
RS
1412
1413@item
704a47c4
AD
1414Write a lexical analyzer to process input and pass tokens to the parser.
1415The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1416Lexical Analyzer Function @code{yylex}}). It could also be produced
1417using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1418
1419@item
1420Write a controlling function that calls the Bison-produced parser.
1421
1422@item
1423Write error-reporting routines.
1424@end enumerate
1425
1426To turn this source code as written into a runnable program, you
1427must follow these steps:
1428
1429@enumerate
1430@item
1431Run Bison on the grammar to produce the parser.
1432
1433@item
1434Compile the code output by Bison, as well as any other source files.
1435
1436@item
1437Link the object files to produce the finished product.
1438@end enumerate
1439
342b8b6e 1440@node Grammar Layout
bfa74976
RS
1441@section The Overall Layout of a Bison Grammar
1442@cindex grammar file
1443@cindex file format
1444@cindex format of grammar file
1445@cindex layout of Bison grammar
1446
1447The input file for the Bison utility is a @dfn{Bison grammar file}. The
1448general form of a Bison grammar file is as follows:
1449
1450@example
1451%@{
08e49d20 1452@var{Prologue}
bfa74976
RS
1453%@}
1454
1455@var{Bison declarations}
1456
1457%%
1458@var{Grammar rules}
1459%%
08e49d20 1460@var{Epilogue}
bfa74976
RS
1461@end example
1462
1463@noindent
1464The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1465in every Bison grammar file to separate the sections.
1466
72d2299c 1467The prologue may define types and variables used in the actions. You can
342b8b6e 1468also use preprocessor commands to define macros used there, and use
bfa74976 1469@code{#include} to include header files that do any of these things.
38a92d50
PE
1470You need to declare the lexical analyzer @code{yylex} and the error
1471printer @code{yyerror} here, along with any other global identifiers
1472used by the actions in the grammar rules.
bfa74976
RS
1473
1474The Bison declarations declare the names of the terminal and nonterminal
1475symbols, and may also describe operator precedence and the data types of
1476semantic values of various symbols.
1477
1478The grammar rules define how to construct each nonterminal symbol from its
1479parts.
1480
38a92d50
PE
1481The epilogue can contain any code you want to use. Often the
1482definitions of functions declared in the prologue go here. In a
1483simple program, all the rest of the program can go here.
bfa74976 1484
342b8b6e 1485@node Examples
bfa74976
RS
1486@chapter Examples
1487@cindex simple examples
1488@cindex examples, simple
1489
aaaa2aae 1490Now we show and explain several sample programs written using Bison: a
bfa74976 1491reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1492calculator --- later extended to track ``locations'' ---
1493and a multi-function calculator. All
1494produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1495
1496These examples are simple, but Bison grammars for real programming
aa08666d
AD
1497languages are written the same way. You can copy these examples into a
1498source file to try them.
bfa74976
RS
1499
1500@menu
f5f419de
DJ
1501* RPN Calc:: Reverse polish notation calculator;
1502 a first example with no operator precedence.
1503* Infix Calc:: Infix (algebraic) notation calculator.
1504 Operator precedence is introduced.
bfa74976 1505* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1506* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1507* Multi-function Calc:: Calculator with memory and trig functions.
1508 It uses multiple data-types for semantic values.
1509* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1510@end menu
1511
342b8b6e 1512@node RPN Calc
bfa74976
RS
1513@section Reverse Polish Notation Calculator
1514@cindex reverse polish notation
1515@cindex polish notation calculator
1516@cindex @code{rpcalc}
1517@cindex calculator, simple
1518
1519The first example is that of a simple double-precision @dfn{reverse polish
1520notation} calculator (a calculator using postfix operators). This example
1521provides a good starting point, since operator precedence is not an issue.
1522The second example will illustrate how operator precedence is handled.
1523
1524The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1525@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1526
1527@menu
f5f419de
DJ
1528* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1529* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1530* Rpcalc Lexer:: The lexical analyzer.
1531* Rpcalc Main:: The controlling function.
1532* Rpcalc Error:: The error reporting function.
1533* Rpcalc Generate:: Running Bison on the grammar file.
1534* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1535@end menu
1536
f5f419de 1537@node Rpcalc Declarations
bfa74976
RS
1538@subsection Declarations for @code{rpcalc}
1539
1540Here are the C and Bison declarations for the reverse polish notation
1541calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1542
24ec0837 1543@comment file: rpcalc.y
bfa74976 1544@example
72d2299c 1545/* Reverse polish notation calculator. */
bfa74976 1546
efbc95a7 1547@group
bfa74976 1548%@{
38a92d50 1549 #define YYSTYPE double
24ec0837 1550 #include <stdio.h>
38a92d50
PE
1551 #include <math.h>
1552 int yylex (void);
1553 void yyerror (char const *);
bfa74976 1554%@}
efbc95a7 1555@end group
bfa74976
RS
1556
1557%token NUM
1558
72d2299c 1559%% /* Grammar rules and actions follow. */
bfa74976
RS
1560@end example
1561
75f5aaea 1562The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1563preprocessor directives and two forward declarations.
bfa74976
RS
1564
1565The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1566specifying the C data type for semantic values of both tokens and
1567groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1568Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1569don't define it, @code{int} is the default. Because we specify
1570@code{double}, each token and each expression has an associated value,
1571which is a floating point number.
bfa74976
RS
1572
1573The @code{#include} directive is used to declare the exponentiation
1574function @code{pow}.
1575
38a92d50
PE
1576The forward declarations for @code{yylex} and @code{yyerror} are
1577needed because the C language requires that functions be declared
1578before they are used. These functions will be defined in the
1579epilogue, but the parser calls them so they must be declared in the
1580prologue.
1581
704a47c4
AD
1582The second section, Bison declarations, provides information to Bison
1583about the token types (@pxref{Bison Declarations, ,The Bison
1584Declarations Section}). Each terminal symbol that is not a
1585single-character literal must be declared here. (Single-character
bfa74976
RS
1586literals normally don't need to be declared.) In this example, all the
1587arithmetic operators are designated by single-character literals, so the
1588only terminal symbol that needs to be declared is @code{NUM}, the token
1589type for numeric constants.
1590
342b8b6e 1591@node Rpcalc Rules
bfa74976
RS
1592@subsection Grammar Rules for @code{rpcalc}
1593
1594Here are the grammar rules for the reverse polish notation calculator.
1595
24ec0837 1596@comment file: rpcalc.y
bfa74976 1597@example
aaaa2aae 1598@group
5e9b6624 1599input:
6240346a 1600 %empty
5e9b6624 1601| input line
bfa74976 1602;
aaaa2aae 1603@end group
bfa74976 1604
aaaa2aae 1605@group
5e9b6624
AD
1606line:
1607 '\n'
1608| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1609;
aaaa2aae 1610@end group
bfa74976 1611
aaaa2aae 1612@group
5e9b6624
AD
1613exp:
1614 NUM @{ $$ = $1; @}
1615| exp exp '+' @{ $$ = $1 + $2; @}
1616| exp exp '-' @{ $$ = $1 - $2; @}
1617| exp exp '*' @{ $$ = $1 * $2; @}
1618| exp exp '/' @{ $$ = $1 / $2; @}
1619| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1620| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1621;
aaaa2aae 1622@end group
bfa74976
RS
1623%%
1624@end example
1625
1626The groupings of the rpcalc ``language'' defined here are the expression
1627(given the name @code{exp}), the line of input (@code{line}), and the
1628complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1629symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1630which is read as ``or''. The following sections explain what these rules
1631mean.
1632
1633The semantics of the language is determined by the actions taken when a
1634grouping is recognized. The actions are the C code that appears inside
1635braces. @xref{Actions}.
1636
1637You must specify these actions in C, but Bison provides the means for
1638passing semantic values between the rules. In each action, the
1639pseudo-variable @code{$$} stands for the semantic value for the grouping
1640that the rule is going to construct. Assigning a value to @code{$$} is the
1641main job of most actions. The semantic values of the components of the
1642rule are referred to as @code{$1}, @code{$2}, and so on.
1643
1644@menu
24ec0837
AD
1645* Rpcalc Input:: Explanation of the @code{input} nonterminal
1646* Rpcalc Line:: Explanation of the @code{line} nonterminal
1647* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1648@end menu
1649
342b8b6e 1650@node Rpcalc Input
bfa74976
RS
1651@subsubsection Explanation of @code{input}
1652
1653Consider the definition of @code{input}:
1654
1655@example
5e9b6624 1656input:
6240346a 1657 %empty
5e9b6624 1658| input line
bfa74976
RS
1659;
1660@end example
1661
1662This definition reads as follows: ``A complete input is either an empty
1663string, or a complete input followed by an input line''. Notice that
1664``complete input'' is defined in terms of itself. This definition is said
1665to be @dfn{left recursive} since @code{input} appears always as the
1666leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1667
1668The first alternative is empty because there are no symbols between the
1669colon and the first @samp{|}; this means that @code{input} can match an
1670empty string of input (no tokens). We write the rules this way because it
1671is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
6240346a
AD
1672It's conventional to put an empty alternative first and to use the
1673(optional) @code{%empty} directive, or to write the comment @samp{/* empty
1674*/} in it (@pxref{Empty Rules}).
bfa74976
RS
1675
1676The second alternate rule (@code{input line}) handles all nontrivial input.
1677It means, ``After reading any number of lines, read one more line if
1678possible.'' The left recursion makes this rule into a loop. Since the
1679first alternative matches empty input, the loop can be executed zero or
1680more times.
1681
1682The parser function @code{yyparse} continues to process input until a
1683grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1684input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1685
342b8b6e 1686@node Rpcalc Line
bfa74976
RS
1687@subsubsection Explanation of @code{line}
1688
1689Now consider the definition of @code{line}:
1690
1691@example
5e9b6624
AD
1692line:
1693 '\n'
1694| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1695;
1696@end example
1697
1698The first alternative is a token which is a newline character; this means
1699that rpcalc accepts a blank line (and ignores it, since there is no
1700action). The second alternative is an expression followed by a newline.
1701This is the alternative that makes rpcalc useful. The semantic value of
1702the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1703question is the first symbol in the alternative. The action prints this
1704value, which is the result of the computation the user asked for.
1705
1706This action is unusual because it does not assign a value to @code{$$}. As
1707a consequence, the semantic value associated with the @code{line} is
1708uninitialized (its value will be unpredictable). This would be a bug if
1709that value were ever used, but we don't use it: once rpcalc has printed the
1710value of the user's input line, that value is no longer needed.
1711
342b8b6e 1712@node Rpcalc Expr
bfa74976
RS
1713@subsubsection Explanation of @code{expr}
1714
1715The @code{exp} grouping has several rules, one for each kind of expression.
1716The first rule handles the simplest expressions: those that are just numbers.
1717The second handles an addition-expression, which looks like two expressions
1718followed by a plus-sign. The third handles subtraction, and so on.
1719
1720@example
5e9b6624
AD
1721exp:
1722 NUM
1723| exp exp '+' @{ $$ = $1 + $2; @}
1724| exp exp '-' @{ $$ = $1 - $2; @}
1725@dots{}
1726;
bfa74976
RS
1727@end example
1728
1729We have used @samp{|} to join all the rules for @code{exp}, but we could
1730equally well have written them separately:
1731
1732@example
5e9b6624
AD
1733exp: NUM ;
1734exp: exp exp '+' @{ $$ = $1 + $2; @};
1735exp: exp exp '-' @{ $$ = $1 - $2; @};
1736@dots{}
bfa74976
RS
1737@end example
1738
1739Most of the rules have actions that compute the value of the expression in
1740terms of the value of its parts. For example, in the rule for addition,
1741@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1742the second one. The third component, @code{'+'}, has no meaningful
1743associated semantic value, but if it had one you could refer to it as
1744@code{$3}. When @code{yyparse} recognizes a sum expression using this
1745rule, the sum of the two subexpressions' values is produced as the value of
1746the entire expression. @xref{Actions}.
1747
1748You don't have to give an action for every rule. When a rule has no
1749action, Bison by default copies the value of @code{$1} into @code{$$}.
1750This is what happens in the first rule (the one that uses @code{NUM}).
1751
1752The formatting shown here is the recommended convention, but Bison does
72d2299c 1753not require it. You can add or change white space as much as you wish.
bfa74976
RS
1754For example, this:
1755
1756@example
5e9b6624 1757exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1758@end example
1759
1760@noindent
1761means the same thing as this:
1762
1763@example
5e9b6624
AD
1764exp:
1765 NUM
1766| exp exp '+' @{ $$ = $1 + $2; @}
1767| @dots{}
99a9344e 1768;
bfa74976
RS
1769@end example
1770
1771@noindent
1772The latter, however, is much more readable.
1773
342b8b6e 1774@node Rpcalc Lexer
bfa74976
RS
1775@subsection The @code{rpcalc} Lexical Analyzer
1776@cindex writing a lexical analyzer
1777@cindex lexical analyzer, writing
1778
704a47c4
AD
1779The lexical analyzer's job is low-level parsing: converting characters
1780or sequences of characters into tokens. The Bison parser gets its
1781tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1782Analyzer Function @code{yylex}}.
bfa74976 1783
8a4281b9 1784Only a simple lexical analyzer is needed for the RPN
c827f760 1785calculator. This
bfa74976
RS
1786lexical analyzer skips blanks and tabs, then reads in numbers as
1787@code{double} and returns them as @code{NUM} tokens. Any other character
1788that isn't part of a number is a separate token. Note that the token-code
1789for such a single-character token is the character itself.
1790
1791The return value of the lexical analyzer function is a numeric code which
1792represents a token type. The same text used in Bison rules to stand for
1793this token type is also a C expression for the numeric code for the type.
1794This works in two ways. If the token type is a character literal, then its
e966383b 1795numeric code is that of the character; you can use the same
bfa74976
RS
1796character literal in the lexical analyzer to express the number. If the
1797token type is an identifier, that identifier is defined by Bison as a C
1798macro whose definition is the appropriate number. In this example,
1799therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1800
1964ad8c
AD
1801The semantic value of the token (if it has one) is stored into the
1802global variable @code{yylval}, which is where the Bison parser will look
1803for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1804defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1805,Declarations for @code{rpcalc}}.)
bfa74976 1806
72d2299c
PE
1807A token type code of zero is returned if the end-of-input is encountered.
1808(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1809
1810Here is the code for the lexical analyzer:
1811
24ec0837 1812@comment file: rpcalc.y
bfa74976
RS
1813@example
1814@group
72d2299c 1815/* The lexical analyzer returns a double floating point
e966383b 1816 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1817 of the character read if not a number. It skips all blanks
1818 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1819
1820#include <ctype.h>
1821@end group
1822
1823@group
13863333
AD
1824int
1825yylex (void)
bfa74976
RS
1826@{
1827 int c;
1828
72d2299c 1829 /* Skip white space. */
13863333 1830 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1831 continue;
bfa74976
RS
1832@end group
1833@group
72d2299c 1834 /* Process numbers. */
13863333 1835 if (c == '.' || isdigit (c))
bfa74976
RS
1836 @{
1837 ungetc (c, stdin);
1838 scanf ("%lf", &yylval);
1839 return NUM;
1840 @}
1841@end group
1842@group
72d2299c 1843 /* Return end-of-input. */
13863333 1844 if (c == EOF)
bfa74976 1845 return 0;
72d2299c 1846 /* Return a single char. */
13863333 1847 return c;
bfa74976
RS
1848@}
1849@end group
1850@end example
1851
342b8b6e 1852@node Rpcalc Main
bfa74976
RS
1853@subsection The Controlling Function
1854@cindex controlling function
1855@cindex main function in simple example
1856
1857In keeping with the spirit of this example, the controlling function is
1858kept to the bare minimum. The only requirement is that it call
1859@code{yyparse} to start the process of parsing.
1860
24ec0837 1861@comment file: rpcalc.y
bfa74976
RS
1862@example
1863@group
13863333
AD
1864int
1865main (void)
bfa74976 1866@{
13863333 1867 return yyparse ();
bfa74976
RS
1868@}
1869@end group
1870@end example
1871
342b8b6e 1872@node Rpcalc Error
bfa74976
RS
1873@subsection The Error Reporting Routine
1874@cindex error reporting routine
1875
1876When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1877function @code{yyerror} to print an error message (usually but not
6e649e65 1878always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1879@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1880here is the definition we will use:
bfa74976 1881
24ec0837 1882@comment file: rpcalc.y
bfa74976 1883@example
bfa74976
RS
1884#include <stdio.h>
1885
aaaa2aae 1886@group
38a92d50 1887/* Called by yyparse on error. */
13863333 1888void
38a92d50 1889yyerror (char const *s)
bfa74976 1890@{
4e03e201 1891 fprintf (stderr, "%s\n", s);
bfa74976
RS
1892@}
1893@end group
1894@end example
1895
1896After @code{yyerror} returns, the Bison parser may recover from the error
1897and continue parsing if the grammar contains a suitable error rule
1898(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1899have not written any error rules in this example, so any invalid input will
1900cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1901real calculator, but it is adequate for the first example.
bfa74976 1902
f5f419de 1903@node Rpcalc Generate
bfa74976
RS
1904@subsection Running Bison to Make the Parser
1905@cindex running Bison (introduction)
1906
ceed8467
AD
1907Before running Bison to produce a parser, we need to decide how to
1908arrange all the source code in one or more source files. For such a
ff7571c0
JD
1909simple example, the easiest thing is to put everything in one file,
1910the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1911@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1912(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1913
1914For a large project, you would probably have several source files, and use
1915@code{make} to arrange to recompile them.
1916
ff7571c0
JD
1917With all the source in the grammar file, you use the following command
1918to convert it into a parser implementation file:
bfa74976
RS
1919
1920@example
fa4d969f 1921bison @var{file}.y
bfa74976
RS
1922@end example
1923
1924@noindent
ff7571c0
JD
1925In this example, the grammar file is called @file{rpcalc.y} (for
1926``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1927implementation file named @file{@var{file}.tab.c}, removing the
1928@samp{.y} from the grammar file name. The parser implementation file
1929contains the source code for @code{yyparse}. The additional functions
1930in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1931copied verbatim to the parser implementation file.
bfa74976 1932
342b8b6e 1933@node Rpcalc Compile
ff7571c0 1934@subsection Compiling the Parser Implementation File
bfa74976
RS
1935@cindex compiling the parser
1936
ff7571c0 1937Here is how to compile and run the parser implementation file:
bfa74976
RS
1938
1939@example
1940@group
1941# @r{List files in current directory.}
9edcd895 1942$ @kbd{ls}
bfa74976
RS
1943rpcalc.tab.c rpcalc.y
1944@end group
1945
1946@group
1947# @r{Compile the Bison parser.}
1948# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1949$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1950@end group
1951
1952@group
1953# @r{List files again.}
9edcd895 1954$ @kbd{ls}
bfa74976
RS
1955rpcalc rpcalc.tab.c rpcalc.y
1956@end group
1957@end example
1958
1959The file @file{rpcalc} now contains the executable code. Here is an
1960example session using @code{rpcalc}.
1961
1962@example
9edcd895
AD
1963$ @kbd{rpcalc}
1964@kbd{4 9 +}
24ec0837 1965@result{} 13
9edcd895 1966@kbd{3 7 + 3 4 5 *+-}
24ec0837 1967@result{} -13
9edcd895 1968@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1969@result{} 13
9edcd895 1970@kbd{5 6 / 4 n +}
24ec0837 1971@result{} -3.166666667
9edcd895 1972@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1973@result{} 81
9edcd895
AD
1974@kbd{^D} @r{End-of-file indicator}
1975$
bfa74976
RS
1976@end example
1977
342b8b6e 1978@node Infix Calc
bfa74976
RS
1979@section Infix Notation Calculator: @code{calc}
1980@cindex infix notation calculator
1981@cindex @code{calc}
1982@cindex calculator, infix notation
1983
1984We now modify rpcalc to handle infix operators instead of postfix. Infix
1985notation involves the concept of operator precedence and the need for
1986parentheses nested to arbitrary depth. Here is the Bison code for
1987@file{calc.y}, an infix desk-top calculator.
1988
1989@example
38a92d50 1990/* Infix notation calculator. */
bfa74976 1991
aaaa2aae 1992@group
bfa74976 1993%@{
38a92d50
PE
1994 #define YYSTYPE double
1995 #include <math.h>
1996 #include <stdio.h>
1997 int yylex (void);
1998 void yyerror (char const *);
bfa74976 1999%@}
aaaa2aae 2000@end group
bfa74976 2001
aaaa2aae 2002@group
38a92d50 2003/* Bison declarations. */
bfa74976
RS
2004%token NUM
2005%left '-' '+'
2006%left '*' '/'
d78f0ac9
AD
2007%precedence NEG /* negation--unary minus */
2008%right '^' /* exponentiation */
aaaa2aae 2009@end group
bfa74976 2010
38a92d50 2011%% /* The grammar follows. */
aaaa2aae 2012@group
5e9b6624 2013input:
6240346a 2014 %empty
5e9b6624 2015| input line
bfa74976 2016;
aaaa2aae 2017@end group
bfa74976 2018
aaaa2aae 2019@group
5e9b6624
AD
2020line:
2021 '\n'
2022| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2023;
aaaa2aae 2024@end group
bfa74976 2025
aaaa2aae 2026@group
5e9b6624
AD
2027exp:
2028 NUM @{ $$ = $1; @}
2029| exp '+' exp @{ $$ = $1 + $3; @}
2030| exp '-' exp @{ $$ = $1 - $3; @}
2031| exp '*' exp @{ $$ = $1 * $3; @}
2032| exp '/' exp @{ $$ = $1 / $3; @}
2033| '-' exp %prec NEG @{ $$ = -$2; @}
2034| exp '^' exp @{ $$ = pow ($1, $3); @}
2035| '(' exp ')' @{ $$ = $2; @}
bfa74976 2036;
aaaa2aae 2037@end group
bfa74976
RS
2038%%
2039@end example
2040
2041@noindent
ceed8467
AD
2042The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2043same as before.
bfa74976
RS
2044
2045There are two important new features shown in this code.
2046
2047In the second section (Bison declarations), @code{%left} declares token
2048types and says they are left-associative operators. The declarations
2049@code{%left} and @code{%right} (right associativity) take the place of
2050@code{%token} which is used to declare a token type name without
d78f0ac9 2051associativity/precedence. (These tokens are single-character literals, which
bfa74976 2052ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2053the associativity/precedence.)
bfa74976
RS
2054
2055Operator precedence is determined by the line ordering of the
2056declarations; the higher the line number of the declaration (lower on
2057the page or screen), the higher the precedence. Hence, exponentiation
2058has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2059by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2060only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2061Precedence}.
bfa74976 2062
704a47c4
AD
2063The other important new feature is the @code{%prec} in the grammar
2064section for the unary minus operator. The @code{%prec} simply instructs
2065Bison that the rule @samp{| '-' exp} has the same precedence as
2066@code{NEG}---in this case the next-to-highest. @xref{Contextual
2067Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2068
2069Here is a sample run of @file{calc.y}:
2070
2071@need 500
2072@example
9edcd895
AD
2073$ @kbd{calc}
2074@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20756.880952381
9edcd895 2076@kbd{-56 + 2}
bfa74976 2077-54
9edcd895 2078@kbd{3 ^ 2}
bfa74976
RS
20799
2080@end example
2081
342b8b6e 2082@node Simple Error Recovery
bfa74976
RS
2083@section Simple Error Recovery
2084@cindex error recovery, simple
2085
2086Up to this point, this manual has not addressed the issue of @dfn{error
2087recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2088error. All we have handled is error reporting with @code{yyerror}.
2089Recall that by default @code{yyparse} returns after calling
2090@code{yyerror}. This means that an erroneous input line causes the
2091calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2092
2093The Bison language itself includes the reserved word @code{error}, which
2094may be included in the grammar rules. In the example below it has
2095been added to one of the alternatives for @code{line}:
2096
2097@example
2098@group
5e9b6624
AD
2099line:
2100 '\n'
2101| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2102| error '\n' @{ yyerrok; @}
bfa74976
RS
2103;
2104@end group
2105@end example
2106
ceed8467 2107This addition to the grammar allows for simple error recovery in the
6e649e65 2108event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2109read, the error will be recognized by the third rule for @code{line},
2110and parsing will continue. (The @code{yyerror} function is still called
2111upon to print its message as well.) The action executes the statement
2112@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2113that error recovery is complete (@pxref{Error Recovery}). Note the
2114difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2115misprint.
bfa74976
RS
2116
2117This form of error recovery deals with syntax errors. There are other
2118kinds of errors; for example, division by zero, which raises an exception
2119signal that is normally fatal. A real calculator program must handle this
2120signal and use @code{longjmp} to return to @code{main} and resume parsing
2121input lines; it would also have to discard the rest of the current line of
2122input. We won't discuss this issue further because it is not specific to
2123Bison programs.
2124
342b8b6e
AD
2125@node Location Tracking Calc
2126@section Location Tracking Calculator: @code{ltcalc}
2127@cindex location tracking calculator
2128@cindex @code{ltcalc}
2129@cindex calculator, location tracking
2130
9edcd895
AD
2131This example extends the infix notation calculator with location
2132tracking. This feature will be used to improve the error messages. For
2133the sake of clarity, this example is a simple integer calculator, since
2134most of the work needed to use locations will be done in the lexical
72d2299c 2135analyzer.
342b8b6e
AD
2136
2137@menu
f5f419de
DJ
2138* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2139* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2140* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2141@end menu
2142
f5f419de 2143@node Ltcalc Declarations
342b8b6e
AD
2144@subsection Declarations for @code{ltcalc}
2145
9edcd895
AD
2146The C and Bison declarations for the location tracking calculator are
2147the same as the declarations for the infix notation calculator.
342b8b6e
AD
2148
2149@example
2150/* Location tracking calculator. */
2151
2152%@{
38a92d50
PE
2153 #define YYSTYPE int
2154 #include <math.h>
2155 int yylex (void);
2156 void yyerror (char const *);
342b8b6e
AD
2157%@}
2158
2159/* Bison declarations. */
2160%token NUM
2161
2162%left '-' '+'
2163%left '*' '/'
d78f0ac9 2164%precedence NEG
342b8b6e
AD
2165%right '^'
2166
38a92d50 2167%% /* The grammar follows. */
342b8b6e
AD
2168@end example
2169
9edcd895
AD
2170@noindent
2171Note there are no declarations specific to locations. Defining a data
2172type for storing locations is not needed: we will use the type provided
2173by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2174four member structure with the following integer fields:
2175@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2176@code{last_column}. By conventions, and in accordance with the GNU
2177Coding Standards and common practice, the line and column count both
2178start at 1.
342b8b6e
AD
2179
2180@node Ltcalc Rules
2181@subsection Grammar Rules for @code{ltcalc}
2182
9edcd895
AD
2183Whether handling locations or not has no effect on the syntax of your
2184language. Therefore, grammar rules for this example will be very close
2185to those of the previous example: we will only modify them to benefit
2186from the new information.
342b8b6e 2187
9edcd895
AD
2188Here, we will use locations to report divisions by zero, and locate the
2189wrong expressions or subexpressions.
342b8b6e
AD
2190
2191@example
2192@group
5e9b6624 2193input:
6240346a 2194 %empty
5e9b6624 2195| input line
342b8b6e
AD
2196;
2197@end group
2198
2199@group
5e9b6624
AD
2200line:
2201 '\n'
2202| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2203;
2204@end group
2205
2206@group
5e9b6624
AD
2207exp:
2208 NUM @{ $$ = $1; @}
2209| exp '+' exp @{ $$ = $1 + $3; @}
2210| exp '-' exp @{ $$ = $1 - $3; @}
2211| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2212@end group
342b8b6e 2213@group
5e9b6624
AD
2214| exp '/' exp
2215 @{
2216 if ($3)
2217 $$ = $1 / $3;
2218 else
2219 @{
2220 $$ = 1;
2221 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2222 @@3.first_line, @@3.first_column,
2223 @@3.last_line, @@3.last_column);
2224 @}
2225 @}
342b8b6e
AD
2226@end group
2227@group
5e9b6624
AD
2228| '-' exp %prec NEG @{ $$ = -$2; @}
2229| exp '^' exp @{ $$ = pow ($1, $3); @}
2230| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2231@end group
2232@end example
2233
2234This code shows how to reach locations inside of semantic actions, by
2235using the pseudo-variables @code{@@@var{n}} for rule components, and the
2236pseudo-variable @code{@@$} for groupings.
2237
9edcd895
AD
2238We don't need to assign a value to @code{@@$}: the output parser does it
2239automatically. By default, before executing the C code of each action,
2240@code{@@$} is set to range from the beginning of @code{@@1} to the end
2241of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2242can be redefined (@pxref{Location Default Action, , Default Action for
2243Locations}), and for very specific rules, @code{@@$} can be computed by
2244hand.
342b8b6e
AD
2245
2246@node Ltcalc Lexer
2247@subsection The @code{ltcalc} Lexical Analyzer.
2248
9edcd895 2249Until now, we relied on Bison's defaults to enable location
72d2299c 2250tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2251able to feed the parser with the token locations, as it already does for
2252semantic values.
342b8b6e 2253
9edcd895
AD
2254To this end, we must take into account every single character of the
2255input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2256
2257@example
2258@group
2259int
2260yylex (void)
2261@{
2262 int c;
18b519c0 2263@end group
342b8b6e 2264
18b519c0 2265@group
72d2299c 2266 /* Skip white space. */
342b8b6e
AD
2267 while ((c = getchar ()) == ' ' || c == '\t')
2268 ++yylloc.last_column;
18b519c0 2269@end group
342b8b6e 2270
18b519c0 2271@group
72d2299c 2272 /* Step. */
342b8b6e
AD
2273 yylloc.first_line = yylloc.last_line;
2274 yylloc.first_column = yylloc.last_column;
2275@end group
2276
2277@group
72d2299c 2278 /* Process numbers. */
342b8b6e
AD
2279 if (isdigit (c))
2280 @{
2281 yylval = c - '0';
2282 ++yylloc.last_column;
2283 while (isdigit (c = getchar ()))
2284 @{
2285 ++yylloc.last_column;
2286 yylval = yylval * 10 + c - '0';
2287 @}
2288 ungetc (c, stdin);
2289 return NUM;
2290 @}
2291@end group
2292
72d2299c 2293 /* Return end-of-input. */
342b8b6e
AD
2294 if (c == EOF)
2295 return 0;
2296
d4fca427 2297@group
72d2299c 2298 /* Return a single char, and update location. */
342b8b6e
AD
2299 if (c == '\n')
2300 @{
2301 ++yylloc.last_line;
2302 yylloc.last_column = 0;
2303 @}
2304 else
2305 ++yylloc.last_column;
2306 return c;
2307@}
d4fca427 2308@end group
342b8b6e
AD
2309@end example
2310
9edcd895
AD
2311Basically, the lexical analyzer performs the same processing as before:
2312it skips blanks and tabs, and reads numbers or single-character tokens.
2313In addition, it updates @code{yylloc}, the global variable (of type
2314@code{YYLTYPE}) containing the token's location.
342b8b6e 2315
9edcd895 2316Now, each time this function returns a token, the parser has its number
72d2299c 2317as well as its semantic value, and its location in the text. The last
9edcd895
AD
2318needed change is to initialize @code{yylloc}, for example in the
2319controlling function:
342b8b6e
AD
2320
2321@example
9edcd895 2322@group
342b8b6e
AD
2323int
2324main (void)
2325@{
2326 yylloc.first_line = yylloc.last_line = 1;
2327 yylloc.first_column = yylloc.last_column = 0;
2328 return yyparse ();
2329@}
9edcd895 2330@end group
342b8b6e
AD
2331@end example
2332
9edcd895
AD
2333Remember that computing locations is not a matter of syntax. Every
2334character must be associated to a location update, whether it is in
2335valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2336
2337@node Multi-function Calc
bfa74976
RS
2338@section Multi-Function Calculator: @code{mfcalc}
2339@cindex multi-function calculator
2340@cindex @code{mfcalc}
2341@cindex calculator, multi-function
2342
2343Now that the basics of Bison have been discussed, it is time to move on to
2344a more advanced problem. The above calculators provided only five
2345functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2346be nice to have a calculator that provides other mathematical functions such
2347as @code{sin}, @code{cos}, etc.
2348
2349It is easy to add new operators to the infix calculator as long as they are
2350only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2351back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2352adding a new operator. But we want something more flexible: built-in
2353functions whose syntax has this form:
2354
2355@example
2356@var{function_name} (@var{argument})
2357@end example
2358
2359@noindent
2360At the same time, we will add memory to the calculator, by allowing you
2361to create named variables, store values in them, and use them later.
2362Here is a sample session with the multi-function calculator:
2363
2364@example
d4fca427 2365@group
9edcd895
AD
2366$ @kbd{mfcalc}
2367@kbd{pi = 3.141592653589}
f9c75dd0 2368@result{} 3.1415926536
d4fca427
AD
2369@end group
2370@group
9edcd895 2371@kbd{sin(pi)}
f9c75dd0 2372@result{} 0.0000000000
d4fca427 2373@end group
9edcd895 2374@kbd{alpha = beta1 = 2.3}
f9c75dd0 2375@result{} 2.3000000000
9edcd895 2376@kbd{alpha}
f9c75dd0 2377@result{} 2.3000000000
9edcd895 2378@kbd{ln(alpha)}
f9c75dd0 2379@result{} 0.8329091229
9edcd895 2380@kbd{exp(ln(beta1))}
f9c75dd0 2381@result{} 2.3000000000
9edcd895 2382$
bfa74976
RS
2383@end example
2384
2385Note that multiple assignment and nested function calls are permitted.
2386
2387@menu
f5f419de
DJ
2388* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2389* Mfcalc Rules:: Grammar rules for the calculator.
2390* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2391* Mfcalc Lexer:: The lexical analyzer.
2392* Mfcalc Main:: The controlling function.
bfa74976
RS
2393@end menu
2394
f5f419de 2395@node Mfcalc Declarations
bfa74976
RS
2396@subsection Declarations for @code{mfcalc}
2397
2398Here are the C and Bison declarations for the multi-function calculator.
2399
93c150b6 2400@comment file: mfcalc.y: 1
c93f22fc 2401@example
18b519c0 2402@group
bfa74976 2403%@{
f9c75dd0 2404 #include <stdio.h> /* For printf, etc. */
578e3413 2405 #include <math.h> /* For pow, used in the grammar. */
4c9b8f13 2406 #include "calc.h" /* Contains definition of 'symrec'. */
38a92d50
PE
2407 int yylex (void);
2408 void yyerror (char const *);
bfa74976 2409%@}
18b519c0 2410@end group
93c150b6 2411
18b519c0 2412@group
bfa74976 2413%union @{
38a92d50
PE
2414 double val; /* For returning numbers. */
2415 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2416@}
18b519c0 2417@end group
38a92d50 2418%token <val> NUM /* Simple double precision number. */
93c150b6 2419%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2420%type <val> exp
2421
18b519c0 2422@group
e8f7155d 2423%precedence '='
bfa74976
RS
2424%left '-' '+'
2425%left '*' '/'
d78f0ac9
AD
2426%precedence NEG /* negation--unary minus */
2427%right '^' /* exponentiation */
18b519c0 2428@end group
c93f22fc 2429@end example
bfa74976
RS
2430
2431The above grammar introduces only two new features of the Bison language.
2432These features allow semantic values to have various data types
2433(@pxref{Multiple Types, ,More Than One Value Type}).
2434
2435The @code{%union} declaration specifies the entire list of possible types;
2436this is instead of defining @code{YYSTYPE}. The allowable types are now
2437double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2438the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2439
2440Since values can now have various types, it is necessary to associate a
2441type with each grammar symbol whose semantic value is used. These symbols
2442are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2443declarations are augmented with information about their data type (placed
2444between angle brackets).
2445
704a47c4
AD
2446The Bison construct @code{%type} is used for declaring nonterminal
2447symbols, just as @code{%token} is used for declaring token types. We
2448have not used @code{%type} before because nonterminal symbols are
2449normally declared implicitly by the rules that define them. But
2450@code{exp} must be declared explicitly so we can specify its value type.
2451@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2452
342b8b6e 2453@node Mfcalc Rules
bfa74976
RS
2454@subsection Grammar Rules for @code{mfcalc}
2455
2456Here are the grammar rules for the multi-function calculator.
2457Most of them are copied directly from @code{calc}; three rules,
2458those which mention @code{VAR} or @code{FNCT}, are new.
2459
93c150b6 2460@comment file: mfcalc.y: 3
c93f22fc 2461@example
93c150b6 2462%% /* The grammar follows. */
18b519c0 2463@group
5e9b6624 2464input:
6240346a 2465 %empty
5e9b6624 2466| input line
bfa74976 2467;
18b519c0 2468@end group
bfa74976 2469
18b519c0 2470@group
bfa74976 2471line:
5e9b6624
AD
2472 '\n'
2473| exp '\n' @{ printf ("%.10g\n", $1); @}
2474| error '\n' @{ yyerrok; @}
bfa74976 2475;
18b519c0 2476@end group
bfa74976 2477
18b519c0 2478@group
5e9b6624
AD
2479exp:
2480 NUM @{ $$ = $1; @}
2481| VAR @{ $$ = $1->value.var; @}
2482| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2483| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2484| exp '+' exp @{ $$ = $1 + $3; @}
2485| exp '-' exp @{ $$ = $1 - $3; @}
2486| exp '*' exp @{ $$ = $1 * $3; @}
2487| exp '/' exp @{ $$ = $1 / $3; @}
2488| '-' exp %prec NEG @{ $$ = -$2; @}
2489| exp '^' exp @{ $$ = pow ($1, $3); @}
2490| '(' exp ')' @{ $$ = $2; @}
bfa74976 2491;
18b519c0 2492@end group
38a92d50 2493/* End of grammar. */
bfa74976 2494%%
c93f22fc 2495@end example
bfa74976 2496
f5f419de 2497@node Mfcalc Symbol Table
bfa74976
RS
2498@subsection The @code{mfcalc} Symbol Table
2499@cindex symbol table example
2500
2501The multi-function calculator requires a symbol table to keep track of the
2502names and meanings of variables and functions. This doesn't affect the
2503grammar rules (except for the actions) or the Bison declarations, but it
2504requires some additional C functions for support.
2505
2506The symbol table itself consists of a linked list of records. Its
2507definition, which is kept in the header @file{calc.h}, is as follows. It
2508provides for either functions or variables to be placed in the table.
2509
f9c75dd0 2510@comment file: calc.h
c93f22fc 2511@example
bfa74976 2512@group
38a92d50 2513/* Function type. */
32dfccf8 2514typedef double (*func_t) (double);
72f889cc 2515@end group
32dfccf8 2516
72f889cc 2517@group
38a92d50 2518/* Data type for links in the chain of symbols. */
bfa74976
RS
2519struct symrec
2520@{
38a92d50 2521 char *name; /* name of symbol */
bfa74976 2522 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2523 union
2524 @{
38a92d50
PE
2525 double var; /* value of a VAR */
2526 func_t fnctptr; /* value of a FNCT */
bfa74976 2527 @} value;
38a92d50 2528 struct symrec *next; /* link field */
bfa74976
RS
2529@};
2530@end group
2531
2532@group
2533typedef struct symrec symrec;
2534
4c9b8f13 2535/* The symbol table: a chain of 'struct symrec'. */
bfa74976
RS
2536extern symrec *sym_table;
2537
a730d142 2538symrec *putsym (char const *, int);
38a92d50 2539symrec *getsym (char const *);
bfa74976 2540@end group
c93f22fc 2541@end example
bfa74976 2542
aeb57fb6
AD
2543The new version of @code{main} will call @code{init_table} to initialize
2544the symbol table:
bfa74976 2545
93c150b6 2546@comment file: mfcalc.y: 3
c93f22fc 2547@example
18b519c0 2548@group
bfa74976
RS
2549struct init
2550@{
38a92d50
PE
2551 char const *fname;
2552 double (*fnct) (double);
bfa74976
RS
2553@};
2554@end group
2555
2556@group
38a92d50 2557struct init const arith_fncts[] =
13863333 2558@{
f9c75dd0
AD
2559 @{ "atan", atan @},
2560 @{ "cos", cos @},
2561 @{ "exp", exp @},
2562 @{ "ln", log @},
2563 @{ "sin", sin @},
2564 @{ "sqrt", sqrt @},
2565 @{ 0, 0 @},
13863333 2566@};
18b519c0 2567@end group
bfa74976 2568
18b519c0 2569@group
4c9b8f13 2570/* The symbol table: a chain of 'struct symrec'. */
38a92d50 2571symrec *sym_table;
bfa74976
RS
2572@end group
2573
2574@group
72d2299c 2575/* Put arithmetic functions in table. */
f9c75dd0 2576static
13863333
AD
2577void
2578init_table (void)
bfa74976
RS
2579@{
2580 int i;
bfa74976
RS
2581 for (i = 0; arith_fncts[i].fname != 0; i++)
2582 @{
aaaa2aae 2583 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2584 ptr->value.fnctptr = arith_fncts[i].fnct;
2585 @}
2586@}
2587@end group
c93f22fc 2588@end example
bfa74976
RS
2589
2590By simply editing the initialization list and adding the necessary include
2591files, you can add additional functions to the calculator.
2592
2593Two important functions allow look-up and installation of symbols in the
2594symbol table. The function @code{putsym} is passed a name and the type
2595(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2596linked to the front of the list, and a pointer to the object is returned.
2597The function @code{getsym} is passed the name of the symbol to look up. If
2598found, a pointer to that symbol is returned; otherwise zero is returned.
2599
93c150b6 2600@comment file: mfcalc.y: 3
c93f22fc 2601@example
f9c75dd0
AD
2602#include <stdlib.h> /* malloc. */
2603#include <string.h> /* strlen. */
2604
d4fca427 2605@group
bfa74976 2606symrec *
38a92d50 2607putsym (char const *sym_name, int sym_type)
bfa74976 2608@{
aaaa2aae 2609 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2610 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2611 strcpy (ptr->name,sym_name);
2612 ptr->type = sym_type;
72d2299c 2613 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2614 ptr->next = (struct symrec *)sym_table;
2615 sym_table = ptr;
2616 return ptr;
2617@}
d4fca427 2618@end group
bfa74976 2619
d4fca427 2620@group
bfa74976 2621symrec *
38a92d50 2622getsym (char const *sym_name)
bfa74976
RS
2623@{
2624 symrec *ptr;
2625 for (ptr = sym_table; ptr != (symrec *) 0;
2626 ptr = (symrec *)ptr->next)
f518dbaf 2627 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2628 return ptr;
2629 return 0;
2630@}
d4fca427 2631@end group
c93f22fc 2632@end example
bfa74976 2633
aeb57fb6
AD
2634@node Mfcalc Lexer
2635@subsection The @code{mfcalc} Lexer
2636
bfa74976
RS
2637The function @code{yylex} must now recognize variables, numeric values, and
2638the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2639characters with a leading letter are recognized as either variables or
bfa74976
RS
2640functions depending on what the symbol table says about them.
2641
2642The string is passed to @code{getsym} for look up in the symbol table. If
2643the name appears in the table, a pointer to its location and its type
2644(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2645already in the table, then it is installed as a @code{VAR} using
2646@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2647returned to @code{yyparse}.
bfa74976
RS
2648
2649No change is needed in the handling of numeric values and arithmetic
2650operators in @code{yylex}.
2651
93c150b6 2652@comment file: mfcalc.y: 3
c93f22fc 2653@example
bfa74976 2654#include <ctype.h>
13863333 2655
18b519c0 2656@group
13863333
AD
2657int
2658yylex (void)
bfa74976
RS
2659@{
2660 int c;
2661
72d2299c 2662 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2663 while ((c = getchar ()) == ' ' || c == '\t')
2664 continue;
bfa74976
RS
2665
2666 if (c == EOF)
2667 return 0;
2668@end group
2669
2670@group
2671 /* Char starts a number => parse the number. */
2672 if (c == '.' || isdigit (c))
2673 @{
2674 ungetc (c, stdin);
2675 scanf ("%lf", &yylval.val);
2676 return NUM;
2677 @}
2678@end group
2679
2680@group
2681 /* Char starts an identifier => read the name. */
2682 if (isalpha (c))
2683 @{
aaaa2aae
AD
2684 /* Initially make the buffer long enough
2685 for a 40-character symbol name. */
2686 static size_t length = 40;
bfa74976 2687 static char *symbuf = 0;
aaaa2aae 2688 symrec *s;
bfa74976
RS
2689 int i;
2690@end group
aaaa2aae
AD
2691 if (!symbuf)
2692 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2693
2694 i = 0;
2695 do
bfa74976
RS
2696@group
2697 @{
2698 /* If buffer is full, make it bigger. */
2699 if (i == length)
2700 @{
2701 length *= 2;
18b519c0 2702 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2703 @}
2704 /* Add this character to the buffer. */
2705 symbuf[i++] = c;
2706 /* Get another character. */
2707 c = getchar ();
2708 @}
2709@end group
2710@group
72d2299c 2711 while (isalnum (c));
bfa74976
RS
2712
2713 ungetc (c, stdin);
2714 symbuf[i] = '\0';
2715@end group
2716
2717@group
2718 s = getsym (symbuf);
2719 if (s == 0)
2720 s = putsym (symbuf, VAR);
2721 yylval.tptr = s;
2722 return s->type;
2723 @}
2724
2725 /* Any other character is a token by itself. */
2726 return c;
2727@}
2728@end group
c93f22fc 2729@end example
bfa74976 2730
aeb57fb6
AD
2731@node Mfcalc Main
2732@subsection The @code{mfcalc} Main
2733
2734The error reporting function is unchanged, and the new version of
93c150b6
AD
2735@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2736on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2737
93c150b6 2738@comment file: mfcalc.y: 3
c93f22fc 2739@example
aeb57fb6
AD
2740@group
2741/* Called by yyparse on error. */
2742void
2743yyerror (char const *s)
2744@{
2745 fprintf (stderr, "%s\n", s);
2746@}
2747@end group
2748
aaaa2aae 2749@group
aeb57fb6
AD
2750int
2751main (int argc, char const* argv[])
2752@{
93c150b6
AD
2753 int i;
2754 /* Enable parse traces on option -p. */
2755 for (i = 1; i < argc; ++i)
2756 if (!strcmp(argv[i], "-p"))
2757 yydebug = 1;
aeb57fb6
AD
2758 init_table ();
2759 return yyparse ();
2760@}
2761@end group
c93f22fc 2762@end example
aeb57fb6 2763
72d2299c 2764This program is both powerful and flexible. You may easily add new
704a47c4
AD
2765functions, and it is a simple job to modify this code to install
2766predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2767
342b8b6e 2768@node Exercises
bfa74976
RS
2769@section Exercises
2770@cindex exercises
2771
2772@enumerate
2773@item
2774Add some new functions from @file{math.h} to the initialization list.
2775
2776@item
2777Add another array that contains constants and their values. Then
2778modify @code{init_table} to add these constants to the symbol table.
2779It will be easiest to give the constants type @code{VAR}.
2780
2781@item
2782Make the program report an error if the user refers to an
2783uninitialized variable in any way except to store a value in it.
2784@end enumerate
2785
342b8b6e 2786@node Grammar File
bfa74976
RS
2787@chapter Bison Grammar Files
2788
2789Bison takes as input a context-free grammar specification and produces a
2790C-language function that recognizes correct instances of the grammar.
2791
ff7571c0 2792The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2793@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2794
2795@menu
303834cc
JD
2796* Grammar Outline:: Overall layout of the grammar file.
2797* Symbols:: Terminal and nonterminal symbols.
2798* Rules:: How to write grammar rules.
303834cc
JD
2799* Semantics:: Semantic values and actions.
2800* Tracking Locations:: Locations and actions.
2801* Named References:: Using named references in actions.
2802* Declarations:: All kinds of Bison declarations are described here.
2803* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2804@end menu
2805
342b8b6e 2806@node Grammar Outline
bfa74976 2807@section Outline of a Bison Grammar
c949ada3
AD
2808@cindex comment
2809@findex // @dots{}
2810@findex /* @dots{} */
bfa74976
RS
2811
2812A Bison grammar file has four main sections, shown here with the
2813appropriate delimiters:
2814
2815@example
2816%@{
38a92d50 2817 @var{Prologue}
bfa74976
RS
2818%@}
2819
2820@var{Bison declarations}
2821
2822%%
2823@var{Grammar rules}
2824%%
2825
75f5aaea 2826@var{Epilogue}
bfa74976
RS
2827@end example
2828
2829Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2830As a GNU extension, @samp{//} introduces a comment that continues until end
2831of line.
bfa74976
RS
2832
2833@menu
f5f419de 2834* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2835* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2836* Bison Declarations:: Syntax and usage of the Bison declarations section.
2837* Grammar Rules:: Syntax and usage of the grammar rules section.
2838* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2839@end menu
2840
38a92d50 2841@node Prologue
75f5aaea
MA
2842@subsection The prologue
2843@cindex declarations section
2844@cindex Prologue
2845@cindex declarations
bfa74976 2846
f8e1c9e5
AD
2847The @var{Prologue} section contains macro definitions and declarations
2848of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2849rules. These are copied to the beginning of the parser implementation
2850file so that they precede the definition of @code{yyparse}. You can
2851use @samp{#include} to get the declarations from a header file. If
2852you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2853@samp{%@}} delimiters that bracket this section.
bfa74976 2854
9c437126 2855The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2856of @samp{%@}} that is outside a comment, a string literal, or a
2857character constant.
2858
c732d2c6
AD
2859You may have more than one @var{Prologue} section, intermixed with the
2860@var{Bison declarations}. This allows you to have C and Bison
2861declarations that refer to each other. For example, the @code{%union}
2862declaration may use types defined in a header file, and you may wish to
2863prototype functions that take arguments of type @code{YYSTYPE}. This
2864can be done with two @var{Prologue} blocks, one before and one after the
2865@code{%union} declaration.
2866
c93f22fc 2867@example
efbc95a7 2868@group
c732d2c6 2869%@{
aef3da86 2870 #define _GNU_SOURCE
38a92d50
PE
2871 #include <stdio.h>
2872 #include "ptypes.h"
c732d2c6 2873%@}
efbc95a7 2874@end group
c732d2c6 2875
efbc95a7 2876@group
c732d2c6 2877%union @{
779e7ceb 2878 long int n;
c732d2c6
AD
2879 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2880@}
efbc95a7 2881@end group
c732d2c6 2882
efbc95a7 2883@group
c732d2c6 2884%@{
38a92d50
PE
2885 static void print_token_value (FILE *, int, YYSTYPE);
2886 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6 2887%@}
efbc95a7 2888@end group
c732d2c6
AD
2889
2890@dots{}
c93f22fc 2891@end example
c732d2c6 2892
aef3da86
PE
2893When in doubt, it is usually safer to put prologue code before all
2894Bison declarations, rather than after. For example, any definitions
2895of feature test macros like @code{_GNU_SOURCE} or
2896@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2897feature test macros can affect the behavior of Bison-generated
2898@code{#include} directives.
2899
2cbe6b7f
JD
2900@node Prologue Alternatives
2901@subsection Prologue Alternatives
2902@cindex Prologue Alternatives
2903
136a0f76 2904@findex %code
16dc6a9e
JD
2905@findex %code requires
2906@findex %code provides
2907@findex %code top
85894313 2908
2cbe6b7f 2909The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2910inflexible. As an alternative, Bison provides a @code{%code}
2911directive with an explicit qualifier field, which identifies the
2912purpose of the code and thus the location(s) where Bison should
2913generate it. For C/C++, the qualifier can be omitted for the default
2914location, or it can be one of @code{requires}, @code{provides},
e0c07222 2915@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2916
2917Look again at the example of the previous section:
2918
c93f22fc 2919@example
efbc95a7 2920@group
2cbe6b7f
JD
2921%@{
2922 #define _GNU_SOURCE
2923 #include <stdio.h>
2924 #include "ptypes.h"
2925%@}
efbc95a7 2926@end group
2cbe6b7f 2927
efbc95a7 2928@group
2cbe6b7f
JD
2929%union @{
2930 long int n;
2931 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2932@}
efbc95a7 2933@end group
2cbe6b7f 2934
efbc95a7 2935@group
2cbe6b7f
JD
2936%@{
2937 static void print_token_value (FILE *, int, YYSTYPE);
2938 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2939%@}
efbc95a7 2940@end group
2cbe6b7f
JD
2941
2942@dots{}
c93f22fc 2943@end example
2cbe6b7f
JD
2944
2945@noindent
ff7571c0
JD
2946Notice that there are two @var{Prologue} sections here, but there's a
2947subtle distinction between their functionality. For example, if you
2948decide to override Bison's default definition for @code{YYLTYPE}, in
2949which @var{Prologue} section should you write your new definition?
2950You should write it in the first since Bison will insert that code
2951into the parser implementation file @emph{before} the default
2952@code{YYLTYPE} definition. In which @var{Prologue} section should you
2953prototype an internal function, @code{trace_token}, that accepts
2954@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2955prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2956@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2957
2958This distinction in functionality between the two @var{Prologue} sections is
2959established by the appearance of the @code{%union} between them.
a501eca9 2960This behavior raises a few questions.
2cbe6b7f
JD
2961First, why should the position of a @code{%union} affect definitions related to
2962@code{YYLTYPE} and @code{yytokentype}?
2963Second, what if there is no @code{%union}?
2964In that case, the second kind of @var{Prologue} section is not available.
2965This behavior is not intuitive.
2966
8e0a5e9e 2967To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2968@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2969Let's go ahead and add the new @code{YYLTYPE} definition and the
2970@code{trace_token} prototype at the same time:
2971
c93f22fc 2972@example
16dc6a9e 2973%code top @{
2cbe6b7f
JD
2974 #define _GNU_SOURCE
2975 #include <stdio.h>
8e0a5e9e
JD
2976
2977 /* WARNING: The following code really belongs
4c9b8f13 2978 * in a '%code requires'; see below. */
8e0a5e9e 2979
2cbe6b7f
JD
2980 #include "ptypes.h"
2981 #define YYLTYPE YYLTYPE
2982 typedef struct YYLTYPE
2983 @{
2984 int first_line;
2985 int first_column;
2986 int last_line;
2987 int last_column;
2988 char *filename;
2989 @} YYLTYPE;
2990@}
2991
efbc95a7 2992@group
2cbe6b7f
JD
2993%union @{
2994 long int n;
2995 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2996@}
efbc95a7 2997@end group
2cbe6b7f 2998
efbc95a7 2999@group
2cbe6b7f
JD
3000%code @{
3001 static void print_token_value (FILE *, int, YYSTYPE);
3002 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3003 static void trace_token (enum yytokentype token, YYLTYPE loc);
3004@}
efbc95a7 3005@end group
2cbe6b7f
JD
3006
3007@dots{}
c93f22fc 3008@end example
2cbe6b7f
JD
3009
3010@noindent
16dc6a9e
JD
3011In this way, @code{%code top} and the unqualified @code{%code} achieve the same
3012functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 3013explicit which kind you intend.
2cbe6b7f
JD
3014Moreover, both kinds are always available even in the absence of @code{%union}.
3015
ff7571c0
JD
3016The @code{%code top} block above logically contains two parts. The
3017first two lines before the warning need to appear near the top of the
3018parser implementation file. The first line after the warning is
3019required by @code{YYSTYPE} and thus also needs to appear in the parser
3020implementation file. However, if you've instructed Bison to generate
3021a parser header file (@pxref{Decl Summary, ,%defines}), you probably
3022want that line to appear before the @code{YYSTYPE} definition in that
3023header file as well. The @code{YYLTYPE} definition should also appear
3024in the parser header file to override the default @code{YYLTYPE}
3025definition there.
2cbe6b7f 3026
16dc6a9e 3027In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3028lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3029definitions.
16dc6a9e 3030Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3031
c93f22fc 3032@example
d4fca427 3033@group
16dc6a9e 3034%code top @{
2cbe6b7f
JD
3035 #define _GNU_SOURCE
3036 #include <stdio.h>
3037@}
d4fca427 3038@end group
2cbe6b7f 3039
d4fca427 3040@group
16dc6a9e 3041%code requires @{
9bc0dd67
JD
3042 #include "ptypes.h"
3043@}
d4fca427
AD
3044@end group
3045@group
9bc0dd67
JD
3046%union @{
3047 long int n;
3048 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3049@}
d4fca427 3050@end group
9bc0dd67 3051
d4fca427 3052@group
16dc6a9e 3053%code requires @{
2cbe6b7f
JD
3054 #define YYLTYPE YYLTYPE
3055 typedef struct YYLTYPE
3056 @{
3057 int first_line;
3058 int first_column;
3059 int last_line;
3060 int last_column;
3061 char *filename;
3062 @} YYLTYPE;
3063@}
d4fca427 3064@end group
2cbe6b7f 3065
d4fca427 3066@group
136a0f76 3067%code @{
2cbe6b7f
JD
3068 static void print_token_value (FILE *, int, YYSTYPE);
3069 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3070 static void trace_token (enum yytokentype token, YYLTYPE loc);
3071@}
d4fca427 3072@end group
2cbe6b7f
JD
3073
3074@dots{}
c93f22fc 3075@end example
2cbe6b7f
JD
3076
3077@noindent
ff7571c0
JD
3078Now Bison will insert @code{#include "ptypes.h"} and the new
3079@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3080and @code{YYLTYPE} definitions in both the parser implementation file
3081and the parser header file. (By the same reasoning, @code{%code
3082requires} would also be the appropriate place to write your own
3083definition for @code{YYSTYPE}.)
3084
3085When you are writing dependency code for @code{YYSTYPE} and
3086@code{YYLTYPE}, you should prefer @code{%code requires} over
3087@code{%code top} regardless of whether you instruct Bison to generate
3088a parser header file. When you are writing code that you need Bison
3089to insert only into the parser implementation file and that has no
3090special need to appear at the top of that file, you should prefer the
3091unqualified @code{%code} over @code{%code top}. These practices will
3092make the purpose of each block of your code explicit to Bison and to
3093other developers reading your grammar file. Following these
3094practices, we expect the unqualified @code{%code} and @code{%code
3095requires} to be the most important of the four @var{Prologue}
16dc6a9e 3096alternatives.
a501eca9 3097
ff7571c0
JD
3098At some point while developing your parser, you might decide to
3099provide @code{trace_token} to modules that are external to your
3100parser. Thus, you might wish for Bison to insert the prototype into
3101both the parser header file and the parser implementation file. Since
3102this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3103@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3104@code{%code requires}. More importantly, since it depends upon
3105@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3106sufficient. Instead, move its prototype from the unqualified
3107@code{%code} to a @code{%code provides}:
2cbe6b7f 3108
c93f22fc 3109@example
d4fca427 3110@group
16dc6a9e 3111%code top @{
2cbe6b7f 3112 #define _GNU_SOURCE
136a0f76 3113 #include <stdio.h>
2cbe6b7f 3114@}
d4fca427 3115@end group
136a0f76 3116
d4fca427 3117@group
16dc6a9e 3118%code requires @{
2cbe6b7f
JD
3119 #include "ptypes.h"
3120@}
d4fca427
AD
3121@end group
3122@group
2cbe6b7f
JD
3123%union @{
3124 long int n;
3125 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3126@}
d4fca427 3127@end group
2cbe6b7f 3128
d4fca427 3129@group
16dc6a9e 3130%code requires @{
2cbe6b7f
JD
3131 #define YYLTYPE YYLTYPE
3132 typedef struct YYLTYPE
3133 @{
3134 int first_line;
3135 int first_column;
3136 int last_line;
3137 int last_column;
3138 char *filename;
3139 @} YYLTYPE;
3140@}
d4fca427 3141@end group
2cbe6b7f 3142
d4fca427 3143@group
16dc6a9e 3144%code provides @{
2cbe6b7f
JD
3145 void trace_token (enum yytokentype token, YYLTYPE loc);
3146@}
d4fca427 3147@end group
2cbe6b7f 3148
d4fca427 3149@group
2cbe6b7f 3150%code @{
9bc0dd67
JD
3151 static void print_token_value (FILE *, int, YYSTYPE);
3152 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3153@}
d4fca427 3154@end group
9bc0dd67
JD
3155
3156@dots{}
c93f22fc 3157@end example
9bc0dd67 3158
2cbe6b7f 3159@noindent
ff7571c0
JD
3160Bison will insert the @code{trace_token} prototype into both the
3161parser header file and the parser implementation file after the
3162definitions for @code{yytokentype}, @code{YYLTYPE}, and
3163@code{YYSTYPE}.
2cbe6b7f 3164
ff7571c0
JD
3165The above examples are careful to write directives in an order that
3166reflects the layout of the generated parser implementation and header
3167files: @code{%code top}, @code{%code requires}, @code{%code provides},
3168and then @code{%code}. While your grammar files may generally be
3169easier to read if you also follow this order, Bison does not require
3170it. Instead, Bison lets you choose an organization that makes sense
3171to you.
2cbe6b7f 3172
a501eca9 3173You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3174In that case, Bison concatenates the contained code in declaration order.
3175This is the only way in which the position of one of these directives within
3176the grammar file affects its functionality.
3177
3178The result of the previous two properties is greater flexibility in how you may
3179organize your grammar file.
3180For example, you may organize semantic-type-related directives by semantic
3181type:
3182
c93f22fc 3183@example
d4fca427 3184@group
16dc6a9e 3185%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3186%union @{ type1 field1; @}
3187%destructor @{ type1_free ($$); @} <field1>
c5026327 3188%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3189@end group
2cbe6b7f 3190
d4fca427 3191@group
16dc6a9e 3192%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3193%union @{ type2 field2; @}
3194%destructor @{ type2_free ($$); @} <field2>
c5026327 3195%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3196@end group
c93f22fc 3197@end example
2cbe6b7f
JD
3198
3199@noindent
3200You could even place each of the above directive groups in the rules section of
3201the grammar file next to the set of rules that uses the associated semantic
3202type.
61fee93e
JD
3203(In the rules section, you must terminate each of those directives with a
3204semicolon.)
2cbe6b7f
JD
3205And you don't have to worry that some directive (like a @code{%union}) in the
3206definitions section is going to adversely affect their functionality in some
3207counter-intuitive manner just because it comes first.
3208Such an organization is not possible using @var{Prologue} sections.
3209
a501eca9 3210This section has been concerned with explaining the advantages of the four
8e0a5e9e 3211@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3212However, in most cases when using these directives, you shouldn't need to
3213think about all the low-level ordering issues discussed here.
3214Instead, you should simply use these directives to label each block of your
3215code according to its purpose and let Bison handle the ordering.
3216@code{%code} is the most generic label.
16dc6a9e
JD
3217Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3218as needed.
a501eca9 3219
342b8b6e 3220@node Bison Declarations
bfa74976
RS
3221@subsection The Bison Declarations Section
3222@cindex Bison declarations (introduction)
3223@cindex declarations, Bison (introduction)
3224
3225The @var{Bison declarations} section contains declarations that define
3226terminal and nonterminal symbols, specify precedence, and so on.
3227In some simple grammars you may not need any declarations.
3228@xref{Declarations, ,Bison Declarations}.
3229
342b8b6e 3230@node Grammar Rules
bfa74976
RS
3231@subsection The Grammar Rules Section
3232@cindex grammar rules section
3233@cindex rules section for grammar
3234
3235The @dfn{grammar rules} section contains one or more Bison grammar
3236rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3237
3238There must always be at least one grammar rule, and the first
3239@samp{%%} (which precedes the grammar rules) may never be omitted even
3240if it is the first thing in the file.
3241
38a92d50 3242@node Epilogue
75f5aaea 3243@subsection The epilogue
bfa74976 3244@cindex additional C code section
75f5aaea 3245@cindex epilogue
bfa74976
RS
3246@cindex C code, section for additional
3247
ff7571c0
JD
3248The @var{Epilogue} is copied verbatim to the end of the parser
3249implementation file, just as the @var{Prologue} is copied to the
3250beginning. This is the most convenient place to put anything that you
3251want to have in the parser implementation file but which need not come
3252before the definition of @code{yyparse}. For example, the definitions
3253of @code{yylex} and @code{yyerror} often go here. Because C requires
3254functions to be declared before being used, you often need to declare
3255functions like @code{yylex} and @code{yyerror} in the Prologue, even
3256if you define them in the Epilogue. @xref{Interface, ,Parser
3257C-Language Interface}.
bfa74976
RS
3258
3259If the last section is empty, you may omit the @samp{%%} that separates it
3260from the grammar rules.
3261
f8e1c9e5
AD
3262The Bison parser itself contains many macros and identifiers whose names
3263start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3264any such names (except those documented in this manual) in the epilogue
3265of the grammar file.
bfa74976 3266
342b8b6e 3267@node Symbols
bfa74976
RS
3268@section Symbols, Terminal and Nonterminal
3269@cindex nonterminal symbol
3270@cindex terminal symbol
3271@cindex token type
3272@cindex symbol
3273
3274@dfn{Symbols} in Bison grammars represent the grammatical classifications
3275of the language.
3276
3277A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3278class of syntactically equivalent tokens. You use the symbol in grammar
3279rules to mean that a token in that class is allowed. The symbol is
3280represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3281function returns a token type code to indicate what kind of token has
3282been read. You don't need to know what the code value is; you can use
3283the symbol to stand for it.
bfa74976 3284
f8e1c9e5
AD
3285A @dfn{nonterminal symbol} stands for a class of syntactically
3286equivalent groupings. The symbol name is used in writing grammar rules.
3287By convention, it should be all lower case.
bfa74976 3288
82f3355e
JD
3289Symbol names can contain letters, underscores, periods, and non-initial
3290digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3291with POSIX Yacc. Periods and dashes make symbol names less convenient to
3292use with named references, which require brackets around such names
3293(@pxref{Named References}). Terminal symbols that contain periods or dashes
3294make little sense: since they are not valid symbols (in most programming
3295languages) they are not exported as token names.
bfa74976 3296
931c7513 3297There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3298
3299@itemize @bullet
3300@item
3301A @dfn{named token type} is written with an identifier, like an
c827f760 3302identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3303such name must be defined with a Bison declaration such as
3304@code{%token}. @xref{Token Decl, ,Token Type Names}.
3305
3306@item
3307@cindex character token
3308@cindex literal token
3309@cindex single-character literal
931c7513
RS
3310A @dfn{character token type} (or @dfn{literal character token}) is
3311written in the grammar using the same syntax used in C for character
3312constants; for example, @code{'+'} is a character token type. A
3313character token type doesn't need to be declared unless you need to
3314specify its semantic value data type (@pxref{Value Type, ,Data Types of
3315Semantic Values}), associativity, or precedence (@pxref{Precedence,
3316,Operator Precedence}).
bfa74976
RS
3317
3318By convention, a character token type is used only to represent a
3319token that consists of that particular character. Thus, the token
3320type @code{'+'} is used to represent the character @samp{+} as a
3321token. Nothing enforces this convention, but if you depart from it,
3322your program will confuse other readers.
3323
3324All the usual escape sequences used in character literals in C can be
3325used in Bison as well, but you must not use the null character as a
72d2299c
PE
3326character literal because its numeric code, zero, signifies
3327end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3328for @code{yylex}}). Also, unlike standard C, trigraphs have no
3329special meaning in Bison character literals, nor is backslash-newline
3330allowed.
931c7513
RS
3331
3332@item
3333@cindex string token
3334@cindex literal string token
9ecbd125 3335@cindex multicharacter literal
931c7513
RS
3336A @dfn{literal string token} is written like a C string constant; for
3337example, @code{"<="} is a literal string token. A literal string token
3338doesn't need to be declared unless you need to specify its semantic
14ded682 3339value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3340(@pxref{Precedence}).
3341
3342You can associate the literal string token with a symbolic name as an
3343alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3344Declarations}). If you don't do that, the lexical analyzer has to
3345retrieve the token number for the literal string token from the
3346@code{yytname} table (@pxref{Calling Convention}).
3347
c827f760 3348@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3349
3350By convention, a literal string token is used only to represent a token
3351that consists of that particular string. Thus, you should use the token
3352type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3353does not enforce this convention, but if you depart from it, people who
931c7513
RS
3354read your program will be confused.
3355
3356All the escape sequences used in string literals in C can be used in
92ac3705
PE
3357Bison as well, except that you must not use a null character within a
3358string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3359meaning in Bison string literals, nor is backslash-newline allowed. A
3360literal string token must contain two or more characters; for a token
3361containing just one character, use a character token (see above).
bfa74976
RS
3362@end itemize
3363
3364How you choose to write a terminal symbol has no effect on its
3365grammatical meaning. That depends only on where it appears in rules and
3366on when the parser function returns that symbol.
3367
72d2299c
PE
3368The value returned by @code{yylex} is always one of the terminal
3369symbols, except that a zero or negative value signifies end-of-input.
3370Whichever way you write the token type in the grammar rules, you write
3371it the same way in the definition of @code{yylex}. The numeric code
3372for a character token type is simply the positive numeric code of the
3373character, so @code{yylex} can use the identical value to generate the
3374requisite code, though you may need to convert it to @code{unsigned
3375char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3376Each named token type becomes a C macro in the parser implementation
3377file, so @code{yylex} can use the name to stand for the code. (This
3378is why periods don't make sense in terminal symbols.) @xref{Calling
3379Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3380
3381If @code{yylex} is defined in a separate file, you need to arrange for the
3382token-type macro definitions to be available there. Use the @samp{-d}
3383option when you run Bison, so that it will write these macro definitions
3384into a separate header file @file{@var{name}.tab.h} which you can include
3385in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3386
72d2299c 3387If you want to write a grammar that is portable to any Standard C
9d9b8b70 3388host, you must use only nonnull character tokens taken from the basic
c827f760 3389execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3390digits, the 52 lower- and upper-case English letters, and the
3391characters in the following C-language string:
3392
3393@example
3394"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3395@end example
3396
f8e1c9e5
AD
3397The @code{yylex} function and Bison must use a consistent character set
3398and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3399ASCII environment, but then compile and run the resulting
f8e1c9e5 3400program in an environment that uses an incompatible character set like
8a4281b9
JD
3401EBCDIC, the resulting program may not work because the tables
3402generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3403character tokens. It is standard practice for software distributions to
3404contain C source files that were generated by Bison in an
8a4281b9
JD
3405ASCII environment, so installers on platforms that are
3406incompatible with ASCII must rebuild those files before
f8e1c9e5 3407compiling them.
e966383b 3408
bfa74976
RS
3409The symbol @code{error} is a terminal symbol reserved for error recovery
3410(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3411In particular, @code{yylex} should never return this value. The default
3412value of the error token is 256, unless you explicitly assigned 256 to
3413one of your tokens with a @code{%token} declaration.
bfa74976 3414
342b8b6e 3415@node Rules
09add9c2
AD
3416@section Grammar Rules
3417
3418A Bison grammar is a list of rules.
3419
3420@menu
3421* Rules Syntax:: Syntax of the rules.
3422* Empty Rules:: Symbols that can match the empty string.
3423* Recursion:: Writing recursive rules.
3424@end menu
3425
3426@node Rules Syntax
3427@subsection Syntax of Grammar Rules
bfa74976
RS
3428@cindex rule syntax
3429@cindex grammar rule syntax
3430@cindex syntax of grammar rules
3431
3432A Bison grammar rule has the following general form:
3433
3434@example
5e9b6624 3435@var{result}: @var{components}@dots{};
bfa74976
RS
3436@end example
3437
3438@noindent
9ecbd125 3439where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3440and @var{components} are various terminal and nonterminal symbols that
13863333 3441are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3442
3443For example,
3444
3445@example
5e9b6624 3446exp: exp '+' exp;
bfa74976
RS
3447@end example
3448
3449@noindent
3450says that two groupings of type @code{exp}, with a @samp{+} token in between,
3451can be combined into a larger grouping of type @code{exp}.
3452
72d2299c
PE
3453White space in rules is significant only to separate symbols. You can add
3454extra white space as you wish.
bfa74976
RS
3455
3456Scattered among the components can be @var{actions} that determine
3457the semantics of the rule. An action looks like this:
3458
3459@example
3460@{@var{C statements}@}
3461@end example
3462
3463@noindent
287c78f6
PE
3464@cindex braced code
3465This is an example of @dfn{braced code}, that is, C code surrounded by
3466braces, much like a compound statement in C@. Braced code can contain
3467any sequence of C tokens, so long as its braces are balanced. Bison
3468does not check the braced code for correctness directly; it merely
ff7571c0
JD
3469copies the code to the parser implementation file, where the C
3470compiler can check it.
287c78f6
PE
3471
3472Within braced code, the balanced-brace count is not affected by braces
3473within comments, string literals, or character constants, but it is
3474affected by the C digraphs @samp{<%} and @samp{%>} that represent
3475braces. At the top level braced code must be terminated by @samp{@}}
3476and not by a digraph. Bison does not look for trigraphs, so if braced
3477code uses trigraphs you should ensure that they do not affect the
3478nesting of braces or the boundaries of comments, string literals, or
3479character constants.
3480
bfa74976
RS
3481Usually there is only one action and it follows the components.
3482@xref{Actions}.
3483
3484@findex |
3485Multiple rules for the same @var{result} can be written separately or can
3486be joined with the vertical-bar character @samp{|} as follows:
3487
bfa74976
RS
3488@example
3489@group
5e9b6624
AD
3490@var{result}:
3491 @var{rule1-components}@dots{}
3492| @var{rule2-components}@dots{}
3493@dots{}
3494;
bfa74976
RS
3495@end group
3496@end example
bfa74976
RS
3497
3498@noindent
3499They are still considered distinct rules even when joined in this way.
3500
09add9c2
AD
3501@node Empty Rules
3502@subsection Empty Rules
3503@cindex empty rule
3504@cindex rule, empty
3505@findex %empty
3506
3507A rule is said to be @dfn{empty} if its right-hand side (@var{components})
3508is empty. It means that @var{result} can match the empty string. For
3509example, here is how to define an optional semicolon:
3510
3511@example
3512semicolon.opt: | ";";
3513@end example
3514
3515@noindent
3516It is easy not to see an empty rule, especially when @code{|} is used. The
3517@code{%empty} directive allows to make explicit that a rule is empty on
3518purpose:
bfa74976
RS
3519
3520@example
3521@group
09add9c2
AD
3522semicolon.opt:
3523 %empty
3524| ";"
5e9b6624 3525;
bfa74976 3526@end group
09add9c2 3527@end example
bfa74976 3528
09add9c2
AD
3529Flagging a non-empty rule with @code{%empty} is an error. If run with
3530@option{-Wempty-rule}, @command{bison} will report empty rules without
3531@code{%empty}. Using @code{%empty} enables this warning, unless
3532@option{-Wno-empty-rule} was specified.
3533
3534The @code{%empty} directive is a Bison extension, it does not work with
3535Yacc. To remain compatible with POSIX Yacc, it is customary to write a
3536comment @samp{/* empty */} in each rule with no components:
3537
3538@example
bfa74976 3539@group
09add9c2
AD
3540semicolon.opt:
3541 /* empty */
3542| ";"
5e9b6624 3543;
bfa74976
RS
3544@end group
3545@end example
3546
bfa74976 3547
342b8b6e 3548@node Recursion
09add9c2 3549@subsection Recursive Rules
bfa74976 3550@cindex recursive rule
09add9c2 3551@cindex rule, recursive
bfa74976 3552
f8e1c9e5
AD
3553A rule is called @dfn{recursive} when its @var{result} nonterminal
3554appears also on its right hand side. Nearly all Bison grammars need to
3555use recursion, because that is the only way to define a sequence of any
3556number of a particular thing. Consider this recursive definition of a
9ecbd125 3557comma-separated sequence of one or more expressions:
bfa74976
RS
3558
3559@example
3560@group
5e9b6624
AD
3561expseq1:
3562 exp
3563| expseq1 ',' exp
3564;
bfa74976
RS
3565@end group
3566@end example
3567
3568@cindex left recursion
3569@cindex right recursion
3570@noindent
3571Since the recursive use of @code{expseq1} is the leftmost symbol in the
3572right hand side, we call this @dfn{left recursion}. By contrast, here
3573the same construct is defined using @dfn{right recursion}:
3574
3575@example
3576@group
5e9b6624
AD
3577expseq1:
3578 exp
3579| exp ',' expseq1
3580;
bfa74976
RS
3581@end group
3582@end example
3583
3584@noindent
ec3bc396
AD
3585Any kind of sequence can be defined using either left recursion or right
3586recursion, but you should always use left recursion, because it can
3587parse a sequence of any number of elements with bounded stack space.
3588Right recursion uses up space on the Bison stack in proportion to the
3589number of elements in the sequence, because all the elements must be
3590shifted onto the stack before the rule can be applied even once.
3591@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3592of this.
bfa74976
RS
3593
3594@cindex mutual recursion
3595@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3596rule does not appear directly on its right hand side, but does appear
3597in rules for other nonterminals which do appear on its right hand
13863333 3598side.
bfa74976
RS
3599
3600For example:
3601
3602@example
3603@group
5e9b6624
AD
3604expr:
3605 primary
3606| primary '+' primary
3607;
bfa74976
RS
3608@end group
3609
3610@group
5e9b6624
AD
3611primary:
3612 constant
3613| '(' expr ')'
3614;
bfa74976
RS
3615@end group
3616@end example
3617
3618@noindent
3619defines two mutually-recursive nonterminals, since each refers to the
3620other.
3621
342b8b6e 3622@node Semantics
bfa74976
RS
3623@section Defining Language Semantics
3624@cindex defining language semantics
13863333 3625@cindex language semantics, defining
bfa74976
RS
3626
3627The grammar rules for a language determine only the syntax. The semantics
3628are determined by the semantic values associated with various tokens and
3629groupings, and by the actions taken when various groupings are recognized.
3630
3631For example, the calculator calculates properly because the value
3632associated with each expression is the proper number; it adds properly
3633because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3634the numbers associated with @var{x} and @var{y}.
3635
3636@menu
3637* Value Type:: Specifying one data type for all semantic values.
3638* Multiple Types:: Specifying several alternative data types.
3639* Actions:: An action is the semantic definition of a grammar rule.
3640* Action Types:: Specifying data types for actions to operate on.
3641* Mid-Rule Actions:: Most actions go at the end of a rule.
3642 This says when, why and how to use the exceptional
3643 action in the middle of a rule.
3644@end menu
3645
342b8b6e 3646@node Value Type
bfa74976
RS
3647@subsection Data Types of Semantic Values
3648@cindex semantic value type
3649@cindex value type, semantic
3650@cindex data types of semantic values
3651@cindex default data type
3652
3653In a simple program it may be sufficient to use the same data type for
3654the semantic values of all language constructs. This was true in the
8a4281b9 3655RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3656Notation Calculator}).
bfa74976 3657
ddc8ede1
PE
3658Bison normally uses the type @code{int} for semantic values if your
3659program uses the same data type for all language constructs. To
bfa74976
RS
3660specify some other type, define @code{YYSTYPE} as a macro, like this:
3661
3662@example
3663#define YYSTYPE double
3664@end example
3665
3666@noindent
50cce58e
PE
3667@code{YYSTYPE}'s replacement list should be a type name
3668that does not contain parentheses or square brackets.
342b8b6e 3669This macro definition must go in the prologue of the grammar file
75f5aaea 3670(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3671
342b8b6e 3672@node Multiple Types
bfa74976
RS
3673@subsection More Than One Value Type
3674
3675In most programs, you will need different data types for different kinds
3676of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3677@code{int} or @code{long int}, while a string constant needs type
3678@code{char *}, and an identifier might need a pointer to an entry in the
3679symbol table.
bfa74976
RS
3680
3681To use more than one data type for semantic values in one parser, Bison
3682requires you to do two things:
3683
3684@itemize @bullet
3685@item
ddc8ede1 3686Specify the entire collection of possible data types, either by using the
704a47c4 3687@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3688Value Types}), or by using a @code{typedef} or a @code{#define} to
3689define @code{YYSTYPE} to be a union type whose member names are
3690the type tags.
bfa74976
RS
3691
3692@item
14ded682
AD
3693Choose one of those types for each symbol (terminal or nonterminal) for
3694which semantic values are used. This is done for tokens with the
3695@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3696and for groupings with the @code{%type} Bison declaration (@pxref{Type
3697Decl, ,Nonterminal Symbols}).
bfa74976
RS
3698@end itemize
3699
342b8b6e 3700@node Actions
bfa74976
RS
3701@subsection Actions
3702@cindex action
3703@vindex $$
3704@vindex $@var{n}
d013372c
AR
3705@vindex $@var{name}
3706@vindex $[@var{name}]
bfa74976
RS
3707
3708An action accompanies a syntactic rule and contains C code to be executed
3709each time an instance of that rule is recognized. The task of most actions
3710is to compute a semantic value for the grouping built by the rule from the
3711semantic values associated with tokens or smaller groupings.
3712
287c78f6
PE
3713An action consists of braced code containing C statements, and can be
3714placed at any position in the rule;
704a47c4
AD
3715it is executed at that position. Most rules have just one action at the
3716end of the rule, following all the components. Actions in the middle of
3717a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3718Actions, ,Actions in Mid-Rule}).
bfa74976 3719
ff7571c0
JD
3720The C code in an action can refer to the semantic values of the
3721components matched by the rule with the construct @code{$@var{n}},
3722which stands for the value of the @var{n}th component. The semantic
3723value for the grouping being constructed is @code{$$}. In addition,
3724the semantic values of symbols can be accessed with the named
3725references construct @code{$@var{name}} or @code{$[@var{name}]}.
3726Bison translates both of these constructs into expressions of the
3727appropriate type when it copies the actions into the parser
3728implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3729for the current grouping) is translated to a modifiable lvalue, so it
3730can be assigned to.
bfa74976
RS
3731
3732Here is a typical example:
3733
3734@example
3735@group
5e9b6624
AD
3736exp:
3737@dots{}
3738| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3739@end group
3740@end example
3741
d013372c
AR
3742Or, in terms of named references:
3743
3744@example
3745@group
5e9b6624
AD
3746exp[result]:
3747@dots{}
3748| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3749@end group
3750@end example
3751
bfa74976
RS
3752@noindent
3753This rule constructs an @code{exp} from two smaller @code{exp} groupings
3754connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3755(@code{$left} and @code{$right})
bfa74976
RS
3756refer to the semantic values of the two component @code{exp} groupings,
3757which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3758The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3759semantic value of
bfa74976
RS
3760the addition-expression just recognized by the rule. If there were a
3761useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3762referred to as @code{$2}.
bfa74976 3763
a7b15ab9
JD
3764@xref{Named References}, for more information about using the named
3765references construct.
d013372c 3766
3ded9a63
AD
3767Note that the vertical-bar character @samp{|} is really a rule
3768separator, and actions are attached to a single rule. This is a
3769difference with tools like Flex, for which @samp{|} stands for either
3770``or'', or ``the same action as that of the next rule''. In the
3771following example, the action is triggered only when @samp{b} is found:
3772
3773@example
3ded9a63 3774a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3775@end example
3776
bfa74976
RS
3777@cindex default action
3778If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3779@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3780becomes the value of the whole rule. Of course, the default action is
3781valid only if the two data types match. There is no meaningful default
3782action for an empty rule; every empty rule must have an explicit action
3783unless the rule's value does not matter.
bfa74976
RS
3784
3785@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3786to tokens and groupings on the stack @emph{before} those that match the
3787current rule. This is a very risky practice, and to use it reliably
3788you must be certain of the context in which the rule is applied. Here
3789is a case in which you can use this reliably:
3790
3791@example
3792@group
5e9b6624
AD
3793foo:
3794 expr bar '+' expr @{ @dots{} @}
3795| expr bar '-' expr @{ @dots{} @}
3796;
bfa74976
RS
3797@end group
3798
3799@group
5e9b6624 3800bar:
6240346a 3801 %empty @{ previous_expr = $0; @}
5e9b6624 3802;
bfa74976
RS
3803@end group
3804@end example
3805
3806As long as @code{bar} is used only in the fashion shown here, @code{$0}
3807always refers to the @code{expr} which precedes @code{bar} in the
3808definition of @code{foo}.
3809
32c29292 3810@vindex yylval
742e4900 3811It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3812any, from a semantic action.
3813This semantic value is stored in @code{yylval}.
3814@xref{Action Features, ,Special Features for Use in Actions}.
3815
342b8b6e 3816@node Action Types
bfa74976
RS
3817@subsection Data Types of Values in Actions
3818@cindex action data types
3819@cindex data types in actions
3820
3821If you have chosen a single data type for semantic values, the @code{$$}
3822and @code{$@var{n}} constructs always have that data type.
3823
3824If you have used @code{%union} to specify a variety of data types, then you
3825must declare a choice among these types for each terminal or nonterminal
3826symbol that can have a semantic value. Then each time you use @code{$$} or
3827@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3828in the rule. In this example,
bfa74976
RS
3829
3830@example
3831@group
5e9b6624
AD
3832exp:
3833 @dots{}
3834| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3835@end group
3836@end example
3837
3838@noindent
3839@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3840have the data type declared for the nonterminal symbol @code{exp}. If
3841@code{$2} were used, it would have the data type declared for the
e0c471a9 3842terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3843
3844Alternatively, you can specify the data type when you refer to the value,
3845by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3846reference. For example, if you have defined types as shown here:
3847
3848@example
3849@group
3850%union @{
3851 int itype;
3852 double dtype;
3853@}
3854@end group
3855@end example
3856
3857@noindent
3858then you can write @code{$<itype>1} to refer to the first subunit of the
3859rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3860
342b8b6e 3861@node Mid-Rule Actions
bfa74976
RS
3862@subsection Actions in Mid-Rule
3863@cindex actions in mid-rule
3864@cindex mid-rule actions
3865
3866Occasionally it is useful to put an action in the middle of a rule.
3867These actions are written just like usual end-of-rule actions, but they
3868are executed before the parser even recognizes the following components.
3869
be22823e
AD
3870@menu
3871* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
3872* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
3873* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
3874@end menu
3875
3876@node Using Mid-Rule Actions
3877@subsubsection Using Mid-Rule Actions
3878
bfa74976
RS
3879A mid-rule action may refer to the components preceding it using
3880@code{$@var{n}}, but it may not refer to subsequent components because
3881it is run before they are parsed.
3882
3883The mid-rule action itself counts as one of the components of the rule.
3884This makes a difference when there is another action later in the same rule
3885(and usually there is another at the end): you have to count the actions
3886along with the symbols when working out which number @var{n} to use in
3887@code{$@var{n}}.
3888
3889The mid-rule action can also have a semantic value. The action can set
3890its value with an assignment to @code{$$}, and actions later in the rule
3891can refer to the value using @code{$@var{n}}. Since there is no symbol
3892to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3893in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3894specify a data type each time you refer to this value.
bfa74976
RS
3895
3896There is no way to set the value of the entire rule with a mid-rule
3897action, because assignments to @code{$$} do not have that effect. The
3898only way to set the value for the entire rule is with an ordinary action
3899at the end of the rule.
3900
3901Here is an example from a hypothetical compiler, handling a @code{let}
3902statement that looks like @samp{let (@var{variable}) @var{statement}} and
3903serves to create a variable named @var{variable} temporarily for the
3904duration of @var{statement}. To parse this construct, we must put
3905@var{variable} into the symbol table while @var{statement} is parsed, then
3906remove it afterward. Here is how it is done:
3907
3908@example
3909@group
5e9b6624 3910stmt:
c949ada3
AD
3911 "let" '(' var ')'
3912 @{
3913 $<context>$ = push_context ();
3914 declare_variable ($3);
3915 @}
5e9b6624 3916 stmt
c949ada3
AD
3917 @{
3918 $$ = $6;
3919 pop_context ($<context>5);
3920 @}
bfa74976
RS
3921@end group
3922@end example
3923
3924@noindent
3925As soon as @samp{let (@var{variable})} has been recognized, the first
3926action is run. It saves a copy of the current semantic context (the
3927list of accessible variables) as its semantic value, using alternative
3928@code{context} in the data-type union. Then it calls
3929@code{declare_variable} to add the new variable to that list. Once the
3930first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
3931parsed.
3932
3933Note that the mid-rule action is component number 5, so the @samp{stmt} is
3934component number 6. Named references can be used to improve the readability
3935and maintainability (@pxref{Named References}):
3936
3937@example
3938@group
3939stmt:
3940 "let" '(' var ')'
3941 @{
3942 $<context>let = push_context ();
3943 declare_variable ($3);
3944 @}[let]
3945 stmt
3946 @{
3947 $$ = $6;
3948 pop_context ($<context>let);
3949 @}
3950@end group
3951@end example
bfa74976
RS
3952
3953After the embedded statement is parsed, its semantic value becomes the
3954value of the entire @code{let}-statement. Then the semantic value from the
3955earlier action is used to restore the prior list of variables. This
3956removes the temporary @code{let}-variable from the list so that it won't
3957appear to exist while the rest of the program is parsed.
3958
841a7737
JD
3959@findex %destructor
3960@cindex discarded symbols, mid-rule actions
3961@cindex error recovery, mid-rule actions
3962In the above example, if the parser initiates error recovery (@pxref{Error
3963Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3964it might discard the previous semantic context @code{$<context>5} without
3965restoring it.
3966Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3967Discarded Symbols}).
ec5479ce
JD
3968However, Bison currently provides no means to declare a destructor specific to
3969a particular mid-rule action's semantic value.
841a7737
JD
3970
3971One solution is to bury the mid-rule action inside a nonterminal symbol and to
3972declare a destructor for that symbol:
3973
3974@example
3975@group
3976%type <context> let
3977%destructor @{ pop_context ($$); @} let
09add9c2 3978@end group
841a7737
JD
3979
3980%%
3981
09add9c2 3982@group
5e9b6624
AD
3983stmt:
3984 let stmt
3985 @{
3986 $$ = $2;
be22823e 3987 pop_context ($let);
5e9b6624 3988 @};
09add9c2 3989@end group
841a7737 3990
09add9c2 3991@group
5e9b6624 3992let:
c949ada3 3993 "let" '(' var ')'
5e9b6624 3994 @{
be22823e 3995 $let = push_context ();
5e9b6624
AD
3996 declare_variable ($3);
3997 @};
841a7737
JD
3998
3999@end group
4000@end example
4001
4002@noindent
4003Note that the action is now at the end of its rule.
4004Any mid-rule action can be converted to an end-of-rule action in this way, and
4005this is what Bison actually does to implement mid-rule actions.
4006
be22823e
AD
4007@node Mid-Rule Action Translation
4008@subsubsection Mid-Rule Action Translation
4009@vindex $@@@var{n}
4010@vindex @@@var{n}
4011
4012As hinted earlier, mid-rule actions are actually transformed into regular
4013rules and actions. The various reports generated by Bison (textual,
4014graphical, etc., see @ref{Understanding, , Understanding Your Parser})
4015reveal this translation, best explained by means of an example. The
4016following rule:
4017
4018@example
4019exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
4020@end example
4021
4022@noindent
4023is translated into:
4024
4025@example
6240346a
AD
4026$@@1: %empty @{ a(); @};
4027$@@2: %empty @{ c(); @};
4028$@@3: %empty @{ d(); @};
be22823e
AD
4029exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
4030@end example
4031
4032@noindent
4033with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
4034
4035A mid-rule action is expected to generate a value if it uses @code{$$}, or
4036the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
4037action. In that case its nonterminal is rather named @code{@@@var{n}}:
4038
4039@example
4040exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4041@end example
4042
4043@noindent
4044is translated into
4045
4046@example
6240346a
AD
4047@@1: %empty @{ a(); @};
4048@@2: %empty @{ $$ = c(); @};
4049$@@3: %empty @{ d(); @};
be22823e
AD
4050exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
4051@end example
4052
4053There are probably two errors in the above example: the first mid-rule
4054action does not generate a value (it does not use @code{$$} although the
4055final action uses it), and the value of the second one is not used (the
4056final action does not use @code{$3}). Bison reports these errors when the
4057@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
4058Bison}):
4059
4060@example
4061$ bison -fcaret -Wmidrule-value mid.y
4062@group
4063mid.y:2.6-13: warning: unset value: $$
4064 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4065 ^^^^^^^^
4066@end group
4067@group
4068mid.y:2.19-31: warning: unused value: $3
4069 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4070 ^^^^^^^^^^^^^
4071@end group
4072@end example
4073
4074
4075@node Mid-Rule Conflicts
4076@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4077Taking action before a rule is completely recognized often leads to
4078conflicts since the parser must commit to a parse in order to execute the
4079action. For example, the following two rules, without mid-rule actions,
4080can coexist in a working parser because the parser can shift the open-brace
4081token and look at what follows before deciding whether there is a
4082declaration or not:
4083
4084@example
4085@group
5e9b6624
AD
4086compound:
4087 '@{' declarations statements '@}'
4088| '@{' statements '@}'
4089;
bfa74976
RS
4090@end group
4091@end example
4092
4093@noindent
4094But when we add a mid-rule action as follows, the rules become nonfunctional:
4095
4096@example
4097@group
5e9b6624
AD
4098compound:
4099 @{ prepare_for_local_variables (); @}
4100 '@{' declarations statements '@}'
bfa74976
RS
4101@end group
4102@group
5e9b6624
AD
4103| '@{' statements '@}'
4104;
bfa74976
RS
4105@end group
4106@end example
4107
4108@noindent
4109Now the parser is forced to decide whether to run the mid-rule action
4110when it has read no farther than the open-brace. In other words, it
4111must commit to using one rule or the other, without sufficient
4112information to do it correctly. (The open-brace token is what is called
742e4900
JD
4113the @dfn{lookahead} token at this time, since the parser is still
4114deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4115
4116You might think that you could correct the problem by putting identical
4117actions into the two rules, like this:
4118
4119@example
4120@group
5e9b6624
AD
4121compound:
4122 @{ prepare_for_local_variables (); @}
4123 '@{' declarations statements '@}'
4124| @{ prepare_for_local_variables (); @}
4125 '@{' statements '@}'
4126;
bfa74976
RS
4127@end group
4128@end example
4129
4130@noindent
4131But this does not help, because Bison does not realize that the two actions
4132are identical. (Bison never tries to understand the C code in an action.)
4133
4134If the grammar is such that a declaration can be distinguished from a
4135statement by the first token (which is true in C), then one solution which
4136does work is to put the action after the open-brace, like this:
4137
4138@example
4139@group
5e9b6624
AD
4140compound:
4141 '@{' @{ prepare_for_local_variables (); @}
4142 declarations statements '@}'
4143| '@{' statements '@}'
4144;
bfa74976
RS
4145@end group
4146@end example
4147
4148@noindent
4149Now the first token of the following declaration or statement,
4150which would in any case tell Bison which rule to use, can still do so.
4151
4152Another solution is to bury the action inside a nonterminal symbol which
4153serves as a subroutine:
4154
4155@example
4156@group
5e9b6624 4157subroutine:
6240346a 4158 %empty @{ prepare_for_local_variables (); @}
5e9b6624 4159;
bfa74976
RS
4160@end group
4161
4162@group
5e9b6624
AD
4163compound:
4164 subroutine '@{' declarations statements '@}'
4165| subroutine '@{' statements '@}'
4166;
bfa74976
RS
4167@end group
4168@end example
4169
4170@noindent
4171Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4172deciding which rule for @code{compound} it will eventually use.
bfa74976 4173
be22823e 4174
303834cc 4175@node Tracking Locations
847bf1f5
AD
4176@section Tracking Locations
4177@cindex location
95923bd6
AD
4178@cindex textual location
4179@cindex location, textual
847bf1f5
AD
4180
4181Though grammar rules and semantic actions are enough to write a fully
72d2299c 4182functional parser, it can be useful to process some additional information,
3e259915
MA
4183especially symbol locations.
4184
704a47c4
AD
4185The way locations are handled is defined by providing a data type, and
4186actions to take when rules are matched.
847bf1f5
AD
4187
4188@menu
4189* Location Type:: Specifying a data type for locations.
4190* Actions and Locations:: Using locations in actions.
4191* Location Default Action:: Defining a general way to compute locations.
4192@end menu
4193
342b8b6e 4194@node Location Type
847bf1f5
AD
4195@subsection Data Type of Locations
4196@cindex data type of locations
4197@cindex default location type
4198
4199Defining a data type for locations is much simpler than for semantic values,
4200since all tokens and groupings always use the same type.
4201
50cce58e
PE
4202You can specify the type of locations by defining a macro called
4203@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4204defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4205When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4206four members:
4207
4208@example
6273355b 4209typedef struct YYLTYPE
847bf1f5
AD
4210@{
4211 int first_line;
4212 int first_column;
4213 int last_line;
4214 int last_column;
6273355b 4215@} YYLTYPE;
847bf1f5
AD
4216@end example
4217
d59e456d
AD
4218When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4219initializes all these fields to 1 for @code{yylloc}. To initialize
4220@code{yylloc} with a custom location type (or to chose a different
4221initialization), use the @code{%initial-action} directive. @xref{Initial
4222Action Decl, , Performing Actions before Parsing}.
cd48d21d 4223
342b8b6e 4224@node Actions and Locations
847bf1f5
AD
4225@subsection Actions and Locations
4226@cindex location actions
4227@cindex actions, location
4228@vindex @@$
4229@vindex @@@var{n}
d013372c
AR
4230@vindex @@@var{name}
4231@vindex @@[@var{name}]
847bf1f5
AD
4232
4233Actions are not only useful for defining language semantics, but also for
4234describing the behavior of the output parser with locations.
4235
4236The most obvious way for building locations of syntactic groupings is very
72d2299c 4237similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4238constructs can be used to access the locations of the elements being matched.
4239The location of the @var{n}th component of the right hand side is
4240@code{@@@var{n}}, while the location of the left hand side grouping is
4241@code{@@$}.
4242
d013372c
AR
4243In addition, the named references construct @code{@@@var{name}} and
4244@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4245@xref{Named References}, for more information about using the named
4246references construct.
d013372c 4247
3e259915 4248Here is a basic example using the default data type for locations:
847bf1f5
AD
4249
4250@example
4251@group
5e9b6624
AD
4252exp:
4253 @dots{}
4254| exp '/' exp
4255 @{
4256 @@$.first_column = @@1.first_column;
4257 @@$.first_line = @@1.first_line;
4258 @@$.last_column = @@3.last_column;
4259 @@$.last_line = @@3.last_line;
4260 if ($3)
4261 $$ = $1 / $3;
4262 else
4263 @{
4264 $$ = 1;
4265 fprintf (stderr,
4266 "Division by zero, l%d,c%d-l%d,c%d",
4267 @@3.first_line, @@3.first_column,
4268 @@3.last_line, @@3.last_column);
4269 @}
4270 @}
847bf1f5
AD
4271@end group
4272@end example
4273
3e259915 4274As for semantic values, there is a default action for locations that is
72d2299c 4275run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4276beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4277last symbol.
3e259915 4278
72d2299c 4279With this default action, the location tracking can be fully automatic. The
3e259915
MA
4280example above simply rewrites this way:
4281
4282@example
4283@group
5e9b6624
AD
4284exp:
4285 @dots{}
4286| exp '/' exp
4287 @{
4288 if ($3)
4289 $$ = $1 / $3;
4290 else
4291 @{
4292 $$ = 1;
4293 fprintf (stderr,
4294 "Division by zero, l%d,c%d-l%d,c%d",
4295 @@3.first_line, @@3.first_column,
4296 @@3.last_line, @@3.last_column);
4297 @}
4298 @}
3e259915
MA
4299@end group
4300@end example
847bf1f5 4301
32c29292 4302@vindex yylloc
742e4900 4303It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4304from a semantic action.
4305This location is stored in @code{yylloc}.
4306@xref{Action Features, ,Special Features for Use in Actions}.
4307
342b8b6e 4308@node Location Default Action
847bf1f5
AD
4309@subsection Default Action for Locations
4310@vindex YYLLOC_DEFAULT
8a4281b9 4311@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4312
72d2299c 4313Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4314locations are much more general than semantic values, there is room in
4315the output parser to redefine the default action to take for each
72d2299c 4316rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4317matched, before the associated action is run. It is also invoked
4318while processing a syntax error, to compute the error's location.
8a4281b9 4319Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4320parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4321of that ambiguity.
847bf1f5 4322
3e259915 4323Most of the time, this macro is general enough to suppress location
79282c6c 4324dedicated code from semantic actions.
847bf1f5 4325
72d2299c 4326The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4327the location of the grouping (the result of the computation). When a
766de5eb 4328rule is matched, the second parameter identifies locations of
96b93a3d 4329all right hand side elements of the rule being matched, and the third
8710fc41 4330parameter is the size of the rule's right hand side.
8a4281b9 4331When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4332right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4333When processing a syntax error, the second parameter identifies locations
4334of the symbols that were discarded during error processing, and the third
96b93a3d 4335parameter is the number of discarded symbols.
847bf1f5 4336
766de5eb 4337By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4338
c93f22fc
AD
4339@example
4340@group
4341# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4342do \
4343 if (N) \
4344 @{ \
4345 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4346 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4347 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4348 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4349 @} \
4350 else \
4351 @{ \
4352 (Cur).first_line = (Cur).last_line = \
4353 YYRHSLOC(Rhs, 0).last_line; \
4354 (Cur).first_column = (Cur).last_column = \
4355 YYRHSLOC(Rhs, 0).last_column; \
4356 @} \
4357while (0)
4358@end group
4359@end example
676385e2 4360
aaaa2aae 4361@noindent
766de5eb
PE
4362where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4363in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4364just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4365
3e259915 4366When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4367
3e259915 4368@itemize @bullet
79282c6c 4369@item
72d2299c 4370All arguments are free of side-effects. However, only the first one (the
3e259915 4371result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4372
3e259915 4373@item
766de5eb
PE
4374For consistency with semantic actions, valid indexes within the
4375right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4376valid index, and it refers to the symbol just before the reduction.
4377During error processing @var{n} is always positive.
0ae99356
PE
4378
4379@item
4380Your macro should parenthesize its arguments, if need be, since the
4381actual arguments may not be surrounded by parentheses. Also, your
4382macro should expand to something that can be used as a single
4383statement when it is followed by a semicolon.
3e259915 4384@end itemize
847bf1f5 4385
378e917c 4386@node Named References
a7b15ab9 4387@section Named References
378e917c
JD
4388@cindex named references
4389
a40e77eb
JD
4390As described in the preceding sections, the traditional way to refer to any
4391semantic value or location is a @dfn{positional reference}, which takes the
4392form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4393such a reference is not very descriptive. Moreover, if you later decide to
4394insert or remove symbols in the right-hand side of a grammar rule, the need
4395to renumber such references can be tedious and error-prone.
4396
4397To avoid these issues, you can also refer to a semantic value or location
4398using a @dfn{named reference}. First of all, original symbol names may be
4399used as named references. For example:
378e917c
JD
4400
4401@example
4402@group
4403invocation: op '(' args ')'
4404 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4405@end group
4406@end example
4407
4408@noindent
a40e77eb 4409Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4410
4411@example
4412@group
4413invocation: op '(' args ')'
4414 @{ $$ = new_invocation ($op, $args, @@$); @}
4415@end group
4416@end example
4417
4418@noindent
4419However, sometimes regular symbol names are not sufficient due to
4420ambiguities:
4421
4422@example
4423@group
4424exp: exp '/' exp
4425 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4426
4427exp: exp '/' exp
4428 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4429
4430exp: exp '/' exp
4431 @{ $$ = $1 / $3; @} // No error.
4432@end group
4433@end example
4434
4435@noindent
4436When ambiguity occurs, explicitly declared names may be used for values and
4437locations. Explicit names are declared as a bracketed name after a symbol
4438appearance in rule definitions. For example:
4439@example
4440@group
4441exp[result]: exp[left] '/' exp[right]
4442 @{ $result = $left / $right; @}
4443@end group
4444@end example
4445
4446@noindent
a7b15ab9
JD
4447In order to access a semantic value generated by a mid-rule action, an
4448explicit name may also be declared by putting a bracketed name after the
4449closing brace of the mid-rule action code:
378e917c
JD
4450@example
4451@group
4452exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4453 @{ $res = $left + $right; @}
4454@end group
4455@end example
4456
4457@noindent
4458
4459In references, in order to specify names containing dots and dashes, an explicit
4460bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4461@example
4462@group
762caaf6 4463if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4464 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4465@end group
4466@end example
4467
4468It often happens that named references are followed by a dot, dash or other
4469C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4470@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4471@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4472value. In order to force Bison to recognize @samp{name.suffix} in its
4473entirety as the name of a semantic value, the bracketed syntax
4474@samp{$[name.suffix]} must be used.
4475
4476The named references feature is experimental. More user feedback will help
4477to stabilize it.
378e917c 4478
342b8b6e 4479@node Declarations
bfa74976
RS
4480@section Bison Declarations
4481@cindex declarations, Bison
4482@cindex Bison declarations
4483
4484The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4485used in formulating the grammar and the data types of semantic values.
4486@xref{Symbols}.
4487
4488All token type names (but not single-character literal tokens such as
4489@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4490declared if you need to specify which data type to use for the semantic
4491value (@pxref{Multiple Types, ,More Than One Value Type}).
4492
ff7571c0
JD
4493The first rule in the grammar file also specifies the start symbol, by
4494default. If you want some other symbol to be the start symbol, you
4495must declare it explicitly (@pxref{Language and Grammar, ,Languages
4496and Context-Free Grammars}).
bfa74976
RS
4497
4498@menu
b50d2359 4499* Require Decl:: Requiring a Bison version.
bfa74976
RS
4500* Token Decl:: Declaring terminal symbols.
4501* Precedence Decl:: Declaring terminals with precedence and associativity.
4502* Union Decl:: Declaring the set of all semantic value types.
4503* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4504* Initial Action Decl:: Code run before parsing starts.
72f889cc 4505* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4506* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4507* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4508* Start Decl:: Specifying the start symbol.
4509* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4510* Push Decl:: Requesting a push parser.
bfa74976 4511* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4512* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4513* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4514@end menu
4515
b50d2359
AD
4516@node Require Decl
4517@subsection Require a Version of Bison
4518@cindex version requirement
4519@cindex requiring a version of Bison
4520@findex %require
4521
4522You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4523the requirement is not met, @command{bison} exits with an error (exit
4524status 63).
b50d2359
AD
4525
4526@example
4527%require "@var{version}"
4528@end example
4529
342b8b6e 4530@node Token Decl
bfa74976
RS
4531@subsection Token Type Names
4532@cindex declaring token type names
4533@cindex token type names, declaring
931c7513 4534@cindex declaring literal string tokens
bfa74976
RS
4535@findex %token
4536
4537The basic way to declare a token type name (terminal symbol) is as follows:
4538
4539@example
4540%token @var{name}
4541@end example
4542
4543Bison will convert this into a @code{#define} directive in
4544the parser, so that the function @code{yylex} (if it is in this file)
4545can use the name @var{name} to stand for this token type's code.
4546
d78f0ac9
AD
4547Alternatively, you can use @code{%left}, @code{%right},
4548@code{%precedence}, or
14ded682
AD
4549@code{%nonassoc} instead of @code{%token}, if you wish to specify
4550associativity and precedence. @xref{Precedence Decl, ,Operator
4551Precedence}.
bfa74976
RS
4552
4553You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4554a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4555following the token name:
bfa74976
RS
4556
4557@example
4558%token NUM 300
1452af69 4559%token XNUM 0x12d // a GNU extension
bfa74976
RS
4560@end example
4561
4562@noindent
4563It is generally best, however, to let Bison choose the numeric codes for
4564all token types. Bison will automatically select codes that don't conflict
e966383b 4565with each other or with normal characters.
bfa74976
RS
4566
4567In the event that the stack type is a union, you must augment the
4568@code{%token} or other token declaration to include the data type
704a47c4
AD
4569alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4570Than One Value Type}).
bfa74976
RS
4571
4572For example:
4573
4574@example
4575@group
4576%union @{ /* define stack type */
4577 double val;
4578 symrec *tptr;
4579@}
4580%token <val> NUM /* define token NUM and its type */
4581@end group
4582@end example
4583
931c7513
RS
4584You can associate a literal string token with a token type name by
4585writing the literal string at the end of a @code{%token}
4586declaration which declares the name. For example:
4587
4588@example
4589%token arrow "=>"
4590@end example
4591
4592@noindent
4593For example, a grammar for the C language might specify these names with
4594equivalent literal string tokens:
4595
4596@example
4597%token <operator> OR "||"
4598%token <operator> LE 134 "<="
4599%left OR "<="
4600@end example
4601
4602@noindent
4603Once you equate the literal string and the token name, you can use them
4604interchangeably in further declarations or the grammar rules. The
4605@code{yylex} function can use the token name or the literal string to
4606obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4607Syntax error messages passed to @code{yyerror} from the parser will reference
4608the literal string instead of the token name.
4609
4610The token numbered as 0 corresponds to end of file; the following line
4611allows for nicer error messages referring to ``end of file'' instead
4612of ``$end'':
4613
4614@example
4615%token END 0 "end of file"
4616@end example
931c7513 4617
342b8b6e 4618@node Precedence Decl
bfa74976
RS
4619@subsection Operator Precedence
4620@cindex precedence declarations
4621@cindex declaring operator precedence
4622@cindex operator precedence, declaring
4623
d78f0ac9
AD
4624Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4625@code{%precedence} declaration to
bfa74976
RS
4626declare a token and specify its precedence and associativity, all at
4627once. These are called @dfn{precedence declarations}.
704a47c4
AD
4628@xref{Precedence, ,Operator Precedence}, for general information on
4629operator precedence.
bfa74976 4630
ab7f29f8 4631The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4632@code{%token}: either
4633
4634@example
4635%left @var{symbols}@dots{}
4636@end example
4637
4638@noindent
4639or
4640
4641@example
4642%left <@var{type}> @var{symbols}@dots{}
4643@end example
4644
4645And indeed any of these declarations serves the purposes of @code{%token}.
4646But in addition, they specify the associativity and relative precedence for
4647all the @var{symbols}:
4648
4649@itemize @bullet
4650@item
4651The associativity of an operator @var{op} determines how repeated uses
4652of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4653@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4654grouping @var{y} with @var{z} first. @code{%left} specifies
4655left-associativity (grouping @var{x} with @var{y} first) and
4656@code{%right} specifies right-associativity (grouping @var{y} with
4657@var{z} first). @code{%nonassoc} specifies no associativity, which
4658means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4659considered a syntax error.
4660
d78f0ac9
AD
4661@code{%precedence} gives only precedence to the @var{symbols}, and
4662defines no associativity at all. Use this to define precedence only,
4663and leave any potential conflict due to associativity enabled.
4664
bfa74976
RS
4665@item
4666The precedence of an operator determines how it nests with other operators.
4667All the tokens declared in a single precedence declaration have equal
4668precedence and nest together according to their associativity.
4669When two tokens declared in different precedence declarations associate,
4670the one declared later has the higher precedence and is grouped first.
4671@end itemize
4672
ab7f29f8
JD
4673For backward compatibility, there is a confusing difference between the
4674argument lists of @code{%token} and precedence declarations.
4675Only a @code{%token} can associate a literal string with a token type name.
4676A precedence declaration always interprets a literal string as a reference to a
4677separate token.
4678For example:
4679
4680@example
4681%left OR "<=" // Does not declare an alias.
4682%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4683@end example
4684
342b8b6e 4685@node Union Decl
bfa74976
RS
4686@subsection The Collection of Value Types
4687@cindex declaring value types
4688@cindex value types, declaring
4689@findex %union
4690
287c78f6
PE
4691The @code{%union} declaration specifies the entire collection of
4692possible data types for semantic values. The keyword @code{%union} is
4693followed by braced code containing the same thing that goes inside a
4694@code{union} in C@.
bfa74976
RS
4695
4696For example:
4697
4698@example
4699@group
4700%union @{
4701 double val;
4702 symrec *tptr;
4703@}
4704@end group
4705@end example
4706
4707@noindent
4708This says that the two alternative types are @code{double} and @code{symrec
4709*}. They are given names @code{val} and @code{tptr}; these names are used
4710in the @code{%token} and @code{%type} declarations to pick one of the types
4711for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4712
8a4281b9 4713As an extension to POSIX, a tag is allowed after the
6273355b
PE
4714@code{union}. For example:
4715
4716@example
4717@group
4718%union value @{
4719 double val;
4720 symrec *tptr;
4721@}
4722@end group
4723@end example
4724
d6ca7905 4725@noindent
6273355b
PE
4726specifies the union tag @code{value}, so the corresponding C type is
4727@code{union value}. If you do not specify a tag, it defaults to
4728@code{YYSTYPE}.
4729
8a4281b9 4730As another extension to POSIX, you may specify multiple
d6ca7905
PE
4731@code{%union} declarations; their contents are concatenated. However,
4732only the first @code{%union} declaration can specify a tag.
4733
6273355b 4734Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4735a semicolon after the closing brace.
4736
ddc8ede1
PE
4737Instead of @code{%union}, you can define and use your own union type
4738@code{YYSTYPE} if your grammar contains at least one
4739@samp{<@var{type}>} tag. For example, you can put the following into
4740a header file @file{parser.h}:
4741
4742@example
4743@group
4744union YYSTYPE @{
4745 double val;
4746 symrec *tptr;
4747@};
4748typedef union YYSTYPE YYSTYPE;
4749@end group
4750@end example
4751
4752@noindent
4753and then your grammar can use the following
4754instead of @code{%union}:
4755
4756@example
4757@group
4758%@{
4759#include "parser.h"
4760%@}
4761%type <val> expr
4762%token <tptr> ID
4763@end group
4764@end example
4765
342b8b6e 4766@node Type Decl
bfa74976
RS
4767@subsection Nonterminal Symbols
4768@cindex declaring value types, nonterminals
4769@cindex value types, nonterminals, declaring
4770@findex %type
4771
4772@noindent
4773When you use @code{%union} to specify multiple value types, you must
4774declare the value type of each nonterminal symbol for which values are
4775used. This is done with a @code{%type} declaration, like this:
4776
4777@example
4778%type <@var{type}> @var{nonterminal}@dots{}
4779@end example
4780
4781@noindent
704a47c4
AD
4782Here @var{nonterminal} is the name of a nonterminal symbol, and
4783@var{type} is the name given in the @code{%union} to the alternative
4784that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4785can give any number of nonterminal symbols in the same @code{%type}
4786declaration, if they have the same value type. Use spaces to separate
4787the symbol names.
bfa74976 4788
931c7513
RS
4789You can also declare the value type of a terminal symbol. To do this,
4790use the same @code{<@var{type}>} construction in a declaration for the
4791terminal symbol. All kinds of token declarations allow
4792@code{<@var{type}>}.
4793
18d192f0
AD
4794@node Initial Action Decl
4795@subsection Performing Actions before Parsing
4796@findex %initial-action
4797
4798Sometimes your parser needs to perform some initializations before
4799parsing. The @code{%initial-action} directive allows for such arbitrary
4800code.
4801
4802@deffn {Directive} %initial-action @{ @var{code} @}
4803@findex %initial-action
287c78f6 4804Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4805@code{yyparse} is called. The @var{code} may use @code{$$} (or
4806@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4807lookahead --- and the @code{%parse-param}.
18d192f0
AD
4808@end deffn
4809
451364ed
AD
4810For instance, if your locations use a file name, you may use
4811
4812@example
48b16bbc 4813%parse-param @{ char const *file_name @};
451364ed
AD
4814%initial-action
4815@{
4626a15d 4816 @@$.initialize (file_name);
451364ed
AD
4817@};
4818@end example
4819
18d192f0 4820
72f889cc
AD
4821@node Destructor Decl
4822@subsection Freeing Discarded Symbols
4823@cindex freeing discarded symbols
4824@findex %destructor
12e35840 4825@findex <*>
3ebecc24 4826@findex <>
a85284cf
AD
4827During error recovery (@pxref{Error Recovery}), symbols already pushed
4828on the stack and tokens coming from the rest of the file are discarded
4829until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4830or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4831symbols on the stack must be discarded. Even if the parser succeeds, it
4832must discard the start symbol.
258b75ca
PE
4833
4834When discarded symbols convey heap based information, this memory is
4835lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4836in traditional compilers, it is unacceptable for programs like shells or
4837protocol implementations that may parse and execute indefinitely.
258b75ca 4838
a85284cf
AD
4839The @code{%destructor} directive defines code that is called when a
4840symbol is automatically discarded.
72f889cc
AD
4841
4842@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4843@findex %destructor
287c78f6 4844Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4845@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4846designates the semantic value associated with the discarded symbol, and
4847@code{@@$} designates its location. The additional parser parameters are
4848also available (@pxref{Parser Function, , The Parser Function
4849@code{yyparse}}).
ec5479ce 4850
b2a0b7ca
JD
4851When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4852per-symbol @code{%destructor}.
4853You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4854tag among @var{symbols}.
b2a0b7ca 4855In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4856grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4857per-symbol @code{%destructor}.
4858
12e35840 4859Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4860(These default forms are experimental.
4861More user feedback will help to determine whether they should become permanent
4862features.)
3ebecc24 4863You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4864exactly one @code{%destructor} declaration in your grammar file.
4865The parser will invoke the @var{code} associated with one of these whenever it
4866discards any user-defined grammar symbol that has no per-symbol and no per-type
4867@code{%destructor}.
4868The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4869symbol for which you have formally declared a semantic type tag (@code{%type}
4870counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4871The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4872symbol that has no declared semantic type tag.
72f889cc
AD
4873@end deffn
4874
b2a0b7ca 4875@noindent
12e35840 4876For example:
72f889cc 4877
c93f22fc 4878@example
ec5479ce
JD
4879%union @{ char *string; @}
4880%token <string> STRING1
4881%token <string> STRING2
4882%type <string> string1
4883%type <string> string2
b2a0b7ca
JD
4884%union @{ char character; @}
4885%token <character> CHR
4886%type <character> chr
12e35840
JD
4887%token TAGLESS
4888
b2a0b7ca 4889%destructor @{ @} <character>
12e35840
JD
4890%destructor @{ free ($$); @} <*>
4891%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4892%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4893@end example
72f889cc
AD
4894
4895@noindent
b2a0b7ca
JD
4896guarantees that, when the parser discards any user-defined symbol that has a
4897semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4898to @code{free} by default.
ec5479ce
JD
4899However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4900prints its line number to @code{stdout}.
4901It performs only the second @code{%destructor} in this case, so it invokes
4902@code{free} only once.
12e35840
JD
4903Finally, the parser merely prints a message whenever it discards any symbol,
4904such as @code{TAGLESS}, that has no semantic type tag.
4905
4906A Bison-generated parser invokes the default @code{%destructor}s only for
4907user-defined as opposed to Bison-defined symbols.
4908For example, the parser will not invoke either kind of default
4909@code{%destructor} for the special Bison-defined symbols @code{$accept},
4910@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4911none of which you can reference in your grammar.
4912It also will not invoke either for the @code{error} token (@pxref{Table of
4913Symbols, ,error}), which is always defined by Bison regardless of whether you
4914reference it in your grammar.
4915However, it may invoke one of them for the end token (token 0) if you
4916redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4917
c93f22fc 4918@example
3508ce36 4919%token END 0
c93f22fc 4920@end example
3508ce36 4921
12e35840
JD
4922@cindex actions in mid-rule
4923@cindex mid-rule actions
4924Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4925mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4926That is, Bison does not consider a mid-rule to have a semantic value if you
4927do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4928(where @var{n} is the right-hand side symbol position of the mid-rule) in
4929any later action in that rule. However, if you do reference either, the
4930Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4931it discards the mid-rule symbol.
12e35840 4932
3508ce36
JD
4933@ignore
4934@noindent
4935In the future, it may be possible to redefine the @code{error} token as a
4936nonterminal that captures the discarded symbols.
4937In that case, the parser will invoke the default destructor for it as well.
4938@end ignore
4939
e757bb10
AD
4940@sp 1
4941
4942@cindex discarded symbols
4943@dfn{Discarded symbols} are the following:
4944
4945@itemize
4946@item
4947stacked symbols popped during the first phase of error recovery,
4948@item
4949incoming terminals during the second phase of error recovery,
4950@item
742e4900 4951the current lookahead and the entire stack (except the current
9d9b8b70 4952right-hand side symbols) when the parser returns immediately, and
258b75ca 4953@item
d3e4409a
AD
4954the current lookahead and the entire stack (including the current right-hand
4955side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4956@code{parse},
4957@item
258b75ca 4958the start symbol, when the parser succeeds.
e757bb10
AD
4959@end itemize
4960
9d9b8b70
PE
4961The parser can @dfn{return immediately} because of an explicit call to
4962@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4963exhaustion.
4964
29553547 4965Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4966error via @code{YYERROR} are not discarded automatically. As a rule
4967of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4968the memory.
e757bb10 4969
93c150b6
AD
4970@node Printer Decl
4971@subsection Printing Semantic Values
4972@cindex printing semantic values
4973@findex %printer
4974@findex <*>
4975@findex <>
4976When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4977the parser reports its actions, such as reductions. When a symbol involved
4978in an action is reported, only its kind is displayed, as the parser cannot
4979know how semantic values should be formatted.
4980
4981The @code{%printer} directive defines code that is called when a symbol is
4982reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4983Decl, , Freeing Discarded Symbols}).
4984
4985@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4986@findex %printer
4987@vindex yyoutput
4988@c This is the same text as for %destructor.
4989Invoke the braced @var{code} whenever the parser displays one of the
4990@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4991(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4992@code{$<@var{tag}>$}) designates the semantic value associated with the
4993symbol, and @code{@@$} its location. The additional parser parameters are
4994also available (@pxref{Parser Function, , The Parser Function
4995@code{yyparse}}).
93c150b6
AD
4996
4997The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4998Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4999@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
5000typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
5001@samp{<>}).
5002@end deffn
5003
5004@noindent
5005For example:
5006
5007@example
5008%union @{ char *string; @}
5009%token <string> STRING1
5010%token <string> STRING2
5011%type <string> string1
5012%type <string> string2
5013%union @{ char character; @}
5014%token <character> CHR
5015%type <character> chr
5016%token TAGLESS
5017
5018%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
5019%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
5020%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
5021%printer @{ fprintf (yyoutput, "<>"); @} <>
5022@end example
5023
5024@noindent
5025guarantees that, when the parser print any symbol that has a semantic type
5026tag other than @code{<character>}, it display the address of the semantic
5027value by default. However, when the parser displays a @code{STRING1} or a
5028@code{string1}, it formats it as a string in double quotes. It performs
5029only the second @code{%printer} in this case, so it prints only once.
5030Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
5031that has no semantic type tag. See also
5032
5033
342b8b6e 5034@node Expect Decl
bfa74976
RS
5035@subsection Suppressing Conflict Warnings
5036@cindex suppressing conflict warnings
5037@cindex preventing warnings about conflicts
5038@cindex warnings, preventing
5039@cindex conflicts, suppressing warnings of
5040@findex %expect
d6328241 5041@findex %expect-rr
bfa74976
RS
5042
5043Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
5044(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
5045have harmless shift/reduce conflicts which are resolved in a predictable
5046way and would be difficult to eliminate. It is desirable to suppress
5047the warning about these conflicts unless the number of conflicts
5048changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
5049
5050The declaration looks like this:
5051
5052@example
5053%expect @var{n}
5054@end example
5055
035aa4a0
PE
5056Here @var{n} is a decimal integer. The declaration says there should
5057be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
5058Bison reports an error if the number of shift/reduce conflicts differs
5059from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 5060
eb45ef3b 5061For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 5062serious, and should be eliminated entirely. Bison will always report
8a4281b9 5063reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5064parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5065there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5066also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5067in GLR parsers, using the declaration:
d6328241
PH
5068
5069@example
5070%expect-rr @var{n}
5071@end example
5072
bfa74976
RS
5073In general, using @code{%expect} involves these steps:
5074
5075@itemize @bullet
5076@item
5077Compile your grammar without @code{%expect}. Use the @samp{-v} option
5078to get a verbose list of where the conflicts occur. Bison will also
5079print the number of conflicts.
5080
5081@item
5082Check each of the conflicts to make sure that Bison's default
5083resolution is what you really want. If not, rewrite the grammar and
5084go back to the beginning.
5085
5086@item
5087Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5088number which Bison printed. With GLR parsers, add an
035aa4a0 5089@code{%expect-rr} declaration as well.
bfa74976
RS
5090@end itemize
5091
93d7dde9
JD
5092Now Bison will report an error if you introduce an unexpected conflict,
5093but will keep silent otherwise.
bfa74976 5094
342b8b6e 5095@node Start Decl
bfa74976
RS
5096@subsection The Start-Symbol
5097@cindex declaring the start symbol
5098@cindex start symbol, declaring
5099@cindex default start symbol
5100@findex %start
5101
5102Bison assumes by default that the start symbol for the grammar is the first
5103nonterminal specified in the grammar specification section. The programmer
5104may override this restriction with the @code{%start} declaration as follows:
5105
5106@example
5107%start @var{symbol}
5108@end example
5109
342b8b6e 5110@node Pure Decl
bfa74976
RS
5111@subsection A Pure (Reentrant) Parser
5112@cindex reentrant parser
5113@cindex pure parser
d9df47b6 5114@findex %define api.pure
bfa74976
RS
5115
5116A @dfn{reentrant} program is one which does not alter in the course of
5117execution; in other words, it consists entirely of @dfn{pure} (read-only)
5118code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5119for example, a nonreentrant program may not be safe to call from a signal
5120handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5121program must be called only within interlocks.
5122
70811b85 5123Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5124suitable for most uses, and it permits compatibility with Yacc. (The
5125standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5126statically allocated variables for communication with @code{yylex},
5127including @code{yylval} and @code{yylloc}.)
bfa74976 5128
70811b85 5129Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5130declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5131reentrant. It looks like this:
bfa74976
RS
5132
5133@example
1f1bd572 5134%define api.pure full
bfa74976
RS
5135@end example
5136
70811b85
RS
5137The result is that the communication variables @code{yylval} and
5138@code{yylloc} become local variables in @code{yyparse}, and a different
5139calling convention is used for the lexical analyzer function
5140@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5141Parsers}, for the details of this. The variable @code{yynerrs}
5142becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5143of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5144Reporting Function @code{yyerror}}). The convention for calling
5145@code{yyparse} itself is unchanged.
5146
5147Whether the parser is pure has nothing to do with the grammar rules.
5148You can generate either a pure parser or a nonreentrant parser from any
5149valid grammar.
bfa74976 5150
9987d1b3
JD
5151@node Push Decl
5152@subsection A Push Parser
5153@cindex push parser
5154@cindex push parser
67212941 5155@findex %define api.push-pull
9987d1b3 5156
59da312b
JD
5157(The current push parsing interface is experimental and may evolve.
5158More user feedback will help to stabilize it.)
5159
f4101aa6
AD
5160A pull parser is called once and it takes control until all its input
5161is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5162each time a new token is made available.
5163
f4101aa6 5164A push parser is typically useful when the parser is part of a
9987d1b3 5165main event loop in the client's application. This is typically
f4101aa6
AD
5166a requirement of a GUI, when the main event loop needs to be triggered
5167within a certain time period.
9987d1b3 5168
d782395d
JD
5169Normally, Bison generates a pull parser.
5170The following Bison declaration says that you want the parser to be a push
35c1e5f0 5171parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5172
5173@example
cf499cff 5174%define api.push-pull push
9987d1b3
JD
5175@end example
5176
5177In almost all cases, you want to ensure that your push parser is also
5178a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5179time you should create an impure push parser is to have backwards
9987d1b3
JD
5180compatibility with the impure Yacc pull mode interface. Unless you know
5181what you are doing, your declarations should look like this:
5182
5183@example
1f1bd572 5184%define api.pure full
cf499cff 5185%define api.push-pull push
9987d1b3
JD
5186@end example
5187
f4101aa6
AD
5188There is a major notable functional difference between the pure push parser
5189and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5190many parser instances, of the same type of parser, in memory at the same time.
5191An impure push parser should only use one parser at a time.
5192
5193When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5194the generated parser. @code{yypstate} is a structure that the generated
5195parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5196function that will create a new parser instance. @code{yypstate_delete}
5197will free the resources associated with the corresponding parser instance.
f4101aa6 5198Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5199token is available to provide the parser. A trivial example
5200of using a pure push parser would look like this:
5201
5202@example
5203int status;
5204yypstate *ps = yypstate_new ();
5205do @{
5206 status = yypush_parse (ps, yylex (), NULL);
5207@} while (status == YYPUSH_MORE);
5208yypstate_delete (ps);
5209@end example
5210
5211If the user decided to use an impure push parser, a few things about
f4101aa6 5212the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5213a global variable instead of a variable in the @code{yypush_parse} function.
5214For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5215changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5216example would thus look like this:
5217
5218@example
5219extern int yychar;
5220int status;
5221yypstate *ps = yypstate_new ();
5222do @{
5223 yychar = yylex ();
5224 status = yypush_parse (ps);
5225@} while (status == YYPUSH_MORE);
5226yypstate_delete (ps);
5227@end example
5228
f4101aa6 5229That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5230for use by the next invocation of the @code{yypush_parse} function.
5231
f4101aa6 5232Bison also supports both the push parser interface along with the pull parser
9987d1b3 5233interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5234you should replace the @samp{%define api.push-pull push} declaration with the
5235@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5236the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5237and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5238would be used. However, the user should note that it is implemented in the
d782395d
JD
5239generated parser by calling @code{yypull_parse}.
5240This makes the @code{yyparse} function that is generated with the
cf499cff 5241@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5242@code{yyparse} function. If the user
5243calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5244stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5245and then @code{yypull_parse} the rest of the input stream. If you would like
5246to switch back and forth between between parsing styles, you would have to
5247write your own @code{yypull_parse} function that knows when to quit looking
5248for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5249like this:
5250
5251@example
5252yypstate *ps = yypstate_new ();
5253yypull_parse (ps); /* Will call the lexer */
5254yypstate_delete (ps);
5255@end example
5256
67501061 5257Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5258the generated parser with @samp{%define api.push-pull both} as it did for
5259@samp{%define api.push-pull push}.
9987d1b3 5260
342b8b6e 5261@node Decl Summary
bfa74976
RS
5262@subsection Bison Declaration Summary
5263@cindex Bison declaration summary
5264@cindex declaration summary
5265@cindex summary, Bison declaration
5266
d8988b2f 5267Here is a summary of the declarations used to define a grammar:
bfa74976 5268
18b519c0 5269@deffn {Directive} %union
bfa74976
RS
5270Declare the collection of data types that semantic values may have
5271(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5272@end deffn
bfa74976 5273
18b519c0 5274@deffn {Directive} %token
bfa74976
RS
5275Declare a terminal symbol (token type name) with no precedence
5276or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5277@end deffn
bfa74976 5278
18b519c0 5279@deffn {Directive} %right
bfa74976
RS
5280Declare a terminal symbol (token type name) that is right-associative
5281(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5282@end deffn
bfa74976 5283
18b519c0 5284@deffn {Directive} %left
bfa74976
RS
5285Declare a terminal symbol (token type name) that is left-associative
5286(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5287@end deffn
bfa74976 5288
18b519c0 5289@deffn {Directive} %nonassoc
bfa74976 5290Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5291(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5292Using it in a way that would be associative is a syntax error.
5293@end deffn
5294
91d2c560 5295@ifset defaultprec
39a06c25 5296@deffn {Directive} %default-prec
22fccf95 5297Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5298(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5299@end deffn
91d2c560 5300@end ifset
bfa74976 5301
18b519c0 5302@deffn {Directive} %type
bfa74976
RS
5303Declare the type of semantic values for a nonterminal symbol
5304(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5305@end deffn
bfa74976 5306
18b519c0 5307@deffn {Directive} %start
89cab50d
AD
5308Specify the grammar's start symbol (@pxref{Start Decl, ,The
5309Start-Symbol}).
18b519c0 5310@end deffn
bfa74976 5311
18b519c0 5312@deffn {Directive} %expect
bfa74976
RS
5313Declare the expected number of shift-reduce conflicts
5314(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5315@end deffn
5316
bfa74976 5317
d8988b2f
AD
5318@sp 1
5319@noindent
5320In order to change the behavior of @command{bison}, use the following
5321directives:
5322
148d66d8 5323@deffn {Directive} %code @{@var{code}@}
e0c07222 5324@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5325@findex %code
e0c07222
JD
5326Insert @var{code} verbatim into the output parser source at the
5327default location or at the location specified by @var{qualifier}.
5328@xref{%code Summary}.
148d66d8
JD
5329@end deffn
5330
18b519c0 5331@deffn {Directive} %debug
60aa04a2 5332Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5333parse.trace}.
ec3bc396 5334@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5335@end deffn
d8988b2f 5336
35c1e5f0
JD
5337@deffn {Directive} %define @var{variable}
5338@deffnx {Directive} %define @var{variable} @var{value}
5339@deffnx {Directive} %define @var{variable} "@var{value}"
5340Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5341@end deffn
5342
5343@deffn {Directive} %defines
5344Write a parser header file containing macro definitions for the token
5345type names defined in the grammar as well as a few other declarations.
5346If the parser implementation file is named @file{@var{name}.c} then
5347the parser header file is named @file{@var{name}.h}.
5348
5349For C parsers, the parser header file declares @code{YYSTYPE} unless
5350@code{YYSTYPE} is already defined as a macro or you have used a
5351@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5352you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5353Value Type}) with components that require other definitions, or if you
5354have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5355Type, ,Data Types of Semantic Values}), you need to arrange for these
5356definitions to be propagated to all modules, e.g., by putting them in
5357a prerequisite header that is included both by your parser and by any
5358other module that needs @code{YYSTYPE}.
5359
5360Unless your parser is pure, the parser header file declares
5361@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5362(Reentrant) Parser}.
5363
5364If you have also used locations, the parser header file declares
303834cc
JD
5365@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5366@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5367
5368This parser header file is normally essential if you wish to put the
5369definition of @code{yylex} in a separate source file, because
5370@code{yylex} typically needs to be able to refer to the
5371above-mentioned declarations and to the token type codes. @xref{Token
5372Values, ,Semantic Values of Tokens}.
5373
5374@findex %code requires
5375@findex %code provides
5376If you have declared @code{%code requires} or @code{%code provides}, the output
5377header also contains their code.
5378@xref{%code Summary}.
c9d5bcc9
AD
5379
5380@cindex Header guard
5381The generated header is protected against multiple inclusions with a C
5382preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5383@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5384,Multiple Parsers in the Same Program}) and generated file name turned
5385uppercase, with each series of non alphanumerical characters converted to a
5386single underscore.
5387
5388For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5389"lib/parse.h"}, the header will be guarded as follows.
5390@example
5391#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5392# define YY_CALC_LIB_PARSE_H_INCLUDED
5393...
5394#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5395@end example
35c1e5f0
JD
5396@end deffn
5397
5398@deffn {Directive} %defines @var{defines-file}
fe65b144 5399Same as above, but save in the file @file{@var{defines-file}}.
35c1e5f0
JD
5400@end deffn
5401
5402@deffn {Directive} %destructor
5403Specify how the parser should reclaim the memory associated to
5404discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5405@end deffn
5406
5407@deffn {Directive} %file-prefix "@var{prefix}"
5408Specify a prefix to use for all Bison output file names. The names
5409are chosen as if the grammar file were named @file{@var{prefix}.y}.
5410@end deffn
5411
5412@deffn {Directive} %language "@var{language}"
5413Specify the programming language for the generated parser. Currently
5414supported languages include C, C++, and Java.
5415@var{language} is case-insensitive.
5416
35c1e5f0
JD
5417@end deffn
5418
5419@deffn {Directive} %locations
5420Generate the code processing the locations (@pxref{Action Features,
5421,Special Features for Use in Actions}). This mode is enabled as soon as
5422the grammar uses the special @samp{@@@var{n}} tokens, but if your
5423grammar does not use it, using @samp{%locations} allows for more
5424accurate syntax error messages.
5425@end deffn
5426
5427@deffn {Directive} %name-prefix "@var{prefix}"
5428Rename the external symbols used in the parser so that they start with
5429@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5430in C parsers
5431is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5432@code{yylval}, @code{yychar}, @code{yydebug}, and
5433(if locations are used) @code{yylloc}. If you use a push parser,
5434@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5435@code{yypstate_new} and @code{yypstate_delete} will
5436also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5437names become @code{c_parse}, @code{c_lex}, and so on.
5438For C++ parsers, see the @samp{%define api.namespace} documentation in this
5439section.
5440@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5441@end deffn
5442
5443@ifset defaultprec
5444@deffn {Directive} %no-default-prec
5445Do not assign a precedence to rules lacking an explicit @code{%prec}
5446modifier (@pxref{Contextual Precedence, ,Context-Dependent
5447Precedence}).
5448@end deffn
5449@end ifset
5450
5451@deffn {Directive} %no-lines
5452Don't generate any @code{#line} preprocessor commands in the parser
5453implementation file. Ordinarily Bison writes these commands in the
5454parser implementation file so that the C compiler and debuggers will
5455associate errors and object code with your source file (the grammar
5456file). This directive causes them to associate errors with the parser
5457implementation file, treating it as an independent source file in its
5458own right.
5459@end deffn
5460
5461@deffn {Directive} %output "@var{file}"
fe65b144 5462Generate the parser implementation in @file{@var{file}}.
35c1e5f0
JD
5463@end deffn
5464
5465@deffn {Directive} %pure-parser
5466Deprecated version of @samp{%define api.pure} (@pxref{%define
5467Summary,,api.pure}), for which Bison is more careful to warn about
5468unreasonable usage.
5469@end deffn
5470
5471@deffn {Directive} %require "@var{version}"
5472Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5473Require a Version of Bison}.
5474@end deffn
5475
5476@deffn {Directive} %skeleton "@var{file}"
5477Specify the skeleton to use.
5478
5479@c You probably don't need this option unless you are developing Bison.
5480@c You should use @code{%language} if you want to specify the skeleton for a
5481@c different language, because it is clearer and because it will always choose the
5482@c correct skeleton for non-deterministic or push parsers.
5483
5484If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5485file in the Bison installation directory.
5486If it does, @var{file} is an absolute file name or a file name relative to the
5487directory of the grammar file.
5488This is similar to how most shells resolve commands.
5489@end deffn
5490
5491@deffn {Directive} %token-table
5492Generate an array of token names in the parser implementation file.
5493The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5494the name of the token whose internal Bison token code number is
5495@var{i}. The first three elements of @code{yytname} correspond to the
5496predefined tokens @code{"$end"}, @code{"error"}, and
5497@code{"$undefined"}; after these come the symbols defined in the
5498grammar file.
5499
5500The name in the table includes all the characters needed to represent
5501the token in Bison. For single-character literals and literal
5502strings, this includes the surrounding quoting characters and any
5503escape sequences. For example, the Bison single-character literal
5504@code{'+'} corresponds to a three-character name, represented in C as
5505@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5506corresponds to a five-character name, represented in C as
5507@code{"\"\\\\/\""}.
5508
5509When you specify @code{%token-table}, Bison also generates macro
5510definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5511@code{YYNRULES}, and @code{YYNSTATES}:
5512
5513@table @code
5514@item YYNTOKENS
5515The highest token number, plus one.
5516@item YYNNTS
5517The number of nonterminal symbols.
5518@item YYNRULES
5519The number of grammar rules,
5520@item YYNSTATES
5521The number of parser states (@pxref{Parser States}).
5522@end table
5523@end deffn
5524
5525@deffn {Directive} %verbose
5526Write an extra output file containing verbose descriptions of the
5527parser states and what is done for each type of lookahead token in
5528that state. @xref{Understanding, , Understanding Your Parser}, for more
5529information.
5530@end deffn
5531
5532@deffn {Directive} %yacc
5533Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5534including its naming conventions. @xref{Bison Options}, for more.
5535@end deffn
5536
5537
5538@node %define Summary
5539@subsection %define Summary
51151d91
JD
5540
5541There are many features of Bison's behavior that can be controlled by
5542assigning the feature a single value. For historical reasons, some
5543such features are assigned values by dedicated directives, such as
5544@code{%start}, which assigns the start symbol. However, newer such
5545features are associated with variables, which are assigned by the
5546@code{%define} directive:
5547
c1d19e10 5548@deffn {Directive} %define @var{variable}
cf499cff 5549@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5550@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5551Define @var{variable} to @var{value}.
9611cfa2 5552
51151d91
JD
5553@var{value} must be placed in quotation marks if it contains any
5554character other than a letter, underscore, period, or non-initial dash
5555or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5556to specifying @code{""}.
9611cfa2 5557
51151d91
JD
5558It is an error if a @var{variable} is defined by @code{%define}
5559multiple times, but see @ref{Bison Options,,-D
5560@var{name}[=@var{value}]}.
5561@end deffn
cf499cff 5562
51151d91
JD
5563The rest of this section summarizes variables and values that
5564@code{%define} accepts.
9611cfa2 5565
51151d91
JD
5566Some @var{variable}s take Boolean values. In this case, Bison will
5567complain if the variable definition does not meet one of the following
5568four conditions:
9611cfa2
JD
5569
5570@enumerate
cf499cff 5571@item @code{@var{value}} is @code{true}
9611cfa2 5572
cf499cff
JD
5573@item @code{@var{value}} is omitted (or @code{""} is specified).
5574This is equivalent to @code{true}.
9611cfa2 5575
cf499cff 5576@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5577
5578@item @var{variable} is never defined.
c6abeab1 5579In this case, Bison selects a default value.
9611cfa2 5580@end enumerate
148d66d8 5581
c6abeab1
JD
5582What @var{variable}s are accepted, as well as their meanings and default
5583values, depend on the selected target language and/or the parser
5584skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5585Summary,,%skeleton}).
5586Unaccepted @var{variable}s produce an error.
dbf3962c 5587Some of the accepted @var{variable}s are described below.
793fbca5 5588
dbf3962c 5589@deffn Directive {%define api.namespace} "@var{namespace}"
67501061
AD
5590@itemize
5591@item Languages(s): C++
5592
f1b238df 5593@item Purpose: Specify the namespace for the parser class.
67501061
AD
5594For example, if you specify:
5595
c93f22fc 5596@example
67501061 5597%define api.namespace "foo::bar"
c93f22fc 5598@end example
67501061
AD
5599
5600Bison uses @code{foo::bar} verbatim in references such as:
5601
c93f22fc 5602@example
67501061 5603foo::bar::parser::semantic_type
c93f22fc 5604@end example
67501061
AD
5605
5606However, to open a namespace, Bison removes any leading @code{::} and then
5607splits on any remaining occurrences:
5608
c93f22fc 5609@example
67501061
AD
5610namespace foo @{ namespace bar @{
5611 class position;
5612 class location;
5613@} @}
c93f22fc 5614@end example
67501061
AD
5615
5616@item Accepted Values:
5617Any absolute or relative C++ namespace reference without a trailing
5618@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5619
5620@item Default Value:
5621The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5622This usage of @code{%name-prefix} is for backward compatibility and can
5623be confusing since @code{%name-prefix} also specifies the textual prefix
5624for the lexical analyzer function. Thus, if you specify
5625@code{%name-prefix}, it is best to also specify @samp{%define
5626api.namespace} so that @code{%name-prefix} @emph{only} affects the
5627lexical analyzer function. For example, if you specify:
5628
c93f22fc 5629@example
67501061
AD
5630%define api.namespace "foo"
5631%name-prefix "bar::"
c93f22fc 5632@end example
67501061
AD
5633
5634The parser namespace is @code{foo} and @code{yylex} is referenced as
5635@code{bar::lex}.
5636@end itemize
dbf3962c
AD
5637@end deffn
5638@c api.namespace
67501061 5639
db8ab2be 5640@c ================================================== api.location.type
dbf3962c 5641@deffn {Directive} {%define api.location.type} @var{type}
db8ab2be
AD
5642
5643@itemize @bullet
7287be84 5644@item Language(s): C++, Java
db8ab2be
AD
5645
5646@item Purpose: Define the location type.
5647@xref{User Defined Location Type}.
5648
5649@item Accepted Values: String
5650
5651@item Default Value: none
5652
a256496a
AD
5653@item History:
5654Introduced in Bison 2.7 for C, C++ and Java. Introduced under the name
5655@code{location_type} for C++ in Bison 2.5 and for Java in Bison 2.4.
db8ab2be 5656@end itemize
dbf3962c 5657@end deffn
67501061 5658
4b3847c3 5659@c ================================================== api.prefix
dbf3962c 5660@deffn {Directive} {%define api.prefix} @var{prefix}
4b3847c3
AD
5661
5662@itemize @bullet
5663@item Language(s): All
5664
db8ab2be 5665@item Purpose: Rename exported symbols.
4b3847c3
AD
5666@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5667
5668@item Accepted Values: String
5669
5670@item Default Value: @code{yy}
e358222b
AD
5671
5672@item History: introduced in Bison 2.6
4b3847c3 5673@end itemize
dbf3962c 5674@end deffn
67501061
AD
5675
5676@c ================================================== api.pure
dbf3962c 5677@deffn Directive {%define api.pure}
d9df47b6
JD
5678
5679@itemize @bullet
5680@item Language(s): C
5681
5682@item Purpose: Request a pure (reentrant) parser program.
5683@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5684
1f1bd572
TR
5685@item Accepted Values: @code{true}, @code{false}, @code{full}
5686
5687The value may be omitted: this is equivalent to specifying @code{true}, as is
5688the case for Boolean values.
5689
5690When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5691changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5692@code{yyerror} when the tracking of locations has been activated, as shown
5693below.
1f1bd572
TR
5694
5695The @code{true} value is very similar to the @code{full} value, the only
5696difference is in the signature of @code{yyerror} on Yacc parsers without
5697@code{%parse-param}, for historical reasons.
5698
5699I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5700@code{yyerror} are:
5701
5702@example
c949ada3
AD
5703void yyerror (char const *msg); // Yacc parsers.
5704void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5705@end example
5706
5707But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5708used, then both parsers have the same signature:
5709
5710@example
5711void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5712@end example
5713
5714(@pxref{Error Reporting, ,The Error
5715Reporting Function @code{yyerror}})
d9df47b6 5716
cf499cff 5717@item Default Value: @code{false}
1f1bd572 5718
a256496a
AD
5719@item History:
5720the @code{full} value was introduced in Bison 2.7
d9df47b6 5721@end itemize
dbf3962c 5722@end deffn
71b00ed8 5723@c api.pure
d9df47b6 5724
67501061
AD
5725
5726
5727@c ================================================== api.push-pull
dbf3962c 5728@deffn Directive {%define api.push-pull} @var{kind}
793fbca5
JD
5729
5730@itemize @bullet
eb45ef3b 5731@item Language(s): C (deterministic parsers only)
793fbca5 5732
f1b238df 5733@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5734@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5735(The current push parsing interface is experimental and may evolve.
5736More user feedback will help to stabilize it.)
793fbca5 5737
cf499cff 5738@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5739
cf499cff 5740@item Default Value: @code{pull}
793fbca5 5741@end itemize
dbf3962c 5742@end deffn
67212941 5743@c api.push-pull
71b00ed8 5744
6b5a0de9
AD
5745
5746
e36ec1f4 5747@c ================================================== api.token.constructor
dbf3962c 5748@deffn Directive {%define api.token.constructor}
e36ec1f4
AD
5749
5750@itemize @bullet
5751@item Language(s):
5752C++
5753
5754@item Purpose:
5755When variant-based semantic values are enabled (@pxref{C++ Variants}),
5756request that symbols be handled as a whole (type, value, and possibly
5757location) in the scanner. @xref{Complete Symbols}, for details.
5758
5759@item Accepted Values:
5760Boolean.
5761
5762@item Default Value:
5763@code{false}
5764@item History:
5765introduced in Bison 2.8
5766@end itemize
dbf3962c 5767@end deffn
e36ec1f4
AD
5768@c api.token.constructor
5769
5770
2a6b66c5 5771@c ================================================== api.token.prefix
dbf3962c 5772@deffn Directive {%define api.token.prefix} @var{prefix}
4c6622c2
AD
5773
5774@itemize
5775@item Languages(s): all
5776
5777@item Purpose:
5778Add a prefix to the token names when generating their definition in the
5779target language. For instance
5780
5781@example
5782%token FILE for ERROR
2a6b66c5 5783%define api.token.prefix "TOK_"
4c6622c2
AD
5784%%
5785start: FILE for ERROR;
5786@end example
5787
5788@noindent
5789generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5790and @code{TOK_ERROR} in the generated source files. In particular, the
5791scanner must use these prefixed token names, while the grammar itself
5792may still use the short names (as in the sample rule given above). The
5793generated informational files (@file{*.output}, @file{*.xml},
5794@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5795and @ref{Calc++ Scanner}, for a complete example.
5796
5797@item Accepted Values:
5798Any string. Should be a valid identifier prefix in the target language,
5799in other words, it should typically be an identifier itself (sequence of
5800letters, underscores, and ---not at the beginning--- digits).
5801
5802@item Default Value:
5803empty
2a6b66c5
AD
5804@item History:
5805introduced in Bison 2.8
4c6622c2 5806@end itemize
dbf3962c 5807@end deffn
2a6b66c5 5808@c api.token.prefix
4c6622c2
AD
5809
5810
ae8880de 5811@c ================================================== api.value.type
dbf3962c 5812@deffn Directive {%define api.value.type} @var{type}
ae8880de
AD
5813@itemize @bullet
5814@item Language(s):
5815C++
5816
5817@item Purpose:
5818Request variant-based semantic values.
5819@xref{C++ Variants}.
5820
dbf3962c
AD
5821@item Default Value:
5822FIXME:
5823@item History:
5824introduced in Bison 2.8. Was introduced for Java only in 2.3b as
5825@code{stype}.
5826@end itemize
5827@end deffn
ae8880de
AD
5828@c api.value.type
5829
a256496a
AD
5830
5831@c ================================================== location_type
dbf3962c 5832@deffn Directive {%define location_type}
a256496a 5833Obsoleted by @code{api.location.type} since Bison 2.7.
dbf3962c 5834@end deffn
a256496a
AD
5835
5836
f3bc3386 5837@c ================================================== lr.default-reduction
6b5a0de9 5838
dbf3962c 5839@deffn Directive {%define lr.default-reduction} @var{when}
eb45ef3b
JD
5840
5841@itemize @bullet
5842@item Language(s): all
5843
fcf834f9 5844@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5845contain default reductions. @xref{Default Reductions}. (The ability to
5846specify where default reductions should be used is experimental. More user
5847feedback will help to stabilize it.)
eb45ef3b 5848
f0ad1b2f 5849@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5850@item Default Value:
5851@itemize
cf499cff 5852@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5853@item @code{most} otherwise.
eb45ef3b 5854@end itemize
f3bc3386
AD
5855@item History:
5856introduced as @code{lr.default-reduction} in 2.5, renamed as
5857@code{lr.default-reduction} in 2.8.
eb45ef3b 5858@end itemize
dbf3962c 5859@end deffn
eb45ef3b 5860
f3bc3386 5861@c ============================================ lr.keep-unreachable-state
6b5a0de9 5862
dbf3962c 5863@deffn Directive {%define lr.keep-unreachable-state}
31984206
JD
5864
5865@itemize @bullet
5866@item Language(s): all
f1b238df 5867@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5868remain in the parser tables. @xref{Unreachable States}.
31984206 5869@item Accepted Values: Boolean
cf499cff 5870@item Default Value: @code{false}
a256496a 5871@item History:
f3bc3386 5872introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 5873@code{lr.keep-unreachable-states} in 2.5, and as
f3bc3386 5874@code{lr.keep-unreachable-state} in 2.8.
dbf3962c
AD
5875@end itemize
5876@end deffn
f3bc3386 5877@c lr.keep-unreachable-state
31984206 5878
6b5a0de9
AD
5879@c ================================================== lr.type
5880
dbf3962c 5881@deffn Directive {%define lr.type} @var{type}
eb45ef3b
JD
5882
5883@itemize @bullet
5884@item Language(s): all
5885
f1b238df 5886@item Purpose: Specify the type of parser tables within the
7fceb615 5887LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5888More user feedback will help to stabilize it.)
5889
7fceb615 5890@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5891
cf499cff 5892@item Default Value: @code{lalr}
eb45ef3b 5893@end itemize
dbf3962c 5894@end deffn
67501061
AD
5895
5896@c ================================================== namespace
dbf3962c 5897@deffn Directive %define namespace @var{namespace}
67501061 5898Obsoleted by @code{api.namespace}
fa819509 5899@c namespace
dbf3962c 5900@end deffn
31b850d2
AD
5901
5902@c ================================================== parse.assert
dbf3962c 5903@deffn Directive {%define parse.assert}
0c90a1f5
AD
5904
5905@itemize
5906@item Languages(s): C++
5907
5908@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5909In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5910constructed and
0c90a1f5
AD
5911destroyed properly. This option checks these constraints.
5912
5913@item Accepted Values: Boolean
5914
5915@item Default Value: @code{false}
5916@end itemize
dbf3962c 5917@end deffn
0c90a1f5
AD
5918@c parse.assert
5919
31b850d2
AD
5920
5921@c ================================================== parse.error
dbf3962c 5922@deffn Directive {%define parse.error}
31b850d2
AD
5923@itemize
5924@item Languages(s):
fcf834f9 5925all
31b850d2
AD
5926@item Purpose:
5927Control the kind of error messages passed to the error reporting
5928function. @xref{Error Reporting, ,The Error Reporting Function
5929@code{yyerror}}.
5930@item Accepted Values:
5931@itemize
cf499cff 5932@item @code{simple}
31b850d2
AD
5933Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5934error"}}.
cf499cff 5935@item @code{verbose}
7fceb615
JD
5936Error messages report the unexpected token, and possibly the expected ones.
5937However, this report can often be incorrect when LAC is not enabled
5938(@pxref{LAC}).
31b850d2
AD
5939@end itemize
5940
5941@item Default Value:
5942@code{simple}
5943@end itemize
dbf3962c 5944@end deffn
31b850d2
AD
5945@c parse.error
5946
5947
fcf834f9 5948@c ================================================== parse.lac
dbf3962c 5949@deffn Directive {%define parse.lac}
fcf834f9
JD
5950
5951@itemize
7fceb615 5952@item Languages(s): C (deterministic parsers only)
fcf834f9 5953
8a4281b9 5954@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5955syntax error handling. @xref{LAC}.
fcf834f9 5956@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5957@item Default Value: @code{none}
5958@end itemize
dbf3962c 5959@end deffn
fcf834f9
JD
5960@c parse.lac
5961
31b850d2 5962@c ================================================== parse.trace
dbf3962c 5963@deffn Directive {%define parse.trace}
fa819509
AD
5964
5965@itemize
60aa04a2 5966@item Languages(s): C, C++, Java
fa819509
AD
5967
5968@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
5969@xref{Tracing, ,Tracing Your Parser}.
5970
5971In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
5972@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
5973,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 5974file if it is not already defined, so that the debugging facilities are
60aa04a2 5975compiled.
793fbca5 5976
fa819509
AD
5977@item Accepted Values: Boolean
5978
5979@item Default Value: @code{false}
5980@end itemize
dbf3962c 5981@end deffn
fa819509 5982@c parse.trace
592d0b1e 5983
e0c07222
JD
5984@node %code Summary
5985@subsection %code Summary
e0c07222 5986@findex %code
e0c07222 5987@cindex Prologue
51151d91
JD
5988
5989The @code{%code} directive inserts code verbatim into the output
5990parser source at any of a predefined set of locations. It thus serves
5991as a flexible and user-friendly alternative to the traditional Yacc
5992prologue, @code{%@{@var{code}%@}}. This section summarizes the
5993functionality of @code{%code} for the various target languages
5994supported by Bison. For a detailed discussion of how to use
5995@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5996is advantageous to do so, @pxref{Prologue Alternatives}.
5997
5998@deffn {Directive} %code @{@var{code}@}
5999This is the unqualified form of the @code{%code} directive. It
6000inserts @var{code} verbatim at a language-dependent default location
6001in the parser implementation.
6002
e0c07222 6003For C/C++, the default location is the parser implementation file
51151d91
JD
6004after the usual contents of the parser header file. Thus, the
6005unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
6006
6007For Java, the default location is inside the parser class.
6008@end deffn
6009
6010@deffn {Directive} %code @var{qualifier} @{@var{code}@}
6011This is the qualified form of the @code{%code} directive.
51151d91
JD
6012@var{qualifier} identifies the purpose of @var{code} and thus the
6013location(s) where Bison should insert it. That is, if you need to
6014specify location-sensitive @var{code} that does not belong at the
6015default location selected by the unqualified @code{%code} form, use
6016this form instead.
6017@end deffn
6018
6019For any particular qualifier or for the unqualified form, if there are
6020multiple occurrences of the @code{%code} directive, Bison concatenates
6021the specified code in the order in which it appears in the grammar
6022file.
e0c07222 6023
51151d91
JD
6024Not all qualifiers are accepted for all target languages. Unaccepted
6025qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 6026
84072495 6027@table @code
e0c07222
JD
6028@item requires
6029@findex %code requires
6030
6031@itemize @bullet
6032@item Language(s): C, C++
6033
6034@item Purpose: This is the best place to write dependency code required for
6035@code{YYSTYPE} and @code{YYLTYPE}.
6036In other words, it's the best place to define types referenced in @code{%union}
6037directives, and it's the best place to override Bison's default @code{YYSTYPE}
6038and @code{YYLTYPE} definitions.
6039
6040@item Location(s): The parser header file and the parser implementation file
6041before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
6042definitions.
6043@end itemize
6044
6045@item provides
6046@findex %code provides
6047
6048@itemize @bullet
6049@item Language(s): C, C++
6050
6051@item Purpose: This is the best place to write additional definitions and
6052declarations that should be provided to other modules.
6053
6054@item Location(s): The parser header file and the parser implementation
6055file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
6056token definitions.
6057@end itemize
6058
6059@item top
6060@findex %code top
6061
6062@itemize @bullet
6063@item Language(s): C, C++
6064
6065@item Purpose: The unqualified @code{%code} or @code{%code requires}
6066should usually be more appropriate than @code{%code top}. However,
6067occasionally it is necessary to insert code much nearer the top of the
6068parser implementation file. For example:
6069
c93f22fc 6070@example
e0c07222
JD
6071%code top @{
6072 #define _GNU_SOURCE
6073 #include <stdio.h>
6074@}
c93f22fc 6075@end example
e0c07222
JD
6076
6077@item Location(s): Near the top of the parser implementation file.
6078@end itemize
6079
6080@item imports
6081@findex %code imports
6082
6083@itemize @bullet
6084@item Language(s): Java
6085
6086@item Purpose: This is the best place to write Java import directives.
6087
6088@item Location(s): The parser Java file after any Java package directive and
6089before any class definitions.
6090@end itemize
84072495 6091@end table
e0c07222 6092
51151d91
JD
6093Though we say the insertion locations are language-dependent, they are
6094technically skeleton-dependent. Writers of non-standard skeletons
6095however should choose their locations consistently with the behavior
6096of the standard Bison skeletons.
e0c07222 6097
d8988b2f 6098
342b8b6e 6099@node Multiple Parsers
bfa74976
RS
6100@section Multiple Parsers in the Same Program
6101
6102Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6103only one Bison parser. But what if you want to parse more than one language
6104with the same program? Then you need to avoid name conflicts between
6105different definitions of functions and variables such as @code{yyparse},
6106@code{yylval}. To use different parsers from the same compilation unit, you
6107also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6108exported in the generated header.
6109
6110The easy way to do this is to define the @code{%define} variable
e358222b
AD
6111@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6112headers do not conflict when included together, and that compiled objects
6113can be linked together too. Specifying @samp{%define api.prefix
6114@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
6115@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6116variables of the Bison parser to start with @var{prefix} instead of
6117@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6118upper-cased) instead of @samp{YY}.
4b3847c3
AD
6119
6120The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6121@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6122@code{yydebug}. If you use a push parser, @code{yypush_parse},
6123@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6124@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6125@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6126specifically --- more about this below.
4b3847c3
AD
6127
6128For example, if you use @samp{%define api.prefix c}, the names become
6129@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6130on.
6131
6132The @code{%define} variable @code{api.prefix} works in two different ways.
6133In the implementation file, it works by adding macro definitions to the
6134beginning of the parser implementation file, defining @code{yyparse} as
6135@code{@var{prefix}parse}, and so on:
6136
6137@example
6138#define YYSTYPE CTYPE
6139#define yyparse cparse
6140#define yylval clval
6141...
6142YYSTYPE yylval;
6143int yyparse (void);
6144@end example
6145
6146This effectively substitutes one name for the other in the entire parser
6147implementation file, thus the ``original'' names (@code{yylex},
6148@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6149
6150However, in the parser header file, the symbols are defined renamed, for
6151instance:
bfa74976 6152
4b3847c3
AD
6153@example
6154extern CSTYPE clval;
6155int cparse (void);
6156@end example
bfa74976 6157
e358222b
AD
6158The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6159parsers. To comply with this tradition, when @code{api.prefix} is used,
6160@code{YYDEBUG} (not renamed) is used as a default value:
6161
6162@example
4d9bdbe3 6163/* Debug traces. */
e358222b
AD
6164#ifndef CDEBUG
6165# if defined YYDEBUG
6166# if YYDEBUG
6167# define CDEBUG 1
6168# else
6169# define CDEBUG 0
6170# endif
6171# else
6172# define CDEBUG 0
6173# endif
6174#endif
6175#if CDEBUG
6176extern int cdebug;
6177#endif
6178@end example
6179
6180@sp 2
6181
6182Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6183the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6184Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6185
342b8b6e 6186@node Interface
bfa74976
RS
6187@chapter Parser C-Language Interface
6188@cindex C-language interface
6189@cindex interface
6190
6191The Bison parser is actually a C function named @code{yyparse}. Here we
6192describe the interface conventions of @code{yyparse} and the other
6193functions that it needs to use.
6194
6195Keep in mind that the parser uses many C identifiers starting with
6196@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6197identifier (aside from those in this manual) in an action or in epilogue
6198in the grammar file, you are likely to run into trouble.
bfa74976
RS
6199
6200@menu
f5f419de
DJ
6201* Parser Function:: How to call @code{yyparse} and what it returns.
6202* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6203* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6204* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6205* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6206* Lexical:: You must supply a function @code{yylex}
6207 which reads tokens.
6208* Error Reporting:: You must supply a function @code{yyerror}.
6209* Action Features:: Special features for use in actions.
6210* Internationalization:: How to let the parser speak in the user's
6211 native language.
bfa74976
RS
6212@end menu
6213
342b8b6e 6214@node Parser Function
bfa74976
RS
6215@section The Parser Function @code{yyparse}
6216@findex yyparse
6217
6218You call the function @code{yyparse} to cause parsing to occur. This
6219function reads tokens, executes actions, and ultimately returns when it
6220encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6221write an action which directs @code{yyparse} to return immediately
6222without reading further.
bfa74976 6223
2a8d363a
AD
6224
6225@deftypefun int yyparse (void)
bfa74976
RS
6226The value returned by @code{yyparse} is 0 if parsing was successful (return
6227is due to end-of-input).
6228
b47dbebe
PE
6229The value is 1 if parsing failed because of invalid input, i.e., input
6230that contains a syntax error or that causes @code{YYABORT} to be
6231invoked.
6232
6233The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6234@end deftypefun
bfa74976
RS
6235
6236In an action, you can cause immediate return from @code{yyparse} by using
6237these macros:
6238
2a8d363a 6239@defmac YYACCEPT
bfa74976
RS
6240@findex YYACCEPT
6241Return immediately with value 0 (to report success).
2a8d363a 6242@end defmac
bfa74976 6243
2a8d363a 6244@defmac YYABORT
bfa74976
RS
6245@findex YYABORT
6246Return immediately with value 1 (to report failure).
2a8d363a
AD
6247@end defmac
6248
6249If you use a reentrant parser, you can optionally pass additional
6250parameter information to it in a reentrant way. To do so, use the
6251declaration @code{%parse-param}:
6252
2055a44e 6253@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6254@findex %parse-param
2055a44e
AD
6255Declare that one or more
6256@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6257The @var{argument-declaration} is used when declaring
feeb0eda
PE
6258functions or prototypes. The last identifier in
6259@var{argument-declaration} must be the argument name.
2a8d363a
AD
6260@end deffn
6261
6262Here's an example. Write this in the parser:
6263
6264@example
2055a44e 6265%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6266@end example
6267
6268@noindent
6269Then call the parser like this:
6270
6271@example
6272@{
6273 int nastiness, randomness;
6274 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6275 value = yyparse (&nastiness, &randomness);
6276 @dots{}
6277@}
6278@end example
6279
6280@noindent
6281In the grammar actions, use expressions like this to refer to the data:
6282
6283@example
6284exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6285@end example
6286
1f1bd572
TR
6287@noindent
6288Using the following:
6289@example
6290%parse-param @{int *randomness@}
6291@end example
6292
6293Results in these signatures:
6294@example
6295void yyerror (int *randomness, const char *msg);
6296int yyparse (int *randomness);
6297@end example
6298
6299@noindent
6300Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6301and @code{%locations} are used:
6302
6303@example
6304void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6305int yyparse (int *randomness);
6306@end example
6307
9987d1b3
JD
6308@node Push Parser Function
6309@section The Push Parser Function @code{yypush_parse}
6310@findex yypush_parse
6311
59da312b
JD
6312(The current push parsing interface is experimental and may evolve.
6313More user feedback will help to stabilize it.)
6314
f4101aa6 6315You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6316function is available if either the @samp{%define api.push-pull push} or
6317@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6318@xref{Push Decl, ,A Push Parser}.
6319
a73aa764 6320@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6321The value returned by @code{yypush_parse} is the same as for yyparse with
6322the following exception: it returns @code{YYPUSH_MORE} if more input is
6323required to finish parsing the grammar.
9987d1b3
JD
6324@end deftypefun
6325
6326@node Pull Parser Function
6327@section The Pull Parser Function @code{yypull_parse}
6328@findex yypull_parse
6329
59da312b
JD
6330(The current push parsing interface is experimental and may evolve.
6331More user feedback will help to stabilize it.)
6332
f4101aa6 6333You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6334stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6335declaration is used.
9987d1b3
JD
6336@xref{Push Decl, ,A Push Parser}.
6337
a73aa764 6338@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6339The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6340@end deftypefun
6341
6342@node Parser Create Function
6343@section The Parser Create Function @code{yystate_new}
6344@findex yypstate_new
6345
59da312b
JD
6346(The current push parsing interface is experimental and may evolve.
6347More user feedback will help to stabilize it.)
6348
f4101aa6 6349You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6350This function is available if either the @samp{%define api.push-pull push} or
6351@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6352@xref{Push Decl, ,A Push Parser}.
6353
34a41a93 6354@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6355The function will return a valid parser instance if there was memory available
333e670c
JD
6356or 0 if no memory was available.
6357In impure mode, it will also return 0 if a parser instance is currently
6358allocated.
9987d1b3
JD
6359@end deftypefun
6360
6361@node Parser Delete Function
6362@section The Parser Delete Function @code{yystate_delete}
6363@findex yypstate_delete
6364
59da312b
JD
6365(The current push parsing interface is experimental and may evolve.
6366More user feedback will help to stabilize it.)
6367
9987d1b3 6368You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6369function is available if either the @samp{%define api.push-pull push} or
6370@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6371@xref{Push Decl, ,A Push Parser}.
6372
a73aa764 6373@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6374This function will reclaim the memory associated with a parser instance.
6375After this call, you should no longer attempt to use the parser instance.
6376@end deftypefun
bfa74976 6377
342b8b6e 6378@node Lexical
bfa74976
RS
6379@section The Lexical Analyzer Function @code{yylex}
6380@findex yylex
6381@cindex lexical analyzer
6382
6383The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6384the input stream and returns them to the parser. Bison does not create
6385this function automatically; you must write it so that @code{yyparse} can
6386call it. The function is sometimes referred to as a lexical scanner.
6387
ff7571c0
JD
6388In simple programs, @code{yylex} is often defined at the end of the
6389Bison grammar file. If @code{yylex} is defined in a separate source
6390file, you need to arrange for the token-type macro definitions to be
6391available there. To do this, use the @samp{-d} option when you run
6392Bison, so that it will write these macro definitions into the separate
6393parser header file, @file{@var{name}.tab.h}, which you can include in
6394the other source files that need it. @xref{Invocation, ,Invoking
6395Bison}.
bfa74976
RS
6396
6397@menu
6398* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6399* Token Values:: How @code{yylex} must return the semantic value
6400 of the token it has read.
6401* Token Locations:: How @code{yylex} must return the text location
6402 (line number, etc.) of the token, if the
6403 actions want that.
6404* Pure Calling:: How the calling convention differs in a pure parser
6405 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6406@end menu
6407
342b8b6e 6408@node Calling Convention
bfa74976
RS
6409@subsection Calling Convention for @code{yylex}
6410
72d2299c
PE
6411The value that @code{yylex} returns must be the positive numeric code
6412for the type of token it has just found; a zero or negative value
6413signifies end-of-input.
bfa74976
RS
6414
6415When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6416in the parser implementation file becomes a C macro whose definition
6417is the proper numeric code for that token type. So @code{yylex} can
6418use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6419
6420When a token is referred to in the grammar rules by a character literal,
6421the numeric code for that character is also the code for the token type.
72d2299c
PE
6422So @code{yylex} can simply return that character code, possibly converted
6423to @code{unsigned char} to avoid sign-extension. The null character
6424must not be used this way, because its code is zero and that
bfa74976
RS
6425signifies end-of-input.
6426
6427Here is an example showing these things:
6428
6429@example
13863333
AD
6430int
6431yylex (void)
bfa74976
RS
6432@{
6433 @dots{}
72d2299c 6434 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6435 return 0;
6436 @dots{}
6437 if (c == '+' || c == '-')
4c9b8f13 6438 return c; /* Assume token type for '+' is '+'. */
bfa74976 6439 @dots{}
72d2299c 6440 return INT; /* Return the type of the token. */
bfa74976
RS
6441 @dots{}
6442@}
6443@end example
6444
6445@noindent
6446This interface has been designed so that the output from the @code{lex}
6447utility can be used without change as the definition of @code{yylex}.
6448
931c7513
RS
6449If the grammar uses literal string tokens, there are two ways that
6450@code{yylex} can determine the token type codes for them:
6451
6452@itemize @bullet
6453@item
6454If the grammar defines symbolic token names as aliases for the
6455literal string tokens, @code{yylex} can use these symbolic names like
6456all others. In this case, the use of the literal string tokens in
6457the grammar file has no effect on @code{yylex}.
6458
6459@item
9ecbd125 6460@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6461table. The index of the token in the table is the token type's code.
9ecbd125 6462The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6463double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6464token's characters are escaped as necessary to be suitable as input
6465to Bison.
931c7513 6466
9e0876fb
PE
6467Here's code for looking up a multicharacter token in @code{yytname},
6468assuming that the characters of the token are stored in
6469@code{token_buffer}, and assuming that the token does not contain any
6470characters like @samp{"} that require escaping.
931c7513 6471
c93f22fc 6472@example
931c7513
RS
6473for (i = 0; i < YYNTOKENS; i++)
6474 @{
6475 if (yytname[i] != 0
6476 && yytname[i][0] == '"'
68449b3a
PE
6477 && ! strncmp (yytname[i] + 1, token_buffer,
6478 strlen (token_buffer))
931c7513
RS
6479 && yytname[i][strlen (token_buffer) + 1] == '"'
6480 && yytname[i][strlen (token_buffer) + 2] == 0)
6481 break;
6482 @}
c93f22fc 6483@end example
931c7513
RS
6484
6485The @code{yytname} table is generated only if you use the
8c9a50be 6486@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6487@end itemize
6488
342b8b6e 6489@node Token Values
bfa74976
RS
6490@subsection Semantic Values of Tokens
6491
6492@vindex yylval
9d9b8b70 6493In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6494be stored into the global variable @code{yylval}. When you are using
6495just one data type for semantic values, @code{yylval} has that type.
6496Thus, if the type is @code{int} (the default), you might write this in
6497@code{yylex}:
6498
6499@example
6500@group
6501 @dots{}
72d2299c
PE
6502 yylval = value; /* Put value onto Bison stack. */
6503 return INT; /* Return the type of the token. */
bfa74976
RS
6504 @dots{}
6505@end group
6506@end example
6507
6508When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6509made from the @code{%union} declaration (@pxref{Union Decl, ,The
6510Collection of Value Types}). So when you store a token's value, you
6511must use the proper member of the union. If the @code{%union}
6512declaration looks like this:
bfa74976
RS
6513
6514@example
6515@group
6516%union @{
6517 int intval;
6518 double val;
6519 symrec *tptr;
6520@}
6521@end group
6522@end example
6523
6524@noindent
6525then the code in @code{yylex} might look like this:
6526
6527@example
6528@group
6529 @dots{}
72d2299c
PE
6530 yylval.intval = value; /* Put value onto Bison stack. */
6531 return INT; /* Return the type of the token. */
bfa74976
RS
6532 @dots{}
6533@end group
6534@end example
6535
95923bd6
AD
6536@node Token Locations
6537@subsection Textual Locations of Tokens
bfa74976
RS
6538
6539@vindex yylloc
303834cc
JD
6540If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6541in actions to keep track of the textual locations of tokens and groupings,
6542then you must provide this information in @code{yylex}. The function
6543@code{yyparse} expects to find the textual location of a token just parsed
6544in the global variable @code{yylloc}. So @code{yylex} must store the proper
6545data in that variable.
847bf1f5
AD
6546
6547By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6548initialize the members that are going to be used by the actions. The
6549four members are called @code{first_line}, @code{first_column},
6550@code{last_line} and @code{last_column}. Note that the use of this
6551feature makes the parser noticeably slower.
bfa74976
RS
6552
6553@tindex YYLTYPE
6554The data type of @code{yylloc} has the name @code{YYLTYPE}.
6555
342b8b6e 6556@node Pure Calling
c656404a 6557@subsection Calling Conventions for Pure Parsers
bfa74976 6558
1f1bd572 6559When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6560pure, reentrant parser, the global communication variables @code{yylval}
6561and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6562Parser}.) In such parsers the two global variables are replaced by
6563pointers passed as arguments to @code{yylex}. You must declare them as
6564shown here, and pass the information back by storing it through those
6565pointers.
bfa74976
RS
6566
6567@example
13863333
AD
6568int
6569yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6570@{
6571 @dots{}
6572 *lvalp = value; /* Put value onto Bison stack. */
6573 return INT; /* Return the type of the token. */
6574 @dots{}
6575@}
6576@end example
6577
6578If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6579textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6580this case, omit the second argument; @code{yylex} will be called with
6581only one argument.
6582
2055a44e 6583If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6584@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6585Function}). To pass additional arguments to both @code{yylex} and
6586@code{yyparse}, use @code{%param}.
e425e872 6587
2055a44e 6588@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6589@findex %lex-param
2055a44e
AD
6590Specify that @var{argument-declaration} are additional @code{yylex} argument
6591declarations. You may pass one or more such declarations, which is
6592equivalent to repeating @code{%lex-param}.
6593@end deffn
6594
6595@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6596@findex %param
6597Specify that @var{argument-declaration} are additional
6598@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6599@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6600@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6601declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6602@end deffn
e425e872 6603
1f1bd572 6604@noindent
2a8d363a 6605For instance:
e425e872
RS
6606
6607@example
2055a44e
AD
6608%lex-param @{scanner_mode *mode@}
6609%parse-param @{parser_mode *mode@}
6610%param @{environment_type *env@}
e425e872
RS
6611@end example
6612
6613@noindent
18ad57b3 6614results in the following signatures:
e425e872
RS
6615
6616@example
2055a44e
AD
6617int yylex (scanner_mode *mode, environment_type *env);
6618int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6619@end example
6620
5807bb91 6621If @samp{%define api.pure full} is added:
c656404a
RS
6622
6623@example
2055a44e
AD
6624int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6625int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6626@end example
6627
2a8d363a 6628@noindent
5807bb91
AD
6629and finally, if both @samp{%define api.pure full} and @code{%locations} are
6630used:
c656404a 6631
2a8d363a 6632@example
2055a44e
AD
6633int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6634 scanner_mode *mode, environment_type *env);
6635int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6636@end example
931c7513 6637
342b8b6e 6638@node Error Reporting
bfa74976
RS
6639@section The Error Reporting Function @code{yyerror}
6640@cindex error reporting function
6641@findex yyerror
6642@cindex parse error
6643@cindex syntax error
6644
31b850d2 6645The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6646whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6647action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6648macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6649in Actions}).
bfa74976
RS
6650
6651The Bison parser expects to report the error by calling an error
6652reporting function named @code{yyerror}, which you must supply. It is
6653called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6654receives one argument. For a syntax error, the string is normally
6655@w{@code{"syntax error"}}.
bfa74976 6656
31b850d2 6657@findex %define parse.error
7fceb615
JD
6658If you invoke @samp{%define parse.error verbose} in the Bison declarations
6659section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6660Bison provides a more verbose and specific error message string instead of
6661just plain @w{@code{"syntax error"}}. However, that message sometimes
6662contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6663
1a059451
PE
6664The parser can detect one other kind of error: memory exhaustion. This
6665can happen when the input contains constructions that are very deeply
bfa74976 6666nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6667parser normally extends its stack automatically up to a very large limit. But
6668if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6669fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6670
6671In some cases diagnostics like @w{@code{"syntax error"}} are
6672translated automatically from English to some other language before
6673they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6674
6675The following definition suffices in simple programs:
6676
6677@example
6678@group
13863333 6679void
38a92d50 6680yyerror (char const *s)
bfa74976
RS
6681@{
6682@end group
6683@group
6684 fprintf (stderr, "%s\n", s);
6685@}
6686@end group
6687@end example
6688
6689After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6690error recovery if you have written suitable error recovery grammar rules
6691(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6692immediately return 1.
6693
93724f13 6694Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6695an access to the current location. With @code{%define api.pure}, this is
6696indeed the case for the GLR parsers, but not for the Yacc parser, for
6697historical reasons, and this is the why @code{%define api.pure full} should be
6698prefered over @code{%define api.pure}.
2a8d363a 6699
1f1bd572
TR
6700When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6701following signature:
2a8d363a
AD
6702
6703@example
1f1bd572 6704void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6705@end example
6706
1c0c3e95 6707@noindent
38a92d50
PE
6708The prototypes are only indications of how the code produced by Bison
6709uses @code{yyerror}. Bison-generated code always ignores the returned
6710value, so @code{yyerror} can return any type, including @code{void}.
6711Also, @code{yyerror} can be a variadic function; that is why the
6712message is always passed last.
6713
6714Traditionally @code{yyerror} returns an @code{int} that is always
6715ignored, but this is purely for historical reasons, and @code{void} is
6716preferable since it more accurately describes the return type for
6717@code{yyerror}.
93724f13 6718
bfa74976
RS
6719@vindex yynerrs
6720The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6721reported so far. Normally this variable is global; but if you
704a47c4
AD
6722request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6723then it is a local variable which only the actions can access.
bfa74976 6724
342b8b6e 6725@node Action Features
bfa74976
RS
6726@section Special Features for Use in Actions
6727@cindex summary, action features
6728@cindex action features summary
6729
6730Here is a table of Bison constructs, variables and macros that
6731are useful in actions.
6732
18b519c0 6733@deffn {Variable} $$
bfa74976
RS
6734Acts like a variable that contains the semantic value for the
6735grouping made by the current rule. @xref{Actions}.
18b519c0 6736@end deffn
bfa74976 6737
18b519c0 6738@deffn {Variable} $@var{n}
bfa74976
RS
6739Acts like a variable that contains the semantic value for the
6740@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6741@end deffn
bfa74976 6742
18b519c0 6743@deffn {Variable} $<@var{typealt}>$
bfa74976 6744Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6745specified by the @code{%union} declaration. @xref{Action Types, ,Data
6746Types of Values in Actions}.
18b519c0 6747@end deffn
bfa74976 6748
18b519c0 6749@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6750Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6751union specified by the @code{%union} declaration.
e0c471a9 6752@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6753@end deffn
bfa74976 6754
34a41a93 6755@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6756Return immediately from @code{yyparse}, indicating failure.
6757@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6758@end deffn
bfa74976 6759
34a41a93 6760@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6761Return immediately from @code{yyparse}, indicating success.
6762@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6763@end deffn
bfa74976 6764
34a41a93 6765@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6766@findex YYBACKUP
6767Unshift a token. This macro is allowed only for rules that reduce
742e4900 6768a single value, and only when there is no lookahead token.
8a4281b9 6769It is also disallowed in GLR parsers.
742e4900 6770It installs a lookahead token with token type @var{token} and
bfa74976
RS
6771semantic value @var{value}; then it discards the value that was
6772going to be reduced by this rule.
6773
6774If the macro is used when it is not valid, such as when there is
742e4900 6775a lookahead token already, then it reports a syntax error with
bfa74976
RS
6776a message @samp{cannot back up} and performs ordinary error
6777recovery.
6778
6779In either case, the rest of the action is not executed.
18b519c0 6780@end deffn
bfa74976 6781
18b519c0 6782@deffn {Macro} YYEMPTY
742e4900 6783Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6784@end deffn
bfa74976 6785
32c29292 6786@deffn {Macro} YYEOF
742e4900 6787Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6788stream.
6789@end deffn
6790
34a41a93 6791@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6792Cause an immediate syntax error. This statement initiates error
6793recovery just as if the parser itself had detected an error; however, it
6794does not call @code{yyerror}, and does not print any message. If you
6795want to print an error message, call @code{yyerror} explicitly before
6796the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6797@end deffn
bfa74976 6798
18b519c0 6799@deffn {Macro} YYRECOVERING
02103984
PE
6800@findex YYRECOVERING
6801The expression @code{YYRECOVERING ()} yields 1 when the parser
6802is recovering from a syntax error, and 0 otherwise.
bfa74976 6803@xref{Error Recovery}.
18b519c0 6804@end deffn
bfa74976 6805
18b519c0 6806@deffn {Variable} yychar
742e4900
JD
6807Variable containing either the lookahead token, or @code{YYEOF} when the
6808lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6809has been performed so the next token is not yet known.
6810Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6811Actions}).
742e4900 6812@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6813@end deffn
bfa74976 6814
34a41a93 6815@deffn {Macro} yyclearin @code{;}
742e4900 6816Discard the current lookahead token. This is useful primarily in
32c29292
JD
6817error rules.
6818Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6819Semantic Actions}).
6820@xref{Error Recovery}.
18b519c0 6821@end deffn
bfa74976 6822
34a41a93 6823@deffn {Macro} yyerrok @code{;}
bfa74976 6824Resume generating error messages immediately for subsequent syntax
13863333 6825errors. This is useful primarily in error rules.
bfa74976 6826@xref{Error Recovery}.
18b519c0 6827@end deffn
bfa74976 6828
32c29292 6829@deffn {Variable} yylloc
742e4900 6830Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6831to @code{YYEMPTY} or @code{YYEOF}.
6832Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6833Actions}).
6834@xref{Actions and Locations, ,Actions and Locations}.
6835@end deffn
6836
6837@deffn {Variable} yylval
742e4900 6838Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6839not set to @code{YYEMPTY} or @code{YYEOF}.
6840Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6841Actions}).
6842@xref{Actions, ,Actions}.
6843@end deffn
6844
18b519c0 6845@deffn {Value} @@$
303834cc
JD
6846Acts like a structure variable containing information on the textual
6847location of the grouping made by the current rule. @xref{Tracking
6848Locations}.
bfa74976 6849
847bf1f5
AD
6850@c Check if those paragraphs are still useful or not.
6851
6852@c @example
6853@c struct @{
6854@c int first_line, last_line;
6855@c int first_column, last_column;
6856@c @};
6857@c @end example
6858
6859@c Thus, to get the starting line number of the third component, you would
6860@c use @samp{@@3.first_line}.
bfa74976 6861
847bf1f5
AD
6862@c In order for the members of this structure to contain valid information,
6863@c you must make @code{yylex} supply this information about each token.
6864@c If you need only certain members, then @code{yylex} need only fill in
6865@c those members.
bfa74976 6866
847bf1f5 6867@c The use of this feature makes the parser noticeably slower.
18b519c0 6868@end deffn
847bf1f5 6869
18b519c0 6870@deffn {Value} @@@var{n}
847bf1f5 6871@findex @@@var{n}
303834cc
JD
6872Acts like a structure variable containing information on the textual
6873location of the @var{n}th component of the current rule. @xref{Tracking
6874Locations}.
18b519c0 6875@end deffn
bfa74976 6876
f7ab6a50
PE
6877@node Internationalization
6878@section Parser Internationalization
6879@cindex internationalization
6880@cindex i18n
6881@cindex NLS
6882@cindex gettext
6883@cindex bison-po
6884
6885A Bison-generated parser can print diagnostics, including error and
6886tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6887also supports outputting diagnostics in the user's native language. To
6888make this work, the user should set the usual environment variables.
6889@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6890For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6891set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6892encoding. The exact set of available locales depends on the user's
6893installation.
6894
6895The maintainer of a package that uses a Bison-generated parser enables
6896the internationalization of the parser's output through the following
8a4281b9
JD
6897steps. Here we assume a package that uses GNU Autoconf and
6898GNU Automake.
f7ab6a50
PE
6899
6900@enumerate
6901@item
30757c8c 6902@cindex bison-i18n.m4
8a4281b9 6903Into the directory containing the GNU Autoconf macros used
c949ada3 6904by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
6905@file{bison-i18n.m4} file installed by Bison under
6906@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6907For example:
6908
6909@example
6910cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6911@end example
6912
6913@item
30757c8c
PE
6914@findex BISON_I18N
6915@vindex BISON_LOCALEDIR
6916@vindex YYENABLE_NLS
f7ab6a50
PE
6917In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6918invocation, add an invocation of @code{BISON_I18N}. This macro is
6919defined in the file @file{bison-i18n.m4} that you copied earlier. It
6920causes @samp{configure} to find the value of the
30757c8c
PE
6921@code{BISON_LOCALEDIR} variable, and it defines the source-language
6922symbol @code{YYENABLE_NLS} to enable translations in the
6923Bison-generated parser.
f7ab6a50
PE
6924
6925@item
6926In the @code{main} function of your program, designate the directory
6927containing Bison's runtime message catalog, through a call to
6928@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6929For example:
6930
6931@example
6932bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6933@end example
6934
6935Typically this appears after any other call @code{bindtextdomain
6936(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6937@samp{BISON_LOCALEDIR} to be defined as a string through the
6938@file{Makefile}.
6939
6940@item
6941In the @file{Makefile.am} that controls the compilation of the @code{main}
6942function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6943either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6944
6945@example
6946DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6947@end example
6948
6949or:
6950
6951@example
6952AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6953@end example
6954
6955@item
6956Finally, invoke the command @command{autoreconf} to generate the build
6957infrastructure.
6958@end enumerate
6959
bfa74976 6960
342b8b6e 6961@node Algorithm
13863333
AD
6962@chapter The Bison Parser Algorithm
6963@cindex Bison parser algorithm
bfa74976
RS
6964@cindex algorithm of parser
6965@cindex shifting
6966@cindex reduction
6967@cindex parser stack
6968@cindex stack, parser
6969
6970As Bison reads tokens, it pushes them onto a stack along with their
6971semantic values. The stack is called the @dfn{parser stack}. Pushing a
6972token is traditionally called @dfn{shifting}.
6973
6974For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6975@samp{3} to come. The stack will have four elements, one for each token
6976that was shifted.
6977
6978But the stack does not always have an element for each token read. When
6979the last @var{n} tokens and groupings shifted match the components of a
6980grammar rule, they can be combined according to that rule. This is called
6981@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6982single grouping whose symbol is the result (left hand side) of that rule.
6983Running the rule's action is part of the process of reduction, because this
6984is what computes the semantic value of the resulting grouping.
6985
6986For example, if the infix calculator's parser stack contains this:
6987
6988@example
69891 + 5 * 3
6990@end example
6991
6992@noindent
6993and the next input token is a newline character, then the last three
6994elements can be reduced to 15 via the rule:
6995
6996@example
6997expr: expr '*' expr;
6998@end example
6999
7000@noindent
7001Then the stack contains just these three elements:
7002
7003@example
70041 + 15
7005@end example
7006
7007@noindent
7008At this point, another reduction can be made, resulting in the single value
700916. Then the newline token can be shifted.
7010
7011The parser tries, by shifts and reductions, to reduce the entire input down
7012to a single grouping whose symbol is the grammar's start-symbol
7013(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
7014
7015This kind of parser is known in the literature as a bottom-up parser.
7016
7017@menu
742e4900 7018* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
7019* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
7020* Precedence:: Operator precedence works by resolving conflicts.
7021* Contextual Precedence:: When an operator's precedence depends on context.
7022* Parser States:: The parser is a finite-state-machine with stack.
7023* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 7024* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 7025* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 7026* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 7027* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
7028@end menu
7029
742e4900
JD
7030@node Lookahead
7031@section Lookahead Tokens
7032@cindex lookahead token
bfa74976
RS
7033
7034The Bison parser does @emph{not} always reduce immediately as soon as the
7035last @var{n} tokens and groupings match a rule. This is because such a
7036simple strategy is inadequate to handle most languages. Instead, when a
7037reduction is possible, the parser sometimes ``looks ahead'' at the next
7038token in order to decide what to do.
7039
7040When a token is read, it is not immediately shifted; first it becomes the
742e4900 7041@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 7042perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
7043the lookahead token remains off to the side. When no more reductions
7044should take place, the lookahead token is shifted onto the stack. This
bfa74976 7045does not mean that all possible reductions have been done; depending on the
742e4900 7046token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
7047application.
7048
742e4900 7049Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
7050expressions which contain binary addition operators and postfix unary
7051factorial operators (@samp{!}), and allow parentheses for grouping.
7052
7053@example
7054@group
5e9b6624
AD
7055expr:
7056 term '+' expr
7057| term
7058;
bfa74976
RS
7059@end group
7060
7061@group
5e9b6624
AD
7062term:
7063 '(' expr ')'
7064| term '!'
534cee7a 7065| "number"
5e9b6624 7066;
bfa74976
RS
7067@end group
7068@end example
7069
7070Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7071should be done? If the following token is @samp{)}, then the first three
7072tokens must be reduced to form an @code{expr}. This is the only valid
7073course, because shifting the @samp{)} would produce a sequence of symbols
7074@w{@code{term ')'}}, and no rule allows this.
7075
7076If the following token is @samp{!}, then it must be shifted immediately so
7077that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7078parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7079@code{expr}. It would then be impossible to shift the @samp{!} because
7080doing so would produce on the stack the sequence of symbols @code{expr
7081'!'}. No rule allows that sequence.
7082
7083@vindex yychar
32c29292
JD
7084@vindex yylval
7085@vindex yylloc
742e4900 7086The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7087Its semantic value and location, if any, are stored in the variables
7088@code{yylval} and @code{yylloc}.
bfa74976
RS
7089@xref{Action Features, ,Special Features for Use in Actions}.
7090
342b8b6e 7091@node Shift/Reduce
bfa74976
RS
7092@section Shift/Reduce Conflicts
7093@cindex conflicts
7094@cindex shift/reduce conflicts
7095@cindex dangling @code{else}
7096@cindex @code{else}, dangling
7097
7098Suppose we are parsing a language which has if-then and if-then-else
7099statements, with a pair of rules like this:
7100
7101@example
7102@group
7103if_stmt:
534cee7a
AD
7104 "if" expr "then" stmt
7105| "if" expr "then" stmt "else" stmt
5e9b6624 7106;
bfa74976
RS
7107@end group
7108@end example
7109
7110@noindent
534cee7a
AD
7111Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7112specific keyword tokens.
bfa74976 7113
534cee7a 7114When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7115contents of the stack (assuming the input is valid) are just right for
7116reduction by the first rule. But it is also legitimate to shift the
534cee7a 7117@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7118rule.
7119
7120This situation, where either a shift or a reduction would be valid, is
7121called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7122these conflicts by choosing to shift, unless otherwise directed by
7123operator precedence declarations. To see the reason for this, let's
7124contrast it with the other alternative.
7125
534cee7a 7126Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7127the else-clause to the innermost if-statement, making these two inputs
7128equivalent:
7129
7130@example
534cee7a 7131if x then if y then win; else lose;
bfa74976 7132
534cee7a 7133if x then do; if y then win; else lose; end;
bfa74976
RS
7134@end example
7135
7136But if the parser chose to reduce when possible rather than shift, the
7137result would be to attach the else-clause to the outermost if-statement,
7138making these two inputs equivalent:
7139
7140@example
534cee7a 7141if x then if y then win; else lose;
bfa74976 7142
534cee7a 7143if x then do; if y then win; end; else lose;
bfa74976
RS
7144@end example
7145
7146The conflict exists because the grammar as written is ambiguous: either
7147parsing of the simple nested if-statement is legitimate. The established
7148convention is that these ambiguities are resolved by attaching the
7149else-clause to the innermost if-statement; this is what Bison accomplishes
7150by choosing to shift rather than reduce. (It would ideally be cleaner to
7151write an unambiguous grammar, but that is very hard to do in this case.)
7152This particular ambiguity was first encountered in the specifications of
7153Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7154
7155To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7156conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7157There will be no warning as long as the number of shift/reduce conflicts
7158is exactly @var{n}, and Bison will report an error if there is a
7159different number.
c28cd5dc
AD
7160@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7161recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7162number of conflicts does not mean that they are the @emph{same}. When
7163possible, you should rather use precedence directives to @emph{fix} the
7164conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7165Operators}).
bfa74976
RS
7166
7167The definition of @code{if_stmt} above is solely to blame for the
7168conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7169rules. Here is a complete Bison grammar file that actually manifests
7170the conflict:
bfa74976
RS
7171
7172@example
bfa74976 7173%%
bfa74976 7174@group
5e9b6624
AD
7175stmt:
7176 expr
7177| if_stmt
7178;
bfa74976
RS
7179@end group
7180
7181@group
7182if_stmt:
534cee7a
AD
7183 "if" expr "then" stmt
7184| "if" expr "then" stmt "else" stmt
5e9b6624 7185;
bfa74976
RS
7186@end group
7187
5e9b6624 7188expr:
534cee7a 7189 "identifier"
5e9b6624 7190;
bfa74976
RS
7191@end example
7192
342b8b6e 7193@node Precedence
bfa74976
RS
7194@section Operator Precedence
7195@cindex operator precedence
7196@cindex precedence of operators
7197
7198Another situation where shift/reduce conflicts appear is in arithmetic
7199expressions. Here shifting is not always the preferred resolution; the
7200Bison declarations for operator precedence allow you to specify when to
7201shift and when to reduce.
7202
7203@menu
7204* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7205* Using Precedence:: How to specify precedence and associativity.
7206* Precedence Only:: How to specify precedence only.
bfa74976
RS
7207* Precedence Examples:: How these features are used in the previous example.
7208* How Precedence:: How they work.
c28cd5dc 7209* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7210@end menu
7211
342b8b6e 7212@node Why Precedence
bfa74976
RS
7213@subsection When Precedence is Needed
7214
7215Consider the following ambiguous grammar fragment (ambiguous because the
7216input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7217
7218@example
7219@group
5e9b6624
AD
7220expr:
7221 expr '-' expr
7222| expr '*' expr
7223| expr '<' expr
7224| '(' expr ')'
7225@dots{}
7226;
bfa74976
RS
7227@end group
7228@end example
7229
7230@noindent
7231Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7232should it reduce them via the rule for the subtraction operator? It
7233depends on the next token. Of course, if the next token is @samp{)}, we
7234must reduce; shifting is invalid because no single rule can reduce the
7235token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7236the next token is @samp{*} or @samp{<}, we have a choice: either
7237shifting or reduction would allow the parse to complete, but with
7238different results.
7239
7240To decide which one Bison should do, we must consider the results. If
7241the next operator token @var{op} is shifted, then it must be reduced
7242first in order to permit another opportunity to reduce the difference.
7243The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7244hand, if the subtraction is reduced before shifting @var{op}, the result
7245is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7246reduce should depend on the relative precedence of the operators
7247@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7248@samp{<}.
bfa74976
RS
7249
7250@cindex associativity
7251What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7252@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7253operators we prefer the former, which is called @dfn{left association}.
7254The latter alternative, @dfn{right association}, is desirable for
7255assignment operators. The choice of left or right association is a
7256matter of whether the parser chooses to shift or reduce when the stack
742e4900 7257contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7258makes right-associativity.
bfa74976 7259
342b8b6e 7260@node Using Precedence
bfa74976
RS
7261@subsection Specifying Operator Precedence
7262@findex %left
bfa74976 7263@findex %nonassoc
d78f0ac9
AD
7264@findex %precedence
7265@findex %right
bfa74976
RS
7266
7267Bison allows you to specify these choices with the operator precedence
7268declarations @code{%left} and @code{%right}. Each such declaration
7269contains a list of tokens, which are operators whose precedence and
7270associativity is being declared. The @code{%left} declaration makes all
7271those operators left-associative and the @code{%right} declaration makes
7272them right-associative. A third alternative is @code{%nonassoc}, which
7273declares that it is a syntax error to find the same operator twice ``in a
7274row''.
d78f0ac9
AD
7275The last alternative, @code{%precedence}, allows to define only
7276precedence and no associativity at all. As a result, any
7277associativity-related conflict that remains will be reported as an
7278compile-time error. The directive @code{%nonassoc} creates run-time
7279error: using the operator in a associative way is a syntax error. The
7280directive @code{%precedence} creates compile-time errors: an operator
7281@emph{can} be involved in an associativity-related conflict, contrary to
7282what expected the grammar author.
bfa74976
RS
7283
7284The relative precedence of different operators is controlled by the
d78f0ac9
AD
7285order in which they are declared. The first precedence/associativity
7286declaration in the file declares the operators whose
bfa74976
RS
7287precedence is lowest, the next such declaration declares the operators
7288whose precedence is a little higher, and so on.
7289
d78f0ac9
AD
7290@node Precedence Only
7291@subsection Specifying Precedence Only
7292@findex %precedence
7293
8a4281b9 7294Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7295@code{%nonassoc}, which all defines precedence and associativity, little
7296attention is paid to the fact that precedence cannot be defined without
7297defining associativity. Yet, sometimes, when trying to solve a
7298conflict, precedence suffices. In such a case, using @code{%left},
7299@code{%right}, or @code{%nonassoc} might hide future (associativity
7300related) conflicts that would remain hidden.
7301
7302The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7303Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7304in the following situation, where the period denotes the current parsing
7305state:
7306
7307@example
7308if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7309@end example
7310
7311The conflict involves the reduction of the rule @samp{IF expr THEN
7312stmt}, which precedence is by default that of its last token
7313(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7314disambiguation (attach the @code{else} to the closest @code{if}),
7315shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7316higher than that of @code{THEN}. But neither is expected to be involved
7317in an associativity related conflict, which can be specified as follows.
7318
7319@example
7320%precedence THEN
7321%precedence ELSE
7322@end example
7323
7324The unary-minus is another typical example where associativity is
7325usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7326Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7327used to declare the precedence of @code{NEG}, which is more than needed
7328since it also defines its associativity. While this is harmless in the
7329traditional example, who knows how @code{NEG} might be used in future
7330evolutions of the grammar@dots{}
7331
342b8b6e 7332@node Precedence Examples
bfa74976
RS
7333@subsection Precedence Examples
7334
7335In our example, we would want the following declarations:
7336
7337@example
7338%left '<'
7339%left '-'
7340%left '*'
7341@end example
7342
7343In a more complete example, which supports other operators as well, we
7344would declare them in groups of equal precedence. For example, @code{'+'} is
7345declared with @code{'-'}:
7346
7347@example
534cee7a 7348%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7349%left '+' '-'
7350%left '*' '/'
7351@end example
7352
342b8b6e 7353@node How Precedence
bfa74976
RS
7354@subsection How Precedence Works
7355
7356The first effect of the precedence declarations is to assign precedence
7357levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7358precedence levels to certain rules: each rule gets its precedence from
7359the last terminal symbol mentioned in the components. (You can also
7360specify explicitly the precedence of a rule. @xref{Contextual
7361Precedence, ,Context-Dependent Precedence}.)
7362
7363Finally, the resolution of conflicts works by comparing the precedence
742e4900 7364of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7365token's precedence is higher, the choice is to shift. If the rule's
7366precedence is higher, the choice is to reduce. If they have equal
7367precedence, the choice is made based on the associativity of that
7368precedence level. The verbose output file made by @samp{-v}
7369(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7370resolved.
bfa74976
RS
7371
7372Not all rules and not all tokens have precedence. If either the rule or
742e4900 7373the lookahead token has no precedence, then the default is to shift.
bfa74976 7374
c28cd5dc
AD
7375@node Non Operators
7376@subsection Using Precedence For Non Operators
7377
7378Using properly precedence and associativity directives can help fixing
7379shift/reduce conflicts that do not involve arithmetics-like operators. For
7380instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7381Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7382
7383In the present case, the conflict is between the token @code{"else"} willing
7384to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7385for reduction. By default, the precedence of a rule is that of its last
7386token, here @code{"then"}, so the conflict will be solved appropriately
7387by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7388instance as follows:
7389
7390@example
7391@group
589149dc
AD
7392%precedence "then"
7393%precedence "else"
c28cd5dc
AD
7394@end group
7395@end example
7396
7397Alternatively, you may give both tokens the same precedence, in which case
7398associativity is used to solve the conflict. To preserve the shift action,
7399use right associativity:
7400
7401@example
7402%right "then" "else"
7403@end example
7404
7405Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7406``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7407of these keywords with respect to the other operators your grammar.
7408Therefore, instead of being warned about new conflicts you would be unaware
7409of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7410being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7411else 2) + 3}?), the conflict will be already ``fixed''.
7412
342b8b6e 7413@node Contextual Precedence
bfa74976
RS
7414@section Context-Dependent Precedence
7415@cindex context-dependent precedence
7416@cindex unary operator precedence
7417@cindex precedence, context-dependent
7418@cindex precedence, unary operator
7419@findex %prec
7420
7421Often the precedence of an operator depends on the context. This sounds
7422outlandish at first, but it is really very common. For example, a minus
7423sign typically has a very high precedence as a unary operator, and a
7424somewhat lower precedence (lower than multiplication) as a binary operator.
7425
d78f0ac9
AD
7426The Bison precedence declarations
7427can only be used once for a given token; so a token has
bfa74976
RS
7428only one precedence declared in this way. For context-dependent
7429precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7430modifier for rules.
bfa74976
RS
7431
7432The @code{%prec} modifier declares the precedence of a particular rule by
7433specifying a terminal symbol whose precedence should be used for that rule.
7434It's not necessary for that symbol to appear otherwise in the rule. The
7435modifier's syntax is:
7436
7437@example
7438%prec @var{terminal-symbol}
7439@end example
7440
7441@noindent
7442and it is written after the components of the rule. Its effect is to
7443assign the rule the precedence of @var{terminal-symbol}, overriding
7444the precedence that would be deduced for it in the ordinary way. The
7445altered rule precedence then affects how conflicts involving that rule
7446are resolved (@pxref{Precedence, ,Operator Precedence}).
7447
7448Here is how @code{%prec} solves the problem of unary minus. First, declare
7449a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7450are no tokens of this type, but the symbol serves to stand for its
7451precedence:
7452
7453@example
7454@dots{}
7455%left '+' '-'
7456%left '*'
7457%left UMINUS
7458@end example
7459
7460Now the precedence of @code{UMINUS} can be used in specific rules:
7461
7462@example
7463@group
5e9b6624
AD
7464exp:
7465 @dots{}
7466| exp '-' exp
7467 @dots{}
7468| '-' exp %prec UMINUS
bfa74976
RS
7469@end group
7470@end example
7471
91d2c560 7472@ifset defaultprec
39a06c25
PE
7473If you forget to append @code{%prec UMINUS} to the rule for unary
7474minus, Bison silently assumes that minus has its usual precedence.
7475This kind of problem can be tricky to debug, since one typically
7476discovers the mistake only by testing the code.
7477
22fccf95 7478The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7479this kind of problem systematically. It causes rules that lack a
7480@code{%prec} modifier to have no precedence, even if the last terminal
7481symbol mentioned in their components has a declared precedence.
7482
22fccf95 7483If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7484for all rules that participate in precedence conflict resolution.
7485Then you will see any shift/reduce conflict until you tell Bison how
7486to resolve it, either by changing your grammar or by adding an
7487explicit precedence. This will probably add declarations to the
7488grammar, but it helps to protect against incorrect rule precedences.
7489
22fccf95
PE
7490The effect of @code{%no-default-prec;} can be reversed by giving
7491@code{%default-prec;}, which is the default.
91d2c560 7492@end ifset
39a06c25 7493
342b8b6e 7494@node Parser States
bfa74976
RS
7495@section Parser States
7496@cindex finite-state machine
7497@cindex parser state
7498@cindex state (of parser)
7499
7500The function @code{yyparse} is implemented using a finite-state machine.
7501The values pushed on the parser stack are not simply token type codes; they
7502represent the entire sequence of terminal and nonterminal symbols at or
7503near the top of the stack. The current state collects all the information
7504about previous input which is relevant to deciding what to do next.
7505
742e4900
JD
7506Each time a lookahead token is read, the current parser state together
7507with the type of lookahead token are looked up in a table. This table
7508entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7509specifies the new parser state, which is pushed onto the top of the
7510parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7511This means that a certain number of tokens or groupings are taken off
7512the top of the stack, and replaced by one grouping. In other words,
7513that number of states are popped from the stack, and one new state is
7514pushed.
7515
742e4900 7516There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7517is erroneous in the current state. This causes error processing to begin
7518(@pxref{Error Recovery}).
7519
342b8b6e 7520@node Reduce/Reduce
bfa74976
RS
7521@section Reduce/Reduce Conflicts
7522@cindex reduce/reduce conflict
7523@cindex conflicts, reduce/reduce
7524
7525A reduce/reduce conflict occurs if there are two or more rules that apply
7526to the same sequence of input. This usually indicates a serious error
7527in the grammar.
7528
7529For example, here is an erroneous attempt to define a sequence
7530of zero or more @code{word} groupings.
7531
7532@example
d4fca427 7533@group
5e9b6624 7534sequence:
6240346a 7535 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7536| maybeword
7537| sequence word @{ printf ("added word %s\n", $2); @}
7538;
d4fca427 7539@end group
bfa74976 7540
d4fca427 7541@group
5e9b6624 7542maybeword:
6240346a
AD
7543 %empty @{ printf ("empty maybeword\n"); @}
7544| word @{ printf ("single word %s\n", $1); @}
5e9b6624 7545;
d4fca427 7546@end group
bfa74976
RS
7547@end example
7548
7549@noindent
7550The error is an ambiguity: there is more than one way to parse a single
7551@code{word} into a @code{sequence}. It could be reduced to a
7552@code{maybeword} and then into a @code{sequence} via the second rule.
7553Alternatively, nothing-at-all could be reduced into a @code{sequence}
7554via the first rule, and this could be combined with the @code{word}
7555using the third rule for @code{sequence}.
7556
7557There is also more than one way to reduce nothing-at-all into a
7558@code{sequence}. This can be done directly via the first rule,
7559or indirectly via @code{maybeword} and then the second rule.
7560
7561You might think that this is a distinction without a difference, because it
7562does not change whether any particular input is valid or not. But it does
7563affect which actions are run. One parsing order runs the second rule's
7564action; the other runs the first rule's action and the third rule's action.
7565In this example, the output of the program changes.
7566
7567Bison resolves a reduce/reduce conflict by choosing to use the rule that
7568appears first in the grammar, but it is very risky to rely on this. Every
7569reduce/reduce conflict must be studied and usually eliminated. Here is the
7570proper way to define @code{sequence}:
7571
7572@example
51356dd2 7573@group
5e9b6624 7574sequence:
6240346a 7575 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7576| sequence word @{ printf ("added word %s\n", $2); @}
7577;
51356dd2 7578@end group
bfa74976
RS
7579@end example
7580
7581Here is another common error that yields a reduce/reduce conflict:
7582
7583@example
51356dd2 7584@group
589149dc 7585sequence:
6240346a 7586 %empty
5e9b6624
AD
7587| sequence words
7588| sequence redirects
7589;
51356dd2 7590@end group
bfa74976 7591
51356dd2 7592@group
5e9b6624 7593words:
6240346a 7594 %empty
5e9b6624
AD
7595| words word
7596;
51356dd2 7597@end group
bfa74976 7598
51356dd2 7599@group
5e9b6624 7600redirects:
6240346a 7601 %empty
5e9b6624
AD
7602| redirects redirect
7603;
51356dd2 7604@end group
bfa74976
RS
7605@end example
7606
7607@noindent
7608The intention here is to define a sequence which can contain either
7609@code{word} or @code{redirect} groupings. The individual definitions of
7610@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7611three together make a subtle ambiguity: even an empty input can be parsed
7612in infinitely many ways!
7613
7614Consider: nothing-at-all could be a @code{words}. Or it could be two
7615@code{words} in a row, or three, or any number. It could equally well be a
7616@code{redirects}, or two, or any number. Or it could be a @code{words}
7617followed by three @code{redirects} and another @code{words}. And so on.
7618
7619Here are two ways to correct these rules. First, to make it a single level
7620of sequence:
7621
7622@example
5e9b6624 7623sequence:
6240346a 7624 %empty
5e9b6624
AD
7625| sequence word
7626| sequence redirect
7627;
bfa74976
RS
7628@end example
7629
7630Second, to prevent either a @code{words} or a @code{redirects}
7631from being empty:
7632
7633@example
d4fca427 7634@group
5e9b6624 7635sequence:
6240346a 7636 %empty
5e9b6624
AD
7637| sequence words
7638| sequence redirects
7639;
d4fca427 7640@end group
bfa74976 7641
d4fca427 7642@group
5e9b6624
AD
7643words:
7644 word
7645| words word
7646;
d4fca427 7647@end group
bfa74976 7648
d4fca427 7649@group
5e9b6624
AD
7650redirects:
7651 redirect
7652| redirects redirect
7653;
d4fca427 7654@end group
bfa74976
RS
7655@end example
7656
53e2cd1e
AD
7657Yet this proposal introduces another kind of ambiguity! The input
7658@samp{word word} can be parsed as a single @code{words} composed of two
7659@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7660@code{redirect}/@code{redirects}). However this ambiguity is now a
7661shift/reduce conflict, and therefore it can now be addressed with precedence
7662directives.
7663
7664To simplify the matter, we will proceed with @code{word} and @code{redirect}
7665being tokens: @code{"word"} and @code{"redirect"}.
7666
7667To prefer the longest @code{words}, the conflict between the token
7668@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7669as a shift. To this end, we use the same techniques as exposed above, see
7670@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7671relies on precedences: use @code{%prec} to give a lower precedence to the
7672rule:
7673
7674@example
589149dc
AD
7675%precedence "word"
7676%precedence "sequence"
53e2cd1e
AD
7677%%
7678@group
7679sequence:
6240346a 7680 %empty
53e2cd1e
AD
7681| sequence word %prec "sequence"
7682| sequence redirect %prec "sequence"
7683;
7684@end group
7685
7686@group
7687words:
7688 word
7689| words "word"
7690;
7691@end group
7692@end example
7693
7694Another solution relies on associativity: provide both the token and the
7695rule with the same precedence, but make them right-associative:
7696
7697@example
7698%right "word" "redirect"
7699%%
7700@group
7701sequence:
6240346a 7702 %empty
53e2cd1e
AD
7703| sequence word %prec "word"
7704| sequence redirect %prec "redirect"
7705;
7706@end group
7707@end example
7708
cc09e5be
JD
7709@node Mysterious Conflicts
7710@section Mysterious Conflicts
7fceb615 7711@cindex Mysterious Conflicts
bfa74976
RS
7712
7713Sometimes reduce/reduce conflicts can occur that don't look warranted.
7714Here is an example:
7715
7716@example
7717@group
bfa74976 7718%%
5e9b6624 7719def: param_spec return_spec ',';
bfa74976 7720param_spec:
5e9b6624
AD
7721 type
7722| name_list ':' type
7723;
bfa74976 7724@end group
589149dc 7725
bfa74976
RS
7726@group
7727return_spec:
5e9b6624
AD
7728 type
7729| name ':' type
7730;
bfa74976 7731@end group
589149dc 7732
534cee7a 7733type: "id";
589149dc 7734
bfa74976 7735@group
534cee7a 7736name: "id";
bfa74976 7737name_list:
5e9b6624
AD
7738 name
7739| name ',' name_list
7740;
bfa74976
RS
7741@end group
7742@end example
7743
534cee7a
AD
7744It would seem that this grammar can be parsed with only a single token of
7745lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7746@code{name} if a comma or colon follows, or a @code{type} if another
7747@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7748
7fceb615
JD
7749@cindex LR
7750@cindex LALR
eb45ef3b 7751However, for historical reasons, Bison cannot by default handle all
8a4281b9 7752LR(1) grammars.
534cee7a 7753In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7754of a @code{param_spec} and likewise at the beginning of a
7755@code{return_spec}, are similar enough that Bison assumes they are the
7756same.
7757They appear similar because the same set of rules would be
bfa74976
RS
7758active---the rule for reducing to a @code{name} and that for reducing to
7759a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7760that the rules would require different lookahead tokens in the two
bfa74976
RS
7761contexts, so it makes a single parser state for them both. Combining
7762the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7763occurrence means that the grammar is not LALR(1).
bfa74976 7764
7fceb615
JD
7765@cindex IELR
7766@cindex canonical LR
7767For many practical grammars (specifically those that fall into the non-LR(1)
7768class), the limitations of LALR(1) result in difficulties beyond just
7769mysterious reduce/reduce conflicts. The best way to fix all these problems
7770is to select a different parser table construction algorithm. Either
7771IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7772and easier to debug during development. @xref{LR Table Construction}, for
7773details. (Bison's IELR(1) and canonical LR(1) implementations are
7774experimental. More user feedback will help to stabilize them.)
eb45ef3b 7775
8a4281b9 7776If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7777can often fix a mysterious conflict by identifying the two parser states
7778that are being confused, and adding something to make them look
7779distinct. In the above example, adding one rule to
bfa74976
RS
7780@code{return_spec} as follows makes the problem go away:
7781
7782@example
7783@group
bfa74976
RS
7784@dots{}
7785return_spec:
5e9b6624
AD
7786 type
7787| name ':' type
534cee7a 7788| "id" "bogus" /* This rule is never used. */
5e9b6624 7789;
bfa74976
RS
7790@end group
7791@end example
7792
7793This corrects the problem because it introduces the possibility of an
534cee7a 7794additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7795@code{return_spec}. This rule is not active in the corresponding context
7796in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7797As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7798the added rule cannot alter the way actual input is parsed.
7799
7800In this particular example, there is another way to solve the problem:
534cee7a 7801rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7802instead of via @code{name}. This also causes the two confusing
7803contexts to have different sets of active rules, because the one for
7804@code{return_spec} activates the altered rule for @code{return_spec}
7805rather than the one for @code{name}.
7806
7807@example
589149dc 7808@group
bfa74976 7809param_spec:
5e9b6624
AD
7810 type
7811| name_list ':' type
7812;
589149dc
AD
7813@end group
7814
7815@group
bfa74976 7816return_spec:
5e9b6624 7817 type
534cee7a 7818| "id" ':' type
5e9b6624 7819;
589149dc 7820@end group
bfa74976
RS
7821@end example
7822
8a4281b9 7823For a more detailed exposition of LALR(1) parsers and parser
5e528941 7824generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7825
7fceb615
JD
7826@node Tuning LR
7827@section Tuning LR
7828
7829The default behavior of Bison's LR-based parsers is chosen mostly for
7830historical reasons, but that behavior is often not robust. For example, in
7831the previous section, we discussed the mysterious conflicts that can be
7832produced by LALR(1), Bison's default parser table construction algorithm.
7833Another example is Bison's @code{%define parse.error verbose} directive,
7834which instructs the generated parser to produce verbose syntax error
7835messages, which can sometimes contain incorrect information.
7836
7837In this section, we explore several modern features of Bison that allow you
7838to tune fundamental aspects of the generated LR-based parsers. Some of
7839these features easily eliminate shortcomings like those mentioned above.
7840Others can be helpful purely for understanding your parser.
7841
7842Most of the features discussed in this section are still experimental. More
7843user feedback will help to stabilize them.
7844
7845@menu
7846* LR Table Construction:: Choose a different construction algorithm.
7847* Default Reductions:: Disable default reductions.
7848* LAC:: Correct lookahead sets in the parser states.
7849* Unreachable States:: Keep unreachable parser states for debugging.
7850@end menu
7851
7852@node LR Table Construction
7853@subsection LR Table Construction
7854@cindex Mysterious Conflict
7855@cindex LALR
7856@cindex IELR
7857@cindex canonical LR
7858@findex %define lr.type
7859
7860For historical reasons, Bison constructs LALR(1) parser tables by default.
7861However, LALR does not possess the full language-recognition power of LR.
7862As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7863mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7864Conflicts}.
7865
7866As we also demonstrated in that example, the traditional approach to
7867eliminating such mysterious behavior is to restructure the grammar.
7868Unfortunately, doing so correctly is often difficult. Moreover, merely
7869discovering that LALR causes mysterious behavior in your parser can be
7870difficult as well.
7871
7872Fortunately, Bison provides an easy way to eliminate the possibility of such
7873mysterious behavior altogether. You simply need to activate a more powerful
7874parser table construction algorithm by using the @code{%define lr.type}
7875directive.
7876
511dd971 7877@deffn {Directive} {%define lr.type} @var{type}
7fceb615 7878Specify the type of parser tables within the LR(1) family. The accepted
511dd971 7879values for @var{type} are:
7fceb615
JD
7880
7881@itemize
7882@item @code{lalr} (default)
7883@item @code{ielr}
7884@item @code{canonical-lr}
7885@end itemize
7886
7887(This feature is experimental. More user feedback will help to stabilize
7888it.)
7889@end deffn
7890
7891For example, to activate IELR, you might add the following directive to you
7892grammar file:
7893
7894@example
7895%define lr.type ielr
7896@end example
7897
cc09e5be 7898@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7899conflict is then eliminated, so there is no need to invest time in
7900comprehending the conflict or restructuring the grammar to fix it. If,
7901during future development, the grammar evolves such that all mysterious
7902behavior would have disappeared using just LALR, you need not fear that
7903continuing to use IELR will result in unnecessarily large parser tables.
7904That is, IELR generates LALR tables when LALR (using a deterministic parsing
7905algorithm) is sufficient to support the full language-recognition power of
7906LR. Thus, by enabling IELR at the start of grammar development, you can
7907safely and completely eliminate the need to consider LALR's shortcomings.
7908
7909While IELR is almost always preferable, there are circumstances where LALR
7910or the canonical LR parser tables described by Knuth
7911(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7912relative advantages of each parser table construction algorithm within
7913Bison:
7914
7915@itemize
7916@item LALR
7917
7918There are at least two scenarios where LALR can be worthwhile:
7919
7920@itemize
7921@item GLR without static conflict resolution.
7922
7923@cindex GLR with LALR
7924When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
7925conflicts statically (for example, with @code{%left} or @code{%precedence}),
7926then
7fceb615
JD
7927the parser explores all potential parses of any given input. In this case,
7928the choice of parser table construction algorithm is guaranteed not to alter
7929the language accepted by the parser. LALR parser tables are the smallest
7930parser tables Bison can currently construct, so they may then be preferable.
7931Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7932more like a deterministic parser in the syntactic contexts where those
7933conflicts appear, and so either IELR or canonical LR can then be helpful to
7934avoid LALR's mysterious behavior.
7935
7936@item Malformed grammars.
7937
7938Occasionally during development, an especially malformed grammar with a
7939major recurring flaw may severely impede the IELR or canonical LR parser
7940table construction algorithm. LALR can be a quick way to construct parser
7941tables in order to investigate such problems while ignoring the more subtle
7942differences from IELR and canonical LR.
7943@end itemize
7944
7945@item IELR
7946
7947IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7948any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7949always accept exactly the same set of sentences. However, like LALR, IELR
7950merges parser states during parser table construction so that the number of
7951parser states is often an order of magnitude less than for canonical LR.
7952More importantly, because canonical LR's extra parser states may contain
7953duplicate conflicts in the case of non-LR grammars, the number of conflicts
7954for IELR is often an order of magnitude less as well. This effect can
7955significantly reduce the complexity of developing a grammar.
7956
7957@item Canonical LR
7958
7959@cindex delayed syntax error detection
7960@cindex LAC
7961@findex %nonassoc
7962While inefficient, canonical LR parser tables can be an interesting means to
7963explore a grammar because they possess a property that IELR and LALR tables
7964do not. That is, if @code{%nonassoc} is not used and default reductions are
7965left disabled (@pxref{Default Reductions}), then, for every left context of
7966every canonical LR state, the set of tokens accepted by that state is
7967guaranteed to be the exact set of tokens that is syntactically acceptable in
7968that left context. It might then seem that an advantage of canonical LR
7969parsers in production is that, under the above constraints, they are
7970guaranteed to detect a syntax error as soon as possible without performing
7971any unnecessary reductions. However, IELR parsers that use LAC are also
7972able to achieve this behavior without sacrificing @code{%nonassoc} or
7973default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7974@end itemize
7975
7976For a more detailed exposition of the mysterious behavior in LALR parsers
7977and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7978@ref{Bibliography,,Denny 2010 November}.
7979
7980@node Default Reductions
7981@subsection Default Reductions
7982@cindex default reductions
f3bc3386 7983@findex %define lr.default-reduction
7fceb615
JD
7984@findex %nonassoc
7985
7986After parser table construction, Bison identifies the reduction with the
7987largest lookahead set in each parser state. To reduce the size of the
7988parser state, traditional Bison behavior is to remove that lookahead set and
7989to assign that reduction to be the default parser action. Such a reduction
7990is known as a @dfn{default reduction}.
7991
7992Default reductions affect more than the size of the parser tables. They
7993also affect the behavior of the parser:
7994
7995@itemize
7996@item Delayed @code{yylex} invocations.
7997
7998@cindex delayed yylex invocations
7999@cindex consistent states
8000@cindex defaulted states
8001A @dfn{consistent state} is a state that has only one possible parser
8002action. If that action is a reduction and is encoded as a default
8003reduction, then that consistent state is called a @dfn{defaulted state}.
8004Upon reaching a defaulted state, a Bison-generated parser does not bother to
8005invoke @code{yylex} to fetch the next token before performing the reduction.
8006In other words, whether default reductions are enabled in consistent states
8007determines how soon a Bison-generated parser invokes @code{yylex} for a
8008token: immediately when it @emph{reaches} that token in the input or when it
8009eventually @emph{needs} that token as a lookahead to determine the next
8010parser action. Traditionally, default reductions are enabled, and so the
8011parser exhibits the latter behavior.
8012
8013The presence of defaulted states is an important consideration when
8014designing @code{yylex} and the grammar file. That is, if the behavior of
8015@code{yylex} can influence or be influenced by the semantic actions
8016associated with the reductions in defaulted states, then the delay of the
8017next @code{yylex} invocation until after those reductions is significant.
8018For example, the semantic actions might pop a scope stack that @code{yylex}
8019uses to determine what token to return. Thus, the delay might be necessary
8020to ensure that @code{yylex} does not look up the next token in a scope that
8021should already be considered closed.
8022
8023@item Delayed syntax error detection.
8024
8025@cindex delayed syntax error detection
8026When the parser fetches a new token by invoking @code{yylex}, it checks
8027whether there is an action for that token in the current parser state. The
8028parser detects a syntax error if and only if either (1) there is no action
8029for that token or (2) the action for that token is the error action (due to
8030the use of @code{%nonassoc}). However, if there is a default reduction in
8031that state (which might or might not be a defaulted state), then it is
8032impossible for condition 1 to exist. That is, all tokens have an action.
8033Thus, the parser sometimes fails to detect the syntax error until it reaches
8034a later state.
8035
8036@cindex LAC
8037@c If there's an infinite loop, default reductions can prevent an incorrect
8038@c sentence from being rejected.
8039While default reductions never cause the parser to accept syntactically
8040incorrect sentences, the delay of syntax error detection can have unexpected
8041effects on the behavior of the parser. However, the delay can be caused
8042anyway by parser state merging and the use of @code{%nonassoc}, and it can
8043be fixed by another Bison feature, LAC. We discuss the effects of delayed
8044syntax error detection and LAC more in the next section (@pxref{LAC}).
8045@end itemize
8046
8047For canonical LR, the only default reduction that Bison enables by default
8048is the accept action, which appears only in the accepting state, which has
8049no other action and is thus a defaulted state. However, the default accept
8050action does not delay any @code{yylex} invocation or syntax error detection
8051because the accept action ends the parse.
8052
8053For LALR and IELR, Bison enables default reductions in nearly all states by
8054default. There are only two exceptions. First, states that have a shift
8055action on the @code{error} token do not have default reductions because
8056delayed syntax error detection could then prevent the @code{error} token
8057from ever being shifted in that state. However, parser state merging can
8058cause the same effect anyway, and LAC fixes it in both cases, so future
8059versions of Bison might drop this exception when LAC is activated. Second,
8060GLR parsers do not record the default reduction as the action on a lookahead
8061token for which there is a conflict. The correct action in this case is to
8062split the parse instead.
8063
8064To adjust which states have default reductions enabled, use the
f3bc3386 8065@code{%define lr.default-reduction} directive.
7fceb615 8066
5807bb91 8067@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8068Specify the kind of states that are permitted to contain default reductions.
511dd971 8069The accepted values of @var{where} are:
7fceb615 8070@itemize
f0ad1b2f 8071@item @code{most} (default for LALR and IELR)
7fceb615
JD
8072@item @code{consistent}
8073@item @code{accepting} (default for canonical LR)
8074@end itemize
8075
8076(The ability to specify where default reductions are permitted is
8077experimental. More user feedback will help to stabilize it.)
8078@end deffn
8079
7fceb615
JD
8080@node LAC
8081@subsection LAC
8082@findex %define parse.lac
8083@cindex LAC
8084@cindex lookahead correction
8085
8086Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8087encountering a syntax error. First, the parser might perform additional
8088parser stack reductions before discovering the syntax error. Such
8089reductions can perform user semantic actions that are unexpected because
8090they are based on an invalid token, and they cause error recovery to begin
8091in a different syntactic context than the one in which the invalid token was
8092encountered. Second, when verbose error messages are enabled (@pxref{Error
8093Reporting}), the expected token list in the syntax error message can both
8094contain invalid tokens and omit valid tokens.
8095
8096The culprits for the above problems are @code{%nonassoc}, default reductions
8097in inconsistent states (@pxref{Default Reductions}), and parser state
8098merging. Because IELR and LALR merge parser states, they suffer the most.
8099Canonical LR can suffer only if @code{%nonassoc} is used or if default
8100reductions are enabled for inconsistent states.
8101
8102LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8103that solves these problems for canonical LR, IELR, and LALR without
8104sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8105enable LAC with the @code{%define parse.lac} directive.
8106
511dd971 8107@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8108Enable LAC to improve syntax error handling.
8109@itemize
8110@item @code{none} (default)
8111@item @code{full}
8112@end itemize
8113(This feature is experimental. More user feedback will help to stabilize
8114it. Moreover, it is currently only available for deterministic parsers in
8115C.)
8116@end deffn
8117
8118Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8119fetches a new token from the scanner so that it can determine the next
8120parser action, it immediately suspends normal parsing and performs an
8121exploratory parse using a temporary copy of the normal parser state stack.
8122During this exploratory parse, the parser does not perform user semantic
8123actions. If the exploratory parse reaches a shift action, normal parsing
8124then resumes on the normal parser stacks. If the exploratory parse reaches
8125an error instead, the parser reports a syntax error. If verbose syntax
8126error messages are enabled, the parser must then discover the list of
8127expected tokens, so it performs a separate exploratory parse for each token
8128in the grammar.
8129
8130There is one subtlety about the use of LAC. That is, when in a consistent
8131parser state with a default reduction, the parser will not attempt to fetch
8132a token from the scanner because no lookahead is needed to determine the
8133next parser action. Thus, whether default reductions are enabled in
8134consistent states (@pxref{Default Reductions}) affects how soon the parser
8135detects a syntax error: immediately when it @emph{reaches} an erroneous
8136token or when it eventually @emph{needs} that token as a lookahead to
8137determine the next parser action. The latter behavior is probably more
8138intuitive, so Bison currently provides no way to achieve the former behavior
8139while default reductions are enabled in consistent states.
8140
8141Thus, when LAC is in use, for some fixed decision of whether to enable
8142default reductions in consistent states, canonical LR and IELR behave almost
8143exactly the same for both syntactically acceptable and syntactically
8144unacceptable input. While LALR still does not support the full
8145language-recognition power of canonical LR and IELR, LAC at least enables
8146LALR's syntax error handling to correctly reflect LALR's
8147language-recognition power.
8148
8149There are a few caveats to consider when using LAC:
8150
8151@itemize
8152@item Infinite parsing loops.
8153
8154IELR plus LAC does have one shortcoming relative to canonical LR. Some
8155parsers generated by Bison can loop infinitely. LAC does not fix infinite
8156parsing loops that occur between encountering a syntax error and detecting
8157it, but enabling canonical LR or disabling default reductions sometimes
8158does.
8159
8160@item Verbose error message limitations.
8161
8162Because of internationalization considerations, Bison-generated parsers
8163limit the size of the expected token list they are willing to report in a
8164verbose syntax error message. If the number of expected tokens exceeds that
8165limit, the list is simply dropped from the message. Enabling LAC can
8166increase the size of the list and thus cause the parser to drop it. Of
8167course, dropping the list is better than reporting an incorrect list.
8168
8169@item Performance.
8170
8171Because LAC requires many parse actions to be performed twice, it can have a
8172performance penalty. However, not all parse actions must be performed
8173twice. Specifically, during a series of default reductions in consistent
8174states and shift actions, the parser never has to initiate an exploratory
8175parse. Moreover, the most time-consuming tasks in a parse are often the
8176file I/O, the lexical analysis performed by the scanner, and the user's
8177semantic actions, but none of these are performed during the exploratory
8178parse. Finally, the base of the temporary stack used during an exploratory
8179parse is a pointer into the normal parser state stack so that the stack is
8180never physically copied. In our experience, the performance penalty of LAC
5a321748 8181has proved insignificant for practical grammars.
7fceb615
JD
8182@end itemize
8183
709c7d11
JD
8184While the LAC algorithm shares techniques that have been recognized in the
8185parser community for years, for the publication that introduces LAC,
8186@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8187
7fceb615
JD
8188@node Unreachable States
8189@subsection Unreachable States
f3bc3386 8190@findex %define lr.keep-unreachable-state
7fceb615
JD
8191@cindex unreachable states
8192
8193If there exists no sequence of transitions from the parser's start state to
8194some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8195state}. A state can become unreachable during conflict resolution if Bison
8196disables a shift action leading to it from a predecessor state.
8197
8198By default, Bison removes unreachable states from the parser after conflict
8199resolution because they are useless in the generated parser. However,
8200keeping unreachable states is sometimes useful when trying to understand the
8201relationship between the parser and the grammar.
8202
5807bb91 8203@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8204Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8205@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8206@end deffn
8207
8208There are a few caveats to consider:
8209
8210@itemize @bullet
8211@item Missing or extraneous warnings.
8212
8213Unreachable states may contain conflicts and may use rules not used in any
8214other state. Thus, keeping unreachable states may induce warnings that are
8215irrelevant to your parser's behavior, and it may eliminate warnings that are
8216relevant. Of course, the change in warnings may actually be relevant to a
8217parser table analysis that wants to keep unreachable states, so this
8218behavior will likely remain in future Bison releases.
8219
8220@item Other useless states.
8221
8222While Bison is able to remove unreachable states, it is not guaranteed to
8223remove other kinds of useless states. Specifically, when Bison disables
8224reduce actions during conflict resolution, some goto actions may become
8225useless, and thus some additional states may become useless. If Bison were
8226to compute which goto actions were useless and then disable those actions,
8227it could identify such states as unreachable and then remove those states.
8228However, Bison does not compute which goto actions are useless.
8229@end itemize
8230
fae437e8 8231@node Generalized LR Parsing
8a4281b9
JD
8232@section Generalized LR (GLR) Parsing
8233@cindex GLR parsing
8234@cindex generalized LR (GLR) parsing
676385e2 8235@cindex ambiguous grammars
9d9b8b70 8236@cindex nondeterministic parsing
676385e2 8237
fae437e8
AD
8238Bison produces @emph{deterministic} parsers that choose uniquely
8239when to reduce and which reduction to apply
742e4900 8240based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8241As a result, normal Bison handles a proper subset of the family of
8242context-free languages.
fae437e8 8243Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8244sequence of reductions cannot have deterministic parsers in this sense.
8245The same is true of languages that require more than one symbol of
742e4900 8246lookahead, since the parser lacks the information necessary to make a
676385e2 8247decision at the point it must be made in a shift-reduce parser.
cc09e5be 8248Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8249there are languages where Bison's default choice of how to
676385e2
PH
8250summarize the input seen so far loses necessary information.
8251
8252When you use the @samp{%glr-parser} declaration in your grammar file,
8253Bison generates a parser that uses a different algorithm, called
8a4281b9 8254Generalized LR (or GLR). A Bison GLR
c827f760 8255parser uses the same basic
676385e2
PH
8256algorithm for parsing as an ordinary Bison parser, but behaves
8257differently in cases where there is a shift-reduce conflict that has not
fae437e8 8258been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8259reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8260situation, it
fae437e8 8261effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8262shift or reduction. These parsers then proceed as usual, consuming
8263tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8264and split further, with the result that instead of a sequence of states,
8a4281b9 8265a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8266
8267In effect, each stack represents a guess as to what the proper parse
8268is. Additional input may indicate that a guess was wrong, in which case
8269the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8270actions generated in each stack are saved, rather than being executed
676385e2 8271immediately. When a stack disappears, its saved semantic actions never
fae437e8 8272get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8273their sets of semantic actions are both saved with the state that
8274results from the reduction. We say that two stacks are equivalent
fae437e8 8275when they both represent the same sequence of states,
676385e2
PH
8276and each pair of corresponding states represents a
8277grammar symbol that produces the same segment of the input token
8278stream.
8279
8280Whenever the parser makes a transition from having multiple
eb45ef3b 8281states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8282algorithm, after resolving and executing the saved-up actions.
8283At this transition, some of the states on the stack will have semantic
8284values that are sets (actually multisets) of possible actions. The
8285parser tries to pick one of the actions by first finding one whose rule
8286has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8287declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8288precedence, but there the same merging function is declared for both
fae437e8 8289rules by the @samp{%merge} declaration,
676385e2
PH
8290Bison resolves and evaluates both and then calls the merge function on
8291the result. Otherwise, it reports an ambiguity.
8292
8a4281b9
JD
8293It is possible to use a data structure for the GLR parsing tree that
8294permits the processing of any LR(1) grammar in linear time (in the
c827f760 8295size of the input), any unambiguous (not necessarily
8a4281b9 8296LR(1)) grammar in
fae437e8 8297quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8298context-free grammar in cubic worst-case time. However, Bison currently
8299uses a simpler data structure that requires time proportional to the
8300length of the input times the maximum number of stacks required for any
9d9b8b70 8301prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8302grammars can require exponential time and space to process. Such badly
8303behaving examples, however, are not generally of practical interest.
9d9b8b70 8304Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8305doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8306structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8307grammar, in particular, it is only slightly slower than with the
8a4281b9 8308deterministic LR(1) Bison parser.
676385e2 8309
5e528941
JD
8310For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
83112000}.
f6481e2f 8312
1a059451
PE
8313@node Memory Management
8314@section Memory Management, and How to Avoid Memory Exhaustion
8315@cindex memory exhaustion
8316@cindex memory management
bfa74976
RS
8317@cindex stack overflow
8318@cindex parser stack overflow
8319@cindex overflow of parser stack
8320
1a059451 8321The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8322not reduced. When this happens, the parser function @code{yyparse}
1a059451 8323calls @code{yyerror} and then returns 2.
bfa74976 8324
c827f760 8325Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8326usually results from using a right recursion instead of a left
188867ac 8327recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8328
bfa74976
RS
8329@vindex YYMAXDEPTH
8330By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8331parser stack can become before memory is exhausted. Define the
bfa74976
RS
8332macro with a value that is an integer. This value is the maximum number
8333of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8334
8335The stack space allowed is not necessarily allocated. If you specify a
1a059451 8336large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8337stack at first, and then makes it bigger by stages as needed. This
8338increasing allocation happens automatically and silently. Therefore,
8339you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8340space for ordinary inputs that do not need much stack.
8341
d7e14fc0
PE
8342However, do not allow @code{YYMAXDEPTH} to be a value so large that
8343arithmetic overflow could occur when calculating the size of the stack
8344space. Also, do not allow @code{YYMAXDEPTH} to be less than
8345@code{YYINITDEPTH}.
8346
bfa74976
RS
8347@cindex default stack limit
8348The default value of @code{YYMAXDEPTH}, if you do not define it, is
834910000.
8350
8351@vindex YYINITDEPTH
8352You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8353macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8354parser in C, this value must be a compile-time constant
d7e14fc0
PE
8355unless you are assuming C99 or some other target language or compiler
8356that allows variable-length arrays. The default is 200.
8357
1a059451 8358Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8359
20be2f92 8360You can generate a deterministic parser containing C++ user code from
411614fa 8361the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8362(@pxref{C++ Parsers}). However, if you do use the default skeleton
8363and want to allow the parsing stack to grow,
8364be careful not to use semantic types or location types that require
8365non-trivial copy constructors.
8366The C skeleton bypasses these constructors when copying data to
8367new, larger stacks.
d1a1114f 8368
342b8b6e 8369@node Error Recovery
bfa74976
RS
8370@chapter Error Recovery
8371@cindex error recovery
8372@cindex recovery from errors
8373
6e649e65 8374It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8375error. For example, a compiler should recover sufficiently to parse the
8376rest of the input file and check it for errors; a calculator should accept
8377another expression.
8378
8379In a simple interactive command parser where each input is one line, it may
8380be sufficient to allow @code{yyparse} to return 1 on error and have the
8381caller ignore the rest of the input line when that happens (and then call
8382@code{yyparse} again). But this is inadequate for a compiler, because it
8383forgets all the syntactic context leading up to the error. A syntax error
8384deep within a function in the compiler input should not cause the compiler
8385to treat the following line like the beginning of a source file.
8386
8387@findex error
8388You can define how to recover from a syntax error by writing rules to
8389recognize the special token @code{error}. This is a terminal symbol that
8390is always defined (you need not declare it) and reserved for error
8391handling. The Bison parser generates an @code{error} token whenever a
8392syntax error happens; if you have provided a rule to recognize this token
13863333 8393in the current context, the parse can continue.
bfa74976
RS
8394
8395For example:
8396
8397@example
0860e383 8398stmts:
6240346a 8399 %empty
0860e383
AD
8400| stmts '\n'
8401| stmts exp '\n'
8402| stmts error '\n'
bfa74976
RS
8403@end example
8404
8405The fourth rule in this example says that an error followed by a newline
0860e383 8406makes a valid addition to any @code{stmts}.
bfa74976
RS
8407
8408What happens if a syntax error occurs in the middle of an @code{exp}? The
8409error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8410of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8411the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8412and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8413will be tokens to read before the next newline. So the rule is not
8414applicable in the ordinary way.
8415
8416But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8417the semantic context and part of the input. First it discards states
8418and objects from the stack until it gets back to a state in which the
bfa74976 8419@code{error} token is acceptable. (This means that the subexpressions
0860e383 8420already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8421At this point the @code{error} token can be shifted. Then, if the old
742e4900 8422lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8423tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8424this example, Bison reads and discards input until the next newline so
8425that the fourth rule can apply. Note that discarded symbols are
8426possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8427Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8428
8429The choice of error rules in the grammar is a choice of strategies for
8430error recovery. A simple and useful strategy is simply to skip the rest of
8431the current input line or current statement if an error is detected:
8432
8433@example
0860e383 8434stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8435@end example
8436
8437It is also useful to recover to the matching close-delimiter of an
8438opening-delimiter that has already been parsed. Otherwise the
8439close-delimiter will probably appear to be unmatched, and generate another,
8440spurious error message:
8441
8442@example
5e9b6624
AD
8443primary:
8444 '(' expr ')'
8445| '(' error ')'
8446@dots{}
8447;
bfa74976
RS
8448@end example
8449
8450Error recovery strategies are necessarily guesses. When they guess wrong,
8451one syntax error often leads to another. In the above example, the error
8452recovery rule guesses that an error is due to bad input within one
0860e383
AD
8453@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8454middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8455from the first error, another syntax error will be found straightaway,
8456since the text following the spurious semicolon is also an invalid
0860e383 8457@code{stmt}.
bfa74976
RS
8458
8459To prevent an outpouring of error messages, the parser will output no error
8460message for another syntax error that happens shortly after the first; only
8461after three consecutive input tokens have been successfully shifted will
8462error messages resume.
8463
8464Note that rules which accept the @code{error} token may have actions, just
8465as any other rules can.
8466
8467@findex yyerrok
8468You can make error messages resume immediately by using the macro
8469@code{yyerrok} in an action. If you do this in the error rule's action, no
8470error messages will be suppressed. This macro requires no arguments;
8471@samp{yyerrok;} is a valid C statement.
8472
8473@findex yyclearin
742e4900 8474The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8475this is unacceptable, then the macro @code{yyclearin} may be used to clear
8476this token. Write the statement @samp{yyclearin;} in the error rule's
8477action.
32c29292 8478@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8479
6e649e65 8480For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8481called that advances the input stream to some point where parsing should
8482once again commence. The next symbol returned by the lexical scanner is
742e4900 8483probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8484with @samp{yyclearin;}.
8485
8486@vindex YYRECOVERING
02103984
PE
8487The expression @code{YYRECOVERING ()} yields 1 when the parser
8488is recovering from a syntax error, and 0 otherwise.
8489Syntax error diagnostics are suppressed while recovering from a syntax
8490error.
bfa74976 8491
342b8b6e 8492@node Context Dependency
bfa74976
RS
8493@chapter Handling Context Dependencies
8494
8495The Bison paradigm is to parse tokens first, then group them into larger
8496syntactic units. In many languages, the meaning of a token is affected by
8497its context. Although this violates the Bison paradigm, certain techniques
8498(known as @dfn{kludges}) may enable you to write Bison parsers for such
8499languages.
8500
8501@menu
8502* Semantic Tokens:: Token parsing can depend on the semantic context.
8503* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8504* Tie-in Recovery:: Lexical tie-ins have implications for how
8505 error recovery rules must be written.
8506@end menu
8507
8508(Actually, ``kludge'' means any technique that gets its job done but is
8509neither clean nor robust.)
8510
342b8b6e 8511@node Semantic Tokens
bfa74976
RS
8512@section Semantic Info in Token Types
8513
8514The C language has a context dependency: the way an identifier is used
8515depends on what its current meaning is. For example, consider this:
8516
8517@example
8518foo (x);
8519@end example
8520
8521This looks like a function call statement, but if @code{foo} is a typedef
8522name, then this is actually a declaration of @code{x}. How can a Bison
8523parser for C decide how to parse this input?
8524
8a4281b9 8525The method used in GNU C is to have two different token types,
bfa74976
RS
8526@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8527identifier, it looks up the current declaration of the identifier in order
8528to decide which token type to return: @code{TYPENAME} if the identifier is
8529declared as a typedef, @code{IDENTIFIER} otherwise.
8530
8531The grammar rules can then express the context dependency by the choice of
8532token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8533but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8534@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8535is @emph{not} significant, such as in declarations that can shadow a
8536typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8537accepted---there is one rule for each of the two token types.
8538
8539This technique is simple to use if the decision of which kinds of
8540identifiers to allow is made at a place close to where the identifier is
8541parsed. But in C this is not always so: C allows a declaration to
8542redeclare a typedef name provided an explicit type has been specified
8543earlier:
8544
8545@example
3a4f411f
PE
8546typedef int foo, bar;
8547int baz (void)
d4fca427 8548@group
3a4f411f
PE
8549@{
8550 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8551 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8552 return foo (bar);
8553@}
d4fca427 8554@end group
bfa74976
RS
8555@end example
8556
8557Unfortunately, the name being declared is separated from the declaration
8558construct itself by a complicated syntactic structure---the ``declarator''.
8559
9ecbd125 8560As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8561all the nonterminal names changed: once for parsing a declaration in
8562which a typedef name can be redefined, and once for parsing a
8563declaration in which that can't be done. Here is a part of the
8564duplication, with actions omitted for brevity:
bfa74976
RS
8565
8566@example
d4fca427 8567@group
bfa74976 8568initdcl:
5e9b6624
AD
8569 declarator maybeasm '=' init
8570| declarator maybeasm
8571;
d4fca427 8572@end group
bfa74976 8573
d4fca427 8574@group
bfa74976 8575notype_initdcl:
5e9b6624
AD
8576 notype_declarator maybeasm '=' init
8577| notype_declarator maybeasm
8578;
d4fca427 8579@end group
bfa74976
RS
8580@end example
8581
8582@noindent
8583Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8584cannot. The distinction between @code{declarator} and
8585@code{notype_declarator} is the same sort of thing.
8586
8587There is some similarity between this technique and a lexical tie-in
8588(described next), in that information which alters the lexical analysis is
8589changed during parsing by other parts of the program. The difference is
8590here the information is global, and is used for other purposes in the
8591program. A true lexical tie-in has a special-purpose flag controlled by
8592the syntactic context.
8593
342b8b6e 8594@node Lexical Tie-ins
bfa74976
RS
8595@section Lexical Tie-ins
8596@cindex lexical tie-in
8597
8598One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8599which is set by Bison actions, whose purpose is to alter the way tokens are
8600parsed.
8601
8602For example, suppose we have a language vaguely like C, but with a special
8603construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8604an expression in parentheses in which all integers are hexadecimal. In
8605particular, the token @samp{a1b} must be treated as an integer rather than
8606as an identifier if it appears in that context. Here is how you can do it:
8607
8608@example
8609@group
8610%@{
38a92d50
PE
8611 int hexflag;
8612 int yylex (void);
8613 void yyerror (char const *);
bfa74976
RS
8614%@}
8615%%
8616@dots{}
8617@end group
8618@group
5e9b6624
AD
8619expr:
8620 IDENTIFIER
8621| constant
8622| HEX '(' @{ hexflag = 1; @}
8623 expr ')' @{ hexflag = 0; $$ = $4; @}
8624| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8625@dots{}
8626;
bfa74976
RS
8627@end group
8628
8629@group
8630constant:
5e9b6624
AD
8631 INTEGER
8632| STRING
8633;
bfa74976
RS
8634@end group
8635@end example
8636
8637@noindent
8638Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8639it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8640with letters are parsed as integers if possible.
8641
ff7571c0
JD
8642The declaration of @code{hexflag} shown in the prologue of the grammar
8643file is needed to make it accessible to the actions (@pxref{Prologue,
8644,The Prologue}). You must also write the code in @code{yylex} to obey
8645the flag.
bfa74976 8646
342b8b6e 8647@node Tie-in Recovery
bfa74976
RS
8648@section Lexical Tie-ins and Error Recovery
8649
8650Lexical tie-ins make strict demands on any error recovery rules you have.
8651@xref{Error Recovery}.
8652
8653The reason for this is that the purpose of an error recovery rule is to
8654abort the parsing of one construct and resume in some larger construct.
8655For example, in C-like languages, a typical error recovery rule is to skip
8656tokens until the next semicolon, and then start a new statement, like this:
8657
8658@example
5e9b6624
AD
8659stmt:
8660 expr ';'
8661| IF '(' expr ')' stmt @{ @dots{} @}
8662@dots{}
8663| error ';' @{ hexflag = 0; @}
8664;
bfa74976
RS
8665@end example
8666
8667If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8668construct, this error rule will apply, and then the action for the
8669completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8670remain set for the entire rest of the input, or until the next @code{hex}
8671keyword, causing identifiers to be misinterpreted as integers.
8672
8673To avoid this problem the error recovery rule itself clears @code{hexflag}.
8674
8675There may also be an error recovery rule that works within expressions.
8676For example, there could be a rule which applies within parentheses
8677and skips to the close-parenthesis:
8678
8679@example
8680@group
5e9b6624
AD
8681expr:
8682 @dots{}
8683| '(' expr ')' @{ $$ = $2; @}
8684| '(' error ')'
8685@dots{}
bfa74976
RS
8686@end group
8687@end example
8688
8689If this rule acts within the @code{hex} construct, it is not going to abort
8690that construct (since it applies to an inner level of parentheses within
8691the construct). Therefore, it should not clear the flag: the rest of
8692the @code{hex} construct should be parsed with the flag still in effect.
8693
8694What if there is an error recovery rule which might abort out of the
8695@code{hex} construct or might not, depending on circumstances? There is no
8696way you can write the action to determine whether a @code{hex} construct is
8697being aborted or not. So if you are using a lexical tie-in, you had better
8698make sure your error recovery rules are not of this kind. Each rule must
8699be such that you can be sure that it always will, or always won't, have to
8700clear the flag.
8701
ec3bc396
AD
8702@c ================================================== Debugging Your Parser
8703
342b8b6e 8704@node Debugging
bfa74976 8705@chapter Debugging Your Parser
ec3bc396 8706
93c150b6
AD
8707Developing a parser can be a challenge, especially if you don't understand
8708the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8709chapter explains how understand and debug a parser.
8710
8711The first sections focus on the static part of the parser: its structure.
8712They explain how to generate and read the detailed description of the
8713automaton. There are several formats available:
8714@itemize @minus
8715@item
8716as text, see @ref{Understanding, , Understanding Your Parser};
8717
8718@item
8719as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8720
8721@item
8722or as a markup report that can be turned, for instance, into HTML, see
8723@ref{Xml,, Visualizing your parser in multiple formats}.
8724@end itemize
8725
8726The last section focuses on the dynamic part of the parser: how to enable
8727and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8728Parser}).
ec3bc396
AD
8729
8730@menu
8731* Understanding:: Understanding the structure of your parser.
fc4fdd62 8732* Graphviz:: Getting a visual representation of the parser.
9c16d399 8733* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8734* Tracing:: Tracing the execution of your parser.
8735@end menu
8736
8737@node Understanding
8738@section Understanding Your Parser
8739
8740As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8741Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8742frequent than one would hope), looking at this automaton is required to
c949ada3 8743tune or simply fix a parser.
ec3bc396
AD
8744
8745The textual file is generated when the options @option{--report} or
e3fd1dcb 8746@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8747Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8748the parser implementation file name, and adding @samp{.output}
8749instead. Therefore, if the grammar file is @file{foo.y}, then the
8750parser implementation file is called @file{foo.tab.c} by default. As
8751a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8752
8753The following grammar file, @file{calc.y}, will be used in the sequel:
8754
8755@example
8756%token NUM STR
c949ada3 8757@group
ec3bc396
AD
8758%left '+' '-'
8759%left '*'
c949ada3 8760@end group
ec3bc396 8761%%
c949ada3 8762@group
5e9b6624
AD
8763exp:
8764 exp '+' exp
8765| exp '-' exp
8766| exp '*' exp
8767| exp '/' exp
8768| NUM
8769;
c949ada3 8770@end group
ec3bc396
AD
8771useless: STR;
8772%%
8773@end example
8774
88bce5a2
AD
8775@command{bison} reports:
8776
8777@example
8f0d265e
JD
8778calc.y: warning: 1 nonterminal useless in grammar
8779calc.y: warning: 1 rule useless in grammar
c949ada3
AD
8780calc.y:12.1-7: warning: nonterminal useless in grammar: useless
8781calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8782calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8783@end example
8784
8785When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8786creates a file @file{calc.output} with contents detailed below. The
8787order of the output and the exact presentation might vary, but the
8788interpretation is the same.
ec3bc396 8789
ec3bc396
AD
8790@noindent
8791@cindex token, useless
8792@cindex useless token
8793@cindex nonterminal, useless
8794@cindex useless nonterminal
8795@cindex rule, useless
8796@cindex useless rule
62243aa5 8797The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8798nonterminals and rules are removed in order to produce a smaller parser, but
8799useless tokens are preserved, since they might be used by the scanner (note
8800the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8801
8802@example
29e20e22 8803Nonterminals useless in grammar
ec3bc396
AD
8804 useless
8805
29e20e22 8806Terminals unused in grammar
ec3bc396
AD
8807 STR
8808
29e20e22
AD
8809Rules useless in grammar
8810 6 useless: STR
ec3bc396
AD
8811@end example
8812
8813@noindent
29e20e22
AD
8814The next section lists states that still have conflicts.
8815
8816@example
8817State 8 conflicts: 1 shift/reduce
8818State 9 conflicts: 1 shift/reduce
8819State 10 conflicts: 1 shift/reduce
8820State 11 conflicts: 4 shift/reduce
8821@end example
8822
8823@noindent
8824Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8825
8826@example
8827Grammar
8828
29e20e22
AD
8829 0 $accept: exp $end
8830
8831 1 exp: exp '+' exp
8832 2 | exp '-' exp
8833 3 | exp '*' exp
8834 4 | exp '/' exp
8835 5 | NUM
ec3bc396
AD
8836@end example
8837
8838@noindent
8839and reports the uses of the symbols:
8840
8841@example
d4fca427 8842@group
ec3bc396
AD
8843Terminals, with rules where they appear
8844
88bce5a2 8845$end (0) 0
ec3bc396
AD
8846'*' (42) 3
8847'+' (43) 1
8848'-' (45) 2
8849'/' (47) 4
8850error (256)
8851NUM (258) 5
29e20e22 8852STR (259)
d4fca427 8853@end group
ec3bc396 8854
d4fca427 8855@group
ec3bc396
AD
8856Nonterminals, with rules where they appear
8857
29e20e22 8858$accept (9)
ec3bc396 8859 on left: 0
29e20e22 8860exp (10)
ec3bc396 8861 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8862@end group
ec3bc396
AD
8863@end example
8864
8865@noindent
8866@cindex item
8867@cindex pointed rule
8868@cindex rule, pointed
8869Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8870with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8871item is a production rule together with a point (@samp{.}) marking
8872the location of the input cursor.
ec3bc396
AD
8873
8874@example
c949ada3 8875State 0
ec3bc396 8876
29e20e22 8877 0 $accept: . exp $end
ec3bc396 8878
29e20e22 8879 NUM shift, and go to state 1
ec3bc396 8880
29e20e22 8881 exp go to state 2
ec3bc396
AD
8882@end example
8883
8884This reads as follows: ``state 0 corresponds to being at the very
8885beginning of the parsing, in the initial rule, right before the start
8886symbol (here, @code{exp}). When the parser returns to this state right
8887after having reduced a rule that produced an @code{exp}, the control
8888flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8889symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8890the parse stack, and the control flow jumps to state 1. Any other
742e4900 8891lookahead triggers a syntax error.''
ec3bc396
AD
8892
8893@cindex core, item set
8894@cindex item set core
8895@cindex kernel, item set
8896@cindex item set core
8897Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8898report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8899at the beginning of any rule deriving an @code{exp}. By default Bison
8900reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8901you want to see more detail you can invoke @command{bison} with
35880c82 8902@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8903
8904@example
c949ada3 8905State 0
ec3bc396 8906
29e20e22
AD
8907 0 $accept: . exp $end
8908 1 exp: . exp '+' exp
8909 2 | . exp '-' exp
8910 3 | . exp '*' exp
8911 4 | . exp '/' exp
8912 5 | . NUM
ec3bc396 8913
29e20e22 8914 NUM shift, and go to state 1
ec3bc396 8915
29e20e22 8916 exp go to state 2
ec3bc396
AD
8917@end example
8918
8919@noindent
29e20e22 8920In the state 1@dots{}
ec3bc396
AD
8921
8922@example
c949ada3 8923State 1
ec3bc396 8924
29e20e22 8925 5 exp: NUM .
ec3bc396 8926
29e20e22 8927 $default reduce using rule 5 (exp)
ec3bc396
AD
8928@end example
8929
8930@noindent
742e4900 8931the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 8932(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 8933State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
8934jump to state 2 (@samp{exp: go to state 2}).
8935
8936@example
c949ada3 8937State 2
ec3bc396 8938
29e20e22
AD
8939 0 $accept: exp . $end
8940 1 exp: exp . '+' exp
8941 2 | exp . '-' exp
8942 3 | exp . '*' exp
8943 4 | exp . '/' exp
ec3bc396 8944
29e20e22
AD
8945 $end shift, and go to state 3
8946 '+' shift, and go to state 4
8947 '-' shift, and go to state 5
8948 '*' shift, and go to state 6
8949 '/' shift, and go to state 7
ec3bc396
AD
8950@end example
8951
8952@noindent
8953In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8954because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8955@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8956jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8957Since there is no default action, any lookahead not listed triggers a syntax
8958error.
ec3bc396 8959
eb45ef3b 8960@cindex accepting state
ec3bc396
AD
8961The state 3 is named the @dfn{final state}, or the @dfn{accepting
8962state}:
8963
8964@example
c949ada3 8965State 3
ec3bc396 8966
29e20e22 8967 0 $accept: exp $end .
ec3bc396 8968
29e20e22 8969 $default accept
ec3bc396
AD
8970@end example
8971
8972@noindent
29e20e22
AD
8973the initial rule is completed (the start symbol and the end-of-input were
8974read), the parsing exits successfully.
ec3bc396
AD
8975
8976The interpretation of states 4 to 7 is straightforward, and is left to
8977the reader.
8978
8979@example
c949ada3 8980State 4
ec3bc396 8981
29e20e22 8982 1 exp: exp '+' . exp
ec3bc396 8983
29e20e22
AD
8984 NUM shift, and go to state 1
8985
8986 exp go to state 8
ec3bc396 8987
ec3bc396 8988
c949ada3 8989State 5
ec3bc396 8990
29e20e22
AD
8991 2 exp: exp '-' . exp
8992
8993 NUM shift, and go to state 1
ec3bc396 8994
29e20e22 8995 exp go to state 9
ec3bc396 8996
ec3bc396 8997
c949ada3 8998State 6
ec3bc396 8999
29e20e22 9000 3 exp: exp '*' . exp
ec3bc396 9001
29e20e22
AD
9002 NUM shift, and go to state 1
9003
9004 exp go to state 10
ec3bc396 9005
ec3bc396 9006
c949ada3 9007State 7
ec3bc396 9008
29e20e22 9009 4 exp: exp '/' . exp
ec3bc396 9010
29e20e22 9011 NUM shift, and go to state 1
ec3bc396 9012
29e20e22 9013 exp go to state 11
ec3bc396
AD
9014@end example
9015
5a99098d
PE
9016As was announced in beginning of the report, @samp{State 8 conflicts:
90171 shift/reduce}:
ec3bc396
AD
9018
9019@example
c949ada3 9020State 8
ec3bc396 9021
29e20e22
AD
9022 1 exp: exp . '+' exp
9023 1 | exp '+' exp .
9024 2 | exp . '-' exp
9025 3 | exp . '*' exp
9026 4 | exp . '/' exp
ec3bc396 9027
29e20e22
AD
9028 '*' shift, and go to state 6
9029 '/' shift, and go to state 7
ec3bc396 9030
29e20e22
AD
9031 '/' [reduce using rule 1 (exp)]
9032 $default reduce using rule 1 (exp)
ec3bc396
AD
9033@end example
9034
742e4900 9035Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
9036either shifting (and going to state 7), or reducing rule 1. The
9037conflict means that either the grammar is ambiguous, or the parser lacks
9038information to make the right decision. Indeed the grammar is
9039ambiguous, as, since we did not specify the precedence of @samp{/}, the
9040sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
9041NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
9042NUM}, which corresponds to reducing rule 1.
9043
eb45ef3b 9044Because in deterministic parsing a single decision can be made, Bison
ec3bc396 9045arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 9046Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
9047square brackets.
9048
9049Note that all the previous states had a single possible action: either
9050shifting the next token and going to the corresponding state, or
9051reducing a single rule. In the other cases, i.e., when shifting
9052@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
9053possible, the lookahead is required to select the action. State 8 is
9054one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
9055is shifting, otherwise the action is reducing rule 1. In other words,
9056the first two items, corresponding to rule 1, are not eligible when the
742e4900 9057lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 9058precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
9059with some set of possible lookahead tokens. When run with
9060@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
9061
9062@example
c949ada3 9063State 8
ec3bc396 9064
29e20e22
AD
9065 1 exp: exp . '+' exp
9066 1 | exp '+' exp . [$end, '+', '-', '/']
9067 2 | exp . '-' exp
9068 3 | exp . '*' exp
9069 4 | exp . '/' exp
9070
9071 '*' shift, and go to state 6
9072 '/' shift, and go to state 7
ec3bc396 9073
29e20e22
AD
9074 '/' [reduce using rule 1 (exp)]
9075 $default reduce using rule 1 (exp)
9076@end example
9077
9078Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9079the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9080solved thanks to associativity and precedence directives. If invoked with
9081@option{--report=solved}, Bison includes information about the solved
9082conflicts in the report:
ec3bc396 9083
29e20e22
AD
9084@example
9085Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9086Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9087Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9088@end example
9089
29e20e22 9090
ec3bc396
AD
9091The remaining states are similar:
9092
9093@example
d4fca427 9094@group
c949ada3 9095State 9
ec3bc396 9096
29e20e22
AD
9097 1 exp: exp . '+' exp
9098 2 | exp . '-' exp
9099 2 | exp '-' exp .
9100 3 | exp . '*' exp
9101 4 | exp . '/' exp
ec3bc396 9102
29e20e22
AD
9103 '*' shift, and go to state 6
9104 '/' shift, and go to state 7
ec3bc396 9105
29e20e22
AD
9106 '/' [reduce using rule 2 (exp)]
9107 $default reduce using rule 2 (exp)
d4fca427 9108@end group
ec3bc396 9109
d4fca427 9110@group
c949ada3 9111State 10
ec3bc396 9112
29e20e22
AD
9113 1 exp: exp . '+' exp
9114 2 | exp . '-' exp
9115 3 | exp . '*' exp
9116 3 | exp '*' exp .
9117 4 | exp . '/' exp
ec3bc396 9118
29e20e22 9119 '/' shift, and go to state 7
ec3bc396 9120
29e20e22
AD
9121 '/' [reduce using rule 3 (exp)]
9122 $default reduce using rule 3 (exp)
d4fca427 9123@end group
ec3bc396 9124
d4fca427 9125@group
c949ada3 9126State 11
ec3bc396 9127
29e20e22
AD
9128 1 exp: exp . '+' exp
9129 2 | exp . '-' exp
9130 3 | exp . '*' exp
9131 4 | exp . '/' exp
9132 4 | exp '/' exp .
9133
9134 '+' shift, and go to state 4
9135 '-' shift, and go to state 5
9136 '*' shift, and go to state 6
9137 '/' shift, and go to state 7
9138
9139 '+' [reduce using rule 4 (exp)]
9140 '-' [reduce using rule 4 (exp)]
9141 '*' [reduce using rule 4 (exp)]
9142 '/' [reduce using rule 4 (exp)]
9143 $default reduce using rule 4 (exp)
d4fca427 9144@end group
ec3bc396
AD
9145@end example
9146
9147@noindent
fa7e68c3 9148Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9149precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9150also because the associativity of @samp{/} is not specified.
ec3bc396 9151
c949ada3
AD
9152Bison may also produce an HTML version of this output, via an XML file and
9153XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9154
fc4fdd62
TR
9155@c ================================================= Graphical Representation
9156
9157@node Graphviz
9158@section Visualizing Your Parser
9159@cindex dot
9160
9161As another means to gain better understanding of the shift/reduce
9162automaton corresponding to the Bison parser, a DOT file can be generated. Note
9163that debugging a real grammar with this is tedious at best, and impractical
9164most of the times, because the generated files are huge (the generation of
9165a PDF or PNG file from it will take very long, and more often than not it will
9166fail due to memory exhaustion). This option was rather designed for beginners,
9167to help them understand LR parsers.
9168
bfdcc3a0
AD
9169This file is generated when the @option{--graph} option is specified
9170(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9171@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9172adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9173Graphviz output file is called @file{foo.dot}. A DOT file may also be
9174produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9175parser in multiple formats}).
9176
fc4fdd62
TR
9177
9178The following grammar file, @file{rr.y}, will be used in the sequel:
9179
9180@example
9181%%
9182@group
9183exp: a ";" | b ".";
9184a: "0";
9185b: "0";
9186@end group
9187@end example
9188
c949ada3
AD
9189The graphical output
9190@ifnotinfo
9191(see @ref{fig:graph})
9192@end ifnotinfo
9193is very similar to the textual one, and as such it is easier understood by
9194making direct comparisons between them. @xref{Debugging, , Debugging Your
9195Parser}, for a detailled analysis of the textual report.
9196
9197@ifnotinfo
9198@float Figure,fig:graph
9199@image{figs/example, 430pt}
9200@caption{A graphical rendering of the parser.}
9201@end float
9202@end ifnotinfo
fc4fdd62
TR
9203
9204@subheading Graphical Representation of States
9205
9206The items (pointed rules) for each state are grouped together in graph nodes.
9207Their numbering is the same as in the verbose file. See the following points,
9208about transitions, for examples
9209
9210When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9211needed, are shown next to the relevant rule between square brackets as a
9212comma separated list. This is the case in the figure for the representation of
9213reductions, below.
9214
9215@sp 1
9216
9217The transitions are represented as directed edges between the current and
9218the target states.
9219
9220@subheading Graphical Representation of Shifts
9221
9222Shifts are shown as solid arrows, labelled with the lookahead token for that
9223shift. The following describes a reduction in the @file{rr.output} file:
9224
9225@example
9226@group
c949ada3 9227State 3
fc4fdd62
TR
9228
9229 1 exp: a . ";"
9230
9231 ";" shift, and go to state 6
9232@end group
9233@end example
9234
9235A Graphviz rendering of this portion of the graph could be:
9236
9237@center @image{figs/example-shift, 100pt}
9238
9239@subheading Graphical Representation of Reductions
9240
9241Reductions are shown as solid arrows, leading to a diamond-shaped node
9242bearing the number of the reduction rule. The arrow is labelled with the
9243appropriate comma separated lookahead tokens. If the reduction is the default
9244action for the given state, there is no such label.
9245
9246This is how reductions are represented in the verbose file @file{rr.output}:
9247@example
c949ada3 9248State 1
fc4fdd62
TR
9249
9250 3 a: "0" . [";"]
9251 4 b: "0" . ["."]
9252
9253 "." reduce using rule 4 (b)
9254 $default reduce using rule 3 (a)
9255@end example
9256
9257A Graphviz rendering of this portion of the graph could be:
9258
9259@center @image{figs/example-reduce, 120pt}
9260
9261When unresolved conflicts are present, because in deterministic parsing
9262a single decision can be made, Bison can arbitrarily choose to disable a
9263reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9264are distinguished by a red filling color on these nodes, just like how they are
9265reported between square brackets in the verbose file.
9266
c949ada3
AD
9267The reduction corresponding to the rule number 0 is the acceptation
9268state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9269
9270@subheading Graphical representation of go tos
9271
9272The @samp{go to} jump transitions are represented as dotted lines bearing
9273the name of the rule being jumped to.
9274
9c16d399
TR
9275@c ================================================= XML
9276
9277@node Xml
9278@section Visualizing your parser in multiple formats
9279@cindex xml
9280
9281Bison supports two major report formats: textual output
c949ada3
AD
9282(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9283with option @option{--verbose}, and DOT
9284(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9285option @option{--graph}. However,
9c16d399
TR
9286another alternative is to output an XML file that may then be, with
9287@command{xsltproc}, rendered as either a raw text format equivalent to the
9288verbose file, or as an HTML version of the same file, with clickable
9289transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9290XSLT have no difference whatsoever with those obtained by invoking
9291@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9292
c949ada3 9293The XML file is generated when the options @option{-x} or
9c16d399
TR
9294@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9295If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9296from the parser implementation file name, and adding @samp{.xml} instead.
9297For instance, if the grammar file is @file{foo.y}, the default XML output
9298file is @file{foo.xml}.
9299
9300Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9301files to apply to the XML file. Their names are non-ambiguous:
9302
9303@table @file
9304@item xml2dot.xsl
be3517b0 9305Used to output a copy of the DOT visualization of the automaton.
9c16d399 9306@item xml2text.xsl
c949ada3 9307Used to output a copy of the @samp{.output} file.
9c16d399 9308@item xml2xhtml.xsl
c949ada3 9309Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9310@end table
9311
c949ada3 9312Sample usage (requires @command{xsltproc}):
9c16d399 9313@example
c949ada3 9314$ bison -x gr.y
9c16d399
TR
9315@group
9316$ bison --print-datadir
9317/usr/local/share/bison
9318@end group
c949ada3 9319$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9320@end example
9321
fc4fdd62 9322@c ================================================= Tracing
ec3bc396
AD
9323
9324@node Tracing
9325@section Tracing Your Parser
bfa74976
RS
9326@findex yydebug
9327@cindex debugging
9328@cindex tracing the parser
9329
93c150b6
AD
9330When a Bison grammar compiles properly but parses ``incorrectly'', the
9331@code{yydebug} parser-trace feature helps figuring out why.
9332
9333@menu
9334* Enabling Traces:: Activating run-time trace support
9335* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9336* The YYPRINT Macro:: Obsolete interface for semantic value reports
9337@end menu
bfa74976 9338
93c150b6
AD
9339@node Enabling Traces
9340@subsection Enabling Traces
3ded9a63
AD
9341There are several means to enable compilation of trace facilities:
9342
9343@table @asis
9344@item the macro @code{YYDEBUG}
9345@findex YYDEBUG
9346Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9347parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9348@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9349YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9350Prologue}).
9351
e6ae99fe 9352If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9353Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9354api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9355tracing feature (enabled if and only if nonzero); otherwise tracing is
9356enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9357
9358@item the option @option{-t} (POSIX Yacc compliant)
9359@itemx the option @option{--debug} (Bison extension)
9360Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
9361Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
9362otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9363
9364@item the directive @samp{%debug}
9365@findex %debug
fa819509
AD
9366Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9367Summary}). This Bison extension is maintained for backward
9368compatibility with previous versions of Bison.
9369
9370@item the variable @samp{parse.trace}
9371@findex %define parse.trace
35c1e5f0
JD
9372Add the @samp{%define parse.trace} directive (@pxref{%define
9373Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9374(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9375useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9376portability matter to you, this is the preferred solution.
3ded9a63
AD
9377@end table
9378
fa819509 9379We suggest that you always enable the trace option so that debugging is
3ded9a63 9380always possible.
bfa74976 9381
93c150b6 9382@findex YYFPRINTF
02a81e05 9383The trace facility outputs messages with macro calls of the form
e2742e46 9384@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9385@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9386arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9387define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9388and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9389
9390Once you have compiled the program with trace facilities, the way to
9391request a trace is to store a nonzero value in the variable @code{yydebug}.
9392You can do this by making the C code do it (in @code{main}, perhaps), or
9393you can alter the value with a C debugger.
9394
9395Each step taken by the parser when @code{yydebug} is nonzero produces a
9396line or two of trace information, written on @code{stderr}. The trace
9397messages tell you these things:
9398
9399@itemize @bullet
9400@item
9401Each time the parser calls @code{yylex}, what kind of token was read.
9402
9403@item
9404Each time a token is shifted, the depth and complete contents of the
9405state stack (@pxref{Parser States}).
9406
9407@item
9408Each time a rule is reduced, which rule it is, and the complete contents
9409of the state stack afterward.
9410@end itemize
9411
93c150b6
AD
9412To make sense of this information, it helps to refer to the automaton
9413description file (@pxref{Understanding, ,Understanding Your Parser}).
9414This file shows the meaning of each state in terms of
704a47c4
AD
9415positions in various rules, and also what each state will do with each
9416possible input token. As you read the successive trace messages, you
9417can see that the parser is functioning according to its specification in
9418the listing file. Eventually you will arrive at the place where
9419something undesirable happens, and you will see which parts of the
9420grammar are to blame.
bfa74976 9421
93c150b6 9422The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9423debuggers on it, but it's not easy to interpret what it is doing. The
9424parser function is a finite-state machine interpreter, and aside from
9425the actions it executes the same code over and over. Only the values
9426of variables show where in the grammar it is working.
bfa74976 9427
93c150b6
AD
9428@node Mfcalc Traces
9429@subsection Enabling Debug Traces for @code{mfcalc}
9430
9431The debugging information normally gives the token type of each token read,
9432but not its semantic value. The @code{%printer} directive allows specify
9433how semantic values are reported, see @ref{Printer Decl, , Printing
9434Semantic Values}. For backward compatibility, Yacc like C parsers may also
9435use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9436Macro}), but its use is discouraged.
9437
9438As a demonstration of @code{%printer}, consider the multi-function
9439calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9440traces, and semantic value reports, insert the following directives in its
9441prologue:
9442
9443@comment file: mfcalc.y: 2
9444@example
9445/* Generate the parser description file. */
9446%verbose
9447/* Enable run-time traces (yydebug). */
9448%define parse.trace
9449
9450/* Formatting semantic values. */
9451%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9452%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
9453%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
9454@end example
9455
9456The @code{%define} directive instructs Bison to generate run-time trace
9457support. Then, activation of these traces is controlled at run-time by the
9458@code{yydebug} variable, which is disabled by default. Because these traces
9459will refer to the ``states'' of the parser, it is helpful to ask for the
9460creation of a description of that parser; this is the purpose of (admittedly
9461ill-named) @code{%verbose} directive.
9462
9463The set of @code{%printer} directives demonstrates how to format the
9464semantic value in the traces. Note that the specification can be done
9465either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
9466tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
9467printer will be used for them.
9468
9469Here is a sample of the information provided by run-time traces. The traces
9470are sent onto standard error.
9471
9472@example
9473$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9474Starting parse
9475Entering state 0
9476Reducing stack by rule 1 (line 34):
9477-> $$ = nterm input ()
9478Stack now 0
9479Entering state 1
9480@end example
9481
9482@noindent
9483This first batch shows a specific feature of this grammar: the first rule
9484(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9485to look for the first token. The resulting left-hand symbol (@code{$$}) is
9486a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9487
9488Then the parser calls the scanner.
9489@example
9490Reading a token: Next token is token FNCT (sin())
9491Shifting token FNCT (sin())
9492Entering state 6
9493@end example
9494
9495@noindent
9496That token (@code{token}) is a function (@code{FNCT}) whose value is
9497@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9498The parser stores (@code{Shifting}) that token, and others, until it can do
9499something about it.
9500
9501@example
9502Reading a token: Next token is token '(' ()
9503Shifting token '(' ()
9504Entering state 14
9505Reading a token: Next token is token NUM (1.000000)
9506Shifting token NUM (1.000000)
9507Entering state 4
9508Reducing stack by rule 6 (line 44):
9509 $1 = token NUM (1.000000)
9510-> $$ = nterm exp (1.000000)
9511Stack now 0 1 6 14
9512Entering state 24
9513@end example
9514
9515@noindent
9516The previous reduction demonstrates the @code{%printer} directive for
c949ada3 9517@code{<val>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9518@code{exp} have @samp{1} as value.
9519
9520@example
9521Reading a token: Next token is token '-' ()
9522Shifting token '-' ()
9523Entering state 17
9524Reading a token: Next token is token NUM (1.000000)
9525Shifting token NUM (1.000000)
9526Entering state 4
9527Reducing stack by rule 6 (line 44):
9528 $1 = token NUM (1.000000)
9529-> $$ = nterm exp (1.000000)
9530Stack now 0 1 6 14 24 17
9531Entering state 26
9532Reading a token: Next token is token ')' ()
9533Reducing stack by rule 11 (line 49):
9534 $1 = nterm exp (1.000000)
9535 $2 = token '-' ()
9536 $3 = nterm exp (1.000000)
9537-> $$ = nterm exp (0.000000)
9538Stack now 0 1 6 14
9539Entering state 24
9540@end example
9541
9542@noindent
9543The rule for the subtraction was just reduced. The parser is about to
9544discover the end of the call to @code{sin}.
9545
9546@example
9547Next token is token ')' ()
9548Shifting token ')' ()
9549Entering state 31
9550Reducing stack by rule 9 (line 47):
9551 $1 = token FNCT (sin())
9552 $2 = token '(' ()
9553 $3 = nterm exp (0.000000)
9554 $4 = token ')' ()
9555-> $$ = nterm exp (0.000000)
9556Stack now 0 1
9557Entering state 11
9558@end example
9559
9560@noindent
9561Finally, the end-of-line allow the parser to complete the computation, and
9562display its result.
9563
9564@example
9565Reading a token: Next token is token '\n' ()
9566Shifting token '\n' ()
9567Entering state 22
9568Reducing stack by rule 4 (line 40):
9569 $1 = nterm exp (0.000000)
9570 $2 = token '\n' ()
9571@result{} 0
9572-> $$ = nterm line ()
9573Stack now 0 1
9574Entering state 10
9575Reducing stack by rule 2 (line 35):
9576 $1 = nterm input ()
9577 $2 = nterm line ()
9578-> $$ = nterm input ()
9579Stack now 0
9580Entering state 1
9581@end example
9582
9583The parser has returned into state 1, in which it is waiting for the next
9584expression to evaluate, or for the end-of-file token, which causes the
9585completion of the parsing.
9586
9587@example
9588Reading a token: Now at end of input.
9589Shifting token $end ()
9590Entering state 2
9591Stack now 0 1 2
9592Cleanup: popping token $end ()
9593Cleanup: popping nterm input ()
9594@end example
9595
9596
9597@node The YYPRINT Macro
9598@subsection The @code{YYPRINT} Macro
9599
bfa74976 9600@findex YYPRINT
93c150b6
AD
9601Before @code{%printer} support, semantic values could be displayed using the
9602@code{YYPRINT} macro, which works only for terminal symbols and only with
9603the @file{yacc.c} skeleton.
9604
9605@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9606@findex YYPRINT
9607If you define @code{YYPRINT}, it should take three arguments. The parser
9608will pass a standard I/O stream, the numeric code for the token type, and
9609the token value (from @code{yylval}).
9610
9611For @file{yacc.c} only. Obsoleted by @code{%printer}.
9612@end deffn
bfa74976
RS
9613
9614Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9615calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9616
c93f22fc 9617@example
38a92d50
PE
9618%@{
9619 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9620 #define YYPRINT(File, Type, Value) \
9621 print_token_value (File, Type, Value)
38a92d50
PE
9622%@}
9623
9624@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9625
9626static void
831d3c99 9627print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9628@{
9629 if (type == VAR)
d3c4e709 9630 fprintf (file, "%s", value.tptr->name);
bfa74976 9631 else if (type == NUM)
d3c4e709 9632 fprintf (file, "%d", value.val);
bfa74976 9633@}
c93f22fc 9634@end example
bfa74976 9635
ec3bc396
AD
9636@c ================================================= Invoking Bison
9637
342b8b6e 9638@node Invocation
bfa74976
RS
9639@chapter Invoking Bison
9640@cindex invoking Bison
9641@cindex Bison invocation
9642@cindex options for invoking Bison
9643
9644The usual way to invoke Bison is as follows:
9645
9646@example
9647bison @var{infile}
9648@end example
9649
9650Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9651@samp{.y}. The parser implementation file's name is made by replacing
9652the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9653Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9654the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9655also possible, in case you are writing C++ code instead of C in your
9656grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9657output files will take an extension like the given one as input
9658(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9659feature takes effect with all options that manipulate file names like
234a3be3
AD
9660@samp{-o} or @samp{-d}.
9661
9662For example :
9663
9664@example
9665bison -d @var{infile.yxx}
9666@end example
84163231 9667@noindent
72d2299c 9668will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9669
9670@example
b56471a6 9671bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9672@end example
84163231 9673@noindent
234a3be3
AD
9674will produce @file{output.c++} and @file{outfile.h++}.
9675
8a4281b9 9676For compatibility with POSIX, the standard Bison
397ec073
PE
9677distribution also contains a shell script called @command{yacc} that
9678invokes Bison with the @option{-y} option.
9679
bfa74976 9680@menu
13863333 9681* Bison Options:: All the options described in detail,
c827f760 9682 in alphabetical order by short options.
bfa74976 9683* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9684* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9685@end menu
9686
342b8b6e 9687@node Bison Options
bfa74976
RS
9688@section Bison Options
9689
9690Bison supports both traditional single-letter options and mnemonic long
9691option names. Long option names are indicated with @samp{--} instead of
9692@samp{-}. Abbreviations for option names are allowed as long as they
9693are unique. When a long option takes an argument, like
9694@samp{--file-prefix}, connect the option name and the argument with
9695@samp{=}.
9696
9697Here is a list of options that can be used with Bison, alphabetized by
9698short option. It is followed by a cross key alphabetized by long
9699option.
9700
4c9b8f13 9701@c Please, keep this ordered as in 'bison --help'.
89cab50d
AD
9702@noindent
9703Operations modes:
9704@table @option
9705@item -h
9706@itemx --help
9707Print a summary of the command-line options to Bison and exit.
bfa74976 9708
89cab50d
AD
9709@item -V
9710@itemx --version
9711Print the version number of Bison and exit.
bfa74976 9712
f7ab6a50
PE
9713@item --print-localedir
9714Print the name of the directory containing locale-dependent data.
9715
a0de5091
JD
9716@item --print-datadir
9717Print the name of the directory containing skeletons and XSLT.
9718
89cab50d
AD
9719@item -y
9720@itemx --yacc
ff7571c0
JD
9721Act more like the traditional Yacc command. This can cause different
9722diagnostics to be generated, and may change behavior in other minor
9723ways. Most importantly, imitate Yacc's output file name conventions,
9724so that the parser implementation file is called @file{y.tab.c}, and
9725the other outputs are called @file{y.output} and @file{y.tab.h}.
9726Also, if generating a deterministic parser in C, generate
9727@code{#define} statements in addition to an @code{enum} to associate
9728token numbers with token names. Thus, the following shell script can
9729substitute for Yacc, and the Bison distribution contains such a script
9730for compatibility with POSIX:
bfa74976 9731
89cab50d 9732@example
397ec073 9733#! /bin/sh
26e06a21 9734bison -y "$@@"
89cab50d 9735@end example
54662697
PE
9736
9737The @option{-y}/@option{--yacc} option is intended for use with
9738traditional Yacc grammars. If your grammar uses a Bison extension
9739like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9740this option is specified.
9741
1d5b3c08
JD
9742@item -W [@var{category}]
9743@itemx --warnings[=@var{category}]
118d4978
AD
9744Output warnings falling in @var{category}. @var{category} can be one
9745of:
9746@table @code
9747@item midrule-values
8e55b3aa
JD
9748Warn about mid-rule values that are set but not used within any of the actions
9749of the parent rule.
9750For example, warn about unused @code{$2} in:
118d4978
AD
9751
9752@example
9753exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9754@end example
9755
8e55b3aa
JD
9756Also warn about mid-rule values that are used but not set.
9757For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9758
9759@example
5e9b6624 9760exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9761@end example
9762
9763These warnings are not enabled by default since they sometimes prove to
9764be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9765@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9766
118d4978 9767@item yacc
8a4281b9 9768Incompatibilities with POSIX Yacc.
118d4978 9769
786743d5
JD
9770@item conflicts-sr
9771@itemx conflicts-rr
9772S/R and R/R conflicts. These warnings are enabled by default. However, if
9773the @code{%expect} or @code{%expect-rr} directive is specified, an
9774unexpected number of conflicts is an error, and an expected number of
9775conflicts is not reported, so @option{-W} and @option{--warning} then have
9776no effect on the conflict report.
9777
518e8830
AD
9778@item deprecated
9779Deprecated constructs whose support will be removed in future versions of
9780Bison.
9781
09add9c2
AD
9782@item empty-rule
9783Empty rules without @code{%empty}. @xref{Empty Rules}. Disabled by
9784default, but enabled by uses of @code{%empty}, unless
9785@option{-Wno-empty-rule} was specified.
9786
cc2235ac
VT
9787@item precedence
9788Useless precedence and associativity directives. Disabled by default.
9789
9790Consider for instance the following grammar:
9791
9792@example
9793@group
9794%nonassoc "="
9795%left "+"
9796%left "*"
9797%precedence "("
9798@end group
9799%%
9800@group
9801stmt:
9802 exp
9803| "var" "=" exp
9804;
9805@end group
9806
9807@group
9808exp:
9809 exp "+" exp
9810| exp "*" "num"
9811| "(" exp ")"
9812| "num"
9813;
9814@end group
9815@end example
9816
9817Bison reports:
9818
9819@c cannot leave the location and the [-Wprecedence] for lack of
9820@c width in PDF.
9821@example
9822@group
9823warning: useless precedence and associativity for "="
9824 %nonassoc "="
9825 ^^^
9826@end group
9827@group
9828warning: useless associativity for "*", use %precedence
9829 %left "*"
9830 ^^^
9831@end group
9832@group
9833warning: useless precedence for "("
9834 %precedence "("
9835 ^^^
9836@end group
9837@end example
9838
9839One would get the exact same parser with the following directives instead:
9840
9841@example
9842@group
9843%left "+"
9844%precedence "*"
9845@end group
9846@end example
9847
c39014ae
JD
9848@item other
9849All warnings not categorized above. These warnings are enabled by default.
9850
9851This category is provided merely for the sake of completeness. Future
9852releases of Bison may move warnings from this category to new, more specific
9853categories.
9854
118d4978 9855@item all
f24695ef
AD
9856All the warnings except @code{yacc}.
9857
118d4978 9858@item none
8e55b3aa 9859Turn off all the warnings.
f24695ef 9860
118d4978 9861@item error
1048a1c9 9862See @option{-Werror}, below.
118d4978
AD
9863@end table
9864
9865A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9866instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9867POSIX Yacc incompatibilities.
1048a1c9
AD
9868
9869@item -Werror[=@var{category}]
9870@itemx -Wno-error[=@var{category}]
9871Enable warnings falling in @var{category}, and treat them as errors. If no
9872@var{category} is given, it defaults to making all enabled warnings into errors.
9873
9874@var{category} is the same as for @option{--warnings}, with the exception that
9875it may not be prefixed with @samp{no-} (see above).
9876
9877Prefixed with @samp{no}, it deactivates the error treatment for this
9878@var{category}. However, the warning itself won't be disabled, or enabled, by
9879this option.
9880
9881Note that the precedence of the @samp{=} and @samp{,} operators is such that
9882the following commands are @emph{not} equivalent, as the first will not treat
9883S/R conflicts as errors.
9884
9885@example
9886$ bison -Werror=yacc,conflicts-sr input.y
9887$ bison -Werror=yacc,error=conflicts-sr input.y
9888@end example
f3ead217 9889
7bada535
TR
9890@item -f [@var{feature}]
9891@itemx --feature[=@var{feature}]
9892Activate miscellaneous @var{feature}. @var{feature} can be one of:
9893@table @code
9894@item caret
9895@itemx diagnostics-show-caret
9896Show caret errors, in a manner similar to GCC's
9897@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
9898location provided with the message is used to quote the corresponding line of
9899the source file, underlining the important part of it with carets (^). Here is
c949ada3 9900an example, using the following file @file{in.y}:
7bada535
TR
9901
9902@example
9903%type <ival> exp
9904%%
9905exp: exp '+' exp @{ $exp = $1 + $2; @};
9906@end example
9907
016426c1 9908When invoked with @option{-fcaret} (or nothing), Bison will report:
7bada535
TR
9909
9910@example
9911@group
c949ada3 9912in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
9913 exp: exp '+' exp @{ $exp = $1 + $2; @};
9914 ^^^^
9915@end group
9916@group
c949ada3 9917in.y:3.1-3: refers to: $exp at $$
7bada535
TR
9918 exp: exp '+' exp @{ $exp = $1 + $2; @};
9919 ^^^
9920@end group
9921@group
c949ada3 9922in.y:3.6-8: refers to: $exp at $1
7bada535
TR
9923 exp: exp '+' exp @{ $exp = $1 + $2; @};
9924 ^^^
9925@end group
9926@group
c949ada3 9927in.y:3.14-16: refers to: $exp at $3
7bada535
TR
9928 exp: exp '+' exp @{ $exp = $1 + $2; @};
9929 ^^^
9930@end group
9931@group
c949ada3 9932in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
9933 exp: exp '+' exp @{ $exp = $1 + $2; @};
9934 ^^
9935@end group
9936@end example
9937
016426c1
TR
9938Whereas, when invoked with @option{-fno-caret}, Bison will only report:
9939
9940@example
9941@group
9942in.y:3.20-23: error: ambiguous reference: ‘$exp’
9943in.y:3.1-3: refers to: $exp at $$
9944in.y:3.6-8: refers to: $exp at $1
9945in.y:3.14-16: refers to: $exp at $3
9946in.y:3.32-33: error: $2 of ‘exp’ has no declared type
9947@end group
9948@end example
9949
9950This option is activated by default.
9951
7bada535 9952@end table
89cab50d
AD
9953@end table
9954
9955@noindent
9956Tuning the parser:
9957
9958@table @option
9959@item -t
9960@itemx --debug
ff7571c0
JD
9961In the parser implementation file, define the macro @code{YYDEBUG} to
99621 if it is not already defined, so that the debugging facilities are
9963compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9964
58697c6d
AD
9965@item -D @var{name}[=@var{value}]
9966@itemx --define=@var{name}[=@var{value}]
17aed602 9967@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9968@itemx --force-define=@var{name}[=@var{value}]
9969Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9970(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9971definitions for the same @var{name} as follows:
9972
9973@itemize
9974@item
0b6d43c5
JD
9975Bison quietly ignores all command-line definitions for @var{name} except
9976the last.
de5ab940 9977@item
0b6d43c5
JD
9978If that command-line definition is specified by a @code{-D} or
9979@code{--define}, Bison reports an error for any @code{%define}
9980definition for @var{name}.
de5ab940 9981@item
0b6d43c5
JD
9982If that command-line definition is specified by a @code{-F} or
9983@code{--force-define} instead, Bison quietly ignores all @code{%define}
9984definitions for @var{name}.
9985@item
9986Otherwise, Bison reports an error if there are multiple @code{%define}
9987definitions for @var{name}.
de5ab940
JD
9988@end itemize
9989
9990You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9991make files unless you are confident that it is safe to quietly ignore
9992any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9993
0e021770
PE
9994@item -L @var{language}
9995@itemx --language=@var{language}
9996Specify the programming language for the generated parser, as if
9997@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9998Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9999@var{language} is case-insensitive.
0e021770 10000
89cab50d 10001@item --locations
d8988b2f 10002Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
10003
10004@item -p @var{prefix}
10005@itemx --name-prefix=@var{prefix}
4b3847c3
AD
10006Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
10007Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
10008Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
10009
10010@item -l
10011@itemx --no-lines
ff7571c0
JD
10012Don't put any @code{#line} preprocessor commands in the parser
10013implementation file. Ordinarily Bison puts them in the parser
10014implementation file so that the C compiler and debuggers will
10015associate errors with your source file, the grammar file. This option
10016causes them to associate errors with the parser implementation file,
10017treating it as an independent source file in its own right.
bfa74976 10018
e6e704dc
JD
10019@item -S @var{file}
10020@itemx --skeleton=@var{file}
a7867f53 10021Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
10022(@pxref{Decl Summary, , Bison Declaration Summary}).
10023
ed4d67dc
JD
10024@c You probably don't need this option unless you are developing Bison.
10025@c You should use @option{--language} if you want to specify the skeleton for a
10026@c different language, because it is clearer and because it will always
10027@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 10028
a7867f53
JD
10029If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
10030file in the Bison installation directory.
10031If it does, @var{file} is an absolute file name or a file name relative to the
10032current working directory.
10033This is similar to how most shells resolve commands.
10034
89cab50d
AD
10035@item -k
10036@itemx --token-table
d8988b2f 10037Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 10038@end table
bfa74976 10039
89cab50d
AD
10040@noindent
10041Adjust the output:
bfa74976 10042
89cab50d 10043@table @option
8e55b3aa 10044@item --defines[=@var{file}]
d8988b2f 10045Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 10046file containing macro definitions for the token type names defined in
4bfd5e4e 10047the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 10048
8e55b3aa
JD
10049@item -d
10050This is the same as @code{--defines} except @code{-d} does not accept a
10051@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
10052with other short options.
342b8b6e 10053
89cab50d
AD
10054@item -b @var{file-prefix}
10055@itemx --file-prefix=@var{prefix}
9c437126 10056Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 10057for all Bison output file names. @xref{Decl Summary}.
bfa74976 10058
ec3bc396
AD
10059@item -r @var{things}
10060@itemx --report=@var{things}
10061Write an extra output file containing verbose description of the comma
10062separated list of @var{things} among:
10063
10064@table @code
10065@item state
10066Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 10067parser's automaton.
ec3bc396 10068
57f8bd8d
AD
10069@item itemset
10070Implies @code{state} and augments the description of the automaton with
10071the full set of items for each state, instead of its core only.
10072
742e4900 10073@item lookahead
ec3bc396 10074Implies @code{state} and augments the description of the automaton with
742e4900 10075each rule's lookahead set.
ec3bc396 10076
57f8bd8d
AD
10077@item solved
10078Implies @code{state}. Explain how conflicts were solved thanks to
10079precedence and associativity directives.
10080
10081@item all
10082Enable all the items.
10083
10084@item none
10085Do not generate the report.
ec3bc396
AD
10086@end table
10087
1bb2bd75
JD
10088@item --report-file=@var{file}
10089Specify the @var{file} for the verbose description.
10090
bfa74976
RS
10091@item -v
10092@itemx --verbose
9c437126 10093Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 10094file containing verbose descriptions of the grammar and
72d2299c 10095parser. @xref{Decl Summary}.
bfa74976 10096
fa4d969f
PE
10097@item -o @var{file}
10098@itemx --output=@var{file}
ff7571c0 10099Specify the @var{file} for the parser implementation file.
bfa74976 10100
fa4d969f 10101The other output files' names are constructed from @var{file} as
d8988b2f 10102described under the @samp{-v} and @samp{-d} options.
342b8b6e 10103
a7c09cba 10104@item -g [@var{file}]
8e55b3aa 10105@itemx --graph[=@var{file}]
eb45ef3b 10106Output a graphical representation of the parser's
35fe0834 10107automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 10108@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
10109@code{@var{file}} is optional.
10110If omitted and the grammar file is @file{foo.y}, the output file will be
10111@file{foo.dot}.
59da312b 10112
a7c09cba 10113@item -x [@var{file}]
8e55b3aa 10114@itemx --xml[=@var{file}]
eb45ef3b 10115Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 10116@code{@var{file}} is optional.
59da312b
JD
10117If omitted and the grammar file is @file{foo.y}, the output file will be
10118@file{foo.xml}.
10119(The current XML schema is experimental and may evolve.
10120More user feedback will help to stabilize it.)
bfa74976
RS
10121@end table
10122
342b8b6e 10123@node Option Cross Key
bfa74976
RS
10124@section Option Cross Key
10125
10126Here is a list of options, alphabetized by long option, to help you find
de5ab940 10127the corresponding short option and directive.
bfa74976 10128
de5ab940 10129@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 10130@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 10131@include cross-options.texi
aa08666d 10132@end multitable
bfa74976 10133
93dd49ab
PE
10134@node Yacc Library
10135@section Yacc Library
10136
10137The Yacc library contains default implementations of the
10138@code{yyerror} and @code{main} functions. These default
8a4281b9 10139implementations are normally not useful, but POSIX requires
93dd49ab
PE
10140them. To use the Yacc library, link your program with the
10141@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 10142library is distributed under the terms of the GNU General
93dd49ab
PE
10143Public License (@pxref{Copying}).
10144
10145If you use the Yacc library's @code{yyerror} function, you should
10146declare @code{yyerror} as follows:
10147
10148@example
10149int yyerror (char const *);
10150@end example
10151
10152Bison ignores the @code{int} value returned by this @code{yyerror}.
10153If you use the Yacc library's @code{main} function, your
10154@code{yyparse} function should have the following type signature:
10155
10156@example
10157int yyparse (void);
10158@end example
10159
12545799
AD
10160@c ================================================= C++ Bison
10161
8405b70c
PB
10162@node Other Languages
10163@chapter Parsers Written In Other Languages
12545799
AD
10164
10165@menu
10166* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10167* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10168@end menu
10169
10170@node C++ Parsers
10171@section C++ Parsers
10172
10173@menu
10174* C++ Bison Interface:: Asking for C++ parser generation
10175* C++ Semantic Values:: %union vs. C++
10176* C++ Location Values:: The position and location classes
10177* C++ Parser Interface:: Instantiating and running the parser
10178* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10179* A Complete C++ Example:: Demonstrating their use
12545799
AD
10180@end menu
10181
10182@node C++ Bison Interface
10183@subsection C++ Bison Interface
ed4d67dc 10184@c - %skeleton "lalr1.cc"
12545799
AD
10185@c - Always pure
10186@c - initial action
10187
eb45ef3b 10188The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10189@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10190@option{--skeleton=lalr1.cc}.
e6e704dc 10191@xref{Decl Summary}.
0e021770 10192
793fbca5
JD
10193When run, @command{bison} will create several entities in the @samp{yy}
10194namespace.
67501061 10195@findex %define api.namespace
35c1e5f0
JD
10196Use the @samp{%define api.namespace} directive to change the namespace name,
10197see @ref{%define Summary,,api.namespace}. The various classes are generated
10198in the following files:
aa08666d 10199
12545799
AD
10200@table @file
10201@item position.hh
10202@itemx location.hh
db8ab2be 10203The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10204location tracking when enabled. These files are not generated if the
10205@code{%define} variable @code{api.location.type} is defined. @xref{C++
10206Location Values}.
12545799
AD
10207
10208@item stack.hh
10209An auxiliary class @code{stack} used by the parser.
10210
fa4d969f
PE
10211@item @var{file}.hh
10212@itemx @var{file}.cc
ff7571c0 10213(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10214declaration and implementation of the C++ parser class. The basename
10215and extension of these two files follow the same rules as with regular C
10216parsers (@pxref{Invocation}).
12545799 10217
cd8b5791
AD
10218The header is @emph{mandatory}; you must either pass
10219@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10220@samp{%defines} directive.
10221@end table
10222
10223All these files are documented using Doxygen; run @command{doxygen}
10224for a complete and accurate documentation.
10225
10226@node C++ Semantic Values
10227@subsection C++ Semantic Values
10228@c - No objects in unions
178e123e 10229@c - YYSTYPE
12545799
AD
10230@c - Printer and destructor
10231
3cdc21cf
AD
10232Bison supports two different means to handle semantic values in C++. One is
10233alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10234practitioners know, unions are inconvenient in C++, therefore another
10235approach is provided, based on variants (@pxref{C++ Variants}).
10236
10237@menu
10238* C++ Unions:: Semantic values cannot be objects
10239* C++ Variants:: Using objects as semantic values
10240@end menu
10241
10242@node C++ Unions
10243@subsubsection C++ Unions
10244
12545799
AD
10245The @code{%union} directive works as for C, see @ref{Union Decl, ,The
10246Collection of Value Types}. In particular it produces a genuine
3cdc21cf 10247@code{union}, which have a few specific features in C++.
12545799
AD
10248@itemize @minus
10249@item
fb9712a9
AD
10250The type @code{YYSTYPE} is defined but its use is discouraged: rather
10251you should refer to the parser's encapsulated type
10252@code{yy::parser::semantic_type}.
12545799
AD
10253@item
10254Non POD (Plain Old Data) types cannot be used. C++ forbids any
10255instance of classes with constructors in unions: only @emph{pointers}
10256to such objects are allowed.
10257@end itemize
10258
10259Because objects have to be stored via pointers, memory is not
10260reclaimed automatically: using the @code{%destructor} directive is the
10261only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10262Symbols}.
10263
3cdc21cf
AD
10264@node C++ Variants
10265@subsubsection C++ Variants
10266
ae8880de
AD
10267Bison provides a @emph{variant} based implementation of semantic values for
10268C++. This alleviates all the limitations reported in the previous section,
10269and in particular, object types can be used without pointers.
3cdc21cf
AD
10270
10271To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10272@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10273@code{%union} is ignored, and instead of using the name of the fields of the
10274@code{%union} to ``type'' the symbols, use genuine types.
10275
10276For instance, instead of
10277
10278@example
10279%union
10280@{
10281 int ival;
10282 std::string* sval;
10283@}
10284%token <ival> NUMBER;
10285%token <sval> STRING;
10286@end example
10287
10288@noindent
10289write
10290
10291@example
10292%token <int> NUMBER;
10293%token <std::string> STRING;
10294@end example
10295
10296@code{STRING} is no longer a pointer, which should fairly simplify the user
10297actions in the grammar and in the scanner (in particular the memory
10298management).
10299
10300Since C++ features destructors, and since it is customary to specialize
10301@code{operator<<} to support uniform printing of values, variants also
10302typically simplify Bison printers and destructors.
10303
10304Variants are stricter than unions. When based on unions, you may play any
10305dirty game with @code{yylval}, say storing an @code{int}, reading a
10306@code{char*}, and then storing a @code{double} in it. This is no longer
10307possible with variants: they must be initialized, then assigned to, and
10308eventually, destroyed.
10309
10310@deftypemethod {semantic_type} {T&} build<T> ()
10311Initialize, but leave empty. Returns the address where the actual value may
10312be stored. Requires that the variant was not initialized yet.
10313@end deftypemethod
10314
10315@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10316Initialize, and copy-construct from @var{t}.
10317@end deftypemethod
10318
10319
10320@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10321appeared unacceptable to require Boost on the user's machine (i.e., the
10322machine on which the generated parser will be compiled, not the machine on
10323which @command{bison} was run). Second, for each possible semantic value,
10324Boost.Variant not only stores the value, but also a tag specifying its
10325type. But the parser already ``knows'' the type of the semantic value, so
10326that would be duplicating the information.
10327
10328Therefore we developed light-weight variants whose type tag is external (so
10329they are really like @code{unions} for C++ actually). But our code is much
10330less mature that Boost.Variant. So there is a number of limitations in
10331(the current implementation of) variants:
10332@itemize
10333@item
10334Alignment must be enforced: values should be aligned in memory according to
10335the most demanding type. Computing the smallest alignment possible requires
10336meta-programming techniques that are not currently implemented in Bison, and
10337therefore, since, as far as we know, @code{double} is the most demanding
10338type on all platforms, alignments are enforced for @code{double} whatever
10339types are actually used. This may waste space in some cases.
10340
3cdc21cf
AD
10341@item
10342There might be portability issues we are not aware of.
10343@end itemize
10344
a6ca4ce2 10345As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10346is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10347
10348@node C++ Location Values
10349@subsection C++ Location Values
10350@c - %locations
10351@c - class Position
10352@c - class Location
16dc6a9e 10353@c - %define filename_type "const symbol::Symbol"
12545799
AD
10354
10355When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10356location tracking, see @ref{Tracking Locations}.
10357
10358By default, two auxiliary classes define a @code{position}, a single point
10359in a file, and a @code{location}, a range composed of a pair of
10360@code{position}s (possibly spanning several files). But if the
10361@code{%define} variable @code{api.location.type} is defined, then these
10362classes will not be generated, and the user defined type will be used.
12545799 10363
936c88d1
AD
10364@tindex uint
10365In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10366genuine code only the latter is used.
10367
10368@menu
10369* C++ position:: One point in the source file
10370* C++ location:: Two points in the source file
db8ab2be 10371* User Defined Location Type:: Required interface for locations
936c88d1
AD
10372@end menu
10373
10374@node C++ position
10375@subsubsection C++ @code{position}
10376
10377@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10378Create a @code{position} denoting a given point. Note that @code{file} is
10379not reclaimed when the @code{position} is destroyed: memory managed must be
10380handled elsewhere.
10381@end deftypeop
10382
10383@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10384Reset the position to the given values.
10385@end deftypemethod
10386
10387@deftypeivar {position} {std::string*} file
12545799
AD
10388The name of the file. It will always be handled as a pointer, the
10389parser will never duplicate nor deallocate it. As an experimental
10390feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10391filename_type "@var{type}"}.
936c88d1 10392@end deftypeivar
12545799 10393
936c88d1 10394@deftypeivar {position} {uint} line
12545799 10395The line, starting at 1.
936c88d1 10396@end deftypeivar
12545799 10397
936c88d1 10398@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
10399Advance by @var{height} lines, resetting the column number.
10400@end deftypemethod
10401
936c88d1
AD
10402@deftypeivar {position} {uint} column
10403The column, starting at 1.
10404@end deftypeivar
12545799 10405
936c88d1 10406@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
10407Advance by @var{width} columns, without changing the line number.
10408@end deftypemethod
10409
936c88d1
AD
10410@deftypemethod {position} {position&} operator+= (int @var{width})
10411@deftypemethodx {position} {position} operator+ (int @var{width})
10412@deftypemethodx {position} {position&} operator-= (int @var{width})
10413@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10414Various forms of syntactic sugar for @code{columns}.
10415@end deftypemethod
10416
936c88d1
AD
10417@deftypemethod {position} {bool} operator== (const position& @var{that})
10418@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10419Whether @code{*this} and @code{that} denote equal/different positions.
10420@end deftypemethod
10421
10422@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10423Report @var{p} on @var{o} like this:
fa4d969f
PE
10424@samp{@var{file}:@var{line}.@var{column}}, or
10425@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10426@end deftypefun
10427
10428@node C++ location
10429@subsubsection C++ @code{location}
10430
10431@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10432Create a @code{Location} from the endpoints of the range.
10433@end deftypeop
10434
10435@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10436@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10437Create a @code{Location} denoting an empty range located at a given point.
10438@end deftypeop
10439
10440@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10441Reset the location to an empty range at the given values.
12545799
AD
10442@end deftypemethod
10443
936c88d1
AD
10444@deftypeivar {location} {position} begin
10445@deftypeivarx {location} {position} end
12545799 10446The first, inclusive, position of the range, and the first beyond.
936c88d1 10447@end deftypeivar
12545799 10448
936c88d1
AD
10449@deftypemethod {location} {uint} columns (int @var{width} = 1)
10450@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
10451Advance the @code{end} position.
10452@end deftypemethod
10453
936c88d1
AD
10454@deftypemethod {location} {location} operator+ (const location& @var{end})
10455@deftypemethodx {location} {location} operator+ (int @var{width})
10456@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
10457Various forms of syntactic sugar.
10458@end deftypemethod
10459
10460@deftypemethod {location} {void} step ()
10461Move @code{begin} onto @code{end}.
10462@end deftypemethod
10463
936c88d1
AD
10464@deftypemethod {location} {bool} operator== (const location& @var{that})
10465@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10466Whether @code{*this} and @code{that} denote equal/different ranges of
10467positions.
10468@end deftypemethod
10469
10470@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10471Report @var{p} on @var{o}, taking care of special cases such as: no
10472@code{filename} defined, or equal filename/line or column.
10473@end deftypefun
12545799 10474
db8ab2be
AD
10475@node User Defined Location Type
10476@subsubsection User Defined Location Type
10477@findex %define api.location.type
10478
10479Instead of using the built-in types you may use the @code{%define} variable
10480@code{api.location.type} to specify your own type:
10481
10482@example
10483%define api.location.type @var{LocationType}
10484@end example
10485
10486The requirements over your @var{LocationType} are:
10487@itemize
10488@item
10489it must be copyable;
10490
10491@item
10492in order to compute the (default) value of @code{@@$} in a reduction, the
10493parser basically runs
10494@example
10495@@$.begin = @@$1.begin;
10496@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10497@end example
10498@noindent
10499so there must be copyable @code{begin} and @code{end} members;
10500
10501@item
10502alternatively you may redefine the computation of the default location, in
10503which case these members are not required (@pxref{Location Default Action});
10504
10505@item
10506if traces are enabled, then there must exist an @samp{std::ostream&
10507 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10508@end itemize
10509
10510@sp 1
10511
10512In programs with several C++ parsers, you may also use the @code{%define}
10513variable @code{api.location.type} to share a common set of built-in
10514definitions for @code{position} and @code{location}. For instance, one
10515parser @file{master/parser.yy} might use:
10516
10517@example
10518%defines
10519%locations
10520%define namespace "master::"
10521@end example
10522
10523@noindent
10524to generate the @file{master/position.hh} and @file{master/location.hh}
10525files, reused by other parsers as follows:
10526
10527@example
7287be84 10528%define api.location.type "master::location"
db8ab2be
AD
10529%code requires @{ #include <master/location.hh> @}
10530@end example
10531
12545799
AD
10532@node C++ Parser Interface
10533@subsection C++ Parser Interface
10534@c - define parser_class_name
10535@c - Ctor
10536@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10537@c debug_stream.
10538@c - Reporting errors
10539
10540The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10541declare and define the parser class in the namespace @code{yy}. The
10542class name defaults to @code{parser}, but may be changed using
16dc6a9e 10543@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 10544this class is detailed below. It can be extended using the
12545799
AD
10545@code{%parse-param} feature: its semantics is slightly changed since
10546it describes an additional member of the parser class, and an
10547additional argument for its constructor.
10548
3cdc21cf
AD
10549@defcv {Type} {parser} {semantic_type}
10550@defcvx {Type} {parser} {location_type}
10551The types for semantic values and locations (if enabled).
10552@end defcv
10553
86e5b440 10554@defcv {Type} {parser} {token}
aaaa2aae
AD
10555A structure that contains (only) the @code{yytokentype} enumeration, which
10556defines the tokens. To refer to the token @code{FOO},
10557use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10558@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10559(@pxref{Calc++ Scanner}).
10560@end defcv
10561
3cdc21cf
AD
10562@defcv {Type} {parser} {syntax_error}
10563This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10564from the scanner or from the user actions to raise parse errors. This is
10565equivalent with first
3cdc21cf
AD
10566invoking @code{error} to report the location and message of the syntax
10567error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10568But contrary to @code{YYERROR} which can only be invoked from user actions
10569(i.e., written in the action itself), the exception can be thrown from
10570function invoked from the user action.
8a0adb01 10571@end defcv
12545799
AD
10572
10573@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10574Build a new parser object. There are no arguments by default, unless
10575@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10576@end deftypemethod
10577
3cdc21cf
AD
10578@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10579@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10580Instantiate a syntax-error exception.
10581@end deftypemethod
10582
12545799
AD
10583@deftypemethod {parser} {int} parse ()
10584Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10585
10586@cindex exceptions
10587The whole function is wrapped in a @code{try}/@code{catch} block, so that
10588when an exception is thrown, the @code{%destructor}s are called to release
10589the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10590@end deftypemethod
10591
10592@deftypemethod {parser} {std::ostream&} debug_stream ()
10593@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10594Get or set the stream used for tracing the parsing. It defaults to
10595@code{std::cerr}.
10596@end deftypemethod
10597
10598@deftypemethod {parser} {debug_level_type} debug_level ()
10599@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10600Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10601or nonzero, full tracing.
12545799
AD
10602@end deftypemethod
10603
10604@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10605@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10606The definition for this member function must be supplied by the user:
10607the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10608described by @var{m}. If location tracking is not enabled, the second
10609signature is used.
12545799
AD
10610@end deftypemethod
10611
10612
10613@node C++ Scanner Interface
10614@subsection C++ Scanner Interface
10615@c - prefix for yylex.
10616@c - Pure interface to yylex
10617@c - %lex-param
10618
10619The parser invokes the scanner by calling @code{yylex}. Contrary to C
10620parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10621@samp{%define api.pure} directive. The actual interface with @code{yylex}
10622depends whether you use unions, or variants.
12545799 10623
3cdc21cf
AD
10624@menu
10625* Split Symbols:: Passing symbols as two/three components
10626* Complete Symbols:: Making symbols a whole
10627@end menu
10628
10629@node Split Symbols
10630@subsubsection Split Symbols
10631
5807bb91 10632The interface is as follows.
3cdc21cf 10633
86e5b440
AD
10634@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10635@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10636Return the next token. Its type is the return value, its semantic value and
10637location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10638@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10639@end deftypemethod
10640
3cdc21cf
AD
10641Note that when using variants, the interface for @code{yylex} is the same,
10642but @code{yylval} is handled differently.
10643
10644Regular union-based code in Lex scanner typically look like:
10645
10646@example
10647[0-9]+ @{
10648 yylval.ival = text_to_int (yytext);
10649 return yy::parser::INTEGER;
10650 @}
10651[a-z]+ @{
10652 yylval.sval = new std::string (yytext);
10653 return yy::parser::IDENTIFIER;
10654 @}
10655@end example
10656
10657Using variants, @code{yylval} is already constructed, but it is not
10658initialized. So the code would look like:
10659
10660@example
10661[0-9]+ @{
10662 yylval.build<int>() = text_to_int (yytext);
10663 return yy::parser::INTEGER;
10664 @}
10665[a-z]+ @{
10666 yylval.build<std::string> = yytext;
10667 return yy::parser::IDENTIFIER;
10668 @}
10669@end example
10670
10671@noindent
10672or
10673
10674@example
10675[0-9]+ @{
10676 yylval.build(text_to_int (yytext));
10677 return yy::parser::INTEGER;
10678 @}
10679[a-z]+ @{
10680 yylval.build(yytext);
10681 return yy::parser::IDENTIFIER;
10682 @}
10683@end example
10684
10685
10686@node Complete Symbols
10687@subsubsection Complete Symbols
10688
ae8880de 10689If you specified both @code{%define api.value.type variant} and
e36ec1f4 10690@code{%define api.token.constructor},
3cdc21cf
AD
10691the @code{parser} class also defines the class @code{parser::symbol_type}
10692which defines a @emph{complete} symbol, aggregating its type (i.e., the
10693traditional value returned by @code{yylex}), its semantic value (i.e., the
10694value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10695
10696@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10697Build a complete terminal symbol which token type is @var{type}, and which
10698semantic value is @var{value}. If location tracking is enabled, also pass
10699the @var{location}.
10700@end deftypemethod
10701
10702This interface is low-level and should not be used for two reasons. First,
10703it is inconvenient, as you still have to build the semantic value, which is
10704a variant, and second, because consistency is not enforced: as with unions,
10705it is still possible to give an integer as semantic value for a string.
10706
10707So for each token type, Bison generates named constructors as follows.
10708
10709@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10710@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10711Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10712including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10713@var{value} of adequate @var{value_type}. If location tracking is enabled,
10714also pass the @var{location}.
10715@end deftypemethod
10716
10717For instance, given the following declarations:
10718
10719@example
2a6b66c5 10720%define api.token.prefix "TOK_"
3cdc21cf
AD
10721%token <std::string> IDENTIFIER;
10722%token <int> INTEGER;
10723%token COLON;
10724@end example
10725
10726@noindent
10727Bison generates the following functions:
10728
10729@example
10730symbol_type make_IDENTIFIER(const std::string& v,
10731 const location_type& l);
10732symbol_type make_INTEGER(const int& v,
10733 const location_type& loc);
10734symbol_type make_COLON(const location_type& loc);
10735@end example
10736
10737@noindent
10738which should be used in a Lex-scanner as follows.
10739
10740@example
10741[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10742[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10743":" return yy::parser::make_COLON(loc);
10744@end example
10745
10746Tokens that do not have an identifier are not accessible: you cannot simply
10747use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10748
10749@node A Complete C++ Example
8405b70c 10750@subsection A Complete C++ Example
12545799
AD
10751
10752This section demonstrates the use of a C++ parser with a simple but
10753complete example. This example should be available on your system,
3cdc21cf 10754ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10755focuses on the use of Bison, therefore the design of the various C++
10756classes is very naive: no accessors, no encapsulation of members etc.
10757We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10758demonstrate the various interactions. A hand-written scanner is
12545799
AD
10759actually easier to interface with.
10760
10761@menu
10762* Calc++ --- C++ Calculator:: The specifications
10763* Calc++ Parsing Driver:: An active parsing context
10764* Calc++ Parser:: A parser class
10765* Calc++ Scanner:: A pure C++ Flex scanner
10766* Calc++ Top Level:: Conducting the band
10767@end menu
10768
10769@node Calc++ --- C++ Calculator
8405b70c 10770@subsubsection Calc++ --- C++ Calculator
12545799
AD
10771
10772Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10773expression, possibly preceded by variable assignments. An
12545799
AD
10774environment containing possibly predefined variables such as
10775@code{one} and @code{two}, is exchanged with the parser. An example
10776of valid input follows.
10777
10778@example
10779three := 3
10780seven := one + two * three
10781seven * seven
10782@end example
10783
10784@node Calc++ Parsing Driver
8405b70c 10785@subsubsection Calc++ Parsing Driver
12545799
AD
10786@c - An env
10787@c - A place to store error messages
10788@c - A place for the result
10789
10790To support a pure interface with the parser (and the scanner) the
10791technique of the ``parsing context'' is convenient: a structure
10792containing all the data to exchange. Since, in addition to simply
10793launch the parsing, there are several auxiliary tasks to execute (open
10794the file for parsing, instantiate the parser etc.), we recommend
10795transforming the simple parsing context structure into a fully blown
10796@dfn{parsing driver} class.
10797
10798The declaration of this driver class, @file{calc++-driver.hh}, is as
10799follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10800required standard library components, and the declaration of the parser
10801class.
12545799 10802
1c59e0a1 10803@comment file: calc++-driver.hh
12545799
AD
10804@example
10805#ifndef CALCXX_DRIVER_HH
10806# define CALCXX_DRIVER_HH
10807# include <string>
10808# include <map>
fb9712a9 10809# include "calc++-parser.hh"
12545799
AD
10810@end example
10811
12545799
AD
10812
10813@noindent
10814Then comes the declaration of the scanning function. Flex expects
10815the signature of @code{yylex} to be defined in the macro
10816@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10817factor both as follows.
1c59e0a1
AD
10818
10819@comment file: calc++-driver.hh
12545799 10820@example
3dc5e96b 10821// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10822# define YY_DECL \
10823 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10824// ... and declare it for the parser's sake.
10825YY_DECL;
10826@end example
10827
10828@noindent
10829The @code{calcxx_driver} class is then declared with its most obvious
10830members.
10831
1c59e0a1 10832@comment file: calc++-driver.hh
12545799
AD
10833@example
10834// Conducting the whole scanning and parsing of Calc++.
10835class calcxx_driver
10836@{
10837public:
10838 calcxx_driver ();
10839 virtual ~calcxx_driver ();
10840
10841 std::map<std::string, int> variables;
10842
10843 int result;
10844@end example
10845
10846@noindent
3cdc21cf
AD
10847To encapsulate the coordination with the Flex scanner, it is useful to have
10848member functions to open and close the scanning phase.
12545799 10849
1c59e0a1 10850@comment file: calc++-driver.hh
12545799
AD
10851@example
10852 // Handling the scanner.
10853 void scan_begin ();
10854 void scan_end ();
10855 bool trace_scanning;
10856@end example
10857
10858@noindent
10859Similarly for the parser itself.
10860
1c59e0a1 10861@comment file: calc++-driver.hh
12545799 10862@example
3cdc21cf
AD
10863 // Run the parser on file F.
10864 // Return 0 on success.
bb32f4f2 10865 int parse (const std::string& f);
3cdc21cf
AD
10866 // The name of the file being parsed.
10867 // Used later to pass the file name to the location tracker.
12545799 10868 std::string file;
3cdc21cf 10869 // Whether parser traces should be generated.
12545799
AD
10870 bool trace_parsing;
10871@end example
10872
10873@noindent
10874To demonstrate pure handling of parse errors, instead of simply
10875dumping them on the standard error output, we will pass them to the
10876compiler driver using the following two member functions. Finally, we
10877close the class declaration and CPP guard.
10878
1c59e0a1 10879@comment file: calc++-driver.hh
12545799
AD
10880@example
10881 // Error handling.
10882 void error (const yy::location& l, const std::string& m);
10883 void error (const std::string& m);
10884@};
10885#endif // ! CALCXX_DRIVER_HH
10886@end example
10887
10888The implementation of the driver is straightforward. The @code{parse}
10889member function deserves some attention. The @code{error} functions
10890are simple stubs, they should actually register the located error
10891messages and set error state.
10892
1c59e0a1 10893@comment file: calc++-driver.cc
12545799
AD
10894@example
10895#include "calc++-driver.hh"
10896#include "calc++-parser.hh"
10897
10898calcxx_driver::calcxx_driver ()
10899 : trace_scanning (false), trace_parsing (false)
10900@{
10901 variables["one"] = 1;
10902 variables["two"] = 2;
10903@}
10904
10905calcxx_driver::~calcxx_driver ()
10906@{
10907@}
10908
bb32f4f2 10909int
12545799
AD
10910calcxx_driver::parse (const std::string &f)
10911@{
10912 file = f;
10913 scan_begin ();
10914 yy::calcxx_parser parser (*this);
10915 parser.set_debug_level (trace_parsing);
bb32f4f2 10916 int res = parser.parse ();
12545799 10917 scan_end ();
bb32f4f2 10918 return res;
12545799
AD
10919@}
10920
10921void
10922calcxx_driver::error (const yy::location& l, const std::string& m)
10923@{
10924 std::cerr << l << ": " << m << std::endl;
10925@}
10926
10927void
10928calcxx_driver::error (const std::string& m)
10929@{
10930 std::cerr << m << std::endl;
10931@}
10932@end example
10933
10934@node Calc++ Parser
8405b70c 10935@subsubsection Calc++ Parser
12545799 10936
ff7571c0
JD
10937The grammar file @file{calc++-parser.yy} starts by asking for the C++
10938deterministic parser skeleton, the creation of the parser header file,
10939and specifies the name of the parser class. Because the C++ skeleton
10940changed several times, it is safer to require the version you designed
10941the grammar for.
1c59e0a1
AD
10942
10943@comment file: calc++-parser.yy
12545799 10944@example
c93f22fc 10945%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10946%require "@value{VERSION}"
12545799 10947%defines
16dc6a9e 10948%define parser_class_name "calcxx_parser"
fb9712a9
AD
10949@end example
10950
3cdc21cf 10951@noindent
e36ec1f4 10952@findex %define api.token.constructor
ae8880de 10953@findex %define api.value.type variant
3cdc21cf
AD
10954This example will use genuine C++ objects as semantic values, therefore, we
10955require the variant-based interface. To make sure we properly use it, we
10956enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 10957definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
10958
10959@comment file: calc++-parser.yy
10960@example
e36ec1f4 10961%define api.token.constructor
ae8880de 10962%define api.value.type variant
3cdc21cf 10963%define parse.assert
3cdc21cf
AD
10964@end example
10965
fb9712a9 10966@noindent
16dc6a9e 10967@findex %code requires
3cdc21cf
AD
10968Then come the declarations/inclusions needed by the semantic values.
10969Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10970to include the header of the other, which is, of course, insane. This
3cdc21cf 10971mutual dependency will be broken using forward declarations. Because the
fb9712a9 10972driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10973particular its inner types), it is the parser's header which will use a
e0c07222 10974forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10975
10976@comment file: calc++-parser.yy
10977@example
3cdc21cf
AD
10978%code requires
10979@{
12545799 10980# include <string>
fb9712a9 10981class calcxx_driver;
9bc0dd67 10982@}
12545799
AD
10983@end example
10984
10985@noindent
10986The driver is passed by reference to the parser and to the scanner.
10987This provides a simple but effective pure interface, not relying on
10988global variables.
10989
1c59e0a1 10990@comment file: calc++-parser.yy
12545799
AD
10991@example
10992// The parsing context.
2055a44e 10993%param @{ calcxx_driver& driver @}
12545799
AD
10994@end example
10995
10996@noindent
2055a44e 10997Then we request location tracking, and initialize the
f50bfcd6 10998first location's file name. Afterward new locations are computed
12545799 10999relatively to the previous locations: the file name will be
2055a44e 11000propagated.
12545799 11001
1c59e0a1 11002@comment file: calc++-parser.yy
12545799
AD
11003@example
11004%locations
11005%initial-action
11006@{
11007 // Initialize the initial location.
b47dbebe 11008 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
11009@};
11010@end example
11011
11012@noindent
7fceb615
JD
11013Use the following two directives to enable parser tracing and verbose error
11014messages. However, verbose error messages can contain incorrect information
11015(@pxref{LAC}).
12545799 11016
1c59e0a1 11017@comment file: calc++-parser.yy
12545799 11018@example
fa819509 11019%define parse.trace
cf499cff 11020%define parse.error verbose
12545799
AD
11021@end example
11022
fb9712a9 11023@noindent
136a0f76
PB
11024@findex %code
11025The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 11026@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
11027
11028@comment file: calc++-parser.yy
11029@example
3cdc21cf
AD
11030%code
11031@{
fb9712a9 11032# include "calc++-driver.hh"
34f98f46 11033@}
fb9712a9
AD
11034@end example
11035
11036
12545799
AD
11037@noindent
11038The token numbered as 0 corresponds to end of file; the following line
99c08fb6 11039allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
11040``$end''. Similarly user friendly names are provided for each symbol. To
11041avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 11042tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 11043
1c59e0a1 11044@comment file: calc++-parser.yy
12545799 11045@example
2a6b66c5 11046%define api.token.prefix "TOK_"
3cdc21cf
AD
11047%token
11048 END 0 "end of file"
11049 ASSIGN ":="
11050 MINUS "-"
11051 PLUS "+"
11052 STAR "*"
11053 SLASH "/"
11054 LPAREN "("
11055 RPAREN ")"
11056;
12545799
AD
11057@end example
11058
11059@noindent
3cdc21cf
AD
11060Since we use variant-based semantic values, @code{%union} is not used, and
11061both @code{%type} and @code{%token} expect genuine types, as opposed to type
11062tags.
12545799 11063
1c59e0a1 11064@comment file: calc++-parser.yy
12545799 11065@example
3cdc21cf
AD
11066%token <std::string> IDENTIFIER "identifier"
11067%token <int> NUMBER "number"
11068%type <int> exp
11069@end example
11070
11071@noindent
11072No @code{%destructor} is needed to enable memory deallocation during error
11073recovery; the memory, for strings for instance, will be reclaimed by the
11074regular destructors. All the values are printed using their
a76c741d 11075@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 11076
3cdc21cf
AD
11077@comment file: calc++-parser.yy
11078@example
c5026327 11079%printer @{ yyoutput << $$; @} <*>;
12545799
AD
11080@end example
11081
11082@noindent
3cdc21cf
AD
11083The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
11084Location Tracking Calculator: @code{ltcalc}}).
12545799 11085
1c59e0a1 11086@comment file: calc++-parser.yy
12545799
AD
11087@example
11088%%
11089%start unit;
11090unit: assignments exp @{ driver.result = $2; @};
11091
99c08fb6 11092assignments:
6240346a 11093 %empty @{@}
5e9b6624 11094| assignments assignment @{@};
12545799 11095
3dc5e96b 11096assignment:
3cdc21cf 11097 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 11098
3cdc21cf
AD
11099%left "+" "-";
11100%left "*" "/";
99c08fb6 11101exp:
3cdc21cf
AD
11102 exp "+" exp @{ $$ = $1 + $3; @}
11103| exp "-" exp @{ $$ = $1 - $3; @}
11104| exp "*" exp @{ $$ = $1 * $3; @}
11105| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 11106| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 11107| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 11108| "number" @{ std::swap ($$, $1); @};
12545799
AD
11109%%
11110@end example
11111
11112@noindent
11113Finally the @code{error} member function registers the errors to the
11114driver.
11115
1c59e0a1 11116@comment file: calc++-parser.yy
12545799
AD
11117@example
11118void
3cdc21cf 11119yy::calcxx_parser::error (const location_type& l,
1c59e0a1 11120 const std::string& m)
12545799
AD
11121@{
11122 driver.error (l, m);
11123@}
11124@end example
11125
11126@node Calc++ Scanner
8405b70c 11127@subsubsection Calc++ Scanner
12545799
AD
11128
11129The Flex scanner first includes the driver declaration, then the
11130parser's to get the set of defined tokens.
11131
1c59e0a1 11132@comment file: calc++-scanner.ll
12545799 11133@example
c93f22fc 11134%@{ /* -*- C++ -*- */
3c248d70
AD
11135# include <cerrno>
11136# include <climits>
3cdc21cf 11137# include <cstdlib>
12545799
AD
11138# include <string>
11139# include "calc++-driver.hh"
11140# include "calc++-parser.hh"
eaea13f5 11141
3cdc21cf
AD
11142// Work around an incompatibility in flex (at least versions
11143// 2.5.31 through 2.5.33): it generates code that does
11144// not conform to C89. See Debian bug 333231
11145// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11146# undef yywrap
11147# define yywrap() 1
eaea13f5 11148
3cdc21cf
AD
11149// The location of the current token.
11150static yy::location loc;
12545799
AD
11151%@}
11152@end example
11153
11154@noindent
11155Because there is no @code{#include}-like feature we don't need
11156@code{yywrap}, we don't need @code{unput} either, and we parse an
11157actual file, this is not an interactive session with the user.
3cdc21cf 11158Finally, we enable scanner tracing.
12545799 11159
1c59e0a1 11160@comment file: calc++-scanner.ll
12545799 11161@example
6908c2e1 11162%option noyywrap nounput batch debug noinput
12545799
AD
11163@end example
11164
11165@noindent
11166Abbreviations allow for more readable rules.
11167
1c59e0a1 11168@comment file: calc++-scanner.ll
12545799
AD
11169@example
11170id [a-zA-Z][a-zA-Z_0-9]*
11171int [0-9]+
11172blank [ \t]
11173@end example
11174
11175@noindent
9d9b8b70 11176The following paragraph suffices to track locations accurately. Each
12545799 11177time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11178position. Then when a pattern is matched, its width is added to the end
11179column. When matching ends of lines, the end
12545799
AD
11180cursor is adjusted, and each time blanks are matched, the begin cursor
11181is moved onto the end cursor to effectively ignore the blanks
11182preceding tokens. Comments would be treated equally.
11183
1c59e0a1 11184@comment file: calc++-scanner.ll
12545799 11185@example
d4fca427 11186@group
828c373b 11187%@{
3cdc21cf
AD
11188 // Code run each time a pattern is matched.
11189 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11190%@}
d4fca427 11191@end group
12545799 11192%%
d4fca427 11193@group
12545799 11194%@{
3cdc21cf
AD
11195 // Code run each time yylex is called.
11196 loc.step ();
12545799 11197%@}
d4fca427 11198@end group
3cdc21cf
AD
11199@{blank@}+ loc.step ();
11200[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11201@end example
11202
11203@noindent
3cdc21cf 11204The rules are simple. The driver is used to report errors.
12545799 11205
1c59e0a1 11206@comment file: calc++-scanner.ll
12545799 11207@example
3cdc21cf
AD
11208"-" return yy::calcxx_parser::make_MINUS(loc);
11209"+" return yy::calcxx_parser::make_PLUS(loc);
11210"*" return yy::calcxx_parser::make_STAR(loc);
11211"/" return yy::calcxx_parser::make_SLASH(loc);
11212"(" return yy::calcxx_parser::make_LPAREN(loc);
11213")" return yy::calcxx_parser::make_RPAREN(loc);
11214":=" return yy::calcxx_parser::make_ASSIGN(loc);
11215
d4fca427 11216@group
04098407
PE
11217@{int@} @{
11218 errno = 0;
11219 long n = strtol (yytext, NULL, 10);
11220 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11221 driver.error (loc, "integer is out of range");
11222 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11223@}
d4fca427 11224@end group
3cdc21cf
AD
11225@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11226. driver.error (loc, "invalid character");
11227<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11228%%
11229@end example
11230
11231@noindent
3cdc21cf 11232Finally, because the scanner-related driver's member-functions depend
12545799
AD
11233on the scanner's data, it is simpler to implement them in this file.
11234
1c59e0a1 11235@comment file: calc++-scanner.ll
12545799 11236@example
d4fca427 11237@group
12545799
AD
11238void
11239calcxx_driver::scan_begin ()
11240@{
11241 yy_flex_debug = trace_scanning;
93c150b6 11242 if (file.empty () || file == "-")
bb32f4f2
AD
11243 yyin = stdin;
11244 else if (!(yyin = fopen (file.c_str (), "r")))
11245 @{
aaaa2aae 11246 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11247 exit (EXIT_FAILURE);
bb32f4f2 11248 @}
12545799 11249@}
d4fca427 11250@end group
12545799 11251
d4fca427 11252@group
12545799
AD
11253void
11254calcxx_driver::scan_end ()
11255@{
11256 fclose (yyin);
11257@}
d4fca427 11258@end group
12545799
AD
11259@end example
11260
11261@node Calc++ Top Level
8405b70c 11262@subsubsection Calc++ Top Level
12545799
AD
11263
11264The top level file, @file{calc++.cc}, poses no problem.
11265
1c59e0a1 11266@comment file: calc++.cc
12545799
AD
11267@example
11268#include <iostream>
11269#include "calc++-driver.hh"
11270
d4fca427 11271@group
12545799 11272int
fa4d969f 11273main (int argc, char *argv[])
12545799 11274@{
414c76a4 11275 int res = 0;
12545799 11276 calcxx_driver driver;
93c150b6
AD
11277 for (int i = 1; i < argc; ++i)
11278 if (argv[i] == std::string ("-p"))
12545799 11279 driver.trace_parsing = true;
93c150b6 11280 else if (argv[i] == std::string ("-s"))
12545799 11281 driver.trace_scanning = true;
93c150b6 11282 else if (!driver.parse (argv[i]))
bb32f4f2 11283 std::cout << driver.result << std::endl;
414c76a4
AD
11284 else
11285 res = 1;
11286 return res;
12545799 11287@}
d4fca427 11288@end group
12545799
AD
11289@end example
11290
8405b70c
PB
11291@node Java Parsers
11292@section Java Parsers
11293
11294@menu
f5f419de
DJ
11295* Java Bison Interface:: Asking for Java parser generation
11296* Java Semantic Values:: %type and %token vs. Java
11297* Java Location Values:: The position and location classes
11298* Java Parser Interface:: Instantiating and running the parser
11299* Java Scanner Interface:: Specifying the scanner for the parser
11300* Java Action Features:: Special features for use in actions
11301* Java Differences:: Differences between C/C++ and Java Grammars
11302* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11303@end menu
11304
11305@node Java Bison Interface
11306@subsection Java Bison Interface
11307@c - %language "Java"
8405b70c 11308
59da312b
JD
11309(The current Java interface is experimental and may evolve.
11310More user feedback will help to stabilize it.)
11311
e254a580
DJ
11312The Java parser skeletons are selected using the @code{%language "Java"}
11313directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11314
e254a580 11315@c FIXME: Documented bug.
ff7571c0
JD
11316When generating a Java parser, @code{bison @var{basename}.y} will
11317create a single Java source file named @file{@var{basename}.java}
11318containing the parser implementation. Using a grammar file without a
11319@file{.y} suffix is currently broken. The basename of the parser
11320implementation file can be changed by the @code{%file-prefix}
11321directive or the @option{-p}/@option{--name-prefix} option. The
11322entire parser implementation file name can be changed by the
11323@code{%output} directive or the @option{-o}/@option{--output} option.
11324The parser implementation file contains a single class for the parser.
8405b70c 11325
e254a580 11326You can create documentation for generated parsers using Javadoc.
8405b70c 11327
e254a580
DJ
11328Contrary to C parsers, Java parsers do not use global variables; the
11329state of the parser is always local to an instance of the parser class.
11330Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11331and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11332
e254a580 11333Push parsers are currently unsupported in Java and @code{%define
67212941 11334api.push-pull} have no effect.
01b477c6 11335
8a4281b9 11336GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11337@code{glr-parser} directive.
11338
11339No header file can be generated for Java parsers. Do not use the
11340@code{%defines} directive or the @option{-d}/@option{--defines} options.
11341
11342@c FIXME: Possible code change.
fa819509
AD
11343Currently, support for tracing is always compiled
11344in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11345directives and the
e254a580
DJ
11346@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11347options have no effect. This may change in the future to eliminate
fa819509
AD
11348unused code in the generated parser, so use @samp{%define parse.trace}
11349explicitly
1979121c 11350if needed. Also, in the future the
e254a580
DJ
11351@code{%token-table} directive might enable a public interface to
11352access the token names and codes.
8405b70c 11353
09ccae9b 11354Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11355hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11356Try reducing the amount of code in actions and static initializers;
11357otherwise, report a bug so that the parser skeleton will be improved.
11358
11359
8405b70c
PB
11360@node Java Semantic Values
11361@subsection Java Semantic Values
11362@c - No %union, specify type in %type/%token.
11363@c - YYSTYPE
11364@c - Printer and destructor
11365
11366There is no @code{%union} directive in Java parsers. Instead, the
11367semantic values' types (class names) should be specified in the
11368@code{%type} or @code{%token} directive:
11369
11370@example
11371%type <Expression> expr assignment_expr term factor
11372%type <Integer> number
11373@end example
11374
11375By default, the semantic stack is declared to have @code{Object} members,
11376which means that the class types you specify can be of any class.
11377To improve the type safety of the parser, you can declare the common
4119d1ea 11378superclass of all the semantic values using the @samp{%define api.value.type}
e254a580 11379directive. For example, after the following declaration:
8405b70c
PB
11380
11381@example
4119d1ea 11382%define api.value.type "ASTNode"
8405b70c
PB
11383@end example
11384
11385@noindent
11386any @code{%type} or @code{%token} specifying a semantic type which
11387is not a subclass of ASTNode, will cause a compile-time error.
11388
e254a580 11389@c FIXME: Documented bug.
8405b70c
PB
11390Types used in the directives may be qualified with a package name.
11391Primitive data types are accepted for Java version 1.5 or later. Note
11392that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11393Generic types may not be used; this is due to a limitation in the
11394implementation of Bison, and may change in future releases.
8405b70c
PB
11395
11396Java parsers do not support @code{%destructor}, since the language
11397adopts garbage collection. The parser will try to hold references
11398to semantic values for as little time as needed.
11399
11400Java parsers do not support @code{%printer}, as @code{toString()}
11401can be used to print the semantic values. This however may change
11402(in a backwards-compatible way) in future versions of Bison.
11403
11404
11405@node Java Location Values
11406@subsection Java Location Values
11407@c - %locations
11408@c - class Position
11409@c - class Location
11410
303834cc
JD
11411When the directive @code{%locations} is used, the Java parser supports
11412location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11413class defines a @dfn{position}, a single point in a file; Bison itself
11414defines a class representing a @dfn{location}, a range composed of a pair of
11415positions (possibly spanning several files). The location class is an inner
11416class of the parser; the name is @code{Location} by default, and may also be
7287be84 11417renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
11418
11419The location class treats the position as a completely opaque value.
11420By default, the class name is @code{Position}, but this can be changed
7287be84 11421with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 11422be supplied by the user.
8405b70c
PB
11423
11424
e254a580
DJ
11425@deftypeivar {Location} {Position} begin
11426@deftypeivarx {Location} {Position} end
8405b70c 11427The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11428@end deftypeivar
11429
11430@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11431Create a @code{Location} denoting an empty range located at a given point.
e254a580 11432@end deftypeop
8405b70c 11433
e254a580
DJ
11434@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11435Create a @code{Location} from the endpoints of the range.
11436@end deftypeop
11437
11438@deftypemethod {Location} {String} toString ()
8405b70c
PB
11439Prints the range represented by the location. For this to work
11440properly, the position class should override the @code{equals} and
11441@code{toString} methods appropriately.
11442@end deftypemethod
11443
11444
11445@node Java Parser Interface
11446@subsection Java Parser Interface
11447@c - define parser_class_name
11448@c - Ctor
11449@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11450@c debug_stream.
11451@c - Reporting errors
11452
e254a580
DJ
11453The name of the generated parser class defaults to @code{YYParser}. The
11454@code{YY} prefix may be changed using the @code{%name-prefix} directive
11455or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 11456@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 11457the class. The interface of this class is detailed below.
8405b70c 11458
e254a580 11459By default, the parser class has package visibility. A declaration
67501061 11460@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11461according to the Java language specification, the name of the @file{.java}
11462file should match the name of the class in this case. Similarly, you can
11463use @code{abstract}, @code{final} and @code{strictfp} with the
11464@code{%define} declaration to add other modifiers to the parser class.
67501061 11465A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 11466be used to add any number of annotations to the parser class.
e254a580
DJ
11467
11468The Java package name of the parser class can be specified using the
67501061 11469@samp{%define package} directive. The superclass and the implemented
e254a580 11470interfaces of the parser class can be specified with the @code{%define
67501061 11471extends} and @samp{%define implements} directives.
e254a580
DJ
11472
11473The parser class defines an inner class, @code{Location}, that is used
11474for location tracking (see @ref{Java Location Values}), and a inner
11475interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11476these inner class/interface, and the members described in the interface
11477below, all the other members and fields are preceded with a @code{yy} or
11478@code{YY} prefix to avoid clashes with user code.
11479
e254a580
DJ
11480The parser class can be extended using the @code{%parse-param}
11481directive. Each occurrence of the directive will add a @code{protected
11482final} field to the parser class, and an argument to its constructor,
11483which initialize them automatically.
11484
e254a580
DJ
11485@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11486Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11487no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11488@code{%lex-param}s are used.
1979121c
DJ
11489
11490Use @code{%code init} for code added to the start of the constructor
11491body. This is especially useful to initialize superclasses. Use
f50bfcd6 11492@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11493@end deftypeop
11494
11495@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11496Build a new parser object using the specified scanner. There are no
2055a44e
AD
11497additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11498used.
e254a580
DJ
11499
11500If the scanner is defined by @code{%code lexer}, this constructor is
11501declared @code{protected} and is called automatically with a scanner
2055a44e 11502created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11503
11504Use @code{%code init} for code added to the start of the constructor
11505body. This is especially useful to initialize superclasses. Use
5a321748 11506@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11507@end deftypeop
8405b70c
PB
11508
11509@deftypemethod {YYParser} {boolean} parse ()
11510Run the syntactic analysis, and return @code{true} on success,
11511@code{false} otherwise.
11512@end deftypemethod
11513
1979121c
DJ
11514@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11515@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11516Get or set the option to produce verbose error messages. These are only
cf499cff 11517available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11518verbose error messages.
11519@end deftypemethod
11520
11521@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11522@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11523@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11524Print an error message using the @code{yyerror} method of the scanner
11525instance in use. The @code{Location} and @code{Position} parameters are
11526available only if location tracking is active.
11527@end deftypemethod
11528
01b477c6 11529@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11530During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11531from a syntax error.
11532@xref{Error Recovery}.
8405b70c
PB
11533@end deftypemethod
11534
11535@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11536@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11537Get or set the stream used for tracing the parsing. It defaults to
11538@code{System.err}.
11539@end deftypemethod
11540
11541@deftypemethod {YYParser} {int} getDebugLevel ()
11542@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11543Get or set the tracing level. Currently its value is either 0, no trace,
11544or nonzero, full tracing.
11545@end deftypemethod
11546
1979121c
DJ
11547@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11548@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11549Identify the Bison version and skeleton used to generate this parser.
11550@end deftypecv
11551
8405b70c
PB
11552
11553@node Java Scanner Interface
11554@subsection Java Scanner Interface
01b477c6 11555@c - %code lexer
8405b70c 11556@c - %lex-param
01b477c6 11557@c - Lexer interface
8405b70c 11558
e254a580
DJ
11559There are two possible ways to interface a Bison-generated Java parser
11560with a scanner: the scanner may be defined by @code{%code lexer}, or
11561defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11562@code{Lexer} inner interface of the parser class. This interface also
11563contain constants for all user-defined token names and the predefined
11564@code{EOF} token.
e254a580
DJ
11565
11566In the first case, the body of the scanner class is placed in
11567@code{%code lexer} blocks. If you want to pass parameters from the
11568parser constructor to the scanner constructor, specify them with
11569@code{%lex-param}; they are passed before @code{%parse-param}s to the
11570constructor.
01b477c6 11571
59c5ac72 11572In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11573which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11574The constructor of the parser object will then accept an object
11575implementing the interface; @code{%lex-param} is not used in this
11576case.
11577
11578In both cases, the scanner has to implement the following methods.
11579
e254a580
DJ
11580@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11581This method is defined by the user to emit an error message. The first
11582parameter is omitted if location tracking is not active. Its type can be
7287be84 11583changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
11584@end deftypemethod
11585
e254a580 11586@deftypemethod {Lexer} {int} yylex ()
8405b70c 11587Return the next token. Its type is the return value, its semantic
f50bfcd6 11588value and location are saved and returned by the their methods in the
e254a580
DJ
11589interface.
11590
67501061 11591Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11592Default is @code{java.io.IOException}.
8405b70c
PB
11593@end deftypemethod
11594
11595@deftypemethod {Lexer} {Position} getStartPos ()
11596@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11597Return respectively the first position of the last token that
11598@code{yylex} returned, and the first position beyond it. These
11599methods are not needed unless location tracking is active.
8405b70c 11600
7287be84 11601The return type can be changed using @code{%define api.position.type
8405b70c
PB
11602"@var{class-name}".}
11603@end deftypemethod
11604
11605@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11606Return the semantic value of the last token that yylex returned.
8405b70c 11607
4119d1ea 11608The return type can be changed using @samp{%define api.value.type
8405b70c
PB
11609"@var{class-name}".}
11610@end deftypemethod
11611
11612
e254a580
DJ
11613@node Java Action Features
11614@subsection Special Features for Use in Java Actions
11615
11616The following special constructs can be uses in Java actions.
11617Other analogous C action features are currently unavailable for Java.
11618
67501061 11619Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11620actions, and initial actions specified by @code{%initial-action}.
11621
11622@defvar $@var{n}
11623The semantic value for the @var{n}th component of the current rule.
11624This may not be assigned to.
11625@xref{Java Semantic Values}.
11626@end defvar
11627
11628@defvar $<@var{typealt}>@var{n}
11629Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11630@xref{Java Semantic Values}.
11631@end defvar
11632
11633@defvar $$
11634The semantic value for the grouping made by the current rule. As a
11635value, this is in the base type (@code{Object} or as specified by
4119d1ea 11636@samp{%define api.value.type}) as in not cast to the declared subtype because
e254a580
DJ
11637casts are not allowed on the left-hand side of Java assignments.
11638Use an explicit Java cast if the correct subtype is needed.
11639@xref{Java Semantic Values}.
11640@end defvar
11641
11642@defvar $<@var{typealt}>$
11643Same as @code{$$} since Java always allow assigning to the base type.
11644Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11645for setting the value but there is currently no easy way to distinguish
11646these constructs.
11647@xref{Java Semantic Values}.
11648@end defvar
11649
11650@defvar @@@var{n}
11651The location information of the @var{n}th component of the current rule.
11652This may not be assigned to.
11653@xref{Java Location Values}.
11654@end defvar
11655
11656@defvar @@$
11657The location information of the grouping made by the current rule.
11658@xref{Java Location Values}.
11659@end defvar
11660
34a41a93 11661@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11662Return immediately from the parser, indicating failure.
11663@xref{Java Parser Interface}.
34a41a93 11664@end deftypefn
8405b70c 11665
34a41a93 11666@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11667Return immediately from the parser, indicating success.
11668@xref{Java Parser Interface}.
34a41a93 11669@end deftypefn
8405b70c 11670
34a41a93 11671@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11672Start error recovery (without printing an error message).
e254a580 11673@xref{Error Recovery}.
34a41a93 11674@end deftypefn
8405b70c 11675
e254a580
DJ
11676@deftypefn {Function} {boolean} recovering ()
11677Return whether error recovery is being done. In this state, the parser
11678reads token until it reaches a known state, and then restarts normal
11679operation.
11680@xref{Error Recovery}.
11681@end deftypefn
8405b70c 11682
1979121c
DJ
11683@deftypefn {Function} {void} yyerror (String @var{msg})
11684@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11685@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11686Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11687instance in use. The @code{Location} and @code{Position} parameters are
11688available only if location tracking is active.
e254a580 11689@end deftypefn
8405b70c 11690
8405b70c 11691
8405b70c
PB
11692@node Java Differences
11693@subsection Differences between C/C++ and Java Grammars
11694
11695The different structure of the Java language forces several differences
11696between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11697section summarizes these differences.
8405b70c
PB
11698
11699@itemize
11700@item
01b477c6 11701Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11702@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11703macros. Instead, they should be preceded by @code{return} when they
11704appear in an action. The actual definition of these symbols is
8405b70c
PB
11705opaque to the Bison grammar, and it might change in the future. The
11706only meaningful operation that you can do, is to return them.
e3fd1dcb 11707@xref{Java Action Features}.
8405b70c
PB
11708
11709Note that of these three symbols, only @code{YYACCEPT} and
11710@code{YYABORT} will cause a return from the @code{yyparse}
11711method@footnote{Java parsers include the actions in a separate
11712method than @code{yyparse} in order to have an intuitive syntax that
11713corresponds to these C macros.}.
11714
e254a580
DJ
11715@item
11716Java lacks unions, so @code{%union} has no effect. Instead, semantic
11717values have a common base type: @code{Object} or as specified by
4119d1ea 11718@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11719@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11720an union. The type of @code{$$}, even with angle brackets, is the base
11721type since Java casts are not allow on the left-hand side of assignments.
11722Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11723left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11724@ref{Java Action Features}.
e254a580 11725
8405b70c 11726@item
f50bfcd6 11727The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11728@table @asis
11729@item @code{%code imports}
11730blocks are placed at the beginning of the Java source code. They may
11731include copyright notices. For a @code{package} declarations, it is
67501061 11732suggested to use @samp{%define package} instead.
8405b70c 11733
01b477c6
PB
11734@item unqualified @code{%code}
11735blocks are placed inside the parser class.
11736
11737@item @code{%code lexer}
11738blocks, if specified, should include the implementation of the
11739scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11740that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11741Interface}).
29553547 11742@end table
8405b70c
PB
11743
11744Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11745In particular, @code{%@{ @dots{} %@}} blocks should not be used
11746and may give an error in future versions of Bison.
11747
01b477c6 11748The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11749be used to define other classes used by the parser @emph{outside}
11750the parser class.
8405b70c
PB
11751@end itemize
11752
e254a580
DJ
11753
11754@node Java Declarations Summary
11755@subsection Java Declarations Summary
11756
11757This summary only include declarations specific to Java or have special
11758meaning when used in a Java parser.
11759
11760@deffn {Directive} {%language "Java"}
11761Generate a Java class for the parser.
11762@end deffn
11763
11764@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11765A parameter for the lexer class defined by @code{%code lexer}
11766@emph{only}, added as parameters to the lexer constructor and the parser
11767constructor that @emph{creates} a lexer. Default is none.
11768@xref{Java Scanner Interface}.
11769@end deffn
11770
11771@deffn {Directive} %name-prefix "@var{prefix}"
11772The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11773@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11774@xref{Java Bison Interface}.
11775@end deffn
11776
11777@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11778A parameter for the parser class added as parameters to constructor(s)
11779and as fields initialized by the constructor(s). Default is none.
11780@xref{Java Parser Interface}.
11781@end deffn
11782
11783@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11784Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11785@xref{Java Semantic Values}.
11786@end deffn
11787
11788@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11789Declare the type of nonterminals. Note that the angle brackets enclose
11790a Java @emph{type}.
11791@xref{Java Semantic Values}.
11792@end deffn
11793
11794@deffn {Directive} %code @{ @var{code} @dots{} @}
11795Code appended to the inside of the parser class.
11796@xref{Java Differences}.
11797@end deffn
11798
11799@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11800Code inserted just after the @code{package} declaration.
11801@xref{Java Differences}.
11802@end deffn
11803
1979121c
DJ
11804@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11805Code inserted at the beginning of the parser constructor body.
11806@xref{Java Parser Interface}.
11807@end deffn
11808
e254a580
DJ
11809@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11810Code added to the body of a inner lexer class within the parser class.
11811@xref{Java Scanner Interface}.
11812@end deffn
11813
11814@deffn {Directive} %% @var{code} @dots{}
11815Code (after the second @code{%%}) appended to the end of the file,
11816@emph{outside} the parser class.
11817@xref{Java Differences}.
11818@end deffn
11819
11820@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11821Not supported. Use @code{%code imports} instead.
e254a580
DJ
11822@xref{Java Differences}.
11823@end deffn
11824
11825@deffn {Directive} {%define abstract}
11826Whether the parser class is declared @code{abstract}. Default is false.
11827@xref{Java Bison Interface}.
11828@end deffn
11829
1979121c
DJ
11830@deffn {Directive} {%define annotations} "@var{annotations}"
11831The Java annotations for the parser class. Default is none.
11832@xref{Java Bison Interface}.
11833@end deffn
11834
e254a580
DJ
11835@deffn {Directive} {%define extends} "@var{superclass}"
11836The superclass of the parser class. Default is none.
11837@xref{Java Bison Interface}.
11838@end deffn
11839
11840@deffn {Directive} {%define final}
11841Whether the parser class is declared @code{final}. Default is false.
11842@xref{Java Bison Interface}.
11843@end deffn
11844
11845@deffn {Directive} {%define implements} "@var{interfaces}"
11846The implemented interfaces of the parser class, a comma-separated list.
11847Default is none.
11848@xref{Java Bison Interface}.
11849@end deffn
11850
1979121c
DJ
11851@deffn {Directive} {%define init_throws} "@var{exceptions}"
11852The exceptions thrown by @code{%code init} from the parser class
11853constructor. Default is none.
11854@xref{Java Parser Interface}.
11855@end deffn
11856
e254a580
DJ
11857@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11858The exceptions thrown by the @code{yylex} method of the lexer, a
11859comma-separated list. Default is @code{java.io.IOException}.
11860@xref{Java Scanner Interface}.
11861@end deffn
11862
7287be84 11863@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
11864The name of the class used for locations (a range between two
11865positions). This class is generated as an inner class of the parser
11866class by @command{bison}. Default is @code{Location}.
7287be84 11867Formerly named @code{location_type}.
e254a580
DJ
11868@xref{Java Location Values}.
11869@end deffn
11870
11871@deffn {Directive} {%define package} "@var{package}"
11872The package to put the parser class in. Default is none.
11873@xref{Java Bison Interface}.
11874@end deffn
11875
11876@deffn {Directive} {%define parser_class_name} "@var{name}"
11877The name of the parser class. Default is @code{YYParser} or
11878@code{@var{name-prefix}Parser}.
11879@xref{Java Bison Interface}.
11880@end deffn
11881
7287be84 11882@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
11883The name of the class used for positions. This class must be supplied by
11884the user. Default is @code{Position}.
7287be84 11885Formerly named @code{position_type}.
e254a580
DJ
11886@xref{Java Location Values}.
11887@end deffn
11888
11889@deffn {Directive} {%define public}
11890Whether the parser class is declared @code{public}. Default is false.
11891@xref{Java Bison Interface}.
11892@end deffn
11893
4119d1ea 11894@deffn {Directive} {%define api.value.type} "@var{class}"
e254a580
DJ
11895The base type of semantic values. Default is @code{Object}.
11896@xref{Java Semantic Values}.
11897@end deffn
11898
11899@deffn {Directive} {%define strictfp}
11900Whether the parser class is declared @code{strictfp}. Default is false.
11901@xref{Java Bison Interface}.
11902@end deffn
11903
11904@deffn {Directive} {%define throws} "@var{exceptions}"
11905The exceptions thrown by user-supplied parser actions and
11906@code{%initial-action}, a comma-separated list. Default is none.
11907@xref{Java Parser Interface}.
11908@end deffn
11909
11910
12545799 11911@c ================================================= FAQ
d1a1114f
AD
11912
11913@node FAQ
11914@chapter Frequently Asked Questions
11915@cindex frequently asked questions
11916@cindex questions
11917
11918Several questions about Bison come up occasionally. Here some of them
11919are addressed.
11920
11921@menu
55ba27be
AD
11922* Memory Exhausted:: Breaking the Stack Limits
11923* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11924* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11925* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11926* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11927* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11928* I can't build Bison:: Troubleshooting
11929* Where can I find help?:: Troubleshouting
11930* Bug Reports:: Troublereporting
8405b70c 11931* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11932* Beta Testing:: Experimenting development versions
11933* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11934@end menu
11935
1a059451
PE
11936@node Memory Exhausted
11937@section Memory Exhausted
d1a1114f 11938
71b52b13 11939@quotation
1a059451 11940My parser returns with error with a @samp{memory exhausted}
d1a1114f 11941message. What can I do?
71b52b13 11942@end quotation
d1a1114f 11943
188867ac
AD
11944This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11945Rules}.
d1a1114f 11946
e64fec0a
PE
11947@node How Can I Reset the Parser
11948@section How Can I Reset the Parser
5b066063 11949
0e14ad77
PE
11950The following phenomenon has several symptoms, resulting in the
11951following typical questions:
5b066063 11952
71b52b13 11953@quotation
5b066063
AD
11954I invoke @code{yyparse} several times, and on correct input it works
11955properly; but when a parse error is found, all the other calls fail
0e14ad77 11956too. How can I reset the error flag of @code{yyparse}?
71b52b13 11957@end quotation
5b066063
AD
11958
11959@noindent
11960or
11961
71b52b13 11962@quotation
0e14ad77 11963My parser includes support for an @samp{#include}-like feature, in
5b066063 11964which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 11965although I did specify @samp{%define api.pure full}.
71b52b13 11966@end quotation
5b066063 11967
0e14ad77
PE
11968These problems typically come not from Bison itself, but from
11969Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11970speed, they might not notice a change of input file. As a
11971demonstration, consider the following source file,
11972@file{first-line.l}:
11973
d4fca427
AD
11974@example
11975@group
11976%@{
5b066063
AD
11977#include <stdio.h>
11978#include <stdlib.h>
d4fca427
AD
11979%@}
11980@end group
5b066063
AD
11981%%
11982.*\n ECHO; return 1;
11983%%
d4fca427 11984@group
5b066063 11985int
0e14ad77 11986yyparse (char const *file)
d4fca427 11987@{
5b066063
AD
11988 yyin = fopen (file, "r");
11989 if (!yyin)
d4fca427
AD
11990 @{
11991 perror ("fopen");
11992 exit (EXIT_FAILURE);
11993 @}
11994@end group
11995@group
fa7e68c3 11996 /* One token only. */
5b066063 11997 yylex ();
0e14ad77 11998 if (fclose (yyin) != 0)
d4fca427
AD
11999 @{
12000 perror ("fclose");
12001 exit (EXIT_FAILURE);
12002 @}
5b066063 12003 return 0;
d4fca427
AD
12004@}
12005@end group
5b066063 12006
d4fca427 12007@group
5b066063 12008int
0e14ad77 12009main (void)
d4fca427 12010@{
5b066063
AD
12011 yyparse ("input");
12012 yyparse ("input");
12013 return 0;
d4fca427
AD
12014@}
12015@end group
12016@end example
5b066063
AD
12017
12018@noindent
12019If the file @file{input} contains
12020
71b52b13 12021@example
5b066063
AD
12022input:1: Hello,
12023input:2: World!
71b52b13 12024@end example
5b066063
AD
12025
12026@noindent
0e14ad77 12027then instead of getting the first line twice, you get:
5b066063
AD
12028
12029@example
12030$ @kbd{flex -ofirst-line.c first-line.l}
12031$ @kbd{gcc -ofirst-line first-line.c -ll}
12032$ @kbd{./first-line}
12033input:1: Hello,
12034input:2: World!
12035@end example
12036
0e14ad77
PE
12037Therefore, whenever you change @code{yyin}, you must tell the
12038Lex-generated scanner to discard its current buffer and switch to the
12039new one. This depends upon your implementation of Lex; see its
12040documentation for more. For Flex, it suffices to call
12041@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
12042Flex-generated scanner needs to read from several input streams to
12043handle features like include files, you might consider using Flex
12044functions like @samp{yy_switch_to_buffer} that manipulate multiple
12045input buffers.
5b066063 12046
b165c324
AD
12047If your Flex-generated scanner uses start conditions (@pxref{Start
12048conditions, , Start conditions, flex, The Flex Manual}), you might
12049also want to reset the scanner's state, i.e., go back to the initial
12050start condition, through a call to @samp{BEGIN (0)}.
12051
fef4cb51
AD
12052@node Strings are Destroyed
12053@section Strings are Destroyed
12054
71b52b13 12055@quotation
c7e441b4 12056My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
12057them. Instead of reporting @samp{"foo", "bar"}, it reports
12058@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 12059@end quotation
fef4cb51
AD
12060
12061This error is probably the single most frequent ``bug report'' sent to
12062Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 12063of the scanner. Consider the following Lex code:
fef4cb51 12064
71b52b13 12065@example
d4fca427 12066@group
71b52b13 12067%@{
fef4cb51
AD
12068#include <stdio.h>
12069char *yylval = NULL;
71b52b13 12070%@}
d4fca427
AD
12071@end group
12072@group
fef4cb51
AD
12073%%
12074.* yylval = yytext; return 1;
12075\n /* IGNORE */
12076%%
d4fca427
AD
12077@end group
12078@group
fef4cb51
AD
12079int
12080main ()
71b52b13 12081@{
fa7e68c3 12082 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
12083 char *fst = (yylex (), yylval);
12084 char *snd = (yylex (), yylval);
12085 printf ("\"%s\", \"%s\"\n", fst, snd);
12086 return 0;
71b52b13 12087@}
d4fca427 12088@end group
71b52b13 12089@end example
fef4cb51
AD
12090
12091If you compile and run this code, you get:
12092
12093@example
12094$ @kbd{flex -osplit-lines.c split-lines.l}
12095$ @kbd{gcc -osplit-lines split-lines.c -ll}
12096$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12097"one
12098two", "two"
12099@end example
12100
12101@noindent
12102this is because @code{yytext} is a buffer provided for @emph{reading}
12103in the action, but if you want to keep it, you have to duplicate it
12104(e.g., using @code{strdup}). Note that the output may depend on how
12105your implementation of Lex handles @code{yytext}. For instance, when
12106given the Lex compatibility option @option{-l} (which triggers the
12107option @samp{%array}) Flex generates a different behavior:
12108
12109@example
12110$ @kbd{flex -l -osplit-lines.c split-lines.l}
12111$ @kbd{gcc -osplit-lines split-lines.c -ll}
12112$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12113"two", "two"
12114@end example
12115
12116
2fa09258
AD
12117@node Implementing Gotos/Loops
12118@section Implementing Gotos/Loops
a06ea4aa 12119
71b52b13 12120@quotation
a06ea4aa 12121My simple calculator supports variables, assignments, and functions,
2fa09258 12122but how can I implement gotos, or loops?
71b52b13 12123@end quotation
a06ea4aa
AD
12124
12125Although very pedagogical, the examples included in the document blur
a1c84f45 12126the distinction to make between the parser---whose job is to recover
a06ea4aa 12127the structure of a text and to transmit it to subsequent modules of
a1c84f45 12128the program---and the processing (such as the execution) of this
a06ea4aa
AD
12129structure. This works well with so called straight line programs,
12130i.e., precisely those that have a straightforward execution model:
12131execute simple instructions one after the others.
12132
12133@cindex abstract syntax tree
8a4281b9 12134@cindex AST
a06ea4aa
AD
12135If you want a richer model, you will probably need to use the parser
12136to construct a tree that does represent the structure it has
12137recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 12138or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
12139traversing it in various ways, will enable treatments such as its
12140execution or its translation, which will result in an interpreter or a
12141compiler.
12142
12143This topic is way beyond the scope of this manual, and the reader is
12144invited to consult the dedicated literature.
12145
12146
ed2e6384
AD
12147@node Multiple start-symbols
12148@section Multiple start-symbols
12149
71b52b13 12150@quotation
ed2e6384
AD
12151I have several closely related grammars, and I would like to share their
12152implementations. In fact, I could use a single grammar but with
12153multiple entry points.
71b52b13 12154@end quotation
ed2e6384
AD
12155
12156Bison does not support multiple start-symbols, but there is a very
12157simple means to simulate them. If @code{foo} and @code{bar} are the two
12158pseudo start-symbols, then introduce two new tokens, say
12159@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12160real start-symbol:
12161
12162@example
12163%token START_FOO START_BAR;
12164%start start;
5e9b6624
AD
12165start:
12166 START_FOO foo
12167| START_BAR bar;
ed2e6384
AD
12168@end example
12169
12170These tokens prevents the introduction of new conflicts. As far as the
12171parser goes, that is all that is needed.
12172
12173Now the difficult part is ensuring that the scanner will send these
12174tokens first. If your scanner is hand-written, that should be
12175straightforward. If your scanner is generated by Lex, them there is
12176simple means to do it: recall that anything between @samp{%@{ ... %@}}
12177after the first @code{%%} is copied verbatim in the top of the generated
12178@code{yylex} function. Make sure a variable @code{start_token} is
12179available in the scanner (e.g., a global variable or using
12180@code{%lex-param} etc.), and use the following:
12181
12182@example
12183 /* @r{Prologue.} */
12184%%
12185%@{
12186 if (start_token)
12187 @{
12188 int t = start_token;
12189 start_token = 0;
12190 return t;
12191 @}
12192%@}
12193 /* @r{The rules.} */
12194@end example
12195
12196
55ba27be
AD
12197@node Secure? Conform?
12198@section Secure? Conform?
12199
71b52b13 12200@quotation
55ba27be 12201Is Bison secure? Does it conform to POSIX?
71b52b13 12202@end quotation
55ba27be
AD
12203
12204If you're looking for a guarantee or certification, we don't provide it.
12205However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12206POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12207please send us a bug report.
12208
12209@node I can't build Bison
12210@section I can't build Bison
12211
71b52b13 12212@quotation
8c5b881d
PE
12213I can't build Bison because @command{make} complains that
12214@code{msgfmt} is not found.
55ba27be 12215What should I do?
71b52b13 12216@end quotation
55ba27be
AD
12217
12218Like most GNU packages with internationalization support, that feature
12219is turned on by default. If you have problems building in the @file{po}
12220subdirectory, it indicates that your system's internationalization
12221support is lacking. You can re-configure Bison with
12222@option{--disable-nls} to turn off this support, or you can install GNU
12223gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12224Bison. See the file @file{ABOUT-NLS} for more information.
12225
12226
12227@node Where can I find help?
12228@section Where can I find help?
12229
71b52b13 12230@quotation
55ba27be 12231I'm having trouble using Bison. Where can I find help?
71b52b13 12232@end quotation
55ba27be
AD
12233
12234First, read this fine manual. Beyond that, you can send mail to
12235@email{help-bison@@gnu.org}. This mailing list is intended to be
12236populated with people who are willing to answer questions about using
12237and installing Bison. Please keep in mind that (most of) the people on
12238the list have aspects of their lives which are not related to Bison (!),
12239so you may not receive an answer to your question right away. This can
12240be frustrating, but please try not to honk them off; remember that any
12241help they provide is purely voluntary and out of the kindness of their
12242hearts.
12243
12244@node Bug Reports
12245@section Bug Reports
12246
71b52b13 12247@quotation
55ba27be 12248I found a bug. What should I include in the bug report?
71b52b13 12249@end quotation
55ba27be
AD
12250
12251Before you send a bug report, make sure you are using the latest
12252version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12253mirrors. Be sure to include the version number in your bug report. If
12254the bug is present in the latest version but not in a previous version,
12255try to determine the most recent version which did not contain the bug.
12256
12257If the bug is parser-related, you should include the smallest grammar
12258you can which demonstrates the bug. The grammar file should also be
12259complete (i.e., I should be able to run it through Bison without having
12260to edit or add anything). The smaller and simpler the grammar, the
12261easier it will be to fix the bug.
12262
12263Include information about your compilation environment, including your
12264operating system's name and version and your compiler's name and
12265version. If you have trouble compiling, you should also include a
12266transcript of the build session, starting with the invocation of
12267`configure'. Depending on the nature of the bug, you may be asked to
4c9b8f13 12268send additional files as well (such as @file{config.h} or @file{config.cache}).
55ba27be
AD
12269
12270Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12271send a bug report just because you cannot provide a fix.
55ba27be
AD
12272
12273Send bug reports to @email{bug-bison@@gnu.org}.
12274
8405b70c
PB
12275@node More Languages
12276@section More Languages
55ba27be 12277
71b52b13 12278@quotation
8405b70c 12279Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12280favorite language here}?
71b52b13 12281@end quotation
55ba27be 12282
8405b70c 12283C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12284languages; contributions are welcome.
12285
12286@node Beta Testing
12287@section Beta Testing
12288
71b52b13 12289@quotation
55ba27be 12290What is involved in being a beta tester?
71b52b13 12291@end quotation
55ba27be
AD
12292
12293It's not terribly involved. Basically, you would download a test
12294release, compile it, and use it to build and run a parser or two. After
12295that, you would submit either a bug report or a message saying that
12296everything is okay. It is important to report successes as well as
12297failures because test releases eventually become mainstream releases,
12298but only if they are adequately tested. If no one tests, development is
12299essentially halted.
12300
12301Beta testers are particularly needed for operating systems to which the
12302developers do not have easy access. They currently have easy access to
12303recent GNU/Linux and Solaris versions. Reports about other operating
12304systems are especially welcome.
12305
12306@node Mailing Lists
12307@section Mailing Lists
12308
71b52b13 12309@quotation
55ba27be 12310How do I join the help-bison and bug-bison mailing lists?
71b52b13 12311@end quotation
55ba27be
AD
12312
12313See @url{http://lists.gnu.org/}.
a06ea4aa 12314
d1a1114f
AD
12315@c ================================================= Table of Symbols
12316
342b8b6e 12317@node Table of Symbols
bfa74976
RS
12318@appendix Bison Symbols
12319@cindex Bison symbols, table of
12320@cindex symbols in Bison, table of
12321
18b519c0 12322@deffn {Variable} @@$
3ded9a63 12323In an action, the location of the left-hand side of the rule.
303834cc 12324@xref{Tracking Locations}.
18b519c0 12325@end deffn
3ded9a63 12326
18b519c0 12327@deffn {Variable} @@@var{n}
be22823e 12328@deffnx {Symbol} @@@var{n}
303834cc
JD
12329In an action, the location of the @var{n}-th symbol of the right-hand side
12330of the rule. @xref{Tracking Locations}.
be22823e
AD
12331
12332In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12333with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12334@end deffn
3ded9a63 12335
d013372c 12336@deffn {Variable} @@@var{name}
c949ada3
AD
12337@deffnx {Variable} @@[@var{name}]
12338In an action, the location of a symbol addressed by @var{name}.
12339@xref{Tracking Locations}.
d013372c
AR
12340@end deffn
12341
be22823e
AD
12342@deffn {Symbol} $@@@var{n}
12343In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12344with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12345@end deffn
12346
18b519c0 12347@deffn {Variable} $$
3ded9a63
AD
12348In an action, the semantic value of the left-hand side of the rule.
12349@xref{Actions}.
18b519c0 12350@end deffn
3ded9a63 12351
18b519c0 12352@deffn {Variable} $@var{n}
3ded9a63
AD
12353In an action, the semantic value of the @var{n}-th symbol of the
12354right-hand side of the rule. @xref{Actions}.
18b519c0 12355@end deffn
3ded9a63 12356
d013372c 12357@deffn {Variable} $@var{name}
c949ada3
AD
12358@deffnx {Variable} $[@var{name}]
12359In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12360@xref{Actions}.
12361@end deffn
12362
dd8d9022
AD
12363@deffn {Delimiter} %%
12364Delimiter used to separate the grammar rule section from the
12365Bison declarations section or the epilogue.
12366@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12367@end deffn
bfa74976 12368
dd8d9022
AD
12369@c Don't insert spaces, or check the DVI output.
12370@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12371All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12372to the parser implementation file. Such code forms the prologue of
12373the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12374Grammar}.
18b519c0 12375@end deffn
bfa74976 12376
ca2a6d15
PH
12377@deffn {Directive} %?@{@var{expression}@}
12378Predicate actions. This is a type of action clause that may appear in
12379rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12380GLR parsers during nondeterministic operation,
ca2a6d15
PH
12381this silently causes an alternative parse to die. During deterministic
12382operation, it is the same as the effect of YYERROR.
12383@xref{Semantic Predicates}.
12384
12385This feature is experimental.
12386More user feedback will help to determine whether it should become a permanent
12387feature.
12388@end deffn
12389
c949ada3
AD
12390@deffn {Construct} /* @dots{} */
12391@deffnx {Construct} // @dots{}
12392Comments, as in C/C++.
18b519c0 12393@end deffn
bfa74976 12394
dd8d9022
AD
12395@deffn {Delimiter} :
12396Separates a rule's result from its components. @xref{Rules, ,Syntax of
12397Grammar Rules}.
18b519c0 12398@end deffn
bfa74976 12399
dd8d9022
AD
12400@deffn {Delimiter} ;
12401Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12402@end deffn
bfa74976 12403
dd8d9022
AD
12404@deffn {Delimiter} |
12405Separates alternate rules for the same result nonterminal.
12406@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12407@end deffn
bfa74976 12408
12e35840
JD
12409@deffn {Directive} <*>
12410Used to define a default tagged @code{%destructor} or default tagged
12411@code{%printer}.
85894313
JD
12412
12413This feature is experimental.
12414More user feedback will help to determine whether it should become a permanent
12415feature.
12416
12e35840
JD
12417@xref{Destructor Decl, , Freeing Discarded Symbols}.
12418@end deffn
12419
3ebecc24 12420@deffn {Directive} <>
12e35840
JD
12421Used to define a default tagless @code{%destructor} or default tagless
12422@code{%printer}.
85894313
JD
12423
12424This feature is experimental.
12425More user feedback will help to determine whether it should become a permanent
12426feature.
12427
12e35840
JD
12428@xref{Destructor Decl, , Freeing Discarded Symbols}.
12429@end deffn
12430
dd8d9022
AD
12431@deffn {Symbol} $accept
12432The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12433$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12434Start-Symbol}. It cannot be used in the grammar.
18b519c0 12435@end deffn
bfa74976 12436
136a0f76 12437@deffn {Directive} %code @{@var{code}@}
148d66d8 12438@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12439Insert @var{code} verbatim into the output parser source at the
12440default location or at the location specified by @var{qualifier}.
e0c07222 12441@xref{%code Summary}.
9bc0dd67
JD
12442@end deffn
12443
12444@deffn {Directive} %debug
12445Equip the parser for debugging. @xref{Decl Summary}.
12446@end deffn
12447
91d2c560 12448@ifset defaultprec
22fccf95
PE
12449@deffn {Directive} %default-prec
12450Assign a precedence to rules that lack an explicit @samp{%prec}
12451modifier. @xref{Contextual Precedence, ,Context-Dependent
12452Precedence}.
39a06c25 12453@end deffn
91d2c560 12454@end ifset
39a06c25 12455
7fceb615
JD
12456@deffn {Directive} %define @var{variable}
12457@deffnx {Directive} %define @var{variable} @var{value}
12458@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12459Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12460@end deffn
12461
18b519c0 12462@deffn {Directive} %defines
ff7571c0
JD
12463Bison declaration to create a parser header file, which is usually
12464meant for the scanner. @xref{Decl Summary}.
18b519c0 12465@end deffn
6deb4447 12466
02975b9a
JD
12467@deffn {Directive} %defines @var{defines-file}
12468Same as above, but save in the file @var{defines-file}.
12469@xref{Decl Summary}.
12470@end deffn
12471
18b519c0 12472@deffn {Directive} %destructor
258b75ca 12473Specify how the parser should reclaim the memory associated to
fa7e68c3 12474discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12475@end deffn
72f889cc 12476
18b519c0 12477@deffn {Directive} %dprec
676385e2 12478Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12479time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12480GLR Parsers}.
18b519c0 12481@end deffn
676385e2 12482
09add9c2
AD
12483@deffn {Directive} %empty
12484Bison declaration to declare make explicit that a rule has an empty
12485right-hand side. @xref{Empty Rules}.
12486@end deffn
12487
dd8d9022
AD
12488@deffn {Symbol} $end
12489The predefined token marking the end of the token stream. It cannot be
12490used in the grammar.
12491@end deffn
12492
12493@deffn {Symbol} error
12494A token name reserved for error recovery. This token may be used in
12495grammar rules so as to allow the Bison parser to recognize an error in
12496the grammar without halting the process. In effect, a sentence
12497containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12498token @code{error} becomes the current lookahead token. Actions
12499corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12500token is reset to the token that originally caused the violation.
12501@xref{Error Recovery}.
18d192f0
AD
12502@end deffn
12503
18b519c0 12504@deffn {Directive} %error-verbose
7fceb615
JD
12505An obsolete directive standing for @samp{%define parse.error verbose}
12506(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12507@end deffn
2a8d363a 12508
02975b9a 12509@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12510Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12511Summary}.
18b519c0 12512@end deffn
d8988b2f 12513
18b519c0 12514@deffn {Directive} %glr-parser
8a4281b9
JD
12515Bison declaration to produce a GLR parser. @xref{GLR
12516Parsers, ,Writing GLR Parsers}.
18b519c0 12517@end deffn
676385e2 12518
dd8d9022
AD
12519@deffn {Directive} %initial-action
12520Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12521@end deffn
12522
e6e704dc
JD
12523@deffn {Directive} %language
12524Specify the programming language for the generated parser.
12525@xref{Decl Summary}.
12526@end deffn
12527
18b519c0 12528@deffn {Directive} %left
d78f0ac9 12529Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12530@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12531@end deffn
bfa74976 12532
2055a44e
AD
12533@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12534Bison declaration to specifying additional arguments that
2a8d363a
AD
12535@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12536for Pure Parsers}.
18b519c0 12537@end deffn
2a8d363a 12538
18b519c0 12539@deffn {Directive} %merge
676385e2 12540Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12541reduce/reduce conflict with a rule having the same merging function, the
676385e2 12542function is applied to the two semantic values to get a single result.
8a4281b9 12543@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12544@end deffn
676385e2 12545
02975b9a 12546@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12547Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12548Parsers, ,Multiple Parsers in the Same Program}).
12549
12550Rename the external symbols (variables and functions) used in the parser so
12551that they start with @var{prefix} instead of @samp{yy}. Contrary to
12552@code{api.prefix}, do no rename types and macros.
12553
12554The precise list of symbols renamed in C parsers is @code{yyparse},
12555@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12556@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12557push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12558@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12559example, if you use @samp{%name-prefix "c_"}, the names become
12560@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
12561@code{%define namespace} documentation in this section.
18b519c0 12562@end deffn
d8988b2f 12563
4b3847c3 12564
91d2c560 12565@ifset defaultprec
22fccf95
PE
12566@deffn {Directive} %no-default-prec
12567Do not assign a precedence to rules that lack an explicit @samp{%prec}
12568modifier. @xref{Contextual Precedence, ,Context-Dependent
12569Precedence}.
12570@end deffn
91d2c560 12571@end ifset
22fccf95 12572
18b519c0 12573@deffn {Directive} %no-lines
931c7513 12574Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12575parser implementation file. @xref{Decl Summary}.
18b519c0 12576@end deffn
931c7513 12577
18b519c0 12578@deffn {Directive} %nonassoc
d78f0ac9 12579Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12580@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12581@end deffn
bfa74976 12582
02975b9a 12583@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12584Bison declaration to set the name of the parser implementation file.
12585@xref{Decl Summary}.
18b519c0 12586@end deffn
d8988b2f 12587
2055a44e
AD
12588@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12589Bison declaration to specify additional arguments that both
12590@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12591Parser Function @code{yyparse}}.
12592@end deffn
12593
12594@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12595Bison declaration to specify additional arguments that @code{yyparse}
12596should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12597@end deffn
2a8d363a 12598
18b519c0 12599@deffn {Directive} %prec
bfa74976
RS
12600Bison declaration to assign a precedence to a specific rule.
12601@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12602@end deffn
bfa74976 12603
d78f0ac9
AD
12604@deffn {Directive} %precedence
12605Bison declaration to assign precedence to token(s), but no associativity
12606@xref{Precedence Decl, ,Operator Precedence}.
12607@end deffn
12608
18b519c0 12609@deffn {Directive} %pure-parser
35c1e5f0
JD
12610Deprecated version of @samp{%define api.pure} (@pxref{%define
12611Summary,,api.pure}), for which Bison is more careful to warn about
12612unreasonable usage.
18b519c0 12613@end deffn
bfa74976 12614
b50d2359 12615@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12616Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12617Require a Version of Bison}.
b50d2359
AD
12618@end deffn
12619
18b519c0 12620@deffn {Directive} %right
d78f0ac9 12621Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12622@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12623@end deffn
bfa74976 12624
e6e704dc
JD
12625@deffn {Directive} %skeleton
12626Specify the skeleton to use; usually for development.
12627@xref{Decl Summary}.
12628@end deffn
12629
18b519c0 12630@deffn {Directive} %start
704a47c4
AD
12631Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12632Start-Symbol}.
18b519c0 12633@end deffn
bfa74976 12634
18b519c0 12635@deffn {Directive} %token
bfa74976
RS
12636Bison declaration to declare token(s) without specifying precedence.
12637@xref{Token Decl, ,Token Type Names}.
18b519c0 12638@end deffn
bfa74976 12639
18b519c0 12640@deffn {Directive} %token-table
ff7571c0
JD
12641Bison declaration to include a token name table in the parser
12642implementation file. @xref{Decl Summary}.
18b519c0 12643@end deffn
931c7513 12644
18b519c0 12645@deffn {Directive} %type
704a47c4
AD
12646Bison declaration to declare nonterminals. @xref{Type Decl,
12647,Nonterminal Symbols}.
18b519c0 12648@end deffn
bfa74976 12649
dd8d9022
AD
12650@deffn {Symbol} $undefined
12651The predefined token onto which all undefined values returned by
12652@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12653@code{error}.
12654@end deffn
12655
18b519c0 12656@deffn {Directive} %union
bfa74976
RS
12657Bison declaration to specify several possible data types for semantic
12658values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 12659@end deffn
bfa74976 12660
dd8d9022
AD
12661@deffn {Macro} YYABORT
12662Macro to pretend that an unrecoverable syntax error has occurred, by
12663making @code{yyparse} return 1 immediately. The error reporting
12664function @code{yyerror} is not called. @xref{Parser Function, ,The
12665Parser Function @code{yyparse}}.
8405b70c
PB
12666
12667For Java parsers, this functionality is invoked using @code{return YYABORT;}
12668instead.
dd8d9022 12669@end deffn
3ded9a63 12670
dd8d9022
AD
12671@deffn {Macro} YYACCEPT
12672Macro to pretend that a complete utterance of the language has been
12673read, by making @code{yyparse} return 0 immediately.
12674@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12675
12676For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12677instead.
dd8d9022 12678@end deffn
bfa74976 12679
dd8d9022 12680@deffn {Macro} YYBACKUP
742e4900 12681Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12682token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12683@end deffn
bfa74976 12684
dd8d9022 12685@deffn {Variable} yychar
32c29292 12686External integer variable that contains the integer value of the
742e4900 12687lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12688@code{yyparse}.) Error-recovery rule actions may examine this variable.
12689@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12690@end deffn
bfa74976 12691
dd8d9022
AD
12692@deffn {Variable} yyclearin
12693Macro used in error-recovery rule actions. It clears the previous
742e4900 12694lookahead token. @xref{Error Recovery}.
18b519c0 12695@end deffn
bfa74976 12696
dd8d9022
AD
12697@deffn {Macro} YYDEBUG
12698Macro to define to equip the parser with tracing code. @xref{Tracing,
12699,Tracing Your Parser}.
18b519c0 12700@end deffn
bfa74976 12701
dd8d9022
AD
12702@deffn {Variable} yydebug
12703External integer variable set to zero by default. If @code{yydebug}
12704is given a nonzero value, the parser will output information on input
12705symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12706@end deffn
bfa74976 12707
dd8d9022
AD
12708@deffn {Macro} yyerrok
12709Macro to cause parser to recover immediately to its normal mode
12710after a syntax error. @xref{Error Recovery}.
12711@end deffn
12712
12713@deffn {Macro} YYERROR
4a11b852
AD
12714Cause an immediate syntax error. This statement initiates error
12715recovery just as if the parser itself had detected an error; however, it
12716does not call @code{yyerror}, and does not print any message. If you
12717want to print an error message, call @code{yyerror} explicitly before
12718the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12719
12720For Java parsers, this functionality is invoked using @code{return YYERROR;}
12721instead.
dd8d9022
AD
12722@end deffn
12723
12724@deffn {Function} yyerror
12725User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12726@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12727@end deffn
12728
12729@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12730An obsolete macro used in the @file{yacc.c} skeleton, that you define
12731with @code{#define} in the prologue to request verbose, specific error
12732message strings when @code{yyerror} is called. It doesn't matter what
12733definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12734it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12735(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12736@end deffn
12737
93c150b6
AD
12738@deffn {Macro} YYFPRINTF
12739Macro used to output run-time traces.
12740@xref{Enabling Traces}.
12741@end deffn
12742
dd8d9022
AD
12743@deffn {Macro} YYINITDEPTH
12744Macro for specifying the initial size of the parser stack.
1a059451 12745@xref{Memory Management}.
dd8d9022
AD
12746@end deffn
12747
12748@deffn {Function} yylex
12749User-supplied lexical analyzer function, called with no arguments to get
12750the next token. @xref{Lexical, ,The Lexical Analyzer Function
12751@code{yylex}}.
12752@end deffn
12753
dd8d9022
AD
12754@deffn {Variable} yylloc
12755External variable in which @code{yylex} should place the line and column
12756numbers associated with a token. (In a pure parser, it is a local
12757variable within @code{yyparse}, and its address is passed to
32c29292
JD
12758@code{yylex}.)
12759You can ignore this variable if you don't use the @samp{@@} feature in the
12760grammar actions.
12761@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12762In semantic actions, it stores the location of the lookahead token.
32c29292 12763@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12764@end deffn
12765
12766@deffn {Type} YYLTYPE
12767Data type of @code{yylloc}; by default, a structure with four
12768members. @xref{Location Type, , Data Types of Locations}.
12769@end deffn
12770
12771@deffn {Variable} yylval
12772External variable in which @code{yylex} should place the semantic
12773value associated with a token. (In a pure parser, it is a local
12774variable within @code{yyparse}, and its address is passed to
32c29292
JD
12775@code{yylex}.)
12776@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12777In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12778@xref{Actions, ,Actions}.
dd8d9022
AD
12779@end deffn
12780
12781@deffn {Macro} YYMAXDEPTH
1a059451
PE
12782Macro for specifying the maximum size of the parser stack. @xref{Memory
12783Management}.
dd8d9022
AD
12784@end deffn
12785
12786@deffn {Variable} yynerrs
8a2800e7 12787Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12788(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 12789pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
12790@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12791@end deffn
12792
12793@deffn {Function} yyparse
12794The parser function produced by Bison; call this function to start
12795parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12796@end deffn
12797
93c150b6
AD
12798@deffn {Macro} YYPRINT
12799Macro used to output token semantic values. For @file{yacc.c} only.
12800Obsoleted by @code{%printer}.
12801@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12802@end deffn
12803
9987d1b3 12804@deffn {Function} yypstate_delete
f4101aa6 12805The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12806call this function to delete the memory associated with a parser.
f4101aa6 12807@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12808@code{yypstate_delete}}.
59da312b
JD
12809(The current push parsing interface is experimental and may evolve.
12810More user feedback will help to stabilize it.)
9987d1b3
JD
12811@end deffn
12812
12813@deffn {Function} yypstate_new
f4101aa6 12814The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12815call this function to create a new parser.
f4101aa6 12816@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12817@code{yypstate_new}}.
59da312b
JD
12818(The current push parsing interface is experimental and may evolve.
12819More user feedback will help to stabilize it.)
9987d1b3
JD
12820@end deffn
12821
12822@deffn {Function} yypull_parse
f4101aa6
AD
12823The parser function produced by Bison in push mode; call this function to
12824parse the rest of the input stream.
12825@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12826@code{yypull_parse}}.
59da312b
JD
12827(The current push parsing interface is experimental and may evolve.
12828More user feedback will help to stabilize it.)
9987d1b3
JD
12829@end deffn
12830
12831@deffn {Function} yypush_parse
f4101aa6
AD
12832The parser function produced by Bison in push mode; call this function to
12833parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12834@code{yypush_parse}}.
59da312b
JD
12835(The current push parsing interface is experimental and may evolve.
12836More user feedback will help to stabilize it.)
9987d1b3
JD
12837@end deffn
12838
dd8d9022 12839@deffn {Macro} YYRECOVERING
02103984
PE
12840The expression @code{YYRECOVERING ()} yields 1 when the parser
12841is recovering from a syntax error, and 0 otherwise.
12842@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12843@end deffn
12844
12845@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12846Macro used to control the use of @code{alloca} when the
12847deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12848the parser will use @code{malloc} to extend its stacks. If defined to
128491, the parser will use @code{alloca}. Values other than 0 and 1 are
12850reserved for future Bison extensions. If not defined,
12851@code{YYSTACK_USE_ALLOCA} defaults to 0.
12852
55289366 12853In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12854limited stack and with unreliable stack-overflow checking, you should
12855set @code{YYMAXDEPTH} to a value that cannot possibly result in
12856unchecked stack overflow on any of your target hosts when
12857@code{alloca} is called. You can inspect the code that Bison
12858generates in order to determine the proper numeric values. This will
12859require some expertise in low-level implementation details.
dd8d9022
AD
12860@end deffn
12861
12862@deffn {Type} YYSTYPE
12863Data type of semantic values; @code{int} by default.
12864@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12865@end deffn
bfa74976 12866
342b8b6e 12867@node Glossary
bfa74976
RS
12868@appendix Glossary
12869@cindex glossary
12870
12871@table @asis
7fceb615 12872@item Accepting state
eb45ef3b
JD
12873A state whose only action is the accept action.
12874The accepting state is thus a consistent state.
c949ada3 12875@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 12876
8a4281b9 12877@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12878Formal method of specifying context-free grammars originally proposed
12879by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12880committee document contributing to what became the Algol 60 report.
12881@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12882
7fceb615
JD
12883@item Consistent state
12884A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12885
bfa74976
RS
12886@item Context-free grammars
12887Grammars specified as rules that can be applied regardless of context.
12888Thus, if there is a rule which says that an integer can be used as an
12889expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12890permitted. @xref{Language and Grammar, ,Languages and Context-Free
12891Grammars}.
bfa74976 12892
7fceb615 12893@item Default reduction
110ef36a 12894The reduction that a parser should perform if the current parser state
35c1e5f0 12895contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12896states, Bison declares the reduction with the largest lookahead set to be
12897the default reduction and removes that lookahead set. @xref{Default
12898Reductions}.
12899
12900@item Defaulted state
12901A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12902
bfa74976
RS
12903@item Dynamic allocation
12904Allocation of memory that occurs during execution, rather than at
12905compile time or on entry to a function.
12906
12907@item Empty string
12908Analogous to the empty set in set theory, the empty string is a
12909character string of length zero.
12910
12911@item Finite-state stack machine
12912A ``machine'' that has discrete states in which it is said to exist at
12913each instant in time. As input to the machine is processed, the
12914machine moves from state to state as specified by the logic of the
12915machine. In the case of the parser, the input is the language being
12916parsed, and the states correspond to various stages in the grammar
c827f760 12917rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12918
8a4281b9 12919@item Generalized LR (GLR)
676385e2 12920A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12921that are not LR(1). It resolves situations that Bison's
eb45ef3b 12922deterministic parsing
676385e2
PH
12923algorithm cannot by effectively splitting off multiple parsers, trying all
12924possible parsers, and discarding those that fail in the light of additional
c827f760 12925right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12926LR Parsing}.
676385e2 12927
bfa74976
RS
12928@item Grouping
12929A language construct that is (in general) grammatically divisible;
c827f760 12930for example, `expression' or `declaration' in C@.
bfa74976
RS
12931@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12932
7fceb615
JD
12933@item IELR(1) (Inadequacy Elimination LR(1))
12934A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12935context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12936language-recognition power of canonical LR(1) but with nearly the same
12937number of parser states as LALR(1). This reduction in parser states is
12938often an order of magnitude. More importantly, because canonical LR(1)'s
12939extra parser states may contain duplicate conflicts in the case of non-LR(1)
12940grammars, the number of conflicts for IELR(1) is often an order of magnitude
12941less as well. This can significantly reduce the complexity of developing a
12942grammar. @xref{LR Table Construction}.
eb45ef3b 12943
bfa74976
RS
12944@item Infix operator
12945An arithmetic operator that is placed between the operands on which it
12946performs some operation.
12947
12948@item Input stream
12949A continuous flow of data between devices or programs.
12950
8a4281b9 12951@item LAC (Lookahead Correction)
fcf834f9 12952A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12953detection, which is caused by LR state merging, default reductions, and the
12954use of @code{%nonassoc}. Delayed syntax error detection results in
12955unexpected semantic actions, initiation of error recovery in the wrong
12956syntactic context, and an incorrect list of expected tokens in a verbose
12957syntax error message. @xref{LAC}.
fcf834f9 12958
bfa74976
RS
12959@item Language construct
12960One of the typical usage schemas of the language. For example, one of
12961the constructs of the C language is the @code{if} statement.
12962@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12963
12964@item Left associativity
12965Operators having left associativity are analyzed from left to right:
12966@samp{a+b+c} first computes @samp{a+b} and then combines with
12967@samp{c}. @xref{Precedence, ,Operator Precedence}.
12968
12969@item Left recursion
89cab50d
AD
12970A rule whose result symbol is also its first component symbol; for
12971example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12972Rules}.
bfa74976
RS
12973
12974@item Left-to-right parsing
12975Parsing a sentence of a language by analyzing it token by token from
c827f760 12976left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12977
12978@item Lexical analyzer (scanner)
12979A function that reads an input stream and returns tokens one by one.
12980@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12981
12982@item Lexical tie-in
12983A flag, set by actions in the grammar rules, which alters the way
12984tokens are parsed. @xref{Lexical Tie-ins}.
12985
931c7513 12986@item Literal string token
14ded682 12987A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12988
742e4900
JD
12989@item Lookahead token
12990A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12991Tokens}.
bfa74976 12992
8a4281b9 12993@item LALR(1)
bfa74976 12994The class of context-free grammars that Bison (like most other parser
8a4281b9 12995generators) can handle by default; a subset of LR(1).
cc09e5be 12996@xref{Mysterious Conflicts}.
bfa74976 12997
8a4281b9 12998@item LR(1)
bfa74976 12999The class of context-free grammars in which at most one token of
742e4900 13000lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
13001
13002@item Nonterminal symbol
13003A grammar symbol standing for a grammatical construct that can
13004be expressed through rules in terms of smaller constructs; in other
13005words, a construct that is not a token. @xref{Symbols}.
13006
bfa74976
RS
13007@item Parser
13008A function that recognizes valid sentences of a language by analyzing
13009the syntax structure of a set of tokens passed to it from a lexical
13010analyzer.
13011
13012@item Postfix operator
13013An arithmetic operator that is placed after the operands upon which it
13014performs some operation.
13015
13016@item Reduction
13017Replacing a string of nonterminals and/or terminals with a single
89cab50d 13018nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 13019Parser Algorithm}.
bfa74976
RS
13020
13021@item Reentrant
13022A reentrant subprogram is a subprogram which can be in invoked any
13023number of times in parallel, without interference between the various
13024invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
13025
13026@item Reverse polish notation
13027A language in which all operators are postfix operators.
13028
13029@item Right recursion
89cab50d
AD
13030A rule whose result symbol is also its last component symbol; for
13031example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
13032Rules}.
bfa74976
RS
13033
13034@item Semantics
13035In computer languages, the semantics are specified by the actions
13036taken for each instance of the language, i.e., the meaning of
13037each statement. @xref{Semantics, ,Defining Language Semantics}.
13038
13039@item Shift
13040A parser is said to shift when it makes the choice of analyzing
13041further input from the stream rather than reducing immediately some
c827f760 13042already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13043
13044@item Single-character literal
13045A single character that is recognized and interpreted as is.
13046@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
13047
13048@item Start symbol
13049The nonterminal symbol that stands for a complete valid utterance in
13050the language being parsed. The start symbol is usually listed as the
13863333 13051first nonterminal symbol in a language specification.
bfa74976
RS
13052@xref{Start Decl, ,The Start-Symbol}.
13053
13054@item Symbol table
13055A data structure where symbol names and associated data are stored
13056during parsing to allow for recognition and use of existing
13057information in repeated uses of a symbol. @xref{Multi-function Calc}.
13058
6e649e65
PE
13059@item Syntax error
13060An error encountered during parsing of an input stream due to invalid
13061syntax. @xref{Error Recovery}.
13062
bfa74976
RS
13063@item Token
13064A basic, grammatically indivisible unit of a language. The symbol
13065that describes a token in the grammar is a terminal symbol.
13066The input of the Bison parser is a stream of tokens which comes from
13067the lexical analyzer. @xref{Symbols}.
13068
13069@item Terminal symbol
89cab50d
AD
13070A grammar symbol that has no rules in the grammar and therefore is
13071grammatically indivisible. The piece of text it represents is a token.
13072@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
13073
13074@item Unreachable state
13075A parser state to which there does not exist a sequence of transitions from
13076the parser's start state. A state can become unreachable during conflict
13077resolution. @xref{Unreachable States}.
bfa74976
RS
13078@end table
13079
342b8b6e 13080@node Copying This Manual
f2b5126e 13081@appendix Copying This Manual
f2b5126e
PB
13082@include fdl.texi
13083
5e528941
JD
13084@node Bibliography
13085@unnumbered Bibliography
13086
13087@table @asis
13088@item [Denny 2008]
13089Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
13090for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
130912008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
13092pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
13093
13094@item [Denny 2010 May]
13095Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
13096Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
13097University, Clemson, SC, USA (May 2010).
13098@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
13099
13100@item [Denny 2010 November]
13101Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
13102Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
13103in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
131042010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
13105
13106@item [DeRemer 1982]
13107Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
13108Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
13109Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
13110615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
13111
13112@item [Knuth 1965]
13113Donald E. Knuth, On the Translation of Languages from Left to Right, in
13114@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
13115607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
13116
13117@item [Scott 2000]
13118Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
13119@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
13120London, Department of Computer Science, TR-00-12 (December 2000).
13121@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
13122@end table
13123
f9b86351
AD
13124@node Index of Terms
13125@unnumbered Index of Terms
bfa74976
RS
13126
13127@printindex cp
13128
bfa74976 13129@bye
a06ea4aa 13130
6b5a0de9
AD
13131@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
13132@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
13133@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
13134@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
13135@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
13136@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
13137@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
13138@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
13139@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
13140@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
13141@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
13142@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
13143@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 13144@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
13145@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
13146@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13147@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13148@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13149@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13150@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13151@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13152@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13153@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13154@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13155@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13156@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13157@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13158@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13159@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13160@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13161@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13162@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13163@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13164@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13165@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13166@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13167@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13168@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13169@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13170@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13171@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13172@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13173@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13174@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13175@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13176@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13177@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13178@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13179@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13180@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13181@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13182@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13183@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13184@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13185@c LocalWords: parsers parser's
13186@c LocalWords: associativity subclasses precedences unresolvable runnable
13187@c LocalWords: allocators subunit initializations unreferenced untyped
13188@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13189
13190@c Local Variables:
13191@c ispell-dictionary: "american"
13192@c fill-column: 76
13193@c End: