]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
djgpp/config.site: Adjust config.sed for the use of autoconf 2.60.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
107* C++ Language Interface:: Creating C++ parser objects.
108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
194* Bison Declarations:: Syntax and usage of the Bison declarations section.
195* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 196* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
197
198Defining Language Semantics
199
200* Value Type:: Specifying one data type for all semantic values.
201* Multiple Types:: Specifying several alternative data types.
202* Actions:: An action is the semantic definition of a grammar rule.
203* Action Types:: Specifying data types for actions to operate on.
204* Mid-Rule Actions:: Most actions go at the end of a rule.
205 This says when, why and how to use the exceptional
206 action in the middle of a rule.
207
93dd49ab
PE
208Tracking Locations
209
210* Location Type:: Specifying a data type for locations.
211* Actions and Locations:: Using locations in actions.
212* Location Default Action:: Defining a general way to compute locations.
213
bfa74976
RS
214Bison Declarations
215
b50d2359 216* Require Decl:: Requiring a Bison version.
bfa74976
RS
217* Token Decl:: Declaring terminal symbols.
218* Precedence Decl:: Declaring terminals with precedence and associativity.
219* Union Decl:: Declaring the set of all semantic value types.
220* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 221* Initial Action Decl:: Code run before parsing starts.
72f889cc 222* Destructor Decl:: Declaring how symbols are freed.
d6328241 223* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
224* Start Decl:: Specifying the start symbol.
225* Pure Decl:: Requesting a reentrant parser.
226* Decl Summary:: Table of all Bison declarations.
227
228Parser C-Language Interface
229
230* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 231* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
232 which reads tokens.
233* Error Reporting:: You must supply a function @code{yyerror}.
234* Action Features:: Special features for use in actions.
f7ab6a50
PE
235* Internationalization:: How to let the parser speak in the user's
236 native language.
bfa74976
RS
237
238The Lexical Analyzer Function @code{yylex}
239
240* Calling Convention:: How @code{yyparse} calls @code{yylex}.
241* Token Values:: How @code{yylex} must return the semantic value
242 of the token it has read.
95923bd6 243* Token Locations:: How @code{yylex} must return the text location
bfa74976 244 (line number, etc.) of the token, if the
93dd49ab 245 actions want that.
bfa74976
RS
246* Pure Calling:: How the calling convention differs
247 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
248
13863333 249The Bison Parser Algorithm
bfa74976 250
742e4900 251* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
252* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
253* Precedence:: Operator precedence works by resolving conflicts.
254* Contextual Precedence:: When an operator's precedence depends on context.
255* Parser States:: The parser is a finite-state-machine with stack.
256* Reduce/Reduce:: When two rules are applicable in the same situation.
257* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 258* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 259* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
260
261Operator Precedence
262
263* Why Precedence:: An example showing why precedence is needed.
264* Using Precedence:: How to specify precedence in Bison grammars.
265* Precedence Examples:: How these features are used in the previous example.
266* How Precedence:: How they work.
267
268Handling Context Dependencies
269
270* Semantic Tokens:: Token parsing can depend on the semantic context.
271* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
272* Tie-in Recovery:: Lexical tie-ins have implications for how
273 error recovery rules must be written.
274
93dd49ab 275Debugging Your Parser
ec3bc396
AD
276
277* Understanding:: Understanding the structure of your parser.
278* Tracing:: Tracing the execution of your parser.
279
bfa74976
RS
280Invoking Bison
281
13863333 282* Bison Options:: All the options described in detail,
c827f760 283 in alphabetical order by short options.
bfa74976 284* Option Cross Key:: Alphabetical list of long options.
93dd49ab 285* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 286
12545799
AD
287C++ Language Interface
288
289* C++ Parsers:: The interface to generate C++ parser classes
290* A Complete C++ Example:: Demonstrating their use
291
292C++ Parsers
293
294* C++ Bison Interface:: Asking for C++ parser generation
295* C++ Semantic Values:: %union vs. C++
296* C++ Location Values:: The position and location classes
297* C++ Parser Interface:: Instantiating and running the parser
298* C++ Scanner Interface:: Exchanges between yylex and parse
299
300A Complete C++ Example
301
302* Calc++ --- C++ Calculator:: The specifications
303* Calc++ Parsing Driver:: An active parsing context
304* Calc++ Parser:: A parser class
305* Calc++ Scanner:: A pure C++ Flex scanner
306* Calc++ Top Level:: Conducting the band
307
d1a1114f
AD
308Frequently Asked Questions
309
1a059451 310* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 311* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 312* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 313* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 314* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
315* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
316* I can't build Bison:: Troubleshooting
317* Where can I find help?:: Troubleshouting
318* Bug Reports:: Troublereporting
319* Other Languages:: Parsers in Java and others
320* Beta Testing:: Experimenting development versions
321* Mailing Lists:: Meeting other Bison users
d1a1114f 322
f2b5126e
PB
323Copying This Manual
324
325* GNU Free Documentation License:: License for copying this manual.
326
342b8b6e 327@end detailmenu
bfa74976
RS
328@end menu
329
342b8b6e 330@node Introduction
bfa74976
RS
331@unnumbered Introduction
332@cindex introduction
333
6077da58
PE
334@dfn{Bison} is a general-purpose parser generator that converts an
335annotated context-free grammar into an @acronym{LALR}(1) or
336@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 337Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
338used in simple desk calculators to complex programming languages.
339
340Bison is upward compatible with Yacc: all properly-written Yacc grammars
341ought to work with Bison with no change. Anyone familiar with Yacc
342should be able to use Bison with little trouble. You need to be fluent in
1e137b71 343C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
344
345We begin with tutorial chapters that explain the basic concepts of using
346Bison and show three explained examples, each building on the last. If you
347don't know Bison or Yacc, start by reading these chapters. Reference
348chapters follow which describe specific aspects of Bison in detail.
349
931c7513
RS
350Bison was written primarily by Robert Corbett; Richard Stallman made it
351Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 352multi-character string literals and other features.
931c7513 353
df1af54c 354This edition corresponds to version @value{VERSION} of Bison.
bfa74976 355
342b8b6e 356@node Conditions
bfa74976
RS
357@unnumbered Conditions for Using Bison
358
193d7c70
PE
359The distribution terms for Bison-generated parsers permit using the
360parsers in nonfree programs. Before Bison version 2.2, these extra
361permissions applied only when Bison was generating @acronym{LALR}(1)
362parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 363parsers could be used only in programs that were free software.
a31239f1 364
c827f760
PE
365The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
366compiler, have never
9ecbd125 367had such a requirement. They could always be used for nonfree
a31239f1
RS
368software. The reason Bison was different was not due to a special
369policy decision; it resulted from applying the usual General Public
370License to all of the Bison source code.
371
372The output of the Bison utility---the Bison parser file---contains a
373verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
374parser's implementation. (The actions from your grammar are inserted
375into this implementation at one point, but most of the rest of the
376implementation is not changed.) When we applied the @acronym{GPL}
377terms to the skeleton code for the parser's implementation,
a31239f1
RS
378the effect was to restrict the use of Bison output to free software.
379
380We didn't change the terms because of sympathy for people who want to
381make software proprietary. @strong{Software should be free.} But we
382concluded that limiting Bison's use to free software was doing little to
383encourage people to make other software free. So we decided to make the
384practical conditions for using Bison match the practical conditions for
c827f760 385using the other @acronym{GNU} tools.
bfa74976 386
193d7c70
PE
387This exception applies when Bison is generating code for a parser.
388You can tell whether the exception applies to a Bison output file by
389inspecting the file for text beginning with ``As a special
390exception@dots{}''. The text spells out the exact terms of the
391exception.
262aa8dd 392
c67a198d 393@include gpl.texi
bfa74976 394
342b8b6e 395@node Concepts
bfa74976
RS
396@chapter The Concepts of Bison
397
398This chapter introduces many of the basic concepts without which the
399details of Bison will not make sense. If you do not already know how to
400use Bison or Yacc, we suggest you start by reading this chapter carefully.
401
402@menu
403* Language and Grammar:: Languages and context-free grammars,
404 as mathematical ideas.
405* Grammar in Bison:: How we represent grammars for Bison's sake.
406* Semantic Values:: Each token or syntactic grouping can have
407 a semantic value (the value of an integer,
408 the name of an identifier, etc.).
409* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 410* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 411* Locations Overview:: Tracking Locations.
bfa74976
RS
412* Bison Parser:: What are Bison's input and output,
413 how is the output used?
414* Stages:: Stages in writing and running Bison grammars.
415* Grammar Layout:: Overall structure of a Bison grammar file.
416@end menu
417
342b8b6e 418@node Language and Grammar
bfa74976
RS
419@section Languages and Context-Free Grammars
420
bfa74976
RS
421@cindex context-free grammar
422@cindex grammar, context-free
423In order for Bison to parse a language, it must be described by a
424@dfn{context-free grammar}. This means that you specify one or more
425@dfn{syntactic groupings} and give rules for constructing them from their
426parts. For example, in the C language, one kind of grouping is called an
427`expression'. One rule for making an expression might be, ``An expression
428can be made of a minus sign and another expression''. Another would be,
429``An expression can be an integer''. As you can see, rules are often
430recursive, but there must be at least one rule which leads out of the
431recursion.
432
c827f760 433@cindex @acronym{BNF}
bfa74976
RS
434@cindex Backus-Naur form
435The most common formal system for presenting such rules for humans to read
c827f760
PE
436is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
437order to specify the language Algol 60. Any grammar expressed in
438@acronym{BNF} is a context-free grammar. The input to Bison is
439essentially machine-readable @acronym{BNF}.
bfa74976 440
c827f760
PE
441@cindex @acronym{LALR}(1) grammars
442@cindex @acronym{LR}(1) grammars
676385e2
PH
443There are various important subclasses of context-free grammar. Although it
444can handle almost all context-free grammars, Bison is optimized for what
c827f760 445are called @acronym{LALR}(1) grammars.
676385e2 446In brief, in these grammars, it must be possible to
bfa74976 447tell how to parse any portion of an input string with just a single
742e4900 448token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
449@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
450restrictions that are
bfa74976 451hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
452@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
453@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
454more information on this.
bfa74976 455
c827f760
PE
456@cindex @acronym{GLR} parsing
457@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 458@cindex ambiguous grammars
9d9b8b70 459@cindex nondeterministic parsing
9501dc6e
AD
460
461Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
462roughly that the next grammar rule to apply at any point in the input is
463uniquely determined by the preceding input and a fixed, finite portion
742e4900 464(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 465grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 466apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 467grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 468lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
469With the proper declarations, Bison is also able to parse these more
470general context-free grammars, using a technique known as @acronym{GLR}
471parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
472are able to handle any context-free grammar for which the number of
473possible parses of any given string is finite.
676385e2 474
bfa74976
RS
475@cindex symbols (abstract)
476@cindex token
477@cindex syntactic grouping
478@cindex grouping, syntactic
9501dc6e
AD
479In the formal grammatical rules for a language, each kind of syntactic
480unit or grouping is named by a @dfn{symbol}. Those which are built by
481grouping smaller constructs according to grammatical rules are called
bfa74976
RS
482@dfn{nonterminal symbols}; those which can't be subdivided are called
483@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
484corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 485corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
486
487We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
488nonterminal, mean. The tokens of C are identifiers, constants (numeric
489and string), and the various keywords, arithmetic operators and
490punctuation marks. So the terminal symbols of a grammar for C include
491`identifier', `number', `string', plus one symbol for each keyword,
492operator or punctuation mark: `if', `return', `const', `static', `int',
493`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
494(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
495lexicography, not grammar.)
496
497Here is a simple C function subdivided into tokens:
498
9edcd895
AD
499@ifinfo
500@example
501int /* @r{keyword `int'} */
14d4662b 502square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
503 @r{identifier, close-paren} */
504@{ /* @r{open-brace} */
aa08666d
AD
505 return x * x; /* @r{keyword `return', identifier, asterisk,}
506 @r{identifier, semicolon} */
9edcd895
AD
507@} /* @r{close-brace} */
508@end example
509@end ifinfo
510@ifnotinfo
bfa74976
RS
511@example
512int /* @r{keyword `int'} */
14d4662b 513square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 514@{ /* @r{open-brace} */
9edcd895 515 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
516@} /* @r{close-brace} */
517@end example
9edcd895 518@end ifnotinfo
bfa74976
RS
519
520The syntactic groupings of C include the expression, the statement, the
521declaration, and the function definition. These are represented in the
522grammar of C by nonterminal symbols `expression', `statement',
523`declaration' and `function definition'. The full grammar uses dozens of
524additional language constructs, each with its own nonterminal symbol, in
525order to express the meanings of these four. The example above is a
526function definition; it contains one declaration, and one statement. In
527the statement, each @samp{x} is an expression and so is @samp{x * x}.
528
529Each nonterminal symbol must have grammatical rules showing how it is made
530out of simpler constructs. For example, one kind of C statement is the
531@code{return} statement; this would be described with a grammar rule which
532reads informally as follows:
533
534@quotation
535A `statement' can be made of a `return' keyword, an `expression' and a
536`semicolon'.
537@end quotation
538
539@noindent
540There would be many other rules for `statement', one for each kind of
541statement in C.
542
543@cindex start symbol
544One nonterminal symbol must be distinguished as the special one which
545defines a complete utterance in the language. It is called the @dfn{start
546symbol}. In a compiler, this means a complete input program. In the C
547language, the nonterminal symbol `sequence of definitions and declarations'
548plays this role.
549
550For example, @samp{1 + 2} is a valid C expression---a valid part of a C
551program---but it is not valid as an @emph{entire} C program. In the
552context-free grammar of C, this follows from the fact that `expression' is
553not the start symbol.
554
555The Bison parser reads a sequence of tokens as its input, and groups the
556tokens using the grammar rules. If the input is valid, the end result is
557that the entire token sequence reduces to a single grouping whose symbol is
558the grammar's start symbol. If we use a grammar for C, the entire input
559must be a `sequence of definitions and declarations'. If not, the parser
560reports a syntax error.
561
342b8b6e 562@node Grammar in Bison
bfa74976
RS
563@section From Formal Rules to Bison Input
564@cindex Bison grammar
565@cindex grammar, Bison
566@cindex formal grammar
567
568A formal grammar is a mathematical construct. To define the language
569for Bison, you must write a file expressing the grammar in Bison syntax:
570a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
571
572A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 573as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
574in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
575
576The Bison representation for a terminal symbol is also called a @dfn{token
577type}. Token types as well can be represented as C-like identifiers. By
578convention, these identifiers should be upper case to distinguish them from
579nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
580@code{RETURN}. A terminal symbol that stands for a particular keyword in
581the language should be named after that keyword converted to upper case.
582The terminal symbol @code{error} is reserved for error recovery.
931c7513 583@xref{Symbols}.
bfa74976
RS
584
585A terminal symbol can also be represented as a character literal, just like
586a C character constant. You should do this whenever a token is just a
587single character (parenthesis, plus-sign, etc.): use that same character in
588a literal as the terminal symbol for that token.
589
931c7513
RS
590A third way to represent a terminal symbol is with a C string constant
591containing several characters. @xref{Symbols}, for more information.
592
bfa74976
RS
593The grammar rules also have an expression in Bison syntax. For example,
594here is the Bison rule for a C @code{return} statement. The semicolon in
595quotes is a literal character token, representing part of the C syntax for
596the statement; the naked semicolon, and the colon, are Bison punctuation
597used in every rule.
598
599@example
600stmt: RETURN expr ';'
601 ;
602@end example
603
604@noindent
605@xref{Rules, ,Syntax of Grammar Rules}.
606
342b8b6e 607@node Semantic Values
bfa74976
RS
608@section Semantic Values
609@cindex semantic value
610@cindex value, semantic
611
612A formal grammar selects tokens only by their classifications: for example,
613if a rule mentions the terminal symbol `integer constant', it means that
614@emph{any} integer constant is grammatically valid in that position. The
615precise value of the constant is irrelevant to how to parse the input: if
616@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 617grammatical.
bfa74976
RS
618
619But the precise value is very important for what the input means once it is
620parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6213989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
622has both a token type and a @dfn{semantic value}. @xref{Semantics,
623,Defining Language Semantics},
bfa74976
RS
624for details.
625
626The token type is a terminal symbol defined in the grammar, such as
627@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
628you need to know to decide where the token may validly appear and how to
629group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 630except their types.
bfa74976
RS
631
632The semantic value has all the rest of the information about the
633meaning of the token, such as the value of an integer, or the name of an
634identifier. (A token such as @code{','} which is just punctuation doesn't
635need to have any semantic value.)
636
637For example, an input token might be classified as token type
638@code{INTEGER} and have the semantic value 4. Another input token might
639have the same token type @code{INTEGER} but value 3989. When a grammar
640rule says that @code{INTEGER} is allowed, either of these tokens is
641acceptable because each is an @code{INTEGER}. When the parser accepts the
642token, it keeps track of the token's semantic value.
643
644Each grouping can also have a semantic value as well as its nonterminal
645symbol. For example, in a calculator, an expression typically has a
646semantic value that is a number. In a compiler for a programming
647language, an expression typically has a semantic value that is a tree
648structure describing the meaning of the expression.
649
342b8b6e 650@node Semantic Actions
bfa74976
RS
651@section Semantic Actions
652@cindex semantic actions
653@cindex actions, semantic
654
655In order to be useful, a program must do more than parse input; it must
656also produce some output based on the input. In a Bison grammar, a grammar
657rule can have an @dfn{action} made up of C statements. Each time the
658parser recognizes a match for that rule, the action is executed.
659@xref{Actions}.
13863333 660
bfa74976
RS
661Most of the time, the purpose of an action is to compute the semantic value
662of the whole construct from the semantic values of its parts. For example,
663suppose we have a rule which says an expression can be the sum of two
664expressions. When the parser recognizes such a sum, each of the
665subexpressions has a semantic value which describes how it was built up.
666The action for this rule should create a similar sort of value for the
667newly recognized larger expression.
668
669For example, here is a rule that says an expression can be the sum of
670two subexpressions:
671
672@example
673expr: expr '+' expr @{ $$ = $1 + $3; @}
674 ;
675@end example
676
677@noindent
678The action says how to produce the semantic value of the sum expression
679from the values of the two subexpressions.
680
676385e2 681@node GLR Parsers
c827f760
PE
682@section Writing @acronym{GLR} Parsers
683@cindex @acronym{GLR} parsing
684@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
685@findex %glr-parser
686@cindex conflicts
687@cindex shift/reduce conflicts
fa7e68c3 688@cindex reduce/reduce conflicts
676385e2 689
fa7e68c3 690In some grammars, Bison's standard
9501dc6e
AD
691@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
692certain grammar rule at a given point. That is, it may not be able to
693decide (on the basis of the input read so far) which of two possible
694reductions (applications of a grammar rule) applies, or whether to apply
695a reduction or read more of the input and apply a reduction later in the
696input. These are known respectively as @dfn{reduce/reduce} conflicts
697(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
698(@pxref{Shift/Reduce}).
699
700To use a grammar that is not easily modified to be @acronym{LALR}(1), a
701more general parsing algorithm is sometimes necessary. If you include
676385e2 702@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 703(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
704(@acronym{GLR}) parser. These parsers handle Bison grammars that
705contain no unresolved conflicts (i.e., after applying precedence
706declarations) identically to @acronym{LALR}(1) parsers. However, when
707faced with unresolved shift/reduce and reduce/reduce conflicts,
708@acronym{GLR} parsers use the simple expedient of doing both,
709effectively cloning the parser to follow both possibilities. Each of
710the resulting parsers can again split, so that at any given time, there
711can be any number of possible parses being explored. The parsers
676385e2
PH
712proceed in lockstep; that is, all of them consume (shift) a given input
713symbol before any of them proceed to the next. Each of the cloned
714parsers eventually meets one of two possible fates: either it runs into
715a parsing error, in which case it simply vanishes, or it merges with
716another parser, because the two of them have reduced the input to an
717identical set of symbols.
718
719During the time that there are multiple parsers, semantic actions are
720recorded, but not performed. When a parser disappears, its recorded
721semantic actions disappear as well, and are never performed. When a
722reduction makes two parsers identical, causing them to merge, Bison
723records both sets of semantic actions. Whenever the last two parsers
724merge, reverting to the single-parser case, Bison resolves all the
725outstanding actions either by precedences given to the grammar rules
726involved, or by performing both actions, and then calling a designated
727user-defined function on the resulting values to produce an arbitrary
728merged result.
729
fa7e68c3 730@menu
32c29292
JD
731* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
732* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
733* GLR Semantic Actions:: Deferred semantic actions have special concerns.
734* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
735@end menu
736
737@node Simple GLR Parsers
738@subsection Using @acronym{GLR} on Unambiguous Grammars
739@cindex @acronym{GLR} parsing, unambiguous grammars
740@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
741@findex %glr-parser
742@findex %expect-rr
743@cindex conflicts
744@cindex reduce/reduce conflicts
745@cindex shift/reduce conflicts
746
747In the simplest cases, you can use the @acronym{GLR} algorithm
748to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 749Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
750or (in rare cases) fall into the category of grammars in which the
751@acronym{LALR}(1) algorithm throws away too much information (they are in
752@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
753
754Consider a problem that
755arises in the declaration of enumerated and subrange types in the
756programming language Pascal. Here are some examples:
757
758@example
759type subrange = lo .. hi;
760type enum = (a, b, c);
761@end example
762
763@noindent
764The original language standard allows only numeric
765literals and constant identifiers for the subrange bounds (@samp{lo}
766and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76710206) and many other
768Pascal implementations allow arbitrary expressions there. This gives
769rise to the following situation, containing a superfluous pair of
770parentheses:
771
772@example
773type subrange = (a) .. b;
774@end example
775
776@noindent
777Compare this to the following declaration of an enumerated
778type with only one value:
779
780@example
781type enum = (a);
782@end example
783
784@noindent
785(These declarations are contrived, but they are syntactically
786valid, and more-complicated cases can come up in practical programs.)
787
788These two declarations look identical until the @samp{..} token.
742e4900 789With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
790possible to decide between the two forms when the identifier
791@samp{a} is parsed. It is, however, desirable
792for a parser to decide this, since in the latter case
793@samp{a} must become a new identifier to represent the enumeration
794value, while in the former case @samp{a} must be evaluated with its
795current meaning, which may be a constant or even a function call.
796
797You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
798to be resolved later, but this typically requires substantial
799contortions in both semantic actions and large parts of the
800grammar, where the parentheses are nested in the recursive rules for
801expressions.
802
803You might think of using the lexer to distinguish between the two
804forms by returning different tokens for currently defined and
805undefined identifiers. But if these declarations occur in a local
806scope, and @samp{a} is defined in an outer scope, then both forms
807are possible---either locally redefining @samp{a}, or using the
808value of @samp{a} from the outer scope. So this approach cannot
809work.
810
e757bb10 811A simple solution to this problem is to declare the parser to
fa7e68c3
PE
812use the @acronym{GLR} algorithm.
813When the @acronym{GLR} parser reaches the critical state, it
814merely splits into two branches and pursues both syntax rules
815simultaneously. Sooner or later, one of them runs into a parsing
816error. If there is a @samp{..} token before the next
817@samp{;}, the rule for enumerated types fails since it cannot
818accept @samp{..} anywhere; otherwise, the subrange type rule
819fails since it requires a @samp{..} token. So one of the branches
820fails silently, and the other one continues normally, performing
821all the intermediate actions that were postponed during the split.
822
823If the input is syntactically incorrect, both branches fail and the parser
824reports a syntax error as usual.
825
826The effect of all this is that the parser seems to ``guess'' the
827correct branch to take, or in other words, it seems to use more
742e4900 828lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
829for. In this example, @acronym{LALR}(2) would suffice, but also some cases
830that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
831
832In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
833and the current Bison parser even takes exponential time and space
834for some grammars. In practice, this rarely happens, and for many
835grammars it is possible to prove that it cannot happen.
836The present example contains only one conflict between two
837rules, and the type-declaration context containing the conflict
838cannot be nested. So the number of
839branches that can exist at any time is limited by the constant 2,
840and the parsing time is still linear.
841
842Here is a Bison grammar corresponding to the example above. It
843parses a vastly simplified form of Pascal type declarations.
844
845@example
846%token TYPE DOTDOT ID
847
848@group
849%left '+' '-'
850%left '*' '/'
851@end group
852
853%%
854
855@group
856type_decl : TYPE ID '=' type ';'
857 ;
858@end group
859
860@group
861type : '(' id_list ')'
862 | expr DOTDOT expr
863 ;
864@end group
865
866@group
867id_list : ID
868 | id_list ',' ID
869 ;
870@end group
871
872@group
873expr : '(' expr ')'
874 | expr '+' expr
875 | expr '-' expr
876 | expr '*' expr
877 | expr '/' expr
878 | ID
879 ;
880@end group
881@end example
882
883When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
884about one reduce/reduce conflict. In the conflicting situation the
885parser chooses one of the alternatives, arbitrarily the one
886declared first. Therefore the following correct input is not
887recognized:
888
889@example
890type t = (a) .. b;
891@end example
892
893The parser can be turned into a @acronym{GLR} parser, while also telling Bison
894to be silent about the one known reduce/reduce conflict, by
e757bb10 895adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
896@samp{%%}):
897
898@example
899%glr-parser
900%expect-rr 1
901@end example
902
903@noindent
904No change in the grammar itself is required. Now the
905parser recognizes all valid declarations, according to the
906limited syntax above, transparently. In fact, the user does not even
907notice when the parser splits.
908
f8e1c9e5
AD
909So here we have a case where we can use the benefits of @acronym{GLR},
910almost without disadvantages. Even in simple cases like this, however,
911there are at least two potential problems to beware. First, always
912analyze the conflicts reported by Bison to make sure that @acronym{GLR}
913splitting is only done where it is intended. A @acronym{GLR} parser
914splitting inadvertently may cause problems less obvious than an
915@acronym{LALR} parser statically choosing the wrong alternative in a
916conflict. Second, consider interactions with the lexer (@pxref{Semantic
917Tokens}) with great care. Since a split parser consumes tokens without
918performing any actions during the split, the lexer cannot obtain
919information via parser actions. Some cases of lexer interactions can be
920eliminated by using @acronym{GLR} to shift the complications from the
921lexer to the parser. You must check the remaining cases for
922correctness.
923
924In our example, it would be safe for the lexer to return tokens based on
925their current meanings in some symbol table, because no new symbols are
926defined in the middle of a type declaration. Though it is possible for
927a parser to define the enumeration constants as they are parsed, before
928the type declaration is completed, it actually makes no difference since
929they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
930
931@node Merging GLR Parses
932@subsection Using @acronym{GLR} to Resolve Ambiguities
933@cindex @acronym{GLR} parsing, ambiguous grammars
934@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
935@findex %dprec
936@findex %merge
937@cindex conflicts
938@cindex reduce/reduce conflicts
939
2a8d363a 940Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
941
942@example
943%@{
38a92d50
PE
944 #include <stdio.h>
945 #define YYSTYPE char const *
946 int yylex (void);
947 void yyerror (char const *);
676385e2
PH
948%@}
949
950%token TYPENAME ID
951
952%right '='
953%left '+'
954
955%glr-parser
956
957%%
958
fae437e8 959prog :
676385e2
PH
960 | prog stmt @{ printf ("\n"); @}
961 ;
962
963stmt : expr ';' %dprec 1
964 | decl %dprec 2
965 ;
966
2a8d363a 967expr : ID @{ printf ("%s ", $$); @}
fae437e8 968 | TYPENAME '(' expr ')'
2a8d363a
AD
969 @{ printf ("%s <cast> ", $1); @}
970 | expr '+' expr @{ printf ("+ "); @}
971 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
972 ;
973
fae437e8 974decl : TYPENAME declarator ';'
2a8d363a 975 @{ printf ("%s <declare> ", $1); @}
676385e2 976 | TYPENAME declarator '=' expr ';'
2a8d363a 977 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
978 ;
979
2a8d363a 980declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
981 | '(' declarator ')'
982 ;
983@end example
984
985@noindent
986This models a problematic part of the C++ grammar---the ambiguity between
987certain declarations and statements. For example,
988
989@example
990T (x) = y+z;
991@end example
992
993@noindent
994parses as either an @code{expr} or a @code{stmt}
c827f760
PE
995(assuming that @samp{T} is recognized as a @code{TYPENAME} and
996@samp{x} as an @code{ID}).
676385e2 997Bison detects this as a reduce/reduce conflict between the rules
fae437e8 998@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
999time it encounters @code{x} in the example above. Since this is a
1000@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1001each choice of resolving the reduce/reduce conflict.
1002Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1003however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1004ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1005the other reduces @code{stmt : decl}, after which both parsers are in an
1006identical state: they've seen @samp{prog stmt} and have the same unprocessed
1007input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1008
1009At this point, the @acronym{GLR} parser requires a specification in the
1010grammar of how to choose between the competing parses.
1011In the example above, the two @code{%dprec}
e757bb10 1012declarations specify that Bison is to give precedence
fa7e68c3 1013to the parse that interprets the example as a
676385e2
PH
1014@code{decl}, which implies that @code{x} is a declarator.
1015The parser therefore prints
1016
1017@example
fae437e8 1018"x" y z + T <init-declare>
676385e2
PH
1019@end example
1020
fa7e68c3
PE
1021The @code{%dprec} declarations only come into play when more than one
1022parse survives. Consider a different input string for this parser:
676385e2
PH
1023
1024@example
1025T (x) + y;
1026@end example
1027
1028@noindent
e757bb10 1029This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1030construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1031Here, there is no ambiguity (this cannot be parsed as a declaration).
1032However, at the time the Bison parser encounters @code{x}, it does not
1033have enough information to resolve the reduce/reduce conflict (again,
1034between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1035case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1036into two, one assuming that @code{x} is an @code{expr}, and the other
1037assuming @code{x} is a @code{declarator}. The second of these parsers
1038then vanishes when it sees @code{+}, and the parser prints
1039
1040@example
fae437e8 1041x T <cast> y +
676385e2
PH
1042@end example
1043
1044Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1045the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1046actions of the two possible parsers, rather than choosing one over the
1047other. To do so, you could change the declaration of @code{stmt} as
1048follows:
1049
1050@example
1051stmt : expr ';' %merge <stmtMerge>
1052 | decl %merge <stmtMerge>
1053 ;
1054@end example
1055
1056@noindent
676385e2
PH
1057and define the @code{stmtMerge} function as:
1058
1059@example
38a92d50
PE
1060static YYSTYPE
1061stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1062@{
1063 printf ("<OR> ");
1064 return "";
1065@}
1066@end example
1067
1068@noindent
1069with an accompanying forward declaration
1070in the C declarations at the beginning of the file:
1071
1072@example
1073%@{
38a92d50 1074 #define YYSTYPE char const *
676385e2
PH
1075 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1076%@}
1077@end example
1078
1079@noindent
fa7e68c3
PE
1080With these declarations, the resulting parser parses the first example
1081as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1082
1083@example
fae437e8 1084"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1085@end example
1086
fa7e68c3 1087Bison requires that all of the
e757bb10 1088productions that participate in any particular merge have identical
fa7e68c3
PE
1089@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1090and the parser will report an error during any parse that results in
1091the offending merge.
9501dc6e 1092
32c29292
JD
1093@node GLR Semantic Actions
1094@subsection GLR Semantic Actions
1095
1096@cindex deferred semantic actions
1097By definition, a deferred semantic action is not performed at the same time as
1098the associated reduction.
1099This raises caveats for several Bison features you might use in a semantic
1100action in a @acronym{GLR} parser.
1101
1102@vindex yychar
1103@cindex @acronym{GLR} parsers and @code{yychar}
1104@vindex yylval
1105@cindex @acronym{GLR} parsers and @code{yylval}
1106@vindex yylloc
1107@cindex @acronym{GLR} parsers and @code{yylloc}
1108In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1109the lookahead token present at the time of the associated reduction.
32c29292
JD
1110After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1111you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1112lookahead token's semantic value and location, if any.
32c29292
JD
1113In a nondeferred semantic action, you can also modify any of these variables to
1114influence syntax analysis.
742e4900 1115@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1116
1117@findex yyclearin
1118@cindex @acronym{GLR} parsers and @code{yyclearin}
1119In a deferred semantic action, it's too late to influence syntax analysis.
1120In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1121shallow copies of the values they had at the time of the associated reduction.
1122For this reason alone, modifying them is dangerous.
1123Moreover, the result of modifying them is undefined and subject to change with
1124future versions of Bison.
1125For example, if a semantic action might be deferred, you should never write it
1126to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1127memory referenced by @code{yylval}.
1128
1129@findex YYERROR
1130@cindex @acronym{GLR} parsers and @code{YYERROR}
1131Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1132(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1133initiate error recovery.
1134During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1135the same as its effect in an @acronym{LALR}(1) parser.
1136In a deferred semantic action, its effect is undefined.
1137@c The effect is probably a syntax error at the split point.
1138
8710fc41
JD
1139Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1140describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1141
fa7e68c3
PE
1142@node Compiler Requirements
1143@subsection Considerations when Compiling @acronym{GLR} Parsers
1144@cindex @code{inline}
9501dc6e 1145@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1146
38a92d50
PE
1147The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1148later. In addition, they use the @code{inline} keyword, which is not
1149C89, but is C99 and is a common extension in pre-C99 compilers. It is
1150up to the user of these parsers to handle
9501dc6e
AD
1151portability issues. For instance, if using Autoconf and the Autoconf
1152macro @code{AC_C_INLINE}, a mere
1153
1154@example
1155%@{
38a92d50 1156 #include <config.h>
9501dc6e
AD
1157%@}
1158@end example
1159
1160@noindent
1161will suffice. Otherwise, we suggest
1162
1163@example
1164%@{
38a92d50
PE
1165 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1166 #define inline
1167 #endif
9501dc6e
AD
1168%@}
1169@end example
676385e2 1170
342b8b6e 1171@node Locations Overview
847bf1f5
AD
1172@section Locations
1173@cindex location
95923bd6
AD
1174@cindex textual location
1175@cindex location, textual
847bf1f5
AD
1176
1177Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1178and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1179the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1180Bison provides a mechanism for handling these locations.
1181
72d2299c 1182Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1183associated location, but the type of locations is the same for all tokens and
72d2299c 1184groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1185structure for storing locations (@pxref{Locations}, for more details).
1186
1187Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1188set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1189is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1190@code{@@3}.
1191
1192When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1193of its left hand side (@pxref{Actions}). In the same way, another default
1194action is used for locations. However, the action for locations is general
847bf1f5 1195enough for most cases, meaning there is usually no need to describe for each
72d2299c 1196rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1197grouping, the default behavior of the output parser is to take the beginning
1198of the first symbol, and the end of the last symbol.
1199
342b8b6e 1200@node Bison Parser
bfa74976
RS
1201@section Bison Output: the Parser File
1202@cindex Bison parser
1203@cindex Bison utility
1204@cindex lexical analyzer, purpose
1205@cindex parser
1206
1207When you run Bison, you give it a Bison grammar file as input. The output
1208is a C source file that parses the language described by the grammar.
1209This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1210utility and the Bison parser are two distinct programs: the Bison utility
1211is a program whose output is the Bison parser that becomes part of your
1212program.
1213
1214The job of the Bison parser is to group tokens into groupings according to
1215the grammar rules---for example, to build identifiers and operators into
1216expressions. As it does this, it runs the actions for the grammar rules it
1217uses.
1218
704a47c4
AD
1219The tokens come from a function called the @dfn{lexical analyzer} that
1220you must supply in some fashion (such as by writing it in C). The Bison
1221parser calls the lexical analyzer each time it wants a new token. It
1222doesn't know what is ``inside'' the tokens (though their semantic values
1223may reflect this). Typically the lexical analyzer makes the tokens by
1224parsing characters of text, but Bison does not depend on this.
1225@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1226
1227The Bison parser file is C code which defines a function named
1228@code{yyparse} which implements that grammar. This function does not make
1229a complete C program: you must supply some additional functions. One is
1230the lexical analyzer. Another is an error-reporting function which the
1231parser calls to report an error. In addition, a complete C program must
1232start with a function called @code{main}; you have to provide this, and
1233arrange for it to call @code{yyparse} or the parser will never run.
1234@xref{Interface, ,Parser C-Language Interface}.
1235
f7ab6a50 1236Aside from the token type names and the symbols in the actions you
7093d0f5 1237write, all symbols defined in the Bison parser file itself
bfa74976
RS
1238begin with @samp{yy} or @samp{YY}. This includes interface functions
1239such as the lexical analyzer function @code{yylex}, the error reporting
1240function @code{yyerror} and the parser function @code{yyparse} itself.
1241This also includes numerous identifiers used for internal purposes.
1242Therefore, you should avoid using C identifiers starting with @samp{yy}
1243or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1244this manual. Also, you should avoid using the C identifiers
1245@samp{malloc} and @samp{free} for anything other than their usual
1246meanings.
bfa74976 1247
7093d0f5
AD
1248In some cases the Bison parser file includes system headers, and in
1249those cases your code should respect the identifiers reserved by those
55289366 1250headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1251@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1252declare memory allocators and related types. @code{<libintl.h>} is
1253included if message translation is in use
1254(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1255be included if you define @code{YYDEBUG} to a nonzero value
1256(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1257
342b8b6e 1258@node Stages
bfa74976
RS
1259@section Stages in Using Bison
1260@cindex stages in using Bison
1261@cindex using Bison
1262
1263The actual language-design process using Bison, from grammar specification
1264to a working compiler or interpreter, has these parts:
1265
1266@enumerate
1267@item
1268Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1269(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1270in the language, describe the action that is to be taken when an
1271instance of that rule is recognized. The action is described by a
1272sequence of C statements.
bfa74976
RS
1273
1274@item
704a47c4
AD
1275Write a lexical analyzer to process input and pass tokens to the parser.
1276The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1277Lexical Analyzer Function @code{yylex}}). It could also be produced
1278using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1279
1280@item
1281Write a controlling function that calls the Bison-produced parser.
1282
1283@item
1284Write error-reporting routines.
1285@end enumerate
1286
1287To turn this source code as written into a runnable program, you
1288must follow these steps:
1289
1290@enumerate
1291@item
1292Run Bison on the grammar to produce the parser.
1293
1294@item
1295Compile the code output by Bison, as well as any other source files.
1296
1297@item
1298Link the object files to produce the finished product.
1299@end enumerate
1300
342b8b6e 1301@node Grammar Layout
bfa74976
RS
1302@section The Overall Layout of a Bison Grammar
1303@cindex grammar file
1304@cindex file format
1305@cindex format of grammar file
1306@cindex layout of Bison grammar
1307
1308The input file for the Bison utility is a @dfn{Bison grammar file}. The
1309general form of a Bison grammar file is as follows:
1310
1311@example
1312%@{
08e49d20 1313@var{Prologue}
bfa74976
RS
1314%@}
1315
1316@var{Bison declarations}
1317
1318%%
1319@var{Grammar rules}
1320%%
08e49d20 1321@var{Epilogue}
bfa74976
RS
1322@end example
1323
1324@noindent
1325The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1326in every Bison grammar file to separate the sections.
1327
72d2299c 1328The prologue may define types and variables used in the actions. You can
342b8b6e 1329also use preprocessor commands to define macros used there, and use
bfa74976 1330@code{#include} to include header files that do any of these things.
38a92d50
PE
1331You need to declare the lexical analyzer @code{yylex} and the error
1332printer @code{yyerror} here, along with any other global identifiers
1333used by the actions in the grammar rules.
bfa74976
RS
1334
1335The Bison declarations declare the names of the terminal and nonterminal
1336symbols, and may also describe operator precedence and the data types of
1337semantic values of various symbols.
1338
1339The grammar rules define how to construct each nonterminal symbol from its
1340parts.
1341
38a92d50
PE
1342The epilogue can contain any code you want to use. Often the
1343definitions of functions declared in the prologue go here. In a
1344simple program, all the rest of the program can go here.
bfa74976 1345
342b8b6e 1346@node Examples
bfa74976
RS
1347@chapter Examples
1348@cindex simple examples
1349@cindex examples, simple
1350
1351Now we show and explain three sample programs written using Bison: a
1352reverse polish notation calculator, an algebraic (infix) notation
1353calculator, and a multi-function calculator. All three have been tested
1354under BSD Unix 4.3; each produces a usable, though limited, interactive
1355desk-top calculator.
1356
1357These examples are simple, but Bison grammars for real programming
aa08666d
AD
1358languages are written the same way. You can copy these examples into a
1359source file to try them.
bfa74976
RS
1360
1361@menu
1362* RPN Calc:: Reverse polish notation calculator;
1363 a first example with no operator precedence.
1364* Infix Calc:: Infix (algebraic) notation calculator.
1365 Operator precedence is introduced.
1366* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1367* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1368* Multi-function Calc:: Calculator with memory and trig functions.
1369 It uses multiple data-types for semantic values.
1370* Exercises:: Ideas for improving the multi-function calculator.
1371@end menu
1372
342b8b6e 1373@node RPN Calc
bfa74976
RS
1374@section Reverse Polish Notation Calculator
1375@cindex reverse polish notation
1376@cindex polish notation calculator
1377@cindex @code{rpcalc}
1378@cindex calculator, simple
1379
1380The first example is that of a simple double-precision @dfn{reverse polish
1381notation} calculator (a calculator using postfix operators). This example
1382provides a good starting point, since operator precedence is not an issue.
1383The second example will illustrate how operator precedence is handled.
1384
1385The source code for this calculator is named @file{rpcalc.y}. The
1386@samp{.y} extension is a convention used for Bison input files.
1387
1388@menu
75f5aaea 1389* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1390* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1391* Lexer: Rpcalc Lexer. The lexical analyzer.
1392* Main: Rpcalc Main. The controlling function.
1393* Error: Rpcalc Error. The error reporting function.
1394* Gen: Rpcalc Gen. Running Bison on the grammar file.
1395* Comp: Rpcalc Compile. Run the C compiler on the output code.
1396@end menu
1397
342b8b6e 1398@node Rpcalc Decls
bfa74976
RS
1399@subsection Declarations for @code{rpcalc}
1400
1401Here are the C and Bison declarations for the reverse polish notation
1402calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1403
1404@example
72d2299c 1405/* Reverse polish notation calculator. */
bfa74976
RS
1406
1407%@{
38a92d50
PE
1408 #define YYSTYPE double
1409 #include <math.h>
1410 int yylex (void);
1411 void yyerror (char const *);
bfa74976
RS
1412%@}
1413
1414%token NUM
1415
72d2299c 1416%% /* Grammar rules and actions follow. */
bfa74976
RS
1417@end example
1418
75f5aaea 1419The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1420preprocessor directives and two forward declarations.
bfa74976
RS
1421
1422The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1423specifying the C data type for semantic values of both tokens and
1424groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1425Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1426don't define it, @code{int} is the default. Because we specify
1427@code{double}, each token and each expression has an associated value,
1428which is a floating point number.
bfa74976
RS
1429
1430The @code{#include} directive is used to declare the exponentiation
1431function @code{pow}.
1432
38a92d50
PE
1433The forward declarations for @code{yylex} and @code{yyerror} are
1434needed because the C language requires that functions be declared
1435before they are used. These functions will be defined in the
1436epilogue, but the parser calls them so they must be declared in the
1437prologue.
1438
704a47c4
AD
1439The second section, Bison declarations, provides information to Bison
1440about the token types (@pxref{Bison Declarations, ,The Bison
1441Declarations Section}). Each terminal symbol that is not a
1442single-character literal must be declared here. (Single-character
bfa74976
RS
1443literals normally don't need to be declared.) In this example, all the
1444arithmetic operators are designated by single-character literals, so the
1445only terminal symbol that needs to be declared is @code{NUM}, the token
1446type for numeric constants.
1447
342b8b6e 1448@node Rpcalc Rules
bfa74976
RS
1449@subsection Grammar Rules for @code{rpcalc}
1450
1451Here are the grammar rules for the reverse polish notation calculator.
1452
1453@example
1454input: /* empty */
1455 | input line
1456;
1457
1458line: '\n'
18b519c0 1459 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1460;
1461
18b519c0
AD
1462exp: NUM @{ $$ = $1; @}
1463 | exp exp '+' @{ $$ = $1 + $2; @}
1464 | exp exp '-' @{ $$ = $1 - $2; @}
1465 | exp exp '*' @{ $$ = $1 * $2; @}
1466 | exp exp '/' @{ $$ = $1 / $2; @}
1467 /* Exponentiation */
1468 | exp exp '^' @{ $$ = pow ($1, $2); @}
1469 /* Unary minus */
1470 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1471;
1472%%
1473@end example
1474
1475The groupings of the rpcalc ``language'' defined here are the expression
1476(given the name @code{exp}), the line of input (@code{line}), and the
1477complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1478symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1479which is read as ``or''. The following sections explain what these rules
1480mean.
1481
1482The semantics of the language is determined by the actions taken when a
1483grouping is recognized. The actions are the C code that appears inside
1484braces. @xref{Actions}.
1485
1486You must specify these actions in C, but Bison provides the means for
1487passing semantic values between the rules. In each action, the
1488pseudo-variable @code{$$} stands for the semantic value for the grouping
1489that the rule is going to construct. Assigning a value to @code{$$} is the
1490main job of most actions. The semantic values of the components of the
1491rule are referred to as @code{$1}, @code{$2}, and so on.
1492
1493@menu
13863333
AD
1494* Rpcalc Input::
1495* Rpcalc Line::
1496* Rpcalc Expr::
bfa74976
RS
1497@end menu
1498
342b8b6e 1499@node Rpcalc Input
bfa74976
RS
1500@subsubsection Explanation of @code{input}
1501
1502Consider the definition of @code{input}:
1503
1504@example
1505input: /* empty */
1506 | input line
1507;
1508@end example
1509
1510This definition reads as follows: ``A complete input is either an empty
1511string, or a complete input followed by an input line''. Notice that
1512``complete input'' is defined in terms of itself. This definition is said
1513to be @dfn{left recursive} since @code{input} appears always as the
1514leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1515
1516The first alternative is empty because there are no symbols between the
1517colon and the first @samp{|}; this means that @code{input} can match an
1518empty string of input (no tokens). We write the rules this way because it
1519is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1520It's conventional to put an empty alternative first and write the comment
1521@samp{/* empty */} in it.
1522
1523The second alternate rule (@code{input line}) handles all nontrivial input.
1524It means, ``After reading any number of lines, read one more line if
1525possible.'' The left recursion makes this rule into a loop. Since the
1526first alternative matches empty input, the loop can be executed zero or
1527more times.
1528
1529The parser function @code{yyparse} continues to process input until a
1530grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1531input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1532
342b8b6e 1533@node Rpcalc Line
bfa74976
RS
1534@subsubsection Explanation of @code{line}
1535
1536Now consider the definition of @code{line}:
1537
1538@example
1539line: '\n'
1540 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1541;
1542@end example
1543
1544The first alternative is a token which is a newline character; this means
1545that rpcalc accepts a blank line (and ignores it, since there is no
1546action). The second alternative is an expression followed by a newline.
1547This is the alternative that makes rpcalc useful. The semantic value of
1548the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1549question is the first symbol in the alternative. The action prints this
1550value, which is the result of the computation the user asked for.
1551
1552This action is unusual because it does not assign a value to @code{$$}. As
1553a consequence, the semantic value associated with the @code{line} is
1554uninitialized (its value will be unpredictable). This would be a bug if
1555that value were ever used, but we don't use it: once rpcalc has printed the
1556value of the user's input line, that value is no longer needed.
1557
342b8b6e 1558@node Rpcalc Expr
bfa74976
RS
1559@subsubsection Explanation of @code{expr}
1560
1561The @code{exp} grouping has several rules, one for each kind of expression.
1562The first rule handles the simplest expressions: those that are just numbers.
1563The second handles an addition-expression, which looks like two expressions
1564followed by a plus-sign. The third handles subtraction, and so on.
1565
1566@example
1567exp: NUM
1568 | exp exp '+' @{ $$ = $1 + $2; @}
1569 | exp exp '-' @{ $$ = $1 - $2; @}
1570 @dots{}
1571 ;
1572@end example
1573
1574We have used @samp{|} to join all the rules for @code{exp}, but we could
1575equally well have written them separately:
1576
1577@example
1578exp: NUM ;
1579exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1580exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1581 @dots{}
1582@end example
1583
1584Most of the rules have actions that compute the value of the expression in
1585terms of the value of its parts. For example, in the rule for addition,
1586@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1587the second one. The third component, @code{'+'}, has no meaningful
1588associated semantic value, but if it had one you could refer to it as
1589@code{$3}. When @code{yyparse} recognizes a sum expression using this
1590rule, the sum of the two subexpressions' values is produced as the value of
1591the entire expression. @xref{Actions}.
1592
1593You don't have to give an action for every rule. When a rule has no
1594action, Bison by default copies the value of @code{$1} into @code{$$}.
1595This is what happens in the first rule (the one that uses @code{NUM}).
1596
1597The formatting shown here is the recommended convention, but Bison does
72d2299c 1598not require it. You can add or change white space as much as you wish.
bfa74976
RS
1599For example, this:
1600
1601@example
99a9344e 1602exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1603@end example
1604
1605@noindent
1606means the same thing as this:
1607
1608@example
1609exp: NUM
1610 | exp exp '+' @{ $$ = $1 + $2; @}
1611 | @dots{}
99a9344e 1612;
bfa74976
RS
1613@end example
1614
1615@noindent
1616The latter, however, is much more readable.
1617
342b8b6e 1618@node Rpcalc Lexer
bfa74976
RS
1619@subsection The @code{rpcalc} Lexical Analyzer
1620@cindex writing a lexical analyzer
1621@cindex lexical analyzer, writing
1622
704a47c4
AD
1623The lexical analyzer's job is low-level parsing: converting characters
1624or sequences of characters into tokens. The Bison parser gets its
1625tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1626Analyzer Function @code{yylex}}.
bfa74976 1627
c827f760
PE
1628Only a simple lexical analyzer is needed for the @acronym{RPN}
1629calculator. This
bfa74976
RS
1630lexical analyzer skips blanks and tabs, then reads in numbers as
1631@code{double} and returns them as @code{NUM} tokens. Any other character
1632that isn't part of a number is a separate token. Note that the token-code
1633for such a single-character token is the character itself.
1634
1635The return value of the lexical analyzer function is a numeric code which
1636represents a token type. The same text used in Bison rules to stand for
1637this token type is also a C expression for the numeric code for the type.
1638This works in two ways. If the token type is a character literal, then its
e966383b 1639numeric code is that of the character; you can use the same
bfa74976
RS
1640character literal in the lexical analyzer to express the number. If the
1641token type is an identifier, that identifier is defined by Bison as a C
1642macro whose definition is the appropriate number. In this example,
1643therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1644
1964ad8c
AD
1645The semantic value of the token (if it has one) is stored into the
1646global variable @code{yylval}, which is where the Bison parser will look
1647for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1648defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1649,Declarations for @code{rpcalc}}.)
bfa74976 1650
72d2299c
PE
1651A token type code of zero is returned if the end-of-input is encountered.
1652(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1653
1654Here is the code for the lexical analyzer:
1655
1656@example
1657@group
72d2299c 1658/* The lexical analyzer returns a double floating point
e966383b 1659 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1660 of the character read if not a number. It skips all blanks
1661 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1662
1663#include <ctype.h>
1664@end group
1665
1666@group
13863333
AD
1667int
1668yylex (void)
bfa74976
RS
1669@{
1670 int c;
1671
72d2299c 1672 /* Skip white space. */
13863333 1673 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1674 ;
1675@end group
1676@group
72d2299c 1677 /* Process numbers. */
13863333 1678 if (c == '.' || isdigit (c))
bfa74976
RS
1679 @{
1680 ungetc (c, stdin);
1681 scanf ("%lf", &yylval);
1682 return NUM;
1683 @}
1684@end group
1685@group
72d2299c 1686 /* Return end-of-input. */
13863333 1687 if (c == EOF)
bfa74976 1688 return 0;
72d2299c 1689 /* Return a single char. */
13863333 1690 return c;
bfa74976
RS
1691@}
1692@end group
1693@end example
1694
342b8b6e 1695@node Rpcalc Main
bfa74976
RS
1696@subsection The Controlling Function
1697@cindex controlling function
1698@cindex main function in simple example
1699
1700In keeping with the spirit of this example, the controlling function is
1701kept to the bare minimum. The only requirement is that it call
1702@code{yyparse} to start the process of parsing.
1703
1704@example
1705@group
13863333
AD
1706int
1707main (void)
bfa74976 1708@{
13863333 1709 return yyparse ();
bfa74976
RS
1710@}
1711@end group
1712@end example
1713
342b8b6e 1714@node Rpcalc Error
bfa74976
RS
1715@subsection The Error Reporting Routine
1716@cindex error reporting routine
1717
1718When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1719function @code{yyerror} to print an error message (usually but not
6e649e65 1720always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1721@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1722here is the definition we will use:
bfa74976
RS
1723
1724@example
1725@group
1726#include <stdio.h>
1727
38a92d50 1728/* Called by yyparse on error. */
13863333 1729void
38a92d50 1730yyerror (char const *s)
bfa74976 1731@{
4e03e201 1732 fprintf (stderr, "%s\n", s);
bfa74976
RS
1733@}
1734@end group
1735@end example
1736
1737After @code{yyerror} returns, the Bison parser may recover from the error
1738and continue parsing if the grammar contains a suitable error rule
1739(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1740have not written any error rules in this example, so any invalid input will
1741cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1742real calculator, but it is adequate for the first example.
bfa74976 1743
342b8b6e 1744@node Rpcalc Gen
bfa74976
RS
1745@subsection Running Bison to Make the Parser
1746@cindex running Bison (introduction)
1747
ceed8467
AD
1748Before running Bison to produce a parser, we need to decide how to
1749arrange all the source code in one or more source files. For such a
1750simple example, the easiest thing is to put everything in one file. The
1751definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1752end, in the epilogue of the file
75f5aaea 1753(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1754
1755For a large project, you would probably have several source files, and use
1756@code{make} to arrange to recompile them.
1757
1758With all the source in a single file, you use the following command to
1759convert it into a parser file:
1760
1761@example
fa4d969f 1762bison @var{file}.y
bfa74976
RS
1763@end example
1764
1765@noindent
1766In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1767@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1768removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1769Bison contains the source code for @code{yyparse}. The additional
1770functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1771are copied verbatim to the output.
1772
342b8b6e 1773@node Rpcalc Compile
bfa74976
RS
1774@subsection Compiling the Parser File
1775@cindex compiling the parser
1776
1777Here is how to compile and run the parser file:
1778
1779@example
1780@group
1781# @r{List files in current directory.}
9edcd895 1782$ @kbd{ls}
bfa74976
RS
1783rpcalc.tab.c rpcalc.y
1784@end group
1785
1786@group
1787# @r{Compile the Bison parser.}
1788# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1789$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1790@end group
1791
1792@group
1793# @r{List files again.}
9edcd895 1794$ @kbd{ls}
bfa74976
RS
1795rpcalc rpcalc.tab.c rpcalc.y
1796@end group
1797@end example
1798
1799The file @file{rpcalc} now contains the executable code. Here is an
1800example session using @code{rpcalc}.
1801
1802@example
9edcd895
AD
1803$ @kbd{rpcalc}
1804@kbd{4 9 +}
bfa74976 180513
9edcd895 1806@kbd{3 7 + 3 4 5 *+-}
bfa74976 1807-13
9edcd895 1808@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 180913
9edcd895 1810@kbd{5 6 / 4 n +}
bfa74976 1811-3.166666667
9edcd895 1812@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181381
9edcd895
AD
1814@kbd{^D} @r{End-of-file indicator}
1815$
bfa74976
RS
1816@end example
1817
342b8b6e 1818@node Infix Calc
bfa74976
RS
1819@section Infix Notation Calculator: @code{calc}
1820@cindex infix notation calculator
1821@cindex @code{calc}
1822@cindex calculator, infix notation
1823
1824We now modify rpcalc to handle infix operators instead of postfix. Infix
1825notation involves the concept of operator precedence and the need for
1826parentheses nested to arbitrary depth. Here is the Bison code for
1827@file{calc.y}, an infix desk-top calculator.
1828
1829@example
38a92d50 1830/* Infix notation calculator. */
bfa74976
RS
1831
1832%@{
38a92d50
PE
1833 #define YYSTYPE double
1834 #include <math.h>
1835 #include <stdio.h>
1836 int yylex (void);
1837 void yyerror (char const *);
bfa74976
RS
1838%@}
1839
38a92d50 1840/* Bison declarations. */
bfa74976
RS
1841%token NUM
1842%left '-' '+'
1843%left '*' '/'
1844%left NEG /* negation--unary minus */
38a92d50 1845%right '^' /* exponentiation */
bfa74976 1846
38a92d50
PE
1847%% /* The grammar follows. */
1848input: /* empty */
bfa74976
RS
1849 | input line
1850;
1851
1852line: '\n'
1853 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1854;
1855
1856exp: NUM @{ $$ = $1; @}
1857 | exp '+' exp @{ $$ = $1 + $3; @}
1858 | exp '-' exp @{ $$ = $1 - $3; @}
1859 | exp '*' exp @{ $$ = $1 * $3; @}
1860 | exp '/' exp @{ $$ = $1 / $3; @}
1861 | '-' exp %prec NEG @{ $$ = -$2; @}
1862 | exp '^' exp @{ $$ = pow ($1, $3); @}
1863 | '(' exp ')' @{ $$ = $2; @}
1864;
1865%%
1866@end example
1867
1868@noindent
ceed8467
AD
1869The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1870same as before.
bfa74976
RS
1871
1872There are two important new features shown in this code.
1873
1874In the second section (Bison declarations), @code{%left} declares token
1875types and says they are left-associative operators. The declarations
1876@code{%left} and @code{%right} (right associativity) take the place of
1877@code{%token} which is used to declare a token type name without
1878associativity. (These tokens are single-character literals, which
1879ordinarily don't need to be declared. We declare them here to specify
1880the associativity.)
1881
1882Operator precedence is determined by the line ordering of the
1883declarations; the higher the line number of the declaration (lower on
1884the page or screen), the higher the precedence. Hence, exponentiation
1885has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1886by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1887Precedence}.
bfa74976 1888
704a47c4
AD
1889The other important new feature is the @code{%prec} in the grammar
1890section for the unary minus operator. The @code{%prec} simply instructs
1891Bison that the rule @samp{| '-' exp} has the same precedence as
1892@code{NEG}---in this case the next-to-highest. @xref{Contextual
1893Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1894
1895Here is a sample run of @file{calc.y}:
1896
1897@need 500
1898@example
9edcd895
AD
1899$ @kbd{calc}
1900@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19016.880952381
9edcd895 1902@kbd{-56 + 2}
bfa74976 1903-54
9edcd895 1904@kbd{3 ^ 2}
bfa74976
RS
19059
1906@end example
1907
342b8b6e 1908@node Simple Error Recovery
bfa74976
RS
1909@section Simple Error Recovery
1910@cindex error recovery, simple
1911
1912Up to this point, this manual has not addressed the issue of @dfn{error
1913recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1914error. All we have handled is error reporting with @code{yyerror}.
1915Recall that by default @code{yyparse} returns after calling
1916@code{yyerror}. This means that an erroneous input line causes the
1917calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1918
1919The Bison language itself includes the reserved word @code{error}, which
1920may be included in the grammar rules. In the example below it has
1921been added to one of the alternatives for @code{line}:
1922
1923@example
1924@group
1925line: '\n'
1926 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1927 | error '\n' @{ yyerrok; @}
1928;
1929@end group
1930@end example
1931
ceed8467 1932This addition to the grammar allows for simple error recovery in the
6e649e65 1933event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1934read, the error will be recognized by the third rule for @code{line},
1935and parsing will continue. (The @code{yyerror} function is still called
1936upon to print its message as well.) The action executes the statement
1937@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1938that error recovery is complete (@pxref{Error Recovery}). Note the
1939difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1940misprint.
bfa74976
RS
1941
1942This form of error recovery deals with syntax errors. There are other
1943kinds of errors; for example, division by zero, which raises an exception
1944signal that is normally fatal. A real calculator program must handle this
1945signal and use @code{longjmp} to return to @code{main} and resume parsing
1946input lines; it would also have to discard the rest of the current line of
1947input. We won't discuss this issue further because it is not specific to
1948Bison programs.
1949
342b8b6e
AD
1950@node Location Tracking Calc
1951@section Location Tracking Calculator: @code{ltcalc}
1952@cindex location tracking calculator
1953@cindex @code{ltcalc}
1954@cindex calculator, location tracking
1955
9edcd895
AD
1956This example extends the infix notation calculator with location
1957tracking. This feature will be used to improve the error messages. For
1958the sake of clarity, this example is a simple integer calculator, since
1959most of the work needed to use locations will be done in the lexical
72d2299c 1960analyzer.
342b8b6e
AD
1961
1962@menu
1963* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1964* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1965* Lexer: Ltcalc Lexer. The lexical analyzer.
1966@end menu
1967
1968@node Ltcalc Decls
1969@subsection Declarations for @code{ltcalc}
1970
9edcd895
AD
1971The C and Bison declarations for the location tracking calculator are
1972the same as the declarations for the infix notation calculator.
342b8b6e
AD
1973
1974@example
1975/* Location tracking calculator. */
1976
1977%@{
38a92d50
PE
1978 #define YYSTYPE int
1979 #include <math.h>
1980 int yylex (void);
1981 void yyerror (char const *);
342b8b6e
AD
1982%@}
1983
1984/* Bison declarations. */
1985%token NUM
1986
1987%left '-' '+'
1988%left '*' '/'
1989%left NEG
1990%right '^'
1991
38a92d50 1992%% /* The grammar follows. */
342b8b6e
AD
1993@end example
1994
9edcd895
AD
1995@noindent
1996Note there are no declarations specific to locations. Defining a data
1997type for storing locations is not needed: we will use the type provided
1998by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1999four member structure with the following integer fields:
2000@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2001@code{last_column}. By conventions, and in accordance with the GNU
2002Coding Standards and common practice, the line and column count both
2003start at 1.
342b8b6e
AD
2004
2005@node Ltcalc Rules
2006@subsection Grammar Rules for @code{ltcalc}
2007
9edcd895
AD
2008Whether handling locations or not has no effect on the syntax of your
2009language. Therefore, grammar rules for this example will be very close
2010to those of the previous example: we will only modify them to benefit
2011from the new information.
342b8b6e 2012
9edcd895
AD
2013Here, we will use locations to report divisions by zero, and locate the
2014wrong expressions or subexpressions.
342b8b6e
AD
2015
2016@example
2017@group
2018input : /* empty */
2019 | input line
2020;
2021@end group
2022
2023@group
2024line : '\n'
2025 | exp '\n' @{ printf ("%d\n", $1); @}
2026;
2027@end group
2028
2029@group
2030exp : NUM @{ $$ = $1; @}
2031 | exp '+' exp @{ $$ = $1 + $3; @}
2032 | exp '-' exp @{ $$ = $1 - $3; @}
2033 | exp '*' exp @{ $$ = $1 * $3; @}
2034@end group
342b8b6e 2035@group
9edcd895 2036 | exp '/' exp
342b8b6e
AD
2037 @{
2038 if ($3)
2039 $$ = $1 / $3;
2040 else
2041 @{
2042 $$ = 1;
9edcd895
AD
2043 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2044 @@3.first_line, @@3.first_column,
2045 @@3.last_line, @@3.last_column);
342b8b6e
AD
2046 @}
2047 @}
2048@end group
2049@group
2050 | '-' exp %preg NEG @{ $$ = -$2; @}
2051 | exp '^' exp @{ $$ = pow ($1, $3); @}
2052 | '(' exp ')' @{ $$ = $2; @}
2053@end group
2054@end example
2055
2056This code shows how to reach locations inside of semantic actions, by
2057using the pseudo-variables @code{@@@var{n}} for rule components, and the
2058pseudo-variable @code{@@$} for groupings.
2059
9edcd895
AD
2060We don't need to assign a value to @code{@@$}: the output parser does it
2061automatically. By default, before executing the C code of each action,
2062@code{@@$} is set to range from the beginning of @code{@@1} to the end
2063of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2064can be redefined (@pxref{Location Default Action, , Default Action for
2065Locations}), and for very specific rules, @code{@@$} can be computed by
2066hand.
342b8b6e
AD
2067
2068@node Ltcalc Lexer
2069@subsection The @code{ltcalc} Lexical Analyzer.
2070
9edcd895 2071Until now, we relied on Bison's defaults to enable location
72d2299c 2072tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2073able to feed the parser with the token locations, as it already does for
2074semantic values.
342b8b6e 2075
9edcd895
AD
2076To this end, we must take into account every single character of the
2077input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2078
2079@example
2080@group
2081int
2082yylex (void)
2083@{
2084 int c;
18b519c0 2085@end group
342b8b6e 2086
18b519c0 2087@group
72d2299c 2088 /* Skip white space. */
342b8b6e
AD
2089 while ((c = getchar ()) == ' ' || c == '\t')
2090 ++yylloc.last_column;
18b519c0 2091@end group
342b8b6e 2092
18b519c0 2093@group
72d2299c 2094 /* Step. */
342b8b6e
AD
2095 yylloc.first_line = yylloc.last_line;
2096 yylloc.first_column = yylloc.last_column;
2097@end group
2098
2099@group
72d2299c 2100 /* Process numbers. */
342b8b6e
AD
2101 if (isdigit (c))
2102 @{
2103 yylval = c - '0';
2104 ++yylloc.last_column;
2105 while (isdigit (c = getchar ()))
2106 @{
2107 ++yylloc.last_column;
2108 yylval = yylval * 10 + c - '0';
2109 @}
2110 ungetc (c, stdin);
2111 return NUM;
2112 @}
2113@end group
2114
72d2299c 2115 /* Return end-of-input. */
342b8b6e
AD
2116 if (c == EOF)
2117 return 0;
2118
72d2299c 2119 /* Return a single char, and update location. */
342b8b6e
AD
2120 if (c == '\n')
2121 @{
2122 ++yylloc.last_line;
2123 yylloc.last_column = 0;
2124 @}
2125 else
2126 ++yylloc.last_column;
2127 return c;
2128@}
2129@end example
2130
9edcd895
AD
2131Basically, the lexical analyzer performs the same processing as before:
2132it skips blanks and tabs, and reads numbers or single-character tokens.
2133In addition, it updates @code{yylloc}, the global variable (of type
2134@code{YYLTYPE}) containing the token's location.
342b8b6e 2135
9edcd895 2136Now, each time this function returns a token, the parser has its number
72d2299c 2137as well as its semantic value, and its location in the text. The last
9edcd895
AD
2138needed change is to initialize @code{yylloc}, for example in the
2139controlling function:
342b8b6e
AD
2140
2141@example
9edcd895 2142@group
342b8b6e
AD
2143int
2144main (void)
2145@{
2146 yylloc.first_line = yylloc.last_line = 1;
2147 yylloc.first_column = yylloc.last_column = 0;
2148 return yyparse ();
2149@}
9edcd895 2150@end group
342b8b6e
AD
2151@end example
2152
9edcd895
AD
2153Remember that computing locations is not a matter of syntax. Every
2154character must be associated to a location update, whether it is in
2155valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2156
2157@node Multi-function Calc
bfa74976
RS
2158@section Multi-Function Calculator: @code{mfcalc}
2159@cindex multi-function calculator
2160@cindex @code{mfcalc}
2161@cindex calculator, multi-function
2162
2163Now that the basics of Bison have been discussed, it is time to move on to
2164a more advanced problem. The above calculators provided only five
2165functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2166be nice to have a calculator that provides other mathematical functions such
2167as @code{sin}, @code{cos}, etc.
2168
2169It is easy to add new operators to the infix calculator as long as they are
2170only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2171back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2172adding a new operator. But we want something more flexible: built-in
2173functions whose syntax has this form:
2174
2175@example
2176@var{function_name} (@var{argument})
2177@end example
2178
2179@noindent
2180At the same time, we will add memory to the calculator, by allowing you
2181to create named variables, store values in them, and use them later.
2182Here is a sample session with the multi-function calculator:
2183
2184@example
9edcd895
AD
2185$ @kbd{mfcalc}
2186@kbd{pi = 3.141592653589}
bfa74976 21873.1415926536
9edcd895 2188@kbd{sin(pi)}
bfa74976 21890.0000000000
9edcd895 2190@kbd{alpha = beta1 = 2.3}
bfa74976 21912.3000000000
9edcd895 2192@kbd{alpha}
bfa74976 21932.3000000000
9edcd895 2194@kbd{ln(alpha)}
bfa74976 21950.8329091229
9edcd895 2196@kbd{exp(ln(beta1))}
bfa74976 21972.3000000000
9edcd895 2198$
bfa74976
RS
2199@end example
2200
2201Note that multiple assignment and nested function calls are permitted.
2202
2203@menu
2204* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2205* Rules: Mfcalc Rules. Grammar rules for the calculator.
2206* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2207@end menu
2208
342b8b6e 2209@node Mfcalc Decl
bfa74976
RS
2210@subsection Declarations for @code{mfcalc}
2211
2212Here are the C and Bison declarations for the multi-function calculator.
2213
2214@smallexample
18b519c0 2215@group
bfa74976 2216%@{
38a92d50
PE
2217 #include <math.h> /* For math functions, cos(), sin(), etc. */
2218 #include "calc.h" /* Contains definition of `symrec'. */
2219 int yylex (void);
2220 void yyerror (char const *);
bfa74976 2221%@}
18b519c0
AD
2222@end group
2223@group
bfa74976 2224%union @{
38a92d50
PE
2225 double val; /* For returning numbers. */
2226 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2227@}
18b519c0 2228@end group
38a92d50
PE
2229%token <val> NUM /* Simple double precision number. */
2230%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2231%type <val> exp
2232
18b519c0 2233@group
bfa74976
RS
2234%right '='
2235%left '-' '+'
2236%left '*' '/'
38a92d50
PE
2237%left NEG /* negation--unary minus */
2238%right '^' /* exponentiation */
18b519c0 2239@end group
38a92d50 2240%% /* The grammar follows. */
bfa74976
RS
2241@end smallexample
2242
2243The above grammar introduces only two new features of the Bison language.
2244These features allow semantic values to have various data types
2245(@pxref{Multiple Types, ,More Than One Value Type}).
2246
2247The @code{%union} declaration specifies the entire list of possible types;
2248this is instead of defining @code{YYSTYPE}. The allowable types are now
2249double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2250the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2251
2252Since values can now have various types, it is necessary to associate a
2253type with each grammar symbol whose semantic value is used. These symbols
2254are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2255declarations are augmented with information about their data type (placed
2256between angle brackets).
2257
704a47c4
AD
2258The Bison construct @code{%type} is used for declaring nonterminal
2259symbols, just as @code{%token} is used for declaring token types. We
2260have not used @code{%type} before because nonterminal symbols are
2261normally declared implicitly by the rules that define them. But
2262@code{exp} must be declared explicitly so we can specify its value type.
2263@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2264
342b8b6e 2265@node Mfcalc Rules
bfa74976
RS
2266@subsection Grammar Rules for @code{mfcalc}
2267
2268Here are the grammar rules for the multi-function calculator.
2269Most of them are copied directly from @code{calc}; three rules,
2270those which mention @code{VAR} or @code{FNCT}, are new.
2271
2272@smallexample
18b519c0 2273@group
bfa74976
RS
2274input: /* empty */
2275 | input line
2276;
18b519c0 2277@end group
bfa74976 2278
18b519c0 2279@group
bfa74976
RS
2280line:
2281 '\n'
2282 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2283 | error '\n' @{ yyerrok; @}
2284;
18b519c0 2285@end group
bfa74976 2286
18b519c0 2287@group
bfa74976
RS
2288exp: NUM @{ $$ = $1; @}
2289 | VAR @{ $$ = $1->value.var; @}
2290 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2291 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2292 | exp '+' exp @{ $$ = $1 + $3; @}
2293 | exp '-' exp @{ $$ = $1 - $3; @}
2294 | exp '*' exp @{ $$ = $1 * $3; @}
2295 | exp '/' exp @{ $$ = $1 / $3; @}
2296 | '-' exp %prec NEG @{ $$ = -$2; @}
2297 | exp '^' exp @{ $$ = pow ($1, $3); @}
2298 | '(' exp ')' @{ $$ = $2; @}
2299;
18b519c0 2300@end group
38a92d50 2301/* End of grammar. */
bfa74976
RS
2302%%
2303@end smallexample
2304
342b8b6e 2305@node Mfcalc Symtab
bfa74976
RS
2306@subsection The @code{mfcalc} Symbol Table
2307@cindex symbol table example
2308
2309The multi-function calculator requires a symbol table to keep track of the
2310names and meanings of variables and functions. This doesn't affect the
2311grammar rules (except for the actions) or the Bison declarations, but it
2312requires some additional C functions for support.
2313
2314The symbol table itself consists of a linked list of records. Its
2315definition, which is kept in the header @file{calc.h}, is as follows. It
2316provides for either functions or variables to be placed in the table.
2317
2318@smallexample
2319@group
38a92d50 2320/* Function type. */
32dfccf8 2321typedef double (*func_t) (double);
72f889cc 2322@end group
32dfccf8 2323
72f889cc 2324@group
38a92d50 2325/* Data type for links in the chain of symbols. */
bfa74976
RS
2326struct symrec
2327@{
38a92d50 2328 char *name; /* name of symbol */
bfa74976 2329 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2330 union
2331 @{
38a92d50
PE
2332 double var; /* value of a VAR */
2333 func_t fnctptr; /* value of a FNCT */
bfa74976 2334 @} value;
38a92d50 2335 struct symrec *next; /* link field */
bfa74976
RS
2336@};
2337@end group
2338
2339@group
2340typedef struct symrec symrec;
2341
38a92d50 2342/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2343extern symrec *sym_table;
2344
a730d142 2345symrec *putsym (char const *, int);
38a92d50 2346symrec *getsym (char const *);
bfa74976
RS
2347@end group
2348@end smallexample
2349
2350The new version of @code{main} includes a call to @code{init_table}, a
2351function that initializes the symbol table. Here it is, and
2352@code{init_table} as well:
2353
2354@smallexample
bfa74976
RS
2355#include <stdio.h>
2356
18b519c0 2357@group
38a92d50 2358/* Called by yyparse on error. */
13863333 2359void
38a92d50 2360yyerror (char const *s)
bfa74976
RS
2361@{
2362 printf ("%s\n", s);
2363@}
18b519c0 2364@end group
bfa74976 2365
18b519c0 2366@group
bfa74976
RS
2367struct init
2368@{
38a92d50
PE
2369 char const *fname;
2370 double (*fnct) (double);
bfa74976
RS
2371@};
2372@end group
2373
2374@group
38a92d50 2375struct init const arith_fncts[] =
13863333 2376@{
32dfccf8
AD
2377 "sin", sin,
2378 "cos", cos,
13863333 2379 "atan", atan,
32dfccf8
AD
2380 "ln", log,
2381 "exp", exp,
13863333
AD
2382 "sqrt", sqrt,
2383 0, 0
2384@};
18b519c0 2385@end group
bfa74976 2386
18b519c0 2387@group
bfa74976 2388/* The symbol table: a chain of `struct symrec'. */
38a92d50 2389symrec *sym_table;
bfa74976
RS
2390@end group
2391
2392@group
72d2299c 2393/* Put arithmetic functions in table. */
13863333
AD
2394void
2395init_table (void)
bfa74976
RS
2396@{
2397 int i;
2398 symrec *ptr;
2399 for (i = 0; arith_fncts[i].fname != 0; i++)
2400 @{
2401 ptr = putsym (arith_fncts[i].fname, FNCT);
2402 ptr->value.fnctptr = arith_fncts[i].fnct;
2403 @}
2404@}
2405@end group
38a92d50
PE
2406
2407@group
2408int
2409main (void)
2410@{
2411 init_table ();
2412 return yyparse ();
2413@}
2414@end group
bfa74976
RS
2415@end smallexample
2416
2417By simply editing the initialization list and adding the necessary include
2418files, you can add additional functions to the calculator.
2419
2420Two important functions allow look-up and installation of symbols in the
2421symbol table. The function @code{putsym} is passed a name and the type
2422(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2423linked to the front of the list, and a pointer to the object is returned.
2424The function @code{getsym} is passed the name of the symbol to look up. If
2425found, a pointer to that symbol is returned; otherwise zero is returned.
2426
2427@smallexample
2428symrec *
38a92d50 2429putsym (char const *sym_name, int sym_type)
bfa74976
RS
2430@{
2431 symrec *ptr;
2432 ptr = (symrec *) malloc (sizeof (symrec));
2433 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2434 strcpy (ptr->name,sym_name);
2435 ptr->type = sym_type;
72d2299c 2436 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2437 ptr->next = (struct symrec *)sym_table;
2438 sym_table = ptr;
2439 return ptr;
2440@}
2441
2442symrec *
38a92d50 2443getsym (char const *sym_name)
bfa74976
RS
2444@{
2445 symrec *ptr;
2446 for (ptr = sym_table; ptr != (symrec *) 0;
2447 ptr = (symrec *)ptr->next)
2448 if (strcmp (ptr->name,sym_name) == 0)
2449 return ptr;
2450 return 0;
2451@}
2452@end smallexample
2453
2454The function @code{yylex} must now recognize variables, numeric values, and
2455the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2456characters with a leading letter are recognized as either variables or
bfa74976
RS
2457functions depending on what the symbol table says about them.
2458
2459The string is passed to @code{getsym} for look up in the symbol table. If
2460the name appears in the table, a pointer to its location and its type
2461(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2462already in the table, then it is installed as a @code{VAR} using
2463@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2464returned to @code{yyparse}.
bfa74976
RS
2465
2466No change is needed in the handling of numeric values and arithmetic
2467operators in @code{yylex}.
2468
2469@smallexample
2470@group
2471#include <ctype.h>
18b519c0 2472@end group
13863333 2473
18b519c0 2474@group
13863333
AD
2475int
2476yylex (void)
bfa74976
RS
2477@{
2478 int c;
2479
72d2299c 2480 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2481 while ((c = getchar ()) == ' ' || c == '\t');
2482
2483 if (c == EOF)
2484 return 0;
2485@end group
2486
2487@group
2488 /* Char starts a number => parse the number. */
2489 if (c == '.' || isdigit (c))
2490 @{
2491 ungetc (c, stdin);
2492 scanf ("%lf", &yylval.val);
2493 return NUM;
2494 @}
2495@end group
2496
2497@group
2498 /* Char starts an identifier => read the name. */
2499 if (isalpha (c))
2500 @{
2501 symrec *s;
2502 static char *symbuf = 0;
2503 static int length = 0;
2504 int i;
2505@end group
2506
2507@group
2508 /* Initially make the buffer long enough
2509 for a 40-character symbol name. */
2510 if (length == 0)
2511 length = 40, symbuf = (char *)malloc (length + 1);
2512
2513 i = 0;
2514 do
2515@end group
2516@group
2517 @{
2518 /* If buffer is full, make it bigger. */
2519 if (i == length)
2520 @{
2521 length *= 2;
18b519c0 2522 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2523 @}
2524 /* Add this character to the buffer. */
2525 symbuf[i++] = c;
2526 /* Get another character. */
2527 c = getchar ();
2528 @}
2529@end group
2530@group
72d2299c 2531 while (isalnum (c));
bfa74976
RS
2532
2533 ungetc (c, stdin);
2534 symbuf[i] = '\0';
2535@end group
2536
2537@group
2538 s = getsym (symbuf);
2539 if (s == 0)
2540 s = putsym (symbuf, VAR);
2541 yylval.tptr = s;
2542 return s->type;
2543 @}
2544
2545 /* Any other character is a token by itself. */
2546 return c;
2547@}
2548@end group
2549@end smallexample
2550
72d2299c 2551This program is both powerful and flexible. You may easily add new
704a47c4
AD
2552functions, and it is a simple job to modify this code to install
2553predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2554
342b8b6e 2555@node Exercises
bfa74976
RS
2556@section Exercises
2557@cindex exercises
2558
2559@enumerate
2560@item
2561Add some new functions from @file{math.h} to the initialization list.
2562
2563@item
2564Add another array that contains constants and their values. Then
2565modify @code{init_table} to add these constants to the symbol table.
2566It will be easiest to give the constants type @code{VAR}.
2567
2568@item
2569Make the program report an error if the user refers to an
2570uninitialized variable in any way except to store a value in it.
2571@end enumerate
2572
342b8b6e 2573@node Grammar File
bfa74976
RS
2574@chapter Bison Grammar Files
2575
2576Bison takes as input a context-free grammar specification and produces a
2577C-language function that recognizes correct instances of the grammar.
2578
2579The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2580@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2581
2582@menu
2583* Grammar Outline:: Overall layout of the grammar file.
2584* Symbols:: Terminal and nonterminal symbols.
2585* Rules:: How to write grammar rules.
2586* Recursion:: Writing recursive rules.
2587* Semantics:: Semantic values and actions.
847bf1f5 2588* Locations:: Locations and actions.
bfa74976
RS
2589* Declarations:: All kinds of Bison declarations are described here.
2590* Multiple Parsers:: Putting more than one Bison parser in one program.
2591@end menu
2592
342b8b6e 2593@node Grammar Outline
bfa74976
RS
2594@section Outline of a Bison Grammar
2595
2596A Bison grammar file has four main sections, shown here with the
2597appropriate delimiters:
2598
2599@example
2600%@{
38a92d50 2601 @var{Prologue}
bfa74976
RS
2602%@}
2603
2604@var{Bison declarations}
2605
2606%%
2607@var{Grammar rules}
2608%%
2609
75f5aaea 2610@var{Epilogue}
bfa74976
RS
2611@end example
2612
2613Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2614As a @acronym{GNU} extension, @samp{//} introduces a comment that
2615continues until end of line.
bfa74976
RS
2616
2617@menu
75f5aaea 2618* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2619* Bison Declarations:: Syntax and usage of the Bison declarations section.
2620* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2621* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2622@end menu
2623
38a92d50 2624@node Prologue
75f5aaea
MA
2625@subsection The prologue
2626@cindex declarations section
2627@cindex Prologue
2628@cindex declarations
bfa74976 2629
f8e1c9e5
AD
2630The @var{Prologue} section contains macro definitions and declarations
2631of functions and variables that are used in the actions in the grammar
2632rules. These are copied to the beginning of the parser file so that
2633they precede the definition of @code{yyparse}. You can use
2634@samp{#include} to get the declarations from a header file. If you
2635don't need any C declarations, you may omit the @samp{%@{} and
2636@samp{%@}} delimiters that bracket this section.
bfa74976 2637
9c437126 2638The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2639of @samp{%@}} that is outside a comment, a string literal, or a
2640character constant.
2641
c732d2c6
AD
2642You may have more than one @var{Prologue} section, intermixed with the
2643@var{Bison declarations}. This allows you to have C and Bison
2644declarations that refer to each other. For example, the @code{%union}
2645declaration may use types defined in a header file, and you may wish to
2646prototype functions that take arguments of type @code{YYSTYPE}. This
2647can be done with two @var{Prologue} blocks, one before and one after the
2648@code{%union} declaration.
2649
2650@smallexample
2651%@{
aef3da86 2652 #define _GNU_SOURCE
38a92d50
PE
2653 #include <stdio.h>
2654 #include "ptypes.h"
c732d2c6
AD
2655%@}
2656
2657%union @{
779e7ceb 2658 long int n;
c732d2c6
AD
2659 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2660@}
2661
2662%@{
38a92d50
PE
2663 static void print_token_value (FILE *, int, YYSTYPE);
2664 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2665%@}
2666
2667@dots{}
2668@end smallexample
2669
aef3da86
PE
2670When in doubt, it is usually safer to put prologue code before all
2671Bison declarations, rather than after. For example, any definitions
2672of feature test macros like @code{_GNU_SOURCE} or
2673@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2674feature test macros can affect the behavior of Bison-generated
2675@code{#include} directives.
2676
136a0f76
PB
2677@findex %requires
2678@findex %code
9bc0dd67
JD
2679If you've instructed Bison to generate a header file (@pxref{Table of Symbols,
2680,%defines}), you probably want @code{#include "ptypes.h"} to appear
2681in that header file as well.
136a0f76
PB
2682In that case, use @code{%requires}, @code{%provides}, and
2683@code{%code} instead of @var{Prologue} sections
2684(@pxref{Table of Symbols, ,%requires}):
9bc0dd67
JD
2685
2686@smallexample
136a0f76 2687%requires @{
9bc0dd67
JD
2688 #include "ptypes.h"
2689@}
2690%union @{
2691 long int n;
2692 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2693@}
2694
136a0f76
PB
2695%code @{
2696 #include <stdio.h>
2697
9bc0dd67
JD
2698 static void print_token_value (FILE *, int, YYSTYPE);
2699 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2700@}
9bc0dd67
JD
2701
2702@dots{}
2703@end smallexample
2704
342b8b6e 2705@node Bison Declarations
bfa74976
RS
2706@subsection The Bison Declarations Section
2707@cindex Bison declarations (introduction)
2708@cindex declarations, Bison (introduction)
2709
2710The @var{Bison declarations} section contains declarations that define
2711terminal and nonterminal symbols, specify precedence, and so on.
2712In some simple grammars you may not need any declarations.
2713@xref{Declarations, ,Bison Declarations}.
2714
342b8b6e 2715@node Grammar Rules
bfa74976
RS
2716@subsection The Grammar Rules Section
2717@cindex grammar rules section
2718@cindex rules section for grammar
2719
2720The @dfn{grammar rules} section contains one or more Bison grammar
2721rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2722
2723There must always be at least one grammar rule, and the first
2724@samp{%%} (which precedes the grammar rules) may never be omitted even
2725if it is the first thing in the file.
2726
38a92d50 2727@node Epilogue
75f5aaea 2728@subsection The epilogue
bfa74976 2729@cindex additional C code section
75f5aaea 2730@cindex epilogue
bfa74976
RS
2731@cindex C code, section for additional
2732
08e49d20
PE
2733The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2734the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2735place to put anything that you want to have in the parser file but which need
2736not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2737definitions of @code{yylex} and @code{yyerror} often go here. Because
2738C requires functions to be declared before being used, you often need
2739to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2740even if you define them in the Epilogue.
75f5aaea 2741@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2742
2743If the last section is empty, you may omit the @samp{%%} that separates it
2744from the grammar rules.
2745
f8e1c9e5
AD
2746The Bison parser itself contains many macros and identifiers whose names
2747start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2748any such names (except those documented in this manual) in the epilogue
2749of the grammar file.
bfa74976 2750
342b8b6e 2751@node Symbols
bfa74976
RS
2752@section Symbols, Terminal and Nonterminal
2753@cindex nonterminal symbol
2754@cindex terminal symbol
2755@cindex token type
2756@cindex symbol
2757
2758@dfn{Symbols} in Bison grammars represent the grammatical classifications
2759of the language.
2760
2761A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2762class of syntactically equivalent tokens. You use the symbol in grammar
2763rules to mean that a token in that class is allowed. The symbol is
2764represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2765function returns a token type code to indicate what kind of token has
2766been read. You don't need to know what the code value is; you can use
2767the symbol to stand for it.
bfa74976 2768
f8e1c9e5
AD
2769A @dfn{nonterminal symbol} stands for a class of syntactically
2770equivalent groupings. The symbol name is used in writing grammar rules.
2771By convention, it should be all lower case.
bfa74976
RS
2772
2773Symbol names can contain letters, digits (not at the beginning),
2774underscores and periods. Periods make sense only in nonterminals.
2775
931c7513 2776There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2777
2778@itemize @bullet
2779@item
2780A @dfn{named token type} is written with an identifier, like an
c827f760 2781identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2782such name must be defined with a Bison declaration such as
2783@code{%token}. @xref{Token Decl, ,Token Type Names}.
2784
2785@item
2786@cindex character token
2787@cindex literal token
2788@cindex single-character literal
931c7513
RS
2789A @dfn{character token type} (or @dfn{literal character token}) is
2790written in the grammar using the same syntax used in C for character
2791constants; for example, @code{'+'} is a character token type. A
2792character token type doesn't need to be declared unless you need to
2793specify its semantic value data type (@pxref{Value Type, ,Data Types of
2794Semantic Values}), associativity, or precedence (@pxref{Precedence,
2795,Operator Precedence}).
bfa74976
RS
2796
2797By convention, a character token type is used only to represent a
2798token that consists of that particular character. Thus, the token
2799type @code{'+'} is used to represent the character @samp{+} as a
2800token. Nothing enforces this convention, but if you depart from it,
2801your program will confuse other readers.
2802
2803All the usual escape sequences used in character literals in C can be
2804used in Bison as well, but you must not use the null character as a
72d2299c
PE
2805character literal because its numeric code, zero, signifies
2806end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2807for @code{yylex}}). Also, unlike standard C, trigraphs have no
2808special meaning in Bison character literals, nor is backslash-newline
2809allowed.
931c7513
RS
2810
2811@item
2812@cindex string token
2813@cindex literal string token
9ecbd125 2814@cindex multicharacter literal
931c7513
RS
2815A @dfn{literal string token} is written like a C string constant; for
2816example, @code{"<="} is a literal string token. A literal string token
2817doesn't need to be declared unless you need to specify its semantic
14ded682 2818value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2819(@pxref{Precedence}).
2820
2821You can associate the literal string token with a symbolic name as an
2822alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2823Declarations}). If you don't do that, the lexical analyzer has to
2824retrieve the token number for the literal string token from the
2825@code{yytname} table (@pxref{Calling Convention}).
2826
c827f760 2827@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2828
2829By convention, a literal string token is used only to represent a token
2830that consists of that particular string. Thus, you should use the token
2831type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2832does not enforce this convention, but if you depart from it, people who
931c7513
RS
2833read your program will be confused.
2834
2835All the escape sequences used in string literals in C can be used in
92ac3705
PE
2836Bison as well, except that you must not use a null character within a
2837string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2838meaning in Bison string literals, nor is backslash-newline allowed. A
2839literal string token must contain two or more characters; for a token
2840containing just one character, use a character token (see above).
bfa74976
RS
2841@end itemize
2842
2843How you choose to write a terminal symbol has no effect on its
2844grammatical meaning. That depends only on where it appears in rules and
2845on when the parser function returns that symbol.
2846
72d2299c
PE
2847The value returned by @code{yylex} is always one of the terminal
2848symbols, except that a zero or negative value signifies end-of-input.
2849Whichever way you write the token type in the grammar rules, you write
2850it the same way in the definition of @code{yylex}. The numeric code
2851for a character token type is simply the positive numeric code of the
2852character, so @code{yylex} can use the identical value to generate the
2853requisite code, though you may need to convert it to @code{unsigned
2854char} to avoid sign-extension on hosts where @code{char} is signed.
2855Each named token type becomes a C macro in
bfa74976 2856the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2857(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2858@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2859
2860If @code{yylex} is defined in a separate file, you need to arrange for the
2861token-type macro definitions to be available there. Use the @samp{-d}
2862option when you run Bison, so that it will write these macro definitions
2863into a separate header file @file{@var{name}.tab.h} which you can include
2864in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2865
72d2299c 2866If you want to write a grammar that is portable to any Standard C
9d9b8b70 2867host, you must use only nonnull character tokens taken from the basic
c827f760 2868execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2869digits, the 52 lower- and upper-case English letters, and the
2870characters in the following C-language string:
2871
2872@example
2873"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2874@end example
2875
f8e1c9e5
AD
2876The @code{yylex} function and Bison must use a consistent character set
2877and encoding for character tokens. For example, if you run Bison in an
2878@acronym{ASCII} environment, but then compile and run the resulting
2879program in an environment that uses an incompatible character set like
2880@acronym{EBCDIC}, the resulting program may not work because the tables
2881generated by Bison will assume @acronym{ASCII} numeric values for
2882character tokens. It is standard practice for software distributions to
2883contain C source files that were generated by Bison in an
2884@acronym{ASCII} environment, so installers on platforms that are
2885incompatible with @acronym{ASCII} must rebuild those files before
2886compiling them.
e966383b 2887
bfa74976
RS
2888The symbol @code{error} is a terminal symbol reserved for error recovery
2889(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2890In particular, @code{yylex} should never return this value. The default
2891value of the error token is 256, unless you explicitly assigned 256 to
2892one of your tokens with a @code{%token} declaration.
bfa74976 2893
342b8b6e 2894@node Rules
bfa74976
RS
2895@section Syntax of Grammar Rules
2896@cindex rule syntax
2897@cindex grammar rule syntax
2898@cindex syntax of grammar rules
2899
2900A Bison grammar rule has the following general form:
2901
2902@example
e425e872 2903@group
bfa74976
RS
2904@var{result}: @var{components}@dots{}
2905 ;
e425e872 2906@end group
bfa74976
RS
2907@end example
2908
2909@noindent
9ecbd125 2910where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2911and @var{components} are various terminal and nonterminal symbols that
13863333 2912are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2913
2914For example,
2915
2916@example
2917@group
2918exp: exp '+' exp
2919 ;
2920@end group
2921@end example
2922
2923@noindent
2924says that two groupings of type @code{exp}, with a @samp{+} token in between,
2925can be combined into a larger grouping of type @code{exp}.
2926
72d2299c
PE
2927White space in rules is significant only to separate symbols. You can add
2928extra white space as you wish.
bfa74976
RS
2929
2930Scattered among the components can be @var{actions} that determine
2931the semantics of the rule. An action looks like this:
2932
2933@example
2934@{@var{C statements}@}
2935@end example
2936
2937@noindent
287c78f6
PE
2938@cindex braced code
2939This is an example of @dfn{braced code}, that is, C code surrounded by
2940braces, much like a compound statement in C@. Braced code can contain
2941any sequence of C tokens, so long as its braces are balanced. Bison
2942does not check the braced code for correctness directly; it merely
2943copies the code to the output file, where the C compiler can check it.
2944
2945Within braced code, the balanced-brace count is not affected by braces
2946within comments, string literals, or character constants, but it is
2947affected by the C digraphs @samp{<%} and @samp{%>} that represent
2948braces. At the top level braced code must be terminated by @samp{@}}
2949and not by a digraph. Bison does not look for trigraphs, so if braced
2950code uses trigraphs you should ensure that they do not affect the
2951nesting of braces or the boundaries of comments, string literals, or
2952character constants.
2953
bfa74976
RS
2954Usually there is only one action and it follows the components.
2955@xref{Actions}.
2956
2957@findex |
2958Multiple rules for the same @var{result} can be written separately or can
2959be joined with the vertical-bar character @samp{|} as follows:
2960
bfa74976
RS
2961@example
2962@group
2963@var{result}: @var{rule1-components}@dots{}
2964 | @var{rule2-components}@dots{}
2965 @dots{}
2966 ;
2967@end group
2968@end example
bfa74976
RS
2969
2970@noindent
2971They are still considered distinct rules even when joined in this way.
2972
2973If @var{components} in a rule is empty, it means that @var{result} can
2974match the empty string. For example, here is how to define a
2975comma-separated sequence of zero or more @code{exp} groupings:
2976
2977@example
2978@group
2979expseq: /* empty */
2980 | expseq1
2981 ;
2982@end group
2983
2984@group
2985expseq1: exp
2986 | expseq1 ',' exp
2987 ;
2988@end group
2989@end example
2990
2991@noindent
2992It is customary to write a comment @samp{/* empty */} in each rule
2993with no components.
2994
342b8b6e 2995@node Recursion
bfa74976
RS
2996@section Recursive Rules
2997@cindex recursive rule
2998
f8e1c9e5
AD
2999A rule is called @dfn{recursive} when its @var{result} nonterminal
3000appears also on its right hand side. Nearly all Bison grammars need to
3001use recursion, because that is the only way to define a sequence of any
3002number of a particular thing. Consider this recursive definition of a
9ecbd125 3003comma-separated sequence of one or more expressions:
bfa74976
RS
3004
3005@example
3006@group
3007expseq1: exp
3008 | expseq1 ',' exp
3009 ;
3010@end group
3011@end example
3012
3013@cindex left recursion
3014@cindex right recursion
3015@noindent
3016Since the recursive use of @code{expseq1} is the leftmost symbol in the
3017right hand side, we call this @dfn{left recursion}. By contrast, here
3018the same construct is defined using @dfn{right recursion}:
3019
3020@example
3021@group
3022expseq1: exp
3023 | exp ',' expseq1
3024 ;
3025@end group
3026@end example
3027
3028@noindent
ec3bc396
AD
3029Any kind of sequence can be defined using either left recursion or right
3030recursion, but you should always use left recursion, because it can
3031parse a sequence of any number of elements with bounded stack space.
3032Right recursion uses up space on the Bison stack in proportion to the
3033number of elements in the sequence, because all the elements must be
3034shifted onto the stack before the rule can be applied even once.
3035@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3036of this.
bfa74976
RS
3037
3038@cindex mutual recursion
3039@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3040rule does not appear directly on its right hand side, but does appear
3041in rules for other nonterminals which do appear on its right hand
13863333 3042side.
bfa74976
RS
3043
3044For example:
3045
3046@example
3047@group
3048expr: primary
3049 | primary '+' primary
3050 ;
3051@end group
3052
3053@group
3054primary: constant
3055 | '(' expr ')'
3056 ;
3057@end group
3058@end example
3059
3060@noindent
3061defines two mutually-recursive nonterminals, since each refers to the
3062other.
3063
342b8b6e 3064@node Semantics
bfa74976
RS
3065@section Defining Language Semantics
3066@cindex defining language semantics
13863333 3067@cindex language semantics, defining
bfa74976
RS
3068
3069The grammar rules for a language determine only the syntax. The semantics
3070are determined by the semantic values associated with various tokens and
3071groupings, and by the actions taken when various groupings are recognized.
3072
3073For example, the calculator calculates properly because the value
3074associated with each expression is the proper number; it adds properly
3075because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3076the numbers associated with @var{x} and @var{y}.
3077
3078@menu
3079* Value Type:: Specifying one data type for all semantic values.
3080* Multiple Types:: Specifying several alternative data types.
3081* Actions:: An action is the semantic definition of a grammar rule.
3082* Action Types:: Specifying data types for actions to operate on.
3083* Mid-Rule Actions:: Most actions go at the end of a rule.
3084 This says when, why and how to use the exceptional
3085 action in the middle of a rule.
3086@end menu
3087
342b8b6e 3088@node Value Type
bfa74976
RS
3089@subsection Data Types of Semantic Values
3090@cindex semantic value type
3091@cindex value type, semantic
3092@cindex data types of semantic values
3093@cindex default data type
3094
3095In a simple program it may be sufficient to use the same data type for
3096the semantic values of all language constructs. This was true in the
c827f760 3097@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3098Notation Calculator}).
bfa74976 3099
ddc8ede1
PE
3100Bison normally uses the type @code{int} for semantic values if your
3101program uses the same data type for all language constructs. To
bfa74976
RS
3102specify some other type, define @code{YYSTYPE} as a macro, like this:
3103
3104@example
3105#define YYSTYPE double
3106@end example
3107
3108@noindent
50cce58e
PE
3109@code{YYSTYPE}'s replacement list should be a type name
3110that does not contain parentheses or square brackets.
342b8b6e 3111This macro definition must go in the prologue of the grammar file
75f5aaea 3112(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3113
342b8b6e 3114@node Multiple Types
bfa74976
RS
3115@subsection More Than One Value Type
3116
3117In most programs, you will need different data types for different kinds
3118of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3119@code{int} or @code{long int}, while a string constant needs type
3120@code{char *}, and an identifier might need a pointer to an entry in the
3121symbol table.
bfa74976
RS
3122
3123To use more than one data type for semantic values in one parser, Bison
3124requires you to do two things:
3125
3126@itemize @bullet
3127@item
ddc8ede1 3128Specify the entire collection of possible data types, either by using the
704a47c4 3129@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3130Value Types}), or by using a @code{typedef} or a @code{#define} to
3131define @code{YYSTYPE} to be a union type whose member names are
3132the type tags.
bfa74976
RS
3133
3134@item
14ded682
AD
3135Choose one of those types for each symbol (terminal or nonterminal) for
3136which semantic values are used. This is done for tokens with the
3137@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3138and for groupings with the @code{%type} Bison declaration (@pxref{Type
3139Decl, ,Nonterminal Symbols}).
bfa74976
RS
3140@end itemize
3141
342b8b6e 3142@node Actions
bfa74976
RS
3143@subsection Actions
3144@cindex action
3145@vindex $$
3146@vindex $@var{n}
3147
3148An action accompanies a syntactic rule and contains C code to be executed
3149each time an instance of that rule is recognized. The task of most actions
3150is to compute a semantic value for the grouping built by the rule from the
3151semantic values associated with tokens or smaller groupings.
3152
287c78f6
PE
3153An action consists of braced code containing C statements, and can be
3154placed at any position in the rule;
704a47c4
AD
3155it is executed at that position. Most rules have just one action at the
3156end of the rule, following all the components. Actions in the middle of
3157a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3158Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3159
3160The C code in an action can refer to the semantic values of the components
3161matched by the rule with the construct @code{$@var{n}}, which stands for
3162the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3163being constructed is @code{$$}. Bison translates both of these
3164constructs into expressions of the appropriate type when it copies the
3165actions into the parser file. @code{$$} is translated to a modifiable
3166lvalue, so it can be assigned to.
bfa74976
RS
3167
3168Here is a typical example:
3169
3170@example
3171@group
3172exp: @dots{}
3173 | exp '+' exp
3174 @{ $$ = $1 + $3; @}
3175@end group
3176@end example
3177
3178@noindent
3179This rule constructs an @code{exp} from two smaller @code{exp} groupings
3180connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3181refer to the semantic values of the two component @code{exp} groupings,
3182which are the first and third symbols on the right hand side of the rule.
3183The sum is stored into @code{$$} so that it becomes the semantic value of
3184the addition-expression just recognized by the rule. If there were a
3185useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3186referred to as @code{$2}.
bfa74976 3187
3ded9a63
AD
3188Note that the vertical-bar character @samp{|} is really a rule
3189separator, and actions are attached to a single rule. This is a
3190difference with tools like Flex, for which @samp{|} stands for either
3191``or'', or ``the same action as that of the next rule''. In the
3192following example, the action is triggered only when @samp{b} is found:
3193
3194@example
3195@group
3196a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3197@end group
3198@end example
3199
bfa74976
RS
3200@cindex default action
3201If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3202@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3203becomes the value of the whole rule. Of course, the default action is
3204valid only if the two data types match. There is no meaningful default
3205action for an empty rule; every empty rule must have an explicit action
3206unless the rule's value does not matter.
bfa74976
RS
3207
3208@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3209to tokens and groupings on the stack @emph{before} those that match the
3210current rule. This is a very risky practice, and to use it reliably
3211you must be certain of the context in which the rule is applied. Here
3212is a case in which you can use this reliably:
3213
3214@example
3215@group
3216foo: expr bar '+' expr @{ @dots{} @}
3217 | expr bar '-' expr @{ @dots{} @}
3218 ;
3219@end group
3220
3221@group
3222bar: /* empty */
3223 @{ previous_expr = $0; @}
3224 ;
3225@end group
3226@end example
3227
3228As long as @code{bar} is used only in the fashion shown here, @code{$0}
3229always refers to the @code{expr} which precedes @code{bar} in the
3230definition of @code{foo}.
3231
32c29292 3232@vindex yylval
742e4900 3233It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3234any, from a semantic action.
3235This semantic value is stored in @code{yylval}.
3236@xref{Action Features, ,Special Features for Use in Actions}.
3237
342b8b6e 3238@node Action Types
bfa74976
RS
3239@subsection Data Types of Values in Actions
3240@cindex action data types
3241@cindex data types in actions
3242
3243If you have chosen a single data type for semantic values, the @code{$$}
3244and @code{$@var{n}} constructs always have that data type.
3245
3246If you have used @code{%union} to specify a variety of data types, then you
3247must declare a choice among these types for each terminal or nonterminal
3248symbol that can have a semantic value. Then each time you use @code{$$} or
3249@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3250in the rule. In this example,
bfa74976
RS
3251
3252@example
3253@group
3254exp: @dots{}
3255 | exp '+' exp
3256 @{ $$ = $1 + $3; @}
3257@end group
3258@end example
3259
3260@noindent
3261@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3262have the data type declared for the nonterminal symbol @code{exp}. If
3263@code{$2} were used, it would have the data type declared for the
e0c471a9 3264terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3265
3266Alternatively, you can specify the data type when you refer to the value,
3267by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3268reference. For example, if you have defined types as shown here:
3269
3270@example
3271@group
3272%union @{
3273 int itype;
3274 double dtype;
3275@}
3276@end group
3277@end example
3278
3279@noindent
3280then you can write @code{$<itype>1} to refer to the first subunit of the
3281rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3282
342b8b6e 3283@node Mid-Rule Actions
bfa74976
RS
3284@subsection Actions in Mid-Rule
3285@cindex actions in mid-rule
3286@cindex mid-rule actions
3287
3288Occasionally it is useful to put an action in the middle of a rule.
3289These actions are written just like usual end-of-rule actions, but they
3290are executed before the parser even recognizes the following components.
3291
3292A mid-rule action may refer to the components preceding it using
3293@code{$@var{n}}, but it may not refer to subsequent components because
3294it is run before they are parsed.
3295
3296The mid-rule action itself counts as one of the components of the rule.
3297This makes a difference when there is another action later in the same rule
3298(and usually there is another at the end): you have to count the actions
3299along with the symbols when working out which number @var{n} to use in
3300@code{$@var{n}}.
3301
3302The mid-rule action can also have a semantic value. The action can set
3303its value with an assignment to @code{$$}, and actions later in the rule
3304can refer to the value using @code{$@var{n}}. Since there is no symbol
3305to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3306in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3307specify a data type each time you refer to this value.
bfa74976
RS
3308
3309There is no way to set the value of the entire rule with a mid-rule
3310action, because assignments to @code{$$} do not have that effect. The
3311only way to set the value for the entire rule is with an ordinary action
3312at the end of the rule.
3313
3314Here is an example from a hypothetical compiler, handling a @code{let}
3315statement that looks like @samp{let (@var{variable}) @var{statement}} and
3316serves to create a variable named @var{variable} temporarily for the
3317duration of @var{statement}. To parse this construct, we must put
3318@var{variable} into the symbol table while @var{statement} is parsed, then
3319remove it afterward. Here is how it is done:
3320
3321@example
3322@group
3323stmt: LET '(' var ')'
3324 @{ $<context>$ = push_context ();
3325 declare_variable ($3); @}
3326 stmt @{ $$ = $6;
3327 pop_context ($<context>5); @}
3328@end group
3329@end example
3330
3331@noindent
3332As soon as @samp{let (@var{variable})} has been recognized, the first
3333action is run. It saves a copy of the current semantic context (the
3334list of accessible variables) as its semantic value, using alternative
3335@code{context} in the data-type union. Then it calls
3336@code{declare_variable} to add the new variable to that list. Once the
3337first action is finished, the embedded statement @code{stmt} can be
3338parsed. Note that the mid-rule action is component number 5, so the
3339@samp{stmt} is component number 6.
3340
3341After the embedded statement is parsed, its semantic value becomes the
3342value of the entire @code{let}-statement. Then the semantic value from the
3343earlier action is used to restore the prior list of variables. This
3344removes the temporary @code{let}-variable from the list so that it won't
3345appear to exist while the rest of the program is parsed.
3346
841a7737
JD
3347@findex %destructor
3348@cindex discarded symbols, mid-rule actions
3349@cindex error recovery, mid-rule actions
3350In the above example, if the parser initiates error recovery (@pxref{Error
3351Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3352it might discard the previous semantic context @code{$<context>5} without
3353restoring it.
3354Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3355Discarded Symbols}).
ec5479ce
JD
3356However, Bison currently provides no means to declare a destructor specific to
3357a particular mid-rule action's semantic value.
841a7737
JD
3358
3359One solution is to bury the mid-rule action inside a nonterminal symbol and to
3360declare a destructor for that symbol:
3361
3362@example
3363@group
3364%type <context> let
3365%destructor @{ pop_context ($$); @} let
3366
3367%%
3368
3369stmt: let stmt
3370 @{ $$ = $2;
3371 pop_context ($1); @}
3372 ;
3373
3374let: LET '(' var ')'
3375 @{ $$ = push_context ();
3376 declare_variable ($3); @}
3377 ;
3378
3379@end group
3380@end example
3381
3382@noindent
3383Note that the action is now at the end of its rule.
3384Any mid-rule action can be converted to an end-of-rule action in this way, and
3385this is what Bison actually does to implement mid-rule actions.
3386
bfa74976
RS
3387Taking action before a rule is completely recognized often leads to
3388conflicts since the parser must commit to a parse in order to execute the
3389action. For example, the following two rules, without mid-rule actions,
3390can coexist in a working parser because the parser can shift the open-brace
3391token and look at what follows before deciding whether there is a
3392declaration or not:
3393
3394@example
3395@group
3396compound: '@{' declarations statements '@}'
3397 | '@{' statements '@}'
3398 ;
3399@end group
3400@end example
3401
3402@noindent
3403But when we add a mid-rule action as follows, the rules become nonfunctional:
3404
3405@example
3406@group
3407compound: @{ prepare_for_local_variables (); @}
3408 '@{' declarations statements '@}'
3409@end group
3410@group
3411 | '@{' statements '@}'
3412 ;
3413@end group
3414@end example
3415
3416@noindent
3417Now the parser is forced to decide whether to run the mid-rule action
3418when it has read no farther than the open-brace. In other words, it
3419must commit to using one rule or the other, without sufficient
3420information to do it correctly. (The open-brace token is what is called
742e4900
JD
3421the @dfn{lookahead} token at this time, since the parser is still
3422deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3423
3424You might think that you could correct the problem by putting identical
3425actions into the two rules, like this:
3426
3427@example
3428@group
3429compound: @{ prepare_for_local_variables (); @}
3430 '@{' declarations statements '@}'
3431 | @{ prepare_for_local_variables (); @}
3432 '@{' statements '@}'
3433 ;
3434@end group
3435@end example
3436
3437@noindent
3438But this does not help, because Bison does not realize that the two actions
3439are identical. (Bison never tries to understand the C code in an action.)
3440
3441If the grammar is such that a declaration can be distinguished from a
3442statement by the first token (which is true in C), then one solution which
3443does work is to put the action after the open-brace, like this:
3444
3445@example
3446@group
3447compound: '@{' @{ prepare_for_local_variables (); @}
3448 declarations statements '@}'
3449 | '@{' statements '@}'
3450 ;
3451@end group
3452@end example
3453
3454@noindent
3455Now the first token of the following declaration or statement,
3456which would in any case tell Bison which rule to use, can still do so.
3457
3458Another solution is to bury the action inside a nonterminal symbol which
3459serves as a subroutine:
3460
3461@example
3462@group
3463subroutine: /* empty */
3464 @{ prepare_for_local_variables (); @}
3465 ;
3466
3467@end group
3468
3469@group
3470compound: subroutine
3471 '@{' declarations statements '@}'
3472 | subroutine
3473 '@{' statements '@}'
3474 ;
3475@end group
3476@end example
3477
3478@noindent
3479Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3480deciding which rule for @code{compound} it will eventually use.
bfa74976 3481
342b8b6e 3482@node Locations
847bf1f5
AD
3483@section Tracking Locations
3484@cindex location
95923bd6
AD
3485@cindex textual location
3486@cindex location, textual
847bf1f5
AD
3487
3488Though grammar rules and semantic actions are enough to write a fully
72d2299c 3489functional parser, it can be useful to process some additional information,
3e259915
MA
3490especially symbol locations.
3491
704a47c4
AD
3492The way locations are handled is defined by providing a data type, and
3493actions to take when rules are matched.
847bf1f5
AD
3494
3495@menu
3496* Location Type:: Specifying a data type for locations.
3497* Actions and Locations:: Using locations in actions.
3498* Location Default Action:: Defining a general way to compute locations.
3499@end menu
3500
342b8b6e 3501@node Location Type
847bf1f5
AD
3502@subsection Data Type of Locations
3503@cindex data type of locations
3504@cindex default location type
3505
3506Defining a data type for locations is much simpler than for semantic values,
3507since all tokens and groupings always use the same type.
3508
50cce58e
PE
3509You can specify the type of locations by defining a macro called
3510@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3511defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3512When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3513four members:
3514
3515@example
6273355b 3516typedef struct YYLTYPE
847bf1f5
AD
3517@{
3518 int first_line;
3519 int first_column;
3520 int last_line;
3521 int last_column;
6273355b 3522@} YYLTYPE;
847bf1f5
AD
3523@end example
3524
cd48d21d
AD
3525At the beginning of the parsing, Bison initializes all these fields to 1
3526for @code{yylloc}.
3527
342b8b6e 3528@node Actions and Locations
847bf1f5
AD
3529@subsection Actions and Locations
3530@cindex location actions
3531@cindex actions, location
3532@vindex @@$
3533@vindex @@@var{n}
3534
3535Actions are not only useful for defining language semantics, but also for
3536describing the behavior of the output parser with locations.
3537
3538The most obvious way for building locations of syntactic groupings is very
72d2299c 3539similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3540constructs can be used to access the locations of the elements being matched.
3541The location of the @var{n}th component of the right hand side is
3542@code{@@@var{n}}, while the location of the left hand side grouping is
3543@code{@@$}.
3544
3e259915 3545Here is a basic example using the default data type for locations:
847bf1f5
AD
3546
3547@example
3548@group
3549exp: @dots{}
3e259915 3550 | exp '/' exp
847bf1f5 3551 @{
3e259915
MA
3552 @@$.first_column = @@1.first_column;
3553 @@$.first_line = @@1.first_line;
847bf1f5
AD
3554 @@$.last_column = @@3.last_column;
3555 @@$.last_line = @@3.last_line;
3e259915
MA
3556 if ($3)
3557 $$ = $1 / $3;
3558 else
3559 @{
3560 $$ = 1;
4e03e201
AD
3561 fprintf (stderr,
3562 "Division by zero, l%d,c%d-l%d,c%d",
3563 @@3.first_line, @@3.first_column,
3564 @@3.last_line, @@3.last_column);
3e259915 3565 @}
847bf1f5
AD
3566 @}
3567@end group
3568@end example
3569
3e259915 3570As for semantic values, there is a default action for locations that is
72d2299c 3571run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3572beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3573last symbol.
3e259915 3574
72d2299c 3575With this default action, the location tracking can be fully automatic. The
3e259915
MA
3576example above simply rewrites this way:
3577
3578@example
3579@group
3580exp: @dots{}
3581 | exp '/' exp
3582 @{
3583 if ($3)
3584 $$ = $1 / $3;
3585 else
3586 @{
3587 $$ = 1;
4e03e201
AD
3588 fprintf (stderr,
3589 "Division by zero, l%d,c%d-l%d,c%d",
3590 @@3.first_line, @@3.first_column,
3591 @@3.last_line, @@3.last_column);
3e259915
MA
3592 @}
3593 @}
3594@end group
3595@end example
847bf1f5 3596
32c29292 3597@vindex yylloc
742e4900 3598It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3599from a semantic action.
3600This location is stored in @code{yylloc}.
3601@xref{Action Features, ,Special Features for Use in Actions}.
3602
342b8b6e 3603@node Location Default Action
847bf1f5
AD
3604@subsection Default Action for Locations
3605@vindex YYLLOC_DEFAULT
8710fc41 3606@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3607
72d2299c 3608Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3609locations are much more general than semantic values, there is room in
3610the output parser to redefine the default action to take for each
72d2299c 3611rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3612matched, before the associated action is run. It is also invoked
3613while processing a syntax error, to compute the error's location.
8710fc41
JD
3614Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3615parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3616of that ambiguity.
847bf1f5 3617
3e259915 3618Most of the time, this macro is general enough to suppress location
79282c6c 3619dedicated code from semantic actions.
847bf1f5 3620
72d2299c 3621The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3622the location of the grouping (the result of the computation). When a
766de5eb 3623rule is matched, the second parameter identifies locations of
96b93a3d 3624all right hand side elements of the rule being matched, and the third
8710fc41
JD
3625parameter is the size of the rule's right hand side.
3626When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3627right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3628When processing a syntax error, the second parameter identifies locations
3629of the symbols that were discarded during error processing, and the third
96b93a3d 3630parameter is the number of discarded symbols.
847bf1f5 3631
766de5eb 3632By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3633
766de5eb 3634@smallexample
847bf1f5 3635@group
766de5eb
PE
3636# define YYLLOC_DEFAULT(Current, Rhs, N) \
3637 do \
3638 if (N) \
3639 @{ \
3640 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3641 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3642 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3643 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3644 @} \
3645 else \
3646 @{ \
3647 (Current).first_line = (Current).last_line = \
3648 YYRHSLOC(Rhs, 0).last_line; \
3649 (Current).first_column = (Current).last_column = \
3650 YYRHSLOC(Rhs, 0).last_column; \
3651 @} \
3652 while (0)
847bf1f5 3653@end group
766de5eb 3654@end smallexample
676385e2 3655
766de5eb
PE
3656where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3657in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3658just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3659
3e259915 3660When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3661
3e259915 3662@itemize @bullet
79282c6c 3663@item
72d2299c 3664All arguments are free of side-effects. However, only the first one (the
3e259915 3665result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3666
3e259915 3667@item
766de5eb
PE
3668For consistency with semantic actions, valid indexes within the
3669right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3670valid index, and it refers to the symbol just before the reduction.
3671During error processing @var{n} is always positive.
0ae99356
PE
3672
3673@item
3674Your macro should parenthesize its arguments, if need be, since the
3675actual arguments may not be surrounded by parentheses. Also, your
3676macro should expand to something that can be used as a single
3677statement when it is followed by a semicolon.
3e259915 3678@end itemize
847bf1f5 3679
342b8b6e 3680@node Declarations
bfa74976
RS
3681@section Bison Declarations
3682@cindex declarations, Bison
3683@cindex Bison declarations
3684
3685The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3686used in formulating the grammar and the data types of semantic values.
3687@xref{Symbols}.
3688
3689All token type names (but not single-character literal tokens such as
3690@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3691declared if you need to specify which data type to use for the semantic
3692value (@pxref{Multiple Types, ,More Than One Value Type}).
3693
3694The first rule in the file also specifies the start symbol, by default.
3695If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3696it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3697Grammars}).
bfa74976
RS
3698
3699@menu
b50d2359 3700* Require Decl:: Requiring a Bison version.
bfa74976
RS
3701* Token Decl:: Declaring terminal symbols.
3702* Precedence Decl:: Declaring terminals with precedence and associativity.
3703* Union Decl:: Declaring the set of all semantic value types.
3704* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3705* Initial Action Decl:: Code run before parsing starts.
72f889cc 3706* Destructor Decl:: Declaring how symbols are freed.
d6328241 3707* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3708* Start Decl:: Specifying the start symbol.
3709* Pure Decl:: Requesting a reentrant parser.
3710* Decl Summary:: Table of all Bison declarations.
3711@end menu
3712
b50d2359
AD
3713@node Require Decl
3714@subsection Require a Version of Bison
3715@cindex version requirement
3716@cindex requiring a version of Bison
3717@findex %require
3718
3719You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3720the requirement is not met, @command{bison} exits with an error (exit
3721status 63).
b50d2359
AD
3722
3723@example
3724%require "@var{version}"
3725@end example
3726
342b8b6e 3727@node Token Decl
bfa74976
RS
3728@subsection Token Type Names
3729@cindex declaring token type names
3730@cindex token type names, declaring
931c7513 3731@cindex declaring literal string tokens
bfa74976
RS
3732@findex %token
3733
3734The basic way to declare a token type name (terminal symbol) is as follows:
3735
3736@example
3737%token @var{name}
3738@end example
3739
3740Bison will convert this into a @code{#define} directive in
3741the parser, so that the function @code{yylex} (if it is in this file)
3742can use the name @var{name} to stand for this token type's code.
3743
14ded682
AD
3744Alternatively, you can use @code{%left}, @code{%right}, or
3745@code{%nonassoc} instead of @code{%token}, if you wish to specify
3746associativity and precedence. @xref{Precedence Decl, ,Operator
3747Precedence}.
bfa74976
RS
3748
3749You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3750a decimal or hexadecimal integer value in the field immediately
3751following the token name:
bfa74976
RS
3752
3753@example
3754%token NUM 300
1452af69 3755%token XNUM 0x12d // a GNU extension
bfa74976
RS
3756@end example
3757
3758@noindent
3759It is generally best, however, to let Bison choose the numeric codes for
3760all token types. Bison will automatically select codes that don't conflict
e966383b 3761with each other or with normal characters.
bfa74976
RS
3762
3763In the event that the stack type is a union, you must augment the
3764@code{%token} or other token declaration to include the data type
704a47c4
AD
3765alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3766Than One Value Type}).
bfa74976
RS
3767
3768For example:
3769
3770@example
3771@group
3772%union @{ /* define stack type */
3773 double val;
3774 symrec *tptr;
3775@}
3776%token <val> NUM /* define token NUM and its type */
3777@end group
3778@end example
3779
931c7513
RS
3780You can associate a literal string token with a token type name by
3781writing the literal string at the end of a @code{%token}
3782declaration which declares the name. For example:
3783
3784@example
3785%token arrow "=>"
3786@end example
3787
3788@noindent
3789For example, a grammar for the C language might specify these names with
3790equivalent literal string tokens:
3791
3792@example
3793%token <operator> OR "||"
3794%token <operator> LE 134 "<="
3795%left OR "<="
3796@end example
3797
3798@noindent
3799Once you equate the literal string and the token name, you can use them
3800interchangeably in further declarations or the grammar rules. The
3801@code{yylex} function can use the token name or the literal string to
3802obtain the token type code number (@pxref{Calling Convention}).
3803
342b8b6e 3804@node Precedence Decl
bfa74976
RS
3805@subsection Operator Precedence
3806@cindex precedence declarations
3807@cindex declaring operator precedence
3808@cindex operator precedence, declaring
3809
3810Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3811declare a token and specify its precedence and associativity, all at
3812once. These are called @dfn{precedence declarations}.
704a47c4
AD
3813@xref{Precedence, ,Operator Precedence}, for general information on
3814operator precedence.
bfa74976
RS
3815
3816The syntax of a precedence declaration is the same as that of
3817@code{%token}: either
3818
3819@example
3820%left @var{symbols}@dots{}
3821@end example
3822
3823@noindent
3824or
3825
3826@example
3827%left <@var{type}> @var{symbols}@dots{}
3828@end example
3829
3830And indeed any of these declarations serves the purposes of @code{%token}.
3831But in addition, they specify the associativity and relative precedence for
3832all the @var{symbols}:
3833
3834@itemize @bullet
3835@item
3836The associativity of an operator @var{op} determines how repeated uses
3837of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3838@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3839grouping @var{y} with @var{z} first. @code{%left} specifies
3840left-associativity (grouping @var{x} with @var{y} first) and
3841@code{%right} specifies right-associativity (grouping @var{y} with
3842@var{z} first). @code{%nonassoc} specifies no associativity, which
3843means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3844considered a syntax error.
3845
3846@item
3847The precedence of an operator determines how it nests with other operators.
3848All the tokens declared in a single precedence declaration have equal
3849precedence and nest together according to their associativity.
3850When two tokens declared in different precedence declarations associate,
3851the one declared later has the higher precedence and is grouped first.
3852@end itemize
3853
342b8b6e 3854@node Union Decl
bfa74976
RS
3855@subsection The Collection of Value Types
3856@cindex declaring value types
3857@cindex value types, declaring
3858@findex %union
3859
287c78f6
PE
3860The @code{%union} declaration specifies the entire collection of
3861possible data types for semantic values. The keyword @code{%union} is
3862followed by braced code containing the same thing that goes inside a
3863@code{union} in C@.
bfa74976
RS
3864
3865For example:
3866
3867@example
3868@group
3869%union @{
3870 double val;
3871 symrec *tptr;
3872@}
3873@end group
3874@end example
3875
3876@noindent
3877This says that the two alternative types are @code{double} and @code{symrec
3878*}. They are given names @code{val} and @code{tptr}; these names are used
3879in the @code{%token} and @code{%type} declarations to pick one of the types
3880for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3881
6273355b
PE
3882As an extension to @acronym{POSIX}, a tag is allowed after the
3883@code{union}. For example:
3884
3885@example
3886@group
3887%union value @{
3888 double val;
3889 symrec *tptr;
3890@}
3891@end group
3892@end example
3893
d6ca7905 3894@noindent
6273355b
PE
3895specifies the union tag @code{value}, so the corresponding C type is
3896@code{union value}. If you do not specify a tag, it defaults to
3897@code{YYSTYPE}.
3898
d6ca7905
PE
3899As another extension to @acronym{POSIX}, you may specify multiple
3900@code{%union} declarations; their contents are concatenated. However,
3901only the first @code{%union} declaration can specify a tag.
3902
6273355b 3903Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3904a semicolon after the closing brace.
3905
ddc8ede1
PE
3906Instead of @code{%union}, you can define and use your own union type
3907@code{YYSTYPE} if your grammar contains at least one
3908@samp{<@var{type}>} tag. For example, you can put the following into
3909a header file @file{parser.h}:
3910
3911@example
3912@group
3913union YYSTYPE @{
3914 double val;
3915 symrec *tptr;
3916@};
3917typedef union YYSTYPE YYSTYPE;
3918@end group
3919@end example
3920
3921@noindent
3922and then your grammar can use the following
3923instead of @code{%union}:
3924
3925@example
3926@group
3927%@{
3928#include "parser.h"
3929%@}
3930%type <val> expr
3931%token <tptr> ID
3932@end group
3933@end example
3934
342b8b6e 3935@node Type Decl
bfa74976
RS
3936@subsection Nonterminal Symbols
3937@cindex declaring value types, nonterminals
3938@cindex value types, nonterminals, declaring
3939@findex %type
3940
3941@noindent
3942When you use @code{%union} to specify multiple value types, you must
3943declare the value type of each nonterminal symbol for which values are
3944used. This is done with a @code{%type} declaration, like this:
3945
3946@example
3947%type <@var{type}> @var{nonterminal}@dots{}
3948@end example
3949
3950@noindent
704a47c4
AD
3951Here @var{nonterminal} is the name of a nonterminal symbol, and
3952@var{type} is the name given in the @code{%union} to the alternative
3953that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3954can give any number of nonterminal symbols in the same @code{%type}
3955declaration, if they have the same value type. Use spaces to separate
3956the symbol names.
bfa74976 3957
931c7513
RS
3958You can also declare the value type of a terminal symbol. To do this,
3959use the same @code{<@var{type}>} construction in a declaration for the
3960terminal symbol. All kinds of token declarations allow
3961@code{<@var{type}>}.
3962
18d192f0
AD
3963@node Initial Action Decl
3964@subsection Performing Actions before Parsing
3965@findex %initial-action
3966
3967Sometimes your parser needs to perform some initializations before
3968parsing. The @code{%initial-action} directive allows for such arbitrary
3969code.
3970
3971@deffn {Directive} %initial-action @{ @var{code} @}
3972@findex %initial-action
287c78f6 3973Declare that the braced @var{code} must be invoked before parsing each time
451364ed 3974@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 3975@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 3976@code{%parse-param}.
18d192f0
AD
3977@end deffn
3978
451364ed
AD
3979For instance, if your locations use a file name, you may use
3980
3981@example
48b16bbc 3982%parse-param @{ char const *file_name @};
451364ed
AD
3983%initial-action
3984@{
4626a15d 3985 @@$.initialize (file_name);
451364ed
AD
3986@};
3987@end example
3988
18d192f0 3989
72f889cc
AD
3990@node Destructor Decl
3991@subsection Freeing Discarded Symbols
3992@cindex freeing discarded symbols
3993@findex %destructor
3be03b13 3994@findex %symbol-default
72f889cc 3995
a85284cf
AD
3996During error recovery (@pxref{Error Recovery}), symbols already pushed
3997on the stack and tokens coming from the rest of the file are discarded
3998until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 3999or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4000symbols on the stack must be discarded. Even if the parser succeeds, it
4001must discard the start symbol.
258b75ca
PE
4002
4003When discarded symbols convey heap based information, this memory is
4004lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4005in traditional compilers, it is unacceptable for programs like shells or
4006protocol implementations that may parse and execute indefinitely.
258b75ca 4007
a85284cf
AD
4008The @code{%destructor} directive defines code that is called when a
4009symbol is automatically discarded.
72f889cc
AD
4010
4011@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4012@findex %destructor
287c78f6
PE
4013Invoke the braced @var{code} whenever the parser discards one of the
4014@var{symbols}.
4b367315 4015Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4016with the discarded symbol, and @code{@@$} designates its location.
4017The additional parser parameters are also available (@pxref{Parser Function, ,
4018The Parser Function @code{yyparse}}).
ec5479ce 4019
b2a0b7ca
JD
4020When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4021per-symbol @code{%destructor}.
4022You may also define a per-type @code{%destructor} by listing a semantic type
4023among @var{symbols}.
4024In that case, the parser will invoke this @var{code} whenever it discards any
4025grammar symbol that has that semantic type unless that symbol has its own
4026per-symbol @code{%destructor}.
4027
4028Finally, you may define a default @code{%destructor} by placing
4029@code{%symbol-default} in the @var{symbols} list of exactly one
4030@code{%destructor} declaration in your grammar file.
4031In that case, the parser will invoke the associated @var{code} whenever it
4032discards any user-defined grammar symbol for which there is no per-type or
4033per-symbol @code{%destructor}.
72f889cc
AD
4034@end deffn
4035
b2a0b7ca 4036@noindent
72f889cc
AD
4037For instance:
4038
4039@smallexample
ec5479ce
JD
4040%union @{ char *string; @}
4041%token <string> STRING1
4042%token <string> STRING2
4043%type <string> string1
4044%type <string> string2
b2a0b7ca
JD
4045%union @{ char character; @}
4046%token <character> CHR
4047%type <character> chr
3be03b13 4048%destructor @{ free ($$); @} %symbol-default
ec5479ce 4049%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
b2a0b7ca 4050%destructor @{ @} <character>
72f889cc
AD
4051@end smallexample
4052
4053@noindent
b2a0b7ca
JD
4054guarantees that, when the parser discards any user-defined symbol that has a
4055semantic type tag other than @code{<character>}, it passes its semantic value
4056to @code{free}.
ec5479ce
JD
4057However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4058prints its line number to @code{stdout}.
4059It performs only the second @code{%destructor} in this case, so it invokes
4060@code{free} only once.
72f889cc 4061
3508ce36
JD
4062Notice that a Bison-generated parser invokes the default @code{%destructor}
4063only for user-defined as opposed to Bison-defined symbols.
4064For example, the parser will not invoke it for the special Bison-defined
4065symbols @code{$accept}, @code{$undefined}, or @code{$end} (@pxref{Table of
4066Symbols, ,Bison Symbols}), none of which you can reference in your grammar.
4067It also will not invoke it for the @code{error} token (@pxref{Table of Symbols,
4068,error}), which is always defined by Bison regardless of whether you reference
4069it in your grammar.
4070However, it will invoke it for the end token (token 0) if you redefine it from
4071@code{$end} to, for example, @code{END}:
4072
4073@smallexample
4074%token END 0
4075@end smallexample
4076
4077@ignore
4078@noindent
4079In the future, it may be possible to redefine the @code{error} token as a
4080nonterminal that captures the discarded symbols.
4081In that case, the parser will invoke the default destructor for it as well.
4082@end ignore
4083
e757bb10
AD
4084@sp 1
4085
4086@cindex discarded symbols
4087@dfn{Discarded symbols} are the following:
4088
4089@itemize
4090@item
4091stacked symbols popped during the first phase of error recovery,
4092@item
4093incoming terminals during the second phase of error recovery,
4094@item
742e4900 4095the current lookahead and the entire stack (except the current
9d9b8b70 4096right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4097@item
4098the start symbol, when the parser succeeds.
e757bb10
AD
4099@end itemize
4100
9d9b8b70
PE
4101The parser can @dfn{return immediately} because of an explicit call to
4102@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4103exhaustion.
4104
4105Right-hand size symbols of a rule that explicitly triggers a syntax
4106error via @code{YYERROR} are not discarded automatically. As a rule
4107of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4108the memory.
e757bb10 4109
342b8b6e 4110@node Expect Decl
bfa74976
RS
4111@subsection Suppressing Conflict Warnings
4112@cindex suppressing conflict warnings
4113@cindex preventing warnings about conflicts
4114@cindex warnings, preventing
4115@cindex conflicts, suppressing warnings of
4116@findex %expect
d6328241 4117@findex %expect-rr
bfa74976
RS
4118
4119Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4120(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4121have harmless shift/reduce conflicts which are resolved in a predictable
4122way and would be difficult to eliminate. It is desirable to suppress
4123the warning about these conflicts unless the number of conflicts
4124changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4125
4126The declaration looks like this:
4127
4128@example
4129%expect @var{n}
4130@end example
4131
035aa4a0
PE
4132Here @var{n} is a decimal integer. The declaration says there should
4133be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4134Bison reports an error if the number of shift/reduce conflicts differs
4135from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4136
035aa4a0
PE
4137For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4138serious, and should be eliminated entirely. Bison will always report
4139reduce/reduce conflicts for these parsers. With @acronym{GLR}
4140parsers, however, both kinds of conflicts are routine; otherwise,
4141there would be no need to use @acronym{GLR} parsing. Therefore, it is
4142also possible to specify an expected number of reduce/reduce conflicts
4143in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4144
4145@example
4146%expect-rr @var{n}
4147@end example
4148
bfa74976
RS
4149In general, using @code{%expect} involves these steps:
4150
4151@itemize @bullet
4152@item
4153Compile your grammar without @code{%expect}. Use the @samp{-v} option
4154to get a verbose list of where the conflicts occur. Bison will also
4155print the number of conflicts.
4156
4157@item
4158Check each of the conflicts to make sure that Bison's default
4159resolution is what you really want. If not, rewrite the grammar and
4160go back to the beginning.
4161
4162@item
4163Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4164number which Bison printed. With @acronym{GLR} parsers, add an
4165@code{%expect-rr} declaration as well.
bfa74976
RS
4166@end itemize
4167
035aa4a0
PE
4168Now Bison will warn you if you introduce an unexpected conflict, but
4169will keep silent otherwise.
bfa74976 4170
342b8b6e 4171@node Start Decl
bfa74976
RS
4172@subsection The Start-Symbol
4173@cindex declaring the start symbol
4174@cindex start symbol, declaring
4175@cindex default start symbol
4176@findex %start
4177
4178Bison assumes by default that the start symbol for the grammar is the first
4179nonterminal specified in the grammar specification section. The programmer
4180may override this restriction with the @code{%start} declaration as follows:
4181
4182@example
4183%start @var{symbol}
4184@end example
4185
342b8b6e 4186@node Pure Decl
bfa74976
RS
4187@subsection A Pure (Reentrant) Parser
4188@cindex reentrant parser
4189@cindex pure parser
8c9a50be 4190@findex %pure-parser
bfa74976
RS
4191
4192A @dfn{reentrant} program is one which does not alter in the course of
4193execution; in other words, it consists entirely of @dfn{pure} (read-only)
4194code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4195for example, a nonreentrant program may not be safe to call from a signal
4196handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4197program must be called only within interlocks.
4198
70811b85 4199Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4200suitable for most uses, and it permits compatibility with Yacc. (The
4201standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4202statically allocated variables for communication with @code{yylex},
4203including @code{yylval} and @code{yylloc}.)
bfa74976 4204
70811b85 4205Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4206declaration @code{%pure-parser} says that you want the parser to be
70811b85 4207reentrant. It looks like this:
bfa74976
RS
4208
4209@example
8c9a50be 4210%pure-parser
bfa74976
RS
4211@end example
4212
70811b85
RS
4213The result is that the communication variables @code{yylval} and
4214@code{yylloc} become local variables in @code{yyparse}, and a different
4215calling convention is used for the lexical analyzer function
4216@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4217Parsers}, for the details of this. The variable @code{yynerrs} also
4218becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4219Reporting Function @code{yyerror}}). The convention for calling
4220@code{yyparse} itself is unchanged.
4221
4222Whether the parser is pure has nothing to do with the grammar rules.
4223You can generate either a pure parser or a nonreentrant parser from any
4224valid grammar.
bfa74976 4225
342b8b6e 4226@node Decl Summary
bfa74976
RS
4227@subsection Bison Declaration Summary
4228@cindex Bison declaration summary
4229@cindex declaration summary
4230@cindex summary, Bison declaration
4231
d8988b2f 4232Here is a summary of the declarations used to define a grammar:
bfa74976 4233
18b519c0 4234@deffn {Directive} %union
bfa74976
RS
4235Declare the collection of data types that semantic values may have
4236(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4237@end deffn
bfa74976 4238
18b519c0 4239@deffn {Directive} %token
bfa74976
RS
4240Declare a terminal symbol (token type name) with no precedence
4241or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4242@end deffn
bfa74976 4243
18b519c0 4244@deffn {Directive} %right
bfa74976
RS
4245Declare a terminal symbol (token type name) that is right-associative
4246(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4247@end deffn
bfa74976 4248
18b519c0 4249@deffn {Directive} %left
bfa74976
RS
4250Declare a terminal symbol (token type name) that is left-associative
4251(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4252@end deffn
bfa74976 4253
18b519c0 4254@deffn {Directive} %nonassoc
bfa74976 4255Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4256(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4257Using it in a way that would be associative is a syntax error.
4258@end deffn
4259
91d2c560 4260@ifset defaultprec
39a06c25 4261@deffn {Directive} %default-prec
22fccf95 4262Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4263(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4264@end deffn
91d2c560 4265@end ifset
bfa74976 4266
18b519c0 4267@deffn {Directive} %type
bfa74976
RS
4268Declare the type of semantic values for a nonterminal symbol
4269(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4270@end deffn
bfa74976 4271
18b519c0 4272@deffn {Directive} %start
89cab50d
AD
4273Specify the grammar's start symbol (@pxref{Start Decl, ,The
4274Start-Symbol}).
18b519c0 4275@end deffn
bfa74976 4276
18b519c0 4277@deffn {Directive} %expect
bfa74976
RS
4278Declare the expected number of shift-reduce conflicts
4279(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4280@end deffn
4281
bfa74976 4282
d8988b2f
AD
4283@sp 1
4284@noindent
4285In order to change the behavior of @command{bison}, use the following
4286directives:
4287
18b519c0 4288@deffn {Directive} %debug
4947ebdb
PE
4289In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4290already defined, so that the debugging facilities are compiled.
18b519c0 4291@end deffn
ec3bc396 4292@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4293
18b519c0 4294@deffn {Directive} %defines
4bfd5e4e
PE
4295Write a header file containing macro definitions for the token type
4296names defined in the grammar as well as a few other declarations.
d8988b2f 4297If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4298is named @file{@var{name}.h}.
d8988b2f 4299
b321737f 4300For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4301@code{YYSTYPE} is already defined as a macro or you have used a
4302@code{<@var{type}>} tag without using @code{%union}.
4303Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4304(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4305require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4306or type definition
f8e1c9e5
AD
4307(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4308arrange for these definitions to be propagated to all modules, e.g., by
4309putting them in a prerequisite header that is included both by your
4310parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4311
4312Unless your parser is pure, the output header declares @code{yylval}
4313as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4314Parser}.
4315
4316If you have also used locations, the output header declares
4317@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4318the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4319Locations}.
4320
f8e1c9e5
AD
4321This output file is normally essential if you wish to put the definition
4322of @code{yylex} in a separate source file, because @code{yylex}
4323typically needs to be able to refer to the above-mentioned declarations
4324and to the token type codes. @xref{Token Values, ,Semantic Values of
4325Tokens}.
9bc0dd67 4326
136a0f76
PB
4327@findex %requires
4328@findex %provides
4329If you have declared @code{%requires} or @code{%provides}, the output
34f98f46 4330header also contains their code.
136a0f76 4331@xref{Table of Symbols, ,%requires}.
18b519c0 4332@end deffn
d8988b2f 4333
18b519c0 4334@deffn {Directive} %destructor
258b75ca 4335Specify how the parser should reclaim the memory associated to
fa7e68c3 4336discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4337@end deffn
72f889cc 4338
18b519c0 4339@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4340Specify a prefix to use for all Bison output file names. The names are
4341chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4342@end deffn
d8988b2f 4343
18b519c0 4344@deffn {Directive} %locations
89cab50d
AD
4345Generate the code processing the locations (@pxref{Action Features,
4346,Special Features for Use in Actions}). This mode is enabled as soon as
4347the grammar uses the special @samp{@@@var{n}} tokens, but if your
4348grammar does not use it, using @samp{%locations} allows for more
6e649e65 4349accurate syntax error messages.
18b519c0 4350@end deffn
89cab50d 4351
18b519c0 4352@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4353Rename the external symbols used in the parser so that they start with
4354@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4355in C parsers
d8988b2f 4356is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4357@code{yylval}, @code{yychar}, @code{yydebug}, and
4358(if locations are used) @code{yylloc}. For example, if you use
2a8d363a 4359@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4360and so on. In C++ parsers, it is only the surrounding namespace which is
4361named @var{prefix} instead of @samp{yy}.
4362@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4363@end deffn
931c7513 4364
91d2c560 4365@ifset defaultprec
22fccf95
PE
4366@deffn {Directive} %no-default-prec
4367Do not assign a precedence to rules lacking an explicit @code{%prec}
4368modifier (@pxref{Contextual Precedence, ,Context-Dependent
4369Precedence}).
4370@end deffn
91d2c560 4371@end ifset
22fccf95 4372
18b519c0 4373@deffn {Directive} %no-parser
6deb4447
AD
4374Do not include any C code in the parser file; generate tables only. The
4375parser file contains just @code{#define} directives and static variable
4376declarations.
4377
4378This option also tells Bison to write the C code for the grammar actions
fa4d969f 4379into a file named @file{@var{file}.act}, in the form of a
6deb4447 4380brace-surrounded body fit for a @code{switch} statement.
18b519c0 4381@end deffn
6deb4447 4382
18b519c0 4383@deffn {Directive} %no-lines
931c7513
RS
4384Don't generate any @code{#line} preprocessor commands in the parser
4385file. Ordinarily Bison writes these commands in the parser file so that
4386the C compiler and debuggers will associate errors and object code with
4387your source file (the grammar file). This directive causes them to
4388associate errors with the parser file, treating it an independent source
4389file in its own right.
18b519c0 4390@end deffn
931c7513 4391
fa4d969f
PE
4392@deffn {Directive} %output="@var{file}"
4393Specify @var{file} for the parser file.
18b519c0 4394@end deffn
6deb4447 4395
18b519c0 4396@deffn {Directive} %pure-parser
d8988b2f
AD
4397Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4398(Reentrant) Parser}).
18b519c0 4399@end deffn
6deb4447 4400
b50d2359 4401@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4402Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4403Require a Version of Bison}.
b50d2359
AD
4404@end deffn
4405
18b519c0 4406@deffn {Directive} %token-table
931c7513
RS
4407Generate an array of token names in the parser file. The name of the
4408array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4409token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4410three elements of @code{yytname} correspond to the predefined tokens
4411@code{"$end"},
88bce5a2
AD
4412@code{"error"}, and @code{"$undefined"}; after these come the symbols
4413defined in the grammar file.
931c7513 4414
9e0876fb
PE
4415The name in the table includes all the characters needed to represent
4416the token in Bison. For single-character literals and literal
4417strings, this includes the surrounding quoting characters and any
4418escape sequences. For example, the Bison single-character literal
4419@code{'+'} corresponds to a three-character name, represented in C as
4420@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4421corresponds to a five-character name, represented in C as
4422@code{"\"\\\\/\""}.
931c7513 4423
8c9a50be 4424When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4425definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4426@code{YYNRULES}, and @code{YYNSTATES}:
4427
4428@table @code
4429@item YYNTOKENS
4430The highest token number, plus one.
4431@item YYNNTS
9ecbd125 4432The number of nonterminal symbols.
931c7513
RS
4433@item YYNRULES
4434The number of grammar rules,
4435@item YYNSTATES
4436The number of parser states (@pxref{Parser States}).
4437@end table
18b519c0 4438@end deffn
d8988b2f 4439
18b519c0 4440@deffn {Directive} %verbose
d8988b2f 4441Write an extra output file containing verbose descriptions of the
742e4900 4442parser states and what is done for each type of lookahead token in
72d2299c 4443that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4444information.
18b519c0 4445@end deffn
d8988b2f 4446
18b519c0 4447@deffn {Directive} %yacc
d8988b2f
AD
4448Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4449including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4450@end deffn
d8988b2f
AD
4451
4452
342b8b6e 4453@node Multiple Parsers
bfa74976
RS
4454@section Multiple Parsers in the Same Program
4455
4456Most programs that use Bison parse only one language and therefore contain
4457only one Bison parser. But what if you want to parse more than one
4458language with the same program? Then you need to avoid a name conflict
4459between different definitions of @code{yyparse}, @code{yylval}, and so on.
4460
4461The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4462(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4463functions and variables of the Bison parser to start with @var{prefix}
4464instead of @samp{yy}. You can use this to give each parser distinct
4465names that do not conflict.
bfa74976
RS
4466
4467The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4468@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4469@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4470the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4471
4472@strong{All the other variables and macros associated with Bison are not
4473renamed.} These others are not global; there is no conflict if the same
4474name is used in different parsers. For example, @code{YYSTYPE} is not
4475renamed, but defining this in different ways in different parsers causes
4476no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4477
4478The @samp{-p} option works by adding macro definitions to the beginning
4479of the parser source file, defining @code{yyparse} as
4480@code{@var{prefix}parse}, and so on. This effectively substitutes one
4481name for the other in the entire parser file.
4482
342b8b6e 4483@node Interface
bfa74976
RS
4484@chapter Parser C-Language Interface
4485@cindex C-language interface
4486@cindex interface
4487
4488The Bison parser is actually a C function named @code{yyparse}. Here we
4489describe the interface conventions of @code{yyparse} and the other
4490functions that it needs to use.
4491
4492Keep in mind that the parser uses many C identifiers starting with
4493@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4494identifier (aside from those in this manual) in an action or in epilogue
4495in the grammar file, you are likely to run into trouble.
bfa74976
RS
4496
4497@menu
4498* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4499* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4500 which reads tokens.
4501* Error Reporting:: You must supply a function @code{yyerror}.
4502* Action Features:: Special features for use in actions.
f7ab6a50
PE
4503* Internationalization:: How to let the parser speak in the user's
4504 native language.
bfa74976
RS
4505@end menu
4506
342b8b6e 4507@node Parser Function
bfa74976
RS
4508@section The Parser Function @code{yyparse}
4509@findex yyparse
4510
4511You call the function @code{yyparse} to cause parsing to occur. This
4512function reads tokens, executes actions, and ultimately returns when it
4513encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4514write an action which directs @code{yyparse} to return immediately
4515without reading further.
bfa74976 4516
2a8d363a
AD
4517
4518@deftypefun int yyparse (void)
bfa74976
RS
4519The value returned by @code{yyparse} is 0 if parsing was successful (return
4520is due to end-of-input).
4521
b47dbebe
PE
4522The value is 1 if parsing failed because of invalid input, i.e., input
4523that contains a syntax error or that causes @code{YYABORT} to be
4524invoked.
4525
4526The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4527@end deftypefun
bfa74976
RS
4528
4529In an action, you can cause immediate return from @code{yyparse} by using
4530these macros:
4531
2a8d363a 4532@defmac YYACCEPT
bfa74976
RS
4533@findex YYACCEPT
4534Return immediately with value 0 (to report success).
2a8d363a 4535@end defmac
bfa74976 4536
2a8d363a 4537@defmac YYABORT
bfa74976
RS
4538@findex YYABORT
4539Return immediately with value 1 (to report failure).
2a8d363a
AD
4540@end defmac
4541
4542If you use a reentrant parser, you can optionally pass additional
4543parameter information to it in a reentrant way. To do so, use the
4544declaration @code{%parse-param}:
4545
feeb0eda 4546@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4547@findex %parse-param
287c78f6
PE
4548Declare that an argument declared by the braced-code
4549@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4550The @var{argument-declaration} is used when declaring
feeb0eda
PE
4551functions or prototypes. The last identifier in
4552@var{argument-declaration} must be the argument name.
2a8d363a
AD
4553@end deffn
4554
4555Here's an example. Write this in the parser:
4556
4557@example
feeb0eda
PE
4558%parse-param @{int *nastiness@}
4559%parse-param @{int *randomness@}
2a8d363a
AD
4560@end example
4561
4562@noindent
4563Then call the parser like this:
4564
4565@example
4566@{
4567 int nastiness, randomness;
4568 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4569 value = yyparse (&nastiness, &randomness);
4570 @dots{}
4571@}
4572@end example
4573
4574@noindent
4575In the grammar actions, use expressions like this to refer to the data:
4576
4577@example
4578exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4579@end example
4580
bfa74976 4581
342b8b6e 4582@node Lexical
bfa74976
RS
4583@section The Lexical Analyzer Function @code{yylex}
4584@findex yylex
4585@cindex lexical analyzer
4586
4587The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4588the input stream and returns them to the parser. Bison does not create
4589this function automatically; you must write it so that @code{yyparse} can
4590call it. The function is sometimes referred to as a lexical scanner.
4591
4592In simple programs, @code{yylex} is often defined at the end of the Bison
4593grammar file. If @code{yylex} is defined in a separate source file, you
4594need to arrange for the token-type macro definitions to be available there.
4595To do this, use the @samp{-d} option when you run Bison, so that it will
4596write these macro definitions into a separate header file
4597@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4598that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4599
4600@menu
4601* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4602* Token Values:: How @code{yylex} must return the semantic value
4603 of the token it has read.
95923bd6 4604* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4605 (line number, etc.) of the token, if the
4606 actions want that.
4607* Pure Calling:: How the calling convention differs
4608 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4609@end menu
4610
342b8b6e 4611@node Calling Convention
bfa74976
RS
4612@subsection Calling Convention for @code{yylex}
4613
72d2299c
PE
4614The value that @code{yylex} returns must be the positive numeric code
4615for the type of token it has just found; a zero or negative value
4616signifies end-of-input.
bfa74976
RS
4617
4618When a token is referred to in the grammar rules by a name, that name
4619in the parser file becomes a C macro whose definition is the proper
4620numeric code for that token type. So @code{yylex} can use the name
4621to indicate that type. @xref{Symbols}.
4622
4623When a token is referred to in the grammar rules by a character literal,
4624the numeric code for that character is also the code for the token type.
72d2299c
PE
4625So @code{yylex} can simply return that character code, possibly converted
4626to @code{unsigned char} to avoid sign-extension. The null character
4627must not be used this way, because its code is zero and that
bfa74976
RS
4628signifies end-of-input.
4629
4630Here is an example showing these things:
4631
4632@example
13863333
AD
4633int
4634yylex (void)
bfa74976
RS
4635@{
4636 @dots{}
72d2299c 4637 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4638 return 0;
4639 @dots{}
4640 if (c == '+' || c == '-')
72d2299c 4641 return c; /* Assume token type for `+' is '+'. */
bfa74976 4642 @dots{}
72d2299c 4643 return INT; /* Return the type of the token. */
bfa74976
RS
4644 @dots{}
4645@}
4646@end example
4647
4648@noindent
4649This interface has been designed so that the output from the @code{lex}
4650utility can be used without change as the definition of @code{yylex}.
4651
931c7513
RS
4652If the grammar uses literal string tokens, there are two ways that
4653@code{yylex} can determine the token type codes for them:
4654
4655@itemize @bullet
4656@item
4657If the grammar defines symbolic token names as aliases for the
4658literal string tokens, @code{yylex} can use these symbolic names like
4659all others. In this case, the use of the literal string tokens in
4660the grammar file has no effect on @code{yylex}.
4661
4662@item
9ecbd125 4663@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4664table. The index of the token in the table is the token type's code.
9ecbd125 4665The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4666double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4667token's characters are escaped as necessary to be suitable as input
4668to Bison.
931c7513 4669
9e0876fb
PE
4670Here's code for looking up a multicharacter token in @code{yytname},
4671assuming that the characters of the token are stored in
4672@code{token_buffer}, and assuming that the token does not contain any
4673characters like @samp{"} that require escaping.
931c7513
RS
4674
4675@smallexample
4676for (i = 0; i < YYNTOKENS; i++)
4677 @{
4678 if (yytname[i] != 0
4679 && yytname[i][0] == '"'
68449b3a
PE
4680 && ! strncmp (yytname[i] + 1, token_buffer,
4681 strlen (token_buffer))
931c7513
RS
4682 && yytname[i][strlen (token_buffer) + 1] == '"'
4683 && yytname[i][strlen (token_buffer) + 2] == 0)
4684 break;
4685 @}
4686@end smallexample
4687
4688The @code{yytname} table is generated only if you use the
8c9a50be 4689@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4690@end itemize
4691
342b8b6e 4692@node Token Values
bfa74976
RS
4693@subsection Semantic Values of Tokens
4694
4695@vindex yylval
9d9b8b70 4696In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4697be stored into the global variable @code{yylval}. When you are using
4698just one data type for semantic values, @code{yylval} has that type.
4699Thus, if the type is @code{int} (the default), you might write this in
4700@code{yylex}:
4701
4702@example
4703@group
4704 @dots{}
72d2299c
PE
4705 yylval = value; /* Put value onto Bison stack. */
4706 return INT; /* Return the type of the token. */
bfa74976
RS
4707 @dots{}
4708@end group
4709@end example
4710
4711When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4712made from the @code{%union} declaration (@pxref{Union Decl, ,The
4713Collection of Value Types}). So when you store a token's value, you
4714must use the proper member of the union. If the @code{%union}
4715declaration looks like this:
bfa74976
RS
4716
4717@example
4718@group
4719%union @{
4720 int intval;
4721 double val;
4722 symrec *tptr;
4723@}
4724@end group
4725@end example
4726
4727@noindent
4728then the code in @code{yylex} might look like this:
4729
4730@example
4731@group
4732 @dots{}
72d2299c
PE
4733 yylval.intval = value; /* Put value onto Bison stack. */
4734 return INT; /* Return the type of the token. */
bfa74976
RS
4735 @dots{}
4736@end group
4737@end example
4738
95923bd6
AD
4739@node Token Locations
4740@subsection Textual Locations of Tokens
bfa74976
RS
4741
4742@vindex yylloc
847bf1f5 4743If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4744Tracking Locations}) in actions to keep track of the textual locations
4745of tokens and groupings, then you must provide this information in
4746@code{yylex}. The function @code{yyparse} expects to find the textual
4747location of a token just parsed in the global variable @code{yylloc}.
4748So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4749
4750By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4751initialize the members that are going to be used by the actions. The
4752four members are called @code{first_line}, @code{first_column},
4753@code{last_line} and @code{last_column}. Note that the use of this
4754feature makes the parser noticeably slower.
bfa74976
RS
4755
4756@tindex YYLTYPE
4757The data type of @code{yylloc} has the name @code{YYLTYPE}.
4758
342b8b6e 4759@node Pure Calling
c656404a 4760@subsection Calling Conventions for Pure Parsers
bfa74976 4761
8c9a50be 4762When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4763pure, reentrant parser, the global communication variables @code{yylval}
4764and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4765Parser}.) In such parsers the two global variables are replaced by
4766pointers passed as arguments to @code{yylex}. You must declare them as
4767shown here, and pass the information back by storing it through those
4768pointers.
bfa74976
RS
4769
4770@example
13863333
AD
4771int
4772yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4773@{
4774 @dots{}
4775 *lvalp = value; /* Put value onto Bison stack. */
4776 return INT; /* Return the type of the token. */
4777 @dots{}
4778@}
4779@end example
4780
4781If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4782textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4783this case, omit the second argument; @code{yylex} will be called with
4784only one argument.
4785
e425e872 4786
2a8d363a
AD
4787If you wish to pass the additional parameter data to @code{yylex}, use
4788@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4789Function}).
e425e872 4790
feeb0eda 4791@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4792@findex %lex-param
287c78f6
PE
4793Declare that the braced-code @var{argument-declaration} is an
4794additional @code{yylex} argument declaration.
2a8d363a 4795@end deffn
e425e872 4796
2a8d363a 4797For instance:
e425e872
RS
4798
4799@example
feeb0eda
PE
4800%parse-param @{int *nastiness@}
4801%lex-param @{int *nastiness@}
4802%parse-param @{int *randomness@}
e425e872
RS
4803@end example
4804
4805@noindent
2a8d363a 4806results in the following signature:
e425e872
RS
4807
4808@example
2a8d363a
AD
4809int yylex (int *nastiness);
4810int yyparse (int *nastiness, int *randomness);
e425e872
RS
4811@end example
4812
2a8d363a 4813If @code{%pure-parser} is added:
c656404a
RS
4814
4815@example
2a8d363a
AD
4816int yylex (YYSTYPE *lvalp, int *nastiness);
4817int yyparse (int *nastiness, int *randomness);
c656404a
RS
4818@end example
4819
2a8d363a
AD
4820@noindent
4821and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4822
2a8d363a
AD
4823@example
4824int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4825int yyparse (int *nastiness, int *randomness);
4826@end example
931c7513 4827
342b8b6e 4828@node Error Reporting
bfa74976
RS
4829@section The Error Reporting Function @code{yyerror}
4830@cindex error reporting function
4831@findex yyerror
4832@cindex parse error
4833@cindex syntax error
4834
6e649e65 4835The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4836whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4837action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4838macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4839in Actions}).
bfa74976
RS
4840
4841The Bison parser expects to report the error by calling an error
4842reporting function named @code{yyerror}, which you must supply. It is
4843called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4844receives one argument. For a syntax error, the string is normally
4845@w{@code{"syntax error"}}.
bfa74976 4846
2a8d363a
AD
4847@findex %error-verbose
4848If you invoke the directive @code{%error-verbose} in the Bison
4849declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4850Section}), then Bison provides a more verbose and specific error message
6e649e65 4851string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4852
1a059451
PE
4853The parser can detect one other kind of error: memory exhaustion. This
4854can happen when the input contains constructions that are very deeply
bfa74976 4855nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4856parser normally extends its stack automatically up to a very large limit. But
4857if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4858fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4859
4860In some cases diagnostics like @w{@code{"syntax error"}} are
4861translated automatically from English to some other language before
4862they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4863
4864The following definition suffices in simple programs:
4865
4866@example
4867@group
13863333 4868void
38a92d50 4869yyerror (char const *s)
bfa74976
RS
4870@{
4871@end group
4872@group
4873 fprintf (stderr, "%s\n", s);
4874@}
4875@end group
4876@end example
4877
4878After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4879error recovery if you have written suitable error recovery grammar rules
4880(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4881immediately return 1.
4882
93724f13 4883Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4884an access to the current location.
4885This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4886parsers, but not for the Yacc parser, for historical reasons. I.e., if
4887@samp{%locations %pure-parser} is passed then the prototypes for
4888@code{yyerror} are:
4889
4890@example
38a92d50
PE
4891void yyerror (char const *msg); /* Yacc parsers. */
4892void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4893@end example
4894
feeb0eda 4895If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4896
4897@example
b317297e
PE
4898void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4899void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4900@end example
4901
fa7e68c3 4902Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4903convention for absolutely pure parsers, i.e., when the calling
4904convention of @code{yylex} @emph{and} the calling convention of
4905@code{%pure-parser} are pure. I.e.:
4906
4907@example
4908/* Location tracking. */
4909%locations
4910/* Pure yylex. */
4911%pure-parser
feeb0eda 4912%lex-param @{int *nastiness@}
2a8d363a 4913/* Pure yyparse. */
feeb0eda
PE
4914%parse-param @{int *nastiness@}
4915%parse-param @{int *randomness@}
2a8d363a
AD
4916@end example
4917
4918@noindent
4919results in the following signatures for all the parser kinds:
4920
4921@example
4922int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4923int yyparse (int *nastiness, int *randomness);
93724f13
AD
4924void yyerror (YYLTYPE *locp,
4925 int *nastiness, int *randomness,
38a92d50 4926 char const *msg);
2a8d363a
AD
4927@end example
4928
1c0c3e95 4929@noindent
38a92d50
PE
4930The prototypes are only indications of how the code produced by Bison
4931uses @code{yyerror}. Bison-generated code always ignores the returned
4932value, so @code{yyerror} can return any type, including @code{void}.
4933Also, @code{yyerror} can be a variadic function; that is why the
4934message is always passed last.
4935
4936Traditionally @code{yyerror} returns an @code{int} that is always
4937ignored, but this is purely for historical reasons, and @code{void} is
4938preferable since it more accurately describes the return type for
4939@code{yyerror}.
93724f13 4940
bfa74976
RS
4941@vindex yynerrs
4942The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4943reported so far. Normally this variable is global; but if you
704a47c4
AD
4944request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4945then it is a local variable which only the actions can access.
bfa74976 4946
342b8b6e 4947@node Action Features
bfa74976
RS
4948@section Special Features for Use in Actions
4949@cindex summary, action features
4950@cindex action features summary
4951
4952Here is a table of Bison constructs, variables and macros that
4953are useful in actions.
4954
18b519c0 4955@deffn {Variable} $$
bfa74976
RS
4956Acts like a variable that contains the semantic value for the
4957grouping made by the current rule. @xref{Actions}.
18b519c0 4958@end deffn
bfa74976 4959
18b519c0 4960@deffn {Variable} $@var{n}
bfa74976
RS
4961Acts like a variable that contains the semantic value for the
4962@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4963@end deffn
bfa74976 4964
18b519c0 4965@deffn {Variable} $<@var{typealt}>$
bfa74976 4966Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4967specified by the @code{%union} declaration. @xref{Action Types, ,Data
4968Types of Values in Actions}.
18b519c0 4969@end deffn
bfa74976 4970
18b519c0 4971@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4972Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4973union specified by the @code{%union} declaration.
e0c471a9 4974@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4975@end deffn
bfa74976 4976
18b519c0 4977@deffn {Macro} YYABORT;
bfa74976
RS
4978Return immediately from @code{yyparse}, indicating failure.
4979@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4980@end deffn
bfa74976 4981
18b519c0 4982@deffn {Macro} YYACCEPT;
bfa74976
RS
4983Return immediately from @code{yyparse}, indicating success.
4984@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4985@end deffn
bfa74976 4986
18b519c0 4987@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4988@findex YYBACKUP
4989Unshift a token. This macro is allowed only for rules that reduce
742e4900 4990a single value, and only when there is no lookahead token.
c827f760 4991It is also disallowed in @acronym{GLR} parsers.
742e4900 4992It installs a lookahead token with token type @var{token} and
bfa74976
RS
4993semantic value @var{value}; then it discards the value that was
4994going to be reduced by this rule.
4995
4996If the macro is used when it is not valid, such as when there is
742e4900 4997a lookahead token already, then it reports a syntax error with
bfa74976
RS
4998a message @samp{cannot back up} and performs ordinary error
4999recovery.
5000
5001In either case, the rest of the action is not executed.
18b519c0 5002@end deffn
bfa74976 5003
18b519c0 5004@deffn {Macro} YYEMPTY
bfa74976 5005@vindex YYEMPTY
742e4900 5006Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5007@end deffn
bfa74976 5008
32c29292
JD
5009@deffn {Macro} YYEOF
5010@vindex YYEOF
742e4900 5011Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5012stream.
5013@end deffn
5014
18b519c0 5015@deffn {Macro} YYERROR;
bfa74976
RS
5016@findex YYERROR
5017Cause an immediate syntax error. This statement initiates error
5018recovery just as if the parser itself had detected an error; however, it
5019does not call @code{yyerror}, and does not print any message. If you
5020want to print an error message, call @code{yyerror} explicitly before
5021the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5022@end deffn
bfa74976 5023
18b519c0 5024@deffn {Macro} YYRECOVERING
02103984
PE
5025@findex YYRECOVERING
5026The expression @code{YYRECOVERING ()} yields 1 when the parser
5027is recovering from a syntax error, and 0 otherwise.
bfa74976 5028@xref{Error Recovery}.
18b519c0 5029@end deffn
bfa74976 5030
18b519c0 5031@deffn {Variable} yychar
742e4900
JD
5032Variable containing either the lookahead token, or @code{YYEOF} when the
5033lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5034has been performed so the next token is not yet known.
5035Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5036Actions}).
742e4900 5037@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5038@end deffn
bfa74976 5039
18b519c0 5040@deffn {Macro} yyclearin;
742e4900 5041Discard the current lookahead token. This is useful primarily in
32c29292
JD
5042error rules.
5043Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5044Semantic Actions}).
5045@xref{Error Recovery}.
18b519c0 5046@end deffn
bfa74976 5047
18b519c0 5048@deffn {Macro} yyerrok;
bfa74976 5049Resume generating error messages immediately for subsequent syntax
13863333 5050errors. This is useful primarily in error rules.
bfa74976 5051@xref{Error Recovery}.
18b519c0 5052@end deffn
bfa74976 5053
32c29292 5054@deffn {Variable} yylloc
742e4900 5055Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5056to @code{YYEMPTY} or @code{YYEOF}.
5057Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5058Actions}).
5059@xref{Actions and Locations, ,Actions and Locations}.
5060@end deffn
5061
5062@deffn {Variable} yylval
742e4900 5063Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5064not set to @code{YYEMPTY} or @code{YYEOF}.
5065Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5066Actions}).
5067@xref{Actions, ,Actions}.
5068@end deffn
5069
18b519c0 5070@deffn {Value} @@$
847bf1f5 5071@findex @@$
95923bd6 5072Acts like a structure variable containing information on the textual location
847bf1f5
AD
5073of the grouping made by the current rule. @xref{Locations, ,
5074Tracking Locations}.
bfa74976 5075
847bf1f5
AD
5076@c Check if those paragraphs are still useful or not.
5077
5078@c @example
5079@c struct @{
5080@c int first_line, last_line;
5081@c int first_column, last_column;
5082@c @};
5083@c @end example
5084
5085@c Thus, to get the starting line number of the third component, you would
5086@c use @samp{@@3.first_line}.
bfa74976 5087
847bf1f5
AD
5088@c In order for the members of this structure to contain valid information,
5089@c you must make @code{yylex} supply this information about each token.
5090@c If you need only certain members, then @code{yylex} need only fill in
5091@c those members.
bfa74976 5092
847bf1f5 5093@c The use of this feature makes the parser noticeably slower.
18b519c0 5094@end deffn
847bf1f5 5095
18b519c0 5096@deffn {Value} @@@var{n}
847bf1f5 5097@findex @@@var{n}
95923bd6 5098Acts like a structure variable containing information on the textual location
847bf1f5
AD
5099of the @var{n}th component of the current rule. @xref{Locations, ,
5100Tracking Locations}.
18b519c0 5101@end deffn
bfa74976 5102
f7ab6a50
PE
5103@node Internationalization
5104@section Parser Internationalization
5105@cindex internationalization
5106@cindex i18n
5107@cindex NLS
5108@cindex gettext
5109@cindex bison-po
5110
5111A Bison-generated parser can print diagnostics, including error and
5112tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5113also supports outputting diagnostics in the user's native language. To
5114make this work, the user should set the usual environment variables.
5115@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5116For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5117set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5118encoding. The exact set of available locales depends on the user's
5119installation.
5120
5121The maintainer of a package that uses a Bison-generated parser enables
5122the internationalization of the parser's output through the following
5123steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5124@acronym{GNU} Automake.
5125
5126@enumerate
5127@item
30757c8c 5128@cindex bison-i18n.m4
f7ab6a50
PE
5129Into the directory containing the @acronym{GNU} Autoconf macros used
5130by the package---often called @file{m4}---copy the
5131@file{bison-i18n.m4} file installed by Bison under
5132@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5133For example:
5134
5135@example
5136cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5137@end example
5138
5139@item
30757c8c
PE
5140@findex BISON_I18N
5141@vindex BISON_LOCALEDIR
5142@vindex YYENABLE_NLS
f7ab6a50
PE
5143In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5144invocation, add an invocation of @code{BISON_I18N}. This macro is
5145defined in the file @file{bison-i18n.m4} that you copied earlier. It
5146causes @samp{configure} to find the value of the
30757c8c
PE
5147@code{BISON_LOCALEDIR} variable, and it defines the source-language
5148symbol @code{YYENABLE_NLS} to enable translations in the
5149Bison-generated parser.
f7ab6a50
PE
5150
5151@item
5152In the @code{main} function of your program, designate the directory
5153containing Bison's runtime message catalog, through a call to
5154@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5155For example:
5156
5157@example
5158bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5159@end example
5160
5161Typically this appears after any other call @code{bindtextdomain
5162(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5163@samp{BISON_LOCALEDIR} to be defined as a string through the
5164@file{Makefile}.
5165
5166@item
5167In the @file{Makefile.am} that controls the compilation of the @code{main}
5168function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5169either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5170
5171@example
5172DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5173@end example
5174
5175or:
5176
5177@example
5178AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5179@end example
5180
5181@item
5182Finally, invoke the command @command{autoreconf} to generate the build
5183infrastructure.
5184@end enumerate
5185
bfa74976 5186
342b8b6e 5187@node Algorithm
13863333
AD
5188@chapter The Bison Parser Algorithm
5189@cindex Bison parser algorithm
bfa74976
RS
5190@cindex algorithm of parser
5191@cindex shifting
5192@cindex reduction
5193@cindex parser stack
5194@cindex stack, parser
5195
5196As Bison reads tokens, it pushes them onto a stack along with their
5197semantic values. The stack is called the @dfn{parser stack}. Pushing a
5198token is traditionally called @dfn{shifting}.
5199
5200For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5201@samp{3} to come. The stack will have four elements, one for each token
5202that was shifted.
5203
5204But the stack does not always have an element for each token read. When
5205the last @var{n} tokens and groupings shifted match the components of a
5206grammar rule, they can be combined according to that rule. This is called
5207@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5208single grouping whose symbol is the result (left hand side) of that rule.
5209Running the rule's action is part of the process of reduction, because this
5210is what computes the semantic value of the resulting grouping.
5211
5212For example, if the infix calculator's parser stack contains this:
5213
5214@example
52151 + 5 * 3
5216@end example
5217
5218@noindent
5219and the next input token is a newline character, then the last three
5220elements can be reduced to 15 via the rule:
5221
5222@example
5223expr: expr '*' expr;
5224@end example
5225
5226@noindent
5227Then the stack contains just these three elements:
5228
5229@example
52301 + 15
5231@end example
5232
5233@noindent
5234At this point, another reduction can be made, resulting in the single value
523516. Then the newline token can be shifted.
5236
5237The parser tries, by shifts and reductions, to reduce the entire input down
5238to a single grouping whose symbol is the grammar's start-symbol
5239(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5240
5241This kind of parser is known in the literature as a bottom-up parser.
5242
5243@menu
742e4900 5244* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5245* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5246* Precedence:: Operator precedence works by resolving conflicts.
5247* Contextual Precedence:: When an operator's precedence depends on context.
5248* Parser States:: The parser is a finite-state-machine with stack.
5249* Reduce/Reduce:: When two rules are applicable in the same situation.
5250* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5251* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5252* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5253@end menu
5254
742e4900
JD
5255@node Lookahead
5256@section Lookahead Tokens
5257@cindex lookahead token
bfa74976
RS
5258
5259The Bison parser does @emph{not} always reduce immediately as soon as the
5260last @var{n} tokens and groupings match a rule. This is because such a
5261simple strategy is inadequate to handle most languages. Instead, when a
5262reduction is possible, the parser sometimes ``looks ahead'' at the next
5263token in order to decide what to do.
5264
5265When a token is read, it is not immediately shifted; first it becomes the
742e4900 5266@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5267perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5268the lookahead token remains off to the side. When no more reductions
5269should take place, the lookahead token is shifted onto the stack. This
bfa74976 5270does not mean that all possible reductions have been done; depending on the
742e4900 5271token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5272application.
5273
742e4900 5274Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5275expressions which contain binary addition operators and postfix unary
5276factorial operators (@samp{!}), and allow parentheses for grouping.
5277
5278@example
5279@group
5280expr: term '+' expr
5281 | term
5282 ;
5283@end group
5284
5285@group
5286term: '(' expr ')'
5287 | term '!'
5288 | NUMBER
5289 ;
5290@end group
5291@end example
5292
5293Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5294should be done? If the following token is @samp{)}, then the first three
5295tokens must be reduced to form an @code{expr}. This is the only valid
5296course, because shifting the @samp{)} would produce a sequence of symbols
5297@w{@code{term ')'}}, and no rule allows this.
5298
5299If the following token is @samp{!}, then it must be shifted immediately so
5300that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5301parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5302@code{expr}. It would then be impossible to shift the @samp{!} because
5303doing so would produce on the stack the sequence of symbols @code{expr
5304'!'}. No rule allows that sequence.
5305
5306@vindex yychar
32c29292
JD
5307@vindex yylval
5308@vindex yylloc
742e4900 5309The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5310Its semantic value and location, if any, are stored in the variables
5311@code{yylval} and @code{yylloc}.
bfa74976
RS
5312@xref{Action Features, ,Special Features for Use in Actions}.
5313
342b8b6e 5314@node Shift/Reduce
bfa74976
RS
5315@section Shift/Reduce Conflicts
5316@cindex conflicts
5317@cindex shift/reduce conflicts
5318@cindex dangling @code{else}
5319@cindex @code{else}, dangling
5320
5321Suppose we are parsing a language which has if-then and if-then-else
5322statements, with a pair of rules like this:
5323
5324@example
5325@group
5326if_stmt:
5327 IF expr THEN stmt
5328 | IF expr THEN stmt ELSE stmt
5329 ;
5330@end group
5331@end example
5332
5333@noindent
5334Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5335terminal symbols for specific keyword tokens.
5336
742e4900 5337When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5338contents of the stack (assuming the input is valid) are just right for
5339reduction by the first rule. But it is also legitimate to shift the
5340@code{ELSE}, because that would lead to eventual reduction by the second
5341rule.
5342
5343This situation, where either a shift or a reduction would be valid, is
5344called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5345these conflicts by choosing to shift, unless otherwise directed by
5346operator precedence declarations. To see the reason for this, let's
5347contrast it with the other alternative.
5348
5349Since the parser prefers to shift the @code{ELSE}, the result is to attach
5350the else-clause to the innermost if-statement, making these two inputs
5351equivalent:
5352
5353@example
5354if x then if y then win (); else lose;
5355
5356if x then do; if y then win (); else lose; end;
5357@end example
5358
5359But if the parser chose to reduce when possible rather than shift, the
5360result would be to attach the else-clause to the outermost if-statement,
5361making these two inputs equivalent:
5362
5363@example
5364if x then if y then win (); else lose;
5365
5366if x then do; if y then win (); end; else lose;
5367@end example
5368
5369The conflict exists because the grammar as written is ambiguous: either
5370parsing of the simple nested if-statement is legitimate. The established
5371convention is that these ambiguities are resolved by attaching the
5372else-clause to the innermost if-statement; this is what Bison accomplishes
5373by choosing to shift rather than reduce. (It would ideally be cleaner to
5374write an unambiguous grammar, but that is very hard to do in this case.)
5375This particular ambiguity was first encountered in the specifications of
5376Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5377
5378To avoid warnings from Bison about predictable, legitimate shift/reduce
5379conflicts, use the @code{%expect @var{n}} declaration. There will be no
5380warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5381@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5382
5383The definition of @code{if_stmt} above is solely to blame for the
5384conflict, but the conflict does not actually appear without additional
5385rules. Here is a complete Bison input file that actually manifests the
5386conflict:
5387
5388@example
5389@group
5390%token IF THEN ELSE variable
5391%%
5392@end group
5393@group
5394stmt: expr
5395 | if_stmt
5396 ;
5397@end group
5398
5399@group
5400if_stmt:
5401 IF expr THEN stmt
5402 | IF expr THEN stmt ELSE stmt
5403 ;
5404@end group
5405
5406expr: variable
5407 ;
5408@end example
5409
342b8b6e 5410@node Precedence
bfa74976
RS
5411@section Operator Precedence
5412@cindex operator precedence
5413@cindex precedence of operators
5414
5415Another situation where shift/reduce conflicts appear is in arithmetic
5416expressions. Here shifting is not always the preferred resolution; the
5417Bison declarations for operator precedence allow you to specify when to
5418shift and when to reduce.
5419
5420@menu
5421* Why Precedence:: An example showing why precedence is needed.
5422* Using Precedence:: How to specify precedence in Bison grammars.
5423* Precedence Examples:: How these features are used in the previous example.
5424* How Precedence:: How they work.
5425@end menu
5426
342b8b6e 5427@node Why Precedence
bfa74976
RS
5428@subsection When Precedence is Needed
5429
5430Consider the following ambiguous grammar fragment (ambiguous because the
5431input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5432
5433@example
5434@group
5435expr: expr '-' expr
5436 | expr '*' expr
5437 | expr '<' expr
5438 | '(' expr ')'
5439 @dots{}
5440 ;
5441@end group
5442@end example
5443
5444@noindent
5445Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5446should it reduce them via the rule for the subtraction operator? It
5447depends on the next token. Of course, if the next token is @samp{)}, we
5448must reduce; shifting is invalid because no single rule can reduce the
5449token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5450the next token is @samp{*} or @samp{<}, we have a choice: either
5451shifting or reduction would allow the parse to complete, but with
5452different results.
5453
5454To decide which one Bison should do, we must consider the results. If
5455the next operator token @var{op} is shifted, then it must be reduced
5456first in order to permit another opportunity to reduce the difference.
5457The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5458hand, if the subtraction is reduced before shifting @var{op}, the result
5459is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5460reduce should depend on the relative precedence of the operators
5461@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5462@samp{<}.
bfa74976
RS
5463
5464@cindex associativity
5465What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5466@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5467operators we prefer the former, which is called @dfn{left association}.
5468The latter alternative, @dfn{right association}, is desirable for
5469assignment operators. The choice of left or right association is a
5470matter of whether the parser chooses to shift or reduce when the stack
742e4900 5471contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5472makes right-associativity.
bfa74976 5473
342b8b6e 5474@node Using Precedence
bfa74976
RS
5475@subsection Specifying Operator Precedence
5476@findex %left
5477@findex %right
5478@findex %nonassoc
5479
5480Bison allows you to specify these choices with the operator precedence
5481declarations @code{%left} and @code{%right}. Each such declaration
5482contains a list of tokens, which are operators whose precedence and
5483associativity is being declared. The @code{%left} declaration makes all
5484those operators left-associative and the @code{%right} declaration makes
5485them right-associative. A third alternative is @code{%nonassoc}, which
5486declares that it is a syntax error to find the same operator twice ``in a
5487row''.
5488
5489The relative precedence of different operators is controlled by the
5490order in which they are declared. The first @code{%left} or
5491@code{%right} declaration in the file declares the operators whose
5492precedence is lowest, the next such declaration declares the operators
5493whose precedence is a little higher, and so on.
5494
342b8b6e 5495@node Precedence Examples
bfa74976
RS
5496@subsection Precedence Examples
5497
5498In our example, we would want the following declarations:
5499
5500@example
5501%left '<'
5502%left '-'
5503%left '*'
5504@end example
5505
5506In a more complete example, which supports other operators as well, we
5507would declare them in groups of equal precedence. For example, @code{'+'} is
5508declared with @code{'-'}:
5509
5510@example
5511%left '<' '>' '=' NE LE GE
5512%left '+' '-'
5513%left '*' '/'
5514@end example
5515
5516@noindent
5517(Here @code{NE} and so on stand for the operators for ``not equal''
5518and so on. We assume that these tokens are more than one character long
5519and therefore are represented by names, not character literals.)
5520
342b8b6e 5521@node How Precedence
bfa74976
RS
5522@subsection How Precedence Works
5523
5524The first effect of the precedence declarations is to assign precedence
5525levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5526precedence levels to certain rules: each rule gets its precedence from
5527the last terminal symbol mentioned in the components. (You can also
5528specify explicitly the precedence of a rule. @xref{Contextual
5529Precedence, ,Context-Dependent Precedence}.)
5530
5531Finally, the resolution of conflicts works by comparing the precedence
742e4900 5532of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5533token's precedence is higher, the choice is to shift. If the rule's
5534precedence is higher, the choice is to reduce. If they have equal
5535precedence, the choice is made based on the associativity of that
5536precedence level. The verbose output file made by @samp{-v}
5537(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5538resolved.
bfa74976
RS
5539
5540Not all rules and not all tokens have precedence. If either the rule or
742e4900 5541the lookahead token has no precedence, then the default is to shift.
bfa74976 5542
342b8b6e 5543@node Contextual Precedence
bfa74976
RS
5544@section Context-Dependent Precedence
5545@cindex context-dependent precedence
5546@cindex unary operator precedence
5547@cindex precedence, context-dependent
5548@cindex precedence, unary operator
5549@findex %prec
5550
5551Often the precedence of an operator depends on the context. This sounds
5552outlandish at first, but it is really very common. For example, a minus
5553sign typically has a very high precedence as a unary operator, and a
5554somewhat lower precedence (lower than multiplication) as a binary operator.
5555
5556The Bison precedence declarations, @code{%left}, @code{%right} and
5557@code{%nonassoc}, can only be used once for a given token; so a token has
5558only one precedence declared in this way. For context-dependent
5559precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5560modifier for rules.
bfa74976
RS
5561
5562The @code{%prec} modifier declares the precedence of a particular rule by
5563specifying a terminal symbol whose precedence should be used for that rule.
5564It's not necessary for that symbol to appear otherwise in the rule. The
5565modifier's syntax is:
5566
5567@example
5568%prec @var{terminal-symbol}
5569@end example
5570
5571@noindent
5572and it is written after the components of the rule. Its effect is to
5573assign the rule the precedence of @var{terminal-symbol}, overriding
5574the precedence that would be deduced for it in the ordinary way. The
5575altered rule precedence then affects how conflicts involving that rule
5576are resolved (@pxref{Precedence, ,Operator Precedence}).
5577
5578Here is how @code{%prec} solves the problem of unary minus. First, declare
5579a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5580are no tokens of this type, but the symbol serves to stand for its
5581precedence:
5582
5583@example
5584@dots{}
5585%left '+' '-'
5586%left '*'
5587%left UMINUS
5588@end example
5589
5590Now the precedence of @code{UMINUS} can be used in specific rules:
5591
5592@example
5593@group
5594exp: @dots{}
5595 | exp '-' exp
5596 @dots{}
5597 | '-' exp %prec UMINUS
5598@end group
5599@end example
5600
91d2c560 5601@ifset defaultprec
39a06c25
PE
5602If you forget to append @code{%prec UMINUS} to the rule for unary
5603minus, Bison silently assumes that minus has its usual precedence.
5604This kind of problem can be tricky to debug, since one typically
5605discovers the mistake only by testing the code.
5606
22fccf95 5607The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5608this kind of problem systematically. It causes rules that lack a
5609@code{%prec} modifier to have no precedence, even if the last terminal
5610symbol mentioned in their components has a declared precedence.
5611
22fccf95 5612If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5613for all rules that participate in precedence conflict resolution.
5614Then you will see any shift/reduce conflict until you tell Bison how
5615to resolve it, either by changing your grammar or by adding an
5616explicit precedence. This will probably add declarations to the
5617grammar, but it helps to protect against incorrect rule precedences.
5618
22fccf95
PE
5619The effect of @code{%no-default-prec;} can be reversed by giving
5620@code{%default-prec;}, which is the default.
91d2c560 5621@end ifset
39a06c25 5622
342b8b6e 5623@node Parser States
bfa74976
RS
5624@section Parser States
5625@cindex finite-state machine
5626@cindex parser state
5627@cindex state (of parser)
5628
5629The function @code{yyparse} is implemented using a finite-state machine.
5630The values pushed on the parser stack are not simply token type codes; they
5631represent the entire sequence of terminal and nonterminal symbols at or
5632near the top of the stack. The current state collects all the information
5633about previous input which is relevant to deciding what to do next.
5634
742e4900
JD
5635Each time a lookahead token is read, the current parser state together
5636with the type of lookahead token are looked up in a table. This table
5637entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
5638specifies the new parser state, which is pushed onto the top of the
5639parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5640This means that a certain number of tokens or groupings are taken off
5641the top of the stack, and replaced by one grouping. In other words,
5642that number of states are popped from the stack, and one new state is
5643pushed.
5644
742e4900 5645There is one other alternative: the table can say that the lookahead token
bfa74976
RS
5646is erroneous in the current state. This causes error processing to begin
5647(@pxref{Error Recovery}).
5648
342b8b6e 5649@node Reduce/Reduce
bfa74976
RS
5650@section Reduce/Reduce Conflicts
5651@cindex reduce/reduce conflict
5652@cindex conflicts, reduce/reduce
5653
5654A reduce/reduce conflict occurs if there are two or more rules that apply
5655to the same sequence of input. This usually indicates a serious error
5656in the grammar.
5657
5658For example, here is an erroneous attempt to define a sequence
5659of zero or more @code{word} groupings.
5660
5661@example
5662sequence: /* empty */
5663 @{ printf ("empty sequence\n"); @}
5664 | maybeword
5665 | sequence word
5666 @{ printf ("added word %s\n", $2); @}
5667 ;
5668
5669maybeword: /* empty */
5670 @{ printf ("empty maybeword\n"); @}
5671 | word
5672 @{ printf ("single word %s\n", $1); @}
5673 ;
5674@end example
5675
5676@noindent
5677The error is an ambiguity: there is more than one way to parse a single
5678@code{word} into a @code{sequence}. It could be reduced to a
5679@code{maybeword} and then into a @code{sequence} via the second rule.
5680Alternatively, nothing-at-all could be reduced into a @code{sequence}
5681via the first rule, and this could be combined with the @code{word}
5682using the third rule for @code{sequence}.
5683
5684There is also more than one way to reduce nothing-at-all into a
5685@code{sequence}. This can be done directly via the first rule,
5686or indirectly via @code{maybeword} and then the second rule.
5687
5688You might think that this is a distinction without a difference, because it
5689does not change whether any particular input is valid or not. But it does
5690affect which actions are run. One parsing order runs the second rule's
5691action; the other runs the first rule's action and the third rule's action.
5692In this example, the output of the program changes.
5693
5694Bison resolves a reduce/reduce conflict by choosing to use the rule that
5695appears first in the grammar, but it is very risky to rely on this. Every
5696reduce/reduce conflict must be studied and usually eliminated. Here is the
5697proper way to define @code{sequence}:
5698
5699@example
5700sequence: /* empty */
5701 @{ printf ("empty sequence\n"); @}
5702 | sequence word
5703 @{ printf ("added word %s\n", $2); @}
5704 ;
5705@end example
5706
5707Here is another common error that yields a reduce/reduce conflict:
5708
5709@example
5710sequence: /* empty */
5711 | sequence words
5712 | sequence redirects
5713 ;
5714
5715words: /* empty */
5716 | words word
5717 ;
5718
5719redirects:/* empty */
5720 | redirects redirect
5721 ;
5722@end example
5723
5724@noindent
5725The intention here is to define a sequence which can contain either
5726@code{word} or @code{redirect} groupings. The individual definitions of
5727@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5728three together make a subtle ambiguity: even an empty input can be parsed
5729in infinitely many ways!
5730
5731Consider: nothing-at-all could be a @code{words}. Or it could be two
5732@code{words} in a row, or three, or any number. It could equally well be a
5733@code{redirects}, or two, or any number. Or it could be a @code{words}
5734followed by three @code{redirects} and another @code{words}. And so on.
5735
5736Here are two ways to correct these rules. First, to make it a single level
5737of sequence:
5738
5739@example
5740sequence: /* empty */
5741 | sequence word
5742 | sequence redirect
5743 ;
5744@end example
5745
5746Second, to prevent either a @code{words} or a @code{redirects}
5747from being empty:
5748
5749@example
5750sequence: /* empty */
5751 | sequence words
5752 | sequence redirects
5753 ;
5754
5755words: word
5756 | words word
5757 ;
5758
5759redirects:redirect
5760 | redirects redirect
5761 ;
5762@end example
5763
342b8b6e 5764@node Mystery Conflicts
bfa74976
RS
5765@section Mysterious Reduce/Reduce Conflicts
5766
5767Sometimes reduce/reduce conflicts can occur that don't look warranted.
5768Here is an example:
5769
5770@example
5771@group
5772%token ID
5773
5774%%
5775def: param_spec return_spec ','
5776 ;
5777param_spec:
5778 type
5779 | name_list ':' type
5780 ;
5781@end group
5782@group
5783return_spec:
5784 type
5785 | name ':' type
5786 ;
5787@end group
5788@group
5789type: ID
5790 ;
5791@end group
5792@group
5793name: ID
5794 ;
5795name_list:
5796 name
5797 | name ',' name_list
5798 ;
5799@end group
5800@end example
5801
5802It would seem that this grammar can be parsed with only a single token
742e4900 5803of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5804a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5805@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5806
c827f760
PE
5807@cindex @acronym{LR}(1)
5808@cindex @acronym{LALR}(1)
bfa74976 5809However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5810@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5811an @code{ID}
bfa74976
RS
5812at the beginning of a @code{param_spec} and likewise at the beginning of
5813a @code{return_spec}, are similar enough that Bison assumes they are the
5814same. They appear similar because the same set of rules would be
5815active---the rule for reducing to a @code{name} and that for reducing to
5816a @code{type}. Bison is unable to determine at that stage of processing
742e4900 5817that the rules would require different lookahead tokens in the two
bfa74976
RS
5818contexts, so it makes a single parser state for them both. Combining
5819the two contexts causes a conflict later. In parser terminology, this
c827f760 5820occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5821
5822In general, it is better to fix deficiencies than to document them. But
5823this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5824generators that can handle @acronym{LR}(1) grammars are hard to write
5825and tend to
bfa74976
RS
5826produce parsers that are very large. In practice, Bison is more useful
5827as it is now.
5828
5829When the problem arises, you can often fix it by identifying the two
a220f555
MA
5830parser states that are being confused, and adding something to make them
5831look distinct. In the above example, adding one rule to
bfa74976
RS
5832@code{return_spec} as follows makes the problem go away:
5833
5834@example
5835@group
5836%token BOGUS
5837@dots{}
5838%%
5839@dots{}
5840return_spec:
5841 type
5842 | name ':' type
5843 /* This rule is never used. */
5844 | ID BOGUS
5845 ;
5846@end group
5847@end example
5848
5849This corrects the problem because it introduces the possibility of an
5850additional active rule in the context after the @code{ID} at the beginning of
5851@code{return_spec}. This rule is not active in the corresponding context
5852in a @code{param_spec}, so the two contexts receive distinct parser states.
5853As long as the token @code{BOGUS} is never generated by @code{yylex},
5854the added rule cannot alter the way actual input is parsed.
5855
5856In this particular example, there is another way to solve the problem:
5857rewrite the rule for @code{return_spec} to use @code{ID} directly
5858instead of via @code{name}. This also causes the two confusing
5859contexts to have different sets of active rules, because the one for
5860@code{return_spec} activates the altered rule for @code{return_spec}
5861rather than the one for @code{name}.
5862
5863@example
5864param_spec:
5865 type
5866 | name_list ':' type
5867 ;
5868return_spec:
5869 type
5870 | ID ':' type
5871 ;
5872@end example
5873
e054b190
PE
5874For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5875generators, please see:
5876Frank DeRemer and Thomas Pennello, Efficient Computation of
5877@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5878Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5879pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5880
fae437e8 5881@node Generalized LR Parsing
c827f760
PE
5882@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5883@cindex @acronym{GLR} parsing
5884@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 5885@cindex ambiguous grammars
9d9b8b70 5886@cindex nondeterministic parsing
676385e2 5887
fae437e8
AD
5888Bison produces @emph{deterministic} parsers that choose uniquely
5889when to reduce and which reduction to apply
742e4900 5890based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
5891As a result, normal Bison handles a proper subset of the family of
5892context-free languages.
fae437e8 5893Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5894sequence of reductions cannot have deterministic parsers in this sense.
5895The same is true of languages that require more than one symbol of
742e4900 5896lookahead, since the parser lacks the information necessary to make a
676385e2 5897decision at the point it must be made in a shift-reduce parser.
fae437e8 5898Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5899there are languages where Bison's particular choice of how to
5900summarize the input seen so far loses necessary information.
5901
5902When you use the @samp{%glr-parser} declaration in your grammar file,
5903Bison generates a parser that uses a different algorithm, called
c827f760
PE
5904Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5905parser uses the same basic
676385e2
PH
5906algorithm for parsing as an ordinary Bison parser, but behaves
5907differently in cases where there is a shift-reduce conflict that has not
fae437e8 5908been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5909reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5910situation, it
fae437e8 5911effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5912shift or reduction. These parsers then proceed as usual, consuming
5913tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5914and split further, with the result that instead of a sequence of states,
c827f760 5915a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5916
5917In effect, each stack represents a guess as to what the proper parse
5918is. Additional input may indicate that a guess was wrong, in which case
5919the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5920actions generated in each stack are saved, rather than being executed
676385e2 5921immediately. When a stack disappears, its saved semantic actions never
fae437e8 5922get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5923their sets of semantic actions are both saved with the state that
5924results from the reduction. We say that two stacks are equivalent
fae437e8 5925when they both represent the same sequence of states,
676385e2
PH
5926and each pair of corresponding states represents a
5927grammar symbol that produces the same segment of the input token
5928stream.
5929
5930Whenever the parser makes a transition from having multiple
c827f760 5931states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5932algorithm, after resolving and executing the saved-up actions.
5933At this transition, some of the states on the stack will have semantic
5934values that are sets (actually multisets) of possible actions. The
5935parser tries to pick one of the actions by first finding one whose rule
5936has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5937declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5938precedence, but there the same merging function is declared for both
fae437e8 5939rules by the @samp{%merge} declaration,
676385e2
PH
5940Bison resolves and evaluates both and then calls the merge function on
5941the result. Otherwise, it reports an ambiguity.
5942
c827f760
PE
5943It is possible to use a data structure for the @acronym{GLR} parsing tree that
5944permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5945size of the input), any unambiguous (not necessarily
5946@acronym{LALR}(1)) grammar in
fae437e8 5947quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5948context-free grammar in cubic worst-case time. However, Bison currently
5949uses a simpler data structure that requires time proportional to the
5950length of the input times the maximum number of stacks required for any
9d9b8b70 5951prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
5952grammars can require exponential time and space to process. Such badly
5953behaving examples, however, are not generally of practical interest.
9d9b8b70 5954Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 5955doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5956structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5957grammar, in particular, it is only slightly slower than with the default
5958Bison parser.
5959
fa7e68c3 5960For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5961Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5962Generalised @acronym{LR} Parsers, Royal Holloway, University of
5963London, Department of Computer Science, TR-00-12,
5964@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5965(2000-12-24).
5966
1a059451
PE
5967@node Memory Management
5968@section Memory Management, and How to Avoid Memory Exhaustion
5969@cindex memory exhaustion
5970@cindex memory management
bfa74976
RS
5971@cindex stack overflow
5972@cindex parser stack overflow
5973@cindex overflow of parser stack
5974
1a059451 5975The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5976not reduced. When this happens, the parser function @code{yyparse}
1a059451 5977calls @code{yyerror} and then returns 2.
bfa74976 5978
c827f760 5979Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5980usually results from using a right recursion instead of a left
5981recursion, @xref{Recursion, ,Recursive Rules}.
5982
bfa74976
RS
5983@vindex YYMAXDEPTH
5984By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5985parser stack can become before memory is exhausted. Define the
bfa74976
RS
5986macro with a value that is an integer. This value is the maximum number
5987of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5988
5989The stack space allowed is not necessarily allocated. If you specify a
1a059451 5990large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5991stack at first, and then makes it bigger by stages as needed. This
5992increasing allocation happens automatically and silently. Therefore,
5993you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5994space for ordinary inputs that do not need much stack.
5995
d7e14fc0
PE
5996However, do not allow @code{YYMAXDEPTH} to be a value so large that
5997arithmetic overflow could occur when calculating the size of the stack
5998space. Also, do not allow @code{YYMAXDEPTH} to be less than
5999@code{YYINITDEPTH}.
6000
bfa74976
RS
6001@cindex default stack limit
6002The default value of @code{YYMAXDEPTH}, if you do not define it, is
600310000.
6004
6005@vindex YYINITDEPTH
6006You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6007macro @code{YYINITDEPTH} to a positive integer. For the C
6008@acronym{LALR}(1) parser, this value must be a compile-time constant
6009unless you are assuming C99 or some other target language or compiler
6010that allows variable-length arrays. The default is 200.
6011
1a059451 6012Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6013
d1a1114f 6014@c FIXME: C++ output.
c827f760 6015Because of semantical differences between C and C++, the
1a059451
PE
6016@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6017by C++ compilers. In this precise case (compiling a C parser as C++) you are
6018suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6019this deficiency in a future release.
d1a1114f 6020
342b8b6e 6021@node Error Recovery
bfa74976
RS
6022@chapter Error Recovery
6023@cindex error recovery
6024@cindex recovery from errors
6025
6e649e65 6026It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6027error. For example, a compiler should recover sufficiently to parse the
6028rest of the input file and check it for errors; a calculator should accept
6029another expression.
6030
6031In a simple interactive command parser where each input is one line, it may
6032be sufficient to allow @code{yyparse} to return 1 on error and have the
6033caller ignore the rest of the input line when that happens (and then call
6034@code{yyparse} again). But this is inadequate for a compiler, because it
6035forgets all the syntactic context leading up to the error. A syntax error
6036deep within a function in the compiler input should not cause the compiler
6037to treat the following line like the beginning of a source file.
6038
6039@findex error
6040You can define how to recover from a syntax error by writing rules to
6041recognize the special token @code{error}. This is a terminal symbol that
6042is always defined (you need not declare it) and reserved for error
6043handling. The Bison parser generates an @code{error} token whenever a
6044syntax error happens; if you have provided a rule to recognize this token
13863333 6045in the current context, the parse can continue.
bfa74976
RS
6046
6047For example:
6048
6049@example
6050stmnts: /* empty string */
6051 | stmnts '\n'
6052 | stmnts exp '\n'
6053 | stmnts error '\n'
6054@end example
6055
6056The fourth rule in this example says that an error followed by a newline
6057makes a valid addition to any @code{stmnts}.
6058
6059What happens if a syntax error occurs in the middle of an @code{exp}? The
6060error recovery rule, interpreted strictly, applies to the precise sequence
6061of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6062the middle of an @code{exp}, there will probably be some additional tokens
6063and subexpressions on the stack after the last @code{stmnts}, and there
6064will be tokens to read before the next newline. So the rule is not
6065applicable in the ordinary way.
6066
6067But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6068the semantic context and part of the input. First it discards states
6069and objects from the stack until it gets back to a state in which the
bfa74976 6070@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6071already parsed are discarded, back to the last complete @code{stmnts}.)
6072At this point the @code{error} token can be shifted. Then, if the old
742e4900 6073lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6074tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6075this example, Bison reads and discards input until the next newline so
6076that the fourth rule can apply. Note that discarded symbols are
6077possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6078Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6079
6080The choice of error rules in the grammar is a choice of strategies for
6081error recovery. A simple and useful strategy is simply to skip the rest of
6082the current input line or current statement if an error is detected:
6083
6084@example
72d2299c 6085stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6086@end example
6087
6088It is also useful to recover to the matching close-delimiter of an
6089opening-delimiter that has already been parsed. Otherwise the
6090close-delimiter will probably appear to be unmatched, and generate another,
6091spurious error message:
6092
6093@example
6094primary: '(' expr ')'
6095 | '(' error ')'
6096 @dots{}
6097 ;
6098@end example
6099
6100Error recovery strategies are necessarily guesses. When they guess wrong,
6101one syntax error often leads to another. In the above example, the error
6102recovery rule guesses that an error is due to bad input within one
6103@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6104middle of a valid @code{stmnt}. After the error recovery rule recovers
6105from the first error, another syntax error will be found straightaway,
6106since the text following the spurious semicolon is also an invalid
6107@code{stmnt}.
6108
6109To prevent an outpouring of error messages, the parser will output no error
6110message for another syntax error that happens shortly after the first; only
6111after three consecutive input tokens have been successfully shifted will
6112error messages resume.
6113
6114Note that rules which accept the @code{error} token may have actions, just
6115as any other rules can.
6116
6117@findex yyerrok
6118You can make error messages resume immediately by using the macro
6119@code{yyerrok} in an action. If you do this in the error rule's action, no
6120error messages will be suppressed. This macro requires no arguments;
6121@samp{yyerrok;} is a valid C statement.
6122
6123@findex yyclearin
742e4900 6124The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6125this is unacceptable, then the macro @code{yyclearin} may be used to clear
6126this token. Write the statement @samp{yyclearin;} in the error rule's
6127action.
32c29292 6128@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6129
6e649e65 6130For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6131called that advances the input stream to some point where parsing should
6132once again commence. The next symbol returned by the lexical scanner is
742e4900 6133probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6134with @samp{yyclearin;}.
6135
6136@vindex YYRECOVERING
02103984
PE
6137The expression @code{YYRECOVERING ()} yields 1 when the parser
6138is recovering from a syntax error, and 0 otherwise.
6139Syntax error diagnostics are suppressed while recovering from a syntax
6140error.
bfa74976 6141
342b8b6e 6142@node Context Dependency
bfa74976
RS
6143@chapter Handling Context Dependencies
6144
6145The Bison paradigm is to parse tokens first, then group them into larger
6146syntactic units. In many languages, the meaning of a token is affected by
6147its context. Although this violates the Bison paradigm, certain techniques
6148(known as @dfn{kludges}) may enable you to write Bison parsers for such
6149languages.
6150
6151@menu
6152* Semantic Tokens:: Token parsing can depend on the semantic context.
6153* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6154* Tie-in Recovery:: Lexical tie-ins have implications for how
6155 error recovery rules must be written.
6156@end menu
6157
6158(Actually, ``kludge'' means any technique that gets its job done but is
6159neither clean nor robust.)
6160
342b8b6e 6161@node Semantic Tokens
bfa74976
RS
6162@section Semantic Info in Token Types
6163
6164The C language has a context dependency: the way an identifier is used
6165depends on what its current meaning is. For example, consider this:
6166
6167@example
6168foo (x);
6169@end example
6170
6171This looks like a function call statement, but if @code{foo} is a typedef
6172name, then this is actually a declaration of @code{x}. How can a Bison
6173parser for C decide how to parse this input?
6174
c827f760 6175The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6176@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6177identifier, it looks up the current declaration of the identifier in order
6178to decide which token type to return: @code{TYPENAME} if the identifier is
6179declared as a typedef, @code{IDENTIFIER} otherwise.
6180
6181The grammar rules can then express the context dependency by the choice of
6182token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6183but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6184@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6185is @emph{not} significant, such as in declarations that can shadow a
6186typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6187accepted---there is one rule for each of the two token types.
6188
6189This technique is simple to use if the decision of which kinds of
6190identifiers to allow is made at a place close to where the identifier is
6191parsed. But in C this is not always so: C allows a declaration to
6192redeclare a typedef name provided an explicit type has been specified
6193earlier:
6194
6195@example
3a4f411f
PE
6196typedef int foo, bar;
6197int baz (void)
6198@{
6199 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6200 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6201 return foo (bar);
6202@}
bfa74976
RS
6203@end example
6204
6205Unfortunately, the name being declared is separated from the declaration
6206construct itself by a complicated syntactic structure---the ``declarator''.
6207
9ecbd125 6208As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6209all the nonterminal names changed: once for parsing a declaration in
6210which a typedef name can be redefined, and once for parsing a
6211declaration in which that can't be done. Here is a part of the
6212duplication, with actions omitted for brevity:
bfa74976
RS
6213
6214@example
6215initdcl:
6216 declarator maybeasm '='
6217 init
6218 | declarator maybeasm
6219 ;
6220
6221notype_initdcl:
6222 notype_declarator maybeasm '='
6223 init
6224 | notype_declarator maybeasm
6225 ;
6226@end example
6227
6228@noindent
6229Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6230cannot. The distinction between @code{declarator} and
6231@code{notype_declarator} is the same sort of thing.
6232
6233There is some similarity between this technique and a lexical tie-in
6234(described next), in that information which alters the lexical analysis is
6235changed during parsing by other parts of the program. The difference is
6236here the information is global, and is used for other purposes in the
6237program. A true lexical tie-in has a special-purpose flag controlled by
6238the syntactic context.
6239
342b8b6e 6240@node Lexical Tie-ins
bfa74976
RS
6241@section Lexical Tie-ins
6242@cindex lexical tie-in
6243
6244One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6245which is set by Bison actions, whose purpose is to alter the way tokens are
6246parsed.
6247
6248For example, suppose we have a language vaguely like C, but with a special
6249construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6250an expression in parentheses in which all integers are hexadecimal. In
6251particular, the token @samp{a1b} must be treated as an integer rather than
6252as an identifier if it appears in that context. Here is how you can do it:
6253
6254@example
6255@group
6256%@{
38a92d50
PE
6257 int hexflag;
6258 int yylex (void);
6259 void yyerror (char const *);
bfa74976
RS
6260%@}
6261%%
6262@dots{}
6263@end group
6264@group
6265expr: IDENTIFIER
6266 | constant
6267 | HEX '('
6268 @{ hexflag = 1; @}
6269 expr ')'
6270 @{ hexflag = 0;
6271 $$ = $4; @}
6272 | expr '+' expr
6273 @{ $$ = make_sum ($1, $3); @}
6274 @dots{}
6275 ;
6276@end group
6277
6278@group
6279constant:
6280 INTEGER
6281 | STRING
6282 ;
6283@end group
6284@end example
6285
6286@noindent
6287Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6288it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6289with letters are parsed as integers if possible.
6290
342b8b6e
AD
6291The declaration of @code{hexflag} shown in the prologue of the parser file
6292is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6293You must also write the code in @code{yylex} to obey the flag.
bfa74976 6294
342b8b6e 6295@node Tie-in Recovery
bfa74976
RS
6296@section Lexical Tie-ins and Error Recovery
6297
6298Lexical tie-ins make strict demands on any error recovery rules you have.
6299@xref{Error Recovery}.
6300
6301The reason for this is that the purpose of an error recovery rule is to
6302abort the parsing of one construct and resume in some larger construct.
6303For example, in C-like languages, a typical error recovery rule is to skip
6304tokens until the next semicolon, and then start a new statement, like this:
6305
6306@example
6307stmt: expr ';'
6308 | IF '(' expr ')' stmt @{ @dots{} @}
6309 @dots{}
6310 error ';'
6311 @{ hexflag = 0; @}
6312 ;
6313@end example
6314
6315If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6316construct, this error rule will apply, and then the action for the
6317completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6318remain set for the entire rest of the input, or until the next @code{hex}
6319keyword, causing identifiers to be misinterpreted as integers.
6320
6321To avoid this problem the error recovery rule itself clears @code{hexflag}.
6322
6323There may also be an error recovery rule that works within expressions.
6324For example, there could be a rule which applies within parentheses
6325and skips to the close-parenthesis:
6326
6327@example
6328@group
6329expr: @dots{}
6330 | '(' expr ')'
6331 @{ $$ = $2; @}
6332 | '(' error ')'
6333 @dots{}
6334@end group
6335@end example
6336
6337If this rule acts within the @code{hex} construct, it is not going to abort
6338that construct (since it applies to an inner level of parentheses within
6339the construct). Therefore, it should not clear the flag: the rest of
6340the @code{hex} construct should be parsed with the flag still in effect.
6341
6342What if there is an error recovery rule which might abort out of the
6343@code{hex} construct or might not, depending on circumstances? There is no
6344way you can write the action to determine whether a @code{hex} construct is
6345being aborted or not. So if you are using a lexical tie-in, you had better
6346make sure your error recovery rules are not of this kind. Each rule must
6347be such that you can be sure that it always will, or always won't, have to
6348clear the flag.
6349
ec3bc396
AD
6350@c ================================================== Debugging Your Parser
6351
342b8b6e 6352@node Debugging
bfa74976 6353@chapter Debugging Your Parser
ec3bc396
AD
6354
6355Developing a parser can be a challenge, especially if you don't
6356understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6357Algorithm}). Even so, sometimes a detailed description of the automaton
6358can help (@pxref{Understanding, , Understanding Your Parser}), or
6359tracing the execution of the parser can give some insight on why it
6360behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6361
6362@menu
6363* Understanding:: Understanding the structure of your parser.
6364* Tracing:: Tracing the execution of your parser.
6365@end menu
6366
6367@node Understanding
6368@section Understanding Your Parser
6369
6370As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6371Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6372frequent than one would hope), looking at this automaton is required to
6373tune or simply fix a parser. Bison provides two different
35fe0834 6374representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
6375
6376The textual file is generated when the options @option{--report} or
6377@option{--verbose} are specified, see @xref{Invocation, , Invoking
6378Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6379the parser output file name, and adding @samp{.output} instead.
6380Therefore, if the input file is @file{foo.y}, then the parser file is
6381called @file{foo.tab.c} by default. As a consequence, the verbose
6382output file is called @file{foo.output}.
6383
6384The following grammar file, @file{calc.y}, will be used in the sequel:
6385
6386@example
6387%token NUM STR
6388%left '+' '-'
6389%left '*'
6390%%
6391exp: exp '+' exp
6392 | exp '-' exp
6393 | exp '*' exp
6394 | exp '/' exp
6395 | NUM
6396 ;
6397useless: STR;
6398%%
6399@end example
6400
88bce5a2
AD
6401@command{bison} reports:
6402
6403@example
6404calc.y: warning: 1 useless nonterminal and 1 useless rule
6405calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6406calc.y:11.10-12: warning: useless rule: useless: STR
6407calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6408@end example
6409
6410When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6411creates a file @file{calc.output} with contents detailed below. The
6412order of the output and the exact presentation might vary, but the
6413interpretation is the same.
ec3bc396
AD
6414
6415The first section includes details on conflicts that were solved thanks
6416to precedence and/or associativity:
6417
6418@example
6419Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6420Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6421Conflict in state 8 between rule 2 and token '*' resolved as shift.
6422@exdent @dots{}
6423@end example
6424
6425@noindent
6426The next section lists states that still have conflicts.
6427
6428@example
5a99098d
PE
6429State 8 conflicts: 1 shift/reduce
6430State 9 conflicts: 1 shift/reduce
6431State 10 conflicts: 1 shift/reduce
6432State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6433@end example
6434
6435@noindent
6436@cindex token, useless
6437@cindex useless token
6438@cindex nonterminal, useless
6439@cindex useless nonterminal
6440@cindex rule, useless
6441@cindex useless rule
6442The next section reports useless tokens, nonterminal and rules. Useless
6443nonterminals and rules are removed in order to produce a smaller parser,
6444but useless tokens are preserved, since they might be used by the
6445scanner (note the difference between ``useless'' and ``not used''
6446below):
6447
6448@example
6449Useless nonterminals:
6450 useless
6451
6452Terminals which are not used:
6453 STR
6454
6455Useless rules:
6456#6 useless: STR;
6457@end example
6458
6459@noindent
6460The next section reproduces the exact grammar that Bison used:
6461
6462@example
6463Grammar
6464
6465 Number, Line, Rule
88bce5a2 6466 0 5 $accept -> exp $end
ec3bc396
AD
6467 1 5 exp -> exp '+' exp
6468 2 6 exp -> exp '-' exp
6469 3 7 exp -> exp '*' exp
6470 4 8 exp -> exp '/' exp
6471 5 9 exp -> NUM
6472@end example
6473
6474@noindent
6475and reports the uses of the symbols:
6476
6477@example
6478Terminals, with rules where they appear
6479
88bce5a2 6480$end (0) 0
ec3bc396
AD
6481'*' (42) 3
6482'+' (43) 1
6483'-' (45) 2
6484'/' (47) 4
6485error (256)
6486NUM (258) 5
6487
6488Nonterminals, with rules where they appear
6489
88bce5a2 6490$accept (8)
ec3bc396
AD
6491 on left: 0
6492exp (9)
6493 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6494@end example
6495
6496@noindent
6497@cindex item
6498@cindex pointed rule
6499@cindex rule, pointed
6500Bison then proceeds onto the automaton itself, describing each state
6501with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6502item is a production rule together with a point (marked by @samp{.})
6503that the input cursor.
6504
6505@example
6506state 0
6507
88bce5a2 6508 $accept -> . exp $ (rule 0)
ec3bc396 6509
2a8d363a 6510 NUM shift, and go to state 1
ec3bc396 6511
2a8d363a 6512 exp go to state 2
ec3bc396
AD
6513@end example
6514
6515This reads as follows: ``state 0 corresponds to being at the very
6516beginning of the parsing, in the initial rule, right before the start
6517symbol (here, @code{exp}). When the parser returns to this state right
6518after having reduced a rule that produced an @code{exp}, the control
6519flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6520symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6521the parse stack, and the control flow jumps to state 1. Any other
742e4900 6522lookahead triggers a syntax error.''
ec3bc396
AD
6523
6524@cindex core, item set
6525@cindex item set core
6526@cindex kernel, item set
6527@cindex item set core
6528Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6529report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6530at the beginning of any rule deriving an @code{exp}. By default Bison
6531reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6532you want to see more detail you can invoke @command{bison} with
6533@option{--report=itemset} to list all the items, include those that can
6534be derived:
6535
6536@example
6537state 0
6538
88bce5a2 6539 $accept -> . exp $ (rule 0)
ec3bc396
AD
6540 exp -> . exp '+' exp (rule 1)
6541 exp -> . exp '-' exp (rule 2)
6542 exp -> . exp '*' exp (rule 3)
6543 exp -> . exp '/' exp (rule 4)
6544 exp -> . NUM (rule 5)
6545
6546 NUM shift, and go to state 1
6547
6548 exp go to state 2
6549@end example
6550
6551@noindent
6552In the state 1...
6553
6554@example
6555state 1
6556
6557 exp -> NUM . (rule 5)
6558
2a8d363a 6559 $default reduce using rule 5 (exp)
ec3bc396
AD
6560@end example
6561
6562@noindent
742e4900 6563the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
6564(@samp{$default}), the parser will reduce it. If it was coming from
6565state 0, then, after this reduction it will return to state 0, and will
6566jump to state 2 (@samp{exp: go to state 2}).
6567
6568@example
6569state 2
6570
88bce5a2 6571 $accept -> exp . $ (rule 0)
ec3bc396
AD
6572 exp -> exp . '+' exp (rule 1)
6573 exp -> exp . '-' exp (rule 2)
6574 exp -> exp . '*' exp (rule 3)
6575 exp -> exp . '/' exp (rule 4)
6576
2a8d363a
AD
6577 $ shift, and go to state 3
6578 '+' shift, and go to state 4
6579 '-' shift, and go to state 5
6580 '*' shift, and go to state 6
6581 '/' shift, and go to state 7
ec3bc396
AD
6582@end example
6583
6584@noindent
6585In state 2, the automaton can only shift a symbol. For instance,
742e4900 6586because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
6587@samp{+}, it will be shifted on the parse stack, and the automaton
6588control will jump to state 4, corresponding to the item @samp{exp -> exp
6589'+' . exp}. Since there is no default action, any other token than
6e649e65 6590those listed above will trigger a syntax error.
ec3bc396
AD
6591
6592The state 3 is named the @dfn{final state}, or the @dfn{accepting
6593state}:
6594
6595@example
6596state 3
6597
88bce5a2 6598 $accept -> exp $ . (rule 0)
ec3bc396 6599
2a8d363a 6600 $default accept
ec3bc396
AD
6601@end example
6602
6603@noindent
6604the initial rule is completed (the start symbol and the end
6605of input were read), the parsing exits successfully.
6606
6607The interpretation of states 4 to 7 is straightforward, and is left to
6608the reader.
6609
6610@example
6611state 4
6612
6613 exp -> exp '+' . exp (rule 1)
6614
2a8d363a 6615 NUM shift, and go to state 1
ec3bc396 6616
2a8d363a 6617 exp go to state 8
ec3bc396
AD
6618
6619state 5
6620
6621 exp -> exp '-' . exp (rule 2)
6622
2a8d363a 6623 NUM shift, and go to state 1
ec3bc396 6624
2a8d363a 6625 exp go to state 9
ec3bc396
AD
6626
6627state 6
6628
6629 exp -> exp '*' . exp (rule 3)
6630
2a8d363a 6631 NUM shift, and go to state 1
ec3bc396 6632
2a8d363a 6633 exp go to state 10
ec3bc396
AD
6634
6635state 7
6636
6637 exp -> exp '/' . exp (rule 4)
6638
2a8d363a 6639 NUM shift, and go to state 1
ec3bc396 6640
2a8d363a 6641 exp go to state 11
ec3bc396
AD
6642@end example
6643
5a99098d
PE
6644As was announced in beginning of the report, @samp{State 8 conflicts:
66451 shift/reduce}:
ec3bc396
AD
6646
6647@example
6648state 8
6649
6650 exp -> exp . '+' exp (rule 1)
6651 exp -> exp '+' exp . (rule 1)
6652 exp -> exp . '-' exp (rule 2)
6653 exp -> exp . '*' exp (rule 3)
6654 exp -> exp . '/' exp (rule 4)
6655
2a8d363a
AD
6656 '*' shift, and go to state 6
6657 '/' shift, and go to state 7
ec3bc396 6658
2a8d363a
AD
6659 '/' [reduce using rule 1 (exp)]
6660 $default reduce using rule 1 (exp)
ec3bc396
AD
6661@end example
6662
742e4900 6663Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
6664either shifting (and going to state 7), or reducing rule 1. The
6665conflict means that either the grammar is ambiguous, or the parser lacks
6666information to make the right decision. Indeed the grammar is
6667ambiguous, as, since we did not specify the precedence of @samp{/}, the
6668sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6669NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6670NUM}, which corresponds to reducing rule 1.
6671
c827f760 6672Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6673arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6674Shift/Reduce Conflicts}. Discarded actions are reported in between
6675square brackets.
6676
6677Note that all the previous states had a single possible action: either
6678shifting the next token and going to the corresponding state, or
6679reducing a single rule. In the other cases, i.e., when shifting
6680@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
6681possible, the lookahead is required to select the action. State 8 is
6682one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6683is shifting, otherwise the action is reducing rule 1. In other words,
6684the first two items, corresponding to rule 1, are not eligible when the
742e4900 6685lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 6686precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
6687with some set of possible lookahead tokens. When run with
6688@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
6689
6690@example
6691state 8
6692
6693 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6694 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6695 exp -> exp . '-' exp (rule 2)
6696 exp -> exp . '*' exp (rule 3)
6697 exp -> exp . '/' exp (rule 4)
6698
6699 '*' shift, and go to state 6
6700 '/' shift, and go to state 7
6701
6702 '/' [reduce using rule 1 (exp)]
6703 $default reduce using rule 1 (exp)
6704@end example
6705
6706The remaining states are similar:
6707
6708@example
6709state 9
6710
6711 exp -> exp . '+' exp (rule 1)
6712 exp -> exp . '-' exp (rule 2)
6713 exp -> exp '-' exp . (rule 2)
6714 exp -> exp . '*' exp (rule 3)
6715 exp -> exp . '/' exp (rule 4)
6716
2a8d363a
AD
6717 '*' shift, and go to state 6
6718 '/' shift, and go to state 7
ec3bc396 6719
2a8d363a
AD
6720 '/' [reduce using rule 2 (exp)]
6721 $default reduce using rule 2 (exp)
ec3bc396
AD
6722
6723state 10
6724
6725 exp -> exp . '+' exp (rule 1)
6726 exp -> exp . '-' exp (rule 2)
6727 exp -> exp . '*' exp (rule 3)
6728 exp -> exp '*' exp . (rule 3)
6729 exp -> exp . '/' exp (rule 4)
6730
2a8d363a 6731 '/' shift, and go to state 7
ec3bc396 6732
2a8d363a
AD
6733 '/' [reduce using rule 3 (exp)]
6734 $default reduce using rule 3 (exp)
ec3bc396
AD
6735
6736state 11
6737
6738 exp -> exp . '+' exp (rule 1)
6739 exp -> exp . '-' exp (rule 2)
6740 exp -> exp . '*' exp (rule 3)
6741 exp -> exp . '/' exp (rule 4)
6742 exp -> exp '/' exp . (rule 4)
6743
2a8d363a
AD
6744 '+' shift, and go to state 4
6745 '-' shift, and go to state 5
6746 '*' shift, and go to state 6
6747 '/' shift, and go to state 7
ec3bc396 6748
2a8d363a
AD
6749 '+' [reduce using rule 4 (exp)]
6750 '-' [reduce using rule 4 (exp)]
6751 '*' [reduce using rule 4 (exp)]
6752 '/' [reduce using rule 4 (exp)]
6753 $default reduce using rule 4 (exp)
ec3bc396
AD
6754@end example
6755
6756@noindent
fa7e68c3
PE
6757Observe that state 11 contains conflicts not only due to the lack of
6758precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6759@samp{*}, but also because the
ec3bc396
AD
6760associativity of @samp{/} is not specified.
6761
6762
6763@node Tracing
6764@section Tracing Your Parser
bfa74976
RS
6765@findex yydebug
6766@cindex debugging
6767@cindex tracing the parser
6768
6769If a Bison grammar compiles properly but doesn't do what you want when it
6770runs, the @code{yydebug} parser-trace feature can help you figure out why.
6771
3ded9a63
AD
6772There are several means to enable compilation of trace facilities:
6773
6774@table @asis
6775@item the macro @code{YYDEBUG}
6776@findex YYDEBUG
6777Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6778parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6779@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6780YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6781Prologue}).
6782
6783@item the option @option{-t}, @option{--debug}
6784Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6785,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6786
6787@item the directive @samp{%debug}
6788@findex %debug
6789Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6790Declaration Summary}). This is a Bison extension, which will prove
6791useful when Bison will output parsers for languages that don't use a
c827f760
PE
6792preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6793you, this is
3ded9a63
AD
6794the preferred solution.
6795@end table
6796
6797We suggest that you always enable the debug option so that debugging is
6798always possible.
bfa74976 6799
02a81e05 6800The trace facility outputs messages with macro calls of the form
e2742e46 6801@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6802@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6803arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6804define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 6805and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6806
6807Once you have compiled the program with trace facilities, the way to
6808request a trace is to store a nonzero value in the variable @code{yydebug}.
6809You can do this by making the C code do it (in @code{main}, perhaps), or
6810you can alter the value with a C debugger.
6811
6812Each step taken by the parser when @code{yydebug} is nonzero produces a
6813line or two of trace information, written on @code{stderr}. The trace
6814messages tell you these things:
6815
6816@itemize @bullet
6817@item
6818Each time the parser calls @code{yylex}, what kind of token was read.
6819
6820@item
6821Each time a token is shifted, the depth and complete contents of the
6822state stack (@pxref{Parser States}).
6823
6824@item
6825Each time a rule is reduced, which rule it is, and the complete contents
6826of the state stack afterward.
6827@end itemize
6828
6829To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6830produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6831Bison}). This file shows the meaning of each state in terms of
6832positions in various rules, and also what each state will do with each
6833possible input token. As you read the successive trace messages, you
6834can see that the parser is functioning according to its specification in
6835the listing file. Eventually you will arrive at the place where
6836something undesirable happens, and you will see which parts of the
6837grammar are to blame.
bfa74976
RS
6838
6839The parser file is a C program and you can use C debuggers on it, but it's
6840not easy to interpret what it is doing. The parser function is a
6841finite-state machine interpreter, and aside from the actions it executes
6842the same code over and over. Only the values of variables show where in
6843the grammar it is working.
6844
6845@findex YYPRINT
6846The debugging information normally gives the token type of each token
6847read, but not its semantic value. You can optionally define a macro
6848named @code{YYPRINT} to provide a way to print the value. If you define
6849@code{YYPRINT}, it should take three arguments. The parser will pass a
6850standard I/O stream, the numeric code for the token type, and the token
6851value (from @code{yylval}).
6852
6853Here is an example of @code{YYPRINT} suitable for the multi-function
6854calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6855
6856@smallexample
38a92d50
PE
6857%@{
6858 static void print_token_value (FILE *, int, YYSTYPE);
6859 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6860%@}
6861
6862@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6863
6864static void
831d3c99 6865print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6866@{
6867 if (type == VAR)
d3c4e709 6868 fprintf (file, "%s", value.tptr->name);
bfa74976 6869 else if (type == NUM)
d3c4e709 6870 fprintf (file, "%d", value.val);
bfa74976
RS
6871@}
6872@end smallexample
6873
ec3bc396
AD
6874@c ================================================= Invoking Bison
6875
342b8b6e 6876@node Invocation
bfa74976
RS
6877@chapter Invoking Bison
6878@cindex invoking Bison
6879@cindex Bison invocation
6880@cindex options for invoking Bison
6881
6882The usual way to invoke Bison is as follows:
6883
6884@example
6885bison @var{infile}
6886@end example
6887
6888Here @var{infile} is the grammar file name, which usually ends in
6889@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6890with @samp{.tab.c} and removing any leading directory. Thus, the
6891@samp{bison foo.y} file name yields
6892@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6893@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6894C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6895or @file{foo.y++}. Then, the output files will take an extension like
6896the given one as input (respectively @file{foo.tab.cpp} and
6897@file{foo.tab.c++}).
fa4d969f 6898This feature takes effect with all options that manipulate file names like
234a3be3
AD
6899@samp{-o} or @samp{-d}.
6900
6901For example :
6902
6903@example
6904bison -d @var{infile.yxx}
6905@end example
84163231 6906@noindent
72d2299c 6907will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6908
6909@example
b56471a6 6910bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6911@end example
84163231 6912@noindent
234a3be3
AD
6913will produce @file{output.c++} and @file{outfile.h++}.
6914
397ec073
PE
6915For compatibility with @acronym{POSIX}, the standard Bison
6916distribution also contains a shell script called @command{yacc} that
6917invokes Bison with the @option{-y} option.
6918
bfa74976 6919@menu
13863333 6920* Bison Options:: All the options described in detail,
c827f760 6921 in alphabetical order by short options.
bfa74976 6922* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6923* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6924@end menu
6925
342b8b6e 6926@node Bison Options
bfa74976
RS
6927@section Bison Options
6928
6929Bison supports both traditional single-letter options and mnemonic long
6930option names. Long option names are indicated with @samp{--} instead of
6931@samp{-}. Abbreviations for option names are allowed as long as they
6932are unique. When a long option takes an argument, like
6933@samp{--file-prefix}, connect the option name and the argument with
6934@samp{=}.
6935
6936Here is a list of options that can be used with Bison, alphabetized by
6937short option. It is followed by a cross key alphabetized by long
6938option.
6939
89cab50d
AD
6940@c Please, keep this ordered as in `bison --help'.
6941@noindent
6942Operations modes:
6943@table @option
6944@item -h
6945@itemx --help
6946Print a summary of the command-line options to Bison and exit.
bfa74976 6947
89cab50d
AD
6948@item -V
6949@itemx --version
6950Print the version number of Bison and exit.
bfa74976 6951
f7ab6a50
PE
6952@item --print-localedir
6953Print the name of the directory containing locale-dependent data.
6954
89cab50d
AD
6955@item -y
6956@itemx --yacc
54662697
PE
6957Act more like the traditional Yacc command. This can cause
6958different diagnostics to be generated, and may change behavior in
6959other minor ways. Most importantly, imitate Yacc's output
6960file name conventions, so that the parser output file is called
89cab50d 6961@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
6962@file{y.tab.h}.
6963Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
6964statements in addition to an @code{enum} to associate token numbers with token
6965names.
6966Thus, the following shell script can substitute for Yacc, and the Bison
6967distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 6968
89cab50d 6969@example
397ec073 6970#! /bin/sh
26e06a21 6971bison -y "$@@"
89cab50d 6972@end example
54662697
PE
6973
6974The @option{-y}/@option{--yacc} option is intended for use with
6975traditional Yacc grammars. If your grammar uses a Bison extension
6976like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
6977this option is specified.
6978
89cab50d
AD
6979@end table
6980
6981@noindent
6982Tuning the parser:
6983
6984@table @option
cd5bd6ac
AD
6985@item -S @var{file}
6986@itemx --skeleton=@var{file}
6987Specify the skeleton to use. You probably don't need this option unless
6988you are developing Bison.
6989
89cab50d
AD
6990@item -t
6991@itemx --debug
4947ebdb
PE
6992In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6993already defined, so that the debugging facilities are compiled.
ec3bc396 6994@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6995
6996@item --locations
d8988b2f 6997Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6998
6999@item -p @var{prefix}
7000@itemx --name-prefix=@var{prefix}
d8988b2f
AD
7001Pretend that @code{%name-prefix="@var{prefix}"} was specified.
7002@xref{Decl Summary}.
bfa74976
RS
7003
7004@item -l
7005@itemx --no-lines
7006Don't put any @code{#line} preprocessor commands in the parser file.
7007Ordinarily Bison puts them in the parser file so that the C compiler
7008and debuggers will associate errors with your source file, the
7009grammar file. This option causes them to associate errors with the
95e742f7 7010parser file, treating it as an independent source file in its own right.
bfa74976 7011
931c7513
RS
7012@item -n
7013@itemx --no-parser
d8988b2f 7014Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 7015
89cab50d
AD
7016@item -k
7017@itemx --token-table
d8988b2f 7018Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7019@end table
bfa74976 7020
89cab50d
AD
7021@noindent
7022Adjust the output:
bfa74976 7023
89cab50d
AD
7024@table @option
7025@item -d
d8988b2f
AD
7026@itemx --defines
7027Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7028file containing macro definitions for the token type names defined in
4bfd5e4e 7029the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7030
342b8b6e 7031@item --defines=@var{defines-file}
d8988b2f 7032Same as above, but save in the file @var{defines-file}.
342b8b6e 7033
89cab50d
AD
7034@item -b @var{file-prefix}
7035@itemx --file-prefix=@var{prefix}
9c437126 7036Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7037for all Bison output file names. @xref{Decl Summary}.
bfa74976 7038
ec3bc396
AD
7039@item -r @var{things}
7040@itemx --report=@var{things}
7041Write an extra output file containing verbose description of the comma
7042separated list of @var{things} among:
7043
7044@table @code
7045@item state
7046Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7047@acronym{LALR} automaton.
ec3bc396 7048
742e4900 7049@item lookahead
ec3bc396 7050Implies @code{state} and augments the description of the automaton with
742e4900 7051each rule's lookahead set.
ec3bc396
AD
7052
7053@item itemset
7054Implies @code{state} and augments the description of the automaton with
7055the full set of items for each state, instead of its core only.
7056@end table
7057
bfa74976
RS
7058@item -v
7059@itemx --verbose
9c437126 7060Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7061file containing verbose descriptions of the grammar and
72d2299c 7062parser. @xref{Decl Summary}.
bfa74976 7063
fa4d969f
PE
7064@item -o @var{file}
7065@itemx --output=@var{file}
7066Specify the @var{file} for the parser file.
bfa74976 7067
fa4d969f 7068The other output files' names are constructed from @var{file} as
d8988b2f 7069described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7070
7071@item -g
35fe0834
PE
7072Output a graphical representation of the @acronym{LALR}(1) grammar
7073automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7074@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7075If the grammar file is @file{foo.y}, the output file will
7076be @file{foo.dot}.
342b8b6e
AD
7077
7078@item --graph=@var{graph-file}
72d2299c
PE
7079The behavior of @var{--graph} is the same than @samp{-g}. The only
7080difference is that it has an optional argument which is the name of
fa4d969f 7081the output graph file.
bfa74976
RS
7082@end table
7083
342b8b6e 7084@node Option Cross Key
bfa74976
RS
7085@section Option Cross Key
7086
aa08666d 7087@c FIXME: How about putting the directives too?
bfa74976
RS
7088Here is a list of options, alphabetized by long option, to help you find
7089the corresponding short option.
7090
aa08666d
AD
7091@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7092@headitem Long Option @tab Short Option
7093@item @option{--debug} @tab @option{-t}
7094@item @option{--defines=@var{defines-file}} @tab @option{-d}
7095@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7096@item @option{--graph=@var{graph-file}} @tab @option{-d}
7097@item @option{--help} @tab @option{-h}
7098@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7099@item @option{--no-lines} @tab @option{-l}
7100@item @option{--no-parser} @tab @option{-n}
7101@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7102@item @option{--print-localedir} @tab
7103@item @option{--token-table} @tab @option{-k}
7104@item @option{--verbose} @tab @option{-v}
7105@item @option{--version} @tab @option{-V}
7106@item @option{--yacc} @tab @option{-y}
7107@end multitable
bfa74976 7108
93dd49ab
PE
7109@node Yacc Library
7110@section Yacc Library
7111
7112The Yacc library contains default implementations of the
7113@code{yyerror} and @code{main} functions. These default
7114implementations are normally not useful, but @acronym{POSIX} requires
7115them. To use the Yacc library, link your program with the
7116@option{-ly} option. Note that Bison's implementation of the Yacc
7117library is distributed under the terms of the @acronym{GNU} General
7118Public License (@pxref{Copying}).
7119
7120If you use the Yacc library's @code{yyerror} function, you should
7121declare @code{yyerror} as follows:
7122
7123@example
7124int yyerror (char const *);
7125@end example
7126
7127Bison ignores the @code{int} value returned by this @code{yyerror}.
7128If you use the Yacc library's @code{main} function, your
7129@code{yyparse} function should have the following type signature:
7130
7131@example
7132int yyparse (void);
7133@end example
7134
12545799
AD
7135@c ================================================= C++ Bison
7136
7137@node C++ Language Interface
7138@chapter C++ Language Interface
7139
7140@menu
7141* C++ Parsers:: The interface to generate C++ parser classes
7142* A Complete C++ Example:: Demonstrating their use
7143@end menu
7144
7145@node C++ Parsers
7146@section C++ Parsers
7147
7148@menu
7149* C++ Bison Interface:: Asking for C++ parser generation
7150* C++ Semantic Values:: %union vs. C++
7151* C++ Location Values:: The position and location classes
7152* C++ Parser Interface:: Instantiating and running the parser
7153* C++ Scanner Interface:: Exchanges between yylex and parse
7154@end menu
7155
7156@node C++ Bison Interface
7157@subsection C++ Bison Interface
7158@c - %skeleton "lalr1.cc"
7159@c - Always pure
7160@c - initial action
7161
aa08666d
AD
7162The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To
7163select it, you may either pass the option @option{--skeleton=lalr1.cc}
7164to Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
12545799 7165grammar preamble. When run, @command{bison} will create several
aa08666d
AD
7166entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7167directive to change the namespace name, see @ref{Decl Summary}. The
7168various classes are generated in the following files:
7169
12545799
AD
7170@table @file
7171@item position.hh
7172@itemx location.hh
7173The definition of the classes @code{position} and @code{location},
7174used for location tracking. @xref{C++ Location Values}.
7175
7176@item stack.hh
7177An auxiliary class @code{stack} used by the parser.
7178
fa4d969f
PE
7179@item @var{file}.hh
7180@itemx @var{file}.cc
cd8b5791
AD
7181(Assuming the extension of the input file was @samp{.yy}.) The
7182declaration and implementation of the C++ parser class. The basename
7183and extension of these two files follow the same rules as with regular C
7184parsers (@pxref{Invocation}).
12545799 7185
cd8b5791
AD
7186The header is @emph{mandatory}; you must either pass
7187@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7188@samp{%defines} directive.
7189@end table
7190
7191All these files are documented using Doxygen; run @command{doxygen}
7192for a complete and accurate documentation.
7193
7194@node C++ Semantic Values
7195@subsection C++ Semantic Values
7196@c - No objects in unions
7197@c - YSTYPE
7198@c - Printer and destructor
7199
7200The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7201Collection of Value Types}. In particular it produces a genuine
7202@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7203within pseudo-unions (similar to Boost variants) might be implemented to
7204alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7205@itemize @minus
7206@item
fb9712a9
AD
7207The type @code{YYSTYPE} is defined but its use is discouraged: rather
7208you should refer to the parser's encapsulated type
7209@code{yy::parser::semantic_type}.
12545799
AD
7210@item
7211Non POD (Plain Old Data) types cannot be used. C++ forbids any
7212instance of classes with constructors in unions: only @emph{pointers}
7213to such objects are allowed.
7214@end itemize
7215
7216Because objects have to be stored via pointers, memory is not
7217reclaimed automatically: using the @code{%destructor} directive is the
7218only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7219Symbols}.
7220
7221
7222@node C++ Location Values
7223@subsection C++ Location Values
7224@c - %locations
7225@c - class Position
7226@c - class Location
b47dbebe 7227@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7228
7229When the directive @code{%locations} is used, the C++ parser supports
7230location tracking, see @ref{Locations, , Locations Overview}. Two
7231auxiliary classes define a @code{position}, a single point in a file,
7232and a @code{location}, a range composed of a pair of
7233@code{position}s (possibly spanning several files).
7234
fa4d969f 7235@deftypemethod {position} {std::string*} file
12545799
AD
7236The name of the file. It will always be handled as a pointer, the
7237parser will never duplicate nor deallocate it. As an experimental
7238feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7239"filename_type" "@var{type}"}.
12545799
AD
7240@end deftypemethod
7241
7242@deftypemethod {position} {unsigned int} line
7243The line, starting at 1.
7244@end deftypemethod
7245
7246@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7247Advance by @var{height} lines, resetting the column number.
7248@end deftypemethod
7249
7250@deftypemethod {position} {unsigned int} column
7251The column, starting at 0.
7252@end deftypemethod
7253
7254@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7255Advance by @var{width} columns, without changing the line number.
7256@end deftypemethod
7257
7258@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7259@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7260@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7261@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7262Various forms of syntactic sugar for @code{columns}.
7263@end deftypemethod
7264
7265@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7266Report @var{p} on @var{o} like this:
fa4d969f
PE
7267@samp{@var{file}:@var{line}.@var{column}}, or
7268@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7269@end deftypemethod
7270
7271@deftypemethod {location} {position} begin
7272@deftypemethodx {location} {position} end
7273The first, inclusive, position of the range, and the first beyond.
7274@end deftypemethod
7275
7276@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7277@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7278Advance the @code{end} position.
7279@end deftypemethod
7280
7281@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7282@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7283@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7284Various forms of syntactic sugar.
7285@end deftypemethod
7286
7287@deftypemethod {location} {void} step ()
7288Move @code{begin} onto @code{end}.
7289@end deftypemethod
7290
7291
7292@node C++ Parser Interface
7293@subsection C++ Parser Interface
7294@c - define parser_class_name
7295@c - Ctor
7296@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7297@c debug_stream.
7298@c - Reporting errors
7299
7300The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7301declare and define the parser class in the namespace @code{yy}. The
7302class name defaults to @code{parser}, but may be changed using
7303@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7304this class is detailed below. It can be extended using the
12545799
AD
7305@code{%parse-param} feature: its semantics is slightly changed since
7306it describes an additional member of the parser class, and an
7307additional argument for its constructor.
7308
8a0adb01
AD
7309@defcv {Type} {parser} {semantic_value_type}
7310@defcvx {Type} {parser} {location_value_type}
12545799 7311The types for semantics value and locations.
8a0adb01 7312@end defcv
12545799
AD
7313
7314@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7315Build a new parser object. There are no arguments by default, unless
7316@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7317@end deftypemethod
7318
7319@deftypemethod {parser} {int} parse ()
7320Run the syntactic analysis, and return 0 on success, 1 otherwise.
7321@end deftypemethod
7322
7323@deftypemethod {parser} {std::ostream&} debug_stream ()
7324@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7325Get or set the stream used for tracing the parsing. It defaults to
7326@code{std::cerr}.
7327@end deftypemethod
7328
7329@deftypemethod {parser} {debug_level_type} debug_level ()
7330@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7331Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7332or nonzero, full tracing.
12545799
AD
7333@end deftypemethod
7334
7335@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7336The definition for this member function must be supplied by the user:
7337the parser uses it to report a parser error occurring at @var{l},
7338described by @var{m}.
7339@end deftypemethod
7340
7341
7342@node C++ Scanner Interface
7343@subsection C++ Scanner Interface
7344@c - prefix for yylex.
7345@c - Pure interface to yylex
7346@c - %lex-param
7347
7348The parser invokes the scanner by calling @code{yylex}. Contrary to C
7349parsers, C++ parsers are always pure: there is no point in using the
7350@code{%pure-parser} directive. Therefore the interface is as follows.
7351
7352@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7353Return the next token. Its type is the return value, its semantic
7354value and location being @var{yylval} and @var{yylloc}. Invocations of
7355@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7356@end deftypemethod
7357
7358
7359@node A Complete C++ Example
7360@section A Complete C++ Example
7361
7362This section demonstrates the use of a C++ parser with a simple but
7363complete example. This example should be available on your system,
7364ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7365focuses on the use of Bison, therefore the design of the various C++
7366classes is very naive: no accessors, no encapsulation of members etc.
7367We will use a Lex scanner, and more precisely, a Flex scanner, to
7368demonstrate the various interaction. A hand written scanner is
7369actually easier to interface with.
7370
7371@menu
7372* Calc++ --- C++ Calculator:: The specifications
7373* Calc++ Parsing Driver:: An active parsing context
7374* Calc++ Parser:: A parser class
7375* Calc++ Scanner:: A pure C++ Flex scanner
7376* Calc++ Top Level:: Conducting the band
7377@end menu
7378
7379@node Calc++ --- C++ Calculator
7380@subsection Calc++ --- C++ Calculator
7381
7382Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7383expression, possibly preceded by variable assignments. An
12545799
AD
7384environment containing possibly predefined variables such as
7385@code{one} and @code{two}, is exchanged with the parser. An example
7386of valid input follows.
7387
7388@example
7389three := 3
7390seven := one + two * three
7391seven * seven
7392@end example
7393
7394@node Calc++ Parsing Driver
7395@subsection Calc++ Parsing Driver
7396@c - An env
7397@c - A place to store error messages
7398@c - A place for the result
7399
7400To support a pure interface with the parser (and the scanner) the
7401technique of the ``parsing context'' is convenient: a structure
7402containing all the data to exchange. Since, in addition to simply
7403launch the parsing, there are several auxiliary tasks to execute (open
7404the file for parsing, instantiate the parser etc.), we recommend
7405transforming the simple parsing context structure into a fully blown
7406@dfn{parsing driver} class.
7407
7408The declaration of this driver class, @file{calc++-driver.hh}, is as
7409follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7410required standard library components, and the declaration of the parser
7411class.
12545799 7412
1c59e0a1 7413@comment file: calc++-driver.hh
12545799
AD
7414@example
7415#ifndef CALCXX_DRIVER_HH
7416# define CALCXX_DRIVER_HH
7417# include <string>
7418# include <map>
fb9712a9 7419# include "calc++-parser.hh"
12545799
AD
7420@end example
7421
12545799
AD
7422
7423@noindent
7424Then comes the declaration of the scanning function. Flex expects
7425the signature of @code{yylex} to be defined in the macro
7426@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7427factor both as follows.
1c59e0a1
AD
7428
7429@comment file: calc++-driver.hh
12545799 7430@example
3dc5e96b
PE
7431// Tell Flex the lexer's prototype ...
7432# define YY_DECL \
c095d689
AD
7433 yy::calcxx_parser::token_type \
7434 yylex (yy::calcxx_parser::semantic_type* yylval, \
7435 yy::calcxx_parser::location_type* yylloc, \
7436 calcxx_driver& driver)
12545799
AD
7437// ... and declare it for the parser's sake.
7438YY_DECL;
7439@end example
7440
7441@noindent
7442The @code{calcxx_driver} class is then declared with its most obvious
7443members.
7444
1c59e0a1 7445@comment file: calc++-driver.hh
12545799
AD
7446@example
7447// Conducting the whole scanning and parsing of Calc++.
7448class calcxx_driver
7449@{
7450public:
7451 calcxx_driver ();
7452 virtual ~calcxx_driver ();
7453
7454 std::map<std::string, int> variables;
7455
7456 int result;
7457@end example
7458
7459@noindent
7460To encapsulate the coordination with the Flex scanner, it is useful to
7461have two members function to open and close the scanning phase.
12545799 7462
1c59e0a1 7463@comment file: calc++-driver.hh
12545799
AD
7464@example
7465 // Handling the scanner.
7466 void scan_begin ();
7467 void scan_end ();
7468 bool trace_scanning;
7469@end example
7470
7471@noindent
7472Similarly for the parser itself.
7473
1c59e0a1 7474@comment file: calc++-driver.hh
12545799
AD
7475@example
7476 // Handling the parser.
7477 void parse (const std::string& f);
7478 std::string file;
7479 bool trace_parsing;
7480@end example
7481
7482@noindent
7483To demonstrate pure handling of parse errors, instead of simply
7484dumping them on the standard error output, we will pass them to the
7485compiler driver using the following two member functions. Finally, we
7486close the class declaration and CPP guard.
7487
1c59e0a1 7488@comment file: calc++-driver.hh
12545799
AD
7489@example
7490 // Error handling.
7491 void error (const yy::location& l, const std::string& m);
7492 void error (const std::string& m);
7493@};
7494#endif // ! CALCXX_DRIVER_HH
7495@end example
7496
7497The implementation of the driver is straightforward. The @code{parse}
7498member function deserves some attention. The @code{error} functions
7499are simple stubs, they should actually register the located error
7500messages and set error state.
7501
1c59e0a1 7502@comment file: calc++-driver.cc
12545799
AD
7503@example
7504#include "calc++-driver.hh"
7505#include "calc++-parser.hh"
7506
7507calcxx_driver::calcxx_driver ()
7508 : trace_scanning (false), trace_parsing (false)
7509@{
7510 variables["one"] = 1;
7511 variables["two"] = 2;
7512@}
7513
7514calcxx_driver::~calcxx_driver ()
7515@{
7516@}
7517
7518void
7519calcxx_driver::parse (const std::string &f)
7520@{
7521 file = f;
7522 scan_begin ();
7523 yy::calcxx_parser parser (*this);
7524 parser.set_debug_level (trace_parsing);
7525 parser.parse ();
7526 scan_end ();
7527@}
7528
7529void
7530calcxx_driver::error (const yy::location& l, const std::string& m)
7531@{
7532 std::cerr << l << ": " << m << std::endl;
7533@}
7534
7535void
7536calcxx_driver::error (const std::string& m)
7537@{
7538 std::cerr << m << std::endl;
7539@}
7540@end example
7541
7542@node Calc++ Parser
7543@subsection Calc++ Parser
7544
b50d2359
AD
7545The parser definition file @file{calc++-parser.yy} starts by asking for
7546the C++ LALR(1) skeleton, the creation of the parser header file, and
7547specifies the name of the parser class. Because the C++ skeleton
7548changed several times, it is safer to require the version you designed
7549the grammar for.
1c59e0a1
AD
7550
7551@comment file: calc++-parser.yy
12545799
AD
7552@example
7553%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7554%require "2.1a"
12545799 7555%defines
fb9712a9
AD
7556%define "parser_class_name" "calcxx_parser"
7557@end example
7558
7559@noindent
136a0f76 7560@findex %requires
fb9712a9
AD
7561Then come the declarations/inclusions needed to define the
7562@code{%union}. Because the parser uses the parsing driver and
7563reciprocally, both cannot include the header of the other. Because the
7564driver's header needs detailed knowledge about the parser class (in
7565particular its inner types), it is the parser's header which will simply
7566use a forward declaration of the driver.
136a0f76 7567@xref{Table of Symbols, ,%requires}.
fb9712a9
AD
7568
7569@comment file: calc++-parser.yy
7570@example
136a0f76 7571%requires @{
12545799 7572# include <string>
fb9712a9 7573class calcxx_driver;
9bc0dd67 7574@}
12545799
AD
7575@end example
7576
7577@noindent
7578The driver is passed by reference to the parser and to the scanner.
7579This provides a simple but effective pure interface, not relying on
7580global variables.
7581
1c59e0a1 7582@comment file: calc++-parser.yy
12545799
AD
7583@example
7584// The parsing context.
7585%parse-param @{ calcxx_driver& driver @}
7586%lex-param @{ calcxx_driver& driver @}
7587@end example
7588
7589@noindent
7590Then we request the location tracking feature, and initialize the
7591first location's file name. Afterwards new locations are computed
7592relatively to the previous locations: the file name will be
7593automatically propagated.
7594
1c59e0a1 7595@comment file: calc++-parser.yy
12545799
AD
7596@example
7597%locations
7598%initial-action
7599@{
7600 // Initialize the initial location.
b47dbebe 7601 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7602@};
7603@end example
7604
7605@noindent
7606Use the two following directives to enable parser tracing and verbose
7607error messages.
7608
1c59e0a1 7609@comment file: calc++-parser.yy
12545799
AD
7610@example
7611%debug
7612%error-verbose
7613@end example
7614
7615@noindent
7616Semantic values cannot use ``real'' objects, but only pointers to
7617them.
7618
1c59e0a1 7619@comment file: calc++-parser.yy
12545799
AD
7620@example
7621// Symbols.
7622%union
7623@{
7624 int ival;
7625 std::string *sval;
7626@};
7627@end example
7628
fb9712a9 7629@noindent
136a0f76
PB
7630@findex %code
7631The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 7632@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
7633
7634@comment file: calc++-parser.yy
7635@example
136a0f76 7636%code @{
fb9712a9 7637# include "calc++-driver.hh"
34f98f46 7638@}
fb9712a9
AD
7639@end example
7640
7641
12545799
AD
7642@noindent
7643The token numbered as 0 corresponds to end of file; the following line
7644allows for nicer error messages referring to ``end of file'' instead
7645of ``$end''. Similarly user friendly named are provided for each
7646symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7647avoid name clashes.
7648
1c59e0a1 7649@comment file: calc++-parser.yy
12545799 7650@example
fb9712a9
AD
7651%token END 0 "end of file"
7652%token ASSIGN ":="
7653%token <sval> IDENTIFIER "identifier"
7654%token <ival> NUMBER "number"
7655%type <ival> exp "expression"
12545799
AD
7656@end example
7657
7658@noindent
7659To enable memory deallocation during error recovery, use
7660@code{%destructor}.
7661
287c78f6 7662@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7663@comment file: calc++-parser.yy
12545799
AD
7664@example
7665%printer @{ debug_stream () << *$$; @} "identifier"
7666%destructor @{ delete $$; @} "identifier"
7667
7668%printer @{ debug_stream () << $$; @} "number" "expression"
7669@end example
7670
7671@noindent
7672The grammar itself is straightforward.
7673
1c59e0a1 7674@comment file: calc++-parser.yy
12545799
AD
7675@example
7676%%
7677%start unit;
7678unit: assignments exp @{ driver.result = $2; @};
7679
7680assignments: assignments assignment @{@}
9d9b8b70 7681 | /* Nothing. */ @{@};
12545799 7682
3dc5e96b
PE
7683assignment:
7684 "identifier" ":=" exp
7685 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
7686
7687%left '+' '-';
7688%left '*' '/';
7689exp: exp '+' exp @{ $$ = $1 + $3; @}
7690 | exp '-' exp @{ $$ = $1 - $3; @}
7691 | exp '*' exp @{ $$ = $1 * $3; @}
7692 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 7693 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 7694 | "number" @{ $$ = $1; @};
12545799
AD
7695%%
7696@end example
7697
7698@noindent
7699Finally the @code{error} member function registers the errors to the
7700driver.
7701
1c59e0a1 7702@comment file: calc++-parser.yy
12545799
AD
7703@example
7704void
1c59e0a1
AD
7705yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7706 const std::string& m)
12545799
AD
7707@{
7708 driver.error (l, m);
7709@}
7710@end example
7711
7712@node Calc++ Scanner
7713@subsection Calc++ Scanner
7714
7715The Flex scanner first includes the driver declaration, then the
7716parser's to get the set of defined tokens.
7717
1c59e0a1 7718@comment file: calc++-scanner.ll
12545799
AD
7719@example
7720%@{ /* -*- C++ -*- */
04098407
PE
7721# include <cstdlib>
7722# include <errno.h>
7723# include <limits.h>
12545799
AD
7724# include <string>
7725# include "calc++-driver.hh"
7726# include "calc++-parser.hh"
eaea13f5
PE
7727
7728/* Work around an incompatibility in flex (at least versions
7729 2.5.31 through 2.5.33): it generates code that does
7730 not conform to C89. See Debian bug 333231
7731 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
7732# undef yywrap
7733# define yywrap() 1
eaea13f5 7734
c095d689
AD
7735/* By default yylex returns int, we use token_type.
7736 Unfortunately yyterminate by default returns 0, which is
7737 not of token_type. */
8c5b881d 7738#define yyterminate() return token::END
12545799
AD
7739%@}
7740@end example
7741
7742@noindent
7743Because there is no @code{#include}-like feature we don't need
7744@code{yywrap}, we don't need @code{unput} either, and we parse an
7745actual file, this is not an interactive session with the user.
7746Finally we enable the scanner tracing features.
7747
1c59e0a1 7748@comment file: calc++-scanner.ll
12545799
AD
7749@example
7750%option noyywrap nounput batch debug
7751@end example
7752
7753@noindent
7754Abbreviations allow for more readable rules.
7755
1c59e0a1 7756@comment file: calc++-scanner.ll
12545799
AD
7757@example
7758id [a-zA-Z][a-zA-Z_0-9]*
7759int [0-9]+
7760blank [ \t]
7761@end example
7762
7763@noindent
9d9b8b70 7764The following paragraph suffices to track locations accurately. Each
12545799
AD
7765time @code{yylex} is invoked, the begin position is moved onto the end
7766position. Then when a pattern is matched, the end position is
7767advanced of its width. In case it matched ends of lines, the end
7768cursor is adjusted, and each time blanks are matched, the begin cursor
7769is moved onto the end cursor to effectively ignore the blanks
7770preceding tokens. Comments would be treated equally.
7771
1c59e0a1 7772@comment file: calc++-scanner.ll
12545799 7773@example
828c373b
AD
7774%@{
7775# define YY_USER_ACTION yylloc->columns (yyleng);
7776%@}
12545799
AD
7777%%
7778%@{
7779 yylloc->step ();
12545799
AD
7780%@}
7781@{blank@}+ yylloc->step ();
7782[\n]+ yylloc->lines (yyleng); yylloc->step ();
7783@end example
7784
7785@noindent
fb9712a9
AD
7786The rules are simple, just note the use of the driver to report errors.
7787It is convenient to use a typedef to shorten
7788@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 7789@code{token::identifier} for instance.
12545799 7790
1c59e0a1 7791@comment file: calc++-scanner.ll
12545799 7792@example
fb9712a9
AD
7793%@{
7794 typedef yy::calcxx_parser::token token;
7795%@}
8c5b881d 7796 /* Convert ints to the actual type of tokens. */
c095d689 7797[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 7798":=" return token::ASSIGN;
04098407
PE
7799@{int@} @{
7800 errno = 0;
7801 long n = strtol (yytext, NULL, 10);
7802 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7803 driver.error (*yylloc, "integer is out of range");
7804 yylval->ival = n;
fb9712a9 7805 return token::NUMBER;
04098407 7806@}
fb9712a9 7807@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7808. driver.error (*yylloc, "invalid character");
7809%%
7810@end example
7811
7812@noindent
7813Finally, because the scanner related driver's member function depend
7814on the scanner's data, it is simpler to implement them in this file.
7815
1c59e0a1 7816@comment file: calc++-scanner.ll
12545799
AD
7817@example
7818void
7819calcxx_driver::scan_begin ()
7820@{
7821 yy_flex_debug = trace_scanning;
7822 if (!(yyin = fopen (file.c_str (), "r")))
7823 error (std::string ("cannot open ") + file);
7824@}
7825
7826void
7827calcxx_driver::scan_end ()
7828@{
7829 fclose (yyin);
7830@}
7831@end example
7832
7833@node Calc++ Top Level
7834@subsection Calc++ Top Level
7835
7836The top level file, @file{calc++.cc}, poses no problem.
7837
1c59e0a1 7838@comment file: calc++.cc
12545799
AD
7839@example
7840#include <iostream>
7841#include "calc++-driver.hh"
7842
7843int
fa4d969f 7844main (int argc, char *argv[])
12545799
AD
7845@{
7846 calcxx_driver driver;
7847 for (++argv; argv[0]; ++argv)
7848 if (*argv == std::string ("-p"))
7849 driver.trace_parsing = true;
7850 else if (*argv == std::string ("-s"))
7851 driver.trace_scanning = true;
7852 else
7853 @{
3dc5e96b
PE
7854 driver.parse (*argv);
7855 std::cout << driver.result << std::endl;
12545799
AD
7856 @}
7857@}
7858@end example
7859
7860@c ================================================= FAQ
d1a1114f
AD
7861
7862@node FAQ
7863@chapter Frequently Asked Questions
7864@cindex frequently asked questions
7865@cindex questions
7866
7867Several questions about Bison come up occasionally. Here some of them
7868are addressed.
7869
7870@menu
55ba27be
AD
7871* Memory Exhausted:: Breaking the Stack Limits
7872* How Can I Reset the Parser:: @code{yyparse} Keeps some State
7873* Strings are Destroyed:: @code{yylval} Loses Track of Strings
7874* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 7875* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
7876* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
7877* I can't build Bison:: Troubleshooting
7878* Where can I find help?:: Troubleshouting
7879* Bug Reports:: Troublereporting
7880* Other Languages:: Parsers in Java and others
7881* Beta Testing:: Experimenting development versions
7882* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
7883@end menu
7884
1a059451
PE
7885@node Memory Exhausted
7886@section Memory Exhausted
d1a1114f
AD
7887
7888@display
1a059451 7889My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7890message. What can I do?
7891@end display
7892
7893This question is already addressed elsewhere, @xref{Recursion,
7894,Recursive Rules}.
7895
e64fec0a
PE
7896@node How Can I Reset the Parser
7897@section How Can I Reset the Parser
5b066063 7898
0e14ad77
PE
7899The following phenomenon has several symptoms, resulting in the
7900following typical questions:
5b066063
AD
7901
7902@display
7903I invoke @code{yyparse} several times, and on correct input it works
7904properly; but when a parse error is found, all the other calls fail
0e14ad77 7905too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7906@end display
7907
7908@noindent
7909or
7910
7911@display
0e14ad77 7912My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7913which case I run @code{yyparse} from @code{yyparse}. This fails
7914although I did specify I needed a @code{%pure-parser}.
7915@end display
7916
0e14ad77
PE
7917These problems typically come not from Bison itself, but from
7918Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7919speed, they might not notice a change of input file. As a
7920demonstration, consider the following source file,
7921@file{first-line.l}:
7922
7923@verbatim
7924%{
7925#include <stdio.h>
7926#include <stdlib.h>
7927%}
7928%%
7929.*\n ECHO; return 1;
7930%%
7931int
0e14ad77 7932yyparse (char const *file)
5b066063
AD
7933{
7934 yyin = fopen (file, "r");
7935 if (!yyin)
7936 exit (2);
fa7e68c3 7937 /* One token only. */
5b066063 7938 yylex ();
0e14ad77 7939 if (fclose (yyin) != 0)
5b066063
AD
7940 exit (3);
7941 return 0;
7942}
7943
7944int
0e14ad77 7945main (void)
5b066063
AD
7946{
7947 yyparse ("input");
7948 yyparse ("input");
7949 return 0;
7950}
7951@end verbatim
7952
7953@noindent
7954If the file @file{input} contains
7955
7956@verbatim
7957input:1: Hello,
7958input:2: World!
7959@end verbatim
7960
7961@noindent
0e14ad77 7962then instead of getting the first line twice, you get:
5b066063
AD
7963
7964@example
7965$ @kbd{flex -ofirst-line.c first-line.l}
7966$ @kbd{gcc -ofirst-line first-line.c -ll}
7967$ @kbd{./first-line}
7968input:1: Hello,
7969input:2: World!
7970@end example
7971
0e14ad77
PE
7972Therefore, whenever you change @code{yyin}, you must tell the
7973Lex-generated scanner to discard its current buffer and switch to the
7974new one. This depends upon your implementation of Lex; see its
7975documentation for more. For Flex, it suffices to call
7976@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7977Flex-generated scanner needs to read from several input streams to
7978handle features like include files, you might consider using Flex
7979functions like @samp{yy_switch_to_buffer} that manipulate multiple
7980input buffers.
5b066063 7981
b165c324
AD
7982If your Flex-generated scanner uses start conditions (@pxref{Start
7983conditions, , Start conditions, flex, The Flex Manual}), you might
7984also want to reset the scanner's state, i.e., go back to the initial
7985start condition, through a call to @samp{BEGIN (0)}.
7986
fef4cb51
AD
7987@node Strings are Destroyed
7988@section Strings are Destroyed
7989
7990@display
c7e441b4 7991My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7992them. Instead of reporting @samp{"foo", "bar"}, it reports
7993@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7994@end display
7995
7996This error is probably the single most frequent ``bug report'' sent to
7997Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 7998of the scanner. Consider the following Lex code:
fef4cb51
AD
7999
8000@verbatim
8001%{
8002#include <stdio.h>
8003char *yylval = NULL;
8004%}
8005%%
8006.* yylval = yytext; return 1;
8007\n /* IGNORE */
8008%%
8009int
8010main ()
8011{
fa7e68c3 8012 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
8013 char *fst = (yylex (), yylval);
8014 char *snd = (yylex (), yylval);
8015 printf ("\"%s\", \"%s\"\n", fst, snd);
8016 return 0;
8017}
8018@end verbatim
8019
8020If you compile and run this code, you get:
8021
8022@example
8023$ @kbd{flex -osplit-lines.c split-lines.l}
8024$ @kbd{gcc -osplit-lines split-lines.c -ll}
8025$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8026"one
8027two", "two"
8028@end example
8029
8030@noindent
8031this is because @code{yytext} is a buffer provided for @emph{reading}
8032in the action, but if you want to keep it, you have to duplicate it
8033(e.g., using @code{strdup}). Note that the output may depend on how
8034your implementation of Lex handles @code{yytext}. For instance, when
8035given the Lex compatibility option @option{-l} (which triggers the
8036option @samp{%array}) Flex generates a different behavior:
8037
8038@example
8039$ @kbd{flex -l -osplit-lines.c split-lines.l}
8040$ @kbd{gcc -osplit-lines split-lines.c -ll}
8041$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8042"two", "two"
8043@end example
8044
8045
2fa09258
AD
8046@node Implementing Gotos/Loops
8047@section Implementing Gotos/Loops
a06ea4aa
AD
8048
8049@display
8050My simple calculator supports variables, assignments, and functions,
2fa09258 8051but how can I implement gotos, or loops?
a06ea4aa
AD
8052@end display
8053
8054Although very pedagogical, the examples included in the document blur
a1c84f45 8055the distinction to make between the parser---whose job is to recover
a06ea4aa 8056the structure of a text and to transmit it to subsequent modules of
a1c84f45 8057the program---and the processing (such as the execution) of this
a06ea4aa
AD
8058structure. This works well with so called straight line programs,
8059i.e., precisely those that have a straightforward execution model:
8060execute simple instructions one after the others.
8061
8062@cindex abstract syntax tree
8063@cindex @acronym{AST}
8064If you want a richer model, you will probably need to use the parser
8065to construct a tree that does represent the structure it has
8066recovered; this tree is usually called the @dfn{abstract syntax tree},
8067or @dfn{@acronym{AST}} for short. Then, walking through this tree,
8068traversing it in various ways, will enable treatments such as its
8069execution or its translation, which will result in an interpreter or a
8070compiler.
8071
8072This topic is way beyond the scope of this manual, and the reader is
8073invited to consult the dedicated literature.
8074
8075
ed2e6384
AD
8076@node Multiple start-symbols
8077@section Multiple start-symbols
8078
8079@display
8080I have several closely related grammars, and I would like to share their
8081implementations. In fact, I could use a single grammar but with
8082multiple entry points.
8083@end display
8084
8085Bison does not support multiple start-symbols, but there is a very
8086simple means to simulate them. If @code{foo} and @code{bar} are the two
8087pseudo start-symbols, then introduce two new tokens, say
8088@code{START_FOO} and @code{START_BAR}, and use them as switches from the
8089real start-symbol:
8090
8091@example
8092%token START_FOO START_BAR;
8093%start start;
8094start: START_FOO foo
8095 | START_BAR bar;
8096@end example
8097
8098These tokens prevents the introduction of new conflicts. As far as the
8099parser goes, that is all that is needed.
8100
8101Now the difficult part is ensuring that the scanner will send these
8102tokens first. If your scanner is hand-written, that should be
8103straightforward. If your scanner is generated by Lex, them there is
8104simple means to do it: recall that anything between @samp{%@{ ... %@}}
8105after the first @code{%%} is copied verbatim in the top of the generated
8106@code{yylex} function. Make sure a variable @code{start_token} is
8107available in the scanner (e.g., a global variable or using
8108@code{%lex-param} etc.), and use the following:
8109
8110@example
8111 /* @r{Prologue.} */
8112%%
8113%@{
8114 if (start_token)
8115 @{
8116 int t = start_token;
8117 start_token = 0;
8118 return t;
8119 @}
8120%@}
8121 /* @r{The rules.} */
8122@end example
8123
8124
55ba27be
AD
8125@node Secure? Conform?
8126@section Secure? Conform?
8127
8128@display
8129Is Bison secure? Does it conform to POSIX?
8130@end display
8131
8132If you're looking for a guarantee or certification, we don't provide it.
8133However, Bison is intended to be a reliable program that conforms to the
8134@acronym{POSIX} specification for Yacc. If you run into problems,
8135please send us a bug report.
8136
8137@node I can't build Bison
8138@section I can't build Bison
8139
8140@display
8c5b881d
PE
8141I can't build Bison because @command{make} complains that
8142@code{msgfmt} is not found.
55ba27be
AD
8143What should I do?
8144@end display
8145
8146Like most GNU packages with internationalization support, that feature
8147is turned on by default. If you have problems building in the @file{po}
8148subdirectory, it indicates that your system's internationalization
8149support is lacking. You can re-configure Bison with
8150@option{--disable-nls} to turn off this support, or you can install GNU
8151gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8152Bison. See the file @file{ABOUT-NLS} for more information.
8153
8154
8155@node Where can I find help?
8156@section Where can I find help?
8157
8158@display
8159I'm having trouble using Bison. Where can I find help?
8160@end display
8161
8162First, read this fine manual. Beyond that, you can send mail to
8163@email{help-bison@@gnu.org}. This mailing list is intended to be
8164populated with people who are willing to answer questions about using
8165and installing Bison. Please keep in mind that (most of) the people on
8166the list have aspects of their lives which are not related to Bison (!),
8167so you may not receive an answer to your question right away. This can
8168be frustrating, but please try not to honk them off; remember that any
8169help they provide is purely voluntary and out of the kindness of their
8170hearts.
8171
8172@node Bug Reports
8173@section Bug Reports
8174
8175@display
8176I found a bug. What should I include in the bug report?
8177@end display
8178
8179Before you send a bug report, make sure you are using the latest
8180version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8181mirrors. Be sure to include the version number in your bug report. If
8182the bug is present in the latest version but not in a previous version,
8183try to determine the most recent version which did not contain the bug.
8184
8185If the bug is parser-related, you should include the smallest grammar
8186you can which demonstrates the bug. The grammar file should also be
8187complete (i.e., I should be able to run it through Bison without having
8188to edit or add anything). The smaller and simpler the grammar, the
8189easier it will be to fix the bug.
8190
8191Include information about your compilation environment, including your
8192operating system's name and version and your compiler's name and
8193version. If you have trouble compiling, you should also include a
8194transcript of the build session, starting with the invocation of
8195`configure'. Depending on the nature of the bug, you may be asked to
8196send additional files as well (such as `config.h' or `config.cache').
8197
8198Patches are most welcome, but not required. That is, do not hesitate to
8199send a bug report just because you can not provide a fix.
8200
8201Send bug reports to @email{bug-bison@@gnu.org}.
8202
8203@node Other Languages
8204@section Other Languages
8205
8206@display
8207Will Bison ever have C++ support? How about Java or @var{insert your
8208favorite language here}?
8209@end display
8210
8211C++ support is there now, and is documented. We'd love to add other
8212languages; contributions are welcome.
8213
8214@node Beta Testing
8215@section Beta Testing
8216
8217@display
8218What is involved in being a beta tester?
8219@end display
8220
8221It's not terribly involved. Basically, you would download a test
8222release, compile it, and use it to build and run a parser or two. After
8223that, you would submit either a bug report or a message saying that
8224everything is okay. It is important to report successes as well as
8225failures because test releases eventually become mainstream releases,
8226but only if they are adequately tested. If no one tests, development is
8227essentially halted.
8228
8229Beta testers are particularly needed for operating systems to which the
8230developers do not have easy access. They currently have easy access to
8231recent GNU/Linux and Solaris versions. Reports about other operating
8232systems are especially welcome.
8233
8234@node Mailing Lists
8235@section Mailing Lists
8236
8237@display
8238How do I join the help-bison and bug-bison mailing lists?
8239@end display
8240
8241See @url{http://lists.gnu.org/}.
a06ea4aa 8242
d1a1114f
AD
8243@c ================================================= Table of Symbols
8244
342b8b6e 8245@node Table of Symbols
bfa74976
RS
8246@appendix Bison Symbols
8247@cindex Bison symbols, table of
8248@cindex symbols in Bison, table of
8249
18b519c0 8250@deffn {Variable} @@$
3ded9a63 8251In an action, the location of the left-hand side of the rule.
88bce5a2 8252@xref{Locations, , Locations Overview}.
18b519c0 8253@end deffn
3ded9a63 8254
18b519c0 8255@deffn {Variable} @@@var{n}
3ded9a63
AD
8256In an action, the location of the @var{n}-th symbol of the right-hand
8257side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8258@end deffn
3ded9a63 8259
18b519c0 8260@deffn {Variable} $$
3ded9a63
AD
8261In an action, the semantic value of the left-hand side of the rule.
8262@xref{Actions}.
18b519c0 8263@end deffn
3ded9a63 8264
18b519c0 8265@deffn {Variable} $@var{n}
3ded9a63
AD
8266In an action, the semantic value of the @var{n}-th symbol of the
8267right-hand side of the rule. @xref{Actions}.
18b519c0 8268@end deffn
3ded9a63 8269
dd8d9022
AD
8270@deffn {Delimiter} %%
8271Delimiter used to separate the grammar rule section from the
8272Bison declarations section or the epilogue.
8273@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8274@end deffn
bfa74976 8275
dd8d9022
AD
8276@c Don't insert spaces, or check the DVI output.
8277@deffn {Delimiter} %@{@var{code}%@}
8278All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8279the output file uninterpreted. Such code forms the prologue of the input
8280file. @xref{Grammar Outline, ,Outline of a Bison
8281Grammar}.
18b519c0 8282@end deffn
bfa74976 8283
dd8d9022
AD
8284@deffn {Construct} /*@dots{}*/
8285Comment delimiters, as in C.
18b519c0 8286@end deffn
bfa74976 8287
dd8d9022
AD
8288@deffn {Delimiter} :
8289Separates a rule's result from its components. @xref{Rules, ,Syntax of
8290Grammar Rules}.
18b519c0 8291@end deffn
bfa74976 8292
dd8d9022
AD
8293@deffn {Delimiter} ;
8294Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8295@end deffn
bfa74976 8296
dd8d9022
AD
8297@deffn {Delimiter} |
8298Separates alternate rules for the same result nonterminal.
8299@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8300@end deffn
bfa74976 8301
dd8d9022
AD
8302@deffn {Symbol} $accept
8303The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8304$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8305Start-Symbol}. It cannot be used in the grammar.
18b519c0 8306@end deffn
bfa74976 8307
136a0f76 8308@deffn {Directive} %code @{@var{code}@}
34f98f46
JD
8309Specifies code to be inserted into the code file after the contents of the
8310header file.
136a0f76 8311@xref{Table of Symbols, ,%requires}.
34f98f46
JD
8312@end deffn
8313
136a0f76 8314@deffn {Directive} %provides @{@var{code}@}
9bc0dd67
JD
8315Specifies code to be inserted both into the header file (if generated;
8316@pxref{Table of Symbols, ,%defines}) and into the code file after any
8317Bison-generated definitions.
136a0f76 8318@xref{Table of Symbols, ,%requires}.
9bc0dd67
JD
8319@end deffn
8320
136a0f76 8321@deffn {Directive} %requires @{@var{code}@}
9bc0dd67
JD
8322Specifies code to be inserted both into the header file (if generated;
8323@pxref{Table of Symbols, ,%defines}) and into the code file before any
8324Bison-generated definitions.
8325
8326@cindex Prologue
9bc0dd67 8327@findex %union
136a0f76
PB
8328@findex %provides
8329@findex %code
34f98f46
JD
8330For example, the following declaration order in the grammar file reflects the
8331order in which Bison will output these code blocks. However, you are free to
8332declare these code blocks in your grammar file in whatever order is most
8333convenient for you:
9bc0dd67
JD
8334
8335@smallexample
136a0f76 8336%requires @{
34f98f46
JD
8337 /* Bison inserts this block into both the header file and the code
8338 * file. In both files, the point of insertion is before any
8339 * Bison-generated token, semantic type, location type, and class
8340 * definitions. This is a good place to define %union
8341 * dependencies, for example. */
9bc0dd67
JD
8342@}
8343%union @{
34f98f46 8344 /* Unlike the traditional Yacc prologue blocks, the output order
136a0f76
PB
8345 * for %requires, %provides or %code blocks is not affected by their
8346 * declaration position relative to any %union in the grammar file. */
9bc0dd67 8347@}
136a0f76 8348%provides @{
34f98f46
JD
8349 /* Bison inserts this block into both the header file and the code
8350 * file. In both files, the point of insertion is after the
8351 * Bison-generated definitions. This is a good place to declare or
8352 * define public functions or data structures that depend on the
8353 * Bison-generated definitions. */
8354@}
136a0f76 8355%code @{
34f98f46
JD
8356 /* Bison treats this block like a post-prologue block: it inserts
8357 * it into the code file after the contents of the header file. It
8358 * does *not* insert it into the header file. This is a good place
8359 * to declare or define internal functions or data structures that
8360 * depend on the Bison-generated definitions. */
9bc0dd67 8361@}
9bc0dd67
JD
8362@end smallexample
8363
34f98f46
JD
8364If you have multiple occurrences of any one of the above declarations, Bison
8365will concatenate the contents in declaration order.
8366
9bc0dd67
JD
8367@xref{Prologue, ,The Prologue}.
8368@end deffn
8369
8370@deffn {Directive} %debug
8371Equip the parser for debugging. @xref{Decl Summary}.
8372@end deffn
8373
18b519c0 8374@deffn {Directive} %debug
6deb4447 8375Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8376@end deffn
6deb4447 8377
91d2c560 8378@ifset defaultprec
22fccf95
PE
8379@deffn {Directive} %default-prec
8380Assign a precedence to rules that lack an explicit @samp{%prec}
8381modifier. @xref{Contextual Precedence, ,Context-Dependent
8382Precedence}.
39a06c25 8383@end deffn
91d2c560 8384@end ifset
39a06c25 8385
18b519c0 8386@deffn {Directive} %defines
6deb4447
AD
8387Bison declaration to create a header file meant for the scanner.
8388@xref{Decl Summary}.
18b519c0 8389@end deffn
6deb4447 8390
18b519c0 8391@deffn {Directive} %destructor
258b75ca 8392Specify how the parser should reclaim the memory associated to
fa7e68c3 8393discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8394@end deffn
72f889cc 8395
18b519c0 8396@deffn {Directive} %dprec
676385e2 8397Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8398time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8399@acronym{GLR} Parsers}.
18b519c0 8400@end deffn
676385e2 8401
dd8d9022
AD
8402@deffn {Symbol} $end
8403The predefined token marking the end of the token stream. It cannot be
8404used in the grammar.
8405@end deffn
8406
8407@deffn {Symbol} error
8408A token name reserved for error recovery. This token may be used in
8409grammar rules so as to allow the Bison parser to recognize an error in
8410the grammar without halting the process. In effect, a sentence
8411containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
8412token @code{error} becomes the current lookahead token. Actions
8413corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
8414token is reset to the token that originally caused the violation.
8415@xref{Error Recovery}.
18d192f0
AD
8416@end deffn
8417
18b519c0 8418@deffn {Directive} %error-verbose
2a8d363a
AD
8419Bison declaration to request verbose, specific error message strings
8420when @code{yyerror} is called.
18b519c0 8421@end deffn
2a8d363a 8422
18b519c0 8423@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8424Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8425Summary}.
18b519c0 8426@end deffn
d8988b2f 8427
18b519c0 8428@deffn {Directive} %glr-parser
c827f760
PE
8429Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8430Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8431@end deffn
676385e2 8432
dd8d9022
AD
8433@deffn {Directive} %initial-action
8434Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8435@end deffn
8436
18b519c0 8437@deffn {Directive} %left
bfa74976
RS
8438Bison declaration to assign left associativity to token(s).
8439@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8440@end deffn
bfa74976 8441
feeb0eda 8442@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8443Bison declaration to specifying an additional parameter that
8444@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8445for Pure Parsers}.
18b519c0 8446@end deffn
2a8d363a 8447
18b519c0 8448@deffn {Directive} %merge
676385e2 8449Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8450reduce/reduce conflict with a rule having the same merging function, the
676385e2 8451function is applied to the two semantic values to get a single result.
c827f760 8452@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8453@end deffn
676385e2 8454
18b519c0 8455@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8456Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8457@end deffn
d8988b2f 8458
91d2c560 8459@ifset defaultprec
22fccf95
PE
8460@deffn {Directive} %no-default-prec
8461Do not assign a precedence to rules that lack an explicit @samp{%prec}
8462modifier. @xref{Contextual Precedence, ,Context-Dependent
8463Precedence}.
8464@end deffn
91d2c560 8465@end ifset
22fccf95 8466
18b519c0 8467@deffn {Directive} %no-lines
931c7513
RS
8468Bison declaration to avoid generating @code{#line} directives in the
8469parser file. @xref{Decl Summary}.
18b519c0 8470@end deffn
931c7513 8471
18b519c0 8472@deffn {Directive} %nonassoc
9d9b8b70 8473Bison declaration to assign nonassociativity to token(s).
bfa74976 8474@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8475@end deffn
bfa74976 8476
fa4d969f 8477@deffn {Directive} %output="@var{file}"
72d2299c 8478Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8479Summary}.
18b519c0 8480@end deffn
d8988b2f 8481
feeb0eda 8482@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8483Bison declaration to specifying an additional parameter that
8484@code{yyparse} should accept. @xref{Parser Function,, The Parser
8485Function @code{yyparse}}.
18b519c0 8486@end deffn
2a8d363a 8487
18b519c0 8488@deffn {Directive} %prec
bfa74976
RS
8489Bison declaration to assign a precedence to a specific rule.
8490@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8491@end deffn
bfa74976 8492
18b519c0 8493@deffn {Directive} %pure-parser
bfa74976
RS
8494Bison declaration to request a pure (reentrant) parser.
8495@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8496@end deffn
bfa74976 8497
b50d2359 8498@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8499Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8500Require a Version of Bison}.
b50d2359
AD
8501@end deffn
8502
18b519c0 8503@deffn {Directive} %right
bfa74976
RS
8504Bison declaration to assign right associativity to token(s).
8505@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8506@end deffn
bfa74976 8507
18b519c0 8508@deffn {Directive} %start
704a47c4
AD
8509Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8510Start-Symbol}.
18b519c0 8511@end deffn
bfa74976 8512
3be03b13
JD
8513@deffn {Directive} %symbol-default
8514Used to declare a default @code{%destructor} or default @code{%printer}.
8515@xref{Destructor Decl, , Freeing Discarded Symbols}.
8516@end deffn
8517
18b519c0 8518@deffn {Directive} %token
bfa74976
RS
8519Bison declaration to declare token(s) without specifying precedence.
8520@xref{Token Decl, ,Token Type Names}.
18b519c0 8521@end deffn
bfa74976 8522
18b519c0 8523@deffn {Directive} %token-table
931c7513
RS
8524Bison declaration to include a token name table in the parser file.
8525@xref{Decl Summary}.
18b519c0 8526@end deffn
931c7513 8527
18b519c0 8528@deffn {Directive} %type
704a47c4
AD
8529Bison declaration to declare nonterminals. @xref{Type Decl,
8530,Nonterminal Symbols}.
18b519c0 8531@end deffn
bfa74976 8532
dd8d9022
AD
8533@deffn {Symbol} $undefined
8534The predefined token onto which all undefined values returned by
8535@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8536@code{error}.
8537@end deffn
8538
18b519c0 8539@deffn {Directive} %union
bfa74976
RS
8540Bison declaration to specify several possible data types for semantic
8541values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8542@end deffn
bfa74976 8543
dd8d9022
AD
8544@deffn {Macro} YYABORT
8545Macro to pretend that an unrecoverable syntax error has occurred, by
8546making @code{yyparse} return 1 immediately. The error reporting
8547function @code{yyerror} is not called. @xref{Parser Function, ,The
8548Parser Function @code{yyparse}}.
8549@end deffn
3ded9a63 8550
dd8d9022
AD
8551@deffn {Macro} YYACCEPT
8552Macro to pretend that a complete utterance of the language has been
8553read, by making @code{yyparse} return 0 immediately.
8554@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8555@end deffn
bfa74976 8556
dd8d9022 8557@deffn {Macro} YYBACKUP
742e4900 8558Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 8559token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8560@end deffn
bfa74976 8561
dd8d9022 8562@deffn {Variable} yychar
32c29292 8563External integer variable that contains the integer value of the
742e4900 8564lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
8565@code{yyparse}.) Error-recovery rule actions may examine this variable.
8566@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8567@end deffn
bfa74976 8568
dd8d9022
AD
8569@deffn {Variable} yyclearin
8570Macro used in error-recovery rule actions. It clears the previous
742e4900 8571lookahead token. @xref{Error Recovery}.
18b519c0 8572@end deffn
bfa74976 8573
dd8d9022
AD
8574@deffn {Macro} YYDEBUG
8575Macro to define to equip the parser with tracing code. @xref{Tracing,
8576,Tracing Your Parser}.
18b519c0 8577@end deffn
bfa74976 8578
dd8d9022
AD
8579@deffn {Variable} yydebug
8580External integer variable set to zero by default. If @code{yydebug}
8581is given a nonzero value, the parser will output information on input
8582symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8583@end deffn
bfa74976 8584
dd8d9022
AD
8585@deffn {Macro} yyerrok
8586Macro to cause parser to recover immediately to its normal mode
8587after a syntax error. @xref{Error Recovery}.
8588@end deffn
8589
8590@deffn {Macro} YYERROR
8591Macro to pretend that a syntax error has just been detected: call
8592@code{yyerror} and then perform normal error recovery if possible
8593(@pxref{Error Recovery}), or (if recovery is impossible) make
8594@code{yyparse} return 1. @xref{Error Recovery}.
8595@end deffn
8596
8597@deffn {Function} yyerror
8598User-supplied function to be called by @code{yyparse} on error.
8599@xref{Error Reporting, ,The Error
8600Reporting Function @code{yyerror}}.
8601@end deffn
8602
8603@deffn {Macro} YYERROR_VERBOSE
8604An obsolete macro that you define with @code{#define} in the prologue
8605to request verbose, specific error message strings
8606when @code{yyerror} is called. It doesn't matter what definition you
8607use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8608@code{%error-verbose} is preferred.
8609@end deffn
8610
8611@deffn {Macro} YYINITDEPTH
8612Macro for specifying the initial size of the parser stack.
1a059451 8613@xref{Memory Management}.
dd8d9022
AD
8614@end deffn
8615
8616@deffn {Function} yylex
8617User-supplied lexical analyzer function, called with no arguments to get
8618the next token. @xref{Lexical, ,The Lexical Analyzer Function
8619@code{yylex}}.
8620@end deffn
8621
8622@deffn {Macro} YYLEX_PARAM
8623An obsolete macro for specifying an extra argument (or list of extra
32c29292 8624arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8625macro is deprecated, and is supported only for Yacc like parsers.
8626@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8627@end deffn
8628
8629@deffn {Variable} yylloc
8630External variable in which @code{yylex} should place the line and column
8631numbers associated with a token. (In a pure parser, it is a local
8632variable within @code{yyparse}, and its address is passed to
32c29292
JD
8633@code{yylex}.)
8634You can ignore this variable if you don't use the @samp{@@} feature in the
8635grammar actions.
8636@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 8637In semantic actions, it stores the location of the lookahead token.
32c29292 8638@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8639@end deffn
8640
8641@deffn {Type} YYLTYPE
8642Data type of @code{yylloc}; by default, a structure with four
8643members. @xref{Location Type, , Data Types of Locations}.
8644@end deffn
8645
8646@deffn {Variable} yylval
8647External variable in which @code{yylex} should place the semantic
8648value associated with a token. (In a pure parser, it is a local
8649variable within @code{yyparse}, and its address is passed to
32c29292
JD
8650@code{yylex}.)
8651@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 8652In semantic actions, it stores the semantic value of the lookahead token.
32c29292 8653@xref{Actions, ,Actions}.
dd8d9022
AD
8654@end deffn
8655
8656@deffn {Macro} YYMAXDEPTH
1a059451
PE
8657Macro for specifying the maximum size of the parser stack. @xref{Memory
8658Management}.
dd8d9022
AD
8659@end deffn
8660
8661@deffn {Variable} yynerrs
8a2800e7 8662Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8663(In a pure parser, it is a local variable within @code{yyparse}.)
8664@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8665@end deffn
8666
8667@deffn {Function} yyparse
8668The parser function produced by Bison; call this function to start
8669parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8670@end deffn
8671
8672@deffn {Macro} YYPARSE_PARAM
8673An obsolete macro for specifying the name of a parameter that
8674@code{yyparse} should accept. The use of this macro is deprecated, and
8675is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8676Conventions for Pure Parsers}.
8677@end deffn
8678
8679@deffn {Macro} YYRECOVERING
02103984
PE
8680The expression @code{YYRECOVERING ()} yields 1 when the parser
8681is recovering from a syntax error, and 0 otherwise.
8682@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
8683@end deffn
8684
8685@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8686Macro used to control the use of @code{alloca} when the C
8687@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8688the parser will use @code{malloc} to extend its stacks. If defined to
86891, the parser will use @code{alloca}. Values other than 0 and 1 are
8690reserved for future Bison extensions. If not defined,
8691@code{YYSTACK_USE_ALLOCA} defaults to 0.
8692
55289366 8693In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8694limited stack and with unreliable stack-overflow checking, you should
8695set @code{YYMAXDEPTH} to a value that cannot possibly result in
8696unchecked stack overflow on any of your target hosts when
8697@code{alloca} is called. You can inspect the code that Bison
8698generates in order to determine the proper numeric values. This will
8699require some expertise in low-level implementation details.
dd8d9022
AD
8700@end deffn
8701
8702@deffn {Type} YYSTYPE
8703Data type of semantic values; @code{int} by default.
8704@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8705@end deffn
bfa74976 8706
342b8b6e 8707@node Glossary
bfa74976
RS
8708@appendix Glossary
8709@cindex glossary
8710
8711@table @asis
c827f760
PE
8712@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8713Formal method of specifying context-free grammars originally proposed
8714by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8715committee document contributing to what became the Algol 60 report.
8716@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8717
8718@item Context-free grammars
8719Grammars specified as rules that can be applied regardless of context.
8720Thus, if there is a rule which says that an integer can be used as an
8721expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8722permitted. @xref{Language and Grammar, ,Languages and Context-Free
8723Grammars}.
bfa74976
RS
8724
8725@item Dynamic allocation
8726Allocation of memory that occurs during execution, rather than at
8727compile time or on entry to a function.
8728
8729@item Empty string
8730Analogous to the empty set in set theory, the empty string is a
8731character string of length zero.
8732
8733@item Finite-state stack machine
8734A ``machine'' that has discrete states in which it is said to exist at
8735each instant in time. As input to the machine is processed, the
8736machine moves from state to state as specified by the logic of the
8737machine. In the case of the parser, the input is the language being
8738parsed, and the states correspond to various stages in the grammar
c827f760 8739rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8740
c827f760 8741@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8742A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8743that are not @acronym{LALR}(1). It resolves situations that Bison's
8744usual @acronym{LALR}(1)
676385e2
PH
8745algorithm cannot by effectively splitting off multiple parsers, trying all
8746possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8747right context. @xref{Generalized LR Parsing, ,Generalized
8748@acronym{LR} Parsing}.
676385e2 8749
bfa74976
RS
8750@item Grouping
8751A language construct that is (in general) grammatically divisible;
c827f760 8752for example, `expression' or `declaration' in C@.
bfa74976
RS
8753@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8754
8755@item Infix operator
8756An arithmetic operator that is placed between the operands on which it
8757performs some operation.
8758
8759@item Input stream
8760A continuous flow of data between devices or programs.
8761
8762@item Language construct
8763One of the typical usage schemas of the language. For example, one of
8764the constructs of the C language is the @code{if} statement.
8765@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8766
8767@item Left associativity
8768Operators having left associativity are analyzed from left to right:
8769@samp{a+b+c} first computes @samp{a+b} and then combines with
8770@samp{c}. @xref{Precedence, ,Operator Precedence}.
8771
8772@item Left recursion
89cab50d
AD
8773A rule whose result symbol is also its first component symbol; for
8774example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8775Rules}.
bfa74976
RS
8776
8777@item Left-to-right parsing
8778Parsing a sentence of a language by analyzing it token by token from
c827f760 8779left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8780
8781@item Lexical analyzer (scanner)
8782A function that reads an input stream and returns tokens one by one.
8783@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8784
8785@item Lexical tie-in
8786A flag, set by actions in the grammar rules, which alters the way
8787tokens are parsed. @xref{Lexical Tie-ins}.
8788
931c7513 8789@item Literal string token
14ded682 8790A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8791
742e4900
JD
8792@item Lookahead token
8793A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 8794Tokens}.
bfa74976 8795
c827f760 8796@item @acronym{LALR}(1)
bfa74976 8797The class of context-free grammars that Bison (like most other parser
c827f760
PE
8798generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8799Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8800
c827f760 8801@item @acronym{LR}(1)
bfa74976 8802The class of context-free grammars in which at most one token of
742e4900 8803lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
8804
8805@item Nonterminal symbol
8806A grammar symbol standing for a grammatical construct that can
8807be expressed through rules in terms of smaller constructs; in other
8808words, a construct that is not a token. @xref{Symbols}.
8809
bfa74976
RS
8810@item Parser
8811A function that recognizes valid sentences of a language by analyzing
8812the syntax structure of a set of tokens passed to it from a lexical
8813analyzer.
8814
8815@item Postfix operator
8816An arithmetic operator that is placed after the operands upon which it
8817performs some operation.
8818
8819@item Reduction
8820Replacing a string of nonterminals and/or terminals with a single
89cab50d 8821nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8822Parser Algorithm}.
bfa74976
RS
8823
8824@item Reentrant
8825A reentrant subprogram is a subprogram which can be in invoked any
8826number of times in parallel, without interference between the various
8827invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8828
8829@item Reverse polish notation
8830A language in which all operators are postfix operators.
8831
8832@item Right recursion
89cab50d
AD
8833A rule whose result symbol is also its last component symbol; for
8834example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8835Rules}.
bfa74976
RS
8836
8837@item Semantics
8838In computer languages, the semantics are specified by the actions
8839taken for each instance of the language, i.e., the meaning of
8840each statement. @xref{Semantics, ,Defining Language Semantics}.
8841
8842@item Shift
8843A parser is said to shift when it makes the choice of analyzing
8844further input from the stream rather than reducing immediately some
c827f760 8845already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8846
8847@item Single-character literal
8848A single character that is recognized and interpreted as is.
8849@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8850
8851@item Start symbol
8852The nonterminal symbol that stands for a complete valid utterance in
8853the language being parsed. The start symbol is usually listed as the
13863333 8854first nonterminal symbol in a language specification.
bfa74976
RS
8855@xref{Start Decl, ,The Start-Symbol}.
8856
8857@item Symbol table
8858A data structure where symbol names and associated data are stored
8859during parsing to allow for recognition and use of existing
8860information in repeated uses of a symbol. @xref{Multi-function Calc}.
8861
6e649e65
PE
8862@item Syntax error
8863An error encountered during parsing of an input stream due to invalid
8864syntax. @xref{Error Recovery}.
8865
bfa74976
RS
8866@item Token
8867A basic, grammatically indivisible unit of a language. The symbol
8868that describes a token in the grammar is a terminal symbol.
8869The input of the Bison parser is a stream of tokens which comes from
8870the lexical analyzer. @xref{Symbols}.
8871
8872@item Terminal symbol
89cab50d
AD
8873A grammar symbol that has no rules in the grammar and therefore is
8874grammatically indivisible. The piece of text it represents is a token.
8875@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8876@end table
8877
342b8b6e 8878@node Copying This Manual
f2b5126e 8879@appendix Copying This Manual
f9a8293a 8880
f2b5126e
PB
8881@menu
8882* GNU Free Documentation License:: License for copying this manual.
8883@end menu
f9a8293a 8884
f2b5126e
PB
8885@include fdl.texi
8886
342b8b6e 8887@node Index
bfa74976
RS
8888@unnumbered Index
8889
8890@printindex cp
8891
bfa74976 8892@bye
a06ea4aa
AD
8893
8894@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8895@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8896@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8897@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8898@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8899@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8900@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8901@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8902@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8903@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8904@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8905@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8906@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8907@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8908@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8909@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8910@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8911@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8912@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8913@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8914@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 8915@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 8916@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 8917@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 8918@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 8919@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa
AD
8920@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8921@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8922@c LocalWords: YYSTACK DVI fdl printindex