]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* doc/bison.texinfo (Prologue Alternatives): Fix a tiny typo.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
107* C++ Language Interface:: Creating C++ parser objects.
108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
208
93dd49ab
PE
209Tracking Locations
210
211* Location Type:: Specifying a data type for locations.
212* Actions and Locations:: Using locations in actions.
213* Location Default Action:: Defining a general way to compute locations.
214
bfa74976
RS
215Bison Declarations
216
b50d2359 217* Require Decl:: Requiring a Bison version.
bfa74976
RS
218* Token Decl:: Declaring terminal symbols.
219* Precedence Decl:: Declaring terminals with precedence and associativity.
220* Union Decl:: Declaring the set of all semantic value types.
221* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 222* Initial Action Decl:: Code run before parsing starts.
72f889cc 223* Destructor Decl:: Declaring how symbols are freed.
d6328241 224* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
225* Start Decl:: Specifying the start symbol.
226* Pure Decl:: Requesting a reentrant parser.
227* Decl Summary:: Table of all Bison declarations.
228
229Parser C-Language Interface
230
231* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 232* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
233 which reads tokens.
234* Error Reporting:: You must supply a function @code{yyerror}.
235* Action Features:: Special features for use in actions.
f7ab6a50
PE
236* Internationalization:: How to let the parser speak in the user's
237 native language.
bfa74976
RS
238
239The Lexical Analyzer Function @code{yylex}
240
241* Calling Convention:: How @code{yyparse} calls @code{yylex}.
242* Token Values:: How @code{yylex} must return the semantic value
243 of the token it has read.
95923bd6 244* Token Locations:: How @code{yylex} must return the text location
bfa74976 245 (line number, etc.) of the token, if the
93dd49ab 246 actions want that.
bfa74976
RS
247* Pure Calling:: How the calling convention differs
248 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
249
13863333 250The Bison Parser Algorithm
bfa74976 251
742e4900 252* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
253* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
254* Precedence:: Operator precedence works by resolving conflicts.
255* Contextual Precedence:: When an operator's precedence depends on context.
256* Parser States:: The parser is a finite-state-machine with stack.
257* Reduce/Reduce:: When two rules are applicable in the same situation.
258* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 259* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 260* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
261
262Operator Precedence
263
264* Why Precedence:: An example showing why precedence is needed.
265* Using Precedence:: How to specify precedence in Bison grammars.
266* Precedence Examples:: How these features are used in the previous example.
267* How Precedence:: How they work.
268
269Handling Context Dependencies
270
271* Semantic Tokens:: Token parsing can depend on the semantic context.
272* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
273* Tie-in Recovery:: Lexical tie-ins have implications for how
274 error recovery rules must be written.
275
93dd49ab 276Debugging Your Parser
ec3bc396
AD
277
278* Understanding:: Understanding the structure of your parser.
279* Tracing:: Tracing the execution of your parser.
280
bfa74976
RS
281Invoking Bison
282
13863333 283* Bison Options:: All the options described in detail,
c827f760 284 in alphabetical order by short options.
bfa74976 285* Option Cross Key:: Alphabetical list of long options.
93dd49ab 286* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 287
12545799
AD
288C++ Language Interface
289
290* C++ Parsers:: The interface to generate C++ parser classes
291* A Complete C++ Example:: Demonstrating their use
292
293C++ Parsers
294
295* C++ Bison Interface:: Asking for C++ parser generation
296* C++ Semantic Values:: %union vs. C++
297* C++ Location Values:: The position and location classes
298* C++ Parser Interface:: Instantiating and running the parser
299* C++ Scanner Interface:: Exchanges between yylex and parse
300
301A Complete C++ Example
302
303* Calc++ --- C++ Calculator:: The specifications
304* Calc++ Parsing Driver:: An active parsing context
305* Calc++ Parser:: A parser class
306* Calc++ Scanner:: A pure C++ Flex scanner
307* Calc++ Top Level:: Conducting the band
308
d1a1114f
AD
309Frequently Asked Questions
310
1a059451 311* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 312* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 313* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 314* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 315* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
316* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
317* I can't build Bison:: Troubleshooting
318* Where can I find help?:: Troubleshouting
319* Bug Reports:: Troublereporting
320* Other Languages:: Parsers in Java and others
321* Beta Testing:: Experimenting development versions
322* Mailing Lists:: Meeting other Bison users
d1a1114f 323
f2b5126e
PB
324Copying This Manual
325
326* GNU Free Documentation License:: License for copying this manual.
327
342b8b6e 328@end detailmenu
bfa74976
RS
329@end menu
330
342b8b6e 331@node Introduction
bfa74976
RS
332@unnumbered Introduction
333@cindex introduction
334
6077da58
PE
335@dfn{Bison} is a general-purpose parser generator that converts an
336annotated context-free grammar into an @acronym{LALR}(1) or
337@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 338Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
339used in simple desk calculators to complex programming languages.
340
341Bison is upward compatible with Yacc: all properly-written Yacc grammars
342ought to work with Bison with no change. Anyone familiar with Yacc
343should be able to use Bison with little trouble. You need to be fluent in
1e137b71 344C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
345
346We begin with tutorial chapters that explain the basic concepts of using
347Bison and show three explained examples, each building on the last. If you
348don't know Bison or Yacc, start by reading these chapters. Reference
349chapters follow which describe specific aspects of Bison in detail.
350
931c7513
RS
351Bison was written primarily by Robert Corbett; Richard Stallman made it
352Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 353multi-character string literals and other features.
931c7513 354
df1af54c 355This edition corresponds to version @value{VERSION} of Bison.
bfa74976 356
342b8b6e 357@node Conditions
bfa74976
RS
358@unnumbered Conditions for Using Bison
359
193d7c70
PE
360The distribution terms for Bison-generated parsers permit using the
361parsers in nonfree programs. Before Bison version 2.2, these extra
362permissions applied only when Bison was generating @acronym{LALR}(1)
363parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 364parsers could be used only in programs that were free software.
a31239f1 365
c827f760
PE
366The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
367compiler, have never
9ecbd125 368had such a requirement. They could always be used for nonfree
a31239f1
RS
369software. The reason Bison was different was not due to a special
370policy decision; it resulted from applying the usual General Public
371License to all of the Bison source code.
372
373The output of the Bison utility---the Bison parser file---contains a
374verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
375parser's implementation. (The actions from your grammar are inserted
376into this implementation at one point, but most of the rest of the
377implementation is not changed.) When we applied the @acronym{GPL}
378terms to the skeleton code for the parser's implementation,
a31239f1
RS
379the effect was to restrict the use of Bison output to free software.
380
381We didn't change the terms because of sympathy for people who want to
382make software proprietary. @strong{Software should be free.} But we
383concluded that limiting Bison's use to free software was doing little to
384encourage people to make other software free. So we decided to make the
385practical conditions for using Bison match the practical conditions for
c827f760 386using the other @acronym{GNU} tools.
bfa74976 387
193d7c70
PE
388This exception applies when Bison is generating code for a parser.
389You can tell whether the exception applies to a Bison output file by
390inspecting the file for text beginning with ``As a special
391exception@dots{}''. The text spells out the exact terms of the
392exception.
262aa8dd 393
c67a198d 394@include gpl.texi
bfa74976 395
342b8b6e 396@node Concepts
bfa74976
RS
397@chapter The Concepts of Bison
398
399This chapter introduces many of the basic concepts without which the
400details of Bison will not make sense. If you do not already know how to
401use Bison or Yacc, we suggest you start by reading this chapter carefully.
402
403@menu
404* Language and Grammar:: Languages and context-free grammars,
405 as mathematical ideas.
406* Grammar in Bison:: How we represent grammars for Bison's sake.
407* Semantic Values:: Each token or syntactic grouping can have
408 a semantic value (the value of an integer,
409 the name of an identifier, etc.).
410* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 411* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 412* Locations Overview:: Tracking Locations.
bfa74976
RS
413* Bison Parser:: What are Bison's input and output,
414 how is the output used?
415* Stages:: Stages in writing and running Bison grammars.
416* Grammar Layout:: Overall structure of a Bison grammar file.
417@end menu
418
342b8b6e 419@node Language and Grammar
bfa74976
RS
420@section Languages and Context-Free Grammars
421
bfa74976
RS
422@cindex context-free grammar
423@cindex grammar, context-free
424In order for Bison to parse a language, it must be described by a
425@dfn{context-free grammar}. This means that you specify one or more
426@dfn{syntactic groupings} and give rules for constructing them from their
427parts. For example, in the C language, one kind of grouping is called an
428`expression'. One rule for making an expression might be, ``An expression
429can be made of a minus sign and another expression''. Another would be,
430``An expression can be an integer''. As you can see, rules are often
431recursive, but there must be at least one rule which leads out of the
432recursion.
433
c827f760 434@cindex @acronym{BNF}
bfa74976
RS
435@cindex Backus-Naur form
436The most common formal system for presenting such rules for humans to read
c827f760
PE
437is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
438order to specify the language Algol 60. Any grammar expressed in
439@acronym{BNF} is a context-free grammar. The input to Bison is
440essentially machine-readable @acronym{BNF}.
bfa74976 441
c827f760
PE
442@cindex @acronym{LALR}(1) grammars
443@cindex @acronym{LR}(1) grammars
676385e2
PH
444There are various important subclasses of context-free grammar. Although it
445can handle almost all context-free grammars, Bison is optimized for what
c827f760 446are called @acronym{LALR}(1) grammars.
676385e2 447In brief, in these grammars, it must be possible to
bfa74976 448tell how to parse any portion of an input string with just a single
742e4900 449token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
450@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
451restrictions that are
bfa74976 452hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
453@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
454@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
455more information on this.
bfa74976 456
c827f760
PE
457@cindex @acronym{GLR} parsing
458@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 459@cindex ambiguous grammars
9d9b8b70 460@cindex nondeterministic parsing
9501dc6e
AD
461
462Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
463roughly that the next grammar rule to apply at any point in the input is
464uniquely determined by the preceding input and a fixed, finite portion
742e4900 465(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 466grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 467apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 468grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 469lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
470With the proper declarations, Bison is also able to parse these more
471general context-free grammars, using a technique known as @acronym{GLR}
472parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
473are able to handle any context-free grammar for which the number of
474possible parses of any given string is finite.
676385e2 475
bfa74976
RS
476@cindex symbols (abstract)
477@cindex token
478@cindex syntactic grouping
479@cindex grouping, syntactic
9501dc6e
AD
480In the formal grammatical rules for a language, each kind of syntactic
481unit or grouping is named by a @dfn{symbol}. Those which are built by
482grouping smaller constructs according to grammatical rules are called
bfa74976
RS
483@dfn{nonterminal symbols}; those which can't be subdivided are called
484@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
485corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 486corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
487
488We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
489nonterminal, mean. The tokens of C are identifiers, constants (numeric
490and string), and the various keywords, arithmetic operators and
491punctuation marks. So the terminal symbols of a grammar for C include
492`identifier', `number', `string', plus one symbol for each keyword,
493operator or punctuation mark: `if', `return', `const', `static', `int',
494`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
495(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
496lexicography, not grammar.)
497
498Here is a simple C function subdivided into tokens:
499
9edcd895
AD
500@ifinfo
501@example
502int /* @r{keyword `int'} */
14d4662b 503square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
504 @r{identifier, close-paren} */
505@{ /* @r{open-brace} */
aa08666d
AD
506 return x * x; /* @r{keyword `return', identifier, asterisk,}
507 @r{identifier, semicolon} */
9edcd895
AD
508@} /* @r{close-brace} */
509@end example
510@end ifinfo
511@ifnotinfo
bfa74976
RS
512@example
513int /* @r{keyword `int'} */
14d4662b 514square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 515@{ /* @r{open-brace} */
9edcd895 516 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
517@} /* @r{close-brace} */
518@end example
9edcd895 519@end ifnotinfo
bfa74976
RS
520
521The syntactic groupings of C include the expression, the statement, the
522declaration, and the function definition. These are represented in the
523grammar of C by nonterminal symbols `expression', `statement',
524`declaration' and `function definition'. The full grammar uses dozens of
525additional language constructs, each with its own nonterminal symbol, in
526order to express the meanings of these four. The example above is a
527function definition; it contains one declaration, and one statement. In
528the statement, each @samp{x} is an expression and so is @samp{x * x}.
529
530Each nonterminal symbol must have grammatical rules showing how it is made
531out of simpler constructs. For example, one kind of C statement is the
532@code{return} statement; this would be described with a grammar rule which
533reads informally as follows:
534
535@quotation
536A `statement' can be made of a `return' keyword, an `expression' and a
537`semicolon'.
538@end quotation
539
540@noindent
541There would be many other rules for `statement', one for each kind of
542statement in C.
543
544@cindex start symbol
545One nonterminal symbol must be distinguished as the special one which
546defines a complete utterance in the language. It is called the @dfn{start
547symbol}. In a compiler, this means a complete input program. In the C
548language, the nonterminal symbol `sequence of definitions and declarations'
549plays this role.
550
551For example, @samp{1 + 2} is a valid C expression---a valid part of a C
552program---but it is not valid as an @emph{entire} C program. In the
553context-free grammar of C, this follows from the fact that `expression' is
554not the start symbol.
555
556The Bison parser reads a sequence of tokens as its input, and groups the
557tokens using the grammar rules. If the input is valid, the end result is
558that the entire token sequence reduces to a single grouping whose symbol is
559the grammar's start symbol. If we use a grammar for C, the entire input
560must be a `sequence of definitions and declarations'. If not, the parser
561reports a syntax error.
562
342b8b6e 563@node Grammar in Bison
bfa74976
RS
564@section From Formal Rules to Bison Input
565@cindex Bison grammar
566@cindex grammar, Bison
567@cindex formal grammar
568
569A formal grammar is a mathematical construct. To define the language
570for Bison, you must write a file expressing the grammar in Bison syntax:
571a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
572
573A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 574as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
575in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
576
577The Bison representation for a terminal symbol is also called a @dfn{token
578type}. Token types as well can be represented as C-like identifiers. By
579convention, these identifiers should be upper case to distinguish them from
580nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
581@code{RETURN}. A terminal symbol that stands for a particular keyword in
582the language should be named after that keyword converted to upper case.
583The terminal symbol @code{error} is reserved for error recovery.
931c7513 584@xref{Symbols}.
bfa74976
RS
585
586A terminal symbol can also be represented as a character literal, just like
587a C character constant. You should do this whenever a token is just a
588single character (parenthesis, plus-sign, etc.): use that same character in
589a literal as the terminal symbol for that token.
590
931c7513
RS
591A third way to represent a terminal symbol is with a C string constant
592containing several characters. @xref{Symbols}, for more information.
593
bfa74976
RS
594The grammar rules also have an expression in Bison syntax. For example,
595here is the Bison rule for a C @code{return} statement. The semicolon in
596quotes is a literal character token, representing part of the C syntax for
597the statement; the naked semicolon, and the colon, are Bison punctuation
598used in every rule.
599
600@example
601stmt: RETURN expr ';'
602 ;
603@end example
604
605@noindent
606@xref{Rules, ,Syntax of Grammar Rules}.
607
342b8b6e 608@node Semantic Values
bfa74976
RS
609@section Semantic Values
610@cindex semantic value
611@cindex value, semantic
612
613A formal grammar selects tokens only by their classifications: for example,
614if a rule mentions the terminal symbol `integer constant', it means that
615@emph{any} integer constant is grammatically valid in that position. The
616precise value of the constant is irrelevant to how to parse the input: if
617@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 618grammatical.
bfa74976
RS
619
620But the precise value is very important for what the input means once it is
621parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6223989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
623has both a token type and a @dfn{semantic value}. @xref{Semantics,
624,Defining Language Semantics},
bfa74976
RS
625for details.
626
627The token type is a terminal symbol defined in the grammar, such as
628@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
629you need to know to decide where the token may validly appear and how to
630group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 631except their types.
bfa74976
RS
632
633The semantic value has all the rest of the information about the
634meaning of the token, such as the value of an integer, or the name of an
635identifier. (A token such as @code{','} which is just punctuation doesn't
636need to have any semantic value.)
637
638For example, an input token might be classified as token type
639@code{INTEGER} and have the semantic value 4. Another input token might
640have the same token type @code{INTEGER} but value 3989. When a grammar
641rule says that @code{INTEGER} is allowed, either of these tokens is
642acceptable because each is an @code{INTEGER}. When the parser accepts the
643token, it keeps track of the token's semantic value.
644
645Each grouping can also have a semantic value as well as its nonterminal
646symbol. For example, in a calculator, an expression typically has a
647semantic value that is a number. In a compiler for a programming
648language, an expression typically has a semantic value that is a tree
649structure describing the meaning of the expression.
650
342b8b6e 651@node Semantic Actions
bfa74976
RS
652@section Semantic Actions
653@cindex semantic actions
654@cindex actions, semantic
655
656In order to be useful, a program must do more than parse input; it must
657also produce some output based on the input. In a Bison grammar, a grammar
658rule can have an @dfn{action} made up of C statements. Each time the
659parser recognizes a match for that rule, the action is executed.
660@xref{Actions}.
13863333 661
bfa74976
RS
662Most of the time, the purpose of an action is to compute the semantic value
663of the whole construct from the semantic values of its parts. For example,
664suppose we have a rule which says an expression can be the sum of two
665expressions. When the parser recognizes such a sum, each of the
666subexpressions has a semantic value which describes how it was built up.
667The action for this rule should create a similar sort of value for the
668newly recognized larger expression.
669
670For example, here is a rule that says an expression can be the sum of
671two subexpressions:
672
673@example
674expr: expr '+' expr @{ $$ = $1 + $3; @}
675 ;
676@end example
677
678@noindent
679The action says how to produce the semantic value of the sum expression
680from the values of the two subexpressions.
681
676385e2 682@node GLR Parsers
c827f760
PE
683@section Writing @acronym{GLR} Parsers
684@cindex @acronym{GLR} parsing
685@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
686@findex %glr-parser
687@cindex conflicts
688@cindex shift/reduce conflicts
fa7e68c3 689@cindex reduce/reduce conflicts
676385e2 690
fa7e68c3 691In some grammars, Bison's standard
9501dc6e
AD
692@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
693certain grammar rule at a given point. That is, it may not be able to
694decide (on the basis of the input read so far) which of two possible
695reductions (applications of a grammar rule) applies, or whether to apply
696a reduction or read more of the input and apply a reduction later in the
697input. These are known respectively as @dfn{reduce/reduce} conflicts
698(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
699(@pxref{Shift/Reduce}).
700
701To use a grammar that is not easily modified to be @acronym{LALR}(1), a
702more general parsing algorithm is sometimes necessary. If you include
676385e2 703@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 704(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
705(@acronym{GLR}) parser. These parsers handle Bison grammars that
706contain no unresolved conflicts (i.e., after applying precedence
707declarations) identically to @acronym{LALR}(1) parsers. However, when
708faced with unresolved shift/reduce and reduce/reduce conflicts,
709@acronym{GLR} parsers use the simple expedient of doing both,
710effectively cloning the parser to follow both possibilities. Each of
711the resulting parsers can again split, so that at any given time, there
712can be any number of possible parses being explored. The parsers
676385e2
PH
713proceed in lockstep; that is, all of them consume (shift) a given input
714symbol before any of them proceed to the next. Each of the cloned
715parsers eventually meets one of two possible fates: either it runs into
716a parsing error, in which case it simply vanishes, or it merges with
717another parser, because the two of them have reduced the input to an
718identical set of symbols.
719
720During the time that there are multiple parsers, semantic actions are
721recorded, but not performed. When a parser disappears, its recorded
722semantic actions disappear as well, and are never performed. When a
723reduction makes two parsers identical, causing them to merge, Bison
724records both sets of semantic actions. Whenever the last two parsers
725merge, reverting to the single-parser case, Bison resolves all the
726outstanding actions either by precedences given to the grammar rules
727involved, or by performing both actions, and then calling a designated
728user-defined function on the resulting values to produce an arbitrary
729merged result.
730
fa7e68c3 731@menu
32c29292
JD
732* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
733* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
734* GLR Semantic Actions:: Deferred semantic actions have special concerns.
735* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
736@end menu
737
738@node Simple GLR Parsers
739@subsection Using @acronym{GLR} on Unambiguous Grammars
740@cindex @acronym{GLR} parsing, unambiguous grammars
741@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
742@findex %glr-parser
743@findex %expect-rr
744@cindex conflicts
745@cindex reduce/reduce conflicts
746@cindex shift/reduce conflicts
747
748In the simplest cases, you can use the @acronym{GLR} algorithm
749to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 750Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
751or (in rare cases) fall into the category of grammars in which the
752@acronym{LALR}(1) algorithm throws away too much information (they are in
753@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
754
755Consider a problem that
756arises in the declaration of enumerated and subrange types in the
757programming language Pascal. Here are some examples:
758
759@example
760type subrange = lo .. hi;
761type enum = (a, b, c);
762@end example
763
764@noindent
765The original language standard allows only numeric
766literals and constant identifiers for the subrange bounds (@samp{lo}
767and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76810206) and many other
769Pascal implementations allow arbitrary expressions there. This gives
770rise to the following situation, containing a superfluous pair of
771parentheses:
772
773@example
774type subrange = (a) .. b;
775@end example
776
777@noindent
778Compare this to the following declaration of an enumerated
779type with only one value:
780
781@example
782type enum = (a);
783@end example
784
785@noindent
786(These declarations are contrived, but they are syntactically
787valid, and more-complicated cases can come up in practical programs.)
788
789These two declarations look identical until the @samp{..} token.
742e4900 790With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
791possible to decide between the two forms when the identifier
792@samp{a} is parsed. It is, however, desirable
793for a parser to decide this, since in the latter case
794@samp{a} must become a new identifier to represent the enumeration
795value, while in the former case @samp{a} must be evaluated with its
796current meaning, which may be a constant or even a function call.
797
798You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
799to be resolved later, but this typically requires substantial
800contortions in both semantic actions and large parts of the
801grammar, where the parentheses are nested in the recursive rules for
802expressions.
803
804You might think of using the lexer to distinguish between the two
805forms by returning different tokens for currently defined and
806undefined identifiers. But if these declarations occur in a local
807scope, and @samp{a} is defined in an outer scope, then both forms
808are possible---either locally redefining @samp{a}, or using the
809value of @samp{a} from the outer scope. So this approach cannot
810work.
811
e757bb10 812A simple solution to this problem is to declare the parser to
fa7e68c3
PE
813use the @acronym{GLR} algorithm.
814When the @acronym{GLR} parser reaches the critical state, it
815merely splits into two branches and pursues both syntax rules
816simultaneously. Sooner or later, one of them runs into a parsing
817error. If there is a @samp{..} token before the next
818@samp{;}, the rule for enumerated types fails since it cannot
819accept @samp{..} anywhere; otherwise, the subrange type rule
820fails since it requires a @samp{..} token. So one of the branches
821fails silently, and the other one continues normally, performing
822all the intermediate actions that were postponed during the split.
823
824If the input is syntactically incorrect, both branches fail and the parser
825reports a syntax error as usual.
826
827The effect of all this is that the parser seems to ``guess'' the
828correct branch to take, or in other words, it seems to use more
742e4900 829lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
830for. In this example, @acronym{LALR}(2) would suffice, but also some cases
831that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
832
833In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
834and the current Bison parser even takes exponential time and space
835for some grammars. In practice, this rarely happens, and for many
836grammars it is possible to prove that it cannot happen.
837The present example contains only one conflict between two
838rules, and the type-declaration context containing the conflict
839cannot be nested. So the number of
840branches that can exist at any time is limited by the constant 2,
841and the parsing time is still linear.
842
843Here is a Bison grammar corresponding to the example above. It
844parses a vastly simplified form of Pascal type declarations.
845
846@example
847%token TYPE DOTDOT ID
848
849@group
850%left '+' '-'
851%left '*' '/'
852@end group
853
854%%
855
856@group
857type_decl : TYPE ID '=' type ';'
858 ;
859@end group
860
861@group
862type : '(' id_list ')'
863 | expr DOTDOT expr
864 ;
865@end group
866
867@group
868id_list : ID
869 | id_list ',' ID
870 ;
871@end group
872
873@group
874expr : '(' expr ')'
875 | expr '+' expr
876 | expr '-' expr
877 | expr '*' expr
878 | expr '/' expr
879 | ID
880 ;
881@end group
882@end example
883
884When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
885about one reduce/reduce conflict. In the conflicting situation the
886parser chooses one of the alternatives, arbitrarily the one
887declared first. Therefore the following correct input is not
888recognized:
889
890@example
891type t = (a) .. b;
892@end example
893
894The parser can be turned into a @acronym{GLR} parser, while also telling Bison
895to be silent about the one known reduce/reduce conflict, by
e757bb10 896adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
897@samp{%%}):
898
899@example
900%glr-parser
901%expect-rr 1
902@end example
903
904@noindent
905No change in the grammar itself is required. Now the
906parser recognizes all valid declarations, according to the
907limited syntax above, transparently. In fact, the user does not even
908notice when the parser splits.
909
f8e1c9e5
AD
910So here we have a case where we can use the benefits of @acronym{GLR},
911almost without disadvantages. Even in simple cases like this, however,
912there are at least two potential problems to beware. First, always
913analyze the conflicts reported by Bison to make sure that @acronym{GLR}
914splitting is only done where it is intended. A @acronym{GLR} parser
915splitting inadvertently may cause problems less obvious than an
916@acronym{LALR} parser statically choosing the wrong alternative in a
917conflict. Second, consider interactions with the lexer (@pxref{Semantic
918Tokens}) with great care. Since a split parser consumes tokens without
919performing any actions during the split, the lexer cannot obtain
920information via parser actions. Some cases of lexer interactions can be
921eliminated by using @acronym{GLR} to shift the complications from the
922lexer to the parser. You must check the remaining cases for
923correctness.
924
925In our example, it would be safe for the lexer to return tokens based on
926their current meanings in some symbol table, because no new symbols are
927defined in the middle of a type declaration. Though it is possible for
928a parser to define the enumeration constants as they are parsed, before
929the type declaration is completed, it actually makes no difference since
930they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
931
932@node Merging GLR Parses
933@subsection Using @acronym{GLR} to Resolve Ambiguities
934@cindex @acronym{GLR} parsing, ambiguous grammars
935@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
936@findex %dprec
937@findex %merge
938@cindex conflicts
939@cindex reduce/reduce conflicts
940
2a8d363a 941Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
942
943@example
944%@{
38a92d50
PE
945 #include <stdio.h>
946 #define YYSTYPE char const *
947 int yylex (void);
948 void yyerror (char const *);
676385e2
PH
949%@}
950
951%token TYPENAME ID
952
953%right '='
954%left '+'
955
956%glr-parser
957
958%%
959
fae437e8 960prog :
676385e2
PH
961 | prog stmt @{ printf ("\n"); @}
962 ;
963
964stmt : expr ';' %dprec 1
965 | decl %dprec 2
966 ;
967
2a8d363a 968expr : ID @{ printf ("%s ", $$); @}
fae437e8 969 | TYPENAME '(' expr ')'
2a8d363a
AD
970 @{ printf ("%s <cast> ", $1); @}
971 | expr '+' expr @{ printf ("+ "); @}
972 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
973 ;
974
fae437e8 975decl : TYPENAME declarator ';'
2a8d363a 976 @{ printf ("%s <declare> ", $1); @}
676385e2 977 | TYPENAME declarator '=' expr ';'
2a8d363a 978 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
979 ;
980
2a8d363a 981declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
982 | '(' declarator ')'
983 ;
984@end example
985
986@noindent
987This models a problematic part of the C++ grammar---the ambiguity between
988certain declarations and statements. For example,
989
990@example
991T (x) = y+z;
992@end example
993
994@noindent
995parses as either an @code{expr} or a @code{stmt}
c827f760
PE
996(assuming that @samp{T} is recognized as a @code{TYPENAME} and
997@samp{x} as an @code{ID}).
676385e2 998Bison detects this as a reduce/reduce conflict between the rules
fae437e8 999@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1000time it encounters @code{x} in the example above. Since this is a
1001@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1002each choice of resolving the reduce/reduce conflict.
1003Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1004however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1005ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1006the other reduces @code{stmt : decl}, after which both parsers are in an
1007identical state: they've seen @samp{prog stmt} and have the same unprocessed
1008input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1009
1010At this point, the @acronym{GLR} parser requires a specification in the
1011grammar of how to choose between the competing parses.
1012In the example above, the two @code{%dprec}
e757bb10 1013declarations specify that Bison is to give precedence
fa7e68c3 1014to the parse that interprets the example as a
676385e2
PH
1015@code{decl}, which implies that @code{x} is a declarator.
1016The parser therefore prints
1017
1018@example
fae437e8 1019"x" y z + T <init-declare>
676385e2
PH
1020@end example
1021
fa7e68c3
PE
1022The @code{%dprec} declarations only come into play when more than one
1023parse survives. Consider a different input string for this parser:
676385e2
PH
1024
1025@example
1026T (x) + y;
1027@end example
1028
1029@noindent
e757bb10 1030This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1031construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1032Here, there is no ambiguity (this cannot be parsed as a declaration).
1033However, at the time the Bison parser encounters @code{x}, it does not
1034have enough information to resolve the reduce/reduce conflict (again,
1035between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1036case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1037into two, one assuming that @code{x} is an @code{expr}, and the other
1038assuming @code{x} is a @code{declarator}. The second of these parsers
1039then vanishes when it sees @code{+}, and the parser prints
1040
1041@example
fae437e8 1042x T <cast> y +
676385e2
PH
1043@end example
1044
1045Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1046the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1047actions of the two possible parsers, rather than choosing one over the
1048other. To do so, you could change the declaration of @code{stmt} as
1049follows:
1050
1051@example
1052stmt : expr ';' %merge <stmtMerge>
1053 | decl %merge <stmtMerge>
1054 ;
1055@end example
1056
1057@noindent
676385e2
PH
1058and define the @code{stmtMerge} function as:
1059
1060@example
38a92d50
PE
1061static YYSTYPE
1062stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1063@{
1064 printf ("<OR> ");
1065 return "";
1066@}
1067@end example
1068
1069@noindent
1070with an accompanying forward declaration
1071in the C declarations at the beginning of the file:
1072
1073@example
1074%@{
38a92d50 1075 #define YYSTYPE char const *
676385e2
PH
1076 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1077%@}
1078@end example
1079
1080@noindent
fa7e68c3
PE
1081With these declarations, the resulting parser parses the first example
1082as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1083
1084@example
fae437e8 1085"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1086@end example
1087
fa7e68c3 1088Bison requires that all of the
e757bb10 1089productions that participate in any particular merge have identical
fa7e68c3
PE
1090@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1091and the parser will report an error during any parse that results in
1092the offending merge.
9501dc6e 1093
32c29292
JD
1094@node GLR Semantic Actions
1095@subsection GLR Semantic Actions
1096
1097@cindex deferred semantic actions
1098By definition, a deferred semantic action is not performed at the same time as
1099the associated reduction.
1100This raises caveats for several Bison features you might use in a semantic
1101action in a @acronym{GLR} parser.
1102
1103@vindex yychar
1104@cindex @acronym{GLR} parsers and @code{yychar}
1105@vindex yylval
1106@cindex @acronym{GLR} parsers and @code{yylval}
1107@vindex yylloc
1108@cindex @acronym{GLR} parsers and @code{yylloc}
1109In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1110the lookahead token present at the time of the associated reduction.
32c29292
JD
1111After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1112you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1113lookahead token's semantic value and location, if any.
32c29292
JD
1114In a nondeferred semantic action, you can also modify any of these variables to
1115influence syntax analysis.
742e4900 1116@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1117
1118@findex yyclearin
1119@cindex @acronym{GLR} parsers and @code{yyclearin}
1120In a deferred semantic action, it's too late to influence syntax analysis.
1121In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1122shallow copies of the values they had at the time of the associated reduction.
1123For this reason alone, modifying them is dangerous.
1124Moreover, the result of modifying them is undefined and subject to change with
1125future versions of Bison.
1126For example, if a semantic action might be deferred, you should never write it
1127to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1128memory referenced by @code{yylval}.
1129
1130@findex YYERROR
1131@cindex @acronym{GLR} parsers and @code{YYERROR}
1132Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1133(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1134initiate error recovery.
1135During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1136the same as its effect in an @acronym{LALR}(1) parser.
1137In a deferred semantic action, its effect is undefined.
1138@c The effect is probably a syntax error at the split point.
1139
8710fc41
JD
1140Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1141describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1142
fa7e68c3
PE
1143@node Compiler Requirements
1144@subsection Considerations when Compiling @acronym{GLR} Parsers
1145@cindex @code{inline}
9501dc6e 1146@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1147
38a92d50
PE
1148The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1149later. In addition, they use the @code{inline} keyword, which is not
1150C89, but is C99 and is a common extension in pre-C99 compilers. It is
1151up to the user of these parsers to handle
9501dc6e
AD
1152portability issues. For instance, if using Autoconf and the Autoconf
1153macro @code{AC_C_INLINE}, a mere
1154
1155@example
1156%@{
38a92d50 1157 #include <config.h>
9501dc6e
AD
1158%@}
1159@end example
1160
1161@noindent
1162will suffice. Otherwise, we suggest
1163
1164@example
1165%@{
38a92d50
PE
1166 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1167 #define inline
1168 #endif
9501dc6e
AD
1169%@}
1170@end example
676385e2 1171
342b8b6e 1172@node Locations Overview
847bf1f5
AD
1173@section Locations
1174@cindex location
95923bd6
AD
1175@cindex textual location
1176@cindex location, textual
847bf1f5
AD
1177
1178Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1179and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1180the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1181Bison provides a mechanism for handling these locations.
1182
72d2299c 1183Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1184associated location, but the type of locations is the same for all tokens and
72d2299c 1185groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1186structure for storing locations (@pxref{Locations}, for more details).
1187
1188Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1189set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1190is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1191@code{@@3}.
1192
1193When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1194of its left hand side (@pxref{Actions}). In the same way, another default
1195action is used for locations. However, the action for locations is general
847bf1f5 1196enough for most cases, meaning there is usually no need to describe for each
72d2299c 1197rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1198grouping, the default behavior of the output parser is to take the beginning
1199of the first symbol, and the end of the last symbol.
1200
342b8b6e 1201@node Bison Parser
bfa74976
RS
1202@section Bison Output: the Parser File
1203@cindex Bison parser
1204@cindex Bison utility
1205@cindex lexical analyzer, purpose
1206@cindex parser
1207
1208When you run Bison, you give it a Bison grammar file as input. The output
1209is a C source file that parses the language described by the grammar.
1210This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1211utility and the Bison parser are two distinct programs: the Bison utility
1212is a program whose output is the Bison parser that becomes part of your
1213program.
1214
1215The job of the Bison parser is to group tokens into groupings according to
1216the grammar rules---for example, to build identifiers and operators into
1217expressions. As it does this, it runs the actions for the grammar rules it
1218uses.
1219
704a47c4
AD
1220The tokens come from a function called the @dfn{lexical analyzer} that
1221you must supply in some fashion (such as by writing it in C). The Bison
1222parser calls the lexical analyzer each time it wants a new token. It
1223doesn't know what is ``inside'' the tokens (though their semantic values
1224may reflect this). Typically the lexical analyzer makes the tokens by
1225parsing characters of text, but Bison does not depend on this.
1226@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1227
1228The Bison parser file is C code which defines a function named
1229@code{yyparse} which implements that grammar. This function does not make
1230a complete C program: you must supply some additional functions. One is
1231the lexical analyzer. Another is an error-reporting function which the
1232parser calls to report an error. In addition, a complete C program must
1233start with a function called @code{main}; you have to provide this, and
1234arrange for it to call @code{yyparse} or the parser will never run.
1235@xref{Interface, ,Parser C-Language Interface}.
1236
f7ab6a50 1237Aside from the token type names and the symbols in the actions you
7093d0f5 1238write, all symbols defined in the Bison parser file itself
bfa74976
RS
1239begin with @samp{yy} or @samp{YY}. This includes interface functions
1240such as the lexical analyzer function @code{yylex}, the error reporting
1241function @code{yyerror} and the parser function @code{yyparse} itself.
1242This also includes numerous identifiers used for internal purposes.
1243Therefore, you should avoid using C identifiers starting with @samp{yy}
1244or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1245this manual. Also, you should avoid using the C identifiers
1246@samp{malloc} and @samp{free} for anything other than their usual
1247meanings.
bfa74976 1248
7093d0f5
AD
1249In some cases the Bison parser file includes system headers, and in
1250those cases your code should respect the identifiers reserved by those
55289366 1251headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1252@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1253declare memory allocators and related types. @code{<libintl.h>} is
1254included if message translation is in use
1255(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1256be included if you define @code{YYDEBUG} to a nonzero value
1257(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1258
342b8b6e 1259@node Stages
bfa74976
RS
1260@section Stages in Using Bison
1261@cindex stages in using Bison
1262@cindex using Bison
1263
1264The actual language-design process using Bison, from grammar specification
1265to a working compiler or interpreter, has these parts:
1266
1267@enumerate
1268@item
1269Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1270(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1271in the language, describe the action that is to be taken when an
1272instance of that rule is recognized. The action is described by a
1273sequence of C statements.
bfa74976
RS
1274
1275@item
704a47c4
AD
1276Write a lexical analyzer to process input and pass tokens to the parser.
1277The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1278Lexical Analyzer Function @code{yylex}}). It could also be produced
1279using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1280
1281@item
1282Write a controlling function that calls the Bison-produced parser.
1283
1284@item
1285Write error-reporting routines.
1286@end enumerate
1287
1288To turn this source code as written into a runnable program, you
1289must follow these steps:
1290
1291@enumerate
1292@item
1293Run Bison on the grammar to produce the parser.
1294
1295@item
1296Compile the code output by Bison, as well as any other source files.
1297
1298@item
1299Link the object files to produce the finished product.
1300@end enumerate
1301
342b8b6e 1302@node Grammar Layout
bfa74976
RS
1303@section The Overall Layout of a Bison Grammar
1304@cindex grammar file
1305@cindex file format
1306@cindex format of grammar file
1307@cindex layout of Bison grammar
1308
1309The input file for the Bison utility is a @dfn{Bison grammar file}. The
1310general form of a Bison grammar file is as follows:
1311
1312@example
1313%@{
08e49d20 1314@var{Prologue}
bfa74976
RS
1315%@}
1316
1317@var{Bison declarations}
1318
1319%%
1320@var{Grammar rules}
1321%%
08e49d20 1322@var{Epilogue}
bfa74976
RS
1323@end example
1324
1325@noindent
1326The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1327in every Bison grammar file to separate the sections.
1328
72d2299c 1329The prologue may define types and variables used in the actions. You can
342b8b6e 1330also use preprocessor commands to define macros used there, and use
bfa74976 1331@code{#include} to include header files that do any of these things.
38a92d50
PE
1332You need to declare the lexical analyzer @code{yylex} and the error
1333printer @code{yyerror} here, along with any other global identifiers
1334used by the actions in the grammar rules.
bfa74976
RS
1335
1336The Bison declarations declare the names of the terminal and nonterminal
1337symbols, and may also describe operator precedence and the data types of
1338semantic values of various symbols.
1339
1340The grammar rules define how to construct each nonterminal symbol from its
1341parts.
1342
38a92d50
PE
1343The epilogue can contain any code you want to use. Often the
1344definitions of functions declared in the prologue go here. In a
1345simple program, all the rest of the program can go here.
bfa74976 1346
342b8b6e 1347@node Examples
bfa74976
RS
1348@chapter Examples
1349@cindex simple examples
1350@cindex examples, simple
1351
1352Now we show and explain three sample programs written using Bison: a
1353reverse polish notation calculator, an algebraic (infix) notation
1354calculator, and a multi-function calculator. All three have been tested
1355under BSD Unix 4.3; each produces a usable, though limited, interactive
1356desk-top calculator.
1357
1358These examples are simple, but Bison grammars for real programming
aa08666d
AD
1359languages are written the same way. You can copy these examples into a
1360source file to try them.
bfa74976
RS
1361
1362@menu
1363* RPN Calc:: Reverse polish notation calculator;
1364 a first example with no operator precedence.
1365* Infix Calc:: Infix (algebraic) notation calculator.
1366 Operator precedence is introduced.
1367* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1368* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1369* Multi-function Calc:: Calculator with memory and trig functions.
1370 It uses multiple data-types for semantic values.
1371* Exercises:: Ideas for improving the multi-function calculator.
1372@end menu
1373
342b8b6e 1374@node RPN Calc
bfa74976
RS
1375@section Reverse Polish Notation Calculator
1376@cindex reverse polish notation
1377@cindex polish notation calculator
1378@cindex @code{rpcalc}
1379@cindex calculator, simple
1380
1381The first example is that of a simple double-precision @dfn{reverse polish
1382notation} calculator (a calculator using postfix operators). This example
1383provides a good starting point, since operator precedence is not an issue.
1384The second example will illustrate how operator precedence is handled.
1385
1386The source code for this calculator is named @file{rpcalc.y}. The
1387@samp{.y} extension is a convention used for Bison input files.
1388
1389@menu
75f5aaea 1390* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1391* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1392* Lexer: Rpcalc Lexer. The lexical analyzer.
1393* Main: Rpcalc Main. The controlling function.
1394* Error: Rpcalc Error. The error reporting function.
1395* Gen: Rpcalc Gen. Running Bison on the grammar file.
1396* Comp: Rpcalc Compile. Run the C compiler on the output code.
1397@end menu
1398
342b8b6e 1399@node Rpcalc Decls
bfa74976
RS
1400@subsection Declarations for @code{rpcalc}
1401
1402Here are the C and Bison declarations for the reverse polish notation
1403calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1404
1405@example
72d2299c 1406/* Reverse polish notation calculator. */
bfa74976
RS
1407
1408%@{
38a92d50
PE
1409 #define YYSTYPE double
1410 #include <math.h>
1411 int yylex (void);
1412 void yyerror (char const *);
bfa74976
RS
1413%@}
1414
1415%token NUM
1416
72d2299c 1417%% /* Grammar rules and actions follow. */
bfa74976
RS
1418@end example
1419
75f5aaea 1420The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1421preprocessor directives and two forward declarations.
bfa74976
RS
1422
1423The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1424specifying the C data type for semantic values of both tokens and
1425groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1426Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1427don't define it, @code{int} is the default. Because we specify
1428@code{double}, each token and each expression has an associated value,
1429which is a floating point number.
bfa74976
RS
1430
1431The @code{#include} directive is used to declare the exponentiation
1432function @code{pow}.
1433
38a92d50
PE
1434The forward declarations for @code{yylex} and @code{yyerror} are
1435needed because the C language requires that functions be declared
1436before they are used. These functions will be defined in the
1437epilogue, but the parser calls them so they must be declared in the
1438prologue.
1439
704a47c4
AD
1440The second section, Bison declarations, provides information to Bison
1441about the token types (@pxref{Bison Declarations, ,The Bison
1442Declarations Section}). Each terminal symbol that is not a
1443single-character literal must be declared here. (Single-character
bfa74976
RS
1444literals normally don't need to be declared.) In this example, all the
1445arithmetic operators are designated by single-character literals, so the
1446only terminal symbol that needs to be declared is @code{NUM}, the token
1447type for numeric constants.
1448
342b8b6e 1449@node Rpcalc Rules
bfa74976
RS
1450@subsection Grammar Rules for @code{rpcalc}
1451
1452Here are the grammar rules for the reverse polish notation calculator.
1453
1454@example
1455input: /* empty */
1456 | input line
1457;
1458
1459line: '\n'
18b519c0 1460 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1461;
1462
18b519c0
AD
1463exp: NUM @{ $$ = $1; @}
1464 | exp exp '+' @{ $$ = $1 + $2; @}
1465 | exp exp '-' @{ $$ = $1 - $2; @}
1466 | exp exp '*' @{ $$ = $1 * $2; @}
1467 | exp exp '/' @{ $$ = $1 / $2; @}
1468 /* Exponentiation */
1469 | exp exp '^' @{ $$ = pow ($1, $2); @}
1470 /* Unary minus */
1471 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1472;
1473%%
1474@end example
1475
1476The groupings of the rpcalc ``language'' defined here are the expression
1477(given the name @code{exp}), the line of input (@code{line}), and the
1478complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1479symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1480which is read as ``or''. The following sections explain what these rules
1481mean.
1482
1483The semantics of the language is determined by the actions taken when a
1484grouping is recognized. The actions are the C code that appears inside
1485braces. @xref{Actions}.
1486
1487You must specify these actions in C, but Bison provides the means for
1488passing semantic values between the rules. In each action, the
1489pseudo-variable @code{$$} stands for the semantic value for the grouping
1490that the rule is going to construct. Assigning a value to @code{$$} is the
1491main job of most actions. The semantic values of the components of the
1492rule are referred to as @code{$1}, @code{$2}, and so on.
1493
1494@menu
13863333
AD
1495* Rpcalc Input::
1496* Rpcalc Line::
1497* Rpcalc Expr::
bfa74976
RS
1498@end menu
1499
342b8b6e 1500@node Rpcalc Input
bfa74976
RS
1501@subsubsection Explanation of @code{input}
1502
1503Consider the definition of @code{input}:
1504
1505@example
1506input: /* empty */
1507 | input line
1508;
1509@end example
1510
1511This definition reads as follows: ``A complete input is either an empty
1512string, or a complete input followed by an input line''. Notice that
1513``complete input'' is defined in terms of itself. This definition is said
1514to be @dfn{left recursive} since @code{input} appears always as the
1515leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1516
1517The first alternative is empty because there are no symbols between the
1518colon and the first @samp{|}; this means that @code{input} can match an
1519empty string of input (no tokens). We write the rules this way because it
1520is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1521It's conventional to put an empty alternative first and write the comment
1522@samp{/* empty */} in it.
1523
1524The second alternate rule (@code{input line}) handles all nontrivial input.
1525It means, ``After reading any number of lines, read one more line if
1526possible.'' The left recursion makes this rule into a loop. Since the
1527first alternative matches empty input, the loop can be executed zero or
1528more times.
1529
1530The parser function @code{yyparse} continues to process input until a
1531grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1532input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1533
342b8b6e 1534@node Rpcalc Line
bfa74976
RS
1535@subsubsection Explanation of @code{line}
1536
1537Now consider the definition of @code{line}:
1538
1539@example
1540line: '\n'
1541 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1542;
1543@end example
1544
1545The first alternative is a token which is a newline character; this means
1546that rpcalc accepts a blank line (and ignores it, since there is no
1547action). The second alternative is an expression followed by a newline.
1548This is the alternative that makes rpcalc useful. The semantic value of
1549the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1550question is the first symbol in the alternative. The action prints this
1551value, which is the result of the computation the user asked for.
1552
1553This action is unusual because it does not assign a value to @code{$$}. As
1554a consequence, the semantic value associated with the @code{line} is
1555uninitialized (its value will be unpredictable). This would be a bug if
1556that value were ever used, but we don't use it: once rpcalc has printed the
1557value of the user's input line, that value is no longer needed.
1558
342b8b6e 1559@node Rpcalc Expr
bfa74976
RS
1560@subsubsection Explanation of @code{expr}
1561
1562The @code{exp} grouping has several rules, one for each kind of expression.
1563The first rule handles the simplest expressions: those that are just numbers.
1564The second handles an addition-expression, which looks like two expressions
1565followed by a plus-sign. The third handles subtraction, and so on.
1566
1567@example
1568exp: NUM
1569 | exp exp '+' @{ $$ = $1 + $2; @}
1570 | exp exp '-' @{ $$ = $1 - $2; @}
1571 @dots{}
1572 ;
1573@end example
1574
1575We have used @samp{|} to join all the rules for @code{exp}, but we could
1576equally well have written them separately:
1577
1578@example
1579exp: NUM ;
1580exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1581exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1582 @dots{}
1583@end example
1584
1585Most of the rules have actions that compute the value of the expression in
1586terms of the value of its parts. For example, in the rule for addition,
1587@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1588the second one. The third component, @code{'+'}, has no meaningful
1589associated semantic value, but if it had one you could refer to it as
1590@code{$3}. When @code{yyparse} recognizes a sum expression using this
1591rule, the sum of the two subexpressions' values is produced as the value of
1592the entire expression. @xref{Actions}.
1593
1594You don't have to give an action for every rule. When a rule has no
1595action, Bison by default copies the value of @code{$1} into @code{$$}.
1596This is what happens in the first rule (the one that uses @code{NUM}).
1597
1598The formatting shown here is the recommended convention, but Bison does
72d2299c 1599not require it. You can add or change white space as much as you wish.
bfa74976
RS
1600For example, this:
1601
1602@example
99a9344e 1603exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1604@end example
1605
1606@noindent
1607means the same thing as this:
1608
1609@example
1610exp: NUM
1611 | exp exp '+' @{ $$ = $1 + $2; @}
1612 | @dots{}
99a9344e 1613;
bfa74976
RS
1614@end example
1615
1616@noindent
1617The latter, however, is much more readable.
1618
342b8b6e 1619@node Rpcalc Lexer
bfa74976
RS
1620@subsection The @code{rpcalc} Lexical Analyzer
1621@cindex writing a lexical analyzer
1622@cindex lexical analyzer, writing
1623
704a47c4
AD
1624The lexical analyzer's job is low-level parsing: converting characters
1625or sequences of characters into tokens. The Bison parser gets its
1626tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1627Analyzer Function @code{yylex}}.
bfa74976 1628
c827f760
PE
1629Only a simple lexical analyzer is needed for the @acronym{RPN}
1630calculator. This
bfa74976
RS
1631lexical analyzer skips blanks and tabs, then reads in numbers as
1632@code{double} and returns them as @code{NUM} tokens. Any other character
1633that isn't part of a number is a separate token. Note that the token-code
1634for such a single-character token is the character itself.
1635
1636The return value of the lexical analyzer function is a numeric code which
1637represents a token type. The same text used in Bison rules to stand for
1638this token type is also a C expression for the numeric code for the type.
1639This works in two ways. If the token type is a character literal, then its
e966383b 1640numeric code is that of the character; you can use the same
bfa74976
RS
1641character literal in the lexical analyzer to express the number. If the
1642token type is an identifier, that identifier is defined by Bison as a C
1643macro whose definition is the appropriate number. In this example,
1644therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1645
1964ad8c
AD
1646The semantic value of the token (if it has one) is stored into the
1647global variable @code{yylval}, which is where the Bison parser will look
1648for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1649defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1650,Declarations for @code{rpcalc}}.)
bfa74976 1651
72d2299c
PE
1652A token type code of zero is returned if the end-of-input is encountered.
1653(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1654
1655Here is the code for the lexical analyzer:
1656
1657@example
1658@group
72d2299c 1659/* The lexical analyzer returns a double floating point
e966383b 1660 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1661 of the character read if not a number. It skips all blanks
1662 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1663
1664#include <ctype.h>
1665@end group
1666
1667@group
13863333
AD
1668int
1669yylex (void)
bfa74976
RS
1670@{
1671 int c;
1672
72d2299c 1673 /* Skip white space. */
13863333 1674 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1675 ;
1676@end group
1677@group
72d2299c 1678 /* Process numbers. */
13863333 1679 if (c == '.' || isdigit (c))
bfa74976
RS
1680 @{
1681 ungetc (c, stdin);
1682 scanf ("%lf", &yylval);
1683 return NUM;
1684 @}
1685@end group
1686@group
72d2299c 1687 /* Return end-of-input. */
13863333 1688 if (c == EOF)
bfa74976 1689 return 0;
72d2299c 1690 /* Return a single char. */
13863333 1691 return c;
bfa74976
RS
1692@}
1693@end group
1694@end example
1695
342b8b6e 1696@node Rpcalc Main
bfa74976
RS
1697@subsection The Controlling Function
1698@cindex controlling function
1699@cindex main function in simple example
1700
1701In keeping with the spirit of this example, the controlling function is
1702kept to the bare minimum. The only requirement is that it call
1703@code{yyparse} to start the process of parsing.
1704
1705@example
1706@group
13863333
AD
1707int
1708main (void)
bfa74976 1709@{
13863333 1710 return yyparse ();
bfa74976
RS
1711@}
1712@end group
1713@end example
1714
342b8b6e 1715@node Rpcalc Error
bfa74976
RS
1716@subsection The Error Reporting Routine
1717@cindex error reporting routine
1718
1719When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1720function @code{yyerror} to print an error message (usually but not
6e649e65 1721always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1722@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1723here is the definition we will use:
bfa74976
RS
1724
1725@example
1726@group
1727#include <stdio.h>
1728
38a92d50 1729/* Called by yyparse on error. */
13863333 1730void
38a92d50 1731yyerror (char const *s)
bfa74976 1732@{
4e03e201 1733 fprintf (stderr, "%s\n", s);
bfa74976
RS
1734@}
1735@end group
1736@end example
1737
1738After @code{yyerror} returns, the Bison parser may recover from the error
1739and continue parsing if the grammar contains a suitable error rule
1740(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1741have not written any error rules in this example, so any invalid input will
1742cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1743real calculator, but it is adequate for the first example.
bfa74976 1744
342b8b6e 1745@node Rpcalc Gen
bfa74976
RS
1746@subsection Running Bison to Make the Parser
1747@cindex running Bison (introduction)
1748
ceed8467
AD
1749Before running Bison to produce a parser, we need to decide how to
1750arrange all the source code in one or more source files. For such a
1751simple example, the easiest thing is to put everything in one file. The
1752definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1753end, in the epilogue of the file
75f5aaea 1754(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1755
1756For a large project, you would probably have several source files, and use
1757@code{make} to arrange to recompile them.
1758
1759With all the source in a single file, you use the following command to
1760convert it into a parser file:
1761
1762@example
fa4d969f 1763bison @var{file}.y
bfa74976
RS
1764@end example
1765
1766@noindent
1767In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1768@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1769removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1770Bison contains the source code for @code{yyparse}. The additional
1771functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1772are copied verbatim to the output.
1773
342b8b6e 1774@node Rpcalc Compile
bfa74976
RS
1775@subsection Compiling the Parser File
1776@cindex compiling the parser
1777
1778Here is how to compile and run the parser file:
1779
1780@example
1781@group
1782# @r{List files in current directory.}
9edcd895 1783$ @kbd{ls}
bfa74976
RS
1784rpcalc.tab.c rpcalc.y
1785@end group
1786
1787@group
1788# @r{Compile the Bison parser.}
1789# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1790$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1791@end group
1792
1793@group
1794# @r{List files again.}
9edcd895 1795$ @kbd{ls}
bfa74976
RS
1796rpcalc rpcalc.tab.c rpcalc.y
1797@end group
1798@end example
1799
1800The file @file{rpcalc} now contains the executable code. Here is an
1801example session using @code{rpcalc}.
1802
1803@example
9edcd895
AD
1804$ @kbd{rpcalc}
1805@kbd{4 9 +}
bfa74976 180613
9edcd895 1807@kbd{3 7 + 3 4 5 *+-}
bfa74976 1808-13
9edcd895 1809@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 181013
9edcd895 1811@kbd{5 6 / 4 n +}
bfa74976 1812-3.166666667
9edcd895 1813@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181481
9edcd895
AD
1815@kbd{^D} @r{End-of-file indicator}
1816$
bfa74976
RS
1817@end example
1818
342b8b6e 1819@node Infix Calc
bfa74976
RS
1820@section Infix Notation Calculator: @code{calc}
1821@cindex infix notation calculator
1822@cindex @code{calc}
1823@cindex calculator, infix notation
1824
1825We now modify rpcalc to handle infix operators instead of postfix. Infix
1826notation involves the concept of operator precedence and the need for
1827parentheses nested to arbitrary depth. Here is the Bison code for
1828@file{calc.y}, an infix desk-top calculator.
1829
1830@example
38a92d50 1831/* Infix notation calculator. */
bfa74976
RS
1832
1833%@{
38a92d50
PE
1834 #define YYSTYPE double
1835 #include <math.h>
1836 #include <stdio.h>
1837 int yylex (void);
1838 void yyerror (char const *);
bfa74976
RS
1839%@}
1840
38a92d50 1841/* Bison declarations. */
bfa74976
RS
1842%token NUM
1843%left '-' '+'
1844%left '*' '/'
1845%left NEG /* negation--unary minus */
38a92d50 1846%right '^' /* exponentiation */
bfa74976 1847
38a92d50
PE
1848%% /* The grammar follows. */
1849input: /* empty */
bfa74976
RS
1850 | input line
1851;
1852
1853line: '\n'
1854 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1855;
1856
1857exp: NUM @{ $$ = $1; @}
1858 | exp '+' exp @{ $$ = $1 + $3; @}
1859 | exp '-' exp @{ $$ = $1 - $3; @}
1860 | exp '*' exp @{ $$ = $1 * $3; @}
1861 | exp '/' exp @{ $$ = $1 / $3; @}
1862 | '-' exp %prec NEG @{ $$ = -$2; @}
1863 | exp '^' exp @{ $$ = pow ($1, $3); @}
1864 | '(' exp ')' @{ $$ = $2; @}
1865;
1866%%
1867@end example
1868
1869@noindent
ceed8467
AD
1870The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1871same as before.
bfa74976
RS
1872
1873There are two important new features shown in this code.
1874
1875In the second section (Bison declarations), @code{%left} declares token
1876types and says they are left-associative operators. The declarations
1877@code{%left} and @code{%right} (right associativity) take the place of
1878@code{%token} which is used to declare a token type name without
1879associativity. (These tokens are single-character literals, which
1880ordinarily don't need to be declared. We declare them here to specify
1881the associativity.)
1882
1883Operator precedence is determined by the line ordering of the
1884declarations; the higher the line number of the declaration (lower on
1885the page or screen), the higher the precedence. Hence, exponentiation
1886has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1887by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1888Precedence}.
bfa74976 1889
704a47c4
AD
1890The other important new feature is the @code{%prec} in the grammar
1891section for the unary minus operator. The @code{%prec} simply instructs
1892Bison that the rule @samp{| '-' exp} has the same precedence as
1893@code{NEG}---in this case the next-to-highest. @xref{Contextual
1894Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1895
1896Here is a sample run of @file{calc.y}:
1897
1898@need 500
1899@example
9edcd895
AD
1900$ @kbd{calc}
1901@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19026.880952381
9edcd895 1903@kbd{-56 + 2}
bfa74976 1904-54
9edcd895 1905@kbd{3 ^ 2}
bfa74976
RS
19069
1907@end example
1908
342b8b6e 1909@node Simple Error Recovery
bfa74976
RS
1910@section Simple Error Recovery
1911@cindex error recovery, simple
1912
1913Up to this point, this manual has not addressed the issue of @dfn{error
1914recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1915error. All we have handled is error reporting with @code{yyerror}.
1916Recall that by default @code{yyparse} returns after calling
1917@code{yyerror}. This means that an erroneous input line causes the
1918calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1919
1920The Bison language itself includes the reserved word @code{error}, which
1921may be included in the grammar rules. In the example below it has
1922been added to one of the alternatives for @code{line}:
1923
1924@example
1925@group
1926line: '\n'
1927 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1928 | error '\n' @{ yyerrok; @}
1929;
1930@end group
1931@end example
1932
ceed8467 1933This addition to the grammar allows for simple error recovery in the
6e649e65 1934event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1935read, the error will be recognized by the third rule for @code{line},
1936and parsing will continue. (The @code{yyerror} function is still called
1937upon to print its message as well.) The action executes the statement
1938@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1939that error recovery is complete (@pxref{Error Recovery}). Note the
1940difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1941misprint.
bfa74976
RS
1942
1943This form of error recovery deals with syntax errors. There are other
1944kinds of errors; for example, division by zero, which raises an exception
1945signal that is normally fatal. A real calculator program must handle this
1946signal and use @code{longjmp} to return to @code{main} and resume parsing
1947input lines; it would also have to discard the rest of the current line of
1948input. We won't discuss this issue further because it is not specific to
1949Bison programs.
1950
342b8b6e
AD
1951@node Location Tracking Calc
1952@section Location Tracking Calculator: @code{ltcalc}
1953@cindex location tracking calculator
1954@cindex @code{ltcalc}
1955@cindex calculator, location tracking
1956
9edcd895
AD
1957This example extends the infix notation calculator with location
1958tracking. This feature will be used to improve the error messages. For
1959the sake of clarity, this example is a simple integer calculator, since
1960most of the work needed to use locations will be done in the lexical
72d2299c 1961analyzer.
342b8b6e
AD
1962
1963@menu
1964* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1965* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1966* Lexer: Ltcalc Lexer. The lexical analyzer.
1967@end menu
1968
1969@node Ltcalc Decls
1970@subsection Declarations for @code{ltcalc}
1971
9edcd895
AD
1972The C and Bison declarations for the location tracking calculator are
1973the same as the declarations for the infix notation calculator.
342b8b6e
AD
1974
1975@example
1976/* Location tracking calculator. */
1977
1978%@{
38a92d50
PE
1979 #define YYSTYPE int
1980 #include <math.h>
1981 int yylex (void);
1982 void yyerror (char const *);
342b8b6e
AD
1983%@}
1984
1985/* Bison declarations. */
1986%token NUM
1987
1988%left '-' '+'
1989%left '*' '/'
1990%left NEG
1991%right '^'
1992
38a92d50 1993%% /* The grammar follows. */
342b8b6e
AD
1994@end example
1995
9edcd895
AD
1996@noindent
1997Note there are no declarations specific to locations. Defining a data
1998type for storing locations is not needed: we will use the type provided
1999by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2000four member structure with the following integer fields:
2001@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2002@code{last_column}. By conventions, and in accordance with the GNU
2003Coding Standards and common practice, the line and column count both
2004start at 1.
342b8b6e
AD
2005
2006@node Ltcalc Rules
2007@subsection Grammar Rules for @code{ltcalc}
2008
9edcd895
AD
2009Whether handling locations or not has no effect on the syntax of your
2010language. Therefore, grammar rules for this example will be very close
2011to those of the previous example: we will only modify them to benefit
2012from the new information.
342b8b6e 2013
9edcd895
AD
2014Here, we will use locations to report divisions by zero, and locate the
2015wrong expressions or subexpressions.
342b8b6e
AD
2016
2017@example
2018@group
2019input : /* empty */
2020 | input line
2021;
2022@end group
2023
2024@group
2025line : '\n'
2026 | exp '\n' @{ printf ("%d\n", $1); @}
2027;
2028@end group
2029
2030@group
2031exp : NUM @{ $$ = $1; @}
2032 | exp '+' exp @{ $$ = $1 + $3; @}
2033 | exp '-' exp @{ $$ = $1 - $3; @}
2034 | exp '*' exp @{ $$ = $1 * $3; @}
2035@end group
342b8b6e 2036@group
9edcd895 2037 | exp '/' exp
342b8b6e
AD
2038 @{
2039 if ($3)
2040 $$ = $1 / $3;
2041 else
2042 @{
2043 $$ = 1;
9edcd895
AD
2044 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2045 @@3.first_line, @@3.first_column,
2046 @@3.last_line, @@3.last_column);
342b8b6e
AD
2047 @}
2048 @}
2049@end group
2050@group
2051 | '-' exp %preg NEG @{ $$ = -$2; @}
2052 | exp '^' exp @{ $$ = pow ($1, $3); @}
2053 | '(' exp ')' @{ $$ = $2; @}
2054@end group
2055@end example
2056
2057This code shows how to reach locations inside of semantic actions, by
2058using the pseudo-variables @code{@@@var{n}} for rule components, and the
2059pseudo-variable @code{@@$} for groupings.
2060
9edcd895
AD
2061We don't need to assign a value to @code{@@$}: the output parser does it
2062automatically. By default, before executing the C code of each action,
2063@code{@@$} is set to range from the beginning of @code{@@1} to the end
2064of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2065can be redefined (@pxref{Location Default Action, , Default Action for
2066Locations}), and for very specific rules, @code{@@$} can be computed by
2067hand.
342b8b6e
AD
2068
2069@node Ltcalc Lexer
2070@subsection The @code{ltcalc} Lexical Analyzer.
2071
9edcd895 2072Until now, we relied on Bison's defaults to enable location
72d2299c 2073tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2074able to feed the parser with the token locations, as it already does for
2075semantic values.
342b8b6e 2076
9edcd895
AD
2077To this end, we must take into account every single character of the
2078input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2079
2080@example
2081@group
2082int
2083yylex (void)
2084@{
2085 int c;
18b519c0 2086@end group
342b8b6e 2087
18b519c0 2088@group
72d2299c 2089 /* Skip white space. */
342b8b6e
AD
2090 while ((c = getchar ()) == ' ' || c == '\t')
2091 ++yylloc.last_column;
18b519c0 2092@end group
342b8b6e 2093
18b519c0 2094@group
72d2299c 2095 /* Step. */
342b8b6e
AD
2096 yylloc.first_line = yylloc.last_line;
2097 yylloc.first_column = yylloc.last_column;
2098@end group
2099
2100@group
72d2299c 2101 /* Process numbers. */
342b8b6e
AD
2102 if (isdigit (c))
2103 @{
2104 yylval = c - '0';
2105 ++yylloc.last_column;
2106 while (isdigit (c = getchar ()))
2107 @{
2108 ++yylloc.last_column;
2109 yylval = yylval * 10 + c - '0';
2110 @}
2111 ungetc (c, stdin);
2112 return NUM;
2113 @}
2114@end group
2115
72d2299c 2116 /* Return end-of-input. */
342b8b6e
AD
2117 if (c == EOF)
2118 return 0;
2119
72d2299c 2120 /* Return a single char, and update location. */
342b8b6e
AD
2121 if (c == '\n')
2122 @{
2123 ++yylloc.last_line;
2124 yylloc.last_column = 0;
2125 @}
2126 else
2127 ++yylloc.last_column;
2128 return c;
2129@}
2130@end example
2131
9edcd895
AD
2132Basically, the lexical analyzer performs the same processing as before:
2133it skips blanks and tabs, and reads numbers or single-character tokens.
2134In addition, it updates @code{yylloc}, the global variable (of type
2135@code{YYLTYPE}) containing the token's location.
342b8b6e 2136
9edcd895 2137Now, each time this function returns a token, the parser has its number
72d2299c 2138as well as its semantic value, and its location in the text. The last
9edcd895
AD
2139needed change is to initialize @code{yylloc}, for example in the
2140controlling function:
342b8b6e
AD
2141
2142@example
9edcd895 2143@group
342b8b6e
AD
2144int
2145main (void)
2146@{
2147 yylloc.first_line = yylloc.last_line = 1;
2148 yylloc.first_column = yylloc.last_column = 0;
2149 return yyparse ();
2150@}
9edcd895 2151@end group
342b8b6e
AD
2152@end example
2153
9edcd895
AD
2154Remember that computing locations is not a matter of syntax. Every
2155character must be associated to a location update, whether it is in
2156valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2157
2158@node Multi-function Calc
bfa74976
RS
2159@section Multi-Function Calculator: @code{mfcalc}
2160@cindex multi-function calculator
2161@cindex @code{mfcalc}
2162@cindex calculator, multi-function
2163
2164Now that the basics of Bison have been discussed, it is time to move on to
2165a more advanced problem. The above calculators provided only five
2166functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2167be nice to have a calculator that provides other mathematical functions such
2168as @code{sin}, @code{cos}, etc.
2169
2170It is easy to add new operators to the infix calculator as long as they are
2171only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2172back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2173adding a new operator. But we want something more flexible: built-in
2174functions whose syntax has this form:
2175
2176@example
2177@var{function_name} (@var{argument})
2178@end example
2179
2180@noindent
2181At the same time, we will add memory to the calculator, by allowing you
2182to create named variables, store values in them, and use them later.
2183Here is a sample session with the multi-function calculator:
2184
2185@example
9edcd895
AD
2186$ @kbd{mfcalc}
2187@kbd{pi = 3.141592653589}
bfa74976 21883.1415926536
9edcd895 2189@kbd{sin(pi)}
bfa74976 21900.0000000000
9edcd895 2191@kbd{alpha = beta1 = 2.3}
bfa74976 21922.3000000000
9edcd895 2193@kbd{alpha}
bfa74976 21942.3000000000
9edcd895 2195@kbd{ln(alpha)}
bfa74976 21960.8329091229
9edcd895 2197@kbd{exp(ln(beta1))}
bfa74976 21982.3000000000
9edcd895 2199$
bfa74976
RS
2200@end example
2201
2202Note that multiple assignment and nested function calls are permitted.
2203
2204@menu
2205* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2206* Rules: Mfcalc Rules. Grammar rules for the calculator.
2207* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2208@end menu
2209
342b8b6e 2210@node Mfcalc Decl
bfa74976
RS
2211@subsection Declarations for @code{mfcalc}
2212
2213Here are the C and Bison declarations for the multi-function calculator.
2214
2215@smallexample
18b519c0 2216@group
bfa74976 2217%@{
38a92d50
PE
2218 #include <math.h> /* For math functions, cos(), sin(), etc. */
2219 #include "calc.h" /* Contains definition of `symrec'. */
2220 int yylex (void);
2221 void yyerror (char const *);
bfa74976 2222%@}
18b519c0
AD
2223@end group
2224@group
bfa74976 2225%union @{
38a92d50
PE
2226 double val; /* For returning numbers. */
2227 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2228@}
18b519c0 2229@end group
38a92d50
PE
2230%token <val> NUM /* Simple double precision number. */
2231%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2232%type <val> exp
2233
18b519c0 2234@group
bfa74976
RS
2235%right '='
2236%left '-' '+'
2237%left '*' '/'
38a92d50
PE
2238%left NEG /* negation--unary minus */
2239%right '^' /* exponentiation */
18b519c0 2240@end group
38a92d50 2241%% /* The grammar follows. */
bfa74976
RS
2242@end smallexample
2243
2244The above grammar introduces only two new features of the Bison language.
2245These features allow semantic values to have various data types
2246(@pxref{Multiple Types, ,More Than One Value Type}).
2247
2248The @code{%union} declaration specifies the entire list of possible types;
2249this is instead of defining @code{YYSTYPE}. The allowable types are now
2250double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2251the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2252
2253Since values can now have various types, it is necessary to associate a
2254type with each grammar symbol whose semantic value is used. These symbols
2255are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2256declarations are augmented with information about their data type (placed
2257between angle brackets).
2258
704a47c4
AD
2259The Bison construct @code{%type} is used for declaring nonterminal
2260symbols, just as @code{%token} is used for declaring token types. We
2261have not used @code{%type} before because nonterminal symbols are
2262normally declared implicitly by the rules that define them. But
2263@code{exp} must be declared explicitly so we can specify its value type.
2264@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2265
342b8b6e 2266@node Mfcalc Rules
bfa74976
RS
2267@subsection Grammar Rules for @code{mfcalc}
2268
2269Here are the grammar rules for the multi-function calculator.
2270Most of them are copied directly from @code{calc}; three rules,
2271those which mention @code{VAR} or @code{FNCT}, are new.
2272
2273@smallexample
18b519c0 2274@group
bfa74976
RS
2275input: /* empty */
2276 | input line
2277;
18b519c0 2278@end group
bfa74976 2279
18b519c0 2280@group
bfa74976
RS
2281line:
2282 '\n'
2283 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2284 | error '\n' @{ yyerrok; @}
2285;
18b519c0 2286@end group
bfa74976 2287
18b519c0 2288@group
bfa74976
RS
2289exp: NUM @{ $$ = $1; @}
2290 | VAR @{ $$ = $1->value.var; @}
2291 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2292 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2293 | exp '+' exp @{ $$ = $1 + $3; @}
2294 | exp '-' exp @{ $$ = $1 - $3; @}
2295 | exp '*' exp @{ $$ = $1 * $3; @}
2296 | exp '/' exp @{ $$ = $1 / $3; @}
2297 | '-' exp %prec NEG @{ $$ = -$2; @}
2298 | exp '^' exp @{ $$ = pow ($1, $3); @}
2299 | '(' exp ')' @{ $$ = $2; @}
2300;
18b519c0 2301@end group
38a92d50 2302/* End of grammar. */
bfa74976
RS
2303%%
2304@end smallexample
2305
342b8b6e 2306@node Mfcalc Symtab
bfa74976
RS
2307@subsection The @code{mfcalc} Symbol Table
2308@cindex symbol table example
2309
2310The multi-function calculator requires a symbol table to keep track of the
2311names and meanings of variables and functions. This doesn't affect the
2312grammar rules (except for the actions) or the Bison declarations, but it
2313requires some additional C functions for support.
2314
2315The symbol table itself consists of a linked list of records. Its
2316definition, which is kept in the header @file{calc.h}, is as follows. It
2317provides for either functions or variables to be placed in the table.
2318
2319@smallexample
2320@group
38a92d50 2321/* Function type. */
32dfccf8 2322typedef double (*func_t) (double);
72f889cc 2323@end group
32dfccf8 2324
72f889cc 2325@group
38a92d50 2326/* Data type for links in the chain of symbols. */
bfa74976
RS
2327struct symrec
2328@{
38a92d50 2329 char *name; /* name of symbol */
bfa74976 2330 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2331 union
2332 @{
38a92d50
PE
2333 double var; /* value of a VAR */
2334 func_t fnctptr; /* value of a FNCT */
bfa74976 2335 @} value;
38a92d50 2336 struct symrec *next; /* link field */
bfa74976
RS
2337@};
2338@end group
2339
2340@group
2341typedef struct symrec symrec;
2342
38a92d50 2343/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2344extern symrec *sym_table;
2345
a730d142 2346symrec *putsym (char const *, int);
38a92d50 2347symrec *getsym (char const *);
bfa74976
RS
2348@end group
2349@end smallexample
2350
2351The new version of @code{main} includes a call to @code{init_table}, a
2352function that initializes the symbol table. Here it is, and
2353@code{init_table} as well:
2354
2355@smallexample
bfa74976
RS
2356#include <stdio.h>
2357
18b519c0 2358@group
38a92d50 2359/* Called by yyparse on error. */
13863333 2360void
38a92d50 2361yyerror (char const *s)
bfa74976
RS
2362@{
2363 printf ("%s\n", s);
2364@}
18b519c0 2365@end group
bfa74976 2366
18b519c0 2367@group
bfa74976
RS
2368struct init
2369@{
38a92d50
PE
2370 char const *fname;
2371 double (*fnct) (double);
bfa74976
RS
2372@};
2373@end group
2374
2375@group
38a92d50 2376struct init const arith_fncts[] =
13863333 2377@{
32dfccf8
AD
2378 "sin", sin,
2379 "cos", cos,
13863333 2380 "atan", atan,
32dfccf8
AD
2381 "ln", log,
2382 "exp", exp,
13863333
AD
2383 "sqrt", sqrt,
2384 0, 0
2385@};
18b519c0 2386@end group
bfa74976 2387
18b519c0 2388@group
bfa74976 2389/* The symbol table: a chain of `struct symrec'. */
38a92d50 2390symrec *sym_table;
bfa74976
RS
2391@end group
2392
2393@group
72d2299c 2394/* Put arithmetic functions in table. */
13863333
AD
2395void
2396init_table (void)
bfa74976
RS
2397@{
2398 int i;
2399 symrec *ptr;
2400 for (i = 0; arith_fncts[i].fname != 0; i++)
2401 @{
2402 ptr = putsym (arith_fncts[i].fname, FNCT);
2403 ptr->value.fnctptr = arith_fncts[i].fnct;
2404 @}
2405@}
2406@end group
38a92d50
PE
2407
2408@group
2409int
2410main (void)
2411@{
2412 init_table ();
2413 return yyparse ();
2414@}
2415@end group
bfa74976
RS
2416@end smallexample
2417
2418By simply editing the initialization list and adding the necessary include
2419files, you can add additional functions to the calculator.
2420
2421Two important functions allow look-up and installation of symbols in the
2422symbol table. The function @code{putsym} is passed a name and the type
2423(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2424linked to the front of the list, and a pointer to the object is returned.
2425The function @code{getsym} is passed the name of the symbol to look up. If
2426found, a pointer to that symbol is returned; otherwise zero is returned.
2427
2428@smallexample
2429symrec *
38a92d50 2430putsym (char const *sym_name, int sym_type)
bfa74976
RS
2431@{
2432 symrec *ptr;
2433 ptr = (symrec *) malloc (sizeof (symrec));
2434 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2435 strcpy (ptr->name,sym_name);
2436 ptr->type = sym_type;
72d2299c 2437 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2438 ptr->next = (struct symrec *)sym_table;
2439 sym_table = ptr;
2440 return ptr;
2441@}
2442
2443symrec *
38a92d50 2444getsym (char const *sym_name)
bfa74976
RS
2445@{
2446 symrec *ptr;
2447 for (ptr = sym_table; ptr != (symrec *) 0;
2448 ptr = (symrec *)ptr->next)
2449 if (strcmp (ptr->name,sym_name) == 0)
2450 return ptr;
2451 return 0;
2452@}
2453@end smallexample
2454
2455The function @code{yylex} must now recognize variables, numeric values, and
2456the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2457characters with a leading letter are recognized as either variables or
bfa74976
RS
2458functions depending on what the symbol table says about them.
2459
2460The string is passed to @code{getsym} for look up in the symbol table. If
2461the name appears in the table, a pointer to its location and its type
2462(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2463already in the table, then it is installed as a @code{VAR} using
2464@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2465returned to @code{yyparse}.
bfa74976
RS
2466
2467No change is needed in the handling of numeric values and arithmetic
2468operators in @code{yylex}.
2469
2470@smallexample
2471@group
2472#include <ctype.h>
18b519c0 2473@end group
13863333 2474
18b519c0 2475@group
13863333
AD
2476int
2477yylex (void)
bfa74976
RS
2478@{
2479 int c;
2480
72d2299c 2481 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2482 while ((c = getchar ()) == ' ' || c == '\t');
2483
2484 if (c == EOF)
2485 return 0;
2486@end group
2487
2488@group
2489 /* Char starts a number => parse the number. */
2490 if (c == '.' || isdigit (c))
2491 @{
2492 ungetc (c, stdin);
2493 scanf ("%lf", &yylval.val);
2494 return NUM;
2495 @}
2496@end group
2497
2498@group
2499 /* Char starts an identifier => read the name. */
2500 if (isalpha (c))
2501 @{
2502 symrec *s;
2503 static char *symbuf = 0;
2504 static int length = 0;
2505 int i;
2506@end group
2507
2508@group
2509 /* Initially make the buffer long enough
2510 for a 40-character symbol name. */
2511 if (length == 0)
2512 length = 40, symbuf = (char *)malloc (length + 1);
2513
2514 i = 0;
2515 do
2516@end group
2517@group
2518 @{
2519 /* If buffer is full, make it bigger. */
2520 if (i == length)
2521 @{
2522 length *= 2;
18b519c0 2523 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2524 @}
2525 /* Add this character to the buffer. */
2526 symbuf[i++] = c;
2527 /* Get another character. */
2528 c = getchar ();
2529 @}
2530@end group
2531@group
72d2299c 2532 while (isalnum (c));
bfa74976
RS
2533
2534 ungetc (c, stdin);
2535 symbuf[i] = '\0';
2536@end group
2537
2538@group
2539 s = getsym (symbuf);
2540 if (s == 0)
2541 s = putsym (symbuf, VAR);
2542 yylval.tptr = s;
2543 return s->type;
2544 @}
2545
2546 /* Any other character is a token by itself. */
2547 return c;
2548@}
2549@end group
2550@end smallexample
2551
72d2299c 2552This program is both powerful and flexible. You may easily add new
704a47c4
AD
2553functions, and it is a simple job to modify this code to install
2554predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2555
342b8b6e 2556@node Exercises
bfa74976
RS
2557@section Exercises
2558@cindex exercises
2559
2560@enumerate
2561@item
2562Add some new functions from @file{math.h} to the initialization list.
2563
2564@item
2565Add another array that contains constants and their values. Then
2566modify @code{init_table} to add these constants to the symbol table.
2567It will be easiest to give the constants type @code{VAR}.
2568
2569@item
2570Make the program report an error if the user refers to an
2571uninitialized variable in any way except to store a value in it.
2572@end enumerate
2573
342b8b6e 2574@node Grammar File
bfa74976
RS
2575@chapter Bison Grammar Files
2576
2577Bison takes as input a context-free grammar specification and produces a
2578C-language function that recognizes correct instances of the grammar.
2579
2580The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2581@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2582
2583@menu
2584* Grammar Outline:: Overall layout of the grammar file.
2585* Symbols:: Terminal and nonterminal symbols.
2586* Rules:: How to write grammar rules.
2587* Recursion:: Writing recursive rules.
2588* Semantics:: Semantic values and actions.
847bf1f5 2589* Locations:: Locations and actions.
bfa74976
RS
2590* Declarations:: All kinds of Bison declarations are described here.
2591* Multiple Parsers:: Putting more than one Bison parser in one program.
2592@end menu
2593
342b8b6e 2594@node Grammar Outline
bfa74976
RS
2595@section Outline of a Bison Grammar
2596
2597A Bison grammar file has four main sections, shown here with the
2598appropriate delimiters:
2599
2600@example
2601%@{
38a92d50 2602 @var{Prologue}
bfa74976
RS
2603%@}
2604
2605@var{Bison declarations}
2606
2607%%
2608@var{Grammar rules}
2609%%
2610
75f5aaea 2611@var{Epilogue}
bfa74976
RS
2612@end example
2613
2614Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2615As a @acronym{GNU} extension, @samp{//} introduces a comment that
2616continues until end of line.
bfa74976
RS
2617
2618@menu
75f5aaea 2619* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2620* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2621* Bison Declarations:: Syntax and usage of the Bison declarations section.
2622* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2623* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2624@end menu
2625
38a92d50 2626@node Prologue
75f5aaea
MA
2627@subsection The prologue
2628@cindex declarations section
2629@cindex Prologue
2630@cindex declarations
bfa74976 2631
f8e1c9e5
AD
2632The @var{Prologue} section contains macro definitions and declarations
2633of functions and variables that are used in the actions in the grammar
2634rules. These are copied to the beginning of the parser file so that
2635they precede the definition of @code{yyparse}. You can use
2636@samp{#include} to get the declarations from a header file. If you
2637don't need any C declarations, you may omit the @samp{%@{} and
2638@samp{%@}} delimiters that bracket this section.
bfa74976 2639
9c437126 2640The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2641of @samp{%@}} that is outside a comment, a string literal, or a
2642character constant.
2643
c732d2c6
AD
2644You may have more than one @var{Prologue} section, intermixed with the
2645@var{Bison declarations}. This allows you to have C and Bison
2646declarations that refer to each other. For example, the @code{%union}
2647declaration may use types defined in a header file, and you may wish to
2648prototype functions that take arguments of type @code{YYSTYPE}. This
2649can be done with two @var{Prologue} blocks, one before and one after the
2650@code{%union} declaration.
2651
2652@smallexample
2653%@{
aef3da86 2654 #define _GNU_SOURCE
38a92d50
PE
2655 #include <stdio.h>
2656 #include "ptypes.h"
c732d2c6
AD
2657%@}
2658
2659%union @{
779e7ceb 2660 long int n;
c732d2c6
AD
2661 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2662@}
2663
2664%@{
38a92d50
PE
2665 static void print_token_value (FILE *, int, YYSTYPE);
2666 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2667%@}
2668
2669@dots{}
2670@end smallexample
2671
aef3da86
PE
2672When in doubt, it is usually safer to put prologue code before all
2673Bison declarations, rather than after. For example, any definitions
2674of feature test macros like @code{_GNU_SOURCE} or
2675@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2676feature test macros can affect the behavior of Bison-generated
2677@code{#include} directives.
2678
2cbe6b7f
JD
2679@node Prologue Alternatives
2680@subsection Prologue Alternatives
2681@cindex Prologue Alternatives
2682
136a0f76 2683@findex %code
2cbe6b7f
JD
2684@findex %requires
2685@findex %provides
2686@findex %code-top
2687The functionality of @var{Prologue} sections can often be subtle and
2688inflexible.
2689As an alternative, Bison provides a set of more explicit directives:
2690@code{%code-top}, @code{%requires}, @code{%provides}, and @code{%code}.
2691@xref{Table of Symbols}.
2692
2693Look again at the example of the previous section:
2694
2695@smallexample
2696%@{
2697 #define _GNU_SOURCE
2698 #include <stdio.h>
2699 #include "ptypes.h"
2700%@}
2701
2702%union @{
2703 long int n;
2704 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2705@}
2706
2707%@{
2708 static void print_token_value (FILE *, int, YYSTYPE);
2709 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2710%@}
2711
2712@dots{}
2713@end smallexample
2714
2715@noindent
2716Notice that there are two @var{Prologue} sections here, but there's a subtle
2717distinction between their functionality.
2718For example, if you decide to override Bison's default definition for
2719@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2720definition?
2721You should write it in the first since Bison will insert that code into the
2722parser code file @emph{before} the default @code{YYLTYPE} definition.
2723In which @var{Prologue} section should you prototype an internal function,
2724@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2725arguments?
2726You should prototype it in the second since Bison will insert that code
2727@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2728
2729This distinction in functionality between the two @var{Prologue} sections is
2730established by the appearance of the @code{%union} between them.
2731This behavior raises several questions.
2732First, why should the position of a @code{%union} affect definitions related to
2733@code{YYLTYPE} and @code{yytokentype}?
2734Second, what if there is no @code{%union}?
2735In that case, the second kind of @var{Prologue} section is not available.
2736This behavior is not intuitive.
2737
2738To avoid this subtle @code{%union} dependency, rewrite the example using
2739@code{%code-top} and @code{%code}.
2740Let's go ahead and add the new @code{YYLTYPE} definition and the
2741@code{trace_token} prototype at the same time:
2742
2743@smallexample
2744%code-top @{
2745 #define _GNU_SOURCE
2746 #include <stdio.h>
2747 /* The following code really belongs in a %requires; see below. */
2748 #include "ptypes.h"
2749 #define YYLTYPE YYLTYPE
2750 typedef struct YYLTYPE
2751 @{
2752 int first_line;
2753 int first_column;
2754 int last_line;
2755 int last_column;
2756 char *filename;
2757 @} YYLTYPE;
2758@}
2759
2760%union @{
2761 long int n;
2762 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2763@}
2764
2765%code @{
2766 static void print_token_value (FILE *, int, YYSTYPE);
2767 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2768 static void trace_token (enum yytokentype token, YYLTYPE loc);
2769@}
2770
2771@dots{}
2772@end smallexample
2773
2774@noindent
2775In this way, @code{%code-top} and @code{%code} achieve the same functionality
2776as the two kinds of @var{Prologue} sections, but it's always explicit which
2777kind you intend.
2778Moreover, both kinds are always available even in the absence of @code{%union}.
2779
2780The first @var{Prologue} section above now logically contains two parts.
2781The first two lines need to appear in the parser code file.
2782The fourth line is required by @code{YYSTYPE} and thus also needs to appear in
2783the parser code file.
2784However, if you've instructed Bison to generate a parser header file
67a9768e 2785(@pxref{Table of Symbols, ,%defines}), you probably want the fourth line to
2cbe6b7f
JD
2786appear before the @code{YYSTYPE} definition in that header file as well.
2787Also, the @code{YYLTYPE} definition should appear in the parser header file to
2788override the default @code{YYLTYPE} definition there.
2789
2790In other words, in the first @var{Prologue} section, all but the first two
2791lines are dependency code for externally exposed definitions (@code{YYSTYPE}
2792and @code{YYLTYPE}) required by Bison.
2793Thus, they belong in one or more @code{%requires}:
9bc0dd67
JD
2794
2795@smallexample
2cbe6b7f
JD
2796%code-top @{
2797 #define _GNU_SOURCE
2798 #include <stdio.h>
2799@}
2800
136a0f76 2801%requires @{
9bc0dd67
JD
2802 #include "ptypes.h"
2803@}
2804%union @{
2805 long int n;
2806 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2807@}
2808
2cbe6b7f
JD
2809%requires @{
2810 #define YYLTYPE YYLTYPE
2811 typedef struct YYLTYPE
2812 @{
2813 int first_line;
2814 int first_column;
2815 int last_line;
2816 int last_column;
2817 char *filename;
2818 @} YYLTYPE;
2819@}
2820
136a0f76 2821%code @{
2cbe6b7f
JD
2822 static void print_token_value (FILE *, int, YYSTYPE);
2823 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2824 static void trace_token (enum yytokentype token, YYLTYPE loc);
2825@}
2826
2827@dots{}
2828@end smallexample
2829
2830@noindent
2831Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2832definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
2833definitions in both the parser code file and the parser header file.
2834(By the same reasoning, @code{%requires} would also be the appropriate place to
2835write your own definition for @code{YYSTYPE}.)
2836
2837At some point while developing your parser, you might decide to provide
2838@code{trace_token} to modules that are external to your parser.
2839Thus, you might wish for Bison to insert the prototype into both the parser
2840header file and the parser code file.
2841Since this function is not a dependency of any Bison-required definition (such
2842as @code{YYSTYPE}), it doesn't make sense to move its prototype to a
2843@code{%requires}.
2844More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
2845@code{%requires} is not sufficient.
2846Instead, move its prototype from the @code{%code} to a @code{%provides}:
2847
2848@smallexample
2849%code-top @{
2850 #define _GNU_SOURCE
136a0f76 2851 #include <stdio.h>
2cbe6b7f 2852@}
136a0f76 2853
2cbe6b7f
JD
2854%requires @{
2855 #include "ptypes.h"
2856@}
2857%union @{
2858 long int n;
2859 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2860@}
2861
2862%requires @{
2863 #define YYLTYPE YYLTYPE
2864 typedef struct YYLTYPE
2865 @{
2866 int first_line;
2867 int first_column;
2868 int last_line;
2869 int last_column;
2870 char *filename;
2871 @} YYLTYPE;
2872@}
2873
2874%provides @{
2875 void trace_token (enum yytokentype token, YYLTYPE loc);
2876@}
2877
2878%code @{
9bc0dd67
JD
2879 static void print_token_value (FILE *, int, YYSTYPE);
2880 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2881@}
9bc0dd67
JD
2882
2883@dots{}
2884@end smallexample
2885
2cbe6b7f
JD
2886@noindent
2887Bison will insert the @code{trace_token} prototype into both the parser header
2888file and the parser code file after the definitions for @code{yytokentype},
2889@code{YYLTYPE}, and @code{YYSTYPE}.
2890
2891The above examples are careful to write directives in an order that reflects
2892the layout of the generated parser code and header files:
2893@code{%code-top}, @code{%requires}, @code{%provides}, and then @code{%code}.
2894While your grammar files will generally be easier to read if you also follow
2895this order, Bison does not require it.
2896Instead, Bison lets you choose an organization that makes sense to you.
2897
2898Any of these directives may be declared multiple times in the grammar file.
2899In that case, Bison concatenates the contained code in declaration order.
2900This is the only way in which the position of one of these directives within
2901the grammar file affects its functionality.
2902
2903The result of the previous two properties is greater flexibility in how you may
2904organize your grammar file.
2905For example, you may organize semantic-type-related directives by semantic
2906type:
2907
2908@smallexample
2909%requires @{ #include "type1.h" @}
2910%union @{ type1 field1; @}
2911%destructor @{ type1_free ($$); @} <field1>
2912%printer @{ type1_print ($$); @} <field1>
2913
2914%requires @{ #include "type2.h" @}
2915%union @{ type2 field2; @}
2916%destructor @{ type2_free ($$); @} <field2>
2917%printer @{ type2_print ($$); @} <field2>
2918@end smallexample
2919
2920@noindent
2921You could even place each of the above directive groups in the rules section of
2922the grammar file next to the set of rules that uses the associated semantic
2923type.
2924And you don't have to worry that some directive (like a @code{%union}) in the
2925definitions section is going to adversely affect their functionality in some
2926counter-intuitive manner just because it comes first.
2927Such an organization is not possible using @var{Prologue} sections.
2928
342b8b6e 2929@node Bison Declarations
bfa74976
RS
2930@subsection The Bison Declarations Section
2931@cindex Bison declarations (introduction)
2932@cindex declarations, Bison (introduction)
2933
2934The @var{Bison declarations} section contains declarations that define
2935terminal and nonterminal symbols, specify precedence, and so on.
2936In some simple grammars you may not need any declarations.
2937@xref{Declarations, ,Bison Declarations}.
2938
342b8b6e 2939@node Grammar Rules
bfa74976
RS
2940@subsection The Grammar Rules Section
2941@cindex grammar rules section
2942@cindex rules section for grammar
2943
2944The @dfn{grammar rules} section contains one or more Bison grammar
2945rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2946
2947There must always be at least one grammar rule, and the first
2948@samp{%%} (which precedes the grammar rules) may never be omitted even
2949if it is the first thing in the file.
2950
38a92d50 2951@node Epilogue
75f5aaea 2952@subsection The epilogue
bfa74976 2953@cindex additional C code section
75f5aaea 2954@cindex epilogue
bfa74976
RS
2955@cindex C code, section for additional
2956
08e49d20
PE
2957The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2958the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2959place to put anything that you want to have in the parser file but which need
2960not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2961definitions of @code{yylex} and @code{yyerror} often go here. Because
2962C requires functions to be declared before being used, you often need
2963to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2964even if you define them in the Epilogue.
75f5aaea 2965@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2966
2967If the last section is empty, you may omit the @samp{%%} that separates it
2968from the grammar rules.
2969
f8e1c9e5
AD
2970The Bison parser itself contains many macros and identifiers whose names
2971start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2972any such names (except those documented in this manual) in the epilogue
2973of the grammar file.
bfa74976 2974
342b8b6e 2975@node Symbols
bfa74976
RS
2976@section Symbols, Terminal and Nonterminal
2977@cindex nonterminal symbol
2978@cindex terminal symbol
2979@cindex token type
2980@cindex symbol
2981
2982@dfn{Symbols} in Bison grammars represent the grammatical classifications
2983of the language.
2984
2985A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2986class of syntactically equivalent tokens. You use the symbol in grammar
2987rules to mean that a token in that class is allowed. The symbol is
2988represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2989function returns a token type code to indicate what kind of token has
2990been read. You don't need to know what the code value is; you can use
2991the symbol to stand for it.
bfa74976 2992
f8e1c9e5
AD
2993A @dfn{nonterminal symbol} stands for a class of syntactically
2994equivalent groupings. The symbol name is used in writing grammar rules.
2995By convention, it should be all lower case.
bfa74976
RS
2996
2997Symbol names can contain letters, digits (not at the beginning),
2998underscores and periods. Periods make sense only in nonterminals.
2999
931c7513 3000There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3001
3002@itemize @bullet
3003@item
3004A @dfn{named token type} is written with an identifier, like an
c827f760 3005identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3006such name must be defined with a Bison declaration such as
3007@code{%token}. @xref{Token Decl, ,Token Type Names}.
3008
3009@item
3010@cindex character token
3011@cindex literal token
3012@cindex single-character literal
931c7513
RS
3013A @dfn{character token type} (or @dfn{literal character token}) is
3014written in the grammar using the same syntax used in C for character
3015constants; for example, @code{'+'} is a character token type. A
3016character token type doesn't need to be declared unless you need to
3017specify its semantic value data type (@pxref{Value Type, ,Data Types of
3018Semantic Values}), associativity, or precedence (@pxref{Precedence,
3019,Operator Precedence}).
bfa74976
RS
3020
3021By convention, a character token type is used only to represent a
3022token that consists of that particular character. Thus, the token
3023type @code{'+'} is used to represent the character @samp{+} as a
3024token. Nothing enforces this convention, but if you depart from it,
3025your program will confuse other readers.
3026
3027All the usual escape sequences used in character literals in C can be
3028used in Bison as well, but you must not use the null character as a
72d2299c
PE
3029character literal because its numeric code, zero, signifies
3030end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3031for @code{yylex}}). Also, unlike standard C, trigraphs have no
3032special meaning in Bison character literals, nor is backslash-newline
3033allowed.
931c7513
RS
3034
3035@item
3036@cindex string token
3037@cindex literal string token
9ecbd125 3038@cindex multicharacter literal
931c7513
RS
3039A @dfn{literal string token} is written like a C string constant; for
3040example, @code{"<="} is a literal string token. A literal string token
3041doesn't need to be declared unless you need to specify its semantic
14ded682 3042value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3043(@pxref{Precedence}).
3044
3045You can associate the literal string token with a symbolic name as an
3046alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3047Declarations}). If you don't do that, the lexical analyzer has to
3048retrieve the token number for the literal string token from the
3049@code{yytname} table (@pxref{Calling Convention}).
3050
c827f760 3051@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3052
3053By convention, a literal string token is used only to represent a token
3054that consists of that particular string. Thus, you should use the token
3055type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3056does not enforce this convention, but if you depart from it, people who
931c7513
RS
3057read your program will be confused.
3058
3059All the escape sequences used in string literals in C can be used in
92ac3705
PE
3060Bison as well, except that you must not use a null character within a
3061string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3062meaning in Bison string literals, nor is backslash-newline allowed. A
3063literal string token must contain two or more characters; for a token
3064containing just one character, use a character token (see above).
bfa74976
RS
3065@end itemize
3066
3067How you choose to write a terminal symbol has no effect on its
3068grammatical meaning. That depends only on where it appears in rules and
3069on when the parser function returns that symbol.
3070
72d2299c
PE
3071The value returned by @code{yylex} is always one of the terminal
3072symbols, except that a zero or negative value signifies end-of-input.
3073Whichever way you write the token type in the grammar rules, you write
3074it the same way in the definition of @code{yylex}. The numeric code
3075for a character token type is simply the positive numeric code of the
3076character, so @code{yylex} can use the identical value to generate the
3077requisite code, though you may need to convert it to @code{unsigned
3078char} to avoid sign-extension on hosts where @code{char} is signed.
3079Each named token type becomes a C macro in
bfa74976 3080the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3081(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3082@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3083
3084If @code{yylex} is defined in a separate file, you need to arrange for the
3085token-type macro definitions to be available there. Use the @samp{-d}
3086option when you run Bison, so that it will write these macro definitions
3087into a separate header file @file{@var{name}.tab.h} which you can include
3088in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3089
72d2299c 3090If you want to write a grammar that is portable to any Standard C
9d9b8b70 3091host, you must use only nonnull character tokens taken from the basic
c827f760 3092execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3093digits, the 52 lower- and upper-case English letters, and the
3094characters in the following C-language string:
3095
3096@example
3097"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3098@end example
3099
f8e1c9e5
AD
3100The @code{yylex} function and Bison must use a consistent character set
3101and encoding for character tokens. For example, if you run Bison in an
3102@acronym{ASCII} environment, but then compile and run the resulting
3103program in an environment that uses an incompatible character set like
3104@acronym{EBCDIC}, the resulting program may not work because the tables
3105generated by Bison will assume @acronym{ASCII} numeric values for
3106character tokens. It is standard practice for software distributions to
3107contain C source files that were generated by Bison in an
3108@acronym{ASCII} environment, so installers on platforms that are
3109incompatible with @acronym{ASCII} must rebuild those files before
3110compiling them.
e966383b 3111
bfa74976
RS
3112The symbol @code{error} is a terminal symbol reserved for error recovery
3113(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3114In particular, @code{yylex} should never return this value. The default
3115value of the error token is 256, unless you explicitly assigned 256 to
3116one of your tokens with a @code{%token} declaration.
bfa74976 3117
342b8b6e 3118@node Rules
bfa74976
RS
3119@section Syntax of Grammar Rules
3120@cindex rule syntax
3121@cindex grammar rule syntax
3122@cindex syntax of grammar rules
3123
3124A Bison grammar rule has the following general form:
3125
3126@example
e425e872 3127@group
bfa74976
RS
3128@var{result}: @var{components}@dots{}
3129 ;
e425e872 3130@end group
bfa74976
RS
3131@end example
3132
3133@noindent
9ecbd125 3134where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3135and @var{components} are various terminal and nonterminal symbols that
13863333 3136are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3137
3138For example,
3139
3140@example
3141@group
3142exp: exp '+' exp
3143 ;
3144@end group
3145@end example
3146
3147@noindent
3148says that two groupings of type @code{exp}, with a @samp{+} token in between,
3149can be combined into a larger grouping of type @code{exp}.
3150
72d2299c
PE
3151White space in rules is significant only to separate symbols. You can add
3152extra white space as you wish.
bfa74976
RS
3153
3154Scattered among the components can be @var{actions} that determine
3155the semantics of the rule. An action looks like this:
3156
3157@example
3158@{@var{C statements}@}
3159@end example
3160
3161@noindent
287c78f6
PE
3162@cindex braced code
3163This is an example of @dfn{braced code}, that is, C code surrounded by
3164braces, much like a compound statement in C@. Braced code can contain
3165any sequence of C tokens, so long as its braces are balanced. Bison
3166does not check the braced code for correctness directly; it merely
3167copies the code to the output file, where the C compiler can check it.
3168
3169Within braced code, the balanced-brace count is not affected by braces
3170within comments, string literals, or character constants, but it is
3171affected by the C digraphs @samp{<%} and @samp{%>} that represent
3172braces. At the top level braced code must be terminated by @samp{@}}
3173and not by a digraph. Bison does not look for trigraphs, so if braced
3174code uses trigraphs you should ensure that they do not affect the
3175nesting of braces or the boundaries of comments, string literals, or
3176character constants.
3177
bfa74976
RS
3178Usually there is only one action and it follows the components.
3179@xref{Actions}.
3180
3181@findex |
3182Multiple rules for the same @var{result} can be written separately or can
3183be joined with the vertical-bar character @samp{|} as follows:
3184
bfa74976
RS
3185@example
3186@group
3187@var{result}: @var{rule1-components}@dots{}
3188 | @var{rule2-components}@dots{}
3189 @dots{}
3190 ;
3191@end group
3192@end example
bfa74976
RS
3193
3194@noindent
3195They are still considered distinct rules even when joined in this way.
3196
3197If @var{components} in a rule is empty, it means that @var{result} can
3198match the empty string. For example, here is how to define a
3199comma-separated sequence of zero or more @code{exp} groupings:
3200
3201@example
3202@group
3203expseq: /* empty */
3204 | expseq1
3205 ;
3206@end group
3207
3208@group
3209expseq1: exp
3210 | expseq1 ',' exp
3211 ;
3212@end group
3213@end example
3214
3215@noindent
3216It is customary to write a comment @samp{/* empty */} in each rule
3217with no components.
3218
342b8b6e 3219@node Recursion
bfa74976
RS
3220@section Recursive Rules
3221@cindex recursive rule
3222
f8e1c9e5
AD
3223A rule is called @dfn{recursive} when its @var{result} nonterminal
3224appears also on its right hand side. Nearly all Bison grammars need to
3225use recursion, because that is the only way to define a sequence of any
3226number of a particular thing. Consider this recursive definition of a
9ecbd125 3227comma-separated sequence of one or more expressions:
bfa74976
RS
3228
3229@example
3230@group
3231expseq1: exp
3232 | expseq1 ',' exp
3233 ;
3234@end group
3235@end example
3236
3237@cindex left recursion
3238@cindex right recursion
3239@noindent
3240Since the recursive use of @code{expseq1} is the leftmost symbol in the
3241right hand side, we call this @dfn{left recursion}. By contrast, here
3242the same construct is defined using @dfn{right recursion}:
3243
3244@example
3245@group
3246expseq1: exp
3247 | exp ',' expseq1
3248 ;
3249@end group
3250@end example
3251
3252@noindent
ec3bc396
AD
3253Any kind of sequence can be defined using either left recursion or right
3254recursion, but you should always use left recursion, because it can
3255parse a sequence of any number of elements with bounded stack space.
3256Right recursion uses up space on the Bison stack in proportion to the
3257number of elements in the sequence, because all the elements must be
3258shifted onto the stack before the rule can be applied even once.
3259@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3260of this.
bfa74976
RS
3261
3262@cindex mutual recursion
3263@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3264rule does not appear directly on its right hand side, but does appear
3265in rules for other nonterminals which do appear on its right hand
13863333 3266side.
bfa74976
RS
3267
3268For example:
3269
3270@example
3271@group
3272expr: primary
3273 | primary '+' primary
3274 ;
3275@end group
3276
3277@group
3278primary: constant
3279 | '(' expr ')'
3280 ;
3281@end group
3282@end example
3283
3284@noindent
3285defines two mutually-recursive nonterminals, since each refers to the
3286other.
3287
342b8b6e 3288@node Semantics
bfa74976
RS
3289@section Defining Language Semantics
3290@cindex defining language semantics
13863333 3291@cindex language semantics, defining
bfa74976
RS
3292
3293The grammar rules for a language determine only the syntax. The semantics
3294are determined by the semantic values associated with various tokens and
3295groupings, and by the actions taken when various groupings are recognized.
3296
3297For example, the calculator calculates properly because the value
3298associated with each expression is the proper number; it adds properly
3299because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3300the numbers associated with @var{x} and @var{y}.
3301
3302@menu
3303* Value Type:: Specifying one data type for all semantic values.
3304* Multiple Types:: Specifying several alternative data types.
3305* Actions:: An action is the semantic definition of a grammar rule.
3306* Action Types:: Specifying data types for actions to operate on.
3307* Mid-Rule Actions:: Most actions go at the end of a rule.
3308 This says when, why and how to use the exceptional
3309 action in the middle of a rule.
3310@end menu
3311
342b8b6e 3312@node Value Type
bfa74976
RS
3313@subsection Data Types of Semantic Values
3314@cindex semantic value type
3315@cindex value type, semantic
3316@cindex data types of semantic values
3317@cindex default data type
3318
3319In a simple program it may be sufficient to use the same data type for
3320the semantic values of all language constructs. This was true in the
c827f760 3321@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3322Notation Calculator}).
bfa74976 3323
ddc8ede1
PE
3324Bison normally uses the type @code{int} for semantic values if your
3325program uses the same data type for all language constructs. To
bfa74976
RS
3326specify some other type, define @code{YYSTYPE} as a macro, like this:
3327
3328@example
3329#define YYSTYPE double
3330@end example
3331
3332@noindent
50cce58e
PE
3333@code{YYSTYPE}'s replacement list should be a type name
3334that does not contain parentheses or square brackets.
342b8b6e 3335This macro definition must go in the prologue of the grammar file
75f5aaea 3336(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3337
342b8b6e 3338@node Multiple Types
bfa74976
RS
3339@subsection More Than One Value Type
3340
3341In most programs, you will need different data types for different kinds
3342of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3343@code{int} or @code{long int}, while a string constant needs type
3344@code{char *}, and an identifier might need a pointer to an entry in the
3345symbol table.
bfa74976
RS
3346
3347To use more than one data type for semantic values in one parser, Bison
3348requires you to do two things:
3349
3350@itemize @bullet
3351@item
ddc8ede1 3352Specify the entire collection of possible data types, either by using the
704a47c4 3353@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3354Value Types}), or by using a @code{typedef} or a @code{#define} to
3355define @code{YYSTYPE} to be a union type whose member names are
3356the type tags.
bfa74976
RS
3357
3358@item
14ded682
AD
3359Choose one of those types for each symbol (terminal or nonterminal) for
3360which semantic values are used. This is done for tokens with the
3361@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3362and for groupings with the @code{%type} Bison declaration (@pxref{Type
3363Decl, ,Nonterminal Symbols}).
bfa74976
RS
3364@end itemize
3365
342b8b6e 3366@node Actions
bfa74976
RS
3367@subsection Actions
3368@cindex action
3369@vindex $$
3370@vindex $@var{n}
3371
3372An action accompanies a syntactic rule and contains C code to be executed
3373each time an instance of that rule is recognized. The task of most actions
3374is to compute a semantic value for the grouping built by the rule from the
3375semantic values associated with tokens or smaller groupings.
3376
287c78f6
PE
3377An action consists of braced code containing C statements, and can be
3378placed at any position in the rule;
704a47c4
AD
3379it is executed at that position. Most rules have just one action at the
3380end of the rule, following all the components. Actions in the middle of
3381a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3382Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3383
3384The C code in an action can refer to the semantic values of the components
3385matched by the rule with the construct @code{$@var{n}}, which stands for
3386the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3387being constructed is @code{$$}. Bison translates both of these
3388constructs into expressions of the appropriate type when it copies the
3389actions into the parser file. @code{$$} is translated to a modifiable
3390lvalue, so it can be assigned to.
bfa74976
RS
3391
3392Here is a typical example:
3393
3394@example
3395@group
3396exp: @dots{}
3397 | exp '+' exp
3398 @{ $$ = $1 + $3; @}
3399@end group
3400@end example
3401
3402@noindent
3403This rule constructs an @code{exp} from two smaller @code{exp} groupings
3404connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3405refer to the semantic values of the two component @code{exp} groupings,
3406which are the first and third symbols on the right hand side of the rule.
3407The sum is stored into @code{$$} so that it becomes the semantic value of
3408the addition-expression just recognized by the rule. If there were a
3409useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3410referred to as @code{$2}.
bfa74976 3411
3ded9a63
AD
3412Note that the vertical-bar character @samp{|} is really a rule
3413separator, and actions are attached to a single rule. This is a
3414difference with tools like Flex, for which @samp{|} stands for either
3415``or'', or ``the same action as that of the next rule''. In the
3416following example, the action is triggered only when @samp{b} is found:
3417
3418@example
3419@group
3420a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3421@end group
3422@end example
3423
bfa74976
RS
3424@cindex default action
3425If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3426@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3427becomes the value of the whole rule. Of course, the default action is
3428valid only if the two data types match. There is no meaningful default
3429action for an empty rule; every empty rule must have an explicit action
3430unless the rule's value does not matter.
bfa74976
RS
3431
3432@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3433to tokens and groupings on the stack @emph{before} those that match the
3434current rule. This is a very risky practice, and to use it reliably
3435you must be certain of the context in which the rule is applied. Here
3436is a case in which you can use this reliably:
3437
3438@example
3439@group
3440foo: expr bar '+' expr @{ @dots{} @}
3441 | expr bar '-' expr @{ @dots{} @}
3442 ;
3443@end group
3444
3445@group
3446bar: /* empty */
3447 @{ previous_expr = $0; @}
3448 ;
3449@end group
3450@end example
3451
3452As long as @code{bar} is used only in the fashion shown here, @code{$0}
3453always refers to the @code{expr} which precedes @code{bar} in the
3454definition of @code{foo}.
3455
32c29292 3456@vindex yylval
742e4900 3457It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3458any, from a semantic action.
3459This semantic value is stored in @code{yylval}.
3460@xref{Action Features, ,Special Features for Use in Actions}.
3461
342b8b6e 3462@node Action Types
bfa74976
RS
3463@subsection Data Types of Values in Actions
3464@cindex action data types
3465@cindex data types in actions
3466
3467If you have chosen a single data type for semantic values, the @code{$$}
3468and @code{$@var{n}} constructs always have that data type.
3469
3470If you have used @code{%union} to specify a variety of data types, then you
3471must declare a choice among these types for each terminal or nonterminal
3472symbol that can have a semantic value. Then each time you use @code{$$} or
3473@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3474in the rule. In this example,
bfa74976
RS
3475
3476@example
3477@group
3478exp: @dots{}
3479 | exp '+' exp
3480 @{ $$ = $1 + $3; @}
3481@end group
3482@end example
3483
3484@noindent
3485@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3486have the data type declared for the nonterminal symbol @code{exp}. If
3487@code{$2} were used, it would have the data type declared for the
e0c471a9 3488terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3489
3490Alternatively, you can specify the data type when you refer to the value,
3491by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3492reference. For example, if you have defined types as shown here:
3493
3494@example
3495@group
3496%union @{
3497 int itype;
3498 double dtype;
3499@}
3500@end group
3501@end example
3502
3503@noindent
3504then you can write @code{$<itype>1} to refer to the first subunit of the
3505rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3506
342b8b6e 3507@node Mid-Rule Actions
bfa74976
RS
3508@subsection Actions in Mid-Rule
3509@cindex actions in mid-rule
3510@cindex mid-rule actions
3511
3512Occasionally it is useful to put an action in the middle of a rule.
3513These actions are written just like usual end-of-rule actions, but they
3514are executed before the parser even recognizes the following components.
3515
3516A mid-rule action may refer to the components preceding it using
3517@code{$@var{n}}, but it may not refer to subsequent components because
3518it is run before they are parsed.
3519
3520The mid-rule action itself counts as one of the components of the rule.
3521This makes a difference when there is another action later in the same rule
3522(and usually there is another at the end): you have to count the actions
3523along with the symbols when working out which number @var{n} to use in
3524@code{$@var{n}}.
3525
3526The mid-rule action can also have a semantic value. The action can set
3527its value with an assignment to @code{$$}, and actions later in the rule
3528can refer to the value using @code{$@var{n}}. Since there is no symbol
3529to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3530in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3531specify a data type each time you refer to this value.
bfa74976
RS
3532
3533There is no way to set the value of the entire rule with a mid-rule
3534action, because assignments to @code{$$} do not have that effect. The
3535only way to set the value for the entire rule is with an ordinary action
3536at the end of the rule.
3537
3538Here is an example from a hypothetical compiler, handling a @code{let}
3539statement that looks like @samp{let (@var{variable}) @var{statement}} and
3540serves to create a variable named @var{variable} temporarily for the
3541duration of @var{statement}. To parse this construct, we must put
3542@var{variable} into the symbol table while @var{statement} is parsed, then
3543remove it afterward. Here is how it is done:
3544
3545@example
3546@group
3547stmt: LET '(' var ')'
3548 @{ $<context>$ = push_context ();
3549 declare_variable ($3); @}
3550 stmt @{ $$ = $6;
3551 pop_context ($<context>5); @}
3552@end group
3553@end example
3554
3555@noindent
3556As soon as @samp{let (@var{variable})} has been recognized, the first
3557action is run. It saves a copy of the current semantic context (the
3558list of accessible variables) as its semantic value, using alternative
3559@code{context} in the data-type union. Then it calls
3560@code{declare_variable} to add the new variable to that list. Once the
3561first action is finished, the embedded statement @code{stmt} can be
3562parsed. Note that the mid-rule action is component number 5, so the
3563@samp{stmt} is component number 6.
3564
3565After the embedded statement is parsed, its semantic value becomes the
3566value of the entire @code{let}-statement. Then the semantic value from the
3567earlier action is used to restore the prior list of variables. This
3568removes the temporary @code{let}-variable from the list so that it won't
3569appear to exist while the rest of the program is parsed.
3570
841a7737
JD
3571@findex %destructor
3572@cindex discarded symbols, mid-rule actions
3573@cindex error recovery, mid-rule actions
3574In the above example, if the parser initiates error recovery (@pxref{Error
3575Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3576it might discard the previous semantic context @code{$<context>5} without
3577restoring it.
3578Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3579Discarded Symbols}).
ec5479ce
JD
3580However, Bison currently provides no means to declare a destructor specific to
3581a particular mid-rule action's semantic value.
841a7737
JD
3582
3583One solution is to bury the mid-rule action inside a nonterminal symbol and to
3584declare a destructor for that symbol:
3585
3586@example
3587@group
3588%type <context> let
3589%destructor @{ pop_context ($$); @} let
3590
3591%%
3592
3593stmt: let stmt
3594 @{ $$ = $2;
3595 pop_context ($1); @}
3596 ;
3597
3598let: LET '(' var ')'
3599 @{ $$ = push_context ();
3600 declare_variable ($3); @}
3601 ;
3602
3603@end group
3604@end example
3605
3606@noindent
3607Note that the action is now at the end of its rule.
3608Any mid-rule action can be converted to an end-of-rule action in this way, and
3609this is what Bison actually does to implement mid-rule actions.
3610
bfa74976
RS
3611Taking action before a rule is completely recognized often leads to
3612conflicts since the parser must commit to a parse in order to execute the
3613action. For example, the following two rules, without mid-rule actions,
3614can coexist in a working parser because the parser can shift the open-brace
3615token and look at what follows before deciding whether there is a
3616declaration or not:
3617
3618@example
3619@group
3620compound: '@{' declarations statements '@}'
3621 | '@{' statements '@}'
3622 ;
3623@end group
3624@end example
3625
3626@noindent
3627But when we add a mid-rule action as follows, the rules become nonfunctional:
3628
3629@example
3630@group
3631compound: @{ prepare_for_local_variables (); @}
3632 '@{' declarations statements '@}'
3633@end group
3634@group
3635 | '@{' statements '@}'
3636 ;
3637@end group
3638@end example
3639
3640@noindent
3641Now the parser is forced to decide whether to run the mid-rule action
3642when it has read no farther than the open-brace. In other words, it
3643must commit to using one rule or the other, without sufficient
3644information to do it correctly. (The open-brace token is what is called
742e4900
JD
3645the @dfn{lookahead} token at this time, since the parser is still
3646deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3647
3648You might think that you could correct the problem by putting identical
3649actions into the two rules, like this:
3650
3651@example
3652@group
3653compound: @{ prepare_for_local_variables (); @}
3654 '@{' declarations statements '@}'
3655 | @{ prepare_for_local_variables (); @}
3656 '@{' statements '@}'
3657 ;
3658@end group
3659@end example
3660
3661@noindent
3662But this does not help, because Bison does not realize that the two actions
3663are identical. (Bison never tries to understand the C code in an action.)
3664
3665If the grammar is such that a declaration can be distinguished from a
3666statement by the first token (which is true in C), then one solution which
3667does work is to put the action after the open-brace, like this:
3668
3669@example
3670@group
3671compound: '@{' @{ prepare_for_local_variables (); @}
3672 declarations statements '@}'
3673 | '@{' statements '@}'
3674 ;
3675@end group
3676@end example
3677
3678@noindent
3679Now the first token of the following declaration or statement,
3680which would in any case tell Bison which rule to use, can still do so.
3681
3682Another solution is to bury the action inside a nonterminal symbol which
3683serves as a subroutine:
3684
3685@example
3686@group
3687subroutine: /* empty */
3688 @{ prepare_for_local_variables (); @}
3689 ;
3690
3691@end group
3692
3693@group
3694compound: subroutine
3695 '@{' declarations statements '@}'
3696 | subroutine
3697 '@{' statements '@}'
3698 ;
3699@end group
3700@end example
3701
3702@noindent
3703Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3704deciding which rule for @code{compound} it will eventually use.
bfa74976 3705
342b8b6e 3706@node Locations
847bf1f5
AD
3707@section Tracking Locations
3708@cindex location
95923bd6
AD
3709@cindex textual location
3710@cindex location, textual
847bf1f5
AD
3711
3712Though grammar rules and semantic actions are enough to write a fully
72d2299c 3713functional parser, it can be useful to process some additional information,
3e259915
MA
3714especially symbol locations.
3715
704a47c4
AD
3716The way locations are handled is defined by providing a data type, and
3717actions to take when rules are matched.
847bf1f5
AD
3718
3719@menu
3720* Location Type:: Specifying a data type for locations.
3721* Actions and Locations:: Using locations in actions.
3722* Location Default Action:: Defining a general way to compute locations.
3723@end menu
3724
342b8b6e 3725@node Location Type
847bf1f5
AD
3726@subsection Data Type of Locations
3727@cindex data type of locations
3728@cindex default location type
3729
3730Defining a data type for locations is much simpler than for semantic values,
3731since all tokens and groupings always use the same type.
3732
50cce58e
PE
3733You can specify the type of locations by defining a macro called
3734@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3735defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3736When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3737four members:
3738
3739@example
6273355b 3740typedef struct YYLTYPE
847bf1f5
AD
3741@{
3742 int first_line;
3743 int first_column;
3744 int last_line;
3745 int last_column;
6273355b 3746@} YYLTYPE;
847bf1f5
AD
3747@end example
3748
cd48d21d
AD
3749At the beginning of the parsing, Bison initializes all these fields to 1
3750for @code{yylloc}.
3751
342b8b6e 3752@node Actions and Locations
847bf1f5
AD
3753@subsection Actions and Locations
3754@cindex location actions
3755@cindex actions, location
3756@vindex @@$
3757@vindex @@@var{n}
3758
3759Actions are not only useful for defining language semantics, but also for
3760describing the behavior of the output parser with locations.
3761
3762The most obvious way for building locations of syntactic groupings is very
72d2299c 3763similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3764constructs can be used to access the locations of the elements being matched.
3765The location of the @var{n}th component of the right hand side is
3766@code{@@@var{n}}, while the location of the left hand side grouping is
3767@code{@@$}.
3768
3e259915 3769Here is a basic example using the default data type for locations:
847bf1f5
AD
3770
3771@example
3772@group
3773exp: @dots{}
3e259915 3774 | exp '/' exp
847bf1f5 3775 @{
3e259915
MA
3776 @@$.first_column = @@1.first_column;
3777 @@$.first_line = @@1.first_line;
847bf1f5
AD
3778 @@$.last_column = @@3.last_column;
3779 @@$.last_line = @@3.last_line;
3e259915
MA
3780 if ($3)
3781 $$ = $1 / $3;
3782 else
3783 @{
3784 $$ = 1;
4e03e201
AD
3785 fprintf (stderr,
3786 "Division by zero, l%d,c%d-l%d,c%d",
3787 @@3.first_line, @@3.first_column,
3788 @@3.last_line, @@3.last_column);
3e259915 3789 @}
847bf1f5
AD
3790 @}
3791@end group
3792@end example
3793
3e259915 3794As for semantic values, there is a default action for locations that is
72d2299c 3795run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3796beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3797last symbol.
3e259915 3798
72d2299c 3799With this default action, the location tracking can be fully automatic. The
3e259915
MA
3800example above simply rewrites this way:
3801
3802@example
3803@group
3804exp: @dots{}
3805 | exp '/' exp
3806 @{
3807 if ($3)
3808 $$ = $1 / $3;
3809 else
3810 @{
3811 $$ = 1;
4e03e201
AD
3812 fprintf (stderr,
3813 "Division by zero, l%d,c%d-l%d,c%d",
3814 @@3.first_line, @@3.first_column,
3815 @@3.last_line, @@3.last_column);
3e259915
MA
3816 @}
3817 @}
3818@end group
3819@end example
847bf1f5 3820
32c29292 3821@vindex yylloc
742e4900 3822It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3823from a semantic action.
3824This location is stored in @code{yylloc}.
3825@xref{Action Features, ,Special Features for Use in Actions}.
3826
342b8b6e 3827@node Location Default Action
847bf1f5
AD
3828@subsection Default Action for Locations
3829@vindex YYLLOC_DEFAULT
8710fc41 3830@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3831
72d2299c 3832Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3833locations are much more general than semantic values, there is room in
3834the output parser to redefine the default action to take for each
72d2299c 3835rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3836matched, before the associated action is run. It is also invoked
3837while processing a syntax error, to compute the error's location.
8710fc41
JD
3838Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3839parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3840of that ambiguity.
847bf1f5 3841
3e259915 3842Most of the time, this macro is general enough to suppress location
79282c6c 3843dedicated code from semantic actions.
847bf1f5 3844
72d2299c 3845The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3846the location of the grouping (the result of the computation). When a
766de5eb 3847rule is matched, the second parameter identifies locations of
96b93a3d 3848all right hand side elements of the rule being matched, and the third
8710fc41
JD
3849parameter is the size of the rule's right hand side.
3850When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3851right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3852When processing a syntax error, the second parameter identifies locations
3853of the symbols that were discarded during error processing, and the third
96b93a3d 3854parameter is the number of discarded symbols.
847bf1f5 3855
766de5eb 3856By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3857
766de5eb 3858@smallexample
847bf1f5 3859@group
766de5eb
PE
3860# define YYLLOC_DEFAULT(Current, Rhs, N) \
3861 do \
3862 if (N) \
3863 @{ \
3864 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3865 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3866 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3867 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3868 @} \
3869 else \
3870 @{ \
3871 (Current).first_line = (Current).last_line = \
3872 YYRHSLOC(Rhs, 0).last_line; \
3873 (Current).first_column = (Current).last_column = \
3874 YYRHSLOC(Rhs, 0).last_column; \
3875 @} \
3876 while (0)
847bf1f5 3877@end group
766de5eb 3878@end smallexample
676385e2 3879
766de5eb
PE
3880where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3881in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3882just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3883
3e259915 3884When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3885
3e259915 3886@itemize @bullet
79282c6c 3887@item
72d2299c 3888All arguments are free of side-effects. However, only the first one (the
3e259915 3889result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3890
3e259915 3891@item
766de5eb
PE
3892For consistency with semantic actions, valid indexes within the
3893right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3894valid index, and it refers to the symbol just before the reduction.
3895During error processing @var{n} is always positive.
0ae99356
PE
3896
3897@item
3898Your macro should parenthesize its arguments, if need be, since the
3899actual arguments may not be surrounded by parentheses. Also, your
3900macro should expand to something that can be used as a single
3901statement when it is followed by a semicolon.
3e259915 3902@end itemize
847bf1f5 3903
342b8b6e 3904@node Declarations
bfa74976
RS
3905@section Bison Declarations
3906@cindex declarations, Bison
3907@cindex Bison declarations
3908
3909The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3910used in formulating the grammar and the data types of semantic values.
3911@xref{Symbols}.
3912
3913All token type names (but not single-character literal tokens such as
3914@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3915declared if you need to specify which data type to use for the semantic
3916value (@pxref{Multiple Types, ,More Than One Value Type}).
3917
3918The first rule in the file also specifies the start symbol, by default.
3919If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3920it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3921Grammars}).
bfa74976
RS
3922
3923@menu
b50d2359 3924* Require Decl:: Requiring a Bison version.
bfa74976
RS
3925* Token Decl:: Declaring terminal symbols.
3926* Precedence Decl:: Declaring terminals with precedence and associativity.
3927* Union Decl:: Declaring the set of all semantic value types.
3928* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3929* Initial Action Decl:: Code run before parsing starts.
72f889cc 3930* Destructor Decl:: Declaring how symbols are freed.
d6328241 3931* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3932* Start Decl:: Specifying the start symbol.
3933* Pure Decl:: Requesting a reentrant parser.
3934* Decl Summary:: Table of all Bison declarations.
3935@end menu
3936
b50d2359
AD
3937@node Require Decl
3938@subsection Require a Version of Bison
3939@cindex version requirement
3940@cindex requiring a version of Bison
3941@findex %require
3942
3943You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3944the requirement is not met, @command{bison} exits with an error (exit
3945status 63).
b50d2359
AD
3946
3947@example
3948%require "@var{version}"
3949@end example
3950
342b8b6e 3951@node Token Decl
bfa74976
RS
3952@subsection Token Type Names
3953@cindex declaring token type names
3954@cindex token type names, declaring
931c7513 3955@cindex declaring literal string tokens
bfa74976
RS
3956@findex %token
3957
3958The basic way to declare a token type name (terminal symbol) is as follows:
3959
3960@example
3961%token @var{name}
3962@end example
3963
3964Bison will convert this into a @code{#define} directive in
3965the parser, so that the function @code{yylex} (if it is in this file)
3966can use the name @var{name} to stand for this token type's code.
3967
14ded682
AD
3968Alternatively, you can use @code{%left}, @code{%right}, or
3969@code{%nonassoc} instead of @code{%token}, if you wish to specify
3970associativity and precedence. @xref{Precedence Decl, ,Operator
3971Precedence}.
bfa74976
RS
3972
3973You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3974a decimal or hexadecimal integer value in the field immediately
3975following the token name:
bfa74976
RS
3976
3977@example
3978%token NUM 300
1452af69 3979%token XNUM 0x12d // a GNU extension
bfa74976
RS
3980@end example
3981
3982@noindent
3983It is generally best, however, to let Bison choose the numeric codes for
3984all token types. Bison will automatically select codes that don't conflict
e966383b 3985with each other or with normal characters.
bfa74976
RS
3986
3987In the event that the stack type is a union, you must augment the
3988@code{%token} or other token declaration to include the data type
704a47c4
AD
3989alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3990Than One Value Type}).
bfa74976
RS
3991
3992For example:
3993
3994@example
3995@group
3996%union @{ /* define stack type */
3997 double val;
3998 symrec *tptr;
3999@}
4000%token <val> NUM /* define token NUM and its type */
4001@end group
4002@end example
4003
931c7513
RS
4004You can associate a literal string token with a token type name by
4005writing the literal string at the end of a @code{%token}
4006declaration which declares the name. For example:
4007
4008@example
4009%token arrow "=>"
4010@end example
4011
4012@noindent
4013For example, a grammar for the C language might specify these names with
4014equivalent literal string tokens:
4015
4016@example
4017%token <operator> OR "||"
4018%token <operator> LE 134 "<="
4019%left OR "<="
4020@end example
4021
4022@noindent
4023Once you equate the literal string and the token name, you can use them
4024interchangeably in further declarations or the grammar rules. The
4025@code{yylex} function can use the token name or the literal string to
4026obtain the token type code number (@pxref{Calling Convention}).
4027
342b8b6e 4028@node Precedence Decl
bfa74976
RS
4029@subsection Operator Precedence
4030@cindex precedence declarations
4031@cindex declaring operator precedence
4032@cindex operator precedence, declaring
4033
4034Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4035declare a token and specify its precedence and associativity, all at
4036once. These are called @dfn{precedence declarations}.
704a47c4
AD
4037@xref{Precedence, ,Operator Precedence}, for general information on
4038operator precedence.
bfa74976
RS
4039
4040The syntax of a precedence declaration is the same as that of
4041@code{%token}: either
4042
4043@example
4044%left @var{symbols}@dots{}
4045@end example
4046
4047@noindent
4048or
4049
4050@example
4051%left <@var{type}> @var{symbols}@dots{}
4052@end example
4053
4054And indeed any of these declarations serves the purposes of @code{%token}.
4055But in addition, they specify the associativity and relative precedence for
4056all the @var{symbols}:
4057
4058@itemize @bullet
4059@item
4060The associativity of an operator @var{op} determines how repeated uses
4061of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4062@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4063grouping @var{y} with @var{z} first. @code{%left} specifies
4064left-associativity (grouping @var{x} with @var{y} first) and
4065@code{%right} specifies right-associativity (grouping @var{y} with
4066@var{z} first). @code{%nonassoc} specifies no associativity, which
4067means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4068considered a syntax error.
4069
4070@item
4071The precedence of an operator determines how it nests with other operators.
4072All the tokens declared in a single precedence declaration have equal
4073precedence and nest together according to their associativity.
4074When two tokens declared in different precedence declarations associate,
4075the one declared later has the higher precedence and is grouped first.
4076@end itemize
4077
342b8b6e 4078@node Union Decl
bfa74976
RS
4079@subsection The Collection of Value Types
4080@cindex declaring value types
4081@cindex value types, declaring
4082@findex %union
4083
287c78f6
PE
4084The @code{%union} declaration specifies the entire collection of
4085possible data types for semantic values. The keyword @code{%union} is
4086followed by braced code containing the same thing that goes inside a
4087@code{union} in C@.
bfa74976
RS
4088
4089For example:
4090
4091@example
4092@group
4093%union @{
4094 double val;
4095 symrec *tptr;
4096@}
4097@end group
4098@end example
4099
4100@noindent
4101This says that the two alternative types are @code{double} and @code{symrec
4102*}. They are given names @code{val} and @code{tptr}; these names are used
4103in the @code{%token} and @code{%type} declarations to pick one of the types
4104for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4105
6273355b
PE
4106As an extension to @acronym{POSIX}, a tag is allowed after the
4107@code{union}. For example:
4108
4109@example
4110@group
4111%union value @{
4112 double val;
4113 symrec *tptr;
4114@}
4115@end group
4116@end example
4117
d6ca7905 4118@noindent
6273355b
PE
4119specifies the union tag @code{value}, so the corresponding C type is
4120@code{union value}. If you do not specify a tag, it defaults to
4121@code{YYSTYPE}.
4122
d6ca7905
PE
4123As another extension to @acronym{POSIX}, you may specify multiple
4124@code{%union} declarations; their contents are concatenated. However,
4125only the first @code{%union} declaration can specify a tag.
4126
6273355b 4127Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4128a semicolon after the closing brace.
4129
ddc8ede1
PE
4130Instead of @code{%union}, you can define and use your own union type
4131@code{YYSTYPE} if your grammar contains at least one
4132@samp{<@var{type}>} tag. For example, you can put the following into
4133a header file @file{parser.h}:
4134
4135@example
4136@group
4137union YYSTYPE @{
4138 double val;
4139 symrec *tptr;
4140@};
4141typedef union YYSTYPE YYSTYPE;
4142@end group
4143@end example
4144
4145@noindent
4146and then your grammar can use the following
4147instead of @code{%union}:
4148
4149@example
4150@group
4151%@{
4152#include "parser.h"
4153%@}
4154%type <val> expr
4155%token <tptr> ID
4156@end group
4157@end example
4158
342b8b6e 4159@node Type Decl
bfa74976
RS
4160@subsection Nonterminal Symbols
4161@cindex declaring value types, nonterminals
4162@cindex value types, nonterminals, declaring
4163@findex %type
4164
4165@noindent
4166When you use @code{%union} to specify multiple value types, you must
4167declare the value type of each nonterminal symbol for which values are
4168used. This is done with a @code{%type} declaration, like this:
4169
4170@example
4171%type <@var{type}> @var{nonterminal}@dots{}
4172@end example
4173
4174@noindent
704a47c4
AD
4175Here @var{nonterminal} is the name of a nonterminal symbol, and
4176@var{type} is the name given in the @code{%union} to the alternative
4177that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4178can give any number of nonterminal symbols in the same @code{%type}
4179declaration, if they have the same value type. Use spaces to separate
4180the symbol names.
bfa74976 4181
931c7513
RS
4182You can also declare the value type of a terminal symbol. To do this,
4183use the same @code{<@var{type}>} construction in a declaration for the
4184terminal symbol. All kinds of token declarations allow
4185@code{<@var{type}>}.
4186
18d192f0
AD
4187@node Initial Action Decl
4188@subsection Performing Actions before Parsing
4189@findex %initial-action
4190
4191Sometimes your parser needs to perform some initializations before
4192parsing. The @code{%initial-action} directive allows for such arbitrary
4193code.
4194
4195@deffn {Directive} %initial-action @{ @var{code} @}
4196@findex %initial-action
287c78f6 4197Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4198@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4199@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4200@code{%parse-param}.
18d192f0
AD
4201@end deffn
4202
451364ed
AD
4203For instance, if your locations use a file name, you may use
4204
4205@example
48b16bbc 4206%parse-param @{ char const *file_name @};
451364ed
AD
4207%initial-action
4208@{
4626a15d 4209 @@$.initialize (file_name);
451364ed
AD
4210@};
4211@end example
4212
18d192f0 4213
72f889cc
AD
4214@node Destructor Decl
4215@subsection Freeing Discarded Symbols
4216@cindex freeing discarded symbols
4217@findex %destructor
3be03b13 4218@findex %symbol-default
72f889cc 4219
a85284cf
AD
4220During error recovery (@pxref{Error Recovery}), symbols already pushed
4221on the stack and tokens coming from the rest of the file are discarded
4222until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4223or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4224symbols on the stack must be discarded. Even if the parser succeeds, it
4225must discard the start symbol.
258b75ca
PE
4226
4227When discarded symbols convey heap based information, this memory is
4228lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4229in traditional compilers, it is unacceptable for programs like shells or
4230protocol implementations that may parse and execute indefinitely.
258b75ca 4231
a85284cf
AD
4232The @code{%destructor} directive defines code that is called when a
4233symbol is automatically discarded.
72f889cc
AD
4234
4235@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4236@findex %destructor
287c78f6
PE
4237Invoke the braced @var{code} whenever the parser discards one of the
4238@var{symbols}.
4b367315 4239Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4240with the discarded symbol, and @code{@@$} designates its location.
4241The additional parser parameters are also available (@pxref{Parser Function, ,
4242The Parser Function @code{yyparse}}).
ec5479ce 4243
b2a0b7ca
JD
4244When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4245per-symbol @code{%destructor}.
4246You may also define a per-type @code{%destructor} by listing a semantic type
4247among @var{symbols}.
4248In that case, the parser will invoke this @var{code} whenever it discards any
4249grammar symbol that has that semantic type unless that symbol has its own
4250per-symbol @code{%destructor}.
4251
4252Finally, you may define a default @code{%destructor} by placing
4253@code{%symbol-default} in the @var{symbols} list of exactly one
4254@code{%destructor} declaration in your grammar file.
4255In that case, the parser will invoke the associated @var{code} whenever it
4256discards any user-defined grammar symbol for which there is no per-type or
4257per-symbol @code{%destructor}.
72f889cc
AD
4258@end deffn
4259
b2a0b7ca 4260@noindent
72f889cc
AD
4261For instance:
4262
4263@smallexample
ec5479ce
JD
4264%union @{ char *string; @}
4265%token <string> STRING1
4266%token <string> STRING2
4267%type <string> string1
4268%type <string> string2
b2a0b7ca
JD
4269%union @{ char character; @}
4270%token <character> CHR
4271%type <character> chr
3be03b13 4272%destructor @{ free ($$); @} %symbol-default
ec5479ce 4273%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
b2a0b7ca 4274%destructor @{ @} <character>
72f889cc
AD
4275@end smallexample
4276
4277@noindent
b2a0b7ca
JD
4278guarantees that, when the parser discards any user-defined symbol that has a
4279semantic type tag other than @code{<character>}, it passes its semantic value
4280to @code{free}.
ec5479ce
JD
4281However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4282prints its line number to @code{stdout}.
4283It performs only the second @code{%destructor} in this case, so it invokes
4284@code{free} only once.
72f889cc 4285
3508ce36
JD
4286Notice that a Bison-generated parser invokes the default @code{%destructor}
4287only for user-defined as opposed to Bison-defined symbols.
4288For example, the parser will not invoke it for the special Bison-defined
4289symbols @code{$accept}, @code{$undefined}, or @code{$end} (@pxref{Table of
4290Symbols, ,Bison Symbols}), none of which you can reference in your grammar.
4291It also will not invoke it for the @code{error} token (@pxref{Table of Symbols,
4292,error}), which is always defined by Bison regardless of whether you reference
4293it in your grammar.
4294However, it will invoke it for the end token (token 0) if you redefine it from
4295@code{$end} to, for example, @code{END}:
4296
4297@smallexample
4298%token END 0
4299@end smallexample
4300
4301@ignore
4302@noindent
4303In the future, it may be possible to redefine the @code{error} token as a
4304nonterminal that captures the discarded symbols.
4305In that case, the parser will invoke the default destructor for it as well.
4306@end ignore
4307
e757bb10
AD
4308@sp 1
4309
4310@cindex discarded symbols
4311@dfn{Discarded symbols} are the following:
4312
4313@itemize
4314@item
4315stacked symbols popped during the first phase of error recovery,
4316@item
4317incoming terminals during the second phase of error recovery,
4318@item
742e4900 4319the current lookahead and the entire stack (except the current
9d9b8b70 4320right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4321@item
4322the start symbol, when the parser succeeds.
e757bb10
AD
4323@end itemize
4324
9d9b8b70
PE
4325The parser can @dfn{return immediately} because of an explicit call to
4326@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4327exhaustion.
4328
4329Right-hand size symbols of a rule that explicitly triggers a syntax
4330error via @code{YYERROR} are not discarded automatically. As a rule
4331of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4332the memory.
e757bb10 4333
342b8b6e 4334@node Expect Decl
bfa74976
RS
4335@subsection Suppressing Conflict Warnings
4336@cindex suppressing conflict warnings
4337@cindex preventing warnings about conflicts
4338@cindex warnings, preventing
4339@cindex conflicts, suppressing warnings of
4340@findex %expect
d6328241 4341@findex %expect-rr
bfa74976
RS
4342
4343Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4344(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4345have harmless shift/reduce conflicts which are resolved in a predictable
4346way and would be difficult to eliminate. It is desirable to suppress
4347the warning about these conflicts unless the number of conflicts
4348changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4349
4350The declaration looks like this:
4351
4352@example
4353%expect @var{n}
4354@end example
4355
035aa4a0
PE
4356Here @var{n} is a decimal integer. The declaration says there should
4357be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4358Bison reports an error if the number of shift/reduce conflicts differs
4359from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4360
035aa4a0
PE
4361For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4362serious, and should be eliminated entirely. Bison will always report
4363reduce/reduce conflicts for these parsers. With @acronym{GLR}
4364parsers, however, both kinds of conflicts are routine; otherwise,
4365there would be no need to use @acronym{GLR} parsing. Therefore, it is
4366also possible to specify an expected number of reduce/reduce conflicts
4367in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4368
4369@example
4370%expect-rr @var{n}
4371@end example
4372
bfa74976
RS
4373In general, using @code{%expect} involves these steps:
4374
4375@itemize @bullet
4376@item
4377Compile your grammar without @code{%expect}. Use the @samp{-v} option
4378to get a verbose list of where the conflicts occur. Bison will also
4379print the number of conflicts.
4380
4381@item
4382Check each of the conflicts to make sure that Bison's default
4383resolution is what you really want. If not, rewrite the grammar and
4384go back to the beginning.
4385
4386@item
4387Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4388number which Bison printed. With @acronym{GLR} parsers, add an
4389@code{%expect-rr} declaration as well.
bfa74976
RS
4390@end itemize
4391
035aa4a0
PE
4392Now Bison will warn you if you introduce an unexpected conflict, but
4393will keep silent otherwise.
bfa74976 4394
342b8b6e 4395@node Start Decl
bfa74976
RS
4396@subsection The Start-Symbol
4397@cindex declaring the start symbol
4398@cindex start symbol, declaring
4399@cindex default start symbol
4400@findex %start
4401
4402Bison assumes by default that the start symbol for the grammar is the first
4403nonterminal specified in the grammar specification section. The programmer
4404may override this restriction with the @code{%start} declaration as follows:
4405
4406@example
4407%start @var{symbol}
4408@end example
4409
342b8b6e 4410@node Pure Decl
bfa74976
RS
4411@subsection A Pure (Reentrant) Parser
4412@cindex reentrant parser
4413@cindex pure parser
8c9a50be 4414@findex %pure-parser
bfa74976
RS
4415
4416A @dfn{reentrant} program is one which does not alter in the course of
4417execution; in other words, it consists entirely of @dfn{pure} (read-only)
4418code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4419for example, a nonreentrant program may not be safe to call from a signal
4420handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4421program must be called only within interlocks.
4422
70811b85 4423Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4424suitable for most uses, and it permits compatibility with Yacc. (The
4425standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4426statically allocated variables for communication with @code{yylex},
4427including @code{yylval} and @code{yylloc}.)
bfa74976 4428
70811b85 4429Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4430declaration @code{%pure-parser} says that you want the parser to be
70811b85 4431reentrant. It looks like this:
bfa74976
RS
4432
4433@example
8c9a50be 4434%pure-parser
bfa74976
RS
4435@end example
4436
70811b85
RS
4437The result is that the communication variables @code{yylval} and
4438@code{yylloc} become local variables in @code{yyparse}, and a different
4439calling convention is used for the lexical analyzer function
4440@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4441Parsers}, for the details of this. The variable @code{yynerrs} also
4442becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4443Reporting Function @code{yyerror}}). The convention for calling
4444@code{yyparse} itself is unchanged.
4445
4446Whether the parser is pure has nothing to do with the grammar rules.
4447You can generate either a pure parser or a nonreentrant parser from any
4448valid grammar.
bfa74976 4449
342b8b6e 4450@node Decl Summary
bfa74976
RS
4451@subsection Bison Declaration Summary
4452@cindex Bison declaration summary
4453@cindex declaration summary
4454@cindex summary, Bison declaration
4455
d8988b2f 4456Here is a summary of the declarations used to define a grammar:
bfa74976 4457
18b519c0 4458@deffn {Directive} %union
bfa74976
RS
4459Declare the collection of data types that semantic values may have
4460(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4461@end deffn
bfa74976 4462
18b519c0 4463@deffn {Directive} %token
bfa74976
RS
4464Declare a terminal symbol (token type name) with no precedence
4465or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4466@end deffn
bfa74976 4467
18b519c0 4468@deffn {Directive} %right
bfa74976
RS
4469Declare a terminal symbol (token type name) that is right-associative
4470(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4471@end deffn
bfa74976 4472
18b519c0 4473@deffn {Directive} %left
bfa74976
RS
4474Declare a terminal symbol (token type name) that is left-associative
4475(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4476@end deffn
bfa74976 4477
18b519c0 4478@deffn {Directive} %nonassoc
bfa74976 4479Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4480(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4481Using it in a way that would be associative is a syntax error.
4482@end deffn
4483
91d2c560 4484@ifset defaultprec
39a06c25 4485@deffn {Directive} %default-prec
22fccf95 4486Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4487(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4488@end deffn
91d2c560 4489@end ifset
bfa74976 4490
18b519c0 4491@deffn {Directive} %type
bfa74976
RS
4492Declare the type of semantic values for a nonterminal symbol
4493(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4494@end deffn
bfa74976 4495
18b519c0 4496@deffn {Directive} %start
89cab50d
AD
4497Specify the grammar's start symbol (@pxref{Start Decl, ,The
4498Start-Symbol}).
18b519c0 4499@end deffn
bfa74976 4500
18b519c0 4501@deffn {Directive} %expect
bfa74976
RS
4502Declare the expected number of shift-reduce conflicts
4503(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4504@end deffn
4505
bfa74976 4506
d8988b2f
AD
4507@sp 1
4508@noindent
4509In order to change the behavior of @command{bison}, use the following
4510directives:
4511
18b519c0 4512@deffn {Directive} %debug
4947ebdb
PE
4513In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4514already defined, so that the debugging facilities are compiled.
18b519c0 4515@end deffn
ec3bc396 4516@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4517
18b519c0 4518@deffn {Directive} %defines
4bfd5e4e
PE
4519Write a header file containing macro definitions for the token type
4520names defined in the grammar as well as a few other declarations.
d8988b2f 4521If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4522is named @file{@var{name}.h}.
d8988b2f 4523
b321737f 4524For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4525@code{YYSTYPE} is already defined as a macro or you have used a
4526@code{<@var{type}>} tag without using @code{%union}.
4527Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4528(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4529require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4530or type definition
f8e1c9e5
AD
4531(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4532arrange for these definitions to be propagated to all modules, e.g., by
4533putting them in a prerequisite header that is included both by your
4534parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4535
4536Unless your parser is pure, the output header declares @code{yylval}
4537as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4538Parser}.
4539
4540If you have also used locations, the output header declares
4541@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4542the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4543Locations}.
4544
f8e1c9e5
AD
4545This output file is normally essential if you wish to put the definition
4546of @code{yylex} in a separate source file, because @code{yylex}
4547typically needs to be able to refer to the above-mentioned declarations
4548and to the token type codes. @xref{Token Values, ,Semantic Values of
4549Tokens}.
9bc0dd67 4550
136a0f76
PB
4551@findex %requires
4552@findex %provides
4553If you have declared @code{%requires} or @code{%provides}, the output
34f98f46 4554header also contains their code.
136a0f76 4555@xref{Table of Symbols, ,%requires}.
18b519c0 4556@end deffn
d8988b2f 4557
18b519c0 4558@deffn {Directive} %destructor
258b75ca 4559Specify how the parser should reclaim the memory associated to
fa7e68c3 4560discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4561@end deffn
72f889cc 4562
18b519c0 4563@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4564Specify a prefix to use for all Bison output file names. The names are
4565chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4566@end deffn
d8988b2f 4567
18b519c0 4568@deffn {Directive} %locations
89cab50d
AD
4569Generate the code processing the locations (@pxref{Action Features,
4570,Special Features for Use in Actions}). This mode is enabled as soon as
4571the grammar uses the special @samp{@@@var{n}} tokens, but if your
4572grammar does not use it, using @samp{%locations} allows for more
6e649e65 4573accurate syntax error messages.
18b519c0 4574@end deffn
89cab50d 4575
18b519c0 4576@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4577Rename the external symbols used in the parser so that they start with
4578@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4579in C parsers
d8988b2f 4580is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4581@code{yylval}, @code{yychar}, @code{yydebug}, and
4582(if locations are used) @code{yylloc}. For example, if you use
2a8d363a 4583@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4584and so on. In C++ parsers, it is only the surrounding namespace which is
4585named @var{prefix} instead of @samp{yy}.
4586@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4587@end deffn
931c7513 4588
91d2c560 4589@ifset defaultprec
22fccf95
PE
4590@deffn {Directive} %no-default-prec
4591Do not assign a precedence to rules lacking an explicit @code{%prec}
4592modifier (@pxref{Contextual Precedence, ,Context-Dependent
4593Precedence}).
4594@end deffn
91d2c560 4595@end ifset
22fccf95 4596
18b519c0 4597@deffn {Directive} %no-parser
6deb4447
AD
4598Do not include any C code in the parser file; generate tables only. The
4599parser file contains just @code{#define} directives and static variable
4600declarations.
4601
4602This option also tells Bison to write the C code for the grammar actions
fa4d969f 4603into a file named @file{@var{file}.act}, in the form of a
6deb4447 4604brace-surrounded body fit for a @code{switch} statement.
18b519c0 4605@end deffn
6deb4447 4606
18b519c0 4607@deffn {Directive} %no-lines
931c7513
RS
4608Don't generate any @code{#line} preprocessor commands in the parser
4609file. Ordinarily Bison writes these commands in the parser file so that
4610the C compiler and debuggers will associate errors and object code with
4611your source file (the grammar file). This directive causes them to
4612associate errors with the parser file, treating it an independent source
4613file in its own right.
18b519c0 4614@end deffn
931c7513 4615
fa4d969f
PE
4616@deffn {Directive} %output="@var{file}"
4617Specify @var{file} for the parser file.
18b519c0 4618@end deffn
6deb4447 4619
18b519c0 4620@deffn {Directive} %pure-parser
d8988b2f
AD
4621Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4622(Reentrant) Parser}).
18b519c0 4623@end deffn
6deb4447 4624
b50d2359 4625@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4626Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4627Require a Version of Bison}.
b50d2359
AD
4628@end deffn
4629
18b519c0 4630@deffn {Directive} %token-table
931c7513
RS
4631Generate an array of token names in the parser file. The name of the
4632array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4633token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4634three elements of @code{yytname} correspond to the predefined tokens
4635@code{"$end"},
88bce5a2
AD
4636@code{"error"}, and @code{"$undefined"}; after these come the symbols
4637defined in the grammar file.
931c7513 4638
9e0876fb
PE
4639The name in the table includes all the characters needed to represent
4640the token in Bison. For single-character literals and literal
4641strings, this includes the surrounding quoting characters and any
4642escape sequences. For example, the Bison single-character literal
4643@code{'+'} corresponds to a three-character name, represented in C as
4644@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4645corresponds to a five-character name, represented in C as
4646@code{"\"\\\\/\""}.
931c7513 4647
8c9a50be 4648When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4649definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4650@code{YYNRULES}, and @code{YYNSTATES}:
4651
4652@table @code
4653@item YYNTOKENS
4654The highest token number, plus one.
4655@item YYNNTS
9ecbd125 4656The number of nonterminal symbols.
931c7513
RS
4657@item YYNRULES
4658The number of grammar rules,
4659@item YYNSTATES
4660The number of parser states (@pxref{Parser States}).
4661@end table
18b519c0 4662@end deffn
d8988b2f 4663
18b519c0 4664@deffn {Directive} %verbose
d8988b2f 4665Write an extra output file containing verbose descriptions of the
742e4900 4666parser states and what is done for each type of lookahead token in
72d2299c 4667that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4668information.
18b519c0 4669@end deffn
d8988b2f 4670
18b519c0 4671@deffn {Directive} %yacc
d8988b2f
AD
4672Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4673including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4674@end deffn
d8988b2f
AD
4675
4676
342b8b6e 4677@node Multiple Parsers
bfa74976
RS
4678@section Multiple Parsers in the Same Program
4679
4680Most programs that use Bison parse only one language and therefore contain
4681only one Bison parser. But what if you want to parse more than one
4682language with the same program? Then you need to avoid a name conflict
4683between different definitions of @code{yyparse}, @code{yylval}, and so on.
4684
4685The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4686(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4687functions and variables of the Bison parser to start with @var{prefix}
4688instead of @samp{yy}. You can use this to give each parser distinct
4689names that do not conflict.
bfa74976
RS
4690
4691The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4692@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4693@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4694the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4695
4696@strong{All the other variables and macros associated with Bison are not
4697renamed.} These others are not global; there is no conflict if the same
4698name is used in different parsers. For example, @code{YYSTYPE} is not
4699renamed, but defining this in different ways in different parsers causes
4700no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4701
4702The @samp{-p} option works by adding macro definitions to the beginning
4703of the parser source file, defining @code{yyparse} as
4704@code{@var{prefix}parse}, and so on. This effectively substitutes one
4705name for the other in the entire parser file.
4706
342b8b6e 4707@node Interface
bfa74976
RS
4708@chapter Parser C-Language Interface
4709@cindex C-language interface
4710@cindex interface
4711
4712The Bison parser is actually a C function named @code{yyparse}. Here we
4713describe the interface conventions of @code{yyparse} and the other
4714functions that it needs to use.
4715
4716Keep in mind that the parser uses many C identifiers starting with
4717@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4718identifier (aside from those in this manual) in an action or in epilogue
4719in the grammar file, you are likely to run into trouble.
bfa74976
RS
4720
4721@menu
4722* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4723* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4724 which reads tokens.
4725* Error Reporting:: You must supply a function @code{yyerror}.
4726* Action Features:: Special features for use in actions.
f7ab6a50
PE
4727* Internationalization:: How to let the parser speak in the user's
4728 native language.
bfa74976
RS
4729@end menu
4730
342b8b6e 4731@node Parser Function
bfa74976
RS
4732@section The Parser Function @code{yyparse}
4733@findex yyparse
4734
4735You call the function @code{yyparse} to cause parsing to occur. This
4736function reads tokens, executes actions, and ultimately returns when it
4737encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4738write an action which directs @code{yyparse} to return immediately
4739without reading further.
bfa74976 4740
2a8d363a
AD
4741
4742@deftypefun int yyparse (void)
bfa74976
RS
4743The value returned by @code{yyparse} is 0 if parsing was successful (return
4744is due to end-of-input).
4745
b47dbebe
PE
4746The value is 1 if parsing failed because of invalid input, i.e., input
4747that contains a syntax error or that causes @code{YYABORT} to be
4748invoked.
4749
4750The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4751@end deftypefun
bfa74976
RS
4752
4753In an action, you can cause immediate return from @code{yyparse} by using
4754these macros:
4755
2a8d363a 4756@defmac YYACCEPT
bfa74976
RS
4757@findex YYACCEPT
4758Return immediately with value 0 (to report success).
2a8d363a 4759@end defmac
bfa74976 4760
2a8d363a 4761@defmac YYABORT
bfa74976
RS
4762@findex YYABORT
4763Return immediately with value 1 (to report failure).
2a8d363a
AD
4764@end defmac
4765
4766If you use a reentrant parser, you can optionally pass additional
4767parameter information to it in a reentrant way. To do so, use the
4768declaration @code{%parse-param}:
4769
feeb0eda 4770@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4771@findex %parse-param
287c78f6
PE
4772Declare that an argument declared by the braced-code
4773@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4774The @var{argument-declaration} is used when declaring
feeb0eda
PE
4775functions or prototypes. The last identifier in
4776@var{argument-declaration} must be the argument name.
2a8d363a
AD
4777@end deffn
4778
4779Here's an example. Write this in the parser:
4780
4781@example
feeb0eda
PE
4782%parse-param @{int *nastiness@}
4783%parse-param @{int *randomness@}
2a8d363a
AD
4784@end example
4785
4786@noindent
4787Then call the parser like this:
4788
4789@example
4790@{
4791 int nastiness, randomness;
4792 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4793 value = yyparse (&nastiness, &randomness);
4794 @dots{}
4795@}
4796@end example
4797
4798@noindent
4799In the grammar actions, use expressions like this to refer to the data:
4800
4801@example
4802exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4803@end example
4804
bfa74976 4805
342b8b6e 4806@node Lexical
bfa74976
RS
4807@section The Lexical Analyzer Function @code{yylex}
4808@findex yylex
4809@cindex lexical analyzer
4810
4811The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4812the input stream and returns them to the parser. Bison does not create
4813this function automatically; you must write it so that @code{yyparse} can
4814call it. The function is sometimes referred to as a lexical scanner.
4815
4816In simple programs, @code{yylex} is often defined at the end of the Bison
4817grammar file. If @code{yylex} is defined in a separate source file, you
4818need to arrange for the token-type macro definitions to be available there.
4819To do this, use the @samp{-d} option when you run Bison, so that it will
4820write these macro definitions into a separate header file
4821@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4822that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4823
4824@menu
4825* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4826* Token Values:: How @code{yylex} must return the semantic value
4827 of the token it has read.
95923bd6 4828* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4829 (line number, etc.) of the token, if the
4830 actions want that.
4831* Pure Calling:: How the calling convention differs
4832 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4833@end menu
4834
342b8b6e 4835@node Calling Convention
bfa74976
RS
4836@subsection Calling Convention for @code{yylex}
4837
72d2299c
PE
4838The value that @code{yylex} returns must be the positive numeric code
4839for the type of token it has just found; a zero or negative value
4840signifies end-of-input.
bfa74976
RS
4841
4842When a token is referred to in the grammar rules by a name, that name
4843in the parser file becomes a C macro whose definition is the proper
4844numeric code for that token type. So @code{yylex} can use the name
4845to indicate that type. @xref{Symbols}.
4846
4847When a token is referred to in the grammar rules by a character literal,
4848the numeric code for that character is also the code for the token type.
72d2299c
PE
4849So @code{yylex} can simply return that character code, possibly converted
4850to @code{unsigned char} to avoid sign-extension. The null character
4851must not be used this way, because its code is zero and that
bfa74976
RS
4852signifies end-of-input.
4853
4854Here is an example showing these things:
4855
4856@example
13863333
AD
4857int
4858yylex (void)
bfa74976
RS
4859@{
4860 @dots{}
72d2299c 4861 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4862 return 0;
4863 @dots{}
4864 if (c == '+' || c == '-')
72d2299c 4865 return c; /* Assume token type for `+' is '+'. */
bfa74976 4866 @dots{}
72d2299c 4867 return INT; /* Return the type of the token. */
bfa74976
RS
4868 @dots{}
4869@}
4870@end example
4871
4872@noindent
4873This interface has been designed so that the output from the @code{lex}
4874utility can be used without change as the definition of @code{yylex}.
4875
931c7513
RS
4876If the grammar uses literal string tokens, there are two ways that
4877@code{yylex} can determine the token type codes for them:
4878
4879@itemize @bullet
4880@item
4881If the grammar defines symbolic token names as aliases for the
4882literal string tokens, @code{yylex} can use these symbolic names like
4883all others. In this case, the use of the literal string tokens in
4884the grammar file has no effect on @code{yylex}.
4885
4886@item
9ecbd125 4887@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4888table. The index of the token in the table is the token type's code.
9ecbd125 4889The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4890double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4891token's characters are escaped as necessary to be suitable as input
4892to Bison.
931c7513 4893
9e0876fb
PE
4894Here's code for looking up a multicharacter token in @code{yytname},
4895assuming that the characters of the token are stored in
4896@code{token_buffer}, and assuming that the token does not contain any
4897characters like @samp{"} that require escaping.
931c7513
RS
4898
4899@smallexample
4900for (i = 0; i < YYNTOKENS; i++)
4901 @{
4902 if (yytname[i] != 0
4903 && yytname[i][0] == '"'
68449b3a
PE
4904 && ! strncmp (yytname[i] + 1, token_buffer,
4905 strlen (token_buffer))
931c7513
RS
4906 && yytname[i][strlen (token_buffer) + 1] == '"'
4907 && yytname[i][strlen (token_buffer) + 2] == 0)
4908 break;
4909 @}
4910@end smallexample
4911
4912The @code{yytname} table is generated only if you use the
8c9a50be 4913@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4914@end itemize
4915
342b8b6e 4916@node Token Values
bfa74976
RS
4917@subsection Semantic Values of Tokens
4918
4919@vindex yylval
9d9b8b70 4920In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4921be stored into the global variable @code{yylval}. When you are using
4922just one data type for semantic values, @code{yylval} has that type.
4923Thus, if the type is @code{int} (the default), you might write this in
4924@code{yylex}:
4925
4926@example
4927@group
4928 @dots{}
72d2299c
PE
4929 yylval = value; /* Put value onto Bison stack. */
4930 return INT; /* Return the type of the token. */
bfa74976
RS
4931 @dots{}
4932@end group
4933@end example
4934
4935When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4936made from the @code{%union} declaration (@pxref{Union Decl, ,The
4937Collection of Value Types}). So when you store a token's value, you
4938must use the proper member of the union. If the @code{%union}
4939declaration looks like this:
bfa74976
RS
4940
4941@example
4942@group
4943%union @{
4944 int intval;
4945 double val;
4946 symrec *tptr;
4947@}
4948@end group
4949@end example
4950
4951@noindent
4952then the code in @code{yylex} might look like this:
4953
4954@example
4955@group
4956 @dots{}
72d2299c
PE
4957 yylval.intval = value; /* Put value onto Bison stack. */
4958 return INT; /* Return the type of the token. */
bfa74976
RS
4959 @dots{}
4960@end group
4961@end example
4962
95923bd6
AD
4963@node Token Locations
4964@subsection Textual Locations of Tokens
bfa74976
RS
4965
4966@vindex yylloc
847bf1f5 4967If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4968Tracking Locations}) in actions to keep track of the textual locations
4969of tokens and groupings, then you must provide this information in
4970@code{yylex}. The function @code{yyparse} expects to find the textual
4971location of a token just parsed in the global variable @code{yylloc}.
4972So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4973
4974By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4975initialize the members that are going to be used by the actions. The
4976four members are called @code{first_line}, @code{first_column},
4977@code{last_line} and @code{last_column}. Note that the use of this
4978feature makes the parser noticeably slower.
bfa74976
RS
4979
4980@tindex YYLTYPE
4981The data type of @code{yylloc} has the name @code{YYLTYPE}.
4982
342b8b6e 4983@node Pure Calling
c656404a 4984@subsection Calling Conventions for Pure Parsers
bfa74976 4985
8c9a50be 4986When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4987pure, reentrant parser, the global communication variables @code{yylval}
4988and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4989Parser}.) In such parsers the two global variables are replaced by
4990pointers passed as arguments to @code{yylex}. You must declare them as
4991shown here, and pass the information back by storing it through those
4992pointers.
bfa74976
RS
4993
4994@example
13863333
AD
4995int
4996yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4997@{
4998 @dots{}
4999 *lvalp = value; /* Put value onto Bison stack. */
5000 return INT; /* Return the type of the token. */
5001 @dots{}
5002@}
5003@end example
5004
5005If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5006textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5007this case, omit the second argument; @code{yylex} will be called with
5008only one argument.
5009
e425e872 5010
2a8d363a
AD
5011If you wish to pass the additional parameter data to @code{yylex}, use
5012@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5013Function}).
e425e872 5014
feeb0eda 5015@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5016@findex %lex-param
287c78f6
PE
5017Declare that the braced-code @var{argument-declaration} is an
5018additional @code{yylex} argument declaration.
2a8d363a 5019@end deffn
e425e872 5020
2a8d363a 5021For instance:
e425e872
RS
5022
5023@example
feeb0eda
PE
5024%parse-param @{int *nastiness@}
5025%lex-param @{int *nastiness@}
5026%parse-param @{int *randomness@}
e425e872
RS
5027@end example
5028
5029@noindent
2a8d363a 5030results in the following signature:
e425e872
RS
5031
5032@example
2a8d363a
AD
5033int yylex (int *nastiness);
5034int yyparse (int *nastiness, int *randomness);
e425e872
RS
5035@end example
5036
2a8d363a 5037If @code{%pure-parser} is added:
c656404a
RS
5038
5039@example
2a8d363a
AD
5040int yylex (YYSTYPE *lvalp, int *nastiness);
5041int yyparse (int *nastiness, int *randomness);
c656404a
RS
5042@end example
5043
2a8d363a
AD
5044@noindent
5045and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 5046
2a8d363a
AD
5047@example
5048int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5049int yyparse (int *nastiness, int *randomness);
5050@end example
931c7513 5051
342b8b6e 5052@node Error Reporting
bfa74976
RS
5053@section The Error Reporting Function @code{yyerror}
5054@cindex error reporting function
5055@findex yyerror
5056@cindex parse error
5057@cindex syntax error
5058
6e649e65 5059The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5060whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5061action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5062macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5063in Actions}).
bfa74976
RS
5064
5065The Bison parser expects to report the error by calling an error
5066reporting function named @code{yyerror}, which you must supply. It is
5067called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5068receives one argument. For a syntax error, the string is normally
5069@w{@code{"syntax error"}}.
bfa74976 5070
2a8d363a
AD
5071@findex %error-verbose
5072If you invoke the directive @code{%error-verbose} in the Bison
5073declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5074Section}), then Bison provides a more verbose and specific error message
6e649e65 5075string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5076
1a059451
PE
5077The parser can detect one other kind of error: memory exhaustion. This
5078can happen when the input contains constructions that are very deeply
bfa74976 5079nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5080parser normally extends its stack automatically up to a very large limit. But
5081if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5082fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5083
5084In some cases diagnostics like @w{@code{"syntax error"}} are
5085translated automatically from English to some other language before
5086they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5087
5088The following definition suffices in simple programs:
5089
5090@example
5091@group
13863333 5092void
38a92d50 5093yyerror (char const *s)
bfa74976
RS
5094@{
5095@end group
5096@group
5097 fprintf (stderr, "%s\n", s);
5098@}
5099@end group
5100@end example
5101
5102After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5103error recovery if you have written suitable error recovery grammar rules
5104(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5105immediately return 1.
5106
93724f13 5107Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5108an access to the current location.
5109This is indeed the case for the @acronym{GLR}
2a8d363a
AD
5110parsers, but not for the Yacc parser, for historical reasons. I.e., if
5111@samp{%locations %pure-parser} is passed then the prototypes for
5112@code{yyerror} are:
5113
5114@example
38a92d50
PE
5115void yyerror (char const *msg); /* Yacc parsers. */
5116void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5117@end example
5118
feeb0eda 5119If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5120
5121@example
b317297e
PE
5122void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5123void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5124@end example
5125
fa7e68c3 5126Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5127convention for absolutely pure parsers, i.e., when the calling
5128convention of @code{yylex} @emph{and} the calling convention of
5129@code{%pure-parser} are pure. I.e.:
5130
5131@example
5132/* Location tracking. */
5133%locations
5134/* Pure yylex. */
5135%pure-parser
feeb0eda 5136%lex-param @{int *nastiness@}
2a8d363a 5137/* Pure yyparse. */
feeb0eda
PE
5138%parse-param @{int *nastiness@}
5139%parse-param @{int *randomness@}
2a8d363a
AD
5140@end example
5141
5142@noindent
5143results in the following signatures for all the parser kinds:
5144
5145@example
5146int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5147int yyparse (int *nastiness, int *randomness);
93724f13
AD
5148void yyerror (YYLTYPE *locp,
5149 int *nastiness, int *randomness,
38a92d50 5150 char const *msg);
2a8d363a
AD
5151@end example
5152
1c0c3e95 5153@noindent
38a92d50
PE
5154The prototypes are only indications of how the code produced by Bison
5155uses @code{yyerror}. Bison-generated code always ignores the returned
5156value, so @code{yyerror} can return any type, including @code{void}.
5157Also, @code{yyerror} can be a variadic function; that is why the
5158message is always passed last.
5159
5160Traditionally @code{yyerror} returns an @code{int} that is always
5161ignored, but this is purely for historical reasons, and @code{void} is
5162preferable since it more accurately describes the return type for
5163@code{yyerror}.
93724f13 5164
bfa74976
RS
5165@vindex yynerrs
5166The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5167reported so far. Normally this variable is global; but if you
704a47c4
AD
5168request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5169then it is a local variable which only the actions can access.
bfa74976 5170
342b8b6e 5171@node Action Features
bfa74976
RS
5172@section Special Features for Use in Actions
5173@cindex summary, action features
5174@cindex action features summary
5175
5176Here is a table of Bison constructs, variables and macros that
5177are useful in actions.
5178
18b519c0 5179@deffn {Variable} $$
bfa74976
RS
5180Acts like a variable that contains the semantic value for the
5181grouping made by the current rule. @xref{Actions}.
18b519c0 5182@end deffn
bfa74976 5183
18b519c0 5184@deffn {Variable} $@var{n}
bfa74976
RS
5185Acts like a variable that contains the semantic value for the
5186@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5187@end deffn
bfa74976 5188
18b519c0 5189@deffn {Variable} $<@var{typealt}>$
bfa74976 5190Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5191specified by the @code{%union} declaration. @xref{Action Types, ,Data
5192Types of Values in Actions}.
18b519c0 5193@end deffn
bfa74976 5194
18b519c0 5195@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5196Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5197union specified by the @code{%union} declaration.
e0c471a9 5198@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5199@end deffn
bfa74976 5200
18b519c0 5201@deffn {Macro} YYABORT;
bfa74976
RS
5202Return immediately from @code{yyparse}, indicating failure.
5203@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5204@end deffn
bfa74976 5205
18b519c0 5206@deffn {Macro} YYACCEPT;
bfa74976
RS
5207Return immediately from @code{yyparse}, indicating success.
5208@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5209@end deffn
bfa74976 5210
18b519c0 5211@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5212@findex YYBACKUP
5213Unshift a token. This macro is allowed only for rules that reduce
742e4900 5214a single value, and only when there is no lookahead token.
c827f760 5215It is also disallowed in @acronym{GLR} parsers.
742e4900 5216It installs a lookahead token with token type @var{token} and
bfa74976
RS
5217semantic value @var{value}; then it discards the value that was
5218going to be reduced by this rule.
5219
5220If the macro is used when it is not valid, such as when there is
742e4900 5221a lookahead token already, then it reports a syntax error with
bfa74976
RS
5222a message @samp{cannot back up} and performs ordinary error
5223recovery.
5224
5225In either case, the rest of the action is not executed.
18b519c0 5226@end deffn
bfa74976 5227
18b519c0 5228@deffn {Macro} YYEMPTY
bfa74976 5229@vindex YYEMPTY
742e4900 5230Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5231@end deffn
bfa74976 5232
32c29292
JD
5233@deffn {Macro} YYEOF
5234@vindex YYEOF
742e4900 5235Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5236stream.
5237@end deffn
5238
18b519c0 5239@deffn {Macro} YYERROR;
bfa74976
RS
5240@findex YYERROR
5241Cause an immediate syntax error. This statement initiates error
5242recovery just as if the parser itself had detected an error; however, it
5243does not call @code{yyerror}, and does not print any message. If you
5244want to print an error message, call @code{yyerror} explicitly before
5245the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5246@end deffn
bfa74976 5247
18b519c0 5248@deffn {Macro} YYRECOVERING
02103984
PE
5249@findex YYRECOVERING
5250The expression @code{YYRECOVERING ()} yields 1 when the parser
5251is recovering from a syntax error, and 0 otherwise.
bfa74976 5252@xref{Error Recovery}.
18b519c0 5253@end deffn
bfa74976 5254
18b519c0 5255@deffn {Variable} yychar
742e4900
JD
5256Variable containing either the lookahead token, or @code{YYEOF} when the
5257lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5258has been performed so the next token is not yet known.
5259Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5260Actions}).
742e4900 5261@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5262@end deffn
bfa74976 5263
18b519c0 5264@deffn {Macro} yyclearin;
742e4900 5265Discard the current lookahead token. This is useful primarily in
32c29292
JD
5266error rules.
5267Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5268Semantic Actions}).
5269@xref{Error Recovery}.
18b519c0 5270@end deffn
bfa74976 5271
18b519c0 5272@deffn {Macro} yyerrok;
bfa74976 5273Resume generating error messages immediately for subsequent syntax
13863333 5274errors. This is useful primarily in error rules.
bfa74976 5275@xref{Error Recovery}.
18b519c0 5276@end deffn
bfa74976 5277
32c29292 5278@deffn {Variable} yylloc
742e4900 5279Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5280to @code{YYEMPTY} or @code{YYEOF}.
5281Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5282Actions}).
5283@xref{Actions and Locations, ,Actions and Locations}.
5284@end deffn
5285
5286@deffn {Variable} yylval
742e4900 5287Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5288not set to @code{YYEMPTY} or @code{YYEOF}.
5289Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5290Actions}).
5291@xref{Actions, ,Actions}.
5292@end deffn
5293
18b519c0 5294@deffn {Value} @@$
847bf1f5 5295@findex @@$
95923bd6 5296Acts like a structure variable containing information on the textual location
847bf1f5
AD
5297of the grouping made by the current rule. @xref{Locations, ,
5298Tracking Locations}.
bfa74976 5299
847bf1f5
AD
5300@c Check if those paragraphs are still useful or not.
5301
5302@c @example
5303@c struct @{
5304@c int first_line, last_line;
5305@c int first_column, last_column;
5306@c @};
5307@c @end example
5308
5309@c Thus, to get the starting line number of the third component, you would
5310@c use @samp{@@3.first_line}.
bfa74976 5311
847bf1f5
AD
5312@c In order for the members of this structure to contain valid information,
5313@c you must make @code{yylex} supply this information about each token.
5314@c If you need only certain members, then @code{yylex} need only fill in
5315@c those members.
bfa74976 5316
847bf1f5 5317@c The use of this feature makes the parser noticeably slower.
18b519c0 5318@end deffn
847bf1f5 5319
18b519c0 5320@deffn {Value} @@@var{n}
847bf1f5 5321@findex @@@var{n}
95923bd6 5322Acts like a structure variable containing information on the textual location
847bf1f5
AD
5323of the @var{n}th component of the current rule. @xref{Locations, ,
5324Tracking Locations}.
18b519c0 5325@end deffn
bfa74976 5326
f7ab6a50
PE
5327@node Internationalization
5328@section Parser Internationalization
5329@cindex internationalization
5330@cindex i18n
5331@cindex NLS
5332@cindex gettext
5333@cindex bison-po
5334
5335A Bison-generated parser can print diagnostics, including error and
5336tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5337also supports outputting diagnostics in the user's native language. To
5338make this work, the user should set the usual environment variables.
5339@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5340For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5341set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5342encoding. The exact set of available locales depends on the user's
5343installation.
5344
5345The maintainer of a package that uses a Bison-generated parser enables
5346the internationalization of the parser's output through the following
5347steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5348@acronym{GNU} Automake.
5349
5350@enumerate
5351@item
30757c8c 5352@cindex bison-i18n.m4
f7ab6a50
PE
5353Into the directory containing the @acronym{GNU} Autoconf macros used
5354by the package---often called @file{m4}---copy the
5355@file{bison-i18n.m4} file installed by Bison under
5356@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5357For example:
5358
5359@example
5360cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5361@end example
5362
5363@item
30757c8c
PE
5364@findex BISON_I18N
5365@vindex BISON_LOCALEDIR
5366@vindex YYENABLE_NLS
f7ab6a50
PE
5367In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5368invocation, add an invocation of @code{BISON_I18N}. This macro is
5369defined in the file @file{bison-i18n.m4} that you copied earlier. It
5370causes @samp{configure} to find the value of the
30757c8c
PE
5371@code{BISON_LOCALEDIR} variable, and it defines the source-language
5372symbol @code{YYENABLE_NLS} to enable translations in the
5373Bison-generated parser.
f7ab6a50
PE
5374
5375@item
5376In the @code{main} function of your program, designate the directory
5377containing Bison's runtime message catalog, through a call to
5378@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5379For example:
5380
5381@example
5382bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5383@end example
5384
5385Typically this appears after any other call @code{bindtextdomain
5386(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5387@samp{BISON_LOCALEDIR} to be defined as a string through the
5388@file{Makefile}.
5389
5390@item
5391In the @file{Makefile.am} that controls the compilation of the @code{main}
5392function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5393either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5394
5395@example
5396DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5397@end example
5398
5399or:
5400
5401@example
5402AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5403@end example
5404
5405@item
5406Finally, invoke the command @command{autoreconf} to generate the build
5407infrastructure.
5408@end enumerate
5409
bfa74976 5410
342b8b6e 5411@node Algorithm
13863333
AD
5412@chapter The Bison Parser Algorithm
5413@cindex Bison parser algorithm
bfa74976
RS
5414@cindex algorithm of parser
5415@cindex shifting
5416@cindex reduction
5417@cindex parser stack
5418@cindex stack, parser
5419
5420As Bison reads tokens, it pushes them onto a stack along with their
5421semantic values. The stack is called the @dfn{parser stack}. Pushing a
5422token is traditionally called @dfn{shifting}.
5423
5424For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5425@samp{3} to come. The stack will have four elements, one for each token
5426that was shifted.
5427
5428But the stack does not always have an element for each token read. When
5429the last @var{n} tokens and groupings shifted match the components of a
5430grammar rule, they can be combined according to that rule. This is called
5431@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5432single grouping whose symbol is the result (left hand side) of that rule.
5433Running the rule's action is part of the process of reduction, because this
5434is what computes the semantic value of the resulting grouping.
5435
5436For example, if the infix calculator's parser stack contains this:
5437
5438@example
54391 + 5 * 3
5440@end example
5441
5442@noindent
5443and the next input token is a newline character, then the last three
5444elements can be reduced to 15 via the rule:
5445
5446@example
5447expr: expr '*' expr;
5448@end example
5449
5450@noindent
5451Then the stack contains just these three elements:
5452
5453@example
54541 + 15
5455@end example
5456
5457@noindent
5458At this point, another reduction can be made, resulting in the single value
545916. Then the newline token can be shifted.
5460
5461The parser tries, by shifts and reductions, to reduce the entire input down
5462to a single grouping whose symbol is the grammar's start-symbol
5463(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5464
5465This kind of parser is known in the literature as a bottom-up parser.
5466
5467@menu
742e4900 5468* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5469* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5470* Precedence:: Operator precedence works by resolving conflicts.
5471* Contextual Precedence:: When an operator's precedence depends on context.
5472* Parser States:: The parser is a finite-state-machine with stack.
5473* Reduce/Reduce:: When two rules are applicable in the same situation.
5474* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5475* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5476* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5477@end menu
5478
742e4900
JD
5479@node Lookahead
5480@section Lookahead Tokens
5481@cindex lookahead token
bfa74976
RS
5482
5483The Bison parser does @emph{not} always reduce immediately as soon as the
5484last @var{n} tokens and groupings match a rule. This is because such a
5485simple strategy is inadequate to handle most languages. Instead, when a
5486reduction is possible, the parser sometimes ``looks ahead'' at the next
5487token in order to decide what to do.
5488
5489When a token is read, it is not immediately shifted; first it becomes the
742e4900 5490@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5491perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5492the lookahead token remains off to the side. When no more reductions
5493should take place, the lookahead token is shifted onto the stack. This
bfa74976 5494does not mean that all possible reductions have been done; depending on the
742e4900 5495token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5496application.
5497
742e4900 5498Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5499expressions which contain binary addition operators and postfix unary
5500factorial operators (@samp{!}), and allow parentheses for grouping.
5501
5502@example
5503@group
5504expr: term '+' expr
5505 | term
5506 ;
5507@end group
5508
5509@group
5510term: '(' expr ')'
5511 | term '!'
5512 | NUMBER
5513 ;
5514@end group
5515@end example
5516
5517Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5518should be done? If the following token is @samp{)}, then the first three
5519tokens must be reduced to form an @code{expr}. This is the only valid
5520course, because shifting the @samp{)} would produce a sequence of symbols
5521@w{@code{term ')'}}, and no rule allows this.
5522
5523If the following token is @samp{!}, then it must be shifted immediately so
5524that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5525parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5526@code{expr}. It would then be impossible to shift the @samp{!} because
5527doing so would produce on the stack the sequence of symbols @code{expr
5528'!'}. No rule allows that sequence.
5529
5530@vindex yychar
32c29292
JD
5531@vindex yylval
5532@vindex yylloc
742e4900 5533The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5534Its semantic value and location, if any, are stored in the variables
5535@code{yylval} and @code{yylloc}.
bfa74976
RS
5536@xref{Action Features, ,Special Features for Use in Actions}.
5537
342b8b6e 5538@node Shift/Reduce
bfa74976
RS
5539@section Shift/Reduce Conflicts
5540@cindex conflicts
5541@cindex shift/reduce conflicts
5542@cindex dangling @code{else}
5543@cindex @code{else}, dangling
5544
5545Suppose we are parsing a language which has if-then and if-then-else
5546statements, with a pair of rules like this:
5547
5548@example
5549@group
5550if_stmt:
5551 IF expr THEN stmt
5552 | IF expr THEN stmt ELSE stmt
5553 ;
5554@end group
5555@end example
5556
5557@noindent
5558Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5559terminal symbols for specific keyword tokens.
5560
742e4900 5561When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5562contents of the stack (assuming the input is valid) are just right for
5563reduction by the first rule. But it is also legitimate to shift the
5564@code{ELSE}, because that would lead to eventual reduction by the second
5565rule.
5566
5567This situation, where either a shift or a reduction would be valid, is
5568called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5569these conflicts by choosing to shift, unless otherwise directed by
5570operator precedence declarations. To see the reason for this, let's
5571contrast it with the other alternative.
5572
5573Since the parser prefers to shift the @code{ELSE}, the result is to attach
5574the else-clause to the innermost if-statement, making these two inputs
5575equivalent:
5576
5577@example
5578if x then if y then win (); else lose;
5579
5580if x then do; if y then win (); else lose; end;
5581@end example
5582
5583But if the parser chose to reduce when possible rather than shift, the
5584result would be to attach the else-clause to the outermost if-statement,
5585making these two inputs equivalent:
5586
5587@example
5588if x then if y then win (); else lose;
5589
5590if x then do; if y then win (); end; else lose;
5591@end example
5592
5593The conflict exists because the grammar as written is ambiguous: either
5594parsing of the simple nested if-statement is legitimate. The established
5595convention is that these ambiguities are resolved by attaching the
5596else-clause to the innermost if-statement; this is what Bison accomplishes
5597by choosing to shift rather than reduce. (It would ideally be cleaner to
5598write an unambiguous grammar, but that is very hard to do in this case.)
5599This particular ambiguity was first encountered in the specifications of
5600Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5601
5602To avoid warnings from Bison about predictable, legitimate shift/reduce
5603conflicts, use the @code{%expect @var{n}} declaration. There will be no
5604warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5605@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5606
5607The definition of @code{if_stmt} above is solely to blame for the
5608conflict, but the conflict does not actually appear without additional
5609rules. Here is a complete Bison input file that actually manifests the
5610conflict:
5611
5612@example
5613@group
5614%token IF THEN ELSE variable
5615%%
5616@end group
5617@group
5618stmt: expr
5619 | if_stmt
5620 ;
5621@end group
5622
5623@group
5624if_stmt:
5625 IF expr THEN stmt
5626 | IF expr THEN stmt ELSE stmt
5627 ;
5628@end group
5629
5630expr: variable
5631 ;
5632@end example
5633
342b8b6e 5634@node Precedence
bfa74976
RS
5635@section Operator Precedence
5636@cindex operator precedence
5637@cindex precedence of operators
5638
5639Another situation where shift/reduce conflicts appear is in arithmetic
5640expressions. Here shifting is not always the preferred resolution; the
5641Bison declarations for operator precedence allow you to specify when to
5642shift and when to reduce.
5643
5644@menu
5645* Why Precedence:: An example showing why precedence is needed.
5646* Using Precedence:: How to specify precedence in Bison grammars.
5647* Precedence Examples:: How these features are used in the previous example.
5648* How Precedence:: How they work.
5649@end menu
5650
342b8b6e 5651@node Why Precedence
bfa74976
RS
5652@subsection When Precedence is Needed
5653
5654Consider the following ambiguous grammar fragment (ambiguous because the
5655input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5656
5657@example
5658@group
5659expr: expr '-' expr
5660 | expr '*' expr
5661 | expr '<' expr
5662 | '(' expr ')'
5663 @dots{}
5664 ;
5665@end group
5666@end example
5667
5668@noindent
5669Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5670should it reduce them via the rule for the subtraction operator? It
5671depends on the next token. Of course, if the next token is @samp{)}, we
5672must reduce; shifting is invalid because no single rule can reduce the
5673token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5674the next token is @samp{*} or @samp{<}, we have a choice: either
5675shifting or reduction would allow the parse to complete, but with
5676different results.
5677
5678To decide which one Bison should do, we must consider the results. If
5679the next operator token @var{op} is shifted, then it must be reduced
5680first in order to permit another opportunity to reduce the difference.
5681The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5682hand, if the subtraction is reduced before shifting @var{op}, the result
5683is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5684reduce should depend on the relative precedence of the operators
5685@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5686@samp{<}.
bfa74976
RS
5687
5688@cindex associativity
5689What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5690@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5691operators we prefer the former, which is called @dfn{left association}.
5692The latter alternative, @dfn{right association}, is desirable for
5693assignment operators. The choice of left or right association is a
5694matter of whether the parser chooses to shift or reduce when the stack
742e4900 5695contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5696makes right-associativity.
bfa74976 5697
342b8b6e 5698@node Using Precedence
bfa74976
RS
5699@subsection Specifying Operator Precedence
5700@findex %left
5701@findex %right
5702@findex %nonassoc
5703
5704Bison allows you to specify these choices with the operator precedence
5705declarations @code{%left} and @code{%right}. Each such declaration
5706contains a list of tokens, which are operators whose precedence and
5707associativity is being declared. The @code{%left} declaration makes all
5708those operators left-associative and the @code{%right} declaration makes
5709them right-associative. A third alternative is @code{%nonassoc}, which
5710declares that it is a syntax error to find the same operator twice ``in a
5711row''.
5712
5713The relative precedence of different operators is controlled by the
5714order in which they are declared. The first @code{%left} or
5715@code{%right} declaration in the file declares the operators whose
5716precedence is lowest, the next such declaration declares the operators
5717whose precedence is a little higher, and so on.
5718
342b8b6e 5719@node Precedence Examples
bfa74976
RS
5720@subsection Precedence Examples
5721
5722In our example, we would want the following declarations:
5723
5724@example
5725%left '<'
5726%left '-'
5727%left '*'
5728@end example
5729
5730In a more complete example, which supports other operators as well, we
5731would declare them in groups of equal precedence. For example, @code{'+'} is
5732declared with @code{'-'}:
5733
5734@example
5735%left '<' '>' '=' NE LE GE
5736%left '+' '-'
5737%left '*' '/'
5738@end example
5739
5740@noindent
5741(Here @code{NE} and so on stand for the operators for ``not equal''
5742and so on. We assume that these tokens are more than one character long
5743and therefore are represented by names, not character literals.)
5744
342b8b6e 5745@node How Precedence
bfa74976
RS
5746@subsection How Precedence Works
5747
5748The first effect of the precedence declarations is to assign precedence
5749levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5750precedence levels to certain rules: each rule gets its precedence from
5751the last terminal symbol mentioned in the components. (You can also
5752specify explicitly the precedence of a rule. @xref{Contextual
5753Precedence, ,Context-Dependent Precedence}.)
5754
5755Finally, the resolution of conflicts works by comparing the precedence
742e4900 5756of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5757token's precedence is higher, the choice is to shift. If the rule's
5758precedence is higher, the choice is to reduce. If they have equal
5759precedence, the choice is made based on the associativity of that
5760precedence level. The verbose output file made by @samp{-v}
5761(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5762resolved.
bfa74976
RS
5763
5764Not all rules and not all tokens have precedence. If either the rule or
742e4900 5765the lookahead token has no precedence, then the default is to shift.
bfa74976 5766
342b8b6e 5767@node Contextual Precedence
bfa74976
RS
5768@section Context-Dependent Precedence
5769@cindex context-dependent precedence
5770@cindex unary operator precedence
5771@cindex precedence, context-dependent
5772@cindex precedence, unary operator
5773@findex %prec
5774
5775Often the precedence of an operator depends on the context. This sounds
5776outlandish at first, but it is really very common. For example, a minus
5777sign typically has a very high precedence as a unary operator, and a
5778somewhat lower precedence (lower than multiplication) as a binary operator.
5779
5780The Bison precedence declarations, @code{%left}, @code{%right} and
5781@code{%nonassoc}, can only be used once for a given token; so a token has
5782only one precedence declared in this way. For context-dependent
5783precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5784modifier for rules.
bfa74976
RS
5785
5786The @code{%prec} modifier declares the precedence of a particular rule by
5787specifying a terminal symbol whose precedence should be used for that rule.
5788It's not necessary for that symbol to appear otherwise in the rule. The
5789modifier's syntax is:
5790
5791@example
5792%prec @var{terminal-symbol}
5793@end example
5794
5795@noindent
5796and it is written after the components of the rule. Its effect is to
5797assign the rule the precedence of @var{terminal-symbol}, overriding
5798the precedence that would be deduced for it in the ordinary way. The
5799altered rule precedence then affects how conflicts involving that rule
5800are resolved (@pxref{Precedence, ,Operator Precedence}).
5801
5802Here is how @code{%prec} solves the problem of unary minus. First, declare
5803a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5804are no tokens of this type, but the symbol serves to stand for its
5805precedence:
5806
5807@example
5808@dots{}
5809%left '+' '-'
5810%left '*'
5811%left UMINUS
5812@end example
5813
5814Now the precedence of @code{UMINUS} can be used in specific rules:
5815
5816@example
5817@group
5818exp: @dots{}
5819 | exp '-' exp
5820 @dots{}
5821 | '-' exp %prec UMINUS
5822@end group
5823@end example
5824
91d2c560 5825@ifset defaultprec
39a06c25
PE
5826If you forget to append @code{%prec UMINUS} to the rule for unary
5827minus, Bison silently assumes that minus has its usual precedence.
5828This kind of problem can be tricky to debug, since one typically
5829discovers the mistake only by testing the code.
5830
22fccf95 5831The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5832this kind of problem systematically. It causes rules that lack a
5833@code{%prec} modifier to have no precedence, even if the last terminal
5834symbol mentioned in their components has a declared precedence.
5835
22fccf95 5836If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5837for all rules that participate in precedence conflict resolution.
5838Then you will see any shift/reduce conflict until you tell Bison how
5839to resolve it, either by changing your grammar or by adding an
5840explicit precedence. This will probably add declarations to the
5841grammar, but it helps to protect against incorrect rule precedences.
5842
22fccf95
PE
5843The effect of @code{%no-default-prec;} can be reversed by giving
5844@code{%default-prec;}, which is the default.
91d2c560 5845@end ifset
39a06c25 5846
342b8b6e 5847@node Parser States
bfa74976
RS
5848@section Parser States
5849@cindex finite-state machine
5850@cindex parser state
5851@cindex state (of parser)
5852
5853The function @code{yyparse} is implemented using a finite-state machine.
5854The values pushed on the parser stack are not simply token type codes; they
5855represent the entire sequence of terminal and nonterminal symbols at or
5856near the top of the stack. The current state collects all the information
5857about previous input which is relevant to deciding what to do next.
5858
742e4900
JD
5859Each time a lookahead token is read, the current parser state together
5860with the type of lookahead token are looked up in a table. This table
5861entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
5862specifies the new parser state, which is pushed onto the top of the
5863parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5864This means that a certain number of tokens or groupings are taken off
5865the top of the stack, and replaced by one grouping. In other words,
5866that number of states are popped from the stack, and one new state is
5867pushed.
5868
742e4900 5869There is one other alternative: the table can say that the lookahead token
bfa74976
RS
5870is erroneous in the current state. This causes error processing to begin
5871(@pxref{Error Recovery}).
5872
342b8b6e 5873@node Reduce/Reduce
bfa74976
RS
5874@section Reduce/Reduce Conflicts
5875@cindex reduce/reduce conflict
5876@cindex conflicts, reduce/reduce
5877
5878A reduce/reduce conflict occurs if there are two or more rules that apply
5879to the same sequence of input. This usually indicates a serious error
5880in the grammar.
5881
5882For example, here is an erroneous attempt to define a sequence
5883of zero or more @code{word} groupings.
5884
5885@example
5886sequence: /* empty */
5887 @{ printf ("empty sequence\n"); @}
5888 | maybeword
5889 | sequence word
5890 @{ printf ("added word %s\n", $2); @}
5891 ;
5892
5893maybeword: /* empty */
5894 @{ printf ("empty maybeword\n"); @}
5895 | word
5896 @{ printf ("single word %s\n", $1); @}
5897 ;
5898@end example
5899
5900@noindent
5901The error is an ambiguity: there is more than one way to parse a single
5902@code{word} into a @code{sequence}. It could be reduced to a
5903@code{maybeword} and then into a @code{sequence} via the second rule.
5904Alternatively, nothing-at-all could be reduced into a @code{sequence}
5905via the first rule, and this could be combined with the @code{word}
5906using the third rule for @code{sequence}.
5907
5908There is also more than one way to reduce nothing-at-all into a
5909@code{sequence}. This can be done directly via the first rule,
5910or indirectly via @code{maybeword} and then the second rule.
5911
5912You might think that this is a distinction without a difference, because it
5913does not change whether any particular input is valid or not. But it does
5914affect which actions are run. One parsing order runs the second rule's
5915action; the other runs the first rule's action and the third rule's action.
5916In this example, the output of the program changes.
5917
5918Bison resolves a reduce/reduce conflict by choosing to use the rule that
5919appears first in the grammar, but it is very risky to rely on this. Every
5920reduce/reduce conflict must be studied and usually eliminated. Here is the
5921proper way to define @code{sequence}:
5922
5923@example
5924sequence: /* empty */
5925 @{ printf ("empty sequence\n"); @}
5926 | sequence word
5927 @{ printf ("added word %s\n", $2); @}
5928 ;
5929@end example
5930
5931Here is another common error that yields a reduce/reduce conflict:
5932
5933@example
5934sequence: /* empty */
5935 | sequence words
5936 | sequence redirects
5937 ;
5938
5939words: /* empty */
5940 | words word
5941 ;
5942
5943redirects:/* empty */
5944 | redirects redirect
5945 ;
5946@end example
5947
5948@noindent
5949The intention here is to define a sequence which can contain either
5950@code{word} or @code{redirect} groupings. The individual definitions of
5951@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5952three together make a subtle ambiguity: even an empty input can be parsed
5953in infinitely many ways!
5954
5955Consider: nothing-at-all could be a @code{words}. Or it could be two
5956@code{words} in a row, or three, or any number. It could equally well be a
5957@code{redirects}, or two, or any number. Or it could be a @code{words}
5958followed by three @code{redirects} and another @code{words}. And so on.
5959
5960Here are two ways to correct these rules. First, to make it a single level
5961of sequence:
5962
5963@example
5964sequence: /* empty */
5965 | sequence word
5966 | sequence redirect
5967 ;
5968@end example
5969
5970Second, to prevent either a @code{words} or a @code{redirects}
5971from being empty:
5972
5973@example
5974sequence: /* empty */
5975 | sequence words
5976 | sequence redirects
5977 ;
5978
5979words: word
5980 | words word
5981 ;
5982
5983redirects:redirect
5984 | redirects redirect
5985 ;
5986@end example
5987
342b8b6e 5988@node Mystery Conflicts
bfa74976
RS
5989@section Mysterious Reduce/Reduce Conflicts
5990
5991Sometimes reduce/reduce conflicts can occur that don't look warranted.
5992Here is an example:
5993
5994@example
5995@group
5996%token ID
5997
5998%%
5999def: param_spec return_spec ','
6000 ;
6001param_spec:
6002 type
6003 | name_list ':' type
6004 ;
6005@end group
6006@group
6007return_spec:
6008 type
6009 | name ':' type
6010 ;
6011@end group
6012@group
6013type: ID
6014 ;
6015@end group
6016@group
6017name: ID
6018 ;
6019name_list:
6020 name
6021 | name ',' name_list
6022 ;
6023@end group
6024@end example
6025
6026It would seem that this grammar can be parsed with only a single token
742e4900 6027of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6028a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6029@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6030
c827f760
PE
6031@cindex @acronym{LR}(1)
6032@cindex @acronym{LALR}(1)
bfa74976 6033However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6034@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6035an @code{ID}
bfa74976
RS
6036at the beginning of a @code{param_spec} and likewise at the beginning of
6037a @code{return_spec}, are similar enough that Bison assumes they are the
6038same. They appear similar because the same set of rules would be
6039active---the rule for reducing to a @code{name} and that for reducing to
6040a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6041that the rules would require different lookahead tokens in the two
bfa74976
RS
6042contexts, so it makes a single parser state for them both. Combining
6043the two contexts causes a conflict later. In parser terminology, this
c827f760 6044occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6045
6046In general, it is better to fix deficiencies than to document them. But
6047this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6048generators that can handle @acronym{LR}(1) grammars are hard to write
6049and tend to
bfa74976
RS
6050produce parsers that are very large. In practice, Bison is more useful
6051as it is now.
6052
6053When the problem arises, you can often fix it by identifying the two
a220f555
MA
6054parser states that are being confused, and adding something to make them
6055look distinct. In the above example, adding one rule to
bfa74976
RS
6056@code{return_spec} as follows makes the problem go away:
6057
6058@example
6059@group
6060%token BOGUS
6061@dots{}
6062%%
6063@dots{}
6064return_spec:
6065 type
6066 | name ':' type
6067 /* This rule is never used. */
6068 | ID BOGUS
6069 ;
6070@end group
6071@end example
6072
6073This corrects the problem because it introduces the possibility of an
6074additional active rule in the context after the @code{ID} at the beginning of
6075@code{return_spec}. This rule is not active in the corresponding context
6076in a @code{param_spec}, so the two contexts receive distinct parser states.
6077As long as the token @code{BOGUS} is never generated by @code{yylex},
6078the added rule cannot alter the way actual input is parsed.
6079
6080In this particular example, there is another way to solve the problem:
6081rewrite the rule for @code{return_spec} to use @code{ID} directly
6082instead of via @code{name}. This also causes the two confusing
6083contexts to have different sets of active rules, because the one for
6084@code{return_spec} activates the altered rule for @code{return_spec}
6085rather than the one for @code{name}.
6086
6087@example
6088param_spec:
6089 type
6090 | name_list ':' type
6091 ;
6092return_spec:
6093 type
6094 | ID ':' type
6095 ;
6096@end example
6097
e054b190
PE
6098For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6099generators, please see:
6100Frank DeRemer and Thomas Pennello, Efficient Computation of
6101@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6102Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6103pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6104
fae437e8 6105@node Generalized LR Parsing
c827f760
PE
6106@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6107@cindex @acronym{GLR} parsing
6108@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6109@cindex ambiguous grammars
9d9b8b70 6110@cindex nondeterministic parsing
676385e2 6111
fae437e8
AD
6112Bison produces @emph{deterministic} parsers that choose uniquely
6113when to reduce and which reduction to apply
742e4900 6114based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6115As a result, normal Bison handles a proper subset of the family of
6116context-free languages.
fae437e8 6117Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6118sequence of reductions cannot have deterministic parsers in this sense.
6119The same is true of languages that require more than one symbol of
742e4900 6120lookahead, since the parser lacks the information necessary to make a
676385e2 6121decision at the point it must be made in a shift-reduce parser.
fae437e8 6122Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6123there are languages where Bison's particular choice of how to
6124summarize the input seen so far loses necessary information.
6125
6126When you use the @samp{%glr-parser} declaration in your grammar file,
6127Bison generates a parser that uses a different algorithm, called
c827f760
PE
6128Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6129parser uses the same basic
676385e2
PH
6130algorithm for parsing as an ordinary Bison parser, but behaves
6131differently in cases where there is a shift-reduce conflict that has not
fae437e8 6132been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6133reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6134situation, it
fae437e8 6135effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6136shift or reduction. These parsers then proceed as usual, consuming
6137tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6138and split further, with the result that instead of a sequence of states,
c827f760 6139a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6140
6141In effect, each stack represents a guess as to what the proper parse
6142is. Additional input may indicate that a guess was wrong, in which case
6143the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6144actions generated in each stack are saved, rather than being executed
676385e2 6145immediately. When a stack disappears, its saved semantic actions never
fae437e8 6146get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6147their sets of semantic actions are both saved with the state that
6148results from the reduction. We say that two stacks are equivalent
fae437e8 6149when they both represent the same sequence of states,
676385e2
PH
6150and each pair of corresponding states represents a
6151grammar symbol that produces the same segment of the input token
6152stream.
6153
6154Whenever the parser makes a transition from having multiple
c827f760 6155states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6156algorithm, after resolving and executing the saved-up actions.
6157At this transition, some of the states on the stack will have semantic
6158values that are sets (actually multisets) of possible actions. The
6159parser tries to pick one of the actions by first finding one whose rule
6160has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6161declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6162precedence, but there the same merging function is declared for both
fae437e8 6163rules by the @samp{%merge} declaration,
676385e2
PH
6164Bison resolves and evaluates both and then calls the merge function on
6165the result. Otherwise, it reports an ambiguity.
6166
c827f760
PE
6167It is possible to use a data structure for the @acronym{GLR} parsing tree that
6168permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6169size of the input), any unambiguous (not necessarily
6170@acronym{LALR}(1)) grammar in
fae437e8 6171quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6172context-free grammar in cubic worst-case time. However, Bison currently
6173uses a simpler data structure that requires time proportional to the
6174length of the input times the maximum number of stacks required for any
9d9b8b70 6175prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6176grammars can require exponential time and space to process. Such badly
6177behaving examples, however, are not generally of practical interest.
9d9b8b70 6178Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6179doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6180structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6181grammar, in particular, it is only slightly slower than with the default
6182Bison parser.
6183
fa7e68c3 6184For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6185Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6186Generalised @acronym{LR} Parsers, Royal Holloway, University of
6187London, Department of Computer Science, TR-00-12,
6188@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6189(2000-12-24).
6190
1a059451
PE
6191@node Memory Management
6192@section Memory Management, and How to Avoid Memory Exhaustion
6193@cindex memory exhaustion
6194@cindex memory management
bfa74976
RS
6195@cindex stack overflow
6196@cindex parser stack overflow
6197@cindex overflow of parser stack
6198
1a059451 6199The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6200not reduced. When this happens, the parser function @code{yyparse}
1a059451 6201calls @code{yyerror} and then returns 2.
bfa74976 6202
c827f760 6203Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6204usually results from using a right recursion instead of a left
6205recursion, @xref{Recursion, ,Recursive Rules}.
6206
bfa74976
RS
6207@vindex YYMAXDEPTH
6208By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6209parser stack can become before memory is exhausted. Define the
bfa74976
RS
6210macro with a value that is an integer. This value is the maximum number
6211of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6212
6213The stack space allowed is not necessarily allocated. If you specify a
1a059451 6214large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6215stack at first, and then makes it bigger by stages as needed. This
6216increasing allocation happens automatically and silently. Therefore,
6217you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6218space for ordinary inputs that do not need much stack.
6219
d7e14fc0
PE
6220However, do not allow @code{YYMAXDEPTH} to be a value so large that
6221arithmetic overflow could occur when calculating the size of the stack
6222space. Also, do not allow @code{YYMAXDEPTH} to be less than
6223@code{YYINITDEPTH}.
6224
bfa74976
RS
6225@cindex default stack limit
6226The default value of @code{YYMAXDEPTH}, if you do not define it, is
622710000.
6228
6229@vindex YYINITDEPTH
6230You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6231macro @code{YYINITDEPTH} to a positive integer. For the C
6232@acronym{LALR}(1) parser, this value must be a compile-time constant
6233unless you are assuming C99 or some other target language or compiler
6234that allows variable-length arrays. The default is 200.
6235
1a059451 6236Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6237
d1a1114f 6238@c FIXME: C++ output.
c827f760 6239Because of semantical differences between C and C++, the
1a059451
PE
6240@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6241by C++ compilers. In this precise case (compiling a C parser as C++) you are
6242suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6243this deficiency in a future release.
d1a1114f 6244
342b8b6e 6245@node Error Recovery
bfa74976
RS
6246@chapter Error Recovery
6247@cindex error recovery
6248@cindex recovery from errors
6249
6e649e65 6250It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6251error. For example, a compiler should recover sufficiently to parse the
6252rest of the input file and check it for errors; a calculator should accept
6253another expression.
6254
6255In a simple interactive command parser where each input is one line, it may
6256be sufficient to allow @code{yyparse} to return 1 on error and have the
6257caller ignore the rest of the input line when that happens (and then call
6258@code{yyparse} again). But this is inadequate for a compiler, because it
6259forgets all the syntactic context leading up to the error. A syntax error
6260deep within a function in the compiler input should not cause the compiler
6261to treat the following line like the beginning of a source file.
6262
6263@findex error
6264You can define how to recover from a syntax error by writing rules to
6265recognize the special token @code{error}. This is a terminal symbol that
6266is always defined (you need not declare it) and reserved for error
6267handling. The Bison parser generates an @code{error} token whenever a
6268syntax error happens; if you have provided a rule to recognize this token
13863333 6269in the current context, the parse can continue.
bfa74976
RS
6270
6271For example:
6272
6273@example
6274stmnts: /* empty string */
6275 | stmnts '\n'
6276 | stmnts exp '\n'
6277 | stmnts error '\n'
6278@end example
6279
6280The fourth rule in this example says that an error followed by a newline
6281makes a valid addition to any @code{stmnts}.
6282
6283What happens if a syntax error occurs in the middle of an @code{exp}? The
6284error recovery rule, interpreted strictly, applies to the precise sequence
6285of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6286the middle of an @code{exp}, there will probably be some additional tokens
6287and subexpressions on the stack after the last @code{stmnts}, and there
6288will be tokens to read before the next newline. So the rule is not
6289applicable in the ordinary way.
6290
6291But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6292the semantic context and part of the input. First it discards states
6293and objects from the stack until it gets back to a state in which the
bfa74976 6294@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6295already parsed are discarded, back to the last complete @code{stmnts}.)
6296At this point the @code{error} token can be shifted. Then, if the old
742e4900 6297lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6298tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6299this example, Bison reads and discards input until the next newline so
6300that the fourth rule can apply. Note that discarded symbols are
6301possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6302Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6303
6304The choice of error rules in the grammar is a choice of strategies for
6305error recovery. A simple and useful strategy is simply to skip the rest of
6306the current input line or current statement if an error is detected:
6307
6308@example
72d2299c 6309stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6310@end example
6311
6312It is also useful to recover to the matching close-delimiter of an
6313opening-delimiter that has already been parsed. Otherwise the
6314close-delimiter will probably appear to be unmatched, and generate another,
6315spurious error message:
6316
6317@example
6318primary: '(' expr ')'
6319 | '(' error ')'
6320 @dots{}
6321 ;
6322@end example
6323
6324Error recovery strategies are necessarily guesses. When they guess wrong,
6325one syntax error often leads to another. In the above example, the error
6326recovery rule guesses that an error is due to bad input within one
6327@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6328middle of a valid @code{stmnt}. After the error recovery rule recovers
6329from the first error, another syntax error will be found straightaway,
6330since the text following the spurious semicolon is also an invalid
6331@code{stmnt}.
6332
6333To prevent an outpouring of error messages, the parser will output no error
6334message for another syntax error that happens shortly after the first; only
6335after three consecutive input tokens have been successfully shifted will
6336error messages resume.
6337
6338Note that rules which accept the @code{error} token may have actions, just
6339as any other rules can.
6340
6341@findex yyerrok
6342You can make error messages resume immediately by using the macro
6343@code{yyerrok} in an action. If you do this in the error rule's action, no
6344error messages will be suppressed. This macro requires no arguments;
6345@samp{yyerrok;} is a valid C statement.
6346
6347@findex yyclearin
742e4900 6348The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6349this is unacceptable, then the macro @code{yyclearin} may be used to clear
6350this token. Write the statement @samp{yyclearin;} in the error rule's
6351action.
32c29292 6352@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6353
6e649e65 6354For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6355called that advances the input stream to some point where parsing should
6356once again commence. The next symbol returned by the lexical scanner is
742e4900 6357probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6358with @samp{yyclearin;}.
6359
6360@vindex YYRECOVERING
02103984
PE
6361The expression @code{YYRECOVERING ()} yields 1 when the parser
6362is recovering from a syntax error, and 0 otherwise.
6363Syntax error diagnostics are suppressed while recovering from a syntax
6364error.
bfa74976 6365
342b8b6e 6366@node Context Dependency
bfa74976
RS
6367@chapter Handling Context Dependencies
6368
6369The Bison paradigm is to parse tokens first, then group them into larger
6370syntactic units. In many languages, the meaning of a token is affected by
6371its context. Although this violates the Bison paradigm, certain techniques
6372(known as @dfn{kludges}) may enable you to write Bison parsers for such
6373languages.
6374
6375@menu
6376* Semantic Tokens:: Token parsing can depend on the semantic context.
6377* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6378* Tie-in Recovery:: Lexical tie-ins have implications for how
6379 error recovery rules must be written.
6380@end menu
6381
6382(Actually, ``kludge'' means any technique that gets its job done but is
6383neither clean nor robust.)
6384
342b8b6e 6385@node Semantic Tokens
bfa74976
RS
6386@section Semantic Info in Token Types
6387
6388The C language has a context dependency: the way an identifier is used
6389depends on what its current meaning is. For example, consider this:
6390
6391@example
6392foo (x);
6393@end example
6394
6395This looks like a function call statement, but if @code{foo} is a typedef
6396name, then this is actually a declaration of @code{x}. How can a Bison
6397parser for C decide how to parse this input?
6398
c827f760 6399The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6400@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6401identifier, it looks up the current declaration of the identifier in order
6402to decide which token type to return: @code{TYPENAME} if the identifier is
6403declared as a typedef, @code{IDENTIFIER} otherwise.
6404
6405The grammar rules can then express the context dependency by the choice of
6406token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6407but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6408@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6409is @emph{not} significant, such as in declarations that can shadow a
6410typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6411accepted---there is one rule for each of the two token types.
6412
6413This technique is simple to use if the decision of which kinds of
6414identifiers to allow is made at a place close to where the identifier is
6415parsed. But in C this is not always so: C allows a declaration to
6416redeclare a typedef name provided an explicit type has been specified
6417earlier:
6418
6419@example
3a4f411f
PE
6420typedef int foo, bar;
6421int baz (void)
6422@{
6423 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6424 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6425 return foo (bar);
6426@}
bfa74976
RS
6427@end example
6428
6429Unfortunately, the name being declared is separated from the declaration
6430construct itself by a complicated syntactic structure---the ``declarator''.
6431
9ecbd125 6432As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6433all the nonterminal names changed: once for parsing a declaration in
6434which a typedef name can be redefined, and once for parsing a
6435declaration in which that can't be done. Here is a part of the
6436duplication, with actions omitted for brevity:
bfa74976
RS
6437
6438@example
6439initdcl:
6440 declarator maybeasm '='
6441 init
6442 | declarator maybeasm
6443 ;
6444
6445notype_initdcl:
6446 notype_declarator maybeasm '='
6447 init
6448 | notype_declarator maybeasm
6449 ;
6450@end example
6451
6452@noindent
6453Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6454cannot. The distinction between @code{declarator} and
6455@code{notype_declarator} is the same sort of thing.
6456
6457There is some similarity between this technique and a lexical tie-in
6458(described next), in that information which alters the lexical analysis is
6459changed during parsing by other parts of the program. The difference is
6460here the information is global, and is used for other purposes in the
6461program. A true lexical tie-in has a special-purpose flag controlled by
6462the syntactic context.
6463
342b8b6e 6464@node Lexical Tie-ins
bfa74976
RS
6465@section Lexical Tie-ins
6466@cindex lexical tie-in
6467
6468One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6469which is set by Bison actions, whose purpose is to alter the way tokens are
6470parsed.
6471
6472For example, suppose we have a language vaguely like C, but with a special
6473construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6474an expression in parentheses in which all integers are hexadecimal. In
6475particular, the token @samp{a1b} must be treated as an integer rather than
6476as an identifier if it appears in that context. Here is how you can do it:
6477
6478@example
6479@group
6480%@{
38a92d50
PE
6481 int hexflag;
6482 int yylex (void);
6483 void yyerror (char const *);
bfa74976
RS
6484%@}
6485%%
6486@dots{}
6487@end group
6488@group
6489expr: IDENTIFIER
6490 | constant
6491 | HEX '('
6492 @{ hexflag = 1; @}
6493 expr ')'
6494 @{ hexflag = 0;
6495 $$ = $4; @}
6496 | expr '+' expr
6497 @{ $$ = make_sum ($1, $3); @}
6498 @dots{}
6499 ;
6500@end group
6501
6502@group
6503constant:
6504 INTEGER
6505 | STRING
6506 ;
6507@end group
6508@end example
6509
6510@noindent
6511Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6512it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6513with letters are parsed as integers if possible.
6514
342b8b6e
AD
6515The declaration of @code{hexflag} shown in the prologue of the parser file
6516is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6517You must also write the code in @code{yylex} to obey the flag.
bfa74976 6518
342b8b6e 6519@node Tie-in Recovery
bfa74976
RS
6520@section Lexical Tie-ins and Error Recovery
6521
6522Lexical tie-ins make strict demands on any error recovery rules you have.
6523@xref{Error Recovery}.
6524
6525The reason for this is that the purpose of an error recovery rule is to
6526abort the parsing of one construct and resume in some larger construct.
6527For example, in C-like languages, a typical error recovery rule is to skip
6528tokens until the next semicolon, and then start a new statement, like this:
6529
6530@example
6531stmt: expr ';'
6532 | IF '(' expr ')' stmt @{ @dots{} @}
6533 @dots{}
6534 error ';'
6535 @{ hexflag = 0; @}
6536 ;
6537@end example
6538
6539If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6540construct, this error rule will apply, and then the action for the
6541completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6542remain set for the entire rest of the input, or until the next @code{hex}
6543keyword, causing identifiers to be misinterpreted as integers.
6544
6545To avoid this problem the error recovery rule itself clears @code{hexflag}.
6546
6547There may also be an error recovery rule that works within expressions.
6548For example, there could be a rule which applies within parentheses
6549and skips to the close-parenthesis:
6550
6551@example
6552@group
6553expr: @dots{}
6554 | '(' expr ')'
6555 @{ $$ = $2; @}
6556 | '(' error ')'
6557 @dots{}
6558@end group
6559@end example
6560
6561If this rule acts within the @code{hex} construct, it is not going to abort
6562that construct (since it applies to an inner level of parentheses within
6563the construct). Therefore, it should not clear the flag: the rest of
6564the @code{hex} construct should be parsed with the flag still in effect.
6565
6566What if there is an error recovery rule which might abort out of the
6567@code{hex} construct or might not, depending on circumstances? There is no
6568way you can write the action to determine whether a @code{hex} construct is
6569being aborted or not. So if you are using a lexical tie-in, you had better
6570make sure your error recovery rules are not of this kind. Each rule must
6571be such that you can be sure that it always will, or always won't, have to
6572clear the flag.
6573
ec3bc396
AD
6574@c ================================================== Debugging Your Parser
6575
342b8b6e 6576@node Debugging
bfa74976 6577@chapter Debugging Your Parser
ec3bc396
AD
6578
6579Developing a parser can be a challenge, especially if you don't
6580understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6581Algorithm}). Even so, sometimes a detailed description of the automaton
6582can help (@pxref{Understanding, , Understanding Your Parser}), or
6583tracing the execution of the parser can give some insight on why it
6584behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6585
6586@menu
6587* Understanding:: Understanding the structure of your parser.
6588* Tracing:: Tracing the execution of your parser.
6589@end menu
6590
6591@node Understanding
6592@section Understanding Your Parser
6593
6594As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6595Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6596frequent than one would hope), looking at this automaton is required to
6597tune or simply fix a parser. Bison provides two different
35fe0834 6598representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
6599
6600The textual file is generated when the options @option{--report} or
6601@option{--verbose} are specified, see @xref{Invocation, , Invoking
6602Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6603the parser output file name, and adding @samp{.output} instead.
6604Therefore, if the input file is @file{foo.y}, then the parser file is
6605called @file{foo.tab.c} by default. As a consequence, the verbose
6606output file is called @file{foo.output}.
6607
6608The following grammar file, @file{calc.y}, will be used in the sequel:
6609
6610@example
6611%token NUM STR
6612%left '+' '-'
6613%left '*'
6614%%
6615exp: exp '+' exp
6616 | exp '-' exp
6617 | exp '*' exp
6618 | exp '/' exp
6619 | NUM
6620 ;
6621useless: STR;
6622%%
6623@end example
6624
88bce5a2
AD
6625@command{bison} reports:
6626
6627@example
6628calc.y: warning: 1 useless nonterminal and 1 useless rule
6629calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6630calc.y:11.10-12: warning: useless rule: useless: STR
6631calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6632@end example
6633
6634When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6635creates a file @file{calc.output} with contents detailed below. The
6636order of the output and the exact presentation might vary, but the
6637interpretation is the same.
ec3bc396
AD
6638
6639The first section includes details on conflicts that were solved thanks
6640to precedence and/or associativity:
6641
6642@example
6643Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6644Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6645Conflict in state 8 between rule 2 and token '*' resolved as shift.
6646@exdent @dots{}
6647@end example
6648
6649@noindent
6650The next section lists states that still have conflicts.
6651
6652@example
5a99098d
PE
6653State 8 conflicts: 1 shift/reduce
6654State 9 conflicts: 1 shift/reduce
6655State 10 conflicts: 1 shift/reduce
6656State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6657@end example
6658
6659@noindent
6660@cindex token, useless
6661@cindex useless token
6662@cindex nonterminal, useless
6663@cindex useless nonterminal
6664@cindex rule, useless
6665@cindex useless rule
6666The next section reports useless tokens, nonterminal and rules. Useless
6667nonterminals and rules are removed in order to produce a smaller parser,
6668but useless tokens are preserved, since they might be used by the
6669scanner (note the difference between ``useless'' and ``not used''
6670below):
6671
6672@example
6673Useless nonterminals:
6674 useless
6675
6676Terminals which are not used:
6677 STR
6678
6679Useless rules:
6680#6 useless: STR;
6681@end example
6682
6683@noindent
6684The next section reproduces the exact grammar that Bison used:
6685
6686@example
6687Grammar
6688
6689 Number, Line, Rule
88bce5a2 6690 0 5 $accept -> exp $end
ec3bc396
AD
6691 1 5 exp -> exp '+' exp
6692 2 6 exp -> exp '-' exp
6693 3 7 exp -> exp '*' exp
6694 4 8 exp -> exp '/' exp
6695 5 9 exp -> NUM
6696@end example
6697
6698@noindent
6699and reports the uses of the symbols:
6700
6701@example
6702Terminals, with rules where they appear
6703
88bce5a2 6704$end (0) 0
ec3bc396
AD
6705'*' (42) 3
6706'+' (43) 1
6707'-' (45) 2
6708'/' (47) 4
6709error (256)
6710NUM (258) 5
6711
6712Nonterminals, with rules where they appear
6713
88bce5a2 6714$accept (8)
ec3bc396
AD
6715 on left: 0
6716exp (9)
6717 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6718@end example
6719
6720@noindent
6721@cindex item
6722@cindex pointed rule
6723@cindex rule, pointed
6724Bison then proceeds onto the automaton itself, describing each state
6725with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6726item is a production rule together with a point (marked by @samp{.})
6727that the input cursor.
6728
6729@example
6730state 0
6731
88bce5a2 6732 $accept -> . exp $ (rule 0)
ec3bc396 6733
2a8d363a 6734 NUM shift, and go to state 1
ec3bc396 6735
2a8d363a 6736 exp go to state 2
ec3bc396
AD
6737@end example
6738
6739This reads as follows: ``state 0 corresponds to being at the very
6740beginning of the parsing, in the initial rule, right before the start
6741symbol (here, @code{exp}). When the parser returns to this state right
6742after having reduced a rule that produced an @code{exp}, the control
6743flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6744symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6745the parse stack, and the control flow jumps to state 1. Any other
742e4900 6746lookahead triggers a syntax error.''
ec3bc396
AD
6747
6748@cindex core, item set
6749@cindex item set core
6750@cindex kernel, item set
6751@cindex item set core
6752Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6753report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6754at the beginning of any rule deriving an @code{exp}. By default Bison
6755reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6756you want to see more detail you can invoke @command{bison} with
6757@option{--report=itemset} to list all the items, include those that can
6758be derived:
6759
6760@example
6761state 0
6762
88bce5a2 6763 $accept -> . exp $ (rule 0)
ec3bc396
AD
6764 exp -> . exp '+' exp (rule 1)
6765 exp -> . exp '-' exp (rule 2)
6766 exp -> . exp '*' exp (rule 3)
6767 exp -> . exp '/' exp (rule 4)
6768 exp -> . NUM (rule 5)
6769
6770 NUM shift, and go to state 1
6771
6772 exp go to state 2
6773@end example
6774
6775@noindent
6776In the state 1...
6777
6778@example
6779state 1
6780
6781 exp -> NUM . (rule 5)
6782
2a8d363a 6783 $default reduce using rule 5 (exp)
ec3bc396
AD
6784@end example
6785
6786@noindent
742e4900 6787the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
6788(@samp{$default}), the parser will reduce it. If it was coming from
6789state 0, then, after this reduction it will return to state 0, and will
6790jump to state 2 (@samp{exp: go to state 2}).
6791
6792@example
6793state 2
6794
88bce5a2 6795 $accept -> exp . $ (rule 0)
ec3bc396
AD
6796 exp -> exp . '+' exp (rule 1)
6797 exp -> exp . '-' exp (rule 2)
6798 exp -> exp . '*' exp (rule 3)
6799 exp -> exp . '/' exp (rule 4)
6800
2a8d363a
AD
6801 $ shift, and go to state 3
6802 '+' shift, and go to state 4
6803 '-' shift, and go to state 5
6804 '*' shift, and go to state 6
6805 '/' shift, and go to state 7
ec3bc396
AD
6806@end example
6807
6808@noindent
6809In state 2, the automaton can only shift a symbol. For instance,
742e4900 6810because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
6811@samp{+}, it will be shifted on the parse stack, and the automaton
6812control will jump to state 4, corresponding to the item @samp{exp -> exp
6813'+' . exp}. Since there is no default action, any other token than
6e649e65 6814those listed above will trigger a syntax error.
ec3bc396
AD
6815
6816The state 3 is named the @dfn{final state}, or the @dfn{accepting
6817state}:
6818
6819@example
6820state 3
6821
88bce5a2 6822 $accept -> exp $ . (rule 0)
ec3bc396 6823
2a8d363a 6824 $default accept
ec3bc396
AD
6825@end example
6826
6827@noindent
6828the initial rule is completed (the start symbol and the end
6829of input were read), the parsing exits successfully.
6830
6831The interpretation of states 4 to 7 is straightforward, and is left to
6832the reader.
6833
6834@example
6835state 4
6836
6837 exp -> exp '+' . exp (rule 1)
6838
2a8d363a 6839 NUM shift, and go to state 1
ec3bc396 6840
2a8d363a 6841 exp go to state 8
ec3bc396
AD
6842
6843state 5
6844
6845 exp -> exp '-' . exp (rule 2)
6846
2a8d363a 6847 NUM shift, and go to state 1
ec3bc396 6848
2a8d363a 6849 exp go to state 9
ec3bc396
AD
6850
6851state 6
6852
6853 exp -> exp '*' . exp (rule 3)
6854
2a8d363a 6855 NUM shift, and go to state 1
ec3bc396 6856
2a8d363a 6857 exp go to state 10
ec3bc396
AD
6858
6859state 7
6860
6861 exp -> exp '/' . exp (rule 4)
6862
2a8d363a 6863 NUM shift, and go to state 1
ec3bc396 6864
2a8d363a 6865 exp go to state 11
ec3bc396
AD
6866@end example
6867
5a99098d
PE
6868As was announced in beginning of the report, @samp{State 8 conflicts:
68691 shift/reduce}:
ec3bc396
AD
6870
6871@example
6872state 8
6873
6874 exp -> exp . '+' exp (rule 1)
6875 exp -> exp '+' exp . (rule 1)
6876 exp -> exp . '-' exp (rule 2)
6877 exp -> exp . '*' exp (rule 3)
6878 exp -> exp . '/' exp (rule 4)
6879
2a8d363a
AD
6880 '*' shift, and go to state 6
6881 '/' shift, and go to state 7
ec3bc396 6882
2a8d363a
AD
6883 '/' [reduce using rule 1 (exp)]
6884 $default reduce using rule 1 (exp)
ec3bc396
AD
6885@end example
6886
742e4900 6887Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
6888either shifting (and going to state 7), or reducing rule 1. The
6889conflict means that either the grammar is ambiguous, or the parser lacks
6890information to make the right decision. Indeed the grammar is
6891ambiguous, as, since we did not specify the precedence of @samp{/}, the
6892sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6893NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6894NUM}, which corresponds to reducing rule 1.
6895
c827f760 6896Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6897arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6898Shift/Reduce Conflicts}. Discarded actions are reported in between
6899square brackets.
6900
6901Note that all the previous states had a single possible action: either
6902shifting the next token and going to the corresponding state, or
6903reducing a single rule. In the other cases, i.e., when shifting
6904@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
6905possible, the lookahead is required to select the action. State 8 is
6906one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6907is shifting, otherwise the action is reducing rule 1. In other words,
6908the first two items, corresponding to rule 1, are not eligible when the
742e4900 6909lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 6910precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
6911with some set of possible lookahead tokens. When run with
6912@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
6913
6914@example
6915state 8
6916
6917 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6918 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6919 exp -> exp . '-' exp (rule 2)
6920 exp -> exp . '*' exp (rule 3)
6921 exp -> exp . '/' exp (rule 4)
6922
6923 '*' shift, and go to state 6
6924 '/' shift, and go to state 7
6925
6926 '/' [reduce using rule 1 (exp)]
6927 $default reduce using rule 1 (exp)
6928@end example
6929
6930The remaining states are similar:
6931
6932@example
6933state 9
6934
6935 exp -> exp . '+' exp (rule 1)
6936 exp -> exp . '-' exp (rule 2)
6937 exp -> exp '-' exp . (rule 2)
6938 exp -> exp . '*' exp (rule 3)
6939 exp -> exp . '/' exp (rule 4)
6940
2a8d363a
AD
6941 '*' shift, and go to state 6
6942 '/' shift, and go to state 7
ec3bc396 6943
2a8d363a
AD
6944 '/' [reduce using rule 2 (exp)]
6945 $default reduce using rule 2 (exp)
ec3bc396
AD
6946
6947state 10
6948
6949 exp -> exp . '+' exp (rule 1)
6950 exp -> exp . '-' exp (rule 2)
6951 exp -> exp . '*' exp (rule 3)
6952 exp -> exp '*' exp . (rule 3)
6953 exp -> exp . '/' exp (rule 4)
6954
2a8d363a 6955 '/' shift, and go to state 7
ec3bc396 6956
2a8d363a
AD
6957 '/' [reduce using rule 3 (exp)]
6958 $default reduce using rule 3 (exp)
ec3bc396
AD
6959
6960state 11
6961
6962 exp -> exp . '+' exp (rule 1)
6963 exp -> exp . '-' exp (rule 2)
6964 exp -> exp . '*' exp (rule 3)
6965 exp -> exp . '/' exp (rule 4)
6966 exp -> exp '/' exp . (rule 4)
6967
2a8d363a
AD
6968 '+' shift, and go to state 4
6969 '-' shift, and go to state 5
6970 '*' shift, and go to state 6
6971 '/' shift, and go to state 7
ec3bc396 6972
2a8d363a
AD
6973 '+' [reduce using rule 4 (exp)]
6974 '-' [reduce using rule 4 (exp)]
6975 '*' [reduce using rule 4 (exp)]
6976 '/' [reduce using rule 4 (exp)]
6977 $default reduce using rule 4 (exp)
ec3bc396
AD
6978@end example
6979
6980@noindent
fa7e68c3
PE
6981Observe that state 11 contains conflicts not only due to the lack of
6982precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6983@samp{*}, but also because the
ec3bc396
AD
6984associativity of @samp{/} is not specified.
6985
6986
6987@node Tracing
6988@section Tracing Your Parser
bfa74976
RS
6989@findex yydebug
6990@cindex debugging
6991@cindex tracing the parser
6992
6993If a Bison grammar compiles properly but doesn't do what you want when it
6994runs, the @code{yydebug} parser-trace feature can help you figure out why.
6995
3ded9a63
AD
6996There are several means to enable compilation of trace facilities:
6997
6998@table @asis
6999@item the macro @code{YYDEBUG}
7000@findex YYDEBUG
7001Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7002parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7003@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7004YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7005Prologue}).
7006
7007@item the option @option{-t}, @option{--debug}
7008Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7009,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7010
7011@item the directive @samp{%debug}
7012@findex %debug
7013Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7014Declaration Summary}). This is a Bison extension, which will prove
7015useful when Bison will output parsers for languages that don't use a
c827f760
PE
7016preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7017you, this is
3ded9a63
AD
7018the preferred solution.
7019@end table
7020
7021We suggest that you always enable the debug option so that debugging is
7022always possible.
bfa74976 7023
02a81e05 7024The trace facility outputs messages with macro calls of the form
e2742e46 7025@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 7026@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
7027arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7028define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7029and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7030
7031Once you have compiled the program with trace facilities, the way to
7032request a trace is to store a nonzero value in the variable @code{yydebug}.
7033You can do this by making the C code do it (in @code{main}, perhaps), or
7034you can alter the value with a C debugger.
7035
7036Each step taken by the parser when @code{yydebug} is nonzero produces a
7037line or two of trace information, written on @code{stderr}. The trace
7038messages tell you these things:
7039
7040@itemize @bullet
7041@item
7042Each time the parser calls @code{yylex}, what kind of token was read.
7043
7044@item
7045Each time a token is shifted, the depth and complete contents of the
7046state stack (@pxref{Parser States}).
7047
7048@item
7049Each time a rule is reduced, which rule it is, and the complete contents
7050of the state stack afterward.
7051@end itemize
7052
7053To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7054produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7055Bison}). This file shows the meaning of each state in terms of
7056positions in various rules, and also what each state will do with each
7057possible input token. As you read the successive trace messages, you
7058can see that the parser is functioning according to its specification in
7059the listing file. Eventually you will arrive at the place where
7060something undesirable happens, and you will see which parts of the
7061grammar are to blame.
bfa74976
RS
7062
7063The parser file is a C program and you can use C debuggers on it, but it's
7064not easy to interpret what it is doing. The parser function is a
7065finite-state machine interpreter, and aside from the actions it executes
7066the same code over and over. Only the values of variables show where in
7067the grammar it is working.
7068
7069@findex YYPRINT
7070The debugging information normally gives the token type of each token
7071read, but not its semantic value. You can optionally define a macro
7072named @code{YYPRINT} to provide a way to print the value. If you define
7073@code{YYPRINT}, it should take three arguments. The parser will pass a
7074standard I/O stream, the numeric code for the token type, and the token
7075value (from @code{yylval}).
7076
7077Here is an example of @code{YYPRINT} suitable for the multi-function
7078calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7079
7080@smallexample
38a92d50
PE
7081%@{
7082 static void print_token_value (FILE *, int, YYSTYPE);
7083 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7084%@}
7085
7086@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7087
7088static void
831d3c99 7089print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7090@{
7091 if (type == VAR)
d3c4e709 7092 fprintf (file, "%s", value.tptr->name);
bfa74976 7093 else if (type == NUM)
d3c4e709 7094 fprintf (file, "%d", value.val);
bfa74976
RS
7095@}
7096@end smallexample
7097
ec3bc396
AD
7098@c ================================================= Invoking Bison
7099
342b8b6e 7100@node Invocation
bfa74976
RS
7101@chapter Invoking Bison
7102@cindex invoking Bison
7103@cindex Bison invocation
7104@cindex options for invoking Bison
7105
7106The usual way to invoke Bison is as follows:
7107
7108@example
7109bison @var{infile}
7110@end example
7111
7112Here @var{infile} is the grammar file name, which usually ends in
7113@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7114with @samp{.tab.c} and removing any leading directory. Thus, the
7115@samp{bison foo.y} file name yields
7116@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7117@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7118C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7119or @file{foo.y++}. Then, the output files will take an extension like
7120the given one as input (respectively @file{foo.tab.cpp} and
7121@file{foo.tab.c++}).
fa4d969f 7122This feature takes effect with all options that manipulate file names like
234a3be3
AD
7123@samp{-o} or @samp{-d}.
7124
7125For example :
7126
7127@example
7128bison -d @var{infile.yxx}
7129@end example
84163231 7130@noindent
72d2299c 7131will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7132
7133@example
b56471a6 7134bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7135@end example
84163231 7136@noindent
234a3be3
AD
7137will produce @file{output.c++} and @file{outfile.h++}.
7138
397ec073
PE
7139For compatibility with @acronym{POSIX}, the standard Bison
7140distribution also contains a shell script called @command{yacc} that
7141invokes Bison with the @option{-y} option.
7142
bfa74976 7143@menu
13863333 7144* Bison Options:: All the options described in detail,
c827f760 7145 in alphabetical order by short options.
bfa74976 7146* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7147* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7148@end menu
7149
342b8b6e 7150@node Bison Options
bfa74976
RS
7151@section Bison Options
7152
7153Bison supports both traditional single-letter options and mnemonic long
7154option names. Long option names are indicated with @samp{--} instead of
7155@samp{-}. Abbreviations for option names are allowed as long as they
7156are unique. When a long option takes an argument, like
7157@samp{--file-prefix}, connect the option name and the argument with
7158@samp{=}.
7159
7160Here is a list of options that can be used with Bison, alphabetized by
7161short option. It is followed by a cross key alphabetized by long
7162option.
7163
89cab50d
AD
7164@c Please, keep this ordered as in `bison --help'.
7165@noindent
7166Operations modes:
7167@table @option
7168@item -h
7169@itemx --help
7170Print a summary of the command-line options to Bison and exit.
bfa74976 7171
89cab50d
AD
7172@item -V
7173@itemx --version
7174Print the version number of Bison and exit.
bfa74976 7175
f7ab6a50
PE
7176@item --print-localedir
7177Print the name of the directory containing locale-dependent data.
7178
89cab50d
AD
7179@item -y
7180@itemx --yacc
54662697
PE
7181Act more like the traditional Yacc command. This can cause
7182different diagnostics to be generated, and may change behavior in
7183other minor ways. Most importantly, imitate Yacc's output
7184file name conventions, so that the parser output file is called
89cab50d 7185@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7186@file{y.tab.h}.
7187Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7188statements in addition to an @code{enum} to associate token numbers with token
7189names.
7190Thus, the following shell script can substitute for Yacc, and the Bison
7191distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7192
89cab50d 7193@example
397ec073 7194#! /bin/sh
26e06a21 7195bison -y "$@@"
89cab50d 7196@end example
54662697
PE
7197
7198The @option{-y}/@option{--yacc} option is intended for use with
7199traditional Yacc grammars. If your grammar uses a Bison extension
7200like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7201this option is specified.
7202
89cab50d
AD
7203@end table
7204
7205@noindent
7206Tuning the parser:
7207
7208@table @option
cd5bd6ac
AD
7209@item -S @var{file}
7210@itemx --skeleton=@var{file}
7211Specify the skeleton to use. You probably don't need this option unless
7212you are developing Bison.
7213
89cab50d
AD
7214@item -t
7215@itemx --debug
4947ebdb
PE
7216In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7217already defined, so that the debugging facilities are compiled.
ec3bc396 7218@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
7219
7220@item --locations
d8988b2f 7221Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7222
7223@item -p @var{prefix}
7224@itemx --name-prefix=@var{prefix}
d8988b2f
AD
7225Pretend that @code{%name-prefix="@var{prefix}"} was specified.
7226@xref{Decl Summary}.
bfa74976
RS
7227
7228@item -l
7229@itemx --no-lines
7230Don't put any @code{#line} preprocessor commands in the parser file.
7231Ordinarily Bison puts them in the parser file so that the C compiler
7232and debuggers will associate errors with your source file, the
7233grammar file. This option causes them to associate errors with the
95e742f7 7234parser file, treating it as an independent source file in its own right.
bfa74976 7235
931c7513
RS
7236@item -n
7237@itemx --no-parser
d8988b2f 7238Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 7239
89cab50d
AD
7240@item -k
7241@itemx --token-table
d8988b2f 7242Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7243@end table
bfa74976 7244
89cab50d
AD
7245@noindent
7246Adjust the output:
bfa74976 7247
89cab50d
AD
7248@table @option
7249@item -d
d8988b2f
AD
7250@itemx --defines
7251Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7252file containing macro definitions for the token type names defined in
4bfd5e4e 7253the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7254
342b8b6e 7255@item --defines=@var{defines-file}
d8988b2f 7256Same as above, but save in the file @var{defines-file}.
342b8b6e 7257
89cab50d
AD
7258@item -b @var{file-prefix}
7259@itemx --file-prefix=@var{prefix}
9c437126 7260Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7261for all Bison output file names. @xref{Decl Summary}.
bfa74976 7262
ec3bc396
AD
7263@item -r @var{things}
7264@itemx --report=@var{things}
7265Write an extra output file containing verbose description of the comma
7266separated list of @var{things} among:
7267
7268@table @code
7269@item state
7270Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7271@acronym{LALR} automaton.
ec3bc396 7272
742e4900 7273@item lookahead
ec3bc396 7274Implies @code{state} and augments the description of the automaton with
742e4900 7275each rule's lookahead set.
ec3bc396
AD
7276
7277@item itemset
7278Implies @code{state} and augments the description of the automaton with
7279the full set of items for each state, instead of its core only.
7280@end table
7281
bfa74976
RS
7282@item -v
7283@itemx --verbose
9c437126 7284Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7285file containing verbose descriptions of the grammar and
72d2299c 7286parser. @xref{Decl Summary}.
bfa74976 7287
fa4d969f
PE
7288@item -o @var{file}
7289@itemx --output=@var{file}
7290Specify the @var{file} for the parser file.
bfa74976 7291
fa4d969f 7292The other output files' names are constructed from @var{file} as
d8988b2f 7293described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7294
7295@item -g
35fe0834
PE
7296Output a graphical representation of the @acronym{LALR}(1) grammar
7297automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7298@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7299If the grammar file is @file{foo.y}, the output file will
7300be @file{foo.dot}.
342b8b6e
AD
7301
7302@item --graph=@var{graph-file}
72d2299c
PE
7303The behavior of @var{--graph} is the same than @samp{-g}. The only
7304difference is that it has an optional argument which is the name of
fa4d969f 7305the output graph file.
bfa74976
RS
7306@end table
7307
342b8b6e 7308@node Option Cross Key
bfa74976
RS
7309@section Option Cross Key
7310
aa08666d 7311@c FIXME: How about putting the directives too?
bfa74976
RS
7312Here is a list of options, alphabetized by long option, to help you find
7313the corresponding short option.
7314
aa08666d
AD
7315@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7316@headitem Long Option @tab Short Option
7317@item @option{--debug} @tab @option{-t}
7318@item @option{--defines=@var{defines-file}} @tab @option{-d}
7319@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7320@item @option{--graph=@var{graph-file}} @tab @option{-d}
7321@item @option{--help} @tab @option{-h}
7322@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7323@item @option{--no-lines} @tab @option{-l}
7324@item @option{--no-parser} @tab @option{-n}
7325@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7326@item @option{--print-localedir} @tab
7327@item @option{--token-table} @tab @option{-k}
7328@item @option{--verbose} @tab @option{-v}
7329@item @option{--version} @tab @option{-V}
7330@item @option{--yacc} @tab @option{-y}
7331@end multitable
bfa74976 7332
93dd49ab
PE
7333@node Yacc Library
7334@section Yacc Library
7335
7336The Yacc library contains default implementations of the
7337@code{yyerror} and @code{main} functions. These default
7338implementations are normally not useful, but @acronym{POSIX} requires
7339them. To use the Yacc library, link your program with the
7340@option{-ly} option. Note that Bison's implementation of the Yacc
7341library is distributed under the terms of the @acronym{GNU} General
7342Public License (@pxref{Copying}).
7343
7344If you use the Yacc library's @code{yyerror} function, you should
7345declare @code{yyerror} as follows:
7346
7347@example
7348int yyerror (char const *);
7349@end example
7350
7351Bison ignores the @code{int} value returned by this @code{yyerror}.
7352If you use the Yacc library's @code{main} function, your
7353@code{yyparse} function should have the following type signature:
7354
7355@example
7356int yyparse (void);
7357@end example
7358
12545799
AD
7359@c ================================================= C++ Bison
7360
7361@node C++ Language Interface
7362@chapter C++ Language Interface
7363
7364@menu
7365* C++ Parsers:: The interface to generate C++ parser classes
7366* A Complete C++ Example:: Demonstrating their use
7367@end menu
7368
7369@node C++ Parsers
7370@section C++ Parsers
7371
7372@menu
7373* C++ Bison Interface:: Asking for C++ parser generation
7374* C++ Semantic Values:: %union vs. C++
7375* C++ Location Values:: The position and location classes
7376* C++ Parser Interface:: Instantiating and running the parser
7377* C++ Scanner Interface:: Exchanges between yylex and parse
7378@end menu
7379
7380@node C++ Bison Interface
7381@subsection C++ Bison Interface
7382@c - %skeleton "lalr1.cc"
7383@c - Always pure
7384@c - initial action
7385
aa08666d
AD
7386The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To
7387select it, you may either pass the option @option{--skeleton=lalr1.cc}
7388to Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
12545799 7389grammar preamble. When run, @command{bison} will create several
aa08666d
AD
7390entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7391directive to change the namespace name, see @ref{Decl Summary}. The
7392various classes are generated in the following files:
7393
12545799
AD
7394@table @file
7395@item position.hh
7396@itemx location.hh
7397The definition of the classes @code{position} and @code{location},
7398used for location tracking. @xref{C++ Location Values}.
7399
7400@item stack.hh
7401An auxiliary class @code{stack} used by the parser.
7402
fa4d969f
PE
7403@item @var{file}.hh
7404@itemx @var{file}.cc
cd8b5791
AD
7405(Assuming the extension of the input file was @samp{.yy}.) The
7406declaration and implementation of the C++ parser class. The basename
7407and extension of these two files follow the same rules as with regular C
7408parsers (@pxref{Invocation}).
12545799 7409
cd8b5791
AD
7410The header is @emph{mandatory}; you must either pass
7411@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7412@samp{%defines} directive.
7413@end table
7414
7415All these files are documented using Doxygen; run @command{doxygen}
7416for a complete and accurate documentation.
7417
7418@node C++ Semantic Values
7419@subsection C++ Semantic Values
7420@c - No objects in unions
7421@c - YSTYPE
7422@c - Printer and destructor
7423
7424The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7425Collection of Value Types}. In particular it produces a genuine
7426@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7427within pseudo-unions (similar to Boost variants) might be implemented to
7428alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7429@itemize @minus
7430@item
fb9712a9
AD
7431The type @code{YYSTYPE} is defined but its use is discouraged: rather
7432you should refer to the parser's encapsulated type
7433@code{yy::parser::semantic_type}.
12545799
AD
7434@item
7435Non POD (Plain Old Data) types cannot be used. C++ forbids any
7436instance of classes with constructors in unions: only @emph{pointers}
7437to such objects are allowed.
7438@end itemize
7439
7440Because objects have to be stored via pointers, memory is not
7441reclaimed automatically: using the @code{%destructor} directive is the
7442only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7443Symbols}.
7444
7445
7446@node C++ Location Values
7447@subsection C++ Location Values
7448@c - %locations
7449@c - class Position
7450@c - class Location
b47dbebe 7451@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7452
7453When the directive @code{%locations} is used, the C++ parser supports
7454location tracking, see @ref{Locations, , Locations Overview}. Two
7455auxiliary classes define a @code{position}, a single point in a file,
7456and a @code{location}, a range composed of a pair of
7457@code{position}s (possibly spanning several files).
7458
fa4d969f 7459@deftypemethod {position} {std::string*} file
12545799
AD
7460The name of the file. It will always be handled as a pointer, the
7461parser will never duplicate nor deallocate it. As an experimental
7462feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7463"filename_type" "@var{type}"}.
12545799
AD
7464@end deftypemethod
7465
7466@deftypemethod {position} {unsigned int} line
7467The line, starting at 1.
7468@end deftypemethod
7469
7470@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7471Advance by @var{height} lines, resetting the column number.
7472@end deftypemethod
7473
7474@deftypemethod {position} {unsigned int} column
7475The column, starting at 0.
7476@end deftypemethod
7477
7478@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7479Advance by @var{width} columns, without changing the line number.
7480@end deftypemethod
7481
7482@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7483@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7484@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7485@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7486Various forms of syntactic sugar for @code{columns}.
7487@end deftypemethod
7488
7489@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7490Report @var{p} on @var{o} like this:
fa4d969f
PE
7491@samp{@var{file}:@var{line}.@var{column}}, or
7492@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7493@end deftypemethod
7494
7495@deftypemethod {location} {position} begin
7496@deftypemethodx {location} {position} end
7497The first, inclusive, position of the range, and the first beyond.
7498@end deftypemethod
7499
7500@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7501@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7502Advance the @code{end} position.
7503@end deftypemethod
7504
7505@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7506@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7507@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7508Various forms of syntactic sugar.
7509@end deftypemethod
7510
7511@deftypemethod {location} {void} step ()
7512Move @code{begin} onto @code{end}.
7513@end deftypemethod
7514
7515
7516@node C++ Parser Interface
7517@subsection C++ Parser Interface
7518@c - define parser_class_name
7519@c - Ctor
7520@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7521@c debug_stream.
7522@c - Reporting errors
7523
7524The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7525declare and define the parser class in the namespace @code{yy}. The
7526class name defaults to @code{parser}, but may be changed using
7527@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7528this class is detailed below. It can be extended using the
12545799
AD
7529@code{%parse-param} feature: its semantics is slightly changed since
7530it describes an additional member of the parser class, and an
7531additional argument for its constructor.
7532
8a0adb01
AD
7533@defcv {Type} {parser} {semantic_value_type}
7534@defcvx {Type} {parser} {location_value_type}
12545799 7535The types for semantics value and locations.
8a0adb01 7536@end defcv
12545799
AD
7537
7538@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7539Build a new parser object. There are no arguments by default, unless
7540@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7541@end deftypemethod
7542
7543@deftypemethod {parser} {int} parse ()
7544Run the syntactic analysis, and return 0 on success, 1 otherwise.
7545@end deftypemethod
7546
7547@deftypemethod {parser} {std::ostream&} debug_stream ()
7548@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7549Get or set the stream used for tracing the parsing. It defaults to
7550@code{std::cerr}.
7551@end deftypemethod
7552
7553@deftypemethod {parser} {debug_level_type} debug_level ()
7554@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7555Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7556or nonzero, full tracing.
12545799
AD
7557@end deftypemethod
7558
7559@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7560The definition for this member function must be supplied by the user:
7561the parser uses it to report a parser error occurring at @var{l},
7562described by @var{m}.
7563@end deftypemethod
7564
7565
7566@node C++ Scanner Interface
7567@subsection C++ Scanner Interface
7568@c - prefix for yylex.
7569@c - Pure interface to yylex
7570@c - %lex-param
7571
7572The parser invokes the scanner by calling @code{yylex}. Contrary to C
7573parsers, C++ parsers are always pure: there is no point in using the
7574@code{%pure-parser} directive. Therefore the interface is as follows.
7575
7576@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7577Return the next token. Its type is the return value, its semantic
7578value and location being @var{yylval} and @var{yylloc}. Invocations of
7579@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7580@end deftypemethod
7581
7582
7583@node A Complete C++ Example
7584@section A Complete C++ Example
7585
7586This section demonstrates the use of a C++ parser with a simple but
7587complete example. This example should be available on your system,
7588ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7589focuses on the use of Bison, therefore the design of the various C++
7590classes is very naive: no accessors, no encapsulation of members etc.
7591We will use a Lex scanner, and more precisely, a Flex scanner, to
7592demonstrate the various interaction. A hand written scanner is
7593actually easier to interface with.
7594
7595@menu
7596* Calc++ --- C++ Calculator:: The specifications
7597* Calc++ Parsing Driver:: An active parsing context
7598* Calc++ Parser:: A parser class
7599* Calc++ Scanner:: A pure C++ Flex scanner
7600* Calc++ Top Level:: Conducting the band
7601@end menu
7602
7603@node Calc++ --- C++ Calculator
7604@subsection Calc++ --- C++ Calculator
7605
7606Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7607expression, possibly preceded by variable assignments. An
12545799
AD
7608environment containing possibly predefined variables such as
7609@code{one} and @code{two}, is exchanged with the parser. An example
7610of valid input follows.
7611
7612@example
7613three := 3
7614seven := one + two * three
7615seven * seven
7616@end example
7617
7618@node Calc++ Parsing Driver
7619@subsection Calc++ Parsing Driver
7620@c - An env
7621@c - A place to store error messages
7622@c - A place for the result
7623
7624To support a pure interface with the parser (and the scanner) the
7625technique of the ``parsing context'' is convenient: a structure
7626containing all the data to exchange. Since, in addition to simply
7627launch the parsing, there are several auxiliary tasks to execute (open
7628the file for parsing, instantiate the parser etc.), we recommend
7629transforming the simple parsing context structure into a fully blown
7630@dfn{parsing driver} class.
7631
7632The declaration of this driver class, @file{calc++-driver.hh}, is as
7633follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7634required standard library components, and the declaration of the parser
7635class.
12545799 7636
1c59e0a1 7637@comment file: calc++-driver.hh
12545799
AD
7638@example
7639#ifndef CALCXX_DRIVER_HH
7640# define CALCXX_DRIVER_HH
7641# include <string>
7642# include <map>
fb9712a9 7643# include "calc++-parser.hh"
12545799
AD
7644@end example
7645
12545799
AD
7646
7647@noindent
7648Then comes the declaration of the scanning function. Flex expects
7649the signature of @code{yylex} to be defined in the macro
7650@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7651factor both as follows.
1c59e0a1
AD
7652
7653@comment file: calc++-driver.hh
12545799 7654@example
3dc5e96b
PE
7655// Tell Flex the lexer's prototype ...
7656# define YY_DECL \
c095d689
AD
7657 yy::calcxx_parser::token_type \
7658 yylex (yy::calcxx_parser::semantic_type* yylval, \
7659 yy::calcxx_parser::location_type* yylloc, \
7660 calcxx_driver& driver)
12545799
AD
7661// ... and declare it for the parser's sake.
7662YY_DECL;
7663@end example
7664
7665@noindent
7666The @code{calcxx_driver} class is then declared with its most obvious
7667members.
7668
1c59e0a1 7669@comment file: calc++-driver.hh
12545799
AD
7670@example
7671// Conducting the whole scanning and parsing of Calc++.
7672class calcxx_driver
7673@{
7674public:
7675 calcxx_driver ();
7676 virtual ~calcxx_driver ();
7677
7678 std::map<std::string, int> variables;
7679
7680 int result;
7681@end example
7682
7683@noindent
7684To encapsulate the coordination with the Flex scanner, it is useful to
7685have two members function to open and close the scanning phase.
12545799 7686
1c59e0a1 7687@comment file: calc++-driver.hh
12545799
AD
7688@example
7689 // Handling the scanner.
7690 void scan_begin ();
7691 void scan_end ();
7692 bool trace_scanning;
7693@end example
7694
7695@noindent
7696Similarly for the parser itself.
7697
1c59e0a1 7698@comment file: calc++-driver.hh
12545799
AD
7699@example
7700 // Handling the parser.
7701 void parse (const std::string& f);
7702 std::string file;
7703 bool trace_parsing;
7704@end example
7705
7706@noindent
7707To demonstrate pure handling of parse errors, instead of simply
7708dumping them on the standard error output, we will pass them to the
7709compiler driver using the following two member functions. Finally, we
7710close the class declaration and CPP guard.
7711
1c59e0a1 7712@comment file: calc++-driver.hh
12545799
AD
7713@example
7714 // Error handling.
7715 void error (const yy::location& l, const std::string& m);
7716 void error (const std::string& m);
7717@};
7718#endif // ! CALCXX_DRIVER_HH
7719@end example
7720
7721The implementation of the driver is straightforward. The @code{parse}
7722member function deserves some attention. The @code{error} functions
7723are simple stubs, they should actually register the located error
7724messages and set error state.
7725
1c59e0a1 7726@comment file: calc++-driver.cc
12545799
AD
7727@example
7728#include "calc++-driver.hh"
7729#include "calc++-parser.hh"
7730
7731calcxx_driver::calcxx_driver ()
7732 : trace_scanning (false), trace_parsing (false)
7733@{
7734 variables["one"] = 1;
7735 variables["two"] = 2;
7736@}
7737
7738calcxx_driver::~calcxx_driver ()
7739@{
7740@}
7741
7742void
7743calcxx_driver::parse (const std::string &f)
7744@{
7745 file = f;
7746 scan_begin ();
7747 yy::calcxx_parser parser (*this);
7748 parser.set_debug_level (trace_parsing);
7749 parser.parse ();
7750 scan_end ();
7751@}
7752
7753void
7754calcxx_driver::error (const yy::location& l, const std::string& m)
7755@{
7756 std::cerr << l << ": " << m << std::endl;
7757@}
7758
7759void
7760calcxx_driver::error (const std::string& m)
7761@{
7762 std::cerr << m << std::endl;
7763@}
7764@end example
7765
7766@node Calc++ Parser
7767@subsection Calc++ Parser
7768
b50d2359
AD
7769The parser definition file @file{calc++-parser.yy} starts by asking for
7770the C++ LALR(1) skeleton, the creation of the parser header file, and
7771specifies the name of the parser class. Because the C++ skeleton
7772changed several times, it is safer to require the version you designed
7773the grammar for.
1c59e0a1
AD
7774
7775@comment file: calc++-parser.yy
12545799
AD
7776@example
7777%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7778%require "2.1a"
12545799 7779%defines
fb9712a9
AD
7780%define "parser_class_name" "calcxx_parser"
7781@end example
7782
7783@noindent
136a0f76 7784@findex %requires
fb9712a9
AD
7785Then come the declarations/inclusions needed to define the
7786@code{%union}. Because the parser uses the parsing driver and
7787reciprocally, both cannot include the header of the other. Because the
7788driver's header needs detailed knowledge about the parser class (in
7789particular its inner types), it is the parser's header which will simply
7790use a forward declaration of the driver.
136a0f76 7791@xref{Table of Symbols, ,%requires}.
fb9712a9
AD
7792
7793@comment file: calc++-parser.yy
7794@example
136a0f76 7795%requires @{
12545799 7796# include <string>
fb9712a9 7797class calcxx_driver;
9bc0dd67 7798@}
12545799
AD
7799@end example
7800
7801@noindent
7802The driver is passed by reference to the parser and to the scanner.
7803This provides a simple but effective pure interface, not relying on
7804global variables.
7805
1c59e0a1 7806@comment file: calc++-parser.yy
12545799
AD
7807@example
7808// The parsing context.
7809%parse-param @{ calcxx_driver& driver @}
7810%lex-param @{ calcxx_driver& driver @}
7811@end example
7812
7813@noindent
7814Then we request the location tracking feature, and initialize the
7815first location's file name. Afterwards new locations are computed
7816relatively to the previous locations: the file name will be
7817automatically propagated.
7818
1c59e0a1 7819@comment file: calc++-parser.yy
12545799
AD
7820@example
7821%locations
7822%initial-action
7823@{
7824 // Initialize the initial location.
b47dbebe 7825 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7826@};
7827@end example
7828
7829@noindent
7830Use the two following directives to enable parser tracing and verbose
7831error messages.
7832
1c59e0a1 7833@comment file: calc++-parser.yy
12545799
AD
7834@example
7835%debug
7836%error-verbose
7837@end example
7838
7839@noindent
7840Semantic values cannot use ``real'' objects, but only pointers to
7841them.
7842
1c59e0a1 7843@comment file: calc++-parser.yy
12545799
AD
7844@example
7845// Symbols.
7846%union
7847@{
7848 int ival;
7849 std::string *sval;
7850@};
7851@end example
7852
fb9712a9 7853@noindent
136a0f76
PB
7854@findex %code
7855The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 7856@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
7857
7858@comment file: calc++-parser.yy
7859@example
136a0f76 7860%code @{
fb9712a9 7861# include "calc++-driver.hh"
34f98f46 7862@}
fb9712a9
AD
7863@end example
7864
7865
12545799
AD
7866@noindent
7867The token numbered as 0 corresponds to end of file; the following line
7868allows for nicer error messages referring to ``end of file'' instead
7869of ``$end''. Similarly user friendly named are provided for each
7870symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7871avoid name clashes.
7872
1c59e0a1 7873@comment file: calc++-parser.yy
12545799 7874@example
fb9712a9
AD
7875%token END 0 "end of file"
7876%token ASSIGN ":="
7877%token <sval> IDENTIFIER "identifier"
7878%token <ival> NUMBER "number"
7879%type <ival> exp "expression"
12545799
AD
7880@end example
7881
7882@noindent
7883To enable memory deallocation during error recovery, use
7884@code{%destructor}.
7885
287c78f6 7886@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7887@comment file: calc++-parser.yy
12545799
AD
7888@example
7889%printer @{ debug_stream () << *$$; @} "identifier"
7890%destructor @{ delete $$; @} "identifier"
7891
7892%printer @{ debug_stream () << $$; @} "number" "expression"
7893@end example
7894
7895@noindent
7896The grammar itself is straightforward.
7897
1c59e0a1 7898@comment file: calc++-parser.yy
12545799
AD
7899@example
7900%%
7901%start unit;
7902unit: assignments exp @{ driver.result = $2; @};
7903
7904assignments: assignments assignment @{@}
9d9b8b70 7905 | /* Nothing. */ @{@};
12545799 7906
3dc5e96b
PE
7907assignment:
7908 "identifier" ":=" exp
7909 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
7910
7911%left '+' '-';
7912%left '*' '/';
7913exp: exp '+' exp @{ $$ = $1 + $3; @}
7914 | exp '-' exp @{ $$ = $1 - $3; @}
7915 | exp '*' exp @{ $$ = $1 * $3; @}
7916 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 7917 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 7918 | "number" @{ $$ = $1; @};
12545799
AD
7919%%
7920@end example
7921
7922@noindent
7923Finally the @code{error} member function registers the errors to the
7924driver.
7925
1c59e0a1 7926@comment file: calc++-parser.yy
12545799
AD
7927@example
7928void
1c59e0a1
AD
7929yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7930 const std::string& m)
12545799
AD
7931@{
7932 driver.error (l, m);
7933@}
7934@end example
7935
7936@node Calc++ Scanner
7937@subsection Calc++ Scanner
7938
7939The Flex scanner first includes the driver declaration, then the
7940parser's to get the set of defined tokens.
7941
1c59e0a1 7942@comment file: calc++-scanner.ll
12545799
AD
7943@example
7944%@{ /* -*- C++ -*- */
04098407
PE
7945# include <cstdlib>
7946# include <errno.h>
7947# include <limits.h>
12545799
AD
7948# include <string>
7949# include "calc++-driver.hh"
7950# include "calc++-parser.hh"
eaea13f5
PE
7951
7952/* Work around an incompatibility in flex (at least versions
7953 2.5.31 through 2.5.33): it generates code that does
7954 not conform to C89. See Debian bug 333231
7955 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
7956# undef yywrap
7957# define yywrap() 1
eaea13f5 7958
c095d689
AD
7959/* By default yylex returns int, we use token_type.
7960 Unfortunately yyterminate by default returns 0, which is
7961 not of token_type. */
8c5b881d 7962#define yyterminate() return token::END
12545799
AD
7963%@}
7964@end example
7965
7966@noindent
7967Because there is no @code{#include}-like feature we don't need
7968@code{yywrap}, we don't need @code{unput} either, and we parse an
7969actual file, this is not an interactive session with the user.
7970Finally we enable the scanner tracing features.
7971
1c59e0a1 7972@comment file: calc++-scanner.ll
12545799
AD
7973@example
7974%option noyywrap nounput batch debug
7975@end example
7976
7977@noindent
7978Abbreviations allow for more readable rules.
7979
1c59e0a1 7980@comment file: calc++-scanner.ll
12545799
AD
7981@example
7982id [a-zA-Z][a-zA-Z_0-9]*
7983int [0-9]+
7984blank [ \t]
7985@end example
7986
7987@noindent
9d9b8b70 7988The following paragraph suffices to track locations accurately. Each
12545799
AD
7989time @code{yylex} is invoked, the begin position is moved onto the end
7990position. Then when a pattern is matched, the end position is
7991advanced of its width. In case it matched ends of lines, the end
7992cursor is adjusted, and each time blanks are matched, the begin cursor
7993is moved onto the end cursor to effectively ignore the blanks
7994preceding tokens. Comments would be treated equally.
7995
1c59e0a1 7996@comment file: calc++-scanner.ll
12545799 7997@example
828c373b
AD
7998%@{
7999# define YY_USER_ACTION yylloc->columns (yyleng);
8000%@}
12545799
AD
8001%%
8002%@{
8003 yylloc->step ();
12545799
AD
8004%@}
8005@{blank@}+ yylloc->step ();
8006[\n]+ yylloc->lines (yyleng); yylloc->step ();
8007@end example
8008
8009@noindent
fb9712a9
AD
8010The rules are simple, just note the use of the driver to report errors.
8011It is convenient to use a typedef to shorten
8012@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8013@code{token::identifier} for instance.
12545799 8014
1c59e0a1 8015@comment file: calc++-scanner.ll
12545799 8016@example
fb9712a9
AD
8017%@{
8018 typedef yy::calcxx_parser::token token;
8019%@}
8c5b881d 8020 /* Convert ints to the actual type of tokens. */
c095d689 8021[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8022":=" return token::ASSIGN;
04098407
PE
8023@{int@} @{
8024 errno = 0;
8025 long n = strtol (yytext, NULL, 10);
8026 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8027 driver.error (*yylloc, "integer is out of range");
8028 yylval->ival = n;
fb9712a9 8029 return token::NUMBER;
04098407 8030@}
fb9712a9 8031@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8032. driver.error (*yylloc, "invalid character");
8033%%
8034@end example
8035
8036@noindent
8037Finally, because the scanner related driver's member function depend
8038on the scanner's data, it is simpler to implement them in this file.
8039
1c59e0a1 8040@comment file: calc++-scanner.ll
12545799
AD
8041@example
8042void
8043calcxx_driver::scan_begin ()
8044@{
8045 yy_flex_debug = trace_scanning;
8046 if (!(yyin = fopen (file.c_str (), "r")))
8047 error (std::string ("cannot open ") + file);
8048@}
8049
8050void
8051calcxx_driver::scan_end ()
8052@{
8053 fclose (yyin);
8054@}
8055@end example
8056
8057@node Calc++ Top Level
8058@subsection Calc++ Top Level
8059
8060The top level file, @file{calc++.cc}, poses no problem.
8061
1c59e0a1 8062@comment file: calc++.cc
12545799
AD
8063@example
8064#include <iostream>
8065#include "calc++-driver.hh"
8066
8067int
fa4d969f 8068main (int argc, char *argv[])
12545799
AD
8069@{
8070 calcxx_driver driver;
8071 for (++argv; argv[0]; ++argv)
8072 if (*argv == std::string ("-p"))
8073 driver.trace_parsing = true;
8074 else if (*argv == std::string ("-s"))
8075 driver.trace_scanning = true;
8076 else
8077 @{
3dc5e96b
PE
8078 driver.parse (*argv);
8079 std::cout << driver.result << std::endl;
12545799
AD
8080 @}
8081@}
8082@end example
8083
8084@c ================================================= FAQ
d1a1114f
AD
8085
8086@node FAQ
8087@chapter Frequently Asked Questions
8088@cindex frequently asked questions
8089@cindex questions
8090
8091Several questions about Bison come up occasionally. Here some of them
8092are addressed.
8093
8094@menu
55ba27be
AD
8095* Memory Exhausted:: Breaking the Stack Limits
8096* How Can I Reset the Parser:: @code{yyparse} Keeps some State
8097* Strings are Destroyed:: @code{yylval} Loses Track of Strings
8098* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 8099* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
8100* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
8101* I can't build Bison:: Troubleshooting
8102* Where can I find help?:: Troubleshouting
8103* Bug Reports:: Troublereporting
8104* Other Languages:: Parsers in Java and others
8105* Beta Testing:: Experimenting development versions
8106* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
8107@end menu
8108
1a059451
PE
8109@node Memory Exhausted
8110@section Memory Exhausted
d1a1114f
AD
8111
8112@display
1a059451 8113My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
8114message. What can I do?
8115@end display
8116
8117This question is already addressed elsewhere, @xref{Recursion,
8118,Recursive Rules}.
8119
e64fec0a
PE
8120@node How Can I Reset the Parser
8121@section How Can I Reset the Parser
5b066063 8122
0e14ad77
PE
8123The following phenomenon has several symptoms, resulting in the
8124following typical questions:
5b066063
AD
8125
8126@display
8127I invoke @code{yyparse} several times, and on correct input it works
8128properly; but when a parse error is found, all the other calls fail
0e14ad77 8129too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
8130@end display
8131
8132@noindent
8133or
8134
8135@display
0e14ad77 8136My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
8137which case I run @code{yyparse} from @code{yyparse}. This fails
8138although I did specify I needed a @code{%pure-parser}.
8139@end display
8140
0e14ad77
PE
8141These problems typically come not from Bison itself, but from
8142Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
8143speed, they might not notice a change of input file. As a
8144demonstration, consider the following source file,
8145@file{first-line.l}:
8146
8147@verbatim
8148%{
8149#include <stdio.h>
8150#include <stdlib.h>
8151%}
8152%%
8153.*\n ECHO; return 1;
8154%%
8155int
0e14ad77 8156yyparse (char const *file)
5b066063
AD
8157{
8158 yyin = fopen (file, "r");
8159 if (!yyin)
8160 exit (2);
fa7e68c3 8161 /* One token only. */
5b066063 8162 yylex ();
0e14ad77 8163 if (fclose (yyin) != 0)
5b066063
AD
8164 exit (3);
8165 return 0;
8166}
8167
8168int
0e14ad77 8169main (void)
5b066063
AD
8170{
8171 yyparse ("input");
8172 yyparse ("input");
8173 return 0;
8174}
8175@end verbatim
8176
8177@noindent
8178If the file @file{input} contains
8179
8180@verbatim
8181input:1: Hello,
8182input:2: World!
8183@end verbatim
8184
8185@noindent
0e14ad77 8186then instead of getting the first line twice, you get:
5b066063
AD
8187
8188@example
8189$ @kbd{flex -ofirst-line.c first-line.l}
8190$ @kbd{gcc -ofirst-line first-line.c -ll}
8191$ @kbd{./first-line}
8192input:1: Hello,
8193input:2: World!
8194@end example
8195
0e14ad77
PE
8196Therefore, whenever you change @code{yyin}, you must tell the
8197Lex-generated scanner to discard its current buffer and switch to the
8198new one. This depends upon your implementation of Lex; see its
8199documentation for more. For Flex, it suffices to call
8200@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
8201Flex-generated scanner needs to read from several input streams to
8202handle features like include files, you might consider using Flex
8203functions like @samp{yy_switch_to_buffer} that manipulate multiple
8204input buffers.
5b066063 8205
b165c324
AD
8206If your Flex-generated scanner uses start conditions (@pxref{Start
8207conditions, , Start conditions, flex, The Flex Manual}), you might
8208also want to reset the scanner's state, i.e., go back to the initial
8209start condition, through a call to @samp{BEGIN (0)}.
8210
fef4cb51
AD
8211@node Strings are Destroyed
8212@section Strings are Destroyed
8213
8214@display
c7e441b4 8215My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
8216them. Instead of reporting @samp{"foo", "bar"}, it reports
8217@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
8218@end display
8219
8220This error is probably the single most frequent ``bug report'' sent to
8221Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 8222of the scanner. Consider the following Lex code:
fef4cb51
AD
8223
8224@verbatim
8225%{
8226#include <stdio.h>
8227char *yylval = NULL;
8228%}
8229%%
8230.* yylval = yytext; return 1;
8231\n /* IGNORE */
8232%%
8233int
8234main ()
8235{
fa7e68c3 8236 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
8237 char *fst = (yylex (), yylval);
8238 char *snd = (yylex (), yylval);
8239 printf ("\"%s\", \"%s\"\n", fst, snd);
8240 return 0;
8241}
8242@end verbatim
8243
8244If you compile and run this code, you get:
8245
8246@example
8247$ @kbd{flex -osplit-lines.c split-lines.l}
8248$ @kbd{gcc -osplit-lines split-lines.c -ll}
8249$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8250"one
8251two", "two"
8252@end example
8253
8254@noindent
8255this is because @code{yytext} is a buffer provided for @emph{reading}
8256in the action, but if you want to keep it, you have to duplicate it
8257(e.g., using @code{strdup}). Note that the output may depend on how
8258your implementation of Lex handles @code{yytext}. For instance, when
8259given the Lex compatibility option @option{-l} (which triggers the
8260option @samp{%array}) Flex generates a different behavior:
8261
8262@example
8263$ @kbd{flex -l -osplit-lines.c split-lines.l}
8264$ @kbd{gcc -osplit-lines split-lines.c -ll}
8265$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8266"two", "two"
8267@end example
8268
8269
2fa09258
AD
8270@node Implementing Gotos/Loops
8271@section Implementing Gotos/Loops
a06ea4aa
AD
8272
8273@display
8274My simple calculator supports variables, assignments, and functions,
2fa09258 8275but how can I implement gotos, or loops?
a06ea4aa
AD
8276@end display
8277
8278Although very pedagogical, the examples included in the document blur
a1c84f45 8279the distinction to make between the parser---whose job is to recover
a06ea4aa 8280the structure of a text and to transmit it to subsequent modules of
a1c84f45 8281the program---and the processing (such as the execution) of this
a06ea4aa
AD
8282structure. This works well with so called straight line programs,
8283i.e., precisely those that have a straightforward execution model:
8284execute simple instructions one after the others.
8285
8286@cindex abstract syntax tree
8287@cindex @acronym{AST}
8288If you want a richer model, you will probably need to use the parser
8289to construct a tree that does represent the structure it has
8290recovered; this tree is usually called the @dfn{abstract syntax tree},
8291or @dfn{@acronym{AST}} for short. Then, walking through this tree,
8292traversing it in various ways, will enable treatments such as its
8293execution or its translation, which will result in an interpreter or a
8294compiler.
8295
8296This topic is way beyond the scope of this manual, and the reader is
8297invited to consult the dedicated literature.
8298
8299
ed2e6384
AD
8300@node Multiple start-symbols
8301@section Multiple start-symbols
8302
8303@display
8304I have several closely related grammars, and I would like to share their
8305implementations. In fact, I could use a single grammar but with
8306multiple entry points.
8307@end display
8308
8309Bison does not support multiple start-symbols, but there is a very
8310simple means to simulate them. If @code{foo} and @code{bar} are the two
8311pseudo start-symbols, then introduce two new tokens, say
8312@code{START_FOO} and @code{START_BAR}, and use them as switches from the
8313real start-symbol:
8314
8315@example
8316%token START_FOO START_BAR;
8317%start start;
8318start: START_FOO foo
8319 | START_BAR bar;
8320@end example
8321
8322These tokens prevents the introduction of new conflicts. As far as the
8323parser goes, that is all that is needed.
8324
8325Now the difficult part is ensuring that the scanner will send these
8326tokens first. If your scanner is hand-written, that should be
8327straightforward. If your scanner is generated by Lex, them there is
8328simple means to do it: recall that anything between @samp{%@{ ... %@}}
8329after the first @code{%%} is copied verbatim in the top of the generated
8330@code{yylex} function. Make sure a variable @code{start_token} is
8331available in the scanner (e.g., a global variable or using
8332@code{%lex-param} etc.), and use the following:
8333
8334@example
8335 /* @r{Prologue.} */
8336%%
8337%@{
8338 if (start_token)
8339 @{
8340 int t = start_token;
8341 start_token = 0;
8342 return t;
8343 @}
8344%@}
8345 /* @r{The rules.} */
8346@end example
8347
8348
55ba27be
AD
8349@node Secure? Conform?
8350@section Secure? Conform?
8351
8352@display
8353Is Bison secure? Does it conform to POSIX?
8354@end display
8355
8356If you're looking for a guarantee or certification, we don't provide it.
8357However, Bison is intended to be a reliable program that conforms to the
8358@acronym{POSIX} specification for Yacc. If you run into problems,
8359please send us a bug report.
8360
8361@node I can't build Bison
8362@section I can't build Bison
8363
8364@display
8c5b881d
PE
8365I can't build Bison because @command{make} complains that
8366@code{msgfmt} is not found.
55ba27be
AD
8367What should I do?
8368@end display
8369
8370Like most GNU packages with internationalization support, that feature
8371is turned on by default. If you have problems building in the @file{po}
8372subdirectory, it indicates that your system's internationalization
8373support is lacking. You can re-configure Bison with
8374@option{--disable-nls} to turn off this support, or you can install GNU
8375gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8376Bison. See the file @file{ABOUT-NLS} for more information.
8377
8378
8379@node Where can I find help?
8380@section Where can I find help?
8381
8382@display
8383I'm having trouble using Bison. Where can I find help?
8384@end display
8385
8386First, read this fine manual. Beyond that, you can send mail to
8387@email{help-bison@@gnu.org}. This mailing list is intended to be
8388populated with people who are willing to answer questions about using
8389and installing Bison. Please keep in mind that (most of) the people on
8390the list have aspects of their lives which are not related to Bison (!),
8391so you may not receive an answer to your question right away. This can
8392be frustrating, but please try not to honk them off; remember that any
8393help they provide is purely voluntary and out of the kindness of their
8394hearts.
8395
8396@node Bug Reports
8397@section Bug Reports
8398
8399@display
8400I found a bug. What should I include in the bug report?
8401@end display
8402
8403Before you send a bug report, make sure you are using the latest
8404version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8405mirrors. Be sure to include the version number in your bug report. If
8406the bug is present in the latest version but not in a previous version,
8407try to determine the most recent version which did not contain the bug.
8408
8409If the bug is parser-related, you should include the smallest grammar
8410you can which demonstrates the bug. The grammar file should also be
8411complete (i.e., I should be able to run it through Bison without having
8412to edit or add anything). The smaller and simpler the grammar, the
8413easier it will be to fix the bug.
8414
8415Include information about your compilation environment, including your
8416operating system's name and version and your compiler's name and
8417version. If you have trouble compiling, you should also include a
8418transcript of the build session, starting with the invocation of
8419`configure'. Depending on the nature of the bug, you may be asked to
8420send additional files as well (such as `config.h' or `config.cache').
8421
8422Patches are most welcome, but not required. That is, do not hesitate to
8423send a bug report just because you can not provide a fix.
8424
8425Send bug reports to @email{bug-bison@@gnu.org}.
8426
8427@node Other Languages
8428@section Other Languages
8429
8430@display
8431Will Bison ever have C++ support? How about Java or @var{insert your
8432favorite language here}?
8433@end display
8434
8435C++ support is there now, and is documented. We'd love to add other
8436languages; contributions are welcome.
8437
8438@node Beta Testing
8439@section Beta Testing
8440
8441@display
8442What is involved in being a beta tester?
8443@end display
8444
8445It's not terribly involved. Basically, you would download a test
8446release, compile it, and use it to build and run a parser or two. After
8447that, you would submit either a bug report or a message saying that
8448everything is okay. It is important to report successes as well as
8449failures because test releases eventually become mainstream releases,
8450but only if they are adequately tested. If no one tests, development is
8451essentially halted.
8452
8453Beta testers are particularly needed for operating systems to which the
8454developers do not have easy access. They currently have easy access to
8455recent GNU/Linux and Solaris versions. Reports about other operating
8456systems are especially welcome.
8457
8458@node Mailing Lists
8459@section Mailing Lists
8460
8461@display
8462How do I join the help-bison and bug-bison mailing lists?
8463@end display
8464
8465See @url{http://lists.gnu.org/}.
a06ea4aa 8466
d1a1114f
AD
8467@c ================================================= Table of Symbols
8468
342b8b6e 8469@node Table of Symbols
bfa74976
RS
8470@appendix Bison Symbols
8471@cindex Bison symbols, table of
8472@cindex symbols in Bison, table of
8473
18b519c0 8474@deffn {Variable} @@$
3ded9a63 8475In an action, the location of the left-hand side of the rule.
88bce5a2 8476@xref{Locations, , Locations Overview}.
18b519c0 8477@end deffn
3ded9a63 8478
18b519c0 8479@deffn {Variable} @@@var{n}
3ded9a63
AD
8480In an action, the location of the @var{n}-th symbol of the right-hand
8481side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8482@end deffn
3ded9a63 8483
18b519c0 8484@deffn {Variable} $$
3ded9a63
AD
8485In an action, the semantic value of the left-hand side of the rule.
8486@xref{Actions}.
18b519c0 8487@end deffn
3ded9a63 8488
18b519c0 8489@deffn {Variable} $@var{n}
3ded9a63
AD
8490In an action, the semantic value of the @var{n}-th symbol of the
8491right-hand side of the rule. @xref{Actions}.
18b519c0 8492@end deffn
3ded9a63 8493
dd8d9022
AD
8494@deffn {Delimiter} %%
8495Delimiter used to separate the grammar rule section from the
8496Bison declarations section or the epilogue.
8497@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8498@end deffn
bfa74976 8499
dd8d9022
AD
8500@c Don't insert spaces, or check the DVI output.
8501@deffn {Delimiter} %@{@var{code}%@}
8502All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8503the output file uninterpreted. Such code forms the prologue of the input
8504file. @xref{Grammar Outline, ,Outline of a Bison
8505Grammar}.
18b519c0 8506@end deffn
bfa74976 8507
dd8d9022
AD
8508@deffn {Construct} /*@dots{}*/
8509Comment delimiters, as in C.
18b519c0 8510@end deffn
bfa74976 8511
dd8d9022
AD
8512@deffn {Delimiter} :
8513Separates a rule's result from its components. @xref{Rules, ,Syntax of
8514Grammar Rules}.
18b519c0 8515@end deffn
bfa74976 8516
dd8d9022
AD
8517@deffn {Delimiter} ;
8518Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8519@end deffn
bfa74976 8520
dd8d9022
AD
8521@deffn {Delimiter} |
8522Separates alternate rules for the same result nonterminal.
8523@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8524@end deffn
bfa74976 8525
dd8d9022
AD
8526@deffn {Symbol} $accept
8527The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8528$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8529Start-Symbol}. It cannot be used in the grammar.
18b519c0 8530@end deffn
bfa74976 8531
136a0f76 8532@deffn {Directive} %code @{@var{code}@}
2cbe6b7f
JD
8533Other than semantic actions, this is probably the most common place you should
8534write verbatim code for the parser implementation.
8535For C/C++, it replaces the traditional Yacc prologue,
8536@code{%@{@var{code}%@}}, for most purposes.
8537For Java, it inserts code into the parser class.
9bc0dd67
JD
8538
8539@cindex Prologue
9bc0dd67 8540@findex %union
2cbe6b7f
JD
8541Compare with @code{%@{@var{code}%@}} (@pxref{Prologue, ,The Prologue})
8542appearing after the first @code{%union @{@var{code}@}} in a C/C++ based grammar
8543file.
8544While Bison will continue to support @code{%@{@var{code}%@}} for backward
8545compatibility, @code{%code @{@var{code}@}} is cleaner as its functionality does
8546not depend on its position in the grammar file relative to any
8547@code{%union @{@var{code}@}}.
8548Specifically, @code{%code @{@var{code}@}} always inserts your @var{code} into
8549the parser code file after the usual contents of the parser header file.
8550
8551@xref{Prologue Alternatives}.
8552@end deffn
8553
8554@deffn {Directive} %code-top @{@var{code}@}
8555Occasionally for C/C++ it is desirable to insert code near the top of the
8556parser code file.
8557For example:
9bc0dd67
JD
8558
8559@smallexample
2cbe6b7f
JD
8560%code-top @{
8561 #define _GNU_SOURCE
8562 #include <stdio.h>
9bc0dd67 8563@}
9bc0dd67
JD
8564@end smallexample
8565
2cbe6b7f
JD
8566@noindent
8567For Java, @code{%code-top @{@var{code}@}} is currently unused.
8568
8569@cindex Prologue
8570@findex %union
8571Compare with @code{%@{@var{code}%@}} appearing before the first
8572@code{%union @{@var{code}@}} in a C/C++ based grammar file.
8573@code{%code-top @{@var{code}@}} is cleaner as its functionality does not depend
8574on its position in the grammar file relative to any
8575@code{%union @{@var{code}@}}.
34f98f46 8576
2cbe6b7f 8577@xref{Prologue Alternatives}.
9bc0dd67
JD
8578@end deffn
8579
8580@deffn {Directive} %debug
8581Equip the parser for debugging. @xref{Decl Summary}.
8582@end deffn
8583
18b519c0 8584@deffn {Directive} %debug
6deb4447 8585Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8586@end deffn
6deb4447 8587
91d2c560 8588@ifset defaultprec
22fccf95
PE
8589@deffn {Directive} %default-prec
8590Assign a precedence to rules that lack an explicit @samp{%prec}
8591modifier. @xref{Contextual Precedence, ,Context-Dependent
8592Precedence}.
39a06c25 8593@end deffn
91d2c560 8594@end ifset
39a06c25 8595
18b519c0 8596@deffn {Directive} %defines
6deb4447
AD
8597Bison declaration to create a header file meant for the scanner.
8598@xref{Decl Summary}.
18b519c0 8599@end deffn
6deb4447 8600
18b519c0 8601@deffn {Directive} %destructor
258b75ca 8602Specify how the parser should reclaim the memory associated to
fa7e68c3 8603discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8604@end deffn
72f889cc 8605
18b519c0 8606@deffn {Directive} %dprec
676385e2 8607Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8608time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8609@acronym{GLR} Parsers}.
18b519c0 8610@end deffn
676385e2 8611
dd8d9022
AD
8612@deffn {Symbol} $end
8613The predefined token marking the end of the token stream. It cannot be
8614used in the grammar.
8615@end deffn
8616
8617@deffn {Symbol} error
8618A token name reserved for error recovery. This token may be used in
8619grammar rules so as to allow the Bison parser to recognize an error in
8620the grammar without halting the process. In effect, a sentence
8621containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
8622token @code{error} becomes the current lookahead token. Actions
8623corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
8624token is reset to the token that originally caused the violation.
8625@xref{Error Recovery}.
18d192f0
AD
8626@end deffn
8627
18b519c0 8628@deffn {Directive} %error-verbose
2a8d363a
AD
8629Bison declaration to request verbose, specific error message strings
8630when @code{yyerror} is called.
18b519c0 8631@end deffn
2a8d363a 8632
18b519c0 8633@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8634Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8635Summary}.
18b519c0 8636@end deffn
d8988b2f 8637
18b519c0 8638@deffn {Directive} %glr-parser
c827f760
PE
8639Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8640Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8641@end deffn
676385e2 8642
dd8d9022
AD
8643@deffn {Directive} %initial-action
8644Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8645@end deffn
8646
18b519c0 8647@deffn {Directive} %left
bfa74976
RS
8648Bison declaration to assign left associativity to token(s).
8649@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8650@end deffn
bfa74976 8651
feeb0eda 8652@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8653Bison declaration to specifying an additional parameter that
8654@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8655for Pure Parsers}.
18b519c0 8656@end deffn
2a8d363a 8657
18b519c0 8658@deffn {Directive} %merge
676385e2 8659Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8660reduce/reduce conflict with a rule having the same merging function, the
676385e2 8661function is applied to the two semantic values to get a single result.
c827f760 8662@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8663@end deffn
676385e2 8664
18b519c0 8665@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8666Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8667@end deffn
d8988b2f 8668
91d2c560 8669@ifset defaultprec
22fccf95
PE
8670@deffn {Directive} %no-default-prec
8671Do not assign a precedence to rules that lack an explicit @samp{%prec}
8672modifier. @xref{Contextual Precedence, ,Context-Dependent
8673Precedence}.
8674@end deffn
91d2c560 8675@end ifset
22fccf95 8676
18b519c0 8677@deffn {Directive} %no-lines
931c7513
RS
8678Bison declaration to avoid generating @code{#line} directives in the
8679parser file. @xref{Decl Summary}.
18b519c0 8680@end deffn
931c7513 8681
18b519c0 8682@deffn {Directive} %nonassoc
9d9b8b70 8683Bison declaration to assign nonassociativity to token(s).
bfa74976 8684@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8685@end deffn
bfa74976 8686
fa4d969f 8687@deffn {Directive} %output="@var{file}"
72d2299c 8688Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8689Summary}.
18b519c0 8690@end deffn
d8988b2f 8691
feeb0eda 8692@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8693Bison declaration to specifying an additional parameter that
8694@code{yyparse} should accept. @xref{Parser Function,, The Parser
8695Function @code{yyparse}}.
18b519c0 8696@end deffn
2a8d363a 8697
18b519c0 8698@deffn {Directive} %prec
bfa74976
RS
8699Bison declaration to assign a precedence to a specific rule.
8700@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8701@end deffn
bfa74976 8702
2cbe6b7f
JD
8703@deffn {Directive} %provides @{@var{code}@}
8704This is the right place to write additional definitions you would like Bison to
8705expose externally.
8706For C/C++, this directive inserts your @var{code} both into the parser header
8707file (if generated; @pxref{Table of Symbols, ,%defines}) and into the parser
8708code file after Bison's required definitions.
8709For Java, it inserts your @var{code} into the parser java file after the parser
8710class.
8711
8712@xref{Prologue Alternatives}.
8713@end deffn
8714
18b519c0 8715@deffn {Directive} %pure-parser
bfa74976
RS
8716Bison declaration to request a pure (reentrant) parser.
8717@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8718@end deffn
bfa74976 8719
b50d2359 8720@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8721Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8722Require a Version of Bison}.
b50d2359
AD
8723@end deffn
8724
2cbe6b7f
JD
8725@deffn {Directive} %requires @{@var{code}@}
8726This is the right place to write dependency code for externally exposed
8727definitions required by Bison.
8728For C/C++, such exposed definitions are those usually appearing in the parser
8729header file.
8730Thus, this is the right place to define types referenced in
8731@code{%union @{@var{code}@}} directives, and it is the right place to override
8732Bison's default @code{YYSTYPE} and @code{YYLTYPE} definitions.
8733For Java, this is the right place to write import directives.
8734
8735@cindex Prologue
8736@findex %union
8737Compare with @code{%@{@var{code}%@}} (@pxref{Prologue, ,The Prologue})
8738appearing before the first @code{%union @{@var{code}@}} in a C/C++ based
8739grammar file.
8740Unlike @code{%@{@var{code}%@}}, @code{%requires @{@var{code}@}} inserts your
8741@var{code} both into the parser code file and into the parser header file (if
8742generated; @pxref{Table of Symbols, ,%defines}) since Bison's required
8743definitions should depend on it in both places.
8744
8745@xref{Prologue Alternatives}.
8746@end deffn
8747
18b519c0 8748@deffn {Directive} %right
bfa74976
RS
8749Bison declaration to assign right associativity to token(s).
8750@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8751@end deffn
bfa74976 8752
18b519c0 8753@deffn {Directive} %start
704a47c4
AD
8754Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8755Start-Symbol}.
18b519c0 8756@end deffn
bfa74976 8757
3be03b13
JD
8758@deffn {Directive} %symbol-default
8759Used to declare a default @code{%destructor} or default @code{%printer}.
8760@xref{Destructor Decl, , Freeing Discarded Symbols}.
8761@end deffn
8762
18b519c0 8763@deffn {Directive} %token
bfa74976
RS
8764Bison declaration to declare token(s) without specifying precedence.
8765@xref{Token Decl, ,Token Type Names}.
18b519c0 8766@end deffn
bfa74976 8767
18b519c0 8768@deffn {Directive} %token-table
931c7513
RS
8769Bison declaration to include a token name table in the parser file.
8770@xref{Decl Summary}.
18b519c0 8771@end deffn
931c7513 8772
18b519c0 8773@deffn {Directive} %type
704a47c4
AD
8774Bison declaration to declare nonterminals. @xref{Type Decl,
8775,Nonterminal Symbols}.
18b519c0 8776@end deffn
bfa74976 8777
dd8d9022
AD
8778@deffn {Symbol} $undefined
8779The predefined token onto which all undefined values returned by
8780@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8781@code{error}.
8782@end deffn
8783
18b519c0 8784@deffn {Directive} %union
bfa74976
RS
8785Bison declaration to specify several possible data types for semantic
8786values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8787@end deffn
bfa74976 8788
dd8d9022
AD
8789@deffn {Macro} YYABORT
8790Macro to pretend that an unrecoverable syntax error has occurred, by
8791making @code{yyparse} return 1 immediately. The error reporting
8792function @code{yyerror} is not called. @xref{Parser Function, ,The
8793Parser Function @code{yyparse}}.
8794@end deffn
3ded9a63 8795
dd8d9022
AD
8796@deffn {Macro} YYACCEPT
8797Macro to pretend that a complete utterance of the language has been
8798read, by making @code{yyparse} return 0 immediately.
8799@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8800@end deffn
bfa74976 8801
dd8d9022 8802@deffn {Macro} YYBACKUP
742e4900 8803Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 8804token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8805@end deffn
bfa74976 8806
dd8d9022 8807@deffn {Variable} yychar
32c29292 8808External integer variable that contains the integer value of the
742e4900 8809lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
8810@code{yyparse}.) Error-recovery rule actions may examine this variable.
8811@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8812@end deffn
bfa74976 8813
dd8d9022
AD
8814@deffn {Variable} yyclearin
8815Macro used in error-recovery rule actions. It clears the previous
742e4900 8816lookahead token. @xref{Error Recovery}.
18b519c0 8817@end deffn
bfa74976 8818
dd8d9022
AD
8819@deffn {Macro} YYDEBUG
8820Macro to define to equip the parser with tracing code. @xref{Tracing,
8821,Tracing Your Parser}.
18b519c0 8822@end deffn
bfa74976 8823
dd8d9022
AD
8824@deffn {Variable} yydebug
8825External integer variable set to zero by default. If @code{yydebug}
8826is given a nonzero value, the parser will output information on input
8827symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8828@end deffn
bfa74976 8829
dd8d9022
AD
8830@deffn {Macro} yyerrok
8831Macro to cause parser to recover immediately to its normal mode
8832after a syntax error. @xref{Error Recovery}.
8833@end deffn
8834
8835@deffn {Macro} YYERROR
8836Macro to pretend that a syntax error has just been detected: call
8837@code{yyerror} and then perform normal error recovery if possible
8838(@pxref{Error Recovery}), or (if recovery is impossible) make
8839@code{yyparse} return 1. @xref{Error Recovery}.
8840@end deffn
8841
8842@deffn {Function} yyerror
8843User-supplied function to be called by @code{yyparse} on error.
8844@xref{Error Reporting, ,The Error
8845Reporting Function @code{yyerror}}.
8846@end deffn
8847
8848@deffn {Macro} YYERROR_VERBOSE
8849An obsolete macro that you define with @code{#define} in the prologue
8850to request verbose, specific error message strings
8851when @code{yyerror} is called. It doesn't matter what definition you
8852use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8853@code{%error-verbose} is preferred.
8854@end deffn
8855
8856@deffn {Macro} YYINITDEPTH
8857Macro for specifying the initial size of the parser stack.
1a059451 8858@xref{Memory Management}.
dd8d9022
AD
8859@end deffn
8860
8861@deffn {Function} yylex
8862User-supplied lexical analyzer function, called with no arguments to get
8863the next token. @xref{Lexical, ,The Lexical Analyzer Function
8864@code{yylex}}.
8865@end deffn
8866
8867@deffn {Macro} YYLEX_PARAM
8868An obsolete macro for specifying an extra argument (or list of extra
32c29292 8869arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8870macro is deprecated, and is supported only for Yacc like parsers.
8871@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8872@end deffn
8873
8874@deffn {Variable} yylloc
8875External variable in which @code{yylex} should place the line and column
8876numbers associated with a token. (In a pure parser, it is a local
8877variable within @code{yyparse}, and its address is passed to
32c29292
JD
8878@code{yylex}.)
8879You can ignore this variable if you don't use the @samp{@@} feature in the
8880grammar actions.
8881@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 8882In semantic actions, it stores the location of the lookahead token.
32c29292 8883@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8884@end deffn
8885
8886@deffn {Type} YYLTYPE
8887Data type of @code{yylloc}; by default, a structure with four
8888members. @xref{Location Type, , Data Types of Locations}.
8889@end deffn
8890
8891@deffn {Variable} yylval
8892External variable in which @code{yylex} should place the semantic
8893value associated with a token. (In a pure parser, it is a local
8894variable within @code{yyparse}, and its address is passed to
32c29292
JD
8895@code{yylex}.)
8896@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 8897In semantic actions, it stores the semantic value of the lookahead token.
32c29292 8898@xref{Actions, ,Actions}.
dd8d9022
AD
8899@end deffn
8900
8901@deffn {Macro} YYMAXDEPTH
1a059451
PE
8902Macro for specifying the maximum size of the parser stack. @xref{Memory
8903Management}.
dd8d9022
AD
8904@end deffn
8905
8906@deffn {Variable} yynerrs
8a2800e7 8907Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8908(In a pure parser, it is a local variable within @code{yyparse}.)
8909@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8910@end deffn
8911
8912@deffn {Function} yyparse
8913The parser function produced by Bison; call this function to start
8914parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8915@end deffn
8916
8917@deffn {Macro} YYPARSE_PARAM
8918An obsolete macro for specifying the name of a parameter that
8919@code{yyparse} should accept. The use of this macro is deprecated, and
8920is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8921Conventions for Pure Parsers}.
8922@end deffn
8923
8924@deffn {Macro} YYRECOVERING
02103984
PE
8925The expression @code{YYRECOVERING ()} yields 1 when the parser
8926is recovering from a syntax error, and 0 otherwise.
8927@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
8928@end deffn
8929
8930@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8931Macro used to control the use of @code{alloca} when the C
8932@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8933the parser will use @code{malloc} to extend its stacks. If defined to
89341, the parser will use @code{alloca}. Values other than 0 and 1 are
8935reserved for future Bison extensions. If not defined,
8936@code{YYSTACK_USE_ALLOCA} defaults to 0.
8937
55289366 8938In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8939limited stack and with unreliable stack-overflow checking, you should
8940set @code{YYMAXDEPTH} to a value that cannot possibly result in
8941unchecked stack overflow on any of your target hosts when
8942@code{alloca} is called. You can inspect the code that Bison
8943generates in order to determine the proper numeric values. This will
8944require some expertise in low-level implementation details.
dd8d9022
AD
8945@end deffn
8946
8947@deffn {Type} YYSTYPE
8948Data type of semantic values; @code{int} by default.
8949@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8950@end deffn
bfa74976 8951
342b8b6e 8952@node Glossary
bfa74976
RS
8953@appendix Glossary
8954@cindex glossary
8955
8956@table @asis
c827f760
PE
8957@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8958Formal method of specifying context-free grammars originally proposed
8959by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8960committee document contributing to what became the Algol 60 report.
8961@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8962
8963@item Context-free grammars
8964Grammars specified as rules that can be applied regardless of context.
8965Thus, if there is a rule which says that an integer can be used as an
8966expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8967permitted. @xref{Language and Grammar, ,Languages and Context-Free
8968Grammars}.
bfa74976
RS
8969
8970@item Dynamic allocation
8971Allocation of memory that occurs during execution, rather than at
8972compile time or on entry to a function.
8973
8974@item Empty string
8975Analogous to the empty set in set theory, the empty string is a
8976character string of length zero.
8977
8978@item Finite-state stack machine
8979A ``machine'' that has discrete states in which it is said to exist at
8980each instant in time. As input to the machine is processed, the
8981machine moves from state to state as specified by the logic of the
8982machine. In the case of the parser, the input is the language being
8983parsed, and the states correspond to various stages in the grammar
c827f760 8984rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8985
c827f760 8986@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8987A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8988that are not @acronym{LALR}(1). It resolves situations that Bison's
8989usual @acronym{LALR}(1)
676385e2
PH
8990algorithm cannot by effectively splitting off multiple parsers, trying all
8991possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8992right context. @xref{Generalized LR Parsing, ,Generalized
8993@acronym{LR} Parsing}.
676385e2 8994
bfa74976
RS
8995@item Grouping
8996A language construct that is (in general) grammatically divisible;
c827f760 8997for example, `expression' or `declaration' in C@.
bfa74976
RS
8998@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8999
9000@item Infix operator
9001An arithmetic operator that is placed between the operands on which it
9002performs some operation.
9003
9004@item Input stream
9005A continuous flow of data between devices or programs.
9006
9007@item Language construct
9008One of the typical usage schemas of the language. For example, one of
9009the constructs of the C language is the @code{if} statement.
9010@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9011
9012@item Left associativity
9013Operators having left associativity are analyzed from left to right:
9014@samp{a+b+c} first computes @samp{a+b} and then combines with
9015@samp{c}. @xref{Precedence, ,Operator Precedence}.
9016
9017@item Left recursion
89cab50d
AD
9018A rule whose result symbol is also its first component symbol; for
9019example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
9020Rules}.
bfa74976
RS
9021
9022@item Left-to-right parsing
9023Parsing a sentence of a language by analyzing it token by token from
c827f760 9024left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9025
9026@item Lexical analyzer (scanner)
9027A function that reads an input stream and returns tokens one by one.
9028@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
9029
9030@item Lexical tie-in
9031A flag, set by actions in the grammar rules, which alters the way
9032tokens are parsed. @xref{Lexical Tie-ins}.
9033
931c7513 9034@item Literal string token
14ded682 9035A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 9036
742e4900
JD
9037@item Lookahead token
9038A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 9039Tokens}.
bfa74976 9040
c827f760 9041@item @acronym{LALR}(1)
bfa74976 9042The class of context-free grammars that Bison (like most other parser
c827f760
PE
9043generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
9044Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 9045
c827f760 9046@item @acronym{LR}(1)
bfa74976 9047The class of context-free grammars in which at most one token of
742e4900 9048lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
9049
9050@item Nonterminal symbol
9051A grammar symbol standing for a grammatical construct that can
9052be expressed through rules in terms of smaller constructs; in other
9053words, a construct that is not a token. @xref{Symbols}.
9054
bfa74976
RS
9055@item Parser
9056A function that recognizes valid sentences of a language by analyzing
9057the syntax structure of a set of tokens passed to it from a lexical
9058analyzer.
9059
9060@item Postfix operator
9061An arithmetic operator that is placed after the operands upon which it
9062performs some operation.
9063
9064@item Reduction
9065Replacing a string of nonterminals and/or terminals with a single
89cab50d 9066nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 9067Parser Algorithm}.
bfa74976
RS
9068
9069@item Reentrant
9070A reentrant subprogram is a subprogram which can be in invoked any
9071number of times in parallel, without interference between the various
9072invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
9073
9074@item Reverse polish notation
9075A language in which all operators are postfix operators.
9076
9077@item Right recursion
89cab50d
AD
9078A rule whose result symbol is also its last component symbol; for
9079example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
9080Rules}.
bfa74976
RS
9081
9082@item Semantics
9083In computer languages, the semantics are specified by the actions
9084taken for each instance of the language, i.e., the meaning of
9085each statement. @xref{Semantics, ,Defining Language Semantics}.
9086
9087@item Shift
9088A parser is said to shift when it makes the choice of analyzing
9089further input from the stream rather than reducing immediately some
c827f760 9090already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9091
9092@item Single-character literal
9093A single character that is recognized and interpreted as is.
9094@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
9095
9096@item Start symbol
9097The nonterminal symbol that stands for a complete valid utterance in
9098the language being parsed. The start symbol is usually listed as the
13863333 9099first nonterminal symbol in a language specification.
bfa74976
RS
9100@xref{Start Decl, ,The Start-Symbol}.
9101
9102@item Symbol table
9103A data structure where symbol names and associated data are stored
9104during parsing to allow for recognition and use of existing
9105information in repeated uses of a symbol. @xref{Multi-function Calc}.
9106
6e649e65
PE
9107@item Syntax error
9108An error encountered during parsing of an input stream due to invalid
9109syntax. @xref{Error Recovery}.
9110
bfa74976
RS
9111@item Token
9112A basic, grammatically indivisible unit of a language. The symbol
9113that describes a token in the grammar is a terminal symbol.
9114The input of the Bison parser is a stream of tokens which comes from
9115the lexical analyzer. @xref{Symbols}.
9116
9117@item Terminal symbol
89cab50d
AD
9118A grammar symbol that has no rules in the grammar and therefore is
9119grammatically indivisible. The piece of text it represents is a token.
9120@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9121@end table
9122
342b8b6e 9123@node Copying This Manual
f2b5126e 9124@appendix Copying This Manual
f9a8293a 9125
f2b5126e
PB
9126@menu
9127* GNU Free Documentation License:: License for copying this manual.
9128@end menu
f9a8293a 9129
f2b5126e
PB
9130@include fdl.texi
9131
342b8b6e 9132@node Index
bfa74976
RS
9133@unnumbered Index
9134
9135@printindex cp
9136
bfa74976 9137@bye
a06ea4aa
AD
9138
9139@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
9140@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
9141@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
9142@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
9143@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
9144@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
9145@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
9146@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
9147@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
9148@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
9149@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
9150@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
9151@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
9152@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
9153@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
9154@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
9155@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
9156@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
9157@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
9158@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
9159@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 9160@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 9161@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 9162@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 9163@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 9164@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa
AD
9165@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
9166@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
9167@c LocalWords: YYSTACK DVI fdl printindex