]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
($(calc_sources_generated)): Don't do anything if $@ exists. This
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
e62f1a89 471999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
150* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
151
bfa74976
RS
152Examples
153
154* RPN Calc:: Reverse polish notation calculator;
155 a first example with no operator precedence.
156* Infix Calc:: Infix (algebraic) notation calculator.
157 Operator precedence is introduced.
158* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 159* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
160* Multi-function Calc:: Calculator with memory and trig functions.
161 It uses multiple data-types for semantic values.
bfa74976
RS
162* Exercises:: Ideas for improving the multi-function calculator.
163
164Reverse Polish Notation Calculator
165
75f5aaea 166* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
167* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
168* Lexer: Rpcalc Lexer. The lexical analyzer.
169* Main: Rpcalc Main. The controlling function.
170* Error: Rpcalc Error. The error reporting function.
171* Gen: Rpcalc Gen. Running Bison on the grammar file.
172* Comp: Rpcalc Compile. Run the C compiler on the output code.
173
174Grammar Rules for @code{rpcalc}
175
13863333
AD
176* Rpcalc Input::
177* Rpcalc Line::
178* Rpcalc Expr::
bfa74976 179
342b8b6e
AD
180Location Tracking Calculator: @code{ltcalc}
181
182* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
183* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
184* Lexer: Ltcalc Lexer. The lexical analyzer.
185
bfa74976
RS
186Multi-Function Calculator: @code{mfcalc}
187
188* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
189* Rules: Mfcalc Rules. Grammar rules for the calculator.
190* Symtab: Mfcalc Symtab. Symbol table management subroutines.
191
192Bison Grammar Files
193
194* Grammar Outline:: Overall layout of the grammar file.
195* Symbols:: Terminal and nonterminal symbols.
196* Rules:: How to write grammar rules.
197* Recursion:: Writing recursive rules.
198* Semantics:: Semantic values and actions.
93dd49ab 199* Locations:: Locations and actions.
bfa74976
RS
200* Declarations:: All kinds of Bison declarations are described here.
201* Multiple Parsers:: Putting more than one Bison parser in one program.
202
203Outline of a Bison Grammar
204
93dd49ab 205* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
206* Bison Declarations:: Syntax and usage of the Bison declarations section.
207* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 208* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
209
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
214* Actions:: An action is the semantic definition of a grammar rule.
215* Action Types:: Specifying data types for actions to operate on.
216* Mid-Rule Actions:: Most actions go at the end of a rule.
217 This says when, why and how to use the exceptional
218 action in the middle of a rule.
219
93dd49ab
PE
220Tracking Locations
221
222* Location Type:: Specifying a data type for locations.
223* Actions and Locations:: Using locations in actions.
224* Location Default Action:: Defining a general way to compute locations.
225
bfa74976
RS
226Bison Declarations
227
228* Token Decl:: Declaring terminal symbols.
229* Precedence Decl:: Declaring terminals with precedence and associativity.
230* Union Decl:: Declaring the set of all semantic value types.
231* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 232* Initial Action Decl:: Code run before parsing starts.
72f889cc 233* Destructor Decl:: Declaring how symbols are freed.
d6328241 234* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
235* Start Decl:: Specifying the start symbol.
236* Pure Decl:: Requesting a reentrant parser.
237* Decl Summary:: Table of all Bison declarations.
238
239Parser C-Language Interface
240
241* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 242* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
f7ab6a50
PE
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
95923bd6 254* Token Locations:: How @code{yylex} must return the text location
bfa74976 255 (line number, etc.) of the token, if the
93dd49ab 256 actions want that.
bfa74976
RS
257* Pure Calling:: How the calling convention differs
258 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
259
13863333 260The Bison Parser Algorithm
bfa74976
RS
261
262* Look-Ahead:: Parser looks one token ahead when deciding what to do.
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
268* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 269* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 270* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
271
272Operator Precedence
273
274* Why Precedence:: An example showing why precedence is needed.
275* Using Precedence:: How to specify precedence in Bison grammars.
276* Precedence Examples:: How these features are used in the previous example.
277* How Precedence:: How they work.
278
279Handling Context Dependencies
280
281* Semantic Tokens:: Token parsing can depend on the semantic context.
282* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
283* Tie-in Recovery:: Lexical tie-ins have implications for how
284 error recovery rules must be written.
285
93dd49ab 286Debugging Your Parser
ec3bc396
AD
287
288* Understanding:: Understanding the structure of your parser.
289* Tracing:: Tracing the execution of your parser.
290
bfa74976
RS
291Invoking Bison
292
13863333 293* Bison Options:: All the options described in detail,
c827f760 294 in alphabetical order by short options.
bfa74976 295* Option Cross Key:: Alphabetical list of long options.
93dd49ab 296* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 297
12545799
AD
298C++ Language Interface
299
300* C++ Parsers:: The interface to generate C++ parser classes
301* A Complete C++ Example:: Demonstrating their use
302
303C++ Parsers
304
305* C++ Bison Interface:: Asking for C++ parser generation
306* C++ Semantic Values:: %union vs. C++
307* C++ Location Values:: The position and location classes
308* C++ Parser Interface:: Instantiating and running the parser
309* C++ Scanner Interface:: Exchanges between yylex and parse
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
d1a1114f
AD
319Frequently Asked Questions
320
1a059451 321* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 322* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 323* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 324* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 325
f2b5126e
PB
326Copying This Manual
327
328* GNU Free Documentation License:: License for copying this manual.
329
342b8b6e 330@end detailmenu
bfa74976
RS
331@end menu
332
342b8b6e 333@node Introduction
bfa74976
RS
334@unnumbered Introduction
335@cindex introduction
336
337@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 338grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
339program to parse that grammar. Once you are proficient with Bison,
340you may use it to develop a wide range of language parsers, from those
341used in simple desk calculators to complex programming languages.
342
343Bison is upward compatible with Yacc: all properly-written Yacc grammars
344ought to work with Bison with no change. Anyone familiar with Yacc
345should be able to use Bison with little trouble. You need to be fluent in
346C programming in order to use Bison or to understand this manual.
347
348We begin with tutorial chapters that explain the basic concepts of using
349Bison and show three explained examples, each building on the last. If you
350don't know Bison or Yacc, start by reading these chapters. Reference
351chapters follow which describe specific aspects of Bison in detail.
352
931c7513
RS
353Bison was written primarily by Robert Corbett; Richard Stallman made it
354Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 355multi-character string literals and other features.
931c7513 356
df1af54c 357This edition corresponds to version @value{VERSION} of Bison.
bfa74976 358
342b8b6e 359@node Conditions
bfa74976
RS
360@unnumbered Conditions for Using Bison
361
a31239f1 362As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 363@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 364Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 365parsers could be used only in programs that were free software.
a31239f1 366
c827f760
PE
367The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
368compiler, have never
9ecbd125 369had such a requirement. They could always be used for nonfree
a31239f1
RS
370software. The reason Bison was different was not due to a special
371policy decision; it resulted from applying the usual General Public
372License to all of the Bison source code.
373
374The output of the Bison utility---the Bison parser file---contains a
375verbatim copy of a sizable piece of Bison, which is the code for the
376@code{yyparse} function. (The actions from your grammar are inserted
377into this function at one point, but the rest of the function is not
c827f760
PE
378changed.) When we applied the @acronym{GPL} terms to the code for
379@code{yyparse},
a31239f1
RS
380the effect was to restrict the use of Bison output to free software.
381
382We didn't change the terms because of sympathy for people who want to
383make software proprietary. @strong{Software should be free.} But we
384concluded that limiting Bison's use to free software was doing little to
385encourage people to make other software free. So we decided to make the
386practical conditions for using Bison match the practical conditions for
c827f760 387using the other @acronym{GNU} tools.
bfa74976 388
eda42934 389This exception applies only when Bison is generating C code for an
c827f760
PE
390@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
391as usual. You can
262aa8dd
PE
392tell whether the exception applies to your @samp{.c} output file by
393inspecting it to see whether it says ``As a special exception, when
394this file is copied by Bison into a Bison output file, you may use
395that output file without restriction.''
396
c67a198d 397@include gpl.texi
bfa74976 398
342b8b6e 399@node Concepts
bfa74976
RS
400@chapter The Concepts of Bison
401
402This chapter introduces many of the basic concepts without which the
403details of Bison will not make sense. If you do not already know how to
404use Bison or Yacc, we suggest you start by reading this chapter carefully.
405
406@menu
407* Language and Grammar:: Languages and context-free grammars,
408 as mathematical ideas.
409* Grammar in Bison:: How we represent grammars for Bison's sake.
410* Semantic Values:: Each token or syntactic grouping can have
411 a semantic value (the value of an integer,
412 the name of an identifier, etc.).
413* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 414* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 415* Locations Overview:: Tracking Locations.
bfa74976
RS
416* Bison Parser:: What are Bison's input and output,
417 how is the output used?
418* Stages:: Stages in writing and running Bison grammars.
419* Grammar Layout:: Overall structure of a Bison grammar file.
420@end menu
421
342b8b6e 422@node Language and Grammar
bfa74976
RS
423@section Languages and Context-Free Grammars
424
bfa74976
RS
425@cindex context-free grammar
426@cindex grammar, context-free
427In order for Bison to parse a language, it must be described by a
428@dfn{context-free grammar}. This means that you specify one or more
429@dfn{syntactic groupings} and give rules for constructing them from their
430parts. For example, in the C language, one kind of grouping is called an
431`expression'. One rule for making an expression might be, ``An expression
432can be made of a minus sign and another expression''. Another would be,
433``An expression can be an integer''. As you can see, rules are often
434recursive, but there must be at least one rule which leads out of the
435recursion.
436
c827f760 437@cindex @acronym{BNF}
bfa74976
RS
438@cindex Backus-Naur form
439The most common formal system for presenting such rules for humans to read
c827f760
PE
440is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
441order to specify the language Algol 60. Any grammar expressed in
442@acronym{BNF} is a context-free grammar. The input to Bison is
443essentially machine-readable @acronym{BNF}.
bfa74976 444
c827f760
PE
445@cindex @acronym{LALR}(1) grammars
446@cindex @acronym{LR}(1) grammars
676385e2
PH
447There are various important subclasses of context-free grammar. Although it
448can handle almost all context-free grammars, Bison is optimized for what
c827f760 449are called @acronym{LALR}(1) grammars.
676385e2 450In brief, in these grammars, it must be possible to
bfa74976
RS
451tell how to parse any portion of an input string with just a single
452token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
453@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
454restrictions that are
bfa74976 455hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
456@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
457@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
458more information on this.
bfa74976 459
c827f760
PE
460@cindex @acronym{GLR} parsing
461@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
462@cindex ambiguous grammars
463@cindex non-deterministic parsing
9501dc6e
AD
464
465Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
466roughly that the next grammar rule to apply at any point in the input is
467uniquely determined by the preceding input and a fixed, finite portion
468(called a @dfn{look-ahead}) of the remaining input. A context-free
469grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 470apply the grammar rules to get the same inputs. Even unambiguous
9501dc6e
AD
471grammars can be @dfn{non-deterministic}, meaning that no fixed
472look-ahead always suffices to determine the next grammar rule to apply.
473With the proper declarations, Bison is also able to parse these more
474general context-free grammars, using a technique known as @acronym{GLR}
475parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
476are able to handle any context-free grammar for which the number of
477possible parses of any given string is finite.
676385e2 478
bfa74976
RS
479@cindex symbols (abstract)
480@cindex token
481@cindex syntactic grouping
482@cindex grouping, syntactic
9501dc6e
AD
483In the formal grammatical rules for a language, each kind of syntactic
484unit or grouping is named by a @dfn{symbol}. Those which are built by
485grouping smaller constructs according to grammatical rules are called
bfa74976
RS
486@dfn{nonterminal symbols}; those which can't be subdivided are called
487@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
488corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 489corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
490
491We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
492nonterminal, mean. The tokens of C are identifiers, constants (numeric
493and string), and the various keywords, arithmetic operators and
494punctuation marks. So the terminal symbols of a grammar for C include
495`identifier', `number', `string', plus one symbol for each keyword,
496operator or punctuation mark: `if', `return', `const', `static', `int',
497`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
498(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
499lexicography, not grammar.)
500
501Here is a simple C function subdivided into tokens:
502
9edcd895
AD
503@ifinfo
504@example
505int /* @r{keyword `int'} */
14d4662b 506square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
507 @r{identifier, close-paren} */
508@{ /* @r{open-brace} */
509 return x * x; /* @r{keyword `return', identifier, asterisk,
510 identifier, semicolon} */
511@} /* @r{close-brace} */
512@end example
513@end ifinfo
514@ifnotinfo
bfa74976
RS
515@example
516int /* @r{keyword `int'} */
14d4662b 517square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 518@{ /* @r{open-brace} */
9edcd895 519 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
520@} /* @r{close-brace} */
521@end example
9edcd895 522@end ifnotinfo
bfa74976
RS
523
524The syntactic groupings of C include the expression, the statement, the
525declaration, and the function definition. These are represented in the
526grammar of C by nonterminal symbols `expression', `statement',
527`declaration' and `function definition'. The full grammar uses dozens of
528additional language constructs, each with its own nonterminal symbol, in
529order to express the meanings of these four. The example above is a
530function definition; it contains one declaration, and one statement. In
531the statement, each @samp{x} is an expression and so is @samp{x * x}.
532
533Each nonterminal symbol must have grammatical rules showing how it is made
534out of simpler constructs. For example, one kind of C statement is the
535@code{return} statement; this would be described with a grammar rule which
536reads informally as follows:
537
538@quotation
539A `statement' can be made of a `return' keyword, an `expression' and a
540`semicolon'.
541@end quotation
542
543@noindent
544There would be many other rules for `statement', one for each kind of
545statement in C.
546
547@cindex start symbol
548One nonterminal symbol must be distinguished as the special one which
549defines a complete utterance in the language. It is called the @dfn{start
550symbol}. In a compiler, this means a complete input program. In the C
551language, the nonterminal symbol `sequence of definitions and declarations'
552plays this role.
553
554For example, @samp{1 + 2} is a valid C expression---a valid part of a C
555program---but it is not valid as an @emph{entire} C program. In the
556context-free grammar of C, this follows from the fact that `expression' is
557not the start symbol.
558
559The Bison parser reads a sequence of tokens as its input, and groups the
560tokens using the grammar rules. If the input is valid, the end result is
561that the entire token sequence reduces to a single grouping whose symbol is
562the grammar's start symbol. If we use a grammar for C, the entire input
563must be a `sequence of definitions and declarations'. If not, the parser
564reports a syntax error.
565
342b8b6e 566@node Grammar in Bison
bfa74976
RS
567@section From Formal Rules to Bison Input
568@cindex Bison grammar
569@cindex grammar, Bison
570@cindex formal grammar
571
572A formal grammar is a mathematical construct. To define the language
573for Bison, you must write a file expressing the grammar in Bison syntax:
574a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
575
576A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 577as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
578in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
579
580The Bison representation for a terminal symbol is also called a @dfn{token
581type}. Token types as well can be represented as C-like identifiers. By
582convention, these identifiers should be upper case to distinguish them from
583nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
584@code{RETURN}. A terminal symbol that stands for a particular keyword in
585the language should be named after that keyword converted to upper case.
586The terminal symbol @code{error} is reserved for error recovery.
931c7513 587@xref{Symbols}.
bfa74976
RS
588
589A terminal symbol can also be represented as a character literal, just like
590a C character constant. You should do this whenever a token is just a
591single character (parenthesis, plus-sign, etc.): use that same character in
592a literal as the terminal symbol for that token.
593
931c7513
RS
594A third way to represent a terminal symbol is with a C string constant
595containing several characters. @xref{Symbols}, for more information.
596
bfa74976
RS
597The grammar rules also have an expression in Bison syntax. For example,
598here is the Bison rule for a C @code{return} statement. The semicolon in
599quotes is a literal character token, representing part of the C syntax for
600the statement; the naked semicolon, and the colon, are Bison punctuation
601used in every rule.
602
603@example
604stmt: RETURN expr ';'
605 ;
606@end example
607
608@noindent
609@xref{Rules, ,Syntax of Grammar Rules}.
610
342b8b6e 611@node Semantic Values
bfa74976
RS
612@section Semantic Values
613@cindex semantic value
614@cindex value, semantic
615
616A formal grammar selects tokens only by their classifications: for example,
617if a rule mentions the terminal symbol `integer constant', it means that
618@emph{any} integer constant is grammatically valid in that position. The
619precise value of the constant is irrelevant to how to parse the input: if
620@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 621grammatical.
bfa74976
RS
622
623But the precise value is very important for what the input means once it is
624parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6253989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
626has both a token type and a @dfn{semantic value}. @xref{Semantics,
627,Defining Language Semantics},
bfa74976
RS
628for details.
629
630The token type is a terminal symbol defined in the grammar, such as
631@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
632you need to know to decide where the token may validly appear and how to
633group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 634except their types.
bfa74976
RS
635
636The semantic value has all the rest of the information about the
637meaning of the token, such as the value of an integer, or the name of an
638identifier. (A token such as @code{','} which is just punctuation doesn't
639need to have any semantic value.)
640
641For example, an input token might be classified as token type
642@code{INTEGER} and have the semantic value 4. Another input token might
643have the same token type @code{INTEGER} but value 3989. When a grammar
644rule says that @code{INTEGER} is allowed, either of these tokens is
645acceptable because each is an @code{INTEGER}. When the parser accepts the
646token, it keeps track of the token's semantic value.
647
648Each grouping can also have a semantic value as well as its nonterminal
649symbol. For example, in a calculator, an expression typically has a
650semantic value that is a number. In a compiler for a programming
651language, an expression typically has a semantic value that is a tree
652structure describing the meaning of the expression.
653
342b8b6e 654@node Semantic Actions
bfa74976
RS
655@section Semantic Actions
656@cindex semantic actions
657@cindex actions, semantic
658
659In order to be useful, a program must do more than parse input; it must
660also produce some output based on the input. In a Bison grammar, a grammar
661rule can have an @dfn{action} made up of C statements. Each time the
662parser recognizes a match for that rule, the action is executed.
663@xref{Actions}.
13863333 664
bfa74976
RS
665Most of the time, the purpose of an action is to compute the semantic value
666of the whole construct from the semantic values of its parts. For example,
667suppose we have a rule which says an expression can be the sum of two
668expressions. When the parser recognizes such a sum, each of the
669subexpressions has a semantic value which describes how it was built up.
670The action for this rule should create a similar sort of value for the
671newly recognized larger expression.
672
673For example, here is a rule that says an expression can be the sum of
674two subexpressions:
675
676@example
677expr: expr '+' expr @{ $$ = $1 + $3; @}
678 ;
679@end example
680
681@noindent
682The action says how to produce the semantic value of the sum expression
683from the values of the two subexpressions.
684
676385e2 685@node GLR Parsers
c827f760
PE
686@section Writing @acronym{GLR} Parsers
687@cindex @acronym{GLR} parsing
688@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
689@findex %glr-parser
690@cindex conflicts
691@cindex shift/reduce conflicts
fa7e68c3 692@cindex reduce/reduce conflicts
676385e2 693
fa7e68c3 694In some grammars, Bison's standard
9501dc6e
AD
695@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
696certain grammar rule at a given point. That is, it may not be able to
697decide (on the basis of the input read so far) which of two possible
698reductions (applications of a grammar rule) applies, or whether to apply
699a reduction or read more of the input and apply a reduction later in the
700input. These are known respectively as @dfn{reduce/reduce} conflicts
701(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
702(@pxref{Shift/Reduce}).
703
704To use a grammar that is not easily modified to be @acronym{LALR}(1), a
705more general parsing algorithm is sometimes necessary. If you include
676385e2 706@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 707(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
708(@acronym{GLR}) parser. These parsers handle Bison grammars that
709contain no unresolved conflicts (i.e., after applying precedence
710declarations) identically to @acronym{LALR}(1) parsers. However, when
711faced with unresolved shift/reduce and reduce/reduce conflicts,
712@acronym{GLR} parsers use the simple expedient of doing both,
713effectively cloning the parser to follow both possibilities. Each of
714the resulting parsers can again split, so that at any given time, there
715can be any number of possible parses being explored. The parsers
676385e2
PH
716proceed in lockstep; that is, all of them consume (shift) a given input
717symbol before any of them proceed to the next. Each of the cloned
718parsers eventually meets one of two possible fates: either it runs into
719a parsing error, in which case it simply vanishes, or it merges with
720another parser, because the two of them have reduced the input to an
721identical set of symbols.
722
723During the time that there are multiple parsers, semantic actions are
724recorded, but not performed. When a parser disappears, its recorded
725semantic actions disappear as well, and are never performed. When a
726reduction makes two parsers identical, causing them to merge, Bison
727records both sets of semantic actions. Whenever the last two parsers
728merge, reverting to the single-parser case, Bison resolves all the
729outstanding actions either by precedences given to the grammar rules
730involved, or by performing both actions, and then calling a designated
731user-defined function on the resulting values to produce an arbitrary
732merged result.
733
fa7e68c3
PE
734@menu
735* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
736* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
737* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
738@end menu
739
740@node Simple GLR Parsers
741@subsection Using @acronym{GLR} on Unambiguous Grammars
742@cindex @acronym{GLR} parsing, unambiguous grammars
743@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
744@findex %glr-parser
745@findex %expect-rr
746@cindex conflicts
747@cindex reduce/reduce conflicts
748@cindex shift/reduce conflicts
749
750In the simplest cases, you can use the @acronym{GLR} algorithm
751to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
752Such grammars typically require more than one symbol of look-ahead,
753or (in rare cases) fall into the category of grammars in which the
754@acronym{LALR}(1) algorithm throws away too much information (they are in
755@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
756
757Consider a problem that
758arises in the declaration of enumerated and subrange types in the
759programming language Pascal. Here are some examples:
760
761@example
762type subrange = lo .. hi;
763type enum = (a, b, c);
764@end example
765
766@noindent
767The original language standard allows only numeric
768literals and constant identifiers for the subrange bounds (@samp{lo}
769and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77010206) and many other
771Pascal implementations allow arbitrary expressions there. This gives
772rise to the following situation, containing a superfluous pair of
773parentheses:
774
775@example
776type subrange = (a) .. b;
777@end example
778
779@noindent
780Compare this to the following declaration of an enumerated
781type with only one value:
782
783@example
784type enum = (a);
785@end example
786
787@noindent
788(These declarations are contrived, but they are syntactically
789valid, and more-complicated cases can come up in practical programs.)
790
791These two declarations look identical until the @samp{..} token.
792With normal @acronym{LALR}(1) one-token look-ahead it is not
793possible to decide between the two forms when the identifier
794@samp{a} is parsed. It is, however, desirable
795for a parser to decide this, since in the latter case
796@samp{a} must become a new identifier to represent the enumeration
797value, while in the former case @samp{a} must be evaluated with its
798current meaning, which may be a constant or even a function call.
799
800You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
801to be resolved later, but this typically requires substantial
802contortions in both semantic actions and large parts of the
803grammar, where the parentheses are nested in the recursive rules for
804expressions.
805
806You might think of using the lexer to distinguish between the two
807forms by returning different tokens for currently defined and
808undefined identifiers. But if these declarations occur in a local
809scope, and @samp{a} is defined in an outer scope, then both forms
810are possible---either locally redefining @samp{a}, or using the
811value of @samp{a} from the outer scope. So this approach cannot
812work.
813
e757bb10 814A simple solution to this problem is to declare the parser to
fa7e68c3
PE
815use the @acronym{GLR} algorithm.
816When the @acronym{GLR} parser reaches the critical state, it
817merely splits into two branches and pursues both syntax rules
818simultaneously. Sooner or later, one of them runs into a parsing
819error. If there is a @samp{..} token before the next
820@samp{;}, the rule for enumerated types fails since it cannot
821accept @samp{..} anywhere; otherwise, the subrange type rule
822fails since it requires a @samp{..} token. So one of the branches
823fails silently, and the other one continues normally, performing
824all the intermediate actions that were postponed during the split.
825
826If the input is syntactically incorrect, both branches fail and the parser
827reports a syntax error as usual.
828
829The effect of all this is that the parser seems to ``guess'' the
830correct branch to take, or in other words, it seems to use more
831look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
832for. In this example, @acronym{LALR}(2) would suffice, but also some cases
833that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
834
835In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
836and the current Bison parser even takes exponential time and space
837for some grammars. In practice, this rarely happens, and for many
838grammars it is possible to prove that it cannot happen.
839The present example contains only one conflict between two
840rules, and the type-declaration context containing the conflict
841cannot be nested. So the number of
842branches that can exist at any time is limited by the constant 2,
843and the parsing time is still linear.
844
845Here is a Bison grammar corresponding to the example above. It
846parses a vastly simplified form of Pascal type declarations.
847
848@example
849%token TYPE DOTDOT ID
850
851@group
852%left '+' '-'
853%left '*' '/'
854@end group
855
856%%
857
858@group
859type_decl : TYPE ID '=' type ';'
860 ;
861@end group
862
863@group
864type : '(' id_list ')'
865 | expr DOTDOT expr
866 ;
867@end group
868
869@group
870id_list : ID
871 | id_list ',' ID
872 ;
873@end group
874
875@group
876expr : '(' expr ')'
877 | expr '+' expr
878 | expr '-' expr
879 | expr '*' expr
880 | expr '/' expr
881 | ID
882 ;
883@end group
884@end example
885
886When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
887about one reduce/reduce conflict. In the conflicting situation the
888parser chooses one of the alternatives, arbitrarily the one
889declared first. Therefore the following correct input is not
890recognized:
891
892@example
893type t = (a) .. b;
894@end example
895
896The parser can be turned into a @acronym{GLR} parser, while also telling Bison
897to be silent about the one known reduce/reduce conflict, by
e757bb10 898adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
899@samp{%%}):
900
901@example
902%glr-parser
903%expect-rr 1
904@end example
905
906@noindent
907No change in the grammar itself is required. Now the
908parser recognizes all valid declarations, according to the
909limited syntax above, transparently. In fact, the user does not even
910notice when the parser splits.
911
912So here we have a case where we can use the benefits of @acronym{GLR}, almost
913without disadvantages. Even in simple cases like this, however, there
914are at least two potential problems to beware.
915First, always analyze the conflicts reported by
916Bison to make sure that @acronym{GLR} splitting is only done where it is
917intended. A @acronym{GLR} parser splitting inadvertently may cause
918problems less obvious than an @acronym{LALR} parser statically choosing the
919wrong alternative in a conflict.
e757bb10 920Second, consider interactions with the lexer (@pxref{Semantic Tokens})
fa7e68c3
PE
921with great care. Since a split parser consumes tokens
922without performing any actions during the split, the lexer cannot
923obtain information via parser actions. Some cases of
924lexer interactions can be eliminated by using @acronym{GLR} to
925shift the complications from the lexer to the parser. You must check
926the remaining cases for correctness.
927
928In our example, it would be safe for the lexer to return tokens
929based on their current meanings in some symbol table, because no new
930symbols are defined in the middle of a type declaration. Though it
931is possible for a parser to define the enumeration
932constants as they are parsed, before the type declaration is
933completed, it actually makes no difference since they cannot be used
934within the same enumerated type declaration.
935
936@node Merging GLR Parses
937@subsection Using @acronym{GLR} to Resolve Ambiguities
938@cindex @acronym{GLR} parsing, ambiguous grammars
939@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
940@findex %dprec
941@findex %merge
942@cindex conflicts
943@cindex reduce/reduce conflicts
944
2a8d363a 945Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
946
947@example
948%@{
38a92d50
PE
949 #include <stdio.h>
950 #define YYSTYPE char const *
951 int yylex (void);
952 void yyerror (char const *);
676385e2
PH
953%@}
954
955%token TYPENAME ID
956
957%right '='
958%left '+'
959
960%glr-parser
961
962%%
963
fae437e8 964prog :
676385e2
PH
965 | prog stmt @{ printf ("\n"); @}
966 ;
967
968stmt : expr ';' %dprec 1
969 | decl %dprec 2
970 ;
971
2a8d363a 972expr : ID @{ printf ("%s ", $$); @}
fae437e8 973 | TYPENAME '(' expr ')'
2a8d363a
AD
974 @{ printf ("%s <cast> ", $1); @}
975 | expr '+' expr @{ printf ("+ "); @}
976 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
977 ;
978
fae437e8 979decl : TYPENAME declarator ';'
2a8d363a 980 @{ printf ("%s <declare> ", $1); @}
676385e2 981 | TYPENAME declarator '=' expr ';'
2a8d363a 982 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
983 ;
984
2a8d363a 985declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
986 | '(' declarator ')'
987 ;
988@end example
989
990@noindent
991This models a problematic part of the C++ grammar---the ambiguity between
992certain declarations and statements. For example,
993
994@example
995T (x) = y+z;
996@end example
997
998@noindent
999parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1000(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1001@samp{x} as an @code{ID}).
676385e2 1002Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1003@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1004time it encounters @code{x} in the example above. Since this is a
1005@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1006each choice of resolving the reduce/reduce conflict.
1007Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1008however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1009ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1010the other reduces @code{stmt : decl}, after which both parsers are in an
1011identical state: they've seen @samp{prog stmt} and have the same unprocessed
1012input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1013
1014At this point, the @acronym{GLR} parser requires a specification in the
1015grammar of how to choose between the competing parses.
1016In the example above, the two @code{%dprec}
e757bb10 1017declarations specify that Bison is to give precedence
fa7e68c3 1018to the parse that interprets the example as a
676385e2
PH
1019@code{decl}, which implies that @code{x} is a declarator.
1020The parser therefore prints
1021
1022@example
fae437e8 1023"x" y z + T <init-declare>
676385e2
PH
1024@end example
1025
fa7e68c3
PE
1026The @code{%dprec} declarations only come into play when more than one
1027parse survives. Consider a different input string for this parser:
676385e2
PH
1028
1029@example
1030T (x) + y;
1031@end example
1032
1033@noindent
e757bb10 1034This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1035construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1036Here, there is no ambiguity (this cannot be parsed as a declaration).
1037However, at the time the Bison parser encounters @code{x}, it does not
1038have enough information to resolve the reduce/reduce conflict (again,
1039between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1040case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1041into two, one assuming that @code{x} is an @code{expr}, and the other
1042assuming @code{x} is a @code{declarator}. The second of these parsers
1043then vanishes when it sees @code{+}, and the parser prints
1044
1045@example
fae437e8 1046x T <cast> y +
676385e2
PH
1047@end example
1048
1049Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1050the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1051actions of the two possible parsers, rather than choosing one over the
1052other. To do so, you could change the declaration of @code{stmt} as
1053follows:
1054
1055@example
1056stmt : expr ';' %merge <stmtMerge>
1057 | decl %merge <stmtMerge>
1058 ;
1059@end example
1060
1061@noindent
676385e2
PH
1062and define the @code{stmtMerge} function as:
1063
1064@example
38a92d50
PE
1065static YYSTYPE
1066stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1067@{
1068 printf ("<OR> ");
1069 return "";
1070@}
1071@end example
1072
1073@noindent
1074with an accompanying forward declaration
1075in the C declarations at the beginning of the file:
1076
1077@example
1078%@{
38a92d50 1079 #define YYSTYPE char const *
676385e2
PH
1080 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1081%@}
1082@end example
1083
1084@noindent
fa7e68c3
PE
1085With these declarations, the resulting parser parses the first example
1086as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1087
1088@example
fae437e8 1089"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1090@end example
1091
fa7e68c3 1092Bison requires that all of the
e757bb10 1093productions that participate in any particular merge have identical
fa7e68c3
PE
1094@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1095and the parser will report an error during any parse that results in
1096the offending merge.
9501dc6e 1097
fa7e68c3
PE
1098@node Compiler Requirements
1099@subsection Considerations when Compiling @acronym{GLR} Parsers
1100@cindex @code{inline}
9501dc6e 1101@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1102
38a92d50
PE
1103The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1104later. In addition, they use the @code{inline} keyword, which is not
1105C89, but is C99 and is a common extension in pre-C99 compilers. It is
1106up to the user of these parsers to handle
9501dc6e
AD
1107portability issues. For instance, if using Autoconf and the Autoconf
1108macro @code{AC_C_INLINE}, a mere
1109
1110@example
1111%@{
38a92d50 1112 #include <config.h>
9501dc6e
AD
1113%@}
1114@end example
1115
1116@noindent
1117will suffice. Otherwise, we suggest
1118
1119@example
1120%@{
38a92d50
PE
1121 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1122 #define inline
1123 #endif
9501dc6e
AD
1124%@}
1125@end example
676385e2 1126
342b8b6e 1127@node Locations Overview
847bf1f5
AD
1128@section Locations
1129@cindex location
95923bd6
AD
1130@cindex textual location
1131@cindex location, textual
847bf1f5
AD
1132
1133Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1134and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1135the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1136Bison provides a mechanism for handling these locations.
1137
72d2299c 1138Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1139associated location, but the type of locations is the same for all tokens and
72d2299c 1140groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1141structure for storing locations (@pxref{Locations}, for more details).
1142
1143Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1144set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1145is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1146@code{@@3}.
1147
1148When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1149of its left hand side (@pxref{Actions}). In the same way, another default
1150action is used for locations. However, the action for locations is general
847bf1f5 1151enough for most cases, meaning there is usually no need to describe for each
72d2299c 1152rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1153grouping, the default behavior of the output parser is to take the beginning
1154of the first symbol, and the end of the last symbol.
1155
342b8b6e 1156@node Bison Parser
bfa74976
RS
1157@section Bison Output: the Parser File
1158@cindex Bison parser
1159@cindex Bison utility
1160@cindex lexical analyzer, purpose
1161@cindex parser
1162
1163When you run Bison, you give it a Bison grammar file as input. The output
1164is a C source file that parses the language described by the grammar.
1165This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1166utility and the Bison parser are two distinct programs: the Bison utility
1167is a program whose output is the Bison parser that becomes part of your
1168program.
1169
1170The job of the Bison parser is to group tokens into groupings according to
1171the grammar rules---for example, to build identifiers and operators into
1172expressions. As it does this, it runs the actions for the grammar rules it
1173uses.
1174
704a47c4
AD
1175The tokens come from a function called the @dfn{lexical analyzer} that
1176you must supply in some fashion (such as by writing it in C). The Bison
1177parser calls the lexical analyzer each time it wants a new token. It
1178doesn't know what is ``inside'' the tokens (though their semantic values
1179may reflect this). Typically the lexical analyzer makes the tokens by
1180parsing characters of text, but Bison does not depend on this.
1181@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1182
1183The Bison parser file is C code which defines a function named
1184@code{yyparse} which implements that grammar. This function does not make
1185a complete C program: you must supply some additional functions. One is
1186the lexical analyzer. Another is an error-reporting function which the
1187parser calls to report an error. In addition, a complete C program must
1188start with a function called @code{main}; you have to provide this, and
1189arrange for it to call @code{yyparse} or the parser will never run.
1190@xref{Interface, ,Parser C-Language Interface}.
1191
f7ab6a50 1192Aside from the token type names and the symbols in the actions you
7093d0f5 1193write, all symbols defined in the Bison parser file itself
bfa74976
RS
1194begin with @samp{yy} or @samp{YY}. This includes interface functions
1195such as the lexical analyzer function @code{yylex}, the error reporting
1196function @code{yyerror} and the parser function @code{yyparse} itself.
1197This also includes numerous identifiers used for internal purposes.
1198Therefore, you should avoid using C identifiers starting with @samp{yy}
1199or @samp{YY} in the Bison grammar file except for the ones defined in
1200this manual.
1201
7093d0f5
AD
1202In some cases the Bison parser file includes system headers, and in
1203those cases your code should respect the identifiers reserved by those
c827f760 1204headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
7093d0f5 1205@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1206declare memory allocators and related types. @code{<libintl.h>} is
1207included if message translation is in use
1208(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1209be included if you define @code{YYDEBUG} to a nonzero value
1210(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1211
342b8b6e 1212@node Stages
bfa74976
RS
1213@section Stages in Using Bison
1214@cindex stages in using Bison
1215@cindex using Bison
1216
1217The actual language-design process using Bison, from grammar specification
1218to a working compiler or interpreter, has these parts:
1219
1220@enumerate
1221@item
1222Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1223(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1224in the language, describe the action that is to be taken when an
1225instance of that rule is recognized. The action is described by a
1226sequence of C statements.
bfa74976
RS
1227
1228@item
704a47c4
AD
1229Write a lexical analyzer to process input and pass tokens to the parser.
1230The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1231Lexical Analyzer Function @code{yylex}}). It could also be produced
1232using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1233
1234@item
1235Write a controlling function that calls the Bison-produced parser.
1236
1237@item
1238Write error-reporting routines.
1239@end enumerate
1240
1241To turn this source code as written into a runnable program, you
1242must follow these steps:
1243
1244@enumerate
1245@item
1246Run Bison on the grammar to produce the parser.
1247
1248@item
1249Compile the code output by Bison, as well as any other source files.
1250
1251@item
1252Link the object files to produce the finished product.
1253@end enumerate
1254
342b8b6e 1255@node Grammar Layout
bfa74976
RS
1256@section The Overall Layout of a Bison Grammar
1257@cindex grammar file
1258@cindex file format
1259@cindex format of grammar file
1260@cindex layout of Bison grammar
1261
1262The input file for the Bison utility is a @dfn{Bison grammar file}. The
1263general form of a Bison grammar file is as follows:
1264
1265@example
1266%@{
08e49d20 1267@var{Prologue}
bfa74976
RS
1268%@}
1269
1270@var{Bison declarations}
1271
1272%%
1273@var{Grammar rules}
1274%%
08e49d20 1275@var{Epilogue}
bfa74976
RS
1276@end example
1277
1278@noindent
1279The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1280in every Bison grammar file to separate the sections.
1281
72d2299c 1282The prologue may define types and variables used in the actions. You can
342b8b6e 1283also use preprocessor commands to define macros used there, and use
bfa74976 1284@code{#include} to include header files that do any of these things.
38a92d50
PE
1285You need to declare the lexical analyzer @code{yylex} and the error
1286printer @code{yyerror} here, along with any other global identifiers
1287used by the actions in the grammar rules.
bfa74976
RS
1288
1289The Bison declarations declare the names of the terminal and nonterminal
1290symbols, and may also describe operator precedence and the data types of
1291semantic values of various symbols.
1292
1293The grammar rules define how to construct each nonterminal symbol from its
1294parts.
1295
38a92d50
PE
1296The epilogue can contain any code you want to use. Often the
1297definitions of functions declared in the prologue go here. In a
1298simple program, all the rest of the program can go here.
bfa74976 1299
342b8b6e 1300@node Examples
bfa74976
RS
1301@chapter Examples
1302@cindex simple examples
1303@cindex examples, simple
1304
1305Now we show and explain three sample programs written using Bison: a
1306reverse polish notation calculator, an algebraic (infix) notation
1307calculator, and a multi-function calculator. All three have been tested
1308under BSD Unix 4.3; each produces a usable, though limited, interactive
1309desk-top calculator.
1310
1311These examples are simple, but Bison grammars for real programming
1312languages are written the same way.
1313@ifinfo
1314You can copy these examples out of the Info file and into a source file
1315to try them.
1316@end ifinfo
1317
1318@menu
1319* RPN Calc:: Reverse polish notation calculator;
1320 a first example with no operator precedence.
1321* Infix Calc:: Infix (algebraic) notation calculator.
1322 Operator precedence is introduced.
1323* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1324* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1325* Multi-function Calc:: Calculator with memory and trig functions.
1326 It uses multiple data-types for semantic values.
1327* Exercises:: Ideas for improving the multi-function calculator.
1328@end menu
1329
342b8b6e 1330@node RPN Calc
bfa74976
RS
1331@section Reverse Polish Notation Calculator
1332@cindex reverse polish notation
1333@cindex polish notation calculator
1334@cindex @code{rpcalc}
1335@cindex calculator, simple
1336
1337The first example is that of a simple double-precision @dfn{reverse polish
1338notation} calculator (a calculator using postfix operators). This example
1339provides a good starting point, since operator precedence is not an issue.
1340The second example will illustrate how operator precedence is handled.
1341
1342The source code for this calculator is named @file{rpcalc.y}. The
1343@samp{.y} extension is a convention used for Bison input files.
1344
1345@menu
75f5aaea 1346* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1347* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1348* Lexer: Rpcalc Lexer. The lexical analyzer.
1349* Main: Rpcalc Main. The controlling function.
1350* Error: Rpcalc Error. The error reporting function.
1351* Gen: Rpcalc Gen. Running Bison on the grammar file.
1352* Comp: Rpcalc Compile. Run the C compiler on the output code.
1353@end menu
1354
342b8b6e 1355@node Rpcalc Decls
bfa74976
RS
1356@subsection Declarations for @code{rpcalc}
1357
1358Here are the C and Bison declarations for the reverse polish notation
1359calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1360
1361@example
72d2299c 1362/* Reverse polish notation calculator. */
bfa74976
RS
1363
1364%@{
38a92d50
PE
1365 #define YYSTYPE double
1366 #include <math.h>
1367 int yylex (void);
1368 void yyerror (char const *);
bfa74976
RS
1369%@}
1370
1371%token NUM
1372
72d2299c 1373%% /* Grammar rules and actions follow. */
bfa74976
RS
1374@end example
1375
75f5aaea 1376The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1377preprocessor directives and two forward declarations.
bfa74976
RS
1378
1379The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1380specifying the C data type for semantic values of both tokens and
1381groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1382Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1383don't define it, @code{int} is the default. Because we specify
1384@code{double}, each token and each expression has an associated value,
1385which is a floating point number.
bfa74976
RS
1386
1387The @code{#include} directive is used to declare the exponentiation
1388function @code{pow}.
1389
38a92d50
PE
1390The forward declarations for @code{yylex} and @code{yyerror} are
1391needed because the C language requires that functions be declared
1392before they are used. These functions will be defined in the
1393epilogue, but the parser calls them so they must be declared in the
1394prologue.
1395
704a47c4
AD
1396The second section, Bison declarations, provides information to Bison
1397about the token types (@pxref{Bison Declarations, ,The Bison
1398Declarations Section}). Each terminal symbol that is not a
1399single-character literal must be declared here. (Single-character
bfa74976
RS
1400literals normally don't need to be declared.) In this example, all the
1401arithmetic operators are designated by single-character literals, so the
1402only terminal symbol that needs to be declared is @code{NUM}, the token
1403type for numeric constants.
1404
342b8b6e 1405@node Rpcalc Rules
bfa74976
RS
1406@subsection Grammar Rules for @code{rpcalc}
1407
1408Here are the grammar rules for the reverse polish notation calculator.
1409
1410@example
1411input: /* empty */
1412 | input line
1413;
1414
1415line: '\n'
18b519c0 1416 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1417;
1418
18b519c0
AD
1419exp: NUM @{ $$ = $1; @}
1420 | exp exp '+' @{ $$ = $1 + $2; @}
1421 | exp exp '-' @{ $$ = $1 - $2; @}
1422 | exp exp '*' @{ $$ = $1 * $2; @}
1423 | exp exp '/' @{ $$ = $1 / $2; @}
1424 /* Exponentiation */
1425 | exp exp '^' @{ $$ = pow ($1, $2); @}
1426 /* Unary minus */
1427 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1428;
1429%%
1430@end example
1431
1432The groupings of the rpcalc ``language'' defined here are the expression
1433(given the name @code{exp}), the line of input (@code{line}), and the
1434complete input transcript (@code{input}). Each of these nonterminal
1435symbols has several alternate rules, joined by the @samp{|} punctuator
1436which is read as ``or''. The following sections explain what these rules
1437mean.
1438
1439The semantics of the language is determined by the actions taken when a
1440grouping is recognized. The actions are the C code that appears inside
1441braces. @xref{Actions}.
1442
1443You must specify these actions in C, but Bison provides the means for
1444passing semantic values between the rules. In each action, the
1445pseudo-variable @code{$$} stands for the semantic value for the grouping
1446that the rule is going to construct. Assigning a value to @code{$$} is the
1447main job of most actions. The semantic values of the components of the
1448rule are referred to as @code{$1}, @code{$2}, and so on.
1449
1450@menu
13863333
AD
1451* Rpcalc Input::
1452* Rpcalc Line::
1453* Rpcalc Expr::
bfa74976
RS
1454@end menu
1455
342b8b6e 1456@node Rpcalc Input
bfa74976
RS
1457@subsubsection Explanation of @code{input}
1458
1459Consider the definition of @code{input}:
1460
1461@example
1462input: /* empty */
1463 | input line
1464;
1465@end example
1466
1467This definition reads as follows: ``A complete input is either an empty
1468string, or a complete input followed by an input line''. Notice that
1469``complete input'' is defined in terms of itself. This definition is said
1470to be @dfn{left recursive} since @code{input} appears always as the
1471leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1472
1473The first alternative is empty because there are no symbols between the
1474colon and the first @samp{|}; this means that @code{input} can match an
1475empty string of input (no tokens). We write the rules this way because it
1476is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1477It's conventional to put an empty alternative first and write the comment
1478@samp{/* empty */} in it.
1479
1480The second alternate rule (@code{input line}) handles all nontrivial input.
1481It means, ``After reading any number of lines, read one more line if
1482possible.'' The left recursion makes this rule into a loop. Since the
1483first alternative matches empty input, the loop can be executed zero or
1484more times.
1485
1486The parser function @code{yyparse} continues to process input until a
1487grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1488input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1489
342b8b6e 1490@node Rpcalc Line
bfa74976
RS
1491@subsubsection Explanation of @code{line}
1492
1493Now consider the definition of @code{line}:
1494
1495@example
1496line: '\n'
1497 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1498;
1499@end example
1500
1501The first alternative is a token which is a newline character; this means
1502that rpcalc accepts a blank line (and ignores it, since there is no
1503action). The second alternative is an expression followed by a newline.
1504This is the alternative that makes rpcalc useful. The semantic value of
1505the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1506question is the first symbol in the alternative. The action prints this
1507value, which is the result of the computation the user asked for.
1508
1509This action is unusual because it does not assign a value to @code{$$}. As
1510a consequence, the semantic value associated with the @code{line} is
1511uninitialized (its value will be unpredictable). This would be a bug if
1512that value were ever used, but we don't use it: once rpcalc has printed the
1513value of the user's input line, that value is no longer needed.
1514
342b8b6e 1515@node Rpcalc Expr
bfa74976
RS
1516@subsubsection Explanation of @code{expr}
1517
1518The @code{exp} grouping has several rules, one for each kind of expression.
1519The first rule handles the simplest expressions: those that are just numbers.
1520The second handles an addition-expression, which looks like two expressions
1521followed by a plus-sign. The third handles subtraction, and so on.
1522
1523@example
1524exp: NUM
1525 | exp exp '+' @{ $$ = $1 + $2; @}
1526 | exp exp '-' @{ $$ = $1 - $2; @}
1527 @dots{}
1528 ;
1529@end example
1530
1531We have used @samp{|} to join all the rules for @code{exp}, but we could
1532equally well have written them separately:
1533
1534@example
1535exp: NUM ;
1536exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1537exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1538 @dots{}
1539@end example
1540
1541Most of the rules have actions that compute the value of the expression in
1542terms of the value of its parts. For example, in the rule for addition,
1543@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1544the second one. The third component, @code{'+'}, has no meaningful
1545associated semantic value, but if it had one you could refer to it as
1546@code{$3}. When @code{yyparse} recognizes a sum expression using this
1547rule, the sum of the two subexpressions' values is produced as the value of
1548the entire expression. @xref{Actions}.
1549
1550You don't have to give an action for every rule. When a rule has no
1551action, Bison by default copies the value of @code{$1} into @code{$$}.
1552This is what happens in the first rule (the one that uses @code{NUM}).
1553
1554The formatting shown here is the recommended convention, but Bison does
72d2299c 1555not require it. You can add or change white space as much as you wish.
bfa74976
RS
1556For example, this:
1557
1558@example
99a9344e 1559exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1560@end example
1561
1562@noindent
1563means the same thing as this:
1564
1565@example
1566exp: NUM
1567 | exp exp '+' @{ $$ = $1 + $2; @}
1568 | @dots{}
99a9344e 1569;
bfa74976
RS
1570@end example
1571
1572@noindent
1573The latter, however, is much more readable.
1574
342b8b6e 1575@node Rpcalc Lexer
bfa74976
RS
1576@subsection The @code{rpcalc} Lexical Analyzer
1577@cindex writing a lexical analyzer
1578@cindex lexical analyzer, writing
1579
704a47c4
AD
1580The lexical analyzer's job is low-level parsing: converting characters
1581or sequences of characters into tokens. The Bison parser gets its
1582tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1583Analyzer Function @code{yylex}}.
bfa74976 1584
c827f760
PE
1585Only a simple lexical analyzer is needed for the @acronym{RPN}
1586calculator. This
bfa74976
RS
1587lexical analyzer skips blanks and tabs, then reads in numbers as
1588@code{double} and returns them as @code{NUM} tokens. Any other character
1589that isn't part of a number is a separate token. Note that the token-code
1590for such a single-character token is the character itself.
1591
1592The return value of the lexical analyzer function is a numeric code which
1593represents a token type. The same text used in Bison rules to stand for
1594this token type is also a C expression for the numeric code for the type.
1595This works in two ways. If the token type is a character literal, then its
e966383b 1596numeric code is that of the character; you can use the same
bfa74976
RS
1597character literal in the lexical analyzer to express the number. If the
1598token type is an identifier, that identifier is defined by Bison as a C
1599macro whose definition is the appropriate number. In this example,
1600therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1601
1964ad8c
AD
1602The semantic value of the token (if it has one) is stored into the
1603global variable @code{yylval}, which is where the Bison parser will look
1604for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1605defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1606,Declarations for @code{rpcalc}}.)
bfa74976 1607
72d2299c
PE
1608A token type code of zero is returned if the end-of-input is encountered.
1609(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1610
1611Here is the code for the lexical analyzer:
1612
1613@example
1614@group
72d2299c 1615/* The lexical analyzer returns a double floating point
e966383b 1616 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1617 of the character read if not a number. It skips all blanks
1618 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1619
1620#include <ctype.h>
1621@end group
1622
1623@group
13863333
AD
1624int
1625yylex (void)
bfa74976
RS
1626@{
1627 int c;
1628
72d2299c 1629 /* Skip white space. */
13863333 1630 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1631 ;
1632@end group
1633@group
72d2299c 1634 /* Process numbers. */
13863333 1635 if (c == '.' || isdigit (c))
bfa74976
RS
1636 @{
1637 ungetc (c, stdin);
1638 scanf ("%lf", &yylval);
1639 return NUM;
1640 @}
1641@end group
1642@group
72d2299c 1643 /* Return end-of-input. */
13863333 1644 if (c == EOF)
bfa74976 1645 return 0;
72d2299c 1646 /* Return a single char. */
13863333 1647 return c;
bfa74976
RS
1648@}
1649@end group
1650@end example
1651
342b8b6e 1652@node Rpcalc Main
bfa74976
RS
1653@subsection The Controlling Function
1654@cindex controlling function
1655@cindex main function in simple example
1656
1657In keeping with the spirit of this example, the controlling function is
1658kept to the bare minimum. The only requirement is that it call
1659@code{yyparse} to start the process of parsing.
1660
1661@example
1662@group
13863333
AD
1663int
1664main (void)
bfa74976 1665@{
13863333 1666 return yyparse ();
bfa74976
RS
1667@}
1668@end group
1669@end example
1670
342b8b6e 1671@node Rpcalc Error
bfa74976
RS
1672@subsection The Error Reporting Routine
1673@cindex error reporting routine
1674
1675When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1676function @code{yyerror} to print an error message (usually but not
6e649e65 1677always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1678@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1679here is the definition we will use:
bfa74976
RS
1680
1681@example
1682@group
1683#include <stdio.h>
1684
38a92d50 1685/* Called by yyparse on error. */
13863333 1686void
38a92d50 1687yyerror (char const *s)
bfa74976 1688@{
4e03e201 1689 fprintf (stderr, "%s\n", s);
bfa74976
RS
1690@}
1691@end group
1692@end example
1693
1694After @code{yyerror} returns, the Bison parser may recover from the error
1695and continue parsing if the grammar contains a suitable error rule
1696(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1697have not written any error rules in this example, so any invalid input will
1698cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1699real calculator, but it is adequate for the first example.
bfa74976 1700
342b8b6e 1701@node Rpcalc Gen
bfa74976
RS
1702@subsection Running Bison to Make the Parser
1703@cindex running Bison (introduction)
1704
ceed8467
AD
1705Before running Bison to produce a parser, we need to decide how to
1706arrange all the source code in one or more source files. For such a
1707simple example, the easiest thing is to put everything in one file. The
1708definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1709end, in the epilogue of the file
75f5aaea 1710(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1711
1712For a large project, you would probably have several source files, and use
1713@code{make} to arrange to recompile them.
1714
1715With all the source in a single file, you use the following command to
1716convert it into a parser file:
1717
1718@example
fa4d969f 1719bison @var{file}.y
bfa74976
RS
1720@end example
1721
1722@noindent
1723In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1724@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1725removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1726Bison contains the source code for @code{yyparse}. The additional
1727functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1728are copied verbatim to the output.
1729
342b8b6e 1730@node Rpcalc Compile
bfa74976
RS
1731@subsection Compiling the Parser File
1732@cindex compiling the parser
1733
1734Here is how to compile and run the parser file:
1735
1736@example
1737@group
1738# @r{List files in current directory.}
9edcd895 1739$ @kbd{ls}
bfa74976
RS
1740rpcalc.tab.c rpcalc.y
1741@end group
1742
1743@group
1744# @r{Compile the Bison parser.}
1745# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1746$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1747@end group
1748
1749@group
1750# @r{List files again.}
9edcd895 1751$ @kbd{ls}
bfa74976
RS
1752rpcalc rpcalc.tab.c rpcalc.y
1753@end group
1754@end example
1755
1756The file @file{rpcalc} now contains the executable code. Here is an
1757example session using @code{rpcalc}.
1758
1759@example
9edcd895
AD
1760$ @kbd{rpcalc}
1761@kbd{4 9 +}
bfa74976 176213
9edcd895 1763@kbd{3 7 + 3 4 5 *+-}
bfa74976 1764-13
9edcd895 1765@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 176613
9edcd895 1767@kbd{5 6 / 4 n +}
bfa74976 1768-3.166666667
9edcd895 1769@kbd{3 4 ^} @r{Exponentiation}
bfa74976 177081
9edcd895
AD
1771@kbd{^D} @r{End-of-file indicator}
1772$
bfa74976
RS
1773@end example
1774
342b8b6e 1775@node Infix Calc
bfa74976
RS
1776@section Infix Notation Calculator: @code{calc}
1777@cindex infix notation calculator
1778@cindex @code{calc}
1779@cindex calculator, infix notation
1780
1781We now modify rpcalc to handle infix operators instead of postfix. Infix
1782notation involves the concept of operator precedence and the need for
1783parentheses nested to arbitrary depth. Here is the Bison code for
1784@file{calc.y}, an infix desk-top calculator.
1785
1786@example
38a92d50 1787/* Infix notation calculator. */
bfa74976
RS
1788
1789%@{
38a92d50
PE
1790 #define YYSTYPE double
1791 #include <math.h>
1792 #include <stdio.h>
1793 int yylex (void);
1794 void yyerror (char const *);
bfa74976
RS
1795%@}
1796
38a92d50 1797/* Bison declarations. */
bfa74976
RS
1798%token NUM
1799%left '-' '+'
1800%left '*' '/'
1801%left NEG /* negation--unary minus */
38a92d50 1802%right '^' /* exponentiation */
bfa74976 1803
38a92d50
PE
1804%% /* The grammar follows. */
1805input: /* empty */
bfa74976
RS
1806 | input line
1807;
1808
1809line: '\n'
1810 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1811;
1812
1813exp: NUM @{ $$ = $1; @}
1814 | exp '+' exp @{ $$ = $1 + $3; @}
1815 | exp '-' exp @{ $$ = $1 - $3; @}
1816 | exp '*' exp @{ $$ = $1 * $3; @}
1817 | exp '/' exp @{ $$ = $1 / $3; @}
1818 | '-' exp %prec NEG @{ $$ = -$2; @}
1819 | exp '^' exp @{ $$ = pow ($1, $3); @}
1820 | '(' exp ')' @{ $$ = $2; @}
1821;
1822%%
1823@end example
1824
1825@noindent
ceed8467
AD
1826The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1827same as before.
bfa74976
RS
1828
1829There are two important new features shown in this code.
1830
1831In the second section (Bison declarations), @code{%left} declares token
1832types and says they are left-associative operators. The declarations
1833@code{%left} and @code{%right} (right associativity) take the place of
1834@code{%token} which is used to declare a token type name without
1835associativity. (These tokens are single-character literals, which
1836ordinarily don't need to be declared. We declare them here to specify
1837the associativity.)
1838
1839Operator precedence is determined by the line ordering of the
1840declarations; the higher the line number of the declaration (lower on
1841the page or screen), the higher the precedence. Hence, exponentiation
1842has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1843by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1844Precedence}.
bfa74976 1845
704a47c4
AD
1846The other important new feature is the @code{%prec} in the grammar
1847section for the unary minus operator. The @code{%prec} simply instructs
1848Bison that the rule @samp{| '-' exp} has the same precedence as
1849@code{NEG}---in this case the next-to-highest. @xref{Contextual
1850Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1851
1852Here is a sample run of @file{calc.y}:
1853
1854@need 500
1855@example
9edcd895
AD
1856$ @kbd{calc}
1857@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 18586.880952381
9edcd895 1859@kbd{-56 + 2}
bfa74976 1860-54
9edcd895 1861@kbd{3 ^ 2}
bfa74976
RS
18629
1863@end example
1864
342b8b6e 1865@node Simple Error Recovery
bfa74976
RS
1866@section Simple Error Recovery
1867@cindex error recovery, simple
1868
1869Up to this point, this manual has not addressed the issue of @dfn{error
1870recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1871error. All we have handled is error reporting with @code{yyerror}.
1872Recall that by default @code{yyparse} returns after calling
1873@code{yyerror}. This means that an erroneous input line causes the
1874calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1875
1876The Bison language itself includes the reserved word @code{error}, which
1877may be included in the grammar rules. In the example below it has
1878been added to one of the alternatives for @code{line}:
1879
1880@example
1881@group
1882line: '\n'
1883 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1884 | error '\n' @{ yyerrok; @}
1885;
1886@end group
1887@end example
1888
ceed8467 1889This addition to the grammar allows for simple error recovery in the
6e649e65 1890event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1891read, the error will be recognized by the third rule for @code{line},
1892and parsing will continue. (The @code{yyerror} function is still called
1893upon to print its message as well.) The action executes the statement
1894@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1895that error recovery is complete (@pxref{Error Recovery}). Note the
1896difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1897misprint.
bfa74976
RS
1898
1899This form of error recovery deals with syntax errors. There are other
1900kinds of errors; for example, division by zero, which raises an exception
1901signal that is normally fatal. A real calculator program must handle this
1902signal and use @code{longjmp} to return to @code{main} and resume parsing
1903input lines; it would also have to discard the rest of the current line of
1904input. We won't discuss this issue further because it is not specific to
1905Bison programs.
1906
342b8b6e
AD
1907@node Location Tracking Calc
1908@section Location Tracking Calculator: @code{ltcalc}
1909@cindex location tracking calculator
1910@cindex @code{ltcalc}
1911@cindex calculator, location tracking
1912
9edcd895
AD
1913This example extends the infix notation calculator with location
1914tracking. This feature will be used to improve the error messages. For
1915the sake of clarity, this example is a simple integer calculator, since
1916most of the work needed to use locations will be done in the lexical
72d2299c 1917analyzer.
342b8b6e
AD
1918
1919@menu
1920* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1921* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1922* Lexer: Ltcalc Lexer. The lexical analyzer.
1923@end menu
1924
1925@node Ltcalc Decls
1926@subsection Declarations for @code{ltcalc}
1927
9edcd895
AD
1928The C and Bison declarations for the location tracking calculator are
1929the same as the declarations for the infix notation calculator.
342b8b6e
AD
1930
1931@example
1932/* Location tracking calculator. */
1933
1934%@{
38a92d50
PE
1935 #define YYSTYPE int
1936 #include <math.h>
1937 int yylex (void);
1938 void yyerror (char const *);
342b8b6e
AD
1939%@}
1940
1941/* Bison declarations. */
1942%token NUM
1943
1944%left '-' '+'
1945%left '*' '/'
1946%left NEG
1947%right '^'
1948
38a92d50 1949%% /* The grammar follows. */
342b8b6e
AD
1950@end example
1951
9edcd895
AD
1952@noindent
1953Note there are no declarations specific to locations. Defining a data
1954type for storing locations is not needed: we will use the type provided
1955by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1956four member structure with the following integer fields:
1957@code{first_line}, @code{first_column}, @code{last_line} and
1958@code{last_column}.
342b8b6e
AD
1959
1960@node Ltcalc Rules
1961@subsection Grammar Rules for @code{ltcalc}
1962
9edcd895
AD
1963Whether handling locations or not has no effect on the syntax of your
1964language. Therefore, grammar rules for this example will be very close
1965to those of the previous example: we will only modify them to benefit
1966from the new information.
342b8b6e 1967
9edcd895
AD
1968Here, we will use locations to report divisions by zero, and locate the
1969wrong expressions or subexpressions.
342b8b6e
AD
1970
1971@example
1972@group
1973input : /* empty */
1974 | input line
1975;
1976@end group
1977
1978@group
1979line : '\n'
1980 | exp '\n' @{ printf ("%d\n", $1); @}
1981;
1982@end group
1983
1984@group
1985exp : NUM @{ $$ = $1; @}
1986 | exp '+' exp @{ $$ = $1 + $3; @}
1987 | exp '-' exp @{ $$ = $1 - $3; @}
1988 | exp '*' exp @{ $$ = $1 * $3; @}
1989@end group
342b8b6e 1990@group
9edcd895 1991 | exp '/' exp
342b8b6e
AD
1992 @{
1993 if ($3)
1994 $$ = $1 / $3;
1995 else
1996 @{
1997 $$ = 1;
9edcd895
AD
1998 fprintf (stderr, "%d.%d-%d.%d: division by zero",
1999 @@3.first_line, @@3.first_column,
2000 @@3.last_line, @@3.last_column);
342b8b6e
AD
2001 @}
2002 @}
2003@end group
2004@group
2005 | '-' exp %preg NEG @{ $$ = -$2; @}
2006 | exp '^' exp @{ $$ = pow ($1, $3); @}
2007 | '(' exp ')' @{ $$ = $2; @}
2008@end group
2009@end example
2010
2011This code shows how to reach locations inside of semantic actions, by
2012using the pseudo-variables @code{@@@var{n}} for rule components, and the
2013pseudo-variable @code{@@$} for groupings.
2014
9edcd895
AD
2015We don't need to assign a value to @code{@@$}: the output parser does it
2016automatically. By default, before executing the C code of each action,
2017@code{@@$} is set to range from the beginning of @code{@@1} to the end
2018of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2019can be redefined (@pxref{Location Default Action, , Default Action for
2020Locations}), and for very specific rules, @code{@@$} can be computed by
2021hand.
342b8b6e
AD
2022
2023@node Ltcalc Lexer
2024@subsection The @code{ltcalc} Lexical Analyzer.
2025
9edcd895 2026Until now, we relied on Bison's defaults to enable location
72d2299c 2027tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2028able to feed the parser with the token locations, as it already does for
2029semantic values.
342b8b6e 2030
9edcd895
AD
2031To this end, we must take into account every single character of the
2032input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2033
2034@example
2035@group
2036int
2037yylex (void)
2038@{
2039 int c;
18b519c0 2040@end group
342b8b6e 2041
18b519c0 2042@group
72d2299c 2043 /* Skip white space. */
342b8b6e
AD
2044 while ((c = getchar ()) == ' ' || c == '\t')
2045 ++yylloc.last_column;
18b519c0 2046@end group
342b8b6e 2047
18b519c0 2048@group
72d2299c 2049 /* Step. */
342b8b6e
AD
2050 yylloc.first_line = yylloc.last_line;
2051 yylloc.first_column = yylloc.last_column;
2052@end group
2053
2054@group
72d2299c 2055 /* Process numbers. */
342b8b6e
AD
2056 if (isdigit (c))
2057 @{
2058 yylval = c - '0';
2059 ++yylloc.last_column;
2060 while (isdigit (c = getchar ()))
2061 @{
2062 ++yylloc.last_column;
2063 yylval = yylval * 10 + c - '0';
2064 @}
2065 ungetc (c, stdin);
2066 return NUM;
2067 @}
2068@end group
2069
72d2299c 2070 /* Return end-of-input. */
342b8b6e
AD
2071 if (c == EOF)
2072 return 0;
2073
72d2299c 2074 /* Return a single char, and update location. */
342b8b6e
AD
2075 if (c == '\n')
2076 @{
2077 ++yylloc.last_line;
2078 yylloc.last_column = 0;
2079 @}
2080 else
2081 ++yylloc.last_column;
2082 return c;
2083@}
2084@end example
2085
9edcd895
AD
2086Basically, the lexical analyzer performs the same processing as before:
2087it skips blanks and tabs, and reads numbers or single-character tokens.
2088In addition, it updates @code{yylloc}, the global variable (of type
2089@code{YYLTYPE}) containing the token's location.
342b8b6e 2090
9edcd895 2091Now, each time this function returns a token, the parser has its number
72d2299c 2092as well as its semantic value, and its location in the text. The last
9edcd895
AD
2093needed change is to initialize @code{yylloc}, for example in the
2094controlling function:
342b8b6e
AD
2095
2096@example
9edcd895 2097@group
342b8b6e
AD
2098int
2099main (void)
2100@{
2101 yylloc.first_line = yylloc.last_line = 1;
2102 yylloc.first_column = yylloc.last_column = 0;
2103 return yyparse ();
2104@}
9edcd895 2105@end group
342b8b6e
AD
2106@end example
2107
9edcd895
AD
2108Remember that computing locations is not a matter of syntax. Every
2109character must be associated to a location update, whether it is in
2110valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2111
2112@node Multi-function Calc
bfa74976
RS
2113@section Multi-Function Calculator: @code{mfcalc}
2114@cindex multi-function calculator
2115@cindex @code{mfcalc}
2116@cindex calculator, multi-function
2117
2118Now that the basics of Bison have been discussed, it is time to move on to
2119a more advanced problem. The above calculators provided only five
2120functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2121be nice to have a calculator that provides other mathematical functions such
2122as @code{sin}, @code{cos}, etc.
2123
2124It is easy to add new operators to the infix calculator as long as they are
2125only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 2126back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
2127adding a new operator. But we want something more flexible: built-in
2128functions whose syntax has this form:
2129
2130@example
2131@var{function_name} (@var{argument})
2132@end example
2133
2134@noindent
2135At the same time, we will add memory to the calculator, by allowing you
2136to create named variables, store values in them, and use them later.
2137Here is a sample session with the multi-function calculator:
2138
2139@example
9edcd895
AD
2140$ @kbd{mfcalc}
2141@kbd{pi = 3.141592653589}
bfa74976 21423.1415926536
9edcd895 2143@kbd{sin(pi)}
bfa74976 21440.0000000000
9edcd895 2145@kbd{alpha = beta1 = 2.3}
bfa74976 21462.3000000000
9edcd895 2147@kbd{alpha}
bfa74976 21482.3000000000
9edcd895 2149@kbd{ln(alpha)}
bfa74976 21500.8329091229
9edcd895 2151@kbd{exp(ln(beta1))}
bfa74976 21522.3000000000
9edcd895 2153$
bfa74976
RS
2154@end example
2155
2156Note that multiple assignment and nested function calls are permitted.
2157
2158@menu
2159* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2160* Rules: Mfcalc Rules. Grammar rules for the calculator.
2161* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2162@end menu
2163
342b8b6e 2164@node Mfcalc Decl
bfa74976
RS
2165@subsection Declarations for @code{mfcalc}
2166
2167Here are the C and Bison declarations for the multi-function calculator.
2168
2169@smallexample
18b519c0 2170@group
bfa74976 2171%@{
38a92d50
PE
2172 #include <math.h> /* For math functions, cos(), sin(), etc. */
2173 #include "calc.h" /* Contains definition of `symrec'. */
2174 int yylex (void);
2175 void yyerror (char const *);
bfa74976 2176%@}
18b519c0
AD
2177@end group
2178@group
bfa74976 2179%union @{
38a92d50
PE
2180 double val; /* For returning numbers. */
2181 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2182@}
18b519c0 2183@end group
38a92d50
PE
2184%token <val> NUM /* Simple double precision number. */
2185%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2186%type <val> exp
2187
18b519c0 2188@group
bfa74976
RS
2189%right '='
2190%left '-' '+'
2191%left '*' '/'
38a92d50
PE
2192%left NEG /* negation--unary minus */
2193%right '^' /* exponentiation */
18b519c0 2194@end group
38a92d50 2195%% /* The grammar follows. */
bfa74976
RS
2196@end smallexample
2197
2198The above grammar introduces only two new features of the Bison language.
2199These features allow semantic values to have various data types
2200(@pxref{Multiple Types, ,More Than One Value Type}).
2201
2202The @code{%union} declaration specifies the entire list of possible types;
2203this is instead of defining @code{YYSTYPE}. The allowable types are now
2204double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2205the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2206
2207Since values can now have various types, it is necessary to associate a
2208type with each grammar symbol whose semantic value is used. These symbols
2209are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2210declarations are augmented with information about their data type (placed
2211between angle brackets).
2212
704a47c4
AD
2213The Bison construct @code{%type} is used for declaring nonterminal
2214symbols, just as @code{%token} is used for declaring token types. We
2215have not used @code{%type} before because nonterminal symbols are
2216normally declared implicitly by the rules that define them. But
2217@code{exp} must be declared explicitly so we can specify its value type.
2218@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2219
342b8b6e 2220@node Mfcalc Rules
bfa74976
RS
2221@subsection Grammar Rules for @code{mfcalc}
2222
2223Here are the grammar rules for the multi-function calculator.
2224Most of them are copied directly from @code{calc}; three rules,
2225those which mention @code{VAR} or @code{FNCT}, are new.
2226
2227@smallexample
18b519c0 2228@group
bfa74976
RS
2229input: /* empty */
2230 | input line
2231;
18b519c0 2232@end group
bfa74976 2233
18b519c0 2234@group
bfa74976
RS
2235line:
2236 '\n'
2237 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2238 | error '\n' @{ yyerrok; @}
2239;
18b519c0 2240@end group
bfa74976 2241
18b519c0 2242@group
bfa74976
RS
2243exp: NUM @{ $$ = $1; @}
2244 | VAR @{ $$ = $1->value.var; @}
2245 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2246 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2247 | exp '+' exp @{ $$ = $1 + $3; @}
2248 | exp '-' exp @{ $$ = $1 - $3; @}
2249 | exp '*' exp @{ $$ = $1 * $3; @}
2250 | exp '/' exp @{ $$ = $1 / $3; @}
2251 | '-' exp %prec NEG @{ $$ = -$2; @}
2252 | exp '^' exp @{ $$ = pow ($1, $3); @}
2253 | '(' exp ')' @{ $$ = $2; @}
2254;
18b519c0 2255@end group
38a92d50 2256/* End of grammar. */
bfa74976
RS
2257%%
2258@end smallexample
2259
342b8b6e 2260@node Mfcalc Symtab
bfa74976
RS
2261@subsection The @code{mfcalc} Symbol Table
2262@cindex symbol table example
2263
2264The multi-function calculator requires a symbol table to keep track of the
2265names and meanings of variables and functions. This doesn't affect the
2266grammar rules (except for the actions) or the Bison declarations, but it
2267requires some additional C functions for support.
2268
2269The symbol table itself consists of a linked list of records. Its
2270definition, which is kept in the header @file{calc.h}, is as follows. It
2271provides for either functions or variables to be placed in the table.
2272
2273@smallexample
2274@group
38a92d50 2275/* Function type. */
32dfccf8 2276typedef double (*func_t) (double);
72f889cc 2277@end group
32dfccf8 2278
72f889cc 2279@group
38a92d50 2280/* Data type for links in the chain of symbols. */
bfa74976
RS
2281struct symrec
2282@{
38a92d50 2283 char *name; /* name of symbol */
bfa74976 2284 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2285 union
2286 @{
38a92d50
PE
2287 double var; /* value of a VAR */
2288 func_t fnctptr; /* value of a FNCT */
bfa74976 2289 @} value;
38a92d50 2290 struct symrec *next; /* link field */
bfa74976
RS
2291@};
2292@end group
2293
2294@group
2295typedef struct symrec symrec;
2296
38a92d50 2297/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2298extern symrec *sym_table;
2299
a730d142 2300symrec *putsym (char const *, int);
38a92d50 2301symrec *getsym (char const *);
bfa74976
RS
2302@end group
2303@end smallexample
2304
2305The new version of @code{main} includes a call to @code{init_table}, a
2306function that initializes the symbol table. Here it is, and
2307@code{init_table} as well:
2308
2309@smallexample
bfa74976
RS
2310#include <stdio.h>
2311
18b519c0 2312@group
38a92d50 2313/* Called by yyparse on error. */
13863333 2314void
38a92d50 2315yyerror (char const *s)
bfa74976
RS
2316@{
2317 printf ("%s\n", s);
2318@}
18b519c0 2319@end group
bfa74976 2320
18b519c0 2321@group
bfa74976
RS
2322struct init
2323@{
38a92d50
PE
2324 char const *fname;
2325 double (*fnct) (double);
bfa74976
RS
2326@};
2327@end group
2328
2329@group
38a92d50 2330struct init const arith_fncts[] =
13863333 2331@{
32dfccf8
AD
2332 "sin", sin,
2333 "cos", cos,
13863333 2334 "atan", atan,
32dfccf8
AD
2335 "ln", log,
2336 "exp", exp,
13863333
AD
2337 "sqrt", sqrt,
2338 0, 0
2339@};
18b519c0 2340@end group
bfa74976 2341
18b519c0 2342@group
bfa74976 2343/* The symbol table: a chain of `struct symrec'. */
38a92d50 2344symrec *sym_table;
bfa74976
RS
2345@end group
2346
2347@group
72d2299c 2348/* Put arithmetic functions in table. */
13863333
AD
2349void
2350init_table (void)
bfa74976
RS
2351@{
2352 int i;
2353 symrec *ptr;
2354 for (i = 0; arith_fncts[i].fname != 0; i++)
2355 @{
2356 ptr = putsym (arith_fncts[i].fname, FNCT);
2357 ptr->value.fnctptr = arith_fncts[i].fnct;
2358 @}
2359@}
2360@end group
38a92d50
PE
2361
2362@group
2363int
2364main (void)
2365@{
2366 init_table ();
2367 return yyparse ();
2368@}
2369@end group
bfa74976
RS
2370@end smallexample
2371
2372By simply editing the initialization list and adding the necessary include
2373files, you can add additional functions to the calculator.
2374
2375Two important functions allow look-up and installation of symbols in the
2376symbol table. The function @code{putsym} is passed a name and the type
2377(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2378linked to the front of the list, and a pointer to the object is returned.
2379The function @code{getsym} is passed the name of the symbol to look up. If
2380found, a pointer to that symbol is returned; otherwise zero is returned.
2381
2382@smallexample
2383symrec *
38a92d50 2384putsym (char const *sym_name, int sym_type)
bfa74976
RS
2385@{
2386 symrec *ptr;
2387 ptr = (symrec *) malloc (sizeof (symrec));
2388 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2389 strcpy (ptr->name,sym_name);
2390 ptr->type = sym_type;
72d2299c 2391 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2392 ptr->next = (struct symrec *)sym_table;
2393 sym_table = ptr;
2394 return ptr;
2395@}
2396
2397symrec *
38a92d50 2398getsym (char const *sym_name)
bfa74976
RS
2399@{
2400 symrec *ptr;
2401 for (ptr = sym_table; ptr != (symrec *) 0;
2402 ptr = (symrec *)ptr->next)
2403 if (strcmp (ptr->name,sym_name) == 0)
2404 return ptr;
2405 return 0;
2406@}
2407@end smallexample
2408
2409The function @code{yylex} must now recognize variables, numeric values, and
2410the single-character arithmetic operators. Strings of alphanumeric
14ded682 2411characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2412functions depending on what the symbol table says about them.
2413
2414The string is passed to @code{getsym} for look up in the symbol table. If
2415the name appears in the table, a pointer to its location and its type
2416(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2417already in the table, then it is installed as a @code{VAR} using
2418@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2419returned to @code{yyparse}.
bfa74976
RS
2420
2421No change is needed in the handling of numeric values and arithmetic
2422operators in @code{yylex}.
2423
2424@smallexample
2425@group
2426#include <ctype.h>
18b519c0 2427@end group
13863333 2428
18b519c0 2429@group
13863333
AD
2430int
2431yylex (void)
bfa74976
RS
2432@{
2433 int c;
2434
72d2299c 2435 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2436 while ((c = getchar ()) == ' ' || c == '\t');
2437
2438 if (c == EOF)
2439 return 0;
2440@end group
2441
2442@group
2443 /* Char starts a number => parse the number. */
2444 if (c == '.' || isdigit (c))
2445 @{
2446 ungetc (c, stdin);
2447 scanf ("%lf", &yylval.val);
2448 return NUM;
2449 @}
2450@end group
2451
2452@group
2453 /* Char starts an identifier => read the name. */
2454 if (isalpha (c))
2455 @{
2456 symrec *s;
2457 static char *symbuf = 0;
2458 static int length = 0;
2459 int i;
2460@end group
2461
2462@group
2463 /* Initially make the buffer long enough
2464 for a 40-character symbol name. */
2465 if (length == 0)
2466 length = 40, symbuf = (char *)malloc (length + 1);
2467
2468 i = 0;
2469 do
2470@end group
2471@group
2472 @{
2473 /* If buffer is full, make it bigger. */
2474 if (i == length)
2475 @{
2476 length *= 2;
18b519c0 2477 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2478 @}
2479 /* Add this character to the buffer. */
2480 symbuf[i++] = c;
2481 /* Get another character. */
2482 c = getchar ();
2483 @}
2484@end group
2485@group
72d2299c 2486 while (isalnum (c));
bfa74976
RS
2487
2488 ungetc (c, stdin);
2489 symbuf[i] = '\0';
2490@end group
2491
2492@group
2493 s = getsym (symbuf);
2494 if (s == 0)
2495 s = putsym (symbuf, VAR);
2496 yylval.tptr = s;
2497 return s->type;
2498 @}
2499
2500 /* Any other character is a token by itself. */
2501 return c;
2502@}
2503@end group
2504@end smallexample
2505
72d2299c 2506This program is both powerful and flexible. You may easily add new
704a47c4
AD
2507functions, and it is a simple job to modify this code to install
2508predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2509
342b8b6e 2510@node Exercises
bfa74976
RS
2511@section Exercises
2512@cindex exercises
2513
2514@enumerate
2515@item
2516Add some new functions from @file{math.h} to the initialization list.
2517
2518@item
2519Add another array that contains constants and their values. Then
2520modify @code{init_table} to add these constants to the symbol table.
2521It will be easiest to give the constants type @code{VAR}.
2522
2523@item
2524Make the program report an error if the user refers to an
2525uninitialized variable in any way except to store a value in it.
2526@end enumerate
2527
342b8b6e 2528@node Grammar File
bfa74976
RS
2529@chapter Bison Grammar Files
2530
2531Bison takes as input a context-free grammar specification and produces a
2532C-language function that recognizes correct instances of the grammar.
2533
2534The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2535@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2536
2537@menu
2538* Grammar Outline:: Overall layout of the grammar file.
2539* Symbols:: Terminal and nonterminal symbols.
2540* Rules:: How to write grammar rules.
2541* Recursion:: Writing recursive rules.
2542* Semantics:: Semantic values and actions.
847bf1f5 2543* Locations:: Locations and actions.
bfa74976
RS
2544* Declarations:: All kinds of Bison declarations are described here.
2545* Multiple Parsers:: Putting more than one Bison parser in one program.
2546@end menu
2547
342b8b6e 2548@node Grammar Outline
bfa74976
RS
2549@section Outline of a Bison Grammar
2550
2551A Bison grammar file has four main sections, shown here with the
2552appropriate delimiters:
2553
2554@example
2555%@{
38a92d50 2556 @var{Prologue}
bfa74976
RS
2557%@}
2558
2559@var{Bison declarations}
2560
2561%%
2562@var{Grammar rules}
2563%%
2564
75f5aaea 2565@var{Epilogue}
bfa74976
RS
2566@end example
2567
2568Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2569As a @acronym{GNU} extension, @samp{//} introduces a comment that
2570continues until end of line.
bfa74976
RS
2571
2572@menu
75f5aaea 2573* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2574* Bison Declarations:: Syntax and usage of the Bison declarations section.
2575* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2576* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2577@end menu
2578
38a92d50 2579@node Prologue
75f5aaea
MA
2580@subsection The prologue
2581@cindex declarations section
2582@cindex Prologue
2583@cindex declarations
bfa74976 2584
08e49d20 2585The @var{Prologue} section contains macro definitions and
bfa74976
RS
2586declarations of functions and variables that are used in the actions in the
2587grammar rules. These are copied to the beginning of the parser file so
2588that they precede the definition of @code{yyparse}. You can use
2589@samp{#include} to get the declarations from a header file. If you don't
2590need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2591delimiters that bracket this section.
2592
c732d2c6
AD
2593You may have more than one @var{Prologue} section, intermixed with the
2594@var{Bison declarations}. This allows you to have C and Bison
2595declarations that refer to each other. For example, the @code{%union}
2596declaration may use types defined in a header file, and you may wish to
2597prototype functions that take arguments of type @code{YYSTYPE}. This
2598can be done with two @var{Prologue} blocks, one before and one after the
2599@code{%union} declaration.
2600
2601@smallexample
2602%@{
38a92d50
PE
2603 #include <stdio.h>
2604 #include "ptypes.h"
c732d2c6
AD
2605%@}
2606
2607%union @{
779e7ceb 2608 long int n;
c732d2c6
AD
2609 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2610@}
2611
2612%@{
38a92d50
PE
2613 static void print_token_value (FILE *, int, YYSTYPE);
2614 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2615%@}
2616
2617@dots{}
2618@end smallexample
2619
342b8b6e 2620@node Bison Declarations
bfa74976
RS
2621@subsection The Bison Declarations Section
2622@cindex Bison declarations (introduction)
2623@cindex declarations, Bison (introduction)
2624
2625The @var{Bison declarations} section contains declarations that define
2626terminal and nonterminal symbols, specify precedence, and so on.
2627In some simple grammars you may not need any declarations.
2628@xref{Declarations, ,Bison Declarations}.
2629
342b8b6e 2630@node Grammar Rules
bfa74976
RS
2631@subsection The Grammar Rules Section
2632@cindex grammar rules section
2633@cindex rules section for grammar
2634
2635The @dfn{grammar rules} section contains one or more Bison grammar
2636rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2637
2638There must always be at least one grammar rule, and the first
2639@samp{%%} (which precedes the grammar rules) may never be omitted even
2640if it is the first thing in the file.
2641
38a92d50 2642@node Epilogue
75f5aaea 2643@subsection The epilogue
bfa74976 2644@cindex additional C code section
75f5aaea 2645@cindex epilogue
bfa74976
RS
2646@cindex C code, section for additional
2647
08e49d20
PE
2648The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2649the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2650place to put anything that you want to have in the parser file but which need
2651not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2652definitions of @code{yylex} and @code{yyerror} often go here. Because
2653C requires functions to be declared before being used, you often need
2654to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2655even if you define them in the Epilogue.
75f5aaea 2656@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2657
2658If the last section is empty, you may omit the @samp{%%} that separates it
2659from the grammar rules.
2660
38a92d50
PE
2661The Bison parser itself contains many macros and identifiers whose
2662names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2663good idea to avoid using any such names (except those documented in this
75f5aaea 2664manual) in the epilogue of the grammar file.
bfa74976 2665
342b8b6e 2666@node Symbols
bfa74976
RS
2667@section Symbols, Terminal and Nonterminal
2668@cindex nonterminal symbol
2669@cindex terminal symbol
2670@cindex token type
2671@cindex symbol
2672
2673@dfn{Symbols} in Bison grammars represent the grammatical classifications
2674of the language.
2675
2676A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2677class of syntactically equivalent tokens. You use the symbol in grammar
2678rules to mean that a token in that class is allowed. The symbol is
2679represented in the Bison parser by a numeric code, and the @code{yylex}
2680function returns a token type code to indicate what kind of token has been
2681read. You don't need to know what the code value is; you can use the
2682symbol to stand for it.
2683
2684A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2685groupings. The symbol name is used in writing grammar rules. By convention,
2686it should be all lower case.
2687
2688Symbol names can contain letters, digits (not at the beginning),
2689underscores and periods. Periods make sense only in nonterminals.
2690
931c7513 2691There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2692
2693@itemize @bullet
2694@item
2695A @dfn{named token type} is written with an identifier, like an
c827f760 2696identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2697such name must be defined with a Bison declaration such as
2698@code{%token}. @xref{Token Decl, ,Token Type Names}.
2699
2700@item
2701@cindex character token
2702@cindex literal token
2703@cindex single-character literal
931c7513
RS
2704A @dfn{character token type} (or @dfn{literal character token}) is
2705written in the grammar using the same syntax used in C for character
2706constants; for example, @code{'+'} is a character token type. A
2707character token type doesn't need to be declared unless you need to
2708specify its semantic value data type (@pxref{Value Type, ,Data Types of
2709Semantic Values}), associativity, or precedence (@pxref{Precedence,
2710,Operator Precedence}).
bfa74976
RS
2711
2712By convention, a character token type is used only to represent a
2713token that consists of that particular character. Thus, the token
2714type @code{'+'} is used to represent the character @samp{+} as a
2715token. Nothing enforces this convention, but if you depart from it,
2716your program will confuse other readers.
2717
2718All the usual escape sequences used in character literals in C can be
2719used in Bison as well, but you must not use the null character as a
72d2299c
PE
2720character literal because its numeric code, zero, signifies
2721end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2722for @code{yylex}}). Also, unlike standard C, trigraphs have no
2723special meaning in Bison character literals, nor is backslash-newline
2724allowed.
931c7513
RS
2725
2726@item
2727@cindex string token
2728@cindex literal string token
9ecbd125 2729@cindex multicharacter literal
931c7513
RS
2730A @dfn{literal string token} is written like a C string constant; for
2731example, @code{"<="} is a literal string token. A literal string token
2732doesn't need to be declared unless you need to specify its semantic
14ded682 2733value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2734(@pxref{Precedence}).
2735
2736You can associate the literal string token with a symbolic name as an
2737alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2738Declarations}). If you don't do that, the lexical analyzer has to
2739retrieve the token number for the literal string token from the
2740@code{yytname} table (@pxref{Calling Convention}).
2741
c827f760 2742@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2743
2744By convention, a literal string token is used only to represent a token
2745that consists of that particular string. Thus, you should use the token
2746type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2747does not enforce this convention, but if you depart from it, people who
931c7513
RS
2748read your program will be confused.
2749
2750All the escape sequences used in string literals in C can be used in
92ac3705
PE
2751Bison as well, except that you must not use a null character within a
2752string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2753meaning in Bison string literals, nor is backslash-newline allowed. A
2754literal string token must contain two or more characters; for a token
2755containing just one character, use a character token (see above).
bfa74976
RS
2756@end itemize
2757
2758How you choose to write a terminal symbol has no effect on its
2759grammatical meaning. That depends only on where it appears in rules and
2760on when the parser function returns that symbol.
2761
72d2299c
PE
2762The value returned by @code{yylex} is always one of the terminal
2763symbols, except that a zero or negative value signifies end-of-input.
2764Whichever way you write the token type in the grammar rules, you write
2765it the same way in the definition of @code{yylex}. The numeric code
2766for a character token type is simply the positive numeric code of the
2767character, so @code{yylex} can use the identical value to generate the
2768requisite code, though you may need to convert it to @code{unsigned
2769char} to avoid sign-extension on hosts where @code{char} is signed.
2770Each named token type becomes a C macro in
bfa74976 2771the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2772(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2773@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2774
2775If @code{yylex} is defined in a separate file, you need to arrange for the
2776token-type macro definitions to be available there. Use the @samp{-d}
2777option when you run Bison, so that it will write these macro definitions
2778into a separate header file @file{@var{name}.tab.h} which you can include
2779in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2780
72d2299c
PE
2781If you want to write a grammar that is portable to any Standard C
2782host, you must use only non-null character tokens taken from the basic
c827f760 2783execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2784digits, the 52 lower- and upper-case English letters, and the
2785characters in the following C-language string:
2786
2787@example
2788"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2789@end example
2790
2791The @code{yylex} function and Bison must use a consistent character
2792set and encoding for character tokens. For example, if you run Bison in an
c827f760 2793@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2794in an environment that uses an incompatible character set like
c827f760
PE
2795@acronym{EBCDIC}, the resulting program may not work because the
2796tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2797character tokens. It is standard
e966383b 2798practice for software distributions to contain C source files that
c827f760
PE
2799were generated by Bison in an @acronym{ASCII} environment, so installers on
2800platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2801files before compiling them.
2802
bfa74976
RS
2803The symbol @code{error} is a terminal symbol reserved for error recovery
2804(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2805In particular, @code{yylex} should never return this value. The default
2806value of the error token is 256, unless you explicitly assigned 256 to
2807one of your tokens with a @code{%token} declaration.
bfa74976 2808
342b8b6e 2809@node Rules
bfa74976
RS
2810@section Syntax of Grammar Rules
2811@cindex rule syntax
2812@cindex grammar rule syntax
2813@cindex syntax of grammar rules
2814
2815A Bison grammar rule has the following general form:
2816
2817@example
e425e872 2818@group
bfa74976
RS
2819@var{result}: @var{components}@dots{}
2820 ;
e425e872 2821@end group
bfa74976
RS
2822@end example
2823
2824@noindent
9ecbd125 2825where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2826and @var{components} are various terminal and nonterminal symbols that
13863333 2827are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2828
2829For example,
2830
2831@example
2832@group
2833exp: exp '+' exp
2834 ;
2835@end group
2836@end example
2837
2838@noindent
2839says that two groupings of type @code{exp}, with a @samp{+} token in between,
2840can be combined into a larger grouping of type @code{exp}.
2841
72d2299c
PE
2842White space in rules is significant only to separate symbols. You can add
2843extra white space as you wish.
bfa74976
RS
2844
2845Scattered among the components can be @var{actions} that determine
2846the semantics of the rule. An action looks like this:
2847
2848@example
2849@{@var{C statements}@}
2850@end example
2851
2852@noindent
2853Usually there is only one action and it follows the components.
2854@xref{Actions}.
2855
2856@findex |
2857Multiple rules for the same @var{result} can be written separately or can
2858be joined with the vertical-bar character @samp{|} as follows:
2859
2860@ifinfo
2861@example
2862@var{result}: @var{rule1-components}@dots{}
2863 | @var{rule2-components}@dots{}
2864 @dots{}
2865 ;
2866@end example
2867@end ifinfo
2868@iftex
2869@example
2870@group
2871@var{result}: @var{rule1-components}@dots{}
2872 | @var{rule2-components}@dots{}
2873 @dots{}
2874 ;
2875@end group
2876@end example
2877@end iftex
2878
2879@noindent
2880They are still considered distinct rules even when joined in this way.
2881
2882If @var{components} in a rule is empty, it means that @var{result} can
2883match the empty string. For example, here is how to define a
2884comma-separated sequence of zero or more @code{exp} groupings:
2885
2886@example
2887@group
2888expseq: /* empty */
2889 | expseq1
2890 ;
2891@end group
2892
2893@group
2894expseq1: exp
2895 | expseq1 ',' exp
2896 ;
2897@end group
2898@end example
2899
2900@noindent
2901It is customary to write a comment @samp{/* empty */} in each rule
2902with no components.
2903
342b8b6e 2904@node Recursion
bfa74976
RS
2905@section Recursive Rules
2906@cindex recursive rule
2907
2908A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2909also on its right hand side. Nearly all Bison grammars need to use
2910recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2911of a particular thing. Consider this recursive definition of a
2912comma-separated sequence of one or more expressions:
bfa74976
RS
2913
2914@example
2915@group
2916expseq1: exp
2917 | expseq1 ',' exp
2918 ;
2919@end group
2920@end example
2921
2922@cindex left recursion
2923@cindex right recursion
2924@noindent
2925Since the recursive use of @code{expseq1} is the leftmost symbol in the
2926right hand side, we call this @dfn{left recursion}. By contrast, here
2927the same construct is defined using @dfn{right recursion}:
2928
2929@example
2930@group
2931expseq1: exp
2932 | exp ',' expseq1
2933 ;
2934@end group
2935@end example
2936
2937@noindent
ec3bc396
AD
2938Any kind of sequence can be defined using either left recursion or right
2939recursion, but you should always use left recursion, because it can
2940parse a sequence of any number of elements with bounded stack space.
2941Right recursion uses up space on the Bison stack in proportion to the
2942number of elements in the sequence, because all the elements must be
2943shifted onto the stack before the rule can be applied even once.
2944@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2945of this.
bfa74976
RS
2946
2947@cindex mutual recursion
2948@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2949rule does not appear directly on its right hand side, but does appear
2950in rules for other nonterminals which do appear on its right hand
13863333 2951side.
bfa74976
RS
2952
2953For example:
2954
2955@example
2956@group
2957expr: primary
2958 | primary '+' primary
2959 ;
2960@end group
2961
2962@group
2963primary: constant
2964 | '(' expr ')'
2965 ;
2966@end group
2967@end example
2968
2969@noindent
2970defines two mutually-recursive nonterminals, since each refers to the
2971other.
2972
342b8b6e 2973@node Semantics
bfa74976
RS
2974@section Defining Language Semantics
2975@cindex defining language semantics
13863333 2976@cindex language semantics, defining
bfa74976
RS
2977
2978The grammar rules for a language determine only the syntax. The semantics
2979are determined by the semantic values associated with various tokens and
2980groupings, and by the actions taken when various groupings are recognized.
2981
2982For example, the calculator calculates properly because the value
2983associated with each expression is the proper number; it adds properly
2984because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2985the numbers associated with @var{x} and @var{y}.
2986
2987@menu
2988* Value Type:: Specifying one data type for all semantic values.
2989* Multiple Types:: Specifying several alternative data types.
2990* Actions:: An action is the semantic definition of a grammar rule.
2991* Action Types:: Specifying data types for actions to operate on.
2992* Mid-Rule Actions:: Most actions go at the end of a rule.
2993 This says when, why and how to use the exceptional
2994 action in the middle of a rule.
2995@end menu
2996
342b8b6e 2997@node Value Type
bfa74976
RS
2998@subsection Data Types of Semantic Values
2999@cindex semantic value type
3000@cindex value type, semantic
3001@cindex data types of semantic values
3002@cindex default data type
3003
3004In a simple program it may be sufficient to use the same data type for
3005the semantic values of all language constructs. This was true in the
c827f760 3006@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3007Notation Calculator}).
bfa74976
RS
3008
3009Bison's default is to use type @code{int} for all semantic values. To
3010specify some other type, define @code{YYSTYPE} as a macro, like this:
3011
3012@example
3013#define YYSTYPE double
3014@end example
3015
3016@noindent
342b8b6e 3017This macro definition must go in the prologue of the grammar file
75f5aaea 3018(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3019
342b8b6e 3020@node Multiple Types
bfa74976
RS
3021@subsection More Than One Value Type
3022
3023In most programs, you will need different data types for different kinds
3024of tokens and groupings. For example, a numeric constant may need type
779e7ceb 3025@code{int} or @code{long int}, while a string constant needs type @code{char *},
bfa74976
RS
3026and an identifier might need a pointer to an entry in the symbol table.
3027
3028To use more than one data type for semantic values in one parser, Bison
3029requires you to do two things:
3030
3031@itemize @bullet
3032@item
3033Specify the entire collection of possible data types, with the
704a47c4
AD
3034@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3035Value Types}).
bfa74976
RS
3036
3037@item
14ded682
AD
3038Choose one of those types for each symbol (terminal or nonterminal) for
3039which semantic values are used. This is done for tokens with the
3040@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3041and for groupings with the @code{%type} Bison declaration (@pxref{Type
3042Decl, ,Nonterminal Symbols}).
bfa74976
RS
3043@end itemize
3044
342b8b6e 3045@node Actions
bfa74976
RS
3046@subsection Actions
3047@cindex action
3048@vindex $$
3049@vindex $@var{n}
3050
3051An action accompanies a syntactic rule and contains C code to be executed
3052each time an instance of that rule is recognized. The task of most actions
3053is to compute a semantic value for the grouping built by the rule from the
3054semantic values associated with tokens or smaller groupings.
3055
3056An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
3057compound statement in C@. An action can contain any sequence of C
3058statements. Bison does not look for trigraphs, though, so if your C
3059code uses trigraphs you should ensure that they do not affect the
3060nesting of braces or the boundaries of comments, strings, or character
3061literals.
3062
3063An action can be placed at any position in the rule;
704a47c4
AD
3064it is executed at that position. Most rules have just one action at the
3065end of the rule, following all the components. Actions in the middle of
3066a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3067Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3068
3069The C code in an action can refer to the semantic values of the components
3070matched by the rule with the construct @code{$@var{n}}, which stands for
3071the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3072being constructed is @code{$$}. Bison translates both of these
3073constructs into expressions of the appropriate type when it copies the
3074actions into the parser file. @code{$$} is translated to a modifiable
3075lvalue, so it can be assigned to.
bfa74976
RS
3076
3077Here is a typical example:
3078
3079@example
3080@group
3081exp: @dots{}
3082 | exp '+' exp
3083 @{ $$ = $1 + $3; @}
3084@end group
3085@end example
3086
3087@noindent
3088This rule constructs an @code{exp} from two smaller @code{exp} groupings
3089connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3090refer to the semantic values of the two component @code{exp} groupings,
3091which are the first and third symbols on the right hand side of the rule.
3092The sum is stored into @code{$$} so that it becomes the semantic value of
3093the addition-expression just recognized by the rule. If there were a
3094useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3095referred to as @code{$2}.
bfa74976 3096
3ded9a63
AD
3097Note that the vertical-bar character @samp{|} is really a rule
3098separator, and actions are attached to a single rule. This is a
3099difference with tools like Flex, for which @samp{|} stands for either
3100``or'', or ``the same action as that of the next rule''. In the
3101following example, the action is triggered only when @samp{b} is found:
3102
3103@example
3104@group
3105a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3106@end group
3107@end example
3108
bfa74976
RS
3109@cindex default action
3110If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3111@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3112becomes the value of the whole rule. Of course, the default action is
3113valid only if the two data types match. There is no meaningful default
3114action for an empty rule; every empty rule must have an explicit action
3115unless the rule's value does not matter.
bfa74976
RS
3116
3117@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3118to tokens and groupings on the stack @emph{before} those that match the
3119current rule. This is a very risky practice, and to use it reliably
3120you must be certain of the context in which the rule is applied. Here
3121is a case in which you can use this reliably:
3122
3123@example
3124@group
3125foo: expr bar '+' expr @{ @dots{} @}
3126 | expr bar '-' expr @{ @dots{} @}
3127 ;
3128@end group
3129
3130@group
3131bar: /* empty */
3132 @{ previous_expr = $0; @}
3133 ;
3134@end group
3135@end example
3136
3137As long as @code{bar} is used only in the fashion shown here, @code{$0}
3138always refers to the @code{expr} which precedes @code{bar} in the
3139definition of @code{foo}.
3140
342b8b6e 3141@node Action Types
bfa74976
RS
3142@subsection Data Types of Values in Actions
3143@cindex action data types
3144@cindex data types in actions
3145
3146If you have chosen a single data type for semantic values, the @code{$$}
3147and @code{$@var{n}} constructs always have that data type.
3148
3149If you have used @code{%union} to specify a variety of data types, then you
3150must declare a choice among these types for each terminal or nonterminal
3151symbol that can have a semantic value. Then each time you use @code{$$} or
3152@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3153in the rule. In this example,
bfa74976
RS
3154
3155@example
3156@group
3157exp: @dots{}
3158 | exp '+' exp
3159 @{ $$ = $1 + $3; @}
3160@end group
3161@end example
3162
3163@noindent
3164@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3165have the data type declared for the nonterminal symbol @code{exp}. If
3166@code{$2} were used, it would have the data type declared for the
e0c471a9 3167terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3168
3169Alternatively, you can specify the data type when you refer to the value,
3170by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3171reference. For example, if you have defined types as shown here:
3172
3173@example
3174@group
3175%union @{
3176 int itype;
3177 double dtype;
3178@}
3179@end group
3180@end example
3181
3182@noindent
3183then you can write @code{$<itype>1} to refer to the first subunit of the
3184rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3185
342b8b6e 3186@node Mid-Rule Actions
bfa74976
RS
3187@subsection Actions in Mid-Rule
3188@cindex actions in mid-rule
3189@cindex mid-rule actions
3190
3191Occasionally it is useful to put an action in the middle of a rule.
3192These actions are written just like usual end-of-rule actions, but they
3193are executed before the parser even recognizes the following components.
3194
3195A mid-rule action may refer to the components preceding it using
3196@code{$@var{n}}, but it may not refer to subsequent components because
3197it is run before they are parsed.
3198
3199The mid-rule action itself counts as one of the components of the rule.
3200This makes a difference when there is another action later in the same rule
3201(and usually there is another at the end): you have to count the actions
3202along with the symbols when working out which number @var{n} to use in
3203@code{$@var{n}}.
3204
3205The mid-rule action can also have a semantic value. The action can set
3206its value with an assignment to @code{$$}, and actions later in the rule
3207can refer to the value using @code{$@var{n}}. Since there is no symbol
3208to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3209in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3210specify a data type each time you refer to this value.
bfa74976
RS
3211
3212There is no way to set the value of the entire rule with a mid-rule
3213action, because assignments to @code{$$} do not have that effect. The
3214only way to set the value for the entire rule is with an ordinary action
3215at the end of the rule.
3216
3217Here is an example from a hypothetical compiler, handling a @code{let}
3218statement that looks like @samp{let (@var{variable}) @var{statement}} and
3219serves to create a variable named @var{variable} temporarily for the
3220duration of @var{statement}. To parse this construct, we must put
3221@var{variable} into the symbol table while @var{statement} is parsed, then
3222remove it afterward. Here is how it is done:
3223
3224@example
3225@group
3226stmt: LET '(' var ')'
3227 @{ $<context>$ = push_context ();
3228 declare_variable ($3); @}
3229 stmt @{ $$ = $6;
3230 pop_context ($<context>5); @}
3231@end group
3232@end example
3233
3234@noindent
3235As soon as @samp{let (@var{variable})} has been recognized, the first
3236action is run. It saves a copy of the current semantic context (the
3237list of accessible variables) as its semantic value, using alternative
3238@code{context} in the data-type union. Then it calls
3239@code{declare_variable} to add the new variable to that list. Once the
3240first action is finished, the embedded statement @code{stmt} can be
3241parsed. Note that the mid-rule action is component number 5, so the
3242@samp{stmt} is component number 6.
3243
3244After the embedded statement is parsed, its semantic value becomes the
3245value of the entire @code{let}-statement. Then the semantic value from the
3246earlier action is used to restore the prior list of variables. This
3247removes the temporary @code{let}-variable from the list so that it won't
3248appear to exist while the rest of the program is parsed.
3249
3250Taking action before a rule is completely recognized often leads to
3251conflicts since the parser must commit to a parse in order to execute the
3252action. For example, the following two rules, without mid-rule actions,
3253can coexist in a working parser because the parser can shift the open-brace
3254token and look at what follows before deciding whether there is a
3255declaration or not:
3256
3257@example
3258@group
3259compound: '@{' declarations statements '@}'
3260 | '@{' statements '@}'
3261 ;
3262@end group
3263@end example
3264
3265@noindent
3266But when we add a mid-rule action as follows, the rules become nonfunctional:
3267
3268@example
3269@group
3270compound: @{ prepare_for_local_variables (); @}
3271 '@{' declarations statements '@}'
3272@end group
3273@group
3274 | '@{' statements '@}'
3275 ;
3276@end group
3277@end example
3278
3279@noindent
3280Now the parser is forced to decide whether to run the mid-rule action
3281when it has read no farther than the open-brace. In other words, it
3282must commit to using one rule or the other, without sufficient
3283information to do it correctly. (The open-brace token is what is called
3284the @dfn{look-ahead} token at this time, since the parser is still
3285deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3286
3287You might think that you could correct the problem by putting identical
3288actions into the two rules, like this:
3289
3290@example
3291@group
3292compound: @{ prepare_for_local_variables (); @}
3293 '@{' declarations statements '@}'
3294 | @{ prepare_for_local_variables (); @}
3295 '@{' statements '@}'
3296 ;
3297@end group
3298@end example
3299
3300@noindent
3301But this does not help, because Bison does not realize that the two actions
3302are identical. (Bison never tries to understand the C code in an action.)
3303
3304If the grammar is such that a declaration can be distinguished from a
3305statement by the first token (which is true in C), then one solution which
3306does work is to put the action after the open-brace, like this:
3307
3308@example
3309@group
3310compound: '@{' @{ prepare_for_local_variables (); @}
3311 declarations statements '@}'
3312 | '@{' statements '@}'
3313 ;
3314@end group
3315@end example
3316
3317@noindent
3318Now the first token of the following declaration or statement,
3319which would in any case tell Bison which rule to use, can still do so.
3320
3321Another solution is to bury the action inside a nonterminal symbol which
3322serves as a subroutine:
3323
3324@example
3325@group
3326subroutine: /* empty */
3327 @{ prepare_for_local_variables (); @}
3328 ;
3329
3330@end group
3331
3332@group
3333compound: subroutine
3334 '@{' declarations statements '@}'
3335 | subroutine
3336 '@{' statements '@}'
3337 ;
3338@end group
3339@end example
3340
3341@noindent
3342Now Bison can execute the action in the rule for @code{subroutine} without
3343deciding which rule for @code{compound} it will eventually use. Note that
3344the action is now at the end of its rule. Any mid-rule action can be
3345converted to an end-of-rule action in this way, and this is what Bison
3346actually does to implement mid-rule actions.
3347
342b8b6e 3348@node Locations
847bf1f5
AD
3349@section Tracking Locations
3350@cindex location
95923bd6
AD
3351@cindex textual location
3352@cindex location, textual
847bf1f5
AD
3353
3354Though grammar rules and semantic actions are enough to write a fully
72d2299c 3355functional parser, it can be useful to process some additional information,
3e259915
MA
3356especially symbol locations.
3357
704a47c4
AD
3358The way locations are handled is defined by providing a data type, and
3359actions to take when rules are matched.
847bf1f5
AD
3360
3361@menu
3362* Location Type:: Specifying a data type for locations.
3363* Actions and Locations:: Using locations in actions.
3364* Location Default Action:: Defining a general way to compute locations.
3365@end menu
3366
342b8b6e 3367@node Location Type
847bf1f5
AD
3368@subsection Data Type of Locations
3369@cindex data type of locations
3370@cindex default location type
3371
3372Defining a data type for locations is much simpler than for semantic values,
3373since all tokens and groupings always use the same type.
3374
3375The type of locations is specified by defining a macro called @code{YYLTYPE}.
3376When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3377four members:
3378
3379@example
6273355b 3380typedef struct YYLTYPE
847bf1f5
AD
3381@{
3382 int first_line;
3383 int first_column;
3384 int last_line;
3385 int last_column;
6273355b 3386@} YYLTYPE;
847bf1f5
AD
3387@end example
3388
342b8b6e 3389@node Actions and Locations
847bf1f5
AD
3390@subsection Actions and Locations
3391@cindex location actions
3392@cindex actions, location
3393@vindex @@$
3394@vindex @@@var{n}
3395
3396Actions are not only useful for defining language semantics, but also for
3397describing the behavior of the output parser with locations.
3398
3399The most obvious way for building locations of syntactic groupings is very
72d2299c 3400similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3401constructs can be used to access the locations of the elements being matched.
3402The location of the @var{n}th component of the right hand side is
3403@code{@@@var{n}}, while the location of the left hand side grouping is
3404@code{@@$}.
3405
3e259915 3406Here is a basic example using the default data type for locations:
847bf1f5
AD
3407
3408@example
3409@group
3410exp: @dots{}
3e259915 3411 | exp '/' exp
847bf1f5 3412 @{
3e259915
MA
3413 @@$.first_column = @@1.first_column;
3414 @@$.first_line = @@1.first_line;
847bf1f5
AD
3415 @@$.last_column = @@3.last_column;
3416 @@$.last_line = @@3.last_line;
3e259915
MA
3417 if ($3)
3418 $$ = $1 / $3;
3419 else
3420 @{
3421 $$ = 1;
4e03e201
AD
3422 fprintf (stderr,
3423 "Division by zero, l%d,c%d-l%d,c%d",
3424 @@3.first_line, @@3.first_column,
3425 @@3.last_line, @@3.last_column);
3e259915 3426 @}
847bf1f5
AD
3427 @}
3428@end group
3429@end example
3430
3e259915 3431As for semantic values, there is a default action for locations that is
72d2299c 3432run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3433beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3434last symbol.
3e259915 3435
72d2299c 3436With this default action, the location tracking can be fully automatic. The
3e259915
MA
3437example above simply rewrites this way:
3438
3439@example
3440@group
3441exp: @dots{}
3442 | exp '/' exp
3443 @{
3444 if ($3)
3445 $$ = $1 / $3;
3446 else
3447 @{
3448 $$ = 1;
4e03e201
AD
3449 fprintf (stderr,
3450 "Division by zero, l%d,c%d-l%d,c%d",
3451 @@3.first_line, @@3.first_column,
3452 @@3.last_line, @@3.last_column);
3e259915
MA
3453 @}
3454 @}
3455@end group
3456@end example
847bf1f5 3457
342b8b6e 3458@node Location Default Action
847bf1f5
AD
3459@subsection Default Action for Locations
3460@vindex YYLLOC_DEFAULT
3461
72d2299c 3462Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3463locations are much more general than semantic values, there is room in
3464the output parser to redefine the default action to take for each
72d2299c 3465rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3466matched, before the associated action is run. It is also invoked
3467while processing a syntax error, to compute the error's location.
847bf1f5 3468
3e259915 3469Most of the time, this macro is general enough to suppress location
79282c6c 3470dedicated code from semantic actions.
847bf1f5 3471
72d2299c 3472The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3473the location of the grouping (the result of the computation). When a
766de5eb 3474rule is matched, the second parameter identifies locations of
96b93a3d
PE
3475all right hand side elements of the rule being matched, and the third
3476parameter is the size of the rule's right hand side. When processing
766de5eb 3477a syntax error, the second parameter identifies locations of
96b93a3d
PE
3478the symbols that were discarded during error processing, and the third
3479parameter is the number of discarded symbols.
847bf1f5 3480
766de5eb 3481By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3482
766de5eb 3483@smallexample
847bf1f5 3484@group
766de5eb
PE
3485# define YYLLOC_DEFAULT(Current, Rhs, N) \
3486 do \
3487 if (N) \
3488 @{ \
3489 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3490 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3491 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3492 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3493 @} \
3494 else \
3495 @{ \
3496 (Current).first_line = (Current).last_line = \
3497 YYRHSLOC(Rhs, 0).last_line; \
3498 (Current).first_column = (Current).last_column = \
3499 YYRHSLOC(Rhs, 0).last_column; \
3500 @} \
3501 while (0)
847bf1f5 3502@end group
766de5eb 3503@end smallexample
676385e2 3504
766de5eb
PE
3505where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3506in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3507just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3508
3e259915 3509When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3510
3e259915 3511@itemize @bullet
79282c6c 3512@item
72d2299c 3513All arguments are free of side-effects. However, only the first one (the
3e259915 3514result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3515
3e259915 3516@item
766de5eb
PE
3517For consistency with semantic actions, valid indexes within the
3518right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3519valid index, and it refers to the symbol just before the reduction.
3520During error processing @var{n} is always positive.
0ae99356
PE
3521
3522@item
3523Your macro should parenthesize its arguments, if need be, since the
3524actual arguments may not be surrounded by parentheses. Also, your
3525macro should expand to something that can be used as a single
3526statement when it is followed by a semicolon.
3e259915 3527@end itemize
847bf1f5 3528
342b8b6e 3529@node Declarations
bfa74976
RS
3530@section Bison Declarations
3531@cindex declarations, Bison
3532@cindex Bison declarations
3533
3534The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3535used in formulating the grammar and the data types of semantic values.
3536@xref{Symbols}.
3537
3538All token type names (but not single-character literal tokens such as
3539@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3540declared if you need to specify which data type to use for the semantic
3541value (@pxref{Multiple Types, ,More Than One Value Type}).
3542
3543The first rule in the file also specifies the start symbol, by default.
3544If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3545it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3546Grammars}).
bfa74976
RS
3547
3548@menu
3549* Token Decl:: Declaring terminal symbols.
3550* Precedence Decl:: Declaring terminals with precedence and associativity.
3551* Union Decl:: Declaring the set of all semantic value types.
3552* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3553* Initial Action Decl:: Code run before parsing starts.
72f889cc 3554* Destructor Decl:: Declaring how symbols are freed.
d6328241 3555* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3556* Start Decl:: Specifying the start symbol.
3557* Pure Decl:: Requesting a reentrant parser.
3558* Decl Summary:: Table of all Bison declarations.
3559@end menu
3560
342b8b6e 3561@node Token Decl
bfa74976
RS
3562@subsection Token Type Names
3563@cindex declaring token type names
3564@cindex token type names, declaring
931c7513 3565@cindex declaring literal string tokens
bfa74976
RS
3566@findex %token
3567
3568The basic way to declare a token type name (terminal symbol) is as follows:
3569
3570@example
3571%token @var{name}
3572@end example
3573
3574Bison will convert this into a @code{#define} directive in
3575the parser, so that the function @code{yylex} (if it is in this file)
3576can use the name @var{name} to stand for this token type's code.
3577
14ded682
AD
3578Alternatively, you can use @code{%left}, @code{%right}, or
3579@code{%nonassoc} instead of @code{%token}, if you wish to specify
3580associativity and precedence. @xref{Precedence Decl, ,Operator
3581Precedence}.
bfa74976
RS
3582
3583You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3584a decimal or hexadecimal integer value in the field immediately
3585following the token name:
bfa74976
RS
3586
3587@example
3588%token NUM 300
1452af69 3589%token XNUM 0x12d // a GNU extension
bfa74976
RS
3590@end example
3591
3592@noindent
3593It is generally best, however, to let Bison choose the numeric codes for
3594all token types. Bison will automatically select codes that don't conflict
e966383b 3595with each other or with normal characters.
bfa74976
RS
3596
3597In the event that the stack type is a union, you must augment the
3598@code{%token} or other token declaration to include the data type
704a47c4
AD
3599alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3600Than One Value Type}).
bfa74976
RS
3601
3602For example:
3603
3604@example
3605@group
3606%union @{ /* define stack type */
3607 double val;
3608 symrec *tptr;
3609@}
3610%token <val> NUM /* define token NUM and its type */
3611@end group
3612@end example
3613
931c7513
RS
3614You can associate a literal string token with a token type name by
3615writing the literal string at the end of a @code{%token}
3616declaration which declares the name. For example:
3617
3618@example
3619%token arrow "=>"
3620@end example
3621
3622@noindent
3623For example, a grammar for the C language might specify these names with
3624equivalent literal string tokens:
3625
3626@example
3627%token <operator> OR "||"
3628%token <operator> LE 134 "<="
3629%left OR "<="
3630@end example
3631
3632@noindent
3633Once you equate the literal string and the token name, you can use them
3634interchangeably in further declarations or the grammar rules. The
3635@code{yylex} function can use the token name or the literal string to
3636obtain the token type code number (@pxref{Calling Convention}).
3637
342b8b6e 3638@node Precedence Decl
bfa74976
RS
3639@subsection Operator Precedence
3640@cindex precedence declarations
3641@cindex declaring operator precedence
3642@cindex operator precedence, declaring
3643
3644Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3645declare a token and specify its precedence and associativity, all at
3646once. These are called @dfn{precedence declarations}.
704a47c4
AD
3647@xref{Precedence, ,Operator Precedence}, for general information on
3648operator precedence.
bfa74976
RS
3649
3650The syntax of a precedence declaration is the same as that of
3651@code{%token}: either
3652
3653@example
3654%left @var{symbols}@dots{}
3655@end example
3656
3657@noindent
3658or
3659
3660@example
3661%left <@var{type}> @var{symbols}@dots{}
3662@end example
3663
3664And indeed any of these declarations serves the purposes of @code{%token}.
3665But in addition, they specify the associativity and relative precedence for
3666all the @var{symbols}:
3667
3668@itemize @bullet
3669@item
3670The associativity of an operator @var{op} determines how repeated uses
3671of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3672@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3673grouping @var{y} with @var{z} first. @code{%left} specifies
3674left-associativity (grouping @var{x} with @var{y} first) and
3675@code{%right} specifies right-associativity (grouping @var{y} with
3676@var{z} first). @code{%nonassoc} specifies no associativity, which
3677means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3678considered a syntax error.
3679
3680@item
3681The precedence of an operator determines how it nests with other operators.
3682All the tokens declared in a single precedence declaration have equal
3683precedence and nest together according to their associativity.
3684When two tokens declared in different precedence declarations associate,
3685the one declared later has the higher precedence and is grouped first.
3686@end itemize
3687
342b8b6e 3688@node Union Decl
bfa74976
RS
3689@subsection The Collection of Value Types
3690@cindex declaring value types
3691@cindex value types, declaring
3692@findex %union
3693
3694The @code{%union} declaration specifies the entire collection of possible
3695data types for semantic values. The keyword @code{%union} is followed by a
3696pair of braces containing the same thing that goes inside a @code{union} in
13863333 3697C.
bfa74976
RS
3698
3699For example:
3700
3701@example
3702@group
3703%union @{
3704 double val;
3705 symrec *tptr;
3706@}
3707@end group
3708@end example
3709
3710@noindent
3711This says that the two alternative types are @code{double} and @code{symrec
3712*}. They are given names @code{val} and @code{tptr}; these names are used
3713in the @code{%token} and @code{%type} declarations to pick one of the types
3714for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3715
6273355b
PE
3716As an extension to @acronym{POSIX}, a tag is allowed after the
3717@code{union}. For example:
3718
3719@example
3720@group
3721%union value @{
3722 double val;
3723 symrec *tptr;
3724@}
3725@end group
3726@end example
3727
3728specifies the union tag @code{value}, so the corresponding C type is
3729@code{union value}. If you do not specify a tag, it defaults to
3730@code{YYSTYPE}.
3731
3732Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3733a semicolon after the closing brace.
3734
342b8b6e 3735@node Type Decl
bfa74976
RS
3736@subsection Nonterminal Symbols
3737@cindex declaring value types, nonterminals
3738@cindex value types, nonterminals, declaring
3739@findex %type
3740
3741@noindent
3742When you use @code{%union} to specify multiple value types, you must
3743declare the value type of each nonterminal symbol for which values are
3744used. This is done with a @code{%type} declaration, like this:
3745
3746@example
3747%type <@var{type}> @var{nonterminal}@dots{}
3748@end example
3749
3750@noindent
704a47c4
AD
3751Here @var{nonterminal} is the name of a nonterminal symbol, and
3752@var{type} is the name given in the @code{%union} to the alternative
3753that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3754can give any number of nonterminal symbols in the same @code{%type}
3755declaration, if they have the same value type. Use spaces to separate
3756the symbol names.
bfa74976 3757
931c7513
RS
3758You can also declare the value type of a terminal symbol. To do this,
3759use the same @code{<@var{type}>} construction in a declaration for the
3760terminal symbol. All kinds of token declarations allow
3761@code{<@var{type}>}.
3762
18d192f0
AD
3763@node Initial Action Decl
3764@subsection Performing Actions before Parsing
3765@findex %initial-action
3766
3767Sometimes your parser needs to perform some initializations before
3768parsing. The @code{%initial-action} directive allows for such arbitrary
3769code.
3770
3771@deffn {Directive} %initial-action @{ @var{code} @}
3772@findex %initial-action
3773Declare that the @var{code} must be invoked before parsing each time
451364ed
AD
3774@code{yyparse} is called. The @var{code} may use @code{$$} and
3775@code{@@$} --- initial value and location of the look-ahead --- and the
3776@code{%parse-param}.
18d192f0
AD
3777@end deffn
3778
451364ed
AD
3779For instance, if your locations use a file name, you may use
3780
3781@example
48b16bbc 3782%parse-param @{ char const *file_name @};
451364ed
AD
3783%initial-action
3784@{
48b16bbc
PE
3785 @@$.begin.file_name = @@$.end.file_name = file_name;
3786 @@$.begin.file_name = @@$.end.file_name = file_name;
451364ed
AD
3787@};
3788@end example
3789
18d192f0 3790
72f889cc
AD
3791@node Destructor Decl
3792@subsection Freeing Discarded Symbols
3793@cindex freeing discarded symbols
3794@findex %destructor
3795
258b75ca
PE
3796Some symbols can be discarded by the parser. During error
3797recovery (@pxref{Error Recovery}), symbols already pushed
3798on the stack and tokens coming from the rest of the file
3799are discarded until the parser falls on its feet. If the parser
3800runs out of memory, all the symbols on the stack must be discarded.
3801Even if the parser succeeds, it must discard the start symbol.
3802
3803When discarded symbols convey heap based information, this memory is
3804lost. While this behavior can be tolerable for batch parsers, such as
3805in traditional compilers, it is unacceptable for programs like shells
3806or protocol implementations that may parse and execute indefinitely.
3807
3808The @code{%destructor} directive defines code that
3809is called when a symbol is discarded.
72f889cc
AD
3810
3811@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3812@findex %destructor
258b75ca
PE
3813Invoke @var{code} whenever the parser discards one of the
3814@var{symbols}. Within @var{code}, @code{$$} designates the semantic
3815value associated with the discarded symbol. The additional
3816parser parameters are also available
72f889cc
AD
3817(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3818
258b75ca
PE
3819@strong{Warning:} as of Bison 2.1, this feature is still
3820experimental, as there has not been enough user feedback. In particular,
3df37415 3821the syntax might still change.
72f889cc
AD
3822@end deffn
3823
3824For instance:
3825
3826@smallexample
3827%union
3828@{
3829 char *string;
3830@}
3831%token <string> STRING
3832%type <string> string
3833%destructor @{ free ($$); @} STRING string
3834@end smallexample
3835
3836@noindent
258b75ca 3837guarantees that when a @code{STRING} or a @code{string} is discarded,
72f889cc
AD
3838its associated memory will be freed.
3839
3840Note that in the future, Bison might also consider that right hand side
3841members that are not mentioned in the action can be destroyed. For
3842instance, in:
3843
3844@smallexample
3845comment: "/*" STRING "*/";
3846@end smallexample
3847
3848@noindent
3849the parser is entitled to destroy the semantic value of the
3850@code{string}. Of course, this will not apply to the default action;
3851compare:
3852
3853@smallexample
3854typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3855typefull: string; // $$ = $1 applies, $1 is not destroyed.
3856@end smallexample
3857
e757bb10
AD
3858@sp 1
3859
3860@cindex discarded symbols
3861@dfn{Discarded symbols} are the following:
3862
3863@itemize
3864@item
3865stacked symbols popped during the first phase of error recovery,
3866@item
3867incoming terminals during the second phase of error recovery,
3868@item
258b75ca
PE
3869the current look-ahead and the entire stack when the parser aborts
3870(either via an explicit call to @code{YYABORT}, or as a consequence of
3871a failed error recovery or of memory exhaustion), and
3872@item
3873the start symbol, when the parser succeeds.
e757bb10
AD
3874@end itemize
3875
3876
342b8b6e 3877@node Expect Decl
bfa74976
RS
3878@subsection Suppressing Conflict Warnings
3879@cindex suppressing conflict warnings
3880@cindex preventing warnings about conflicts
3881@cindex warnings, preventing
3882@cindex conflicts, suppressing warnings of
3883@findex %expect
d6328241 3884@findex %expect-rr
bfa74976
RS
3885
3886Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3887(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3888have harmless shift/reduce conflicts which are resolved in a predictable
3889way and would be difficult to eliminate. It is desirable to suppress
3890the warning about these conflicts unless the number of conflicts
3891changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3892
3893The declaration looks like this:
3894
3895@example
3896%expect @var{n}
3897@end example
3898
7da99ede
AD
3899Here @var{n} is a decimal integer. The declaration says there should be
3900no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3901reduce/reduce conflicts. The usual warning is
7da99ede
AD
3902given if there are either more or fewer conflicts, or if there are any
3903reduce/reduce conflicts.
bfa74976 3904
fa7e68c3 3905For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more serious,
d6328241 3906and should be eliminated entirely. Bison will always report
fa7e68c3 3907reduce/reduce conflicts for these parsers. With @acronym{GLR} parsers, however,
d6328241 3908both shift/reduce and reduce/reduce are routine (otherwise, there
fa7e68c3
PE
3909would be no need to use @acronym{GLR} parsing). Therefore, it is also possible
3910to specify an expected number of reduce/reduce conflicts in @acronym{GLR}
d6328241
PH
3911parsers, using the declaration:
3912
3913@example
3914%expect-rr @var{n}
3915@end example
3916
bfa74976
RS
3917In general, using @code{%expect} involves these steps:
3918
3919@itemize @bullet
3920@item
3921Compile your grammar without @code{%expect}. Use the @samp{-v} option
3922to get a verbose list of where the conflicts occur. Bison will also
3923print the number of conflicts.
3924
3925@item
3926Check each of the conflicts to make sure that Bison's default
3927resolution is what you really want. If not, rewrite the grammar and
3928go back to the beginning.
3929
3930@item
3931Add an @code{%expect} declaration, copying the number @var{n} from the
3932number which Bison printed.
3933@end itemize
3934
69363a9e
PE
3935Now Bison will stop annoying you if you do not change the number of
3936conflicts, but it will warn you again if changes in the grammar result
3937in more or fewer conflicts.
bfa74976 3938
342b8b6e 3939@node Start Decl
bfa74976
RS
3940@subsection The Start-Symbol
3941@cindex declaring the start symbol
3942@cindex start symbol, declaring
3943@cindex default start symbol
3944@findex %start
3945
3946Bison assumes by default that the start symbol for the grammar is the first
3947nonterminal specified in the grammar specification section. The programmer
3948may override this restriction with the @code{%start} declaration as follows:
3949
3950@example
3951%start @var{symbol}
3952@end example
3953
342b8b6e 3954@node Pure Decl
bfa74976
RS
3955@subsection A Pure (Reentrant) Parser
3956@cindex reentrant parser
3957@cindex pure parser
8c9a50be 3958@findex %pure-parser
bfa74976
RS
3959
3960A @dfn{reentrant} program is one which does not alter in the course of
3961execution; in other words, it consists entirely of @dfn{pure} (read-only)
3962code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3963for example, a non-reentrant program may not be safe to call from a signal
3964handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3965program must be called only within interlocks.
3966
70811b85 3967Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3968suitable for most uses, and it permits compatibility with Yacc. (The
3969standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3970statically allocated variables for communication with @code{yylex},
3971including @code{yylval} and @code{yylloc}.)
bfa74976 3972
70811b85 3973Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3974declaration @code{%pure-parser} says that you want the parser to be
70811b85 3975reentrant. It looks like this:
bfa74976
RS
3976
3977@example
8c9a50be 3978%pure-parser
bfa74976
RS
3979@end example
3980
70811b85
RS
3981The result is that the communication variables @code{yylval} and
3982@code{yylloc} become local variables in @code{yyparse}, and a different
3983calling convention is used for the lexical analyzer function
3984@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3985Parsers}, for the details of this. The variable @code{yynerrs} also
3986becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3987Reporting Function @code{yyerror}}). The convention for calling
3988@code{yyparse} itself is unchanged.
3989
3990Whether the parser is pure has nothing to do with the grammar rules.
3991You can generate either a pure parser or a nonreentrant parser from any
3992valid grammar.
bfa74976 3993
342b8b6e 3994@node Decl Summary
bfa74976
RS
3995@subsection Bison Declaration Summary
3996@cindex Bison declaration summary
3997@cindex declaration summary
3998@cindex summary, Bison declaration
3999
d8988b2f 4000Here is a summary of the declarations used to define a grammar:
bfa74976 4001
18b519c0 4002@deffn {Directive} %union
bfa74976
RS
4003Declare the collection of data types that semantic values may have
4004(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4005@end deffn
bfa74976 4006
18b519c0 4007@deffn {Directive} %token
bfa74976
RS
4008Declare a terminal symbol (token type name) with no precedence
4009or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4010@end deffn
bfa74976 4011
18b519c0 4012@deffn {Directive} %right
bfa74976
RS
4013Declare a terminal symbol (token type name) that is right-associative
4014(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4015@end deffn
bfa74976 4016
18b519c0 4017@deffn {Directive} %left
bfa74976
RS
4018Declare a terminal symbol (token type name) that is left-associative
4019(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4020@end deffn
bfa74976 4021
18b519c0 4022@deffn {Directive} %nonassoc
bfa74976 4023Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4024(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4025Using it in a way that would be associative is a syntax error.
4026@end deffn
4027
91d2c560 4028@ifset defaultprec
39a06c25 4029@deffn {Directive} %default-prec
22fccf95 4030Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4031(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4032@end deffn
91d2c560 4033@end ifset
bfa74976 4034
18b519c0 4035@deffn {Directive} %type
bfa74976
RS
4036Declare the type of semantic values for a nonterminal symbol
4037(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4038@end deffn
bfa74976 4039
18b519c0 4040@deffn {Directive} %start
89cab50d
AD
4041Specify the grammar's start symbol (@pxref{Start Decl, ,The
4042Start-Symbol}).
18b519c0 4043@end deffn
bfa74976 4044
18b519c0 4045@deffn {Directive} %expect
bfa74976
RS
4046Declare the expected number of shift-reduce conflicts
4047(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4048@end deffn
4049
bfa74976 4050
d8988b2f
AD
4051@sp 1
4052@noindent
4053In order to change the behavior of @command{bison}, use the following
4054directives:
4055
18b519c0 4056@deffn {Directive} %debug
4947ebdb
PE
4057In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4058already defined, so that the debugging facilities are compiled.
18b519c0 4059@end deffn
ec3bc396 4060@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4061
18b519c0 4062@deffn {Directive} %defines
4bfd5e4e
PE
4063Write a header file containing macro definitions for the token type
4064names defined in the grammar as well as a few other declarations.
d8988b2f 4065If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4066is named @file{@var{name}.h}.
d8988b2f 4067
4bfd5e4e 4068Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d
PE
4069declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
4070(@pxref{Multiple Types, ,More Than One Value Type}) with components
4071that require other definitions, or if you have defined a
4bfd5e4e 4072@code{YYSTYPE} macro (@pxref{Value Type, ,Data Types of Semantic
5c9be03d
PE
4073Values}), you need to arrange for these definitions to be propagated to
4074all modules, e.g., by putting them in a
4bfd5e4e
PE
4075prerequisite header that is included both by your parser and by any
4076other module that needs @code{YYSTYPE}.
4077
4078Unless your parser is pure, the output header declares @code{yylval}
4079as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4080Parser}.
4081
4082If you have also used locations, the output header declares
4083@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4084@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4085Locations}.
4086
4087This output file is normally essential if you wish to put the
4088definition of @code{yylex} in a separate source file, because
4089@code{yylex} typically needs to be able to refer to the
4090above-mentioned declarations and to the token type codes.
4091@xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 4092@end deffn
d8988b2f 4093
18b519c0 4094@deffn {Directive} %destructor
258b75ca 4095Specify how the parser should reclaim the memory associated to
fa7e68c3 4096discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4097@end deffn
72f889cc 4098
18b519c0 4099@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4100Specify a prefix to use for all Bison output file names. The names are
4101chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4102@end deffn
d8988b2f 4103
18b519c0 4104@deffn {Directive} %locations
89cab50d
AD
4105Generate the code processing the locations (@pxref{Action Features,
4106,Special Features for Use in Actions}). This mode is enabled as soon as
4107the grammar uses the special @samp{@@@var{n}} tokens, but if your
4108grammar does not use it, using @samp{%locations} allows for more
6e649e65 4109accurate syntax error messages.
18b519c0 4110@end deffn
89cab50d 4111
18b519c0 4112@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4113Rename the external symbols used in the parser so that they start with
4114@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4115is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4116@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4117possible @code{yylloc}. For example, if you use
4118@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4119and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4120Program}.
18b519c0 4121@end deffn
931c7513 4122
91d2c560 4123@ifset defaultprec
22fccf95
PE
4124@deffn {Directive} %no-default-prec
4125Do not assign a precedence to rules lacking an explicit @code{%prec}
4126modifier (@pxref{Contextual Precedence, ,Context-Dependent
4127Precedence}).
4128@end deffn
91d2c560 4129@end ifset
22fccf95 4130
18b519c0 4131@deffn {Directive} %no-parser
6deb4447
AD
4132Do not include any C code in the parser file; generate tables only. The
4133parser file contains just @code{#define} directives and static variable
4134declarations.
4135
4136This option also tells Bison to write the C code for the grammar actions
fa4d969f 4137into a file named @file{@var{file}.act}, in the form of a
6deb4447 4138brace-surrounded body fit for a @code{switch} statement.
18b519c0 4139@end deffn
6deb4447 4140
18b519c0 4141@deffn {Directive} %no-lines
931c7513
RS
4142Don't generate any @code{#line} preprocessor commands in the parser
4143file. Ordinarily Bison writes these commands in the parser file so that
4144the C compiler and debuggers will associate errors and object code with
4145your source file (the grammar file). This directive causes them to
4146associate errors with the parser file, treating it an independent source
4147file in its own right.
18b519c0 4148@end deffn
931c7513 4149
fa4d969f
PE
4150@deffn {Directive} %output="@var{file}"
4151Specify @var{file} for the parser file.
18b519c0 4152@end deffn
6deb4447 4153
18b519c0 4154@deffn {Directive} %pure-parser
d8988b2f
AD
4155Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4156(Reentrant) Parser}).
18b519c0 4157@end deffn
6deb4447 4158
18b519c0 4159@deffn {Directive} %token-table
931c7513
RS
4160Generate an array of token names in the parser file. The name of the
4161array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4162token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4163three elements of @code{yytname} correspond to the predefined tokens
4164@code{"$end"},
88bce5a2
AD
4165@code{"error"}, and @code{"$undefined"}; after these come the symbols
4166defined in the grammar file.
931c7513 4167
9e0876fb
PE
4168The name in the table includes all the characters needed to represent
4169the token in Bison. For single-character literals and literal
4170strings, this includes the surrounding quoting characters and any
4171escape sequences. For example, the Bison single-character literal
4172@code{'+'} corresponds to a three-character name, represented in C as
4173@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4174corresponds to a five-character name, represented in C as
4175@code{"\"\\\\/\""}.
931c7513 4176
8c9a50be 4177When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4178definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4179@code{YYNRULES}, and @code{YYNSTATES}:
4180
4181@table @code
4182@item YYNTOKENS
4183The highest token number, plus one.
4184@item YYNNTS
9ecbd125 4185The number of nonterminal symbols.
931c7513
RS
4186@item YYNRULES
4187The number of grammar rules,
4188@item YYNSTATES
4189The number of parser states (@pxref{Parser States}).
4190@end table
18b519c0 4191@end deffn
d8988b2f 4192
18b519c0 4193@deffn {Directive} %verbose
d8988b2f
AD
4194Write an extra output file containing verbose descriptions of the
4195parser states and what is done for each type of look-ahead token in
72d2299c 4196that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4197information.
18b519c0 4198@end deffn
d8988b2f 4199
18b519c0 4200@deffn {Directive} %yacc
d8988b2f
AD
4201Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4202including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4203@end deffn
d8988b2f
AD
4204
4205
342b8b6e 4206@node Multiple Parsers
bfa74976
RS
4207@section Multiple Parsers in the Same Program
4208
4209Most programs that use Bison parse only one language and therefore contain
4210only one Bison parser. But what if you want to parse more than one
4211language with the same program? Then you need to avoid a name conflict
4212between different definitions of @code{yyparse}, @code{yylval}, and so on.
4213
4214The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4215(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4216functions and variables of the Bison parser to start with @var{prefix}
4217instead of @samp{yy}. You can use this to give each parser distinct
4218names that do not conflict.
bfa74976
RS
4219
4220The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4221@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4222@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4223the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4224
4225@strong{All the other variables and macros associated with Bison are not
4226renamed.} These others are not global; there is no conflict if the same
4227name is used in different parsers. For example, @code{YYSTYPE} is not
4228renamed, but defining this in different ways in different parsers causes
4229no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4230
4231The @samp{-p} option works by adding macro definitions to the beginning
4232of the parser source file, defining @code{yyparse} as
4233@code{@var{prefix}parse}, and so on. This effectively substitutes one
4234name for the other in the entire parser file.
4235
342b8b6e 4236@node Interface
bfa74976
RS
4237@chapter Parser C-Language Interface
4238@cindex C-language interface
4239@cindex interface
4240
4241The Bison parser is actually a C function named @code{yyparse}. Here we
4242describe the interface conventions of @code{yyparse} and the other
4243functions that it needs to use.
4244
4245Keep in mind that the parser uses many C identifiers starting with
4246@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4247identifier (aside from those in this manual) in an action or in epilogue
4248in the grammar file, you are likely to run into trouble.
bfa74976
RS
4249
4250@menu
4251* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4252* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4253 which reads tokens.
4254* Error Reporting:: You must supply a function @code{yyerror}.
4255* Action Features:: Special features for use in actions.
f7ab6a50
PE
4256* Internationalization:: How to let the parser speak in the user's
4257 native language.
bfa74976
RS
4258@end menu
4259
342b8b6e 4260@node Parser Function
bfa74976
RS
4261@section The Parser Function @code{yyparse}
4262@findex yyparse
4263
4264You call the function @code{yyparse} to cause parsing to occur. This
4265function reads tokens, executes actions, and ultimately returns when it
4266encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4267write an action which directs @code{yyparse} to return immediately
4268without reading further.
bfa74976 4269
2a8d363a
AD
4270
4271@deftypefun int yyparse (void)
bfa74976
RS
4272The value returned by @code{yyparse} is 0 if parsing was successful (return
4273is due to end-of-input).
4274
4275The value is 1 if parsing failed (return is due to a syntax error).
2a8d363a 4276@end deftypefun
bfa74976
RS
4277
4278In an action, you can cause immediate return from @code{yyparse} by using
4279these macros:
4280
2a8d363a 4281@defmac YYACCEPT
bfa74976
RS
4282@findex YYACCEPT
4283Return immediately with value 0 (to report success).
2a8d363a 4284@end defmac
bfa74976 4285
2a8d363a 4286@defmac YYABORT
bfa74976
RS
4287@findex YYABORT
4288Return immediately with value 1 (to report failure).
2a8d363a
AD
4289@end defmac
4290
4291If you use a reentrant parser, you can optionally pass additional
4292parameter information to it in a reentrant way. To do so, use the
4293declaration @code{%parse-param}:
4294
feeb0eda 4295@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4296@findex %parse-param
feeb0eda 4297Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
4298additional @code{yyparse} argument.
4299The @var{argument-declaration} is used when declaring
feeb0eda
PE
4300functions or prototypes. The last identifier in
4301@var{argument-declaration} must be the argument name.
2a8d363a
AD
4302@end deffn
4303
4304Here's an example. Write this in the parser:
4305
4306@example
feeb0eda
PE
4307%parse-param @{int *nastiness@}
4308%parse-param @{int *randomness@}
2a8d363a
AD
4309@end example
4310
4311@noindent
4312Then call the parser like this:
4313
4314@example
4315@{
4316 int nastiness, randomness;
4317 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4318 value = yyparse (&nastiness, &randomness);
4319 @dots{}
4320@}
4321@end example
4322
4323@noindent
4324In the grammar actions, use expressions like this to refer to the data:
4325
4326@example
4327exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4328@end example
4329
bfa74976 4330
342b8b6e 4331@node Lexical
bfa74976
RS
4332@section The Lexical Analyzer Function @code{yylex}
4333@findex yylex
4334@cindex lexical analyzer
4335
4336The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4337the input stream and returns them to the parser. Bison does not create
4338this function automatically; you must write it so that @code{yyparse} can
4339call it. The function is sometimes referred to as a lexical scanner.
4340
4341In simple programs, @code{yylex} is often defined at the end of the Bison
4342grammar file. If @code{yylex} is defined in a separate source file, you
4343need to arrange for the token-type macro definitions to be available there.
4344To do this, use the @samp{-d} option when you run Bison, so that it will
4345write these macro definitions into a separate header file
4346@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4347that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4348
4349@menu
4350* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4351* Token Values:: How @code{yylex} must return the semantic value
4352 of the token it has read.
95923bd6 4353* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4354 (line number, etc.) of the token, if the
4355 actions want that.
4356* Pure Calling:: How the calling convention differs
4357 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4358@end menu
4359
342b8b6e 4360@node Calling Convention
bfa74976
RS
4361@subsection Calling Convention for @code{yylex}
4362
72d2299c
PE
4363The value that @code{yylex} returns must be the positive numeric code
4364for the type of token it has just found; a zero or negative value
4365signifies end-of-input.
bfa74976
RS
4366
4367When a token is referred to in the grammar rules by a name, that name
4368in the parser file becomes a C macro whose definition is the proper
4369numeric code for that token type. So @code{yylex} can use the name
4370to indicate that type. @xref{Symbols}.
4371
4372When a token is referred to in the grammar rules by a character literal,
4373the numeric code for that character is also the code for the token type.
72d2299c
PE
4374So @code{yylex} can simply return that character code, possibly converted
4375to @code{unsigned char} to avoid sign-extension. The null character
4376must not be used this way, because its code is zero and that
bfa74976
RS
4377signifies end-of-input.
4378
4379Here is an example showing these things:
4380
4381@example
13863333
AD
4382int
4383yylex (void)
bfa74976
RS
4384@{
4385 @dots{}
72d2299c 4386 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4387 return 0;
4388 @dots{}
4389 if (c == '+' || c == '-')
72d2299c 4390 return c; /* Assume token type for `+' is '+'. */
bfa74976 4391 @dots{}
72d2299c 4392 return INT; /* Return the type of the token. */
bfa74976
RS
4393 @dots{}
4394@}
4395@end example
4396
4397@noindent
4398This interface has been designed so that the output from the @code{lex}
4399utility can be used without change as the definition of @code{yylex}.
4400
931c7513
RS
4401If the grammar uses literal string tokens, there are two ways that
4402@code{yylex} can determine the token type codes for them:
4403
4404@itemize @bullet
4405@item
4406If the grammar defines symbolic token names as aliases for the
4407literal string tokens, @code{yylex} can use these symbolic names like
4408all others. In this case, the use of the literal string tokens in
4409the grammar file has no effect on @code{yylex}.
4410
4411@item
9ecbd125 4412@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4413table. The index of the token in the table is the token type's code.
9ecbd125 4414The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4415double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4416token's characters are escaped as necessary to be suitable as input
4417to Bison.
931c7513 4418
9e0876fb
PE
4419Here's code for looking up a multicharacter token in @code{yytname},
4420assuming that the characters of the token are stored in
4421@code{token_buffer}, and assuming that the token does not contain any
4422characters like @samp{"} that require escaping.
931c7513
RS
4423
4424@smallexample
4425for (i = 0; i < YYNTOKENS; i++)
4426 @{
4427 if (yytname[i] != 0
4428 && yytname[i][0] == '"'
68449b3a
PE
4429 && ! strncmp (yytname[i] + 1, token_buffer,
4430 strlen (token_buffer))
931c7513
RS
4431 && yytname[i][strlen (token_buffer) + 1] == '"'
4432 && yytname[i][strlen (token_buffer) + 2] == 0)
4433 break;
4434 @}
4435@end smallexample
4436
4437The @code{yytname} table is generated only if you use the
8c9a50be 4438@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4439@end itemize
4440
342b8b6e 4441@node Token Values
bfa74976
RS
4442@subsection Semantic Values of Tokens
4443
4444@vindex yylval
14ded682 4445In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4446be stored into the global variable @code{yylval}. When you are using
4447just one data type for semantic values, @code{yylval} has that type.
4448Thus, if the type is @code{int} (the default), you might write this in
4449@code{yylex}:
4450
4451@example
4452@group
4453 @dots{}
72d2299c
PE
4454 yylval = value; /* Put value onto Bison stack. */
4455 return INT; /* Return the type of the token. */
bfa74976
RS
4456 @dots{}
4457@end group
4458@end example
4459
4460When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4461made from the @code{%union} declaration (@pxref{Union Decl, ,The
4462Collection of Value Types}). So when you store a token's value, you
4463must use the proper member of the union. If the @code{%union}
4464declaration looks like this:
bfa74976
RS
4465
4466@example
4467@group
4468%union @{
4469 int intval;
4470 double val;
4471 symrec *tptr;
4472@}
4473@end group
4474@end example
4475
4476@noindent
4477then the code in @code{yylex} might look like this:
4478
4479@example
4480@group
4481 @dots{}
72d2299c
PE
4482 yylval.intval = value; /* Put value onto Bison stack. */
4483 return INT; /* Return the type of the token. */
bfa74976
RS
4484 @dots{}
4485@end group
4486@end example
4487
95923bd6
AD
4488@node Token Locations
4489@subsection Textual Locations of Tokens
bfa74976
RS
4490
4491@vindex yylloc
847bf1f5
AD
4492If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4493Tracking Locations}) in actions to keep track of the
89cab50d
AD
4494textual locations of tokens and groupings, then you must provide this
4495information in @code{yylex}. The function @code{yyparse} expects to
4496find the textual location of a token just parsed in the global variable
4497@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4498variable.
4499
4500By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4501initialize the members that are going to be used by the actions. The
4502four members are called @code{first_line}, @code{first_column},
4503@code{last_line} and @code{last_column}. Note that the use of this
4504feature makes the parser noticeably slower.
bfa74976
RS
4505
4506@tindex YYLTYPE
4507The data type of @code{yylloc} has the name @code{YYLTYPE}.
4508
342b8b6e 4509@node Pure Calling
c656404a 4510@subsection Calling Conventions for Pure Parsers
bfa74976 4511
8c9a50be 4512When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4513pure, reentrant parser, the global communication variables @code{yylval}
4514and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4515Parser}.) In such parsers the two global variables are replaced by
4516pointers passed as arguments to @code{yylex}. You must declare them as
4517shown here, and pass the information back by storing it through those
4518pointers.
bfa74976
RS
4519
4520@example
13863333
AD
4521int
4522yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4523@{
4524 @dots{}
4525 *lvalp = value; /* Put value onto Bison stack. */
4526 return INT; /* Return the type of the token. */
4527 @dots{}
4528@}
4529@end example
4530
4531If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4532textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4533this case, omit the second argument; @code{yylex} will be called with
4534only one argument.
4535
e425e872 4536
2a8d363a
AD
4537If you wish to pass the additional parameter data to @code{yylex}, use
4538@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4539Function}).
e425e872 4540
feeb0eda 4541@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4542@findex %lex-param
feeb0eda
PE
4543Declare that @code{argument-declaration} is an additional @code{yylex}
4544argument declaration.
2a8d363a 4545@end deffn
e425e872 4546
2a8d363a 4547For instance:
e425e872
RS
4548
4549@example
feeb0eda
PE
4550%parse-param @{int *nastiness@}
4551%lex-param @{int *nastiness@}
4552%parse-param @{int *randomness@}
e425e872
RS
4553@end example
4554
4555@noindent
2a8d363a 4556results in the following signature:
e425e872
RS
4557
4558@example
2a8d363a
AD
4559int yylex (int *nastiness);
4560int yyparse (int *nastiness, int *randomness);
e425e872
RS
4561@end example
4562
2a8d363a 4563If @code{%pure-parser} is added:
c656404a
RS
4564
4565@example
2a8d363a
AD
4566int yylex (YYSTYPE *lvalp, int *nastiness);
4567int yyparse (int *nastiness, int *randomness);
c656404a
RS
4568@end example
4569
2a8d363a
AD
4570@noindent
4571and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4572
2a8d363a
AD
4573@example
4574int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4575int yyparse (int *nastiness, int *randomness);
4576@end example
931c7513 4577
342b8b6e 4578@node Error Reporting
bfa74976
RS
4579@section The Error Reporting Function @code{yyerror}
4580@cindex error reporting function
4581@findex yyerror
4582@cindex parse error
4583@cindex syntax error
4584
6e649e65 4585The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4586whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4587action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4588macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4589in Actions}).
bfa74976
RS
4590
4591The Bison parser expects to report the error by calling an error
4592reporting function named @code{yyerror}, which you must supply. It is
4593called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4594receives one argument. For a syntax error, the string is normally
4595@w{@code{"syntax error"}}.
bfa74976 4596
2a8d363a
AD
4597@findex %error-verbose
4598If you invoke the directive @code{%error-verbose} in the Bison
4599declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4600Section}), then Bison provides a more verbose and specific error message
6e649e65 4601string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4602
1a059451
PE
4603The parser can detect one other kind of error: memory exhaustion. This
4604can happen when the input contains constructions that are very deeply
bfa74976 4605nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4606parser normally extends its stack automatically up to a very large limit. But
4607if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4608fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4609
4610In some cases diagnostics like @w{@code{"syntax error"}} are
4611translated automatically from English to some other language before
4612they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4613
4614The following definition suffices in simple programs:
4615
4616@example
4617@group
13863333 4618void
38a92d50 4619yyerror (char const *s)
bfa74976
RS
4620@{
4621@end group
4622@group
4623 fprintf (stderr, "%s\n", s);
4624@}
4625@end group
4626@end example
4627
4628After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4629error recovery if you have written suitable error recovery grammar rules
4630(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4631immediately return 1.
4632
93724f13 4633Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4634an access to the current location.
4635This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4636parsers, but not for the Yacc parser, for historical reasons. I.e., if
4637@samp{%locations %pure-parser} is passed then the prototypes for
4638@code{yyerror} are:
4639
4640@example
38a92d50
PE
4641void yyerror (char const *msg); /* Yacc parsers. */
4642void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4643@end example
4644
feeb0eda 4645If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4646
4647@example
b317297e
PE
4648void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4649void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4650@end example
4651
fa7e68c3 4652Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4653convention for absolutely pure parsers, i.e., when the calling
4654convention of @code{yylex} @emph{and} the calling convention of
4655@code{%pure-parser} are pure. I.e.:
4656
4657@example
4658/* Location tracking. */
4659%locations
4660/* Pure yylex. */
4661%pure-parser
feeb0eda 4662%lex-param @{int *nastiness@}
2a8d363a 4663/* Pure yyparse. */
feeb0eda
PE
4664%parse-param @{int *nastiness@}
4665%parse-param @{int *randomness@}
2a8d363a
AD
4666@end example
4667
4668@noindent
4669results in the following signatures for all the parser kinds:
4670
4671@example
4672int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4673int yyparse (int *nastiness, int *randomness);
93724f13
AD
4674void yyerror (YYLTYPE *locp,
4675 int *nastiness, int *randomness,
38a92d50 4676 char const *msg);
2a8d363a
AD
4677@end example
4678
1c0c3e95 4679@noindent
38a92d50
PE
4680The prototypes are only indications of how the code produced by Bison
4681uses @code{yyerror}. Bison-generated code always ignores the returned
4682value, so @code{yyerror} can return any type, including @code{void}.
4683Also, @code{yyerror} can be a variadic function; that is why the
4684message is always passed last.
4685
4686Traditionally @code{yyerror} returns an @code{int} that is always
4687ignored, but this is purely for historical reasons, and @code{void} is
4688preferable since it more accurately describes the return type for
4689@code{yyerror}.
93724f13 4690
bfa74976
RS
4691@vindex yynerrs
4692The variable @code{yynerrs} contains the number of syntax errors
4693encountered so far. Normally this variable is global; but if you
704a47c4
AD
4694request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4695then it is a local variable which only the actions can access.
bfa74976 4696
342b8b6e 4697@node Action Features
bfa74976
RS
4698@section Special Features for Use in Actions
4699@cindex summary, action features
4700@cindex action features summary
4701
4702Here is a table of Bison constructs, variables and macros that
4703are useful in actions.
4704
18b519c0 4705@deffn {Variable} $$
bfa74976
RS
4706Acts like a variable that contains the semantic value for the
4707grouping made by the current rule. @xref{Actions}.
18b519c0 4708@end deffn
bfa74976 4709
18b519c0 4710@deffn {Variable} $@var{n}
bfa74976
RS
4711Acts like a variable that contains the semantic value for the
4712@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4713@end deffn
bfa74976 4714
18b519c0 4715@deffn {Variable} $<@var{typealt}>$
bfa74976 4716Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4717specified by the @code{%union} declaration. @xref{Action Types, ,Data
4718Types of Values in Actions}.
18b519c0 4719@end deffn
bfa74976 4720
18b519c0 4721@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4722Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4723union specified by the @code{%union} declaration.
e0c471a9 4724@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4725@end deffn
bfa74976 4726
18b519c0 4727@deffn {Macro} YYABORT;
bfa74976
RS
4728Return immediately from @code{yyparse}, indicating failure.
4729@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4730@end deffn
bfa74976 4731
18b519c0 4732@deffn {Macro} YYACCEPT;
bfa74976
RS
4733Return immediately from @code{yyparse}, indicating success.
4734@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4735@end deffn
bfa74976 4736
18b519c0 4737@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4738@findex YYBACKUP
4739Unshift a token. This macro is allowed only for rules that reduce
4740a single value, and only when there is no look-ahead token.
c827f760 4741It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4742It installs a look-ahead token with token type @var{token} and
4743semantic value @var{value}; then it discards the value that was
4744going to be reduced by this rule.
4745
4746If the macro is used when it is not valid, such as when there is
4747a look-ahead token already, then it reports a syntax error with
4748a message @samp{cannot back up} and performs ordinary error
4749recovery.
4750
4751In either case, the rest of the action is not executed.
18b519c0 4752@end deffn
bfa74976 4753
18b519c0 4754@deffn {Macro} YYEMPTY
bfa74976
RS
4755@vindex YYEMPTY
4756Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4757@end deffn
bfa74976 4758
18b519c0 4759@deffn {Macro} YYERROR;
bfa74976
RS
4760@findex YYERROR
4761Cause an immediate syntax error. This statement initiates error
4762recovery just as if the parser itself had detected an error; however, it
4763does not call @code{yyerror}, and does not print any message. If you
4764want to print an error message, call @code{yyerror} explicitly before
4765the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4766@end deffn
bfa74976 4767
18b519c0 4768@deffn {Macro} YYRECOVERING
bfa74976
RS
4769This macro stands for an expression that has the value 1 when the parser
4770is recovering from a syntax error, and 0 the rest of the time.
4771@xref{Error Recovery}.
18b519c0 4772@end deffn
bfa74976 4773
18b519c0 4774@deffn {Variable} yychar
bfa74976
RS
4775Variable containing the current look-ahead token. (In a pure parser,
4776this is actually a local variable within @code{yyparse}.) When there is
4777no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4778@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4779@end deffn
bfa74976 4780
18b519c0 4781@deffn {Macro} yyclearin;
bfa74976
RS
4782Discard the current look-ahead token. This is useful primarily in
4783error rules. @xref{Error Recovery}.
18b519c0 4784@end deffn
bfa74976 4785
18b519c0 4786@deffn {Macro} yyerrok;
bfa74976 4787Resume generating error messages immediately for subsequent syntax
13863333 4788errors. This is useful primarily in error rules.
bfa74976 4789@xref{Error Recovery}.
18b519c0 4790@end deffn
bfa74976 4791
18b519c0 4792@deffn {Value} @@$
847bf1f5 4793@findex @@$
95923bd6 4794Acts like a structure variable containing information on the textual location
847bf1f5
AD
4795of the grouping made by the current rule. @xref{Locations, ,
4796Tracking Locations}.
bfa74976 4797
847bf1f5
AD
4798@c Check if those paragraphs are still useful or not.
4799
4800@c @example
4801@c struct @{
4802@c int first_line, last_line;
4803@c int first_column, last_column;
4804@c @};
4805@c @end example
4806
4807@c Thus, to get the starting line number of the third component, you would
4808@c use @samp{@@3.first_line}.
bfa74976 4809
847bf1f5
AD
4810@c In order for the members of this structure to contain valid information,
4811@c you must make @code{yylex} supply this information about each token.
4812@c If you need only certain members, then @code{yylex} need only fill in
4813@c those members.
bfa74976 4814
847bf1f5 4815@c The use of this feature makes the parser noticeably slower.
18b519c0 4816@end deffn
847bf1f5 4817
18b519c0 4818@deffn {Value} @@@var{n}
847bf1f5 4819@findex @@@var{n}
95923bd6 4820Acts like a structure variable containing information on the textual location
847bf1f5
AD
4821of the @var{n}th component of the current rule. @xref{Locations, ,
4822Tracking Locations}.
18b519c0 4823@end deffn
bfa74976 4824
f7ab6a50
PE
4825@node Internationalization
4826@section Parser Internationalization
4827@cindex internationalization
4828@cindex i18n
4829@cindex NLS
4830@cindex gettext
4831@cindex bison-po
4832
4833A Bison-generated parser can print diagnostics, including error and
4834tracing messages. By default, they appear in English. However, Bison
4835also supports outputting diagnostics in the user's native language.
4836To make this work, the user should set the usual environment
30757c8c
PE
4837variables. @xref{Users, , The User's View, gettext, GNU
4838@code{gettext} utilities}. For
f7ab6a50
PE
4839example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might set
4840the user's locale to French Canadian using the @acronym{UTF}-8
4841encoding. The exact set of available locales depends on the user's
4842installation.
4843
4844The maintainer of a package that uses a Bison-generated parser enables
4845the internationalization of the parser's output through the following
4846steps. Here we assume a package that uses @acronym{GNU} Autoconf and
4847@acronym{GNU} Automake.
4848
4849@enumerate
4850@item
30757c8c 4851@cindex bison-i18n.m4
f7ab6a50
PE
4852Into the directory containing the @acronym{GNU} Autoconf macros used
4853by the package---often called @file{m4}---copy the
4854@file{bison-i18n.m4} file installed by Bison under
4855@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
4856For example:
4857
4858@example
4859cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
4860@end example
4861
4862@item
30757c8c
PE
4863@findex BISON_I18N
4864@vindex BISON_LOCALEDIR
4865@vindex YYENABLE_NLS
f7ab6a50
PE
4866In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
4867invocation, add an invocation of @code{BISON_I18N}. This macro is
4868defined in the file @file{bison-i18n.m4} that you copied earlier. It
4869causes @samp{configure} to find the value of the
30757c8c
PE
4870@code{BISON_LOCALEDIR} variable, and it defines the source-language
4871symbol @code{YYENABLE_NLS} to enable translations in the
4872Bison-generated parser.
f7ab6a50
PE
4873
4874@item
4875In the @code{main} function of your program, designate the directory
4876containing Bison's runtime message catalog, through a call to
4877@samp{bindtextdomain} with domain name @samp{bison-runtime}.
4878For example:
4879
4880@example
4881bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
4882@end example
4883
4884Typically this appears after any other call @code{bindtextdomain
4885(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
4886@samp{BISON_LOCALEDIR} to be defined as a string through the
4887@file{Makefile}.
4888
4889@item
4890In the @file{Makefile.am} that controls the compilation of the @code{main}
4891function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
4892either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
4893
4894@example
4895DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4896@end example
4897
4898or:
4899
4900@example
4901AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4902@end example
4903
4904@item
4905Finally, invoke the command @command{autoreconf} to generate the build
4906infrastructure.
4907@end enumerate
4908
bfa74976 4909
342b8b6e 4910@node Algorithm
13863333
AD
4911@chapter The Bison Parser Algorithm
4912@cindex Bison parser algorithm
bfa74976
RS
4913@cindex algorithm of parser
4914@cindex shifting
4915@cindex reduction
4916@cindex parser stack
4917@cindex stack, parser
4918
4919As Bison reads tokens, it pushes them onto a stack along with their
4920semantic values. The stack is called the @dfn{parser stack}. Pushing a
4921token is traditionally called @dfn{shifting}.
4922
4923For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4924@samp{3} to come. The stack will have four elements, one for each token
4925that was shifted.
4926
4927But the stack does not always have an element for each token read. When
4928the last @var{n} tokens and groupings shifted match the components of a
4929grammar rule, they can be combined according to that rule. This is called
4930@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4931single grouping whose symbol is the result (left hand side) of that rule.
4932Running the rule's action is part of the process of reduction, because this
4933is what computes the semantic value of the resulting grouping.
4934
4935For example, if the infix calculator's parser stack contains this:
4936
4937@example
49381 + 5 * 3
4939@end example
4940
4941@noindent
4942and the next input token is a newline character, then the last three
4943elements can be reduced to 15 via the rule:
4944
4945@example
4946expr: expr '*' expr;
4947@end example
4948
4949@noindent
4950Then the stack contains just these three elements:
4951
4952@example
49531 + 15
4954@end example
4955
4956@noindent
4957At this point, another reduction can be made, resulting in the single value
495816. Then the newline token can be shifted.
4959
4960The parser tries, by shifts and reductions, to reduce the entire input down
4961to a single grouping whose symbol is the grammar's start-symbol
4962(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4963
4964This kind of parser is known in the literature as a bottom-up parser.
4965
4966@menu
4967* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4968* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4969* Precedence:: Operator precedence works by resolving conflicts.
4970* Contextual Precedence:: When an operator's precedence depends on context.
4971* Parser States:: The parser is a finite-state-machine with stack.
4972* Reduce/Reduce:: When two rules are applicable in the same situation.
4973* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4974* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 4975* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
4976@end menu
4977
342b8b6e 4978@node Look-Ahead
bfa74976
RS
4979@section Look-Ahead Tokens
4980@cindex look-ahead token
4981
4982The Bison parser does @emph{not} always reduce immediately as soon as the
4983last @var{n} tokens and groupings match a rule. This is because such a
4984simple strategy is inadequate to handle most languages. Instead, when a
4985reduction is possible, the parser sometimes ``looks ahead'' at the next
4986token in order to decide what to do.
4987
4988When a token is read, it is not immediately shifted; first it becomes the
4989@dfn{look-ahead token}, which is not on the stack. Now the parser can
4990perform one or more reductions of tokens and groupings on the stack, while
4991the look-ahead token remains off to the side. When no more reductions
4992should take place, the look-ahead token is shifted onto the stack. This
4993does not mean that all possible reductions have been done; depending on the
4994token type of the look-ahead token, some rules may choose to delay their
4995application.
4996
4997Here is a simple case where look-ahead is needed. These three rules define
4998expressions which contain binary addition operators and postfix unary
4999factorial operators (@samp{!}), and allow parentheses for grouping.
5000
5001@example
5002@group
5003expr: term '+' expr
5004 | term
5005 ;
5006@end group
5007
5008@group
5009term: '(' expr ')'
5010 | term '!'
5011 | NUMBER
5012 ;
5013@end group
5014@end example
5015
5016Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5017should be done? If the following token is @samp{)}, then the first three
5018tokens must be reduced to form an @code{expr}. This is the only valid
5019course, because shifting the @samp{)} would produce a sequence of symbols
5020@w{@code{term ')'}}, and no rule allows this.
5021
5022If the following token is @samp{!}, then it must be shifted immediately so
5023that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5024parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5025@code{expr}. It would then be impossible to shift the @samp{!} because
5026doing so would produce on the stack the sequence of symbols @code{expr
5027'!'}. No rule allows that sequence.
5028
5029@vindex yychar
5030The current look-ahead token is stored in the variable @code{yychar}.
5031@xref{Action Features, ,Special Features for Use in Actions}.
5032
342b8b6e 5033@node Shift/Reduce
bfa74976
RS
5034@section Shift/Reduce Conflicts
5035@cindex conflicts
5036@cindex shift/reduce conflicts
5037@cindex dangling @code{else}
5038@cindex @code{else}, dangling
5039
5040Suppose we are parsing a language which has if-then and if-then-else
5041statements, with a pair of rules like this:
5042
5043@example
5044@group
5045if_stmt:
5046 IF expr THEN stmt
5047 | IF expr THEN stmt ELSE stmt
5048 ;
5049@end group
5050@end example
5051
5052@noindent
5053Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5054terminal symbols for specific keyword tokens.
5055
5056When the @code{ELSE} token is read and becomes the look-ahead token, the
5057contents of the stack (assuming the input is valid) are just right for
5058reduction by the first rule. But it is also legitimate to shift the
5059@code{ELSE}, because that would lead to eventual reduction by the second
5060rule.
5061
5062This situation, where either a shift or a reduction would be valid, is
5063called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5064these conflicts by choosing to shift, unless otherwise directed by
5065operator precedence declarations. To see the reason for this, let's
5066contrast it with the other alternative.
5067
5068Since the parser prefers to shift the @code{ELSE}, the result is to attach
5069the else-clause to the innermost if-statement, making these two inputs
5070equivalent:
5071
5072@example
5073if x then if y then win (); else lose;
5074
5075if x then do; if y then win (); else lose; end;
5076@end example
5077
5078But if the parser chose to reduce when possible rather than shift, the
5079result would be to attach the else-clause to the outermost if-statement,
5080making these two inputs equivalent:
5081
5082@example
5083if x then if y then win (); else lose;
5084
5085if x then do; if y then win (); end; else lose;
5086@end example
5087
5088The conflict exists because the grammar as written is ambiguous: either
5089parsing of the simple nested if-statement is legitimate. The established
5090convention is that these ambiguities are resolved by attaching the
5091else-clause to the innermost if-statement; this is what Bison accomplishes
5092by choosing to shift rather than reduce. (It would ideally be cleaner to
5093write an unambiguous grammar, but that is very hard to do in this case.)
5094This particular ambiguity was first encountered in the specifications of
5095Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5096
5097To avoid warnings from Bison about predictable, legitimate shift/reduce
5098conflicts, use the @code{%expect @var{n}} declaration. There will be no
5099warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5100@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5101
5102The definition of @code{if_stmt} above is solely to blame for the
5103conflict, but the conflict does not actually appear without additional
5104rules. Here is a complete Bison input file that actually manifests the
5105conflict:
5106
5107@example
5108@group
5109%token IF THEN ELSE variable
5110%%
5111@end group
5112@group
5113stmt: expr
5114 | if_stmt
5115 ;
5116@end group
5117
5118@group
5119if_stmt:
5120 IF expr THEN stmt
5121 | IF expr THEN stmt ELSE stmt
5122 ;
5123@end group
5124
5125expr: variable
5126 ;
5127@end example
5128
342b8b6e 5129@node Precedence
bfa74976
RS
5130@section Operator Precedence
5131@cindex operator precedence
5132@cindex precedence of operators
5133
5134Another situation where shift/reduce conflicts appear is in arithmetic
5135expressions. Here shifting is not always the preferred resolution; the
5136Bison declarations for operator precedence allow you to specify when to
5137shift and when to reduce.
5138
5139@menu
5140* Why Precedence:: An example showing why precedence is needed.
5141* Using Precedence:: How to specify precedence in Bison grammars.
5142* Precedence Examples:: How these features are used in the previous example.
5143* How Precedence:: How they work.
5144@end menu
5145
342b8b6e 5146@node Why Precedence
bfa74976
RS
5147@subsection When Precedence is Needed
5148
5149Consider the following ambiguous grammar fragment (ambiguous because the
5150input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5151
5152@example
5153@group
5154expr: expr '-' expr
5155 | expr '*' expr
5156 | expr '<' expr
5157 | '(' expr ')'
5158 @dots{}
5159 ;
5160@end group
5161@end example
5162
5163@noindent
5164Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5165should it reduce them via the rule for the subtraction operator? It
5166depends on the next token. Of course, if the next token is @samp{)}, we
5167must reduce; shifting is invalid because no single rule can reduce the
5168token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5169the next token is @samp{*} or @samp{<}, we have a choice: either
5170shifting or reduction would allow the parse to complete, but with
5171different results.
5172
5173To decide which one Bison should do, we must consider the results. If
5174the next operator token @var{op} is shifted, then it must be reduced
5175first in order to permit another opportunity to reduce the difference.
5176The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5177hand, if the subtraction is reduced before shifting @var{op}, the result
5178is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5179reduce should depend on the relative precedence of the operators
5180@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5181@samp{<}.
bfa74976
RS
5182
5183@cindex associativity
5184What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5185@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5186operators we prefer the former, which is called @dfn{left association}.
5187The latter alternative, @dfn{right association}, is desirable for
5188assignment operators. The choice of left or right association is a
5189matter of whether the parser chooses to shift or reduce when the stack
5190contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5191makes right-associativity.
bfa74976 5192
342b8b6e 5193@node Using Precedence
bfa74976
RS
5194@subsection Specifying Operator Precedence
5195@findex %left
5196@findex %right
5197@findex %nonassoc
5198
5199Bison allows you to specify these choices with the operator precedence
5200declarations @code{%left} and @code{%right}. Each such declaration
5201contains a list of tokens, which are operators whose precedence and
5202associativity is being declared. The @code{%left} declaration makes all
5203those operators left-associative and the @code{%right} declaration makes
5204them right-associative. A third alternative is @code{%nonassoc}, which
5205declares that it is a syntax error to find the same operator twice ``in a
5206row''.
5207
5208The relative precedence of different operators is controlled by the
5209order in which they are declared. The first @code{%left} or
5210@code{%right} declaration in the file declares the operators whose
5211precedence is lowest, the next such declaration declares the operators
5212whose precedence is a little higher, and so on.
5213
342b8b6e 5214@node Precedence Examples
bfa74976
RS
5215@subsection Precedence Examples
5216
5217In our example, we would want the following declarations:
5218
5219@example
5220%left '<'
5221%left '-'
5222%left '*'
5223@end example
5224
5225In a more complete example, which supports other operators as well, we
5226would declare them in groups of equal precedence. For example, @code{'+'} is
5227declared with @code{'-'}:
5228
5229@example
5230%left '<' '>' '=' NE LE GE
5231%left '+' '-'
5232%left '*' '/'
5233@end example
5234
5235@noindent
5236(Here @code{NE} and so on stand for the operators for ``not equal''
5237and so on. We assume that these tokens are more than one character long
5238and therefore are represented by names, not character literals.)
5239
342b8b6e 5240@node How Precedence
bfa74976
RS
5241@subsection How Precedence Works
5242
5243The first effect of the precedence declarations is to assign precedence
5244levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5245precedence levels to certain rules: each rule gets its precedence from
5246the last terminal symbol mentioned in the components. (You can also
5247specify explicitly the precedence of a rule. @xref{Contextual
5248Precedence, ,Context-Dependent Precedence}.)
5249
5250Finally, the resolution of conflicts works by comparing the precedence
5251of the rule being considered with that of the look-ahead token. If the
5252token's precedence is higher, the choice is to shift. If the rule's
5253precedence is higher, the choice is to reduce. If they have equal
5254precedence, the choice is made based on the associativity of that
5255precedence level. The verbose output file made by @samp{-v}
5256(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5257resolved.
bfa74976
RS
5258
5259Not all rules and not all tokens have precedence. If either the rule or
5260the look-ahead token has no precedence, then the default is to shift.
5261
342b8b6e 5262@node Contextual Precedence
bfa74976
RS
5263@section Context-Dependent Precedence
5264@cindex context-dependent precedence
5265@cindex unary operator precedence
5266@cindex precedence, context-dependent
5267@cindex precedence, unary operator
5268@findex %prec
5269
5270Often the precedence of an operator depends on the context. This sounds
5271outlandish at first, but it is really very common. For example, a minus
5272sign typically has a very high precedence as a unary operator, and a
5273somewhat lower precedence (lower than multiplication) as a binary operator.
5274
5275The Bison precedence declarations, @code{%left}, @code{%right} and
5276@code{%nonassoc}, can only be used once for a given token; so a token has
5277only one precedence declared in this way. For context-dependent
5278precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5279modifier for rules.
bfa74976
RS
5280
5281The @code{%prec} modifier declares the precedence of a particular rule by
5282specifying a terminal symbol whose precedence should be used for that rule.
5283It's not necessary for that symbol to appear otherwise in the rule. The
5284modifier's syntax is:
5285
5286@example
5287%prec @var{terminal-symbol}
5288@end example
5289
5290@noindent
5291and it is written after the components of the rule. Its effect is to
5292assign the rule the precedence of @var{terminal-symbol}, overriding
5293the precedence that would be deduced for it in the ordinary way. The
5294altered rule precedence then affects how conflicts involving that rule
5295are resolved (@pxref{Precedence, ,Operator Precedence}).
5296
5297Here is how @code{%prec} solves the problem of unary minus. First, declare
5298a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5299are no tokens of this type, but the symbol serves to stand for its
5300precedence:
5301
5302@example
5303@dots{}
5304%left '+' '-'
5305%left '*'
5306%left UMINUS
5307@end example
5308
5309Now the precedence of @code{UMINUS} can be used in specific rules:
5310
5311@example
5312@group
5313exp: @dots{}
5314 | exp '-' exp
5315 @dots{}
5316 | '-' exp %prec UMINUS
5317@end group
5318@end example
5319
91d2c560 5320@ifset defaultprec
39a06c25
PE
5321If you forget to append @code{%prec UMINUS} to the rule for unary
5322minus, Bison silently assumes that minus has its usual precedence.
5323This kind of problem can be tricky to debug, since one typically
5324discovers the mistake only by testing the code.
5325
22fccf95 5326The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5327this kind of problem systematically. It causes rules that lack a
5328@code{%prec} modifier to have no precedence, even if the last terminal
5329symbol mentioned in their components has a declared precedence.
5330
22fccf95 5331If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5332for all rules that participate in precedence conflict resolution.
5333Then you will see any shift/reduce conflict until you tell Bison how
5334to resolve it, either by changing your grammar or by adding an
5335explicit precedence. This will probably add declarations to the
5336grammar, but it helps to protect against incorrect rule precedences.
5337
22fccf95
PE
5338The effect of @code{%no-default-prec;} can be reversed by giving
5339@code{%default-prec;}, which is the default.
91d2c560 5340@end ifset
39a06c25 5341
342b8b6e 5342@node Parser States
bfa74976
RS
5343@section Parser States
5344@cindex finite-state machine
5345@cindex parser state
5346@cindex state (of parser)
5347
5348The function @code{yyparse} is implemented using a finite-state machine.
5349The values pushed on the parser stack are not simply token type codes; they
5350represent the entire sequence of terminal and nonterminal symbols at or
5351near the top of the stack. The current state collects all the information
5352about previous input which is relevant to deciding what to do next.
5353
5354Each time a look-ahead token is read, the current parser state together
5355with the type of look-ahead token are looked up in a table. This table
5356entry can say, ``Shift the look-ahead token.'' In this case, it also
5357specifies the new parser state, which is pushed onto the top of the
5358parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5359This means that a certain number of tokens or groupings are taken off
5360the top of the stack, and replaced by one grouping. In other words,
5361that number of states are popped from the stack, and one new state is
5362pushed.
5363
5364There is one other alternative: the table can say that the look-ahead token
5365is erroneous in the current state. This causes error processing to begin
5366(@pxref{Error Recovery}).
5367
342b8b6e 5368@node Reduce/Reduce
bfa74976
RS
5369@section Reduce/Reduce Conflicts
5370@cindex reduce/reduce conflict
5371@cindex conflicts, reduce/reduce
5372
5373A reduce/reduce conflict occurs if there are two or more rules that apply
5374to the same sequence of input. This usually indicates a serious error
5375in the grammar.
5376
5377For example, here is an erroneous attempt to define a sequence
5378of zero or more @code{word} groupings.
5379
5380@example
5381sequence: /* empty */
5382 @{ printf ("empty sequence\n"); @}
5383 | maybeword
5384 | sequence word
5385 @{ printf ("added word %s\n", $2); @}
5386 ;
5387
5388maybeword: /* empty */
5389 @{ printf ("empty maybeword\n"); @}
5390 | word
5391 @{ printf ("single word %s\n", $1); @}
5392 ;
5393@end example
5394
5395@noindent
5396The error is an ambiguity: there is more than one way to parse a single
5397@code{word} into a @code{sequence}. It could be reduced to a
5398@code{maybeword} and then into a @code{sequence} via the second rule.
5399Alternatively, nothing-at-all could be reduced into a @code{sequence}
5400via the first rule, and this could be combined with the @code{word}
5401using the third rule for @code{sequence}.
5402
5403There is also more than one way to reduce nothing-at-all into a
5404@code{sequence}. This can be done directly via the first rule,
5405or indirectly via @code{maybeword} and then the second rule.
5406
5407You might think that this is a distinction without a difference, because it
5408does not change whether any particular input is valid or not. But it does
5409affect which actions are run. One parsing order runs the second rule's
5410action; the other runs the first rule's action and the third rule's action.
5411In this example, the output of the program changes.
5412
5413Bison resolves a reduce/reduce conflict by choosing to use the rule that
5414appears first in the grammar, but it is very risky to rely on this. Every
5415reduce/reduce conflict must be studied and usually eliminated. Here is the
5416proper way to define @code{sequence}:
5417
5418@example
5419sequence: /* empty */
5420 @{ printf ("empty sequence\n"); @}
5421 | sequence word
5422 @{ printf ("added word %s\n", $2); @}
5423 ;
5424@end example
5425
5426Here is another common error that yields a reduce/reduce conflict:
5427
5428@example
5429sequence: /* empty */
5430 | sequence words
5431 | sequence redirects
5432 ;
5433
5434words: /* empty */
5435 | words word
5436 ;
5437
5438redirects:/* empty */
5439 | redirects redirect
5440 ;
5441@end example
5442
5443@noindent
5444The intention here is to define a sequence which can contain either
5445@code{word} or @code{redirect} groupings. The individual definitions of
5446@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5447three together make a subtle ambiguity: even an empty input can be parsed
5448in infinitely many ways!
5449
5450Consider: nothing-at-all could be a @code{words}. Or it could be two
5451@code{words} in a row, or three, or any number. It could equally well be a
5452@code{redirects}, or two, or any number. Or it could be a @code{words}
5453followed by three @code{redirects} and another @code{words}. And so on.
5454
5455Here are two ways to correct these rules. First, to make it a single level
5456of sequence:
5457
5458@example
5459sequence: /* empty */
5460 | sequence word
5461 | sequence redirect
5462 ;
5463@end example
5464
5465Second, to prevent either a @code{words} or a @code{redirects}
5466from being empty:
5467
5468@example
5469sequence: /* empty */
5470 | sequence words
5471 | sequence redirects
5472 ;
5473
5474words: word
5475 | words word
5476 ;
5477
5478redirects:redirect
5479 | redirects redirect
5480 ;
5481@end example
5482
342b8b6e 5483@node Mystery Conflicts
bfa74976
RS
5484@section Mysterious Reduce/Reduce Conflicts
5485
5486Sometimes reduce/reduce conflicts can occur that don't look warranted.
5487Here is an example:
5488
5489@example
5490@group
5491%token ID
5492
5493%%
5494def: param_spec return_spec ','
5495 ;
5496param_spec:
5497 type
5498 | name_list ':' type
5499 ;
5500@end group
5501@group
5502return_spec:
5503 type
5504 | name ':' type
5505 ;
5506@end group
5507@group
5508type: ID
5509 ;
5510@end group
5511@group
5512name: ID
5513 ;
5514name_list:
5515 name
5516 | name ',' name_list
5517 ;
5518@end group
5519@end example
5520
5521It would seem that this grammar can be parsed with only a single token
13863333 5522of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5523a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5524@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5525
c827f760
PE
5526@cindex @acronym{LR}(1)
5527@cindex @acronym{LALR}(1)
bfa74976 5528However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5529@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5530an @code{ID}
bfa74976
RS
5531at the beginning of a @code{param_spec} and likewise at the beginning of
5532a @code{return_spec}, are similar enough that Bison assumes they are the
5533same. They appear similar because the same set of rules would be
5534active---the rule for reducing to a @code{name} and that for reducing to
5535a @code{type}. Bison is unable to determine at that stage of processing
5536that the rules would require different look-ahead tokens in the two
5537contexts, so it makes a single parser state for them both. Combining
5538the two contexts causes a conflict later. In parser terminology, this
c827f760 5539occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5540
5541In general, it is better to fix deficiencies than to document them. But
5542this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5543generators that can handle @acronym{LR}(1) grammars are hard to write
5544and tend to
bfa74976
RS
5545produce parsers that are very large. In practice, Bison is more useful
5546as it is now.
5547
5548When the problem arises, you can often fix it by identifying the two
a220f555
MA
5549parser states that are being confused, and adding something to make them
5550look distinct. In the above example, adding one rule to
bfa74976
RS
5551@code{return_spec} as follows makes the problem go away:
5552
5553@example
5554@group
5555%token BOGUS
5556@dots{}
5557%%
5558@dots{}
5559return_spec:
5560 type
5561 | name ':' type
5562 /* This rule is never used. */
5563 | ID BOGUS
5564 ;
5565@end group
5566@end example
5567
5568This corrects the problem because it introduces the possibility of an
5569additional active rule in the context after the @code{ID} at the beginning of
5570@code{return_spec}. This rule is not active in the corresponding context
5571in a @code{param_spec}, so the two contexts receive distinct parser states.
5572As long as the token @code{BOGUS} is never generated by @code{yylex},
5573the added rule cannot alter the way actual input is parsed.
5574
5575In this particular example, there is another way to solve the problem:
5576rewrite the rule for @code{return_spec} to use @code{ID} directly
5577instead of via @code{name}. This also causes the two confusing
5578contexts to have different sets of active rules, because the one for
5579@code{return_spec} activates the altered rule for @code{return_spec}
5580rather than the one for @code{name}.
5581
5582@example
5583param_spec:
5584 type
5585 | name_list ':' type
5586 ;
5587return_spec:
5588 type
5589 | ID ':' type
5590 ;
5591@end example
5592
e054b190
PE
5593For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5594generators, please see:
5595Frank DeRemer and Thomas Pennello, Efficient Computation of
5596@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5597Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5598pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5599
fae437e8 5600@node Generalized LR Parsing
c827f760
PE
5601@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5602@cindex @acronym{GLR} parsing
5603@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5604@cindex ambiguous grammars
5605@cindex non-deterministic parsing
5606
fae437e8
AD
5607Bison produces @emph{deterministic} parsers that choose uniquely
5608when to reduce and which reduction to apply
8dd162d3 5609based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5610As a result, normal Bison handles a proper subset of the family of
5611context-free languages.
fae437e8 5612Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5613sequence of reductions cannot have deterministic parsers in this sense.
5614The same is true of languages that require more than one symbol of
8dd162d3 5615look-ahead, since the parser lacks the information necessary to make a
676385e2 5616decision at the point it must be made in a shift-reduce parser.
fae437e8 5617Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5618there are languages where Bison's particular choice of how to
5619summarize the input seen so far loses necessary information.
5620
5621When you use the @samp{%glr-parser} declaration in your grammar file,
5622Bison generates a parser that uses a different algorithm, called
c827f760
PE
5623Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5624parser uses the same basic
676385e2
PH
5625algorithm for parsing as an ordinary Bison parser, but behaves
5626differently in cases where there is a shift-reduce conflict that has not
fae437e8 5627been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5628reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5629situation, it
fae437e8 5630effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5631shift or reduction. These parsers then proceed as usual, consuming
5632tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5633and split further, with the result that instead of a sequence of states,
c827f760 5634a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5635
5636In effect, each stack represents a guess as to what the proper parse
5637is. Additional input may indicate that a guess was wrong, in which case
5638the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5639actions generated in each stack are saved, rather than being executed
676385e2 5640immediately. When a stack disappears, its saved semantic actions never
fae437e8 5641get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5642their sets of semantic actions are both saved with the state that
5643results from the reduction. We say that two stacks are equivalent
fae437e8 5644when they both represent the same sequence of states,
676385e2
PH
5645and each pair of corresponding states represents a
5646grammar symbol that produces the same segment of the input token
5647stream.
5648
5649Whenever the parser makes a transition from having multiple
c827f760 5650states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5651algorithm, after resolving and executing the saved-up actions.
5652At this transition, some of the states on the stack will have semantic
5653values that are sets (actually multisets) of possible actions. The
5654parser tries to pick one of the actions by first finding one whose rule
5655has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5656declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5657precedence, but there the same merging function is declared for both
fae437e8 5658rules by the @samp{%merge} declaration,
676385e2
PH
5659Bison resolves and evaluates both and then calls the merge function on
5660the result. Otherwise, it reports an ambiguity.
5661
c827f760
PE
5662It is possible to use a data structure for the @acronym{GLR} parsing tree that
5663permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5664size of the input), any unambiguous (not necessarily
5665@acronym{LALR}(1)) grammar in
fae437e8 5666quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5667context-free grammar in cubic worst-case time. However, Bison currently
5668uses a simpler data structure that requires time proportional to the
5669length of the input times the maximum number of stacks required for any
5670prefix of the input. Thus, really ambiguous or non-deterministic
5671grammars can require exponential time and space to process. Such badly
5672behaving examples, however, are not generally of practical interest.
5673Usually, non-determinism in a grammar is local---the parser is ``in
5674doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5675structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5676grammar, in particular, it is only slightly slower than with the default
5677Bison parser.
5678
fa7e68c3 5679For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5680Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5681Generalised @acronym{LR} Parsers, Royal Holloway, University of
5682London, Department of Computer Science, TR-00-12,
5683@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5684(2000-12-24).
5685
1a059451
PE
5686@node Memory Management
5687@section Memory Management, and How to Avoid Memory Exhaustion
5688@cindex memory exhaustion
5689@cindex memory management
bfa74976
RS
5690@cindex stack overflow
5691@cindex parser stack overflow
5692@cindex overflow of parser stack
5693
1a059451 5694The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5695not reduced. When this happens, the parser function @code{yyparse}
1a059451 5696calls @code{yyerror} and then returns 2.
bfa74976 5697
c827f760 5698Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5699usually results from using a right recursion instead of a left
5700recursion, @xref{Recursion, ,Recursive Rules}.
5701
bfa74976
RS
5702@vindex YYMAXDEPTH
5703By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5704parser stack can become before memory is exhausted. Define the
bfa74976
RS
5705macro with a value that is an integer. This value is the maximum number
5706of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5707
5708The stack space allowed is not necessarily allocated. If you specify a
1a059451 5709large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5710stack at first, and then makes it bigger by stages as needed. This
5711increasing allocation happens automatically and silently. Therefore,
5712you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5713space for ordinary inputs that do not need much stack.
5714
d7e14fc0
PE
5715However, do not allow @code{YYMAXDEPTH} to be a value so large that
5716arithmetic overflow could occur when calculating the size of the stack
5717space. Also, do not allow @code{YYMAXDEPTH} to be less than
5718@code{YYINITDEPTH}.
5719
bfa74976
RS
5720@cindex default stack limit
5721The default value of @code{YYMAXDEPTH}, if you do not define it, is
572210000.
5723
5724@vindex YYINITDEPTH
5725You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5726macro @code{YYINITDEPTH} to a positive integer. For the C
5727@acronym{LALR}(1) parser, this value must be a compile-time constant
5728unless you are assuming C99 or some other target language or compiler
5729that allows variable-length arrays. The default is 200.
5730
1a059451 5731Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5732
d1a1114f 5733@c FIXME: C++ output.
c827f760 5734Because of semantical differences between C and C++, the
1a059451
PE
5735@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5736by C++ compilers. In this precise case (compiling a C parser as C++) you are
5737suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5738this deficiency in a future release.
d1a1114f 5739
342b8b6e 5740@node Error Recovery
bfa74976
RS
5741@chapter Error Recovery
5742@cindex error recovery
5743@cindex recovery from errors
5744
6e649e65 5745It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5746error. For example, a compiler should recover sufficiently to parse the
5747rest of the input file and check it for errors; a calculator should accept
5748another expression.
5749
5750In a simple interactive command parser where each input is one line, it may
5751be sufficient to allow @code{yyparse} to return 1 on error and have the
5752caller ignore the rest of the input line when that happens (and then call
5753@code{yyparse} again). But this is inadequate for a compiler, because it
5754forgets all the syntactic context leading up to the error. A syntax error
5755deep within a function in the compiler input should not cause the compiler
5756to treat the following line like the beginning of a source file.
5757
5758@findex error
5759You can define how to recover from a syntax error by writing rules to
5760recognize the special token @code{error}. This is a terminal symbol that
5761is always defined (you need not declare it) and reserved for error
5762handling. The Bison parser generates an @code{error} token whenever a
5763syntax error happens; if you have provided a rule to recognize this token
13863333 5764in the current context, the parse can continue.
bfa74976
RS
5765
5766For example:
5767
5768@example
5769stmnts: /* empty string */
5770 | stmnts '\n'
5771 | stmnts exp '\n'
5772 | stmnts error '\n'
5773@end example
5774
5775The fourth rule in this example says that an error followed by a newline
5776makes a valid addition to any @code{stmnts}.
5777
5778What happens if a syntax error occurs in the middle of an @code{exp}? The
5779error recovery rule, interpreted strictly, applies to the precise sequence
5780of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5781the middle of an @code{exp}, there will probably be some additional tokens
5782and subexpressions on the stack after the last @code{stmnts}, and there
5783will be tokens to read before the next newline. So the rule is not
5784applicable in the ordinary way.
5785
5786But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5787the semantic context and part of the input. First it discards states
5788and objects from the stack until it gets back to a state in which the
bfa74976 5789@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5790already parsed are discarded, back to the last complete @code{stmnts}.)
5791At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5792look-ahead token is not acceptable to be shifted next, the parser reads
5793tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5794this example, Bison reads and discards input until the next newline so
5795that the fourth rule can apply. Note that discarded symbols are
5796possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5797Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5798
5799The choice of error rules in the grammar is a choice of strategies for
5800error recovery. A simple and useful strategy is simply to skip the rest of
5801the current input line or current statement if an error is detected:
5802
5803@example
72d2299c 5804stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5805@end example
5806
5807It is also useful to recover to the matching close-delimiter of an
5808opening-delimiter that has already been parsed. Otherwise the
5809close-delimiter will probably appear to be unmatched, and generate another,
5810spurious error message:
5811
5812@example
5813primary: '(' expr ')'
5814 | '(' error ')'
5815 @dots{}
5816 ;
5817@end example
5818
5819Error recovery strategies are necessarily guesses. When they guess wrong,
5820one syntax error often leads to another. In the above example, the error
5821recovery rule guesses that an error is due to bad input within one
5822@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5823middle of a valid @code{stmnt}. After the error recovery rule recovers
5824from the first error, another syntax error will be found straightaway,
5825since the text following the spurious semicolon is also an invalid
5826@code{stmnt}.
5827
5828To prevent an outpouring of error messages, the parser will output no error
5829message for another syntax error that happens shortly after the first; only
5830after three consecutive input tokens have been successfully shifted will
5831error messages resume.
5832
5833Note that rules which accept the @code{error} token may have actions, just
5834as any other rules can.
5835
5836@findex yyerrok
5837You can make error messages resume immediately by using the macro
5838@code{yyerrok} in an action. If you do this in the error rule's action, no
5839error messages will be suppressed. This macro requires no arguments;
5840@samp{yyerrok;} is a valid C statement.
5841
5842@findex yyclearin
5843The previous look-ahead token is reanalyzed immediately after an error. If
5844this is unacceptable, then the macro @code{yyclearin} may be used to clear
5845this token. Write the statement @samp{yyclearin;} in the error rule's
5846action.
5847
6e649e65 5848For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5849called that advances the input stream to some point where parsing should
5850once again commence. The next symbol returned by the lexical scanner is
5851probably correct. The previous look-ahead token ought to be discarded
5852with @samp{yyclearin;}.
5853
5854@vindex YYRECOVERING
5855The macro @code{YYRECOVERING} stands for an expression that has the
5856value 1 when the parser is recovering from a syntax error, and 0 the
5857rest of the time. A value of 1 indicates that error messages are
5858currently suppressed for new syntax errors.
5859
342b8b6e 5860@node Context Dependency
bfa74976
RS
5861@chapter Handling Context Dependencies
5862
5863The Bison paradigm is to parse tokens first, then group them into larger
5864syntactic units. In many languages, the meaning of a token is affected by
5865its context. Although this violates the Bison paradigm, certain techniques
5866(known as @dfn{kludges}) may enable you to write Bison parsers for such
5867languages.
5868
5869@menu
5870* Semantic Tokens:: Token parsing can depend on the semantic context.
5871* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5872* Tie-in Recovery:: Lexical tie-ins have implications for how
5873 error recovery rules must be written.
5874@end menu
5875
5876(Actually, ``kludge'' means any technique that gets its job done but is
5877neither clean nor robust.)
5878
342b8b6e 5879@node Semantic Tokens
bfa74976
RS
5880@section Semantic Info in Token Types
5881
5882The C language has a context dependency: the way an identifier is used
5883depends on what its current meaning is. For example, consider this:
5884
5885@example
5886foo (x);
5887@end example
5888
5889This looks like a function call statement, but if @code{foo} is a typedef
5890name, then this is actually a declaration of @code{x}. How can a Bison
5891parser for C decide how to parse this input?
5892
c827f760 5893The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5894@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5895identifier, it looks up the current declaration of the identifier in order
5896to decide which token type to return: @code{TYPENAME} if the identifier is
5897declared as a typedef, @code{IDENTIFIER} otherwise.
5898
5899The grammar rules can then express the context dependency by the choice of
5900token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5901but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5902@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5903is @emph{not} significant, such as in declarations that can shadow a
5904typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5905accepted---there is one rule for each of the two token types.
5906
5907This technique is simple to use if the decision of which kinds of
5908identifiers to allow is made at a place close to where the identifier is
5909parsed. But in C this is not always so: C allows a declaration to
5910redeclare a typedef name provided an explicit type has been specified
5911earlier:
5912
5913@example
3a4f411f
PE
5914typedef int foo, bar;
5915int baz (void)
5916@{
5917 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
5918 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
5919 return foo (bar);
5920@}
bfa74976
RS
5921@end example
5922
5923Unfortunately, the name being declared is separated from the declaration
5924construct itself by a complicated syntactic structure---the ``declarator''.
5925
9ecbd125 5926As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5927all the nonterminal names changed: once for parsing a declaration in
5928which a typedef name can be redefined, and once for parsing a
5929declaration in which that can't be done. Here is a part of the
5930duplication, with actions omitted for brevity:
bfa74976
RS
5931
5932@example
5933initdcl:
5934 declarator maybeasm '='
5935 init
5936 | declarator maybeasm
5937 ;
5938
5939notype_initdcl:
5940 notype_declarator maybeasm '='
5941 init
5942 | notype_declarator maybeasm
5943 ;
5944@end example
5945
5946@noindent
5947Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5948cannot. The distinction between @code{declarator} and
5949@code{notype_declarator} is the same sort of thing.
5950
5951There is some similarity between this technique and a lexical tie-in
5952(described next), in that information which alters the lexical analysis is
5953changed during parsing by other parts of the program. The difference is
5954here the information is global, and is used for other purposes in the
5955program. A true lexical tie-in has a special-purpose flag controlled by
5956the syntactic context.
5957
342b8b6e 5958@node Lexical Tie-ins
bfa74976
RS
5959@section Lexical Tie-ins
5960@cindex lexical tie-in
5961
5962One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5963which is set by Bison actions, whose purpose is to alter the way tokens are
5964parsed.
5965
5966For example, suppose we have a language vaguely like C, but with a special
5967construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5968an expression in parentheses in which all integers are hexadecimal. In
5969particular, the token @samp{a1b} must be treated as an integer rather than
5970as an identifier if it appears in that context. Here is how you can do it:
5971
5972@example
5973@group
5974%@{
38a92d50
PE
5975 int hexflag;
5976 int yylex (void);
5977 void yyerror (char const *);
bfa74976
RS
5978%@}
5979%%
5980@dots{}
5981@end group
5982@group
5983expr: IDENTIFIER
5984 | constant
5985 | HEX '('
5986 @{ hexflag = 1; @}
5987 expr ')'
5988 @{ hexflag = 0;
5989 $$ = $4; @}
5990 | expr '+' expr
5991 @{ $$ = make_sum ($1, $3); @}
5992 @dots{}
5993 ;
5994@end group
5995
5996@group
5997constant:
5998 INTEGER
5999 | STRING
6000 ;
6001@end group
6002@end example
6003
6004@noindent
6005Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6006it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6007with letters are parsed as integers if possible.
6008
342b8b6e
AD
6009The declaration of @code{hexflag} shown in the prologue of the parser file
6010is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6011You must also write the code in @code{yylex} to obey the flag.
bfa74976 6012
342b8b6e 6013@node Tie-in Recovery
bfa74976
RS
6014@section Lexical Tie-ins and Error Recovery
6015
6016Lexical tie-ins make strict demands on any error recovery rules you have.
6017@xref{Error Recovery}.
6018
6019The reason for this is that the purpose of an error recovery rule is to
6020abort the parsing of one construct and resume in some larger construct.
6021For example, in C-like languages, a typical error recovery rule is to skip
6022tokens until the next semicolon, and then start a new statement, like this:
6023
6024@example
6025stmt: expr ';'
6026 | IF '(' expr ')' stmt @{ @dots{} @}
6027 @dots{}
6028 error ';'
6029 @{ hexflag = 0; @}
6030 ;
6031@end example
6032
6033If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6034construct, this error rule will apply, and then the action for the
6035completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6036remain set for the entire rest of the input, or until the next @code{hex}
6037keyword, causing identifiers to be misinterpreted as integers.
6038
6039To avoid this problem the error recovery rule itself clears @code{hexflag}.
6040
6041There may also be an error recovery rule that works within expressions.
6042For example, there could be a rule which applies within parentheses
6043and skips to the close-parenthesis:
6044
6045@example
6046@group
6047expr: @dots{}
6048 | '(' expr ')'
6049 @{ $$ = $2; @}
6050 | '(' error ')'
6051 @dots{}
6052@end group
6053@end example
6054
6055If this rule acts within the @code{hex} construct, it is not going to abort
6056that construct (since it applies to an inner level of parentheses within
6057the construct). Therefore, it should not clear the flag: the rest of
6058the @code{hex} construct should be parsed with the flag still in effect.
6059
6060What if there is an error recovery rule which might abort out of the
6061@code{hex} construct or might not, depending on circumstances? There is no
6062way you can write the action to determine whether a @code{hex} construct is
6063being aborted or not. So if you are using a lexical tie-in, you had better
6064make sure your error recovery rules are not of this kind. Each rule must
6065be such that you can be sure that it always will, or always won't, have to
6066clear the flag.
6067
ec3bc396
AD
6068@c ================================================== Debugging Your Parser
6069
342b8b6e 6070@node Debugging
bfa74976 6071@chapter Debugging Your Parser
ec3bc396
AD
6072
6073Developing a parser can be a challenge, especially if you don't
6074understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6075Algorithm}). Even so, sometimes a detailed description of the automaton
6076can help (@pxref{Understanding, , Understanding Your Parser}), or
6077tracing the execution of the parser can give some insight on why it
6078behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6079
6080@menu
6081* Understanding:: Understanding the structure of your parser.
6082* Tracing:: Tracing the execution of your parser.
6083@end menu
6084
6085@node Understanding
6086@section Understanding Your Parser
6087
6088As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6089Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6090frequent than one would hope), looking at this automaton is required to
6091tune or simply fix a parser. Bison provides two different
c827f760 6092representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6093file).
6094
6095The textual file is generated when the options @option{--report} or
6096@option{--verbose} are specified, see @xref{Invocation, , Invoking
6097Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6098the parser output file name, and adding @samp{.output} instead.
6099Therefore, if the input file is @file{foo.y}, then the parser file is
6100called @file{foo.tab.c} by default. As a consequence, the verbose
6101output file is called @file{foo.output}.
6102
6103The following grammar file, @file{calc.y}, will be used in the sequel:
6104
6105@example
6106%token NUM STR
6107%left '+' '-'
6108%left '*'
6109%%
6110exp: exp '+' exp
6111 | exp '-' exp
6112 | exp '*' exp
6113 | exp '/' exp
6114 | NUM
6115 ;
6116useless: STR;
6117%%
6118@end example
6119
88bce5a2
AD
6120@command{bison} reports:
6121
6122@example
6123calc.y: warning: 1 useless nonterminal and 1 useless rule
6124calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6125calc.y:11.10-12: warning: useless rule: useless: STR
6126calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6127@end example
6128
6129When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6130creates a file @file{calc.output} with contents detailed below. The
6131order of the output and the exact presentation might vary, but the
6132interpretation is the same.
ec3bc396
AD
6133
6134The first section includes details on conflicts that were solved thanks
6135to precedence and/or associativity:
6136
6137@example
6138Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6139Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6140Conflict in state 8 between rule 2 and token '*' resolved as shift.
6141@exdent @dots{}
6142@end example
6143
6144@noindent
6145The next section lists states that still have conflicts.
6146
6147@example
5a99098d
PE
6148State 8 conflicts: 1 shift/reduce
6149State 9 conflicts: 1 shift/reduce
6150State 10 conflicts: 1 shift/reduce
6151State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6152@end example
6153
6154@noindent
6155@cindex token, useless
6156@cindex useless token
6157@cindex nonterminal, useless
6158@cindex useless nonterminal
6159@cindex rule, useless
6160@cindex useless rule
6161The next section reports useless tokens, nonterminal and rules. Useless
6162nonterminals and rules are removed in order to produce a smaller parser,
6163but useless tokens are preserved, since they might be used by the
6164scanner (note the difference between ``useless'' and ``not used''
6165below):
6166
6167@example
6168Useless nonterminals:
6169 useless
6170
6171Terminals which are not used:
6172 STR
6173
6174Useless rules:
6175#6 useless: STR;
6176@end example
6177
6178@noindent
6179The next section reproduces the exact grammar that Bison used:
6180
6181@example
6182Grammar
6183
6184 Number, Line, Rule
88bce5a2 6185 0 5 $accept -> exp $end
ec3bc396
AD
6186 1 5 exp -> exp '+' exp
6187 2 6 exp -> exp '-' exp
6188 3 7 exp -> exp '*' exp
6189 4 8 exp -> exp '/' exp
6190 5 9 exp -> NUM
6191@end example
6192
6193@noindent
6194and reports the uses of the symbols:
6195
6196@example
6197Terminals, with rules where they appear
6198
88bce5a2 6199$end (0) 0
ec3bc396
AD
6200'*' (42) 3
6201'+' (43) 1
6202'-' (45) 2
6203'/' (47) 4
6204error (256)
6205NUM (258) 5
6206
6207Nonterminals, with rules where they appear
6208
88bce5a2 6209$accept (8)
ec3bc396
AD
6210 on left: 0
6211exp (9)
6212 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6213@end example
6214
6215@noindent
6216@cindex item
6217@cindex pointed rule
6218@cindex rule, pointed
6219Bison then proceeds onto the automaton itself, describing each state
6220with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6221item is a production rule together with a point (marked by @samp{.})
6222that the input cursor.
6223
6224@example
6225state 0
6226
88bce5a2 6227 $accept -> . exp $ (rule 0)
ec3bc396 6228
2a8d363a 6229 NUM shift, and go to state 1
ec3bc396 6230
2a8d363a 6231 exp go to state 2
ec3bc396
AD
6232@end example
6233
6234This reads as follows: ``state 0 corresponds to being at the very
6235beginning of the parsing, in the initial rule, right before the start
6236symbol (here, @code{exp}). When the parser returns to this state right
6237after having reduced a rule that produced an @code{exp}, the control
6238flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6239symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6240the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6241look-ahead triggers a syntax error.''
ec3bc396
AD
6242
6243@cindex core, item set
6244@cindex item set core
6245@cindex kernel, item set
6246@cindex item set core
6247Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6248report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6249at the beginning of any rule deriving an @code{exp}. By default Bison
6250reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6251you want to see more detail you can invoke @command{bison} with
6252@option{--report=itemset} to list all the items, include those that can
6253be derived:
6254
6255@example
6256state 0
6257
88bce5a2 6258 $accept -> . exp $ (rule 0)
ec3bc396
AD
6259 exp -> . exp '+' exp (rule 1)
6260 exp -> . exp '-' exp (rule 2)
6261 exp -> . exp '*' exp (rule 3)
6262 exp -> . exp '/' exp (rule 4)
6263 exp -> . NUM (rule 5)
6264
6265 NUM shift, and go to state 1
6266
6267 exp go to state 2
6268@end example
6269
6270@noindent
6271In the state 1...
6272
6273@example
6274state 1
6275
6276 exp -> NUM . (rule 5)
6277
2a8d363a 6278 $default reduce using rule 5 (exp)
ec3bc396
AD
6279@end example
6280
6281@noindent
8dd162d3 6282the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6283(@samp{$default}), the parser will reduce it. If it was coming from
6284state 0, then, after this reduction it will return to state 0, and will
6285jump to state 2 (@samp{exp: go to state 2}).
6286
6287@example
6288state 2
6289
88bce5a2 6290 $accept -> exp . $ (rule 0)
ec3bc396
AD
6291 exp -> exp . '+' exp (rule 1)
6292 exp -> exp . '-' exp (rule 2)
6293 exp -> exp . '*' exp (rule 3)
6294 exp -> exp . '/' exp (rule 4)
6295
2a8d363a
AD
6296 $ shift, and go to state 3
6297 '+' shift, and go to state 4
6298 '-' shift, and go to state 5
6299 '*' shift, and go to state 6
6300 '/' shift, and go to state 7
ec3bc396
AD
6301@end example
6302
6303@noindent
6304In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6305because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6306@samp{+}, it will be shifted on the parse stack, and the automaton
6307control will jump to state 4, corresponding to the item @samp{exp -> exp
6308'+' . exp}. Since there is no default action, any other token than
6e649e65 6309those listed above will trigger a syntax error.
ec3bc396
AD
6310
6311The state 3 is named the @dfn{final state}, or the @dfn{accepting
6312state}:
6313
6314@example
6315state 3
6316
88bce5a2 6317 $accept -> exp $ . (rule 0)
ec3bc396 6318
2a8d363a 6319 $default accept
ec3bc396
AD
6320@end example
6321
6322@noindent
6323the initial rule is completed (the start symbol and the end
6324of input were read), the parsing exits successfully.
6325
6326The interpretation of states 4 to 7 is straightforward, and is left to
6327the reader.
6328
6329@example
6330state 4
6331
6332 exp -> exp '+' . exp (rule 1)
6333
2a8d363a 6334 NUM shift, and go to state 1
ec3bc396 6335
2a8d363a 6336 exp go to state 8
ec3bc396
AD
6337
6338state 5
6339
6340 exp -> exp '-' . exp (rule 2)
6341
2a8d363a 6342 NUM shift, and go to state 1
ec3bc396 6343
2a8d363a 6344 exp go to state 9
ec3bc396
AD
6345
6346state 6
6347
6348 exp -> exp '*' . exp (rule 3)
6349
2a8d363a 6350 NUM shift, and go to state 1
ec3bc396 6351
2a8d363a 6352 exp go to state 10
ec3bc396
AD
6353
6354state 7
6355
6356 exp -> exp '/' . exp (rule 4)
6357
2a8d363a 6358 NUM shift, and go to state 1
ec3bc396 6359
2a8d363a 6360 exp go to state 11
ec3bc396
AD
6361@end example
6362
5a99098d
PE
6363As was announced in beginning of the report, @samp{State 8 conflicts:
63641 shift/reduce}:
ec3bc396
AD
6365
6366@example
6367state 8
6368
6369 exp -> exp . '+' exp (rule 1)
6370 exp -> exp '+' exp . (rule 1)
6371 exp -> exp . '-' exp (rule 2)
6372 exp -> exp . '*' exp (rule 3)
6373 exp -> exp . '/' exp (rule 4)
6374
2a8d363a
AD
6375 '*' shift, and go to state 6
6376 '/' shift, and go to state 7
ec3bc396 6377
2a8d363a
AD
6378 '/' [reduce using rule 1 (exp)]
6379 $default reduce using rule 1 (exp)
ec3bc396
AD
6380@end example
6381
8dd162d3 6382Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6383either shifting (and going to state 7), or reducing rule 1. The
6384conflict means that either the grammar is ambiguous, or the parser lacks
6385information to make the right decision. Indeed the grammar is
6386ambiguous, as, since we did not specify the precedence of @samp{/}, the
6387sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6388NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6389NUM}, which corresponds to reducing rule 1.
6390
c827f760 6391Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6392arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6393Shift/Reduce Conflicts}. Discarded actions are reported in between
6394square brackets.
6395
6396Note that all the previous states had a single possible action: either
6397shifting the next token and going to the corresponding state, or
6398reducing a single rule. In the other cases, i.e., when shifting
6399@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6400possible, the look-ahead is required to select the action. State 8 is
6401one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6402is shifting, otherwise the action is reducing rule 1. In other words,
6403the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6404look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6405precedence than @samp{+}. More generally, some items are eligible only
6406with some set of possible look-ahead tokens. When run with
6407@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6408
6409@example
6410state 8
6411
6412 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6413 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6414 exp -> exp . '-' exp (rule 2)
6415 exp -> exp . '*' exp (rule 3)
6416 exp -> exp . '/' exp (rule 4)
6417
6418 '*' shift, and go to state 6
6419 '/' shift, and go to state 7
6420
6421 '/' [reduce using rule 1 (exp)]
6422 $default reduce using rule 1 (exp)
6423@end example
6424
6425The remaining states are similar:
6426
6427@example
6428state 9
6429
6430 exp -> exp . '+' exp (rule 1)
6431 exp -> exp . '-' exp (rule 2)
6432 exp -> exp '-' exp . (rule 2)
6433 exp -> exp . '*' exp (rule 3)
6434 exp -> exp . '/' exp (rule 4)
6435
2a8d363a
AD
6436 '*' shift, and go to state 6
6437 '/' shift, and go to state 7
ec3bc396 6438
2a8d363a
AD
6439 '/' [reduce using rule 2 (exp)]
6440 $default reduce using rule 2 (exp)
ec3bc396
AD
6441
6442state 10
6443
6444 exp -> exp . '+' exp (rule 1)
6445 exp -> exp . '-' exp (rule 2)
6446 exp -> exp . '*' exp (rule 3)
6447 exp -> exp '*' exp . (rule 3)
6448 exp -> exp . '/' exp (rule 4)
6449
2a8d363a 6450 '/' shift, and go to state 7
ec3bc396 6451
2a8d363a
AD
6452 '/' [reduce using rule 3 (exp)]
6453 $default reduce using rule 3 (exp)
ec3bc396
AD
6454
6455state 11
6456
6457 exp -> exp . '+' exp (rule 1)
6458 exp -> exp . '-' exp (rule 2)
6459 exp -> exp . '*' exp (rule 3)
6460 exp -> exp . '/' exp (rule 4)
6461 exp -> exp '/' exp . (rule 4)
6462
2a8d363a
AD
6463 '+' shift, and go to state 4
6464 '-' shift, and go to state 5
6465 '*' shift, and go to state 6
6466 '/' shift, and go to state 7
ec3bc396 6467
2a8d363a
AD
6468 '+' [reduce using rule 4 (exp)]
6469 '-' [reduce using rule 4 (exp)]
6470 '*' [reduce using rule 4 (exp)]
6471 '/' [reduce using rule 4 (exp)]
6472 $default reduce using rule 4 (exp)
ec3bc396
AD
6473@end example
6474
6475@noindent
fa7e68c3
PE
6476Observe that state 11 contains conflicts not only due to the lack of
6477precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6478@samp{*}, but also because the
ec3bc396
AD
6479associativity of @samp{/} is not specified.
6480
6481
6482@node Tracing
6483@section Tracing Your Parser
bfa74976
RS
6484@findex yydebug
6485@cindex debugging
6486@cindex tracing the parser
6487
6488If a Bison grammar compiles properly but doesn't do what you want when it
6489runs, the @code{yydebug} parser-trace feature can help you figure out why.
6490
3ded9a63
AD
6491There are several means to enable compilation of trace facilities:
6492
6493@table @asis
6494@item the macro @code{YYDEBUG}
6495@findex YYDEBUG
6496Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6497parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6498@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6499YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6500Prologue}).
6501
6502@item the option @option{-t}, @option{--debug}
6503Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6504,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6505
6506@item the directive @samp{%debug}
6507@findex %debug
6508Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6509Declaration Summary}). This is a Bison extension, which will prove
6510useful when Bison will output parsers for languages that don't use a
c827f760
PE
6511preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6512you, this is
3ded9a63
AD
6513the preferred solution.
6514@end table
6515
6516We suggest that you always enable the debug option so that debugging is
6517always possible.
bfa74976 6518
02a81e05 6519The trace facility outputs messages with macro calls of the form
e2742e46 6520@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6521@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6522arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6523define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6524and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6525
6526Once you have compiled the program with trace facilities, the way to
6527request a trace is to store a nonzero value in the variable @code{yydebug}.
6528You can do this by making the C code do it (in @code{main}, perhaps), or
6529you can alter the value with a C debugger.
6530
6531Each step taken by the parser when @code{yydebug} is nonzero produces a
6532line or two of trace information, written on @code{stderr}. The trace
6533messages tell you these things:
6534
6535@itemize @bullet
6536@item
6537Each time the parser calls @code{yylex}, what kind of token was read.
6538
6539@item
6540Each time a token is shifted, the depth and complete contents of the
6541state stack (@pxref{Parser States}).
6542
6543@item
6544Each time a rule is reduced, which rule it is, and the complete contents
6545of the state stack afterward.
6546@end itemize
6547
6548To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6549produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6550Bison}). This file shows the meaning of each state in terms of
6551positions in various rules, and also what each state will do with each
6552possible input token. As you read the successive trace messages, you
6553can see that the parser is functioning according to its specification in
6554the listing file. Eventually you will arrive at the place where
6555something undesirable happens, and you will see which parts of the
6556grammar are to blame.
bfa74976
RS
6557
6558The parser file is a C program and you can use C debuggers on it, but it's
6559not easy to interpret what it is doing. The parser function is a
6560finite-state machine interpreter, and aside from the actions it executes
6561the same code over and over. Only the values of variables show where in
6562the grammar it is working.
6563
6564@findex YYPRINT
6565The debugging information normally gives the token type of each token
6566read, but not its semantic value. You can optionally define a macro
6567named @code{YYPRINT} to provide a way to print the value. If you define
6568@code{YYPRINT}, it should take three arguments. The parser will pass a
6569standard I/O stream, the numeric code for the token type, and the token
6570value (from @code{yylval}).
6571
6572Here is an example of @code{YYPRINT} suitable for the multi-function
6573calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6574
6575@smallexample
38a92d50
PE
6576%@{
6577 static void print_token_value (FILE *, int, YYSTYPE);
6578 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6579%@}
6580
6581@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6582
6583static void
831d3c99 6584print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6585@{
6586 if (type == VAR)
d3c4e709 6587 fprintf (file, "%s", value.tptr->name);
bfa74976 6588 else if (type == NUM)
d3c4e709 6589 fprintf (file, "%d", value.val);
bfa74976
RS
6590@}
6591@end smallexample
6592
ec3bc396
AD
6593@c ================================================= Invoking Bison
6594
342b8b6e 6595@node Invocation
bfa74976
RS
6596@chapter Invoking Bison
6597@cindex invoking Bison
6598@cindex Bison invocation
6599@cindex options for invoking Bison
6600
6601The usual way to invoke Bison is as follows:
6602
6603@example
6604bison @var{infile}
6605@end example
6606
6607Here @var{infile} is the grammar file name, which usually ends in
6608@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6609with @samp{.tab.c} and removing any leading directory. Thus, the
6610@samp{bison foo.y} file name yields
6611@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6612@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6613C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6614or @file{foo.y++}. Then, the output files will take an extension like
6615the given one as input (respectively @file{foo.tab.cpp} and
6616@file{foo.tab.c++}).
fa4d969f 6617This feature takes effect with all options that manipulate file names like
234a3be3
AD
6618@samp{-o} or @samp{-d}.
6619
6620For example :
6621
6622@example
6623bison -d @var{infile.yxx}
6624@end example
84163231 6625@noindent
72d2299c 6626will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6627
6628@example
b56471a6 6629bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6630@end example
84163231 6631@noindent
234a3be3
AD
6632will produce @file{output.c++} and @file{outfile.h++}.
6633
397ec073
PE
6634For compatibility with @acronym{POSIX}, the standard Bison
6635distribution also contains a shell script called @command{yacc} that
6636invokes Bison with the @option{-y} option.
6637
bfa74976 6638@menu
13863333 6639* Bison Options:: All the options described in detail,
c827f760 6640 in alphabetical order by short options.
bfa74976 6641* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6642* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6643@end menu
6644
342b8b6e 6645@node Bison Options
bfa74976
RS
6646@section Bison Options
6647
6648Bison supports both traditional single-letter options and mnemonic long
6649option names. Long option names are indicated with @samp{--} instead of
6650@samp{-}. Abbreviations for option names are allowed as long as they
6651are unique. When a long option takes an argument, like
6652@samp{--file-prefix}, connect the option name and the argument with
6653@samp{=}.
6654
6655Here is a list of options that can be used with Bison, alphabetized by
6656short option. It is followed by a cross key alphabetized by long
6657option.
6658
89cab50d
AD
6659@c Please, keep this ordered as in `bison --help'.
6660@noindent
6661Operations modes:
6662@table @option
6663@item -h
6664@itemx --help
6665Print a summary of the command-line options to Bison and exit.
bfa74976 6666
89cab50d
AD
6667@item -V
6668@itemx --version
6669Print the version number of Bison and exit.
bfa74976 6670
f7ab6a50
PE
6671@item --print-localedir
6672Print the name of the directory containing locale-dependent data.
6673
89cab50d
AD
6674@need 1750
6675@item -y
6676@itemx --yacc
89cab50d
AD
6677Equivalent to @samp{-o y.tab.c}; the parser output file is called
6678@file{y.tab.c}, and the other outputs are called @file{y.output} and
6679@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6680file name conventions. Thus, the following shell script can substitute
397ec073
PE
6681for Yacc, and the Bison distribution contains such a script for
6682compatibility with @acronym{POSIX}:
bfa74976 6683
89cab50d 6684@example
397ec073 6685#! /bin/sh
26e06a21 6686bison -y "$@@"
89cab50d
AD
6687@end example
6688@end table
6689
6690@noindent
6691Tuning the parser:
6692
6693@table @option
cd5bd6ac
AD
6694@item -S @var{file}
6695@itemx --skeleton=@var{file}
6696Specify the skeleton to use. You probably don't need this option unless
6697you are developing Bison.
6698
89cab50d
AD
6699@item -t
6700@itemx --debug
4947ebdb
PE
6701In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6702already defined, so that the debugging facilities are compiled.
ec3bc396 6703@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6704
6705@item --locations
d8988b2f 6706Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6707
6708@item -p @var{prefix}
6709@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6710Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6711@xref{Decl Summary}.
bfa74976
RS
6712
6713@item -l
6714@itemx --no-lines
6715Don't put any @code{#line} preprocessor commands in the parser file.
6716Ordinarily Bison puts them in the parser file so that the C compiler
6717and debuggers will associate errors with your source file, the
6718grammar file. This option causes them to associate errors with the
95e742f7 6719parser file, treating it as an independent source file in its own right.
bfa74976 6720
931c7513
RS
6721@item -n
6722@itemx --no-parser
d8988b2f 6723Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6724
89cab50d
AD
6725@item -k
6726@itemx --token-table
d8988b2f 6727Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6728@end table
bfa74976 6729
89cab50d
AD
6730@noindent
6731Adjust the output:
bfa74976 6732
89cab50d
AD
6733@table @option
6734@item -d
d8988b2f
AD
6735@itemx --defines
6736Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6737file containing macro definitions for the token type names defined in
4bfd5e4e 6738the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6739
342b8b6e 6740@item --defines=@var{defines-file}
d8988b2f 6741Same as above, but save in the file @var{defines-file}.
342b8b6e 6742
89cab50d
AD
6743@item -b @var{file-prefix}
6744@itemx --file-prefix=@var{prefix}
d8988b2f 6745Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6746for all Bison output file names. @xref{Decl Summary}.
bfa74976 6747
ec3bc396
AD
6748@item -r @var{things}
6749@itemx --report=@var{things}
6750Write an extra output file containing verbose description of the comma
6751separated list of @var{things} among:
6752
6753@table @code
6754@item state
6755Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6756@acronym{LALR} automaton.
ec3bc396 6757
8dd162d3 6758@item look-ahead
ec3bc396 6759Implies @code{state} and augments the description of the automaton with
8dd162d3 6760each rule's look-ahead set.
ec3bc396
AD
6761
6762@item itemset
6763Implies @code{state} and augments the description of the automaton with
6764the full set of items for each state, instead of its core only.
6765@end table
6766
6767For instance, on the following grammar
6768
bfa74976
RS
6769@item -v
6770@itemx --verbose
6deb4447
AD
6771Pretend that @code{%verbose} was specified, i.e, write an extra output
6772file containing verbose descriptions of the grammar and
72d2299c 6773parser. @xref{Decl Summary}.
bfa74976 6774
fa4d969f
PE
6775@item -o @var{file}
6776@itemx --output=@var{file}
6777Specify the @var{file} for the parser file.
bfa74976 6778
fa4d969f 6779The other output files' names are constructed from @var{file} as
d8988b2f 6780described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6781
6782@item -g
c827f760
PE
6783Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6784automaton computed by Bison. If the grammar file is @file{foo.y}, the
6785@acronym{VCG} output file will
342b8b6e
AD
6786be @file{foo.vcg}.
6787
6788@item --graph=@var{graph-file}
72d2299c
PE
6789The behavior of @var{--graph} is the same than @samp{-g}. The only
6790difference is that it has an optional argument which is the name of
fa4d969f 6791the output graph file.
bfa74976
RS
6792@end table
6793
342b8b6e 6794@node Option Cross Key
bfa74976
RS
6795@section Option Cross Key
6796
6797Here is a list of options, alphabetized by long option, to help you find
6798the corresponding short option.
6799
6800@tex
6801\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6802
6803{\tt
6804\line{ --debug \leaderfill -t}
6805\line{ --defines \leaderfill -d}
6806\line{ --file-prefix \leaderfill -b}
342b8b6e 6807\line{ --graph \leaderfill -g}
ff51d159 6808\line{ --help \leaderfill -h}
bfa74976
RS
6809\line{ --name-prefix \leaderfill -p}
6810\line{ --no-lines \leaderfill -l}
931c7513 6811\line{ --no-parser \leaderfill -n}
d8988b2f 6812\line{ --output \leaderfill -o}
f7ab6a50 6813\line{ --print-localedir}
931c7513 6814\line{ --token-table \leaderfill -k}
bfa74976
RS
6815\line{ --verbose \leaderfill -v}
6816\line{ --version \leaderfill -V}
6817\line{ --yacc \leaderfill -y}
6818}
6819@end tex
6820
6821@ifinfo
6822@example
6823--debug -t
342b8b6e 6824--defines=@var{defines-file} -d
bfa74976 6825--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6826--graph=@var{graph-file} -d
ff51d159 6827--help -h
931c7513 6828--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6829--no-lines -l
931c7513 6830--no-parser -n
d8988b2f 6831--output=@var{outfile} -o @var{outfile}
f7ab6a50 6832--print-localedir
931c7513 6833--token-table -k
bfa74976
RS
6834--verbose -v
6835--version -V
8c9a50be 6836--yacc -y
bfa74976
RS
6837@end example
6838@end ifinfo
6839
93dd49ab
PE
6840@node Yacc Library
6841@section Yacc Library
6842
6843The Yacc library contains default implementations of the
6844@code{yyerror} and @code{main} functions. These default
6845implementations are normally not useful, but @acronym{POSIX} requires
6846them. To use the Yacc library, link your program with the
6847@option{-ly} option. Note that Bison's implementation of the Yacc
6848library is distributed under the terms of the @acronym{GNU} General
6849Public License (@pxref{Copying}).
6850
6851If you use the Yacc library's @code{yyerror} function, you should
6852declare @code{yyerror} as follows:
6853
6854@example
6855int yyerror (char const *);
6856@end example
6857
6858Bison ignores the @code{int} value returned by this @code{yyerror}.
6859If you use the Yacc library's @code{main} function, your
6860@code{yyparse} function should have the following type signature:
6861
6862@example
6863int yyparse (void);
6864@end example
6865
12545799
AD
6866@c ================================================= C++ Bison
6867
6868@node C++ Language Interface
6869@chapter C++ Language Interface
6870
6871@menu
6872* C++ Parsers:: The interface to generate C++ parser classes
6873* A Complete C++ Example:: Demonstrating their use
6874@end menu
6875
6876@node C++ Parsers
6877@section C++ Parsers
6878
6879@menu
6880* C++ Bison Interface:: Asking for C++ parser generation
6881* C++ Semantic Values:: %union vs. C++
6882* C++ Location Values:: The position and location classes
6883* C++ Parser Interface:: Instantiating and running the parser
6884* C++ Scanner Interface:: Exchanges between yylex and parse
6885@end menu
6886
6887@node C++ Bison Interface
6888@subsection C++ Bison Interface
6889@c - %skeleton "lalr1.cc"
6890@c - Always pure
6891@c - initial action
6892
e054b190 6893The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To select
12545799
AD
6894it, you may either pass the option @option{--skeleton=lalr1.cc} to
6895Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
6896grammar preamble. When run, @command{bison} will create several
6897files:
6898@table @file
6899@item position.hh
6900@itemx location.hh
6901The definition of the classes @code{position} and @code{location},
6902used for location tracking. @xref{C++ Location Values}.
6903
6904@item stack.hh
6905An auxiliary class @code{stack} used by the parser.
6906
fa4d969f
PE
6907@item @var{file}.hh
6908@itemx @var{file}.cc
12545799 6909The declaration and implementation of the C++ parser class.
fa4d969f 6910@var{file} is the name of the output file. It follows the same
12545799
AD
6911rules as with regular C parsers.
6912
fa4d969f 6913Note that @file{@var{file}.hh} is @emph{mandatory}, the C++ cannot
12545799
AD
6914work without the parser class declaration. Therefore, you must either
6915pass @option{-d}/@option{--defines} to @command{bison}, or use the
6916@samp{%defines} directive.
6917@end table
6918
6919All these files are documented using Doxygen; run @command{doxygen}
6920for a complete and accurate documentation.
6921
6922@node C++ Semantic Values
6923@subsection C++ Semantic Values
6924@c - No objects in unions
6925@c - YSTYPE
6926@c - Printer and destructor
6927
6928The @code{%union} directive works as for C, see @ref{Union Decl, ,The
6929Collection of Value Types}. In particular it produces a genuine
6930@code{union}@footnote{In the future techniques to allow complex types
6931within pseudo-unions (variants) might be implemented to alleviate
6932these issues.}, which have a few specific features in C++.
6933@itemize @minus
6934@item
6935The name @code{YYSTYPE} also denotes @samp{union YYSTYPE}. You may
6936forward declare it just with @samp{union YYSTYPE;}.
6937@item
6938Non POD (Plain Old Data) types cannot be used. C++ forbids any
6939instance of classes with constructors in unions: only @emph{pointers}
6940to such objects are allowed.
6941@end itemize
6942
6943Because objects have to be stored via pointers, memory is not
6944reclaimed automatically: using the @code{%destructor} directive is the
6945only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
6946Symbols}.
6947
6948
6949@node C++ Location Values
6950@subsection C++ Location Values
6951@c - %locations
6952@c - class Position
6953@c - class Location
48b16bbc 6954@c - %define "file_name_type" "const symbol::Symbol"
12545799
AD
6955
6956When the directive @code{%locations} is used, the C++ parser supports
6957location tracking, see @ref{Locations, , Locations Overview}. Two
6958auxiliary classes define a @code{position}, a single point in a file,
6959and a @code{location}, a range composed of a pair of
6960@code{position}s (possibly spanning several files).
6961
fa4d969f 6962@deftypemethod {position} {std::string*} file
12545799
AD
6963The name of the file. It will always be handled as a pointer, the
6964parser will never duplicate nor deallocate it. As an experimental
6965feature you may change it to @samp{@var{type}*} using @samp{%define
48b16bbc 6966"file_name_type" "@var{type}"}.
12545799
AD
6967@end deftypemethod
6968
6969@deftypemethod {position} {unsigned int} line
6970The line, starting at 1.
6971@end deftypemethod
6972
6973@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
6974Advance by @var{height} lines, resetting the column number.
6975@end deftypemethod
6976
6977@deftypemethod {position} {unsigned int} column
6978The column, starting at 0.
6979@end deftypemethod
6980
6981@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
6982Advance by @var{width} columns, without changing the line number.
6983@end deftypemethod
6984
6985@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
6986@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
6987@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
6988@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
6989Various forms of syntactic sugar for @code{columns}.
6990@end deftypemethod
6991
6992@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
6993Report @var{p} on @var{o} like this:
fa4d969f
PE
6994@samp{@var{file}:@var{line}.@var{column}}, or
6995@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
6996@end deftypemethod
6997
6998@deftypemethod {location} {position} begin
6999@deftypemethodx {location} {position} end
7000The first, inclusive, position of the range, and the first beyond.
7001@end deftypemethod
7002
7003@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7004@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7005Advance the @code{end} position.
7006@end deftypemethod
7007
7008@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7009@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7010@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7011Various forms of syntactic sugar.
7012@end deftypemethod
7013
7014@deftypemethod {location} {void} step ()
7015Move @code{begin} onto @code{end}.
7016@end deftypemethod
7017
7018
7019@node C++ Parser Interface
7020@subsection C++ Parser Interface
7021@c - define parser_class_name
7022@c - Ctor
7023@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7024@c debug_stream.
7025@c - Reporting errors
7026
7027The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7028declare and define the parser class in the namespace @code{yy}. The
7029class name defaults to @code{parser}, but may be changed using
7030@samp{%define "parser_class_name" "@var{name}"}. The interface of
7031this class is detailled below. It can be extended using the
7032@code{%parse-param} feature: its semantics is slightly changed since
7033it describes an additional member of the parser class, and an
7034additional argument for its constructor.
7035
8a0adb01
AD
7036@defcv {Type} {parser} {semantic_value_type}
7037@defcvx {Type} {parser} {location_value_type}
12545799 7038The types for semantics value and locations.
8a0adb01 7039@end defcv
12545799
AD
7040
7041@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7042Build a new parser object. There are no arguments by default, unless
7043@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7044@end deftypemethod
7045
7046@deftypemethod {parser} {int} parse ()
7047Run the syntactic analysis, and return 0 on success, 1 otherwise.
7048@end deftypemethod
7049
7050@deftypemethod {parser} {std::ostream&} debug_stream ()
7051@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7052Get or set the stream used for tracing the parsing. It defaults to
7053@code{std::cerr}.
7054@end deftypemethod
7055
7056@deftypemethod {parser} {debug_level_type} debug_level ()
7057@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7058Get or set the tracing level. Currently its value is either 0, no trace,
7059or non-zero, full tracing.
7060@end deftypemethod
7061
7062@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7063The definition for this member function must be supplied by the user:
7064the parser uses it to report a parser error occurring at @var{l},
7065described by @var{m}.
7066@end deftypemethod
7067
7068
7069@node C++ Scanner Interface
7070@subsection C++ Scanner Interface
7071@c - prefix for yylex.
7072@c - Pure interface to yylex
7073@c - %lex-param
7074
7075The parser invokes the scanner by calling @code{yylex}. Contrary to C
7076parsers, C++ parsers are always pure: there is no point in using the
7077@code{%pure-parser} directive. Therefore the interface is as follows.
7078
7079@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7080Return the next token. Its type is the return value, its semantic
7081value and location being @var{yylval} and @var{yylloc}. Invocations of
7082@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7083@end deftypemethod
7084
7085
7086@node A Complete C++ Example
7087@section A Complete C++ Example
7088
7089This section demonstrates the use of a C++ parser with a simple but
7090complete example. This example should be available on your system,
7091ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7092focuses on the use of Bison, therefore the design of the various C++
7093classes is very naive: no accessors, no encapsulation of members etc.
7094We will use a Lex scanner, and more precisely, a Flex scanner, to
7095demonstrate the various interaction. A hand written scanner is
7096actually easier to interface with.
7097
7098@menu
7099* Calc++ --- C++ Calculator:: The specifications
7100* Calc++ Parsing Driver:: An active parsing context
7101* Calc++ Parser:: A parser class
7102* Calc++ Scanner:: A pure C++ Flex scanner
7103* Calc++ Top Level:: Conducting the band
7104@end menu
7105
7106@node Calc++ --- C++ Calculator
7107@subsection Calc++ --- C++ Calculator
7108
7109Of course the grammar is dedicated to arithmetics, a single
7110expression, possibily preceded by variable assignments. An
7111environment containing possibly predefined variables such as
7112@code{one} and @code{two}, is exchanged with the parser. An example
7113of valid input follows.
7114
7115@example
7116three := 3
7117seven := one + two * three
7118seven * seven
7119@end example
7120
7121@node Calc++ Parsing Driver
7122@subsection Calc++ Parsing Driver
7123@c - An env
7124@c - A place to store error messages
7125@c - A place for the result
7126
7127To support a pure interface with the parser (and the scanner) the
7128technique of the ``parsing context'' is convenient: a structure
7129containing all the data to exchange. Since, in addition to simply
7130launch the parsing, there are several auxiliary tasks to execute (open
7131the file for parsing, instantiate the parser etc.), we recommend
7132transforming the simple parsing context structure into a fully blown
7133@dfn{parsing driver} class.
7134
7135The declaration of this driver class, @file{calc++-driver.hh}, is as
7136follows. The first part includes the CPP guard and imports the
7137required standard library components.
7138
1c59e0a1 7139@comment file: calc++-driver.hh
12545799
AD
7140@example
7141#ifndef CALCXX_DRIVER_HH
7142# define CALCXX_DRIVER_HH
7143# include <string>
7144# include <map>
7145@end example
7146
7147@noindent
7148Then come forward declarations. Because the parser uses the parsing
7149driver and reciprocally, simple inclusions of header files will not
7150do. Because the driver's declaration is the one that will be imported
7151by the rest of the project, it is saner to forward declare the
7152parser's information here.
7153
1c59e0a1 7154@comment file: calc++-driver.hh
12545799
AD
7155@example
7156// Forward declarations.
7157union YYSTYPE;
1c59e0a1
AD
7158namespace yy
7159@{
7160 class location;
7161 class calcxx_parser;
7162@}
12545799
AD
7163class calcxx_driver;
7164@end example
7165
7166@noindent
7167Then comes the declaration of the scanning function. Flex expects
7168the signature of @code{yylex} to be defined in the macro
7169@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7170factor both as follows.
1c59e0a1
AD
7171
7172@comment file: calc++-driver.hh
12545799
AD
7173@example
7174// Announce to Flex the prototype we want for lexing function, ...
1c59e0a1 7175# define YY_DECL \
12545799
AD
7176 int yylex (YYSTYPE* yylval, yy::location* yylloc, calcxx_driver& driver)
7177// ... and declare it for the parser's sake.
7178YY_DECL;
7179@end example
7180
7181@noindent
7182The @code{calcxx_driver} class is then declared with its most obvious
7183members.
7184
1c59e0a1 7185@comment file: calc++-driver.hh
12545799
AD
7186@example
7187// Conducting the whole scanning and parsing of Calc++.
7188class calcxx_driver
7189@{
7190public:
7191 calcxx_driver ();
7192 virtual ~calcxx_driver ();
7193
7194 std::map<std::string, int> variables;
7195
7196 int result;
7197@end example
7198
7199@noindent
7200To encapsulate the coordination with the Flex scanner, it is useful to
7201have two members function to open and close the scanning phase.
7202members.
7203
1c59e0a1 7204@comment file: calc++-driver.hh
12545799
AD
7205@example
7206 // Handling the scanner.
7207 void scan_begin ();
7208 void scan_end ();
7209 bool trace_scanning;
7210@end example
7211
7212@noindent
7213Similarly for the parser itself.
7214
1c59e0a1 7215@comment file: calc++-driver.hh
12545799
AD
7216@example
7217 // Handling the parser.
7218 void parse (const std::string& f);
7219 std::string file;
7220 bool trace_parsing;
7221@end example
7222
7223@noindent
7224To demonstrate pure handling of parse errors, instead of simply
7225dumping them on the standard error output, we will pass them to the
7226compiler driver using the following two member functions. Finally, we
7227close the class declaration and CPP guard.
7228
1c59e0a1 7229@comment file: calc++-driver.hh
12545799
AD
7230@example
7231 // Error handling.
7232 void error (const yy::location& l, const std::string& m);
7233 void error (const std::string& m);
7234@};
7235#endif // ! CALCXX_DRIVER_HH
7236@end example
7237
7238The implementation of the driver is straightforward. The @code{parse}
7239member function deserves some attention. The @code{error} functions
7240are simple stubs, they should actually register the located error
7241messages and set error state.
7242
1c59e0a1 7243@comment file: calc++-driver.cc
12545799
AD
7244@example
7245#include "calc++-driver.hh"
7246#include "calc++-parser.hh"
7247
7248calcxx_driver::calcxx_driver ()
7249 : trace_scanning (false), trace_parsing (false)
7250@{
7251 variables["one"] = 1;
7252 variables["two"] = 2;
7253@}
7254
7255calcxx_driver::~calcxx_driver ()
7256@{
7257@}
7258
7259void
7260calcxx_driver::parse (const std::string &f)
7261@{
7262 file = f;
7263 scan_begin ();
7264 yy::calcxx_parser parser (*this);
7265 parser.set_debug_level (trace_parsing);
7266 parser.parse ();
7267 scan_end ();
7268@}
7269
7270void
7271calcxx_driver::error (const yy::location& l, const std::string& m)
7272@{
7273 std::cerr << l << ": " << m << std::endl;
7274@}
7275
7276void
7277calcxx_driver::error (const std::string& m)
7278@{
7279 std::cerr << m << std::endl;
7280@}
7281@end example
7282
7283@node Calc++ Parser
7284@subsection Calc++ Parser
7285
7286The parser definition file @file{calc++-parser.yy} starts by asking
7287for the C++ skeleton, the creation of the parser header file, and
7288specifies the name of the parser class. It then includes the required
7289headers.
1c59e0a1
AD
7290
7291@comment file: calc++-parser.yy
12545799
AD
7292@example
7293%skeleton "lalr1.cc" /* -*- C++ -*- */
7294%define "parser_class_name" "calcxx_parser"
7295%defines
7296%@{
7297# include <string>
7298# include "calc++-driver.hh"
7299%@}
7300@end example
7301
7302@noindent
7303The driver is passed by reference to the parser and to the scanner.
7304This provides a simple but effective pure interface, not relying on
7305global variables.
7306
1c59e0a1 7307@comment file: calc++-parser.yy
12545799
AD
7308@example
7309// The parsing context.
7310%parse-param @{ calcxx_driver& driver @}
7311%lex-param @{ calcxx_driver& driver @}
7312@end example
7313
7314@noindent
7315Then we request the location tracking feature, and initialize the
7316first location's file name. Afterwards new locations are computed
7317relatively to the previous locations: the file name will be
7318automatically propagated.
7319
1c59e0a1 7320@comment file: calc++-parser.yy
12545799
AD
7321@example
7322%locations
7323%initial-action
7324@{
7325 // Initialize the initial location.
48b16bbc 7326 @@$.begin.file_name = @@$.end.file_name = &driver.file;
12545799
AD
7327@};
7328@end example
7329
7330@noindent
7331Use the two following directives to enable parser tracing and verbose
7332error messages.
7333
1c59e0a1 7334@comment file: calc++-parser.yy
12545799
AD
7335@example
7336%debug
7337%error-verbose
7338@end example
7339
7340@noindent
7341Semantic values cannot use ``real'' objects, but only pointers to
7342them.
7343
1c59e0a1 7344@comment file: calc++-parser.yy
12545799
AD
7345@example
7346// Symbols.
7347%union
7348@{
7349 int ival;
7350 std::string *sval;
7351@};
7352@end example
7353
7354@noindent
7355The token numbered as 0 corresponds to end of file; the following line
7356allows for nicer error messages referring to ``end of file'' instead
7357of ``$end''. Similarly user friendly named are provided for each
7358symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7359avoid name clashes.
7360
1c59e0a1 7361@comment file: calc++-parser.yy
12545799
AD
7362@example
7363%token YYEOF 0 "end of file"
7364%token TOKEN_ASSIGN ":="
7365%token <sval> TOKEN_IDENTIFIER "identifier"
7366%token <ival> TOKEN_NUMBER "number"
7367%type <ival> exp "expression"
7368@end example
7369
7370@noindent
7371To enable memory deallocation during error recovery, use
7372@code{%destructor}.
7373
1c59e0a1 7374@comment file: calc++-parser.yy
12545799
AD
7375@example
7376%printer @{ debug_stream () << *$$; @} "identifier"
7377%destructor @{ delete $$; @} "identifier"
7378
7379%printer @{ debug_stream () << $$; @} "number" "expression"
7380@end example
7381
7382@noindent
7383The grammar itself is straightforward.
7384
1c59e0a1 7385@comment file: calc++-parser.yy
12545799
AD
7386@example
7387%%
7388%start unit;
7389unit: assignments exp @{ driver.result = $2; @};
7390
7391assignments: assignments assignment @{@}
7392 | /* Nothing. */ @{@};
7393
7394assignment: TOKEN_IDENTIFIER ":=" exp @{ driver.variables[*$1] = $3; @};
7395
7396%left '+' '-';
7397%left '*' '/';
7398exp: exp '+' exp @{ $$ = $1 + $3; @}
7399 | exp '-' exp @{ $$ = $1 - $3; @}
7400 | exp '*' exp @{ $$ = $1 * $3; @}
7401 | exp '/' exp @{ $$ = $1 / $3; @}
7402 | TOKEN_IDENTIFIER @{ $$ = driver.variables[*$1]; @}
7403 | TOKEN_NUMBER @{ $$ = $1; @};
7404%%
7405@end example
7406
7407@noindent
7408Finally the @code{error} member function registers the errors to the
7409driver.
7410
1c59e0a1 7411@comment file: calc++-parser.yy
12545799
AD
7412@example
7413void
1c59e0a1
AD
7414yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7415 const std::string& m)
12545799
AD
7416@{
7417 driver.error (l, m);
7418@}
7419@end example
7420
7421@node Calc++ Scanner
7422@subsection Calc++ Scanner
7423
7424The Flex scanner first includes the driver declaration, then the
7425parser's to get the set of defined tokens.
7426
1c59e0a1 7427@comment file: calc++-scanner.ll
12545799
AD
7428@example
7429%@{ /* -*- C++ -*- */
04098407
PE
7430# include <cstdlib>
7431# include <errno.h>
7432# include <limits.h>
12545799
AD
7433# include <string>
7434# include "calc++-driver.hh"
7435# include "calc++-parser.hh"
7436%@}
7437@end example
7438
7439@noindent
7440Because there is no @code{#include}-like feature we don't need
7441@code{yywrap}, we don't need @code{unput} either, and we parse an
7442actual file, this is not an interactive session with the user.
7443Finally we enable the scanner tracing features.
7444
1c59e0a1 7445@comment file: calc++-scanner.ll
12545799
AD
7446@example
7447%option noyywrap nounput batch debug
7448@end example
7449
7450@noindent
7451Abbreviations allow for more readable rules.
7452
1c59e0a1 7453@comment file: calc++-scanner.ll
12545799
AD
7454@example
7455id [a-zA-Z][a-zA-Z_0-9]*
7456int [0-9]+
7457blank [ \t]
7458@end example
7459
7460@noindent
7461The following paragraph suffices to track locations acurately. Each
7462time @code{yylex} is invoked, the begin position is moved onto the end
7463position. Then when a pattern is matched, the end position is
7464advanced of its width. In case it matched ends of lines, the end
7465cursor is adjusted, and each time blanks are matched, the begin cursor
7466is moved onto the end cursor to effectively ignore the blanks
7467preceding tokens. Comments would be treated equally.
7468
1c59e0a1 7469@comment file: calc++-scanner.ll
12545799 7470@example
828c373b
AD
7471%@{
7472# define YY_USER_ACTION yylloc->columns (yyleng);
7473%@}
12545799
AD
7474%%
7475%@{
7476 yylloc->step ();
12545799
AD
7477%@}
7478@{blank@}+ yylloc->step ();
7479[\n]+ yylloc->lines (yyleng); yylloc->step ();
7480@end example
7481
7482@noindent
7483The rules are simple, just note the use of the driver to report
7484errors.
7485
1c59e0a1 7486@comment file: calc++-scanner.ll
12545799
AD
7487@example
7488[-+*/] return yytext[0];
7489":=" return TOKEN_ASSIGN;
04098407
PE
7490@{int@} @{
7491 errno = 0;
7492 long n = strtol (yytext, NULL, 10);
7493 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7494 driver.error (*yylloc, "integer is out of range");
7495 yylval->ival = n;
7496 return TOKEN_NUMBER;
7497@}
12545799
AD
7498@{id@} yylval->sval = new std::string (yytext); return TOKEN_IDENTIFIER;
7499. driver.error (*yylloc, "invalid character");
7500%%
7501@end example
7502
7503@noindent
7504Finally, because the scanner related driver's member function depend
7505on the scanner's data, it is simpler to implement them in this file.
7506
1c59e0a1 7507@comment file: calc++-scanner.ll
12545799
AD
7508@example
7509void
7510calcxx_driver::scan_begin ()
7511@{
7512 yy_flex_debug = trace_scanning;
7513 if (!(yyin = fopen (file.c_str (), "r")))
7514 error (std::string ("cannot open ") + file);
7515@}
7516
7517void
7518calcxx_driver::scan_end ()
7519@{
7520 fclose (yyin);
7521@}
7522@end example
7523
7524@node Calc++ Top Level
7525@subsection Calc++ Top Level
7526
7527The top level file, @file{calc++.cc}, poses no problem.
7528
1c59e0a1 7529@comment file: calc++.cc
12545799
AD
7530@example
7531#include <iostream>
7532#include "calc++-driver.hh"
7533
7534int
fa4d969f 7535main (int argc, char *argv[])
12545799
AD
7536@{
7537 calcxx_driver driver;
7538 for (++argv; argv[0]; ++argv)
7539 if (*argv == std::string ("-p"))
7540 driver.trace_parsing = true;
7541 else if (*argv == std::string ("-s"))
7542 driver.trace_scanning = true;
7543 else
7544 @{
7545 driver.parse (*argv);
7546 std::cout << driver.result << std::endl;
7547 @}
7548@}
7549@end example
7550
7551@c ================================================= FAQ
d1a1114f
AD
7552
7553@node FAQ
7554@chapter Frequently Asked Questions
7555@cindex frequently asked questions
7556@cindex questions
7557
7558Several questions about Bison come up occasionally. Here some of them
7559are addressed.
7560
7561@menu
1a059451 7562* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 7563* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 7564* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 7565* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
7566@end menu
7567
1a059451
PE
7568@node Memory Exhausted
7569@section Memory Exhausted
d1a1114f
AD
7570
7571@display
1a059451 7572My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7573message. What can I do?
7574@end display
7575
7576This question is already addressed elsewhere, @xref{Recursion,
7577,Recursive Rules}.
7578
e64fec0a
PE
7579@node How Can I Reset the Parser
7580@section How Can I Reset the Parser
5b066063 7581
0e14ad77
PE
7582The following phenomenon has several symptoms, resulting in the
7583following typical questions:
5b066063
AD
7584
7585@display
7586I invoke @code{yyparse} several times, and on correct input it works
7587properly; but when a parse error is found, all the other calls fail
0e14ad77 7588too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7589@end display
7590
7591@noindent
7592or
7593
7594@display
0e14ad77 7595My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7596which case I run @code{yyparse} from @code{yyparse}. This fails
7597although I did specify I needed a @code{%pure-parser}.
7598@end display
7599
0e14ad77
PE
7600These problems typically come not from Bison itself, but from
7601Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7602speed, they might not notice a change of input file. As a
7603demonstration, consider the following source file,
7604@file{first-line.l}:
7605
7606@verbatim
7607%{
7608#include <stdio.h>
7609#include <stdlib.h>
7610%}
7611%%
7612.*\n ECHO; return 1;
7613%%
7614int
0e14ad77 7615yyparse (char const *file)
5b066063
AD
7616{
7617 yyin = fopen (file, "r");
7618 if (!yyin)
7619 exit (2);
fa7e68c3 7620 /* One token only. */
5b066063 7621 yylex ();
0e14ad77 7622 if (fclose (yyin) != 0)
5b066063
AD
7623 exit (3);
7624 return 0;
7625}
7626
7627int
0e14ad77 7628main (void)
5b066063
AD
7629{
7630 yyparse ("input");
7631 yyparse ("input");
7632 return 0;
7633}
7634@end verbatim
7635
7636@noindent
7637If the file @file{input} contains
7638
7639@verbatim
7640input:1: Hello,
7641input:2: World!
7642@end verbatim
7643
7644@noindent
0e14ad77 7645then instead of getting the first line twice, you get:
5b066063
AD
7646
7647@example
7648$ @kbd{flex -ofirst-line.c first-line.l}
7649$ @kbd{gcc -ofirst-line first-line.c -ll}
7650$ @kbd{./first-line}
7651input:1: Hello,
7652input:2: World!
7653@end example
7654
0e14ad77
PE
7655Therefore, whenever you change @code{yyin}, you must tell the
7656Lex-generated scanner to discard its current buffer and switch to the
7657new one. This depends upon your implementation of Lex; see its
7658documentation for more. For Flex, it suffices to call
7659@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7660Flex-generated scanner needs to read from several input streams to
7661handle features like include files, you might consider using Flex
7662functions like @samp{yy_switch_to_buffer} that manipulate multiple
7663input buffers.
5b066063 7664
b165c324
AD
7665If your Flex-generated scanner uses start conditions (@pxref{Start
7666conditions, , Start conditions, flex, The Flex Manual}), you might
7667also want to reset the scanner's state, i.e., go back to the initial
7668start condition, through a call to @samp{BEGIN (0)}.
7669
fef4cb51
AD
7670@node Strings are Destroyed
7671@section Strings are Destroyed
7672
7673@display
c7e441b4 7674My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7675them. Instead of reporting @samp{"foo", "bar"}, it reports
7676@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7677@end display
7678
7679This error is probably the single most frequent ``bug report'' sent to
7680Bison lists, but is only concerned with a misunderstanding of the role
7681of scanner. Consider the following Lex code:
7682
7683@verbatim
7684%{
7685#include <stdio.h>
7686char *yylval = NULL;
7687%}
7688%%
7689.* yylval = yytext; return 1;
7690\n /* IGNORE */
7691%%
7692int
7693main ()
7694{
fa7e68c3 7695 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7696 char *fst = (yylex (), yylval);
7697 char *snd = (yylex (), yylval);
7698 printf ("\"%s\", \"%s\"\n", fst, snd);
7699 return 0;
7700}
7701@end verbatim
7702
7703If you compile and run this code, you get:
7704
7705@example
7706$ @kbd{flex -osplit-lines.c split-lines.l}
7707$ @kbd{gcc -osplit-lines split-lines.c -ll}
7708$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7709"one
7710two", "two"
7711@end example
7712
7713@noindent
7714this is because @code{yytext} is a buffer provided for @emph{reading}
7715in the action, but if you want to keep it, you have to duplicate it
7716(e.g., using @code{strdup}). Note that the output may depend on how
7717your implementation of Lex handles @code{yytext}. For instance, when
7718given the Lex compatibility option @option{-l} (which triggers the
7719option @samp{%array}) Flex generates a different behavior:
7720
7721@example
7722$ @kbd{flex -l -osplit-lines.c split-lines.l}
7723$ @kbd{gcc -osplit-lines split-lines.c -ll}
7724$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7725"two", "two"
7726@end example
7727
7728
2fa09258
AD
7729@node Implementing Gotos/Loops
7730@section Implementing Gotos/Loops
a06ea4aa
AD
7731
7732@display
7733My simple calculator supports variables, assignments, and functions,
2fa09258 7734but how can I implement gotos, or loops?
a06ea4aa
AD
7735@end display
7736
7737Although very pedagogical, the examples included in the document blur
a1c84f45 7738the distinction to make between the parser---whose job is to recover
a06ea4aa 7739the structure of a text and to transmit it to subsequent modules of
a1c84f45 7740the program---and the processing (such as the execution) of this
a06ea4aa
AD
7741structure. This works well with so called straight line programs,
7742i.e., precisely those that have a straightforward execution model:
7743execute simple instructions one after the others.
7744
7745@cindex abstract syntax tree
7746@cindex @acronym{AST}
7747If you want a richer model, you will probably need to use the parser
7748to construct a tree that does represent the structure it has
7749recovered; this tree is usually called the @dfn{abstract syntax tree},
7750or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7751traversing it in various ways, will enable treatments such as its
7752execution or its translation, which will result in an interpreter or a
7753compiler.
7754
7755This topic is way beyond the scope of this manual, and the reader is
7756invited to consult the dedicated literature.
7757
7758
7759
d1a1114f
AD
7760@c ================================================= Table of Symbols
7761
342b8b6e 7762@node Table of Symbols
bfa74976
RS
7763@appendix Bison Symbols
7764@cindex Bison symbols, table of
7765@cindex symbols in Bison, table of
7766
18b519c0 7767@deffn {Variable} @@$
3ded9a63 7768In an action, the location of the left-hand side of the rule.
88bce5a2 7769@xref{Locations, , Locations Overview}.
18b519c0 7770@end deffn
3ded9a63 7771
18b519c0 7772@deffn {Variable} @@@var{n}
3ded9a63
AD
7773In an action, the location of the @var{n}-th symbol of the right-hand
7774side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 7775@end deffn
3ded9a63 7776
18b519c0 7777@deffn {Variable} $$
3ded9a63
AD
7778In an action, the semantic value of the left-hand side of the rule.
7779@xref{Actions}.
18b519c0 7780@end deffn
3ded9a63 7781
18b519c0 7782@deffn {Variable} $@var{n}
3ded9a63
AD
7783In an action, the semantic value of the @var{n}-th symbol of the
7784right-hand side of the rule. @xref{Actions}.
18b519c0 7785@end deffn
3ded9a63 7786
dd8d9022
AD
7787@deffn {Delimiter} %%
7788Delimiter used to separate the grammar rule section from the
7789Bison declarations section or the epilogue.
7790@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7791@end deffn
bfa74976 7792
dd8d9022
AD
7793@c Don't insert spaces, or check the DVI output.
7794@deffn {Delimiter} %@{@var{code}%@}
7795All code listed between @samp{%@{} and @samp{%@}} is copied directly to
7796the output file uninterpreted. Such code forms the prologue of the input
7797file. @xref{Grammar Outline, ,Outline of a Bison
7798Grammar}.
18b519c0 7799@end deffn
bfa74976 7800
dd8d9022
AD
7801@deffn {Construct} /*@dots{}*/
7802Comment delimiters, as in C.
18b519c0 7803@end deffn
bfa74976 7804
dd8d9022
AD
7805@deffn {Delimiter} :
7806Separates a rule's result from its components. @xref{Rules, ,Syntax of
7807Grammar Rules}.
18b519c0 7808@end deffn
bfa74976 7809
dd8d9022
AD
7810@deffn {Delimiter} ;
7811Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7812@end deffn
bfa74976 7813
dd8d9022
AD
7814@deffn {Delimiter} |
7815Separates alternate rules for the same result nonterminal.
7816@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7817@end deffn
bfa74976 7818
dd8d9022
AD
7819@deffn {Symbol} $accept
7820The predefined nonterminal whose only rule is @samp{$accept: @var{start}
7821$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
7822Start-Symbol}. It cannot be used in the grammar.
18b519c0 7823@end deffn
bfa74976 7824
18b519c0 7825@deffn {Directive} %debug
6deb4447 7826Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7827@end deffn
6deb4447 7828
91d2c560 7829@ifset defaultprec
22fccf95
PE
7830@deffn {Directive} %default-prec
7831Assign a precedence to rules that lack an explicit @samp{%prec}
7832modifier. @xref{Contextual Precedence, ,Context-Dependent
7833Precedence}.
39a06c25 7834@end deffn
91d2c560 7835@end ifset
39a06c25 7836
18b519c0 7837@deffn {Directive} %defines
6deb4447
AD
7838Bison declaration to create a header file meant for the scanner.
7839@xref{Decl Summary}.
18b519c0 7840@end deffn
6deb4447 7841
18b519c0 7842@deffn {Directive} %destructor
258b75ca 7843Specify how the parser should reclaim the memory associated to
fa7e68c3 7844discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7845@end deffn
72f889cc 7846
18b519c0 7847@deffn {Directive} %dprec
676385e2 7848Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7849time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7850@acronym{GLR} Parsers}.
18b519c0 7851@end deffn
676385e2 7852
dd8d9022
AD
7853@deffn {Symbol} $end
7854The predefined token marking the end of the token stream. It cannot be
7855used in the grammar.
7856@end deffn
7857
7858@deffn {Symbol} error
7859A token name reserved for error recovery. This token may be used in
7860grammar rules so as to allow the Bison parser to recognize an error in
7861the grammar without halting the process. In effect, a sentence
7862containing an error may be recognized as valid. On a syntax error, the
7863token @code{error} becomes the current look-ahead token. Actions
7864corresponding to @code{error} are then executed, and the look-ahead
7865token is reset to the token that originally caused the violation.
7866@xref{Error Recovery}.
18d192f0
AD
7867@end deffn
7868
18b519c0 7869@deffn {Directive} %error-verbose
2a8d363a
AD
7870Bison declaration to request verbose, specific error message strings
7871when @code{yyerror} is called.
18b519c0 7872@end deffn
2a8d363a 7873
18b519c0 7874@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 7875Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 7876Summary}.
18b519c0 7877@end deffn
d8988b2f 7878
18b519c0 7879@deffn {Directive} %glr-parser
c827f760
PE
7880Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
7881Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7882@end deffn
676385e2 7883
dd8d9022
AD
7884@deffn {Directive} %initial-action
7885Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
7886@end deffn
7887
18b519c0 7888@deffn {Directive} %left
bfa74976
RS
7889Bison declaration to assign left associativity to token(s).
7890@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7891@end deffn
bfa74976 7892
feeb0eda 7893@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
7894Bison declaration to specifying an additional parameter that
7895@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
7896for Pure Parsers}.
18b519c0 7897@end deffn
2a8d363a 7898
18b519c0 7899@deffn {Directive} %merge
676385e2 7900Bison declaration to assign a merging function to a rule. If there is a
fae437e8 7901reduce/reduce conflict with a rule having the same merging function, the
676385e2 7902function is applied to the two semantic values to get a single result.
c827f760 7903@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7904@end deffn
676385e2 7905
18b519c0 7906@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 7907Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 7908@end deffn
d8988b2f 7909
91d2c560 7910@ifset defaultprec
22fccf95
PE
7911@deffn {Directive} %no-default-prec
7912Do not assign a precedence to rules that lack an explicit @samp{%prec}
7913modifier. @xref{Contextual Precedence, ,Context-Dependent
7914Precedence}.
7915@end deffn
91d2c560 7916@end ifset
22fccf95 7917
18b519c0 7918@deffn {Directive} %no-lines
931c7513
RS
7919Bison declaration to avoid generating @code{#line} directives in the
7920parser file. @xref{Decl Summary}.
18b519c0 7921@end deffn
931c7513 7922
18b519c0 7923@deffn {Directive} %nonassoc
14ded682 7924Bison declaration to assign non-associativity to token(s).
bfa74976 7925@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7926@end deffn
bfa74976 7927
fa4d969f 7928@deffn {Directive} %output="@var{file}"
72d2299c 7929Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 7930Summary}.
18b519c0 7931@end deffn
d8988b2f 7932
feeb0eda 7933@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
7934Bison declaration to specifying an additional parameter that
7935@code{yyparse} should accept. @xref{Parser Function,, The Parser
7936Function @code{yyparse}}.
18b519c0 7937@end deffn
2a8d363a 7938
18b519c0 7939@deffn {Directive} %prec
bfa74976
RS
7940Bison declaration to assign a precedence to a specific rule.
7941@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 7942@end deffn
bfa74976 7943
18b519c0 7944@deffn {Directive} %pure-parser
bfa74976
RS
7945Bison declaration to request a pure (reentrant) parser.
7946@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 7947@end deffn
bfa74976 7948
18b519c0 7949@deffn {Directive} %right
bfa74976
RS
7950Bison declaration to assign right associativity to token(s).
7951@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7952@end deffn
bfa74976 7953
18b519c0 7954@deffn {Directive} %start
704a47c4
AD
7955Bison declaration to specify the start symbol. @xref{Start Decl, ,The
7956Start-Symbol}.
18b519c0 7957@end deffn
bfa74976 7958
18b519c0 7959@deffn {Directive} %token
bfa74976
RS
7960Bison declaration to declare token(s) without specifying precedence.
7961@xref{Token Decl, ,Token Type Names}.
18b519c0 7962@end deffn
bfa74976 7963
18b519c0 7964@deffn {Directive} %token-table
931c7513
RS
7965Bison declaration to include a token name table in the parser file.
7966@xref{Decl Summary}.
18b519c0 7967@end deffn
931c7513 7968
18b519c0 7969@deffn {Directive} %type
704a47c4
AD
7970Bison declaration to declare nonterminals. @xref{Type Decl,
7971,Nonterminal Symbols}.
18b519c0 7972@end deffn
bfa74976 7973
dd8d9022
AD
7974@deffn {Symbol} $undefined
7975The predefined token onto which all undefined values returned by
7976@code{yylex} are mapped. It cannot be used in the grammar, rather, use
7977@code{error}.
7978@end deffn
7979
18b519c0 7980@deffn {Directive} %union
bfa74976
RS
7981Bison declaration to specify several possible data types for semantic
7982values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 7983@end deffn
bfa74976 7984
dd8d9022
AD
7985@deffn {Macro} YYABORT
7986Macro to pretend that an unrecoverable syntax error has occurred, by
7987making @code{yyparse} return 1 immediately. The error reporting
7988function @code{yyerror} is not called. @xref{Parser Function, ,The
7989Parser Function @code{yyparse}}.
7990@end deffn
3ded9a63 7991
dd8d9022
AD
7992@deffn {Macro} YYACCEPT
7993Macro to pretend that a complete utterance of the language has been
7994read, by making @code{yyparse} return 0 immediately.
7995@xref{Parser Function, ,The Parser Function @code{yyparse}}.
7996@end deffn
bfa74976 7997
dd8d9022
AD
7998@deffn {Macro} YYBACKUP
7999Macro to discard a value from the parser stack and fake a look-ahead
8000token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8001@end deffn
bfa74976 8002
dd8d9022
AD
8003@deffn {Variable} yychar
8004External integer variable that contains the integer value of the current
8005look-ahead token. (In a pure parser, it is a local variable within
8006@code{yyparse}.) Error-recovery rule actions may examine this variable.
8007@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8008@end deffn
bfa74976 8009
dd8d9022
AD
8010@deffn {Variable} yyclearin
8011Macro used in error-recovery rule actions. It clears the previous
8012look-ahead token. @xref{Error Recovery}.
18b519c0 8013@end deffn
bfa74976 8014
dd8d9022
AD
8015@deffn {Macro} YYDEBUG
8016Macro to define to equip the parser with tracing code. @xref{Tracing,
8017,Tracing Your Parser}.
18b519c0 8018@end deffn
bfa74976 8019
dd8d9022
AD
8020@deffn {Variable} yydebug
8021External integer variable set to zero by default. If @code{yydebug}
8022is given a nonzero value, the parser will output information on input
8023symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8024@end deffn
bfa74976 8025
dd8d9022
AD
8026@deffn {Macro} yyerrok
8027Macro to cause parser to recover immediately to its normal mode
8028after a syntax error. @xref{Error Recovery}.
8029@end deffn
8030
8031@deffn {Macro} YYERROR
8032Macro to pretend that a syntax error has just been detected: call
8033@code{yyerror} and then perform normal error recovery if possible
8034(@pxref{Error Recovery}), or (if recovery is impossible) make
8035@code{yyparse} return 1. @xref{Error Recovery}.
8036@end deffn
8037
8038@deffn {Function} yyerror
8039User-supplied function to be called by @code{yyparse} on error.
8040@xref{Error Reporting, ,The Error
8041Reporting Function @code{yyerror}}.
8042@end deffn
8043
8044@deffn {Macro} YYERROR_VERBOSE
8045An obsolete macro that you define with @code{#define} in the prologue
8046to request verbose, specific error message strings
8047when @code{yyerror} is called. It doesn't matter what definition you
8048use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8049@code{%error-verbose} is preferred.
8050@end deffn
8051
8052@deffn {Macro} YYINITDEPTH
8053Macro for specifying the initial size of the parser stack.
1a059451 8054@xref{Memory Management}.
dd8d9022
AD
8055@end deffn
8056
8057@deffn {Function} yylex
8058User-supplied lexical analyzer function, called with no arguments to get
8059the next token. @xref{Lexical, ,The Lexical Analyzer Function
8060@code{yylex}}.
8061@end deffn
8062
8063@deffn {Macro} YYLEX_PARAM
8064An obsolete macro for specifying an extra argument (or list of extra
8065arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
8066macro is deprecated, and is supported only for Yacc like parsers.
8067@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8068@end deffn
8069
8070@deffn {Variable} yylloc
8071External variable in which @code{yylex} should place the line and column
8072numbers associated with a token. (In a pure parser, it is a local
8073variable within @code{yyparse}, and its address is passed to
8074@code{yylex}.) You can ignore this variable if you don't use the
8075@samp{@@} feature in the grammar actions. @xref{Token Locations,
8076,Textual Locations of Tokens}.
8077@end deffn
8078
8079@deffn {Type} YYLTYPE
8080Data type of @code{yylloc}; by default, a structure with four
8081members. @xref{Location Type, , Data Types of Locations}.
8082@end deffn
8083
8084@deffn {Variable} yylval
8085External variable in which @code{yylex} should place the semantic
8086value associated with a token. (In a pure parser, it is a local
8087variable within @code{yyparse}, and its address is passed to
8088@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
8089@end deffn
8090
8091@deffn {Macro} YYMAXDEPTH
1a059451
PE
8092Macro for specifying the maximum size of the parser stack. @xref{Memory
8093Management}.
dd8d9022
AD
8094@end deffn
8095
8096@deffn {Variable} yynerrs
8097Global variable which Bison increments each time there is a syntax error.
8098(In a pure parser, it is a local variable within @code{yyparse}.)
8099@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8100@end deffn
8101
8102@deffn {Function} yyparse
8103The parser function produced by Bison; call this function to start
8104parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8105@end deffn
8106
8107@deffn {Macro} YYPARSE_PARAM
8108An obsolete macro for specifying the name of a parameter that
8109@code{yyparse} should accept. The use of this macro is deprecated, and
8110is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8111Conventions for Pure Parsers}.
8112@end deffn
8113
8114@deffn {Macro} YYRECOVERING
8115Macro whose value indicates whether the parser is recovering from a
8116syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8117@end deffn
8118
8119@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8120Macro used to control the use of @code{alloca} when the C
8121@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8122the parser will use @code{malloc} to extend its stacks. If defined to
81231, the parser will use @code{alloca}. Values other than 0 and 1 are
8124reserved for future Bison extensions. If not defined,
8125@code{YYSTACK_USE_ALLOCA} defaults to 0.
8126
8127If you define @code{YYSTACK_USE_ALLOCA} to 1, it is your
8128responsibility to make sure that @code{alloca} is visible, e.g., by
8129using @acronym{GCC} or by including @code{<stdlib.h>}. Furthermore,
8130in the all-too-common case where your code may run on a host with a
8131limited stack and with unreliable stack-overflow checking, you should
8132set @code{YYMAXDEPTH} to a value that cannot possibly result in
8133unchecked stack overflow on any of your target hosts when
8134@code{alloca} is called. You can inspect the code that Bison
8135generates in order to determine the proper numeric values. This will
8136require some expertise in low-level implementation details.
dd8d9022
AD
8137@end deffn
8138
8139@deffn {Type} YYSTYPE
8140Data type of semantic values; @code{int} by default.
8141@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8142@end deffn
bfa74976 8143
342b8b6e 8144@node Glossary
bfa74976
RS
8145@appendix Glossary
8146@cindex glossary
8147
8148@table @asis
c827f760
PE
8149@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8150Formal method of specifying context-free grammars originally proposed
8151by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8152committee document contributing to what became the Algol 60 report.
8153@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8154
8155@item Context-free grammars
8156Grammars specified as rules that can be applied regardless of context.
8157Thus, if there is a rule which says that an integer can be used as an
8158expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8159permitted. @xref{Language and Grammar, ,Languages and Context-Free
8160Grammars}.
bfa74976
RS
8161
8162@item Dynamic allocation
8163Allocation of memory that occurs during execution, rather than at
8164compile time or on entry to a function.
8165
8166@item Empty string
8167Analogous to the empty set in set theory, the empty string is a
8168character string of length zero.
8169
8170@item Finite-state stack machine
8171A ``machine'' that has discrete states in which it is said to exist at
8172each instant in time. As input to the machine is processed, the
8173machine moves from state to state as specified by the logic of the
8174machine. In the case of the parser, the input is the language being
8175parsed, and the states correspond to various stages in the grammar
c827f760 8176rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8177
c827f760 8178@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8179A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8180that are not @acronym{LALR}(1). It resolves situations that Bison's
8181usual @acronym{LALR}(1)
676385e2
PH
8182algorithm cannot by effectively splitting off multiple parsers, trying all
8183possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8184right context. @xref{Generalized LR Parsing, ,Generalized
8185@acronym{LR} Parsing}.
676385e2 8186
bfa74976
RS
8187@item Grouping
8188A language construct that is (in general) grammatically divisible;
c827f760 8189for example, `expression' or `declaration' in C@.
bfa74976
RS
8190@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8191
8192@item Infix operator
8193An arithmetic operator that is placed between the operands on which it
8194performs some operation.
8195
8196@item Input stream
8197A continuous flow of data between devices or programs.
8198
8199@item Language construct
8200One of the typical usage schemas of the language. For example, one of
8201the constructs of the C language is the @code{if} statement.
8202@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8203
8204@item Left associativity
8205Operators having left associativity are analyzed from left to right:
8206@samp{a+b+c} first computes @samp{a+b} and then combines with
8207@samp{c}. @xref{Precedence, ,Operator Precedence}.
8208
8209@item Left recursion
89cab50d
AD
8210A rule whose result symbol is also its first component symbol; for
8211example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8212Rules}.
bfa74976
RS
8213
8214@item Left-to-right parsing
8215Parsing a sentence of a language by analyzing it token by token from
c827f760 8216left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8217
8218@item Lexical analyzer (scanner)
8219A function that reads an input stream and returns tokens one by one.
8220@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8221
8222@item Lexical tie-in
8223A flag, set by actions in the grammar rules, which alters the way
8224tokens are parsed. @xref{Lexical Tie-ins}.
8225
931c7513 8226@item Literal string token
14ded682 8227A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8228
bfa74976 8229@item Look-ahead token
89cab50d
AD
8230A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8231Tokens}.
bfa74976 8232
c827f760 8233@item @acronym{LALR}(1)
bfa74976 8234The class of context-free grammars that Bison (like most other parser
c827f760
PE
8235generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8236Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8237
c827f760 8238@item @acronym{LR}(1)
bfa74976
RS
8239The class of context-free grammars in which at most one token of
8240look-ahead is needed to disambiguate the parsing of any piece of input.
8241
8242@item Nonterminal symbol
8243A grammar symbol standing for a grammatical construct that can
8244be expressed through rules in terms of smaller constructs; in other
8245words, a construct that is not a token. @xref{Symbols}.
8246
bfa74976
RS
8247@item Parser
8248A function that recognizes valid sentences of a language by analyzing
8249the syntax structure of a set of tokens passed to it from a lexical
8250analyzer.
8251
8252@item Postfix operator
8253An arithmetic operator that is placed after the operands upon which it
8254performs some operation.
8255
8256@item Reduction
8257Replacing a string of nonterminals and/or terminals with a single
89cab50d 8258nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8259Parser Algorithm}.
bfa74976
RS
8260
8261@item Reentrant
8262A reentrant subprogram is a subprogram which can be in invoked any
8263number of times in parallel, without interference between the various
8264invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8265
8266@item Reverse polish notation
8267A language in which all operators are postfix operators.
8268
8269@item Right recursion
89cab50d
AD
8270A rule whose result symbol is also its last component symbol; for
8271example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8272Rules}.
bfa74976
RS
8273
8274@item Semantics
8275In computer languages, the semantics are specified by the actions
8276taken for each instance of the language, i.e., the meaning of
8277each statement. @xref{Semantics, ,Defining Language Semantics}.
8278
8279@item Shift
8280A parser is said to shift when it makes the choice of analyzing
8281further input from the stream rather than reducing immediately some
c827f760 8282already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8283
8284@item Single-character literal
8285A single character that is recognized and interpreted as is.
8286@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8287
8288@item Start symbol
8289The nonterminal symbol that stands for a complete valid utterance in
8290the language being parsed. The start symbol is usually listed as the
13863333 8291first nonterminal symbol in a language specification.
bfa74976
RS
8292@xref{Start Decl, ,The Start-Symbol}.
8293
8294@item Symbol table
8295A data structure where symbol names and associated data are stored
8296during parsing to allow for recognition and use of existing
8297information in repeated uses of a symbol. @xref{Multi-function Calc}.
8298
6e649e65
PE
8299@item Syntax error
8300An error encountered during parsing of an input stream due to invalid
8301syntax. @xref{Error Recovery}.
8302
bfa74976
RS
8303@item Token
8304A basic, grammatically indivisible unit of a language. The symbol
8305that describes a token in the grammar is a terminal symbol.
8306The input of the Bison parser is a stream of tokens which comes from
8307the lexical analyzer. @xref{Symbols}.
8308
8309@item Terminal symbol
89cab50d
AD
8310A grammar symbol that has no rules in the grammar and therefore is
8311grammatically indivisible. The piece of text it represents is a token.
8312@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8313@end table
8314
342b8b6e 8315@node Copying This Manual
f2b5126e 8316@appendix Copying This Manual
f9a8293a 8317
f2b5126e
PB
8318@menu
8319* GNU Free Documentation License:: License for copying this manual.
8320@end menu
f9a8293a 8321
f2b5126e
PB
8322@include fdl.texi
8323
342b8b6e 8324@node Index
bfa74976
RS
8325@unnumbered Index
8326
8327@printindex cp
8328
bfa74976 8329@bye
a06ea4aa
AD
8330
8331@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8332@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8333@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8334@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8335@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8336@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8337@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8338@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8339@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8340@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8341@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8342@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8343@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8344@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8345@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8346@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8347@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8348@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8349@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8350@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8351@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
8352@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
8353@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8354@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8355@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8356@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8357@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8358@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8359@c LocalWords: YYSTACK DVI fdl printindex