]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: begin to split apart the manual's Decl Summary section.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
575619af
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
112* Index:: Cross-references to the text.
bfa74976 113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
f5f419de
DJ
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
126* GLR Parsers:: Writing parsers for general context-free languages.
127* Locations Overview:: Tracking Locations.
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 132
8a4281b9 133Writing GLR Parsers
fa7e68c3 134
8a4281b9
JD
135* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
136* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 137* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 138* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f5f419de
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f5f419de
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f5f419de
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f5f419de
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f5f419de 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
d013372c 209* Named References:: Using named references in actions.
bfa74976 210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976 230* Decl Summary:: Table of all Bison declarations.
e0c07222 231* %code Summary:: Inserting code into the parser source.
bfa74976
RS
232
233Parser C-Language Interface
234
f5f419de
DJ
235* Parser Function:: How to call @code{yyparse} and what it returns.
236* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
237* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
238* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
239* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
240* Lexical:: You must supply a function @code{yylex}
241 which reads tokens.
242* Error Reporting:: You must supply a function @code{yyerror}.
243* Action Features:: Special features for use in actions.
244* Internationalization:: How to let the parser speak in the user's
245 native language.
bfa74976
RS
246
247The Lexical Analyzer Function @code{yylex}
248
249* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
250* Token Values:: How @code{yylex} must return the semantic value
251 of the token it has read.
252* Token Locations:: How @code{yylex} must return the text location
253 (line number, etc.) of the token, if the
254 actions want that.
255* Pure Calling:: How the calling convention differs in a pure parser
256 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 257
13863333 258The Bison Parser Algorithm
bfa74976 259
742e4900 260* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
261* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
262* Precedence:: Operator precedence works by resolving conflicts.
263* Contextual Precedence:: When an operator's precedence depends on context.
264* Parser States:: The parser is a finite-state-machine with stack.
265* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 266* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 267* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 268* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
269
270Operator Precedence
271
272* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
273* Using Precedence:: How to specify precedence and associativity.
274* Precedence Only:: How to specify precedence only.
bfa74976
RS
275* Precedence Examples:: How these features are used in the previous example.
276* How Precedence:: How they work.
277
278Handling Context Dependencies
279
280* Semantic Tokens:: Token parsing can depend on the semantic context.
281* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
282* Tie-in Recovery:: Lexical tie-ins have implications for how
283 error recovery rules must be written.
284
93dd49ab 285Debugging Your Parser
ec3bc396
AD
286
287* Understanding:: Understanding the structure of your parser.
288* Tracing:: Tracing the execution of your parser.
289
bfa74976
RS
290Invoking Bison
291
13863333 292* Bison Options:: All the options described in detail,
c827f760 293 in alphabetical order by short options.
bfa74976 294* Option Cross Key:: Alphabetical list of long options.
93dd49ab 295* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 296
8405b70c 297Parsers Written In Other Languages
12545799
AD
298
299* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 300* Java Parsers:: The interface to generate Java parser classes
12545799
AD
301
302C++ Parsers
303
304* C++ Bison Interface:: Asking for C++ parser generation
305* C++ Semantic Values:: %union vs. C++
306* C++ Location Values:: The position and location classes
307* C++ Parser Interface:: Instantiating and running the parser
308* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 309* A Complete C++ Example:: Demonstrating their use
12545799
AD
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
8405b70c
PB
319Java Parsers
320
f5f419de
DJ
321* Java Bison Interface:: Asking for Java parser generation
322* Java Semantic Values:: %type and %token vs. Java
323* Java Location Values:: The position and location classes
324* Java Parser Interface:: Instantiating and running the parser
325* Java Scanner Interface:: Specifying the scanner for the parser
326* Java Action Features:: Special features for use in actions
327* Java Differences:: Differences between C/C++ and Java Grammars
328* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 329
d1a1114f
AD
330Frequently Asked Questions
331
f5f419de
DJ
332* Memory Exhausted:: Breaking the Stack Limits
333* How Can I Reset the Parser:: @code{yyparse} Keeps some State
334* Strings are Destroyed:: @code{yylval} Loses Track of Strings
335* Implementing Gotos/Loops:: Control Flow in the Calculator
336* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 337* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
338* I can't build Bison:: Troubleshooting
339* Where can I find help?:: Troubleshouting
340* Bug Reports:: Troublereporting
341* More Languages:: Parsers in C++, Java, and so on
342* Beta Testing:: Experimenting development versions
343* Mailing Lists:: Meeting other Bison users
d1a1114f 344
f2b5126e
PB
345Copying This Manual
346
f5f419de 347* Copying This Manual:: License for copying this manual.
f2b5126e 348
342b8b6e 349@end detailmenu
bfa74976
RS
350@end menu
351
342b8b6e 352@node Introduction
bfa74976
RS
353@unnumbered Introduction
354@cindex introduction
355
6077da58 356@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
357annotated context-free grammar into a deterministic LR or generalized
358LR (GLR) parser employing LALR(1) parser tables. As an experimental
359feature, Bison can also generate IELR(1) or canonical LR(1) parser
360tables. Once you are proficient with Bison, you can use it to develop
361a wide range of language parsers, from those used in simple desk
362calculators to complex programming languages.
363
364Bison is upward compatible with Yacc: all properly-written Yacc
365grammars ought to work with Bison with no change. Anyone familiar
366with Yacc should be able to use Bison with little trouble. You need
367to be fluent in C or C++ programming in order to use Bison or to
368understand this manual. Java is also supported as an experimental
369feature.
370
371We begin with tutorial chapters that explain the basic concepts of
372using Bison and show three explained examples, each building on the
373last. If you don't know Bison or Yacc, start by reading these
374chapters. Reference chapters follow, which describe specific aspects
375of Bison in detail.
bfa74976 376
679e9935
JD
377Bison was written originally by Robert Corbett. Richard Stallman made
378it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
379added multi-character string literals and other features. Since then,
380Bison has grown more robust and evolved many other new features thanks
381to the hard work of a long list of volunteers. For details, see the
382@file{THANKS} and @file{ChangeLog} files included in the Bison
383distribution.
931c7513 384
df1af54c 385This edition corresponds to version @value{VERSION} of Bison.
bfa74976 386
342b8b6e 387@node Conditions
bfa74976
RS
388@unnumbered Conditions for Using Bison
389
193d7c70
PE
390The distribution terms for Bison-generated parsers permit using the
391parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 392permissions applied only when Bison was generating LALR(1)
193d7c70 393parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 394parsers could be used only in programs that were free software.
a31239f1 395
8a4281b9 396The other GNU programming tools, such as the GNU C
c827f760 397compiler, have never
9ecbd125 398had such a requirement. They could always be used for nonfree
a31239f1
RS
399software. The reason Bison was different was not due to a special
400policy decision; it resulted from applying the usual General Public
401License to all of the Bison source code.
402
ff7571c0
JD
403The main output of the Bison utility---the Bison parser implementation
404file---contains a verbatim copy of a sizable piece of Bison, which is
405the code for the parser's implementation. (The actions from your
406grammar are inserted into this implementation at one point, but most
407of the rest of the implementation is not changed.) When we applied
408the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
409the effect was to restrict the use of Bison output to free software.
410
411We didn't change the terms because of sympathy for people who want to
412make software proprietary. @strong{Software should be free.} But we
413concluded that limiting Bison's use to free software was doing little to
414encourage people to make other software free. So we decided to make the
415practical conditions for using Bison match the practical conditions for
8a4281b9 416using the other GNU tools.
bfa74976 417
193d7c70
PE
418This exception applies when Bison is generating code for a parser.
419You can tell whether the exception applies to a Bison output file by
420inspecting the file for text beginning with ``As a special
421exception@dots{}''. The text spells out the exact terms of the
422exception.
262aa8dd 423
f16b0819
PE
424@node Copying
425@unnumbered GNU GENERAL PUBLIC LICENSE
426@include gpl-3.0.texi
bfa74976 427
342b8b6e 428@node Concepts
bfa74976
RS
429@chapter The Concepts of Bison
430
431This chapter introduces many of the basic concepts without which the
432details of Bison will not make sense. If you do not already know how to
433use Bison or Yacc, we suggest you start by reading this chapter carefully.
434
435@menu
f5f419de
DJ
436* Language and Grammar:: Languages and context-free grammars,
437 as mathematical ideas.
438* Grammar in Bison:: How we represent grammars for Bison's sake.
439* Semantic Values:: Each token or syntactic grouping can have
440 a semantic value (the value of an integer,
441 the name of an identifier, etc.).
442* Semantic Actions:: Each rule can have an action containing C code.
443* GLR Parsers:: Writing parsers for general context-free languages.
444* Locations Overview:: Tracking Locations.
445* Bison Parser:: What are Bison's input and output,
446 how is the output used?
447* Stages:: Stages in writing and running Bison grammars.
448* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
449@end menu
450
342b8b6e 451@node Language and Grammar
bfa74976
RS
452@section Languages and Context-Free Grammars
453
bfa74976
RS
454@cindex context-free grammar
455@cindex grammar, context-free
456In order for Bison to parse a language, it must be described by a
457@dfn{context-free grammar}. This means that you specify one or more
458@dfn{syntactic groupings} and give rules for constructing them from their
459parts. For example, in the C language, one kind of grouping is called an
460`expression'. One rule for making an expression might be, ``An expression
461can be made of a minus sign and another expression''. Another would be,
462``An expression can be an integer''. As you can see, rules are often
463recursive, but there must be at least one rule which leads out of the
464recursion.
465
8a4281b9 466@cindex BNF
bfa74976
RS
467@cindex Backus-Naur form
468The most common formal system for presenting such rules for humans to read
8a4281b9 469is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 470order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
471BNF is a context-free grammar. The input to Bison is
472essentially machine-readable BNF.
bfa74976 473
8a4281b9
JD
474@cindex LALR(1) grammars
475@cindex IELR(1) grammars
476@cindex LR(1) grammars
eb45ef3b
JD
477There are various important subclasses of context-free grammars.
478Although it can handle almost all context-free grammars, Bison is
8a4281b9 479optimized for what are called LR(1) grammars.
eb45ef3b
JD
480In brief, in these grammars, it must be possible to tell how to parse
481any portion of an input string with just a single token of lookahead.
482For historical reasons, Bison by default is limited by the additional
8a4281b9 483restrictions of LALR(1), which is hard to explain simply.
c827f760
PE
484@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
485more information on this.
f1b238df 486As an experimental feature, you can escape these additional restrictions by
8a4281b9 487requesting IELR(1) or canonical LR(1) parser tables.
eb45ef3b 488@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 489
8a4281b9
JD
490@cindex GLR parsing
491@cindex generalized LR (GLR) parsing
676385e2 492@cindex ambiguous grammars
9d9b8b70 493@cindex nondeterministic parsing
9501dc6e 494
8a4281b9 495Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
496roughly that the next grammar rule to apply at any point in the input is
497uniquely determined by the preceding input and a fixed, finite portion
742e4900 498(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 499grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 500apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 501grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 502lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 503With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
504general context-free grammars, using a technique known as GLR
505parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
506are able to handle any context-free grammar for which the number of
507possible parses of any given string is finite.
676385e2 508
bfa74976
RS
509@cindex symbols (abstract)
510@cindex token
511@cindex syntactic grouping
512@cindex grouping, syntactic
9501dc6e
AD
513In the formal grammatical rules for a language, each kind of syntactic
514unit or grouping is named by a @dfn{symbol}. Those which are built by
515grouping smaller constructs according to grammatical rules are called
bfa74976
RS
516@dfn{nonterminal symbols}; those which can't be subdivided are called
517@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
518corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 519corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
520
521We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
522nonterminal, mean. The tokens of C are identifiers, constants (numeric
523and string), and the various keywords, arithmetic operators and
524punctuation marks. So the terminal symbols of a grammar for C include
525`identifier', `number', `string', plus one symbol for each keyword,
526operator or punctuation mark: `if', `return', `const', `static', `int',
527`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
528(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
529lexicography, not grammar.)
530
531Here is a simple C function subdivided into tokens:
532
9edcd895
AD
533@ifinfo
534@example
535int /* @r{keyword `int'} */
14d4662b 536square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
537 @r{identifier, close-paren} */
538@{ /* @r{open-brace} */
aa08666d
AD
539 return x * x; /* @r{keyword `return', identifier, asterisk,}
540 @r{identifier, semicolon} */
9edcd895
AD
541@} /* @r{close-brace} */
542@end example
543@end ifinfo
544@ifnotinfo
bfa74976
RS
545@example
546int /* @r{keyword `int'} */
14d4662b 547square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 548@{ /* @r{open-brace} */
9edcd895 549 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
550@} /* @r{close-brace} */
551@end example
9edcd895 552@end ifnotinfo
bfa74976
RS
553
554The syntactic groupings of C include the expression, the statement, the
555declaration, and the function definition. These are represented in the
556grammar of C by nonterminal symbols `expression', `statement',
557`declaration' and `function definition'. The full grammar uses dozens of
558additional language constructs, each with its own nonterminal symbol, in
559order to express the meanings of these four. The example above is a
560function definition; it contains one declaration, and one statement. In
561the statement, each @samp{x} is an expression and so is @samp{x * x}.
562
563Each nonterminal symbol must have grammatical rules showing how it is made
564out of simpler constructs. For example, one kind of C statement is the
565@code{return} statement; this would be described with a grammar rule which
566reads informally as follows:
567
568@quotation
569A `statement' can be made of a `return' keyword, an `expression' and a
570`semicolon'.
571@end quotation
572
573@noindent
574There would be many other rules for `statement', one for each kind of
575statement in C.
576
577@cindex start symbol
578One nonterminal symbol must be distinguished as the special one which
579defines a complete utterance in the language. It is called the @dfn{start
580symbol}. In a compiler, this means a complete input program. In the C
581language, the nonterminal symbol `sequence of definitions and declarations'
582plays this role.
583
584For example, @samp{1 + 2} is a valid C expression---a valid part of a C
585program---but it is not valid as an @emph{entire} C program. In the
586context-free grammar of C, this follows from the fact that `expression' is
587not the start symbol.
588
589The Bison parser reads a sequence of tokens as its input, and groups the
590tokens using the grammar rules. If the input is valid, the end result is
591that the entire token sequence reduces to a single grouping whose symbol is
592the grammar's start symbol. If we use a grammar for C, the entire input
593must be a `sequence of definitions and declarations'. If not, the parser
594reports a syntax error.
595
342b8b6e 596@node Grammar in Bison
bfa74976
RS
597@section From Formal Rules to Bison Input
598@cindex Bison grammar
599@cindex grammar, Bison
600@cindex formal grammar
601
602A formal grammar is a mathematical construct. To define the language
603for Bison, you must write a file expressing the grammar in Bison syntax:
604a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
605
606A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 607as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
608in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
609
610The Bison representation for a terminal symbol is also called a @dfn{token
611type}. Token types as well can be represented as C-like identifiers. By
612convention, these identifiers should be upper case to distinguish them from
613nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
614@code{RETURN}. A terminal symbol that stands for a particular keyword in
615the language should be named after that keyword converted to upper case.
616The terminal symbol @code{error} is reserved for error recovery.
931c7513 617@xref{Symbols}.
bfa74976
RS
618
619A terminal symbol can also be represented as a character literal, just like
620a C character constant. You should do this whenever a token is just a
621single character (parenthesis, plus-sign, etc.): use that same character in
622a literal as the terminal symbol for that token.
623
931c7513
RS
624A third way to represent a terminal symbol is with a C string constant
625containing several characters. @xref{Symbols}, for more information.
626
bfa74976
RS
627The grammar rules also have an expression in Bison syntax. For example,
628here is the Bison rule for a C @code{return} statement. The semicolon in
629quotes is a literal character token, representing part of the C syntax for
630the statement; the naked semicolon, and the colon, are Bison punctuation
631used in every rule.
632
633@example
634stmt: RETURN expr ';'
635 ;
636@end example
637
638@noindent
639@xref{Rules, ,Syntax of Grammar Rules}.
640
342b8b6e 641@node Semantic Values
bfa74976
RS
642@section Semantic Values
643@cindex semantic value
644@cindex value, semantic
645
646A formal grammar selects tokens only by their classifications: for example,
647if a rule mentions the terminal symbol `integer constant', it means that
648@emph{any} integer constant is grammatically valid in that position. The
649precise value of the constant is irrelevant to how to parse the input: if
650@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 651grammatical.
bfa74976
RS
652
653But the precise value is very important for what the input means once it is
654parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6553989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
656has both a token type and a @dfn{semantic value}. @xref{Semantics,
657,Defining Language Semantics},
bfa74976
RS
658for details.
659
660The token type is a terminal symbol defined in the grammar, such as
661@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
662you need to know to decide where the token may validly appear and how to
663group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 664except their types.
bfa74976
RS
665
666The semantic value has all the rest of the information about the
667meaning of the token, such as the value of an integer, or the name of an
668identifier. (A token such as @code{','} which is just punctuation doesn't
669need to have any semantic value.)
670
671For example, an input token might be classified as token type
672@code{INTEGER} and have the semantic value 4. Another input token might
673have the same token type @code{INTEGER} but value 3989. When a grammar
674rule says that @code{INTEGER} is allowed, either of these tokens is
675acceptable because each is an @code{INTEGER}. When the parser accepts the
676token, it keeps track of the token's semantic value.
677
678Each grouping can also have a semantic value as well as its nonterminal
679symbol. For example, in a calculator, an expression typically has a
680semantic value that is a number. In a compiler for a programming
681language, an expression typically has a semantic value that is a tree
682structure describing the meaning of the expression.
683
342b8b6e 684@node Semantic Actions
bfa74976
RS
685@section Semantic Actions
686@cindex semantic actions
687@cindex actions, semantic
688
689In order to be useful, a program must do more than parse input; it must
690also produce some output based on the input. In a Bison grammar, a grammar
691rule can have an @dfn{action} made up of C statements. Each time the
692parser recognizes a match for that rule, the action is executed.
693@xref{Actions}.
13863333 694
bfa74976
RS
695Most of the time, the purpose of an action is to compute the semantic value
696of the whole construct from the semantic values of its parts. For example,
697suppose we have a rule which says an expression can be the sum of two
698expressions. When the parser recognizes such a sum, each of the
699subexpressions has a semantic value which describes how it was built up.
700The action for this rule should create a similar sort of value for the
701newly recognized larger expression.
702
703For example, here is a rule that says an expression can be the sum of
704two subexpressions:
705
706@example
707expr: expr '+' expr @{ $$ = $1 + $3; @}
708 ;
709@end example
710
711@noindent
712The action says how to produce the semantic value of the sum expression
713from the values of the two subexpressions.
714
676385e2 715@node GLR Parsers
8a4281b9
JD
716@section Writing GLR Parsers
717@cindex GLR parsing
718@cindex generalized LR (GLR) parsing
676385e2
PH
719@findex %glr-parser
720@cindex conflicts
721@cindex shift/reduce conflicts
fa7e68c3 722@cindex reduce/reduce conflicts
676385e2 723
eb45ef3b 724In some grammars, Bison's deterministic
8a4281b9 725LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
726certain grammar rule at a given point. That is, it may not be able to
727decide (on the basis of the input read so far) which of two possible
728reductions (applications of a grammar rule) applies, or whether to apply
729a reduction or read more of the input and apply a reduction later in the
730input. These are known respectively as @dfn{reduce/reduce} conflicts
731(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
732(@pxref{Shift/Reduce}).
733
8a4281b9 734To use a grammar that is not easily modified to be LR(1), a
9501dc6e 735more general parsing algorithm is sometimes necessary. If you include
676385e2 736@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
737(@pxref{Grammar Outline}), the result is a Generalized LR
738(GLR) parser. These parsers handle Bison grammars that
9501dc6e 739contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 740declarations) identically to deterministic parsers. However, when
9501dc6e 741faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 742GLR parsers use the simple expedient of doing both,
9501dc6e
AD
743effectively cloning the parser to follow both possibilities. Each of
744the resulting parsers can again split, so that at any given time, there
745can be any number of possible parses being explored. The parsers
676385e2
PH
746proceed in lockstep; that is, all of them consume (shift) a given input
747symbol before any of them proceed to the next. Each of the cloned
748parsers eventually meets one of two possible fates: either it runs into
749a parsing error, in which case it simply vanishes, or it merges with
750another parser, because the two of them have reduced the input to an
751identical set of symbols.
752
753During the time that there are multiple parsers, semantic actions are
754recorded, but not performed. When a parser disappears, its recorded
755semantic actions disappear as well, and are never performed. When a
756reduction makes two parsers identical, causing them to merge, Bison
757records both sets of semantic actions. Whenever the last two parsers
758merge, reverting to the single-parser case, Bison resolves all the
759outstanding actions either by precedences given to the grammar rules
760involved, or by performing both actions, and then calling a designated
761user-defined function on the resulting values to produce an arbitrary
762merged result.
763
fa7e68c3 764@menu
8a4281b9
JD
765* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
766* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 767* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 768* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 769* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
770@end menu
771
772@node Simple GLR Parsers
8a4281b9
JD
773@subsection Using GLR on Unambiguous Grammars
774@cindex GLR parsing, unambiguous grammars
775@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
776@findex %glr-parser
777@findex %expect-rr
778@cindex conflicts
779@cindex reduce/reduce conflicts
780@cindex shift/reduce conflicts
781
8a4281b9
JD
782In the simplest cases, you can use the GLR algorithm
783to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 784Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
785
786Consider a problem that
787arises in the declaration of enumerated and subrange types in the
788programming language Pascal. Here are some examples:
789
790@example
791type subrange = lo .. hi;
792type enum = (a, b, c);
793@end example
794
795@noindent
796The original language standard allows only numeric
797literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 798and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
79910206) and many other
800Pascal implementations allow arbitrary expressions there. This gives
801rise to the following situation, containing a superfluous pair of
802parentheses:
803
804@example
805type subrange = (a) .. b;
806@end example
807
808@noindent
809Compare this to the following declaration of an enumerated
810type with only one value:
811
812@example
813type enum = (a);
814@end example
815
816@noindent
817(These declarations are contrived, but they are syntactically
818valid, and more-complicated cases can come up in practical programs.)
819
820These two declarations look identical until the @samp{..} token.
8a4281b9 821With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
822possible to decide between the two forms when the identifier
823@samp{a} is parsed. It is, however, desirable
824for a parser to decide this, since in the latter case
825@samp{a} must become a new identifier to represent the enumeration
826value, while in the former case @samp{a} must be evaluated with its
827current meaning, which may be a constant or even a function call.
828
829You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
830to be resolved later, but this typically requires substantial
831contortions in both semantic actions and large parts of the
832grammar, where the parentheses are nested in the recursive rules for
833expressions.
834
835You might think of using the lexer to distinguish between the two
836forms by returning different tokens for currently defined and
837undefined identifiers. But if these declarations occur in a local
838scope, and @samp{a} is defined in an outer scope, then both forms
839are possible---either locally redefining @samp{a}, or using the
840value of @samp{a} from the outer scope. So this approach cannot
841work.
842
e757bb10 843A simple solution to this problem is to declare the parser to
8a4281b9
JD
844use the GLR algorithm.
845When the GLR parser reaches the critical state, it
fa7e68c3
PE
846merely splits into two branches and pursues both syntax rules
847simultaneously. Sooner or later, one of them runs into a parsing
848error. If there is a @samp{..} token before the next
849@samp{;}, the rule for enumerated types fails since it cannot
850accept @samp{..} anywhere; otherwise, the subrange type rule
851fails since it requires a @samp{..} token. So one of the branches
852fails silently, and the other one continues normally, performing
853all the intermediate actions that were postponed during the split.
854
855If the input is syntactically incorrect, both branches fail and the parser
856reports a syntax error as usual.
857
858The effect of all this is that the parser seems to ``guess'' the
859correct branch to take, or in other words, it seems to use more
8a4281b9
JD
860lookahead than the underlying LR(1) algorithm actually allows
861for. In this example, LR(2) would suffice, but also some cases
862that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 863
8a4281b9 864In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
865and the current Bison parser even takes exponential time and space
866for some grammars. In practice, this rarely happens, and for many
867grammars it is possible to prove that it cannot happen.
868The present example contains only one conflict between two
869rules, and the type-declaration context containing the conflict
870cannot be nested. So the number of
871branches that can exist at any time is limited by the constant 2,
872and the parsing time is still linear.
873
874Here is a Bison grammar corresponding to the example above. It
875parses a vastly simplified form of Pascal type declarations.
876
877@example
878%token TYPE DOTDOT ID
879
880@group
881%left '+' '-'
882%left '*' '/'
883@end group
884
885%%
886
887@group
888type_decl : TYPE ID '=' type ';'
889 ;
890@end group
891
892@group
893type : '(' id_list ')'
894 | expr DOTDOT expr
895 ;
896@end group
897
898@group
899id_list : ID
900 | id_list ',' ID
901 ;
902@end group
903
904@group
905expr : '(' expr ')'
906 | expr '+' expr
907 | expr '-' expr
908 | expr '*' expr
909 | expr '/' expr
910 | ID
911 ;
912@end group
913@end example
914
8a4281b9 915When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
916about one reduce/reduce conflict. In the conflicting situation the
917parser chooses one of the alternatives, arbitrarily the one
918declared first. Therefore the following correct input is not
919recognized:
920
921@example
922type t = (a) .. b;
923@end example
924
8a4281b9 925The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
926to be silent about the one known reduce/reduce conflict, by adding
927these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
928@samp{%%}):
929
930@example
931%glr-parser
932%expect-rr 1
933@end example
934
935@noindent
936No change in the grammar itself is required. Now the
937parser recognizes all valid declarations, according to the
938limited syntax above, transparently. In fact, the user does not even
939notice when the parser splits.
940
8a4281b9 941So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
942almost without disadvantages. Even in simple cases like this, however,
943there are at least two potential problems to beware. First, always
8a4281b9
JD
944analyze the conflicts reported by Bison to make sure that GLR
945splitting is only done where it is intended. A GLR parser
f8e1c9e5 946splitting inadvertently may cause problems less obvious than an
8a4281b9 947LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
948conflict. Second, consider interactions with the lexer (@pxref{Semantic
949Tokens}) with great care. Since a split parser consumes tokens without
950performing any actions during the split, the lexer cannot obtain
951information via parser actions. Some cases of lexer interactions can be
8a4281b9 952eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
953lexer to the parser. You must check the remaining cases for
954correctness.
955
956In our example, it would be safe for the lexer to return tokens based on
957their current meanings in some symbol table, because no new symbols are
958defined in the middle of a type declaration. Though it is possible for
959a parser to define the enumeration constants as they are parsed, before
960the type declaration is completed, it actually makes no difference since
961they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
962
963@node Merging GLR Parses
8a4281b9
JD
964@subsection Using GLR to Resolve Ambiguities
965@cindex GLR parsing, ambiguous grammars
966@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
967@findex %dprec
968@findex %merge
969@cindex conflicts
970@cindex reduce/reduce conflicts
971
2a8d363a 972Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
973
974@example
975%@{
38a92d50
PE
976 #include <stdio.h>
977 #define YYSTYPE char const *
978 int yylex (void);
979 void yyerror (char const *);
676385e2
PH
980%@}
981
982%token TYPENAME ID
983
984%right '='
985%left '+'
986
987%glr-parser
988
989%%
990
fae437e8 991prog :
676385e2
PH
992 | prog stmt @{ printf ("\n"); @}
993 ;
994
995stmt : expr ';' %dprec 1
996 | decl %dprec 2
997 ;
998
2a8d363a 999expr : ID @{ printf ("%s ", $$); @}
fae437e8 1000 | TYPENAME '(' expr ')'
2a8d363a
AD
1001 @{ printf ("%s <cast> ", $1); @}
1002 | expr '+' expr @{ printf ("+ "); @}
1003 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1004 ;
1005
fae437e8 1006decl : TYPENAME declarator ';'
2a8d363a 1007 @{ printf ("%s <declare> ", $1); @}
676385e2 1008 | TYPENAME declarator '=' expr ';'
2a8d363a 1009 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1010 ;
1011
2a8d363a 1012declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1013 | '(' declarator ')'
1014 ;
1015@end example
1016
1017@noindent
1018This models a problematic part of the C++ grammar---the ambiguity between
1019certain declarations and statements. For example,
1020
1021@example
1022T (x) = y+z;
1023@end example
1024
1025@noindent
1026parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1027(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1028@samp{x} as an @code{ID}).
676385e2 1029Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1030@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1031time it encounters @code{x} in the example above. Since this is a
8a4281b9 1032GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1033each choice of resolving the reduce/reduce conflict.
1034Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1035however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1036ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1037the other reduces @code{stmt : decl}, after which both parsers are in an
1038identical state: they've seen @samp{prog stmt} and have the same unprocessed
1039input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1040
8a4281b9 1041At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1042grammar of how to choose between the competing parses.
1043In the example above, the two @code{%dprec}
e757bb10 1044declarations specify that Bison is to give precedence
fa7e68c3 1045to the parse that interprets the example as a
676385e2
PH
1046@code{decl}, which implies that @code{x} is a declarator.
1047The parser therefore prints
1048
1049@example
fae437e8 1050"x" y z + T <init-declare>
676385e2
PH
1051@end example
1052
fa7e68c3
PE
1053The @code{%dprec} declarations only come into play when more than one
1054parse survives. Consider a different input string for this parser:
676385e2
PH
1055
1056@example
1057T (x) + y;
1058@end example
1059
1060@noindent
8a4281b9 1061This is another example of using GLR to parse an unambiguous
fa7e68c3 1062construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1063Here, there is no ambiguity (this cannot be parsed as a declaration).
1064However, at the time the Bison parser encounters @code{x}, it does not
1065have enough information to resolve the reduce/reduce conflict (again,
1066between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1067case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1068into two, one assuming that @code{x} is an @code{expr}, and the other
1069assuming @code{x} is a @code{declarator}. The second of these parsers
1070then vanishes when it sees @code{+}, and the parser prints
1071
1072@example
fae437e8 1073x T <cast> y +
676385e2
PH
1074@end example
1075
1076Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1077the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1078actions of the two possible parsers, rather than choosing one over the
1079other. To do so, you could change the declaration of @code{stmt} as
1080follows:
1081
1082@example
1083stmt : expr ';' %merge <stmtMerge>
1084 | decl %merge <stmtMerge>
1085 ;
1086@end example
1087
1088@noindent
676385e2
PH
1089and define the @code{stmtMerge} function as:
1090
1091@example
38a92d50
PE
1092static YYSTYPE
1093stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1094@{
1095 printf ("<OR> ");
1096 return "";
1097@}
1098@end example
1099
1100@noindent
1101with an accompanying forward declaration
1102in the C declarations at the beginning of the file:
1103
1104@example
1105%@{
38a92d50 1106 #define YYSTYPE char const *
676385e2
PH
1107 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1108%@}
1109@end example
1110
1111@noindent
fa7e68c3
PE
1112With these declarations, the resulting parser parses the first example
1113as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1114
1115@example
fae437e8 1116"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1117@end example
1118
fa7e68c3 1119Bison requires that all of the
e757bb10 1120productions that participate in any particular merge have identical
fa7e68c3
PE
1121@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1122and the parser will report an error during any parse that results in
1123the offending merge.
9501dc6e 1124
32c29292
JD
1125@node GLR Semantic Actions
1126@subsection GLR Semantic Actions
1127
8a4281b9 1128The nature of GLR parsing and the structure of the generated
20be2f92
PH
1129parsers give rise to certain restrictions on semantic values and actions.
1130
1131@subsubsection Deferred semantic actions
32c29292
JD
1132@cindex deferred semantic actions
1133By definition, a deferred semantic action is not performed at the same time as
1134the associated reduction.
1135This raises caveats for several Bison features you might use in a semantic
8a4281b9 1136action in a GLR parser.
32c29292
JD
1137
1138@vindex yychar
8a4281b9 1139@cindex GLR parsers and @code{yychar}
32c29292 1140@vindex yylval
8a4281b9 1141@cindex GLR parsers and @code{yylval}
32c29292 1142@vindex yylloc
8a4281b9 1143@cindex GLR parsers and @code{yylloc}
32c29292 1144In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1145the lookahead token present at the time of the associated reduction.
32c29292
JD
1146After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1147you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1148lookahead token's semantic value and location, if any.
32c29292
JD
1149In a nondeferred semantic action, you can also modify any of these variables to
1150influence syntax analysis.
742e4900 1151@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1152
1153@findex yyclearin
8a4281b9 1154@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1155In a deferred semantic action, it's too late to influence syntax analysis.
1156In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1157shallow copies of the values they had at the time of the associated reduction.
1158For this reason alone, modifying them is dangerous.
1159Moreover, the result of modifying them is undefined and subject to change with
1160future versions of Bison.
1161For example, if a semantic action might be deferred, you should never write it
1162to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1163memory referenced by @code{yylval}.
1164
20be2f92 1165@subsubsection YYERROR
32c29292 1166@findex YYERROR
8a4281b9 1167@cindex GLR parsers and @code{YYERROR}
32c29292 1168Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1169(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1170initiate error recovery.
8a4281b9 1171During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1172the same as its effect in a deterministic parser.
20be2f92
PH
1173The effect in a deferred action is similar, but the precise point of the
1174error is undefined; instead, the parser reverts to deterministic operation,
1175selecting an unspecified stack on which to continue with a syntax error.
1176In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1177parsing, @code{YYERROR} silently prunes
1178the parse that invoked the test.
1179
1180@subsubsection Restrictions on semantic values and locations
8a4281b9 1181GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1182semantic values and location types when using the generated parsers as
1183C++ code.
8710fc41 1184
ca2a6d15
PH
1185@node Semantic Predicates
1186@subsection Controlling a Parse with Arbitrary Predicates
1187@findex %?
8a4281b9 1188@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1189
1190In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1191GLR parsers
ca2a6d15
PH
1192allow you to reject parses on the basis of arbitrary computations executed
1193in user code, without having Bison treat this rejection as an error
1194if there are alternative parses. (This feature is experimental and may
1195evolve. We welcome user feedback.) For example,
1196
1197@smallexample
1198widget :
1199 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1200 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1201 ;
1202@end smallexample
1203
1204@noindent
1205is one way to allow the same parser to handle two different syntaxes for
1206widgets. The clause preceded by @code{%?} is treated like an ordinary
1207action, except that its text is treated as an expression and is always
1208evaluated immediately (even when in nondeterministic mode). If the
1209expression yields 0 (false), the clause is treated as a syntax error,
1210which, in a nondeterministic parser, causes the stack in which it is reduced
1211to die. In a deterministic parser, it acts like YYERROR.
1212
1213As the example shows, predicates otherwise look like semantic actions, and
1214therefore you must be take them into account when determining the numbers
1215to use for denoting the semantic values of right-hand side symbols.
1216Predicate actions, however, have no defined value, and may not be given
1217labels.
1218
1219There is a subtle difference between semantic predicates and ordinary
1220actions in nondeterministic mode, since the latter are deferred.
1221For example, we could try to rewrite the previous example as
1222
1223@smallexample
1224widget :
1225 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1226 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1227 ;
1228@end smallexample
1229
1230@noindent
1231(reversing the sense of the predicate tests to cause an error when they are
1232false). However, this
1233does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1234have overlapping syntax.
1235Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1236a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1237for cases where @code{new_args} and @code{old_args} recognize the same string
1238@emph{before} performing the tests of @code{new_syntax}. It therefore
1239reports an error.
1240
1241Finally, be careful in writing predicates: deferred actions have not been
1242evaluated, so that using them in a predicate will have undefined effects.
1243
fa7e68c3 1244@node Compiler Requirements
8a4281b9 1245@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1246@cindex @code{inline}
8a4281b9 1247@cindex GLR parsers and @code{inline}
fa7e68c3 1248
8a4281b9 1249The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1250later. In addition, they use the @code{inline} keyword, which is not
1251C89, but is C99 and is a common extension in pre-C99 compilers. It is
1252up to the user of these parsers to handle
9501dc6e
AD
1253portability issues. For instance, if using Autoconf and the Autoconf
1254macro @code{AC_C_INLINE}, a mere
1255
1256@example
1257%@{
38a92d50 1258 #include <config.h>
9501dc6e
AD
1259%@}
1260@end example
1261
1262@noindent
1263will suffice. Otherwise, we suggest
1264
1265@example
1266%@{
38a92d50
PE
1267 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1268 #define inline
1269 #endif
9501dc6e
AD
1270%@}
1271@end example
676385e2 1272
342b8b6e 1273@node Locations Overview
847bf1f5
AD
1274@section Locations
1275@cindex location
95923bd6
AD
1276@cindex textual location
1277@cindex location, textual
847bf1f5
AD
1278
1279Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1280and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1281the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1282Bison provides a mechanism for handling these locations.
1283
72d2299c 1284Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1285associated location, but the type of locations is the same for all tokens and
72d2299c 1286groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1287structure for storing locations (@pxref{Locations}, for more details).
1288
1289Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1290set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1291is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1292@code{@@3}.
1293
1294When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1295of its left hand side (@pxref{Actions}). In the same way, another default
1296action is used for locations. However, the action for locations is general
847bf1f5 1297enough for most cases, meaning there is usually no need to describe for each
72d2299c 1298rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1299grouping, the default behavior of the output parser is to take the beginning
1300of the first symbol, and the end of the last symbol.
1301
342b8b6e 1302@node Bison Parser
ff7571c0 1303@section Bison Output: the Parser Implementation File
bfa74976
RS
1304@cindex Bison parser
1305@cindex Bison utility
1306@cindex lexical analyzer, purpose
1307@cindex parser
1308
ff7571c0
JD
1309When you run Bison, you give it a Bison grammar file as input. The
1310most important output is a C source file that implements a parser for
1311the language described by the grammar. This parser is called a
1312@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1313implementation file}. Keep in mind that the Bison utility and the
1314Bison parser are two distinct programs: the Bison utility is a program
1315whose output is the Bison parser implementation file that becomes part
1316of your program.
bfa74976
RS
1317
1318The job of the Bison parser is to group tokens into groupings according to
1319the grammar rules---for example, to build identifiers and operators into
1320expressions. As it does this, it runs the actions for the grammar rules it
1321uses.
1322
704a47c4
AD
1323The tokens come from a function called the @dfn{lexical analyzer} that
1324you must supply in some fashion (such as by writing it in C). The Bison
1325parser calls the lexical analyzer each time it wants a new token. It
1326doesn't know what is ``inside'' the tokens (though their semantic values
1327may reflect this). Typically the lexical analyzer makes the tokens by
1328parsing characters of text, but Bison does not depend on this.
1329@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1330
ff7571c0
JD
1331The Bison parser implementation file is C code which defines a
1332function named @code{yyparse} which implements that grammar. This
1333function does not make a complete C program: you must supply some
1334additional functions. One is the lexical analyzer. Another is an
1335error-reporting function which the parser calls to report an error.
1336In addition, a complete C program must start with a function called
1337@code{main}; you have to provide this, and arrange for it to call
1338@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1339C-Language Interface}.
bfa74976 1340
f7ab6a50 1341Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1342write, all symbols defined in the Bison parser implementation file
1343itself begin with @samp{yy} or @samp{YY}. This includes interface
1344functions such as the lexical analyzer function @code{yylex}, the
1345error reporting function @code{yyerror} and the parser function
1346@code{yyparse} itself. This also includes numerous identifiers used
1347for internal purposes. Therefore, you should avoid using C
1348identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1349file except for the ones defined in this manual. Also, you should
1350avoid using the C identifiers @samp{malloc} and @samp{free} for
1351anything other than their usual meanings.
1352
1353In some cases the Bison parser implementation file includes system
1354headers, and in those cases your code should respect the identifiers
1355reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1356@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1357included as needed to declare memory allocators and related types.
1358@code{<libintl.h>} is included if message translation is in use
1359(@pxref{Internationalization}). Other system headers may be included
1360if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1361,Tracing Your Parser}).
7093d0f5 1362
342b8b6e 1363@node Stages
bfa74976
RS
1364@section Stages in Using Bison
1365@cindex stages in using Bison
1366@cindex using Bison
1367
1368The actual language-design process using Bison, from grammar specification
1369to a working compiler or interpreter, has these parts:
1370
1371@enumerate
1372@item
1373Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1374(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1375in the language, describe the action that is to be taken when an
1376instance of that rule is recognized. The action is described by a
1377sequence of C statements.
bfa74976
RS
1378
1379@item
704a47c4
AD
1380Write a lexical analyzer to process input and pass tokens to the parser.
1381The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1382Lexical Analyzer Function @code{yylex}}). It could also be produced
1383using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1384
1385@item
1386Write a controlling function that calls the Bison-produced parser.
1387
1388@item
1389Write error-reporting routines.
1390@end enumerate
1391
1392To turn this source code as written into a runnable program, you
1393must follow these steps:
1394
1395@enumerate
1396@item
1397Run Bison on the grammar to produce the parser.
1398
1399@item
1400Compile the code output by Bison, as well as any other source files.
1401
1402@item
1403Link the object files to produce the finished product.
1404@end enumerate
1405
342b8b6e 1406@node Grammar Layout
bfa74976
RS
1407@section The Overall Layout of a Bison Grammar
1408@cindex grammar file
1409@cindex file format
1410@cindex format of grammar file
1411@cindex layout of Bison grammar
1412
1413The input file for the Bison utility is a @dfn{Bison grammar file}. The
1414general form of a Bison grammar file is as follows:
1415
1416@example
1417%@{
08e49d20 1418@var{Prologue}
bfa74976
RS
1419%@}
1420
1421@var{Bison declarations}
1422
1423%%
1424@var{Grammar rules}
1425%%
08e49d20 1426@var{Epilogue}
bfa74976
RS
1427@end example
1428
1429@noindent
1430The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1431in every Bison grammar file to separate the sections.
1432
72d2299c 1433The prologue may define types and variables used in the actions. You can
342b8b6e 1434also use preprocessor commands to define macros used there, and use
bfa74976 1435@code{#include} to include header files that do any of these things.
38a92d50
PE
1436You need to declare the lexical analyzer @code{yylex} and the error
1437printer @code{yyerror} here, along with any other global identifiers
1438used by the actions in the grammar rules.
bfa74976
RS
1439
1440The Bison declarations declare the names of the terminal and nonterminal
1441symbols, and may also describe operator precedence and the data types of
1442semantic values of various symbols.
1443
1444The grammar rules define how to construct each nonterminal symbol from its
1445parts.
1446
38a92d50
PE
1447The epilogue can contain any code you want to use. Often the
1448definitions of functions declared in the prologue go here. In a
1449simple program, all the rest of the program can go here.
bfa74976 1450
342b8b6e 1451@node Examples
bfa74976
RS
1452@chapter Examples
1453@cindex simple examples
1454@cindex examples, simple
1455
1456Now we show and explain three sample programs written using Bison: a
1457reverse polish notation calculator, an algebraic (infix) notation
1458calculator, and a multi-function calculator. All three have been tested
1459under BSD Unix 4.3; each produces a usable, though limited, interactive
1460desk-top calculator.
1461
1462These examples are simple, but Bison grammars for real programming
aa08666d
AD
1463languages are written the same way. You can copy these examples into a
1464source file to try them.
bfa74976
RS
1465
1466@menu
f5f419de
DJ
1467* RPN Calc:: Reverse polish notation calculator;
1468 a first example with no operator precedence.
1469* Infix Calc:: Infix (algebraic) notation calculator.
1470 Operator precedence is introduced.
bfa74976 1471* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1472* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1473* Multi-function Calc:: Calculator with memory and trig functions.
1474 It uses multiple data-types for semantic values.
1475* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1476@end menu
1477
342b8b6e 1478@node RPN Calc
bfa74976
RS
1479@section Reverse Polish Notation Calculator
1480@cindex reverse polish notation
1481@cindex polish notation calculator
1482@cindex @code{rpcalc}
1483@cindex calculator, simple
1484
1485The first example is that of a simple double-precision @dfn{reverse polish
1486notation} calculator (a calculator using postfix operators). This example
1487provides a good starting point, since operator precedence is not an issue.
1488The second example will illustrate how operator precedence is handled.
1489
1490The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1491@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1492
1493@menu
f5f419de
DJ
1494* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1495* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1496* Rpcalc Lexer:: The lexical analyzer.
1497* Rpcalc Main:: The controlling function.
1498* Rpcalc Error:: The error reporting function.
1499* Rpcalc Generate:: Running Bison on the grammar file.
1500* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1501@end menu
1502
f5f419de 1503@node Rpcalc Declarations
bfa74976
RS
1504@subsection Declarations for @code{rpcalc}
1505
1506Here are the C and Bison declarations for the reverse polish notation
1507calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1508
1509@example
72d2299c 1510/* Reverse polish notation calculator. */
bfa74976
RS
1511
1512%@{
38a92d50
PE
1513 #define YYSTYPE double
1514 #include <math.h>
1515 int yylex (void);
1516 void yyerror (char const *);
bfa74976
RS
1517%@}
1518
1519%token NUM
1520
72d2299c 1521%% /* Grammar rules and actions follow. */
bfa74976
RS
1522@end example
1523
75f5aaea 1524The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1525preprocessor directives and two forward declarations.
bfa74976
RS
1526
1527The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1528specifying the C data type for semantic values of both tokens and
1529groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1530Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1531don't define it, @code{int} is the default. Because we specify
1532@code{double}, each token and each expression has an associated value,
1533which is a floating point number.
bfa74976
RS
1534
1535The @code{#include} directive is used to declare the exponentiation
1536function @code{pow}.
1537
38a92d50
PE
1538The forward declarations for @code{yylex} and @code{yyerror} are
1539needed because the C language requires that functions be declared
1540before they are used. These functions will be defined in the
1541epilogue, but the parser calls them so they must be declared in the
1542prologue.
1543
704a47c4
AD
1544The second section, Bison declarations, provides information to Bison
1545about the token types (@pxref{Bison Declarations, ,The Bison
1546Declarations Section}). Each terminal symbol that is not a
1547single-character literal must be declared here. (Single-character
bfa74976
RS
1548literals normally don't need to be declared.) In this example, all the
1549arithmetic operators are designated by single-character literals, so the
1550only terminal symbol that needs to be declared is @code{NUM}, the token
1551type for numeric constants.
1552
342b8b6e 1553@node Rpcalc Rules
bfa74976
RS
1554@subsection Grammar Rules for @code{rpcalc}
1555
1556Here are the grammar rules for the reverse polish notation calculator.
1557
1558@example
1559input: /* empty */
1560 | input line
1561;
1562
1563line: '\n'
18b519c0 1564 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1565;
1566
18b519c0
AD
1567exp: NUM @{ $$ = $1; @}
1568 | exp exp '+' @{ $$ = $1 + $2; @}
1569 | exp exp '-' @{ $$ = $1 - $2; @}
1570 | exp exp '*' @{ $$ = $1 * $2; @}
1571 | exp exp '/' @{ $$ = $1 / $2; @}
1572 /* Exponentiation */
1573 | exp exp '^' @{ $$ = pow ($1, $2); @}
1574 /* Unary minus */
1575 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1576;
1577%%
1578@end example
1579
1580The groupings of the rpcalc ``language'' defined here are the expression
1581(given the name @code{exp}), the line of input (@code{line}), and the
1582complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1583symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1584which is read as ``or''. The following sections explain what these rules
1585mean.
1586
1587The semantics of the language is determined by the actions taken when a
1588grouping is recognized. The actions are the C code that appears inside
1589braces. @xref{Actions}.
1590
1591You must specify these actions in C, but Bison provides the means for
1592passing semantic values between the rules. In each action, the
1593pseudo-variable @code{$$} stands for the semantic value for the grouping
1594that the rule is going to construct. Assigning a value to @code{$$} is the
1595main job of most actions. The semantic values of the components of the
1596rule are referred to as @code{$1}, @code{$2}, and so on.
1597
1598@menu
13863333
AD
1599* Rpcalc Input::
1600* Rpcalc Line::
1601* Rpcalc Expr::
bfa74976
RS
1602@end menu
1603
342b8b6e 1604@node Rpcalc Input
bfa74976
RS
1605@subsubsection Explanation of @code{input}
1606
1607Consider the definition of @code{input}:
1608
1609@example
1610input: /* empty */
1611 | input line
1612;
1613@end example
1614
1615This definition reads as follows: ``A complete input is either an empty
1616string, or a complete input followed by an input line''. Notice that
1617``complete input'' is defined in terms of itself. This definition is said
1618to be @dfn{left recursive} since @code{input} appears always as the
1619leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1620
1621The first alternative is empty because there are no symbols between the
1622colon and the first @samp{|}; this means that @code{input} can match an
1623empty string of input (no tokens). We write the rules this way because it
1624is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1625It's conventional to put an empty alternative first and write the comment
1626@samp{/* empty */} in it.
1627
1628The second alternate rule (@code{input line}) handles all nontrivial input.
1629It means, ``After reading any number of lines, read one more line if
1630possible.'' The left recursion makes this rule into a loop. Since the
1631first alternative matches empty input, the loop can be executed zero or
1632more times.
1633
1634The parser function @code{yyparse} continues to process input until a
1635grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1636input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1637
342b8b6e 1638@node Rpcalc Line
bfa74976
RS
1639@subsubsection Explanation of @code{line}
1640
1641Now consider the definition of @code{line}:
1642
1643@example
1644line: '\n'
1645 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1646;
1647@end example
1648
1649The first alternative is a token which is a newline character; this means
1650that rpcalc accepts a blank line (and ignores it, since there is no
1651action). The second alternative is an expression followed by a newline.
1652This is the alternative that makes rpcalc useful. The semantic value of
1653the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1654question is the first symbol in the alternative. The action prints this
1655value, which is the result of the computation the user asked for.
1656
1657This action is unusual because it does not assign a value to @code{$$}. As
1658a consequence, the semantic value associated with the @code{line} is
1659uninitialized (its value will be unpredictable). This would be a bug if
1660that value were ever used, but we don't use it: once rpcalc has printed the
1661value of the user's input line, that value is no longer needed.
1662
342b8b6e 1663@node Rpcalc Expr
bfa74976
RS
1664@subsubsection Explanation of @code{expr}
1665
1666The @code{exp} grouping has several rules, one for each kind of expression.
1667The first rule handles the simplest expressions: those that are just numbers.
1668The second handles an addition-expression, which looks like two expressions
1669followed by a plus-sign. The third handles subtraction, and so on.
1670
1671@example
1672exp: NUM
1673 | exp exp '+' @{ $$ = $1 + $2; @}
1674 | exp exp '-' @{ $$ = $1 - $2; @}
1675 @dots{}
1676 ;
1677@end example
1678
1679We have used @samp{|} to join all the rules for @code{exp}, but we could
1680equally well have written them separately:
1681
1682@example
1683exp: NUM ;
1684exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1685exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1686 @dots{}
1687@end example
1688
1689Most of the rules have actions that compute the value of the expression in
1690terms of the value of its parts. For example, in the rule for addition,
1691@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1692the second one. The third component, @code{'+'}, has no meaningful
1693associated semantic value, but if it had one you could refer to it as
1694@code{$3}. When @code{yyparse} recognizes a sum expression using this
1695rule, the sum of the two subexpressions' values is produced as the value of
1696the entire expression. @xref{Actions}.
1697
1698You don't have to give an action for every rule. When a rule has no
1699action, Bison by default copies the value of @code{$1} into @code{$$}.
1700This is what happens in the first rule (the one that uses @code{NUM}).
1701
1702The formatting shown here is the recommended convention, but Bison does
72d2299c 1703not require it. You can add or change white space as much as you wish.
bfa74976
RS
1704For example, this:
1705
1706@example
99a9344e 1707exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1708@end example
1709
1710@noindent
1711means the same thing as this:
1712
1713@example
1714exp: NUM
1715 | exp exp '+' @{ $$ = $1 + $2; @}
1716 | @dots{}
99a9344e 1717;
bfa74976
RS
1718@end example
1719
1720@noindent
1721The latter, however, is much more readable.
1722
342b8b6e 1723@node Rpcalc Lexer
bfa74976
RS
1724@subsection The @code{rpcalc} Lexical Analyzer
1725@cindex writing a lexical analyzer
1726@cindex lexical analyzer, writing
1727
704a47c4
AD
1728The lexical analyzer's job is low-level parsing: converting characters
1729or sequences of characters into tokens. The Bison parser gets its
1730tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1731Analyzer Function @code{yylex}}.
bfa74976 1732
8a4281b9 1733Only a simple lexical analyzer is needed for the RPN
c827f760 1734calculator. This
bfa74976
RS
1735lexical analyzer skips blanks and tabs, then reads in numbers as
1736@code{double} and returns them as @code{NUM} tokens. Any other character
1737that isn't part of a number is a separate token. Note that the token-code
1738for such a single-character token is the character itself.
1739
1740The return value of the lexical analyzer function is a numeric code which
1741represents a token type. The same text used in Bison rules to stand for
1742this token type is also a C expression for the numeric code for the type.
1743This works in two ways. If the token type is a character literal, then its
e966383b 1744numeric code is that of the character; you can use the same
bfa74976
RS
1745character literal in the lexical analyzer to express the number. If the
1746token type is an identifier, that identifier is defined by Bison as a C
1747macro whose definition is the appropriate number. In this example,
1748therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1749
1964ad8c
AD
1750The semantic value of the token (if it has one) is stored into the
1751global variable @code{yylval}, which is where the Bison parser will look
1752for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1753defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1754,Declarations for @code{rpcalc}}.)
bfa74976 1755
72d2299c
PE
1756A token type code of zero is returned if the end-of-input is encountered.
1757(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1758
1759Here is the code for the lexical analyzer:
1760
1761@example
1762@group
72d2299c 1763/* The lexical analyzer returns a double floating point
e966383b 1764 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1765 of the character read if not a number. It skips all blanks
1766 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1767
1768#include <ctype.h>
1769@end group
1770
1771@group
13863333
AD
1772int
1773yylex (void)
bfa74976
RS
1774@{
1775 int c;
1776
72d2299c 1777 /* Skip white space. */
13863333 1778 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1779 ;
1780@end group
1781@group
72d2299c 1782 /* Process numbers. */
13863333 1783 if (c == '.' || isdigit (c))
bfa74976
RS
1784 @{
1785 ungetc (c, stdin);
1786 scanf ("%lf", &yylval);
1787 return NUM;
1788 @}
1789@end group
1790@group
72d2299c 1791 /* Return end-of-input. */
13863333 1792 if (c == EOF)
bfa74976 1793 return 0;
72d2299c 1794 /* Return a single char. */
13863333 1795 return c;
bfa74976
RS
1796@}
1797@end group
1798@end example
1799
342b8b6e 1800@node Rpcalc Main
bfa74976
RS
1801@subsection The Controlling Function
1802@cindex controlling function
1803@cindex main function in simple example
1804
1805In keeping with the spirit of this example, the controlling function is
1806kept to the bare minimum. The only requirement is that it call
1807@code{yyparse} to start the process of parsing.
1808
1809@example
1810@group
13863333
AD
1811int
1812main (void)
bfa74976 1813@{
13863333 1814 return yyparse ();
bfa74976
RS
1815@}
1816@end group
1817@end example
1818
342b8b6e 1819@node Rpcalc Error
bfa74976
RS
1820@subsection The Error Reporting Routine
1821@cindex error reporting routine
1822
1823When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1824function @code{yyerror} to print an error message (usually but not
6e649e65 1825always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1826@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1827here is the definition we will use:
bfa74976
RS
1828
1829@example
1830@group
1831#include <stdio.h>
1832
38a92d50 1833/* Called by yyparse on error. */
13863333 1834void
38a92d50 1835yyerror (char const *s)
bfa74976 1836@{
4e03e201 1837 fprintf (stderr, "%s\n", s);
bfa74976
RS
1838@}
1839@end group
1840@end example
1841
1842After @code{yyerror} returns, the Bison parser may recover from the error
1843and continue parsing if the grammar contains a suitable error rule
1844(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1845have not written any error rules in this example, so any invalid input will
1846cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1847real calculator, but it is adequate for the first example.
bfa74976 1848
f5f419de 1849@node Rpcalc Generate
bfa74976
RS
1850@subsection Running Bison to Make the Parser
1851@cindex running Bison (introduction)
1852
ceed8467
AD
1853Before running Bison to produce a parser, we need to decide how to
1854arrange all the source code in one or more source files. For such a
ff7571c0
JD
1855simple example, the easiest thing is to put everything in one file,
1856the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1857@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1858(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1859
1860For a large project, you would probably have several source files, and use
1861@code{make} to arrange to recompile them.
1862
ff7571c0
JD
1863With all the source in the grammar file, you use the following command
1864to convert it into a parser implementation file:
bfa74976
RS
1865
1866@example
fa4d969f 1867bison @var{file}.y
bfa74976
RS
1868@end example
1869
1870@noindent
ff7571c0
JD
1871In this example, the grammar file is called @file{rpcalc.y} (for
1872``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1873implementation file named @file{@var{file}.tab.c}, removing the
1874@samp{.y} from the grammar file name. The parser implementation file
1875contains the source code for @code{yyparse}. The additional functions
1876in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1877copied verbatim to the parser implementation file.
bfa74976 1878
342b8b6e 1879@node Rpcalc Compile
ff7571c0 1880@subsection Compiling the Parser Implementation File
bfa74976
RS
1881@cindex compiling the parser
1882
ff7571c0 1883Here is how to compile and run the parser implementation file:
bfa74976
RS
1884
1885@example
1886@group
1887# @r{List files in current directory.}
9edcd895 1888$ @kbd{ls}
bfa74976
RS
1889rpcalc.tab.c rpcalc.y
1890@end group
1891
1892@group
1893# @r{Compile the Bison parser.}
1894# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1895$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1896@end group
1897
1898@group
1899# @r{List files again.}
9edcd895 1900$ @kbd{ls}
bfa74976
RS
1901rpcalc rpcalc.tab.c rpcalc.y
1902@end group
1903@end example
1904
1905The file @file{rpcalc} now contains the executable code. Here is an
1906example session using @code{rpcalc}.
1907
1908@example
9edcd895
AD
1909$ @kbd{rpcalc}
1910@kbd{4 9 +}
bfa74976 191113
9edcd895 1912@kbd{3 7 + 3 4 5 *+-}
bfa74976 1913-13
9edcd895 1914@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 191513
9edcd895 1916@kbd{5 6 / 4 n +}
bfa74976 1917-3.166666667
9edcd895 1918@kbd{3 4 ^} @r{Exponentiation}
bfa74976 191981
9edcd895
AD
1920@kbd{^D} @r{End-of-file indicator}
1921$
bfa74976
RS
1922@end example
1923
342b8b6e 1924@node Infix Calc
bfa74976
RS
1925@section Infix Notation Calculator: @code{calc}
1926@cindex infix notation calculator
1927@cindex @code{calc}
1928@cindex calculator, infix notation
1929
1930We now modify rpcalc to handle infix operators instead of postfix. Infix
1931notation involves the concept of operator precedence and the need for
1932parentheses nested to arbitrary depth. Here is the Bison code for
1933@file{calc.y}, an infix desk-top calculator.
1934
1935@example
38a92d50 1936/* Infix notation calculator. */
bfa74976
RS
1937
1938%@{
38a92d50
PE
1939 #define YYSTYPE double
1940 #include <math.h>
1941 #include <stdio.h>
1942 int yylex (void);
1943 void yyerror (char const *);
bfa74976
RS
1944%@}
1945
38a92d50 1946/* Bison declarations. */
bfa74976
RS
1947%token NUM
1948%left '-' '+'
1949%left '*' '/'
d78f0ac9
AD
1950%precedence NEG /* negation--unary minus */
1951%right '^' /* exponentiation */
bfa74976 1952
38a92d50
PE
1953%% /* The grammar follows. */
1954input: /* empty */
bfa74976
RS
1955 | input line
1956;
1957
1958line: '\n'
1959 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1960;
1961
1962exp: NUM @{ $$ = $1; @}
1963 | exp '+' exp @{ $$ = $1 + $3; @}
1964 | exp '-' exp @{ $$ = $1 - $3; @}
1965 | exp '*' exp @{ $$ = $1 * $3; @}
1966 | exp '/' exp @{ $$ = $1 / $3; @}
1967 | '-' exp %prec NEG @{ $$ = -$2; @}
1968 | exp '^' exp @{ $$ = pow ($1, $3); @}
1969 | '(' exp ')' @{ $$ = $2; @}
1970;
1971%%
1972@end example
1973
1974@noindent
ceed8467
AD
1975The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1976same as before.
bfa74976
RS
1977
1978There are two important new features shown in this code.
1979
1980In the second section (Bison declarations), @code{%left} declares token
1981types and says they are left-associative operators. The declarations
1982@code{%left} and @code{%right} (right associativity) take the place of
1983@code{%token} which is used to declare a token type name without
d78f0ac9 1984associativity/precedence. (These tokens are single-character literals, which
bfa74976 1985ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1986the associativity/precedence.)
bfa74976
RS
1987
1988Operator precedence is determined by the line ordering of the
1989declarations; the higher the line number of the declaration (lower on
1990the page or screen), the higher the precedence. Hence, exponentiation
1991has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1992by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1993only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1994Precedence}.
bfa74976 1995
704a47c4
AD
1996The other important new feature is the @code{%prec} in the grammar
1997section for the unary minus operator. The @code{%prec} simply instructs
1998Bison that the rule @samp{| '-' exp} has the same precedence as
1999@code{NEG}---in this case the next-to-highest. @xref{Contextual
2000Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2001
2002Here is a sample run of @file{calc.y}:
2003
2004@need 500
2005@example
9edcd895
AD
2006$ @kbd{calc}
2007@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20086.880952381
9edcd895 2009@kbd{-56 + 2}
bfa74976 2010-54
9edcd895 2011@kbd{3 ^ 2}
bfa74976
RS
20129
2013@end example
2014
342b8b6e 2015@node Simple Error Recovery
bfa74976
RS
2016@section Simple Error Recovery
2017@cindex error recovery, simple
2018
2019Up to this point, this manual has not addressed the issue of @dfn{error
2020recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2021error. All we have handled is error reporting with @code{yyerror}.
2022Recall that by default @code{yyparse} returns after calling
2023@code{yyerror}. This means that an erroneous input line causes the
2024calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2025
2026The Bison language itself includes the reserved word @code{error}, which
2027may be included in the grammar rules. In the example below it has
2028been added to one of the alternatives for @code{line}:
2029
2030@example
2031@group
2032line: '\n'
2033 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2034 | error '\n' @{ yyerrok; @}
2035;
2036@end group
2037@end example
2038
ceed8467 2039This addition to the grammar allows for simple error recovery in the
6e649e65 2040event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2041read, the error will be recognized by the third rule for @code{line},
2042and parsing will continue. (The @code{yyerror} function is still called
2043upon to print its message as well.) The action executes the statement
2044@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2045that error recovery is complete (@pxref{Error Recovery}). Note the
2046difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2047misprint.
bfa74976
RS
2048
2049This form of error recovery deals with syntax errors. There are other
2050kinds of errors; for example, division by zero, which raises an exception
2051signal that is normally fatal. A real calculator program must handle this
2052signal and use @code{longjmp} to return to @code{main} and resume parsing
2053input lines; it would also have to discard the rest of the current line of
2054input. We won't discuss this issue further because it is not specific to
2055Bison programs.
2056
342b8b6e
AD
2057@node Location Tracking Calc
2058@section Location Tracking Calculator: @code{ltcalc}
2059@cindex location tracking calculator
2060@cindex @code{ltcalc}
2061@cindex calculator, location tracking
2062
9edcd895
AD
2063This example extends the infix notation calculator with location
2064tracking. This feature will be used to improve the error messages. For
2065the sake of clarity, this example is a simple integer calculator, since
2066most of the work needed to use locations will be done in the lexical
72d2299c 2067analyzer.
342b8b6e
AD
2068
2069@menu
f5f419de
DJ
2070* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2071* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2072* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2073@end menu
2074
f5f419de 2075@node Ltcalc Declarations
342b8b6e
AD
2076@subsection Declarations for @code{ltcalc}
2077
9edcd895
AD
2078The C and Bison declarations for the location tracking calculator are
2079the same as the declarations for the infix notation calculator.
342b8b6e
AD
2080
2081@example
2082/* Location tracking calculator. */
2083
2084%@{
38a92d50
PE
2085 #define YYSTYPE int
2086 #include <math.h>
2087 int yylex (void);
2088 void yyerror (char const *);
342b8b6e
AD
2089%@}
2090
2091/* Bison declarations. */
2092%token NUM
2093
2094%left '-' '+'
2095%left '*' '/'
d78f0ac9 2096%precedence NEG
342b8b6e
AD
2097%right '^'
2098
38a92d50 2099%% /* The grammar follows. */
342b8b6e
AD
2100@end example
2101
9edcd895
AD
2102@noindent
2103Note there are no declarations specific to locations. Defining a data
2104type for storing locations is not needed: we will use the type provided
2105by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2106four member structure with the following integer fields:
2107@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2108@code{last_column}. By conventions, and in accordance with the GNU
2109Coding Standards and common practice, the line and column count both
2110start at 1.
342b8b6e
AD
2111
2112@node Ltcalc Rules
2113@subsection Grammar Rules for @code{ltcalc}
2114
9edcd895
AD
2115Whether handling locations or not has no effect on the syntax of your
2116language. Therefore, grammar rules for this example will be very close
2117to those of the previous example: we will only modify them to benefit
2118from the new information.
342b8b6e 2119
9edcd895
AD
2120Here, we will use locations to report divisions by zero, and locate the
2121wrong expressions or subexpressions.
342b8b6e
AD
2122
2123@example
2124@group
2125input : /* empty */
2126 | input line
2127;
2128@end group
2129
2130@group
2131line : '\n'
2132 | exp '\n' @{ printf ("%d\n", $1); @}
2133;
2134@end group
2135
2136@group
2137exp : NUM @{ $$ = $1; @}
2138 | exp '+' exp @{ $$ = $1 + $3; @}
2139 | exp '-' exp @{ $$ = $1 - $3; @}
2140 | exp '*' exp @{ $$ = $1 * $3; @}
2141@end group
342b8b6e 2142@group
9edcd895 2143 | exp '/' exp
342b8b6e
AD
2144 @{
2145 if ($3)
2146 $$ = $1 / $3;
2147 else
2148 @{
2149 $$ = 1;
9edcd895
AD
2150 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2151 @@3.first_line, @@3.first_column,
2152 @@3.last_line, @@3.last_column);
342b8b6e
AD
2153 @}
2154 @}
2155@end group
2156@group
178e123e 2157 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2158 | exp '^' exp @{ $$ = pow ($1, $3); @}
2159 | '(' exp ')' @{ $$ = $2; @}
2160@end group
2161@end example
2162
2163This code shows how to reach locations inside of semantic actions, by
2164using the pseudo-variables @code{@@@var{n}} for rule components, and the
2165pseudo-variable @code{@@$} for groupings.
2166
9edcd895
AD
2167We don't need to assign a value to @code{@@$}: the output parser does it
2168automatically. By default, before executing the C code of each action,
2169@code{@@$} is set to range from the beginning of @code{@@1} to the end
2170of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2171can be redefined (@pxref{Location Default Action, , Default Action for
2172Locations}), and for very specific rules, @code{@@$} can be computed by
2173hand.
342b8b6e
AD
2174
2175@node Ltcalc Lexer
2176@subsection The @code{ltcalc} Lexical Analyzer.
2177
9edcd895 2178Until now, we relied on Bison's defaults to enable location
72d2299c 2179tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2180able to feed the parser with the token locations, as it already does for
2181semantic values.
342b8b6e 2182
9edcd895
AD
2183To this end, we must take into account every single character of the
2184input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2185
2186@example
2187@group
2188int
2189yylex (void)
2190@{
2191 int c;
18b519c0 2192@end group
342b8b6e 2193
18b519c0 2194@group
72d2299c 2195 /* Skip white space. */
342b8b6e
AD
2196 while ((c = getchar ()) == ' ' || c == '\t')
2197 ++yylloc.last_column;
18b519c0 2198@end group
342b8b6e 2199
18b519c0 2200@group
72d2299c 2201 /* Step. */
342b8b6e
AD
2202 yylloc.first_line = yylloc.last_line;
2203 yylloc.first_column = yylloc.last_column;
2204@end group
2205
2206@group
72d2299c 2207 /* Process numbers. */
342b8b6e
AD
2208 if (isdigit (c))
2209 @{
2210 yylval = c - '0';
2211 ++yylloc.last_column;
2212 while (isdigit (c = getchar ()))
2213 @{
2214 ++yylloc.last_column;
2215 yylval = yylval * 10 + c - '0';
2216 @}
2217 ungetc (c, stdin);
2218 return NUM;
2219 @}
2220@end group
2221
72d2299c 2222 /* Return end-of-input. */
342b8b6e
AD
2223 if (c == EOF)
2224 return 0;
2225
72d2299c 2226 /* Return a single char, and update location. */
342b8b6e
AD
2227 if (c == '\n')
2228 @{
2229 ++yylloc.last_line;
2230 yylloc.last_column = 0;
2231 @}
2232 else
2233 ++yylloc.last_column;
2234 return c;
2235@}
2236@end example
2237
9edcd895
AD
2238Basically, the lexical analyzer performs the same processing as before:
2239it skips blanks and tabs, and reads numbers or single-character tokens.
2240In addition, it updates @code{yylloc}, the global variable (of type
2241@code{YYLTYPE}) containing the token's location.
342b8b6e 2242
9edcd895 2243Now, each time this function returns a token, the parser has its number
72d2299c 2244as well as its semantic value, and its location in the text. The last
9edcd895
AD
2245needed change is to initialize @code{yylloc}, for example in the
2246controlling function:
342b8b6e
AD
2247
2248@example
9edcd895 2249@group
342b8b6e
AD
2250int
2251main (void)
2252@{
2253 yylloc.first_line = yylloc.last_line = 1;
2254 yylloc.first_column = yylloc.last_column = 0;
2255 return yyparse ();
2256@}
9edcd895 2257@end group
342b8b6e
AD
2258@end example
2259
9edcd895
AD
2260Remember that computing locations is not a matter of syntax. Every
2261character must be associated to a location update, whether it is in
2262valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2263
2264@node Multi-function Calc
bfa74976
RS
2265@section Multi-Function Calculator: @code{mfcalc}
2266@cindex multi-function calculator
2267@cindex @code{mfcalc}
2268@cindex calculator, multi-function
2269
2270Now that the basics of Bison have been discussed, it is time to move on to
2271a more advanced problem. The above calculators provided only five
2272functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2273be nice to have a calculator that provides other mathematical functions such
2274as @code{sin}, @code{cos}, etc.
2275
2276It is easy to add new operators to the infix calculator as long as they are
2277only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2278back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2279adding a new operator. But we want something more flexible: built-in
2280functions whose syntax has this form:
2281
2282@example
2283@var{function_name} (@var{argument})
2284@end example
2285
2286@noindent
2287At the same time, we will add memory to the calculator, by allowing you
2288to create named variables, store values in them, and use them later.
2289Here is a sample session with the multi-function calculator:
2290
2291@example
9edcd895
AD
2292$ @kbd{mfcalc}
2293@kbd{pi = 3.141592653589}
bfa74976 22943.1415926536
9edcd895 2295@kbd{sin(pi)}
bfa74976 22960.0000000000
9edcd895 2297@kbd{alpha = beta1 = 2.3}
bfa74976 22982.3000000000
9edcd895 2299@kbd{alpha}
bfa74976 23002.3000000000
9edcd895 2301@kbd{ln(alpha)}
bfa74976 23020.8329091229
9edcd895 2303@kbd{exp(ln(beta1))}
bfa74976 23042.3000000000
9edcd895 2305$
bfa74976
RS
2306@end example
2307
2308Note that multiple assignment and nested function calls are permitted.
2309
2310@menu
f5f419de
DJ
2311* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2312* Mfcalc Rules:: Grammar rules for the calculator.
2313* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2314@end menu
2315
f5f419de 2316@node Mfcalc Declarations
bfa74976
RS
2317@subsection Declarations for @code{mfcalc}
2318
2319Here are the C and Bison declarations for the multi-function calculator.
2320
2321@smallexample
18b519c0 2322@group
bfa74976 2323%@{
38a92d50
PE
2324 #include <math.h> /* For math functions, cos(), sin(), etc. */
2325 #include "calc.h" /* Contains definition of `symrec'. */
2326 int yylex (void);
2327 void yyerror (char const *);
bfa74976 2328%@}
18b519c0
AD
2329@end group
2330@group
bfa74976 2331%union @{
38a92d50
PE
2332 double val; /* For returning numbers. */
2333 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2334@}
18b519c0 2335@end group
38a92d50
PE
2336%token <val> NUM /* Simple double precision number. */
2337%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2338%type <val> exp
2339
18b519c0 2340@group
bfa74976
RS
2341%right '='
2342%left '-' '+'
2343%left '*' '/'
d78f0ac9
AD
2344%precedence NEG /* negation--unary minus */
2345%right '^' /* exponentiation */
18b519c0 2346@end group
38a92d50 2347%% /* The grammar follows. */
bfa74976
RS
2348@end smallexample
2349
2350The above grammar introduces only two new features of the Bison language.
2351These features allow semantic values to have various data types
2352(@pxref{Multiple Types, ,More Than One Value Type}).
2353
2354The @code{%union} declaration specifies the entire list of possible types;
2355this is instead of defining @code{YYSTYPE}. The allowable types are now
2356double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2357the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2358
2359Since values can now have various types, it is necessary to associate a
2360type with each grammar symbol whose semantic value is used. These symbols
2361are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2362declarations are augmented with information about their data type (placed
2363between angle brackets).
2364
704a47c4
AD
2365The Bison construct @code{%type} is used for declaring nonterminal
2366symbols, just as @code{%token} is used for declaring token types. We
2367have not used @code{%type} before because nonterminal symbols are
2368normally declared implicitly by the rules that define them. But
2369@code{exp} must be declared explicitly so we can specify its value type.
2370@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2371
342b8b6e 2372@node Mfcalc Rules
bfa74976
RS
2373@subsection Grammar Rules for @code{mfcalc}
2374
2375Here are the grammar rules for the multi-function calculator.
2376Most of them are copied directly from @code{calc}; three rules,
2377those which mention @code{VAR} or @code{FNCT}, are new.
2378
2379@smallexample
18b519c0 2380@group
bfa74976
RS
2381input: /* empty */
2382 | input line
2383;
18b519c0 2384@end group
bfa74976 2385
18b519c0 2386@group
bfa74976
RS
2387line:
2388 '\n'
2389 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2390 | error '\n' @{ yyerrok; @}
2391;
18b519c0 2392@end group
bfa74976 2393
18b519c0 2394@group
bfa74976
RS
2395exp: NUM @{ $$ = $1; @}
2396 | VAR @{ $$ = $1->value.var; @}
2397 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2398 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2399 | exp '+' exp @{ $$ = $1 + $3; @}
2400 | exp '-' exp @{ $$ = $1 - $3; @}
2401 | exp '*' exp @{ $$ = $1 * $3; @}
2402 | exp '/' exp @{ $$ = $1 / $3; @}
2403 | '-' exp %prec NEG @{ $$ = -$2; @}
2404 | exp '^' exp @{ $$ = pow ($1, $3); @}
2405 | '(' exp ')' @{ $$ = $2; @}
2406;
18b519c0 2407@end group
38a92d50 2408/* End of grammar. */
bfa74976
RS
2409%%
2410@end smallexample
2411
f5f419de 2412@node Mfcalc Symbol Table
bfa74976
RS
2413@subsection The @code{mfcalc} Symbol Table
2414@cindex symbol table example
2415
2416The multi-function calculator requires a symbol table to keep track of the
2417names and meanings of variables and functions. This doesn't affect the
2418grammar rules (except for the actions) or the Bison declarations, but it
2419requires some additional C functions for support.
2420
2421The symbol table itself consists of a linked list of records. Its
2422definition, which is kept in the header @file{calc.h}, is as follows. It
2423provides for either functions or variables to be placed in the table.
2424
2425@smallexample
2426@group
38a92d50 2427/* Function type. */
32dfccf8 2428typedef double (*func_t) (double);
72f889cc 2429@end group
32dfccf8 2430
72f889cc 2431@group
38a92d50 2432/* Data type for links in the chain of symbols. */
bfa74976
RS
2433struct symrec
2434@{
38a92d50 2435 char *name; /* name of symbol */
bfa74976 2436 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2437 union
2438 @{
38a92d50
PE
2439 double var; /* value of a VAR */
2440 func_t fnctptr; /* value of a FNCT */
bfa74976 2441 @} value;
38a92d50 2442 struct symrec *next; /* link field */
bfa74976
RS
2443@};
2444@end group
2445
2446@group
2447typedef struct symrec symrec;
2448
38a92d50 2449/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2450extern symrec *sym_table;
2451
a730d142 2452symrec *putsym (char const *, int);
38a92d50 2453symrec *getsym (char const *);
bfa74976
RS
2454@end group
2455@end smallexample
2456
2457The new version of @code{main} includes a call to @code{init_table}, a
2458function that initializes the symbol table. Here it is, and
2459@code{init_table} as well:
2460
2461@smallexample
bfa74976
RS
2462#include <stdio.h>
2463
18b519c0 2464@group
38a92d50 2465/* Called by yyparse on error. */
13863333 2466void
38a92d50 2467yyerror (char const *s)
bfa74976
RS
2468@{
2469 printf ("%s\n", s);
2470@}
18b519c0 2471@end group
bfa74976 2472
18b519c0 2473@group
bfa74976
RS
2474struct init
2475@{
38a92d50
PE
2476 char const *fname;
2477 double (*fnct) (double);
bfa74976
RS
2478@};
2479@end group
2480
2481@group
38a92d50 2482struct init const arith_fncts[] =
13863333 2483@{
32dfccf8
AD
2484 "sin", sin,
2485 "cos", cos,
13863333 2486 "atan", atan,
32dfccf8
AD
2487 "ln", log,
2488 "exp", exp,
13863333
AD
2489 "sqrt", sqrt,
2490 0, 0
2491@};
18b519c0 2492@end group
bfa74976 2493
18b519c0 2494@group
bfa74976 2495/* The symbol table: a chain of `struct symrec'. */
38a92d50 2496symrec *sym_table;
bfa74976
RS
2497@end group
2498
2499@group
72d2299c 2500/* Put arithmetic functions in table. */
13863333
AD
2501void
2502init_table (void)
bfa74976
RS
2503@{
2504 int i;
2505 symrec *ptr;
2506 for (i = 0; arith_fncts[i].fname != 0; i++)
2507 @{
2508 ptr = putsym (arith_fncts[i].fname, FNCT);
2509 ptr->value.fnctptr = arith_fncts[i].fnct;
2510 @}
2511@}
2512@end group
38a92d50
PE
2513
2514@group
2515int
2516main (void)
2517@{
2518 init_table ();
2519 return yyparse ();
2520@}
2521@end group
bfa74976
RS
2522@end smallexample
2523
2524By simply editing the initialization list and adding the necessary include
2525files, you can add additional functions to the calculator.
2526
2527Two important functions allow look-up and installation of symbols in the
2528symbol table. The function @code{putsym} is passed a name and the type
2529(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2530linked to the front of the list, and a pointer to the object is returned.
2531The function @code{getsym} is passed the name of the symbol to look up. If
2532found, a pointer to that symbol is returned; otherwise zero is returned.
2533
2534@smallexample
2535symrec *
38a92d50 2536putsym (char const *sym_name, int sym_type)
bfa74976
RS
2537@{
2538 symrec *ptr;
2539 ptr = (symrec *) malloc (sizeof (symrec));
2540 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2541 strcpy (ptr->name,sym_name);
2542 ptr->type = sym_type;
72d2299c 2543 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2544 ptr->next = (struct symrec *)sym_table;
2545 sym_table = ptr;
2546 return ptr;
2547@}
2548
2549symrec *
38a92d50 2550getsym (char const *sym_name)
bfa74976
RS
2551@{
2552 symrec *ptr;
2553 for (ptr = sym_table; ptr != (symrec *) 0;
2554 ptr = (symrec *)ptr->next)
2555 if (strcmp (ptr->name,sym_name) == 0)
2556 return ptr;
2557 return 0;
2558@}
2559@end smallexample
2560
2561The function @code{yylex} must now recognize variables, numeric values, and
2562the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2563characters with a leading letter are recognized as either variables or
bfa74976
RS
2564functions depending on what the symbol table says about them.
2565
2566The string is passed to @code{getsym} for look up in the symbol table. If
2567the name appears in the table, a pointer to its location and its type
2568(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2569already in the table, then it is installed as a @code{VAR} using
2570@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2571returned to @code{yyparse}.
bfa74976
RS
2572
2573No change is needed in the handling of numeric values and arithmetic
2574operators in @code{yylex}.
2575
2576@smallexample
2577@group
2578#include <ctype.h>
18b519c0 2579@end group
13863333 2580
18b519c0 2581@group
13863333
AD
2582int
2583yylex (void)
bfa74976
RS
2584@{
2585 int c;
2586
72d2299c 2587 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2588 while ((c = getchar ()) == ' ' || c == '\t');
2589
2590 if (c == EOF)
2591 return 0;
2592@end group
2593
2594@group
2595 /* Char starts a number => parse the number. */
2596 if (c == '.' || isdigit (c))
2597 @{
2598 ungetc (c, stdin);
2599 scanf ("%lf", &yylval.val);
2600 return NUM;
2601 @}
2602@end group
2603
2604@group
2605 /* Char starts an identifier => read the name. */
2606 if (isalpha (c))
2607 @{
2608 symrec *s;
2609 static char *symbuf = 0;
2610 static int length = 0;
2611 int i;
2612@end group
2613
2614@group
2615 /* Initially make the buffer long enough
2616 for a 40-character symbol name. */
2617 if (length == 0)
2618 length = 40, symbuf = (char *)malloc (length + 1);
2619
2620 i = 0;
2621 do
2622@end group
2623@group
2624 @{
2625 /* If buffer is full, make it bigger. */
2626 if (i == length)
2627 @{
2628 length *= 2;
18b519c0 2629 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2630 @}
2631 /* Add this character to the buffer. */
2632 symbuf[i++] = c;
2633 /* Get another character. */
2634 c = getchar ();
2635 @}
2636@end group
2637@group
72d2299c 2638 while (isalnum (c));
bfa74976
RS
2639
2640 ungetc (c, stdin);
2641 symbuf[i] = '\0';
2642@end group
2643
2644@group
2645 s = getsym (symbuf);
2646 if (s == 0)
2647 s = putsym (symbuf, VAR);
2648 yylval.tptr = s;
2649 return s->type;
2650 @}
2651
2652 /* Any other character is a token by itself. */
2653 return c;
2654@}
2655@end group
2656@end smallexample
2657
72d2299c 2658This program is both powerful and flexible. You may easily add new
704a47c4
AD
2659functions, and it is a simple job to modify this code to install
2660predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2661
342b8b6e 2662@node Exercises
bfa74976
RS
2663@section Exercises
2664@cindex exercises
2665
2666@enumerate
2667@item
2668Add some new functions from @file{math.h} to the initialization list.
2669
2670@item
2671Add another array that contains constants and their values. Then
2672modify @code{init_table} to add these constants to the symbol table.
2673It will be easiest to give the constants type @code{VAR}.
2674
2675@item
2676Make the program report an error if the user refers to an
2677uninitialized variable in any way except to store a value in it.
2678@end enumerate
2679
342b8b6e 2680@node Grammar File
bfa74976
RS
2681@chapter Bison Grammar Files
2682
2683Bison takes as input a context-free grammar specification and produces a
2684C-language function that recognizes correct instances of the grammar.
2685
ff7571c0 2686The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2687@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2688
2689@menu
2690* Grammar Outline:: Overall layout of the grammar file.
2691* Symbols:: Terminal and nonterminal symbols.
2692* Rules:: How to write grammar rules.
2693* Recursion:: Writing recursive rules.
2694* Semantics:: Semantic values and actions.
847bf1f5 2695* Locations:: Locations and actions.
bfa74976
RS
2696* Declarations:: All kinds of Bison declarations are described here.
2697* Multiple Parsers:: Putting more than one Bison parser in one program.
2698@end menu
2699
342b8b6e 2700@node Grammar Outline
bfa74976
RS
2701@section Outline of a Bison Grammar
2702
2703A Bison grammar file has four main sections, shown here with the
2704appropriate delimiters:
2705
2706@example
2707%@{
38a92d50 2708 @var{Prologue}
bfa74976
RS
2709%@}
2710
2711@var{Bison declarations}
2712
2713%%
2714@var{Grammar rules}
2715%%
2716
75f5aaea 2717@var{Epilogue}
bfa74976
RS
2718@end example
2719
2720Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2721As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2722continues until end of line.
bfa74976
RS
2723
2724@menu
f5f419de 2725* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2726* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2727* Bison Declarations:: Syntax and usage of the Bison declarations section.
2728* Grammar Rules:: Syntax and usage of the grammar rules section.
2729* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2730@end menu
2731
38a92d50 2732@node Prologue
75f5aaea
MA
2733@subsection The prologue
2734@cindex declarations section
2735@cindex Prologue
2736@cindex declarations
bfa74976 2737
f8e1c9e5
AD
2738The @var{Prologue} section contains macro definitions and declarations
2739of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2740rules. These are copied to the beginning of the parser implementation
2741file so that they precede the definition of @code{yyparse}. You can
2742use @samp{#include} to get the declarations from a header file. If
2743you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2744@samp{%@}} delimiters that bracket this section.
bfa74976 2745
9c437126 2746The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2747of @samp{%@}} that is outside a comment, a string literal, or a
2748character constant.
2749
c732d2c6
AD
2750You may have more than one @var{Prologue} section, intermixed with the
2751@var{Bison declarations}. This allows you to have C and Bison
2752declarations that refer to each other. For example, the @code{%union}
2753declaration may use types defined in a header file, and you may wish to
2754prototype functions that take arguments of type @code{YYSTYPE}. This
2755can be done with two @var{Prologue} blocks, one before and one after the
2756@code{%union} declaration.
2757
2758@smallexample
2759%@{
aef3da86 2760 #define _GNU_SOURCE
38a92d50
PE
2761 #include <stdio.h>
2762 #include "ptypes.h"
c732d2c6
AD
2763%@}
2764
2765%union @{
779e7ceb 2766 long int n;
c732d2c6
AD
2767 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2768@}
2769
2770%@{
38a92d50
PE
2771 static void print_token_value (FILE *, int, YYSTYPE);
2772 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2773%@}
2774
2775@dots{}
2776@end smallexample
2777
aef3da86
PE
2778When in doubt, it is usually safer to put prologue code before all
2779Bison declarations, rather than after. For example, any definitions
2780of feature test macros like @code{_GNU_SOURCE} or
2781@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2782feature test macros can affect the behavior of Bison-generated
2783@code{#include} directives.
2784
2cbe6b7f
JD
2785@node Prologue Alternatives
2786@subsection Prologue Alternatives
2787@cindex Prologue Alternatives
2788
136a0f76 2789@findex %code
16dc6a9e
JD
2790@findex %code requires
2791@findex %code provides
2792@findex %code top
85894313 2793
2cbe6b7f 2794The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2795inflexible. As an alternative, Bison provides a @code{%code}
2796directive with an explicit qualifier field, which identifies the
2797purpose of the code and thus the location(s) where Bison should
2798generate it. For C/C++, the qualifier can be omitted for the default
2799location, or it can be one of @code{requires}, @code{provides},
e0c07222 2800@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2801
2802Look again at the example of the previous section:
2803
2804@smallexample
2805%@{
2806 #define _GNU_SOURCE
2807 #include <stdio.h>
2808 #include "ptypes.h"
2809%@}
2810
2811%union @{
2812 long int n;
2813 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2814@}
2815
2816%@{
2817 static void print_token_value (FILE *, int, YYSTYPE);
2818 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2819%@}
2820
2821@dots{}
2822@end smallexample
2823
2824@noindent
ff7571c0
JD
2825Notice that there are two @var{Prologue} sections here, but there's a
2826subtle distinction between their functionality. For example, if you
2827decide to override Bison's default definition for @code{YYLTYPE}, in
2828which @var{Prologue} section should you write your new definition?
2829You should write it in the first since Bison will insert that code
2830into the parser implementation file @emph{before} the default
2831@code{YYLTYPE} definition. In which @var{Prologue} section should you
2832prototype an internal function, @code{trace_token}, that accepts
2833@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2834prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2835@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2836
2837This distinction in functionality between the two @var{Prologue} sections is
2838established by the appearance of the @code{%union} between them.
a501eca9 2839This behavior raises a few questions.
2cbe6b7f
JD
2840First, why should the position of a @code{%union} affect definitions related to
2841@code{YYLTYPE} and @code{yytokentype}?
2842Second, what if there is no @code{%union}?
2843In that case, the second kind of @var{Prologue} section is not available.
2844This behavior is not intuitive.
2845
8e0a5e9e 2846To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2847@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2848Let's go ahead and add the new @code{YYLTYPE} definition and the
2849@code{trace_token} prototype at the same time:
2850
2851@smallexample
16dc6a9e 2852%code top @{
2cbe6b7f
JD
2853 #define _GNU_SOURCE
2854 #include <stdio.h>
8e0a5e9e
JD
2855
2856 /* WARNING: The following code really belongs
16dc6a9e 2857 * in a `%code requires'; see below. */
8e0a5e9e 2858
2cbe6b7f
JD
2859 #include "ptypes.h"
2860 #define YYLTYPE YYLTYPE
2861 typedef struct YYLTYPE
2862 @{
2863 int first_line;
2864 int first_column;
2865 int last_line;
2866 int last_column;
2867 char *filename;
2868 @} YYLTYPE;
2869@}
2870
2871%union @{
2872 long int n;
2873 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2874@}
2875
2876%code @{
2877 static void print_token_value (FILE *, int, YYSTYPE);
2878 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2879 static void trace_token (enum yytokentype token, YYLTYPE loc);
2880@}
2881
2882@dots{}
2883@end smallexample
2884
2885@noindent
16dc6a9e
JD
2886In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2887functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2888explicit which kind you intend.
2cbe6b7f
JD
2889Moreover, both kinds are always available even in the absence of @code{%union}.
2890
ff7571c0
JD
2891The @code{%code top} block above logically contains two parts. The
2892first two lines before the warning need to appear near the top of the
2893parser implementation file. The first line after the warning is
2894required by @code{YYSTYPE} and thus also needs to appear in the parser
2895implementation file. However, if you've instructed Bison to generate
2896a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2897want that line to appear before the @code{YYSTYPE} definition in that
2898header file as well. The @code{YYLTYPE} definition should also appear
2899in the parser header file to override the default @code{YYLTYPE}
2900definition there.
2cbe6b7f 2901
16dc6a9e 2902In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2903lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2904definitions.
16dc6a9e 2905Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2906
2907@smallexample
16dc6a9e 2908%code top @{
2cbe6b7f
JD
2909 #define _GNU_SOURCE
2910 #include <stdio.h>
2911@}
2912
16dc6a9e 2913%code requires @{
9bc0dd67
JD
2914 #include "ptypes.h"
2915@}
2916%union @{
2917 long int n;
2918 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2919@}
2920
16dc6a9e 2921%code requires @{
2cbe6b7f
JD
2922 #define YYLTYPE YYLTYPE
2923 typedef struct YYLTYPE
2924 @{
2925 int first_line;
2926 int first_column;
2927 int last_line;
2928 int last_column;
2929 char *filename;
2930 @} YYLTYPE;
2931@}
2932
136a0f76 2933%code @{
2cbe6b7f
JD
2934 static void print_token_value (FILE *, int, YYSTYPE);
2935 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2936 static void trace_token (enum yytokentype token, YYLTYPE loc);
2937@}
2938
2939@dots{}
2940@end smallexample
2941
2942@noindent
ff7571c0
JD
2943Now Bison will insert @code{#include "ptypes.h"} and the new
2944@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2945and @code{YYLTYPE} definitions in both the parser implementation file
2946and the parser header file. (By the same reasoning, @code{%code
2947requires} would also be the appropriate place to write your own
2948definition for @code{YYSTYPE}.)
2949
2950When you are writing dependency code for @code{YYSTYPE} and
2951@code{YYLTYPE}, you should prefer @code{%code requires} over
2952@code{%code top} regardless of whether you instruct Bison to generate
2953a parser header file. When you are writing code that you need Bison
2954to insert only into the parser implementation file and that has no
2955special need to appear at the top of that file, you should prefer the
2956unqualified @code{%code} over @code{%code top}. These practices will
2957make the purpose of each block of your code explicit to Bison and to
2958other developers reading your grammar file. Following these
2959practices, we expect the unqualified @code{%code} and @code{%code
2960requires} to be the most important of the four @var{Prologue}
16dc6a9e 2961alternatives.
a501eca9 2962
ff7571c0
JD
2963At some point while developing your parser, you might decide to
2964provide @code{trace_token} to modules that are external to your
2965parser. Thus, you might wish for Bison to insert the prototype into
2966both the parser header file and the parser implementation file. Since
2967this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2968@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
2969@code{%code requires}. More importantly, since it depends upon
2970@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2971sufficient. Instead, move its prototype from the unqualified
2972@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
2973
2974@smallexample
16dc6a9e 2975%code top @{
2cbe6b7f 2976 #define _GNU_SOURCE
136a0f76 2977 #include <stdio.h>
2cbe6b7f 2978@}
136a0f76 2979
16dc6a9e 2980%code requires @{
2cbe6b7f
JD
2981 #include "ptypes.h"
2982@}
2983%union @{
2984 long int n;
2985 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2986@}
2987
16dc6a9e 2988%code requires @{
2cbe6b7f
JD
2989 #define YYLTYPE YYLTYPE
2990 typedef struct YYLTYPE
2991 @{
2992 int first_line;
2993 int first_column;
2994 int last_line;
2995 int last_column;
2996 char *filename;
2997 @} YYLTYPE;
2998@}
2999
16dc6a9e 3000%code provides @{
2cbe6b7f
JD
3001 void trace_token (enum yytokentype token, YYLTYPE loc);
3002@}
3003
3004%code @{
9bc0dd67
JD
3005 static void print_token_value (FILE *, int, YYSTYPE);
3006 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3007@}
9bc0dd67
JD
3008
3009@dots{}
3010@end smallexample
3011
2cbe6b7f 3012@noindent
ff7571c0
JD
3013Bison will insert the @code{trace_token} prototype into both the
3014parser header file and the parser implementation file after the
3015definitions for @code{yytokentype}, @code{YYLTYPE}, and
3016@code{YYSTYPE}.
2cbe6b7f 3017
ff7571c0
JD
3018The above examples are careful to write directives in an order that
3019reflects the layout of the generated parser implementation and header
3020files: @code{%code top}, @code{%code requires}, @code{%code provides},
3021and then @code{%code}. While your grammar files may generally be
3022easier to read if you also follow this order, Bison does not require
3023it. Instead, Bison lets you choose an organization that makes sense
3024to you.
2cbe6b7f 3025
a501eca9 3026You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3027In that case, Bison concatenates the contained code in declaration order.
3028This is the only way in which the position of one of these directives within
3029the grammar file affects its functionality.
3030
3031The result of the previous two properties is greater flexibility in how you may
3032organize your grammar file.
3033For example, you may organize semantic-type-related directives by semantic
3034type:
3035
3036@smallexample
16dc6a9e 3037%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3038%union @{ type1 field1; @}
3039%destructor @{ type1_free ($$); @} <field1>
3040%printer @{ type1_print ($$); @} <field1>
3041
16dc6a9e 3042%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3043%union @{ type2 field2; @}
3044%destructor @{ type2_free ($$); @} <field2>
3045%printer @{ type2_print ($$); @} <field2>
3046@end smallexample
3047
3048@noindent
3049You could even place each of the above directive groups in the rules section of
3050the grammar file next to the set of rules that uses the associated semantic
3051type.
61fee93e
JD
3052(In the rules section, you must terminate each of those directives with a
3053semicolon.)
2cbe6b7f
JD
3054And you don't have to worry that some directive (like a @code{%union}) in the
3055definitions section is going to adversely affect their functionality in some
3056counter-intuitive manner just because it comes first.
3057Such an organization is not possible using @var{Prologue} sections.
3058
a501eca9 3059This section has been concerned with explaining the advantages of the four
8e0a5e9e 3060@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3061However, in most cases when using these directives, you shouldn't need to
3062think about all the low-level ordering issues discussed here.
3063Instead, you should simply use these directives to label each block of your
3064code according to its purpose and let Bison handle the ordering.
3065@code{%code} is the most generic label.
16dc6a9e
JD
3066Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3067as needed.
a501eca9 3068
342b8b6e 3069@node Bison Declarations
bfa74976
RS
3070@subsection The Bison Declarations Section
3071@cindex Bison declarations (introduction)
3072@cindex declarations, Bison (introduction)
3073
3074The @var{Bison declarations} section contains declarations that define
3075terminal and nonterminal symbols, specify precedence, and so on.
3076In some simple grammars you may not need any declarations.
3077@xref{Declarations, ,Bison Declarations}.
3078
342b8b6e 3079@node Grammar Rules
bfa74976
RS
3080@subsection The Grammar Rules Section
3081@cindex grammar rules section
3082@cindex rules section for grammar
3083
3084The @dfn{grammar rules} section contains one or more Bison grammar
3085rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3086
3087There must always be at least one grammar rule, and the first
3088@samp{%%} (which precedes the grammar rules) may never be omitted even
3089if it is the first thing in the file.
3090
38a92d50 3091@node Epilogue
75f5aaea 3092@subsection The epilogue
bfa74976 3093@cindex additional C code section
75f5aaea 3094@cindex epilogue
bfa74976
RS
3095@cindex C code, section for additional
3096
ff7571c0
JD
3097The @var{Epilogue} is copied verbatim to the end of the parser
3098implementation file, just as the @var{Prologue} is copied to the
3099beginning. This is the most convenient place to put anything that you
3100want to have in the parser implementation file but which need not come
3101before the definition of @code{yyparse}. For example, the definitions
3102of @code{yylex} and @code{yyerror} often go here. Because C requires
3103functions to be declared before being used, you often need to declare
3104functions like @code{yylex} and @code{yyerror} in the Prologue, even
3105if you define them in the Epilogue. @xref{Interface, ,Parser
3106C-Language Interface}.
bfa74976
RS
3107
3108If the last section is empty, you may omit the @samp{%%} that separates it
3109from the grammar rules.
3110
f8e1c9e5
AD
3111The Bison parser itself contains many macros and identifiers whose names
3112start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3113any such names (except those documented in this manual) in the epilogue
3114of the grammar file.
bfa74976 3115
342b8b6e 3116@node Symbols
bfa74976
RS
3117@section Symbols, Terminal and Nonterminal
3118@cindex nonterminal symbol
3119@cindex terminal symbol
3120@cindex token type
3121@cindex symbol
3122
3123@dfn{Symbols} in Bison grammars represent the grammatical classifications
3124of the language.
3125
3126A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3127class of syntactically equivalent tokens. You use the symbol in grammar
3128rules to mean that a token in that class is allowed. The symbol is
3129represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3130function returns a token type code to indicate what kind of token has
3131been read. You don't need to know what the code value is; you can use
3132the symbol to stand for it.
bfa74976 3133
f8e1c9e5
AD
3134A @dfn{nonterminal symbol} stands for a class of syntactically
3135equivalent groupings. The symbol name is used in writing grammar rules.
3136By convention, it should be all lower case.
bfa74976 3137
82f3355e
JD
3138Symbol names can contain letters, underscores, periods, and non-initial
3139digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3140with POSIX Yacc. Periods and dashes make symbol names less convenient to
3141use with named references, which require brackets around such names
3142(@pxref{Named References}). Terminal symbols that contain periods or dashes
3143make little sense: since they are not valid symbols (in most programming
3144languages) they are not exported as token names.
bfa74976 3145
931c7513 3146There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3147
3148@itemize @bullet
3149@item
3150A @dfn{named token type} is written with an identifier, like an
c827f760 3151identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3152such name must be defined with a Bison declaration such as
3153@code{%token}. @xref{Token Decl, ,Token Type Names}.
3154
3155@item
3156@cindex character token
3157@cindex literal token
3158@cindex single-character literal
931c7513
RS
3159A @dfn{character token type} (or @dfn{literal character token}) is
3160written in the grammar using the same syntax used in C for character
3161constants; for example, @code{'+'} is a character token type. A
3162character token type doesn't need to be declared unless you need to
3163specify its semantic value data type (@pxref{Value Type, ,Data Types of
3164Semantic Values}), associativity, or precedence (@pxref{Precedence,
3165,Operator Precedence}).
bfa74976
RS
3166
3167By convention, a character token type is used only to represent a
3168token that consists of that particular character. Thus, the token
3169type @code{'+'} is used to represent the character @samp{+} as a
3170token. Nothing enforces this convention, but if you depart from it,
3171your program will confuse other readers.
3172
3173All the usual escape sequences used in character literals in C can be
3174used in Bison as well, but you must not use the null character as a
72d2299c
PE
3175character literal because its numeric code, zero, signifies
3176end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3177for @code{yylex}}). Also, unlike standard C, trigraphs have no
3178special meaning in Bison character literals, nor is backslash-newline
3179allowed.
931c7513
RS
3180
3181@item
3182@cindex string token
3183@cindex literal string token
9ecbd125 3184@cindex multicharacter literal
931c7513
RS
3185A @dfn{literal string token} is written like a C string constant; for
3186example, @code{"<="} is a literal string token. A literal string token
3187doesn't need to be declared unless you need to specify its semantic
14ded682 3188value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3189(@pxref{Precedence}).
3190
3191You can associate the literal string token with a symbolic name as an
3192alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3193Declarations}). If you don't do that, the lexical analyzer has to
3194retrieve the token number for the literal string token from the
3195@code{yytname} table (@pxref{Calling Convention}).
3196
c827f760 3197@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3198
3199By convention, a literal string token is used only to represent a token
3200that consists of that particular string. Thus, you should use the token
3201type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3202does not enforce this convention, but if you depart from it, people who
931c7513
RS
3203read your program will be confused.
3204
3205All the escape sequences used in string literals in C can be used in
92ac3705
PE
3206Bison as well, except that you must not use a null character within a
3207string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3208meaning in Bison string literals, nor is backslash-newline allowed. A
3209literal string token must contain two or more characters; for a token
3210containing just one character, use a character token (see above).
bfa74976
RS
3211@end itemize
3212
3213How you choose to write a terminal symbol has no effect on its
3214grammatical meaning. That depends only on where it appears in rules and
3215on when the parser function returns that symbol.
3216
72d2299c
PE
3217The value returned by @code{yylex} is always one of the terminal
3218symbols, except that a zero or negative value signifies end-of-input.
3219Whichever way you write the token type in the grammar rules, you write
3220it the same way in the definition of @code{yylex}. The numeric code
3221for a character token type is simply the positive numeric code of the
3222character, so @code{yylex} can use the identical value to generate the
3223requisite code, though you may need to convert it to @code{unsigned
3224char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3225Each named token type becomes a C macro in the parser implementation
3226file, so @code{yylex} can use the name to stand for the code. (This
3227is why periods don't make sense in terminal symbols.) @xref{Calling
3228Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3229
3230If @code{yylex} is defined in a separate file, you need to arrange for the
3231token-type macro definitions to be available there. Use the @samp{-d}
3232option when you run Bison, so that it will write these macro definitions
3233into a separate header file @file{@var{name}.tab.h} which you can include
3234in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3235
72d2299c 3236If you want to write a grammar that is portable to any Standard C
9d9b8b70 3237host, you must use only nonnull character tokens taken from the basic
c827f760 3238execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3239digits, the 52 lower- and upper-case English letters, and the
3240characters in the following C-language string:
3241
3242@example
3243"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3244@end example
3245
f8e1c9e5
AD
3246The @code{yylex} function and Bison must use a consistent character set
3247and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3248ASCII environment, but then compile and run the resulting
f8e1c9e5 3249program in an environment that uses an incompatible character set like
8a4281b9
JD
3250EBCDIC, the resulting program may not work because the tables
3251generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3252character tokens. It is standard practice for software distributions to
3253contain C source files that were generated by Bison in an
8a4281b9
JD
3254ASCII environment, so installers on platforms that are
3255incompatible with ASCII must rebuild those files before
f8e1c9e5 3256compiling them.
e966383b 3257
bfa74976
RS
3258The symbol @code{error} is a terminal symbol reserved for error recovery
3259(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3260In particular, @code{yylex} should never return this value. The default
3261value of the error token is 256, unless you explicitly assigned 256 to
3262one of your tokens with a @code{%token} declaration.
bfa74976 3263
342b8b6e 3264@node Rules
bfa74976
RS
3265@section Syntax of Grammar Rules
3266@cindex rule syntax
3267@cindex grammar rule syntax
3268@cindex syntax of grammar rules
3269
3270A Bison grammar rule has the following general form:
3271
3272@example
e425e872 3273@group
bfa74976
RS
3274@var{result}: @var{components}@dots{}
3275 ;
e425e872 3276@end group
bfa74976
RS
3277@end example
3278
3279@noindent
9ecbd125 3280where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3281and @var{components} are various terminal and nonterminal symbols that
13863333 3282are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3283
3284For example,
3285
3286@example
3287@group
3288exp: exp '+' exp
3289 ;
3290@end group
3291@end example
3292
3293@noindent
3294says that two groupings of type @code{exp}, with a @samp{+} token in between,
3295can be combined into a larger grouping of type @code{exp}.
3296
72d2299c
PE
3297White space in rules is significant only to separate symbols. You can add
3298extra white space as you wish.
bfa74976
RS
3299
3300Scattered among the components can be @var{actions} that determine
3301the semantics of the rule. An action looks like this:
3302
3303@example
3304@{@var{C statements}@}
3305@end example
3306
3307@noindent
287c78f6
PE
3308@cindex braced code
3309This is an example of @dfn{braced code}, that is, C code surrounded by
3310braces, much like a compound statement in C@. Braced code can contain
3311any sequence of C tokens, so long as its braces are balanced. Bison
3312does not check the braced code for correctness directly; it merely
ff7571c0
JD
3313copies the code to the parser implementation file, where the C
3314compiler can check it.
287c78f6
PE
3315
3316Within braced code, the balanced-brace count is not affected by braces
3317within comments, string literals, or character constants, but it is
3318affected by the C digraphs @samp{<%} and @samp{%>} that represent
3319braces. At the top level braced code must be terminated by @samp{@}}
3320and not by a digraph. Bison does not look for trigraphs, so if braced
3321code uses trigraphs you should ensure that they do not affect the
3322nesting of braces or the boundaries of comments, string literals, or
3323character constants.
3324
bfa74976
RS
3325Usually there is only one action and it follows the components.
3326@xref{Actions}.
3327
3328@findex |
3329Multiple rules for the same @var{result} can be written separately or can
3330be joined with the vertical-bar character @samp{|} as follows:
3331
bfa74976
RS
3332@example
3333@group
3334@var{result}: @var{rule1-components}@dots{}
3335 | @var{rule2-components}@dots{}
3336 @dots{}
3337 ;
3338@end group
3339@end example
bfa74976
RS
3340
3341@noindent
3342They are still considered distinct rules even when joined in this way.
3343
3344If @var{components} in a rule is empty, it means that @var{result} can
3345match the empty string. For example, here is how to define a
3346comma-separated sequence of zero or more @code{exp} groupings:
3347
3348@example
3349@group
3350expseq: /* empty */
3351 | expseq1
3352 ;
3353@end group
3354
3355@group
3356expseq1: exp
3357 | expseq1 ',' exp
3358 ;
3359@end group
3360@end example
3361
3362@noindent
3363It is customary to write a comment @samp{/* empty */} in each rule
3364with no components.
3365
342b8b6e 3366@node Recursion
bfa74976
RS
3367@section Recursive Rules
3368@cindex recursive rule
3369
f8e1c9e5
AD
3370A rule is called @dfn{recursive} when its @var{result} nonterminal
3371appears also on its right hand side. Nearly all Bison grammars need to
3372use recursion, because that is the only way to define a sequence of any
3373number of a particular thing. Consider this recursive definition of a
9ecbd125 3374comma-separated sequence of one or more expressions:
bfa74976
RS
3375
3376@example
3377@group
3378expseq1: exp
3379 | expseq1 ',' exp
3380 ;
3381@end group
3382@end example
3383
3384@cindex left recursion
3385@cindex right recursion
3386@noindent
3387Since the recursive use of @code{expseq1} is the leftmost symbol in the
3388right hand side, we call this @dfn{left recursion}. By contrast, here
3389the same construct is defined using @dfn{right recursion}:
3390
3391@example
3392@group
3393expseq1: exp
3394 | exp ',' expseq1
3395 ;
3396@end group
3397@end example
3398
3399@noindent
ec3bc396
AD
3400Any kind of sequence can be defined using either left recursion or right
3401recursion, but you should always use left recursion, because it can
3402parse a sequence of any number of elements with bounded stack space.
3403Right recursion uses up space on the Bison stack in proportion to the
3404number of elements in the sequence, because all the elements must be
3405shifted onto the stack before the rule can be applied even once.
3406@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3407of this.
bfa74976
RS
3408
3409@cindex mutual recursion
3410@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3411rule does not appear directly on its right hand side, but does appear
3412in rules for other nonterminals which do appear on its right hand
13863333 3413side.
bfa74976
RS
3414
3415For example:
3416
3417@example
3418@group
3419expr: primary
3420 | primary '+' primary
3421 ;
3422@end group
3423
3424@group
3425primary: constant
3426 | '(' expr ')'
3427 ;
3428@end group
3429@end example
3430
3431@noindent
3432defines two mutually-recursive nonterminals, since each refers to the
3433other.
3434
342b8b6e 3435@node Semantics
bfa74976
RS
3436@section Defining Language Semantics
3437@cindex defining language semantics
13863333 3438@cindex language semantics, defining
bfa74976
RS
3439
3440The grammar rules for a language determine only the syntax. The semantics
3441are determined by the semantic values associated with various tokens and
3442groupings, and by the actions taken when various groupings are recognized.
3443
3444For example, the calculator calculates properly because the value
3445associated with each expression is the proper number; it adds properly
3446because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3447the numbers associated with @var{x} and @var{y}.
3448
3449@menu
3450* Value Type:: Specifying one data type for all semantic values.
3451* Multiple Types:: Specifying several alternative data types.
3452* Actions:: An action is the semantic definition of a grammar rule.
3453* Action Types:: Specifying data types for actions to operate on.
3454* Mid-Rule Actions:: Most actions go at the end of a rule.
3455 This says when, why and how to use the exceptional
3456 action in the middle of a rule.
d013372c 3457* Named References:: Using named references in actions.
bfa74976
RS
3458@end menu
3459
342b8b6e 3460@node Value Type
bfa74976
RS
3461@subsection Data Types of Semantic Values
3462@cindex semantic value type
3463@cindex value type, semantic
3464@cindex data types of semantic values
3465@cindex default data type
3466
3467In a simple program it may be sufficient to use the same data type for
3468the semantic values of all language constructs. This was true in the
8a4281b9 3469RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3470Notation Calculator}).
bfa74976 3471
ddc8ede1
PE
3472Bison normally uses the type @code{int} for semantic values if your
3473program uses the same data type for all language constructs. To
bfa74976
RS
3474specify some other type, define @code{YYSTYPE} as a macro, like this:
3475
3476@example
3477#define YYSTYPE double
3478@end example
3479
3480@noindent
50cce58e
PE
3481@code{YYSTYPE}'s replacement list should be a type name
3482that does not contain parentheses or square brackets.
342b8b6e 3483This macro definition must go in the prologue of the grammar file
75f5aaea 3484(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3485
342b8b6e 3486@node Multiple Types
bfa74976
RS
3487@subsection More Than One Value Type
3488
3489In most programs, you will need different data types for different kinds
3490of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3491@code{int} or @code{long int}, while a string constant needs type
3492@code{char *}, and an identifier might need a pointer to an entry in the
3493symbol table.
bfa74976
RS
3494
3495To use more than one data type for semantic values in one parser, Bison
3496requires you to do two things:
3497
3498@itemize @bullet
3499@item
ddc8ede1 3500Specify the entire collection of possible data types, either by using the
704a47c4 3501@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3502Value Types}), or by using a @code{typedef} or a @code{#define} to
3503define @code{YYSTYPE} to be a union type whose member names are
3504the type tags.
bfa74976
RS
3505
3506@item
14ded682
AD
3507Choose one of those types for each symbol (terminal or nonterminal) for
3508which semantic values are used. This is done for tokens with the
3509@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3510and for groupings with the @code{%type} Bison declaration (@pxref{Type
3511Decl, ,Nonterminal Symbols}).
bfa74976
RS
3512@end itemize
3513
342b8b6e 3514@node Actions
bfa74976
RS
3515@subsection Actions
3516@cindex action
3517@vindex $$
3518@vindex $@var{n}
d013372c
AR
3519@vindex $@var{name}
3520@vindex $[@var{name}]
bfa74976
RS
3521
3522An action accompanies a syntactic rule and contains C code to be executed
3523each time an instance of that rule is recognized. The task of most actions
3524is to compute a semantic value for the grouping built by the rule from the
3525semantic values associated with tokens or smaller groupings.
3526
287c78f6
PE
3527An action consists of braced code containing C statements, and can be
3528placed at any position in the rule;
704a47c4
AD
3529it is executed at that position. Most rules have just one action at the
3530end of the rule, following all the components. Actions in the middle of
3531a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3532Actions, ,Actions in Mid-Rule}).
bfa74976 3533
ff7571c0
JD
3534The C code in an action can refer to the semantic values of the
3535components matched by the rule with the construct @code{$@var{n}},
3536which stands for the value of the @var{n}th component. The semantic
3537value for the grouping being constructed is @code{$$}. In addition,
3538the semantic values of symbols can be accessed with the named
3539references construct @code{$@var{name}} or @code{$[@var{name}]}.
3540Bison translates both of these constructs into expressions of the
3541appropriate type when it copies the actions into the parser
3542implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3543for the current grouping) is translated to a modifiable lvalue, so it
3544can be assigned to.
bfa74976
RS
3545
3546Here is a typical example:
3547
3548@example
3549@group
3550exp: @dots{}
3551 | exp '+' exp
3552 @{ $$ = $1 + $3; @}
3553@end group
3554@end example
3555
d013372c
AR
3556Or, in terms of named references:
3557
3558@example
3559@group
3560exp[result]: @dots{}
3561 | exp[left] '+' exp[right]
3562 @{ $result = $left + $right; @}
3563@end group
3564@end example
3565
bfa74976
RS
3566@noindent
3567This rule constructs an @code{exp} from two smaller @code{exp} groupings
3568connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3569(@code{$left} and @code{$right})
bfa74976
RS
3570refer to the semantic values of the two component @code{exp} groupings,
3571which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3572The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3573semantic value of
bfa74976
RS
3574the addition-expression just recognized by the rule. If there were a
3575useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3576referred to as @code{$2}.
bfa74976 3577
d013372c
AR
3578@xref{Named References,,Using Named References}, for more information
3579about using the named references construct.
3580
3ded9a63
AD
3581Note that the vertical-bar character @samp{|} is really a rule
3582separator, and actions are attached to a single rule. This is a
3583difference with tools like Flex, for which @samp{|} stands for either
3584``or'', or ``the same action as that of the next rule''. In the
3585following example, the action is triggered only when @samp{b} is found:
3586
3587@example
3588@group
3589a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3590@end group
3591@end example
3592
bfa74976
RS
3593@cindex default action
3594If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3595@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3596becomes the value of the whole rule. Of course, the default action is
3597valid only if the two data types match. There is no meaningful default
3598action for an empty rule; every empty rule must have an explicit action
3599unless the rule's value does not matter.
bfa74976
RS
3600
3601@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3602to tokens and groupings on the stack @emph{before} those that match the
3603current rule. This is a very risky practice, and to use it reliably
3604you must be certain of the context in which the rule is applied. Here
3605is a case in which you can use this reliably:
3606
3607@example
3608@group
3609foo: expr bar '+' expr @{ @dots{} @}
3610 | expr bar '-' expr @{ @dots{} @}
3611 ;
3612@end group
3613
3614@group
3615bar: /* empty */
3616 @{ previous_expr = $0; @}
3617 ;
3618@end group
3619@end example
3620
3621As long as @code{bar} is used only in the fashion shown here, @code{$0}
3622always refers to the @code{expr} which precedes @code{bar} in the
3623definition of @code{foo}.
3624
32c29292 3625@vindex yylval
742e4900 3626It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3627any, from a semantic action.
3628This semantic value is stored in @code{yylval}.
3629@xref{Action Features, ,Special Features for Use in Actions}.
3630
342b8b6e 3631@node Action Types
bfa74976
RS
3632@subsection Data Types of Values in Actions
3633@cindex action data types
3634@cindex data types in actions
3635
3636If you have chosen a single data type for semantic values, the @code{$$}
3637and @code{$@var{n}} constructs always have that data type.
3638
3639If you have used @code{%union} to specify a variety of data types, then you
3640must declare a choice among these types for each terminal or nonterminal
3641symbol that can have a semantic value. Then each time you use @code{$$} or
3642@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3643in the rule. In this example,
bfa74976
RS
3644
3645@example
3646@group
3647exp: @dots{}
3648 | exp '+' exp
3649 @{ $$ = $1 + $3; @}
3650@end group
3651@end example
3652
3653@noindent
3654@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3655have the data type declared for the nonterminal symbol @code{exp}. If
3656@code{$2} were used, it would have the data type declared for the
e0c471a9 3657terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3658
3659Alternatively, you can specify the data type when you refer to the value,
3660by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3661reference. For example, if you have defined types as shown here:
3662
3663@example
3664@group
3665%union @{
3666 int itype;
3667 double dtype;
3668@}
3669@end group
3670@end example
3671
3672@noindent
3673then you can write @code{$<itype>1} to refer to the first subunit of the
3674rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3675
342b8b6e 3676@node Mid-Rule Actions
bfa74976
RS
3677@subsection Actions in Mid-Rule
3678@cindex actions in mid-rule
3679@cindex mid-rule actions
3680
3681Occasionally it is useful to put an action in the middle of a rule.
3682These actions are written just like usual end-of-rule actions, but they
3683are executed before the parser even recognizes the following components.
3684
3685A mid-rule action may refer to the components preceding it using
3686@code{$@var{n}}, but it may not refer to subsequent components because
3687it is run before they are parsed.
3688
3689The mid-rule action itself counts as one of the components of the rule.
3690This makes a difference when there is another action later in the same rule
3691(and usually there is another at the end): you have to count the actions
3692along with the symbols when working out which number @var{n} to use in
3693@code{$@var{n}}.
3694
3695The mid-rule action can also have a semantic value. The action can set
3696its value with an assignment to @code{$$}, and actions later in the rule
3697can refer to the value using @code{$@var{n}}. Since there is no symbol
3698to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3699in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3700specify a data type each time you refer to this value.
bfa74976
RS
3701
3702There is no way to set the value of the entire rule with a mid-rule
3703action, because assignments to @code{$$} do not have that effect. The
3704only way to set the value for the entire rule is with an ordinary action
3705at the end of the rule.
3706
3707Here is an example from a hypothetical compiler, handling a @code{let}
3708statement that looks like @samp{let (@var{variable}) @var{statement}} and
3709serves to create a variable named @var{variable} temporarily for the
3710duration of @var{statement}. To parse this construct, we must put
3711@var{variable} into the symbol table while @var{statement} is parsed, then
3712remove it afterward. Here is how it is done:
3713
3714@example
3715@group
3716stmt: LET '(' var ')'
3717 @{ $<context>$ = push_context ();
3718 declare_variable ($3); @}
3719 stmt @{ $$ = $6;
3720 pop_context ($<context>5); @}
3721@end group
3722@end example
3723
3724@noindent
3725As soon as @samp{let (@var{variable})} has been recognized, the first
3726action is run. It saves a copy of the current semantic context (the
3727list of accessible variables) as its semantic value, using alternative
3728@code{context} in the data-type union. Then it calls
3729@code{declare_variable} to add the new variable to that list. Once the
3730first action is finished, the embedded statement @code{stmt} can be
3731parsed. Note that the mid-rule action is component number 5, so the
3732@samp{stmt} is component number 6.
3733
3734After the embedded statement is parsed, its semantic value becomes the
3735value of the entire @code{let}-statement. Then the semantic value from the
3736earlier action is used to restore the prior list of variables. This
3737removes the temporary @code{let}-variable from the list so that it won't
3738appear to exist while the rest of the program is parsed.
3739
841a7737
JD
3740@findex %destructor
3741@cindex discarded symbols, mid-rule actions
3742@cindex error recovery, mid-rule actions
3743In the above example, if the parser initiates error recovery (@pxref{Error
3744Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3745it might discard the previous semantic context @code{$<context>5} without
3746restoring it.
3747Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3748Discarded Symbols}).
ec5479ce
JD
3749However, Bison currently provides no means to declare a destructor specific to
3750a particular mid-rule action's semantic value.
841a7737
JD
3751
3752One solution is to bury the mid-rule action inside a nonterminal symbol and to
3753declare a destructor for that symbol:
3754
3755@example
3756@group
3757%type <context> let
3758%destructor @{ pop_context ($$); @} let
3759
3760%%
3761
3762stmt: let stmt
3763 @{ $$ = $2;
3764 pop_context ($1); @}
3765 ;
3766
3767let: LET '(' var ')'
3768 @{ $$ = push_context ();
3769 declare_variable ($3); @}
3770 ;
3771
3772@end group
3773@end example
3774
3775@noindent
3776Note that the action is now at the end of its rule.
3777Any mid-rule action can be converted to an end-of-rule action in this way, and
3778this is what Bison actually does to implement mid-rule actions.
3779
bfa74976
RS
3780Taking action before a rule is completely recognized often leads to
3781conflicts since the parser must commit to a parse in order to execute the
3782action. For example, the following two rules, without mid-rule actions,
3783can coexist in a working parser because the parser can shift the open-brace
3784token and look at what follows before deciding whether there is a
3785declaration or not:
3786
3787@example
3788@group
3789compound: '@{' declarations statements '@}'
3790 | '@{' statements '@}'
3791 ;
3792@end group
3793@end example
3794
3795@noindent
3796But when we add a mid-rule action as follows, the rules become nonfunctional:
3797
3798@example
3799@group
3800compound: @{ prepare_for_local_variables (); @}
3801 '@{' declarations statements '@}'
3802@end group
3803@group
3804 | '@{' statements '@}'
3805 ;
3806@end group
3807@end example
3808
3809@noindent
3810Now the parser is forced to decide whether to run the mid-rule action
3811when it has read no farther than the open-brace. In other words, it
3812must commit to using one rule or the other, without sufficient
3813information to do it correctly. (The open-brace token is what is called
742e4900
JD
3814the @dfn{lookahead} token at this time, since the parser is still
3815deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3816
3817You might think that you could correct the problem by putting identical
3818actions into the two rules, like this:
3819
3820@example
3821@group
3822compound: @{ prepare_for_local_variables (); @}
3823 '@{' declarations statements '@}'
3824 | @{ prepare_for_local_variables (); @}
3825 '@{' statements '@}'
3826 ;
3827@end group
3828@end example
3829
3830@noindent
3831But this does not help, because Bison does not realize that the two actions
3832are identical. (Bison never tries to understand the C code in an action.)
3833
3834If the grammar is such that a declaration can be distinguished from a
3835statement by the first token (which is true in C), then one solution which
3836does work is to put the action after the open-brace, like this:
3837
3838@example
3839@group
3840compound: '@{' @{ prepare_for_local_variables (); @}
3841 declarations statements '@}'
3842 | '@{' statements '@}'
3843 ;
3844@end group
3845@end example
3846
3847@noindent
3848Now the first token of the following declaration or statement,
3849which would in any case tell Bison which rule to use, can still do so.
3850
3851Another solution is to bury the action inside a nonterminal symbol which
3852serves as a subroutine:
3853
3854@example
3855@group
3856subroutine: /* empty */
3857 @{ prepare_for_local_variables (); @}
3858 ;
3859
3860@end group
3861
3862@group
3863compound: subroutine
3864 '@{' declarations statements '@}'
3865 | subroutine
3866 '@{' statements '@}'
3867 ;
3868@end group
3869@end example
3870
3871@noindent
3872Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3873deciding which rule for @code{compound} it will eventually use.
bfa74976 3874
d013372c
AR
3875@node Named References
3876@subsection Using Named References
3877@cindex named references
3878
3879While every semantic value can be accessed with positional references
3880@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3881them by name. First of all, original symbol names may be used as named
3882references. For example:
3883
3884@example
3885@group
3886invocation: op '(' args ')'
3887 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3888@end group
3889@end example
3890
3891@noindent
3892The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3893mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3894
3895@example
3896@group
3897invocation: op '(' args ')'
3898 @{ $$ = new_invocation ($op, $args, @@$); @}
3899@end group
3900@end example
3901
3902@noindent
3903However, sometimes regular symbol names are not sufficient due to
3904ambiguities:
3905
3906@example
3907@group
3908exp: exp '/' exp
3909 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3910
3911exp: exp '/' exp
3912 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3913
3914exp: exp '/' exp
3915 @{ $$ = $1 / $3; @} // No error.
3916@end group
3917@end example
3918
3919@noindent
3920When ambiguity occurs, explicitly declared names may be used for values and
3921locations. Explicit names are declared as a bracketed name after a symbol
3922appearance in rule definitions. For example:
3923@example
3924@group
3925exp[result]: exp[left] '/' exp[right]
3926 @{ $result = $left / $right; @}
3927@end group
3928@end example
3929
3930@noindent
3931Explicit names may be declared for RHS and for LHS symbols as well. In order
3932to access a semantic value generated by a mid-rule action, an explicit name
3933may also be declared by putting a bracketed name after the closing brace of
3934the mid-rule action code:
3935@example
3936@group
3937exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3938 @{ $res = $left + $right; @}
3939@end group
3940@end example
3941
3942@noindent
3943
3944In references, in order to specify names containing dots and dashes, an explicit
3945bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3946@example
3947@group
3948if-stmt: IF '(' expr ')' THEN then.stmt ';'
3949 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3950@end group
3951@end example
3952
3953It often happens that named references are followed by a dot, dash or other
3954C punctuation marks and operators. By default, Bison will read
3955@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3956@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3957value. In order to force Bison to recognize @code{name.suffix} in its entirety
3958as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3959must be used.
3960
3961
342b8b6e 3962@node Locations
847bf1f5
AD
3963@section Tracking Locations
3964@cindex location
95923bd6
AD
3965@cindex textual location
3966@cindex location, textual
847bf1f5
AD
3967
3968Though grammar rules and semantic actions are enough to write a fully
72d2299c 3969functional parser, it can be useful to process some additional information,
3e259915
MA
3970especially symbol locations.
3971
704a47c4
AD
3972The way locations are handled is defined by providing a data type, and
3973actions to take when rules are matched.
847bf1f5
AD
3974
3975@menu
3976* Location Type:: Specifying a data type for locations.
3977* Actions and Locations:: Using locations in actions.
3978* Location Default Action:: Defining a general way to compute locations.
3979@end menu
3980
342b8b6e 3981@node Location Type
847bf1f5
AD
3982@subsection Data Type of Locations
3983@cindex data type of locations
3984@cindex default location type
3985
3986Defining a data type for locations is much simpler than for semantic values,
3987since all tokens and groupings always use the same type.
3988
50cce58e
PE
3989You can specify the type of locations by defining a macro called
3990@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3991defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3992When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3993four members:
3994
3995@example
6273355b 3996typedef struct YYLTYPE
847bf1f5
AD
3997@{
3998 int first_line;
3999 int first_column;
4000 int last_line;
4001 int last_column;
6273355b 4002@} YYLTYPE;
847bf1f5
AD
4003@end example
4004
d59e456d
AD
4005When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4006initializes all these fields to 1 for @code{yylloc}. To initialize
4007@code{yylloc} with a custom location type (or to chose a different
4008initialization), use the @code{%initial-action} directive. @xref{Initial
4009Action Decl, , Performing Actions before Parsing}.
cd48d21d 4010
342b8b6e 4011@node Actions and Locations
847bf1f5
AD
4012@subsection Actions and Locations
4013@cindex location actions
4014@cindex actions, location
4015@vindex @@$
4016@vindex @@@var{n}
d013372c
AR
4017@vindex @@@var{name}
4018@vindex @@[@var{name}]
847bf1f5
AD
4019
4020Actions are not only useful for defining language semantics, but also for
4021describing the behavior of the output parser with locations.
4022
4023The most obvious way for building locations of syntactic groupings is very
72d2299c 4024similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4025constructs can be used to access the locations of the elements being matched.
4026The location of the @var{n}th component of the right hand side is
4027@code{@@@var{n}}, while the location of the left hand side grouping is
4028@code{@@$}.
4029
d013372c
AR
4030In addition, the named references construct @code{@@@var{name}} and
4031@code{@@[@var{name}]} may also be used to address the symbol locations.
4032@xref{Named References,,Using Named References}, for more information
4033about using the named references construct.
4034
3e259915 4035Here is a basic example using the default data type for locations:
847bf1f5
AD
4036
4037@example
4038@group
4039exp: @dots{}
3e259915 4040 | exp '/' exp
847bf1f5 4041 @{
3e259915
MA
4042 @@$.first_column = @@1.first_column;
4043 @@$.first_line = @@1.first_line;
847bf1f5
AD
4044 @@$.last_column = @@3.last_column;
4045 @@$.last_line = @@3.last_line;
3e259915
MA
4046 if ($3)
4047 $$ = $1 / $3;
4048 else
4049 @{
4050 $$ = 1;
4e03e201
AD
4051 fprintf (stderr,
4052 "Division by zero, l%d,c%d-l%d,c%d",
4053 @@3.first_line, @@3.first_column,
4054 @@3.last_line, @@3.last_column);
3e259915 4055 @}
847bf1f5
AD
4056 @}
4057@end group
4058@end example
4059
3e259915 4060As for semantic values, there is a default action for locations that is
72d2299c 4061run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4062beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4063last symbol.
3e259915 4064
72d2299c 4065With this default action, the location tracking can be fully automatic. The
3e259915
MA
4066example above simply rewrites this way:
4067
4068@example
4069@group
4070exp: @dots{}
4071 | exp '/' exp
4072 @{
4073 if ($3)
4074 $$ = $1 / $3;
4075 else
4076 @{
4077 $$ = 1;
4e03e201
AD
4078 fprintf (stderr,
4079 "Division by zero, l%d,c%d-l%d,c%d",
4080 @@3.first_line, @@3.first_column,
4081 @@3.last_line, @@3.last_column);
3e259915
MA
4082 @}
4083 @}
4084@end group
4085@end example
847bf1f5 4086
32c29292 4087@vindex yylloc
742e4900 4088It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4089from a semantic action.
4090This location is stored in @code{yylloc}.
4091@xref{Action Features, ,Special Features for Use in Actions}.
4092
342b8b6e 4093@node Location Default Action
847bf1f5
AD
4094@subsection Default Action for Locations
4095@vindex YYLLOC_DEFAULT
8a4281b9 4096@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4097
72d2299c 4098Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4099locations are much more general than semantic values, there is room in
4100the output parser to redefine the default action to take for each
72d2299c 4101rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4102matched, before the associated action is run. It is also invoked
4103while processing a syntax error, to compute the error's location.
8a4281b9 4104Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4105parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4106of that ambiguity.
847bf1f5 4107
3e259915 4108Most of the time, this macro is general enough to suppress location
79282c6c 4109dedicated code from semantic actions.
847bf1f5 4110
72d2299c 4111The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4112the location of the grouping (the result of the computation). When a
766de5eb 4113rule is matched, the second parameter identifies locations of
96b93a3d 4114all right hand side elements of the rule being matched, and the third
8710fc41 4115parameter is the size of the rule's right hand side.
8a4281b9 4116When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4117right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4118When processing a syntax error, the second parameter identifies locations
4119of the symbols that were discarded during error processing, and the third
96b93a3d 4120parameter is the number of discarded symbols.
847bf1f5 4121
766de5eb 4122By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4123
766de5eb 4124@smallexample
847bf1f5 4125@group
766de5eb
PE
4126# define YYLLOC_DEFAULT(Current, Rhs, N) \
4127 do \
4128 if (N) \
4129 @{ \
4130 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4131 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4132 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4133 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4134 @} \
4135 else \
4136 @{ \
4137 (Current).first_line = (Current).last_line = \
4138 YYRHSLOC(Rhs, 0).last_line; \
4139 (Current).first_column = (Current).last_column = \
4140 YYRHSLOC(Rhs, 0).last_column; \
4141 @} \
4142 while (0)
847bf1f5 4143@end group
766de5eb 4144@end smallexample
676385e2 4145
766de5eb
PE
4146where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4147in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4148just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4149
3e259915 4150When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4151
3e259915 4152@itemize @bullet
79282c6c 4153@item
72d2299c 4154All arguments are free of side-effects. However, only the first one (the
3e259915 4155result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4156
3e259915 4157@item
766de5eb
PE
4158For consistency with semantic actions, valid indexes within the
4159right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4160valid index, and it refers to the symbol just before the reduction.
4161During error processing @var{n} is always positive.
0ae99356
PE
4162
4163@item
4164Your macro should parenthesize its arguments, if need be, since the
4165actual arguments may not be surrounded by parentheses. Also, your
4166macro should expand to something that can be used as a single
4167statement when it is followed by a semicolon.
3e259915 4168@end itemize
847bf1f5 4169
342b8b6e 4170@node Declarations
bfa74976
RS
4171@section Bison Declarations
4172@cindex declarations, Bison
4173@cindex Bison declarations
4174
4175The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4176used in formulating the grammar and the data types of semantic values.
4177@xref{Symbols}.
4178
4179All token type names (but not single-character literal tokens such as
4180@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4181declared if you need to specify which data type to use for the semantic
4182value (@pxref{Multiple Types, ,More Than One Value Type}).
4183
ff7571c0
JD
4184The first rule in the grammar file also specifies the start symbol, by
4185default. If you want some other symbol to be the start symbol, you
4186must declare it explicitly (@pxref{Language and Grammar, ,Languages
4187and Context-Free Grammars}).
bfa74976
RS
4188
4189@menu
b50d2359 4190* Require Decl:: Requiring a Bison version.
bfa74976
RS
4191* Token Decl:: Declaring terminal symbols.
4192* Precedence Decl:: Declaring terminals with precedence and associativity.
4193* Union Decl:: Declaring the set of all semantic value types.
4194* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4195* Initial Action Decl:: Code run before parsing starts.
72f889cc 4196* Destructor Decl:: Declaring how symbols are freed.
d6328241 4197* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4198* Start Decl:: Specifying the start symbol.
4199* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4200* Push Decl:: Requesting a push parser.
bfa74976 4201* Decl Summary:: Table of all Bison declarations.
e0c07222 4202* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4203@end menu
4204
b50d2359
AD
4205@node Require Decl
4206@subsection Require a Version of Bison
4207@cindex version requirement
4208@cindex requiring a version of Bison
4209@findex %require
4210
4211You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4212the requirement is not met, @command{bison} exits with an error (exit
4213status 63).
b50d2359
AD
4214
4215@example
4216%require "@var{version}"
4217@end example
4218
342b8b6e 4219@node Token Decl
bfa74976
RS
4220@subsection Token Type Names
4221@cindex declaring token type names
4222@cindex token type names, declaring
931c7513 4223@cindex declaring literal string tokens
bfa74976
RS
4224@findex %token
4225
4226The basic way to declare a token type name (terminal symbol) is as follows:
4227
4228@example
4229%token @var{name}
4230@end example
4231
4232Bison will convert this into a @code{#define} directive in
4233the parser, so that the function @code{yylex} (if it is in this file)
4234can use the name @var{name} to stand for this token type's code.
4235
d78f0ac9
AD
4236Alternatively, you can use @code{%left}, @code{%right},
4237@code{%precedence}, or
14ded682
AD
4238@code{%nonassoc} instead of @code{%token}, if you wish to specify
4239associativity and precedence. @xref{Precedence Decl, ,Operator
4240Precedence}.
bfa74976
RS
4241
4242You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4243a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4244following the token name:
bfa74976
RS
4245
4246@example
4247%token NUM 300
1452af69 4248%token XNUM 0x12d // a GNU extension
bfa74976
RS
4249@end example
4250
4251@noindent
4252It is generally best, however, to let Bison choose the numeric codes for
4253all token types. Bison will automatically select codes that don't conflict
e966383b 4254with each other or with normal characters.
bfa74976
RS
4255
4256In the event that the stack type is a union, you must augment the
4257@code{%token} or other token declaration to include the data type
704a47c4
AD
4258alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4259Than One Value Type}).
bfa74976
RS
4260
4261For example:
4262
4263@example
4264@group
4265%union @{ /* define stack type */
4266 double val;
4267 symrec *tptr;
4268@}
4269%token <val> NUM /* define token NUM and its type */
4270@end group
4271@end example
4272
931c7513
RS
4273You can associate a literal string token with a token type name by
4274writing the literal string at the end of a @code{%token}
4275declaration which declares the name. For example:
4276
4277@example
4278%token arrow "=>"
4279@end example
4280
4281@noindent
4282For example, a grammar for the C language might specify these names with
4283equivalent literal string tokens:
4284
4285@example
4286%token <operator> OR "||"
4287%token <operator> LE 134 "<="
4288%left OR "<="
4289@end example
4290
4291@noindent
4292Once you equate the literal string and the token name, you can use them
4293interchangeably in further declarations or the grammar rules. The
4294@code{yylex} function can use the token name or the literal string to
4295obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4296Syntax error messages passed to @code{yyerror} from the parser will reference
4297the literal string instead of the token name.
4298
4299The token numbered as 0 corresponds to end of file; the following line
4300allows for nicer error messages referring to ``end of file'' instead
4301of ``$end'':
4302
4303@example
4304%token END 0 "end of file"
4305@end example
931c7513 4306
342b8b6e 4307@node Precedence Decl
bfa74976
RS
4308@subsection Operator Precedence
4309@cindex precedence declarations
4310@cindex declaring operator precedence
4311@cindex operator precedence, declaring
4312
d78f0ac9
AD
4313Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4314@code{%precedence} declaration to
bfa74976
RS
4315declare a token and specify its precedence and associativity, all at
4316once. These are called @dfn{precedence declarations}.
704a47c4
AD
4317@xref{Precedence, ,Operator Precedence}, for general information on
4318operator precedence.
bfa74976 4319
ab7f29f8 4320The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4321@code{%token}: either
4322
4323@example
4324%left @var{symbols}@dots{}
4325@end example
4326
4327@noindent
4328or
4329
4330@example
4331%left <@var{type}> @var{symbols}@dots{}
4332@end example
4333
4334And indeed any of these declarations serves the purposes of @code{%token}.
4335But in addition, they specify the associativity and relative precedence for
4336all the @var{symbols}:
4337
4338@itemize @bullet
4339@item
4340The associativity of an operator @var{op} determines how repeated uses
4341of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4342@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4343grouping @var{y} with @var{z} first. @code{%left} specifies
4344left-associativity (grouping @var{x} with @var{y} first) and
4345@code{%right} specifies right-associativity (grouping @var{y} with
4346@var{z} first). @code{%nonassoc} specifies no associativity, which
4347means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4348considered a syntax error.
4349
d78f0ac9
AD
4350@code{%precedence} gives only precedence to the @var{symbols}, and
4351defines no associativity at all. Use this to define precedence only,
4352and leave any potential conflict due to associativity enabled.
4353
bfa74976
RS
4354@item
4355The precedence of an operator determines how it nests with other operators.
4356All the tokens declared in a single precedence declaration have equal
4357precedence and nest together according to their associativity.
4358When two tokens declared in different precedence declarations associate,
4359the one declared later has the higher precedence and is grouped first.
4360@end itemize
4361
ab7f29f8
JD
4362For backward compatibility, there is a confusing difference between the
4363argument lists of @code{%token} and precedence declarations.
4364Only a @code{%token} can associate a literal string with a token type name.
4365A precedence declaration always interprets a literal string as a reference to a
4366separate token.
4367For example:
4368
4369@example
4370%left OR "<=" // Does not declare an alias.
4371%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4372@end example
4373
342b8b6e 4374@node Union Decl
bfa74976
RS
4375@subsection The Collection of Value Types
4376@cindex declaring value types
4377@cindex value types, declaring
4378@findex %union
4379
287c78f6
PE
4380The @code{%union} declaration specifies the entire collection of
4381possible data types for semantic values. The keyword @code{%union} is
4382followed by braced code containing the same thing that goes inside a
4383@code{union} in C@.
bfa74976
RS
4384
4385For example:
4386
4387@example
4388@group
4389%union @{
4390 double val;
4391 symrec *tptr;
4392@}
4393@end group
4394@end example
4395
4396@noindent
4397This says that the two alternative types are @code{double} and @code{symrec
4398*}. They are given names @code{val} and @code{tptr}; these names are used
4399in the @code{%token} and @code{%type} declarations to pick one of the types
4400for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4401
8a4281b9 4402As an extension to POSIX, a tag is allowed after the
6273355b
PE
4403@code{union}. For example:
4404
4405@example
4406@group
4407%union value @{
4408 double val;
4409 symrec *tptr;
4410@}
4411@end group
4412@end example
4413
d6ca7905 4414@noindent
6273355b
PE
4415specifies the union tag @code{value}, so the corresponding C type is
4416@code{union value}. If you do not specify a tag, it defaults to
4417@code{YYSTYPE}.
4418
8a4281b9 4419As another extension to POSIX, you may specify multiple
d6ca7905
PE
4420@code{%union} declarations; their contents are concatenated. However,
4421only the first @code{%union} declaration can specify a tag.
4422
6273355b 4423Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4424a semicolon after the closing brace.
4425
ddc8ede1
PE
4426Instead of @code{%union}, you can define and use your own union type
4427@code{YYSTYPE} if your grammar contains at least one
4428@samp{<@var{type}>} tag. For example, you can put the following into
4429a header file @file{parser.h}:
4430
4431@example
4432@group
4433union YYSTYPE @{
4434 double val;
4435 symrec *tptr;
4436@};
4437typedef union YYSTYPE YYSTYPE;
4438@end group
4439@end example
4440
4441@noindent
4442and then your grammar can use the following
4443instead of @code{%union}:
4444
4445@example
4446@group
4447%@{
4448#include "parser.h"
4449%@}
4450%type <val> expr
4451%token <tptr> ID
4452@end group
4453@end example
4454
342b8b6e 4455@node Type Decl
bfa74976
RS
4456@subsection Nonterminal Symbols
4457@cindex declaring value types, nonterminals
4458@cindex value types, nonterminals, declaring
4459@findex %type
4460
4461@noindent
4462When you use @code{%union} to specify multiple value types, you must
4463declare the value type of each nonterminal symbol for which values are
4464used. This is done with a @code{%type} declaration, like this:
4465
4466@example
4467%type <@var{type}> @var{nonterminal}@dots{}
4468@end example
4469
4470@noindent
704a47c4
AD
4471Here @var{nonterminal} is the name of a nonterminal symbol, and
4472@var{type} is the name given in the @code{%union} to the alternative
4473that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4474can give any number of nonterminal symbols in the same @code{%type}
4475declaration, if they have the same value type. Use spaces to separate
4476the symbol names.
bfa74976 4477
931c7513
RS
4478You can also declare the value type of a terminal symbol. To do this,
4479use the same @code{<@var{type}>} construction in a declaration for the
4480terminal symbol. All kinds of token declarations allow
4481@code{<@var{type}>}.
4482
18d192f0
AD
4483@node Initial Action Decl
4484@subsection Performing Actions before Parsing
4485@findex %initial-action
4486
4487Sometimes your parser needs to perform some initializations before
4488parsing. The @code{%initial-action} directive allows for such arbitrary
4489code.
4490
4491@deffn {Directive} %initial-action @{ @var{code} @}
4492@findex %initial-action
287c78f6 4493Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4494@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4495@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4496@code{%parse-param}.
18d192f0
AD
4497@end deffn
4498
451364ed
AD
4499For instance, if your locations use a file name, you may use
4500
4501@example
48b16bbc 4502%parse-param @{ char const *file_name @};
451364ed
AD
4503%initial-action
4504@{
4626a15d 4505 @@$.initialize (file_name);
451364ed
AD
4506@};
4507@end example
4508
18d192f0 4509
72f889cc
AD
4510@node Destructor Decl
4511@subsection Freeing Discarded Symbols
4512@cindex freeing discarded symbols
4513@findex %destructor
12e35840 4514@findex <*>
3ebecc24 4515@findex <>
a85284cf
AD
4516During error recovery (@pxref{Error Recovery}), symbols already pushed
4517on the stack and tokens coming from the rest of the file are discarded
4518until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4519or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4520symbols on the stack must be discarded. Even if the parser succeeds, it
4521must discard the start symbol.
258b75ca
PE
4522
4523When discarded symbols convey heap based information, this memory is
4524lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4525in traditional compilers, it is unacceptable for programs like shells or
4526protocol implementations that may parse and execute indefinitely.
258b75ca 4527
a85284cf
AD
4528The @code{%destructor} directive defines code that is called when a
4529symbol is automatically discarded.
72f889cc
AD
4530
4531@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4532@findex %destructor
287c78f6
PE
4533Invoke the braced @var{code} whenever the parser discards one of the
4534@var{symbols}.
4b367315 4535Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4536with the discarded symbol, and @code{@@$} designates its location.
4537The additional parser parameters are also available (@pxref{Parser Function, ,
4538The Parser Function @code{yyparse}}).
ec5479ce 4539
b2a0b7ca
JD
4540When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4541per-symbol @code{%destructor}.
4542You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4543tag among @var{symbols}.
b2a0b7ca 4544In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4545grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4546per-symbol @code{%destructor}.
4547
12e35840 4548Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4549(These default forms are experimental.
4550More user feedback will help to determine whether they should become permanent
4551features.)
3ebecc24 4552You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4553exactly one @code{%destructor} declaration in your grammar file.
4554The parser will invoke the @var{code} associated with one of these whenever it
4555discards any user-defined grammar symbol that has no per-symbol and no per-type
4556@code{%destructor}.
4557The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4558symbol for which you have formally declared a semantic type tag (@code{%type}
4559counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4560The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4561symbol that has no declared semantic type tag.
72f889cc
AD
4562@end deffn
4563
b2a0b7ca 4564@noindent
12e35840 4565For example:
72f889cc
AD
4566
4567@smallexample
ec5479ce
JD
4568%union @{ char *string; @}
4569%token <string> STRING1
4570%token <string> STRING2
4571%type <string> string1
4572%type <string> string2
b2a0b7ca
JD
4573%union @{ char character; @}
4574%token <character> CHR
4575%type <character> chr
12e35840
JD
4576%token TAGLESS
4577
b2a0b7ca 4578%destructor @{ @} <character>
12e35840
JD
4579%destructor @{ free ($$); @} <*>
4580%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4581%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4582@end smallexample
4583
4584@noindent
b2a0b7ca
JD
4585guarantees that, when the parser discards any user-defined symbol that has a
4586semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4587to @code{free} by default.
ec5479ce
JD
4588However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4589prints its line number to @code{stdout}.
4590It performs only the second @code{%destructor} in this case, so it invokes
4591@code{free} only once.
12e35840
JD
4592Finally, the parser merely prints a message whenever it discards any symbol,
4593such as @code{TAGLESS}, that has no semantic type tag.
4594
4595A Bison-generated parser invokes the default @code{%destructor}s only for
4596user-defined as opposed to Bison-defined symbols.
4597For example, the parser will not invoke either kind of default
4598@code{%destructor} for the special Bison-defined symbols @code{$accept},
4599@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4600none of which you can reference in your grammar.
4601It also will not invoke either for the @code{error} token (@pxref{Table of
4602Symbols, ,error}), which is always defined by Bison regardless of whether you
4603reference it in your grammar.
4604However, it may invoke one of them for the end token (token 0) if you
4605redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4606
4607@smallexample
4608%token END 0
4609@end smallexample
4610
12e35840
JD
4611@cindex actions in mid-rule
4612@cindex mid-rule actions
4613Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4614mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4615That is, Bison does not consider a mid-rule to have a semantic value if you do
4616not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4617@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4618rule.
4619However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4620@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4621
3508ce36
JD
4622@ignore
4623@noindent
4624In the future, it may be possible to redefine the @code{error} token as a
4625nonterminal that captures the discarded symbols.
4626In that case, the parser will invoke the default destructor for it as well.
4627@end ignore
4628
e757bb10
AD
4629@sp 1
4630
4631@cindex discarded symbols
4632@dfn{Discarded symbols} are the following:
4633
4634@itemize
4635@item
4636stacked symbols popped during the first phase of error recovery,
4637@item
4638incoming terminals during the second phase of error recovery,
4639@item
742e4900 4640the current lookahead and the entire stack (except the current
9d9b8b70 4641right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4642@item
4643the start symbol, when the parser succeeds.
e757bb10
AD
4644@end itemize
4645
9d9b8b70
PE
4646The parser can @dfn{return immediately} because of an explicit call to
4647@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4648exhaustion.
4649
29553547 4650Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4651error via @code{YYERROR} are not discarded automatically. As a rule
4652of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4653the memory.
e757bb10 4654
342b8b6e 4655@node Expect Decl
bfa74976
RS
4656@subsection Suppressing Conflict Warnings
4657@cindex suppressing conflict warnings
4658@cindex preventing warnings about conflicts
4659@cindex warnings, preventing
4660@cindex conflicts, suppressing warnings of
4661@findex %expect
d6328241 4662@findex %expect-rr
bfa74976
RS
4663
4664Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4665(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4666have harmless shift/reduce conflicts which are resolved in a predictable
4667way and would be difficult to eliminate. It is desirable to suppress
4668the warning about these conflicts unless the number of conflicts
4669changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4670
4671The declaration looks like this:
4672
4673@example
4674%expect @var{n}
4675@end example
4676
035aa4a0
PE
4677Here @var{n} is a decimal integer. The declaration says there should
4678be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4679Bison reports an error if the number of shift/reduce conflicts differs
4680from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4681
eb45ef3b 4682For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4683serious, and should be eliminated entirely. Bison will always report
8a4281b9 4684reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4685parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4686there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4687also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4688in GLR parsers, using the declaration:
d6328241
PH
4689
4690@example
4691%expect-rr @var{n}
4692@end example
4693
bfa74976
RS
4694In general, using @code{%expect} involves these steps:
4695
4696@itemize @bullet
4697@item
4698Compile your grammar without @code{%expect}. Use the @samp{-v} option
4699to get a verbose list of where the conflicts occur. Bison will also
4700print the number of conflicts.
4701
4702@item
4703Check each of the conflicts to make sure that Bison's default
4704resolution is what you really want. If not, rewrite the grammar and
4705go back to the beginning.
4706
4707@item
4708Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4709number which Bison printed. With GLR parsers, add an
035aa4a0 4710@code{%expect-rr} declaration as well.
bfa74976
RS
4711@end itemize
4712
93d7dde9
JD
4713Now Bison will report an error if you introduce an unexpected conflict,
4714but will keep silent otherwise.
bfa74976 4715
342b8b6e 4716@node Start Decl
bfa74976
RS
4717@subsection The Start-Symbol
4718@cindex declaring the start symbol
4719@cindex start symbol, declaring
4720@cindex default start symbol
4721@findex %start
4722
4723Bison assumes by default that the start symbol for the grammar is the first
4724nonterminal specified in the grammar specification section. The programmer
4725may override this restriction with the @code{%start} declaration as follows:
4726
4727@example
4728%start @var{symbol}
4729@end example
4730
342b8b6e 4731@node Pure Decl
bfa74976
RS
4732@subsection A Pure (Reentrant) Parser
4733@cindex reentrant parser
4734@cindex pure parser
d9df47b6 4735@findex %define api.pure
bfa74976
RS
4736
4737A @dfn{reentrant} program is one which does not alter in the course of
4738execution; in other words, it consists entirely of @dfn{pure} (read-only)
4739code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4740for example, a nonreentrant program may not be safe to call from a signal
4741handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4742program must be called only within interlocks.
4743
70811b85 4744Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4745suitable for most uses, and it permits compatibility with Yacc. (The
4746standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4747statically allocated variables for communication with @code{yylex},
4748including @code{yylval} and @code{yylloc}.)
bfa74976 4749
70811b85 4750Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4751declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4752reentrant. It looks like this:
bfa74976
RS
4753
4754@example
d9df47b6 4755%define api.pure
bfa74976
RS
4756@end example
4757
70811b85
RS
4758The result is that the communication variables @code{yylval} and
4759@code{yylloc} become local variables in @code{yyparse}, and a different
4760calling convention is used for the lexical analyzer function
4761@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4762Parsers}, for the details of this. The variable @code{yynerrs}
4763becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4764of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4765Reporting Function @code{yyerror}}). The convention for calling
4766@code{yyparse} itself is unchanged.
4767
4768Whether the parser is pure has nothing to do with the grammar rules.
4769You can generate either a pure parser or a nonreentrant parser from any
4770valid grammar.
bfa74976 4771
9987d1b3
JD
4772@node Push Decl
4773@subsection A Push Parser
4774@cindex push parser
4775@cindex push parser
67212941 4776@findex %define api.push-pull
9987d1b3 4777
59da312b
JD
4778(The current push parsing interface is experimental and may evolve.
4779More user feedback will help to stabilize it.)
4780
f4101aa6
AD
4781A pull parser is called once and it takes control until all its input
4782is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4783each time a new token is made available.
4784
f4101aa6 4785A push parser is typically useful when the parser is part of a
9987d1b3 4786main event loop in the client's application. This is typically
f4101aa6
AD
4787a requirement of a GUI, when the main event loop needs to be triggered
4788within a certain time period.
9987d1b3 4789
d782395d
JD
4790Normally, Bison generates a pull parser.
4791The following Bison declaration says that you want the parser to be a push
67212941 4792parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4793
4794@example
cf499cff 4795%define api.push-pull push
9987d1b3
JD
4796@end example
4797
4798In almost all cases, you want to ensure that your push parser is also
4799a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4800time you should create an impure push parser is to have backwards
9987d1b3
JD
4801compatibility with the impure Yacc pull mode interface. Unless you know
4802what you are doing, your declarations should look like this:
4803
4804@example
d9df47b6 4805%define api.pure
cf499cff 4806%define api.push-pull push
9987d1b3
JD
4807@end example
4808
f4101aa6
AD
4809There is a major notable functional difference between the pure push parser
4810and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4811many parser instances, of the same type of parser, in memory at the same time.
4812An impure push parser should only use one parser at a time.
4813
4814When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4815the generated parser. @code{yypstate} is a structure that the generated
4816parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4817function that will create a new parser instance. @code{yypstate_delete}
4818will free the resources associated with the corresponding parser instance.
f4101aa6 4819Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4820token is available to provide the parser. A trivial example
4821of using a pure push parser would look like this:
4822
4823@example
4824int status;
4825yypstate *ps = yypstate_new ();
4826do @{
4827 status = yypush_parse (ps, yylex (), NULL);
4828@} while (status == YYPUSH_MORE);
4829yypstate_delete (ps);
4830@end example
4831
4832If the user decided to use an impure push parser, a few things about
f4101aa6 4833the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4834a global variable instead of a variable in the @code{yypush_parse} function.
4835For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4836changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4837example would thus look like this:
4838
4839@example
4840extern int yychar;
4841int status;
4842yypstate *ps = yypstate_new ();
4843do @{
4844 yychar = yylex ();
4845 status = yypush_parse (ps);
4846@} while (status == YYPUSH_MORE);
4847yypstate_delete (ps);
4848@end example
4849
f4101aa6 4850That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4851for use by the next invocation of the @code{yypush_parse} function.
4852
f4101aa6 4853Bison also supports both the push parser interface along with the pull parser
9987d1b3 4854interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4855you should replace the @samp{%define api.push-pull push} declaration with the
4856@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4857the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4858and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4859would be used. However, the user should note that it is implemented in the
d782395d
JD
4860generated parser by calling @code{yypull_parse}.
4861This makes the @code{yyparse} function that is generated with the
cf499cff 4862@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4863@code{yyparse} function. If the user
4864calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4865stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4866and then @code{yypull_parse} the rest of the input stream. If you would like
4867to switch back and forth between between parsing styles, you would have to
4868write your own @code{yypull_parse} function that knows when to quit looking
4869for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4870like this:
4871
4872@example
4873yypstate *ps = yypstate_new ();
4874yypull_parse (ps); /* Will call the lexer */
4875yypstate_delete (ps);
4876@end example
4877
67501061 4878Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4879the generated parser with @samp{%define api.push-pull both} as it did for
4880@samp{%define api.push-pull push}.
9987d1b3 4881
342b8b6e 4882@node Decl Summary
bfa74976
RS
4883@subsection Bison Declaration Summary
4884@cindex Bison declaration summary
4885@cindex declaration summary
4886@cindex summary, Bison declaration
4887
d8988b2f 4888Here is a summary of the declarations used to define a grammar:
bfa74976 4889
18b519c0 4890@deffn {Directive} %union
bfa74976
RS
4891Declare the collection of data types that semantic values may have
4892(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4893@end deffn
bfa74976 4894
18b519c0 4895@deffn {Directive} %token
bfa74976
RS
4896Declare a terminal symbol (token type name) with no precedence
4897or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4898@end deffn
bfa74976 4899
18b519c0 4900@deffn {Directive} %right
bfa74976
RS
4901Declare a terminal symbol (token type name) that is right-associative
4902(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4903@end deffn
bfa74976 4904
18b519c0 4905@deffn {Directive} %left
bfa74976
RS
4906Declare a terminal symbol (token type name) that is left-associative
4907(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4908@end deffn
bfa74976 4909
18b519c0 4910@deffn {Directive} %nonassoc
bfa74976 4911Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4912(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4913Using it in a way that would be associative is a syntax error.
4914@end deffn
4915
91d2c560 4916@ifset defaultprec
39a06c25 4917@deffn {Directive} %default-prec
22fccf95 4918Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4919(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4920@end deffn
91d2c560 4921@end ifset
bfa74976 4922
18b519c0 4923@deffn {Directive} %type
bfa74976
RS
4924Declare the type of semantic values for a nonterminal symbol
4925(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4926@end deffn
bfa74976 4927
18b519c0 4928@deffn {Directive} %start
89cab50d
AD
4929Specify the grammar's start symbol (@pxref{Start Decl, ,The
4930Start-Symbol}).
18b519c0 4931@end deffn
bfa74976 4932
18b519c0 4933@deffn {Directive} %expect
bfa74976
RS
4934Declare the expected number of shift-reduce conflicts
4935(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4936@end deffn
4937
bfa74976 4938
d8988b2f
AD
4939@sp 1
4940@noindent
4941In order to change the behavior of @command{bison}, use the following
4942directives:
4943
148d66d8 4944@deffn {Directive} %code @{@var{code}@}
e0c07222 4945@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4946@findex %code
e0c07222
JD
4947Insert @var{code} verbatim into the output parser source at the
4948default location or at the location specified by @var{qualifier}.
4949@xref{%code Summary}.
148d66d8
JD
4950@end deffn
4951
18b519c0 4952@deffn {Directive} %debug
fa819509
AD
4953Instrument the output parser for traces. Obsoleted by @samp{%define
4954parse.trace}.
ec3bc396 4955@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 4956@end deffn
d8988b2f 4957
c1d19e10 4958@deffn {Directive} %define @var{variable}
cf499cff 4959@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 4960@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 4961Define a variable to adjust Bison's behavior.
9611cfa2 4962
0b6d43c5 4963It is an error if a @var{variable} is defined by @code{%define} multiple
17aed602 4964times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 4965
82f3355e
JD
4966@var{value} must be placed in quotation marks if it contains any character
4967other than a letter, underscore, period, or non-initial dash or digit.
cf499cff
JD
4968
4969Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
4970@code{""}.
4971
c6abeab1 4972Some @var{variable}s take Boolean values.
9611cfa2
JD
4973In this case, Bison will complain if the variable definition does not meet one
4974of the following four conditions:
4975
4976@enumerate
cf499cff 4977@item @code{@var{value}} is @code{true}
9611cfa2 4978
cf499cff
JD
4979@item @code{@var{value}} is omitted (or @code{""} is specified).
4980This is equivalent to @code{true}.
9611cfa2 4981
cf499cff 4982@item @code{@var{value}} is @code{false}.
9611cfa2
JD
4983
4984@item @var{variable} is never defined.
c6abeab1 4985In this case, Bison selects a default value.
9611cfa2 4986@end enumerate
148d66d8 4987
c6abeab1
JD
4988What @var{variable}s are accepted, as well as their meanings and default
4989values, depend on the selected target language and/or the parser
4990skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
4991Summary,,%skeleton}).
4992Unaccepted @var{variable}s produce an error.
793fbca5
JD
4993Some of the accepted @var{variable}s are:
4994
fa819509 4995@table @code
6b5a0de9 4996@c ================================================== api.namespace
67501061
AD
4997@item api.namespace
4998@findex %define api.namespace
4999@itemize
5000@item Languages(s): C++
5001
f1b238df 5002@item Purpose: Specify the namespace for the parser class.
67501061
AD
5003For example, if you specify:
5004
5005@smallexample
5006%define api.namespace "foo::bar"
5007@end smallexample
5008
5009Bison uses @code{foo::bar} verbatim in references such as:
5010
5011@smallexample
5012foo::bar::parser::semantic_type
5013@end smallexample
5014
5015However, to open a namespace, Bison removes any leading @code{::} and then
5016splits on any remaining occurrences:
5017
5018@smallexample
5019namespace foo @{ namespace bar @{
5020 class position;
5021 class location;
5022@} @}
5023@end smallexample
5024
5025@item Accepted Values:
5026Any absolute or relative C++ namespace reference without a trailing
5027@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5028
5029@item Default Value:
5030The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5031This usage of @code{%name-prefix} is for backward compatibility and can
5032be confusing since @code{%name-prefix} also specifies the textual prefix
5033for the lexical analyzer function. Thus, if you specify
5034@code{%name-prefix}, it is best to also specify @samp{%define
5035api.namespace} so that @code{%name-prefix} @emph{only} affects the
5036lexical analyzer function. For example, if you specify:
5037
5038@smallexample
5039%define api.namespace "foo"
5040%name-prefix "bar::"
5041@end smallexample
5042
5043The parser namespace is @code{foo} and @code{yylex} is referenced as
5044@code{bar::lex}.
5045@end itemize
5046@c namespace
5047
5048
5049
5050@c ================================================== api.pure
d9df47b6
JD
5051@item api.pure
5052@findex %define api.pure
5053
5054@itemize @bullet
5055@item Language(s): C
5056
5057@item Purpose: Request a pure (reentrant) parser program.
5058@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5059
5060@item Accepted Values: Boolean
5061
cf499cff 5062@item Default Value: @code{false}
d9df47b6 5063@end itemize
71b00ed8 5064@c api.pure
d9df47b6 5065
67501061
AD
5066
5067
5068@c ================================================== api.push-pull
67212941
JD
5069@item api.push-pull
5070@findex %define api.push-pull
793fbca5
JD
5071
5072@itemize @bullet
eb45ef3b 5073@item Language(s): C (deterministic parsers only)
793fbca5 5074
f1b238df 5075@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5076@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5077(The current push parsing interface is experimental and may evolve.
5078More user feedback will help to stabilize it.)
793fbca5 5079
cf499cff 5080@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5081
cf499cff 5082@item Default Value: @code{pull}
793fbca5 5083@end itemize
67212941 5084@c api.push-pull
71b00ed8 5085
6b5a0de9
AD
5086
5087
5088@c ================================================== api.tokens.prefix
4c6622c2
AD
5089@item api.tokens.prefix
5090@findex %define api.tokens.prefix
5091
5092@itemize
5093@item Languages(s): all
5094
5095@item Purpose:
5096Add a prefix to the token names when generating their definition in the
5097target language. For instance
5098
5099@example
5100%token FILE for ERROR
5101%define api.tokens.prefix "TOK_"
5102%%
5103start: FILE for ERROR;
5104@end example
5105
5106@noindent
5107generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5108and @code{TOK_ERROR} in the generated source files. In particular, the
5109scanner must use these prefixed token names, while the grammar itself
5110may still use the short names (as in the sample rule given above). The
5111generated informational files (@file{*.output}, @file{*.xml},
5112@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5113and @ref{Calc++ Scanner}, for a complete example.
5114
5115@item Accepted Values:
5116Any string. Should be a valid identifier prefix in the target language,
5117in other words, it should typically be an identifier itself (sequence of
5118letters, underscores, and ---not at the beginning--- digits).
5119
5120@item Default Value:
5121empty
5122@end itemize
5123@c api.tokens.prefix
5124
5125
3cdc21cf
AD
5126@c ================================================== lex_symbol
5127@item variant
5128@findex %define lex_symbol
5129
5130@itemize @bullet
5131@item Language(s):
5132C++
5133
5134@item Purpose:
5135When variant-based semantic values are enabled (@pxref{C++ Variants}),
5136request that symbols be handled as a whole (type, value, and possibly
5137location) in the scanner. @xref{Complete Symbols}, for details.
5138
5139@item Accepted Values:
5140Boolean.
5141
5142@item Default Value:
5143@code{false}
5144@end itemize
5145@c lex_symbol
5146
5147
6b5a0de9
AD
5148@c ================================================== lr.default-reductions
5149
5bab9d08 5150@item lr.default-reductions
110ef36a 5151@cindex default reductions
5bab9d08 5152@findex %define lr.default-reductions
eb45ef3b
JD
5153@cindex delayed syntax errors
5154@cindex syntax errors delayed
8a4281b9 5155@cindex LAC
fcf834f9 5156@findex %nonassoc
eb45ef3b
JD
5157
5158@itemize @bullet
5159@item Language(s): all
5160
fcf834f9 5161@item Purpose: Specify the kind of states that are permitted to
110ef36a 5162contain default reductions.
fcf834f9
JD
5163That is, in such a state, Bison selects the reduction with the largest
5164lookahead set to be the default parser action and then removes that
110ef36a 5165lookahead set.
fcf834f9
JD
5166(The ability to specify where default reductions should be used is
5167experimental.
eb45ef3b
JD
5168More user feedback will help to stabilize it.)
5169
5170@item Accepted Values:
5171@itemize
cf499cff 5172@item @code{all}.
fcf834f9
JD
5173This is the traditional Bison behavior.
5174The main advantage is a significant decrease in the size of the parser
5175tables.
5176The disadvantage is that, when the generated parser encounters a
5177syntactically unacceptable token, the parser might then perform
5178unnecessary default reductions before it can detect the syntax error.
5179Such delayed syntax error detection is usually inherent in
8a4281b9
JD
5180LALR and IELR parser tables anyway due to
5181LR state merging (@pxref{Decl Summary,,lr.type}).
fcf834f9 5182Furthermore, the use of @code{%nonassoc} can contribute to delayed
8a4281b9 5183syntax error detection even in the case of canonical LR.
fcf834f9 5184As an experimental feature, delayed syntax error detection can be
8a4281b9 5185overcome in all cases by enabling LAC (@pxref{Decl
fcf834f9
JD
5186Summary,,parse.lac}, for details, including a discussion of the effects
5187of delayed syntax error detection).
eb45ef3b 5188
cf499cff 5189@item @code{consistent}.
eb45ef3b
JD
5190@cindex consistent states
5191A consistent state is a state that has only one possible action.
5192If that action is a reduction, then the parser does not need to request
5193a lookahead token from the scanner before performing that action.
fcf834f9
JD
5194However, the parser recognizes the ability to ignore the lookahead token
5195in this way only when such a reduction is encoded as a default
5196reduction.
5197Thus, if default reductions are permitted only in consistent states,
8a4281b9 5198then a canonical LR parser that does not employ
fcf834f9
JD
5199@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
5200syntactically unacceptable token from the scanner.
eb45ef3b 5201
cf499cff 5202@item @code{accepting}.
eb45ef3b 5203@cindex accepting state
fcf834f9
JD
5204In the accepting state, the default reduction is actually the accept
5205action.
8a4281b9 5206In this case, a canonical LR parser that does not employ
fcf834f9
JD
5207@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5208syntactically unacceptable token in the input.
5209That is, it does not perform any extra reductions.
eb45ef3b
JD
5210@end itemize
5211
5212@item Default Value:
5213@itemize
cf499cff
JD
5214@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5215@item @code{all} otherwise.
eb45ef3b
JD
5216@end itemize
5217@end itemize
5218
6b5a0de9
AD
5219@c ============================================ lr.keep-unreachable-states
5220
67212941
JD
5221@item lr.keep-unreachable-states
5222@findex %define lr.keep-unreachable-states
31984206
JD
5223
5224@itemize @bullet
5225@item Language(s): all
5226
f1b238df
JD
5227@item Purpose: Request that Bison allow unreachable parser states to
5228remain in the parser tables.
31984206
JD
5229Bison considers a state to be unreachable if there exists no sequence of
5230transitions from the start state to that state.
5231A state can become unreachable during conflict resolution if Bison disables a
5232shift action leading to it from a predecessor state.
5233Keeping unreachable states is sometimes useful for analysis purposes, but they
5234are useless in the generated parser.
5235
5236@item Accepted Values: Boolean
5237
cf499cff 5238@item Default Value: @code{false}
31984206
JD
5239
5240@item Caveats:
5241
5242@itemize @bullet
cff03fb2
JD
5243
5244@item Unreachable states may contain conflicts and may use rules not used in
5245any other state.
31984206
JD
5246Thus, keeping unreachable states may induce warnings that are irrelevant to
5247your parser's behavior, and it may eliminate warnings that are relevant.
5248Of course, the change in warnings may actually be relevant to a parser table
5249analysis that wants to keep unreachable states, so this behavior will likely
5250remain in future Bison releases.
5251
5252@item While Bison is able to remove unreachable states, it is not guaranteed to
5253remove other kinds of useless states.
5254Specifically, when Bison disables reduce actions during conflict resolution,
5255some goto actions may become useless, and thus some additional states may
5256become useless.
5257If Bison were to compute which goto actions were useless and then disable those
5258actions, it could identify such states as unreachable and then remove those
5259states.
5260However, Bison does not compute which goto actions are useless.
5261@end itemize
5262@end itemize
67212941 5263@c lr.keep-unreachable-states
31984206 5264
6b5a0de9
AD
5265@c ================================================== lr.type
5266
eb45ef3b
JD
5267@item lr.type
5268@findex %define lr.type
8a4281b9
JD
5269@cindex LALR
5270@cindex IELR
5271@cindex LR
eb45ef3b
JD
5272
5273@itemize @bullet
5274@item Language(s): all
5275
f1b238df 5276@item Purpose: Specify the type of parser tables within the
8a4281b9 5277LR(1) family.
eb45ef3b
JD
5278(This feature is experimental.
5279More user feedback will help to stabilize it.)
5280
5281@item Accepted Values:
5282@itemize
cf499cff 5283@item @code{lalr}.
8a4281b9
JD
5284While Bison generates LALR parser tables by default for
5285historical reasons, IELR or canonical LR is almost
eb45ef3b 5286always preferable for deterministic parsers.
8a4281b9 5287The trouble is that LALR parser tables can suffer from
110ef36a 5288mysterious conflicts and thus may not accept the full set of sentences
8a4281b9 5289that IELR and canonical LR accept.
eb45ef3b 5290@xref{Mystery Conflicts}, for details.
8a4281b9 5291However, there are at least two scenarios where LALR may be
eb45ef3b
JD
5292worthwhile:
5293@itemize
8a4281b9
JD
5294@cindex GLR with LALR
5295@item When employing GLR parsers (@pxref{GLR Parsers}), if you
eb45ef3b
JD
5296do not resolve any conflicts statically (for example, with @code{%left}
5297or @code{%prec}), then the parser explores all potential parses of any
5298given input.
8a4281b9 5299In this case, the use of LALR parser tables is guaranteed not
110ef36a 5300to alter the language accepted by the parser.
8a4281b9 5301LALR parser tables are the smallest parser tables Bison can
eb45ef3b 5302currently generate, so they may be preferable.
f1b238df 5303Nevertheless, once you begin to resolve conflicts statically,
8a4281b9
JD
5304GLR begins to behave more like a deterministic parser, and so
5305IELR and canonical LR can be helpful to avoid
5306LALR's mysterious behavior.
eb45ef3b
JD
5307
5308@item Occasionally during development, an especially malformed grammar
8a4281b9
JD
5309with a major recurring flaw may severely impede the IELR or
5310canonical LR parser table generation algorithm.
5311LALR can be a quick way to generate parser tables in order to
eb45ef3b 5312investigate such problems while ignoring the more subtle differences
8a4281b9 5313from IELR and canonical LR.
eb45ef3b
JD
5314@end itemize
5315
cf499cff 5316@item @code{ielr}.
8a4281b9
JD
5317IELR is a minimal LR algorithm.
5318That is, given any grammar (LR or non-LR),
5319IELR and canonical LR always accept exactly the same
eb45ef3b 5320set of sentences.
8a4281b9
JD
5321However, as for LALR, the number of parser states is often an
5322order of magnitude less for IELR than for canonical
5323LR.
5324More importantly, because canonical LR's extra parser states
5325may contain duplicate conflicts in the case of non-LR
5326grammars, the number of conflicts for IELR is often an order
eb45ef3b
JD
5327of magnitude less as well.
5328This can significantly reduce the complexity of developing of a grammar.
5329
cf499cff 5330@item @code{canonical-lr}.
eb45ef3b
JD
5331@cindex delayed syntax errors
5332@cindex syntax errors delayed
8a4281b9 5333@cindex LAC
fcf834f9 5334@findex %nonassoc
8a4281b9 5335While inefficient, canonical LR parser tables can be an
fcf834f9 5336interesting means to explore a grammar because they have a property that
8a4281b9 5337IELR and LALR tables do not.
fcf834f9
JD
5338That is, if @code{%nonassoc} is not used and default reductions are left
5339disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
8a4281b9 5340left context of every canonical LR state, the set of tokens
fcf834f9
JD
5341accepted by that state is guaranteed to be the exact set of tokens that
5342is syntactically acceptable in that left context.
8a4281b9 5343It might then seem that an advantage of canonical LR parsers
fcf834f9
JD
5344in production is that, under the above constraints, they are guaranteed
5345to detect a syntax error as soon as possible without performing any
5346unnecessary reductions.
8a4281b9 5347However, IELR parsers using LAC (@pxref{Decl
fcf834f9
JD
5348Summary,,parse.lac}) are also able to achieve this behavior without
5349sacrificing @code{%nonassoc} or default reductions.
eb45ef3b
JD
5350@end itemize
5351
cf499cff 5352@item Default Value: @code{lalr}
eb45ef3b
JD
5353@end itemize
5354
67501061
AD
5355
5356@c ================================================== namespace
793fbca5
JD
5357@item namespace
5358@findex %define namespace
67501061 5359Obsoleted by @code{api.namespace}
fa819509
AD
5360@c namespace
5361
31b850d2
AD
5362
5363@c ================================================== parse.assert
0c90a1f5
AD
5364@item parse.assert
5365@findex %define parse.assert
5366
5367@itemize
5368@item Languages(s): C++
5369
5370@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5371In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5372constructed and
0c90a1f5
AD
5373destroyed properly. This option checks these constraints.
5374
5375@item Accepted Values: Boolean
5376
5377@item Default Value: @code{false}
5378@end itemize
5379@c parse.assert
5380
31b850d2
AD
5381
5382@c ================================================== parse.error
5383@item parse.error
5384@findex %define parse.error
5385@itemize
5386@item Languages(s):
fcf834f9 5387all
31b850d2
AD
5388@item Purpose:
5389Control the kind of error messages passed to the error reporting
5390function. @xref{Error Reporting, ,The Error Reporting Function
5391@code{yyerror}}.
5392@item Accepted Values:
5393@itemize
cf499cff 5394@item @code{simple}
31b850d2
AD
5395Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5396error"}}.
cf499cff 5397@item @code{verbose}
31b850d2
AD
5398Error messages report the unexpected token, and possibly the expected
5399ones.
5400@end itemize
5401
5402@item Default Value:
5403@code{simple}
5404@end itemize
5405@c parse.error
5406
5407
fcf834f9
JD
5408@c ================================================== parse.lac
5409@item parse.lac
5410@findex %define parse.lac
8a4281b9 5411@cindex LAC
fcf834f9
JD
5412@cindex lookahead correction
5413
5414@itemize
5415@item Languages(s): C
5416
8a4281b9 5417@item Purpose: Enable LAC (lookahead correction) to improve
fcf834f9
JD
5418syntax error handling.
5419
8a4281b9 5420Canonical LR, IELR, and LALR can suffer
fcf834f9
JD
5421from a couple of problems upon encountering a syntax error. First, the
5422parser might perform additional parser stack reductions before
5423discovering the syntax error. Such reductions perform user semantic
5424actions that are unexpected because they are based on an invalid token,
5425and they cause error recovery to begin in a different syntactic context
5426than the one in which the invalid token was encountered. Second, when
5427verbose error messages are enabled (with @code{%error-verbose} or
5428@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5429error message can both contain invalid tokens and omit valid tokens.
5430
5431The culprits for the above problems are @code{%nonassoc}, default
5432reductions in inconsistent states, and parser state merging. Thus,
8a4281b9
JD
5433IELR and LALR suffer the most. Canonical
5434LR can suffer only if @code{%nonassoc} is used or if default
fcf834f9
JD
5435reductions are enabled for inconsistent states.
5436
8a4281b9
JD
5437LAC is a new mechanism within the parsing algorithm that
5438completely solves these problems for canonical LR,
5439IELR, and LALR without sacrificing @code{%nonassoc},
fcf834f9
JD
5440default reductions, or state mering. Conceptually, the mechanism is
5441straight-forward. Whenever the parser fetches a new token from the
5442scanner so that it can determine the next parser action, it immediately
5443suspends normal parsing and performs an exploratory parse using a
5444temporary copy of the normal parser state stack. During this
5445exploratory parse, the parser does not perform user semantic actions.
5446If the exploratory parse reaches a shift action, normal parsing then
5447resumes on the normal parser stacks. If the exploratory parse reaches
5448an error instead, the parser reports a syntax error. If verbose syntax
5449error messages are enabled, the parser must then discover the list of
5450expected tokens, so it performs a separate exploratory parse for each
5451token in the grammar.
5452
8a4281b9 5453There is one subtlety about the use of LAC. That is, when in
fcf834f9
JD
5454a consistent parser state with a default reduction, the parser will not
5455attempt to fetch a token from the scanner because no lookahead is needed
5456to determine the next parser action. Thus, whether default reductions
5457are enabled in consistent states (@pxref{Decl
5458Summary,,lr.default-reductions}) affects how soon the parser detects a
5459syntax error: when it @emph{reaches} an erroneous token or when it
5460eventually @emph{needs} that token as a lookahead. The latter behavior
5461is probably more intuitive, so Bison currently provides no way to
5462achieve the former behavior while default reductions are fully enabled.
5463
8a4281b9 5464Thus, when LAC is in use, for some fixed decision of whether
fcf834f9 5465to enable default reductions in consistent states, canonical
8a4281b9 5466LR and IELR behave exactly the same for both
fcf834f9 5467syntactically acceptable and syntactically unacceptable input. While
8a4281b9
JD
5468LALR still does not support the full language-recognition
5469power of canonical LR and IELR, LAC at
5470least enables LALR's syntax error handling to correctly
5471reflect LALR's language-recognition power.
fcf834f9 5472
8a4281b9 5473Because LAC requires many parse actions to be performed twice,
fcf834f9
JD
5474it can have a performance penalty. However, not all parse actions must
5475be performed twice. Specifically, during a series of default reductions
5476in consistent states and shift actions, the parser never has to initiate
5477an exploratory parse. Moreover, the most time-consuming tasks in a
5478parse are often the file I/O, the lexical analysis performed by the
5479scanner, and the user's semantic actions, but none of these are
5480performed during the exploratory parse. Finally, the base of the
5481temporary stack used during an exploratory parse is a pointer into the
5482normal parser state stack so that the stack is never physically copied.
8a4281b9 5483In our experience, the performance penalty of LAC has proven
fcf834f9
JD
5484insignificant for practical grammars.
5485
5486@item Accepted Values: @code{none}, @code{full}
5487
5488@item Default Value: @code{none}
5489@end itemize
5490@c parse.lac
5491
31b850d2 5492@c ================================================== parse.trace
fa819509
AD
5493@item parse.trace
5494@findex %define parse.trace
5495
5496@itemize
5497@item Languages(s): C, C++
5498
5499@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5500In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5501file if it is not already defined, so that the debugging facilities are
5502compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5503
fa819509
AD
5504@item Accepted Values: Boolean
5505
5506@item Default Value: @code{false}
5507@end itemize
fa819509 5508@c parse.trace
99c08fb6 5509
3cdc21cf
AD
5510@c ================================================== variant
5511@item variant
5512@findex %define variant
5513
5514@itemize @bullet
5515@item Language(s):
5516C++
5517
5518@item Purpose:
f1b238df 5519Request variant-based semantic values.
3cdc21cf
AD
5520@xref{C++ Variants}.
5521
5522@item Accepted Values:
5523Boolean.
5524
5525@item Default Value:
5526@code{false}
5527@end itemize
5528@c variant
5529
5530
99c08fb6 5531@end table
d782395d 5532@end deffn
99c08fb6 5533@c ---------------------------------------------------------- %define
d782395d 5534
18b519c0 5535@deffn {Directive} %defines
ff7571c0
JD
5536Write a parser header file containing macro definitions for the token
5537type names defined in the grammar as well as a few other declarations.
5538If the parser implementation file is named @file{@var{name}.c} then
5539the parser header file is named @file{@var{name}.h}.
d8988b2f 5540
ff7571c0 5541For C parsers, the parser header file declares @code{YYSTYPE} unless
ddc8ede1 5542@code{YYSTYPE} is already defined as a macro or you have used a
ff7571c0
JD
5543@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5544you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5545Value Type}) with components that require other definitions, or if you
5546have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5547Type, ,Data Types of Semantic Values}), you need to arrange for these
5548definitions to be propagated to all modules, e.g., by putting them in
5549a prerequisite header that is included both by your parser and by any
5550other module that needs @code{YYSTYPE}.
5551
5552Unless your parser is pure, the parser header file declares
5553@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5554(Reentrant) Parser}.
5555
5556If you have also used locations, the parser header file declares
4bfd5e4e 5557@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ff7571c0
JD
5558the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations,
5559,Tracking Locations}.
4bfd5e4e 5560
ff7571c0
JD
5561This parser header file is normally essential if you wish to put the
5562definition of @code{yylex} in a separate source file, because
5563@code{yylex} typically needs to be able to refer to the
5564above-mentioned declarations and to the token type codes. @xref{Token
5565Values, ,Semantic Values of Tokens}.
9bc0dd67 5566
16dc6a9e
JD
5567@findex %code requires
5568@findex %code provides
5569If you have declared @code{%code requires} or @code{%code provides}, the output
5570header also contains their code.
e0c07222 5571@xref{%code Summary}.
592d0b1e
PB
5572@end deffn
5573
02975b9a
JD
5574@deffn {Directive} %defines @var{defines-file}
5575Same as above, but save in the file @var{defines-file}.
5576@end deffn
5577
18b519c0 5578@deffn {Directive} %destructor
258b75ca 5579Specify how the parser should reclaim the memory associated to
fa7e68c3 5580discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5581@end deffn
72f889cc 5582
02975b9a 5583@deffn {Directive} %file-prefix "@var{prefix}"
ff7571c0
JD
5584Specify a prefix to use for all Bison output file names. The names
5585are chosen as if the grammar file were named @file{@var{prefix}.y}.
18b519c0 5586@end deffn
d8988b2f 5587
e6e704dc 5588@deffn {Directive} %language "@var{language}"
0e021770 5589Specify the programming language for the generated parser. Currently
59da312b 5590supported languages include C, C++, and Java.
e6e704dc 5591@var{language} is case-insensitive.
ed4d67dc
JD
5592
5593This directive is experimental and its effect may be modified in future
5594releases.
0e021770
PE
5595@end deffn
5596
18b519c0 5597@deffn {Directive} %locations
89cab50d
AD
5598Generate the code processing the locations (@pxref{Action Features,
5599,Special Features for Use in Actions}). This mode is enabled as soon as
5600the grammar uses the special @samp{@@@var{n}} tokens, but if your
5601grammar does not use it, using @samp{%locations} allows for more
6e649e65 5602accurate syntax error messages.
18b519c0 5603@end deffn
89cab50d 5604
02975b9a 5605@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5606Rename the external symbols used in the parser so that they start with
5607@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5608in C parsers
d8988b2f 5609is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5610@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5611(if locations are used) @code{yylloc}. If you use a push parser,
5612@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5613@code{yypstate_new} and @code{yypstate_delete} will
5614also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5 5615names become @code{c_parse}, @code{c_lex}, and so on.
67501061 5616For C++ parsers, see the @samp{%define api.namespace} documentation in this
793fbca5 5617section.
aa08666d 5618@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5619@end deffn
931c7513 5620
91d2c560 5621@ifset defaultprec
22fccf95
PE
5622@deffn {Directive} %no-default-prec
5623Do not assign a precedence to rules lacking an explicit @code{%prec}
5624modifier (@pxref{Contextual Precedence, ,Context-Dependent
5625Precedence}).
5626@end deffn
91d2c560 5627@end ifset
22fccf95 5628
18b519c0 5629@deffn {Directive} %no-lines
931c7513 5630Don't generate any @code{#line} preprocessor commands in the parser
ff7571c0
JD
5631implementation file. Ordinarily Bison writes these commands in the
5632parser implementation file so that the C compiler and debuggers will
5633associate errors and object code with your source file (the grammar
5634file). This directive causes them to associate errors with the parser
5635implementation file, treating it as an independent source file in its
5636own right.
18b519c0 5637@end deffn
931c7513 5638
02975b9a 5639@deffn {Directive} %output "@var{file}"
ff7571c0 5640Specify @var{file} for the parser implementation file.
18b519c0 5641@end deffn
6deb4447 5642
18b519c0 5643@deffn {Directive} %pure-parser
67501061 5644Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 5645for which Bison is more careful to warn about unreasonable usage.
18b519c0 5646@end deffn
6deb4447 5647
b50d2359 5648@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5649Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5650Require a Version of Bison}.
b50d2359
AD
5651@end deffn
5652
0e021770 5653@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5654Specify the skeleton to use.
5655
ed4d67dc
JD
5656@c You probably don't need this option unless you are developing Bison.
5657@c You should use @code{%language} if you want to specify the skeleton for a
5658@c different language, because it is clearer and because it will always choose the
5659@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5660
5661If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5662file in the Bison installation directory.
5663If it does, @var{file} is an absolute file name or a file name relative to the
5664directory of the grammar file.
5665This is similar to how most shells resolve commands.
0e021770
PE
5666@end deffn
5667
18b519c0 5668@deffn {Directive} %token-table
ff7571c0
JD
5669Generate an array of token names in the parser implementation file.
5670The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5671the name of the token whose internal Bison token code number is
5672@var{i}. The first three elements of @code{yytname} correspond to the
5673predefined tokens @code{"$end"}, @code{"error"}, and
5674@code{"$undefined"}; after these come the symbols defined in the
5675grammar file.
931c7513 5676
9e0876fb
PE
5677The name in the table includes all the characters needed to represent
5678the token in Bison. For single-character literals and literal
5679strings, this includes the surrounding quoting characters and any
5680escape sequences. For example, the Bison single-character literal
5681@code{'+'} corresponds to a three-character name, represented in C as
5682@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5683corresponds to a five-character name, represented in C as
5684@code{"\"\\\\/\""}.
931c7513 5685
8c9a50be 5686When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5687definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5688@code{YYNRULES}, and @code{YYNSTATES}:
5689
5690@table @code
5691@item YYNTOKENS
5692The highest token number, plus one.
5693@item YYNNTS
9ecbd125 5694The number of nonterminal symbols.
931c7513
RS
5695@item YYNRULES
5696The number of grammar rules,
5697@item YYNSTATES
5698The number of parser states (@pxref{Parser States}).
5699@end table
18b519c0 5700@end deffn
d8988b2f 5701
18b519c0 5702@deffn {Directive} %verbose
d8988b2f 5703Write an extra output file containing verbose descriptions of the
742e4900 5704parser states and what is done for each type of lookahead token in
72d2299c 5705that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5706information.
18b519c0 5707@end deffn
d8988b2f 5708
18b519c0 5709@deffn {Directive} %yacc
d8988b2f
AD
5710Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5711including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5712@end deffn
d8988b2f 5713
e0c07222
JD
5714@node %code Summary
5715@subsection %code Summary
5716@deffn {Directive} %code @{@var{code}@}
5717@findex %code
5718This is the unqualified form of the @code{%code} directive.
5719It inserts @var{code} verbatim at a language-dependent default location in the
5720output@footnote{The default location is actually skeleton-dependent;
5721 writers of non-standard skeletons however should choose the default location
5722 consistently with the behavior of the standard Bison skeletons.}.
5723
5724@cindex Prologue
5725For C/C++, the default location is the parser implementation file
5726after the usual contents of the parser header file. Thus,
5727@code{%code} replaces the traditional Yacc prologue,
5728@code{%@{@var{code}%@}}, for most purposes. For a detailed
5729discussion, see @ref{Prologue Alternatives}.
5730
5731For Java, the default location is inside the parser class.
5732@end deffn
5733
5734@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5735This is the qualified form of the @code{%code} directive.
5736If you need to specify location-sensitive verbatim @var{code} that does not
5737belong at the default location selected by the unqualified @code{%code} form,
5738use this form instead.
5739
5740@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
5741where Bison should generate it.
5742Not all @var{qualifier}s are accepted for all target languages.
5743Unaccepted @var{qualifier}s produce an error.
5744Some of the accepted @var{qualifier}s are:
5745
5746@itemize @bullet
5747@item requires
5748@findex %code requires
5749
5750@itemize @bullet
5751@item Language(s): C, C++
5752
5753@item Purpose: This is the best place to write dependency code required for
5754@code{YYSTYPE} and @code{YYLTYPE}.
5755In other words, it's the best place to define types referenced in @code{%union}
5756directives, and it's the best place to override Bison's default @code{YYSTYPE}
5757and @code{YYLTYPE} definitions.
5758
5759@item Location(s): The parser header file and the parser implementation file
5760before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5761definitions.
5762@end itemize
5763
5764@item provides
5765@findex %code provides
5766
5767@itemize @bullet
5768@item Language(s): C, C++
5769
5770@item Purpose: This is the best place to write additional definitions and
5771declarations that should be provided to other modules.
5772
5773@item Location(s): The parser header file and the parser implementation
5774file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5775token definitions.
5776@end itemize
5777
5778@item top
5779@findex %code top
5780
5781@itemize @bullet
5782@item Language(s): C, C++
5783
5784@item Purpose: The unqualified @code{%code} or @code{%code requires}
5785should usually be more appropriate than @code{%code top}. However,
5786occasionally it is necessary to insert code much nearer the top of the
5787parser implementation file. For example:
5788
5789@smallexample
5790%code top @{
5791 #define _GNU_SOURCE
5792 #include <stdio.h>
5793@}
5794@end smallexample
5795
5796@item Location(s): Near the top of the parser implementation file.
5797@end itemize
5798
5799@item imports
5800@findex %code imports
5801
5802@itemize @bullet
5803@item Language(s): Java
5804
5805@item Purpose: This is the best place to write Java import directives.
5806
5807@item Location(s): The parser Java file after any Java package directive and
5808before any class definitions.
5809@end itemize
5810@end itemize
5811
5812@cindex Prologue
5813For a detailed discussion of how to use @code{%code} in place of the
5814traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
5815@end deffn
5816
d8988b2f 5817
342b8b6e 5818@node Multiple Parsers
bfa74976
RS
5819@section Multiple Parsers in the Same Program
5820
5821Most programs that use Bison parse only one language and therefore contain
5822only one Bison parser. But what if you want to parse more than one
5823language with the same program? Then you need to avoid a name conflict
5824between different definitions of @code{yyparse}, @code{yylval}, and so on.
5825
5826The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5827(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5828functions and variables of the Bison parser to start with @var{prefix}
5829instead of @samp{yy}. You can use this to give each parser distinct
5830names that do not conflict.
bfa74976
RS
5831
5832The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5833@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5834@code{yychar} and @code{yydebug}. If you use a push parser,
5835@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5836@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5837For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5838@code{clex}, and so on.
bfa74976
RS
5839
5840@strong{All the other variables and macros associated with Bison are not
5841renamed.} These others are not global; there is no conflict if the same
5842name is used in different parsers. For example, @code{YYSTYPE} is not
5843renamed, but defining this in different ways in different parsers causes
5844no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5845
ff7571c0
JD
5846The @samp{-p} option works by adding macro definitions to the
5847beginning of the parser implementation file, defining @code{yyparse}
5848as @code{@var{prefix}parse}, and so on. This effectively substitutes
5849one name for the other in the entire parser implementation file.
bfa74976 5850
342b8b6e 5851@node Interface
bfa74976
RS
5852@chapter Parser C-Language Interface
5853@cindex C-language interface
5854@cindex interface
5855
5856The Bison parser is actually a C function named @code{yyparse}. Here we
5857describe the interface conventions of @code{yyparse} and the other
5858functions that it needs to use.
5859
5860Keep in mind that the parser uses many C identifiers starting with
5861@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5862identifier (aside from those in this manual) in an action or in epilogue
5863in the grammar file, you are likely to run into trouble.
bfa74976
RS
5864
5865@menu
f5f419de
DJ
5866* Parser Function:: How to call @code{yyparse} and what it returns.
5867* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5868* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5869* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5870* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5871* Lexical:: You must supply a function @code{yylex}
5872 which reads tokens.
5873* Error Reporting:: You must supply a function @code{yyerror}.
5874* Action Features:: Special features for use in actions.
5875* Internationalization:: How to let the parser speak in the user's
5876 native language.
bfa74976
RS
5877@end menu
5878
342b8b6e 5879@node Parser Function
bfa74976
RS
5880@section The Parser Function @code{yyparse}
5881@findex yyparse
5882
5883You call the function @code{yyparse} to cause parsing to occur. This
5884function reads tokens, executes actions, and ultimately returns when it
5885encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5886write an action which directs @code{yyparse} to return immediately
5887without reading further.
bfa74976 5888
2a8d363a
AD
5889
5890@deftypefun int yyparse (void)
bfa74976
RS
5891The value returned by @code{yyparse} is 0 if parsing was successful (return
5892is due to end-of-input).
5893
b47dbebe
PE
5894The value is 1 if parsing failed because of invalid input, i.e., input
5895that contains a syntax error or that causes @code{YYABORT} to be
5896invoked.
5897
5898The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5899@end deftypefun
bfa74976
RS
5900
5901In an action, you can cause immediate return from @code{yyparse} by using
5902these macros:
5903
2a8d363a 5904@defmac YYACCEPT
bfa74976
RS
5905@findex YYACCEPT
5906Return immediately with value 0 (to report success).
2a8d363a 5907@end defmac
bfa74976 5908
2a8d363a 5909@defmac YYABORT
bfa74976
RS
5910@findex YYABORT
5911Return immediately with value 1 (to report failure).
2a8d363a
AD
5912@end defmac
5913
5914If you use a reentrant parser, you can optionally pass additional
5915parameter information to it in a reentrant way. To do so, use the
5916declaration @code{%parse-param}:
5917
2055a44e 5918@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5919@findex %parse-param
2055a44e
AD
5920Declare that one or more
5921@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5922The @var{argument-declaration} is used when declaring
feeb0eda
PE
5923functions or prototypes. The last identifier in
5924@var{argument-declaration} must be the argument name.
2a8d363a
AD
5925@end deffn
5926
5927Here's an example. Write this in the parser:
5928
5929@example
2055a44e 5930%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5931@end example
5932
5933@noindent
5934Then call the parser like this:
5935
5936@example
5937@{
5938 int nastiness, randomness;
5939 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5940 value = yyparse (&nastiness, &randomness);
5941 @dots{}
5942@}
5943@end example
5944
5945@noindent
5946In the grammar actions, use expressions like this to refer to the data:
5947
5948@example
5949exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5950@end example
5951
9987d1b3
JD
5952@node Push Parser Function
5953@section The Push Parser Function @code{yypush_parse}
5954@findex yypush_parse
5955
59da312b
JD
5956(The current push parsing interface is experimental and may evolve.
5957More user feedback will help to stabilize it.)
5958
f4101aa6 5959You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5960function is available if either the @samp{%define api.push-pull push} or
5961@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5962@xref{Push Decl, ,A Push Parser}.
5963
5964@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5965The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5966following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5967is required to finish parsing the grammar.
5968@end deftypefun
5969
5970@node Pull Parser Function
5971@section The Pull Parser Function @code{yypull_parse}
5972@findex yypull_parse
5973
59da312b
JD
5974(The current push parsing interface is experimental and may evolve.
5975More user feedback will help to stabilize it.)
5976
f4101aa6 5977You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5978stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5979declaration is used.
9987d1b3
JD
5980@xref{Push Decl, ,A Push Parser}.
5981
5982@deftypefun int yypull_parse (yypstate *yyps)
5983The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5984@end deftypefun
5985
5986@node Parser Create Function
5987@section The Parser Create Function @code{yystate_new}
5988@findex yypstate_new
5989
59da312b
JD
5990(The current push parsing interface is experimental and may evolve.
5991More user feedback will help to stabilize it.)
5992
f4101aa6 5993You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5994This function is available if either the @samp{%define api.push-pull push} or
5995@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5996@xref{Push Decl, ,A Push Parser}.
5997
5998@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5999The function will return a valid parser instance if there was memory available
333e670c
JD
6000or 0 if no memory was available.
6001In impure mode, it will also return 0 if a parser instance is currently
6002allocated.
9987d1b3
JD
6003@end deftypefun
6004
6005@node Parser Delete Function
6006@section The Parser Delete Function @code{yystate_delete}
6007@findex yypstate_delete
6008
59da312b
JD
6009(The current push parsing interface is experimental and may evolve.
6010More user feedback will help to stabilize it.)
6011
9987d1b3 6012You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6013function is available if either the @samp{%define api.push-pull push} or
6014@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6015@xref{Push Decl, ,A Push Parser}.
6016
6017@deftypefun void yypstate_delete (yypstate *yyps)
6018This function will reclaim the memory associated with a parser instance.
6019After this call, you should no longer attempt to use the parser instance.
6020@end deftypefun
bfa74976 6021
342b8b6e 6022@node Lexical
bfa74976
RS
6023@section The Lexical Analyzer Function @code{yylex}
6024@findex yylex
6025@cindex lexical analyzer
6026
6027The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6028the input stream and returns them to the parser. Bison does not create
6029this function automatically; you must write it so that @code{yyparse} can
6030call it. The function is sometimes referred to as a lexical scanner.
6031
ff7571c0
JD
6032In simple programs, @code{yylex} is often defined at the end of the
6033Bison grammar file. If @code{yylex} is defined in a separate source
6034file, you need to arrange for the token-type macro definitions to be
6035available there. To do this, use the @samp{-d} option when you run
6036Bison, so that it will write these macro definitions into the separate
6037parser header file, @file{@var{name}.tab.h}, which you can include in
6038the other source files that need it. @xref{Invocation, ,Invoking
6039Bison}.
bfa74976
RS
6040
6041@menu
6042* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6043* Token Values:: How @code{yylex} must return the semantic value
6044 of the token it has read.
6045* Token Locations:: How @code{yylex} must return the text location
6046 (line number, etc.) of the token, if the
6047 actions want that.
6048* Pure Calling:: How the calling convention differs in a pure parser
6049 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6050@end menu
6051
342b8b6e 6052@node Calling Convention
bfa74976
RS
6053@subsection Calling Convention for @code{yylex}
6054
72d2299c
PE
6055The value that @code{yylex} returns must be the positive numeric code
6056for the type of token it has just found; a zero or negative value
6057signifies end-of-input.
bfa74976
RS
6058
6059When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6060in the parser implementation file becomes a C macro whose definition
6061is the proper numeric code for that token type. So @code{yylex} can
6062use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6063
6064When a token is referred to in the grammar rules by a character literal,
6065the numeric code for that character is also the code for the token type.
72d2299c
PE
6066So @code{yylex} can simply return that character code, possibly converted
6067to @code{unsigned char} to avoid sign-extension. The null character
6068must not be used this way, because its code is zero and that
bfa74976
RS
6069signifies end-of-input.
6070
6071Here is an example showing these things:
6072
6073@example
13863333
AD
6074int
6075yylex (void)
bfa74976
RS
6076@{
6077 @dots{}
72d2299c 6078 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6079 return 0;
6080 @dots{}
6081 if (c == '+' || c == '-')
72d2299c 6082 return c; /* Assume token type for `+' is '+'. */
bfa74976 6083 @dots{}
72d2299c 6084 return INT; /* Return the type of the token. */
bfa74976
RS
6085 @dots{}
6086@}
6087@end example
6088
6089@noindent
6090This interface has been designed so that the output from the @code{lex}
6091utility can be used without change as the definition of @code{yylex}.
6092
931c7513
RS
6093If the grammar uses literal string tokens, there are two ways that
6094@code{yylex} can determine the token type codes for them:
6095
6096@itemize @bullet
6097@item
6098If the grammar defines symbolic token names as aliases for the
6099literal string tokens, @code{yylex} can use these symbolic names like
6100all others. In this case, the use of the literal string tokens in
6101the grammar file has no effect on @code{yylex}.
6102
6103@item
9ecbd125 6104@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6105table. The index of the token in the table is the token type's code.
9ecbd125 6106The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6107double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6108token's characters are escaped as necessary to be suitable as input
6109to Bison.
931c7513 6110
9e0876fb
PE
6111Here's code for looking up a multicharacter token in @code{yytname},
6112assuming that the characters of the token are stored in
6113@code{token_buffer}, and assuming that the token does not contain any
6114characters like @samp{"} that require escaping.
931c7513
RS
6115
6116@smallexample
6117for (i = 0; i < YYNTOKENS; i++)
6118 @{
6119 if (yytname[i] != 0
6120 && yytname[i][0] == '"'
68449b3a
PE
6121 && ! strncmp (yytname[i] + 1, token_buffer,
6122 strlen (token_buffer))
931c7513
RS
6123 && yytname[i][strlen (token_buffer) + 1] == '"'
6124 && yytname[i][strlen (token_buffer) + 2] == 0)
6125 break;
6126 @}
6127@end smallexample
6128
6129The @code{yytname} table is generated only if you use the
8c9a50be 6130@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6131@end itemize
6132
342b8b6e 6133@node Token Values
bfa74976
RS
6134@subsection Semantic Values of Tokens
6135
6136@vindex yylval
9d9b8b70 6137In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6138be stored into the global variable @code{yylval}. When you are using
6139just one data type for semantic values, @code{yylval} has that type.
6140Thus, if the type is @code{int} (the default), you might write this in
6141@code{yylex}:
6142
6143@example
6144@group
6145 @dots{}
72d2299c
PE
6146 yylval = value; /* Put value onto Bison stack. */
6147 return INT; /* Return the type of the token. */
bfa74976
RS
6148 @dots{}
6149@end group
6150@end example
6151
6152When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6153made from the @code{%union} declaration (@pxref{Union Decl, ,The
6154Collection of Value Types}). So when you store a token's value, you
6155must use the proper member of the union. If the @code{%union}
6156declaration looks like this:
bfa74976
RS
6157
6158@example
6159@group
6160%union @{
6161 int intval;
6162 double val;
6163 symrec *tptr;
6164@}
6165@end group
6166@end example
6167
6168@noindent
6169then the code in @code{yylex} might look like this:
6170
6171@example
6172@group
6173 @dots{}
72d2299c
PE
6174 yylval.intval = value; /* Put value onto Bison stack. */
6175 return INT; /* Return the type of the token. */
bfa74976
RS
6176 @dots{}
6177@end group
6178@end example
6179
95923bd6
AD
6180@node Token Locations
6181@subsection Textual Locations of Tokens
bfa74976
RS
6182
6183@vindex yylloc
847bf1f5 6184If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
6185Tracking Locations}) in actions to keep track of the textual locations
6186of tokens and groupings, then you must provide this information in
6187@code{yylex}. The function @code{yyparse} expects to find the textual
6188location of a token just parsed in the global variable @code{yylloc}.
6189So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
6190
6191By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6192initialize the members that are going to be used by the actions. The
6193four members are called @code{first_line}, @code{first_column},
6194@code{last_line} and @code{last_column}. Note that the use of this
6195feature makes the parser noticeably slower.
bfa74976
RS
6196
6197@tindex YYLTYPE
6198The data type of @code{yylloc} has the name @code{YYLTYPE}.
6199
342b8b6e 6200@node Pure Calling
c656404a 6201@subsection Calling Conventions for Pure Parsers
bfa74976 6202
67501061 6203When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6204pure, reentrant parser, the global communication variables @code{yylval}
6205and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6206Parser}.) In such parsers the two global variables are replaced by
6207pointers passed as arguments to @code{yylex}. You must declare them as
6208shown here, and pass the information back by storing it through those
6209pointers.
bfa74976
RS
6210
6211@example
13863333
AD
6212int
6213yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6214@{
6215 @dots{}
6216 *lvalp = value; /* Put value onto Bison stack. */
6217 return INT; /* Return the type of the token. */
6218 @dots{}
6219@}
6220@end example
6221
6222If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6223textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6224this case, omit the second argument; @code{yylex} will be called with
6225only one argument.
6226
2055a44e 6227If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6228@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6229Function}). To pass additional arguments to both @code{yylex} and
6230@code{yyparse}, use @code{%param}.
e425e872 6231
2055a44e 6232@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6233@findex %lex-param
2055a44e
AD
6234Specify that @var{argument-declaration} are additional @code{yylex} argument
6235declarations. You may pass one or more such declarations, which is
6236equivalent to repeating @code{%lex-param}.
6237@end deffn
6238
6239@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6240@findex %param
6241Specify that @var{argument-declaration} are additional
6242@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6243@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6244@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6245declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6246@end deffn
e425e872 6247
2a8d363a 6248For instance:
e425e872
RS
6249
6250@example
2055a44e
AD
6251%lex-param @{scanner_mode *mode@}
6252%parse-param @{parser_mode *mode@}
6253%param @{environment_type *env@}
e425e872
RS
6254@end example
6255
6256@noindent
2a8d363a 6257results in the following signature:
e425e872
RS
6258
6259@example
2055a44e
AD
6260int yylex (scanner_mode *mode, environment_type *env);
6261int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6262@end example
6263
67501061 6264If @samp{%define api.pure} is added:
c656404a
RS
6265
6266@example
2055a44e
AD
6267int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6268int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6269@end example
6270
2a8d363a 6271@noindent
67501061 6272and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6273
2a8d363a 6274@example
2055a44e
AD
6275int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6276 scanner_mode *mode, environment_type *env);
6277int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6278@end example
931c7513 6279
342b8b6e 6280@node Error Reporting
bfa74976
RS
6281@section The Error Reporting Function @code{yyerror}
6282@cindex error reporting function
6283@findex yyerror
6284@cindex parse error
6285@cindex syntax error
6286
31b850d2 6287The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6288whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6289action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6290macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6291in Actions}).
bfa74976
RS
6292
6293The Bison parser expects to report the error by calling an error
6294reporting function named @code{yyerror}, which you must supply. It is
6295called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6296receives one argument. For a syntax error, the string is normally
6297@w{@code{"syntax error"}}.
bfa74976 6298
31b850d2 6299@findex %define parse.error
cf499cff 6300If you invoke @samp{%define parse.error verbose} in the Bison
2a8d363a
AD
6301declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6302Section}), then Bison provides a more verbose and specific error message
6e649e65 6303string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6304
1a059451
PE
6305The parser can detect one other kind of error: memory exhaustion. This
6306can happen when the input contains constructions that are very deeply
bfa74976 6307nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6308parser normally extends its stack automatically up to a very large limit. But
6309if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6310fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6311
6312In some cases diagnostics like @w{@code{"syntax error"}} are
6313translated automatically from English to some other language before
6314they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6315
6316The following definition suffices in simple programs:
6317
6318@example
6319@group
13863333 6320void
38a92d50 6321yyerror (char const *s)
bfa74976
RS
6322@{
6323@end group
6324@group
6325 fprintf (stderr, "%s\n", s);
6326@}
6327@end group
6328@end example
6329
6330After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6331error recovery if you have written suitable error recovery grammar rules
6332(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6333immediately return 1.
6334
93724f13 6335Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6336an access to the current location.
8a4281b9 6337This is indeed the case for the GLR
2a8d363a 6338parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6339@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6340@code{yyerror} are:
6341
6342@example
38a92d50
PE
6343void yyerror (char const *msg); /* Yacc parsers. */
6344void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6345@end example
6346
feeb0eda 6347If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6348
6349@example
b317297e
PE
6350void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6351void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6352@end example
6353
8a4281b9 6354Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6355convention for absolutely pure parsers, i.e., when the calling
6356convention of @code{yylex} @emph{and} the calling convention of
67501061 6357@samp{%define api.pure} are pure.
d9df47b6 6358I.e.:
2a8d363a
AD
6359
6360@example
6361/* Location tracking. */
6362%locations
6363/* Pure yylex. */
d9df47b6 6364%define api.pure
feeb0eda 6365%lex-param @{int *nastiness@}
2a8d363a 6366/* Pure yyparse. */
feeb0eda
PE
6367%parse-param @{int *nastiness@}
6368%parse-param @{int *randomness@}
2a8d363a
AD
6369@end example
6370
6371@noindent
6372results in the following signatures for all the parser kinds:
6373
6374@example
6375int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6376int yyparse (int *nastiness, int *randomness);
93724f13
AD
6377void yyerror (YYLTYPE *locp,
6378 int *nastiness, int *randomness,
38a92d50 6379 char const *msg);
2a8d363a
AD
6380@end example
6381
1c0c3e95 6382@noindent
38a92d50
PE
6383The prototypes are only indications of how the code produced by Bison
6384uses @code{yyerror}. Bison-generated code always ignores the returned
6385value, so @code{yyerror} can return any type, including @code{void}.
6386Also, @code{yyerror} can be a variadic function; that is why the
6387message is always passed last.
6388
6389Traditionally @code{yyerror} returns an @code{int} that is always
6390ignored, but this is purely for historical reasons, and @code{void} is
6391preferable since it more accurately describes the return type for
6392@code{yyerror}.
93724f13 6393
bfa74976
RS
6394@vindex yynerrs
6395The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6396reported so far. Normally this variable is global; but if you
704a47c4
AD
6397request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6398then it is a local variable which only the actions can access.
bfa74976 6399
342b8b6e 6400@node Action Features
bfa74976
RS
6401@section Special Features for Use in Actions
6402@cindex summary, action features
6403@cindex action features summary
6404
6405Here is a table of Bison constructs, variables and macros that
6406are useful in actions.
6407
18b519c0 6408@deffn {Variable} $$
bfa74976
RS
6409Acts like a variable that contains the semantic value for the
6410grouping made by the current rule. @xref{Actions}.
18b519c0 6411@end deffn
bfa74976 6412
18b519c0 6413@deffn {Variable} $@var{n}
bfa74976
RS
6414Acts like a variable that contains the semantic value for the
6415@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6416@end deffn
bfa74976 6417
18b519c0 6418@deffn {Variable} $<@var{typealt}>$
bfa74976 6419Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6420specified by the @code{%union} declaration. @xref{Action Types, ,Data
6421Types of Values in Actions}.
18b519c0 6422@end deffn
bfa74976 6423
18b519c0 6424@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6425Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6426union specified by the @code{%union} declaration.
e0c471a9 6427@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6428@end deffn
bfa74976 6429
18b519c0 6430@deffn {Macro} YYABORT;
bfa74976
RS
6431Return immediately from @code{yyparse}, indicating failure.
6432@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6433@end deffn
bfa74976 6434
18b519c0 6435@deffn {Macro} YYACCEPT;
bfa74976
RS
6436Return immediately from @code{yyparse}, indicating success.
6437@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6438@end deffn
bfa74976 6439
18b519c0 6440@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6441@findex YYBACKUP
6442Unshift a token. This macro is allowed only for rules that reduce
742e4900 6443a single value, and only when there is no lookahead token.
8a4281b9 6444It is also disallowed in GLR parsers.
742e4900 6445It installs a lookahead token with token type @var{token} and
bfa74976
RS
6446semantic value @var{value}; then it discards the value that was
6447going to be reduced by this rule.
6448
6449If the macro is used when it is not valid, such as when there is
742e4900 6450a lookahead token already, then it reports a syntax error with
bfa74976
RS
6451a message @samp{cannot back up} and performs ordinary error
6452recovery.
6453
6454In either case, the rest of the action is not executed.
18b519c0 6455@end deffn
bfa74976 6456
18b519c0 6457@deffn {Macro} YYEMPTY
bfa74976 6458@vindex YYEMPTY
742e4900 6459Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6460@end deffn
bfa74976 6461
32c29292
JD
6462@deffn {Macro} YYEOF
6463@vindex YYEOF
742e4900 6464Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6465stream.
6466@end deffn
6467
18b519c0 6468@deffn {Macro} YYERROR;
bfa74976
RS
6469@findex YYERROR
6470Cause an immediate syntax error. This statement initiates error
6471recovery just as if the parser itself had detected an error; however, it
6472does not call @code{yyerror}, and does not print any message. If you
6473want to print an error message, call @code{yyerror} explicitly before
6474the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6475@end deffn
bfa74976 6476
18b519c0 6477@deffn {Macro} YYRECOVERING
02103984
PE
6478@findex YYRECOVERING
6479The expression @code{YYRECOVERING ()} yields 1 when the parser
6480is recovering from a syntax error, and 0 otherwise.
bfa74976 6481@xref{Error Recovery}.
18b519c0 6482@end deffn
bfa74976 6483
18b519c0 6484@deffn {Variable} yychar
742e4900
JD
6485Variable containing either the lookahead token, or @code{YYEOF} when the
6486lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6487has been performed so the next token is not yet known.
6488Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6489Actions}).
742e4900 6490@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6491@end deffn
bfa74976 6492
18b519c0 6493@deffn {Macro} yyclearin;
742e4900 6494Discard the current lookahead token. This is useful primarily in
32c29292
JD
6495error rules.
6496Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6497Semantic Actions}).
6498@xref{Error Recovery}.
18b519c0 6499@end deffn
bfa74976 6500
18b519c0 6501@deffn {Macro} yyerrok;
bfa74976 6502Resume generating error messages immediately for subsequent syntax
13863333 6503errors. This is useful primarily in error rules.
bfa74976 6504@xref{Error Recovery}.
18b519c0 6505@end deffn
bfa74976 6506
32c29292 6507@deffn {Variable} yylloc
742e4900 6508Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6509to @code{YYEMPTY} or @code{YYEOF}.
6510Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6511Actions}).
6512@xref{Actions and Locations, ,Actions and Locations}.
6513@end deffn
6514
6515@deffn {Variable} yylval
742e4900 6516Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6517not set to @code{YYEMPTY} or @code{YYEOF}.
6518Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6519Actions}).
6520@xref{Actions, ,Actions}.
6521@end deffn
6522
18b519c0 6523@deffn {Value} @@$
847bf1f5 6524@findex @@$
95923bd6 6525Acts like a structure variable containing information on the textual location
847bf1f5
AD
6526of the grouping made by the current rule. @xref{Locations, ,
6527Tracking Locations}.
bfa74976 6528
847bf1f5
AD
6529@c Check if those paragraphs are still useful or not.
6530
6531@c @example
6532@c struct @{
6533@c int first_line, last_line;
6534@c int first_column, last_column;
6535@c @};
6536@c @end example
6537
6538@c Thus, to get the starting line number of the third component, you would
6539@c use @samp{@@3.first_line}.
bfa74976 6540
847bf1f5
AD
6541@c In order for the members of this structure to contain valid information,
6542@c you must make @code{yylex} supply this information about each token.
6543@c If you need only certain members, then @code{yylex} need only fill in
6544@c those members.
bfa74976 6545
847bf1f5 6546@c The use of this feature makes the parser noticeably slower.
18b519c0 6547@end deffn
847bf1f5 6548
18b519c0 6549@deffn {Value} @@@var{n}
847bf1f5 6550@findex @@@var{n}
95923bd6 6551Acts like a structure variable containing information on the textual location
847bf1f5
AD
6552of the @var{n}th component of the current rule. @xref{Locations, ,
6553Tracking Locations}.
18b519c0 6554@end deffn
bfa74976 6555
f7ab6a50
PE
6556@node Internationalization
6557@section Parser Internationalization
6558@cindex internationalization
6559@cindex i18n
6560@cindex NLS
6561@cindex gettext
6562@cindex bison-po
6563
6564A Bison-generated parser can print diagnostics, including error and
6565tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6566also supports outputting diagnostics in the user's native language. To
6567make this work, the user should set the usual environment variables.
6568@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6569For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6570set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6571encoding. The exact set of available locales depends on the user's
6572installation.
6573
6574The maintainer of a package that uses a Bison-generated parser enables
6575the internationalization of the parser's output through the following
8a4281b9
JD
6576steps. Here we assume a package that uses GNU Autoconf and
6577GNU Automake.
f7ab6a50
PE
6578
6579@enumerate
6580@item
30757c8c 6581@cindex bison-i18n.m4
8a4281b9 6582Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6583by the package---often called @file{m4}---copy the
6584@file{bison-i18n.m4} file installed by Bison under
6585@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6586For example:
6587
6588@example
6589cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6590@end example
6591
6592@item
30757c8c
PE
6593@findex BISON_I18N
6594@vindex BISON_LOCALEDIR
6595@vindex YYENABLE_NLS
f7ab6a50
PE
6596In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6597invocation, add an invocation of @code{BISON_I18N}. This macro is
6598defined in the file @file{bison-i18n.m4} that you copied earlier. It
6599causes @samp{configure} to find the value of the
30757c8c
PE
6600@code{BISON_LOCALEDIR} variable, and it defines the source-language
6601symbol @code{YYENABLE_NLS} to enable translations in the
6602Bison-generated parser.
f7ab6a50
PE
6603
6604@item
6605In the @code{main} function of your program, designate the directory
6606containing Bison's runtime message catalog, through a call to
6607@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6608For example:
6609
6610@example
6611bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6612@end example
6613
6614Typically this appears after any other call @code{bindtextdomain
6615(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6616@samp{BISON_LOCALEDIR} to be defined as a string through the
6617@file{Makefile}.
6618
6619@item
6620In the @file{Makefile.am} that controls the compilation of the @code{main}
6621function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6622either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6623
6624@example
6625DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6626@end example
6627
6628or:
6629
6630@example
6631AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6632@end example
6633
6634@item
6635Finally, invoke the command @command{autoreconf} to generate the build
6636infrastructure.
6637@end enumerate
6638
bfa74976 6639
342b8b6e 6640@node Algorithm
13863333
AD
6641@chapter The Bison Parser Algorithm
6642@cindex Bison parser algorithm
bfa74976
RS
6643@cindex algorithm of parser
6644@cindex shifting
6645@cindex reduction
6646@cindex parser stack
6647@cindex stack, parser
6648
6649As Bison reads tokens, it pushes them onto a stack along with their
6650semantic values. The stack is called the @dfn{parser stack}. Pushing a
6651token is traditionally called @dfn{shifting}.
6652
6653For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6654@samp{3} to come. The stack will have four elements, one for each token
6655that was shifted.
6656
6657But the stack does not always have an element for each token read. When
6658the last @var{n} tokens and groupings shifted match the components of a
6659grammar rule, they can be combined according to that rule. This is called
6660@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6661single grouping whose symbol is the result (left hand side) of that rule.
6662Running the rule's action is part of the process of reduction, because this
6663is what computes the semantic value of the resulting grouping.
6664
6665For example, if the infix calculator's parser stack contains this:
6666
6667@example
66681 + 5 * 3
6669@end example
6670
6671@noindent
6672and the next input token is a newline character, then the last three
6673elements can be reduced to 15 via the rule:
6674
6675@example
6676expr: expr '*' expr;
6677@end example
6678
6679@noindent
6680Then the stack contains just these three elements:
6681
6682@example
66831 + 15
6684@end example
6685
6686@noindent
6687At this point, another reduction can be made, resulting in the single value
668816. Then the newline token can be shifted.
6689
6690The parser tries, by shifts and reductions, to reduce the entire input down
6691to a single grouping whose symbol is the grammar's start-symbol
6692(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6693
6694This kind of parser is known in the literature as a bottom-up parser.
6695
6696@menu
742e4900 6697* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6698* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6699* Precedence:: Operator precedence works by resolving conflicts.
6700* Contextual Precedence:: When an operator's precedence depends on context.
6701* Parser States:: The parser is a finite-state-machine with stack.
6702* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6703* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6704* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6705* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6706@end menu
6707
742e4900
JD
6708@node Lookahead
6709@section Lookahead Tokens
6710@cindex lookahead token
bfa74976
RS
6711
6712The Bison parser does @emph{not} always reduce immediately as soon as the
6713last @var{n} tokens and groupings match a rule. This is because such a
6714simple strategy is inadequate to handle most languages. Instead, when a
6715reduction is possible, the parser sometimes ``looks ahead'' at the next
6716token in order to decide what to do.
6717
6718When a token is read, it is not immediately shifted; first it becomes the
742e4900 6719@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6720perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6721the lookahead token remains off to the side. When no more reductions
6722should take place, the lookahead token is shifted onto the stack. This
bfa74976 6723does not mean that all possible reductions have been done; depending on the
742e4900 6724token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6725application.
6726
742e4900 6727Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6728expressions which contain binary addition operators and postfix unary
6729factorial operators (@samp{!}), and allow parentheses for grouping.
6730
6731@example
6732@group
6733expr: term '+' expr
6734 | term
6735 ;
6736@end group
6737
6738@group
6739term: '(' expr ')'
6740 | term '!'
6741 | NUMBER
6742 ;
6743@end group
6744@end example
6745
6746Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6747should be done? If the following token is @samp{)}, then the first three
6748tokens must be reduced to form an @code{expr}. This is the only valid
6749course, because shifting the @samp{)} would produce a sequence of symbols
6750@w{@code{term ')'}}, and no rule allows this.
6751
6752If the following token is @samp{!}, then it must be shifted immediately so
6753that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6754parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6755@code{expr}. It would then be impossible to shift the @samp{!} because
6756doing so would produce on the stack the sequence of symbols @code{expr
6757'!'}. No rule allows that sequence.
6758
6759@vindex yychar
32c29292
JD
6760@vindex yylval
6761@vindex yylloc
742e4900 6762The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6763Its semantic value and location, if any, are stored in the variables
6764@code{yylval} and @code{yylloc}.
bfa74976
RS
6765@xref{Action Features, ,Special Features for Use in Actions}.
6766
342b8b6e 6767@node Shift/Reduce
bfa74976
RS
6768@section Shift/Reduce Conflicts
6769@cindex conflicts
6770@cindex shift/reduce conflicts
6771@cindex dangling @code{else}
6772@cindex @code{else}, dangling
6773
6774Suppose we are parsing a language which has if-then and if-then-else
6775statements, with a pair of rules like this:
6776
6777@example
6778@group
6779if_stmt:
6780 IF expr THEN stmt
6781 | IF expr THEN stmt ELSE stmt
6782 ;
6783@end group
6784@end example
6785
6786@noindent
6787Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6788terminal symbols for specific keyword tokens.
6789
742e4900 6790When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6791contents of the stack (assuming the input is valid) are just right for
6792reduction by the first rule. But it is also legitimate to shift the
6793@code{ELSE}, because that would lead to eventual reduction by the second
6794rule.
6795
6796This situation, where either a shift or a reduction would be valid, is
6797called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6798these conflicts by choosing to shift, unless otherwise directed by
6799operator precedence declarations. To see the reason for this, let's
6800contrast it with the other alternative.
6801
6802Since the parser prefers to shift the @code{ELSE}, the result is to attach
6803the else-clause to the innermost if-statement, making these two inputs
6804equivalent:
6805
6806@example
6807if x then if y then win (); else lose;
6808
6809if x then do; if y then win (); else lose; end;
6810@end example
6811
6812But if the parser chose to reduce when possible rather than shift, the
6813result would be to attach the else-clause to the outermost if-statement,
6814making these two inputs equivalent:
6815
6816@example
6817if x then if y then win (); else lose;
6818
6819if x then do; if y then win (); end; else lose;
6820@end example
6821
6822The conflict exists because the grammar as written is ambiguous: either
6823parsing of the simple nested if-statement is legitimate. The established
6824convention is that these ambiguities are resolved by attaching the
6825else-clause to the innermost if-statement; this is what Bison accomplishes
6826by choosing to shift rather than reduce. (It would ideally be cleaner to
6827write an unambiguous grammar, but that is very hard to do in this case.)
6828This particular ambiguity was first encountered in the specifications of
6829Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6830
6831To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6832conflicts, use the @code{%expect @var{n}} declaration.
6833There will be no warning as long as the number of shift/reduce conflicts
6834is exactly @var{n}, and Bison will report an error if there is a
6835different number.
bfa74976
RS
6836@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6837
6838The definition of @code{if_stmt} above is solely to blame for the
6839conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6840rules. Here is a complete Bison grammar file that actually manifests
6841the conflict:
bfa74976
RS
6842
6843@example
6844@group
6845%token IF THEN ELSE variable
6846%%
6847@end group
6848@group
6849stmt: expr
6850 | if_stmt
6851 ;
6852@end group
6853
6854@group
6855if_stmt:
6856 IF expr THEN stmt
6857 | IF expr THEN stmt ELSE stmt
6858 ;
6859@end group
6860
6861expr: variable
6862 ;
6863@end example
6864
342b8b6e 6865@node Precedence
bfa74976
RS
6866@section Operator Precedence
6867@cindex operator precedence
6868@cindex precedence of operators
6869
6870Another situation where shift/reduce conflicts appear is in arithmetic
6871expressions. Here shifting is not always the preferred resolution; the
6872Bison declarations for operator precedence allow you to specify when to
6873shift and when to reduce.
6874
6875@menu
6876* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6877* Using Precedence:: How to specify precedence and associativity.
6878* Precedence Only:: How to specify precedence only.
bfa74976
RS
6879* Precedence Examples:: How these features are used in the previous example.
6880* How Precedence:: How they work.
6881@end menu
6882
342b8b6e 6883@node Why Precedence
bfa74976
RS
6884@subsection When Precedence is Needed
6885
6886Consider the following ambiguous grammar fragment (ambiguous because the
6887input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6888
6889@example
6890@group
6891expr: expr '-' expr
6892 | expr '*' expr
6893 | expr '<' expr
6894 | '(' expr ')'
6895 @dots{}
6896 ;
6897@end group
6898@end example
6899
6900@noindent
6901Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6902should it reduce them via the rule for the subtraction operator? It
6903depends on the next token. Of course, if the next token is @samp{)}, we
6904must reduce; shifting is invalid because no single rule can reduce the
6905token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6906the next token is @samp{*} or @samp{<}, we have a choice: either
6907shifting or reduction would allow the parse to complete, but with
6908different results.
6909
6910To decide which one Bison should do, we must consider the results. If
6911the next operator token @var{op} is shifted, then it must be reduced
6912first in order to permit another opportunity to reduce the difference.
6913The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6914hand, if the subtraction is reduced before shifting @var{op}, the result
6915is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6916reduce should depend on the relative precedence of the operators
6917@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6918@samp{<}.
bfa74976
RS
6919
6920@cindex associativity
6921What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6922@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6923operators we prefer the former, which is called @dfn{left association}.
6924The latter alternative, @dfn{right association}, is desirable for
6925assignment operators. The choice of left or right association is a
6926matter of whether the parser chooses to shift or reduce when the stack
742e4900 6927contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6928makes right-associativity.
bfa74976 6929
342b8b6e 6930@node Using Precedence
bfa74976
RS
6931@subsection Specifying Operator Precedence
6932@findex %left
bfa74976 6933@findex %nonassoc
d78f0ac9
AD
6934@findex %precedence
6935@findex %right
bfa74976
RS
6936
6937Bison allows you to specify these choices with the operator precedence
6938declarations @code{%left} and @code{%right}. Each such declaration
6939contains a list of tokens, which are operators whose precedence and
6940associativity is being declared. The @code{%left} declaration makes all
6941those operators left-associative and the @code{%right} declaration makes
6942them right-associative. A third alternative is @code{%nonassoc}, which
6943declares that it is a syntax error to find the same operator twice ``in a
6944row''.
d78f0ac9
AD
6945The last alternative, @code{%precedence}, allows to define only
6946precedence and no associativity at all. As a result, any
6947associativity-related conflict that remains will be reported as an
6948compile-time error. The directive @code{%nonassoc} creates run-time
6949error: using the operator in a associative way is a syntax error. The
6950directive @code{%precedence} creates compile-time errors: an operator
6951@emph{can} be involved in an associativity-related conflict, contrary to
6952what expected the grammar author.
bfa74976
RS
6953
6954The relative precedence of different operators is controlled by the
d78f0ac9
AD
6955order in which they are declared. The first precedence/associativity
6956declaration in the file declares the operators whose
bfa74976
RS
6957precedence is lowest, the next such declaration declares the operators
6958whose precedence is a little higher, and so on.
6959
d78f0ac9
AD
6960@node Precedence Only
6961@subsection Specifying Precedence Only
6962@findex %precedence
6963
8a4281b9 6964Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6965@code{%nonassoc}, which all defines precedence and associativity, little
6966attention is paid to the fact that precedence cannot be defined without
6967defining associativity. Yet, sometimes, when trying to solve a
6968conflict, precedence suffices. In such a case, using @code{%left},
6969@code{%right}, or @code{%nonassoc} might hide future (associativity
6970related) conflicts that would remain hidden.
6971
6972The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6973Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6974in the following situation, where the period denotes the current parsing
6975state:
6976
6977@example
6978if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6979@end example
6980
6981The conflict involves the reduction of the rule @samp{IF expr THEN
6982stmt}, which precedence is by default that of its last token
6983(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6984disambiguation (attach the @code{else} to the closest @code{if}),
6985shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6986higher than that of @code{THEN}. But neither is expected to be involved
6987in an associativity related conflict, which can be specified as follows.
6988
6989@example
6990%precedence THEN
6991%precedence ELSE
6992@end example
6993
6994The unary-minus is another typical example where associativity is
6995usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6996Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6997used to declare the precedence of @code{NEG}, which is more than needed
6998since it also defines its associativity. While this is harmless in the
6999traditional example, who knows how @code{NEG} might be used in future
7000evolutions of the grammar@dots{}
7001
342b8b6e 7002@node Precedence Examples
bfa74976
RS
7003@subsection Precedence Examples
7004
7005In our example, we would want the following declarations:
7006
7007@example
7008%left '<'
7009%left '-'
7010%left '*'
7011@end example
7012
7013In a more complete example, which supports other operators as well, we
7014would declare them in groups of equal precedence. For example, @code{'+'} is
7015declared with @code{'-'}:
7016
7017@example
7018%left '<' '>' '=' NE LE GE
7019%left '+' '-'
7020%left '*' '/'
7021@end example
7022
7023@noindent
7024(Here @code{NE} and so on stand for the operators for ``not equal''
7025and so on. We assume that these tokens are more than one character long
7026and therefore are represented by names, not character literals.)
7027
342b8b6e 7028@node How Precedence
bfa74976
RS
7029@subsection How Precedence Works
7030
7031The first effect of the precedence declarations is to assign precedence
7032levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7033precedence levels to certain rules: each rule gets its precedence from
7034the last terminal symbol mentioned in the components. (You can also
7035specify explicitly the precedence of a rule. @xref{Contextual
7036Precedence, ,Context-Dependent Precedence}.)
7037
7038Finally, the resolution of conflicts works by comparing the precedence
742e4900 7039of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7040token's precedence is higher, the choice is to shift. If the rule's
7041precedence is higher, the choice is to reduce. If they have equal
7042precedence, the choice is made based on the associativity of that
7043precedence level. The verbose output file made by @samp{-v}
7044(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7045resolved.
bfa74976
RS
7046
7047Not all rules and not all tokens have precedence. If either the rule or
742e4900 7048the lookahead token has no precedence, then the default is to shift.
bfa74976 7049
342b8b6e 7050@node Contextual Precedence
bfa74976
RS
7051@section Context-Dependent Precedence
7052@cindex context-dependent precedence
7053@cindex unary operator precedence
7054@cindex precedence, context-dependent
7055@cindex precedence, unary operator
7056@findex %prec
7057
7058Often the precedence of an operator depends on the context. This sounds
7059outlandish at first, but it is really very common. For example, a minus
7060sign typically has a very high precedence as a unary operator, and a
7061somewhat lower precedence (lower than multiplication) as a binary operator.
7062
d78f0ac9
AD
7063The Bison precedence declarations
7064can only be used once for a given token; so a token has
bfa74976
RS
7065only one precedence declared in this way. For context-dependent
7066precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7067modifier for rules.
bfa74976
RS
7068
7069The @code{%prec} modifier declares the precedence of a particular rule by
7070specifying a terminal symbol whose precedence should be used for that rule.
7071It's not necessary for that symbol to appear otherwise in the rule. The
7072modifier's syntax is:
7073
7074@example
7075%prec @var{terminal-symbol}
7076@end example
7077
7078@noindent
7079and it is written after the components of the rule. Its effect is to
7080assign the rule the precedence of @var{terminal-symbol}, overriding
7081the precedence that would be deduced for it in the ordinary way. The
7082altered rule precedence then affects how conflicts involving that rule
7083are resolved (@pxref{Precedence, ,Operator Precedence}).
7084
7085Here is how @code{%prec} solves the problem of unary minus. First, declare
7086a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7087are no tokens of this type, but the symbol serves to stand for its
7088precedence:
7089
7090@example
7091@dots{}
7092%left '+' '-'
7093%left '*'
7094%left UMINUS
7095@end example
7096
7097Now the precedence of @code{UMINUS} can be used in specific rules:
7098
7099@example
7100@group
7101exp: @dots{}
7102 | exp '-' exp
7103 @dots{}
7104 | '-' exp %prec UMINUS
7105@end group
7106@end example
7107
91d2c560 7108@ifset defaultprec
39a06c25
PE
7109If you forget to append @code{%prec UMINUS} to the rule for unary
7110minus, Bison silently assumes that minus has its usual precedence.
7111This kind of problem can be tricky to debug, since one typically
7112discovers the mistake only by testing the code.
7113
22fccf95 7114The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7115this kind of problem systematically. It causes rules that lack a
7116@code{%prec} modifier to have no precedence, even if the last terminal
7117symbol mentioned in their components has a declared precedence.
7118
22fccf95 7119If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7120for all rules that participate in precedence conflict resolution.
7121Then you will see any shift/reduce conflict until you tell Bison how
7122to resolve it, either by changing your grammar or by adding an
7123explicit precedence. This will probably add declarations to the
7124grammar, but it helps to protect against incorrect rule precedences.
7125
22fccf95
PE
7126The effect of @code{%no-default-prec;} can be reversed by giving
7127@code{%default-prec;}, which is the default.
91d2c560 7128@end ifset
39a06c25 7129
342b8b6e 7130@node Parser States
bfa74976
RS
7131@section Parser States
7132@cindex finite-state machine
7133@cindex parser state
7134@cindex state (of parser)
7135
7136The function @code{yyparse} is implemented using a finite-state machine.
7137The values pushed on the parser stack are not simply token type codes; they
7138represent the entire sequence of terminal and nonterminal symbols at or
7139near the top of the stack. The current state collects all the information
7140about previous input which is relevant to deciding what to do next.
7141
742e4900
JD
7142Each time a lookahead token is read, the current parser state together
7143with the type of lookahead token are looked up in a table. This table
7144entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7145specifies the new parser state, which is pushed onto the top of the
7146parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7147This means that a certain number of tokens or groupings are taken off
7148the top of the stack, and replaced by one grouping. In other words,
7149that number of states are popped from the stack, and one new state is
7150pushed.
7151
742e4900 7152There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7153is erroneous in the current state. This causes error processing to begin
7154(@pxref{Error Recovery}).
7155
342b8b6e 7156@node Reduce/Reduce
bfa74976
RS
7157@section Reduce/Reduce Conflicts
7158@cindex reduce/reduce conflict
7159@cindex conflicts, reduce/reduce
7160
7161A reduce/reduce conflict occurs if there are two or more rules that apply
7162to the same sequence of input. This usually indicates a serious error
7163in the grammar.
7164
7165For example, here is an erroneous attempt to define a sequence
7166of zero or more @code{word} groupings.
7167
7168@example
7169sequence: /* empty */
7170 @{ printf ("empty sequence\n"); @}
7171 | maybeword
7172 | sequence word
7173 @{ printf ("added word %s\n", $2); @}
7174 ;
7175
7176maybeword: /* empty */
7177 @{ printf ("empty maybeword\n"); @}
7178 | word
7179 @{ printf ("single word %s\n", $1); @}
7180 ;
7181@end example
7182
7183@noindent
7184The error is an ambiguity: there is more than one way to parse a single
7185@code{word} into a @code{sequence}. It could be reduced to a
7186@code{maybeword} and then into a @code{sequence} via the second rule.
7187Alternatively, nothing-at-all could be reduced into a @code{sequence}
7188via the first rule, and this could be combined with the @code{word}
7189using the third rule for @code{sequence}.
7190
7191There is also more than one way to reduce nothing-at-all into a
7192@code{sequence}. This can be done directly via the first rule,
7193or indirectly via @code{maybeword} and then the second rule.
7194
7195You might think that this is a distinction without a difference, because it
7196does not change whether any particular input is valid or not. But it does
7197affect which actions are run. One parsing order runs the second rule's
7198action; the other runs the first rule's action and the third rule's action.
7199In this example, the output of the program changes.
7200
7201Bison resolves a reduce/reduce conflict by choosing to use the rule that
7202appears first in the grammar, but it is very risky to rely on this. Every
7203reduce/reduce conflict must be studied and usually eliminated. Here is the
7204proper way to define @code{sequence}:
7205
7206@example
7207sequence: /* empty */
7208 @{ printf ("empty sequence\n"); @}
7209 | sequence word
7210 @{ printf ("added word %s\n", $2); @}
7211 ;
7212@end example
7213
7214Here is another common error that yields a reduce/reduce conflict:
7215
7216@example
7217sequence: /* empty */
7218 | sequence words
7219 | sequence redirects
7220 ;
7221
7222words: /* empty */
7223 | words word
7224 ;
7225
7226redirects:/* empty */
7227 | redirects redirect
7228 ;
7229@end example
7230
7231@noindent
7232The intention here is to define a sequence which can contain either
7233@code{word} or @code{redirect} groupings. The individual definitions of
7234@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7235three together make a subtle ambiguity: even an empty input can be parsed
7236in infinitely many ways!
7237
7238Consider: nothing-at-all could be a @code{words}. Or it could be two
7239@code{words} in a row, or three, or any number. It could equally well be a
7240@code{redirects}, or two, or any number. Or it could be a @code{words}
7241followed by three @code{redirects} and another @code{words}. And so on.
7242
7243Here are two ways to correct these rules. First, to make it a single level
7244of sequence:
7245
7246@example
7247sequence: /* empty */
7248 | sequence word
7249 | sequence redirect
7250 ;
7251@end example
7252
7253Second, to prevent either a @code{words} or a @code{redirects}
7254from being empty:
7255
7256@example
7257sequence: /* empty */
7258 | sequence words
7259 | sequence redirects
7260 ;
7261
7262words: word
7263 | words word
7264 ;
7265
7266redirects:redirect
7267 | redirects redirect
7268 ;
7269@end example
7270
342b8b6e 7271@node Mystery Conflicts
bfa74976
RS
7272@section Mysterious Reduce/Reduce Conflicts
7273
7274Sometimes reduce/reduce conflicts can occur that don't look warranted.
7275Here is an example:
7276
7277@example
7278@group
7279%token ID
7280
7281%%
7282def: param_spec return_spec ','
7283 ;
7284param_spec:
7285 type
7286 | name_list ':' type
7287 ;
7288@end group
7289@group
7290return_spec:
7291 type
7292 | name ':' type
7293 ;
7294@end group
7295@group
7296type: ID
7297 ;
7298@end group
7299@group
7300name: ID
7301 ;
7302name_list:
7303 name
7304 | name ',' name_list
7305 ;
7306@end group
7307@end example
7308
7309It would seem that this grammar can be parsed with only a single token
742e4900 7310of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7311a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7312@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7313
8a4281b9
JD
7314@cindex LR(1)
7315@cindex LALR(1)
eb45ef3b 7316However, for historical reasons, Bison cannot by default handle all
8a4281b9 7317LR(1) grammars.
eb45ef3b
JD
7318In this grammar, two contexts, that after an @code{ID} at the beginning
7319of a @code{param_spec} and likewise at the beginning of a
7320@code{return_spec}, are similar enough that Bison assumes they are the
7321same.
7322They appear similar because the same set of rules would be
bfa74976
RS
7323active---the rule for reducing to a @code{name} and that for reducing to
7324a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7325that the rules would require different lookahead tokens in the two
bfa74976
RS
7326contexts, so it makes a single parser state for them both. Combining
7327the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7328occurrence means that the grammar is not LALR(1).
bfa74976 7329
eb45ef3b 7330For many practical grammars (specifically those that fall into the
8a4281b9 7331non-LR(1) class), the limitations of LALR(1) result in
eb45ef3b
JD
7332difficulties beyond just mysterious reduce/reduce conflicts.
7333The best way to fix all these problems is to select a different parser
7334table generation algorithm.
8a4281b9 7335Either IELR(1) or canonical LR(1) would suffice, but
eb45ef3b
JD
7336the former is more efficient and easier to debug during development.
7337@xref{Decl Summary,,lr.type}, for details.
8a4281b9 7338(Bison's IELR(1) and canonical LR(1) implementations
eb45ef3b
JD
7339are experimental.
7340More user feedback will help to stabilize them.)
7341
8a4281b9 7342If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7343can often fix a mysterious conflict by identifying the two parser states
7344that are being confused, and adding something to make them look
7345distinct. In the above example, adding one rule to
bfa74976
RS
7346@code{return_spec} as follows makes the problem go away:
7347
7348@example
7349@group
7350%token BOGUS
7351@dots{}
7352%%
7353@dots{}
7354return_spec:
7355 type
7356 | name ':' type
7357 /* This rule is never used. */
7358 | ID BOGUS
7359 ;
7360@end group
7361@end example
7362
7363This corrects the problem because it introduces the possibility of an
7364additional active rule in the context after the @code{ID} at the beginning of
7365@code{return_spec}. This rule is not active in the corresponding context
7366in a @code{param_spec}, so the two contexts receive distinct parser states.
7367As long as the token @code{BOGUS} is never generated by @code{yylex},
7368the added rule cannot alter the way actual input is parsed.
7369
7370In this particular example, there is another way to solve the problem:
7371rewrite the rule for @code{return_spec} to use @code{ID} directly
7372instead of via @code{name}. This also causes the two confusing
7373contexts to have different sets of active rules, because the one for
7374@code{return_spec} activates the altered rule for @code{return_spec}
7375rather than the one for @code{name}.
7376
7377@example
7378param_spec:
7379 type
7380 | name_list ':' type
7381 ;
7382return_spec:
7383 type
7384 | ID ':' type
7385 ;
7386@end example
7387
8a4281b9 7388For a more detailed exposition of LALR(1) parsers and parser
e054b190
PE
7389generators, please see:
7390Frank DeRemer and Thomas Pennello, Efficient Computation of
8a4281b9 7391LALR(1) Look-Ahead Sets, @cite{ACM Transactions on
e054b190
PE
7392Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7393pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7394
fae437e8 7395@node Generalized LR Parsing
8a4281b9
JD
7396@section Generalized LR (GLR) Parsing
7397@cindex GLR parsing
7398@cindex generalized LR (GLR) parsing
676385e2 7399@cindex ambiguous grammars
9d9b8b70 7400@cindex nondeterministic parsing
676385e2 7401
fae437e8
AD
7402Bison produces @emph{deterministic} parsers that choose uniquely
7403when to reduce and which reduction to apply
742e4900 7404based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7405As a result, normal Bison handles a proper subset of the family of
7406context-free languages.
fae437e8 7407Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7408sequence of reductions cannot have deterministic parsers in this sense.
7409The same is true of languages that require more than one symbol of
742e4900 7410lookahead, since the parser lacks the information necessary to make a
676385e2 7411decision at the point it must be made in a shift-reduce parser.
fae437e8 7412Finally, as previously mentioned (@pxref{Mystery Conflicts}),
eb45ef3b 7413there are languages where Bison's default choice of how to
676385e2
PH
7414summarize the input seen so far loses necessary information.
7415
7416When you use the @samp{%glr-parser} declaration in your grammar file,
7417Bison generates a parser that uses a different algorithm, called
8a4281b9 7418Generalized LR (or GLR). A Bison GLR
c827f760 7419parser uses the same basic
676385e2
PH
7420algorithm for parsing as an ordinary Bison parser, but behaves
7421differently in cases where there is a shift-reduce conflict that has not
fae437e8 7422been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7423reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7424situation, it
fae437e8 7425effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7426shift or reduction. These parsers then proceed as usual, consuming
7427tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7428and split further, with the result that instead of a sequence of states,
8a4281b9 7429a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7430
7431In effect, each stack represents a guess as to what the proper parse
7432is. Additional input may indicate that a guess was wrong, in which case
7433the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7434actions generated in each stack are saved, rather than being executed
676385e2 7435immediately. When a stack disappears, its saved semantic actions never
fae437e8 7436get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7437their sets of semantic actions are both saved with the state that
7438results from the reduction. We say that two stacks are equivalent
fae437e8 7439when they both represent the same sequence of states,
676385e2
PH
7440and each pair of corresponding states represents a
7441grammar symbol that produces the same segment of the input token
7442stream.
7443
7444Whenever the parser makes a transition from having multiple
eb45ef3b 7445states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7446algorithm, after resolving and executing the saved-up actions.
7447At this transition, some of the states on the stack will have semantic
7448values that are sets (actually multisets) of possible actions. The
7449parser tries to pick one of the actions by first finding one whose rule
7450has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7451declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7452precedence, but there the same merging function is declared for both
fae437e8 7453rules by the @samp{%merge} declaration,
676385e2
PH
7454Bison resolves and evaluates both and then calls the merge function on
7455the result. Otherwise, it reports an ambiguity.
7456
8a4281b9
JD
7457It is possible to use a data structure for the GLR parsing tree that
7458permits the processing of any LR(1) grammar in linear time (in the
c827f760 7459size of the input), any unambiguous (not necessarily
8a4281b9 7460LR(1)) grammar in
fae437e8 7461quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7462context-free grammar in cubic worst-case time. However, Bison currently
7463uses a simpler data structure that requires time proportional to the
7464length of the input times the maximum number of stacks required for any
9d9b8b70 7465prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7466grammars can require exponential time and space to process. Such badly
7467behaving examples, however, are not generally of practical interest.
9d9b8b70 7468Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7469doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7470structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7471grammar, in particular, it is only slightly slower than with the
8a4281b9 7472deterministic LR(1) Bison parser.
676385e2 7473
8a4281b9 7474For a more detailed exposition of GLR parsers, please see: Elizabeth
f6481e2f 7475Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
8a4281b9 7476Generalised LR Parsers, Royal Holloway, University of
f6481e2f
PE
7477London, Department of Computer Science, TR-00-12,
7478@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7479(2000-12-24).
7480
1a059451
PE
7481@node Memory Management
7482@section Memory Management, and How to Avoid Memory Exhaustion
7483@cindex memory exhaustion
7484@cindex memory management
bfa74976
RS
7485@cindex stack overflow
7486@cindex parser stack overflow
7487@cindex overflow of parser stack
7488
1a059451 7489The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7490not reduced. When this happens, the parser function @code{yyparse}
1a059451 7491calls @code{yyerror} and then returns 2.
bfa74976 7492
c827f760 7493Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7494usually results from using a right recursion instead of a left
7495recursion, @xref{Recursion, ,Recursive Rules}.
7496
bfa74976
RS
7497@vindex YYMAXDEPTH
7498By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7499parser stack can become before memory is exhausted. Define the
bfa74976
RS
7500macro with a value that is an integer. This value is the maximum number
7501of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7502
7503The stack space allowed is not necessarily allocated. If you specify a
1a059451 7504large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7505stack at first, and then makes it bigger by stages as needed. This
7506increasing allocation happens automatically and silently. Therefore,
7507you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7508space for ordinary inputs that do not need much stack.
7509
d7e14fc0
PE
7510However, do not allow @code{YYMAXDEPTH} to be a value so large that
7511arithmetic overflow could occur when calculating the size of the stack
7512space. Also, do not allow @code{YYMAXDEPTH} to be less than
7513@code{YYINITDEPTH}.
7514
bfa74976
RS
7515@cindex default stack limit
7516The default value of @code{YYMAXDEPTH}, if you do not define it, is
751710000.
7518
7519@vindex YYINITDEPTH
7520You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7521macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7522parser in C, this value must be a compile-time constant
d7e14fc0
PE
7523unless you are assuming C99 or some other target language or compiler
7524that allows variable-length arrays. The default is 200.
7525
1a059451 7526Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7527
20be2f92
PH
7528You can generate a deterministic parser containing C++ user code from
7529the default (C) skeleton, as well as from the C++ skeleton
7530(@pxref{C++ Parsers}). However, if you do use the default skeleton
7531and want to allow the parsing stack to grow,
7532be careful not to use semantic types or location types that require
7533non-trivial copy constructors.
7534The C skeleton bypasses these constructors when copying data to
7535new, larger stacks.
d1a1114f 7536
342b8b6e 7537@node Error Recovery
bfa74976
RS
7538@chapter Error Recovery
7539@cindex error recovery
7540@cindex recovery from errors
7541
6e649e65 7542It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7543error. For example, a compiler should recover sufficiently to parse the
7544rest of the input file and check it for errors; a calculator should accept
7545another expression.
7546
7547In a simple interactive command parser where each input is one line, it may
7548be sufficient to allow @code{yyparse} to return 1 on error and have the
7549caller ignore the rest of the input line when that happens (and then call
7550@code{yyparse} again). But this is inadequate for a compiler, because it
7551forgets all the syntactic context leading up to the error. A syntax error
7552deep within a function in the compiler input should not cause the compiler
7553to treat the following line like the beginning of a source file.
7554
7555@findex error
7556You can define how to recover from a syntax error by writing rules to
7557recognize the special token @code{error}. This is a terminal symbol that
7558is always defined (you need not declare it) and reserved for error
7559handling. The Bison parser generates an @code{error} token whenever a
7560syntax error happens; if you have provided a rule to recognize this token
13863333 7561in the current context, the parse can continue.
bfa74976
RS
7562
7563For example:
7564
7565@example
7566stmnts: /* empty string */
7567 | stmnts '\n'
7568 | stmnts exp '\n'
7569 | stmnts error '\n'
7570@end example
7571
7572The fourth rule in this example says that an error followed by a newline
7573makes a valid addition to any @code{stmnts}.
7574
7575What happens if a syntax error occurs in the middle of an @code{exp}? The
7576error recovery rule, interpreted strictly, applies to the precise sequence
7577of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7578the middle of an @code{exp}, there will probably be some additional tokens
7579and subexpressions on the stack after the last @code{stmnts}, and there
7580will be tokens to read before the next newline. So the rule is not
7581applicable in the ordinary way.
7582
7583But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7584the semantic context and part of the input. First it discards states
7585and objects from the stack until it gets back to a state in which the
bfa74976 7586@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7587already parsed are discarded, back to the last complete @code{stmnts}.)
7588At this point the @code{error} token can be shifted. Then, if the old
742e4900 7589lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7590tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7591this example, Bison reads and discards input until the next newline so
7592that the fourth rule can apply. Note that discarded symbols are
7593possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7594Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7595
7596The choice of error rules in the grammar is a choice of strategies for
7597error recovery. A simple and useful strategy is simply to skip the rest of
7598the current input line or current statement if an error is detected:
7599
7600@example
72d2299c 7601stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7602@end example
7603
7604It is also useful to recover to the matching close-delimiter of an
7605opening-delimiter that has already been parsed. Otherwise the
7606close-delimiter will probably appear to be unmatched, and generate another,
7607spurious error message:
7608
7609@example
7610primary: '(' expr ')'
7611 | '(' error ')'
7612 @dots{}
7613 ;
7614@end example
7615
7616Error recovery strategies are necessarily guesses. When they guess wrong,
7617one syntax error often leads to another. In the above example, the error
7618recovery rule guesses that an error is due to bad input within one
7619@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7620middle of a valid @code{stmnt}. After the error recovery rule recovers
7621from the first error, another syntax error will be found straightaway,
7622since the text following the spurious semicolon is also an invalid
7623@code{stmnt}.
7624
7625To prevent an outpouring of error messages, the parser will output no error
7626message for another syntax error that happens shortly after the first; only
7627after three consecutive input tokens have been successfully shifted will
7628error messages resume.
7629
7630Note that rules which accept the @code{error} token may have actions, just
7631as any other rules can.
7632
7633@findex yyerrok
7634You can make error messages resume immediately by using the macro
7635@code{yyerrok} in an action. If you do this in the error rule's action, no
7636error messages will be suppressed. This macro requires no arguments;
7637@samp{yyerrok;} is a valid C statement.
7638
7639@findex yyclearin
742e4900 7640The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7641this is unacceptable, then the macro @code{yyclearin} may be used to clear
7642this token. Write the statement @samp{yyclearin;} in the error rule's
7643action.
32c29292 7644@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7645
6e649e65 7646For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7647called that advances the input stream to some point where parsing should
7648once again commence. The next symbol returned by the lexical scanner is
742e4900 7649probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7650with @samp{yyclearin;}.
7651
7652@vindex YYRECOVERING
02103984
PE
7653The expression @code{YYRECOVERING ()} yields 1 when the parser
7654is recovering from a syntax error, and 0 otherwise.
7655Syntax error diagnostics are suppressed while recovering from a syntax
7656error.
bfa74976 7657
342b8b6e 7658@node Context Dependency
bfa74976
RS
7659@chapter Handling Context Dependencies
7660
7661The Bison paradigm is to parse tokens first, then group them into larger
7662syntactic units. In many languages, the meaning of a token is affected by
7663its context. Although this violates the Bison paradigm, certain techniques
7664(known as @dfn{kludges}) may enable you to write Bison parsers for such
7665languages.
7666
7667@menu
7668* Semantic Tokens:: Token parsing can depend on the semantic context.
7669* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7670* Tie-in Recovery:: Lexical tie-ins have implications for how
7671 error recovery rules must be written.
7672@end menu
7673
7674(Actually, ``kludge'' means any technique that gets its job done but is
7675neither clean nor robust.)
7676
342b8b6e 7677@node Semantic Tokens
bfa74976
RS
7678@section Semantic Info in Token Types
7679
7680The C language has a context dependency: the way an identifier is used
7681depends on what its current meaning is. For example, consider this:
7682
7683@example
7684foo (x);
7685@end example
7686
7687This looks like a function call statement, but if @code{foo} is a typedef
7688name, then this is actually a declaration of @code{x}. How can a Bison
7689parser for C decide how to parse this input?
7690
8a4281b9 7691The method used in GNU C is to have two different token types,
bfa74976
RS
7692@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7693identifier, it looks up the current declaration of the identifier in order
7694to decide which token type to return: @code{TYPENAME} if the identifier is
7695declared as a typedef, @code{IDENTIFIER} otherwise.
7696
7697The grammar rules can then express the context dependency by the choice of
7698token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7699but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7700@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7701is @emph{not} significant, such as in declarations that can shadow a
7702typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7703accepted---there is one rule for each of the two token types.
7704
7705This technique is simple to use if the decision of which kinds of
7706identifiers to allow is made at a place close to where the identifier is
7707parsed. But in C this is not always so: C allows a declaration to
7708redeclare a typedef name provided an explicit type has been specified
7709earlier:
7710
7711@example
3a4f411f
PE
7712typedef int foo, bar;
7713int baz (void)
7714@{
7715 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7716 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7717 return foo (bar);
7718@}
bfa74976
RS
7719@end example
7720
7721Unfortunately, the name being declared is separated from the declaration
7722construct itself by a complicated syntactic structure---the ``declarator''.
7723
9ecbd125 7724As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7725all the nonterminal names changed: once for parsing a declaration in
7726which a typedef name can be redefined, and once for parsing a
7727declaration in which that can't be done. Here is a part of the
7728duplication, with actions omitted for brevity:
bfa74976
RS
7729
7730@example
7731initdcl:
7732 declarator maybeasm '='
7733 init
7734 | declarator maybeasm
7735 ;
7736
7737notype_initdcl:
7738 notype_declarator maybeasm '='
7739 init
7740 | notype_declarator maybeasm
7741 ;
7742@end example
7743
7744@noindent
7745Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7746cannot. The distinction between @code{declarator} and
7747@code{notype_declarator} is the same sort of thing.
7748
7749There is some similarity between this technique and a lexical tie-in
7750(described next), in that information which alters the lexical analysis is
7751changed during parsing by other parts of the program. The difference is
7752here the information is global, and is used for other purposes in the
7753program. A true lexical tie-in has a special-purpose flag controlled by
7754the syntactic context.
7755
342b8b6e 7756@node Lexical Tie-ins
bfa74976
RS
7757@section Lexical Tie-ins
7758@cindex lexical tie-in
7759
7760One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7761which is set by Bison actions, whose purpose is to alter the way tokens are
7762parsed.
7763
7764For example, suppose we have a language vaguely like C, but with a special
7765construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7766an expression in parentheses in which all integers are hexadecimal. In
7767particular, the token @samp{a1b} must be treated as an integer rather than
7768as an identifier if it appears in that context. Here is how you can do it:
7769
7770@example
7771@group
7772%@{
38a92d50
PE
7773 int hexflag;
7774 int yylex (void);
7775 void yyerror (char const *);
bfa74976
RS
7776%@}
7777%%
7778@dots{}
7779@end group
7780@group
7781expr: IDENTIFIER
7782 | constant
7783 | HEX '('
7784 @{ hexflag = 1; @}
7785 expr ')'
7786 @{ hexflag = 0;
7787 $$ = $4; @}
7788 | expr '+' expr
7789 @{ $$ = make_sum ($1, $3); @}
7790 @dots{}
7791 ;
7792@end group
7793
7794@group
7795constant:
7796 INTEGER
7797 | STRING
7798 ;
7799@end group
7800@end example
7801
7802@noindent
7803Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7804it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7805with letters are parsed as integers if possible.
7806
ff7571c0
JD
7807The declaration of @code{hexflag} shown in the prologue of the grammar
7808file is needed to make it accessible to the actions (@pxref{Prologue,
7809,The Prologue}). You must also write the code in @code{yylex} to obey
7810the flag.
bfa74976 7811
342b8b6e 7812@node Tie-in Recovery
bfa74976
RS
7813@section Lexical Tie-ins and Error Recovery
7814
7815Lexical tie-ins make strict demands on any error recovery rules you have.
7816@xref{Error Recovery}.
7817
7818The reason for this is that the purpose of an error recovery rule is to
7819abort the parsing of one construct and resume in some larger construct.
7820For example, in C-like languages, a typical error recovery rule is to skip
7821tokens until the next semicolon, and then start a new statement, like this:
7822
7823@example
7824stmt: expr ';'
7825 | IF '(' expr ')' stmt @{ @dots{} @}
7826 @dots{}
7827 error ';'
7828 @{ hexflag = 0; @}
7829 ;
7830@end example
7831
7832If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7833construct, this error rule will apply, and then the action for the
7834completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7835remain set for the entire rest of the input, or until the next @code{hex}
7836keyword, causing identifiers to be misinterpreted as integers.
7837
7838To avoid this problem the error recovery rule itself clears @code{hexflag}.
7839
7840There may also be an error recovery rule that works within expressions.
7841For example, there could be a rule which applies within parentheses
7842and skips to the close-parenthesis:
7843
7844@example
7845@group
7846expr: @dots{}
7847 | '(' expr ')'
7848 @{ $$ = $2; @}
7849 | '(' error ')'
7850 @dots{}
7851@end group
7852@end example
7853
7854If this rule acts within the @code{hex} construct, it is not going to abort
7855that construct (since it applies to an inner level of parentheses within
7856the construct). Therefore, it should not clear the flag: the rest of
7857the @code{hex} construct should be parsed with the flag still in effect.
7858
7859What if there is an error recovery rule which might abort out of the
7860@code{hex} construct or might not, depending on circumstances? There is no
7861way you can write the action to determine whether a @code{hex} construct is
7862being aborted or not. So if you are using a lexical tie-in, you had better
7863make sure your error recovery rules are not of this kind. Each rule must
7864be such that you can be sure that it always will, or always won't, have to
7865clear the flag.
7866
ec3bc396
AD
7867@c ================================================== Debugging Your Parser
7868
342b8b6e 7869@node Debugging
bfa74976 7870@chapter Debugging Your Parser
ec3bc396
AD
7871
7872Developing a parser can be a challenge, especially if you don't
7873understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7874Algorithm}). Even so, sometimes a detailed description of the automaton
7875can help (@pxref{Understanding, , Understanding Your Parser}), or
7876tracing the execution of the parser can give some insight on why it
7877behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7878
7879@menu
7880* Understanding:: Understanding the structure of your parser.
7881* Tracing:: Tracing the execution of your parser.
7882@end menu
7883
7884@node Understanding
7885@section Understanding Your Parser
7886
7887As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7888Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7889frequent than one would hope), looking at this automaton is required to
7890tune or simply fix a parser. Bison provides two different
35fe0834 7891representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7892
7893The textual file is generated when the options @option{--report} or
7894@option{--verbose} are specified, see @xref{Invocation, , Invoking
7895Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
7896the parser implementation file name, and adding @samp{.output}
7897instead. Therefore, if the grammar file is @file{foo.y}, then the
7898parser implementation file is called @file{foo.tab.c} by default. As
7899a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
7900
7901The following grammar file, @file{calc.y}, will be used in the sequel:
7902
7903@example
7904%token NUM STR
7905%left '+' '-'
7906%left '*'
7907%%
7908exp: exp '+' exp
7909 | exp '-' exp
7910 | exp '*' exp
7911 | exp '/' exp
7912 | NUM
7913 ;
7914useless: STR;
7915%%
7916@end example
7917
88bce5a2
AD
7918@command{bison} reports:
7919
7920@example
8f0d265e
JD
7921calc.y: warning: 1 nonterminal useless in grammar
7922calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7923calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7924calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7925calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7926@end example
7927
7928When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7929creates a file @file{calc.output} with contents detailed below. The
7930order of the output and the exact presentation might vary, but the
7931interpretation is the same.
ec3bc396
AD
7932
7933The first section includes details on conflicts that were solved thanks
7934to precedence and/or associativity:
7935
7936@example
7937Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7938Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7939Conflict in state 8 between rule 2 and token '*' resolved as shift.
7940@exdent @dots{}
7941@end example
7942
7943@noindent
7944The next section lists states that still have conflicts.
7945
7946@example
5a99098d
PE
7947State 8 conflicts: 1 shift/reduce
7948State 9 conflicts: 1 shift/reduce
7949State 10 conflicts: 1 shift/reduce
7950State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7951@end example
7952
7953@noindent
7954@cindex token, useless
7955@cindex useless token
7956@cindex nonterminal, useless
7957@cindex useless nonterminal
7958@cindex rule, useless
7959@cindex useless rule
7960The next section reports useless tokens, nonterminal and rules. Useless
7961nonterminals and rules are removed in order to produce a smaller parser,
7962but useless tokens are preserved, since they might be used by the
d80fb37a 7963scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7964below):
7965
7966@example
d80fb37a 7967Nonterminals useless in grammar:
ec3bc396
AD
7968 useless
7969
d80fb37a 7970Terminals unused in grammar:
ec3bc396
AD
7971 STR
7972
cff03fb2 7973Rules useless in grammar:
ec3bc396
AD
7974#6 useless: STR;
7975@end example
7976
7977@noindent
7978The next section reproduces the exact grammar that Bison used:
7979
7980@example
7981Grammar
7982
7983 Number, Line, Rule
88bce5a2 7984 0 5 $accept -> exp $end
ec3bc396
AD
7985 1 5 exp -> exp '+' exp
7986 2 6 exp -> exp '-' exp
7987 3 7 exp -> exp '*' exp
7988 4 8 exp -> exp '/' exp
7989 5 9 exp -> NUM
7990@end example
7991
7992@noindent
7993and reports the uses of the symbols:
7994
7995@example
7996Terminals, with rules where they appear
7997
88bce5a2 7998$end (0) 0
ec3bc396
AD
7999'*' (42) 3
8000'+' (43) 1
8001'-' (45) 2
8002'/' (47) 4
8003error (256)
8004NUM (258) 5
8005
8006Nonterminals, with rules where they appear
8007
88bce5a2 8008$accept (8)
ec3bc396
AD
8009 on left: 0
8010exp (9)
8011 on left: 1 2 3 4 5, on right: 0 1 2 3 4
8012@end example
8013
8014@noindent
8015@cindex item
8016@cindex pointed rule
8017@cindex rule, pointed
8018Bison then proceeds onto the automaton itself, describing each state
8019with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
8020item is a production rule together with a point (marked by @samp{.})
8021that the input cursor.
8022
8023@example
8024state 0
8025
88bce5a2 8026 $accept -> . exp $ (rule 0)
ec3bc396 8027
2a8d363a 8028 NUM shift, and go to state 1
ec3bc396 8029
2a8d363a 8030 exp go to state 2
ec3bc396
AD
8031@end example
8032
8033This reads as follows: ``state 0 corresponds to being at the very
8034beginning of the parsing, in the initial rule, right before the start
8035symbol (here, @code{exp}). When the parser returns to this state right
8036after having reduced a rule that produced an @code{exp}, the control
8037flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 8038symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 8039the parse stack, and the control flow jumps to state 1. Any other
742e4900 8040lookahead triggers a syntax error.''
ec3bc396
AD
8041
8042@cindex core, item set
8043@cindex item set core
8044@cindex kernel, item set
8045@cindex item set core
8046Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8047report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8048at the beginning of any rule deriving an @code{exp}. By default Bison
8049reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8050you want to see more detail you can invoke @command{bison} with
8051@option{--report=itemset} to list all the items, include those that can
8052be derived:
8053
8054@example
8055state 0
8056
88bce5a2 8057 $accept -> . exp $ (rule 0)
ec3bc396
AD
8058 exp -> . exp '+' exp (rule 1)
8059 exp -> . exp '-' exp (rule 2)
8060 exp -> . exp '*' exp (rule 3)
8061 exp -> . exp '/' exp (rule 4)
8062 exp -> . NUM (rule 5)
8063
8064 NUM shift, and go to state 1
8065
8066 exp go to state 2
8067@end example
8068
8069@noindent
8070In the state 1...
8071
8072@example
8073state 1
8074
8075 exp -> NUM . (rule 5)
8076
2a8d363a 8077 $default reduce using rule 5 (exp)
ec3bc396
AD
8078@end example
8079
8080@noindent
742e4900 8081the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8082(@samp{$default}), the parser will reduce it. If it was coming from
8083state 0, then, after this reduction it will return to state 0, and will
8084jump to state 2 (@samp{exp: go to state 2}).
8085
8086@example
8087state 2
8088
88bce5a2 8089 $accept -> exp . $ (rule 0)
ec3bc396
AD
8090 exp -> exp . '+' exp (rule 1)
8091 exp -> exp . '-' exp (rule 2)
8092 exp -> exp . '*' exp (rule 3)
8093 exp -> exp . '/' exp (rule 4)
8094
2a8d363a
AD
8095 $ shift, and go to state 3
8096 '+' shift, and go to state 4
8097 '-' shift, and go to state 5
8098 '*' shift, and go to state 6
8099 '/' shift, and go to state 7
ec3bc396
AD
8100@end example
8101
8102@noindent
8103In state 2, the automaton can only shift a symbol. For instance,
742e4900 8104because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8105@samp{+}, it will be shifted on the parse stack, and the automaton
8106control will jump to state 4, corresponding to the item @samp{exp -> exp
8107'+' . exp}. Since there is no default action, any other token than
6e649e65 8108those listed above will trigger a syntax error.
ec3bc396 8109
eb45ef3b 8110@cindex accepting state
ec3bc396
AD
8111The state 3 is named the @dfn{final state}, or the @dfn{accepting
8112state}:
8113
8114@example
8115state 3
8116
88bce5a2 8117 $accept -> exp $ . (rule 0)
ec3bc396 8118
2a8d363a 8119 $default accept
ec3bc396
AD
8120@end example
8121
8122@noindent
8123the initial rule is completed (the start symbol and the end
8124of input were read), the parsing exits successfully.
8125
8126The interpretation of states 4 to 7 is straightforward, and is left to
8127the reader.
8128
8129@example
8130state 4
8131
8132 exp -> exp '+' . exp (rule 1)
8133
2a8d363a 8134 NUM shift, and go to state 1
ec3bc396 8135
2a8d363a 8136 exp go to state 8
ec3bc396
AD
8137
8138state 5
8139
8140 exp -> exp '-' . exp (rule 2)
8141
2a8d363a 8142 NUM shift, and go to state 1
ec3bc396 8143
2a8d363a 8144 exp go to state 9
ec3bc396
AD
8145
8146state 6
8147
8148 exp -> exp '*' . exp (rule 3)
8149
2a8d363a 8150 NUM shift, and go to state 1
ec3bc396 8151
2a8d363a 8152 exp go to state 10
ec3bc396
AD
8153
8154state 7
8155
8156 exp -> exp '/' . exp (rule 4)
8157
2a8d363a 8158 NUM shift, and go to state 1
ec3bc396 8159
2a8d363a 8160 exp go to state 11
ec3bc396
AD
8161@end example
8162
5a99098d
PE
8163As was announced in beginning of the report, @samp{State 8 conflicts:
81641 shift/reduce}:
ec3bc396
AD
8165
8166@example
8167state 8
8168
8169 exp -> exp . '+' exp (rule 1)
8170 exp -> exp '+' exp . (rule 1)
8171 exp -> exp . '-' exp (rule 2)
8172 exp -> exp . '*' exp (rule 3)
8173 exp -> exp . '/' exp (rule 4)
8174
2a8d363a
AD
8175 '*' shift, and go to state 6
8176 '/' shift, and go to state 7
ec3bc396 8177
2a8d363a
AD
8178 '/' [reduce using rule 1 (exp)]
8179 $default reduce using rule 1 (exp)
ec3bc396
AD
8180@end example
8181
742e4900 8182Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8183either shifting (and going to state 7), or reducing rule 1. The
8184conflict means that either the grammar is ambiguous, or the parser lacks
8185information to make the right decision. Indeed the grammar is
8186ambiguous, as, since we did not specify the precedence of @samp{/}, the
8187sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8188NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8189NUM}, which corresponds to reducing rule 1.
8190
eb45ef3b 8191Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8192arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8193Shift/Reduce Conflicts}. Discarded actions are reported in between
8194square brackets.
8195
8196Note that all the previous states had a single possible action: either
8197shifting the next token and going to the corresponding state, or
8198reducing a single rule. In the other cases, i.e., when shifting
8199@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8200possible, the lookahead is required to select the action. State 8 is
8201one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8202is shifting, otherwise the action is reducing rule 1. In other words,
8203the first two items, corresponding to rule 1, are not eligible when the
742e4900 8204lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8205precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8206with some set of possible lookahead tokens. When run with
8207@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8208
8209@example
8210state 8
8211
88c78747 8212 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8213 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8214 exp -> exp . '-' exp (rule 2)
8215 exp -> exp . '*' exp (rule 3)
8216 exp -> exp . '/' exp (rule 4)
8217
8218 '*' shift, and go to state 6
8219 '/' shift, and go to state 7
8220
8221 '/' [reduce using rule 1 (exp)]
8222 $default reduce using rule 1 (exp)
8223@end example
8224
8225The remaining states are similar:
8226
8227@example
8228state 9
8229
8230 exp -> exp . '+' exp (rule 1)
8231 exp -> exp . '-' exp (rule 2)
8232 exp -> exp '-' exp . (rule 2)
8233 exp -> exp . '*' exp (rule 3)
8234 exp -> exp . '/' exp (rule 4)
8235
2a8d363a
AD
8236 '*' shift, and go to state 6
8237 '/' shift, and go to state 7
ec3bc396 8238
2a8d363a
AD
8239 '/' [reduce using rule 2 (exp)]
8240 $default reduce using rule 2 (exp)
ec3bc396
AD
8241
8242state 10
8243
8244 exp -> exp . '+' exp (rule 1)
8245 exp -> exp . '-' exp (rule 2)
8246 exp -> exp . '*' exp (rule 3)
8247 exp -> exp '*' exp . (rule 3)
8248 exp -> exp . '/' exp (rule 4)
8249
2a8d363a 8250 '/' shift, and go to state 7
ec3bc396 8251
2a8d363a
AD
8252 '/' [reduce using rule 3 (exp)]
8253 $default reduce using rule 3 (exp)
ec3bc396
AD
8254
8255state 11
8256
8257 exp -> exp . '+' exp (rule 1)
8258 exp -> exp . '-' exp (rule 2)
8259 exp -> exp . '*' exp (rule 3)
8260 exp -> exp . '/' exp (rule 4)
8261 exp -> exp '/' exp . (rule 4)
8262
2a8d363a
AD
8263 '+' shift, and go to state 4
8264 '-' shift, and go to state 5
8265 '*' shift, and go to state 6
8266 '/' shift, and go to state 7
ec3bc396 8267
2a8d363a
AD
8268 '+' [reduce using rule 4 (exp)]
8269 '-' [reduce using rule 4 (exp)]
8270 '*' [reduce using rule 4 (exp)]
8271 '/' [reduce using rule 4 (exp)]
8272 $default reduce using rule 4 (exp)
ec3bc396
AD
8273@end example
8274
8275@noindent
fa7e68c3
PE
8276Observe that state 11 contains conflicts not only due to the lack of
8277precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8278@samp{*}, but also because the
ec3bc396
AD
8279associativity of @samp{/} is not specified.
8280
8281
8282@node Tracing
8283@section Tracing Your Parser
bfa74976
RS
8284@findex yydebug
8285@cindex debugging
8286@cindex tracing the parser
8287
8288If a Bison grammar compiles properly but doesn't do what you want when it
8289runs, the @code{yydebug} parser-trace feature can help you figure out why.
8290
3ded9a63
AD
8291There are several means to enable compilation of trace facilities:
8292
8293@table @asis
8294@item the macro @code{YYDEBUG}
8295@findex YYDEBUG
8296Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8297parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8298@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8299YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8300Prologue}).
8301
8302@item the option @option{-t}, @option{--debug}
8303Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8304,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8305
8306@item the directive @samp{%debug}
8307@findex %debug
fa819509
AD
8308Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8309Summary}). This Bison extension is maintained for backward
8310compatibility with previous versions of Bison.
8311
8312@item the variable @samp{parse.trace}
8313@findex %define parse.trace
8314Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
8315,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
8316(@pxref{Bison Options}). This is a Bison extension, which is especially
8317useful for languages that don't use a preprocessor. Unless
8a4281b9 8318POSIX and Yacc portability matter to you, this is the
fa819509 8319preferred solution.
3ded9a63
AD
8320@end table
8321
fa819509 8322We suggest that you always enable the trace option so that debugging is
3ded9a63 8323always possible.
bfa74976 8324
02a81e05 8325The trace facility outputs messages with macro calls of the form
e2742e46 8326@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8327@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8328arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8329define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8330and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8331
8332Once you have compiled the program with trace facilities, the way to
8333request a trace is to store a nonzero value in the variable @code{yydebug}.
8334You can do this by making the C code do it (in @code{main}, perhaps), or
8335you can alter the value with a C debugger.
8336
8337Each step taken by the parser when @code{yydebug} is nonzero produces a
8338line or two of trace information, written on @code{stderr}. The trace
8339messages tell you these things:
8340
8341@itemize @bullet
8342@item
8343Each time the parser calls @code{yylex}, what kind of token was read.
8344
8345@item
8346Each time a token is shifted, the depth and complete contents of the
8347state stack (@pxref{Parser States}).
8348
8349@item
8350Each time a rule is reduced, which rule it is, and the complete contents
8351of the state stack afterward.
8352@end itemize
8353
8354To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8355produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8356Bison}). This file shows the meaning of each state in terms of
8357positions in various rules, and also what each state will do with each
8358possible input token. As you read the successive trace messages, you
8359can see that the parser is functioning according to its specification in
8360the listing file. Eventually you will arrive at the place where
8361something undesirable happens, and you will see which parts of the
8362grammar are to blame.
bfa74976 8363
ff7571c0
JD
8364The parser implementation file is a C program and you can use C
8365debuggers on it, but it's not easy to interpret what it is doing. The
8366parser function is a finite-state machine interpreter, and aside from
8367the actions it executes the same code over and over. Only the values
8368of variables show where in the grammar it is working.
bfa74976
RS
8369
8370@findex YYPRINT
8371The debugging information normally gives the token type of each token
8372read, but not its semantic value. You can optionally define a macro
8373named @code{YYPRINT} to provide a way to print the value. If you define
8374@code{YYPRINT}, it should take three arguments. The parser will pass a
8375standard I/O stream, the numeric code for the token type, and the token
8376value (from @code{yylval}).
8377
8378Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8379calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8380
8381@smallexample
38a92d50
PE
8382%@{
8383 static void print_token_value (FILE *, int, YYSTYPE);
8384 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8385%@}
8386
8387@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8388
8389static void
831d3c99 8390print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8391@{
8392 if (type == VAR)
d3c4e709 8393 fprintf (file, "%s", value.tptr->name);
bfa74976 8394 else if (type == NUM)
d3c4e709 8395 fprintf (file, "%d", value.val);
bfa74976
RS
8396@}
8397@end smallexample
8398
ec3bc396
AD
8399@c ================================================= Invoking Bison
8400
342b8b6e 8401@node Invocation
bfa74976
RS
8402@chapter Invoking Bison
8403@cindex invoking Bison
8404@cindex Bison invocation
8405@cindex options for invoking Bison
8406
8407The usual way to invoke Bison is as follows:
8408
8409@example
8410bison @var{infile}
8411@end example
8412
8413Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8414@samp{.y}. The parser implementation file's name is made by replacing
8415the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8416Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8417the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8418also possible, in case you are writing C++ code instead of C in your
8419grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8420output files will take an extension like the given one as input
8421(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8422feature takes effect with all options that manipulate file names like
234a3be3
AD
8423@samp{-o} or @samp{-d}.
8424
8425For example :
8426
8427@example
8428bison -d @var{infile.yxx}
8429@end example
84163231 8430@noindent
72d2299c 8431will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8432
8433@example
b56471a6 8434bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8435@end example
84163231 8436@noindent
234a3be3
AD
8437will produce @file{output.c++} and @file{outfile.h++}.
8438
8a4281b9 8439For compatibility with POSIX, the standard Bison
397ec073
PE
8440distribution also contains a shell script called @command{yacc} that
8441invokes Bison with the @option{-y} option.
8442
bfa74976 8443@menu
13863333 8444* Bison Options:: All the options described in detail,
c827f760 8445 in alphabetical order by short options.
bfa74976 8446* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8447* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8448@end menu
8449
342b8b6e 8450@node Bison Options
bfa74976
RS
8451@section Bison Options
8452
8453Bison supports both traditional single-letter options and mnemonic long
8454option names. Long option names are indicated with @samp{--} instead of
8455@samp{-}. Abbreviations for option names are allowed as long as they
8456are unique. When a long option takes an argument, like
8457@samp{--file-prefix}, connect the option name and the argument with
8458@samp{=}.
8459
8460Here is a list of options that can be used with Bison, alphabetized by
8461short option. It is followed by a cross key alphabetized by long
8462option.
8463
89cab50d
AD
8464@c Please, keep this ordered as in `bison --help'.
8465@noindent
8466Operations modes:
8467@table @option
8468@item -h
8469@itemx --help
8470Print a summary of the command-line options to Bison and exit.
bfa74976 8471
89cab50d
AD
8472@item -V
8473@itemx --version
8474Print the version number of Bison and exit.
bfa74976 8475
f7ab6a50
PE
8476@item --print-localedir
8477Print the name of the directory containing locale-dependent data.
8478
a0de5091
JD
8479@item --print-datadir
8480Print the name of the directory containing skeletons and XSLT.
8481
89cab50d
AD
8482@item -y
8483@itemx --yacc
ff7571c0
JD
8484Act more like the traditional Yacc command. This can cause different
8485diagnostics to be generated, and may change behavior in other minor
8486ways. Most importantly, imitate Yacc's output file name conventions,
8487so that the parser implementation file is called @file{y.tab.c}, and
8488the other outputs are called @file{y.output} and @file{y.tab.h}.
8489Also, if generating a deterministic parser in C, generate
8490@code{#define} statements in addition to an @code{enum} to associate
8491token numbers with token names. Thus, the following shell script can
8492substitute for Yacc, and the Bison distribution contains such a script
8493for compatibility with POSIX:
bfa74976 8494
89cab50d 8495@example
397ec073 8496#! /bin/sh
26e06a21 8497bison -y "$@@"
89cab50d 8498@end example
54662697
PE
8499
8500The @option{-y}/@option{--yacc} option is intended for use with
8501traditional Yacc grammars. If your grammar uses a Bison extension
8502like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8503this option is specified.
8504
1d5b3c08
JD
8505@item -W [@var{category}]
8506@itemx --warnings[=@var{category}]
118d4978
AD
8507Output warnings falling in @var{category}. @var{category} can be one
8508of:
8509@table @code
8510@item midrule-values
8e55b3aa
JD
8511Warn about mid-rule values that are set but not used within any of the actions
8512of the parent rule.
8513For example, warn about unused @code{$2} in:
118d4978
AD
8514
8515@example
8516exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8517@end example
8518
8e55b3aa
JD
8519Also warn about mid-rule values that are used but not set.
8520For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8521
8522@example
8523 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8524@end example
8525
8526These warnings are not enabled by default since they sometimes prove to
8527be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8528@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8529
8530
8531@item yacc
8a4281b9 8532Incompatibilities with POSIX Yacc.
118d4978
AD
8533
8534@item all
8e55b3aa 8535All the warnings.
118d4978 8536@item none
8e55b3aa 8537Turn off all the warnings.
118d4978 8538@item error
8e55b3aa 8539Treat warnings as errors.
118d4978
AD
8540@end table
8541
8542A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8543instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8544POSIX Yacc incompatibilities.
89cab50d
AD
8545@end table
8546
8547@noindent
8548Tuning the parser:
8549
8550@table @option
8551@item -t
8552@itemx --debug
ff7571c0
JD
8553In the parser implementation file, define the macro @code{YYDEBUG} to
85541 if it is not already defined, so that the debugging facilities are
8555compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8556
58697c6d
AD
8557@item -D @var{name}[=@var{value}]
8558@itemx --define=@var{name}[=@var{value}]
17aed602 8559@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8560@itemx --force-define=@var{name}[=@var{value}]
8561Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8562(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8563definitions for the same @var{name} as follows:
8564
8565@itemize
8566@item
0b6d43c5
JD
8567Bison quietly ignores all command-line definitions for @var{name} except
8568the last.
de5ab940 8569@item
0b6d43c5
JD
8570If that command-line definition is specified by a @code{-D} or
8571@code{--define}, Bison reports an error for any @code{%define}
8572definition for @var{name}.
de5ab940 8573@item
0b6d43c5
JD
8574If that command-line definition is specified by a @code{-F} or
8575@code{--force-define} instead, Bison quietly ignores all @code{%define}
8576definitions for @var{name}.
8577@item
8578Otherwise, Bison reports an error if there are multiple @code{%define}
8579definitions for @var{name}.
de5ab940
JD
8580@end itemize
8581
8582You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8583make files unless you are confident that it is safe to quietly ignore
8584any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8585
0e021770
PE
8586@item -L @var{language}
8587@itemx --language=@var{language}
8588Specify the programming language for the generated parser, as if
8589@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8590Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8591@var{language} is case-insensitive.
0e021770 8592
ed4d67dc
JD
8593This option is experimental and its effect may be modified in future
8594releases.
8595
89cab50d 8596@item --locations
d8988b2f 8597Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8598
8599@item -p @var{prefix}
8600@itemx --name-prefix=@var{prefix}
02975b9a 8601Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8602@xref{Decl Summary}.
bfa74976
RS
8603
8604@item -l
8605@itemx --no-lines
ff7571c0
JD
8606Don't put any @code{#line} preprocessor commands in the parser
8607implementation file. Ordinarily Bison puts them in the parser
8608implementation file so that the C compiler and debuggers will
8609associate errors with your source file, the grammar file. This option
8610causes them to associate errors with the parser implementation file,
8611treating it as an independent source file in its own right.
bfa74976 8612
e6e704dc
JD
8613@item -S @var{file}
8614@itemx --skeleton=@var{file}
a7867f53 8615Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8616(@pxref{Decl Summary, , Bison Declaration Summary}).
8617
ed4d67dc
JD
8618@c You probably don't need this option unless you are developing Bison.
8619@c You should use @option{--language} if you want to specify the skeleton for a
8620@c different language, because it is clearer and because it will always
8621@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8622
a7867f53
JD
8623If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8624file in the Bison installation directory.
8625If it does, @var{file} is an absolute file name or a file name relative to the
8626current working directory.
8627This is similar to how most shells resolve commands.
8628
89cab50d
AD
8629@item -k
8630@itemx --token-table
d8988b2f 8631Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8632@end table
bfa74976 8633
89cab50d
AD
8634@noindent
8635Adjust the output:
bfa74976 8636
89cab50d 8637@table @option
8e55b3aa 8638@item --defines[=@var{file}]
d8988b2f 8639Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8640file containing macro definitions for the token type names defined in
4bfd5e4e 8641the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8642
8e55b3aa
JD
8643@item -d
8644This is the same as @code{--defines} except @code{-d} does not accept a
8645@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8646with other short options.
342b8b6e 8647
89cab50d
AD
8648@item -b @var{file-prefix}
8649@itemx --file-prefix=@var{prefix}
9c437126 8650Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8651for all Bison output file names. @xref{Decl Summary}.
bfa74976 8652
ec3bc396
AD
8653@item -r @var{things}
8654@itemx --report=@var{things}
8655Write an extra output file containing verbose description of the comma
8656separated list of @var{things} among:
8657
8658@table @code
8659@item state
8660Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8661parser's automaton.
ec3bc396 8662
742e4900 8663@item lookahead
ec3bc396 8664Implies @code{state} and augments the description of the automaton with
742e4900 8665each rule's lookahead set.
ec3bc396
AD
8666
8667@item itemset
8668Implies @code{state} and augments the description of the automaton with
8669the full set of items for each state, instead of its core only.
8670@end table
8671
1bb2bd75
JD
8672@item --report-file=@var{file}
8673Specify the @var{file} for the verbose description.
8674
bfa74976
RS
8675@item -v
8676@itemx --verbose
9c437126 8677Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8678file containing verbose descriptions of the grammar and
72d2299c 8679parser. @xref{Decl Summary}.
bfa74976 8680
fa4d969f
PE
8681@item -o @var{file}
8682@itemx --output=@var{file}
ff7571c0 8683Specify the @var{file} for the parser implementation file.
bfa74976 8684
fa4d969f 8685The other output files' names are constructed from @var{file} as
d8988b2f 8686described under the @samp{-v} and @samp{-d} options.
342b8b6e 8687
a7c09cba 8688@item -g [@var{file}]
8e55b3aa 8689@itemx --graph[=@var{file}]
eb45ef3b 8690Output a graphical representation of the parser's
35fe0834 8691automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 8692@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8693@code{@var{file}} is optional.
8694If omitted and the grammar file is @file{foo.y}, the output file will be
8695@file{foo.dot}.
59da312b 8696
a7c09cba 8697@item -x [@var{file}]
8e55b3aa 8698@itemx --xml[=@var{file}]
eb45ef3b 8699Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8700@code{@var{file}} is optional.
59da312b
JD
8701If omitted and the grammar file is @file{foo.y}, the output file will be
8702@file{foo.xml}.
8703(The current XML schema is experimental and may evolve.
8704More user feedback will help to stabilize it.)
bfa74976
RS
8705@end table
8706
342b8b6e 8707@node Option Cross Key
bfa74976
RS
8708@section Option Cross Key
8709
8710Here is a list of options, alphabetized by long option, to help you find
de5ab940 8711the corresponding short option and directive.
bfa74976 8712
de5ab940 8713@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8714@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8715@include cross-options.texi
aa08666d 8716@end multitable
bfa74976 8717
93dd49ab
PE
8718@node Yacc Library
8719@section Yacc Library
8720
8721The Yacc library contains default implementations of the
8722@code{yyerror} and @code{main} functions. These default
8a4281b9 8723implementations are normally not useful, but POSIX requires
93dd49ab
PE
8724them. To use the Yacc library, link your program with the
8725@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 8726library is distributed under the terms of the GNU General
93dd49ab
PE
8727Public License (@pxref{Copying}).
8728
8729If you use the Yacc library's @code{yyerror} function, you should
8730declare @code{yyerror} as follows:
8731
8732@example
8733int yyerror (char const *);
8734@end example
8735
8736Bison ignores the @code{int} value returned by this @code{yyerror}.
8737If you use the Yacc library's @code{main} function, your
8738@code{yyparse} function should have the following type signature:
8739
8740@example
8741int yyparse (void);
8742@end example
8743
12545799
AD
8744@c ================================================= C++ Bison
8745
8405b70c
PB
8746@node Other Languages
8747@chapter Parsers Written In Other Languages
12545799
AD
8748
8749@menu
8750* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8751* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8752@end menu
8753
8754@node C++ Parsers
8755@section C++ Parsers
8756
8757@menu
8758* C++ Bison Interface:: Asking for C++ parser generation
8759* C++ Semantic Values:: %union vs. C++
8760* C++ Location Values:: The position and location classes
8761* C++ Parser Interface:: Instantiating and running the parser
8762* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8763* A Complete C++ Example:: Demonstrating their use
12545799
AD
8764@end menu
8765
8766@node C++ Bison Interface
8767@subsection C++ Bison Interface
ed4d67dc 8768@c - %skeleton "lalr1.cc"
12545799
AD
8769@c - Always pure
8770@c - initial action
8771
eb45ef3b 8772The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
8773@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8774@option{--skeleton=lalr1.cc}.
e6e704dc 8775@xref{Decl Summary}.
0e021770 8776
793fbca5
JD
8777When run, @command{bison} will create several entities in the @samp{yy}
8778namespace.
67501061
AD
8779@findex %define api.namespace
8780Use the @samp{%define api.namespace} directive to change the namespace
8781name, see
793fbca5
JD
8782@ref{Decl Summary}.
8783The various classes are generated in the following files:
aa08666d 8784
12545799
AD
8785@table @file
8786@item position.hh
8787@itemx location.hh
8788The definition of the classes @code{position} and @code{location},
3cdc21cf 8789used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
8790
8791@item stack.hh
8792An auxiliary class @code{stack} used by the parser.
8793
fa4d969f
PE
8794@item @var{file}.hh
8795@itemx @var{file}.cc
ff7571c0 8796(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
8797declaration and implementation of the C++ parser class. The basename
8798and extension of these two files follow the same rules as with regular C
8799parsers (@pxref{Invocation}).
12545799 8800
cd8b5791
AD
8801The header is @emph{mandatory}; you must either pass
8802@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8803@samp{%defines} directive.
8804@end table
8805
8806All these files are documented using Doxygen; run @command{doxygen}
8807for a complete and accurate documentation.
8808
8809@node C++ Semantic Values
8810@subsection C++ Semantic Values
8811@c - No objects in unions
178e123e 8812@c - YYSTYPE
12545799
AD
8813@c - Printer and destructor
8814
3cdc21cf
AD
8815Bison supports two different means to handle semantic values in C++. One is
8816alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
8817practitioners know, unions are inconvenient in C++, therefore another
8818approach is provided, based on variants (@pxref{C++ Variants}).
8819
8820@menu
8821* C++ Unions:: Semantic values cannot be objects
8822* C++ Variants:: Using objects as semantic values
8823@end menu
8824
8825@node C++ Unions
8826@subsubsection C++ Unions
8827
12545799
AD
8828The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8829Collection of Value Types}. In particular it produces a genuine
3cdc21cf 8830@code{union}, which have a few specific features in C++.
12545799
AD
8831@itemize @minus
8832@item
fb9712a9
AD
8833The type @code{YYSTYPE} is defined but its use is discouraged: rather
8834you should refer to the parser's encapsulated type
8835@code{yy::parser::semantic_type}.
12545799
AD
8836@item
8837Non POD (Plain Old Data) types cannot be used. C++ forbids any
8838instance of classes with constructors in unions: only @emph{pointers}
8839to such objects are allowed.
8840@end itemize
8841
8842Because objects have to be stored via pointers, memory is not
8843reclaimed automatically: using the @code{%destructor} directive is the
8844only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8845Symbols}.
8846
3cdc21cf
AD
8847@node C++ Variants
8848@subsubsection C++ Variants
8849
8850Starting with version 2.6, Bison provides a @emph{variant} based
8851implementation of semantic values for C++. This alleviates all the
8852limitations reported in the previous section, and in particular, object
8853types can be used without pointers.
8854
8855To enable variant-based semantic values, set @code{%define} variable
8856@code{variant} (@pxref{Decl Summary, , variant}). Once this defined,
8857@code{%union} is ignored, and instead of using the name of the fields of the
8858@code{%union} to ``type'' the symbols, use genuine types.
8859
8860For instance, instead of
8861
8862@example
8863%union
8864@{
8865 int ival;
8866 std::string* sval;
8867@}
8868%token <ival> NUMBER;
8869%token <sval> STRING;
8870@end example
8871
8872@noindent
8873write
8874
8875@example
8876%token <int> NUMBER;
8877%token <std::string> STRING;
8878@end example
8879
8880@code{STRING} is no longer a pointer, which should fairly simplify the user
8881actions in the grammar and in the scanner (in particular the memory
8882management).
8883
8884Since C++ features destructors, and since it is customary to specialize
8885@code{operator<<} to support uniform printing of values, variants also
8886typically simplify Bison printers and destructors.
8887
8888Variants are stricter than unions. When based on unions, you may play any
8889dirty game with @code{yylval}, say storing an @code{int}, reading a
8890@code{char*}, and then storing a @code{double} in it. This is no longer
8891possible with variants: they must be initialized, then assigned to, and
8892eventually, destroyed.
8893
8894@deftypemethod {semantic_type} {T&} build<T> ()
8895Initialize, but leave empty. Returns the address where the actual value may
8896be stored. Requires that the variant was not initialized yet.
8897@end deftypemethod
8898
8899@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
8900Initialize, and copy-construct from @var{t}.
8901@end deftypemethod
8902
8903
8904@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
8905appeared unacceptable to require Boost on the user's machine (i.e., the
8906machine on which the generated parser will be compiled, not the machine on
8907which @command{bison} was run). Second, for each possible semantic value,
8908Boost.Variant not only stores the value, but also a tag specifying its
8909type. But the parser already ``knows'' the type of the semantic value, so
8910that would be duplicating the information.
8911
8912Therefore we developed light-weight variants whose type tag is external (so
8913they are really like @code{unions} for C++ actually). But our code is much
8914less mature that Boost.Variant. So there is a number of limitations in
8915(the current implementation of) variants:
8916@itemize
8917@item
8918Alignment must be enforced: values should be aligned in memory according to
8919the most demanding type. Computing the smallest alignment possible requires
8920meta-programming techniques that are not currently implemented in Bison, and
8921therefore, since, as far as we know, @code{double} is the most demanding
8922type on all platforms, alignments are enforced for @code{double} whatever
8923types are actually used. This may waste space in some cases.
8924
8925@item
8926Our implementation is not conforming with strict aliasing rules. Alias
8927analysis is a technique used in optimizing compilers to detect when two
8928pointers are disjoint (they cannot ``meet''). Our implementation breaks
8929some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
8930alias analysis must be disabled}. Use the option
8931@option{-fno-strict-aliasing} to compile the generated parser.
8932
8933@item
8934There might be portability issues we are not aware of.
8935@end itemize
8936
a6ca4ce2 8937As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 8938is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
8939
8940@node C++ Location Values
8941@subsection C++ Location Values
8942@c - %locations
8943@c - class Position
8944@c - class Location
16dc6a9e 8945@c - %define filename_type "const symbol::Symbol"
12545799
AD
8946
8947When the directive @code{%locations} is used, the C++ parser supports
8948location tracking, see @ref{Locations, , Locations Overview}. Two
8949auxiliary classes define a @code{position}, a single point in a file,
8950and a @code{location}, a range composed of a pair of
8951@code{position}s (possibly spanning several files).
8952
fa4d969f 8953@deftypemethod {position} {std::string*} file
12545799
AD
8954The name of the file. It will always be handled as a pointer, the
8955parser will never duplicate nor deallocate it. As an experimental
8956feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8957filename_type "@var{type}"}.
12545799
AD
8958@end deftypemethod
8959
8960@deftypemethod {position} {unsigned int} line
8961The line, starting at 1.
8962@end deftypemethod
8963
8964@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8965Advance by @var{height} lines, resetting the column number.
8966@end deftypemethod
8967
8968@deftypemethod {position} {unsigned int} column
8969The column, starting at 0.
8970@end deftypemethod
8971
8972@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8973Advance by @var{width} columns, without changing the line number.
8974@end deftypemethod
8975
8976@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8977@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8978@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8979@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8980Various forms of syntactic sugar for @code{columns}.
8981@end deftypemethod
8982
8983@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8984Report @var{p} on @var{o} like this:
fa4d969f
PE
8985@samp{@var{file}:@var{line}.@var{column}}, or
8986@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8987@end deftypemethod
8988
8989@deftypemethod {location} {position} begin
8990@deftypemethodx {location} {position} end
8991The first, inclusive, position of the range, and the first beyond.
8992@end deftypemethod
8993
8994@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8995@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8996Advance the @code{end} position.
8997@end deftypemethod
8998
8999@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
9000@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
9001@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
9002Various forms of syntactic sugar.
9003@end deftypemethod
9004
9005@deftypemethod {location} {void} step ()
9006Move @code{begin} onto @code{end}.
9007@end deftypemethod
9008
9009
9010@node C++ Parser Interface
9011@subsection C++ Parser Interface
9012@c - define parser_class_name
9013@c - Ctor
9014@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9015@c debug_stream.
9016@c - Reporting errors
9017
9018The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9019declare and define the parser class in the namespace @code{yy}. The
9020class name defaults to @code{parser}, but may be changed using
16dc6a9e 9021@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9022this class is detailed below. It can be extended using the
12545799
AD
9023@code{%parse-param} feature: its semantics is slightly changed since
9024it describes an additional member of the parser class, and an
9025additional argument for its constructor.
9026
3cdc21cf
AD
9027@defcv {Type} {parser} {semantic_type}
9028@defcvx {Type} {parser} {location_type}
9029The types for semantic values and locations (if enabled).
9030@end defcv
9031
86e5b440
AD
9032@defcv {Type} {parser} {token}
9033A structure that contains (only) the definition of the tokens as the
9034@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
9035scanner should use @code{yy::parser::token::FOO}. The scanner can use
9036@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9037(@pxref{Calc++ Scanner}).
9038@end defcv
9039
3cdc21cf
AD
9040@defcv {Type} {parser} {syntax_error}
9041This class derives from @code{std::runtime_error}. Throw instances of it
9042from user actions to raise parse errors. This is equivalent with first
9043invoking @code{error} to report the location and message of the syntax
9044error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9045But contrary to @code{YYERROR} which can only be invoked from user actions
9046(i.e., written in the action itself), the exception can be thrown from
9047function invoked from the user action.
8a0adb01 9048@end defcv
12545799
AD
9049
9050@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9051Build a new parser object. There are no arguments by default, unless
9052@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9053@end deftypemethod
9054
3cdc21cf
AD
9055@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9056@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9057Instantiate a syntax-error exception.
9058@end deftypemethod
9059
12545799
AD
9060@deftypemethod {parser} {int} parse ()
9061Run the syntactic analysis, and return 0 on success, 1 otherwise.
9062@end deftypemethod
9063
9064@deftypemethod {parser} {std::ostream&} debug_stream ()
9065@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9066Get or set the stream used for tracing the parsing. It defaults to
9067@code{std::cerr}.
9068@end deftypemethod
9069
9070@deftypemethod {parser} {debug_level_type} debug_level ()
9071@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9072Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9073or nonzero, full tracing.
12545799
AD
9074@end deftypemethod
9075
9076@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9077@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9078The definition for this member function must be supplied by the user:
9079the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9080described by @var{m}. If location tracking is not enabled, the second
9081signature is used.
12545799
AD
9082@end deftypemethod
9083
9084
9085@node C++ Scanner Interface
9086@subsection C++ Scanner Interface
9087@c - prefix for yylex.
9088@c - Pure interface to yylex
9089@c - %lex-param
9090
9091The parser invokes the scanner by calling @code{yylex}. Contrary to C
9092parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9093@samp{%define api.pure} directive. The actual interface with @code{yylex}
9094depends whether you use unions, or variants.
12545799 9095
3cdc21cf
AD
9096@menu
9097* Split Symbols:: Passing symbols as two/three components
9098* Complete Symbols:: Making symbols a whole
9099@end menu
9100
9101@node Split Symbols
9102@subsubsection Split Symbols
9103
9104Therefore the interface is as follows.
9105
86e5b440
AD
9106@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9107@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9108Return the next token. Its type is the return value, its semantic value and
9109location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9110@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9111@end deftypemethod
9112
3cdc21cf
AD
9113Note that when using variants, the interface for @code{yylex} is the same,
9114but @code{yylval} is handled differently.
9115
9116Regular union-based code in Lex scanner typically look like:
9117
9118@example
9119[0-9]+ @{
9120 yylval.ival = text_to_int (yytext);
9121 return yy::parser::INTEGER;
9122 @}
9123[a-z]+ @{
9124 yylval.sval = new std::string (yytext);
9125 return yy::parser::IDENTIFIER;
9126 @}
9127@end example
9128
9129Using variants, @code{yylval} is already constructed, but it is not
9130initialized. So the code would look like:
9131
9132@example
9133[0-9]+ @{
9134 yylval.build<int>() = text_to_int (yytext);
9135 return yy::parser::INTEGER;
9136 @}
9137[a-z]+ @{
9138 yylval.build<std::string> = yytext;
9139 return yy::parser::IDENTIFIER;
9140 @}
9141@end example
9142
9143@noindent
9144or
9145
9146@example
9147[0-9]+ @{
9148 yylval.build(text_to_int (yytext));
9149 return yy::parser::INTEGER;
9150 @}
9151[a-z]+ @{
9152 yylval.build(yytext);
9153 return yy::parser::IDENTIFIER;
9154 @}
9155@end example
9156
9157
9158@node Complete Symbols
9159@subsubsection Complete Symbols
9160
9161If you specified both @code{%define variant} and @code{%define lex_symbol},
9162the @code{parser} class also defines the class @code{parser::symbol_type}
9163which defines a @emph{complete} symbol, aggregating its type (i.e., the
9164traditional value returned by @code{yylex}), its semantic value (i.e., the
9165value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9166
9167@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9168Build a complete terminal symbol which token type is @var{type}, and which
9169semantic value is @var{value}. If location tracking is enabled, also pass
9170the @var{location}.
9171@end deftypemethod
9172
9173This interface is low-level and should not be used for two reasons. First,
9174it is inconvenient, as you still have to build the semantic value, which is
9175a variant, and second, because consistency is not enforced: as with unions,
9176it is still possible to give an integer as semantic value for a string.
9177
9178So for each token type, Bison generates named constructors as follows.
9179
9180@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9181@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9182Build a complete terminal symbol for the token type @var{token} (not
9183including the @code{api.tokens.prefix}) whose possible semantic value is
9184@var{value} of adequate @var{value_type}. If location tracking is enabled,
9185also pass the @var{location}.
9186@end deftypemethod
9187
9188For instance, given the following declarations:
9189
9190@example
9191%define api.tokens.prefix "TOK_"
9192%token <std::string> IDENTIFIER;
9193%token <int> INTEGER;
9194%token COLON;
9195@end example
9196
9197@noindent
9198Bison generates the following functions:
9199
9200@example
9201symbol_type make_IDENTIFIER(const std::string& v,
9202 const location_type& l);
9203symbol_type make_INTEGER(const int& v,
9204 const location_type& loc);
9205symbol_type make_COLON(const location_type& loc);
9206@end example
9207
9208@noindent
9209which should be used in a Lex-scanner as follows.
9210
9211@example
9212[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9213[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9214":" return yy::parser::make_COLON(loc);
9215@end example
9216
9217Tokens that do not have an identifier are not accessible: you cannot simply
9218use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9219
9220@node A Complete C++ Example
8405b70c 9221@subsection A Complete C++ Example
12545799
AD
9222
9223This section demonstrates the use of a C++ parser with a simple but
9224complete example. This example should be available on your system,
3cdc21cf 9225ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9226focuses on the use of Bison, therefore the design of the various C++
9227classes is very naive: no accessors, no encapsulation of members etc.
9228We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9229demonstrate the various interactions. A hand-written scanner is
12545799
AD
9230actually easier to interface with.
9231
9232@menu
9233* Calc++ --- C++ Calculator:: The specifications
9234* Calc++ Parsing Driver:: An active parsing context
9235* Calc++ Parser:: A parser class
9236* Calc++ Scanner:: A pure C++ Flex scanner
9237* Calc++ Top Level:: Conducting the band
9238@end menu
9239
9240@node Calc++ --- C++ Calculator
8405b70c 9241@subsubsection Calc++ --- C++ Calculator
12545799
AD
9242
9243Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9244expression, possibly preceded by variable assignments. An
12545799
AD
9245environment containing possibly predefined variables such as
9246@code{one} and @code{two}, is exchanged with the parser. An example
9247of valid input follows.
9248
9249@example
9250three := 3
9251seven := one + two * three
9252seven * seven
9253@end example
9254
9255@node Calc++ Parsing Driver
8405b70c 9256@subsubsection Calc++ Parsing Driver
12545799
AD
9257@c - An env
9258@c - A place to store error messages
9259@c - A place for the result
9260
9261To support a pure interface with the parser (and the scanner) the
9262technique of the ``parsing context'' is convenient: a structure
9263containing all the data to exchange. Since, in addition to simply
9264launch the parsing, there are several auxiliary tasks to execute (open
9265the file for parsing, instantiate the parser etc.), we recommend
9266transforming the simple parsing context structure into a fully blown
9267@dfn{parsing driver} class.
9268
9269The declaration of this driver class, @file{calc++-driver.hh}, is as
9270follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9271required standard library components, and the declaration of the parser
9272class.
12545799 9273
1c59e0a1 9274@comment file: calc++-driver.hh
12545799
AD
9275@example
9276#ifndef CALCXX_DRIVER_HH
9277# define CALCXX_DRIVER_HH
9278# include <string>
9279# include <map>
fb9712a9 9280# include "calc++-parser.hh"
12545799
AD
9281@end example
9282
12545799
AD
9283
9284@noindent
9285Then comes the declaration of the scanning function. Flex expects
9286the signature of @code{yylex} to be defined in the macro
9287@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9288factor both as follows.
1c59e0a1
AD
9289
9290@comment file: calc++-driver.hh
12545799 9291@example
3dc5e96b 9292// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9293# define YY_DECL \
9294 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9295// ... and declare it for the parser's sake.
9296YY_DECL;
9297@end example
9298
9299@noindent
9300The @code{calcxx_driver} class is then declared with its most obvious
9301members.
9302
1c59e0a1 9303@comment file: calc++-driver.hh
12545799
AD
9304@example
9305// Conducting the whole scanning and parsing of Calc++.
9306class calcxx_driver
9307@{
9308public:
9309 calcxx_driver ();
9310 virtual ~calcxx_driver ();
9311
9312 std::map<std::string, int> variables;
9313
9314 int result;
9315@end example
9316
9317@noindent
3cdc21cf
AD
9318To encapsulate the coordination with the Flex scanner, it is useful to have
9319member functions to open and close the scanning phase.
12545799 9320
1c59e0a1 9321@comment file: calc++-driver.hh
12545799
AD
9322@example
9323 // Handling the scanner.
9324 void scan_begin ();
9325 void scan_end ();
9326 bool trace_scanning;
9327@end example
9328
9329@noindent
9330Similarly for the parser itself.
9331
1c59e0a1 9332@comment file: calc++-driver.hh
12545799 9333@example
3cdc21cf
AD
9334 // Run the parser on file F.
9335 // Return 0 on success.
bb32f4f2 9336 int parse (const std::string& f);
3cdc21cf
AD
9337 // The name of the file being parsed.
9338 // Used later to pass the file name to the location tracker.
12545799 9339 std::string file;
3cdc21cf 9340 // Whether parser traces should be generated.
12545799
AD
9341 bool trace_parsing;
9342@end example
9343
9344@noindent
9345To demonstrate pure handling of parse errors, instead of simply
9346dumping them on the standard error output, we will pass them to the
9347compiler driver using the following two member functions. Finally, we
9348close the class declaration and CPP guard.
9349
1c59e0a1 9350@comment file: calc++-driver.hh
12545799
AD
9351@example
9352 // Error handling.
9353 void error (const yy::location& l, const std::string& m);
9354 void error (const std::string& m);
9355@};
9356#endif // ! CALCXX_DRIVER_HH
9357@end example
9358
9359The implementation of the driver is straightforward. The @code{parse}
9360member function deserves some attention. The @code{error} functions
9361are simple stubs, they should actually register the located error
9362messages and set error state.
9363
1c59e0a1 9364@comment file: calc++-driver.cc
12545799
AD
9365@example
9366#include "calc++-driver.hh"
9367#include "calc++-parser.hh"
9368
9369calcxx_driver::calcxx_driver ()
9370 : trace_scanning (false), trace_parsing (false)
9371@{
9372 variables["one"] = 1;
9373 variables["two"] = 2;
9374@}
9375
9376calcxx_driver::~calcxx_driver ()
9377@{
9378@}
9379
bb32f4f2 9380int
12545799
AD
9381calcxx_driver::parse (const std::string &f)
9382@{
9383 file = f;
9384 scan_begin ();
9385 yy::calcxx_parser parser (*this);
9386 parser.set_debug_level (trace_parsing);
bb32f4f2 9387 int res = parser.parse ();
12545799 9388 scan_end ();
bb32f4f2 9389 return res;
12545799
AD
9390@}
9391
9392void
9393calcxx_driver::error (const yy::location& l, const std::string& m)
9394@{
9395 std::cerr << l << ": " << m << std::endl;
9396@}
9397
9398void
9399calcxx_driver::error (const std::string& m)
9400@{
9401 std::cerr << m << std::endl;
9402@}
9403@end example
9404
9405@node Calc++ Parser
8405b70c 9406@subsubsection Calc++ Parser
12545799 9407
ff7571c0
JD
9408The grammar file @file{calc++-parser.yy} starts by asking for the C++
9409deterministic parser skeleton, the creation of the parser header file,
9410and specifies the name of the parser class. Because the C++ skeleton
9411changed several times, it is safer to require the version you designed
9412the grammar for.
1c59e0a1
AD
9413
9414@comment file: calc++-parser.yy
12545799 9415@example
ed4d67dc 9416%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9417%require "@value{VERSION}"
12545799 9418%defines
16dc6a9e 9419%define parser_class_name "calcxx_parser"
fb9712a9
AD
9420@end example
9421
3cdc21cf
AD
9422@noindent
9423@findex %define variant
9424@findex %define lex_symbol
9425This example will use genuine C++ objects as semantic values, therefore, we
9426require the variant-based interface. To make sure we properly use it, we
9427enable assertions. To fully benefit from type-safety and more natural
9428definition of ``symbol'', we enable @code{lex_symbol}.
9429
9430@comment file: calc++-parser.yy
9431@example
9432%define variant
9433%define parse.assert
9434%define lex_symbol
9435@end example
9436
fb9712a9 9437@noindent
16dc6a9e 9438@findex %code requires
3cdc21cf
AD
9439Then come the declarations/inclusions needed by the semantic values.
9440Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9441to include the header of the other, which is, of course, insane. This
3cdc21cf 9442mutual dependency will be broken using forward declarations. Because the
fb9712a9 9443driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9444particular its inner types), it is the parser's header which will use a
e0c07222 9445forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9446
9447@comment file: calc++-parser.yy
9448@example
3cdc21cf
AD
9449%code requires
9450@{
12545799 9451# include <string>
fb9712a9 9452class calcxx_driver;
9bc0dd67 9453@}
12545799
AD
9454@end example
9455
9456@noindent
9457The driver is passed by reference to the parser and to the scanner.
9458This provides a simple but effective pure interface, not relying on
9459global variables.
9460
1c59e0a1 9461@comment file: calc++-parser.yy
12545799
AD
9462@example
9463// The parsing context.
2055a44e 9464%param @{ calcxx_driver& driver @}
12545799
AD
9465@end example
9466
9467@noindent
2055a44e 9468Then we request location tracking, and initialize the
f50bfcd6 9469first location's file name. Afterward new locations are computed
12545799 9470relatively to the previous locations: the file name will be
2055a44e 9471propagated.
12545799 9472
1c59e0a1 9473@comment file: calc++-parser.yy
12545799
AD
9474@example
9475%locations
9476%initial-action
9477@{
9478 // Initialize the initial location.
b47dbebe 9479 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9480@};
9481@end example
9482
9483@noindent
2055a44e 9484Use the following two directives to enable parser tracing and verbose
12545799
AD
9485error messages.
9486
1c59e0a1 9487@comment file: calc++-parser.yy
12545799 9488@example
fa819509 9489%define parse.trace
cf499cff 9490%define parse.error verbose
12545799
AD
9491@end example
9492
fb9712a9 9493@noindent
136a0f76
PB
9494@findex %code
9495The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9496@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9497
9498@comment file: calc++-parser.yy
9499@example
3cdc21cf
AD
9500%code
9501@{
fb9712a9 9502# include "calc++-driver.hh"
34f98f46 9503@}
fb9712a9
AD
9504@end example
9505
9506
12545799
AD
9507@noindent
9508The token numbered as 0 corresponds to end of file; the following line
99c08fb6
AD
9509allows for nicer error messages referring to ``end of file'' instead of
9510``$end''. Similarly user friendly names are provided for each symbol.
9511To avoid name clashes in the generated files (@pxref{Calc++ Scanner}),
4c6622c2 9512prefix tokens with @code{TOK_} (@pxref{Decl Summary,, api.tokens.prefix}).
12545799 9513
1c59e0a1 9514@comment file: calc++-parser.yy
12545799 9515@example
4c6622c2 9516%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9517%token
9518 END 0 "end of file"
9519 ASSIGN ":="
9520 MINUS "-"
9521 PLUS "+"
9522 STAR "*"
9523 SLASH "/"
9524 LPAREN "("
9525 RPAREN ")"
9526;
12545799
AD
9527@end example
9528
9529@noindent
3cdc21cf
AD
9530Since we use variant-based semantic values, @code{%union} is not used, and
9531both @code{%type} and @code{%token} expect genuine types, as opposed to type
9532tags.
12545799 9533
1c59e0a1 9534@comment file: calc++-parser.yy
12545799 9535@example
3cdc21cf
AD
9536%token <std::string> IDENTIFIER "identifier"
9537%token <int> NUMBER "number"
9538%type <int> exp
9539@end example
9540
9541@noindent
9542No @code{%destructor} is needed to enable memory deallocation during error
9543recovery; the memory, for strings for instance, will be reclaimed by the
9544regular destructors. All the values are printed using their
9545@code{operator<<}.
12545799 9546
3cdc21cf
AD
9547@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9548@comment file: calc++-parser.yy
9549@example
9550%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9551@end example
9552
9553@noindent
3cdc21cf
AD
9554The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9555Location Tracking Calculator: @code{ltcalc}}).
12545799 9556
1c59e0a1 9557@comment file: calc++-parser.yy
12545799
AD
9558@example
9559%%
9560%start unit;
9561unit: assignments exp @{ driver.result = $2; @};
9562
99c08fb6
AD
9563assignments:
9564 assignments assignment @{@}
9565| /* Nothing. */ @{@};
12545799 9566
3dc5e96b 9567assignment:
3cdc21cf 9568 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9569
3cdc21cf
AD
9570%left "+" "-";
9571%left "*" "/";
99c08fb6 9572exp:
3cdc21cf
AD
9573 exp "+" exp @{ $$ = $1 + $3; @}
9574| exp "-" exp @{ $$ = $1 - $3; @}
9575| exp "*" exp @{ $$ = $1 * $3; @}
9576| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9577| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9578| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9579| "number" @{ std::swap ($$, $1); @};
12545799
AD
9580%%
9581@end example
9582
9583@noindent
9584Finally the @code{error} member function registers the errors to the
9585driver.
9586
1c59e0a1 9587@comment file: calc++-parser.yy
12545799
AD
9588@example
9589void
3cdc21cf 9590yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9591 const std::string& m)
12545799
AD
9592@{
9593 driver.error (l, m);
9594@}
9595@end example
9596
9597@node Calc++ Scanner
8405b70c 9598@subsubsection Calc++ Scanner
12545799
AD
9599
9600The Flex scanner first includes the driver declaration, then the
9601parser's to get the set of defined tokens.
9602
1c59e0a1 9603@comment file: calc++-scanner.ll
12545799
AD
9604@example
9605%@{ /* -*- C++ -*- */
3c248d70
AD
9606# include <cerrno>
9607# include <climits>
3cdc21cf 9608# include <cstdlib>
12545799
AD
9609# include <string>
9610# include "calc++-driver.hh"
9611# include "calc++-parser.hh"
eaea13f5 9612
3cdc21cf
AD
9613// Work around an incompatibility in flex (at least versions
9614// 2.5.31 through 2.5.33): it generates code that does
9615// not conform to C89. See Debian bug 333231
9616// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9617# undef yywrap
9618# define yywrap() 1
eaea13f5 9619
3cdc21cf
AD
9620// The location of the current token.
9621static yy::location loc;
12545799
AD
9622%@}
9623@end example
9624
9625@noindent
9626Because there is no @code{#include}-like feature we don't need
9627@code{yywrap}, we don't need @code{unput} either, and we parse an
9628actual file, this is not an interactive session with the user.
3cdc21cf 9629Finally, we enable scanner tracing.
12545799 9630
1c59e0a1 9631@comment file: calc++-scanner.ll
12545799
AD
9632@example
9633%option noyywrap nounput batch debug
9634@end example
9635
9636@noindent
9637Abbreviations allow for more readable rules.
9638
1c59e0a1 9639@comment file: calc++-scanner.ll
12545799
AD
9640@example
9641id [a-zA-Z][a-zA-Z_0-9]*
9642int [0-9]+
9643blank [ \t]
9644@end example
9645
9646@noindent
9d9b8b70 9647The following paragraph suffices to track locations accurately. Each
12545799 9648time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9649position. Then when a pattern is matched, its width is added to the end
9650column. When matching ends of lines, the end
12545799
AD
9651cursor is adjusted, and each time blanks are matched, the begin cursor
9652is moved onto the end cursor to effectively ignore the blanks
9653preceding tokens. Comments would be treated equally.
9654
1c59e0a1 9655@comment file: calc++-scanner.ll
12545799 9656@example
828c373b 9657%@{
3cdc21cf
AD
9658 // Code run each time a pattern is matched.
9659 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9660%@}
12545799
AD
9661%%
9662%@{
3cdc21cf
AD
9663 // Code run each time yylex is called.
9664 loc.step ();
12545799 9665%@}
3cdc21cf
AD
9666@{blank@}+ loc.step ();
9667[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9668@end example
9669
9670@noindent
3cdc21cf 9671The rules are simple. The driver is used to report errors.
12545799 9672
1c59e0a1 9673@comment file: calc++-scanner.ll
12545799 9674@example
3cdc21cf
AD
9675"-" return yy::calcxx_parser::make_MINUS(loc);
9676"+" return yy::calcxx_parser::make_PLUS(loc);
9677"*" return yy::calcxx_parser::make_STAR(loc);
9678"/" return yy::calcxx_parser::make_SLASH(loc);
9679"(" return yy::calcxx_parser::make_LPAREN(loc);
9680")" return yy::calcxx_parser::make_RPAREN(loc);
9681":=" return yy::calcxx_parser::make_ASSIGN(loc);
9682
04098407
PE
9683@{int@} @{
9684 errno = 0;
9685 long n = strtol (yytext, NULL, 10);
9686 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9687 driver.error (loc, "integer is out of range");
9688 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9689@}
3cdc21cf
AD
9690@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9691. driver.error (loc, "invalid character");
9692<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9693%%
9694@end example
9695
9696@noindent
3cdc21cf 9697Finally, because the scanner-related driver's member-functions depend
12545799
AD
9698on the scanner's data, it is simpler to implement them in this file.
9699
1c59e0a1 9700@comment file: calc++-scanner.ll
12545799
AD
9701@example
9702void
9703calcxx_driver::scan_begin ()
9704@{
9705 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9706 if (file == "-")
9707 yyin = stdin;
9708 else if (!(yyin = fopen (file.c_str (), "r")))
9709 @{
3cdc21cf 9710 error (std::string ("cannot open ") + file + ": " + strerror(errno));
bb32f4f2
AD
9711 exit (1);
9712 @}
12545799
AD
9713@}
9714
9715void
9716calcxx_driver::scan_end ()
9717@{
9718 fclose (yyin);
9719@}
9720@end example
9721
9722@node Calc++ Top Level
8405b70c 9723@subsubsection Calc++ Top Level
12545799
AD
9724
9725The top level file, @file{calc++.cc}, poses no problem.
9726
1c59e0a1 9727@comment file: calc++.cc
12545799
AD
9728@example
9729#include <iostream>
9730#include "calc++-driver.hh"
9731
9732int
fa4d969f 9733main (int argc, char *argv[])
12545799 9734@{
414c76a4 9735 int res = 0;
12545799
AD
9736 calcxx_driver driver;
9737 for (++argv; argv[0]; ++argv)
9738 if (*argv == std::string ("-p"))
9739 driver.trace_parsing = true;
9740 else if (*argv == std::string ("-s"))
9741 driver.trace_scanning = true;
bb32f4f2
AD
9742 else if (!driver.parse (*argv))
9743 std::cout << driver.result << std::endl;
414c76a4
AD
9744 else
9745 res = 1;
9746 return res;
12545799
AD
9747@}
9748@end example
9749
8405b70c
PB
9750@node Java Parsers
9751@section Java Parsers
9752
9753@menu
f5f419de
DJ
9754* Java Bison Interface:: Asking for Java parser generation
9755* Java Semantic Values:: %type and %token vs. Java
9756* Java Location Values:: The position and location classes
9757* Java Parser Interface:: Instantiating and running the parser
9758* Java Scanner Interface:: Specifying the scanner for the parser
9759* Java Action Features:: Special features for use in actions
9760* Java Differences:: Differences between C/C++ and Java Grammars
9761* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9762@end menu
9763
9764@node Java Bison Interface
9765@subsection Java Bison Interface
9766@c - %language "Java"
8405b70c 9767
59da312b
JD
9768(The current Java interface is experimental and may evolve.
9769More user feedback will help to stabilize it.)
9770
e254a580
DJ
9771The Java parser skeletons are selected using the @code{%language "Java"}
9772directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9773
e254a580 9774@c FIXME: Documented bug.
ff7571c0
JD
9775When generating a Java parser, @code{bison @var{basename}.y} will
9776create a single Java source file named @file{@var{basename}.java}
9777containing the parser implementation. Using a grammar file without a
9778@file{.y} suffix is currently broken. The basename of the parser
9779implementation file can be changed by the @code{%file-prefix}
9780directive or the @option{-p}/@option{--name-prefix} option. The
9781entire parser implementation file name can be changed by the
9782@code{%output} directive or the @option{-o}/@option{--output} option.
9783The parser implementation file contains a single class for the parser.
8405b70c 9784
e254a580 9785You can create documentation for generated parsers using Javadoc.
8405b70c 9786
e254a580
DJ
9787Contrary to C parsers, Java parsers do not use global variables; the
9788state of the parser is always local to an instance of the parser class.
9789Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 9790and @samp{%define api.pure} directives does not do anything when used in
e254a580 9791Java.
8405b70c 9792
e254a580 9793Push parsers are currently unsupported in Java and @code{%define
67212941 9794api.push-pull} have no effect.
01b477c6 9795
8a4281b9 9796GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9797@code{glr-parser} directive.
9798
9799No header file can be generated for Java parsers. Do not use the
9800@code{%defines} directive or the @option{-d}/@option{--defines} options.
9801
9802@c FIXME: Possible code change.
fa819509
AD
9803Currently, support for tracing is always compiled
9804in. Thus the @samp{%define parse.trace} and @samp{%token-table}
9805directives and the
e254a580
DJ
9806@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9807options have no effect. This may change in the future to eliminate
fa819509
AD
9808unused code in the generated parser, so use @samp{%define parse.trace}
9809explicitly
1979121c 9810if needed. Also, in the future the
e254a580
DJ
9811@code{%token-table} directive might enable a public interface to
9812access the token names and codes.
8405b70c 9813
09ccae9b 9814Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 9815hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
9816Try reducing the amount of code in actions and static initializers;
9817otherwise, report a bug so that the parser skeleton will be improved.
9818
9819
8405b70c
PB
9820@node Java Semantic Values
9821@subsection Java Semantic Values
9822@c - No %union, specify type in %type/%token.
9823@c - YYSTYPE
9824@c - Printer and destructor
9825
9826There is no @code{%union} directive in Java parsers. Instead, the
9827semantic values' types (class names) should be specified in the
9828@code{%type} or @code{%token} directive:
9829
9830@example
9831%type <Expression> expr assignment_expr term factor
9832%type <Integer> number
9833@end example
9834
9835By default, the semantic stack is declared to have @code{Object} members,
9836which means that the class types you specify can be of any class.
9837To improve the type safety of the parser, you can declare the common
67501061 9838superclass of all the semantic values using the @samp{%define stype}
e254a580 9839directive. For example, after the following declaration:
8405b70c
PB
9840
9841@example
e254a580 9842%define stype "ASTNode"
8405b70c
PB
9843@end example
9844
9845@noindent
9846any @code{%type} or @code{%token} specifying a semantic type which
9847is not a subclass of ASTNode, will cause a compile-time error.
9848
e254a580 9849@c FIXME: Documented bug.
8405b70c
PB
9850Types used in the directives may be qualified with a package name.
9851Primitive data types are accepted for Java version 1.5 or later. Note
9852that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9853Generic types may not be used; this is due to a limitation in the
9854implementation of Bison, and may change in future releases.
8405b70c
PB
9855
9856Java parsers do not support @code{%destructor}, since the language
9857adopts garbage collection. The parser will try to hold references
9858to semantic values for as little time as needed.
9859
9860Java parsers do not support @code{%printer}, as @code{toString()}
9861can be used to print the semantic values. This however may change
9862(in a backwards-compatible way) in future versions of Bison.
9863
9864
9865@node Java Location Values
9866@subsection Java Location Values
9867@c - %locations
9868@c - class Position
9869@c - class Location
9870
9871When the directive @code{%locations} is used, the Java parser
9872supports location tracking, see @ref{Locations, , Locations Overview}.
9873An auxiliary user-defined class defines a @dfn{position}, a single point
9874in a file; Bison itself defines a class representing a @dfn{location},
9875a range composed of a pair of positions (possibly spanning several
9876files). The location class is an inner class of the parser; the name
e254a580 9877is @code{Location} by default, and may also be renamed using
cf499cff 9878@samp{%define location_type "@var{class-name}"}.
8405b70c
PB
9879
9880The location class treats the position as a completely opaque value.
9881By default, the class name is @code{Position}, but this can be changed
67501061 9882with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 9883be supplied by the user.
8405b70c
PB
9884
9885
e254a580
DJ
9886@deftypeivar {Location} {Position} begin
9887@deftypeivarx {Location} {Position} end
8405b70c 9888The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9889@end deftypeivar
9890
9891@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9892Create a @code{Location} denoting an empty range located at a given point.
e254a580 9893@end deftypeop
8405b70c 9894
e254a580
DJ
9895@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9896Create a @code{Location} from the endpoints of the range.
9897@end deftypeop
9898
9899@deftypemethod {Location} {String} toString ()
8405b70c
PB
9900Prints the range represented by the location. For this to work
9901properly, the position class should override the @code{equals} and
9902@code{toString} methods appropriately.
9903@end deftypemethod
9904
9905
9906@node Java Parser Interface
9907@subsection Java Parser Interface
9908@c - define parser_class_name
9909@c - Ctor
9910@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9911@c debug_stream.
9912@c - Reporting errors
9913
e254a580
DJ
9914The name of the generated parser class defaults to @code{YYParser}. The
9915@code{YY} prefix may be changed using the @code{%name-prefix} directive
9916or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 9917@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 9918the class. The interface of this class is detailed below.
8405b70c 9919
e254a580 9920By default, the parser class has package visibility. A declaration
67501061 9921@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
9922according to the Java language specification, the name of the @file{.java}
9923file should match the name of the class in this case. Similarly, you can
9924use @code{abstract}, @code{final} and @code{strictfp} with the
9925@code{%define} declaration to add other modifiers to the parser class.
67501061 9926A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 9927be used to add any number of annotations to the parser class.
e254a580
DJ
9928
9929The Java package name of the parser class can be specified using the
67501061 9930@samp{%define package} directive. The superclass and the implemented
e254a580 9931interfaces of the parser class can be specified with the @code{%define
67501061 9932extends} and @samp{%define implements} directives.
e254a580
DJ
9933
9934The parser class defines an inner class, @code{Location}, that is used
9935for location tracking (see @ref{Java Location Values}), and a inner
9936interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9937these inner class/interface, and the members described in the interface
9938below, all the other members and fields are preceded with a @code{yy} or
9939@code{YY} prefix to avoid clashes with user code.
9940
e254a580
DJ
9941The parser class can be extended using the @code{%parse-param}
9942directive. Each occurrence of the directive will add a @code{protected
9943final} field to the parser class, and an argument to its constructor,
9944which initialize them automatically.
9945
e254a580
DJ
9946@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9947Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
9948no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
9949@code{%lex-param}s are used.
1979121c
DJ
9950
9951Use @code{%code init} for code added to the start of the constructor
9952body. This is especially useful to initialize superclasses. Use
f50bfcd6 9953@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
9954@end deftypeop
9955
9956@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9957Build a new parser object using the specified scanner. There are no
2055a44e
AD
9958additional parameters unless @code{%param}s and/or @code{%parse-param}s are
9959used.
e254a580
DJ
9960
9961If the scanner is defined by @code{%code lexer}, this constructor is
9962declared @code{protected} and is called automatically with a scanner
2055a44e 9963created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
9964
9965Use @code{%code init} for code added to the start of the constructor
9966body. This is especially useful to initialize superclasses. Use
67501061 9967@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 9968@end deftypeop
8405b70c
PB
9969
9970@deftypemethod {YYParser} {boolean} parse ()
9971Run the syntactic analysis, and return @code{true} on success,
9972@code{false} otherwise.
9973@end deftypemethod
9974
1979121c
DJ
9975@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9976@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9977Get or set the option to produce verbose error messages. These are only
cf499cff 9978available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
9979verbose error messages.
9980@end deftypemethod
9981
9982@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9983@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9984@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9985Print an error message using the @code{yyerror} method of the scanner
9986instance in use. The @code{Location} and @code{Position} parameters are
9987available only if location tracking is active.
9988@end deftypemethod
9989
01b477c6 9990@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9991During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9992from a syntax error.
9993@xref{Error Recovery}.
8405b70c
PB
9994@end deftypemethod
9995
9996@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9997@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9998Get or set the stream used for tracing the parsing. It defaults to
9999@code{System.err}.
10000@end deftypemethod
10001
10002@deftypemethod {YYParser} {int} getDebugLevel ()
10003@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10004Get or set the tracing level. Currently its value is either 0, no trace,
10005or nonzero, full tracing.
10006@end deftypemethod
10007
1979121c
DJ
10008@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10009@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10010Identify the Bison version and skeleton used to generate this parser.
10011@end deftypecv
10012
8405b70c
PB
10013
10014@node Java Scanner Interface
10015@subsection Java Scanner Interface
01b477c6 10016@c - %code lexer
8405b70c 10017@c - %lex-param
01b477c6 10018@c - Lexer interface
8405b70c 10019
e254a580
DJ
10020There are two possible ways to interface a Bison-generated Java parser
10021with a scanner: the scanner may be defined by @code{%code lexer}, or
10022defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10023@code{Lexer} inner interface of the parser class. This interface also
10024contain constants for all user-defined token names and the predefined
10025@code{EOF} token.
e254a580
DJ
10026
10027In the first case, the body of the scanner class is placed in
10028@code{%code lexer} blocks. If you want to pass parameters from the
10029parser constructor to the scanner constructor, specify them with
10030@code{%lex-param}; they are passed before @code{%parse-param}s to the
10031constructor.
01b477c6 10032
59c5ac72 10033In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10034which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10035The constructor of the parser object will then accept an object
10036implementing the interface; @code{%lex-param} is not used in this
10037case.
10038
10039In both cases, the scanner has to implement the following methods.
10040
e254a580
DJ
10041@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10042This method is defined by the user to emit an error message. The first
10043parameter is omitted if location tracking is not active. Its type can be
67501061 10044changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10045@end deftypemethod
10046
e254a580 10047@deftypemethod {Lexer} {int} yylex ()
8405b70c 10048Return the next token. Its type is the return value, its semantic
f50bfcd6 10049value and location are saved and returned by the their methods in the
e254a580
DJ
10050interface.
10051
67501061 10052Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10053Default is @code{java.io.IOException}.
8405b70c
PB
10054@end deftypemethod
10055
10056@deftypemethod {Lexer} {Position} getStartPos ()
10057@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10058Return respectively the first position of the last token that
10059@code{yylex} returned, and the first position beyond it. These
10060methods are not needed unless location tracking is active.
8405b70c 10061
67501061 10062The return type can be changed using @samp{%define position_type
8405b70c
PB
10063"@var{class-name}".}
10064@end deftypemethod
10065
10066@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10067Return the semantic value of the last token that yylex returned.
8405b70c 10068
67501061 10069The return type can be changed using @samp{%define stype
8405b70c
PB
10070"@var{class-name}".}
10071@end deftypemethod
10072
10073
e254a580
DJ
10074@node Java Action Features
10075@subsection Special Features for Use in Java Actions
10076
10077The following special constructs can be uses in Java actions.
10078Other analogous C action features are currently unavailable for Java.
10079
67501061 10080Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10081actions, and initial actions specified by @code{%initial-action}.
10082
10083@defvar $@var{n}
10084The semantic value for the @var{n}th component of the current rule.
10085This may not be assigned to.
10086@xref{Java Semantic Values}.
10087@end defvar
10088
10089@defvar $<@var{typealt}>@var{n}
10090Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10091@xref{Java Semantic Values}.
10092@end defvar
10093
10094@defvar $$
10095The semantic value for the grouping made by the current rule. As a
10096value, this is in the base type (@code{Object} or as specified by
67501061 10097@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10098casts are not allowed on the left-hand side of Java assignments.
10099Use an explicit Java cast if the correct subtype is needed.
10100@xref{Java Semantic Values}.
10101@end defvar
10102
10103@defvar $<@var{typealt}>$
10104Same as @code{$$} since Java always allow assigning to the base type.
10105Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10106for setting the value but there is currently no easy way to distinguish
10107these constructs.
10108@xref{Java Semantic Values}.
10109@end defvar
10110
10111@defvar @@@var{n}
10112The location information of the @var{n}th component of the current rule.
10113This may not be assigned to.
10114@xref{Java Location Values}.
10115@end defvar
10116
10117@defvar @@$
10118The location information of the grouping made by the current rule.
10119@xref{Java Location Values}.
10120@end defvar
10121
10122@deffn {Statement} {return YYABORT;}
10123Return immediately from the parser, indicating failure.
10124@xref{Java Parser Interface}.
10125@end deffn
8405b70c 10126
e254a580
DJ
10127@deffn {Statement} {return YYACCEPT;}
10128Return immediately from the parser, indicating success.
10129@xref{Java Parser Interface}.
10130@end deffn
8405b70c 10131
e254a580 10132@deffn {Statement} {return YYERROR;}
c265fd6b 10133Start error recovery without printing an error message.
e254a580
DJ
10134@xref{Error Recovery}.
10135@end deffn
8405b70c 10136
e254a580
DJ
10137@deftypefn {Function} {boolean} recovering ()
10138Return whether error recovery is being done. In this state, the parser
10139reads token until it reaches a known state, and then restarts normal
10140operation.
10141@xref{Error Recovery}.
10142@end deftypefn
8405b70c 10143
1979121c
DJ
10144@deftypefn {Function} {void} yyerror (String @var{msg})
10145@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10146@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10147Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10148instance in use. The @code{Location} and @code{Position} parameters are
10149available only if location tracking is active.
e254a580 10150@end deftypefn
8405b70c 10151
8405b70c 10152
8405b70c
PB
10153@node Java Differences
10154@subsection Differences between C/C++ and Java Grammars
10155
10156The different structure of the Java language forces several differences
10157between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10158section summarizes these differences.
8405b70c
PB
10159
10160@itemize
10161@item
01b477c6 10162Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10163@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10164macros. Instead, they should be preceded by @code{return} when they
10165appear in an action. The actual definition of these symbols is
8405b70c
PB
10166opaque to the Bison grammar, and it might change in the future. The
10167only meaningful operation that you can do, is to return them.
e254a580 10168See @pxref{Java Action Features}.
8405b70c
PB
10169
10170Note that of these three symbols, only @code{YYACCEPT} and
10171@code{YYABORT} will cause a return from the @code{yyparse}
10172method@footnote{Java parsers include the actions in a separate
10173method than @code{yyparse} in order to have an intuitive syntax that
10174corresponds to these C macros.}.
10175
e254a580
DJ
10176@item
10177Java lacks unions, so @code{%union} has no effect. Instead, semantic
10178values have a common base type: @code{Object} or as specified by
f50bfcd6 10179@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10180@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10181an union. The type of @code{$$}, even with angle brackets, is the base
10182type since Java casts are not allow on the left-hand side of assignments.
10183Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10184left-hand side of assignments. See @pxref{Java Semantic Values} and
10185@pxref{Java Action Features}.
10186
8405b70c 10187@item
f50bfcd6 10188The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10189@table @asis
10190@item @code{%code imports}
10191blocks are placed at the beginning of the Java source code. They may
10192include copyright notices. For a @code{package} declarations, it is
67501061 10193suggested to use @samp{%define package} instead.
8405b70c 10194
01b477c6
PB
10195@item unqualified @code{%code}
10196blocks are placed inside the parser class.
10197
10198@item @code{%code lexer}
10199blocks, if specified, should include the implementation of the
10200scanner. If there is no such block, the scanner can be any class
10201that implements the appropriate interface (see @pxref{Java Scanner
10202Interface}).
29553547 10203@end table
8405b70c
PB
10204
10205Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10206In particular, @code{%@{ @dots{} %@}} blocks should not be used
10207and may give an error in future versions of Bison.
10208
01b477c6 10209The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10210be used to define other classes used by the parser @emph{outside}
10211the parser class.
8405b70c
PB
10212@end itemize
10213
e254a580
DJ
10214
10215@node Java Declarations Summary
10216@subsection Java Declarations Summary
10217
10218This summary only include declarations specific to Java or have special
10219meaning when used in a Java parser.
10220
10221@deffn {Directive} {%language "Java"}
10222Generate a Java class for the parser.
10223@end deffn
10224
10225@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10226A parameter for the lexer class defined by @code{%code lexer}
10227@emph{only}, added as parameters to the lexer constructor and the parser
10228constructor that @emph{creates} a lexer. Default is none.
10229@xref{Java Scanner Interface}.
10230@end deffn
10231
10232@deffn {Directive} %name-prefix "@var{prefix}"
10233The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10234@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10235@xref{Java Bison Interface}.
10236@end deffn
10237
10238@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10239A parameter for the parser class added as parameters to constructor(s)
10240and as fields initialized by the constructor(s). Default is none.
10241@xref{Java Parser Interface}.
10242@end deffn
10243
10244@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10245Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10246@xref{Java Semantic Values}.
10247@end deffn
10248
10249@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10250Declare the type of nonterminals. Note that the angle brackets enclose
10251a Java @emph{type}.
10252@xref{Java Semantic Values}.
10253@end deffn
10254
10255@deffn {Directive} %code @{ @var{code} @dots{} @}
10256Code appended to the inside of the parser class.
10257@xref{Java Differences}.
10258@end deffn
10259
10260@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10261Code inserted just after the @code{package} declaration.
10262@xref{Java Differences}.
10263@end deffn
10264
1979121c
DJ
10265@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10266Code inserted at the beginning of the parser constructor body.
10267@xref{Java Parser Interface}.
10268@end deffn
10269
e254a580
DJ
10270@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10271Code added to the body of a inner lexer class within the parser class.
10272@xref{Java Scanner Interface}.
10273@end deffn
10274
10275@deffn {Directive} %% @var{code} @dots{}
10276Code (after the second @code{%%}) appended to the end of the file,
10277@emph{outside} the parser class.
10278@xref{Java Differences}.
10279@end deffn
10280
10281@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10282Not supported. Use @code{%code imports} instead.
e254a580
DJ
10283@xref{Java Differences}.
10284@end deffn
10285
10286@deffn {Directive} {%define abstract}
10287Whether the parser class is declared @code{abstract}. Default is false.
10288@xref{Java Bison Interface}.
10289@end deffn
10290
1979121c
DJ
10291@deffn {Directive} {%define annotations} "@var{annotations}"
10292The Java annotations for the parser class. Default is none.
10293@xref{Java Bison Interface}.
10294@end deffn
10295
e254a580
DJ
10296@deffn {Directive} {%define extends} "@var{superclass}"
10297The superclass of the parser class. Default is none.
10298@xref{Java Bison Interface}.
10299@end deffn
10300
10301@deffn {Directive} {%define final}
10302Whether the parser class is declared @code{final}. Default is false.
10303@xref{Java Bison Interface}.
10304@end deffn
10305
10306@deffn {Directive} {%define implements} "@var{interfaces}"
10307The implemented interfaces of the parser class, a comma-separated list.
10308Default is none.
10309@xref{Java Bison Interface}.
10310@end deffn
10311
1979121c
DJ
10312@deffn {Directive} {%define init_throws} "@var{exceptions}"
10313The exceptions thrown by @code{%code init} from the parser class
10314constructor. Default is none.
10315@xref{Java Parser Interface}.
10316@end deffn
10317
e254a580
DJ
10318@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10319The exceptions thrown by the @code{yylex} method of the lexer, a
10320comma-separated list. Default is @code{java.io.IOException}.
10321@xref{Java Scanner Interface}.
10322@end deffn
10323
10324@deffn {Directive} {%define location_type} "@var{class}"
10325The name of the class used for locations (a range between two
10326positions). This class is generated as an inner class of the parser
10327class by @command{bison}. Default is @code{Location}.
10328@xref{Java Location Values}.
10329@end deffn
10330
10331@deffn {Directive} {%define package} "@var{package}"
10332The package to put the parser class in. Default is none.
10333@xref{Java Bison Interface}.
10334@end deffn
10335
10336@deffn {Directive} {%define parser_class_name} "@var{name}"
10337The name of the parser class. Default is @code{YYParser} or
10338@code{@var{name-prefix}Parser}.
10339@xref{Java Bison Interface}.
10340@end deffn
10341
10342@deffn {Directive} {%define position_type} "@var{class}"
10343The name of the class used for positions. This class must be supplied by
10344the user. Default is @code{Position}.
10345@xref{Java Location Values}.
10346@end deffn
10347
10348@deffn {Directive} {%define public}
10349Whether the parser class is declared @code{public}. Default is false.
10350@xref{Java Bison Interface}.
10351@end deffn
10352
10353@deffn {Directive} {%define stype} "@var{class}"
10354The base type of semantic values. Default is @code{Object}.
10355@xref{Java Semantic Values}.
10356@end deffn
10357
10358@deffn {Directive} {%define strictfp}
10359Whether the parser class is declared @code{strictfp}. Default is false.
10360@xref{Java Bison Interface}.
10361@end deffn
10362
10363@deffn {Directive} {%define throws} "@var{exceptions}"
10364The exceptions thrown by user-supplied parser actions and
10365@code{%initial-action}, a comma-separated list. Default is none.
10366@xref{Java Parser Interface}.
10367@end deffn
10368
10369
12545799 10370@c ================================================= FAQ
d1a1114f
AD
10371
10372@node FAQ
10373@chapter Frequently Asked Questions
10374@cindex frequently asked questions
10375@cindex questions
10376
10377Several questions about Bison come up occasionally. Here some of them
10378are addressed.
10379
10380@menu
55ba27be
AD
10381* Memory Exhausted:: Breaking the Stack Limits
10382* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10383* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10384* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10385* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10386* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10387* I can't build Bison:: Troubleshooting
10388* Where can I find help?:: Troubleshouting
10389* Bug Reports:: Troublereporting
8405b70c 10390* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10391* Beta Testing:: Experimenting development versions
10392* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10393@end menu
10394
1a059451
PE
10395@node Memory Exhausted
10396@section Memory Exhausted
d1a1114f
AD
10397
10398@display
1a059451 10399My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10400message. What can I do?
10401@end display
10402
10403This question is already addressed elsewhere, @xref{Recursion,
10404,Recursive Rules}.
10405
e64fec0a
PE
10406@node How Can I Reset the Parser
10407@section How Can I Reset the Parser
5b066063 10408
0e14ad77
PE
10409The following phenomenon has several symptoms, resulting in the
10410following typical questions:
5b066063
AD
10411
10412@display
10413I invoke @code{yyparse} several times, and on correct input it works
10414properly; but when a parse error is found, all the other calls fail
0e14ad77 10415too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10416@end display
10417
10418@noindent
10419or
10420
10421@display
0e14ad77 10422My parser includes support for an @samp{#include}-like feature, in
5b066063 10423which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10424although I did specify @samp{%define api.pure}.
5b066063
AD
10425@end display
10426
0e14ad77
PE
10427These problems typically come not from Bison itself, but from
10428Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10429speed, they might not notice a change of input file. As a
10430demonstration, consider the following source file,
10431@file{first-line.l}:
10432
10433@verbatim
10434%{
10435#include <stdio.h>
10436#include <stdlib.h>
10437%}
10438%%
10439.*\n ECHO; return 1;
10440%%
10441int
0e14ad77 10442yyparse (char const *file)
5b066063
AD
10443{
10444 yyin = fopen (file, "r");
10445 if (!yyin)
10446 exit (2);
fa7e68c3 10447 /* One token only. */
5b066063 10448 yylex ();
0e14ad77 10449 if (fclose (yyin) != 0)
5b066063
AD
10450 exit (3);
10451 return 0;
10452}
10453
10454int
0e14ad77 10455main (void)
5b066063
AD
10456{
10457 yyparse ("input");
10458 yyparse ("input");
10459 return 0;
10460}
10461@end verbatim
10462
10463@noindent
10464If the file @file{input} contains
10465
10466@verbatim
10467input:1: Hello,
10468input:2: World!
10469@end verbatim
10470
10471@noindent
0e14ad77 10472then instead of getting the first line twice, you get:
5b066063
AD
10473
10474@example
10475$ @kbd{flex -ofirst-line.c first-line.l}
10476$ @kbd{gcc -ofirst-line first-line.c -ll}
10477$ @kbd{./first-line}
10478input:1: Hello,
10479input:2: World!
10480@end example
10481
0e14ad77
PE
10482Therefore, whenever you change @code{yyin}, you must tell the
10483Lex-generated scanner to discard its current buffer and switch to the
10484new one. This depends upon your implementation of Lex; see its
10485documentation for more. For Flex, it suffices to call
10486@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10487Flex-generated scanner needs to read from several input streams to
10488handle features like include files, you might consider using Flex
10489functions like @samp{yy_switch_to_buffer} that manipulate multiple
10490input buffers.
5b066063 10491
b165c324
AD
10492If your Flex-generated scanner uses start conditions (@pxref{Start
10493conditions, , Start conditions, flex, The Flex Manual}), you might
10494also want to reset the scanner's state, i.e., go back to the initial
10495start condition, through a call to @samp{BEGIN (0)}.
10496
fef4cb51
AD
10497@node Strings are Destroyed
10498@section Strings are Destroyed
10499
10500@display
c7e441b4 10501My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10502them. Instead of reporting @samp{"foo", "bar"}, it reports
10503@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10504@end display
10505
10506This error is probably the single most frequent ``bug report'' sent to
10507Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10508of the scanner. Consider the following Lex code:
fef4cb51
AD
10509
10510@verbatim
10511%{
10512#include <stdio.h>
10513char *yylval = NULL;
10514%}
10515%%
10516.* yylval = yytext; return 1;
10517\n /* IGNORE */
10518%%
10519int
10520main ()
10521{
fa7e68c3 10522 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10523 char *fst = (yylex (), yylval);
10524 char *snd = (yylex (), yylval);
10525 printf ("\"%s\", \"%s\"\n", fst, snd);
10526 return 0;
10527}
10528@end verbatim
10529
10530If you compile and run this code, you get:
10531
10532@example
10533$ @kbd{flex -osplit-lines.c split-lines.l}
10534$ @kbd{gcc -osplit-lines split-lines.c -ll}
10535$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10536"one
10537two", "two"
10538@end example
10539
10540@noindent
10541this is because @code{yytext} is a buffer provided for @emph{reading}
10542in the action, but if you want to keep it, you have to duplicate it
10543(e.g., using @code{strdup}). Note that the output may depend on how
10544your implementation of Lex handles @code{yytext}. For instance, when
10545given the Lex compatibility option @option{-l} (which triggers the
10546option @samp{%array}) Flex generates a different behavior:
10547
10548@example
10549$ @kbd{flex -l -osplit-lines.c split-lines.l}
10550$ @kbd{gcc -osplit-lines split-lines.c -ll}
10551$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10552"two", "two"
10553@end example
10554
10555
2fa09258
AD
10556@node Implementing Gotos/Loops
10557@section Implementing Gotos/Loops
a06ea4aa
AD
10558
10559@display
10560My simple calculator supports variables, assignments, and functions,
2fa09258 10561but how can I implement gotos, or loops?
a06ea4aa
AD
10562@end display
10563
10564Although very pedagogical, the examples included in the document blur
a1c84f45 10565the distinction to make between the parser---whose job is to recover
a06ea4aa 10566the structure of a text and to transmit it to subsequent modules of
a1c84f45 10567the program---and the processing (such as the execution) of this
a06ea4aa
AD
10568structure. This works well with so called straight line programs,
10569i.e., precisely those that have a straightforward execution model:
10570execute simple instructions one after the others.
10571
10572@cindex abstract syntax tree
8a4281b9 10573@cindex AST
a06ea4aa
AD
10574If you want a richer model, you will probably need to use the parser
10575to construct a tree that does represent the structure it has
10576recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10577or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10578traversing it in various ways, will enable treatments such as its
10579execution or its translation, which will result in an interpreter or a
10580compiler.
10581
10582This topic is way beyond the scope of this manual, and the reader is
10583invited to consult the dedicated literature.
10584
10585
ed2e6384
AD
10586@node Multiple start-symbols
10587@section Multiple start-symbols
10588
10589@display
10590I have several closely related grammars, and I would like to share their
10591implementations. In fact, I could use a single grammar but with
10592multiple entry points.
10593@end display
10594
10595Bison does not support multiple start-symbols, but there is a very
10596simple means to simulate them. If @code{foo} and @code{bar} are the two
10597pseudo start-symbols, then introduce two new tokens, say
10598@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10599real start-symbol:
10600
10601@example
10602%token START_FOO START_BAR;
10603%start start;
10604start: START_FOO foo
10605 | START_BAR bar;
10606@end example
10607
10608These tokens prevents the introduction of new conflicts. As far as the
10609parser goes, that is all that is needed.
10610
10611Now the difficult part is ensuring that the scanner will send these
10612tokens first. If your scanner is hand-written, that should be
10613straightforward. If your scanner is generated by Lex, them there is
10614simple means to do it: recall that anything between @samp{%@{ ... %@}}
10615after the first @code{%%} is copied verbatim in the top of the generated
10616@code{yylex} function. Make sure a variable @code{start_token} is
10617available in the scanner (e.g., a global variable or using
10618@code{%lex-param} etc.), and use the following:
10619
10620@example
10621 /* @r{Prologue.} */
10622%%
10623%@{
10624 if (start_token)
10625 @{
10626 int t = start_token;
10627 start_token = 0;
10628 return t;
10629 @}
10630%@}
10631 /* @r{The rules.} */
10632@end example
10633
10634
55ba27be
AD
10635@node Secure? Conform?
10636@section Secure? Conform?
10637
10638@display
10639Is Bison secure? Does it conform to POSIX?
10640@end display
10641
10642If you're looking for a guarantee or certification, we don't provide it.
10643However, Bison is intended to be a reliable program that conforms to the
8a4281b9 10644POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10645please send us a bug report.
10646
10647@node I can't build Bison
10648@section I can't build Bison
10649
10650@display
8c5b881d
PE
10651I can't build Bison because @command{make} complains that
10652@code{msgfmt} is not found.
55ba27be
AD
10653What should I do?
10654@end display
10655
10656Like most GNU packages with internationalization support, that feature
10657is turned on by default. If you have problems building in the @file{po}
10658subdirectory, it indicates that your system's internationalization
10659support is lacking. You can re-configure Bison with
10660@option{--disable-nls} to turn off this support, or you can install GNU
10661gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10662Bison. See the file @file{ABOUT-NLS} for more information.
10663
10664
10665@node Where can I find help?
10666@section Where can I find help?
10667
10668@display
10669I'm having trouble using Bison. Where can I find help?
10670@end display
10671
10672First, read this fine manual. Beyond that, you can send mail to
10673@email{help-bison@@gnu.org}. This mailing list is intended to be
10674populated with people who are willing to answer questions about using
10675and installing Bison. Please keep in mind that (most of) the people on
10676the list have aspects of their lives which are not related to Bison (!),
10677so you may not receive an answer to your question right away. This can
10678be frustrating, but please try not to honk them off; remember that any
10679help they provide is purely voluntary and out of the kindness of their
10680hearts.
10681
10682@node Bug Reports
10683@section Bug Reports
10684
10685@display
10686I found a bug. What should I include in the bug report?
10687@end display
10688
10689Before you send a bug report, make sure you are using the latest
10690version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10691mirrors. Be sure to include the version number in your bug report. If
10692the bug is present in the latest version but not in a previous version,
10693try to determine the most recent version which did not contain the bug.
10694
10695If the bug is parser-related, you should include the smallest grammar
10696you can which demonstrates the bug. The grammar file should also be
10697complete (i.e., I should be able to run it through Bison without having
10698to edit or add anything). The smaller and simpler the grammar, the
10699easier it will be to fix the bug.
10700
10701Include information about your compilation environment, including your
10702operating system's name and version and your compiler's name and
10703version. If you have trouble compiling, you should also include a
10704transcript of the build session, starting with the invocation of
10705`configure'. Depending on the nature of the bug, you may be asked to
10706send additional files as well (such as `config.h' or `config.cache').
10707
10708Patches are most welcome, but not required. That is, do not hesitate to
10709send a bug report just because you can not provide a fix.
10710
10711Send bug reports to @email{bug-bison@@gnu.org}.
10712
8405b70c
PB
10713@node More Languages
10714@section More Languages
55ba27be
AD
10715
10716@display
8405b70c 10717Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10718favorite language here}?
10719@end display
10720
8405b70c 10721C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10722languages; contributions are welcome.
10723
10724@node Beta Testing
10725@section Beta Testing
10726
10727@display
10728What is involved in being a beta tester?
10729@end display
10730
10731It's not terribly involved. Basically, you would download a test
10732release, compile it, and use it to build and run a parser or two. After
10733that, you would submit either a bug report or a message saying that
10734everything is okay. It is important to report successes as well as
10735failures because test releases eventually become mainstream releases,
10736but only if they are adequately tested. If no one tests, development is
10737essentially halted.
10738
10739Beta testers are particularly needed for operating systems to which the
10740developers do not have easy access. They currently have easy access to
10741recent GNU/Linux and Solaris versions. Reports about other operating
10742systems are especially welcome.
10743
10744@node Mailing Lists
10745@section Mailing Lists
10746
10747@display
10748How do I join the help-bison and bug-bison mailing lists?
10749@end display
10750
10751See @url{http://lists.gnu.org/}.
a06ea4aa 10752
d1a1114f
AD
10753@c ================================================= Table of Symbols
10754
342b8b6e 10755@node Table of Symbols
bfa74976
RS
10756@appendix Bison Symbols
10757@cindex Bison symbols, table of
10758@cindex symbols in Bison, table of
10759
18b519c0 10760@deffn {Variable} @@$
3ded9a63 10761In an action, the location of the left-hand side of the rule.
88bce5a2 10762@xref{Locations, , Locations Overview}.
18b519c0 10763@end deffn
3ded9a63 10764
18b519c0 10765@deffn {Variable} @@@var{n}
3ded9a63
AD
10766In an action, the location of the @var{n}-th symbol of the right-hand
10767side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10768@end deffn
3ded9a63 10769
d013372c
AR
10770@deffn {Variable} @@@var{name}
10771In an action, the location of a symbol addressed by name.
10772@xref{Locations, , Locations Overview}.
10773@end deffn
10774
10775@deffn {Variable} @@[@var{name}]
10776In an action, the location of a symbol addressed by name.
10777@xref{Locations, , Locations Overview}.
10778@end deffn
10779
18b519c0 10780@deffn {Variable} $$
3ded9a63
AD
10781In an action, the semantic value of the left-hand side of the rule.
10782@xref{Actions}.
18b519c0 10783@end deffn
3ded9a63 10784
18b519c0 10785@deffn {Variable} $@var{n}
3ded9a63
AD
10786In an action, the semantic value of the @var{n}-th symbol of the
10787right-hand side of the rule. @xref{Actions}.
18b519c0 10788@end deffn
3ded9a63 10789
d013372c
AR
10790@deffn {Variable} $@var{name}
10791In an action, the semantic value of a symbol addressed by name.
10792@xref{Actions}.
10793@end deffn
10794
10795@deffn {Variable} $[@var{name}]
10796In an action, the semantic value of a symbol addressed by name.
10797@xref{Actions}.
10798@end deffn
10799
dd8d9022
AD
10800@deffn {Delimiter} %%
10801Delimiter used to separate the grammar rule section from the
10802Bison declarations section or the epilogue.
10803@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10804@end deffn
bfa74976 10805
dd8d9022
AD
10806@c Don't insert spaces, or check the DVI output.
10807@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
10808All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
10809to the parser implementation file. Such code forms the prologue of
10810the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 10811Grammar}.
18b519c0 10812@end deffn
bfa74976 10813
ca2a6d15
PH
10814@deffn {Directive} %?@{@var{expression}@}
10815Predicate actions. This is a type of action clause that may appear in
10816rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 10817GLR parsers during nondeterministic operation,
ca2a6d15
PH
10818this silently causes an alternative parse to die. During deterministic
10819operation, it is the same as the effect of YYERROR.
10820@xref{Semantic Predicates}.
10821
10822This feature is experimental.
10823More user feedback will help to determine whether it should become a permanent
10824feature.
10825@end deffn
10826
dd8d9022
AD
10827@deffn {Construct} /*@dots{}*/
10828Comment delimiters, as in C.
18b519c0 10829@end deffn
bfa74976 10830
dd8d9022
AD
10831@deffn {Delimiter} :
10832Separates a rule's result from its components. @xref{Rules, ,Syntax of
10833Grammar Rules}.
18b519c0 10834@end deffn
bfa74976 10835
dd8d9022
AD
10836@deffn {Delimiter} ;
10837Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10838@end deffn
bfa74976 10839
dd8d9022
AD
10840@deffn {Delimiter} |
10841Separates alternate rules for the same result nonterminal.
10842@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10843@end deffn
bfa74976 10844
12e35840
JD
10845@deffn {Directive} <*>
10846Used to define a default tagged @code{%destructor} or default tagged
10847@code{%printer}.
85894313
JD
10848
10849This feature is experimental.
10850More user feedback will help to determine whether it should become a permanent
10851feature.
10852
12e35840
JD
10853@xref{Destructor Decl, , Freeing Discarded Symbols}.
10854@end deffn
10855
3ebecc24 10856@deffn {Directive} <>
12e35840
JD
10857Used to define a default tagless @code{%destructor} or default tagless
10858@code{%printer}.
85894313
JD
10859
10860This feature is experimental.
10861More user feedback will help to determine whether it should become a permanent
10862feature.
10863
12e35840
JD
10864@xref{Destructor Decl, , Freeing Discarded Symbols}.
10865@end deffn
10866
dd8d9022
AD
10867@deffn {Symbol} $accept
10868The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10869$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10870Start-Symbol}. It cannot be used in the grammar.
18b519c0 10871@end deffn
bfa74976 10872
136a0f76 10873@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10874@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10875Insert @var{code} verbatim into output parser source.
e0c07222 10876@xref{%code Summary}.
9bc0dd67
JD
10877@end deffn
10878
10879@deffn {Directive} %debug
10880Equip the parser for debugging. @xref{Decl Summary}.
10881@end deffn
10882
91d2c560 10883@ifset defaultprec
22fccf95
PE
10884@deffn {Directive} %default-prec
10885Assign a precedence to rules that lack an explicit @samp{%prec}
10886modifier. @xref{Contextual Precedence, ,Context-Dependent
10887Precedence}.
39a06c25 10888@end deffn
91d2c560 10889@end ifset
39a06c25 10890
148d66d8
JD
10891@deffn {Directive} %define @var{define-variable}
10892@deffnx {Directive} %define @var{define-variable} @var{value}
cf499cff 10893@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10894Define a variable to adjust Bison's behavior.
10895@xref{Decl Summary,,%define}.
10896@end deffn
10897
18b519c0 10898@deffn {Directive} %defines
ff7571c0
JD
10899Bison declaration to create a parser header file, which is usually
10900meant for the scanner. @xref{Decl Summary}.
18b519c0 10901@end deffn
6deb4447 10902
02975b9a
JD
10903@deffn {Directive} %defines @var{defines-file}
10904Same as above, but save in the file @var{defines-file}.
10905@xref{Decl Summary}.
10906@end deffn
10907
18b519c0 10908@deffn {Directive} %destructor
258b75ca 10909Specify how the parser should reclaim the memory associated to
fa7e68c3 10910discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10911@end deffn
72f889cc 10912
18b519c0 10913@deffn {Directive} %dprec
676385e2 10914Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10915time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 10916GLR Parsers}.
18b519c0 10917@end deffn
676385e2 10918
dd8d9022
AD
10919@deffn {Symbol} $end
10920The predefined token marking the end of the token stream. It cannot be
10921used in the grammar.
10922@end deffn
10923
10924@deffn {Symbol} error
10925A token name reserved for error recovery. This token may be used in
10926grammar rules so as to allow the Bison parser to recognize an error in
10927the grammar without halting the process. In effect, a sentence
10928containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10929token @code{error} becomes the current lookahead token. Actions
10930corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10931token is reset to the token that originally caused the violation.
10932@xref{Error Recovery}.
18d192f0
AD
10933@end deffn
10934
18b519c0 10935@deffn {Directive} %error-verbose
cf499cff 10936An obsolete directive standing for @samp{%define parse.error verbose}.
18b519c0 10937@end deffn
2a8d363a 10938
02975b9a 10939@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10940Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10941Summary}.
18b519c0 10942@end deffn
d8988b2f 10943
18b519c0 10944@deffn {Directive} %glr-parser
8a4281b9
JD
10945Bison declaration to produce a GLR parser. @xref{GLR
10946Parsers, ,Writing GLR Parsers}.
18b519c0 10947@end deffn
676385e2 10948
dd8d9022
AD
10949@deffn {Directive} %initial-action
10950Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10951@end deffn
10952
e6e704dc
JD
10953@deffn {Directive} %language
10954Specify the programming language for the generated parser.
10955@xref{Decl Summary}.
10956@end deffn
10957
18b519c0 10958@deffn {Directive} %left
d78f0ac9 10959Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10960@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10961@end deffn
bfa74976 10962
2055a44e
AD
10963@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
10964Bison declaration to specifying additional arguments that
2a8d363a
AD
10965@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10966for Pure Parsers}.
18b519c0 10967@end deffn
2a8d363a 10968
18b519c0 10969@deffn {Directive} %merge
676385e2 10970Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10971reduce/reduce conflict with a rule having the same merging function, the
676385e2 10972function is applied to the two semantic values to get a single result.
8a4281b9 10973@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10974@end deffn
676385e2 10975
02975b9a 10976@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10977Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10978@end deffn
d8988b2f 10979
91d2c560 10980@ifset defaultprec
22fccf95
PE
10981@deffn {Directive} %no-default-prec
10982Do not assign a precedence to rules that lack an explicit @samp{%prec}
10983modifier. @xref{Contextual Precedence, ,Context-Dependent
10984Precedence}.
10985@end deffn
91d2c560 10986@end ifset
22fccf95 10987
18b519c0 10988@deffn {Directive} %no-lines
931c7513 10989Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 10990parser implementation file. @xref{Decl Summary}.
18b519c0 10991@end deffn
931c7513 10992
18b519c0 10993@deffn {Directive} %nonassoc
d78f0ac9 10994Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10995@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10996@end deffn
bfa74976 10997
02975b9a 10998@deffn {Directive} %output "@var{file}"
ff7571c0
JD
10999Bison declaration to set the name of the parser implementation file.
11000@xref{Decl Summary}.
18b519c0 11001@end deffn
d8988b2f 11002
2055a44e
AD
11003@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11004Bison declaration to specify additional arguments that both
11005@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11006Parser Function @code{yyparse}}.
11007@end deffn
11008
11009@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11010Bison declaration to specify additional arguments that @code{yyparse}
11011should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11012@end deffn
2a8d363a 11013
18b519c0 11014@deffn {Directive} %prec
bfa74976
RS
11015Bison declaration to assign a precedence to a specific rule.
11016@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11017@end deffn
bfa74976 11018
d78f0ac9
AD
11019@deffn {Directive} %precedence
11020Bison declaration to assign precedence to token(s), but no associativity
11021@xref{Precedence Decl, ,Operator Precedence}.
11022@end deffn
11023
18b519c0 11024@deffn {Directive} %pure-parser
67501061 11025Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 11026for which Bison is more careful to warn about unreasonable usage.
18b519c0 11027@end deffn
bfa74976 11028
b50d2359 11029@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11030Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11031Require a Version of Bison}.
b50d2359
AD
11032@end deffn
11033
18b519c0 11034@deffn {Directive} %right
d78f0ac9 11035Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11036@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11037@end deffn
bfa74976 11038
e6e704dc
JD
11039@deffn {Directive} %skeleton
11040Specify the skeleton to use; usually for development.
11041@xref{Decl Summary}.
11042@end deffn
11043
18b519c0 11044@deffn {Directive} %start
704a47c4
AD
11045Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11046Start-Symbol}.
18b519c0 11047@end deffn
bfa74976 11048
18b519c0 11049@deffn {Directive} %token
bfa74976
RS
11050Bison declaration to declare token(s) without specifying precedence.
11051@xref{Token Decl, ,Token Type Names}.
18b519c0 11052@end deffn
bfa74976 11053
18b519c0 11054@deffn {Directive} %token-table
ff7571c0
JD
11055Bison declaration to include a token name table in the parser
11056implementation file. @xref{Decl Summary}.
18b519c0 11057@end deffn
931c7513 11058
18b519c0 11059@deffn {Directive} %type
704a47c4
AD
11060Bison declaration to declare nonterminals. @xref{Type Decl,
11061,Nonterminal Symbols}.
18b519c0 11062@end deffn
bfa74976 11063
dd8d9022
AD
11064@deffn {Symbol} $undefined
11065The predefined token onto which all undefined values returned by
11066@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11067@code{error}.
11068@end deffn
11069
18b519c0 11070@deffn {Directive} %union
bfa74976
RS
11071Bison declaration to specify several possible data types for semantic
11072values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11073@end deffn
bfa74976 11074
dd8d9022
AD
11075@deffn {Macro} YYABORT
11076Macro to pretend that an unrecoverable syntax error has occurred, by
11077making @code{yyparse} return 1 immediately. The error reporting
11078function @code{yyerror} is not called. @xref{Parser Function, ,The
11079Parser Function @code{yyparse}}.
8405b70c
PB
11080
11081For Java parsers, this functionality is invoked using @code{return YYABORT;}
11082instead.
dd8d9022 11083@end deffn
3ded9a63 11084
dd8d9022
AD
11085@deffn {Macro} YYACCEPT
11086Macro to pretend that a complete utterance of the language has been
11087read, by making @code{yyparse} return 0 immediately.
11088@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11089
11090For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11091instead.
dd8d9022 11092@end deffn
bfa74976 11093
dd8d9022 11094@deffn {Macro} YYBACKUP
742e4900 11095Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11096token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11097@end deffn
bfa74976 11098
dd8d9022 11099@deffn {Variable} yychar
32c29292 11100External integer variable that contains the integer value of the
742e4900 11101lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11102@code{yyparse}.) Error-recovery rule actions may examine this variable.
11103@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11104@end deffn
bfa74976 11105
dd8d9022
AD
11106@deffn {Variable} yyclearin
11107Macro used in error-recovery rule actions. It clears the previous
742e4900 11108lookahead token. @xref{Error Recovery}.
18b519c0 11109@end deffn
bfa74976 11110
dd8d9022
AD
11111@deffn {Macro} YYDEBUG
11112Macro to define to equip the parser with tracing code. @xref{Tracing,
11113,Tracing Your Parser}.
18b519c0 11114@end deffn
bfa74976 11115
dd8d9022
AD
11116@deffn {Variable} yydebug
11117External integer variable set to zero by default. If @code{yydebug}
11118is given a nonzero value, the parser will output information on input
11119symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11120@end deffn
bfa74976 11121
dd8d9022
AD
11122@deffn {Macro} yyerrok
11123Macro to cause parser to recover immediately to its normal mode
11124after a syntax error. @xref{Error Recovery}.
11125@end deffn
11126
11127@deffn {Macro} YYERROR
11128Macro to pretend that a syntax error has just been detected: call
11129@code{yyerror} and then perform normal error recovery if possible
11130(@pxref{Error Recovery}), or (if recovery is impossible) make
11131@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11132
11133For Java parsers, this functionality is invoked using @code{return YYERROR;}
11134instead.
dd8d9022
AD
11135@end deffn
11136
11137@deffn {Function} yyerror
11138User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11139@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11140@end deffn
11141
11142@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11143An obsolete macro used in the @file{yacc.c} skeleton, that you define
11144with @code{#define} in the prologue to request verbose, specific error
11145message strings when @code{yyerror} is called. It doesn't matter what
11146definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11147it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11148(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11149@end deffn
11150
11151@deffn {Macro} YYINITDEPTH
11152Macro for specifying the initial size of the parser stack.
1a059451 11153@xref{Memory Management}.
dd8d9022
AD
11154@end deffn
11155
11156@deffn {Function} yylex
11157User-supplied lexical analyzer function, called with no arguments to get
11158the next token. @xref{Lexical, ,The Lexical Analyzer Function
11159@code{yylex}}.
11160@end deffn
11161
11162@deffn {Macro} YYLEX_PARAM
11163An obsolete macro for specifying an extra argument (or list of extra
32c29292 11164arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11165macro is deprecated, and is supported only for Yacc like parsers.
11166@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11167@end deffn
11168
11169@deffn {Variable} yylloc
11170External variable in which @code{yylex} should place the line and column
11171numbers associated with a token. (In a pure parser, it is a local
11172variable within @code{yyparse}, and its address is passed to
32c29292
JD
11173@code{yylex}.)
11174You can ignore this variable if you don't use the @samp{@@} feature in the
11175grammar actions.
11176@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11177In semantic actions, it stores the location of the lookahead token.
32c29292 11178@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11179@end deffn
11180
11181@deffn {Type} YYLTYPE
11182Data type of @code{yylloc}; by default, a structure with four
11183members. @xref{Location Type, , Data Types of Locations}.
11184@end deffn
11185
11186@deffn {Variable} yylval
11187External variable in which @code{yylex} should place the semantic
11188value associated with a token. (In a pure parser, it is a local
11189variable within @code{yyparse}, and its address is passed to
32c29292
JD
11190@code{yylex}.)
11191@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11192In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11193@xref{Actions, ,Actions}.
dd8d9022
AD
11194@end deffn
11195
11196@deffn {Macro} YYMAXDEPTH
1a059451
PE
11197Macro for specifying the maximum size of the parser stack. @xref{Memory
11198Management}.
dd8d9022
AD
11199@end deffn
11200
11201@deffn {Variable} yynerrs
8a2800e7 11202Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11203(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11204pure push parser, it is a member of yypstate.)
dd8d9022
AD
11205@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11206@end deffn
11207
11208@deffn {Function} yyparse
11209The parser function produced by Bison; call this function to start
11210parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11211@end deffn
11212
9987d1b3 11213@deffn {Function} yypstate_delete
f4101aa6 11214The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11215call this function to delete the memory associated with a parser.
f4101aa6 11216@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11217@code{yypstate_delete}}.
59da312b
JD
11218(The current push parsing interface is experimental and may evolve.
11219More user feedback will help to stabilize it.)
9987d1b3
JD
11220@end deffn
11221
11222@deffn {Function} yypstate_new
f4101aa6 11223The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11224call this function to create a new parser.
f4101aa6 11225@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11226@code{yypstate_new}}.
59da312b
JD
11227(The current push parsing interface is experimental and may evolve.
11228More user feedback will help to stabilize it.)
9987d1b3
JD
11229@end deffn
11230
11231@deffn {Function} yypull_parse
f4101aa6
AD
11232The parser function produced by Bison in push mode; call this function to
11233parse the rest of the input stream.
11234@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11235@code{yypull_parse}}.
59da312b
JD
11236(The current push parsing interface is experimental and may evolve.
11237More user feedback will help to stabilize it.)
9987d1b3
JD
11238@end deffn
11239
11240@deffn {Function} yypush_parse
f4101aa6
AD
11241The parser function produced by Bison in push mode; call this function to
11242parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11243@code{yypush_parse}}.
59da312b
JD
11244(The current push parsing interface is experimental and may evolve.
11245More user feedback will help to stabilize it.)
9987d1b3
JD
11246@end deffn
11247
dd8d9022
AD
11248@deffn {Macro} YYPARSE_PARAM
11249An obsolete macro for specifying the name of a parameter that
11250@code{yyparse} should accept. The use of this macro is deprecated, and
11251is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11252Conventions for Pure Parsers}.
11253@end deffn
11254
11255@deffn {Macro} YYRECOVERING
02103984
PE
11256The expression @code{YYRECOVERING ()} yields 1 when the parser
11257is recovering from a syntax error, and 0 otherwise.
11258@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11259@end deffn
11260
11261@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11262Macro used to control the use of @code{alloca} when the
11263deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11264the parser will use @code{malloc} to extend its stacks. If defined to
112651, the parser will use @code{alloca}. Values other than 0 and 1 are
11266reserved for future Bison extensions. If not defined,
11267@code{YYSTACK_USE_ALLOCA} defaults to 0.
11268
55289366 11269In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11270limited stack and with unreliable stack-overflow checking, you should
11271set @code{YYMAXDEPTH} to a value that cannot possibly result in
11272unchecked stack overflow on any of your target hosts when
11273@code{alloca} is called. You can inspect the code that Bison
11274generates in order to determine the proper numeric values. This will
11275require some expertise in low-level implementation details.
dd8d9022
AD
11276@end deffn
11277
11278@deffn {Type} YYSTYPE
11279Data type of semantic values; @code{int} by default.
11280@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11281@end deffn
bfa74976 11282
342b8b6e 11283@node Glossary
bfa74976
RS
11284@appendix Glossary
11285@cindex glossary
11286
11287@table @asis
eb45ef3b
JD
11288@item Accepting State
11289A state whose only action is the accept action.
11290The accepting state is thus a consistent state.
11291@xref{Understanding,,}.
11292
8a4281b9 11293@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11294Formal method of specifying context-free grammars originally proposed
11295by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11296committee document contributing to what became the Algol 60 report.
11297@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11298
eb45ef3b
JD
11299@item Consistent State
11300A state containing only one possible action.
5bab9d08 11301@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11302
bfa74976
RS
11303@item Context-free grammars
11304Grammars specified as rules that can be applied regardless of context.
11305Thus, if there is a rule which says that an integer can be used as an
11306expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11307permitted. @xref{Language and Grammar, ,Languages and Context-Free
11308Grammars}.
bfa74976 11309
110ef36a
JD
11310@item Default Reduction
11311The reduction that a parser should perform if the current parser state
eb45ef3b 11312contains no other action for the lookahead token.
110ef36a
JD
11313In permitted parser states, Bison declares the reduction with the
11314largest lookahead set to be the default reduction and removes that
11315lookahead set.
5bab9d08 11316@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11317
bfa74976
RS
11318@item Dynamic allocation
11319Allocation of memory that occurs during execution, rather than at
11320compile time or on entry to a function.
11321
11322@item Empty string
11323Analogous to the empty set in set theory, the empty string is a
11324character string of length zero.
11325
11326@item Finite-state stack machine
11327A ``machine'' that has discrete states in which it is said to exist at
11328each instant in time. As input to the machine is processed, the
11329machine moves from state to state as specified by the logic of the
11330machine. In the case of the parser, the input is the language being
11331parsed, and the states correspond to various stages in the grammar
c827f760 11332rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11333
8a4281b9 11334@item Generalized LR (GLR)
676385e2 11335A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11336that are not LR(1). It resolves situations that Bison's
eb45ef3b 11337deterministic parsing
676385e2
PH
11338algorithm cannot by effectively splitting off multiple parsers, trying all
11339possible parsers, and discarding those that fail in the light of additional
c827f760 11340right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11341LR Parsing}.
676385e2 11342
bfa74976
RS
11343@item Grouping
11344A language construct that is (in general) grammatically divisible;
c827f760 11345for example, `expression' or `declaration' in C@.
bfa74976
RS
11346@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11347
8a4281b9
JD
11348@item IELR(1)
11349A minimal LR(1) parser table generation algorithm.
11350That is, given any context-free grammar, IELR(1) generates
eb45ef3b 11351parser tables with the full language recognition power of canonical
8a4281b9
JD
11352LR(1) but with nearly the same number of parser states as
11353LALR(1).
eb45ef3b 11354This reduction in parser states is often an order of magnitude.
8a4281b9 11355More importantly, because canonical LR(1)'s extra parser
eb45ef3b 11356states may contain duplicate conflicts in the case of
8a4281b9
JD
11357non-LR(1) grammars, the number of conflicts for
11358IELR(1) is often an order of magnitude less as well.
eb45ef3b
JD
11359This can significantly reduce the complexity of developing of a grammar.
11360@xref{Decl Summary,,lr.type}.
11361
bfa74976
RS
11362@item Infix operator
11363An arithmetic operator that is placed between the operands on which it
11364performs some operation.
11365
11366@item Input stream
11367A continuous flow of data between devices or programs.
11368
8a4281b9 11369@item LAC (Lookahead Correction)
fcf834f9
JD
11370A parsing mechanism that fixes the problem of delayed syntax error
11371detection, which is caused by LR state merging, default reductions, and
11372the use of @code{%nonassoc}. Delayed syntax error detection results in
11373unexpected semantic actions, initiation of error recovery in the wrong
11374syntactic context, and an incorrect list of expected tokens in a verbose
11375syntax error message. @xref{Decl Summary,,parse.lac}.
11376
bfa74976
RS
11377@item Language construct
11378One of the typical usage schemas of the language. For example, one of
11379the constructs of the C language is the @code{if} statement.
11380@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11381
11382@item Left associativity
11383Operators having left associativity are analyzed from left to right:
11384@samp{a+b+c} first computes @samp{a+b} and then combines with
11385@samp{c}. @xref{Precedence, ,Operator Precedence}.
11386
11387@item Left recursion
89cab50d
AD
11388A rule whose result symbol is also its first component symbol; for
11389example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11390Rules}.
bfa74976
RS
11391
11392@item Left-to-right parsing
11393Parsing a sentence of a language by analyzing it token by token from
c827f760 11394left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11395
11396@item Lexical analyzer (scanner)
11397A function that reads an input stream and returns tokens one by one.
11398@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11399
11400@item Lexical tie-in
11401A flag, set by actions in the grammar rules, which alters the way
11402tokens are parsed. @xref{Lexical Tie-ins}.
11403
931c7513 11404@item Literal string token
14ded682 11405A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11406
742e4900
JD
11407@item Lookahead token
11408A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11409Tokens}.
bfa74976 11410
8a4281b9 11411@item LALR(1)
bfa74976 11412The class of context-free grammars that Bison (like most other parser
8a4281b9 11413generators) can handle by default; a subset of LR(1).
eb45ef3b 11414@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 11415
8a4281b9 11416@item LR(1)
bfa74976 11417The class of context-free grammars in which at most one token of
742e4900 11418lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11419
11420@item Nonterminal symbol
11421A grammar symbol standing for a grammatical construct that can
11422be expressed through rules in terms of smaller constructs; in other
11423words, a construct that is not a token. @xref{Symbols}.
11424
bfa74976
RS
11425@item Parser
11426A function that recognizes valid sentences of a language by analyzing
11427the syntax structure of a set of tokens passed to it from a lexical
11428analyzer.
11429
11430@item Postfix operator
11431An arithmetic operator that is placed after the operands upon which it
11432performs some operation.
11433
11434@item Reduction
11435Replacing a string of nonterminals and/or terminals with a single
89cab50d 11436nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11437Parser Algorithm}.
bfa74976
RS
11438
11439@item Reentrant
11440A reentrant subprogram is a subprogram which can be in invoked any
11441number of times in parallel, without interference between the various
11442invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11443
11444@item Reverse polish notation
11445A language in which all operators are postfix operators.
11446
11447@item Right recursion
89cab50d
AD
11448A rule whose result symbol is also its last component symbol; for
11449example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11450Rules}.
bfa74976
RS
11451
11452@item Semantics
11453In computer languages, the semantics are specified by the actions
11454taken for each instance of the language, i.e., the meaning of
11455each statement. @xref{Semantics, ,Defining Language Semantics}.
11456
11457@item Shift
11458A parser is said to shift when it makes the choice of analyzing
11459further input from the stream rather than reducing immediately some
c827f760 11460already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11461
11462@item Single-character literal
11463A single character that is recognized and interpreted as is.
11464@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11465
11466@item Start symbol
11467The nonterminal symbol that stands for a complete valid utterance in
11468the language being parsed. The start symbol is usually listed as the
13863333 11469first nonterminal symbol in a language specification.
bfa74976
RS
11470@xref{Start Decl, ,The Start-Symbol}.
11471
11472@item Symbol table
11473A data structure where symbol names and associated data are stored
11474during parsing to allow for recognition and use of existing
11475information in repeated uses of a symbol. @xref{Multi-function Calc}.
11476
6e649e65
PE
11477@item Syntax error
11478An error encountered during parsing of an input stream due to invalid
11479syntax. @xref{Error Recovery}.
11480
bfa74976
RS
11481@item Token
11482A basic, grammatically indivisible unit of a language. The symbol
11483that describes a token in the grammar is a terminal symbol.
11484The input of the Bison parser is a stream of tokens which comes from
11485the lexical analyzer. @xref{Symbols}.
11486
11487@item Terminal symbol
89cab50d
AD
11488A grammar symbol that has no rules in the grammar and therefore is
11489grammatically indivisible. The piece of text it represents is a token.
11490@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
11491@end table
11492
342b8b6e 11493@node Copying This Manual
f2b5126e 11494@appendix Copying This Manual
f2b5126e
PB
11495@include fdl.texi
11496
342b8b6e 11497@node Index
bfa74976
RS
11498@unnumbered Index
11499
11500@printindex cp
11501
bfa74976 11502@bye
a06ea4aa 11503
6b5a0de9
AD
11504@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11505@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11506@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11507@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11508@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11509@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11510@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11511@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11512@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11513@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11514@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11515@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11516@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11517@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11518@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11519@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11520@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11521@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11522@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11523@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11524@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11525@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11526@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11527@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11528@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11529@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11530@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11531@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11532@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11533@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9 11534@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
ff7571c0 11535@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
6b5a0de9
AD
11536@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11537@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11538@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11539@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11540@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11541@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11542@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
ff7571c0 11543@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
6b5a0de9
AD
11544@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11545@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11546@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11547@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11548@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11549@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11550@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11551@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11552@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11553@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
679e9935 11554@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
6b5a0de9 11555@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11556
11557@c Local Variables:
11558@c ispell-dictionary: "american"
11559@c fill-column: 76
11560@c End: