]> git.saurik.com Git - bison.git/blame - doc/bison.texi
report: use %empty to denote empty rules
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
7d6bad19 36Copyright @copyright{} 1988-1993, 1995, 1998-2013 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
be22823e
AD
214Actions in Mid-Rule
215
216* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
217* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
218* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
219
93dd49ab
PE
220Tracking Locations
221
222* Location Type:: Specifying a data type for locations.
223* Actions and Locations:: Using locations in actions.
224* Location Default Action:: Defining a general way to compute locations.
225
bfa74976
RS
226Bison Declarations
227
b50d2359 228* Require Decl:: Requiring a Bison version.
bfa74976
RS
229* Token Decl:: Declaring terminal symbols.
230* Precedence Decl:: Declaring terminals with precedence and associativity.
231* Union Decl:: Declaring the set of all semantic value types.
232* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 233* Initial Action Decl:: Code run before parsing starts.
72f889cc 234* Destructor Decl:: Declaring how symbols are freed.
93c150b6 235* Printer Decl:: Declaring how symbol values are displayed.
d6328241 236* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
237* Start Decl:: Specifying the start symbol.
238* Pure Decl:: Requesting a reentrant parser.
9987d1b3 239* Push Decl:: Requesting a push parser.
bfa74976 240* Decl Summary:: Table of all Bison declarations.
35c1e5f0 241* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 242* %code Summary:: Inserting code into the parser source.
bfa74976
RS
243
244Parser C-Language Interface
245
f5f419de
DJ
246* Parser Function:: How to call @code{yyparse} and what it returns.
247* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
248* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
249* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
250* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
251* Lexical:: You must supply a function @code{yylex}
252 which reads tokens.
253* Error Reporting:: You must supply a function @code{yyerror}.
254* Action Features:: Special features for use in actions.
255* Internationalization:: How to let the parser speak in the user's
256 native language.
bfa74976
RS
257
258The Lexical Analyzer Function @code{yylex}
259
260* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
261* Token Values:: How @code{yylex} must return the semantic value
262 of the token it has read.
263* Token Locations:: How @code{yylex} must return the text location
264 (line number, etc.) of the token, if the
265 actions want that.
266* Pure Calling:: How the calling convention differs in a pure parser
267 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 268
13863333 269The Bison Parser Algorithm
bfa74976 270
742e4900 271* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
272* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
273* Precedence:: Operator precedence works by resolving conflicts.
274* Contextual Precedence:: When an operator's precedence depends on context.
275* Parser States:: The parser is a finite-state-machine with stack.
276* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 277* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 278* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 279* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 280* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
281
282Operator Precedence
283
284* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
285* Using Precedence:: How to specify precedence and associativity.
286* Precedence Only:: How to specify precedence only.
bfa74976
RS
287* Precedence Examples:: How these features are used in the previous example.
288* How Precedence:: How they work.
c28cd5dc 289* Non Operators:: Using precedence for general conflicts.
bfa74976 290
7fceb615
JD
291Tuning LR
292
293* LR Table Construction:: Choose a different construction algorithm.
294* Default Reductions:: Disable default reductions.
295* LAC:: Correct lookahead sets in the parser states.
296* Unreachable States:: Keep unreachable parser states for debugging.
297
bfa74976
RS
298Handling Context Dependencies
299
300* Semantic Tokens:: Token parsing can depend on the semantic context.
301* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
302* Tie-in Recovery:: Lexical tie-ins have implications for how
303 error recovery rules must be written.
304
93dd49ab 305Debugging Your Parser
ec3bc396
AD
306
307* Understanding:: Understanding the structure of your parser.
fc4fdd62 308* Graphviz:: Getting a visual representation of the parser.
9c16d399 309* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
310* Tracing:: Tracing the execution of your parser.
311
93c150b6
AD
312Tracing Your Parser
313
314* Enabling Traces:: Activating run-time trace support
315* Mfcalc Traces:: Extending @code{mfcalc} to support traces
316* The YYPRINT Macro:: Obsolete interface for semantic value reports
317
bfa74976
RS
318Invoking Bison
319
13863333 320* Bison Options:: All the options described in detail,
c827f760 321 in alphabetical order by short options.
bfa74976 322* Option Cross Key:: Alphabetical list of long options.
93dd49ab 323* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 324
8405b70c 325Parsers Written In Other Languages
12545799
AD
326
327* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 328* Java Parsers:: The interface to generate Java parser classes
12545799
AD
329
330C++ Parsers
331
332* C++ Bison Interface:: Asking for C++ parser generation
333* C++ Semantic Values:: %union vs. C++
334* C++ Location Values:: The position and location classes
335* C++ Parser Interface:: Instantiating and running the parser
336* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 337* A Complete C++ Example:: Demonstrating their use
12545799 338
936c88d1
AD
339C++ Location Values
340
341* C++ position:: One point in the source file
342* C++ location:: Two points in the source file
db8ab2be 343* User Defined Location Type:: Required interface for locations
936c88d1 344
12545799
AD
345A Complete C++ Example
346
347* Calc++ --- C++ Calculator:: The specifications
348* Calc++ Parsing Driver:: An active parsing context
349* Calc++ Parser:: A parser class
350* Calc++ Scanner:: A pure C++ Flex scanner
351* Calc++ Top Level:: Conducting the band
352
8405b70c
PB
353Java Parsers
354
f5f419de
DJ
355* Java Bison Interface:: Asking for Java parser generation
356* Java Semantic Values:: %type and %token vs. Java
357* Java Location Values:: The position and location classes
358* Java Parser Interface:: Instantiating and running the parser
359* Java Scanner Interface:: Specifying the scanner for the parser
360* Java Action Features:: Special features for use in actions
361* Java Differences:: Differences between C/C++ and Java Grammars
362* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 363
d1a1114f
AD
364Frequently Asked Questions
365
f5f419de
DJ
366* Memory Exhausted:: Breaking the Stack Limits
367* How Can I Reset the Parser:: @code{yyparse} Keeps some State
368* Strings are Destroyed:: @code{yylval} Loses Track of Strings
369* Implementing Gotos/Loops:: Control Flow in the Calculator
370* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 371* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
372* I can't build Bison:: Troubleshooting
373* Where can I find help?:: Troubleshouting
374* Bug Reports:: Troublereporting
375* More Languages:: Parsers in C++, Java, and so on
376* Beta Testing:: Experimenting development versions
377* Mailing Lists:: Meeting other Bison users
d1a1114f 378
f2b5126e
PB
379Copying This Manual
380
f5f419de 381* Copying This Manual:: License for copying this manual.
f2b5126e 382
342b8b6e 383@end detailmenu
bfa74976
RS
384@end menu
385
342b8b6e 386@node Introduction
bfa74976
RS
387@unnumbered Introduction
388@cindex introduction
389
6077da58 390@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
391annotated context-free grammar into a deterministic LR or generalized
392LR (GLR) parser employing LALR(1) parser tables. As an experimental
393feature, Bison can also generate IELR(1) or canonical LR(1) parser
394tables. Once you are proficient with Bison, you can use it to develop
395a wide range of language parsers, from those used in simple desk
396calculators to complex programming languages.
397
398Bison is upward compatible with Yacc: all properly-written Yacc
399grammars ought to work with Bison with no change. Anyone familiar
400with Yacc should be able to use Bison with little trouble. You need
401to be fluent in C or C++ programming in order to use Bison or to
402understand this manual. Java is also supported as an experimental
403feature.
404
405We begin with tutorial chapters that explain the basic concepts of
406using Bison and show three explained examples, each building on the
407last. If you don't know Bison or Yacc, start by reading these
408chapters. Reference chapters follow, which describe specific aspects
409of Bison in detail.
bfa74976 410
679e9935
JD
411Bison was written originally by Robert Corbett. Richard Stallman made
412it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
413added multi-character string literals and other features. Since then,
414Bison has grown more robust and evolved many other new features thanks
415to the hard work of a long list of volunteers. For details, see the
416@file{THANKS} and @file{ChangeLog} files included in the Bison
417distribution.
931c7513 418
df1af54c 419This edition corresponds to version @value{VERSION} of Bison.
bfa74976 420
342b8b6e 421@node Conditions
bfa74976
RS
422@unnumbered Conditions for Using Bison
423
193d7c70
PE
424The distribution terms for Bison-generated parsers permit using the
425parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 426permissions applied only when Bison was generating LALR(1)
193d7c70 427parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 428parsers could be used only in programs that were free software.
a31239f1 429
8a4281b9 430The other GNU programming tools, such as the GNU C
c827f760 431compiler, have never
9ecbd125 432had such a requirement. They could always be used for nonfree
a31239f1
RS
433software. The reason Bison was different was not due to a special
434policy decision; it resulted from applying the usual General Public
435License to all of the Bison source code.
436
ff7571c0
JD
437The main output of the Bison utility---the Bison parser implementation
438file---contains a verbatim copy of a sizable piece of Bison, which is
439the code for the parser's implementation. (The actions from your
440grammar are inserted into this implementation at one point, but most
441of the rest of the implementation is not changed.) When we applied
442the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
443the effect was to restrict the use of Bison output to free software.
444
445We didn't change the terms because of sympathy for people who want to
446make software proprietary. @strong{Software should be free.} But we
447concluded that limiting Bison's use to free software was doing little to
448encourage people to make other software free. So we decided to make the
449practical conditions for using Bison match the practical conditions for
8a4281b9 450using the other GNU tools.
bfa74976 451
193d7c70
PE
452This exception applies when Bison is generating code for a parser.
453You can tell whether the exception applies to a Bison output file by
454inspecting the file for text beginning with ``As a special
455exception@dots{}''. The text spells out the exact terms of the
456exception.
262aa8dd 457
f16b0819
PE
458@node Copying
459@unnumbered GNU GENERAL PUBLIC LICENSE
460@include gpl-3.0.texi
bfa74976 461
342b8b6e 462@node Concepts
bfa74976
RS
463@chapter The Concepts of Bison
464
465This chapter introduces many of the basic concepts without which the
466details of Bison will not make sense. If you do not already know how to
467use Bison or Yacc, we suggest you start by reading this chapter carefully.
468
469@menu
f5f419de
DJ
470* Language and Grammar:: Languages and context-free grammars,
471 as mathematical ideas.
472* Grammar in Bison:: How we represent grammars for Bison's sake.
473* Semantic Values:: Each token or syntactic grouping can have
474 a semantic value (the value of an integer,
475 the name of an identifier, etc.).
476* Semantic Actions:: Each rule can have an action containing C code.
477* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 478* Locations:: Overview of location tracking.
f5f419de
DJ
479* Bison Parser:: What are Bison's input and output,
480 how is the output used?
481* Stages:: Stages in writing and running Bison grammars.
482* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
483@end menu
484
342b8b6e 485@node Language and Grammar
bfa74976
RS
486@section Languages and Context-Free Grammars
487
bfa74976
RS
488@cindex context-free grammar
489@cindex grammar, context-free
490In order for Bison to parse a language, it must be described by a
491@dfn{context-free grammar}. This means that you specify one or more
492@dfn{syntactic groupings} and give rules for constructing them from their
493parts. For example, in the C language, one kind of grouping is called an
494`expression'. One rule for making an expression might be, ``An expression
495can be made of a minus sign and another expression''. Another would be,
496``An expression can be an integer''. As you can see, rules are often
497recursive, but there must be at least one rule which leads out of the
498recursion.
499
8a4281b9 500@cindex BNF
bfa74976
RS
501@cindex Backus-Naur form
502The most common formal system for presenting such rules for humans to read
8a4281b9 503is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 504order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
505BNF is a context-free grammar. The input to Bison is
506essentially machine-readable BNF.
bfa74976 507
7fceb615
JD
508@cindex LALR grammars
509@cindex IELR grammars
510@cindex LR grammars
511There are various important subclasses of context-free grammars. Although
512it can handle almost all context-free grammars, Bison is optimized for what
513are called LR(1) grammars. In brief, in these grammars, it must be possible
514to tell how to parse any portion of an input string with just a single token
515of lookahead. For historical reasons, Bison by default is limited by the
516additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
517@xref{Mysterious Conflicts}, for more information on this. As an
518experimental feature, you can escape these additional restrictions by
519requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
520Construction}, to learn how.
bfa74976 521
8a4281b9
JD
522@cindex GLR parsing
523@cindex generalized LR (GLR) parsing
676385e2 524@cindex ambiguous grammars
9d9b8b70 525@cindex nondeterministic parsing
9501dc6e 526
8a4281b9 527Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
528roughly that the next grammar rule to apply at any point in the input is
529uniquely determined by the preceding input and a fixed, finite portion
742e4900 530(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 531grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 532apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 533grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 534lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 535With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
536general context-free grammars, using a technique known as GLR
537parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
538are able to handle any context-free grammar for which the number of
539possible parses of any given string is finite.
676385e2 540
bfa74976
RS
541@cindex symbols (abstract)
542@cindex token
543@cindex syntactic grouping
544@cindex grouping, syntactic
9501dc6e
AD
545In the formal grammatical rules for a language, each kind of syntactic
546unit or grouping is named by a @dfn{symbol}. Those which are built by
547grouping smaller constructs according to grammatical rules are called
bfa74976
RS
548@dfn{nonterminal symbols}; those which can't be subdivided are called
549@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
550corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 551corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
552
553We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
554nonterminal, mean. The tokens of C are identifiers, constants (numeric
555and string), and the various keywords, arithmetic operators and
556punctuation marks. So the terminal symbols of a grammar for C include
557`identifier', `number', `string', plus one symbol for each keyword,
558operator or punctuation mark: `if', `return', `const', `static', `int',
559`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
560(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
561lexicography, not grammar.)
562
563Here is a simple C function subdivided into tokens:
564
9edcd895
AD
565@example
566int /* @r{keyword `int'} */
14d4662b 567square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
568 @r{identifier, close-paren} */
569@{ /* @r{open-brace} */
aa08666d
AD
570 return x * x; /* @r{keyword `return', identifier, asterisk,}
571 @r{identifier, semicolon} */
9edcd895
AD
572@} /* @r{close-brace} */
573@end example
bfa74976
RS
574
575The syntactic groupings of C include the expression, the statement, the
576declaration, and the function definition. These are represented in the
577grammar of C by nonterminal symbols `expression', `statement',
578`declaration' and `function definition'. The full grammar uses dozens of
579additional language constructs, each with its own nonterminal symbol, in
580order to express the meanings of these four. The example above is a
581function definition; it contains one declaration, and one statement. In
582the statement, each @samp{x} is an expression and so is @samp{x * x}.
583
584Each nonterminal symbol must have grammatical rules showing how it is made
585out of simpler constructs. For example, one kind of C statement is the
586@code{return} statement; this would be described with a grammar rule which
587reads informally as follows:
588
589@quotation
590A `statement' can be made of a `return' keyword, an `expression' and a
591`semicolon'.
592@end quotation
593
594@noindent
595There would be many other rules for `statement', one for each kind of
596statement in C.
597
598@cindex start symbol
599One nonterminal symbol must be distinguished as the special one which
600defines a complete utterance in the language. It is called the @dfn{start
601symbol}. In a compiler, this means a complete input program. In the C
602language, the nonterminal symbol `sequence of definitions and declarations'
603plays this role.
604
605For example, @samp{1 + 2} is a valid C expression---a valid part of a C
606program---but it is not valid as an @emph{entire} C program. In the
607context-free grammar of C, this follows from the fact that `expression' is
608not the start symbol.
609
610The Bison parser reads a sequence of tokens as its input, and groups the
611tokens using the grammar rules. If the input is valid, the end result is
612that the entire token sequence reduces to a single grouping whose symbol is
613the grammar's start symbol. If we use a grammar for C, the entire input
614must be a `sequence of definitions and declarations'. If not, the parser
615reports a syntax error.
616
342b8b6e 617@node Grammar in Bison
bfa74976
RS
618@section From Formal Rules to Bison Input
619@cindex Bison grammar
620@cindex grammar, Bison
621@cindex formal grammar
622
623A formal grammar is a mathematical construct. To define the language
624for Bison, you must write a file expressing the grammar in Bison syntax:
625a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
626
627A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 628as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
629in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
630
631The Bison representation for a terminal symbol is also called a @dfn{token
632type}. Token types as well can be represented as C-like identifiers. By
633convention, these identifiers should be upper case to distinguish them from
634nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
635@code{RETURN}. A terminal symbol that stands for a particular keyword in
636the language should be named after that keyword converted to upper case.
637The terminal symbol @code{error} is reserved for error recovery.
931c7513 638@xref{Symbols}.
bfa74976
RS
639
640A terminal symbol can also be represented as a character literal, just like
641a C character constant. You should do this whenever a token is just a
642single character (parenthesis, plus-sign, etc.): use that same character in
643a literal as the terminal symbol for that token.
644
931c7513
RS
645A third way to represent a terminal symbol is with a C string constant
646containing several characters. @xref{Symbols}, for more information.
647
bfa74976
RS
648The grammar rules also have an expression in Bison syntax. For example,
649here is the Bison rule for a C @code{return} statement. The semicolon in
650quotes is a literal character token, representing part of the C syntax for
651the statement; the naked semicolon, and the colon, are Bison punctuation
652used in every rule.
653
654@example
5e9b6624 655stmt: RETURN expr ';' ;
bfa74976
RS
656@end example
657
658@noindent
659@xref{Rules, ,Syntax of Grammar Rules}.
660
342b8b6e 661@node Semantic Values
bfa74976
RS
662@section Semantic Values
663@cindex semantic value
664@cindex value, semantic
665
666A formal grammar selects tokens only by their classifications: for example,
667if a rule mentions the terminal symbol `integer constant', it means that
668@emph{any} integer constant is grammatically valid in that position. The
669precise value of the constant is irrelevant to how to parse the input: if
670@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 671grammatical.
bfa74976
RS
672
673But the precise value is very important for what the input means once it is
674parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6753989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
676has both a token type and a @dfn{semantic value}. @xref{Semantics,
677,Defining Language Semantics},
bfa74976
RS
678for details.
679
680The token type is a terminal symbol defined in the grammar, such as
681@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
682you need to know to decide where the token may validly appear and how to
683group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 684except their types.
bfa74976
RS
685
686The semantic value has all the rest of the information about the
687meaning of the token, such as the value of an integer, or the name of an
688identifier. (A token such as @code{','} which is just punctuation doesn't
689need to have any semantic value.)
690
691For example, an input token might be classified as token type
692@code{INTEGER} and have the semantic value 4. Another input token might
693have the same token type @code{INTEGER} but value 3989. When a grammar
694rule says that @code{INTEGER} is allowed, either of these tokens is
695acceptable because each is an @code{INTEGER}. When the parser accepts the
696token, it keeps track of the token's semantic value.
697
698Each grouping can also have a semantic value as well as its nonterminal
699symbol. For example, in a calculator, an expression typically has a
700semantic value that is a number. In a compiler for a programming
701language, an expression typically has a semantic value that is a tree
702structure describing the meaning of the expression.
703
342b8b6e 704@node Semantic Actions
bfa74976
RS
705@section Semantic Actions
706@cindex semantic actions
707@cindex actions, semantic
708
709In order to be useful, a program must do more than parse input; it must
710also produce some output based on the input. In a Bison grammar, a grammar
711rule can have an @dfn{action} made up of C statements. Each time the
712parser recognizes a match for that rule, the action is executed.
713@xref{Actions}.
13863333 714
bfa74976
RS
715Most of the time, the purpose of an action is to compute the semantic value
716of the whole construct from the semantic values of its parts. For example,
717suppose we have a rule which says an expression can be the sum of two
718expressions. When the parser recognizes such a sum, each of the
719subexpressions has a semantic value which describes how it was built up.
720The action for this rule should create a similar sort of value for the
721newly recognized larger expression.
722
723For example, here is a rule that says an expression can be the sum of
724two subexpressions:
725
726@example
5e9b6624 727expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
728@end example
729
730@noindent
731The action says how to produce the semantic value of the sum expression
732from the values of the two subexpressions.
733
676385e2 734@node GLR Parsers
8a4281b9
JD
735@section Writing GLR Parsers
736@cindex GLR parsing
737@cindex generalized LR (GLR) parsing
676385e2
PH
738@findex %glr-parser
739@cindex conflicts
740@cindex shift/reduce conflicts
fa7e68c3 741@cindex reduce/reduce conflicts
676385e2 742
eb45ef3b 743In some grammars, Bison's deterministic
8a4281b9 744LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
745certain grammar rule at a given point. That is, it may not be able to
746decide (on the basis of the input read so far) which of two possible
747reductions (applications of a grammar rule) applies, or whether to apply
748a reduction or read more of the input and apply a reduction later in the
749input. These are known respectively as @dfn{reduce/reduce} conflicts
750(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
751(@pxref{Shift/Reduce}).
752
8a4281b9 753To use a grammar that is not easily modified to be LR(1), a
9501dc6e 754more general parsing algorithm is sometimes necessary. If you include
676385e2 755@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
756(@pxref{Grammar Outline}), the result is a Generalized LR
757(GLR) parser. These parsers handle Bison grammars that
9501dc6e 758contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 759declarations) identically to deterministic parsers. However, when
9501dc6e 760faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 761GLR parsers use the simple expedient of doing both,
9501dc6e
AD
762effectively cloning the parser to follow both possibilities. Each of
763the resulting parsers can again split, so that at any given time, there
764can be any number of possible parses being explored. The parsers
676385e2
PH
765proceed in lockstep; that is, all of them consume (shift) a given input
766symbol before any of them proceed to the next. Each of the cloned
767parsers eventually meets one of two possible fates: either it runs into
768a parsing error, in which case it simply vanishes, or it merges with
769another parser, because the two of them have reduced the input to an
770identical set of symbols.
771
772During the time that there are multiple parsers, semantic actions are
773recorded, but not performed. When a parser disappears, its recorded
774semantic actions disappear as well, and are never performed. When a
775reduction makes two parsers identical, causing them to merge, Bison
776records both sets of semantic actions. Whenever the last two parsers
777merge, reverting to the single-parser case, Bison resolves all the
778outstanding actions either by precedences given to the grammar rules
779involved, or by performing both actions, and then calling a designated
780user-defined function on the resulting values to produce an arbitrary
781merged result.
782
fa7e68c3 783@menu
8a4281b9
JD
784* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
785* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 786* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 787* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 788* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
789@end menu
790
791@node Simple GLR Parsers
8a4281b9
JD
792@subsection Using GLR on Unambiguous Grammars
793@cindex GLR parsing, unambiguous grammars
794@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
795@findex %glr-parser
796@findex %expect-rr
797@cindex conflicts
798@cindex reduce/reduce conflicts
799@cindex shift/reduce conflicts
800
8a4281b9
JD
801In the simplest cases, you can use the GLR algorithm
802to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 803Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
804
805Consider a problem that
806arises in the declaration of enumerated and subrange types in the
807programming language Pascal. Here are some examples:
808
809@example
810type subrange = lo .. hi;
811type enum = (a, b, c);
812@end example
813
814@noindent
815The original language standard allows only numeric
816literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 817and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
81810206) and many other
819Pascal implementations allow arbitrary expressions there. This gives
820rise to the following situation, containing a superfluous pair of
821parentheses:
822
823@example
824type subrange = (a) .. b;
825@end example
826
827@noindent
828Compare this to the following declaration of an enumerated
829type with only one value:
830
831@example
832type enum = (a);
833@end example
834
835@noindent
836(These declarations are contrived, but they are syntactically
837valid, and more-complicated cases can come up in practical programs.)
838
839These two declarations look identical until the @samp{..} token.
8a4281b9 840With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
841possible to decide between the two forms when the identifier
842@samp{a} is parsed. It is, however, desirable
843for a parser to decide this, since in the latter case
844@samp{a} must become a new identifier to represent the enumeration
845value, while in the former case @samp{a} must be evaluated with its
846current meaning, which may be a constant or even a function call.
847
848You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
849to be resolved later, but this typically requires substantial
850contortions in both semantic actions and large parts of the
851grammar, where the parentheses are nested in the recursive rules for
852expressions.
853
854You might think of using the lexer to distinguish between the two
855forms by returning different tokens for currently defined and
856undefined identifiers. But if these declarations occur in a local
857scope, and @samp{a} is defined in an outer scope, then both forms
858are possible---either locally redefining @samp{a}, or using the
859value of @samp{a} from the outer scope. So this approach cannot
860work.
861
e757bb10 862A simple solution to this problem is to declare the parser to
8a4281b9
JD
863use the GLR algorithm.
864When the GLR parser reaches the critical state, it
fa7e68c3
PE
865merely splits into two branches and pursues both syntax rules
866simultaneously. Sooner or later, one of them runs into a parsing
867error. If there is a @samp{..} token before the next
868@samp{;}, the rule for enumerated types fails since it cannot
869accept @samp{..} anywhere; otherwise, the subrange type rule
870fails since it requires a @samp{..} token. So one of the branches
871fails silently, and the other one continues normally, performing
872all the intermediate actions that were postponed during the split.
873
874If the input is syntactically incorrect, both branches fail and the parser
875reports a syntax error as usual.
876
877The effect of all this is that the parser seems to ``guess'' the
878correct branch to take, or in other words, it seems to use more
8a4281b9
JD
879lookahead than the underlying LR(1) algorithm actually allows
880for. In this example, LR(2) would suffice, but also some cases
881that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 882
8a4281b9 883In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
884and the current Bison parser even takes exponential time and space
885for some grammars. In practice, this rarely happens, and for many
886grammars it is possible to prove that it cannot happen.
887The present example contains only one conflict between two
888rules, and the type-declaration context containing the conflict
889cannot be nested. So the number of
890branches that can exist at any time is limited by the constant 2,
891and the parsing time is still linear.
892
893Here is a Bison grammar corresponding to the example above. It
894parses a vastly simplified form of Pascal type declarations.
895
896@example
897%token TYPE DOTDOT ID
898
899@group
900%left '+' '-'
901%left '*' '/'
902@end group
903
904%%
5e9b6624 905type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
906
907@group
5e9b6624
AD
908type:
909 '(' id_list ')'
910| expr DOTDOT expr
911;
fa7e68c3
PE
912@end group
913
914@group
5e9b6624
AD
915id_list:
916 ID
917| id_list ',' ID
918;
fa7e68c3
PE
919@end group
920
921@group
5e9b6624
AD
922expr:
923 '(' expr ')'
924| expr '+' expr
925| expr '-' expr
926| expr '*' expr
927| expr '/' expr
928| ID
929;
fa7e68c3
PE
930@end group
931@end example
932
8a4281b9 933When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
934about one reduce/reduce conflict. In the conflicting situation the
935parser chooses one of the alternatives, arbitrarily the one
936declared first. Therefore the following correct input is not
937recognized:
938
939@example
940type t = (a) .. b;
941@end example
942
8a4281b9 943The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
944to be silent about the one known reduce/reduce conflict, by adding
945these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
946@samp{%%}):
947
948@example
949%glr-parser
950%expect-rr 1
951@end example
952
953@noindent
954No change in the grammar itself is required. Now the
955parser recognizes all valid declarations, according to the
956limited syntax above, transparently. In fact, the user does not even
957notice when the parser splits.
958
8a4281b9 959So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
960almost without disadvantages. Even in simple cases like this, however,
961there are at least two potential problems to beware. First, always
8a4281b9
JD
962analyze the conflicts reported by Bison to make sure that GLR
963splitting is only done where it is intended. A GLR parser
f8e1c9e5 964splitting inadvertently may cause problems less obvious than an
8a4281b9 965LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
966conflict. Second, consider interactions with the lexer (@pxref{Semantic
967Tokens}) with great care. Since a split parser consumes tokens without
968performing any actions during the split, the lexer cannot obtain
969information via parser actions. Some cases of lexer interactions can be
8a4281b9 970eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
971lexer to the parser. You must check the remaining cases for
972correctness.
973
974In our example, it would be safe for the lexer to return tokens based on
975their current meanings in some symbol table, because no new symbols are
976defined in the middle of a type declaration. Though it is possible for
977a parser to define the enumeration constants as they are parsed, before
978the type declaration is completed, it actually makes no difference since
979they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
980
981@node Merging GLR Parses
8a4281b9
JD
982@subsection Using GLR to Resolve Ambiguities
983@cindex GLR parsing, ambiguous grammars
984@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
985@findex %dprec
986@findex %merge
987@cindex conflicts
988@cindex reduce/reduce conflicts
989
2a8d363a 990Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
991
992@example
993%@{
38a92d50
PE
994 #include <stdio.h>
995 #define YYSTYPE char const *
996 int yylex (void);
997 void yyerror (char const *);
676385e2
PH
998%@}
999
1000%token TYPENAME ID
1001
1002%right '='
1003%left '+'
1004
1005%glr-parser
1006
1007%%
1008
5e9b6624
AD
1009prog:
1010 /* Nothing. */
1011| prog stmt @{ printf ("\n"); @}
1012;
676385e2 1013
5e9b6624
AD
1014stmt:
1015 expr ';' %dprec 1
1016| decl %dprec 2
1017;
676385e2 1018
5e9b6624
AD
1019expr:
1020 ID @{ printf ("%s ", $$); @}
1021| TYPENAME '(' expr ')'
1022 @{ printf ("%s <cast> ", $1); @}
1023| expr '+' expr @{ printf ("+ "); @}
1024| expr '=' expr @{ printf ("= "); @}
1025;
676385e2 1026
5e9b6624
AD
1027decl:
1028 TYPENAME declarator ';'
1029 @{ printf ("%s <declare> ", $1); @}
1030| TYPENAME declarator '=' expr ';'
1031 @{ printf ("%s <init-declare> ", $1); @}
1032;
676385e2 1033
5e9b6624
AD
1034declarator:
1035 ID @{ printf ("\"%s\" ", $1); @}
1036| '(' declarator ')'
1037;
676385e2
PH
1038@end example
1039
1040@noindent
1041This models a problematic part of the C++ grammar---the ambiguity between
1042certain declarations and statements. For example,
1043
1044@example
1045T (x) = y+z;
1046@end example
1047
1048@noindent
1049parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1050(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1051@samp{x} as an @code{ID}).
676385e2 1052Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1053@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1054time it encounters @code{x} in the example above. Since this is a
8a4281b9 1055GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1056each choice of resolving the reduce/reduce conflict.
1057Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1058however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1059ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1060the other reduces @code{stmt : decl}, after which both parsers are in an
1061identical state: they've seen @samp{prog stmt} and have the same unprocessed
1062input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1063
8a4281b9 1064At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1065grammar of how to choose between the competing parses.
1066In the example above, the two @code{%dprec}
e757bb10 1067declarations specify that Bison is to give precedence
fa7e68c3 1068to the parse that interprets the example as a
676385e2
PH
1069@code{decl}, which implies that @code{x} is a declarator.
1070The parser therefore prints
1071
1072@example
fae437e8 1073"x" y z + T <init-declare>
676385e2
PH
1074@end example
1075
fa7e68c3
PE
1076The @code{%dprec} declarations only come into play when more than one
1077parse survives. Consider a different input string for this parser:
676385e2
PH
1078
1079@example
1080T (x) + y;
1081@end example
1082
1083@noindent
8a4281b9 1084This is another example of using GLR to parse an unambiguous
fa7e68c3 1085construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1086Here, there is no ambiguity (this cannot be parsed as a declaration).
1087However, at the time the Bison parser encounters @code{x}, it does not
1088have enough information to resolve the reduce/reduce conflict (again,
1089between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1090case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1091into two, one assuming that @code{x} is an @code{expr}, and the other
1092assuming @code{x} is a @code{declarator}. The second of these parsers
1093then vanishes when it sees @code{+}, and the parser prints
1094
1095@example
fae437e8 1096x T <cast> y +
676385e2
PH
1097@end example
1098
1099Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1100the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1101actions of the two possible parsers, rather than choosing one over the
1102other. To do so, you could change the declaration of @code{stmt} as
1103follows:
1104
1105@example
5e9b6624
AD
1106stmt:
1107 expr ';' %merge <stmtMerge>
1108| decl %merge <stmtMerge>
1109;
676385e2
PH
1110@end example
1111
1112@noindent
676385e2
PH
1113and define the @code{stmtMerge} function as:
1114
1115@example
38a92d50
PE
1116static YYSTYPE
1117stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1118@{
1119 printf ("<OR> ");
1120 return "";
1121@}
1122@end example
1123
1124@noindent
1125with an accompanying forward declaration
1126in the C declarations at the beginning of the file:
1127
1128@example
1129%@{
38a92d50 1130 #define YYSTYPE char const *
676385e2
PH
1131 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1132%@}
1133@end example
1134
1135@noindent
fa7e68c3
PE
1136With these declarations, the resulting parser parses the first example
1137as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1138
1139@example
fae437e8 1140"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1141@end example
1142
fa7e68c3 1143Bison requires that all of the
e757bb10 1144productions that participate in any particular merge have identical
fa7e68c3
PE
1145@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1146and the parser will report an error during any parse that results in
1147the offending merge.
9501dc6e 1148
32c29292
JD
1149@node GLR Semantic Actions
1150@subsection GLR Semantic Actions
1151
8a4281b9 1152The nature of GLR parsing and the structure of the generated
20be2f92
PH
1153parsers give rise to certain restrictions on semantic values and actions.
1154
1155@subsubsection Deferred semantic actions
32c29292
JD
1156@cindex deferred semantic actions
1157By definition, a deferred semantic action is not performed at the same time as
1158the associated reduction.
1159This raises caveats for several Bison features you might use in a semantic
8a4281b9 1160action in a GLR parser.
32c29292
JD
1161
1162@vindex yychar
8a4281b9 1163@cindex GLR parsers and @code{yychar}
32c29292 1164@vindex yylval
8a4281b9 1165@cindex GLR parsers and @code{yylval}
32c29292 1166@vindex yylloc
8a4281b9 1167@cindex GLR parsers and @code{yylloc}
32c29292 1168In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1169the lookahead token present at the time of the associated reduction.
32c29292
JD
1170After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1171you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1172lookahead token's semantic value and location, if any.
32c29292
JD
1173In a nondeferred semantic action, you can also modify any of these variables to
1174influence syntax analysis.
742e4900 1175@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1176
1177@findex yyclearin
8a4281b9 1178@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1179In a deferred semantic action, it's too late to influence syntax analysis.
1180In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1181shallow copies of the values they had at the time of the associated reduction.
1182For this reason alone, modifying them is dangerous.
1183Moreover, the result of modifying them is undefined and subject to change with
1184future versions of Bison.
1185For example, if a semantic action might be deferred, you should never write it
1186to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1187memory referenced by @code{yylval}.
1188
20be2f92 1189@subsubsection YYERROR
32c29292 1190@findex YYERROR
8a4281b9 1191@cindex GLR parsers and @code{YYERROR}
32c29292 1192Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1193(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1194initiate error recovery.
8a4281b9 1195During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1196the same as its effect in a deterministic parser.
411614fa
JM
1197The effect in a deferred action is similar, but the precise point of the
1198error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1199selecting an unspecified stack on which to continue with a syntax error.
1200In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1201parsing, @code{YYERROR} silently prunes
1202the parse that invoked the test.
1203
1204@subsubsection Restrictions on semantic values and locations
8a4281b9 1205GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1206semantic values and location types when using the generated parsers as
1207C++ code.
8710fc41 1208
ca2a6d15
PH
1209@node Semantic Predicates
1210@subsection Controlling a Parse with Arbitrary Predicates
1211@findex %?
8a4281b9 1212@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1213
1214In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1215GLR parsers
ca2a6d15
PH
1216allow you to reject parses on the basis of arbitrary computations executed
1217in user code, without having Bison treat this rejection as an error
1218if there are alternative parses. (This feature is experimental and may
1219evolve. We welcome user feedback.) For example,
1220
c93f22fc
AD
1221@example
1222widget:
5e9b6624
AD
1223 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1224| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1225;
c93f22fc 1226@end example
ca2a6d15
PH
1227
1228@noindent
411614fa 1229is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1230widgets. The clause preceded by @code{%?} is treated like an ordinary
1231action, except that its text is treated as an expression and is always
411614fa 1232evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1233expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1234which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1235to die. In a deterministic parser, it acts like YYERROR.
1236
1237As the example shows, predicates otherwise look like semantic actions, and
1238therefore you must be take them into account when determining the numbers
1239to use for denoting the semantic values of right-hand side symbols.
1240Predicate actions, however, have no defined value, and may not be given
1241labels.
1242
1243There is a subtle difference between semantic predicates and ordinary
1244actions in nondeterministic mode, since the latter are deferred.
411614fa 1245For example, we could try to rewrite the previous example as
ca2a6d15 1246
c93f22fc
AD
1247@example
1248widget:
5e9b6624
AD
1249 @{ if (!new_syntax) YYERROR; @}
1250 "widget" id new_args @{ $$ = f($3, $4); @}
1251| @{ if (new_syntax) YYERROR; @}
1252 "widget" id old_args @{ $$ = f($3, $4); @}
1253;
c93f22fc 1254@end example
ca2a6d15
PH
1255
1256@noindent
1257(reversing the sense of the predicate tests to cause an error when they are
1258false). However, this
1259does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1260have overlapping syntax.
411614fa 1261Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1262a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1263for cases where @code{new_args} and @code{old_args} recognize the same string
1264@emph{before} performing the tests of @code{new_syntax}. It therefore
1265reports an error.
1266
1267Finally, be careful in writing predicates: deferred actions have not been
1268evaluated, so that using them in a predicate will have undefined effects.
1269
fa7e68c3 1270@node Compiler Requirements
8a4281b9 1271@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1272@cindex @code{inline}
8a4281b9 1273@cindex GLR parsers and @code{inline}
fa7e68c3 1274
8a4281b9 1275The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1276later. In addition, they use the @code{inline} keyword, which is not
1277C89, but is C99 and is a common extension in pre-C99 compilers. It is
1278up to the user of these parsers to handle
9501dc6e
AD
1279portability issues. For instance, if using Autoconf and the Autoconf
1280macro @code{AC_C_INLINE}, a mere
1281
1282@example
1283%@{
38a92d50 1284 #include <config.h>
9501dc6e
AD
1285%@}
1286@end example
1287
1288@noindent
1289will suffice. Otherwise, we suggest
1290
1291@example
1292%@{
aaaa2aae
AD
1293 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1294 && ! defined inline)
1295 # define inline
38a92d50 1296 #endif
9501dc6e
AD
1297%@}
1298@end example
676385e2 1299
1769eb30 1300@node Locations
847bf1f5
AD
1301@section Locations
1302@cindex location
95923bd6
AD
1303@cindex textual location
1304@cindex location, textual
847bf1f5
AD
1305
1306Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1307and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1308the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1309Bison provides a mechanism for handling these locations.
1310
72d2299c 1311Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1312associated location, but the type of locations is the same for all tokens
1313and groupings. Moreover, the output parser is equipped with a default data
1314structure for storing locations (@pxref{Tracking Locations}, for more
1315details).
847bf1f5
AD
1316
1317Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1318set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1319is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1320@code{@@3}.
1321
1322When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1323of its left hand side (@pxref{Actions}). In the same way, another default
1324action is used for locations. However, the action for locations is general
847bf1f5 1325enough for most cases, meaning there is usually no need to describe for each
72d2299c 1326rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1327grouping, the default behavior of the output parser is to take the beginning
1328of the first symbol, and the end of the last symbol.
1329
342b8b6e 1330@node Bison Parser
ff7571c0 1331@section Bison Output: the Parser Implementation File
bfa74976
RS
1332@cindex Bison parser
1333@cindex Bison utility
1334@cindex lexical analyzer, purpose
1335@cindex parser
1336
ff7571c0
JD
1337When you run Bison, you give it a Bison grammar file as input. The
1338most important output is a C source file that implements a parser for
1339the language described by the grammar. This parser is called a
1340@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1341implementation file}. Keep in mind that the Bison utility and the
1342Bison parser are two distinct programs: the Bison utility is a program
1343whose output is the Bison parser implementation file that becomes part
1344of your program.
bfa74976
RS
1345
1346The job of the Bison parser is to group tokens into groupings according to
1347the grammar rules---for example, to build identifiers and operators into
1348expressions. As it does this, it runs the actions for the grammar rules it
1349uses.
1350
704a47c4
AD
1351The tokens come from a function called the @dfn{lexical analyzer} that
1352you must supply in some fashion (such as by writing it in C). The Bison
1353parser calls the lexical analyzer each time it wants a new token. It
1354doesn't know what is ``inside'' the tokens (though their semantic values
1355may reflect this). Typically the lexical analyzer makes the tokens by
1356parsing characters of text, but Bison does not depend on this.
1357@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1358
ff7571c0
JD
1359The Bison parser implementation file is C code which defines a
1360function named @code{yyparse} which implements that grammar. This
1361function does not make a complete C program: you must supply some
1362additional functions. One is the lexical analyzer. Another is an
1363error-reporting function which the parser calls to report an error.
1364In addition, a complete C program must start with a function called
1365@code{main}; you have to provide this, and arrange for it to call
1366@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1367C-Language Interface}.
bfa74976 1368
f7ab6a50 1369Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1370write, all symbols defined in the Bison parser implementation file
1371itself begin with @samp{yy} or @samp{YY}. This includes interface
1372functions such as the lexical analyzer function @code{yylex}, the
1373error reporting function @code{yyerror} and the parser function
1374@code{yyparse} itself. This also includes numerous identifiers used
1375for internal purposes. Therefore, you should avoid using C
1376identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1377file except for the ones defined in this manual. Also, you should
1378avoid using the C identifiers @samp{malloc} and @samp{free} for
1379anything other than their usual meanings.
1380
1381In some cases the Bison parser implementation file includes system
1382headers, and in those cases your code should respect the identifiers
1383reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1384@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1385included as needed to declare memory allocators and related types.
1386@code{<libintl.h>} is included if message translation is in use
1387(@pxref{Internationalization}). Other system headers may be included
1388if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1389,Tracing Your Parser}).
7093d0f5 1390
342b8b6e 1391@node Stages
bfa74976
RS
1392@section Stages in Using Bison
1393@cindex stages in using Bison
1394@cindex using Bison
1395
1396The actual language-design process using Bison, from grammar specification
1397to a working compiler or interpreter, has these parts:
1398
1399@enumerate
1400@item
1401Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1402(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1403in the language, describe the action that is to be taken when an
1404instance of that rule is recognized. The action is described by a
1405sequence of C statements.
bfa74976
RS
1406
1407@item
704a47c4
AD
1408Write a lexical analyzer to process input and pass tokens to the parser.
1409The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1410Lexical Analyzer Function @code{yylex}}). It could also be produced
1411using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1412
1413@item
1414Write a controlling function that calls the Bison-produced parser.
1415
1416@item
1417Write error-reporting routines.
1418@end enumerate
1419
1420To turn this source code as written into a runnable program, you
1421must follow these steps:
1422
1423@enumerate
1424@item
1425Run Bison on the grammar to produce the parser.
1426
1427@item
1428Compile the code output by Bison, as well as any other source files.
1429
1430@item
1431Link the object files to produce the finished product.
1432@end enumerate
1433
342b8b6e 1434@node Grammar Layout
bfa74976
RS
1435@section The Overall Layout of a Bison Grammar
1436@cindex grammar file
1437@cindex file format
1438@cindex format of grammar file
1439@cindex layout of Bison grammar
1440
1441The input file for the Bison utility is a @dfn{Bison grammar file}. The
1442general form of a Bison grammar file is as follows:
1443
1444@example
1445%@{
08e49d20 1446@var{Prologue}
bfa74976
RS
1447%@}
1448
1449@var{Bison declarations}
1450
1451%%
1452@var{Grammar rules}
1453%%
08e49d20 1454@var{Epilogue}
bfa74976
RS
1455@end example
1456
1457@noindent
1458The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1459in every Bison grammar file to separate the sections.
1460
72d2299c 1461The prologue may define types and variables used in the actions. You can
342b8b6e 1462also use preprocessor commands to define macros used there, and use
bfa74976 1463@code{#include} to include header files that do any of these things.
38a92d50
PE
1464You need to declare the lexical analyzer @code{yylex} and the error
1465printer @code{yyerror} here, along with any other global identifiers
1466used by the actions in the grammar rules.
bfa74976
RS
1467
1468The Bison declarations declare the names of the terminal and nonterminal
1469symbols, and may also describe operator precedence and the data types of
1470semantic values of various symbols.
1471
1472The grammar rules define how to construct each nonterminal symbol from its
1473parts.
1474
38a92d50
PE
1475The epilogue can contain any code you want to use. Often the
1476definitions of functions declared in the prologue go here. In a
1477simple program, all the rest of the program can go here.
bfa74976 1478
342b8b6e 1479@node Examples
bfa74976
RS
1480@chapter Examples
1481@cindex simple examples
1482@cindex examples, simple
1483
aaaa2aae 1484Now we show and explain several sample programs written using Bison: a
bfa74976 1485reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1486calculator --- later extended to track ``locations'' ---
1487and a multi-function calculator. All
1488produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1489
1490These examples are simple, but Bison grammars for real programming
aa08666d
AD
1491languages are written the same way. You can copy these examples into a
1492source file to try them.
bfa74976
RS
1493
1494@menu
f5f419de
DJ
1495* RPN Calc:: Reverse polish notation calculator;
1496 a first example with no operator precedence.
1497* Infix Calc:: Infix (algebraic) notation calculator.
1498 Operator precedence is introduced.
bfa74976 1499* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1500* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1501* Multi-function Calc:: Calculator with memory and trig functions.
1502 It uses multiple data-types for semantic values.
1503* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1504@end menu
1505
342b8b6e 1506@node RPN Calc
bfa74976
RS
1507@section Reverse Polish Notation Calculator
1508@cindex reverse polish notation
1509@cindex polish notation calculator
1510@cindex @code{rpcalc}
1511@cindex calculator, simple
1512
1513The first example is that of a simple double-precision @dfn{reverse polish
1514notation} calculator (a calculator using postfix operators). This example
1515provides a good starting point, since operator precedence is not an issue.
1516The second example will illustrate how operator precedence is handled.
1517
1518The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1519@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1520
1521@menu
f5f419de
DJ
1522* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1523* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1524* Rpcalc Lexer:: The lexical analyzer.
1525* Rpcalc Main:: The controlling function.
1526* Rpcalc Error:: The error reporting function.
1527* Rpcalc Generate:: Running Bison on the grammar file.
1528* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1529@end menu
1530
f5f419de 1531@node Rpcalc Declarations
bfa74976
RS
1532@subsection Declarations for @code{rpcalc}
1533
1534Here are the C and Bison declarations for the reverse polish notation
1535calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1536
24ec0837 1537@comment file: rpcalc.y
bfa74976 1538@example
72d2299c 1539/* Reverse polish notation calculator. */
bfa74976 1540
efbc95a7 1541@group
bfa74976 1542%@{
38a92d50 1543 #define YYSTYPE double
24ec0837 1544 #include <stdio.h>
38a92d50
PE
1545 #include <math.h>
1546 int yylex (void);
1547 void yyerror (char const *);
bfa74976 1548%@}
efbc95a7 1549@end group
bfa74976
RS
1550
1551%token NUM
1552
72d2299c 1553%% /* Grammar rules and actions follow. */
bfa74976
RS
1554@end example
1555
75f5aaea 1556The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1557preprocessor directives and two forward declarations.
bfa74976
RS
1558
1559The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1560specifying the C data type for semantic values of both tokens and
1561groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1562Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1563don't define it, @code{int} is the default. Because we specify
1564@code{double}, each token and each expression has an associated value,
1565which is a floating point number.
bfa74976
RS
1566
1567The @code{#include} directive is used to declare the exponentiation
1568function @code{pow}.
1569
38a92d50
PE
1570The forward declarations for @code{yylex} and @code{yyerror} are
1571needed because the C language requires that functions be declared
1572before they are used. These functions will be defined in the
1573epilogue, but the parser calls them so they must be declared in the
1574prologue.
1575
704a47c4
AD
1576The second section, Bison declarations, provides information to Bison
1577about the token types (@pxref{Bison Declarations, ,The Bison
1578Declarations Section}). Each terminal symbol that is not a
1579single-character literal must be declared here. (Single-character
bfa74976
RS
1580literals normally don't need to be declared.) In this example, all the
1581arithmetic operators are designated by single-character literals, so the
1582only terminal symbol that needs to be declared is @code{NUM}, the token
1583type for numeric constants.
1584
342b8b6e 1585@node Rpcalc Rules
bfa74976
RS
1586@subsection Grammar Rules for @code{rpcalc}
1587
1588Here are the grammar rules for the reverse polish notation calculator.
1589
24ec0837 1590@comment file: rpcalc.y
bfa74976 1591@example
aaaa2aae 1592@group
5e9b6624
AD
1593input:
1594 /* empty */
1595| input line
bfa74976 1596;
aaaa2aae 1597@end group
bfa74976 1598
aaaa2aae 1599@group
5e9b6624
AD
1600line:
1601 '\n'
1602| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1603;
aaaa2aae 1604@end group
bfa74976 1605
aaaa2aae 1606@group
5e9b6624
AD
1607exp:
1608 NUM @{ $$ = $1; @}
1609| exp exp '+' @{ $$ = $1 + $2; @}
1610| exp exp '-' @{ $$ = $1 - $2; @}
1611| exp exp '*' @{ $$ = $1 * $2; @}
1612| exp exp '/' @{ $$ = $1 / $2; @}
1613| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1614| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1615;
aaaa2aae 1616@end group
bfa74976
RS
1617%%
1618@end example
1619
1620The groupings of the rpcalc ``language'' defined here are the expression
1621(given the name @code{exp}), the line of input (@code{line}), and the
1622complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1623symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1624which is read as ``or''. The following sections explain what these rules
1625mean.
1626
1627The semantics of the language is determined by the actions taken when a
1628grouping is recognized. The actions are the C code that appears inside
1629braces. @xref{Actions}.
1630
1631You must specify these actions in C, but Bison provides the means for
1632passing semantic values between the rules. In each action, the
1633pseudo-variable @code{$$} stands for the semantic value for the grouping
1634that the rule is going to construct. Assigning a value to @code{$$} is the
1635main job of most actions. The semantic values of the components of the
1636rule are referred to as @code{$1}, @code{$2}, and so on.
1637
1638@menu
24ec0837
AD
1639* Rpcalc Input:: Explanation of the @code{input} nonterminal
1640* Rpcalc Line:: Explanation of the @code{line} nonterminal
1641* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1642@end menu
1643
342b8b6e 1644@node Rpcalc Input
bfa74976
RS
1645@subsubsection Explanation of @code{input}
1646
1647Consider the definition of @code{input}:
1648
1649@example
5e9b6624
AD
1650input:
1651 /* empty */
1652| input line
bfa74976
RS
1653;
1654@end example
1655
1656This definition reads as follows: ``A complete input is either an empty
1657string, or a complete input followed by an input line''. Notice that
1658``complete input'' is defined in terms of itself. This definition is said
1659to be @dfn{left recursive} since @code{input} appears always as the
1660leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1661
1662The first alternative is empty because there are no symbols between the
1663colon and the first @samp{|}; this means that @code{input} can match an
1664empty string of input (no tokens). We write the rules this way because it
1665is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1666It's conventional to put an empty alternative first and write the comment
1667@samp{/* empty */} in it.
1668
1669The second alternate rule (@code{input line}) handles all nontrivial input.
1670It means, ``After reading any number of lines, read one more line if
1671possible.'' The left recursion makes this rule into a loop. Since the
1672first alternative matches empty input, the loop can be executed zero or
1673more times.
1674
1675The parser function @code{yyparse} continues to process input until a
1676grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1677input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1678
342b8b6e 1679@node Rpcalc Line
bfa74976
RS
1680@subsubsection Explanation of @code{line}
1681
1682Now consider the definition of @code{line}:
1683
1684@example
5e9b6624
AD
1685line:
1686 '\n'
1687| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1688;
1689@end example
1690
1691The first alternative is a token which is a newline character; this means
1692that rpcalc accepts a blank line (and ignores it, since there is no
1693action). The second alternative is an expression followed by a newline.
1694This is the alternative that makes rpcalc useful. The semantic value of
1695the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1696question is the first symbol in the alternative. The action prints this
1697value, which is the result of the computation the user asked for.
1698
1699This action is unusual because it does not assign a value to @code{$$}. As
1700a consequence, the semantic value associated with the @code{line} is
1701uninitialized (its value will be unpredictable). This would be a bug if
1702that value were ever used, but we don't use it: once rpcalc has printed the
1703value of the user's input line, that value is no longer needed.
1704
342b8b6e 1705@node Rpcalc Expr
bfa74976
RS
1706@subsubsection Explanation of @code{expr}
1707
1708The @code{exp} grouping has several rules, one for each kind of expression.
1709The first rule handles the simplest expressions: those that are just numbers.
1710The second handles an addition-expression, which looks like two expressions
1711followed by a plus-sign. The third handles subtraction, and so on.
1712
1713@example
5e9b6624
AD
1714exp:
1715 NUM
1716| exp exp '+' @{ $$ = $1 + $2; @}
1717| exp exp '-' @{ $$ = $1 - $2; @}
1718@dots{}
1719;
bfa74976
RS
1720@end example
1721
1722We have used @samp{|} to join all the rules for @code{exp}, but we could
1723equally well have written them separately:
1724
1725@example
5e9b6624
AD
1726exp: NUM ;
1727exp: exp exp '+' @{ $$ = $1 + $2; @};
1728exp: exp exp '-' @{ $$ = $1 - $2; @};
1729@dots{}
bfa74976
RS
1730@end example
1731
1732Most of the rules have actions that compute the value of the expression in
1733terms of the value of its parts. For example, in the rule for addition,
1734@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1735the second one. The third component, @code{'+'}, has no meaningful
1736associated semantic value, but if it had one you could refer to it as
1737@code{$3}. When @code{yyparse} recognizes a sum expression using this
1738rule, the sum of the two subexpressions' values is produced as the value of
1739the entire expression. @xref{Actions}.
1740
1741You don't have to give an action for every rule. When a rule has no
1742action, Bison by default copies the value of @code{$1} into @code{$$}.
1743This is what happens in the first rule (the one that uses @code{NUM}).
1744
1745The formatting shown here is the recommended convention, but Bison does
72d2299c 1746not require it. You can add or change white space as much as you wish.
bfa74976
RS
1747For example, this:
1748
1749@example
5e9b6624 1750exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1751@end example
1752
1753@noindent
1754means the same thing as this:
1755
1756@example
5e9b6624
AD
1757exp:
1758 NUM
1759| exp exp '+' @{ $$ = $1 + $2; @}
1760| @dots{}
99a9344e 1761;
bfa74976
RS
1762@end example
1763
1764@noindent
1765The latter, however, is much more readable.
1766
342b8b6e 1767@node Rpcalc Lexer
bfa74976
RS
1768@subsection The @code{rpcalc} Lexical Analyzer
1769@cindex writing a lexical analyzer
1770@cindex lexical analyzer, writing
1771
704a47c4
AD
1772The lexical analyzer's job is low-level parsing: converting characters
1773or sequences of characters into tokens. The Bison parser gets its
1774tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1775Analyzer Function @code{yylex}}.
bfa74976 1776
8a4281b9 1777Only a simple lexical analyzer is needed for the RPN
c827f760 1778calculator. This
bfa74976
RS
1779lexical analyzer skips blanks and tabs, then reads in numbers as
1780@code{double} and returns them as @code{NUM} tokens. Any other character
1781that isn't part of a number is a separate token. Note that the token-code
1782for such a single-character token is the character itself.
1783
1784The return value of the lexical analyzer function is a numeric code which
1785represents a token type. The same text used in Bison rules to stand for
1786this token type is also a C expression for the numeric code for the type.
1787This works in two ways. If the token type is a character literal, then its
e966383b 1788numeric code is that of the character; you can use the same
bfa74976
RS
1789character literal in the lexical analyzer to express the number. If the
1790token type is an identifier, that identifier is defined by Bison as a C
1791macro whose definition is the appropriate number. In this example,
1792therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1793
1964ad8c
AD
1794The semantic value of the token (if it has one) is stored into the
1795global variable @code{yylval}, which is where the Bison parser will look
1796for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1797defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1798,Declarations for @code{rpcalc}}.)
bfa74976 1799
72d2299c
PE
1800A token type code of zero is returned if the end-of-input is encountered.
1801(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1802
1803Here is the code for the lexical analyzer:
1804
24ec0837 1805@comment file: rpcalc.y
bfa74976
RS
1806@example
1807@group
72d2299c 1808/* The lexical analyzer returns a double floating point
e966383b 1809 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1810 of the character read if not a number. It skips all blanks
1811 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1812
1813#include <ctype.h>
1814@end group
1815
1816@group
13863333
AD
1817int
1818yylex (void)
bfa74976
RS
1819@{
1820 int c;
1821
72d2299c 1822 /* Skip white space. */
13863333 1823 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1824 continue;
bfa74976
RS
1825@end group
1826@group
72d2299c 1827 /* Process numbers. */
13863333 1828 if (c == '.' || isdigit (c))
bfa74976
RS
1829 @{
1830 ungetc (c, stdin);
1831 scanf ("%lf", &yylval);
1832 return NUM;
1833 @}
1834@end group
1835@group
72d2299c 1836 /* Return end-of-input. */
13863333 1837 if (c == EOF)
bfa74976 1838 return 0;
72d2299c 1839 /* Return a single char. */
13863333 1840 return c;
bfa74976
RS
1841@}
1842@end group
1843@end example
1844
342b8b6e 1845@node Rpcalc Main
bfa74976
RS
1846@subsection The Controlling Function
1847@cindex controlling function
1848@cindex main function in simple example
1849
1850In keeping with the spirit of this example, the controlling function is
1851kept to the bare minimum. The only requirement is that it call
1852@code{yyparse} to start the process of parsing.
1853
24ec0837 1854@comment file: rpcalc.y
bfa74976
RS
1855@example
1856@group
13863333
AD
1857int
1858main (void)
bfa74976 1859@{
13863333 1860 return yyparse ();
bfa74976
RS
1861@}
1862@end group
1863@end example
1864
342b8b6e 1865@node Rpcalc Error
bfa74976
RS
1866@subsection The Error Reporting Routine
1867@cindex error reporting routine
1868
1869When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1870function @code{yyerror} to print an error message (usually but not
6e649e65 1871always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1872@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1873here is the definition we will use:
bfa74976 1874
24ec0837 1875@comment file: rpcalc.y
bfa74976 1876@example
bfa74976
RS
1877#include <stdio.h>
1878
aaaa2aae 1879@group
38a92d50 1880/* Called by yyparse on error. */
13863333 1881void
38a92d50 1882yyerror (char const *s)
bfa74976 1883@{
4e03e201 1884 fprintf (stderr, "%s\n", s);
bfa74976
RS
1885@}
1886@end group
1887@end example
1888
1889After @code{yyerror} returns, the Bison parser may recover from the error
1890and continue parsing if the grammar contains a suitable error rule
1891(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1892have not written any error rules in this example, so any invalid input will
1893cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1894real calculator, but it is adequate for the first example.
bfa74976 1895
f5f419de 1896@node Rpcalc Generate
bfa74976
RS
1897@subsection Running Bison to Make the Parser
1898@cindex running Bison (introduction)
1899
ceed8467
AD
1900Before running Bison to produce a parser, we need to decide how to
1901arrange all the source code in one or more source files. For such a
ff7571c0
JD
1902simple example, the easiest thing is to put everything in one file,
1903the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1904@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1905(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1906
1907For a large project, you would probably have several source files, and use
1908@code{make} to arrange to recompile them.
1909
ff7571c0
JD
1910With all the source in the grammar file, you use the following command
1911to convert it into a parser implementation file:
bfa74976
RS
1912
1913@example
fa4d969f 1914bison @var{file}.y
bfa74976
RS
1915@end example
1916
1917@noindent
ff7571c0
JD
1918In this example, the grammar file is called @file{rpcalc.y} (for
1919``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1920implementation file named @file{@var{file}.tab.c}, removing the
1921@samp{.y} from the grammar file name. The parser implementation file
1922contains the source code for @code{yyparse}. The additional functions
1923in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1924copied verbatim to the parser implementation file.
bfa74976 1925
342b8b6e 1926@node Rpcalc Compile
ff7571c0 1927@subsection Compiling the Parser Implementation File
bfa74976
RS
1928@cindex compiling the parser
1929
ff7571c0 1930Here is how to compile and run the parser implementation file:
bfa74976
RS
1931
1932@example
1933@group
1934# @r{List files in current directory.}
9edcd895 1935$ @kbd{ls}
bfa74976
RS
1936rpcalc.tab.c rpcalc.y
1937@end group
1938
1939@group
1940# @r{Compile the Bison parser.}
1941# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1942$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1943@end group
1944
1945@group
1946# @r{List files again.}
9edcd895 1947$ @kbd{ls}
bfa74976
RS
1948rpcalc rpcalc.tab.c rpcalc.y
1949@end group
1950@end example
1951
1952The file @file{rpcalc} now contains the executable code. Here is an
1953example session using @code{rpcalc}.
1954
1955@example
9edcd895
AD
1956$ @kbd{rpcalc}
1957@kbd{4 9 +}
24ec0837 1958@result{} 13
9edcd895 1959@kbd{3 7 + 3 4 5 *+-}
24ec0837 1960@result{} -13
9edcd895 1961@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1962@result{} 13
9edcd895 1963@kbd{5 6 / 4 n +}
24ec0837 1964@result{} -3.166666667
9edcd895 1965@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1966@result{} 81
9edcd895
AD
1967@kbd{^D} @r{End-of-file indicator}
1968$
bfa74976
RS
1969@end example
1970
342b8b6e 1971@node Infix Calc
bfa74976
RS
1972@section Infix Notation Calculator: @code{calc}
1973@cindex infix notation calculator
1974@cindex @code{calc}
1975@cindex calculator, infix notation
1976
1977We now modify rpcalc to handle infix operators instead of postfix. Infix
1978notation involves the concept of operator precedence and the need for
1979parentheses nested to arbitrary depth. Here is the Bison code for
1980@file{calc.y}, an infix desk-top calculator.
1981
1982@example
38a92d50 1983/* Infix notation calculator. */
bfa74976 1984
aaaa2aae 1985@group
bfa74976 1986%@{
38a92d50
PE
1987 #define YYSTYPE double
1988 #include <math.h>
1989 #include <stdio.h>
1990 int yylex (void);
1991 void yyerror (char const *);
bfa74976 1992%@}
aaaa2aae 1993@end group
bfa74976 1994
aaaa2aae 1995@group
38a92d50 1996/* Bison declarations. */
bfa74976
RS
1997%token NUM
1998%left '-' '+'
1999%left '*' '/'
d78f0ac9
AD
2000%precedence NEG /* negation--unary minus */
2001%right '^' /* exponentiation */
aaaa2aae 2002@end group
bfa74976 2003
38a92d50 2004%% /* The grammar follows. */
aaaa2aae 2005@group
5e9b6624
AD
2006input:
2007 /* empty */
2008| input line
bfa74976 2009;
aaaa2aae 2010@end group
bfa74976 2011
aaaa2aae 2012@group
5e9b6624
AD
2013line:
2014 '\n'
2015| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2016;
aaaa2aae 2017@end group
bfa74976 2018
aaaa2aae 2019@group
5e9b6624
AD
2020exp:
2021 NUM @{ $$ = $1; @}
2022| exp '+' exp @{ $$ = $1 + $3; @}
2023| exp '-' exp @{ $$ = $1 - $3; @}
2024| exp '*' exp @{ $$ = $1 * $3; @}
2025| exp '/' exp @{ $$ = $1 / $3; @}
2026| '-' exp %prec NEG @{ $$ = -$2; @}
2027| exp '^' exp @{ $$ = pow ($1, $3); @}
2028| '(' exp ')' @{ $$ = $2; @}
bfa74976 2029;
aaaa2aae 2030@end group
bfa74976
RS
2031%%
2032@end example
2033
2034@noindent
ceed8467
AD
2035The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2036same as before.
bfa74976
RS
2037
2038There are two important new features shown in this code.
2039
2040In the second section (Bison declarations), @code{%left} declares token
2041types and says they are left-associative operators. The declarations
2042@code{%left} and @code{%right} (right associativity) take the place of
2043@code{%token} which is used to declare a token type name without
d78f0ac9 2044associativity/precedence. (These tokens are single-character literals, which
bfa74976 2045ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2046the associativity/precedence.)
bfa74976
RS
2047
2048Operator precedence is determined by the line ordering of the
2049declarations; the higher the line number of the declaration (lower on
2050the page or screen), the higher the precedence. Hence, exponentiation
2051has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2052by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2053only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2054Precedence}.
bfa74976 2055
704a47c4
AD
2056The other important new feature is the @code{%prec} in the grammar
2057section for the unary minus operator. The @code{%prec} simply instructs
2058Bison that the rule @samp{| '-' exp} has the same precedence as
2059@code{NEG}---in this case the next-to-highest. @xref{Contextual
2060Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2061
2062Here is a sample run of @file{calc.y}:
2063
2064@need 500
2065@example
9edcd895
AD
2066$ @kbd{calc}
2067@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20686.880952381
9edcd895 2069@kbd{-56 + 2}
bfa74976 2070-54
9edcd895 2071@kbd{3 ^ 2}
bfa74976
RS
20729
2073@end example
2074
342b8b6e 2075@node Simple Error Recovery
bfa74976
RS
2076@section Simple Error Recovery
2077@cindex error recovery, simple
2078
2079Up to this point, this manual has not addressed the issue of @dfn{error
2080recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2081error. All we have handled is error reporting with @code{yyerror}.
2082Recall that by default @code{yyparse} returns after calling
2083@code{yyerror}. This means that an erroneous input line causes the
2084calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2085
2086The Bison language itself includes the reserved word @code{error}, which
2087may be included in the grammar rules. In the example below it has
2088been added to one of the alternatives for @code{line}:
2089
2090@example
2091@group
5e9b6624
AD
2092line:
2093 '\n'
2094| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2095| error '\n' @{ yyerrok; @}
bfa74976
RS
2096;
2097@end group
2098@end example
2099
ceed8467 2100This addition to the grammar allows for simple error recovery in the
6e649e65 2101event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2102read, the error will be recognized by the third rule for @code{line},
2103and parsing will continue. (The @code{yyerror} function is still called
2104upon to print its message as well.) The action executes the statement
2105@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2106that error recovery is complete (@pxref{Error Recovery}). Note the
2107difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2108misprint.
bfa74976
RS
2109
2110This form of error recovery deals with syntax errors. There are other
2111kinds of errors; for example, division by zero, which raises an exception
2112signal that is normally fatal. A real calculator program must handle this
2113signal and use @code{longjmp} to return to @code{main} and resume parsing
2114input lines; it would also have to discard the rest of the current line of
2115input. We won't discuss this issue further because it is not specific to
2116Bison programs.
2117
342b8b6e
AD
2118@node Location Tracking Calc
2119@section Location Tracking Calculator: @code{ltcalc}
2120@cindex location tracking calculator
2121@cindex @code{ltcalc}
2122@cindex calculator, location tracking
2123
9edcd895
AD
2124This example extends the infix notation calculator with location
2125tracking. This feature will be used to improve the error messages. For
2126the sake of clarity, this example is a simple integer calculator, since
2127most of the work needed to use locations will be done in the lexical
72d2299c 2128analyzer.
342b8b6e
AD
2129
2130@menu
f5f419de
DJ
2131* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2132* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2133* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2134@end menu
2135
f5f419de 2136@node Ltcalc Declarations
342b8b6e
AD
2137@subsection Declarations for @code{ltcalc}
2138
9edcd895
AD
2139The C and Bison declarations for the location tracking calculator are
2140the same as the declarations for the infix notation calculator.
342b8b6e
AD
2141
2142@example
2143/* Location tracking calculator. */
2144
2145%@{
38a92d50
PE
2146 #define YYSTYPE int
2147 #include <math.h>
2148 int yylex (void);
2149 void yyerror (char const *);
342b8b6e
AD
2150%@}
2151
2152/* Bison declarations. */
2153%token NUM
2154
2155%left '-' '+'
2156%left '*' '/'
d78f0ac9 2157%precedence NEG
342b8b6e
AD
2158%right '^'
2159
38a92d50 2160%% /* The grammar follows. */
342b8b6e
AD
2161@end example
2162
9edcd895
AD
2163@noindent
2164Note there are no declarations specific to locations. Defining a data
2165type for storing locations is not needed: we will use the type provided
2166by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2167four member structure with the following integer fields:
2168@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2169@code{last_column}. By conventions, and in accordance with the GNU
2170Coding Standards and common practice, the line and column count both
2171start at 1.
342b8b6e
AD
2172
2173@node Ltcalc Rules
2174@subsection Grammar Rules for @code{ltcalc}
2175
9edcd895
AD
2176Whether handling locations or not has no effect on the syntax of your
2177language. Therefore, grammar rules for this example will be very close
2178to those of the previous example: we will only modify them to benefit
2179from the new information.
342b8b6e 2180
9edcd895
AD
2181Here, we will use locations to report divisions by zero, and locate the
2182wrong expressions or subexpressions.
342b8b6e
AD
2183
2184@example
2185@group
5e9b6624
AD
2186input:
2187 /* empty */
2188| input line
342b8b6e
AD
2189;
2190@end group
2191
2192@group
5e9b6624
AD
2193line:
2194 '\n'
2195| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2196;
2197@end group
2198
2199@group
5e9b6624
AD
2200exp:
2201 NUM @{ $$ = $1; @}
2202| exp '+' exp @{ $$ = $1 + $3; @}
2203| exp '-' exp @{ $$ = $1 - $3; @}
2204| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2205@end group
342b8b6e 2206@group
5e9b6624
AD
2207| exp '/' exp
2208 @{
2209 if ($3)
2210 $$ = $1 / $3;
2211 else
2212 @{
2213 $$ = 1;
2214 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2215 @@3.first_line, @@3.first_column,
2216 @@3.last_line, @@3.last_column);
2217 @}
2218 @}
342b8b6e
AD
2219@end group
2220@group
5e9b6624
AD
2221| '-' exp %prec NEG @{ $$ = -$2; @}
2222| exp '^' exp @{ $$ = pow ($1, $3); @}
2223| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2224@end group
2225@end example
2226
2227This code shows how to reach locations inside of semantic actions, by
2228using the pseudo-variables @code{@@@var{n}} for rule components, and the
2229pseudo-variable @code{@@$} for groupings.
2230
9edcd895
AD
2231We don't need to assign a value to @code{@@$}: the output parser does it
2232automatically. By default, before executing the C code of each action,
2233@code{@@$} is set to range from the beginning of @code{@@1} to the end
2234of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2235can be redefined (@pxref{Location Default Action, , Default Action for
2236Locations}), and for very specific rules, @code{@@$} can be computed by
2237hand.
342b8b6e
AD
2238
2239@node Ltcalc Lexer
2240@subsection The @code{ltcalc} Lexical Analyzer.
2241
9edcd895 2242Until now, we relied on Bison's defaults to enable location
72d2299c 2243tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2244able to feed the parser with the token locations, as it already does for
2245semantic values.
342b8b6e 2246
9edcd895
AD
2247To this end, we must take into account every single character of the
2248input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2249
2250@example
2251@group
2252int
2253yylex (void)
2254@{
2255 int c;
18b519c0 2256@end group
342b8b6e 2257
18b519c0 2258@group
72d2299c 2259 /* Skip white space. */
342b8b6e
AD
2260 while ((c = getchar ()) == ' ' || c == '\t')
2261 ++yylloc.last_column;
18b519c0 2262@end group
342b8b6e 2263
18b519c0 2264@group
72d2299c 2265 /* Step. */
342b8b6e
AD
2266 yylloc.first_line = yylloc.last_line;
2267 yylloc.first_column = yylloc.last_column;
2268@end group
2269
2270@group
72d2299c 2271 /* Process numbers. */
342b8b6e
AD
2272 if (isdigit (c))
2273 @{
2274 yylval = c - '0';
2275 ++yylloc.last_column;
2276 while (isdigit (c = getchar ()))
2277 @{
2278 ++yylloc.last_column;
2279 yylval = yylval * 10 + c - '0';
2280 @}
2281 ungetc (c, stdin);
2282 return NUM;
2283 @}
2284@end group
2285
72d2299c 2286 /* Return end-of-input. */
342b8b6e
AD
2287 if (c == EOF)
2288 return 0;
2289
d4fca427 2290@group
72d2299c 2291 /* Return a single char, and update location. */
342b8b6e
AD
2292 if (c == '\n')
2293 @{
2294 ++yylloc.last_line;
2295 yylloc.last_column = 0;
2296 @}
2297 else
2298 ++yylloc.last_column;
2299 return c;
2300@}
d4fca427 2301@end group
342b8b6e
AD
2302@end example
2303
9edcd895
AD
2304Basically, the lexical analyzer performs the same processing as before:
2305it skips blanks and tabs, and reads numbers or single-character tokens.
2306In addition, it updates @code{yylloc}, the global variable (of type
2307@code{YYLTYPE}) containing the token's location.
342b8b6e 2308
9edcd895 2309Now, each time this function returns a token, the parser has its number
72d2299c 2310as well as its semantic value, and its location in the text. The last
9edcd895
AD
2311needed change is to initialize @code{yylloc}, for example in the
2312controlling function:
342b8b6e
AD
2313
2314@example
9edcd895 2315@group
342b8b6e
AD
2316int
2317main (void)
2318@{
2319 yylloc.first_line = yylloc.last_line = 1;
2320 yylloc.first_column = yylloc.last_column = 0;
2321 return yyparse ();
2322@}
9edcd895 2323@end group
342b8b6e
AD
2324@end example
2325
9edcd895
AD
2326Remember that computing locations is not a matter of syntax. Every
2327character must be associated to a location update, whether it is in
2328valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2329
2330@node Multi-function Calc
bfa74976
RS
2331@section Multi-Function Calculator: @code{mfcalc}
2332@cindex multi-function calculator
2333@cindex @code{mfcalc}
2334@cindex calculator, multi-function
2335
2336Now that the basics of Bison have been discussed, it is time to move on to
2337a more advanced problem. The above calculators provided only five
2338functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2339be nice to have a calculator that provides other mathematical functions such
2340as @code{sin}, @code{cos}, etc.
2341
2342It is easy to add new operators to the infix calculator as long as they are
2343only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2344back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2345adding a new operator. But we want something more flexible: built-in
2346functions whose syntax has this form:
2347
2348@example
2349@var{function_name} (@var{argument})
2350@end example
2351
2352@noindent
2353At the same time, we will add memory to the calculator, by allowing you
2354to create named variables, store values in them, and use them later.
2355Here is a sample session with the multi-function calculator:
2356
2357@example
d4fca427 2358@group
9edcd895
AD
2359$ @kbd{mfcalc}
2360@kbd{pi = 3.141592653589}
f9c75dd0 2361@result{} 3.1415926536
d4fca427
AD
2362@end group
2363@group
9edcd895 2364@kbd{sin(pi)}
f9c75dd0 2365@result{} 0.0000000000
d4fca427 2366@end group
9edcd895 2367@kbd{alpha = beta1 = 2.3}
f9c75dd0 2368@result{} 2.3000000000
9edcd895 2369@kbd{alpha}
f9c75dd0 2370@result{} 2.3000000000
9edcd895 2371@kbd{ln(alpha)}
f9c75dd0 2372@result{} 0.8329091229
9edcd895 2373@kbd{exp(ln(beta1))}
f9c75dd0 2374@result{} 2.3000000000
9edcd895 2375$
bfa74976
RS
2376@end example
2377
2378Note that multiple assignment and nested function calls are permitted.
2379
2380@menu
f5f419de
DJ
2381* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2382* Mfcalc Rules:: Grammar rules for the calculator.
2383* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2384* Mfcalc Lexer:: The lexical analyzer.
2385* Mfcalc Main:: The controlling function.
bfa74976
RS
2386@end menu
2387
f5f419de 2388@node Mfcalc Declarations
bfa74976
RS
2389@subsection Declarations for @code{mfcalc}
2390
2391Here are the C and Bison declarations for the multi-function calculator.
2392
93c150b6 2393@comment file: mfcalc.y: 1
c93f22fc 2394@example
18b519c0 2395@group
bfa74976 2396%@{
f9c75dd0 2397 #include <stdio.h> /* For printf, etc. */
578e3413 2398 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2399 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2400 int yylex (void);
2401 void yyerror (char const *);
bfa74976 2402%@}
18b519c0 2403@end group
93c150b6 2404
18b519c0 2405@group
bfa74976 2406%union @{
38a92d50
PE
2407 double val; /* For returning numbers. */
2408 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2409@}
18b519c0 2410@end group
38a92d50 2411%token <val> NUM /* Simple double precision number. */
93c150b6 2412%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2413%type <val> exp
2414
18b519c0 2415@group
e8f7155d 2416%precedence '='
bfa74976
RS
2417%left '-' '+'
2418%left '*' '/'
d78f0ac9
AD
2419%precedence NEG /* negation--unary minus */
2420%right '^' /* exponentiation */
18b519c0 2421@end group
c93f22fc 2422@end example
bfa74976
RS
2423
2424The above grammar introduces only two new features of the Bison language.
2425These features allow semantic values to have various data types
2426(@pxref{Multiple Types, ,More Than One Value Type}).
2427
2428The @code{%union} declaration specifies the entire list of possible types;
2429this is instead of defining @code{YYSTYPE}. The allowable types are now
2430double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2431the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2432
2433Since values can now have various types, it is necessary to associate a
2434type with each grammar symbol whose semantic value is used. These symbols
2435are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2436declarations are augmented with information about their data type (placed
2437between angle brackets).
2438
704a47c4
AD
2439The Bison construct @code{%type} is used for declaring nonterminal
2440symbols, just as @code{%token} is used for declaring token types. We
2441have not used @code{%type} before because nonterminal symbols are
2442normally declared implicitly by the rules that define them. But
2443@code{exp} must be declared explicitly so we can specify its value type.
2444@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2445
342b8b6e 2446@node Mfcalc Rules
bfa74976
RS
2447@subsection Grammar Rules for @code{mfcalc}
2448
2449Here are the grammar rules for the multi-function calculator.
2450Most of them are copied directly from @code{calc}; three rules,
2451those which mention @code{VAR} or @code{FNCT}, are new.
2452
93c150b6 2453@comment file: mfcalc.y: 3
c93f22fc 2454@example
93c150b6 2455%% /* The grammar follows. */
18b519c0 2456@group
5e9b6624
AD
2457input:
2458 /* empty */
2459| input line
bfa74976 2460;
18b519c0 2461@end group
bfa74976 2462
18b519c0 2463@group
bfa74976 2464line:
5e9b6624
AD
2465 '\n'
2466| exp '\n' @{ printf ("%.10g\n", $1); @}
2467| error '\n' @{ yyerrok; @}
bfa74976 2468;
18b519c0 2469@end group
bfa74976 2470
18b519c0 2471@group
5e9b6624
AD
2472exp:
2473 NUM @{ $$ = $1; @}
2474| VAR @{ $$ = $1->value.var; @}
2475| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2476| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2477| exp '+' exp @{ $$ = $1 + $3; @}
2478| exp '-' exp @{ $$ = $1 - $3; @}
2479| exp '*' exp @{ $$ = $1 * $3; @}
2480| exp '/' exp @{ $$ = $1 / $3; @}
2481| '-' exp %prec NEG @{ $$ = -$2; @}
2482| exp '^' exp @{ $$ = pow ($1, $3); @}
2483| '(' exp ')' @{ $$ = $2; @}
bfa74976 2484;
18b519c0 2485@end group
38a92d50 2486/* End of grammar. */
bfa74976 2487%%
c93f22fc 2488@end example
bfa74976 2489
f5f419de 2490@node Mfcalc Symbol Table
bfa74976
RS
2491@subsection The @code{mfcalc} Symbol Table
2492@cindex symbol table example
2493
2494The multi-function calculator requires a symbol table to keep track of the
2495names and meanings of variables and functions. This doesn't affect the
2496grammar rules (except for the actions) or the Bison declarations, but it
2497requires some additional C functions for support.
2498
2499The symbol table itself consists of a linked list of records. Its
2500definition, which is kept in the header @file{calc.h}, is as follows. It
2501provides for either functions or variables to be placed in the table.
2502
f9c75dd0 2503@comment file: calc.h
c93f22fc 2504@example
bfa74976 2505@group
38a92d50 2506/* Function type. */
32dfccf8 2507typedef double (*func_t) (double);
72f889cc 2508@end group
32dfccf8 2509
72f889cc 2510@group
38a92d50 2511/* Data type for links in the chain of symbols. */
bfa74976
RS
2512struct symrec
2513@{
38a92d50 2514 char *name; /* name of symbol */
bfa74976 2515 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2516 union
2517 @{
38a92d50
PE
2518 double var; /* value of a VAR */
2519 func_t fnctptr; /* value of a FNCT */
bfa74976 2520 @} value;
38a92d50 2521 struct symrec *next; /* link field */
bfa74976
RS
2522@};
2523@end group
2524
2525@group
2526typedef struct symrec symrec;
2527
38a92d50 2528/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2529extern symrec *sym_table;
2530
a730d142 2531symrec *putsym (char const *, int);
38a92d50 2532symrec *getsym (char const *);
bfa74976 2533@end group
c93f22fc 2534@end example
bfa74976 2535
aeb57fb6
AD
2536The new version of @code{main} will call @code{init_table} to initialize
2537the symbol table:
bfa74976 2538
93c150b6 2539@comment file: mfcalc.y: 3
c93f22fc 2540@example
18b519c0 2541@group
bfa74976
RS
2542struct init
2543@{
38a92d50
PE
2544 char const *fname;
2545 double (*fnct) (double);
bfa74976
RS
2546@};
2547@end group
2548
2549@group
38a92d50 2550struct init const arith_fncts[] =
13863333 2551@{
f9c75dd0
AD
2552 @{ "atan", atan @},
2553 @{ "cos", cos @},
2554 @{ "exp", exp @},
2555 @{ "ln", log @},
2556 @{ "sin", sin @},
2557 @{ "sqrt", sqrt @},
2558 @{ 0, 0 @},
13863333 2559@};
18b519c0 2560@end group
bfa74976 2561
18b519c0 2562@group
bfa74976 2563/* The symbol table: a chain of `struct symrec'. */
38a92d50 2564symrec *sym_table;
bfa74976
RS
2565@end group
2566
2567@group
72d2299c 2568/* Put arithmetic functions in table. */
f9c75dd0 2569static
13863333
AD
2570void
2571init_table (void)
bfa74976
RS
2572@{
2573 int i;
bfa74976
RS
2574 for (i = 0; arith_fncts[i].fname != 0; i++)
2575 @{
aaaa2aae 2576 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2577 ptr->value.fnctptr = arith_fncts[i].fnct;
2578 @}
2579@}
2580@end group
c93f22fc 2581@end example
bfa74976
RS
2582
2583By simply editing the initialization list and adding the necessary include
2584files, you can add additional functions to the calculator.
2585
2586Two important functions allow look-up and installation of symbols in the
2587symbol table. The function @code{putsym} is passed a name and the type
2588(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2589linked to the front of the list, and a pointer to the object is returned.
2590The function @code{getsym} is passed the name of the symbol to look up. If
2591found, a pointer to that symbol is returned; otherwise zero is returned.
2592
93c150b6 2593@comment file: mfcalc.y: 3
c93f22fc 2594@example
f9c75dd0
AD
2595#include <stdlib.h> /* malloc. */
2596#include <string.h> /* strlen. */
2597
d4fca427 2598@group
bfa74976 2599symrec *
38a92d50 2600putsym (char const *sym_name, int sym_type)
bfa74976 2601@{
aaaa2aae 2602 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2603 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2604 strcpy (ptr->name,sym_name);
2605 ptr->type = sym_type;
72d2299c 2606 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2607 ptr->next = (struct symrec *)sym_table;
2608 sym_table = ptr;
2609 return ptr;
2610@}
d4fca427 2611@end group
bfa74976 2612
d4fca427 2613@group
bfa74976 2614symrec *
38a92d50 2615getsym (char const *sym_name)
bfa74976
RS
2616@{
2617 symrec *ptr;
2618 for (ptr = sym_table; ptr != (symrec *) 0;
2619 ptr = (symrec *)ptr->next)
f518dbaf 2620 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2621 return ptr;
2622 return 0;
2623@}
d4fca427 2624@end group
c93f22fc 2625@end example
bfa74976 2626
aeb57fb6
AD
2627@node Mfcalc Lexer
2628@subsection The @code{mfcalc} Lexer
2629
bfa74976
RS
2630The function @code{yylex} must now recognize variables, numeric values, and
2631the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2632characters with a leading letter are recognized as either variables or
bfa74976
RS
2633functions depending on what the symbol table says about them.
2634
2635The string is passed to @code{getsym} for look up in the symbol table. If
2636the name appears in the table, a pointer to its location and its type
2637(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2638already in the table, then it is installed as a @code{VAR} using
2639@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2640returned to @code{yyparse}.
bfa74976
RS
2641
2642No change is needed in the handling of numeric values and arithmetic
2643operators in @code{yylex}.
2644
93c150b6 2645@comment file: mfcalc.y: 3
c93f22fc 2646@example
bfa74976 2647#include <ctype.h>
13863333 2648
18b519c0 2649@group
13863333
AD
2650int
2651yylex (void)
bfa74976
RS
2652@{
2653 int c;
2654
72d2299c 2655 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2656 while ((c = getchar ()) == ' ' || c == '\t')
2657 continue;
bfa74976
RS
2658
2659 if (c == EOF)
2660 return 0;
2661@end group
2662
2663@group
2664 /* Char starts a number => parse the number. */
2665 if (c == '.' || isdigit (c))
2666 @{
2667 ungetc (c, stdin);
2668 scanf ("%lf", &yylval.val);
2669 return NUM;
2670 @}
2671@end group
2672
2673@group
2674 /* Char starts an identifier => read the name. */
2675 if (isalpha (c))
2676 @{
aaaa2aae
AD
2677 /* Initially make the buffer long enough
2678 for a 40-character symbol name. */
2679 static size_t length = 40;
bfa74976 2680 static char *symbuf = 0;
aaaa2aae 2681 symrec *s;
bfa74976
RS
2682 int i;
2683@end group
aaaa2aae
AD
2684 if (!symbuf)
2685 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2686
2687 i = 0;
2688 do
bfa74976
RS
2689@group
2690 @{
2691 /* If buffer is full, make it bigger. */
2692 if (i == length)
2693 @{
2694 length *= 2;
18b519c0 2695 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2696 @}
2697 /* Add this character to the buffer. */
2698 symbuf[i++] = c;
2699 /* Get another character. */
2700 c = getchar ();
2701 @}
2702@end group
2703@group
72d2299c 2704 while (isalnum (c));
bfa74976
RS
2705
2706 ungetc (c, stdin);
2707 symbuf[i] = '\0';
2708@end group
2709
2710@group
2711 s = getsym (symbuf);
2712 if (s == 0)
2713 s = putsym (symbuf, VAR);
2714 yylval.tptr = s;
2715 return s->type;
2716 @}
2717
2718 /* Any other character is a token by itself. */
2719 return c;
2720@}
2721@end group
c93f22fc 2722@end example
bfa74976 2723
aeb57fb6
AD
2724@node Mfcalc Main
2725@subsection The @code{mfcalc} Main
2726
2727The error reporting function is unchanged, and the new version of
93c150b6
AD
2728@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2729on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2730
93c150b6 2731@comment file: mfcalc.y: 3
c93f22fc 2732@example
aeb57fb6
AD
2733@group
2734/* Called by yyparse on error. */
2735void
2736yyerror (char const *s)
2737@{
2738 fprintf (stderr, "%s\n", s);
2739@}
2740@end group
2741
aaaa2aae 2742@group
aeb57fb6
AD
2743int
2744main (int argc, char const* argv[])
2745@{
93c150b6
AD
2746 int i;
2747 /* Enable parse traces on option -p. */
2748 for (i = 1; i < argc; ++i)
2749 if (!strcmp(argv[i], "-p"))
2750 yydebug = 1;
aeb57fb6
AD
2751 init_table ();
2752 return yyparse ();
2753@}
2754@end group
c93f22fc 2755@end example
aeb57fb6 2756
72d2299c 2757This program is both powerful and flexible. You may easily add new
704a47c4
AD
2758functions, and it is a simple job to modify this code to install
2759predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2760
342b8b6e 2761@node Exercises
bfa74976
RS
2762@section Exercises
2763@cindex exercises
2764
2765@enumerate
2766@item
2767Add some new functions from @file{math.h} to the initialization list.
2768
2769@item
2770Add another array that contains constants and their values. Then
2771modify @code{init_table} to add these constants to the symbol table.
2772It will be easiest to give the constants type @code{VAR}.
2773
2774@item
2775Make the program report an error if the user refers to an
2776uninitialized variable in any way except to store a value in it.
2777@end enumerate
2778
342b8b6e 2779@node Grammar File
bfa74976
RS
2780@chapter Bison Grammar Files
2781
2782Bison takes as input a context-free grammar specification and produces a
2783C-language function that recognizes correct instances of the grammar.
2784
ff7571c0 2785The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2786@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2787
2788@menu
303834cc
JD
2789* Grammar Outline:: Overall layout of the grammar file.
2790* Symbols:: Terminal and nonterminal symbols.
2791* Rules:: How to write grammar rules.
2792* Recursion:: Writing recursive rules.
2793* Semantics:: Semantic values and actions.
2794* Tracking Locations:: Locations and actions.
2795* Named References:: Using named references in actions.
2796* Declarations:: All kinds of Bison declarations are described here.
2797* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2798@end menu
2799
342b8b6e 2800@node Grammar Outline
bfa74976 2801@section Outline of a Bison Grammar
c949ada3
AD
2802@cindex comment
2803@findex // @dots{}
2804@findex /* @dots{} */
bfa74976
RS
2805
2806A Bison grammar file has four main sections, shown here with the
2807appropriate delimiters:
2808
2809@example
2810%@{
38a92d50 2811 @var{Prologue}
bfa74976
RS
2812%@}
2813
2814@var{Bison declarations}
2815
2816%%
2817@var{Grammar rules}
2818%%
2819
75f5aaea 2820@var{Epilogue}
bfa74976
RS
2821@end example
2822
2823Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2824As a GNU extension, @samp{//} introduces a comment that continues until end
2825of line.
bfa74976
RS
2826
2827@menu
f5f419de 2828* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2829* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2830* Bison Declarations:: Syntax and usage of the Bison declarations section.
2831* Grammar Rules:: Syntax and usage of the grammar rules section.
2832* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2833@end menu
2834
38a92d50 2835@node Prologue
75f5aaea
MA
2836@subsection The prologue
2837@cindex declarations section
2838@cindex Prologue
2839@cindex declarations
bfa74976 2840
f8e1c9e5
AD
2841The @var{Prologue} section contains macro definitions and declarations
2842of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2843rules. These are copied to the beginning of the parser implementation
2844file so that they precede the definition of @code{yyparse}. You can
2845use @samp{#include} to get the declarations from a header file. If
2846you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2847@samp{%@}} delimiters that bracket this section.
bfa74976 2848
9c437126 2849The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2850of @samp{%@}} that is outside a comment, a string literal, or a
2851character constant.
2852
c732d2c6
AD
2853You may have more than one @var{Prologue} section, intermixed with the
2854@var{Bison declarations}. This allows you to have C and Bison
2855declarations that refer to each other. For example, the @code{%union}
2856declaration may use types defined in a header file, and you may wish to
2857prototype functions that take arguments of type @code{YYSTYPE}. This
2858can be done with two @var{Prologue} blocks, one before and one after the
2859@code{%union} declaration.
2860
c93f22fc 2861@example
efbc95a7 2862@group
c732d2c6 2863%@{
aef3da86 2864 #define _GNU_SOURCE
38a92d50
PE
2865 #include <stdio.h>
2866 #include "ptypes.h"
c732d2c6 2867%@}
efbc95a7 2868@end group
c732d2c6 2869
efbc95a7 2870@group
c732d2c6 2871%union @{
779e7ceb 2872 long int n;
c732d2c6
AD
2873 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2874@}
efbc95a7 2875@end group
c732d2c6 2876
efbc95a7 2877@group
c732d2c6 2878%@{
38a92d50
PE
2879 static void print_token_value (FILE *, int, YYSTYPE);
2880 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6 2881%@}
efbc95a7 2882@end group
c732d2c6
AD
2883
2884@dots{}
c93f22fc 2885@end example
c732d2c6 2886
aef3da86
PE
2887When in doubt, it is usually safer to put prologue code before all
2888Bison declarations, rather than after. For example, any definitions
2889of feature test macros like @code{_GNU_SOURCE} or
2890@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2891feature test macros can affect the behavior of Bison-generated
2892@code{#include} directives.
2893
2cbe6b7f
JD
2894@node Prologue Alternatives
2895@subsection Prologue Alternatives
2896@cindex Prologue Alternatives
2897
136a0f76 2898@findex %code
16dc6a9e
JD
2899@findex %code requires
2900@findex %code provides
2901@findex %code top
85894313 2902
2cbe6b7f 2903The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2904inflexible. As an alternative, Bison provides a @code{%code}
2905directive with an explicit qualifier field, which identifies the
2906purpose of the code and thus the location(s) where Bison should
2907generate it. For C/C++, the qualifier can be omitted for the default
2908location, or it can be one of @code{requires}, @code{provides},
e0c07222 2909@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2910
2911Look again at the example of the previous section:
2912
c93f22fc 2913@example
efbc95a7 2914@group
2cbe6b7f
JD
2915%@{
2916 #define _GNU_SOURCE
2917 #include <stdio.h>
2918 #include "ptypes.h"
2919%@}
efbc95a7 2920@end group
2cbe6b7f 2921
efbc95a7 2922@group
2cbe6b7f
JD
2923%union @{
2924 long int n;
2925 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2926@}
efbc95a7 2927@end group
2cbe6b7f 2928
efbc95a7 2929@group
2cbe6b7f
JD
2930%@{
2931 static void print_token_value (FILE *, int, YYSTYPE);
2932 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2933%@}
efbc95a7 2934@end group
2cbe6b7f
JD
2935
2936@dots{}
c93f22fc 2937@end example
2cbe6b7f
JD
2938
2939@noindent
ff7571c0
JD
2940Notice that there are two @var{Prologue} sections here, but there's a
2941subtle distinction between their functionality. For example, if you
2942decide to override Bison's default definition for @code{YYLTYPE}, in
2943which @var{Prologue} section should you write your new definition?
2944You should write it in the first since Bison will insert that code
2945into the parser implementation file @emph{before} the default
2946@code{YYLTYPE} definition. In which @var{Prologue} section should you
2947prototype an internal function, @code{trace_token}, that accepts
2948@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2949prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2950@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2951
2952This distinction in functionality between the two @var{Prologue} sections is
2953established by the appearance of the @code{%union} between them.
a501eca9 2954This behavior raises a few questions.
2cbe6b7f
JD
2955First, why should the position of a @code{%union} affect definitions related to
2956@code{YYLTYPE} and @code{yytokentype}?
2957Second, what if there is no @code{%union}?
2958In that case, the second kind of @var{Prologue} section is not available.
2959This behavior is not intuitive.
2960
8e0a5e9e 2961To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2962@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2963Let's go ahead and add the new @code{YYLTYPE} definition and the
2964@code{trace_token} prototype at the same time:
2965
c93f22fc 2966@example
16dc6a9e 2967%code top @{
2cbe6b7f
JD
2968 #define _GNU_SOURCE
2969 #include <stdio.h>
8e0a5e9e
JD
2970
2971 /* WARNING: The following code really belongs
16dc6a9e 2972 * in a `%code requires'; see below. */
8e0a5e9e 2973
2cbe6b7f
JD
2974 #include "ptypes.h"
2975 #define YYLTYPE YYLTYPE
2976 typedef struct YYLTYPE
2977 @{
2978 int first_line;
2979 int first_column;
2980 int last_line;
2981 int last_column;
2982 char *filename;
2983 @} YYLTYPE;
2984@}
2985
efbc95a7 2986@group
2cbe6b7f
JD
2987%union @{
2988 long int n;
2989 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2990@}
efbc95a7 2991@end group
2cbe6b7f 2992
efbc95a7 2993@group
2cbe6b7f
JD
2994%code @{
2995 static void print_token_value (FILE *, int, YYSTYPE);
2996 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2997 static void trace_token (enum yytokentype token, YYLTYPE loc);
2998@}
efbc95a7 2999@end group
2cbe6b7f
JD
3000
3001@dots{}
c93f22fc 3002@end example
2cbe6b7f
JD
3003
3004@noindent
16dc6a9e
JD
3005In this way, @code{%code top} and the unqualified @code{%code} achieve the same
3006functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 3007explicit which kind you intend.
2cbe6b7f
JD
3008Moreover, both kinds are always available even in the absence of @code{%union}.
3009
ff7571c0
JD
3010The @code{%code top} block above logically contains two parts. The
3011first two lines before the warning need to appear near the top of the
3012parser implementation file. The first line after the warning is
3013required by @code{YYSTYPE} and thus also needs to appear in the parser
3014implementation file. However, if you've instructed Bison to generate
3015a parser header file (@pxref{Decl Summary, ,%defines}), you probably
3016want that line to appear before the @code{YYSTYPE} definition in that
3017header file as well. The @code{YYLTYPE} definition should also appear
3018in the parser header file to override the default @code{YYLTYPE}
3019definition there.
2cbe6b7f 3020
16dc6a9e 3021In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3022lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3023definitions.
16dc6a9e 3024Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3025
c93f22fc 3026@example
d4fca427 3027@group
16dc6a9e 3028%code top @{
2cbe6b7f
JD
3029 #define _GNU_SOURCE
3030 #include <stdio.h>
3031@}
d4fca427 3032@end group
2cbe6b7f 3033
d4fca427 3034@group
16dc6a9e 3035%code requires @{
9bc0dd67
JD
3036 #include "ptypes.h"
3037@}
d4fca427
AD
3038@end group
3039@group
9bc0dd67
JD
3040%union @{
3041 long int n;
3042 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3043@}
d4fca427 3044@end group
9bc0dd67 3045
d4fca427 3046@group
16dc6a9e 3047%code requires @{
2cbe6b7f
JD
3048 #define YYLTYPE YYLTYPE
3049 typedef struct YYLTYPE
3050 @{
3051 int first_line;
3052 int first_column;
3053 int last_line;
3054 int last_column;
3055 char *filename;
3056 @} YYLTYPE;
3057@}
d4fca427 3058@end group
2cbe6b7f 3059
d4fca427 3060@group
136a0f76 3061%code @{
2cbe6b7f
JD
3062 static void print_token_value (FILE *, int, YYSTYPE);
3063 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3064 static void trace_token (enum yytokentype token, YYLTYPE loc);
3065@}
d4fca427 3066@end group
2cbe6b7f
JD
3067
3068@dots{}
c93f22fc 3069@end example
2cbe6b7f
JD
3070
3071@noindent
ff7571c0
JD
3072Now Bison will insert @code{#include "ptypes.h"} and the new
3073@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3074and @code{YYLTYPE} definitions in both the parser implementation file
3075and the parser header file. (By the same reasoning, @code{%code
3076requires} would also be the appropriate place to write your own
3077definition for @code{YYSTYPE}.)
3078
3079When you are writing dependency code for @code{YYSTYPE} and
3080@code{YYLTYPE}, you should prefer @code{%code requires} over
3081@code{%code top} regardless of whether you instruct Bison to generate
3082a parser header file. When you are writing code that you need Bison
3083to insert only into the parser implementation file and that has no
3084special need to appear at the top of that file, you should prefer the
3085unqualified @code{%code} over @code{%code top}. These practices will
3086make the purpose of each block of your code explicit to Bison and to
3087other developers reading your grammar file. Following these
3088practices, we expect the unqualified @code{%code} and @code{%code
3089requires} to be the most important of the four @var{Prologue}
16dc6a9e 3090alternatives.
a501eca9 3091
ff7571c0
JD
3092At some point while developing your parser, you might decide to
3093provide @code{trace_token} to modules that are external to your
3094parser. Thus, you might wish for Bison to insert the prototype into
3095both the parser header file and the parser implementation file. Since
3096this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3097@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3098@code{%code requires}. More importantly, since it depends upon
3099@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3100sufficient. Instead, move its prototype from the unqualified
3101@code{%code} to a @code{%code provides}:
2cbe6b7f 3102
c93f22fc 3103@example
d4fca427 3104@group
16dc6a9e 3105%code top @{
2cbe6b7f 3106 #define _GNU_SOURCE
136a0f76 3107 #include <stdio.h>
2cbe6b7f 3108@}
d4fca427 3109@end group
136a0f76 3110
d4fca427 3111@group
16dc6a9e 3112%code requires @{
2cbe6b7f
JD
3113 #include "ptypes.h"
3114@}
d4fca427
AD
3115@end group
3116@group
2cbe6b7f
JD
3117%union @{
3118 long int n;
3119 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3120@}
d4fca427 3121@end group
2cbe6b7f 3122
d4fca427 3123@group
16dc6a9e 3124%code requires @{
2cbe6b7f
JD
3125 #define YYLTYPE YYLTYPE
3126 typedef struct YYLTYPE
3127 @{
3128 int first_line;
3129 int first_column;
3130 int last_line;
3131 int last_column;
3132 char *filename;
3133 @} YYLTYPE;
3134@}
d4fca427 3135@end group
2cbe6b7f 3136
d4fca427 3137@group
16dc6a9e 3138%code provides @{
2cbe6b7f
JD
3139 void trace_token (enum yytokentype token, YYLTYPE loc);
3140@}
d4fca427 3141@end group
2cbe6b7f 3142
d4fca427 3143@group
2cbe6b7f 3144%code @{
9bc0dd67
JD
3145 static void print_token_value (FILE *, int, YYSTYPE);
3146 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3147@}
d4fca427 3148@end group
9bc0dd67
JD
3149
3150@dots{}
c93f22fc 3151@end example
9bc0dd67 3152
2cbe6b7f 3153@noindent
ff7571c0
JD
3154Bison will insert the @code{trace_token} prototype into both the
3155parser header file and the parser implementation file after the
3156definitions for @code{yytokentype}, @code{YYLTYPE}, and
3157@code{YYSTYPE}.
2cbe6b7f 3158
ff7571c0
JD
3159The above examples are careful to write directives in an order that
3160reflects the layout of the generated parser implementation and header
3161files: @code{%code top}, @code{%code requires}, @code{%code provides},
3162and then @code{%code}. While your grammar files may generally be
3163easier to read if you also follow this order, Bison does not require
3164it. Instead, Bison lets you choose an organization that makes sense
3165to you.
2cbe6b7f 3166
a501eca9 3167You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3168In that case, Bison concatenates the contained code in declaration order.
3169This is the only way in which the position of one of these directives within
3170the grammar file affects its functionality.
3171
3172The result of the previous two properties is greater flexibility in how you may
3173organize your grammar file.
3174For example, you may organize semantic-type-related directives by semantic
3175type:
3176
c93f22fc 3177@example
d4fca427 3178@group
16dc6a9e 3179%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3180%union @{ type1 field1; @}
3181%destructor @{ type1_free ($$); @} <field1>
c5026327 3182%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3183@end group
2cbe6b7f 3184
d4fca427 3185@group
16dc6a9e 3186%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3187%union @{ type2 field2; @}
3188%destructor @{ type2_free ($$); @} <field2>
c5026327 3189%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3190@end group
c93f22fc 3191@end example
2cbe6b7f
JD
3192
3193@noindent
3194You could even place each of the above directive groups in the rules section of
3195the grammar file next to the set of rules that uses the associated semantic
3196type.
61fee93e
JD
3197(In the rules section, you must terminate each of those directives with a
3198semicolon.)
2cbe6b7f
JD
3199And you don't have to worry that some directive (like a @code{%union}) in the
3200definitions section is going to adversely affect their functionality in some
3201counter-intuitive manner just because it comes first.
3202Such an organization is not possible using @var{Prologue} sections.
3203
a501eca9 3204This section has been concerned with explaining the advantages of the four
8e0a5e9e 3205@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3206However, in most cases when using these directives, you shouldn't need to
3207think about all the low-level ordering issues discussed here.
3208Instead, you should simply use these directives to label each block of your
3209code according to its purpose and let Bison handle the ordering.
3210@code{%code} is the most generic label.
16dc6a9e
JD
3211Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3212as needed.
a501eca9 3213
342b8b6e 3214@node Bison Declarations
bfa74976
RS
3215@subsection The Bison Declarations Section
3216@cindex Bison declarations (introduction)
3217@cindex declarations, Bison (introduction)
3218
3219The @var{Bison declarations} section contains declarations that define
3220terminal and nonterminal symbols, specify precedence, and so on.
3221In some simple grammars you may not need any declarations.
3222@xref{Declarations, ,Bison Declarations}.
3223
342b8b6e 3224@node Grammar Rules
bfa74976
RS
3225@subsection The Grammar Rules Section
3226@cindex grammar rules section
3227@cindex rules section for grammar
3228
3229The @dfn{grammar rules} section contains one or more Bison grammar
3230rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3231
3232There must always be at least one grammar rule, and the first
3233@samp{%%} (which precedes the grammar rules) may never be omitted even
3234if it is the first thing in the file.
3235
38a92d50 3236@node Epilogue
75f5aaea 3237@subsection The epilogue
bfa74976 3238@cindex additional C code section
75f5aaea 3239@cindex epilogue
bfa74976
RS
3240@cindex C code, section for additional
3241
ff7571c0
JD
3242The @var{Epilogue} is copied verbatim to the end of the parser
3243implementation file, just as the @var{Prologue} is copied to the
3244beginning. This is the most convenient place to put anything that you
3245want to have in the parser implementation file but which need not come
3246before the definition of @code{yyparse}. For example, the definitions
3247of @code{yylex} and @code{yyerror} often go here. Because C requires
3248functions to be declared before being used, you often need to declare
3249functions like @code{yylex} and @code{yyerror} in the Prologue, even
3250if you define them in the Epilogue. @xref{Interface, ,Parser
3251C-Language Interface}.
bfa74976
RS
3252
3253If the last section is empty, you may omit the @samp{%%} that separates it
3254from the grammar rules.
3255
f8e1c9e5
AD
3256The Bison parser itself contains many macros and identifiers whose names
3257start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3258any such names (except those documented in this manual) in the epilogue
3259of the grammar file.
bfa74976 3260
342b8b6e 3261@node Symbols
bfa74976
RS
3262@section Symbols, Terminal and Nonterminal
3263@cindex nonterminal symbol
3264@cindex terminal symbol
3265@cindex token type
3266@cindex symbol
3267
3268@dfn{Symbols} in Bison grammars represent the grammatical classifications
3269of the language.
3270
3271A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3272class of syntactically equivalent tokens. You use the symbol in grammar
3273rules to mean that a token in that class is allowed. The symbol is
3274represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3275function returns a token type code to indicate what kind of token has
3276been read. You don't need to know what the code value is; you can use
3277the symbol to stand for it.
bfa74976 3278
f8e1c9e5
AD
3279A @dfn{nonterminal symbol} stands for a class of syntactically
3280equivalent groupings. The symbol name is used in writing grammar rules.
3281By convention, it should be all lower case.
bfa74976 3282
82f3355e
JD
3283Symbol names can contain letters, underscores, periods, and non-initial
3284digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3285with POSIX Yacc. Periods and dashes make symbol names less convenient to
3286use with named references, which require brackets around such names
3287(@pxref{Named References}). Terminal symbols that contain periods or dashes
3288make little sense: since they are not valid symbols (in most programming
3289languages) they are not exported as token names.
bfa74976 3290
931c7513 3291There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3292
3293@itemize @bullet
3294@item
3295A @dfn{named token type} is written with an identifier, like an
c827f760 3296identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3297such name must be defined with a Bison declaration such as
3298@code{%token}. @xref{Token Decl, ,Token Type Names}.
3299
3300@item
3301@cindex character token
3302@cindex literal token
3303@cindex single-character literal
931c7513
RS
3304A @dfn{character token type} (or @dfn{literal character token}) is
3305written in the grammar using the same syntax used in C for character
3306constants; for example, @code{'+'} is a character token type. A
3307character token type doesn't need to be declared unless you need to
3308specify its semantic value data type (@pxref{Value Type, ,Data Types of
3309Semantic Values}), associativity, or precedence (@pxref{Precedence,
3310,Operator Precedence}).
bfa74976
RS
3311
3312By convention, a character token type is used only to represent a
3313token that consists of that particular character. Thus, the token
3314type @code{'+'} is used to represent the character @samp{+} as a
3315token. Nothing enforces this convention, but if you depart from it,
3316your program will confuse other readers.
3317
3318All the usual escape sequences used in character literals in C can be
3319used in Bison as well, but you must not use the null character as a
72d2299c
PE
3320character literal because its numeric code, zero, signifies
3321end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3322for @code{yylex}}). Also, unlike standard C, trigraphs have no
3323special meaning in Bison character literals, nor is backslash-newline
3324allowed.
931c7513
RS
3325
3326@item
3327@cindex string token
3328@cindex literal string token
9ecbd125 3329@cindex multicharacter literal
931c7513
RS
3330A @dfn{literal string token} is written like a C string constant; for
3331example, @code{"<="} is a literal string token. A literal string token
3332doesn't need to be declared unless you need to specify its semantic
14ded682 3333value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3334(@pxref{Precedence}).
3335
3336You can associate the literal string token with a symbolic name as an
3337alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3338Declarations}). If you don't do that, the lexical analyzer has to
3339retrieve the token number for the literal string token from the
3340@code{yytname} table (@pxref{Calling Convention}).
3341
c827f760 3342@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3343
3344By convention, a literal string token is used only to represent a token
3345that consists of that particular string. Thus, you should use the token
3346type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3347does not enforce this convention, but if you depart from it, people who
931c7513
RS
3348read your program will be confused.
3349
3350All the escape sequences used in string literals in C can be used in
92ac3705
PE
3351Bison as well, except that you must not use a null character within a
3352string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3353meaning in Bison string literals, nor is backslash-newline allowed. A
3354literal string token must contain two or more characters; for a token
3355containing just one character, use a character token (see above).
bfa74976
RS
3356@end itemize
3357
3358How you choose to write a terminal symbol has no effect on its
3359grammatical meaning. That depends only on where it appears in rules and
3360on when the parser function returns that symbol.
3361
72d2299c
PE
3362The value returned by @code{yylex} is always one of the terminal
3363symbols, except that a zero or negative value signifies end-of-input.
3364Whichever way you write the token type in the grammar rules, you write
3365it the same way in the definition of @code{yylex}. The numeric code
3366for a character token type is simply the positive numeric code of the
3367character, so @code{yylex} can use the identical value to generate the
3368requisite code, though you may need to convert it to @code{unsigned
3369char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3370Each named token type becomes a C macro in the parser implementation
3371file, so @code{yylex} can use the name to stand for the code. (This
3372is why periods don't make sense in terminal symbols.) @xref{Calling
3373Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3374
3375If @code{yylex} is defined in a separate file, you need to arrange for the
3376token-type macro definitions to be available there. Use the @samp{-d}
3377option when you run Bison, so that it will write these macro definitions
3378into a separate header file @file{@var{name}.tab.h} which you can include
3379in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3380
72d2299c 3381If you want to write a grammar that is portable to any Standard C
9d9b8b70 3382host, you must use only nonnull character tokens taken from the basic
c827f760 3383execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3384digits, the 52 lower- and upper-case English letters, and the
3385characters in the following C-language string:
3386
3387@example
3388"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3389@end example
3390
f8e1c9e5
AD
3391The @code{yylex} function and Bison must use a consistent character set
3392and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3393ASCII environment, but then compile and run the resulting
f8e1c9e5 3394program in an environment that uses an incompatible character set like
8a4281b9
JD
3395EBCDIC, the resulting program may not work because the tables
3396generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3397character tokens. It is standard practice for software distributions to
3398contain C source files that were generated by Bison in an
8a4281b9
JD
3399ASCII environment, so installers on platforms that are
3400incompatible with ASCII must rebuild those files before
f8e1c9e5 3401compiling them.
e966383b 3402
bfa74976
RS
3403The symbol @code{error} is a terminal symbol reserved for error recovery
3404(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3405In particular, @code{yylex} should never return this value. The default
3406value of the error token is 256, unless you explicitly assigned 256 to
3407one of your tokens with a @code{%token} declaration.
bfa74976 3408
342b8b6e 3409@node Rules
bfa74976
RS
3410@section Syntax of Grammar Rules
3411@cindex rule syntax
3412@cindex grammar rule syntax
3413@cindex syntax of grammar rules
3414
3415A Bison grammar rule has the following general form:
3416
3417@example
5e9b6624 3418@var{result}: @var{components}@dots{};
bfa74976
RS
3419@end example
3420
3421@noindent
9ecbd125 3422where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3423and @var{components} are various terminal and nonterminal symbols that
13863333 3424are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3425
3426For example,
3427
3428@example
5e9b6624 3429exp: exp '+' exp;
bfa74976
RS
3430@end example
3431
3432@noindent
3433says that two groupings of type @code{exp}, with a @samp{+} token in between,
3434can be combined into a larger grouping of type @code{exp}.
3435
72d2299c
PE
3436White space in rules is significant only to separate symbols. You can add
3437extra white space as you wish.
bfa74976
RS
3438
3439Scattered among the components can be @var{actions} that determine
3440the semantics of the rule. An action looks like this:
3441
3442@example
3443@{@var{C statements}@}
3444@end example
3445
3446@noindent
287c78f6
PE
3447@cindex braced code
3448This is an example of @dfn{braced code}, that is, C code surrounded by
3449braces, much like a compound statement in C@. Braced code can contain
3450any sequence of C tokens, so long as its braces are balanced. Bison
3451does not check the braced code for correctness directly; it merely
ff7571c0
JD
3452copies the code to the parser implementation file, where the C
3453compiler can check it.
287c78f6
PE
3454
3455Within braced code, the balanced-brace count is not affected by braces
3456within comments, string literals, or character constants, but it is
3457affected by the C digraphs @samp{<%} and @samp{%>} that represent
3458braces. At the top level braced code must be terminated by @samp{@}}
3459and not by a digraph. Bison does not look for trigraphs, so if braced
3460code uses trigraphs you should ensure that they do not affect the
3461nesting of braces or the boundaries of comments, string literals, or
3462character constants.
3463
bfa74976
RS
3464Usually there is only one action and it follows the components.
3465@xref{Actions}.
3466
3467@findex |
3468Multiple rules for the same @var{result} can be written separately or can
3469be joined with the vertical-bar character @samp{|} as follows:
3470
bfa74976
RS
3471@example
3472@group
5e9b6624
AD
3473@var{result}:
3474 @var{rule1-components}@dots{}
3475| @var{rule2-components}@dots{}
3476@dots{}
3477;
bfa74976
RS
3478@end group
3479@end example
bfa74976
RS
3480
3481@noindent
3482They are still considered distinct rules even when joined in this way.
3483
3484If @var{components} in a rule is empty, it means that @var{result} can
3485match the empty string. For example, here is how to define a
3486comma-separated sequence of zero or more @code{exp} groupings:
3487
3488@example
3489@group
5e9b6624
AD
3490expseq:
3491 /* empty */
3492| expseq1
3493;
bfa74976
RS
3494@end group
3495
3496@group
5e9b6624
AD
3497expseq1:
3498 exp
3499| expseq1 ',' exp
3500;
bfa74976
RS
3501@end group
3502@end example
3503
3504@noindent
3505It is customary to write a comment @samp{/* empty */} in each rule
3506with no components.
3507
342b8b6e 3508@node Recursion
bfa74976
RS
3509@section Recursive Rules
3510@cindex recursive rule
3511
f8e1c9e5
AD
3512A rule is called @dfn{recursive} when its @var{result} nonterminal
3513appears also on its right hand side. Nearly all Bison grammars need to
3514use recursion, because that is the only way to define a sequence of any
3515number of a particular thing. Consider this recursive definition of a
9ecbd125 3516comma-separated sequence of one or more expressions:
bfa74976
RS
3517
3518@example
3519@group
5e9b6624
AD
3520expseq1:
3521 exp
3522| expseq1 ',' exp
3523;
bfa74976
RS
3524@end group
3525@end example
3526
3527@cindex left recursion
3528@cindex right recursion
3529@noindent
3530Since the recursive use of @code{expseq1} is the leftmost symbol in the
3531right hand side, we call this @dfn{left recursion}. By contrast, here
3532the same construct is defined using @dfn{right recursion}:
3533
3534@example
3535@group
5e9b6624
AD
3536expseq1:
3537 exp
3538| exp ',' expseq1
3539;
bfa74976
RS
3540@end group
3541@end example
3542
3543@noindent
ec3bc396
AD
3544Any kind of sequence can be defined using either left recursion or right
3545recursion, but you should always use left recursion, because it can
3546parse a sequence of any number of elements with bounded stack space.
3547Right recursion uses up space on the Bison stack in proportion to the
3548number of elements in the sequence, because all the elements must be
3549shifted onto the stack before the rule can be applied even once.
3550@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3551of this.
bfa74976
RS
3552
3553@cindex mutual recursion
3554@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3555rule does not appear directly on its right hand side, but does appear
3556in rules for other nonterminals which do appear on its right hand
13863333 3557side.
bfa74976
RS
3558
3559For example:
3560
3561@example
3562@group
5e9b6624
AD
3563expr:
3564 primary
3565| primary '+' primary
3566;
bfa74976
RS
3567@end group
3568
3569@group
5e9b6624
AD
3570primary:
3571 constant
3572| '(' expr ')'
3573;
bfa74976
RS
3574@end group
3575@end example
3576
3577@noindent
3578defines two mutually-recursive nonterminals, since each refers to the
3579other.
3580
342b8b6e 3581@node Semantics
bfa74976
RS
3582@section Defining Language Semantics
3583@cindex defining language semantics
13863333 3584@cindex language semantics, defining
bfa74976
RS
3585
3586The grammar rules for a language determine only the syntax. The semantics
3587are determined by the semantic values associated with various tokens and
3588groupings, and by the actions taken when various groupings are recognized.
3589
3590For example, the calculator calculates properly because the value
3591associated with each expression is the proper number; it adds properly
3592because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3593the numbers associated with @var{x} and @var{y}.
3594
3595@menu
3596* Value Type:: Specifying one data type for all semantic values.
3597* Multiple Types:: Specifying several alternative data types.
3598* Actions:: An action is the semantic definition of a grammar rule.
3599* Action Types:: Specifying data types for actions to operate on.
3600* Mid-Rule Actions:: Most actions go at the end of a rule.
3601 This says when, why and how to use the exceptional
3602 action in the middle of a rule.
3603@end menu
3604
342b8b6e 3605@node Value Type
bfa74976
RS
3606@subsection Data Types of Semantic Values
3607@cindex semantic value type
3608@cindex value type, semantic
3609@cindex data types of semantic values
3610@cindex default data type
3611
3612In a simple program it may be sufficient to use the same data type for
3613the semantic values of all language constructs. This was true in the
8a4281b9 3614RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3615Notation Calculator}).
bfa74976 3616
ddc8ede1
PE
3617Bison normally uses the type @code{int} for semantic values if your
3618program uses the same data type for all language constructs. To
bfa74976
RS
3619specify some other type, define @code{YYSTYPE} as a macro, like this:
3620
3621@example
3622#define YYSTYPE double
3623@end example
3624
3625@noindent
50cce58e
PE
3626@code{YYSTYPE}'s replacement list should be a type name
3627that does not contain parentheses or square brackets.
342b8b6e 3628This macro definition must go in the prologue of the grammar file
75f5aaea 3629(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3630
342b8b6e 3631@node Multiple Types
bfa74976
RS
3632@subsection More Than One Value Type
3633
3634In most programs, you will need different data types for different kinds
3635of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3636@code{int} or @code{long int}, while a string constant needs type
3637@code{char *}, and an identifier might need a pointer to an entry in the
3638symbol table.
bfa74976
RS
3639
3640To use more than one data type for semantic values in one parser, Bison
3641requires you to do two things:
3642
3643@itemize @bullet
3644@item
ddc8ede1 3645Specify the entire collection of possible data types, either by using the
704a47c4 3646@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3647Value Types}), or by using a @code{typedef} or a @code{#define} to
3648define @code{YYSTYPE} to be a union type whose member names are
3649the type tags.
bfa74976
RS
3650
3651@item
14ded682
AD
3652Choose one of those types for each symbol (terminal or nonterminal) for
3653which semantic values are used. This is done for tokens with the
3654@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3655and for groupings with the @code{%type} Bison declaration (@pxref{Type
3656Decl, ,Nonterminal Symbols}).
bfa74976
RS
3657@end itemize
3658
342b8b6e 3659@node Actions
bfa74976
RS
3660@subsection Actions
3661@cindex action
3662@vindex $$
3663@vindex $@var{n}
d013372c
AR
3664@vindex $@var{name}
3665@vindex $[@var{name}]
bfa74976
RS
3666
3667An action accompanies a syntactic rule and contains C code to be executed
3668each time an instance of that rule is recognized. The task of most actions
3669is to compute a semantic value for the grouping built by the rule from the
3670semantic values associated with tokens or smaller groupings.
3671
287c78f6
PE
3672An action consists of braced code containing C statements, and can be
3673placed at any position in the rule;
704a47c4
AD
3674it is executed at that position. Most rules have just one action at the
3675end of the rule, following all the components. Actions in the middle of
3676a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3677Actions, ,Actions in Mid-Rule}).
bfa74976 3678
ff7571c0
JD
3679The C code in an action can refer to the semantic values of the
3680components matched by the rule with the construct @code{$@var{n}},
3681which stands for the value of the @var{n}th component. The semantic
3682value for the grouping being constructed is @code{$$}. In addition,
3683the semantic values of symbols can be accessed with the named
3684references construct @code{$@var{name}} or @code{$[@var{name}]}.
3685Bison translates both of these constructs into expressions of the
3686appropriate type when it copies the actions into the parser
3687implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3688for the current grouping) is translated to a modifiable lvalue, so it
3689can be assigned to.
bfa74976
RS
3690
3691Here is a typical example:
3692
3693@example
3694@group
5e9b6624
AD
3695exp:
3696@dots{}
3697| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3698@end group
3699@end example
3700
d013372c
AR
3701Or, in terms of named references:
3702
3703@example
3704@group
5e9b6624
AD
3705exp[result]:
3706@dots{}
3707| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3708@end group
3709@end example
3710
bfa74976
RS
3711@noindent
3712This rule constructs an @code{exp} from two smaller @code{exp} groupings
3713connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3714(@code{$left} and @code{$right})
bfa74976
RS
3715refer to the semantic values of the two component @code{exp} groupings,
3716which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3717The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3718semantic value of
bfa74976
RS
3719the addition-expression just recognized by the rule. If there were a
3720useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3721referred to as @code{$2}.
bfa74976 3722
a7b15ab9
JD
3723@xref{Named References}, for more information about using the named
3724references construct.
d013372c 3725
3ded9a63
AD
3726Note that the vertical-bar character @samp{|} is really a rule
3727separator, and actions are attached to a single rule. This is a
3728difference with tools like Flex, for which @samp{|} stands for either
3729``or'', or ``the same action as that of the next rule''. In the
3730following example, the action is triggered only when @samp{b} is found:
3731
3732@example
3ded9a63 3733a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3734@end example
3735
bfa74976
RS
3736@cindex default action
3737If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3738@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3739becomes the value of the whole rule. Of course, the default action is
3740valid only if the two data types match. There is no meaningful default
3741action for an empty rule; every empty rule must have an explicit action
3742unless the rule's value does not matter.
bfa74976
RS
3743
3744@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3745to tokens and groupings on the stack @emph{before} those that match the
3746current rule. This is a very risky practice, and to use it reliably
3747you must be certain of the context in which the rule is applied. Here
3748is a case in which you can use this reliably:
3749
3750@example
3751@group
5e9b6624
AD
3752foo:
3753 expr bar '+' expr @{ @dots{} @}
3754| expr bar '-' expr @{ @dots{} @}
3755;
bfa74976
RS
3756@end group
3757
3758@group
5e9b6624
AD
3759bar:
3760 /* empty */ @{ previous_expr = $0; @}
3761;
bfa74976
RS
3762@end group
3763@end example
3764
3765As long as @code{bar} is used only in the fashion shown here, @code{$0}
3766always refers to the @code{expr} which precedes @code{bar} in the
3767definition of @code{foo}.
3768
32c29292 3769@vindex yylval
742e4900 3770It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3771any, from a semantic action.
3772This semantic value is stored in @code{yylval}.
3773@xref{Action Features, ,Special Features for Use in Actions}.
3774
342b8b6e 3775@node Action Types
bfa74976
RS
3776@subsection Data Types of Values in Actions
3777@cindex action data types
3778@cindex data types in actions
3779
3780If you have chosen a single data type for semantic values, the @code{$$}
3781and @code{$@var{n}} constructs always have that data type.
3782
3783If you have used @code{%union} to specify a variety of data types, then you
3784must declare a choice among these types for each terminal or nonterminal
3785symbol that can have a semantic value. Then each time you use @code{$$} or
3786@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3787in the rule. In this example,
bfa74976
RS
3788
3789@example
3790@group
5e9b6624
AD
3791exp:
3792 @dots{}
3793| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3794@end group
3795@end example
3796
3797@noindent
3798@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3799have the data type declared for the nonterminal symbol @code{exp}. If
3800@code{$2} were used, it would have the data type declared for the
e0c471a9 3801terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3802
3803Alternatively, you can specify the data type when you refer to the value,
3804by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3805reference. For example, if you have defined types as shown here:
3806
3807@example
3808@group
3809%union @{
3810 int itype;
3811 double dtype;
3812@}
3813@end group
3814@end example
3815
3816@noindent
3817then you can write @code{$<itype>1} to refer to the first subunit of the
3818rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3819
342b8b6e 3820@node Mid-Rule Actions
bfa74976
RS
3821@subsection Actions in Mid-Rule
3822@cindex actions in mid-rule
3823@cindex mid-rule actions
3824
3825Occasionally it is useful to put an action in the middle of a rule.
3826These actions are written just like usual end-of-rule actions, but they
3827are executed before the parser even recognizes the following components.
3828
be22823e
AD
3829@menu
3830* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
3831* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
3832* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
3833@end menu
3834
3835@node Using Mid-Rule Actions
3836@subsubsection Using Mid-Rule Actions
3837
bfa74976
RS
3838A mid-rule action may refer to the components preceding it using
3839@code{$@var{n}}, but it may not refer to subsequent components because
3840it is run before they are parsed.
3841
3842The mid-rule action itself counts as one of the components of the rule.
3843This makes a difference when there is another action later in the same rule
3844(and usually there is another at the end): you have to count the actions
3845along with the symbols when working out which number @var{n} to use in
3846@code{$@var{n}}.
3847
3848The mid-rule action can also have a semantic value. The action can set
3849its value with an assignment to @code{$$}, and actions later in the rule
3850can refer to the value using @code{$@var{n}}. Since there is no symbol
3851to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3852in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3853specify a data type each time you refer to this value.
bfa74976
RS
3854
3855There is no way to set the value of the entire rule with a mid-rule
3856action, because assignments to @code{$$} do not have that effect. The
3857only way to set the value for the entire rule is with an ordinary action
3858at the end of the rule.
3859
3860Here is an example from a hypothetical compiler, handling a @code{let}
3861statement that looks like @samp{let (@var{variable}) @var{statement}} and
3862serves to create a variable named @var{variable} temporarily for the
3863duration of @var{statement}. To parse this construct, we must put
3864@var{variable} into the symbol table while @var{statement} is parsed, then
3865remove it afterward. Here is how it is done:
3866
3867@example
3868@group
5e9b6624 3869stmt:
c949ada3
AD
3870 "let" '(' var ')'
3871 @{
3872 $<context>$ = push_context ();
3873 declare_variable ($3);
3874 @}
5e9b6624 3875 stmt
c949ada3
AD
3876 @{
3877 $$ = $6;
3878 pop_context ($<context>5);
3879 @}
bfa74976
RS
3880@end group
3881@end example
3882
3883@noindent
3884As soon as @samp{let (@var{variable})} has been recognized, the first
3885action is run. It saves a copy of the current semantic context (the
3886list of accessible variables) as its semantic value, using alternative
3887@code{context} in the data-type union. Then it calls
3888@code{declare_variable} to add the new variable to that list. Once the
3889first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
3890parsed.
3891
3892Note that the mid-rule action is component number 5, so the @samp{stmt} is
3893component number 6. Named references can be used to improve the readability
3894and maintainability (@pxref{Named References}):
3895
3896@example
3897@group
3898stmt:
3899 "let" '(' var ')'
3900 @{
3901 $<context>let = push_context ();
3902 declare_variable ($3);
3903 @}[let]
3904 stmt
3905 @{
3906 $$ = $6;
3907 pop_context ($<context>let);
3908 @}
3909@end group
3910@end example
bfa74976
RS
3911
3912After the embedded statement is parsed, its semantic value becomes the
3913value of the entire @code{let}-statement. Then the semantic value from the
3914earlier action is used to restore the prior list of variables. This
3915removes the temporary @code{let}-variable from the list so that it won't
3916appear to exist while the rest of the program is parsed.
3917
841a7737
JD
3918@findex %destructor
3919@cindex discarded symbols, mid-rule actions
3920@cindex error recovery, mid-rule actions
3921In the above example, if the parser initiates error recovery (@pxref{Error
3922Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3923it might discard the previous semantic context @code{$<context>5} without
3924restoring it.
3925Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3926Discarded Symbols}).
ec5479ce
JD
3927However, Bison currently provides no means to declare a destructor specific to
3928a particular mid-rule action's semantic value.
841a7737
JD
3929
3930One solution is to bury the mid-rule action inside a nonterminal symbol and to
3931declare a destructor for that symbol:
3932
3933@example
3934@group
3935%type <context> let
3936%destructor @{ pop_context ($$); @} let
3937
3938%%
3939
5e9b6624
AD
3940stmt:
3941 let stmt
3942 @{
3943 $$ = $2;
be22823e 3944 pop_context ($let);
5e9b6624 3945 @};
841a7737 3946
5e9b6624 3947let:
c949ada3 3948 "let" '(' var ')'
5e9b6624 3949 @{
be22823e 3950 $let = push_context ();
5e9b6624
AD
3951 declare_variable ($3);
3952 @};
841a7737
JD
3953
3954@end group
3955@end example
3956
3957@noindent
3958Note that the action is now at the end of its rule.
3959Any mid-rule action can be converted to an end-of-rule action in this way, and
3960this is what Bison actually does to implement mid-rule actions.
3961
be22823e
AD
3962@node Mid-Rule Action Translation
3963@subsubsection Mid-Rule Action Translation
3964@vindex $@@@var{n}
3965@vindex @@@var{n}
3966
3967As hinted earlier, mid-rule actions are actually transformed into regular
3968rules and actions. The various reports generated by Bison (textual,
3969graphical, etc., see @ref{Understanding, , Understanding Your Parser})
3970reveal this translation, best explained by means of an example. The
3971following rule:
3972
3973@example
3974exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
3975@end example
3976
3977@noindent
3978is translated into:
3979
3980@example
3981$@@1: /* empty */ @{ a(); @};
3982$@@2: /* empty */ @{ c(); @};
3983$@@3: /* empty */ @{ d(); @};
3984exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
3985@end example
3986
3987@noindent
3988with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
3989
3990A mid-rule action is expected to generate a value if it uses @code{$$}, or
3991the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
3992action. In that case its nonterminal is rather named @code{@@@var{n}}:
3993
3994@example
3995exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
3996@end example
3997
3998@noindent
3999is translated into
4000
4001@example
4002@@1: /* empty */ @{ a(); @};
4003@@2: /* empty */ @{ $$ = c(); @};
4004$@@3: /* empty */ @{ d(); @};
4005exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
4006@end example
4007
4008There are probably two errors in the above example: the first mid-rule
4009action does not generate a value (it does not use @code{$$} although the
4010final action uses it), and the value of the second one is not used (the
4011final action does not use @code{$3}). Bison reports these errors when the
4012@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
4013Bison}):
4014
4015@example
4016$ bison -fcaret -Wmidrule-value mid.y
4017@group
4018mid.y:2.6-13: warning: unset value: $$
4019 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4020 ^^^^^^^^
4021@end group
4022@group
4023mid.y:2.19-31: warning: unused value: $3
4024 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4025 ^^^^^^^^^^^^^
4026@end group
4027@end example
4028
4029
4030@node Mid-Rule Conflicts
4031@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4032Taking action before a rule is completely recognized often leads to
4033conflicts since the parser must commit to a parse in order to execute the
4034action. For example, the following two rules, without mid-rule actions,
4035can coexist in a working parser because the parser can shift the open-brace
4036token and look at what follows before deciding whether there is a
4037declaration or not:
4038
4039@example
4040@group
5e9b6624
AD
4041compound:
4042 '@{' declarations statements '@}'
4043| '@{' statements '@}'
4044;
bfa74976
RS
4045@end group
4046@end example
4047
4048@noindent
4049But when we add a mid-rule action as follows, the rules become nonfunctional:
4050
4051@example
4052@group
5e9b6624
AD
4053compound:
4054 @{ prepare_for_local_variables (); @}
4055 '@{' declarations statements '@}'
bfa74976
RS
4056@end group
4057@group
5e9b6624
AD
4058| '@{' statements '@}'
4059;
bfa74976
RS
4060@end group
4061@end example
4062
4063@noindent
4064Now the parser is forced to decide whether to run the mid-rule action
4065when it has read no farther than the open-brace. In other words, it
4066must commit to using one rule or the other, without sufficient
4067information to do it correctly. (The open-brace token is what is called
742e4900
JD
4068the @dfn{lookahead} token at this time, since the parser is still
4069deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4070
4071You might think that you could correct the problem by putting identical
4072actions into the two rules, like this:
4073
4074@example
4075@group
5e9b6624
AD
4076compound:
4077 @{ prepare_for_local_variables (); @}
4078 '@{' declarations statements '@}'
4079| @{ prepare_for_local_variables (); @}
4080 '@{' statements '@}'
4081;
bfa74976
RS
4082@end group
4083@end example
4084
4085@noindent
4086But this does not help, because Bison does not realize that the two actions
4087are identical. (Bison never tries to understand the C code in an action.)
4088
4089If the grammar is such that a declaration can be distinguished from a
4090statement by the first token (which is true in C), then one solution which
4091does work is to put the action after the open-brace, like this:
4092
4093@example
4094@group
5e9b6624
AD
4095compound:
4096 '@{' @{ prepare_for_local_variables (); @}
4097 declarations statements '@}'
4098| '@{' statements '@}'
4099;
bfa74976
RS
4100@end group
4101@end example
4102
4103@noindent
4104Now the first token of the following declaration or statement,
4105which would in any case tell Bison which rule to use, can still do so.
4106
4107Another solution is to bury the action inside a nonterminal symbol which
4108serves as a subroutine:
4109
4110@example
4111@group
5e9b6624
AD
4112subroutine:
4113 /* empty */ @{ prepare_for_local_variables (); @}
4114;
bfa74976
RS
4115@end group
4116
4117@group
5e9b6624
AD
4118compound:
4119 subroutine '@{' declarations statements '@}'
4120| subroutine '@{' statements '@}'
4121;
bfa74976
RS
4122@end group
4123@end example
4124
4125@noindent
4126Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4127deciding which rule for @code{compound} it will eventually use.
bfa74976 4128
be22823e 4129
303834cc 4130@node Tracking Locations
847bf1f5
AD
4131@section Tracking Locations
4132@cindex location
95923bd6
AD
4133@cindex textual location
4134@cindex location, textual
847bf1f5
AD
4135
4136Though grammar rules and semantic actions are enough to write a fully
72d2299c 4137functional parser, it can be useful to process some additional information,
3e259915
MA
4138especially symbol locations.
4139
704a47c4
AD
4140The way locations are handled is defined by providing a data type, and
4141actions to take when rules are matched.
847bf1f5
AD
4142
4143@menu
4144* Location Type:: Specifying a data type for locations.
4145* Actions and Locations:: Using locations in actions.
4146* Location Default Action:: Defining a general way to compute locations.
4147@end menu
4148
342b8b6e 4149@node Location Type
847bf1f5
AD
4150@subsection Data Type of Locations
4151@cindex data type of locations
4152@cindex default location type
4153
4154Defining a data type for locations is much simpler than for semantic values,
4155since all tokens and groupings always use the same type.
4156
50cce58e
PE
4157You can specify the type of locations by defining a macro called
4158@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4159defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4160When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4161four members:
4162
4163@example
6273355b 4164typedef struct YYLTYPE
847bf1f5
AD
4165@{
4166 int first_line;
4167 int first_column;
4168 int last_line;
4169 int last_column;
6273355b 4170@} YYLTYPE;
847bf1f5
AD
4171@end example
4172
d59e456d
AD
4173When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4174initializes all these fields to 1 for @code{yylloc}. To initialize
4175@code{yylloc} with a custom location type (or to chose a different
4176initialization), use the @code{%initial-action} directive. @xref{Initial
4177Action Decl, , Performing Actions before Parsing}.
cd48d21d 4178
342b8b6e 4179@node Actions and Locations
847bf1f5
AD
4180@subsection Actions and Locations
4181@cindex location actions
4182@cindex actions, location
4183@vindex @@$
4184@vindex @@@var{n}
d013372c
AR
4185@vindex @@@var{name}
4186@vindex @@[@var{name}]
847bf1f5
AD
4187
4188Actions are not only useful for defining language semantics, but also for
4189describing the behavior of the output parser with locations.
4190
4191The most obvious way for building locations of syntactic groupings is very
72d2299c 4192similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4193constructs can be used to access the locations of the elements being matched.
4194The location of the @var{n}th component of the right hand side is
4195@code{@@@var{n}}, while the location of the left hand side grouping is
4196@code{@@$}.
4197
d013372c
AR
4198In addition, the named references construct @code{@@@var{name}} and
4199@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4200@xref{Named References}, for more information about using the named
4201references construct.
d013372c 4202
3e259915 4203Here is a basic example using the default data type for locations:
847bf1f5
AD
4204
4205@example
4206@group
5e9b6624
AD
4207exp:
4208 @dots{}
4209| exp '/' exp
4210 @{
4211 @@$.first_column = @@1.first_column;
4212 @@$.first_line = @@1.first_line;
4213 @@$.last_column = @@3.last_column;
4214 @@$.last_line = @@3.last_line;
4215 if ($3)
4216 $$ = $1 / $3;
4217 else
4218 @{
4219 $$ = 1;
4220 fprintf (stderr,
4221 "Division by zero, l%d,c%d-l%d,c%d",
4222 @@3.first_line, @@3.first_column,
4223 @@3.last_line, @@3.last_column);
4224 @}
4225 @}
847bf1f5
AD
4226@end group
4227@end example
4228
3e259915 4229As for semantic values, there is a default action for locations that is
72d2299c 4230run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4231beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4232last symbol.
3e259915 4233
72d2299c 4234With this default action, the location tracking can be fully automatic. The
3e259915
MA
4235example above simply rewrites this way:
4236
4237@example
4238@group
5e9b6624
AD
4239exp:
4240 @dots{}
4241| exp '/' exp
4242 @{
4243 if ($3)
4244 $$ = $1 / $3;
4245 else
4246 @{
4247 $$ = 1;
4248 fprintf (stderr,
4249 "Division by zero, l%d,c%d-l%d,c%d",
4250 @@3.first_line, @@3.first_column,
4251 @@3.last_line, @@3.last_column);
4252 @}
4253 @}
3e259915
MA
4254@end group
4255@end example
847bf1f5 4256
32c29292 4257@vindex yylloc
742e4900 4258It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4259from a semantic action.
4260This location is stored in @code{yylloc}.
4261@xref{Action Features, ,Special Features for Use in Actions}.
4262
342b8b6e 4263@node Location Default Action
847bf1f5
AD
4264@subsection Default Action for Locations
4265@vindex YYLLOC_DEFAULT
8a4281b9 4266@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4267
72d2299c 4268Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4269locations are much more general than semantic values, there is room in
4270the output parser to redefine the default action to take for each
72d2299c 4271rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4272matched, before the associated action is run. It is also invoked
4273while processing a syntax error, to compute the error's location.
8a4281b9 4274Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4275parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4276of that ambiguity.
847bf1f5 4277
3e259915 4278Most of the time, this macro is general enough to suppress location
79282c6c 4279dedicated code from semantic actions.
847bf1f5 4280
72d2299c 4281The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4282the location of the grouping (the result of the computation). When a
766de5eb 4283rule is matched, the second parameter identifies locations of
96b93a3d 4284all right hand side elements of the rule being matched, and the third
8710fc41 4285parameter is the size of the rule's right hand side.
8a4281b9 4286When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4287right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4288When processing a syntax error, the second parameter identifies locations
4289of the symbols that were discarded during error processing, and the third
96b93a3d 4290parameter is the number of discarded symbols.
847bf1f5 4291
766de5eb 4292By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4293
c93f22fc
AD
4294@example
4295@group
4296# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4297do \
4298 if (N) \
4299 @{ \
4300 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4301 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4302 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4303 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4304 @} \
4305 else \
4306 @{ \
4307 (Cur).first_line = (Cur).last_line = \
4308 YYRHSLOC(Rhs, 0).last_line; \
4309 (Cur).first_column = (Cur).last_column = \
4310 YYRHSLOC(Rhs, 0).last_column; \
4311 @} \
4312while (0)
4313@end group
4314@end example
676385e2 4315
aaaa2aae 4316@noindent
766de5eb
PE
4317where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4318in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4319just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4320
3e259915 4321When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4322
3e259915 4323@itemize @bullet
79282c6c 4324@item
72d2299c 4325All arguments are free of side-effects. However, only the first one (the
3e259915 4326result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4327
3e259915 4328@item
766de5eb
PE
4329For consistency with semantic actions, valid indexes within the
4330right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4331valid index, and it refers to the symbol just before the reduction.
4332During error processing @var{n} is always positive.
0ae99356
PE
4333
4334@item
4335Your macro should parenthesize its arguments, if need be, since the
4336actual arguments may not be surrounded by parentheses. Also, your
4337macro should expand to something that can be used as a single
4338statement when it is followed by a semicolon.
3e259915 4339@end itemize
847bf1f5 4340
378e917c 4341@node Named References
a7b15ab9 4342@section Named References
378e917c
JD
4343@cindex named references
4344
a40e77eb
JD
4345As described in the preceding sections, the traditional way to refer to any
4346semantic value or location is a @dfn{positional reference}, which takes the
4347form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4348such a reference is not very descriptive. Moreover, if you later decide to
4349insert or remove symbols in the right-hand side of a grammar rule, the need
4350to renumber such references can be tedious and error-prone.
4351
4352To avoid these issues, you can also refer to a semantic value or location
4353using a @dfn{named reference}. First of all, original symbol names may be
4354used as named references. For example:
378e917c
JD
4355
4356@example
4357@group
4358invocation: op '(' args ')'
4359 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4360@end group
4361@end example
4362
4363@noindent
a40e77eb 4364Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4365
4366@example
4367@group
4368invocation: op '(' args ')'
4369 @{ $$ = new_invocation ($op, $args, @@$); @}
4370@end group
4371@end example
4372
4373@noindent
4374However, sometimes regular symbol names are not sufficient due to
4375ambiguities:
4376
4377@example
4378@group
4379exp: exp '/' exp
4380 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4381
4382exp: exp '/' exp
4383 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4384
4385exp: exp '/' exp
4386 @{ $$ = $1 / $3; @} // No error.
4387@end group
4388@end example
4389
4390@noindent
4391When ambiguity occurs, explicitly declared names may be used for values and
4392locations. Explicit names are declared as a bracketed name after a symbol
4393appearance in rule definitions. For example:
4394@example
4395@group
4396exp[result]: exp[left] '/' exp[right]
4397 @{ $result = $left / $right; @}
4398@end group
4399@end example
4400
4401@noindent
a7b15ab9
JD
4402In order to access a semantic value generated by a mid-rule action, an
4403explicit name may also be declared by putting a bracketed name after the
4404closing brace of the mid-rule action code:
378e917c
JD
4405@example
4406@group
4407exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4408 @{ $res = $left + $right; @}
4409@end group
4410@end example
4411
4412@noindent
4413
4414In references, in order to specify names containing dots and dashes, an explicit
4415bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4416@example
4417@group
762caaf6 4418if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4419 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4420@end group
4421@end example
4422
4423It often happens that named references are followed by a dot, dash or other
4424C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4425@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4426@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4427value. In order to force Bison to recognize @samp{name.suffix} in its
4428entirety as the name of a semantic value, the bracketed syntax
4429@samp{$[name.suffix]} must be used.
4430
4431The named references feature is experimental. More user feedback will help
4432to stabilize it.
378e917c 4433
342b8b6e 4434@node Declarations
bfa74976
RS
4435@section Bison Declarations
4436@cindex declarations, Bison
4437@cindex Bison declarations
4438
4439The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4440used in formulating the grammar and the data types of semantic values.
4441@xref{Symbols}.
4442
4443All token type names (but not single-character literal tokens such as
4444@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4445declared if you need to specify which data type to use for the semantic
4446value (@pxref{Multiple Types, ,More Than One Value Type}).
4447
ff7571c0
JD
4448The first rule in the grammar file also specifies the start symbol, by
4449default. If you want some other symbol to be the start symbol, you
4450must declare it explicitly (@pxref{Language and Grammar, ,Languages
4451and Context-Free Grammars}).
bfa74976
RS
4452
4453@menu
b50d2359 4454* Require Decl:: Requiring a Bison version.
bfa74976
RS
4455* Token Decl:: Declaring terminal symbols.
4456* Precedence Decl:: Declaring terminals with precedence and associativity.
4457* Union Decl:: Declaring the set of all semantic value types.
4458* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4459* Initial Action Decl:: Code run before parsing starts.
72f889cc 4460* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4461* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4462* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4463* Start Decl:: Specifying the start symbol.
4464* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4465* Push Decl:: Requesting a push parser.
bfa74976 4466* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4467* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4468* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4469@end menu
4470
b50d2359
AD
4471@node Require Decl
4472@subsection Require a Version of Bison
4473@cindex version requirement
4474@cindex requiring a version of Bison
4475@findex %require
4476
4477You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4478the requirement is not met, @command{bison} exits with an error (exit
4479status 63).
b50d2359
AD
4480
4481@example
4482%require "@var{version}"
4483@end example
4484
342b8b6e 4485@node Token Decl
bfa74976
RS
4486@subsection Token Type Names
4487@cindex declaring token type names
4488@cindex token type names, declaring
931c7513 4489@cindex declaring literal string tokens
bfa74976
RS
4490@findex %token
4491
4492The basic way to declare a token type name (terminal symbol) is as follows:
4493
4494@example
4495%token @var{name}
4496@end example
4497
4498Bison will convert this into a @code{#define} directive in
4499the parser, so that the function @code{yylex} (if it is in this file)
4500can use the name @var{name} to stand for this token type's code.
4501
d78f0ac9
AD
4502Alternatively, you can use @code{%left}, @code{%right},
4503@code{%precedence}, or
14ded682
AD
4504@code{%nonassoc} instead of @code{%token}, if you wish to specify
4505associativity and precedence. @xref{Precedence Decl, ,Operator
4506Precedence}.
bfa74976
RS
4507
4508You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4509a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4510following the token name:
bfa74976
RS
4511
4512@example
4513%token NUM 300
1452af69 4514%token XNUM 0x12d // a GNU extension
bfa74976
RS
4515@end example
4516
4517@noindent
4518It is generally best, however, to let Bison choose the numeric codes for
4519all token types. Bison will automatically select codes that don't conflict
e966383b 4520with each other or with normal characters.
bfa74976
RS
4521
4522In the event that the stack type is a union, you must augment the
4523@code{%token} or other token declaration to include the data type
704a47c4
AD
4524alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4525Than One Value Type}).
bfa74976
RS
4526
4527For example:
4528
4529@example
4530@group
4531%union @{ /* define stack type */
4532 double val;
4533 symrec *tptr;
4534@}
4535%token <val> NUM /* define token NUM and its type */
4536@end group
4537@end example
4538
931c7513
RS
4539You can associate a literal string token with a token type name by
4540writing the literal string at the end of a @code{%token}
4541declaration which declares the name. For example:
4542
4543@example
4544%token arrow "=>"
4545@end example
4546
4547@noindent
4548For example, a grammar for the C language might specify these names with
4549equivalent literal string tokens:
4550
4551@example
4552%token <operator> OR "||"
4553%token <operator> LE 134 "<="
4554%left OR "<="
4555@end example
4556
4557@noindent
4558Once you equate the literal string and the token name, you can use them
4559interchangeably in further declarations or the grammar rules. The
4560@code{yylex} function can use the token name or the literal string to
4561obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4562Syntax error messages passed to @code{yyerror} from the parser will reference
4563the literal string instead of the token name.
4564
4565The token numbered as 0 corresponds to end of file; the following line
4566allows for nicer error messages referring to ``end of file'' instead
4567of ``$end'':
4568
4569@example
4570%token END 0 "end of file"
4571@end example
931c7513 4572
342b8b6e 4573@node Precedence Decl
bfa74976
RS
4574@subsection Operator Precedence
4575@cindex precedence declarations
4576@cindex declaring operator precedence
4577@cindex operator precedence, declaring
4578
d78f0ac9
AD
4579Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4580@code{%precedence} declaration to
bfa74976
RS
4581declare a token and specify its precedence and associativity, all at
4582once. These are called @dfn{precedence declarations}.
704a47c4
AD
4583@xref{Precedence, ,Operator Precedence}, for general information on
4584operator precedence.
bfa74976 4585
ab7f29f8 4586The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4587@code{%token}: either
4588
4589@example
4590%left @var{symbols}@dots{}
4591@end example
4592
4593@noindent
4594or
4595
4596@example
4597%left <@var{type}> @var{symbols}@dots{}
4598@end example
4599
4600And indeed any of these declarations serves the purposes of @code{%token}.
4601But in addition, they specify the associativity and relative precedence for
4602all the @var{symbols}:
4603
4604@itemize @bullet
4605@item
4606The associativity of an operator @var{op} determines how repeated uses
4607of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4608@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4609grouping @var{y} with @var{z} first. @code{%left} specifies
4610left-associativity (grouping @var{x} with @var{y} first) and
4611@code{%right} specifies right-associativity (grouping @var{y} with
4612@var{z} first). @code{%nonassoc} specifies no associativity, which
4613means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4614considered a syntax error.
4615
d78f0ac9
AD
4616@code{%precedence} gives only precedence to the @var{symbols}, and
4617defines no associativity at all. Use this to define precedence only,
4618and leave any potential conflict due to associativity enabled.
4619
bfa74976
RS
4620@item
4621The precedence of an operator determines how it nests with other operators.
4622All the tokens declared in a single precedence declaration have equal
4623precedence and nest together according to their associativity.
4624When two tokens declared in different precedence declarations associate,
4625the one declared later has the higher precedence and is grouped first.
4626@end itemize
4627
ab7f29f8
JD
4628For backward compatibility, there is a confusing difference between the
4629argument lists of @code{%token} and precedence declarations.
4630Only a @code{%token} can associate a literal string with a token type name.
4631A precedence declaration always interprets a literal string as a reference to a
4632separate token.
4633For example:
4634
4635@example
4636%left OR "<=" // Does not declare an alias.
4637%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4638@end example
4639
342b8b6e 4640@node Union Decl
bfa74976
RS
4641@subsection The Collection of Value Types
4642@cindex declaring value types
4643@cindex value types, declaring
4644@findex %union
4645
287c78f6
PE
4646The @code{%union} declaration specifies the entire collection of
4647possible data types for semantic values. The keyword @code{%union} is
4648followed by braced code containing the same thing that goes inside a
4649@code{union} in C@.
bfa74976
RS
4650
4651For example:
4652
4653@example
4654@group
4655%union @{
4656 double val;
4657 symrec *tptr;
4658@}
4659@end group
4660@end example
4661
4662@noindent
4663This says that the two alternative types are @code{double} and @code{symrec
4664*}. They are given names @code{val} and @code{tptr}; these names are used
4665in the @code{%token} and @code{%type} declarations to pick one of the types
4666for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4667
8a4281b9 4668As an extension to POSIX, a tag is allowed after the
6273355b
PE
4669@code{union}. For example:
4670
4671@example
4672@group
4673%union value @{
4674 double val;
4675 symrec *tptr;
4676@}
4677@end group
4678@end example
4679
d6ca7905 4680@noindent
6273355b
PE
4681specifies the union tag @code{value}, so the corresponding C type is
4682@code{union value}. If you do not specify a tag, it defaults to
4683@code{YYSTYPE}.
4684
8a4281b9 4685As another extension to POSIX, you may specify multiple
d6ca7905
PE
4686@code{%union} declarations; their contents are concatenated. However,
4687only the first @code{%union} declaration can specify a tag.
4688
6273355b 4689Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4690a semicolon after the closing brace.
4691
ddc8ede1
PE
4692Instead of @code{%union}, you can define and use your own union type
4693@code{YYSTYPE} if your grammar contains at least one
4694@samp{<@var{type}>} tag. For example, you can put the following into
4695a header file @file{parser.h}:
4696
4697@example
4698@group
4699union YYSTYPE @{
4700 double val;
4701 symrec *tptr;
4702@};
4703typedef union YYSTYPE YYSTYPE;
4704@end group
4705@end example
4706
4707@noindent
4708and then your grammar can use the following
4709instead of @code{%union}:
4710
4711@example
4712@group
4713%@{
4714#include "parser.h"
4715%@}
4716%type <val> expr
4717%token <tptr> ID
4718@end group
4719@end example
4720
342b8b6e 4721@node Type Decl
bfa74976
RS
4722@subsection Nonterminal Symbols
4723@cindex declaring value types, nonterminals
4724@cindex value types, nonterminals, declaring
4725@findex %type
4726
4727@noindent
4728When you use @code{%union} to specify multiple value types, you must
4729declare the value type of each nonterminal symbol for which values are
4730used. This is done with a @code{%type} declaration, like this:
4731
4732@example
4733%type <@var{type}> @var{nonterminal}@dots{}
4734@end example
4735
4736@noindent
704a47c4
AD
4737Here @var{nonterminal} is the name of a nonterminal symbol, and
4738@var{type} is the name given in the @code{%union} to the alternative
4739that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4740can give any number of nonterminal symbols in the same @code{%type}
4741declaration, if they have the same value type. Use spaces to separate
4742the symbol names.
bfa74976 4743
931c7513
RS
4744You can also declare the value type of a terminal symbol. To do this,
4745use the same @code{<@var{type}>} construction in a declaration for the
4746terminal symbol. All kinds of token declarations allow
4747@code{<@var{type}>}.
4748
18d192f0
AD
4749@node Initial Action Decl
4750@subsection Performing Actions before Parsing
4751@findex %initial-action
4752
4753Sometimes your parser needs to perform some initializations before
4754parsing. The @code{%initial-action} directive allows for such arbitrary
4755code.
4756
4757@deffn {Directive} %initial-action @{ @var{code} @}
4758@findex %initial-action
287c78f6 4759Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4760@code{yyparse} is called. The @var{code} may use @code{$$} (or
4761@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4762lookahead --- and the @code{%parse-param}.
18d192f0
AD
4763@end deffn
4764
451364ed
AD
4765For instance, if your locations use a file name, you may use
4766
4767@example
48b16bbc 4768%parse-param @{ char const *file_name @};
451364ed
AD
4769%initial-action
4770@{
4626a15d 4771 @@$.initialize (file_name);
451364ed
AD
4772@};
4773@end example
4774
18d192f0 4775
72f889cc
AD
4776@node Destructor Decl
4777@subsection Freeing Discarded Symbols
4778@cindex freeing discarded symbols
4779@findex %destructor
12e35840 4780@findex <*>
3ebecc24 4781@findex <>
a85284cf
AD
4782During error recovery (@pxref{Error Recovery}), symbols already pushed
4783on the stack and tokens coming from the rest of the file are discarded
4784until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4785or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4786symbols on the stack must be discarded. Even if the parser succeeds, it
4787must discard the start symbol.
258b75ca
PE
4788
4789When discarded symbols convey heap based information, this memory is
4790lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4791in traditional compilers, it is unacceptable for programs like shells or
4792protocol implementations that may parse and execute indefinitely.
258b75ca 4793
a85284cf
AD
4794The @code{%destructor} directive defines code that is called when a
4795symbol is automatically discarded.
72f889cc
AD
4796
4797@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4798@findex %destructor
287c78f6 4799Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4800@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4801designates the semantic value associated with the discarded symbol, and
4802@code{@@$} designates its location. The additional parser parameters are
4803also available (@pxref{Parser Function, , The Parser Function
4804@code{yyparse}}).
ec5479ce 4805
b2a0b7ca
JD
4806When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4807per-symbol @code{%destructor}.
4808You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4809tag among @var{symbols}.
b2a0b7ca 4810In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4811grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4812per-symbol @code{%destructor}.
4813
12e35840 4814Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4815(These default forms are experimental.
4816More user feedback will help to determine whether they should become permanent
4817features.)
3ebecc24 4818You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4819exactly one @code{%destructor} declaration in your grammar file.
4820The parser will invoke the @var{code} associated with one of these whenever it
4821discards any user-defined grammar symbol that has no per-symbol and no per-type
4822@code{%destructor}.
4823The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4824symbol for which you have formally declared a semantic type tag (@code{%type}
4825counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4826The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4827symbol that has no declared semantic type tag.
72f889cc
AD
4828@end deffn
4829
b2a0b7ca 4830@noindent
12e35840 4831For example:
72f889cc 4832
c93f22fc 4833@example
ec5479ce
JD
4834%union @{ char *string; @}
4835%token <string> STRING1
4836%token <string> STRING2
4837%type <string> string1
4838%type <string> string2
b2a0b7ca
JD
4839%union @{ char character; @}
4840%token <character> CHR
4841%type <character> chr
12e35840
JD
4842%token TAGLESS
4843
b2a0b7ca 4844%destructor @{ @} <character>
12e35840
JD
4845%destructor @{ free ($$); @} <*>
4846%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4847%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4848@end example
72f889cc
AD
4849
4850@noindent
b2a0b7ca
JD
4851guarantees that, when the parser discards any user-defined symbol that has a
4852semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4853to @code{free} by default.
ec5479ce
JD
4854However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4855prints its line number to @code{stdout}.
4856It performs only the second @code{%destructor} in this case, so it invokes
4857@code{free} only once.
12e35840
JD
4858Finally, the parser merely prints a message whenever it discards any symbol,
4859such as @code{TAGLESS}, that has no semantic type tag.
4860
4861A Bison-generated parser invokes the default @code{%destructor}s only for
4862user-defined as opposed to Bison-defined symbols.
4863For example, the parser will not invoke either kind of default
4864@code{%destructor} for the special Bison-defined symbols @code{$accept},
4865@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4866none of which you can reference in your grammar.
4867It also will not invoke either for the @code{error} token (@pxref{Table of
4868Symbols, ,error}), which is always defined by Bison regardless of whether you
4869reference it in your grammar.
4870However, it may invoke one of them for the end token (token 0) if you
4871redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4872
c93f22fc 4873@example
3508ce36 4874%token END 0
c93f22fc 4875@end example
3508ce36 4876
12e35840
JD
4877@cindex actions in mid-rule
4878@cindex mid-rule actions
4879Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4880mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4881That is, Bison does not consider a mid-rule to have a semantic value if you
4882do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4883(where @var{n} is the right-hand side symbol position of the mid-rule) in
4884any later action in that rule. However, if you do reference either, the
4885Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4886it discards the mid-rule symbol.
12e35840 4887
3508ce36
JD
4888@ignore
4889@noindent
4890In the future, it may be possible to redefine the @code{error} token as a
4891nonterminal that captures the discarded symbols.
4892In that case, the parser will invoke the default destructor for it as well.
4893@end ignore
4894
e757bb10
AD
4895@sp 1
4896
4897@cindex discarded symbols
4898@dfn{Discarded symbols} are the following:
4899
4900@itemize
4901@item
4902stacked symbols popped during the first phase of error recovery,
4903@item
4904incoming terminals during the second phase of error recovery,
4905@item
742e4900 4906the current lookahead and the entire stack (except the current
9d9b8b70 4907right-hand side symbols) when the parser returns immediately, and
258b75ca 4908@item
d3e4409a
AD
4909the current lookahead and the entire stack (including the current right-hand
4910side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4911@code{parse},
4912@item
258b75ca 4913the start symbol, when the parser succeeds.
e757bb10
AD
4914@end itemize
4915
9d9b8b70
PE
4916The parser can @dfn{return immediately} because of an explicit call to
4917@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4918exhaustion.
4919
29553547 4920Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4921error via @code{YYERROR} are not discarded automatically. As a rule
4922of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4923the memory.
e757bb10 4924
93c150b6
AD
4925@node Printer Decl
4926@subsection Printing Semantic Values
4927@cindex printing semantic values
4928@findex %printer
4929@findex <*>
4930@findex <>
4931When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4932the parser reports its actions, such as reductions. When a symbol involved
4933in an action is reported, only its kind is displayed, as the parser cannot
4934know how semantic values should be formatted.
4935
4936The @code{%printer} directive defines code that is called when a symbol is
4937reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4938Decl, , Freeing Discarded Symbols}).
4939
4940@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4941@findex %printer
4942@vindex yyoutput
4943@c This is the same text as for %destructor.
4944Invoke the braced @var{code} whenever the parser displays one of the
4945@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4946(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4947@code{$<@var{tag}>$}) designates the semantic value associated with the
4948symbol, and @code{@@$} its location. The additional parser parameters are
4949also available (@pxref{Parser Function, , The Parser Function
4950@code{yyparse}}).
93c150b6
AD
4951
4952The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4953Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4954@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4955typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4956@samp{<>}).
4957@end deffn
4958
4959@noindent
4960For example:
4961
4962@example
4963%union @{ char *string; @}
4964%token <string> STRING1
4965%token <string> STRING2
4966%type <string> string1
4967%type <string> string2
4968%union @{ char character; @}
4969%token <character> CHR
4970%type <character> chr
4971%token TAGLESS
4972
4973%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4974%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4975%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4976%printer @{ fprintf (yyoutput, "<>"); @} <>
4977@end example
4978
4979@noindent
4980guarantees that, when the parser print any symbol that has a semantic type
4981tag other than @code{<character>}, it display the address of the semantic
4982value by default. However, when the parser displays a @code{STRING1} or a
4983@code{string1}, it formats it as a string in double quotes. It performs
4984only the second @code{%printer} in this case, so it prints only once.
4985Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4986that has no semantic type tag. See also
4987
4988
342b8b6e 4989@node Expect Decl
bfa74976
RS
4990@subsection Suppressing Conflict Warnings
4991@cindex suppressing conflict warnings
4992@cindex preventing warnings about conflicts
4993@cindex warnings, preventing
4994@cindex conflicts, suppressing warnings of
4995@findex %expect
d6328241 4996@findex %expect-rr
bfa74976
RS
4997
4998Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4999(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
5000have harmless shift/reduce conflicts which are resolved in a predictable
5001way and would be difficult to eliminate. It is desirable to suppress
5002the warning about these conflicts unless the number of conflicts
5003changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
5004
5005The declaration looks like this:
5006
5007@example
5008%expect @var{n}
5009@end example
5010
035aa4a0
PE
5011Here @var{n} is a decimal integer. The declaration says there should
5012be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
5013Bison reports an error if the number of shift/reduce conflicts differs
5014from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 5015
eb45ef3b 5016For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 5017serious, and should be eliminated entirely. Bison will always report
8a4281b9 5018reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5019parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5020there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5021also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5022in GLR parsers, using the declaration:
d6328241
PH
5023
5024@example
5025%expect-rr @var{n}
5026@end example
5027
bfa74976
RS
5028In general, using @code{%expect} involves these steps:
5029
5030@itemize @bullet
5031@item
5032Compile your grammar without @code{%expect}. Use the @samp{-v} option
5033to get a verbose list of where the conflicts occur. Bison will also
5034print the number of conflicts.
5035
5036@item
5037Check each of the conflicts to make sure that Bison's default
5038resolution is what you really want. If not, rewrite the grammar and
5039go back to the beginning.
5040
5041@item
5042Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5043number which Bison printed. With GLR parsers, add an
035aa4a0 5044@code{%expect-rr} declaration as well.
bfa74976
RS
5045@end itemize
5046
93d7dde9
JD
5047Now Bison will report an error if you introduce an unexpected conflict,
5048but will keep silent otherwise.
bfa74976 5049
342b8b6e 5050@node Start Decl
bfa74976
RS
5051@subsection The Start-Symbol
5052@cindex declaring the start symbol
5053@cindex start symbol, declaring
5054@cindex default start symbol
5055@findex %start
5056
5057Bison assumes by default that the start symbol for the grammar is the first
5058nonterminal specified in the grammar specification section. The programmer
5059may override this restriction with the @code{%start} declaration as follows:
5060
5061@example
5062%start @var{symbol}
5063@end example
5064
342b8b6e 5065@node Pure Decl
bfa74976
RS
5066@subsection A Pure (Reentrant) Parser
5067@cindex reentrant parser
5068@cindex pure parser
d9df47b6 5069@findex %define api.pure
bfa74976
RS
5070
5071A @dfn{reentrant} program is one which does not alter in the course of
5072execution; in other words, it consists entirely of @dfn{pure} (read-only)
5073code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5074for example, a nonreentrant program may not be safe to call from a signal
5075handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5076program must be called only within interlocks.
5077
70811b85 5078Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5079suitable for most uses, and it permits compatibility with Yacc. (The
5080standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5081statically allocated variables for communication with @code{yylex},
5082including @code{yylval} and @code{yylloc}.)
bfa74976 5083
70811b85 5084Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5085declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5086reentrant. It looks like this:
bfa74976
RS
5087
5088@example
1f1bd572 5089%define api.pure full
bfa74976
RS
5090@end example
5091
70811b85
RS
5092The result is that the communication variables @code{yylval} and
5093@code{yylloc} become local variables in @code{yyparse}, and a different
5094calling convention is used for the lexical analyzer function
5095@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5096Parsers}, for the details of this. The variable @code{yynerrs}
5097becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5098of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5099Reporting Function @code{yyerror}}). The convention for calling
5100@code{yyparse} itself is unchanged.
5101
5102Whether the parser is pure has nothing to do with the grammar rules.
5103You can generate either a pure parser or a nonreentrant parser from any
5104valid grammar.
bfa74976 5105
9987d1b3
JD
5106@node Push Decl
5107@subsection A Push Parser
5108@cindex push parser
5109@cindex push parser
67212941 5110@findex %define api.push-pull
9987d1b3 5111
59da312b
JD
5112(The current push parsing interface is experimental and may evolve.
5113More user feedback will help to stabilize it.)
5114
f4101aa6
AD
5115A pull parser is called once and it takes control until all its input
5116is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5117each time a new token is made available.
5118
f4101aa6 5119A push parser is typically useful when the parser is part of a
9987d1b3 5120main event loop in the client's application. This is typically
f4101aa6
AD
5121a requirement of a GUI, when the main event loop needs to be triggered
5122within a certain time period.
9987d1b3 5123
d782395d
JD
5124Normally, Bison generates a pull parser.
5125The following Bison declaration says that you want the parser to be a push
35c1e5f0 5126parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5127
5128@example
cf499cff 5129%define api.push-pull push
9987d1b3
JD
5130@end example
5131
5132In almost all cases, you want to ensure that your push parser is also
5133a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5134time you should create an impure push parser is to have backwards
9987d1b3
JD
5135compatibility with the impure Yacc pull mode interface. Unless you know
5136what you are doing, your declarations should look like this:
5137
5138@example
1f1bd572 5139%define api.pure full
cf499cff 5140%define api.push-pull push
9987d1b3
JD
5141@end example
5142
f4101aa6
AD
5143There is a major notable functional difference between the pure push parser
5144and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5145many parser instances, of the same type of parser, in memory at the same time.
5146An impure push parser should only use one parser at a time.
5147
5148When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5149the generated parser. @code{yypstate} is a structure that the generated
5150parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5151function that will create a new parser instance. @code{yypstate_delete}
5152will free the resources associated with the corresponding parser instance.
f4101aa6 5153Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5154token is available to provide the parser. A trivial example
5155of using a pure push parser would look like this:
5156
5157@example
5158int status;
5159yypstate *ps = yypstate_new ();
5160do @{
5161 status = yypush_parse (ps, yylex (), NULL);
5162@} while (status == YYPUSH_MORE);
5163yypstate_delete (ps);
5164@end example
5165
5166If the user decided to use an impure push parser, a few things about
f4101aa6 5167the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5168a global variable instead of a variable in the @code{yypush_parse} function.
5169For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5170changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5171example would thus look like this:
5172
5173@example
5174extern int yychar;
5175int status;
5176yypstate *ps = yypstate_new ();
5177do @{
5178 yychar = yylex ();
5179 status = yypush_parse (ps);
5180@} while (status == YYPUSH_MORE);
5181yypstate_delete (ps);
5182@end example
5183
f4101aa6 5184That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5185for use by the next invocation of the @code{yypush_parse} function.
5186
f4101aa6 5187Bison also supports both the push parser interface along with the pull parser
9987d1b3 5188interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5189you should replace the @samp{%define api.push-pull push} declaration with the
5190@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5191the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5192and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5193would be used. However, the user should note that it is implemented in the
d782395d
JD
5194generated parser by calling @code{yypull_parse}.
5195This makes the @code{yyparse} function that is generated with the
cf499cff 5196@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5197@code{yyparse} function. If the user
5198calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5199stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5200and then @code{yypull_parse} the rest of the input stream. If you would like
5201to switch back and forth between between parsing styles, you would have to
5202write your own @code{yypull_parse} function that knows when to quit looking
5203for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5204like this:
5205
5206@example
5207yypstate *ps = yypstate_new ();
5208yypull_parse (ps); /* Will call the lexer */
5209yypstate_delete (ps);
5210@end example
5211
67501061 5212Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5213the generated parser with @samp{%define api.push-pull both} as it did for
5214@samp{%define api.push-pull push}.
9987d1b3 5215
342b8b6e 5216@node Decl Summary
bfa74976
RS
5217@subsection Bison Declaration Summary
5218@cindex Bison declaration summary
5219@cindex declaration summary
5220@cindex summary, Bison declaration
5221
d8988b2f 5222Here is a summary of the declarations used to define a grammar:
bfa74976 5223
18b519c0 5224@deffn {Directive} %union
bfa74976
RS
5225Declare the collection of data types that semantic values may have
5226(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5227@end deffn
bfa74976 5228
18b519c0 5229@deffn {Directive} %token
bfa74976
RS
5230Declare a terminal symbol (token type name) with no precedence
5231or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5232@end deffn
bfa74976 5233
18b519c0 5234@deffn {Directive} %right
bfa74976
RS
5235Declare a terminal symbol (token type name) that is right-associative
5236(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5237@end deffn
bfa74976 5238
18b519c0 5239@deffn {Directive} %left
bfa74976
RS
5240Declare a terminal symbol (token type name) that is left-associative
5241(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5242@end deffn
bfa74976 5243
18b519c0 5244@deffn {Directive} %nonassoc
bfa74976 5245Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5246(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5247Using it in a way that would be associative is a syntax error.
5248@end deffn
5249
91d2c560 5250@ifset defaultprec
39a06c25 5251@deffn {Directive} %default-prec
22fccf95 5252Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5253(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5254@end deffn
91d2c560 5255@end ifset
bfa74976 5256
18b519c0 5257@deffn {Directive} %type
bfa74976
RS
5258Declare the type of semantic values for a nonterminal symbol
5259(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5260@end deffn
bfa74976 5261
18b519c0 5262@deffn {Directive} %start
89cab50d
AD
5263Specify the grammar's start symbol (@pxref{Start Decl, ,The
5264Start-Symbol}).
18b519c0 5265@end deffn
bfa74976 5266
18b519c0 5267@deffn {Directive} %expect
bfa74976
RS
5268Declare the expected number of shift-reduce conflicts
5269(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5270@end deffn
5271
bfa74976 5272
d8988b2f
AD
5273@sp 1
5274@noindent
5275In order to change the behavior of @command{bison}, use the following
5276directives:
5277
148d66d8 5278@deffn {Directive} %code @{@var{code}@}
e0c07222 5279@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5280@findex %code
e0c07222
JD
5281Insert @var{code} verbatim into the output parser source at the
5282default location or at the location specified by @var{qualifier}.
5283@xref{%code Summary}.
148d66d8
JD
5284@end deffn
5285
18b519c0 5286@deffn {Directive} %debug
60aa04a2 5287Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5288parse.trace}.
ec3bc396 5289@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5290@end deffn
d8988b2f 5291
35c1e5f0
JD
5292@deffn {Directive} %define @var{variable}
5293@deffnx {Directive} %define @var{variable} @var{value}
5294@deffnx {Directive} %define @var{variable} "@var{value}"
5295Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5296@end deffn
5297
5298@deffn {Directive} %defines
5299Write a parser header file containing macro definitions for the token
5300type names defined in the grammar as well as a few other declarations.
5301If the parser implementation file is named @file{@var{name}.c} then
5302the parser header file is named @file{@var{name}.h}.
5303
5304For C parsers, the parser header file declares @code{YYSTYPE} unless
5305@code{YYSTYPE} is already defined as a macro or you have used a
5306@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5307you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5308Value Type}) with components that require other definitions, or if you
5309have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5310Type, ,Data Types of Semantic Values}), you need to arrange for these
5311definitions to be propagated to all modules, e.g., by putting them in
5312a prerequisite header that is included both by your parser and by any
5313other module that needs @code{YYSTYPE}.
5314
5315Unless your parser is pure, the parser header file declares
5316@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5317(Reentrant) Parser}.
5318
5319If you have also used locations, the parser header file declares
303834cc
JD
5320@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5321@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5322
5323This parser header file is normally essential if you wish to put the
5324definition of @code{yylex} in a separate source file, because
5325@code{yylex} typically needs to be able to refer to the
5326above-mentioned declarations and to the token type codes. @xref{Token
5327Values, ,Semantic Values of Tokens}.
5328
5329@findex %code requires
5330@findex %code provides
5331If you have declared @code{%code requires} or @code{%code provides}, the output
5332header also contains their code.
5333@xref{%code Summary}.
c9d5bcc9
AD
5334
5335@cindex Header guard
5336The generated header is protected against multiple inclusions with a C
5337preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5338@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5339,Multiple Parsers in the Same Program}) and generated file name turned
5340uppercase, with each series of non alphanumerical characters converted to a
5341single underscore.
5342
5343For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5344"lib/parse.h"}, the header will be guarded as follows.
5345@example
5346#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5347# define YY_CALC_LIB_PARSE_H_INCLUDED
5348...
5349#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5350@end example
35c1e5f0
JD
5351@end deffn
5352
5353@deffn {Directive} %defines @var{defines-file}
5354Same as above, but save in the file @var{defines-file}.
5355@end deffn
5356
5357@deffn {Directive} %destructor
5358Specify how the parser should reclaim the memory associated to
5359discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5360@end deffn
5361
5362@deffn {Directive} %file-prefix "@var{prefix}"
5363Specify a prefix to use for all Bison output file names. The names
5364are chosen as if the grammar file were named @file{@var{prefix}.y}.
5365@end deffn
5366
5367@deffn {Directive} %language "@var{language}"
5368Specify the programming language for the generated parser. Currently
5369supported languages include C, C++, and Java.
5370@var{language} is case-insensitive.
5371
35c1e5f0
JD
5372@end deffn
5373
5374@deffn {Directive} %locations
5375Generate the code processing the locations (@pxref{Action Features,
5376,Special Features for Use in Actions}). This mode is enabled as soon as
5377the grammar uses the special @samp{@@@var{n}} tokens, but if your
5378grammar does not use it, using @samp{%locations} allows for more
5379accurate syntax error messages.
5380@end deffn
5381
5382@deffn {Directive} %name-prefix "@var{prefix}"
5383Rename the external symbols used in the parser so that they start with
5384@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5385in C parsers
5386is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5387@code{yylval}, @code{yychar}, @code{yydebug}, and
5388(if locations are used) @code{yylloc}. If you use a push parser,
5389@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5390@code{yypstate_new} and @code{yypstate_delete} will
5391also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5392names become @code{c_parse}, @code{c_lex}, and so on.
5393For C++ parsers, see the @samp{%define api.namespace} documentation in this
5394section.
5395@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5396@end deffn
5397
5398@ifset defaultprec
5399@deffn {Directive} %no-default-prec
5400Do not assign a precedence to rules lacking an explicit @code{%prec}
5401modifier (@pxref{Contextual Precedence, ,Context-Dependent
5402Precedence}).
5403@end deffn
5404@end ifset
5405
5406@deffn {Directive} %no-lines
5407Don't generate any @code{#line} preprocessor commands in the parser
5408implementation file. Ordinarily Bison writes these commands in the
5409parser implementation file so that the C compiler and debuggers will
5410associate errors and object code with your source file (the grammar
5411file). This directive causes them to associate errors with the parser
5412implementation file, treating it as an independent source file in its
5413own right.
5414@end deffn
5415
5416@deffn {Directive} %output "@var{file}"
5417Specify @var{file} for the parser implementation file.
5418@end deffn
5419
5420@deffn {Directive} %pure-parser
5421Deprecated version of @samp{%define api.pure} (@pxref{%define
5422Summary,,api.pure}), for which Bison is more careful to warn about
5423unreasonable usage.
5424@end deffn
5425
5426@deffn {Directive} %require "@var{version}"
5427Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5428Require a Version of Bison}.
5429@end deffn
5430
5431@deffn {Directive} %skeleton "@var{file}"
5432Specify the skeleton to use.
5433
5434@c You probably don't need this option unless you are developing Bison.
5435@c You should use @code{%language} if you want to specify the skeleton for a
5436@c different language, because it is clearer and because it will always choose the
5437@c correct skeleton for non-deterministic or push parsers.
5438
5439If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5440file in the Bison installation directory.
5441If it does, @var{file} is an absolute file name or a file name relative to the
5442directory of the grammar file.
5443This is similar to how most shells resolve commands.
5444@end deffn
5445
5446@deffn {Directive} %token-table
5447Generate an array of token names in the parser implementation file.
5448The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5449the name of the token whose internal Bison token code number is
5450@var{i}. The first three elements of @code{yytname} correspond to the
5451predefined tokens @code{"$end"}, @code{"error"}, and
5452@code{"$undefined"}; after these come the symbols defined in the
5453grammar file.
5454
5455The name in the table includes all the characters needed to represent
5456the token in Bison. For single-character literals and literal
5457strings, this includes the surrounding quoting characters and any
5458escape sequences. For example, the Bison single-character literal
5459@code{'+'} corresponds to a three-character name, represented in C as
5460@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5461corresponds to a five-character name, represented in C as
5462@code{"\"\\\\/\""}.
5463
5464When you specify @code{%token-table}, Bison also generates macro
5465definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5466@code{YYNRULES}, and @code{YYNSTATES}:
5467
5468@table @code
5469@item YYNTOKENS
5470The highest token number, plus one.
5471@item YYNNTS
5472The number of nonterminal symbols.
5473@item YYNRULES
5474The number of grammar rules,
5475@item YYNSTATES
5476The number of parser states (@pxref{Parser States}).
5477@end table
5478@end deffn
5479
5480@deffn {Directive} %verbose
5481Write an extra output file containing verbose descriptions of the
5482parser states and what is done for each type of lookahead token in
5483that state. @xref{Understanding, , Understanding Your Parser}, for more
5484information.
5485@end deffn
5486
5487@deffn {Directive} %yacc
5488Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5489including its naming conventions. @xref{Bison Options}, for more.
5490@end deffn
5491
5492
5493@node %define Summary
5494@subsection %define Summary
51151d91
JD
5495
5496There are many features of Bison's behavior that can be controlled by
5497assigning the feature a single value. For historical reasons, some
5498such features are assigned values by dedicated directives, such as
5499@code{%start}, which assigns the start symbol. However, newer such
5500features are associated with variables, which are assigned by the
5501@code{%define} directive:
5502
c1d19e10 5503@deffn {Directive} %define @var{variable}
cf499cff 5504@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5505@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5506Define @var{variable} to @var{value}.
9611cfa2 5507
51151d91
JD
5508@var{value} must be placed in quotation marks if it contains any
5509character other than a letter, underscore, period, or non-initial dash
5510or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5511to specifying @code{""}.
9611cfa2 5512
51151d91
JD
5513It is an error if a @var{variable} is defined by @code{%define}
5514multiple times, but see @ref{Bison Options,,-D
5515@var{name}[=@var{value}]}.
5516@end deffn
cf499cff 5517
51151d91
JD
5518The rest of this section summarizes variables and values that
5519@code{%define} accepts.
9611cfa2 5520
51151d91
JD
5521Some @var{variable}s take Boolean values. In this case, Bison will
5522complain if the variable definition does not meet one of the following
5523four conditions:
9611cfa2
JD
5524
5525@enumerate
cf499cff 5526@item @code{@var{value}} is @code{true}
9611cfa2 5527
cf499cff
JD
5528@item @code{@var{value}} is omitted (or @code{""} is specified).
5529This is equivalent to @code{true}.
9611cfa2 5530
cf499cff 5531@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5532
5533@item @var{variable} is never defined.
c6abeab1 5534In this case, Bison selects a default value.
9611cfa2 5535@end enumerate
148d66d8 5536
c6abeab1
JD
5537What @var{variable}s are accepted, as well as their meanings and default
5538values, depend on the selected target language and/or the parser
5539skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5540Summary,,%skeleton}).
5541Unaccepted @var{variable}s produce an error.
dbf3962c 5542Some of the accepted @var{variable}s are described below.
793fbca5 5543
dbf3962c 5544@deffn Directive {%define api.namespace} "@var{namespace}"
67501061
AD
5545@itemize
5546@item Languages(s): C++
5547
f1b238df 5548@item Purpose: Specify the namespace for the parser class.
67501061
AD
5549For example, if you specify:
5550
c93f22fc 5551@example
67501061 5552%define api.namespace "foo::bar"
c93f22fc 5553@end example
67501061
AD
5554
5555Bison uses @code{foo::bar} verbatim in references such as:
5556
c93f22fc 5557@example
67501061 5558foo::bar::parser::semantic_type
c93f22fc 5559@end example
67501061
AD
5560
5561However, to open a namespace, Bison removes any leading @code{::} and then
5562splits on any remaining occurrences:
5563
c93f22fc 5564@example
67501061
AD
5565namespace foo @{ namespace bar @{
5566 class position;
5567 class location;
5568@} @}
c93f22fc 5569@end example
67501061
AD
5570
5571@item Accepted Values:
5572Any absolute or relative C++ namespace reference without a trailing
5573@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5574
5575@item Default Value:
5576The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5577This usage of @code{%name-prefix} is for backward compatibility and can
5578be confusing since @code{%name-prefix} also specifies the textual prefix
5579for the lexical analyzer function. Thus, if you specify
5580@code{%name-prefix}, it is best to also specify @samp{%define
5581api.namespace} so that @code{%name-prefix} @emph{only} affects the
5582lexical analyzer function. For example, if you specify:
5583
c93f22fc 5584@example
67501061
AD
5585%define api.namespace "foo"
5586%name-prefix "bar::"
c93f22fc 5587@end example
67501061
AD
5588
5589The parser namespace is @code{foo} and @code{yylex} is referenced as
5590@code{bar::lex}.
5591@end itemize
dbf3962c
AD
5592@end deffn
5593@c api.namespace
67501061 5594
db8ab2be 5595@c ================================================== api.location.type
dbf3962c 5596@deffn {Directive} {%define api.location.type} @var{type}
db8ab2be
AD
5597
5598@itemize @bullet
7287be84 5599@item Language(s): C++, Java
db8ab2be
AD
5600
5601@item Purpose: Define the location type.
5602@xref{User Defined Location Type}.
5603
5604@item Accepted Values: String
5605
5606@item Default Value: none
5607
a256496a
AD
5608@item History:
5609Introduced in Bison 2.7 for C, C++ and Java. Introduced under the name
5610@code{location_type} for C++ in Bison 2.5 and for Java in Bison 2.4.
db8ab2be 5611@end itemize
dbf3962c 5612@end deffn
67501061 5613
4b3847c3 5614@c ================================================== api.prefix
dbf3962c 5615@deffn {Directive} {%define api.prefix} @var{prefix}
4b3847c3
AD
5616
5617@itemize @bullet
5618@item Language(s): All
5619
db8ab2be 5620@item Purpose: Rename exported symbols.
4b3847c3
AD
5621@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5622
5623@item Accepted Values: String
5624
5625@item Default Value: @code{yy}
e358222b
AD
5626
5627@item History: introduced in Bison 2.6
4b3847c3 5628@end itemize
dbf3962c 5629@end deffn
67501061
AD
5630
5631@c ================================================== api.pure
dbf3962c 5632@deffn Directive {%define api.pure}
d9df47b6
JD
5633
5634@itemize @bullet
5635@item Language(s): C
5636
5637@item Purpose: Request a pure (reentrant) parser program.
5638@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5639
1f1bd572
TR
5640@item Accepted Values: @code{true}, @code{false}, @code{full}
5641
5642The value may be omitted: this is equivalent to specifying @code{true}, as is
5643the case for Boolean values.
5644
5645When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5646changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5647@code{yyerror} when the tracking of locations has been activated, as shown
5648below.
1f1bd572
TR
5649
5650The @code{true} value is very similar to the @code{full} value, the only
5651difference is in the signature of @code{yyerror} on Yacc parsers without
5652@code{%parse-param}, for historical reasons.
5653
5654I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5655@code{yyerror} are:
5656
5657@example
c949ada3
AD
5658void yyerror (char const *msg); // Yacc parsers.
5659void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5660@end example
5661
5662But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5663used, then both parsers have the same signature:
5664
5665@example
5666void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5667@end example
5668
5669(@pxref{Error Reporting, ,The Error
5670Reporting Function @code{yyerror}})
d9df47b6 5671
cf499cff 5672@item Default Value: @code{false}
1f1bd572 5673
a256496a
AD
5674@item History:
5675the @code{full} value was introduced in Bison 2.7
d9df47b6 5676@end itemize
dbf3962c 5677@end deffn
71b00ed8 5678@c api.pure
d9df47b6 5679
67501061
AD
5680
5681
5682@c ================================================== api.push-pull
dbf3962c 5683@deffn Directive {%define api.push-pull} @var{kind}
793fbca5
JD
5684
5685@itemize @bullet
eb45ef3b 5686@item Language(s): C (deterministic parsers only)
793fbca5 5687
f1b238df 5688@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5689@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5690(The current push parsing interface is experimental and may evolve.
5691More user feedback will help to stabilize it.)
793fbca5 5692
cf499cff 5693@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5694
cf499cff 5695@item Default Value: @code{pull}
793fbca5 5696@end itemize
dbf3962c 5697@end deffn
67212941 5698@c api.push-pull
71b00ed8 5699
6b5a0de9
AD
5700
5701
e36ec1f4 5702@c ================================================== api.token.constructor
dbf3962c 5703@deffn Directive {%define api.token.constructor}
e36ec1f4
AD
5704
5705@itemize @bullet
5706@item Language(s):
5707C++
5708
5709@item Purpose:
5710When variant-based semantic values are enabled (@pxref{C++ Variants}),
5711request that symbols be handled as a whole (type, value, and possibly
5712location) in the scanner. @xref{Complete Symbols}, for details.
5713
5714@item Accepted Values:
5715Boolean.
5716
5717@item Default Value:
5718@code{false}
5719@item History:
5720introduced in Bison 2.8
5721@end itemize
dbf3962c 5722@end deffn
e36ec1f4
AD
5723@c api.token.constructor
5724
5725
2a6b66c5 5726@c ================================================== api.token.prefix
dbf3962c 5727@deffn Directive {%define api.token.prefix} @var{prefix}
4c6622c2
AD
5728
5729@itemize
5730@item Languages(s): all
5731
5732@item Purpose:
5733Add a prefix to the token names when generating their definition in the
5734target language. For instance
5735
5736@example
5737%token FILE for ERROR
2a6b66c5 5738%define api.token.prefix "TOK_"
4c6622c2
AD
5739%%
5740start: FILE for ERROR;
5741@end example
5742
5743@noindent
5744generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5745and @code{TOK_ERROR} in the generated source files. In particular, the
5746scanner must use these prefixed token names, while the grammar itself
5747may still use the short names (as in the sample rule given above). The
5748generated informational files (@file{*.output}, @file{*.xml},
5749@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5750and @ref{Calc++ Scanner}, for a complete example.
5751
5752@item Accepted Values:
5753Any string. Should be a valid identifier prefix in the target language,
5754in other words, it should typically be an identifier itself (sequence of
5755letters, underscores, and ---not at the beginning--- digits).
5756
5757@item Default Value:
5758empty
2a6b66c5
AD
5759@item History:
5760introduced in Bison 2.8
4c6622c2 5761@end itemize
dbf3962c 5762@end deffn
2a6b66c5 5763@c api.token.prefix
4c6622c2
AD
5764
5765
ae8880de 5766@c ================================================== api.value.type
dbf3962c 5767@deffn Directive {%define api.value.type} @var{type}
ae8880de
AD
5768@itemize @bullet
5769@item Language(s):
5770C++
5771
5772@item Purpose:
5773Request variant-based semantic values.
5774@xref{C++ Variants}.
5775
dbf3962c
AD
5776@item Default Value:
5777FIXME:
5778@item History:
5779introduced in Bison 2.8. Was introduced for Java only in 2.3b as
5780@code{stype}.
5781@end itemize
5782@end deffn
ae8880de
AD
5783@c api.value.type
5784
a256496a
AD
5785
5786@c ================================================== location_type
dbf3962c 5787@deffn Directive {%define location_type}
a256496a 5788Obsoleted by @code{api.location.type} since Bison 2.7.
dbf3962c 5789@end deffn
a256496a
AD
5790
5791
f3bc3386 5792@c ================================================== lr.default-reduction
6b5a0de9 5793
dbf3962c 5794@deffn Directive {%define lr.default-reduction} @var{when}
eb45ef3b
JD
5795
5796@itemize @bullet
5797@item Language(s): all
5798
fcf834f9 5799@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5800contain default reductions. @xref{Default Reductions}. (The ability to
5801specify where default reductions should be used is experimental. More user
5802feedback will help to stabilize it.)
eb45ef3b 5803
f0ad1b2f 5804@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5805@item Default Value:
5806@itemize
cf499cff 5807@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5808@item @code{most} otherwise.
eb45ef3b 5809@end itemize
f3bc3386
AD
5810@item History:
5811introduced as @code{lr.default-reduction} in 2.5, renamed as
5812@code{lr.default-reduction} in 2.8.
eb45ef3b 5813@end itemize
dbf3962c 5814@end deffn
eb45ef3b 5815
f3bc3386 5816@c ============================================ lr.keep-unreachable-state
6b5a0de9 5817
dbf3962c 5818@deffn Directive {%define lr.keep-unreachable-state}
31984206
JD
5819
5820@itemize @bullet
5821@item Language(s): all
f1b238df 5822@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5823remain in the parser tables. @xref{Unreachable States}.
31984206 5824@item Accepted Values: Boolean
cf499cff 5825@item Default Value: @code{false}
a256496a 5826@item History:
f3bc3386 5827introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 5828@code{lr.keep-unreachable-states} in 2.5, and as
f3bc3386 5829@code{lr.keep-unreachable-state} in 2.8.
dbf3962c
AD
5830@end itemize
5831@end deffn
f3bc3386 5832@c lr.keep-unreachable-state
31984206 5833
6b5a0de9
AD
5834@c ================================================== lr.type
5835
dbf3962c 5836@deffn Directive {%define lr.type} @var{type}
eb45ef3b
JD
5837
5838@itemize @bullet
5839@item Language(s): all
5840
f1b238df 5841@item Purpose: Specify the type of parser tables within the
7fceb615 5842LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5843More user feedback will help to stabilize it.)
5844
7fceb615 5845@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5846
cf499cff 5847@item Default Value: @code{lalr}
eb45ef3b 5848@end itemize
dbf3962c 5849@end deffn
67501061
AD
5850
5851@c ================================================== namespace
dbf3962c 5852@deffn Directive %define namespace @var{namespace}
67501061 5853Obsoleted by @code{api.namespace}
fa819509 5854@c namespace
dbf3962c 5855@end deffn
31b850d2
AD
5856
5857@c ================================================== parse.assert
dbf3962c 5858@deffn Directive {%define parse.assert}
0c90a1f5
AD
5859
5860@itemize
5861@item Languages(s): C++
5862
5863@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5864In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5865constructed and
0c90a1f5
AD
5866destroyed properly. This option checks these constraints.
5867
5868@item Accepted Values: Boolean
5869
5870@item Default Value: @code{false}
5871@end itemize
dbf3962c 5872@end deffn
0c90a1f5
AD
5873@c parse.assert
5874
31b850d2
AD
5875
5876@c ================================================== parse.error
dbf3962c 5877@deffn Directive {%define parse.error}
31b850d2
AD
5878@itemize
5879@item Languages(s):
fcf834f9 5880all
31b850d2
AD
5881@item Purpose:
5882Control the kind of error messages passed to the error reporting
5883function. @xref{Error Reporting, ,The Error Reporting Function
5884@code{yyerror}}.
5885@item Accepted Values:
5886@itemize
cf499cff 5887@item @code{simple}
31b850d2
AD
5888Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5889error"}}.
cf499cff 5890@item @code{verbose}
7fceb615
JD
5891Error messages report the unexpected token, and possibly the expected ones.
5892However, this report can often be incorrect when LAC is not enabled
5893(@pxref{LAC}).
31b850d2
AD
5894@end itemize
5895
5896@item Default Value:
5897@code{simple}
5898@end itemize
dbf3962c 5899@end deffn
31b850d2
AD
5900@c parse.error
5901
5902
fcf834f9 5903@c ================================================== parse.lac
dbf3962c 5904@deffn Directive {%define parse.lac}
fcf834f9
JD
5905
5906@itemize
7fceb615 5907@item Languages(s): C (deterministic parsers only)
fcf834f9 5908
8a4281b9 5909@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5910syntax error handling. @xref{LAC}.
fcf834f9 5911@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5912@item Default Value: @code{none}
5913@end itemize
dbf3962c 5914@end deffn
fcf834f9
JD
5915@c parse.lac
5916
31b850d2 5917@c ================================================== parse.trace
dbf3962c 5918@deffn Directive {%define parse.trace}
fa819509
AD
5919
5920@itemize
60aa04a2 5921@item Languages(s): C, C++, Java
fa819509
AD
5922
5923@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
5924@xref{Tracing, ,Tracing Your Parser}.
5925
5926In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
5927@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
5928,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 5929file if it is not already defined, so that the debugging facilities are
60aa04a2 5930compiled.
793fbca5 5931
fa819509
AD
5932@item Accepted Values: Boolean
5933
5934@item Default Value: @code{false}
5935@end itemize
dbf3962c 5936@end deffn
fa819509 5937@c parse.trace
592d0b1e 5938
e0c07222
JD
5939@node %code Summary
5940@subsection %code Summary
e0c07222 5941@findex %code
e0c07222 5942@cindex Prologue
51151d91
JD
5943
5944The @code{%code} directive inserts code verbatim into the output
5945parser source at any of a predefined set of locations. It thus serves
5946as a flexible and user-friendly alternative to the traditional Yacc
5947prologue, @code{%@{@var{code}%@}}. This section summarizes the
5948functionality of @code{%code} for the various target languages
5949supported by Bison. For a detailed discussion of how to use
5950@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5951is advantageous to do so, @pxref{Prologue Alternatives}.
5952
5953@deffn {Directive} %code @{@var{code}@}
5954This is the unqualified form of the @code{%code} directive. It
5955inserts @var{code} verbatim at a language-dependent default location
5956in the parser implementation.
5957
e0c07222 5958For C/C++, the default location is the parser implementation file
51151d91
JD
5959after the usual contents of the parser header file. Thus, the
5960unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5961
5962For Java, the default location is inside the parser class.
5963@end deffn
5964
5965@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5966This is the qualified form of the @code{%code} directive.
51151d91
JD
5967@var{qualifier} identifies the purpose of @var{code} and thus the
5968location(s) where Bison should insert it. That is, if you need to
5969specify location-sensitive @var{code} that does not belong at the
5970default location selected by the unqualified @code{%code} form, use
5971this form instead.
5972@end deffn
5973
5974For any particular qualifier or for the unqualified form, if there are
5975multiple occurrences of the @code{%code} directive, Bison concatenates
5976the specified code in the order in which it appears in the grammar
5977file.
e0c07222 5978
51151d91
JD
5979Not all qualifiers are accepted for all target languages. Unaccepted
5980qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5981
84072495 5982@table @code
e0c07222
JD
5983@item requires
5984@findex %code requires
5985
5986@itemize @bullet
5987@item Language(s): C, C++
5988
5989@item Purpose: This is the best place to write dependency code required for
5990@code{YYSTYPE} and @code{YYLTYPE}.
5991In other words, it's the best place to define types referenced in @code{%union}
5992directives, and it's the best place to override Bison's default @code{YYSTYPE}
5993and @code{YYLTYPE} definitions.
5994
5995@item Location(s): The parser header file and the parser implementation file
5996before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5997definitions.
5998@end itemize
5999
6000@item provides
6001@findex %code provides
6002
6003@itemize @bullet
6004@item Language(s): C, C++
6005
6006@item Purpose: This is the best place to write additional definitions and
6007declarations that should be provided to other modules.
6008
6009@item Location(s): The parser header file and the parser implementation
6010file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
6011token definitions.
6012@end itemize
6013
6014@item top
6015@findex %code top
6016
6017@itemize @bullet
6018@item Language(s): C, C++
6019
6020@item Purpose: The unqualified @code{%code} or @code{%code requires}
6021should usually be more appropriate than @code{%code top}. However,
6022occasionally it is necessary to insert code much nearer the top of the
6023parser implementation file. For example:
6024
c93f22fc 6025@example
e0c07222
JD
6026%code top @{
6027 #define _GNU_SOURCE
6028 #include <stdio.h>
6029@}
c93f22fc 6030@end example
e0c07222
JD
6031
6032@item Location(s): Near the top of the parser implementation file.
6033@end itemize
6034
6035@item imports
6036@findex %code imports
6037
6038@itemize @bullet
6039@item Language(s): Java
6040
6041@item Purpose: This is the best place to write Java import directives.
6042
6043@item Location(s): The parser Java file after any Java package directive and
6044before any class definitions.
6045@end itemize
84072495 6046@end table
e0c07222 6047
51151d91
JD
6048Though we say the insertion locations are language-dependent, they are
6049technically skeleton-dependent. Writers of non-standard skeletons
6050however should choose their locations consistently with the behavior
6051of the standard Bison skeletons.
e0c07222 6052
d8988b2f 6053
342b8b6e 6054@node Multiple Parsers
bfa74976
RS
6055@section Multiple Parsers in the Same Program
6056
6057Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6058only one Bison parser. But what if you want to parse more than one language
6059with the same program? Then you need to avoid name conflicts between
6060different definitions of functions and variables such as @code{yyparse},
6061@code{yylval}. To use different parsers from the same compilation unit, you
6062also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6063exported in the generated header.
6064
6065The easy way to do this is to define the @code{%define} variable
e358222b
AD
6066@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6067headers do not conflict when included together, and that compiled objects
6068can be linked together too. Specifying @samp{%define api.prefix
6069@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
6070@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6071variables of the Bison parser to start with @var{prefix} instead of
6072@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6073upper-cased) instead of @samp{YY}.
4b3847c3
AD
6074
6075The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6076@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6077@code{yydebug}. If you use a push parser, @code{yypush_parse},
6078@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6079@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6080@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6081specifically --- more about this below.
4b3847c3
AD
6082
6083For example, if you use @samp{%define api.prefix c}, the names become
6084@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6085on.
6086
6087The @code{%define} variable @code{api.prefix} works in two different ways.
6088In the implementation file, it works by adding macro definitions to the
6089beginning of the parser implementation file, defining @code{yyparse} as
6090@code{@var{prefix}parse}, and so on:
6091
6092@example
6093#define YYSTYPE CTYPE
6094#define yyparse cparse
6095#define yylval clval
6096...
6097YYSTYPE yylval;
6098int yyparse (void);
6099@end example
6100
6101This effectively substitutes one name for the other in the entire parser
6102implementation file, thus the ``original'' names (@code{yylex},
6103@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6104
6105However, in the parser header file, the symbols are defined renamed, for
6106instance:
bfa74976 6107
4b3847c3
AD
6108@example
6109extern CSTYPE clval;
6110int cparse (void);
6111@end example
bfa74976 6112
e358222b
AD
6113The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6114parsers. To comply with this tradition, when @code{api.prefix} is used,
6115@code{YYDEBUG} (not renamed) is used as a default value:
6116
6117@example
4d9bdbe3 6118/* Debug traces. */
e358222b
AD
6119#ifndef CDEBUG
6120# if defined YYDEBUG
6121# if YYDEBUG
6122# define CDEBUG 1
6123# else
6124# define CDEBUG 0
6125# endif
6126# else
6127# define CDEBUG 0
6128# endif
6129#endif
6130#if CDEBUG
6131extern int cdebug;
6132#endif
6133@end example
6134
6135@sp 2
6136
6137Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6138the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6139Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6140
342b8b6e 6141@node Interface
bfa74976
RS
6142@chapter Parser C-Language Interface
6143@cindex C-language interface
6144@cindex interface
6145
6146The Bison parser is actually a C function named @code{yyparse}. Here we
6147describe the interface conventions of @code{yyparse} and the other
6148functions that it needs to use.
6149
6150Keep in mind that the parser uses many C identifiers starting with
6151@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6152identifier (aside from those in this manual) in an action or in epilogue
6153in the grammar file, you are likely to run into trouble.
bfa74976
RS
6154
6155@menu
f5f419de
DJ
6156* Parser Function:: How to call @code{yyparse} and what it returns.
6157* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6158* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6159* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6160* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6161* Lexical:: You must supply a function @code{yylex}
6162 which reads tokens.
6163* Error Reporting:: You must supply a function @code{yyerror}.
6164* Action Features:: Special features for use in actions.
6165* Internationalization:: How to let the parser speak in the user's
6166 native language.
bfa74976
RS
6167@end menu
6168
342b8b6e 6169@node Parser Function
bfa74976
RS
6170@section The Parser Function @code{yyparse}
6171@findex yyparse
6172
6173You call the function @code{yyparse} to cause parsing to occur. This
6174function reads tokens, executes actions, and ultimately returns when it
6175encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6176write an action which directs @code{yyparse} to return immediately
6177without reading further.
bfa74976 6178
2a8d363a
AD
6179
6180@deftypefun int yyparse (void)
bfa74976
RS
6181The value returned by @code{yyparse} is 0 if parsing was successful (return
6182is due to end-of-input).
6183
b47dbebe
PE
6184The value is 1 if parsing failed because of invalid input, i.e., input
6185that contains a syntax error or that causes @code{YYABORT} to be
6186invoked.
6187
6188The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6189@end deftypefun
bfa74976
RS
6190
6191In an action, you can cause immediate return from @code{yyparse} by using
6192these macros:
6193
2a8d363a 6194@defmac YYACCEPT
bfa74976
RS
6195@findex YYACCEPT
6196Return immediately with value 0 (to report success).
2a8d363a 6197@end defmac
bfa74976 6198
2a8d363a 6199@defmac YYABORT
bfa74976
RS
6200@findex YYABORT
6201Return immediately with value 1 (to report failure).
2a8d363a
AD
6202@end defmac
6203
6204If you use a reentrant parser, you can optionally pass additional
6205parameter information to it in a reentrant way. To do so, use the
6206declaration @code{%parse-param}:
6207
2055a44e 6208@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6209@findex %parse-param
2055a44e
AD
6210Declare that one or more
6211@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6212The @var{argument-declaration} is used when declaring
feeb0eda
PE
6213functions or prototypes. The last identifier in
6214@var{argument-declaration} must be the argument name.
2a8d363a
AD
6215@end deffn
6216
6217Here's an example. Write this in the parser:
6218
6219@example
2055a44e 6220%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6221@end example
6222
6223@noindent
6224Then call the parser like this:
6225
6226@example
6227@{
6228 int nastiness, randomness;
6229 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6230 value = yyparse (&nastiness, &randomness);
6231 @dots{}
6232@}
6233@end example
6234
6235@noindent
6236In the grammar actions, use expressions like this to refer to the data:
6237
6238@example
6239exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6240@end example
6241
1f1bd572
TR
6242@noindent
6243Using the following:
6244@example
6245%parse-param @{int *randomness@}
6246@end example
6247
6248Results in these signatures:
6249@example
6250void yyerror (int *randomness, const char *msg);
6251int yyparse (int *randomness);
6252@end example
6253
6254@noindent
6255Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6256and @code{%locations} are used:
6257
6258@example
6259void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6260int yyparse (int *randomness);
6261@end example
6262
9987d1b3
JD
6263@node Push Parser Function
6264@section The Push Parser Function @code{yypush_parse}
6265@findex yypush_parse
6266
59da312b
JD
6267(The current push parsing interface is experimental and may evolve.
6268More user feedback will help to stabilize it.)
6269
f4101aa6 6270You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6271function is available if either the @samp{%define api.push-pull push} or
6272@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6273@xref{Push Decl, ,A Push Parser}.
6274
a73aa764 6275@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6276The value returned by @code{yypush_parse} is the same as for yyparse with
6277the following exception: it returns @code{YYPUSH_MORE} if more input is
6278required to finish parsing the grammar.
9987d1b3
JD
6279@end deftypefun
6280
6281@node Pull Parser Function
6282@section The Pull Parser Function @code{yypull_parse}
6283@findex yypull_parse
6284
59da312b
JD
6285(The current push parsing interface is experimental and may evolve.
6286More user feedback will help to stabilize it.)
6287
f4101aa6 6288You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6289stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6290declaration is used.
9987d1b3
JD
6291@xref{Push Decl, ,A Push Parser}.
6292
a73aa764 6293@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6294The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6295@end deftypefun
6296
6297@node Parser Create Function
6298@section The Parser Create Function @code{yystate_new}
6299@findex yypstate_new
6300
59da312b
JD
6301(The current push parsing interface is experimental and may evolve.
6302More user feedback will help to stabilize it.)
6303
f4101aa6 6304You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6305This function is available if either the @samp{%define api.push-pull push} or
6306@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6307@xref{Push Decl, ,A Push Parser}.
6308
34a41a93 6309@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6310The function will return a valid parser instance if there was memory available
333e670c
JD
6311or 0 if no memory was available.
6312In impure mode, it will also return 0 if a parser instance is currently
6313allocated.
9987d1b3
JD
6314@end deftypefun
6315
6316@node Parser Delete Function
6317@section The Parser Delete Function @code{yystate_delete}
6318@findex yypstate_delete
6319
59da312b
JD
6320(The current push parsing interface is experimental and may evolve.
6321More user feedback will help to stabilize it.)
6322
9987d1b3 6323You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6324function is available if either the @samp{%define api.push-pull push} or
6325@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6326@xref{Push Decl, ,A Push Parser}.
6327
a73aa764 6328@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6329This function will reclaim the memory associated with a parser instance.
6330After this call, you should no longer attempt to use the parser instance.
6331@end deftypefun
bfa74976 6332
342b8b6e 6333@node Lexical
bfa74976
RS
6334@section The Lexical Analyzer Function @code{yylex}
6335@findex yylex
6336@cindex lexical analyzer
6337
6338The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6339the input stream and returns them to the parser. Bison does not create
6340this function automatically; you must write it so that @code{yyparse} can
6341call it. The function is sometimes referred to as a lexical scanner.
6342
ff7571c0
JD
6343In simple programs, @code{yylex} is often defined at the end of the
6344Bison grammar file. If @code{yylex} is defined in a separate source
6345file, you need to arrange for the token-type macro definitions to be
6346available there. To do this, use the @samp{-d} option when you run
6347Bison, so that it will write these macro definitions into the separate
6348parser header file, @file{@var{name}.tab.h}, which you can include in
6349the other source files that need it. @xref{Invocation, ,Invoking
6350Bison}.
bfa74976
RS
6351
6352@menu
6353* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6354* Token Values:: How @code{yylex} must return the semantic value
6355 of the token it has read.
6356* Token Locations:: How @code{yylex} must return the text location
6357 (line number, etc.) of the token, if the
6358 actions want that.
6359* Pure Calling:: How the calling convention differs in a pure parser
6360 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6361@end menu
6362
342b8b6e 6363@node Calling Convention
bfa74976
RS
6364@subsection Calling Convention for @code{yylex}
6365
72d2299c
PE
6366The value that @code{yylex} returns must be the positive numeric code
6367for the type of token it has just found; a zero or negative value
6368signifies end-of-input.
bfa74976
RS
6369
6370When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6371in the parser implementation file becomes a C macro whose definition
6372is the proper numeric code for that token type. So @code{yylex} can
6373use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6374
6375When a token is referred to in the grammar rules by a character literal,
6376the numeric code for that character is also the code for the token type.
72d2299c
PE
6377So @code{yylex} can simply return that character code, possibly converted
6378to @code{unsigned char} to avoid sign-extension. The null character
6379must not be used this way, because its code is zero and that
bfa74976
RS
6380signifies end-of-input.
6381
6382Here is an example showing these things:
6383
6384@example
13863333
AD
6385int
6386yylex (void)
bfa74976
RS
6387@{
6388 @dots{}
72d2299c 6389 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6390 return 0;
6391 @dots{}
6392 if (c == '+' || c == '-')
72d2299c 6393 return c; /* Assume token type for `+' is '+'. */
bfa74976 6394 @dots{}
72d2299c 6395 return INT; /* Return the type of the token. */
bfa74976
RS
6396 @dots{}
6397@}
6398@end example
6399
6400@noindent
6401This interface has been designed so that the output from the @code{lex}
6402utility can be used without change as the definition of @code{yylex}.
6403
931c7513
RS
6404If the grammar uses literal string tokens, there are two ways that
6405@code{yylex} can determine the token type codes for them:
6406
6407@itemize @bullet
6408@item
6409If the grammar defines symbolic token names as aliases for the
6410literal string tokens, @code{yylex} can use these symbolic names like
6411all others. In this case, the use of the literal string tokens in
6412the grammar file has no effect on @code{yylex}.
6413
6414@item
9ecbd125 6415@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6416table. The index of the token in the table is the token type's code.
9ecbd125 6417The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6418double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6419token's characters are escaped as necessary to be suitable as input
6420to Bison.
931c7513 6421
9e0876fb
PE
6422Here's code for looking up a multicharacter token in @code{yytname},
6423assuming that the characters of the token are stored in
6424@code{token_buffer}, and assuming that the token does not contain any
6425characters like @samp{"} that require escaping.
931c7513 6426
c93f22fc 6427@example
931c7513
RS
6428for (i = 0; i < YYNTOKENS; i++)
6429 @{
6430 if (yytname[i] != 0
6431 && yytname[i][0] == '"'
68449b3a
PE
6432 && ! strncmp (yytname[i] + 1, token_buffer,
6433 strlen (token_buffer))
931c7513
RS
6434 && yytname[i][strlen (token_buffer) + 1] == '"'
6435 && yytname[i][strlen (token_buffer) + 2] == 0)
6436 break;
6437 @}
c93f22fc 6438@end example
931c7513
RS
6439
6440The @code{yytname} table is generated only if you use the
8c9a50be 6441@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6442@end itemize
6443
342b8b6e 6444@node Token Values
bfa74976
RS
6445@subsection Semantic Values of Tokens
6446
6447@vindex yylval
9d9b8b70 6448In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6449be stored into the global variable @code{yylval}. When you are using
6450just one data type for semantic values, @code{yylval} has that type.
6451Thus, if the type is @code{int} (the default), you might write this in
6452@code{yylex}:
6453
6454@example
6455@group
6456 @dots{}
72d2299c
PE
6457 yylval = value; /* Put value onto Bison stack. */
6458 return INT; /* Return the type of the token. */
bfa74976
RS
6459 @dots{}
6460@end group
6461@end example
6462
6463When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6464made from the @code{%union} declaration (@pxref{Union Decl, ,The
6465Collection of Value Types}). So when you store a token's value, you
6466must use the proper member of the union. If the @code{%union}
6467declaration looks like this:
bfa74976
RS
6468
6469@example
6470@group
6471%union @{
6472 int intval;
6473 double val;
6474 symrec *tptr;
6475@}
6476@end group
6477@end example
6478
6479@noindent
6480then the code in @code{yylex} might look like this:
6481
6482@example
6483@group
6484 @dots{}
72d2299c
PE
6485 yylval.intval = value; /* Put value onto Bison stack. */
6486 return INT; /* Return the type of the token. */
bfa74976
RS
6487 @dots{}
6488@end group
6489@end example
6490
95923bd6
AD
6491@node Token Locations
6492@subsection Textual Locations of Tokens
bfa74976
RS
6493
6494@vindex yylloc
303834cc
JD
6495If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6496in actions to keep track of the textual locations of tokens and groupings,
6497then you must provide this information in @code{yylex}. The function
6498@code{yyparse} expects to find the textual location of a token just parsed
6499in the global variable @code{yylloc}. So @code{yylex} must store the proper
6500data in that variable.
847bf1f5
AD
6501
6502By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6503initialize the members that are going to be used by the actions. The
6504four members are called @code{first_line}, @code{first_column},
6505@code{last_line} and @code{last_column}. Note that the use of this
6506feature makes the parser noticeably slower.
bfa74976
RS
6507
6508@tindex YYLTYPE
6509The data type of @code{yylloc} has the name @code{YYLTYPE}.
6510
342b8b6e 6511@node Pure Calling
c656404a 6512@subsection Calling Conventions for Pure Parsers
bfa74976 6513
1f1bd572 6514When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6515pure, reentrant parser, the global communication variables @code{yylval}
6516and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6517Parser}.) In such parsers the two global variables are replaced by
6518pointers passed as arguments to @code{yylex}. You must declare them as
6519shown here, and pass the information back by storing it through those
6520pointers.
bfa74976
RS
6521
6522@example
13863333
AD
6523int
6524yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6525@{
6526 @dots{}
6527 *lvalp = value; /* Put value onto Bison stack. */
6528 return INT; /* Return the type of the token. */
6529 @dots{}
6530@}
6531@end example
6532
6533If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6534textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6535this case, omit the second argument; @code{yylex} will be called with
6536only one argument.
6537
2055a44e 6538If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6539@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6540Function}). To pass additional arguments to both @code{yylex} and
6541@code{yyparse}, use @code{%param}.
e425e872 6542
2055a44e 6543@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6544@findex %lex-param
2055a44e
AD
6545Specify that @var{argument-declaration} are additional @code{yylex} argument
6546declarations. You may pass one or more such declarations, which is
6547equivalent to repeating @code{%lex-param}.
6548@end deffn
6549
6550@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6551@findex %param
6552Specify that @var{argument-declaration} are additional
6553@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6554@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6555@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6556declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6557@end deffn
e425e872 6558
1f1bd572 6559@noindent
2a8d363a 6560For instance:
e425e872
RS
6561
6562@example
2055a44e
AD
6563%lex-param @{scanner_mode *mode@}
6564%parse-param @{parser_mode *mode@}
6565%param @{environment_type *env@}
e425e872
RS
6566@end example
6567
6568@noindent
18ad57b3 6569results in the following signatures:
e425e872
RS
6570
6571@example
2055a44e
AD
6572int yylex (scanner_mode *mode, environment_type *env);
6573int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6574@end example
6575
5807bb91 6576If @samp{%define api.pure full} is added:
c656404a
RS
6577
6578@example
2055a44e
AD
6579int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6580int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6581@end example
6582
2a8d363a 6583@noindent
5807bb91
AD
6584and finally, if both @samp{%define api.pure full} and @code{%locations} are
6585used:
c656404a 6586
2a8d363a 6587@example
2055a44e
AD
6588int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6589 scanner_mode *mode, environment_type *env);
6590int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6591@end example
931c7513 6592
342b8b6e 6593@node Error Reporting
bfa74976
RS
6594@section The Error Reporting Function @code{yyerror}
6595@cindex error reporting function
6596@findex yyerror
6597@cindex parse error
6598@cindex syntax error
6599
31b850d2 6600The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6601whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6602action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6603macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6604in Actions}).
bfa74976
RS
6605
6606The Bison parser expects to report the error by calling an error
6607reporting function named @code{yyerror}, which you must supply. It is
6608called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6609receives one argument. For a syntax error, the string is normally
6610@w{@code{"syntax error"}}.
bfa74976 6611
31b850d2 6612@findex %define parse.error
7fceb615
JD
6613If you invoke @samp{%define parse.error verbose} in the Bison declarations
6614section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6615Bison provides a more verbose and specific error message string instead of
6616just plain @w{@code{"syntax error"}}. However, that message sometimes
6617contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6618
1a059451
PE
6619The parser can detect one other kind of error: memory exhaustion. This
6620can happen when the input contains constructions that are very deeply
bfa74976 6621nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6622parser normally extends its stack automatically up to a very large limit. But
6623if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6624fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6625
6626In some cases diagnostics like @w{@code{"syntax error"}} are
6627translated automatically from English to some other language before
6628they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6629
6630The following definition suffices in simple programs:
6631
6632@example
6633@group
13863333 6634void
38a92d50 6635yyerror (char const *s)
bfa74976
RS
6636@{
6637@end group
6638@group
6639 fprintf (stderr, "%s\n", s);
6640@}
6641@end group
6642@end example
6643
6644After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6645error recovery if you have written suitable error recovery grammar rules
6646(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6647immediately return 1.
6648
93724f13 6649Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6650an access to the current location. With @code{%define api.pure}, this is
6651indeed the case for the GLR parsers, but not for the Yacc parser, for
6652historical reasons, and this is the why @code{%define api.pure full} should be
6653prefered over @code{%define api.pure}.
2a8d363a 6654
1f1bd572
TR
6655When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6656following signature:
2a8d363a
AD
6657
6658@example
1f1bd572 6659void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6660@end example
6661
1c0c3e95 6662@noindent
38a92d50
PE
6663The prototypes are only indications of how the code produced by Bison
6664uses @code{yyerror}. Bison-generated code always ignores the returned
6665value, so @code{yyerror} can return any type, including @code{void}.
6666Also, @code{yyerror} can be a variadic function; that is why the
6667message is always passed last.
6668
6669Traditionally @code{yyerror} returns an @code{int} that is always
6670ignored, but this is purely for historical reasons, and @code{void} is
6671preferable since it more accurately describes the return type for
6672@code{yyerror}.
93724f13 6673
bfa74976
RS
6674@vindex yynerrs
6675The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6676reported so far. Normally this variable is global; but if you
704a47c4
AD
6677request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6678then it is a local variable which only the actions can access.
bfa74976 6679
342b8b6e 6680@node Action Features
bfa74976
RS
6681@section Special Features for Use in Actions
6682@cindex summary, action features
6683@cindex action features summary
6684
6685Here is a table of Bison constructs, variables and macros that
6686are useful in actions.
6687
18b519c0 6688@deffn {Variable} $$
bfa74976
RS
6689Acts like a variable that contains the semantic value for the
6690grouping made by the current rule. @xref{Actions}.
18b519c0 6691@end deffn
bfa74976 6692
18b519c0 6693@deffn {Variable} $@var{n}
bfa74976
RS
6694Acts like a variable that contains the semantic value for the
6695@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6696@end deffn
bfa74976 6697
18b519c0 6698@deffn {Variable} $<@var{typealt}>$
bfa74976 6699Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6700specified by the @code{%union} declaration. @xref{Action Types, ,Data
6701Types of Values in Actions}.
18b519c0 6702@end deffn
bfa74976 6703
18b519c0 6704@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6705Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6706union specified by the @code{%union} declaration.
e0c471a9 6707@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6708@end deffn
bfa74976 6709
34a41a93 6710@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6711Return immediately from @code{yyparse}, indicating failure.
6712@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6713@end deffn
bfa74976 6714
34a41a93 6715@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6716Return immediately from @code{yyparse}, indicating success.
6717@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6718@end deffn
bfa74976 6719
34a41a93 6720@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6721@findex YYBACKUP
6722Unshift a token. This macro is allowed only for rules that reduce
742e4900 6723a single value, and only when there is no lookahead token.
8a4281b9 6724It is also disallowed in GLR parsers.
742e4900 6725It installs a lookahead token with token type @var{token} and
bfa74976
RS
6726semantic value @var{value}; then it discards the value that was
6727going to be reduced by this rule.
6728
6729If the macro is used when it is not valid, such as when there is
742e4900 6730a lookahead token already, then it reports a syntax error with
bfa74976
RS
6731a message @samp{cannot back up} and performs ordinary error
6732recovery.
6733
6734In either case, the rest of the action is not executed.
18b519c0 6735@end deffn
bfa74976 6736
18b519c0 6737@deffn {Macro} YYEMPTY
742e4900 6738Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6739@end deffn
bfa74976 6740
32c29292 6741@deffn {Macro} YYEOF
742e4900 6742Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6743stream.
6744@end deffn
6745
34a41a93 6746@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6747Cause an immediate syntax error. This statement initiates error
6748recovery just as if the parser itself had detected an error; however, it
6749does not call @code{yyerror}, and does not print any message. If you
6750want to print an error message, call @code{yyerror} explicitly before
6751the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6752@end deffn
bfa74976 6753
18b519c0 6754@deffn {Macro} YYRECOVERING
02103984
PE
6755@findex YYRECOVERING
6756The expression @code{YYRECOVERING ()} yields 1 when the parser
6757is recovering from a syntax error, and 0 otherwise.
bfa74976 6758@xref{Error Recovery}.
18b519c0 6759@end deffn
bfa74976 6760
18b519c0 6761@deffn {Variable} yychar
742e4900
JD
6762Variable containing either the lookahead token, or @code{YYEOF} when the
6763lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6764has been performed so the next token is not yet known.
6765Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6766Actions}).
742e4900 6767@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6768@end deffn
bfa74976 6769
34a41a93 6770@deffn {Macro} yyclearin @code{;}
742e4900 6771Discard the current lookahead token. This is useful primarily in
32c29292
JD
6772error rules.
6773Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6774Semantic Actions}).
6775@xref{Error Recovery}.
18b519c0 6776@end deffn
bfa74976 6777
34a41a93 6778@deffn {Macro} yyerrok @code{;}
bfa74976 6779Resume generating error messages immediately for subsequent syntax
13863333 6780errors. This is useful primarily in error rules.
bfa74976 6781@xref{Error Recovery}.
18b519c0 6782@end deffn
bfa74976 6783
32c29292 6784@deffn {Variable} yylloc
742e4900 6785Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6786to @code{YYEMPTY} or @code{YYEOF}.
6787Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6788Actions}).
6789@xref{Actions and Locations, ,Actions and Locations}.
6790@end deffn
6791
6792@deffn {Variable} yylval
742e4900 6793Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6794not set to @code{YYEMPTY} or @code{YYEOF}.
6795Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6796Actions}).
6797@xref{Actions, ,Actions}.
6798@end deffn
6799
18b519c0 6800@deffn {Value} @@$
303834cc
JD
6801Acts like a structure variable containing information on the textual
6802location of the grouping made by the current rule. @xref{Tracking
6803Locations}.
bfa74976 6804
847bf1f5
AD
6805@c Check if those paragraphs are still useful or not.
6806
6807@c @example
6808@c struct @{
6809@c int first_line, last_line;
6810@c int first_column, last_column;
6811@c @};
6812@c @end example
6813
6814@c Thus, to get the starting line number of the third component, you would
6815@c use @samp{@@3.first_line}.
bfa74976 6816
847bf1f5
AD
6817@c In order for the members of this structure to contain valid information,
6818@c you must make @code{yylex} supply this information about each token.
6819@c If you need only certain members, then @code{yylex} need only fill in
6820@c those members.
bfa74976 6821
847bf1f5 6822@c The use of this feature makes the parser noticeably slower.
18b519c0 6823@end deffn
847bf1f5 6824
18b519c0 6825@deffn {Value} @@@var{n}
847bf1f5 6826@findex @@@var{n}
303834cc
JD
6827Acts like a structure variable containing information on the textual
6828location of the @var{n}th component of the current rule. @xref{Tracking
6829Locations}.
18b519c0 6830@end deffn
bfa74976 6831
f7ab6a50
PE
6832@node Internationalization
6833@section Parser Internationalization
6834@cindex internationalization
6835@cindex i18n
6836@cindex NLS
6837@cindex gettext
6838@cindex bison-po
6839
6840A Bison-generated parser can print diagnostics, including error and
6841tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6842also supports outputting diagnostics in the user's native language. To
6843make this work, the user should set the usual environment variables.
6844@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6845For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6846set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6847encoding. The exact set of available locales depends on the user's
6848installation.
6849
6850The maintainer of a package that uses a Bison-generated parser enables
6851the internationalization of the parser's output through the following
8a4281b9
JD
6852steps. Here we assume a package that uses GNU Autoconf and
6853GNU Automake.
f7ab6a50
PE
6854
6855@enumerate
6856@item
30757c8c 6857@cindex bison-i18n.m4
8a4281b9 6858Into the directory containing the GNU Autoconf macros used
c949ada3 6859by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
6860@file{bison-i18n.m4} file installed by Bison under
6861@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6862For example:
6863
6864@example
6865cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6866@end example
6867
6868@item
30757c8c
PE
6869@findex BISON_I18N
6870@vindex BISON_LOCALEDIR
6871@vindex YYENABLE_NLS
f7ab6a50
PE
6872In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6873invocation, add an invocation of @code{BISON_I18N}. This macro is
6874defined in the file @file{bison-i18n.m4} that you copied earlier. It
6875causes @samp{configure} to find the value of the
30757c8c
PE
6876@code{BISON_LOCALEDIR} variable, and it defines the source-language
6877symbol @code{YYENABLE_NLS} to enable translations in the
6878Bison-generated parser.
f7ab6a50
PE
6879
6880@item
6881In the @code{main} function of your program, designate the directory
6882containing Bison's runtime message catalog, through a call to
6883@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6884For example:
6885
6886@example
6887bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6888@end example
6889
6890Typically this appears after any other call @code{bindtextdomain
6891(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6892@samp{BISON_LOCALEDIR} to be defined as a string through the
6893@file{Makefile}.
6894
6895@item
6896In the @file{Makefile.am} that controls the compilation of the @code{main}
6897function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6898either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6899
6900@example
6901DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6902@end example
6903
6904or:
6905
6906@example
6907AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6908@end example
6909
6910@item
6911Finally, invoke the command @command{autoreconf} to generate the build
6912infrastructure.
6913@end enumerate
6914
bfa74976 6915
342b8b6e 6916@node Algorithm
13863333
AD
6917@chapter The Bison Parser Algorithm
6918@cindex Bison parser algorithm
bfa74976
RS
6919@cindex algorithm of parser
6920@cindex shifting
6921@cindex reduction
6922@cindex parser stack
6923@cindex stack, parser
6924
6925As Bison reads tokens, it pushes them onto a stack along with their
6926semantic values. The stack is called the @dfn{parser stack}. Pushing a
6927token is traditionally called @dfn{shifting}.
6928
6929For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6930@samp{3} to come. The stack will have four elements, one for each token
6931that was shifted.
6932
6933But the stack does not always have an element for each token read. When
6934the last @var{n} tokens and groupings shifted match the components of a
6935grammar rule, they can be combined according to that rule. This is called
6936@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6937single grouping whose symbol is the result (left hand side) of that rule.
6938Running the rule's action is part of the process of reduction, because this
6939is what computes the semantic value of the resulting grouping.
6940
6941For example, if the infix calculator's parser stack contains this:
6942
6943@example
69441 + 5 * 3
6945@end example
6946
6947@noindent
6948and the next input token is a newline character, then the last three
6949elements can be reduced to 15 via the rule:
6950
6951@example
6952expr: expr '*' expr;
6953@end example
6954
6955@noindent
6956Then the stack contains just these three elements:
6957
6958@example
69591 + 15
6960@end example
6961
6962@noindent
6963At this point, another reduction can be made, resulting in the single value
696416. Then the newline token can be shifted.
6965
6966The parser tries, by shifts and reductions, to reduce the entire input down
6967to a single grouping whose symbol is the grammar's start-symbol
6968(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6969
6970This kind of parser is known in the literature as a bottom-up parser.
6971
6972@menu
742e4900 6973* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6974* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6975* Precedence:: Operator precedence works by resolving conflicts.
6976* Contextual Precedence:: When an operator's precedence depends on context.
6977* Parser States:: The parser is a finite-state-machine with stack.
6978* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6979* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6980* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6981* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6982* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6983@end menu
6984
742e4900
JD
6985@node Lookahead
6986@section Lookahead Tokens
6987@cindex lookahead token
bfa74976
RS
6988
6989The Bison parser does @emph{not} always reduce immediately as soon as the
6990last @var{n} tokens and groupings match a rule. This is because such a
6991simple strategy is inadequate to handle most languages. Instead, when a
6992reduction is possible, the parser sometimes ``looks ahead'' at the next
6993token in order to decide what to do.
6994
6995When a token is read, it is not immediately shifted; first it becomes the
742e4900 6996@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6997perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6998the lookahead token remains off to the side. When no more reductions
6999should take place, the lookahead token is shifted onto the stack. This
bfa74976 7000does not mean that all possible reductions have been done; depending on the
742e4900 7001token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
7002application.
7003
742e4900 7004Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
7005expressions which contain binary addition operators and postfix unary
7006factorial operators (@samp{!}), and allow parentheses for grouping.
7007
7008@example
7009@group
5e9b6624
AD
7010expr:
7011 term '+' expr
7012| term
7013;
bfa74976
RS
7014@end group
7015
7016@group
5e9b6624
AD
7017term:
7018 '(' expr ')'
7019| term '!'
534cee7a 7020| "number"
5e9b6624 7021;
bfa74976
RS
7022@end group
7023@end example
7024
7025Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7026should be done? If the following token is @samp{)}, then the first three
7027tokens must be reduced to form an @code{expr}. This is the only valid
7028course, because shifting the @samp{)} would produce a sequence of symbols
7029@w{@code{term ')'}}, and no rule allows this.
7030
7031If the following token is @samp{!}, then it must be shifted immediately so
7032that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7033parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7034@code{expr}. It would then be impossible to shift the @samp{!} because
7035doing so would produce on the stack the sequence of symbols @code{expr
7036'!'}. No rule allows that sequence.
7037
7038@vindex yychar
32c29292
JD
7039@vindex yylval
7040@vindex yylloc
742e4900 7041The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7042Its semantic value and location, if any, are stored in the variables
7043@code{yylval} and @code{yylloc}.
bfa74976
RS
7044@xref{Action Features, ,Special Features for Use in Actions}.
7045
342b8b6e 7046@node Shift/Reduce
bfa74976
RS
7047@section Shift/Reduce Conflicts
7048@cindex conflicts
7049@cindex shift/reduce conflicts
7050@cindex dangling @code{else}
7051@cindex @code{else}, dangling
7052
7053Suppose we are parsing a language which has if-then and if-then-else
7054statements, with a pair of rules like this:
7055
7056@example
7057@group
7058if_stmt:
534cee7a
AD
7059 "if" expr "then" stmt
7060| "if" expr "then" stmt "else" stmt
5e9b6624 7061;
bfa74976
RS
7062@end group
7063@end example
7064
7065@noindent
534cee7a
AD
7066Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7067specific keyword tokens.
bfa74976 7068
534cee7a 7069When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7070contents of the stack (assuming the input is valid) are just right for
7071reduction by the first rule. But it is also legitimate to shift the
534cee7a 7072@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7073rule.
7074
7075This situation, where either a shift or a reduction would be valid, is
7076called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7077these conflicts by choosing to shift, unless otherwise directed by
7078operator precedence declarations. To see the reason for this, let's
7079contrast it with the other alternative.
7080
534cee7a 7081Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7082the else-clause to the innermost if-statement, making these two inputs
7083equivalent:
7084
7085@example
534cee7a 7086if x then if y then win; else lose;
bfa74976 7087
534cee7a 7088if x then do; if y then win; else lose; end;
bfa74976
RS
7089@end example
7090
7091But if the parser chose to reduce when possible rather than shift, the
7092result would be to attach the else-clause to the outermost if-statement,
7093making these two inputs equivalent:
7094
7095@example
534cee7a 7096if x then if y then win; else lose;
bfa74976 7097
534cee7a 7098if x then do; if y then win; end; else lose;
bfa74976
RS
7099@end example
7100
7101The conflict exists because the grammar as written is ambiguous: either
7102parsing of the simple nested if-statement is legitimate. The established
7103convention is that these ambiguities are resolved by attaching the
7104else-clause to the innermost if-statement; this is what Bison accomplishes
7105by choosing to shift rather than reduce. (It would ideally be cleaner to
7106write an unambiguous grammar, but that is very hard to do in this case.)
7107This particular ambiguity was first encountered in the specifications of
7108Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7109
7110To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7111conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7112There will be no warning as long as the number of shift/reduce conflicts
7113is exactly @var{n}, and Bison will report an error if there is a
7114different number.
c28cd5dc
AD
7115@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7116recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7117number of conflicts does not mean that they are the @emph{same}. When
7118possible, you should rather use precedence directives to @emph{fix} the
7119conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7120Operators}).
bfa74976
RS
7121
7122The definition of @code{if_stmt} above is solely to blame for the
7123conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7124rules. Here is a complete Bison grammar file that actually manifests
7125the conflict:
bfa74976
RS
7126
7127@example
bfa74976 7128%%
bfa74976 7129@group
5e9b6624
AD
7130stmt:
7131 expr
7132| if_stmt
7133;
bfa74976
RS
7134@end group
7135
7136@group
7137if_stmt:
534cee7a
AD
7138 "if" expr "then" stmt
7139| "if" expr "then" stmt "else" stmt
5e9b6624 7140;
bfa74976
RS
7141@end group
7142
5e9b6624 7143expr:
534cee7a 7144 "identifier"
5e9b6624 7145;
bfa74976
RS
7146@end example
7147
342b8b6e 7148@node Precedence
bfa74976
RS
7149@section Operator Precedence
7150@cindex operator precedence
7151@cindex precedence of operators
7152
7153Another situation where shift/reduce conflicts appear is in arithmetic
7154expressions. Here shifting is not always the preferred resolution; the
7155Bison declarations for operator precedence allow you to specify when to
7156shift and when to reduce.
7157
7158@menu
7159* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7160* Using Precedence:: How to specify precedence and associativity.
7161* Precedence Only:: How to specify precedence only.
bfa74976
RS
7162* Precedence Examples:: How these features are used in the previous example.
7163* How Precedence:: How they work.
c28cd5dc 7164* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7165@end menu
7166
342b8b6e 7167@node Why Precedence
bfa74976
RS
7168@subsection When Precedence is Needed
7169
7170Consider the following ambiguous grammar fragment (ambiguous because the
7171input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7172
7173@example
7174@group
5e9b6624
AD
7175expr:
7176 expr '-' expr
7177| expr '*' expr
7178| expr '<' expr
7179| '(' expr ')'
7180@dots{}
7181;
bfa74976
RS
7182@end group
7183@end example
7184
7185@noindent
7186Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7187should it reduce them via the rule for the subtraction operator? It
7188depends on the next token. Of course, if the next token is @samp{)}, we
7189must reduce; shifting is invalid because no single rule can reduce the
7190token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7191the next token is @samp{*} or @samp{<}, we have a choice: either
7192shifting or reduction would allow the parse to complete, but with
7193different results.
7194
7195To decide which one Bison should do, we must consider the results. If
7196the next operator token @var{op} is shifted, then it must be reduced
7197first in order to permit another opportunity to reduce the difference.
7198The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7199hand, if the subtraction is reduced before shifting @var{op}, the result
7200is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7201reduce should depend on the relative precedence of the operators
7202@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7203@samp{<}.
bfa74976
RS
7204
7205@cindex associativity
7206What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7207@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7208operators we prefer the former, which is called @dfn{left association}.
7209The latter alternative, @dfn{right association}, is desirable for
7210assignment operators. The choice of left or right association is a
7211matter of whether the parser chooses to shift or reduce when the stack
742e4900 7212contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7213makes right-associativity.
bfa74976 7214
342b8b6e 7215@node Using Precedence
bfa74976
RS
7216@subsection Specifying Operator Precedence
7217@findex %left
bfa74976 7218@findex %nonassoc
d78f0ac9
AD
7219@findex %precedence
7220@findex %right
bfa74976
RS
7221
7222Bison allows you to specify these choices with the operator precedence
7223declarations @code{%left} and @code{%right}. Each such declaration
7224contains a list of tokens, which are operators whose precedence and
7225associativity is being declared. The @code{%left} declaration makes all
7226those operators left-associative and the @code{%right} declaration makes
7227them right-associative. A third alternative is @code{%nonassoc}, which
7228declares that it is a syntax error to find the same operator twice ``in a
7229row''.
d78f0ac9
AD
7230The last alternative, @code{%precedence}, allows to define only
7231precedence and no associativity at all. As a result, any
7232associativity-related conflict that remains will be reported as an
7233compile-time error. The directive @code{%nonassoc} creates run-time
7234error: using the operator in a associative way is a syntax error. The
7235directive @code{%precedence} creates compile-time errors: an operator
7236@emph{can} be involved in an associativity-related conflict, contrary to
7237what expected the grammar author.
bfa74976
RS
7238
7239The relative precedence of different operators is controlled by the
d78f0ac9
AD
7240order in which they are declared. The first precedence/associativity
7241declaration in the file declares the operators whose
bfa74976
RS
7242precedence is lowest, the next such declaration declares the operators
7243whose precedence is a little higher, and so on.
7244
d78f0ac9
AD
7245@node Precedence Only
7246@subsection Specifying Precedence Only
7247@findex %precedence
7248
8a4281b9 7249Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7250@code{%nonassoc}, which all defines precedence and associativity, little
7251attention is paid to the fact that precedence cannot be defined without
7252defining associativity. Yet, sometimes, when trying to solve a
7253conflict, precedence suffices. In such a case, using @code{%left},
7254@code{%right}, or @code{%nonassoc} might hide future (associativity
7255related) conflicts that would remain hidden.
7256
7257The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7258Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7259in the following situation, where the period denotes the current parsing
7260state:
7261
7262@example
7263if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7264@end example
7265
7266The conflict involves the reduction of the rule @samp{IF expr THEN
7267stmt}, which precedence is by default that of its last token
7268(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7269disambiguation (attach the @code{else} to the closest @code{if}),
7270shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7271higher than that of @code{THEN}. But neither is expected to be involved
7272in an associativity related conflict, which can be specified as follows.
7273
7274@example
7275%precedence THEN
7276%precedence ELSE
7277@end example
7278
7279The unary-minus is another typical example where associativity is
7280usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7281Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7282used to declare the precedence of @code{NEG}, which is more than needed
7283since it also defines its associativity. While this is harmless in the
7284traditional example, who knows how @code{NEG} might be used in future
7285evolutions of the grammar@dots{}
7286
342b8b6e 7287@node Precedence Examples
bfa74976
RS
7288@subsection Precedence Examples
7289
7290In our example, we would want the following declarations:
7291
7292@example
7293%left '<'
7294%left '-'
7295%left '*'
7296@end example
7297
7298In a more complete example, which supports other operators as well, we
7299would declare them in groups of equal precedence. For example, @code{'+'} is
7300declared with @code{'-'}:
7301
7302@example
534cee7a 7303%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7304%left '+' '-'
7305%left '*' '/'
7306@end example
7307
342b8b6e 7308@node How Precedence
bfa74976
RS
7309@subsection How Precedence Works
7310
7311The first effect of the precedence declarations is to assign precedence
7312levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7313precedence levels to certain rules: each rule gets its precedence from
7314the last terminal symbol mentioned in the components. (You can also
7315specify explicitly the precedence of a rule. @xref{Contextual
7316Precedence, ,Context-Dependent Precedence}.)
7317
7318Finally, the resolution of conflicts works by comparing the precedence
742e4900 7319of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7320token's precedence is higher, the choice is to shift. If the rule's
7321precedence is higher, the choice is to reduce. If they have equal
7322precedence, the choice is made based on the associativity of that
7323precedence level. The verbose output file made by @samp{-v}
7324(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7325resolved.
bfa74976
RS
7326
7327Not all rules and not all tokens have precedence. If either the rule or
742e4900 7328the lookahead token has no precedence, then the default is to shift.
bfa74976 7329
c28cd5dc
AD
7330@node Non Operators
7331@subsection Using Precedence For Non Operators
7332
7333Using properly precedence and associativity directives can help fixing
7334shift/reduce conflicts that do not involve arithmetics-like operators. For
7335instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7336Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7337
7338In the present case, the conflict is between the token @code{"else"} willing
7339to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7340for reduction. By default, the precedence of a rule is that of its last
7341token, here @code{"then"}, so the conflict will be solved appropriately
7342by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7343instance as follows:
7344
7345@example
7346@group
589149dc
AD
7347%precedence "then"
7348%precedence "else"
c28cd5dc
AD
7349@end group
7350@end example
7351
7352Alternatively, you may give both tokens the same precedence, in which case
7353associativity is used to solve the conflict. To preserve the shift action,
7354use right associativity:
7355
7356@example
7357%right "then" "else"
7358@end example
7359
7360Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7361``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7362of these keywords with respect to the other operators your grammar.
7363Therefore, instead of being warned about new conflicts you would be unaware
7364of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7365being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7366else 2) + 3}?), the conflict will be already ``fixed''.
7367
342b8b6e 7368@node Contextual Precedence
bfa74976
RS
7369@section Context-Dependent Precedence
7370@cindex context-dependent precedence
7371@cindex unary operator precedence
7372@cindex precedence, context-dependent
7373@cindex precedence, unary operator
7374@findex %prec
7375
7376Often the precedence of an operator depends on the context. This sounds
7377outlandish at first, but it is really very common. For example, a minus
7378sign typically has a very high precedence as a unary operator, and a
7379somewhat lower precedence (lower than multiplication) as a binary operator.
7380
d78f0ac9
AD
7381The Bison precedence declarations
7382can only be used once for a given token; so a token has
bfa74976
RS
7383only one precedence declared in this way. For context-dependent
7384precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7385modifier for rules.
bfa74976
RS
7386
7387The @code{%prec} modifier declares the precedence of a particular rule by
7388specifying a terminal symbol whose precedence should be used for that rule.
7389It's not necessary for that symbol to appear otherwise in the rule. The
7390modifier's syntax is:
7391
7392@example
7393%prec @var{terminal-symbol}
7394@end example
7395
7396@noindent
7397and it is written after the components of the rule. Its effect is to
7398assign the rule the precedence of @var{terminal-symbol}, overriding
7399the precedence that would be deduced for it in the ordinary way. The
7400altered rule precedence then affects how conflicts involving that rule
7401are resolved (@pxref{Precedence, ,Operator Precedence}).
7402
7403Here is how @code{%prec} solves the problem of unary minus. First, declare
7404a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7405are no tokens of this type, but the symbol serves to stand for its
7406precedence:
7407
7408@example
7409@dots{}
7410%left '+' '-'
7411%left '*'
7412%left UMINUS
7413@end example
7414
7415Now the precedence of @code{UMINUS} can be used in specific rules:
7416
7417@example
7418@group
5e9b6624
AD
7419exp:
7420 @dots{}
7421| exp '-' exp
7422 @dots{}
7423| '-' exp %prec UMINUS
bfa74976
RS
7424@end group
7425@end example
7426
91d2c560 7427@ifset defaultprec
39a06c25
PE
7428If you forget to append @code{%prec UMINUS} to the rule for unary
7429minus, Bison silently assumes that minus has its usual precedence.
7430This kind of problem can be tricky to debug, since one typically
7431discovers the mistake only by testing the code.
7432
22fccf95 7433The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7434this kind of problem systematically. It causes rules that lack a
7435@code{%prec} modifier to have no precedence, even if the last terminal
7436symbol mentioned in their components has a declared precedence.
7437
22fccf95 7438If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7439for all rules that participate in precedence conflict resolution.
7440Then you will see any shift/reduce conflict until you tell Bison how
7441to resolve it, either by changing your grammar or by adding an
7442explicit precedence. This will probably add declarations to the
7443grammar, but it helps to protect against incorrect rule precedences.
7444
22fccf95
PE
7445The effect of @code{%no-default-prec;} can be reversed by giving
7446@code{%default-prec;}, which is the default.
91d2c560 7447@end ifset
39a06c25 7448
342b8b6e 7449@node Parser States
bfa74976
RS
7450@section Parser States
7451@cindex finite-state machine
7452@cindex parser state
7453@cindex state (of parser)
7454
7455The function @code{yyparse} is implemented using a finite-state machine.
7456The values pushed on the parser stack are not simply token type codes; they
7457represent the entire sequence of terminal and nonterminal symbols at or
7458near the top of the stack. The current state collects all the information
7459about previous input which is relevant to deciding what to do next.
7460
742e4900
JD
7461Each time a lookahead token is read, the current parser state together
7462with the type of lookahead token are looked up in a table. This table
7463entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7464specifies the new parser state, which is pushed onto the top of the
7465parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7466This means that a certain number of tokens or groupings are taken off
7467the top of the stack, and replaced by one grouping. In other words,
7468that number of states are popped from the stack, and one new state is
7469pushed.
7470
742e4900 7471There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7472is erroneous in the current state. This causes error processing to begin
7473(@pxref{Error Recovery}).
7474
342b8b6e 7475@node Reduce/Reduce
bfa74976
RS
7476@section Reduce/Reduce Conflicts
7477@cindex reduce/reduce conflict
7478@cindex conflicts, reduce/reduce
7479
7480A reduce/reduce conflict occurs if there are two or more rules that apply
7481to the same sequence of input. This usually indicates a serious error
7482in the grammar.
7483
7484For example, here is an erroneous attempt to define a sequence
7485of zero or more @code{word} groupings.
7486
7487@example
d4fca427 7488@group
5e9b6624
AD
7489sequence:
7490 /* empty */ @{ printf ("empty sequence\n"); @}
7491| maybeword
7492| sequence word @{ printf ("added word %s\n", $2); @}
7493;
d4fca427 7494@end group
bfa74976 7495
d4fca427 7496@group
5e9b6624
AD
7497maybeword:
7498 /* empty */ @{ printf ("empty maybeword\n"); @}
7499| word @{ printf ("single word %s\n", $1); @}
7500;
d4fca427 7501@end group
bfa74976
RS
7502@end example
7503
7504@noindent
7505The error is an ambiguity: there is more than one way to parse a single
7506@code{word} into a @code{sequence}. It could be reduced to a
7507@code{maybeword} and then into a @code{sequence} via the second rule.
7508Alternatively, nothing-at-all could be reduced into a @code{sequence}
7509via the first rule, and this could be combined with the @code{word}
7510using the third rule for @code{sequence}.
7511
7512There is also more than one way to reduce nothing-at-all into a
7513@code{sequence}. This can be done directly via the first rule,
7514or indirectly via @code{maybeword} and then the second rule.
7515
7516You might think that this is a distinction without a difference, because it
7517does not change whether any particular input is valid or not. But it does
7518affect which actions are run. One parsing order runs the second rule's
7519action; the other runs the first rule's action and the third rule's action.
7520In this example, the output of the program changes.
7521
7522Bison resolves a reduce/reduce conflict by choosing to use the rule that
7523appears first in the grammar, but it is very risky to rely on this. Every
7524reduce/reduce conflict must be studied and usually eliminated. Here is the
7525proper way to define @code{sequence}:
7526
7527@example
51356dd2 7528@group
5e9b6624
AD
7529sequence:
7530 /* empty */ @{ printf ("empty sequence\n"); @}
7531| sequence word @{ printf ("added word %s\n", $2); @}
7532;
51356dd2 7533@end group
bfa74976
RS
7534@end example
7535
7536Here is another common error that yields a reduce/reduce conflict:
7537
7538@example
51356dd2 7539@group
589149dc 7540sequence:
5e9b6624
AD
7541 /* empty */
7542| sequence words
7543| sequence redirects
7544;
51356dd2 7545@end group
bfa74976 7546
51356dd2 7547@group
5e9b6624
AD
7548words:
7549 /* empty */
7550| words word
7551;
51356dd2 7552@end group
bfa74976 7553
51356dd2 7554@group
5e9b6624
AD
7555redirects:
7556 /* empty */
7557| redirects redirect
7558;
51356dd2 7559@end group
bfa74976
RS
7560@end example
7561
7562@noindent
7563The intention here is to define a sequence which can contain either
7564@code{word} or @code{redirect} groupings. The individual definitions of
7565@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7566three together make a subtle ambiguity: even an empty input can be parsed
7567in infinitely many ways!
7568
7569Consider: nothing-at-all could be a @code{words}. Or it could be two
7570@code{words} in a row, or three, or any number. It could equally well be a
7571@code{redirects}, or two, or any number. Or it could be a @code{words}
7572followed by three @code{redirects} and another @code{words}. And so on.
7573
7574Here are two ways to correct these rules. First, to make it a single level
7575of sequence:
7576
7577@example
5e9b6624
AD
7578sequence:
7579 /* empty */
7580| sequence word
7581| sequence redirect
7582;
bfa74976
RS
7583@end example
7584
7585Second, to prevent either a @code{words} or a @code{redirects}
7586from being empty:
7587
7588@example
d4fca427 7589@group
5e9b6624
AD
7590sequence:
7591 /* empty */
7592| sequence words
7593| sequence redirects
7594;
d4fca427 7595@end group
bfa74976 7596
d4fca427 7597@group
5e9b6624
AD
7598words:
7599 word
7600| words word
7601;
d4fca427 7602@end group
bfa74976 7603
d4fca427 7604@group
5e9b6624
AD
7605redirects:
7606 redirect
7607| redirects redirect
7608;
d4fca427 7609@end group
bfa74976
RS
7610@end example
7611
53e2cd1e
AD
7612Yet this proposal introduces another kind of ambiguity! The input
7613@samp{word word} can be parsed as a single @code{words} composed of two
7614@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7615@code{redirect}/@code{redirects}). However this ambiguity is now a
7616shift/reduce conflict, and therefore it can now be addressed with precedence
7617directives.
7618
7619To simplify the matter, we will proceed with @code{word} and @code{redirect}
7620being tokens: @code{"word"} and @code{"redirect"}.
7621
7622To prefer the longest @code{words}, the conflict between the token
7623@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7624as a shift. To this end, we use the same techniques as exposed above, see
7625@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7626relies on precedences: use @code{%prec} to give a lower precedence to the
7627rule:
7628
7629@example
589149dc
AD
7630%precedence "word"
7631%precedence "sequence"
53e2cd1e
AD
7632%%
7633@group
7634sequence:
7635 /* empty */
7636| sequence word %prec "sequence"
7637| sequence redirect %prec "sequence"
7638;
7639@end group
7640
7641@group
7642words:
7643 word
7644| words "word"
7645;
7646@end group
7647@end example
7648
7649Another solution relies on associativity: provide both the token and the
7650rule with the same precedence, but make them right-associative:
7651
7652@example
7653%right "word" "redirect"
7654%%
7655@group
7656sequence:
7657 /* empty */
7658| sequence word %prec "word"
7659| sequence redirect %prec "redirect"
7660;
7661@end group
7662@end example
7663
cc09e5be
JD
7664@node Mysterious Conflicts
7665@section Mysterious Conflicts
7fceb615 7666@cindex Mysterious Conflicts
bfa74976
RS
7667
7668Sometimes reduce/reduce conflicts can occur that don't look warranted.
7669Here is an example:
7670
7671@example
7672@group
bfa74976 7673%%
5e9b6624 7674def: param_spec return_spec ',';
bfa74976 7675param_spec:
5e9b6624
AD
7676 type
7677| name_list ':' type
7678;
bfa74976 7679@end group
589149dc 7680
bfa74976
RS
7681@group
7682return_spec:
5e9b6624
AD
7683 type
7684| name ':' type
7685;
bfa74976 7686@end group
589149dc 7687
534cee7a 7688type: "id";
589149dc 7689
bfa74976 7690@group
534cee7a 7691name: "id";
bfa74976 7692name_list:
5e9b6624
AD
7693 name
7694| name ',' name_list
7695;
bfa74976
RS
7696@end group
7697@end example
7698
534cee7a
AD
7699It would seem that this grammar can be parsed with only a single token of
7700lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7701@code{name} if a comma or colon follows, or a @code{type} if another
7702@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7703
7fceb615
JD
7704@cindex LR
7705@cindex LALR
eb45ef3b 7706However, for historical reasons, Bison cannot by default handle all
8a4281b9 7707LR(1) grammars.
534cee7a 7708In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7709of a @code{param_spec} and likewise at the beginning of a
7710@code{return_spec}, are similar enough that Bison assumes they are the
7711same.
7712They appear similar because the same set of rules would be
bfa74976
RS
7713active---the rule for reducing to a @code{name} and that for reducing to
7714a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7715that the rules would require different lookahead tokens in the two
bfa74976
RS
7716contexts, so it makes a single parser state for them both. Combining
7717the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7718occurrence means that the grammar is not LALR(1).
bfa74976 7719
7fceb615
JD
7720@cindex IELR
7721@cindex canonical LR
7722For many practical grammars (specifically those that fall into the non-LR(1)
7723class), the limitations of LALR(1) result in difficulties beyond just
7724mysterious reduce/reduce conflicts. The best way to fix all these problems
7725is to select a different parser table construction algorithm. Either
7726IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7727and easier to debug during development. @xref{LR Table Construction}, for
7728details. (Bison's IELR(1) and canonical LR(1) implementations are
7729experimental. More user feedback will help to stabilize them.)
eb45ef3b 7730
8a4281b9 7731If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7732can often fix a mysterious conflict by identifying the two parser states
7733that are being confused, and adding something to make them look
7734distinct. In the above example, adding one rule to
bfa74976
RS
7735@code{return_spec} as follows makes the problem go away:
7736
7737@example
7738@group
bfa74976
RS
7739@dots{}
7740return_spec:
5e9b6624
AD
7741 type
7742| name ':' type
534cee7a 7743| "id" "bogus" /* This rule is never used. */
5e9b6624 7744;
bfa74976
RS
7745@end group
7746@end example
7747
7748This corrects the problem because it introduces the possibility of an
534cee7a 7749additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7750@code{return_spec}. This rule is not active in the corresponding context
7751in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7752As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7753the added rule cannot alter the way actual input is parsed.
7754
7755In this particular example, there is another way to solve the problem:
534cee7a 7756rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7757instead of via @code{name}. This also causes the two confusing
7758contexts to have different sets of active rules, because the one for
7759@code{return_spec} activates the altered rule for @code{return_spec}
7760rather than the one for @code{name}.
7761
7762@example
589149dc 7763@group
bfa74976 7764param_spec:
5e9b6624
AD
7765 type
7766| name_list ':' type
7767;
589149dc
AD
7768@end group
7769
7770@group
bfa74976 7771return_spec:
5e9b6624 7772 type
534cee7a 7773| "id" ':' type
5e9b6624 7774;
589149dc 7775@end group
bfa74976
RS
7776@end example
7777
8a4281b9 7778For a more detailed exposition of LALR(1) parsers and parser
5e528941 7779generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7780
7fceb615
JD
7781@node Tuning LR
7782@section Tuning LR
7783
7784The default behavior of Bison's LR-based parsers is chosen mostly for
7785historical reasons, but that behavior is often not robust. For example, in
7786the previous section, we discussed the mysterious conflicts that can be
7787produced by LALR(1), Bison's default parser table construction algorithm.
7788Another example is Bison's @code{%define parse.error verbose} directive,
7789which instructs the generated parser to produce verbose syntax error
7790messages, which can sometimes contain incorrect information.
7791
7792In this section, we explore several modern features of Bison that allow you
7793to tune fundamental aspects of the generated LR-based parsers. Some of
7794these features easily eliminate shortcomings like those mentioned above.
7795Others can be helpful purely for understanding your parser.
7796
7797Most of the features discussed in this section are still experimental. More
7798user feedback will help to stabilize them.
7799
7800@menu
7801* LR Table Construction:: Choose a different construction algorithm.
7802* Default Reductions:: Disable default reductions.
7803* LAC:: Correct lookahead sets in the parser states.
7804* Unreachable States:: Keep unreachable parser states for debugging.
7805@end menu
7806
7807@node LR Table Construction
7808@subsection LR Table Construction
7809@cindex Mysterious Conflict
7810@cindex LALR
7811@cindex IELR
7812@cindex canonical LR
7813@findex %define lr.type
7814
7815For historical reasons, Bison constructs LALR(1) parser tables by default.
7816However, LALR does not possess the full language-recognition power of LR.
7817As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7818mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7819Conflicts}.
7820
7821As we also demonstrated in that example, the traditional approach to
7822eliminating such mysterious behavior is to restructure the grammar.
7823Unfortunately, doing so correctly is often difficult. Moreover, merely
7824discovering that LALR causes mysterious behavior in your parser can be
7825difficult as well.
7826
7827Fortunately, Bison provides an easy way to eliminate the possibility of such
7828mysterious behavior altogether. You simply need to activate a more powerful
7829parser table construction algorithm by using the @code{%define lr.type}
7830directive.
7831
511dd971 7832@deffn {Directive} {%define lr.type} @var{type}
7fceb615 7833Specify the type of parser tables within the LR(1) family. The accepted
511dd971 7834values for @var{type} are:
7fceb615
JD
7835
7836@itemize
7837@item @code{lalr} (default)
7838@item @code{ielr}
7839@item @code{canonical-lr}
7840@end itemize
7841
7842(This feature is experimental. More user feedback will help to stabilize
7843it.)
7844@end deffn
7845
7846For example, to activate IELR, you might add the following directive to you
7847grammar file:
7848
7849@example
7850%define lr.type ielr
7851@end example
7852
cc09e5be 7853@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7854conflict is then eliminated, so there is no need to invest time in
7855comprehending the conflict or restructuring the grammar to fix it. If,
7856during future development, the grammar evolves such that all mysterious
7857behavior would have disappeared using just LALR, you need not fear that
7858continuing to use IELR will result in unnecessarily large parser tables.
7859That is, IELR generates LALR tables when LALR (using a deterministic parsing
7860algorithm) is sufficient to support the full language-recognition power of
7861LR. Thus, by enabling IELR at the start of grammar development, you can
7862safely and completely eliminate the need to consider LALR's shortcomings.
7863
7864While IELR is almost always preferable, there are circumstances where LALR
7865or the canonical LR parser tables described by Knuth
7866(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7867relative advantages of each parser table construction algorithm within
7868Bison:
7869
7870@itemize
7871@item LALR
7872
7873There are at least two scenarios where LALR can be worthwhile:
7874
7875@itemize
7876@item GLR without static conflict resolution.
7877
7878@cindex GLR with LALR
7879When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
7880conflicts statically (for example, with @code{%left} or @code{%precedence}),
7881then
7fceb615
JD
7882the parser explores all potential parses of any given input. In this case,
7883the choice of parser table construction algorithm is guaranteed not to alter
7884the language accepted by the parser. LALR parser tables are the smallest
7885parser tables Bison can currently construct, so they may then be preferable.
7886Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7887more like a deterministic parser in the syntactic contexts where those
7888conflicts appear, and so either IELR or canonical LR can then be helpful to
7889avoid LALR's mysterious behavior.
7890
7891@item Malformed grammars.
7892
7893Occasionally during development, an especially malformed grammar with a
7894major recurring flaw may severely impede the IELR or canonical LR parser
7895table construction algorithm. LALR can be a quick way to construct parser
7896tables in order to investigate such problems while ignoring the more subtle
7897differences from IELR and canonical LR.
7898@end itemize
7899
7900@item IELR
7901
7902IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7903any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7904always accept exactly the same set of sentences. However, like LALR, IELR
7905merges parser states during parser table construction so that the number of
7906parser states is often an order of magnitude less than for canonical LR.
7907More importantly, because canonical LR's extra parser states may contain
7908duplicate conflicts in the case of non-LR grammars, the number of conflicts
7909for IELR is often an order of magnitude less as well. This effect can
7910significantly reduce the complexity of developing a grammar.
7911
7912@item Canonical LR
7913
7914@cindex delayed syntax error detection
7915@cindex LAC
7916@findex %nonassoc
7917While inefficient, canonical LR parser tables can be an interesting means to
7918explore a grammar because they possess a property that IELR and LALR tables
7919do not. That is, if @code{%nonassoc} is not used and default reductions are
7920left disabled (@pxref{Default Reductions}), then, for every left context of
7921every canonical LR state, the set of tokens accepted by that state is
7922guaranteed to be the exact set of tokens that is syntactically acceptable in
7923that left context. It might then seem that an advantage of canonical LR
7924parsers in production is that, under the above constraints, they are
7925guaranteed to detect a syntax error as soon as possible without performing
7926any unnecessary reductions. However, IELR parsers that use LAC are also
7927able to achieve this behavior without sacrificing @code{%nonassoc} or
7928default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7929@end itemize
7930
7931For a more detailed exposition of the mysterious behavior in LALR parsers
7932and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7933@ref{Bibliography,,Denny 2010 November}.
7934
7935@node Default Reductions
7936@subsection Default Reductions
7937@cindex default reductions
f3bc3386 7938@findex %define lr.default-reduction
7fceb615
JD
7939@findex %nonassoc
7940
7941After parser table construction, Bison identifies the reduction with the
7942largest lookahead set in each parser state. To reduce the size of the
7943parser state, traditional Bison behavior is to remove that lookahead set and
7944to assign that reduction to be the default parser action. Such a reduction
7945is known as a @dfn{default reduction}.
7946
7947Default reductions affect more than the size of the parser tables. They
7948also affect the behavior of the parser:
7949
7950@itemize
7951@item Delayed @code{yylex} invocations.
7952
7953@cindex delayed yylex invocations
7954@cindex consistent states
7955@cindex defaulted states
7956A @dfn{consistent state} is a state that has only one possible parser
7957action. If that action is a reduction and is encoded as a default
7958reduction, then that consistent state is called a @dfn{defaulted state}.
7959Upon reaching a defaulted state, a Bison-generated parser does not bother to
7960invoke @code{yylex} to fetch the next token before performing the reduction.
7961In other words, whether default reductions are enabled in consistent states
7962determines how soon a Bison-generated parser invokes @code{yylex} for a
7963token: immediately when it @emph{reaches} that token in the input or when it
7964eventually @emph{needs} that token as a lookahead to determine the next
7965parser action. Traditionally, default reductions are enabled, and so the
7966parser exhibits the latter behavior.
7967
7968The presence of defaulted states is an important consideration when
7969designing @code{yylex} and the grammar file. That is, if the behavior of
7970@code{yylex} can influence or be influenced by the semantic actions
7971associated with the reductions in defaulted states, then the delay of the
7972next @code{yylex} invocation until after those reductions is significant.
7973For example, the semantic actions might pop a scope stack that @code{yylex}
7974uses to determine what token to return. Thus, the delay might be necessary
7975to ensure that @code{yylex} does not look up the next token in a scope that
7976should already be considered closed.
7977
7978@item Delayed syntax error detection.
7979
7980@cindex delayed syntax error detection
7981When the parser fetches a new token by invoking @code{yylex}, it checks
7982whether there is an action for that token in the current parser state. The
7983parser detects a syntax error if and only if either (1) there is no action
7984for that token or (2) the action for that token is the error action (due to
7985the use of @code{%nonassoc}). However, if there is a default reduction in
7986that state (which might or might not be a defaulted state), then it is
7987impossible for condition 1 to exist. That is, all tokens have an action.
7988Thus, the parser sometimes fails to detect the syntax error until it reaches
7989a later state.
7990
7991@cindex LAC
7992@c If there's an infinite loop, default reductions can prevent an incorrect
7993@c sentence from being rejected.
7994While default reductions never cause the parser to accept syntactically
7995incorrect sentences, the delay of syntax error detection can have unexpected
7996effects on the behavior of the parser. However, the delay can be caused
7997anyway by parser state merging and the use of @code{%nonassoc}, and it can
7998be fixed by another Bison feature, LAC. We discuss the effects of delayed
7999syntax error detection and LAC more in the next section (@pxref{LAC}).
8000@end itemize
8001
8002For canonical LR, the only default reduction that Bison enables by default
8003is the accept action, which appears only in the accepting state, which has
8004no other action and is thus a defaulted state. However, the default accept
8005action does not delay any @code{yylex} invocation or syntax error detection
8006because the accept action ends the parse.
8007
8008For LALR and IELR, Bison enables default reductions in nearly all states by
8009default. There are only two exceptions. First, states that have a shift
8010action on the @code{error} token do not have default reductions because
8011delayed syntax error detection could then prevent the @code{error} token
8012from ever being shifted in that state. However, parser state merging can
8013cause the same effect anyway, and LAC fixes it in both cases, so future
8014versions of Bison might drop this exception when LAC is activated. Second,
8015GLR parsers do not record the default reduction as the action on a lookahead
8016token for which there is a conflict. The correct action in this case is to
8017split the parse instead.
8018
8019To adjust which states have default reductions enabled, use the
f3bc3386 8020@code{%define lr.default-reduction} directive.
7fceb615 8021
5807bb91 8022@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8023Specify the kind of states that are permitted to contain default reductions.
511dd971 8024The accepted values of @var{where} are:
7fceb615 8025@itemize
f0ad1b2f 8026@item @code{most} (default for LALR and IELR)
7fceb615
JD
8027@item @code{consistent}
8028@item @code{accepting} (default for canonical LR)
8029@end itemize
8030
8031(The ability to specify where default reductions are permitted is
8032experimental. More user feedback will help to stabilize it.)
8033@end deffn
8034
7fceb615
JD
8035@node LAC
8036@subsection LAC
8037@findex %define parse.lac
8038@cindex LAC
8039@cindex lookahead correction
8040
8041Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8042encountering a syntax error. First, the parser might perform additional
8043parser stack reductions before discovering the syntax error. Such
8044reductions can perform user semantic actions that are unexpected because
8045they are based on an invalid token, and they cause error recovery to begin
8046in a different syntactic context than the one in which the invalid token was
8047encountered. Second, when verbose error messages are enabled (@pxref{Error
8048Reporting}), the expected token list in the syntax error message can both
8049contain invalid tokens and omit valid tokens.
8050
8051The culprits for the above problems are @code{%nonassoc}, default reductions
8052in inconsistent states (@pxref{Default Reductions}), and parser state
8053merging. Because IELR and LALR merge parser states, they suffer the most.
8054Canonical LR can suffer only if @code{%nonassoc} is used or if default
8055reductions are enabled for inconsistent states.
8056
8057LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8058that solves these problems for canonical LR, IELR, and LALR without
8059sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8060enable LAC with the @code{%define parse.lac} directive.
8061
511dd971 8062@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8063Enable LAC to improve syntax error handling.
8064@itemize
8065@item @code{none} (default)
8066@item @code{full}
8067@end itemize
8068(This feature is experimental. More user feedback will help to stabilize
8069it. Moreover, it is currently only available for deterministic parsers in
8070C.)
8071@end deffn
8072
8073Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8074fetches a new token from the scanner so that it can determine the next
8075parser action, it immediately suspends normal parsing and performs an
8076exploratory parse using a temporary copy of the normal parser state stack.
8077During this exploratory parse, the parser does not perform user semantic
8078actions. If the exploratory parse reaches a shift action, normal parsing
8079then resumes on the normal parser stacks. If the exploratory parse reaches
8080an error instead, the parser reports a syntax error. If verbose syntax
8081error messages are enabled, the parser must then discover the list of
8082expected tokens, so it performs a separate exploratory parse for each token
8083in the grammar.
8084
8085There is one subtlety about the use of LAC. That is, when in a consistent
8086parser state with a default reduction, the parser will not attempt to fetch
8087a token from the scanner because no lookahead is needed to determine the
8088next parser action. Thus, whether default reductions are enabled in
8089consistent states (@pxref{Default Reductions}) affects how soon the parser
8090detects a syntax error: immediately when it @emph{reaches} an erroneous
8091token or when it eventually @emph{needs} that token as a lookahead to
8092determine the next parser action. The latter behavior is probably more
8093intuitive, so Bison currently provides no way to achieve the former behavior
8094while default reductions are enabled in consistent states.
8095
8096Thus, when LAC is in use, for some fixed decision of whether to enable
8097default reductions in consistent states, canonical LR and IELR behave almost
8098exactly the same for both syntactically acceptable and syntactically
8099unacceptable input. While LALR still does not support the full
8100language-recognition power of canonical LR and IELR, LAC at least enables
8101LALR's syntax error handling to correctly reflect LALR's
8102language-recognition power.
8103
8104There are a few caveats to consider when using LAC:
8105
8106@itemize
8107@item Infinite parsing loops.
8108
8109IELR plus LAC does have one shortcoming relative to canonical LR. Some
8110parsers generated by Bison can loop infinitely. LAC does not fix infinite
8111parsing loops that occur between encountering a syntax error and detecting
8112it, but enabling canonical LR or disabling default reductions sometimes
8113does.
8114
8115@item Verbose error message limitations.
8116
8117Because of internationalization considerations, Bison-generated parsers
8118limit the size of the expected token list they are willing to report in a
8119verbose syntax error message. If the number of expected tokens exceeds that
8120limit, the list is simply dropped from the message. Enabling LAC can
8121increase the size of the list and thus cause the parser to drop it. Of
8122course, dropping the list is better than reporting an incorrect list.
8123
8124@item Performance.
8125
8126Because LAC requires many parse actions to be performed twice, it can have a
8127performance penalty. However, not all parse actions must be performed
8128twice. Specifically, during a series of default reductions in consistent
8129states and shift actions, the parser never has to initiate an exploratory
8130parse. Moreover, the most time-consuming tasks in a parse are often the
8131file I/O, the lexical analysis performed by the scanner, and the user's
8132semantic actions, but none of these are performed during the exploratory
8133parse. Finally, the base of the temporary stack used during an exploratory
8134parse is a pointer into the normal parser state stack so that the stack is
8135never physically copied. In our experience, the performance penalty of LAC
5a321748 8136has proved insignificant for practical grammars.
7fceb615
JD
8137@end itemize
8138
709c7d11
JD
8139While the LAC algorithm shares techniques that have been recognized in the
8140parser community for years, for the publication that introduces LAC,
8141@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8142
7fceb615
JD
8143@node Unreachable States
8144@subsection Unreachable States
f3bc3386 8145@findex %define lr.keep-unreachable-state
7fceb615
JD
8146@cindex unreachable states
8147
8148If there exists no sequence of transitions from the parser's start state to
8149some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8150state}. A state can become unreachable during conflict resolution if Bison
8151disables a shift action leading to it from a predecessor state.
8152
8153By default, Bison removes unreachable states from the parser after conflict
8154resolution because they are useless in the generated parser. However,
8155keeping unreachable states is sometimes useful when trying to understand the
8156relationship between the parser and the grammar.
8157
5807bb91 8158@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8159Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8160@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8161@end deffn
8162
8163There are a few caveats to consider:
8164
8165@itemize @bullet
8166@item Missing or extraneous warnings.
8167
8168Unreachable states may contain conflicts and may use rules not used in any
8169other state. Thus, keeping unreachable states may induce warnings that are
8170irrelevant to your parser's behavior, and it may eliminate warnings that are
8171relevant. Of course, the change in warnings may actually be relevant to a
8172parser table analysis that wants to keep unreachable states, so this
8173behavior will likely remain in future Bison releases.
8174
8175@item Other useless states.
8176
8177While Bison is able to remove unreachable states, it is not guaranteed to
8178remove other kinds of useless states. Specifically, when Bison disables
8179reduce actions during conflict resolution, some goto actions may become
8180useless, and thus some additional states may become useless. If Bison were
8181to compute which goto actions were useless and then disable those actions,
8182it could identify such states as unreachable and then remove those states.
8183However, Bison does not compute which goto actions are useless.
8184@end itemize
8185
fae437e8 8186@node Generalized LR Parsing
8a4281b9
JD
8187@section Generalized LR (GLR) Parsing
8188@cindex GLR parsing
8189@cindex generalized LR (GLR) parsing
676385e2 8190@cindex ambiguous grammars
9d9b8b70 8191@cindex nondeterministic parsing
676385e2 8192
fae437e8
AD
8193Bison produces @emph{deterministic} parsers that choose uniquely
8194when to reduce and which reduction to apply
742e4900 8195based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8196As a result, normal Bison handles a proper subset of the family of
8197context-free languages.
fae437e8 8198Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8199sequence of reductions cannot have deterministic parsers in this sense.
8200The same is true of languages that require more than one symbol of
742e4900 8201lookahead, since the parser lacks the information necessary to make a
676385e2 8202decision at the point it must be made in a shift-reduce parser.
cc09e5be 8203Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8204there are languages where Bison's default choice of how to
676385e2
PH
8205summarize the input seen so far loses necessary information.
8206
8207When you use the @samp{%glr-parser} declaration in your grammar file,
8208Bison generates a parser that uses a different algorithm, called
8a4281b9 8209Generalized LR (or GLR). A Bison GLR
c827f760 8210parser uses the same basic
676385e2
PH
8211algorithm for parsing as an ordinary Bison parser, but behaves
8212differently in cases where there is a shift-reduce conflict that has not
fae437e8 8213been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8214reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8215situation, it
fae437e8 8216effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8217shift or reduction. These parsers then proceed as usual, consuming
8218tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8219and split further, with the result that instead of a sequence of states,
8a4281b9 8220a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8221
8222In effect, each stack represents a guess as to what the proper parse
8223is. Additional input may indicate that a guess was wrong, in which case
8224the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8225actions generated in each stack are saved, rather than being executed
676385e2 8226immediately. When a stack disappears, its saved semantic actions never
fae437e8 8227get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8228their sets of semantic actions are both saved with the state that
8229results from the reduction. We say that two stacks are equivalent
fae437e8 8230when they both represent the same sequence of states,
676385e2
PH
8231and each pair of corresponding states represents a
8232grammar symbol that produces the same segment of the input token
8233stream.
8234
8235Whenever the parser makes a transition from having multiple
eb45ef3b 8236states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8237algorithm, after resolving and executing the saved-up actions.
8238At this transition, some of the states on the stack will have semantic
8239values that are sets (actually multisets) of possible actions. The
8240parser tries to pick one of the actions by first finding one whose rule
8241has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8242declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8243precedence, but there the same merging function is declared for both
fae437e8 8244rules by the @samp{%merge} declaration,
676385e2
PH
8245Bison resolves and evaluates both and then calls the merge function on
8246the result. Otherwise, it reports an ambiguity.
8247
8a4281b9
JD
8248It is possible to use a data structure for the GLR parsing tree that
8249permits the processing of any LR(1) grammar in linear time (in the
c827f760 8250size of the input), any unambiguous (not necessarily
8a4281b9 8251LR(1)) grammar in
fae437e8 8252quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8253context-free grammar in cubic worst-case time. However, Bison currently
8254uses a simpler data structure that requires time proportional to the
8255length of the input times the maximum number of stacks required for any
9d9b8b70 8256prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8257grammars can require exponential time and space to process. Such badly
8258behaving examples, however, are not generally of practical interest.
9d9b8b70 8259Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8260doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8261structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8262grammar, in particular, it is only slightly slower than with the
8a4281b9 8263deterministic LR(1) Bison parser.
676385e2 8264
5e528941
JD
8265For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
82662000}.
f6481e2f 8267
1a059451
PE
8268@node Memory Management
8269@section Memory Management, and How to Avoid Memory Exhaustion
8270@cindex memory exhaustion
8271@cindex memory management
bfa74976
RS
8272@cindex stack overflow
8273@cindex parser stack overflow
8274@cindex overflow of parser stack
8275
1a059451 8276The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8277not reduced. When this happens, the parser function @code{yyparse}
1a059451 8278calls @code{yyerror} and then returns 2.
bfa74976 8279
c827f760 8280Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8281usually results from using a right recursion instead of a left
188867ac 8282recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8283
bfa74976
RS
8284@vindex YYMAXDEPTH
8285By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8286parser stack can become before memory is exhausted. Define the
bfa74976
RS
8287macro with a value that is an integer. This value is the maximum number
8288of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8289
8290The stack space allowed is not necessarily allocated. If you specify a
1a059451 8291large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8292stack at first, and then makes it bigger by stages as needed. This
8293increasing allocation happens automatically and silently. Therefore,
8294you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8295space for ordinary inputs that do not need much stack.
8296
d7e14fc0
PE
8297However, do not allow @code{YYMAXDEPTH} to be a value so large that
8298arithmetic overflow could occur when calculating the size of the stack
8299space. Also, do not allow @code{YYMAXDEPTH} to be less than
8300@code{YYINITDEPTH}.
8301
bfa74976
RS
8302@cindex default stack limit
8303The default value of @code{YYMAXDEPTH}, if you do not define it, is
830410000.
8305
8306@vindex YYINITDEPTH
8307You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8308macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8309parser in C, this value must be a compile-time constant
d7e14fc0
PE
8310unless you are assuming C99 or some other target language or compiler
8311that allows variable-length arrays. The default is 200.
8312
1a059451 8313Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8314
20be2f92 8315You can generate a deterministic parser containing C++ user code from
411614fa 8316the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8317(@pxref{C++ Parsers}). However, if you do use the default skeleton
8318and want to allow the parsing stack to grow,
8319be careful not to use semantic types or location types that require
8320non-trivial copy constructors.
8321The C skeleton bypasses these constructors when copying data to
8322new, larger stacks.
d1a1114f 8323
342b8b6e 8324@node Error Recovery
bfa74976
RS
8325@chapter Error Recovery
8326@cindex error recovery
8327@cindex recovery from errors
8328
6e649e65 8329It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8330error. For example, a compiler should recover sufficiently to parse the
8331rest of the input file and check it for errors; a calculator should accept
8332another expression.
8333
8334In a simple interactive command parser where each input is one line, it may
8335be sufficient to allow @code{yyparse} to return 1 on error and have the
8336caller ignore the rest of the input line when that happens (and then call
8337@code{yyparse} again). But this is inadequate for a compiler, because it
8338forgets all the syntactic context leading up to the error. A syntax error
8339deep within a function in the compiler input should not cause the compiler
8340to treat the following line like the beginning of a source file.
8341
8342@findex error
8343You can define how to recover from a syntax error by writing rules to
8344recognize the special token @code{error}. This is a terminal symbol that
8345is always defined (you need not declare it) and reserved for error
8346handling. The Bison parser generates an @code{error} token whenever a
8347syntax error happens; if you have provided a rule to recognize this token
13863333 8348in the current context, the parse can continue.
bfa74976
RS
8349
8350For example:
8351
8352@example
0860e383 8353stmts:
5e9b6624 8354 /* empty string */
0860e383
AD
8355| stmts '\n'
8356| stmts exp '\n'
8357| stmts error '\n'
bfa74976
RS
8358@end example
8359
8360The fourth rule in this example says that an error followed by a newline
0860e383 8361makes a valid addition to any @code{stmts}.
bfa74976
RS
8362
8363What happens if a syntax error occurs in the middle of an @code{exp}? The
8364error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8365of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8366the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8367and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8368will be tokens to read before the next newline. So the rule is not
8369applicable in the ordinary way.
8370
8371But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8372the semantic context and part of the input. First it discards states
8373and objects from the stack until it gets back to a state in which the
bfa74976 8374@code{error} token is acceptable. (This means that the subexpressions
0860e383 8375already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8376At this point the @code{error} token can be shifted. Then, if the old
742e4900 8377lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8378tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8379this example, Bison reads and discards input until the next newline so
8380that the fourth rule can apply. Note that discarded symbols are
8381possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8382Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8383
8384The choice of error rules in the grammar is a choice of strategies for
8385error recovery. A simple and useful strategy is simply to skip the rest of
8386the current input line or current statement if an error is detected:
8387
8388@example
0860e383 8389stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8390@end example
8391
8392It is also useful to recover to the matching close-delimiter of an
8393opening-delimiter that has already been parsed. Otherwise the
8394close-delimiter will probably appear to be unmatched, and generate another,
8395spurious error message:
8396
8397@example
5e9b6624
AD
8398primary:
8399 '(' expr ')'
8400| '(' error ')'
8401@dots{}
8402;
bfa74976
RS
8403@end example
8404
8405Error recovery strategies are necessarily guesses. When they guess wrong,
8406one syntax error often leads to another. In the above example, the error
8407recovery rule guesses that an error is due to bad input within one
0860e383
AD
8408@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8409middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8410from the first error, another syntax error will be found straightaway,
8411since the text following the spurious semicolon is also an invalid
0860e383 8412@code{stmt}.
bfa74976
RS
8413
8414To prevent an outpouring of error messages, the parser will output no error
8415message for another syntax error that happens shortly after the first; only
8416after three consecutive input tokens have been successfully shifted will
8417error messages resume.
8418
8419Note that rules which accept the @code{error} token may have actions, just
8420as any other rules can.
8421
8422@findex yyerrok
8423You can make error messages resume immediately by using the macro
8424@code{yyerrok} in an action. If you do this in the error rule's action, no
8425error messages will be suppressed. This macro requires no arguments;
8426@samp{yyerrok;} is a valid C statement.
8427
8428@findex yyclearin
742e4900 8429The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8430this is unacceptable, then the macro @code{yyclearin} may be used to clear
8431this token. Write the statement @samp{yyclearin;} in the error rule's
8432action.
32c29292 8433@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8434
6e649e65 8435For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8436called that advances the input stream to some point where parsing should
8437once again commence. The next symbol returned by the lexical scanner is
742e4900 8438probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8439with @samp{yyclearin;}.
8440
8441@vindex YYRECOVERING
02103984
PE
8442The expression @code{YYRECOVERING ()} yields 1 when the parser
8443is recovering from a syntax error, and 0 otherwise.
8444Syntax error diagnostics are suppressed while recovering from a syntax
8445error.
bfa74976 8446
342b8b6e 8447@node Context Dependency
bfa74976
RS
8448@chapter Handling Context Dependencies
8449
8450The Bison paradigm is to parse tokens first, then group them into larger
8451syntactic units. In many languages, the meaning of a token is affected by
8452its context. Although this violates the Bison paradigm, certain techniques
8453(known as @dfn{kludges}) may enable you to write Bison parsers for such
8454languages.
8455
8456@menu
8457* Semantic Tokens:: Token parsing can depend on the semantic context.
8458* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8459* Tie-in Recovery:: Lexical tie-ins have implications for how
8460 error recovery rules must be written.
8461@end menu
8462
8463(Actually, ``kludge'' means any technique that gets its job done but is
8464neither clean nor robust.)
8465
342b8b6e 8466@node Semantic Tokens
bfa74976
RS
8467@section Semantic Info in Token Types
8468
8469The C language has a context dependency: the way an identifier is used
8470depends on what its current meaning is. For example, consider this:
8471
8472@example
8473foo (x);
8474@end example
8475
8476This looks like a function call statement, but if @code{foo} is a typedef
8477name, then this is actually a declaration of @code{x}. How can a Bison
8478parser for C decide how to parse this input?
8479
8a4281b9 8480The method used in GNU C is to have two different token types,
bfa74976
RS
8481@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8482identifier, it looks up the current declaration of the identifier in order
8483to decide which token type to return: @code{TYPENAME} if the identifier is
8484declared as a typedef, @code{IDENTIFIER} otherwise.
8485
8486The grammar rules can then express the context dependency by the choice of
8487token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8488but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8489@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8490is @emph{not} significant, such as in declarations that can shadow a
8491typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8492accepted---there is one rule for each of the two token types.
8493
8494This technique is simple to use if the decision of which kinds of
8495identifiers to allow is made at a place close to where the identifier is
8496parsed. But in C this is not always so: C allows a declaration to
8497redeclare a typedef name provided an explicit type has been specified
8498earlier:
8499
8500@example
3a4f411f
PE
8501typedef int foo, bar;
8502int baz (void)
d4fca427 8503@group
3a4f411f
PE
8504@{
8505 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8506 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8507 return foo (bar);
8508@}
d4fca427 8509@end group
bfa74976
RS
8510@end example
8511
8512Unfortunately, the name being declared is separated from the declaration
8513construct itself by a complicated syntactic structure---the ``declarator''.
8514
9ecbd125 8515As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8516all the nonterminal names changed: once for parsing a declaration in
8517which a typedef name can be redefined, and once for parsing a
8518declaration in which that can't be done. Here is a part of the
8519duplication, with actions omitted for brevity:
bfa74976
RS
8520
8521@example
d4fca427 8522@group
bfa74976 8523initdcl:
5e9b6624
AD
8524 declarator maybeasm '=' init
8525| declarator maybeasm
8526;
d4fca427 8527@end group
bfa74976 8528
d4fca427 8529@group
bfa74976 8530notype_initdcl:
5e9b6624
AD
8531 notype_declarator maybeasm '=' init
8532| notype_declarator maybeasm
8533;
d4fca427 8534@end group
bfa74976
RS
8535@end example
8536
8537@noindent
8538Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8539cannot. The distinction between @code{declarator} and
8540@code{notype_declarator} is the same sort of thing.
8541
8542There is some similarity between this technique and a lexical tie-in
8543(described next), in that information which alters the lexical analysis is
8544changed during parsing by other parts of the program. The difference is
8545here the information is global, and is used for other purposes in the
8546program. A true lexical tie-in has a special-purpose flag controlled by
8547the syntactic context.
8548
342b8b6e 8549@node Lexical Tie-ins
bfa74976
RS
8550@section Lexical Tie-ins
8551@cindex lexical tie-in
8552
8553One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8554which is set by Bison actions, whose purpose is to alter the way tokens are
8555parsed.
8556
8557For example, suppose we have a language vaguely like C, but with a special
8558construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8559an expression in parentheses in which all integers are hexadecimal. In
8560particular, the token @samp{a1b} must be treated as an integer rather than
8561as an identifier if it appears in that context. Here is how you can do it:
8562
8563@example
8564@group
8565%@{
38a92d50
PE
8566 int hexflag;
8567 int yylex (void);
8568 void yyerror (char const *);
bfa74976
RS
8569%@}
8570%%
8571@dots{}
8572@end group
8573@group
5e9b6624
AD
8574expr:
8575 IDENTIFIER
8576| constant
8577| HEX '(' @{ hexflag = 1; @}
8578 expr ')' @{ hexflag = 0; $$ = $4; @}
8579| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8580@dots{}
8581;
bfa74976
RS
8582@end group
8583
8584@group
8585constant:
5e9b6624
AD
8586 INTEGER
8587| STRING
8588;
bfa74976
RS
8589@end group
8590@end example
8591
8592@noindent
8593Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8594it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8595with letters are parsed as integers if possible.
8596
ff7571c0
JD
8597The declaration of @code{hexflag} shown in the prologue of the grammar
8598file is needed to make it accessible to the actions (@pxref{Prologue,
8599,The Prologue}). You must also write the code in @code{yylex} to obey
8600the flag.
bfa74976 8601
342b8b6e 8602@node Tie-in Recovery
bfa74976
RS
8603@section Lexical Tie-ins and Error Recovery
8604
8605Lexical tie-ins make strict demands on any error recovery rules you have.
8606@xref{Error Recovery}.
8607
8608The reason for this is that the purpose of an error recovery rule is to
8609abort the parsing of one construct and resume in some larger construct.
8610For example, in C-like languages, a typical error recovery rule is to skip
8611tokens until the next semicolon, and then start a new statement, like this:
8612
8613@example
5e9b6624
AD
8614stmt:
8615 expr ';'
8616| IF '(' expr ')' stmt @{ @dots{} @}
8617@dots{}
8618| error ';' @{ hexflag = 0; @}
8619;
bfa74976
RS
8620@end example
8621
8622If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8623construct, this error rule will apply, and then the action for the
8624completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8625remain set for the entire rest of the input, or until the next @code{hex}
8626keyword, causing identifiers to be misinterpreted as integers.
8627
8628To avoid this problem the error recovery rule itself clears @code{hexflag}.
8629
8630There may also be an error recovery rule that works within expressions.
8631For example, there could be a rule which applies within parentheses
8632and skips to the close-parenthesis:
8633
8634@example
8635@group
5e9b6624
AD
8636expr:
8637 @dots{}
8638| '(' expr ')' @{ $$ = $2; @}
8639| '(' error ')'
8640@dots{}
bfa74976
RS
8641@end group
8642@end example
8643
8644If this rule acts within the @code{hex} construct, it is not going to abort
8645that construct (since it applies to an inner level of parentheses within
8646the construct). Therefore, it should not clear the flag: the rest of
8647the @code{hex} construct should be parsed with the flag still in effect.
8648
8649What if there is an error recovery rule which might abort out of the
8650@code{hex} construct or might not, depending on circumstances? There is no
8651way you can write the action to determine whether a @code{hex} construct is
8652being aborted or not. So if you are using a lexical tie-in, you had better
8653make sure your error recovery rules are not of this kind. Each rule must
8654be such that you can be sure that it always will, or always won't, have to
8655clear the flag.
8656
ec3bc396
AD
8657@c ================================================== Debugging Your Parser
8658
342b8b6e 8659@node Debugging
bfa74976 8660@chapter Debugging Your Parser
ec3bc396 8661
93c150b6
AD
8662Developing a parser can be a challenge, especially if you don't understand
8663the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8664chapter explains how understand and debug a parser.
8665
8666The first sections focus on the static part of the parser: its structure.
8667They explain how to generate and read the detailed description of the
8668automaton. There are several formats available:
8669@itemize @minus
8670@item
8671as text, see @ref{Understanding, , Understanding Your Parser};
8672
8673@item
8674as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8675
8676@item
8677or as a markup report that can be turned, for instance, into HTML, see
8678@ref{Xml,, Visualizing your parser in multiple formats}.
8679@end itemize
8680
8681The last section focuses on the dynamic part of the parser: how to enable
8682and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8683Parser}).
ec3bc396
AD
8684
8685@menu
8686* Understanding:: Understanding the structure of your parser.
fc4fdd62 8687* Graphviz:: Getting a visual representation of the parser.
9c16d399 8688* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8689* Tracing:: Tracing the execution of your parser.
8690@end menu
8691
8692@node Understanding
8693@section Understanding Your Parser
8694
8695As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8696Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8697frequent than one would hope), looking at this automaton is required to
c949ada3 8698tune or simply fix a parser.
ec3bc396
AD
8699
8700The textual file is generated when the options @option{--report} or
e3fd1dcb 8701@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8702Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8703the parser implementation file name, and adding @samp{.output}
8704instead. Therefore, if the grammar file is @file{foo.y}, then the
8705parser implementation file is called @file{foo.tab.c} by default. As
8706a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8707
8708The following grammar file, @file{calc.y}, will be used in the sequel:
8709
8710@example
8711%token NUM STR
c949ada3 8712@group
ec3bc396
AD
8713%left '+' '-'
8714%left '*'
c949ada3 8715@end group
ec3bc396 8716%%
c949ada3 8717@group
5e9b6624
AD
8718exp:
8719 exp '+' exp
8720| exp '-' exp
8721| exp '*' exp
8722| exp '/' exp
8723| NUM
8724;
c949ada3 8725@end group
ec3bc396
AD
8726useless: STR;
8727%%
8728@end example
8729
88bce5a2
AD
8730@command{bison} reports:
8731
8732@example
8f0d265e
JD
8733calc.y: warning: 1 nonterminal useless in grammar
8734calc.y: warning: 1 rule useless in grammar
c949ada3
AD
8735calc.y:12.1-7: warning: nonterminal useless in grammar: useless
8736calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8737calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8738@end example
8739
8740When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8741creates a file @file{calc.output} with contents detailed below. The
8742order of the output and the exact presentation might vary, but the
8743interpretation is the same.
ec3bc396 8744
ec3bc396
AD
8745@noindent
8746@cindex token, useless
8747@cindex useless token
8748@cindex nonterminal, useless
8749@cindex useless nonterminal
8750@cindex rule, useless
8751@cindex useless rule
62243aa5 8752The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8753nonterminals and rules are removed in order to produce a smaller parser, but
8754useless tokens are preserved, since they might be used by the scanner (note
8755the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8756
8757@example
29e20e22 8758Nonterminals useless in grammar
ec3bc396
AD
8759 useless
8760
29e20e22 8761Terminals unused in grammar
ec3bc396
AD
8762 STR
8763
29e20e22
AD
8764Rules useless in grammar
8765 6 useless: STR
ec3bc396
AD
8766@end example
8767
8768@noindent
29e20e22
AD
8769The next section lists states that still have conflicts.
8770
8771@example
8772State 8 conflicts: 1 shift/reduce
8773State 9 conflicts: 1 shift/reduce
8774State 10 conflicts: 1 shift/reduce
8775State 11 conflicts: 4 shift/reduce
8776@end example
8777
8778@noindent
8779Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8780
8781@example
8782Grammar
8783
29e20e22
AD
8784 0 $accept: exp $end
8785
8786 1 exp: exp '+' exp
8787 2 | exp '-' exp
8788 3 | exp '*' exp
8789 4 | exp '/' exp
8790 5 | NUM
ec3bc396
AD
8791@end example
8792
8793@noindent
8794and reports the uses of the symbols:
8795
8796@example
d4fca427 8797@group
ec3bc396
AD
8798Terminals, with rules where they appear
8799
88bce5a2 8800$end (0) 0
ec3bc396
AD
8801'*' (42) 3
8802'+' (43) 1
8803'-' (45) 2
8804'/' (47) 4
8805error (256)
8806NUM (258) 5
29e20e22 8807STR (259)
d4fca427 8808@end group
ec3bc396 8809
d4fca427 8810@group
ec3bc396
AD
8811Nonterminals, with rules where they appear
8812
29e20e22 8813$accept (9)
ec3bc396 8814 on left: 0
29e20e22 8815exp (10)
ec3bc396 8816 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8817@end group
ec3bc396
AD
8818@end example
8819
8820@noindent
8821@cindex item
8822@cindex pointed rule
8823@cindex rule, pointed
8824Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8825with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8826item is a production rule together with a point (@samp{.}) marking
8827the location of the input cursor.
ec3bc396
AD
8828
8829@example
c949ada3 8830State 0
ec3bc396 8831
29e20e22 8832 0 $accept: . exp $end
ec3bc396 8833
29e20e22 8834 NUM shift, and go to state 1
ec3bc396 8835
29e20e22 8836 exp go to state 2
ec3bc396
AD
8837@end example
8838
8839This reads as follows: ``state 0 corresponds to being at the very
8840beginning of the parsing, in the initial rule, right before the start
8841symbol (here, @code{exp}). When the parser returns to this state right
8842after having reduced a rule that produced an @code{exp}, the control
8843flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8844symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8845the parse stack, and the control flow jumps to state 1. Any other
742e4900 8846lookahead triggers a syntax error.''
ec3bc396
AD
8847
8848@cindex core, item set
8849@cindex item set core
8850@cindex kernel, item set
8851@cindex item set core
8852Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8853report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8854at the beginning of any rule deriving an @code{exp}. By default Bison
8855reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8856you want to see more detail you can invoke @command{bison} with
35880c82 8857@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8858
8859@example
c949ada3 8860State 0
ec3bc396 8861
29e20e22
AD
8862 0 $accept: . exp $end
8863 1 exp: . exp '+' exp
8864 2 | . exp '-' exp
8865 3 | . exp '*' exp
8866 4 | . exp '/' exp
8867 5 | . NUM
ec3bc396 8868
29e20e22 8869 NUM shift, and go to state 1
ec3bc396 8870
29e20e22 8871 exp go to state 2
ec3bc396
AD
8872@end example
8873
8874@noindent
29e20e22 8875In the state 1@dots{}
ec3bc396
AD
8876
8877@example
c949ada3 8878State 1
ec3bc396 8879
29e20e22 8880 5 exp: NUM .
ec3bc396 8881
29e20e22 8882 $default reduce using rule 5 (exp)
ec3bc396
AD
8883@end example
8884
8885@noindent
742e4900 8886the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 8887(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 8888State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
8889jump to state 2 (@samp{exp: go to state 2}).
8890
8891@example
c949ada3 8892State 2
ec3bc396 8893
29e20e22
AD
8894 0 $accept: exp . $end
8895 1 exp: exp . '+' exp
8896 2 | exp . '-' exp
8897 3 | exp . '*' exp
8898 4 | exp . '/' exp
ec3bc396 8899
29e20e22
AD
8900 $end shift, and go to state 3
8901 '+' shift, and go to state 4
8902 '-' shift, and go to state 5
8903 '*' shift, and go to state 6
8904 '/' shift, and go to state 7
ec3bc396
AD
8905@end example
8906
8907@noindent
8908In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8909because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8910@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8911jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8912Since there is no default action, any lookahead not listed triggers a syntax
8913error.
ec3bc396 8914
eb45ef3b 8915@cindex accepting state
ec3bc396
AD
8916The state 3 is named the @dfn{final state}, or the @dfn{accepting
8917state}:
8918
8919@example
c949ada3 8920State 3
ec3bc396 8921
29e20e22 8922 0 $accept: exp $end .
ec3bc396 8923
29e20e22 8924 $default accept
ec3bc396
AD
8925@end example
8926
8927@noindent
29e20e22
AD
8928the initial rule is completed (the start symbol and the end-of-input were
8929read), the parsing exits successfully.
ec3bc396
AD
8930
8931The interpretation of states 4 to 7 is straightforward, and is left to
8932the reader.
8933
8934@example
c949ada3 8935State 4
ec3bc396 8936
29e20e22 8937 1 exp: exp '+' . exp
ec3bc396 8938
29e20e22
AD
8939 NUM shift, and go to state 1
8940
8941 exp go to state 8
ec3bc396 8942
ec3bc396 8943
c949ada3 8944State 5
ec3bc396 8945
29e20e22
AD
8946 2 exp: exp '-' . exp
8947
8948 NUM shift, and go to state 1
ec3bc396 8949
29e20e22 8950 exp go to state 9
ec3bc396 8951
ec3bc396 8952
c949ada3 8953State 6
ec3bc396 8954
29e20e22 8955 3 exp: exp '*' . exp
ec3bc396 8956
29e20e22
AD
8957 NUM shift, and go to state 1
8958
8959 exp go to state 10
ec3bc396 8960
ec3bc396 8961
c949ada3 8962State 7
ec3bc396 8963
29e20e22 8964 4 exp: exp '/' . exp
ec3bc396 8965
29e20e22 8966 NUM shift, and go to state 1
ec3bc396 8967
29e20e22 8968 exp go to state 11
ec3bc396
AD
8969@end example
8970
5a99098d
PE
8971As was announced in beginning of the report, @samp{State 8 conflicts:
89721 shift/reduce}:
ec3bc396
AD
8973
8974@example
c949ada3 8975State 8
ec3bc396 8976
29e20e22
AD
8977 1 exp: exp . '+' exp
8978 1 | exp '+' exp .
8979 2 | exp . '-' exp
8980 3 | exp . '*' exp
8981 4 | exp . '/' exp
ec3bc396 8982
29e20e22
AD
8983 '*' shift, and go to state 6
8984 '/' shift, and go to state 7
ec3bc396 8985
29e20e22
AD
8986 '/' [reduce using rule 1 (exp)]
8987 $default reduce using rule 1 (exp)
ec3bc396
AD
8988@end example
8989
742e4900 8990Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8991either shifting (and going to state 7), or reducing rule 1. The
8992conflict means that either the grammar is ambiguous, or the parser lacks
8993information to make the right decision. Indeed the grammar is
8994ambiguous, as, since we did not specify the precedence of @samp{/}, the
8995sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8996NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8997NUM}, which corresponds to reducing rule 1.
8998
eb45ef3b 8999Because in deterministic parsing a single decision can be made, Bison
ec3bc396 9000arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 9001Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
9002square brackets.
9003
9004Note that all the previous states had a single possible action: either
9005shifting the next token and going to the corresponding state, or
9006reducing a single rule. In the other cases, i.e., when shifting
9007@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
9008possible, the lookahead is required to select the action. State 8 is
9009one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
9010is shifting, otherwise the action is reducing rule 1. In other words,
9011the first two items, corresponding to rule 1, are not eligible when the
742e4900 9012lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 9013precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
9014with some set of possible lookahead tokens. When run with
9015@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
9016
9017@example
c949ada3 9018State 8
ec3bc396 9019
29e20e22
AD
9020 1 exp: exp . '+' exp
9021 1 | exp '+' exp . [$end, '+', '-', '/']
9022 2 | exp . '-' exp
9023 3 | exp . '*' exp
9024 4 | exp . '/' exp
9025
9026 '*' shift, and go to state 6
9027 '/' shift, and go to state 7
ec3bc396 9028
29e20e22
AD
9029 '/' [reduce using rule 1 (exp)]
9030 $default reduce using rule 1 (exp)
9031@end example
9032
9033Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9034the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9035solved thanks to associativity and precedence directives. If invoked with
9036@option{--report=solved}, Bison includes information about the solved
9037conflicts in the report:
ec3bc396 9038
29e20e22
AD
9039@example
9040Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9041Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9042Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9043@end example
9044
29e20e22 9045
ec3bc396
AD
9046The remaining states are similar:
9047
9048@example
d4fca427 9049@group
c949ada3 9050State 9
ec3bc396 9051
29e20e22
AD
9052 1 exp: exp . '+' exp
9053 2 | exp . '-' exp
9054 2 | exp '-' exp .
9055 3 | exp . '*' exp
9056 4 | exp . '/' exp
ec3bc396 9057
29e20e22
AD
9058 '*' shift, and go to state 6
9059 '/' shift, and go to state 7
ec3bc396 9060
29e20e22
AD
9061 '/' [reduce using rule 2 (exp)]
9062 $default reduce using rule 2 (exp)
d4fca427 9063@end group
ec3bc396 9064
d4fca427 9065@group
c949ada3 9066State 10
ec3bc396 9067
29e20e22
AD
9068 1 exp: exp . '+' exp
9069 2 | exp . '-' exp
9070 3 | exp . '*' exp
9071 3 | exp '*' exp .
9072 4 | exp . '/' exp
ec3bc396 9073
29e20e22 9074 '/' shift, and go to state 7
ec3bc396 9075
29e20e22
AD
9076 '/' [reduce using rule 3 (exp)]
9077 $default reduce using rule 3 (exp)
d4fca427 9078@end group
ec3bc396 9079
d4fca427 9080@group
c949ada3 9081State 11
ec3bc396 9082
29e20e22
AD
9083 1 exp: exp . '+' exp
9084 2 | exp . '-' exp
9085 3 | exp . '*' exp
9086 4 | exp . '/' exp
9087 4 | exp '/' exp .
9088
9089 '+' shift, and go to state 4
9090 '-' shift, and go to state 5
9091 '*' shift, and go to state 6
9092 '/' shift, and go to state 7
9093
9094 '+' [reduce using rule 4 (exp)]
9095 '-' [reduce using rule 4 (exp)]
9096 '*' [reduce using rule 4 (exp)]
9097 '/' [reduce using rule 4 (exp)]
9098 $default reduce using rule 4 (exp)
d4fca427 9099@end group
ec3bc396
AD
9100@end example
9101
9102@noindent
fa7e68c3 9103Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9104precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9105also because the associativity of @samp{/} is not specified.
ec3bc396 9106
c949ada3
AD
9107Bison may also produce an HTML version of this output, via an XML file and
9108XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9109
fc4fdd62
TR
9110@c ================================================= Graphical Representation
9111
9112@node Graphviz
9113@section Visualizing Your Parser
9114@cindex dot
9115
9116As another means to gain better understanding of the shift/reduce
9117automaton corresponding to the Bison parser, a DOT file can be generated. Note
9118that debugging a real grammar with this is tedious at best, and impractical
9119most of the times, because the generated files are huge (the generation of
9120a PDF or PNG file from it will take very long, and more often than not it will
9121fail due to memory exhaustion). This option was rather designed for beginners,
9122to help them understand LR parsers.
9123
bfdcc3a0
AD
9124This file is generated when the @option{--graph} option is specified
9125(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9126@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9127adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9128Graphviz output file is called @file{foo.dot}. A DOT file may also be
9129produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9130parser in multiple formats}).
9131
fc4fdd62
TR
9132
9133The following grammar file, @file{rr.y}, will be used in the sequel:
9134
9135@example
9136%%
9137@group
9138exp: a ";" | b ".";
9139a: "0";
9140b: "0";
9141@end group
9142@end example
9143
c949ada3
AD
9144The graphical output
9145@ifnotinfo
9146(see @ref{fig:graph})
9147@end ifnotinfo
9148is very similar to the textual one, and as such it is easier understood by
9149making direct comparisons between them. @xref{Debugging, , Debugging Your
9150Parser}, for a detailled analysis of the textual report.
9151
9152@ifnotinfo
9153@float Figure,fig:graph
9154@image{figs/example, 430pt}
9155@caption{A graphical rendering of the parser.}
9156@end float
9157@end ifnotinfo
fc4fdd62
TR
9158
9159@subheading Graphical Representation of States
9160
9161The items (pointed rules) for each state are grouped together in graph nodes.
9162Their numbering is the same as in the verbose file. See the following points,
9163about transitions, for examples
9164
9165When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9166needed, are shown next to the relevant rule between square brackets as a
9167comma separated list. This is the case in the figure for the representation of
9168reductions, below.
9169
9170@sp 1
9171
9172The transitions are represented as directed edges between the current and
9173the target states.
9174
9175@subheading Graphical Representation of Shifts
9176
9177Shifts are shown as solid arrows, labelled with the lookahead token for that
9178shift. The following describes a reduction in the @file{rr.output} file:
9179
9180@example
9181@group
c949ada3 9182State 3
fc4fdd62
TR
9183
9184 1 exp: a . ";"
9185
9186 ";" shift, and go to state 6
9187@end group
9188@end example
9189
9190A Graphviz rendering of this portion of the graph could be:
9191
9192@center @image{figs/example-shift, 100pt}
9193
9194@subheading Graphical Representation of Reductions
9195
9196Reductions are shown as solid arrows, leading to a diamond-shaped node
9197bearing the number of the reduction rule. The arrow is labelled with the
9198appropriate comma separated lookahead tokens. If the reduction is the default
9199action for the given state, there is no such label.
9200
9201This is how reductions are represented in the verbose file @file{rr.output}:
9202@example
c949ada3 9203State 1
fc4fdd62
TR
9204
9205 3 a: "0" . [";"]
9206 4 b: "0" . ["."]
9207
9208 "." reduce using rule 4 (b)
9209 $default reduce using rule 3 (a)
9210@end example
9211
9212A Graphviz rendering of this portion of the graph could be:
9213
9214@center @image{figs/example-reduce, 120pt}
9215
9216When unresolved conflicts are present, because in deterministic parsing
9217a single decision can be made, Bison can arbitrarily choose to disable a
9218reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9219are distinguished by a red filling color on these nodes, just like how they are
9220reported between square brackets in the verbose file.
9221
c949ada3
AD
9222The reduction corresponding to the rule number 0 is the acceptation
9223state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9224
9225@subheading Graphical representation of go tos
9226
9227The @samp{go to} jump transitions are represented as dotted lines bearing
9228the name of the rule being jumped to.
9229
9c16d399
TR
9230@c ================================================= XML
9231
9232@node Xml
9233@section Visualizing your parser in multiple formats
9234@cindex xml
9235
9236Bison supports two major report formats: textual output
c949ada3
AD
9237(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9238with option @option{--verbose}, and DOT
9239(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9240option @option{--graph}. However,
9c16d399
TR
9241another alternative is to output an XML file that may then be, with
9242@command{xsltproc}, rendered as either a raw text format equivalent to the
9243verbose file, or as an HTML version of the same file, with clickable
9244transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9245XSLT have no difference whatsoever with those obtained by invoking
9246@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9247
c949ada3 9248The XML file is generated when the options @option{-x} or
9c16d399
TR
9249@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9250If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9251from the parser implementation file name, and adding @samp{.xml} instead.
9252For instance, if the grammar file is @file{foo.y}, the default XML output
9253file is @file{foo.xml}.
9254
9255Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9256files to apply to the XML file. Their names are non-ambiguous:
9257
9258@table @file
9259@item xml2dot.xsl
be3517b0 9260Used to output a copy of the DOT visualization of the automaton.
9c16d399 9261@item xml2text.xsl
c949ada3 9262Used to output a copy of the @samp{.output} file.
9c16d399 9263@item xml2xhtml.xsl
c949ada3 9264Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9265@end table
9266
c949ada3 9267Sample usage (requires @command{xsltproc}):
9c16d399 9268@example
c949ada3 9269$ bison -x gr.y
9c16d399
TR
9270@group
9271$ bison --print-datadir
9272/usr/local/share/bison
9273@end group
c949ada3 9274$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9275@end example
9276
fc4fdd62 9277@c ================================================= Tracing
ec3bc396
AD
9278
9279@node Tracing
9280@section Tracing Your Parser
bfa74976
RS
9281@findex yydebug
9282@cindex debugging
9283@cindex tracing the parser
9284
93c150b6
AD
9285When a Bison grammar compiles properly but parses ``incorrectly'', the
9286@code{yydebug} parser-trace feature helps figuring out why.
9287
9288@menu
9289* Enabling Traces:: Activating run-time trace support
9290* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9291* The YYPRINT Macro:: Obsolete interface for semantic value reports
9292@end menu
bfa74976 9293
93c150b6
AD
9294@node Enabling Traces
9295@subsection Enabling Traces
3ded9a63
AD
9296There are several means to enable compilation of trace facilities:
9297
9298@table @asis
9299@item the macro @code{YYDEBUG}
9300@findex YYDEBUG
9301Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9302parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9303@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9304YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9305Prologue}).
9306
e6ae99fe 9307If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9308Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9309api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9310tracing feature (enabled if and only if nonzero); otherwise tracing is
9311enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9312
9313@item the option @option{-t} (POSIX Yacc compliant)
9314@itemx the option @option{--debug} (Bison extension)
9315Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
9316Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
9317otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9318
9319@item the directive @samp{%debug}
9320@findex %debug
fa819509
AD
9321Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9322Summary}). This Bison extension is maintained for backward
9323compatibility with previous versions of Bison.
9324
9325@item the variable @samp{parse.trace}
9326@findex %define parse.trace
35c1e5f0
JD
9327Add the @samp{%define parse.trace} directive (@pxref{%define
9328Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9329(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9330useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9331portability matter to you, this is the preferred solution.
3ded9a63
AD
9332@end table
9333
fa819509 9334We suggest that you always enable the trace option so that debugging is
3ded9a63 9335always possible.
bfa74976 9336
93c150b6 9337@findex YYFPRINTF
02a81e05 9338The trace facility outputs messages with macro calls of the form
e2742e46 9339@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9340@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9341arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9342define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9343and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9344
9345Once you have compiled the program with trace facilities, the way to
9346request a trace is to store a nonzero value in the variable @code{yydebug}.
9347You can do this by making the C code do it (in @code{main}, perhaps), or
9348you can alter the value with a C debugger.
9349
9350Each step taken by the parser when @code{yydebug} is nonzero produces a
9351line or two of trace information, written on @code{stderr}. The trace
9352messages tell you these things:
9353
9354@itemize @bullet
9355@item
9356Each time the parser calls @code{yylex}, what kind of token was read.
9357
9358@item
9359Each time a token is shifted, the depth and complete contents of the
9360state stack (@pxref{Parser States}).
9361
9362@item
9363Each time a rule is reduced, which rule it is, and the complete contents
9364of the state stack afterward.
9365@end itemize
9366
93c150b6
AD
9367To make sense of this information, it helps to refer to the automaton
9368description file (@pxref{Understanding, ,Understanding Your Parser}).
9369This file shows the meaning of each state in terms of
704a47c4
AD
9370positions in various rules, and also what each state will do with each
9371possible input token. As you read the successive trace messages, you
9372can see that the parser is functioning according to its specification in
9373the listing file. Eventually you will arrive at the place where
9374something undesirable happens, and you will see which parts of the
9375grammar are to blame.
bfa74976 9376
93c150b6 9377The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9378debuggers on it, but it's not easy to interpret what it is doing. The
9379parser function is a finite-state machine interpreter, and aside from
9380the actions it executes the same code over and over. Only the values
9381of variables show where in the grammar it is working.
bfa74976 9382
93c150b6
AD
9383@node Mfcalc Traces
9384@subsection Enabling Debug Traces for @code{mfcalc}
9385
9386The debugging information normally gives the token type of each token read,
9387but not its semantic value. The @code{%printer} directive allows specify
9388how semantic values are reported, see @ref{Printer Decl, , Printing
9389Semantic Values}. For backward compatibility, Yacc like C parsers may also
9390use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9391Macro}), but its use is discouraged.
9392
9393As a demonstration of @code{%printer}, consider the multi-function
9394calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9395traces, and semantic value reports, insert the following directives in its
9396prologue:
9397
9398@comment file: mfcalc.y: 2
9399@example
9400/* Generate the parser description file. */
9401%verbose
9402/* Enable run-time traces (yydebug). */
9403%define parse.trace
9404
9405/* Formatting semantic values. */
9406%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9407%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
9408%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
9409@end example
9410
9411The @code{%define} directive instructs Bison to generate run-time trace
9412support. Then, activation of these traces is controlled at run-time by the
9413@code{yydebug} variable, which is disabled by default. Because these traces
9414will refer to the ``states'' of the parser, it is helpful to ask for the
9415creation of a description of that parser; this is the purpose of (admittedly
9416ill-named) @code{%verbose} directive.
9417
9418The set of @code{%printer} directives demonstrates how to format the
9419semantic value in the traces. Note that the specification can be done
9420either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
9421tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
9422printer will be used for them.
9423
9424Here is a sample of the information provided by run-time traces. The traces
9425are sent onto standard error.
9426
9427@example
9428$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9429Starting parse
9430Entering state 0
9431Reducing stack by rule 1 (line 34):
9432-> $$ = nterm input ()
9433Stack now 0
9434Entering state 1
9435@end example
9436
9437@noindent
9438This first batch shows a specific feature of this grammar: the first rule
9439(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9440to look for the first token. The resulting left-hand symbol (@code{$$}) is
9441a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9442
9443Then the parser calls the scanner.
9444@example
9445Reading a token: Next token is token FNCT (sin())
9446Shifting token FNCT (sin())
9447Entering state 6
9448@end example
9449
9450@noindent
9451That token (@code{token}) is a function (@code{FNCT}) whose value is
9452@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9453The parser stores (@code{Shifting}) that token, and others, until it can do
9454something about it.
9455
9456@example
9457Reading a token: Next token is token '(' ()
9458Shifting token '(' ()
9459Entering state 14
9460Reading a token: Next token is token NUM (1.000000)
9461Shifting token NUM (1.000000)
9462Entering state 4
9463Reducing stack by rule 6 (line 44):
9464 $1 = token NUM (1.000000)
9465-> $$ = nterm exp (1.000000)
9466Stack now 0 1 6 14
9467Entering state 24
9468@end example
9469
9470@noindent
9471The previous reduction demonstrates the @code{%printer} directive for
c949ada3 9472@code{<val>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9473@code{exp} have @samp{1} as value.
9474
9475@example
9476Reading a token: Next token is token '-' ()
9477Shifting token '-' ()
9478Entering state 17
9479Reading a token: Next token is token NUM (1.000000)
9480Shifting token NUM (1.000000)
9481Entering state 4
9482Reducing stack by rule 6 (line 44):
9483 $1 = token NUM (1.000000)
9484-> $$ = nterm exp (1.000000)
9485Stack now 0 1 6 14 24 17
9486Entering state 26
9487Reading a token: Next token is token ')' ()
9488Reducing stack by rule 11 (line 49):
9489 $1 = nterm exp (1.000000)
9490 $2 = token '-' ()
9491 $3 = nterm exp (1.000000)
9492-> $$ = nterm exp (0.000000)
9493Stack now 0 1 6 14
9494Entering state 24
9495@end example
9496
9497@noindent
9498The rule for the subtraction was just reduced. The parser is about to
9499discover the end of the call to @code{sin}.
9500
9501@example
9502Next token is token ')' ()
9503Shifting token ')' ()
9504Entering state 31
9505Reducing stack by rule 9 (line 47):
9506 $1 = token FNCT (sin())
9507 $2 = token '(' ()
9508 $3 = nterm exp (0.000000)
9509 $4 = token ')' ()
9510-> $$ = nterm exp (0.000000)
9511Stack now 0 1
9512Entering state 11
9513@end example
9514
9515@noindent
9516Finally, the end-of-line allow the parser to complete the computation, and
9517display its result.
9518
9519@example
9520Reading a token: Next token is token '\n' ()
9521Shifting token '\n' ()
9522Entering state 22
9523Reducing stack by rule 4 (line 40):
9524 $1 = nterm exp (0.000000)
9525 $2 = token '\n' ()
9526@result{} 0
9527-> $$ = nterm line ()
9528Stack now 0 1
9529Entering state 10
9530Reducing stack by rule 2 (line 35):
9531 $1 = nterm input ()
9532 $2 = nterm line ()
9533-> $$ = nterm input ()
9534Stack now 0
9535Entering state 1
9536@end example
9537
9538The parser has returned into state 1, in which it is waiting for the next
9539expression to evaluate, or for the end-of-file token, which causes the
9540completion of the parsing.
9541
9542@example
9543Reading a token: Now at end of input.
9544Shifting token $end ()
9545Entering state 2
9546Stack now 0 1 2
9547Cleanup: popping token $end ()
9548Cleanup: popping nterm input ()
9549@end example
9550
9551
9552@node The YYPRINT Macro
9553@subsection The @code{YYPRINT} Macro
9554
bfa74976 9555@findex YYPRINT
93c150b6
AD
9556Before @code{%printer} support, semantic values could be displayed using the
9557@code{YYPRINT} macro, which works only for terminal symbols and only with
9558the @file{yacc.c} skeleton.
9559
9560@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9561@findex YYPRINT
9562If you define @code{YYPRINT}, it should take three arguments. The parser
9563will pass a standard I/O stream, the numeric code for the token type, and
9564the token value (from @code{yylval}).
9565
9566For @file{yacc.c} only. Obsoleted by @code{%printer}.
9567@end deffn
bfa74976
RS
9568
9569Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9570calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9571
c93f22fc 9572@example
38a92d50
PE
9573%@{
9574 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9575 #define YYPRINT(File, Type, Value) \
9576 print_token_value (File, Type, Value)
38a92d50
PE
9577%@}
9578
9579@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9580
9581static void
831d3c99 9582print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9583@{
9584 if (type == VAR)
d3c4e709 9585 fprintf (file, "%s", value.tptr->name);
bfa74976 9586 else if (type == NUM)
d3c4e709 9587 fprintf (file, "%d", value.val);
bfa74976 9588@}
c93f22fc 9589@end example
bfa74976 9590
ec3bc396
AD
9591@c ================================================= Invoking Bison
9592
342b8b6e 9593@node Invocation
bfa74976
RS
9594@chapter Invoking Bison
9595@cindex invoking Bison
9596@cindex Bison invocation
9597@cindex options for invoking Bison
9598
9599The usual way to invoke Bison is as follows:
9600
9601@example
9602bison @var{infile}
9603@end example
9604
9605Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9606@samp{.y}. The parser implementation file's name is made by replacing
9607the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9608Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9609the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9610also possible, in case you are writing C++ code instead of C in your
9611grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9612output files will take an extension like the given one as input
9613(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9614feature takes effect with all options that manipulate file names like
234a3be3
AD
9615@samp{-o} or @samp{-d}.
9616
9617For example :
9618
9619@example
9620bison -d @var{infile.yxx}
9621@end example
84163231 9622@noindent
72d2299c 9623will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9624
9625@example
b56471a6 9626bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9627@end example
84163231 9628@noindent
234a3be3
AD
9629will produce @file{output.c++} and @file{outfile.h++}.
9630
8a4281b9 9631For compatibility with POSIX, the standard Bison
397ec073
PE
9632distribution also contains a shell script called @command{yacc} that
9633invokes Bison with the @option{-y} option.
9634
bfa74976 9635@menu
13863333 9636* Bison Options:: All the options described in detail,
c827f760 9637 in alphabetical order by short options.
bfa74976 9638* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9639* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9640@end menu
9641
342b8b6e 9642@node Bison Options
bfa74976
RS
9643@section Bison Options
9644
9645Bison supports both traditional single-letter options and mnemonic long
9646option names. Long option names are indicated with @samp{--} instead of
9647@samp{-}. Abbreviations for option names are allowed as long as they
9648are unique. When a long option takes an argument, like
9649@samp{--file-prefix}, connect the option name and the argument with
9650@samp{=}.
9651
9652Here is a list of options that can be used with Bison, alphabetized by
9653short option. It is followed by a cross key alphabetized by long
9654option.
9655
89cab50d
AD
9656@c Please, keep this ordered as in `bison --help'.
9657@noindent
9658Operations modes:
9659@table @option
9660@item -h
9661@itemx --help
9662Print a summary of the command-line options to Bison and exit.
bfa74976 9663
89cab50d
AD
9664@item -V
9665@itemx --version
9666Print the version number of Bison and exit.
bfa74976 9667
f7ab6a50
PE
9668@item --print-localedir
9669Print the name of the directory containing locale-dependent data.
9670
a0de5091
JD
9671@item --print-datadir
9672Print the name of the directory containing skeletons and XSLT.
9673
89cab50d
AD
9674@item -y
9675@itemx --yacc
ff7571c0
JD
9676Act more like the traditional Yacc command. This can cause different
9677diagnostics to be generated, and may change behavior in other minor
9678ways. Most importantly, imitate Yacc's output file name conventions,
9679so that the parser implementation file is called @file{y.tab.c}, and
9680the other outputs are called @file{y.output} and @file{y.tab.h}.
9681Also, if generating a deterministic parser in C, generate
9682@code{#define} statements in addition to an @code{enum} to associate
9683token numbers with token names. Thus, the following shell script can
9684substitute for Yacc, and the Bison distribution contains such a script
9685for compatibility with POSIX:
bfa74976 9686
89cab50d 9687@example
397ec073 9688#! /bin/sh
26e06a21 9689bison -y "$@@"
89cab50d 9690@end example
54662697
PE
9691
9692The @option{-y}/@option{--yacc} option is intended for use with
9693traditional Yacc grammars. If your grammar uses a Bison extension
9694like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9695this option is specified.
9696
1d5b3c08
JD
9697@item -W [@var{category}]
9698@itemx --warnings[=@var{category}]
118d4978
AD
9699Output warnings falling in @var{category}. @var{category} can be one
9700of:
9701@table @code
9702@item midrule-values
8e55b3aa
JD
9703Warn about mid-rule values that are set but not used within any of the actions
9704of the parent rule.
9705For example, warn about unused @code{$2} in:
118d4978
AD
9706
9707@example
9708exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9709@end example
9710
8e55b3aa
JD
9711Also warn about mid-rule values that are used but not set.
9712For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9713
9714@example
5e9b6624 9715exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9716@end example
9717
9718These warnings are not enabled by default since they sometimes prove to
9719be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9720@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9721
118d4978 9722@item yacc
8a4281b9 9723Incompatibilities with POSIX Yacc.
118d4978 9724
786743d5
JD
9725@item conflicts-sr
9726@itemx conflicts-rr
9727S/R and R/R conflicts. These warnings are enabled by default. However, if
9728the @code{%expect} or @code{%expect-rr} directive is specified, an
9729unexpected number of conflicts is an error, and an expected number of
9730conflicts is not reported, so @option{-W} and @option{--warning} then have
9731no effect on the conflict report.
9732
518e8830
AD
9733@item deprecated
9734Deprecated constructs whose support will be removed in future versions of
9735Bison.
9736
cc2235ac
VT
9737@item precedence
9738Useless precedence and associativity directives. Disabled by default.
9739
9740Consider for instance the following grammar:
9741
9742@example
9743@group
9744%nonassoc "="
9745%left "+"
9746%left "*"
9747%precedence "("
9748@end group
9749%%
9750@group
9751stmt:
9752 exp
9753| "var" "=" exp
9754;
9755@end group
9756
9757@group
9758exp:
9759 exp "+" exp
9760| exp "*" "num"
9761| "(" exp ")"
9762| "num"
9763;
9764@end group
9765@end example
9766
9767Bison reports:
9768
9769@c cannot leave the location and the [-Wprecedence] for lack of
9770@c width in PDF.
9771@example
9772@group
9773warning: useless precedence and associativity for "="
9774 %nonassoc "="
9775 ^^^
9776@end group
9777@group
9778warning: useless associativity for "*", use %precedence
9779 %left "*"
9780 ^^^
9781@end group
9782@group
9783warning: useless precedence for "("
9784 %precedence "("
9785 ^^^
9786@end group
9787@end example
9788
9789One would get the exact same parser with the following directives instead:
9790
9791@example
9792@group
9793%left "+"
9794%precedence "*"
9795@end group
9796@end example
9797
c39014ae
JD
9798@item other
9799All warnings not categorized above. These warnings are enabled by default.
9800
9801This category is provided merely for the sake of completeness. Future
9802releases of Bison may move warnings from this category to new, more specific
9803categories.
9804
118d4978 9805@item all
8e55b3aa 9806All the warnings.
118d4978 9807@item none
8e55b3aa 9808Turn off all the warnings.
118d4978 9809@item error
1048a1c9 9810See @option{-Werror}, below.
118d4978
AD
9811@end table
9812
9813A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9814instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9815POSIX Yacc incompatibilities.
1048a1c9
AD
9816
9817@item -Werror[=@var{category}]
9818@itemx -Wno-error[=@var{category}]
9819Enable warnings falling in @var{category}, and treat them as errors. If no
9820@var{category} is given, it defaults to making all enabled warnings into errors.
9821
9822@var{category} is the same as for @option{--warnings}, with the exception that
9823it may not be prefixed with @samp{no-} (see above).
9824
9825Prefixed with @samp{no}, it deactivates the error treatment for this
9826@var{category}. However, the warning itself won't be disabled, or enabled, by
9827this option.
9828
9829Note that the precedence of the @samp{=} and @samp{,} operators is such that
9830the following commands are @emph{not} equivalent, as the first will not treat
9831S/R conflicts as errors.
9832
9833@example
9834$ bison -Werror=yacc,conflicts-sr input.y
9835$ bison -Werror=yacc,error=conflicts-sr input.y
9836@end example
f3ead217 9837
7bada535
TR
9838@item -f [@var{feature}]
9839@itemx --feature[=@var{feature}]
9840Activate miscellaneous @var{feature}. @var{feature} can be one of:
9841@table @code
9842@item caret
9843@itemx diagnostics-show-caret
9844Show caret errors, in a manner similar to GCC's
9845@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
9846location provided with the message is used to quote the corresponding line of
9847the source file, underlining the important part of it with carets (^). Here is
c949ada3 9848an example, using the following file @file{in.y}:
7bada535
TR
9849
9850@example
9851%type <ival> exp
9852%%
9853exp: exp '+' exp @{ $exp = $1 + $2; @};
9854@end example
9855
016426c1 9856When invoked with @option{-fcaret} (or nothing), Bison will report:
7bada535
TR
9857
9858@example
9859@group
c949ada3 9860in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
9861 exp: exp '+' exp @{ $exp = $1 + $2; @};
9862 ^^^^
9863@end group
9864@group
c949ada3 9865in.y:3.1-3: refers to: $exp at $$
7bada535
TR
9866 exp: exp '+' exp @{ $exp = $1 + $2; @};
9867 ^^^
9868@end group
9869@group
c949ada3 9870in.y:3.6-8: refers to: $exp at $1
7bada535
TR
9871 exp: exp '+' exp @{ $exp = $1 + $2; @};
9872 ^^^
9873@end group
9874@group
c949ada3 9875in.y:3.14-16: refers to: $exp at $3
7bada535
TR
9876 exp: exp '+' exp @{ $exp = $1 + $2; @};
9877 ^^^
9878@end group
9879@group
c949ada3 9880in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
9881 exp: exp '+' exp @{ $exp = $1 + $2; @};
9882 ^^
9883@end group
9884@end example
9885
016426c1
TR
9886Whereas, when invoked with @option{-fno-caret}, Bison will only report:
9887
9888@example
9889@group
9890in.y:3.20-23: error: ambiguous reference: ‘$exp’
9891in.y:3.1-3: refers to: $exp at $$
9892in.y:3.6-8: refers to: $exp at $1
9893in.y:3.14-16: refers to: $exp at $3
9894in.y:3.32-33: error: $2 of ‘exp’ has no declared type
9895@end group
9896@end example
9897
9898This option is activated by default.
9899
7bada535 9900@end table
89cab50d
AD
9901@end table
9902
9903@noindent
9904Tuning the parser:
9905
9906@table @option
9907@item -t
9908@itemx --debug
ff7571c0
JD
9909In the parser implementation file, define the macro @code{YYDEBUG} to
99101 if it is not already defined, so that the debugging facilities are
9911compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9912
58697c6d
AD
9913@item -D @var{name}[=@var{value}]
9914@itemx --define=@var{name}[=@var{value}]
17aed602 9915@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9916@itemx --force-define=@var{name}[=@var{value}]
9917Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9918(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9919definitions for the same @var{name} as follows:
9920
9921@itemize
9922@item
0b6d43c5
JD
9923Bison quietly ignores all command-line definitions for @var{name} except
9924the last.
de5ab940 9925@item
0b6d43c5
JD
9926If that command-line definition is specified by a @code{-D} or
9927@code{--define}, Bison reports an error for any @code{%define}
9928definition for @var{name}.
de5ab940 9929@item
0b6d43c5
JD
9930If that command-line definition is specified by a @code{-F} or
9931@code{--force-define} instead, Bison quietly ignores all @code{%define}
9932definitions for @var{name}.
9933@item
9934Otherwise, Bison reports an error if there are multiple @code{%define}
9935definitions for @var{name}.
de5ab940
JD
9936@end itemize
9937
9938You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9939make files unless you are confident that it is safe to quietly ignore
9940any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9941
0e021770
PE
9942@item -L @var{language}
9943@itemx --language=@var{language}
9944Specify the programming language for the generated parser, as if
9945@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9946Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9947@var{language} is case-insensitive.
0e021770 9948
89cab50d 9949@item --locations
d8988b2f 9950Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9951
9952@item -p @var{prefix}
9953@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9954Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9955Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9956Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9957
9958@item -l
9959@itemx --no-lines
ff7571c0
JD
9960Don't put any @code{#line} preprocessor commands in the parser
9961implementation file. Ordinarily Bison puts them in the parser
9962implementation file so that the C compiler and debuggers will
9963associate errors with your source file, the grammar file. This option
9964causes them to associate errors with the parser implementation file,
9965treating it as an independent source file in its own right.
bfa74976 9966
e6e704dc
JD
9967@item -S @var{file}
9968@itemx --skeleton=@var{file}
a7867f53 9969Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9970(@pxref{Decl Summary, , Bison Declaration Summary}).
9971
ed4d67dc
JD
9972@c You probably don't need this option unless you are developing Bison.
9973@c You should use @option{--language} if you want to specify the skeleton for a
9974@c different language, because it is clearer and because it will always
9975@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9976
a7867f53
JD
9977If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9978file in the Bison installation directory.
9979If it does, @var{file} is an absolute file name or a file name relative to the
9980current working directory.
9981This is similar to how most shells resolve commands.
9982
89cab50d
AD
9983@item -k
9984@itemx --token-table
d8988b2f 9985Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9986@end table
bfa74976 9987
89cab50d
AD
9988@noindent
9989Adjust the output:
bfa74976 9990
89cab50d 9991@table @option
8e55b3aa 9992@item --defines[=@var{file}]
d8988b2f 9993Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9994file containing macro definitions for the token type names defined in
4bfd5e4e 9995the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9996
8e55b3aa
JD
9997@item -d
9998This is the same as @code{--defines} except @code{-d} does not accept a
9999@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
10000with other short options.
342b8b6e 10001
89cab50d
AD
10002@item -b @var{file-prefix}
10003@itemx --file-prefix=@var{prefix}
9c437126 10004Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 10005for all Bison output file names. @xref{Decl Summary}.
bfa74976 10006
ec3bc396
AD
10007@item -r @var{things}
10008@itemx --report=@var{things}
10009Write an extra output file containing verbose description of the comma
10010separated list of @var{things} among:
10011
10012@table @code
10013@item state
10014Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 10015parser's automaton.
ec3bc396 10016
57f8bd8d
AD
10017@item itemset
10018Implies @code{state} and augments the description of the automaton with
10019the full set of items for each state, instead of its core only.
10020
742e4900 10021@item lookahead
ec3bc396 10022Implies @code{state} and augments the description of the automaton with
742e4900 10023each rule's lookahead set.
ec3bc396 10024
57f8bd8d
AD
10025@item solved
10026Implies @code{state}. Explain how conflicts were solved thanks to
10027precedence and associativity directives.
10028
10029@item all
10030Enable all the items.
10031
10032@item none
10033Do not generate the report.
ec3bc396
AD
10034@end table
10035
1bb2bd75
JD
10036@item --report-file=@var{file}
10037Specify the @var{file} for the verbose description.
10038
bfa74976
RS
10039@item -v
10040@itemx --verbose
9c437126 10041Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 10042file containing verbose descriptions of the grammar and
72d2299c 10043parser. @xref{Decl Summary}.
bfa74976 10044
fa4d969f
PE
10045@item -o @var{file}
10046@itemx --output=@var{file}
ff7571c0 10047Specify the @var{file} for the parser implementation file.
bfa74976 10048
fa4d969f 10049The other output files' names are constructed from @var{file} as
d8988b2f 10050described under the @samp{-v} and @samp{-d} options.
342b8b6e 10051
a7c09cba 10052@item -g [@var{file}]
8e55b3aa 10053@itemx --graph[=@var{file}]
eb45ef3b 10054Output a graphical representation of the parser's
35fe0834 10055automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 10056@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
10057@code{@var{file}} is optional.
10058If omitted and the grammar file is @file{foo.y}, the output file will be
10059@file{foo.dot}.
59da312b 10060
a7c09cba 10061@item -x [@var{file}]
8e55b3aa 10062@itemx --xml[=@var{file}]
eb45ef3b 10063Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 10064@code{@var{file}} is optional.
59da312b
JD
10065If omitted and the grammar file is @file{foo.y}, the output file will be
10066@file{foo.xml}.
10067(The current XML schema is experimental and may evolve.
10068More user feedback will help to stabilize it.)
bfa74976
RS
10069@end table
10070
342b8b6e 10071@node Option Cross Key
bfa74976
RS
10072@section Option Cross Key
10073
10074Here is a list of options, alphabetized by long option, to help you find
de5ab940 10075the corresponding short option and directive.
bfa74976 10076
de5ab940 10077@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 10078@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 10079@include cross-options.texi
aa08666d 10080@end multitable
bfa74976 10081
93dd49ab
PE
10082@node Yacc Library
10083@section Yacc Library
10084
10085The Yacc library contains default implementations of the
10086@code{yyerror} and @code{main} functions. These default
8a4281b9 10087implementations are normally not useful, but POSIX requires
93dd49ab
PE
10088them. To use the Yacc library, link your program with the
10089@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 10090library is distributed under the terms of the GNU General
93dd49ab
PE
10091Public License (@pxref{Copying}).
10092
10093If you use the Yacc library's @code{yyerror} function, you should
10094declare @code{yyerror} as follows:
10095
10096@example
10097int yyerror (char const *);
10098@end example
10099
10100Bison ignores the @code{int} value returned by this @code{yyerror}.
10101If you use the Yacc library's @code{main} function, your
10102@code{yyparse} function should have the following type signature:
10103
10104@example
10105int yyparse (void);
10106@end example
10107
12545799
AD
10108@c ================================================= C++ Bison
10109
8405b70c
PB
10110@node Other Languages
10111@chapter Parsers Written In Other Languages
12545799
AD
10112
10113@menu
10114* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10115* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10116@end menu
10117
10118@node C++ Parsers
10119@section C++ Parsers
10120
10121@menu
10122* C++ Bison Interface:: Asking for C++ parser generation
10123* C++ Semantic Values:: %union vs. C++
10124* C++ Location Values:: The position and location classes
10125* C++ Parser Interface:: Instantiating and running the parser
10126* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10127* A Complete C++ Example:: Demonstrating their use
12545799
AD
10128@end menu
10129
10130@node C++ Bison Interface
10131@subsection C++ Bison Interface
ed4d67dc 10132@c - %skeleton "lalr1.cc"
12545799
AD
10133@c - Always pure
10134@c - initial action
10135
eb45ef3b 10136The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10137@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10138@option{--skeleton=lalr1.cc}.
e6e704dc 10139@xref{Decl Summary}.
0e021770 10140
793fbca5
JD
10141When run, @command{bison} will create several entities in the @samp{yy}
10142namespace.
67501061 10143@findex %define api.namespace
35c1e5f0
JD
10144Use the @samp{%define api.namespace} directive to change the namespace name,
10145see @ref{%define Summary,,api.namespace}. The various classes are generated
10146in the following files:
aa08666d 10147
12545799
AD
10148@table @file
10149@item position.hh
10150@itemx location.hh
db8ab2be 10151The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10152location tracking when enabled. These files are not generated if the
10153@code{%define} variable @code{api.location.type} is defined. @xref{C++
10154Location Values}.
12545799
AD
10155
10156@item stack.hh
10157An auxiliary class @code{stack} used by the parser.
10158
fa4d969f
PE
10159@item @var{file}.hh
10160@itemx @var{file}.cc
ff7571c0 10161(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10162declaration and implementation of the C++ parser class. The basename
10163and extension of these two files follow the same rules as with regular C
10164parsers (@pxref{Invocation}).
12545799 10165
cd8b5791
AD
10166The header is @emph{mandatory}; you must either pass
10167@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10168@samp{%defines} directive.
10169@end table
10170
10171All these files are documented using Doxygen; run @command{doxygen}
10172for a complete and accurate documentation.
10173
10174@node C++ Semantic Values
10175@subsection C++ Semantic Values
10176@c - No objects in unions
178e123e 10177@c - YYSTYPE
12545799
AD
10178@c - Printer and destructor
10179
3cdc21cf
AD
10180Bison supports two different means to handle semantic values in C++. One is
10181alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10182practitioners know, unions are inconvenient in C++, therefore another
10183approach is provided, based on variants (@pxref{C++ Variants}).
10184
10185@menu
10186* C++ Unions:: Semantic values cannot be objects
10187* C++ Variants:: Using objects as semantic values
10188@end menu
10189
10190@node C++ Unions
10191@subsubsection C++ Unions
10192
12545799
AD
10193The @code{%union} directive works as for C, see @ref{Union Decl, ,The
10194Collection of Value Types}. In particular it produces a genuine
3cdc21cf 10195@code{union}, which have a few specific features in C++.
12545799
AD
10196@itemize @minus
10197@item
fb9712a9
AD
10198The type @code{YYSTYPE} is defined but its use is discouraged: rather
10199you should refer to the parser's encapsulated type
10200@code{yy::parser::semantic_type}.
12545799
AD
10201@item
10202Non POD (Plain Old Data) types cannot be used. C++ forbids any
10203instance of classes with constructors in unions: only @emph{pointers}
10204to such objects are allowed.
10205@end itemize
10206
10207Because objects have to be stored via pointers, memory is not
10208reclaimed automatically: using the @code{%destructor} directive is the
10209only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10210Symbols}.
10211
3cdc21cf
AD
10212@node C++ Variants
10213@subsubsection C++ Variants
10214
ae8880de
AD
10215Bison provides a @emph{variant} based implementation of semantic values for
10216C++. This alleviates all the limitations reported in the previous section,
10217and in particular, object types can be used without pointers.
3cdc21cf
AD
10218
10219To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10220@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10221@code{%union} is ignored, and instead of using the name of the fields of the
10222@code{%union} to ``type'' the symbols, use genuine types.
10223
10224For instance, instead of
10225
10226@example
10227%union
10228@{
10229 int ival;
10230 std::string* sval;
10231@}
10232%token <ival> NUMBER;
10233%token <sval> STRING;
10234@end example
10235
10236@noindent
10237write
10238
10239@example
10240%token <int> NUMBER;
10241%token <std::string> STRING;
10242@end example
10243
10244@code{STRING} is no longer a pointer, which should fairly simplify the user
10245actions in the grammar and in the scanner (in particular the memory
10246management).
10247
10248Since C++ features destructors, and since it is customary to specialize
10249@code{operator<<} to support uniform printing of values, variants also
10250typically simplify Bison printers and destructors.
10251
10252Variants are stricter than unions. When based on unions, you may play any
10253dirty game with @code{yylval}, say storing an @code{int}, reading a
10254@code{char*}, and then storing a @code{double} in it. This is no longer
10255possible with variants: they must be initialized, then assigned to, and
10256eventually, destroyed.
10257
10258@deftypemethod {semantic_type} {T&} build<T> ()
10259Initialize, but leave empty. Returns the address where the actual value may
10260be stored. Requires that the variant was not initialized yet.
10261@end deftypemethod
10262
10263@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10264Initialize, and copy-construct from @var{t}.
10265@end deftypemethod
10266
10267
10268@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10269appeared unacceptable to require Boost on the user's machine (i.e., the
10270machine on which the generated parser will be compiled, not the machine on
10271which @command{bison} was run). Second, for each possible semantic value,
10272Boost.Variant not only stores the value, but also a tag specifying its
10273type. But the parser already ``knows'' the type of the semantic value, so
10274that would be duplicating the information.
10275
10276Therefore we developed light-weight variants whose type tag is external (so
10277they are really like @code{unions} for C++ actually). But our code is much
10278less mature that Boost.Variant. So there is a number of limitations in
10279(the current implementation of) variants:
10280@itemize
10281@item
10282Alignment must be enforced: values should be aligned in memory according to
10283the most demanding type. Computing the smallest alignment possible requires
10284meta-programming techniques that are not currently implemented in Bison, and
10285therefore, since, as far as we know, @code{double} is the most demanding
10286type on all platforms, alignments are enforced for @code{double} whatever
10287types are actually used. This may waste space in some cases.
10288
3cdc21cf
AD
10289@item
10290There might be portability issues we are not aware of.
10291@end itemize
10292
a6ca4ce2 10293As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10294is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10295
10296@node C++ Location Values
10297@subsection C++ Location Values
10298@c - %locations
10299@c - class Position
10300@c - class Location
16dc6a9e 10301@c - %define filename_type "const symbol::Symbol"
12545799
AD
10302
10303When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10304location tracking, see @ref{Tracking Locations}.
10305
10306By default, two auxiliary classes define a @code{position}, a single point
10307in a file, and a @code{location}, a range composed of a pair of
10308@code{position}s (possibly spanning several files). But if the
10309@code{%define} variable @code{api.location.type} is defined, then these
10310classes will not be generated, and the user defined type will be used.
12545799 10311
936c88d1
AD
10312@tindex uint
10313In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10314genuine code only the latter is used.
10315
10316@menu
10317* C++ position:: One point in the source file
10318* C++ location:: Two points in the source file
db8ab2be 10319* User Defined Location Type:: Required interface for locations
936c88d1
AD
10320@end menu
10321
10322@node C++ position
10323@subsubsection C++ @code{position}
10324
10325@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10326Create a @code{position} denoting a given point. Note that @code{file} is
10327not reclaimed when the @code{position} is destroyed: memory managed must be
10328handled elsewhere.
10329@end deftypeop
10330
10331@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10332Reset the position to the given values.
10333@end deftypemethod
10334
10335@deftypeivar {position} {std::string*} file
12545799
AD
10336The name of the file. It will always be handled as a pointer, the
10337parser will never duplicate nor deallocate it. As an experimental
10338feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10339filename_type "@var{type}"}.
936c88d1 10340@end deftypeivar
12545799 10341
936c88d1 10342@deftypeivar {position} {uint} line
12545799 10343The line, starting at 1.
936c88d1 10344@end deftypeivar
12545799 10345
936c88d1 10346@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
10347Advance by @var{height} lines, resetting the column number.
10348@end deftypemethod
10349
936c88d1
AD
10350@deftypeivar {position} {uint} column
10351The column, starting at 1.
10352@end deftypeivar
12545799 10353
936c88d1 10354@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
10355Advance by @var{width} columns, without changing the line number.
10356@end deftypemethod
10357
936c88d1
AD
10358@deftypemethod {position} {position&} operator+= (int @var{width})
10359@deftypemethodx {position} {position} operator+ (int @var{width})
10360@deftypemethodx {position} {position&} operator-= (int @var{width})
10361@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10362Various forms of syntactic sugar for @code{columns}.
10363@end deftypemethod
10364
936c88d1
AD
10365@deftypemethod {position} {bool} operator== (const position& @var{that})
10366@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10367Whether @code{*this} and @code{that} denote equal/different positions.
10368@end deftypemethod
10369
10370@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10371Report @var{p} on @var{o} like this:
fa4d969f
PE
10372@samp{@var{file}:@var{line}.@var{column}}, or
10373@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10374@end deftypefun
10375
10376@node C++ location
10377@subsubsection C++ @code{location}
10378
10379@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10380Create a @code{Location} from the endpoints of the range.
10381@end deftypeop
10382
10383@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10384@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10385Create a @code{Location} denoting an empty range located at a given point.
10386@end deftypeop
10387
10388@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10389Reset the location to an empty range at the given values.
12545799
AD
10390@end deftypemethod
10391
936c88d1
AD
10392@deftypeivar {location} {position} begin
10393@deftypeivarx {location} {position} end
12545799 10394The first, inclusive, position of the range, and the first beyond.
936c88d1 10395@end deftypeivar
12545799 10396
936c88d1
AD
10397@deftypemethod {location} {uint} columns (int @var{width} = 1)
10398@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
10399Advance the @code{end} position.
10400@end deftypemethod
10401
936c88d1
AD
10402@deftypemethod {location} {location} operator+ (const location& @var{end})
10403@deftypemethodx {location} {location} operator+ (int @var{width})
10404@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
10405Various forms of syntactic sugar.
10406@end deftypemethod
10407
10408@deftypemethod {location} {void} step ()
10409Move @code{begin} onto @code{end}.
10410@end deftypemethod
10411
936c88d1
AD
10412@deftypemethod {location} {bool} operator== (const location& @var{that})
10413@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10414Whether @code{*this} and @code{that} denote equal/different ranges of
10415positions.
10416@end deftypemethod
10417
10418@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10419Report @var{p} on @var{o}, taking care of special cases such as: no
10420@code{filename} defined, or equal filename/line or column.
10421@end deftypefun
12545799 10422
db8ab2be
AD
10423@node User Defined Location Type
10424@subsubsection User Defined Location Type
10425@findex %define api.location.type
10426
10427Instead of using the built-in types you may use the @code{%define} variable
10428@code{api.location.type} to specify your own type:
10429
10430@example
10431%define api.location.type @var{LocationType}
10432@end example
10433
10434The requirements over your @var{LocationType} are:
10435@itemize
10436@item
10437it must be copyable;
10438
10439@item
10440in order to compute the (default) value of @code{@@$} in a reduction, the
10441parser basically runs
10442@example
10443@@$.begin = @@$1.begin;
10444@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10445@end example
10446@noindent
10447so there must be copyable @code{begin} and @code{end} members;
10448
10449@item
10450alternatively you may redefine the computation of the default location, in
10451which case these members are not required (@pxref{Location Default Action});
10452
10453@item
10454if traces are enabled, then there must exist an @samp{std::ostream&
10455 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10456@end itemize
10457
10458@sp 1
10459
10460In programs with several C++ parsers, you may also use the @code{%define}
10461variable @code{api.location.type} to share a common set of built-in
10462definitions for @code{position} and @code{location}. For instance, one
10463parser @file{master/parser.yy} might use:
10464
10465@example
10466%defines
10467%locations
10468%define namespace "master::"
10469@end example
10470
10471@noindent
10472to generate the @file{master/position.hh} and @file{master/location.hh}
10473files, reused by other parsers as follows:
10474
10475@example
7287be84 10476%define api.location.type "master::location"
db8ab2be
AD
10477%code requires @{ #include <master/location.hh> @}
10478@end example
10479
12545799
AD
10480@node C++ Parser Interface
10481@subsection C++ Parser Interface
10482@c - define parser_class_name
10483@c - Ctor
10484@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10485@c debug_stream.
10486@c - Reporting errors
10487
10488The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10489declare and define the parser class in the namespace @code{yy}. The
10490class name defaults to @code{parser}, but may be changed using
16dc6a9e 10491@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 10492this class is detailed below. It can be extended using the
12545799
AD
10493@code{%parse-param} feature: its semantics is slightly changed since
10494it describes an additional member of the parser class, and an
10495additional argument for its constructor.
10496
3cdc21cf
AD
10497@defcv {Type} {parser} {semantic_type}
10498@defcvx {Type} {parser} {location_type}
10499The types for semantic values and locations (if enabled).
10500@end defcv
10501
86e5b440 10502@defcv {Type} {parser} {token}
aaaa2aae
AD
10503A structure that contains (only) the @code{yytokentype} enumeration, which
10504defines the tokens. To refer to the token @code{FOO},
10505use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10506@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10507(@pxref{Calc++ Scanner}).
10508@end defcv
10509
3cdc21cf
AD
10510@defcv {Type} {parser} {syntax_error}
10511This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10512from the scanner or from the user actions to raise parse errors. This is
10513equivalent with first
3cdc21cf
AD
10514invoking @code{error} to report the location and message of the syntax
10515error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10516But contrary to @code{YYERROR} which can only be invoked from user actions
10517(i.e., written in the action itself), the exception can be thrown from
10518function invoked from the user action.
8a0adb01 10519@end defcv
12545799
AD
10520
10521@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10522Build a new parser object. There are no arguments by default, unless
10523@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10524@end deftypemethod
10525
3cdc21cf
AD
10526@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10527@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10528Instantiate a syntax-error exception.
10529@end deftypemethod
10530
12545799
AD
10531@deftypemethod {parser} {int} parse ()
10532Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10533
10534@cindex exceptions
10535The whole function is wrapped in a @code{try}/@code{catch} block, so that
10536when an exception is thrown, the @code{%destructor}s are called to release
10537the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10538@end deftypemethod
10539
10540@deftypemethod {parser} {std::ostream&} debug_stream ()
10541@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10542Get or set the stream used for tracing the parsing. It defaults to
10543@code{std::cerr}.
10544@end deftypemethod
10545
10546@deftypemethod {parser} {debug_level_type} debug_level ()
10547@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10548Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10549or nonzero, full tracing.
12545799
AD
10550@end deftypemethod
10551
10552@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10553@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10554The definition for this member function must be supplied by the user:
10555the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10556described by @var{m}. If location tracking is not enabled, the second
10557signature is used.
12545799
AD
10558@end deftypemethod
10559
10560
10561@node C++ Scanner Interface
10562@subsection C++ Scanner Interface
10563@c - prefix for yylex.
10564@c - Pure interface to yylex
10565@c - %lex-param
10566
10567The parser invokes the scanner by calling @code{yylex}. Contrary to C
10568parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10569@samp{%define api.pure} directive. The actual interface with @code{yylex}
10570depends whether you use unions, or variants.
12545799 10571
3cdc21cf
AD
10572@menu
10573* Split Symbols:: Passing symbols as two/three components
10574* Complete Symbols:: Making symbols a whole
10575@end menu
10576
10577@node Split Symbols
10578@subsubsection Split Symbols
10579
5807bb91 10580The interface is as follows.
3cdc21cf 10581
86e5b440
AD
10582@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10583@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10584Return the next token. Its type is the return value, its semantic value and
10585location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10586@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10587@end deftypemethod
10588
3cdc21cf
AD
10589Note that when using variants, the interface for @code{yylex} is the same,
10590but @code{yylval} is handled differently.
10591
10592Regular union-based code in Lex scanner typically look like:
10593
10594@example
10595[0-9]+ @{
10596 yylval.ival = text_to_int (yytext);
10597 return yy::parser::INTEGER;
10598 @}
10599[a-z]+ @{
10600 yylval.sval = new std::string (yytext);
10601 return yy::parser::IDENTIFIER;
10602 @}
10603@end example
10604
10605Using variants, @code{yylval} is already constructed, but it is not
10606initialized. So the code would look like:
10607
10608@example
10609[0-9]+ @{
10610 yylval.build<int>() = text_to_int (yytext);
10611 return yy::parser::INTEGER;
10612 @}
10613[a-z]+ @{
10614 yylval.build<std::string> = yytext;
10615 return yy::parser::IDENTIFIER;
10616 @}
10617@end example
10618
10619@noindent
10620or
10621
10622@example
10623[0-9]+ @{
10624 yylval.build(text_to_int (yytext));
10625 return yy::parser::INTEGER;
10626 @}
10627[a-z]+ @{
10628 yylval.build(yytext);
10629 return yy::parser::IDENTIFIER;
10630 @}
10631@end example
10632
10633
10634@node Complete Symbols
10635@subsubsection Complete Symbols
10636
ae8880de 10637If you specified both @code{%define api.value.type variant} and
e36ec1f4 10638@code{%define api.token.constructor},
3cdc21cf
AD
10639the @code{parser} class also defines the class @code{parser::symbol_type}
10640which defines a @emph{complete} symbol, aggregating its type (i.e., the
10641traditional value returned by @code{yylex}), its semantic value (i.e., the
10642value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10643
10644@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10645Build a complete terminal symbol which token type is @var{type}, and which
10646semantic value is @var{value}. If location tracking is enabled, also pass
10647the @var{location}.
10648@end deftypemethod
10649
10650This interface is low-level and should not be used for two reasons. First,
10651it is inconvenient, as you still have to build the semantic value, which is
10652a variant, and second, because consistency is not enforced: as with unions,
10653it is still possible to give an integer as semantic value for a string.
10654
10655So for each token type, Bison generates named constructors as follows.
10656
10657@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10658@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10659Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10660including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10661@var{value} of adequate @var{value_type}. If location tracking is enabled,
10662also pass the @var{location}.
10663@end deftypemethod
10664
10665For instance, given the following declarations:
10666
10667@example
2a6b66c5 10668%define api.token.prefix "TOK_"
3cdc21cf
AD
10669%token <std::string> IDENTIFIER;
10670%token <int> INTEGER;
10671%token COLON;
10672@end example
10673
10674@noindent
10675Bison generates the following functions:
10676
10677@example
10678symbol_type make_IDENTIFIER(const std::string& v,
10679 const location_type& l);
10680symbol_type make_INTEGER(const int& v,
10681 const location_type& loc);
10682symbol_type make_COLON(const location_type& loc);
10683@end example
10684
10685@noindent
10686which should be used in a Lex-scanner as follows.
10687
10688@example
10689[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10690[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10691":" return yy::parser::make_COLON(loc);
10692@end example
10693
10694Tokens that do not have an identifier are not accessible: you cannot simply
10695use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10696
10697@node A Complete C++ Example
8405b70c 10698@subsection A Complete C++ Example
12545799
AD
10699
10700This section demonstrates the use of a C++ parser with a simple but
10701complete example. This example should be available on your system,
3cdc21cf 10702ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10703focuses on the use of Bison, therefore the design of the various C++
10704classes is very naive: no accessors, no encapsulation of members etc.
10705We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10706demonstrate the various interactions. A hand-written scanner is
12545799
AD
10707actually easier to interface with.
10708
10709@menu
10710* Calc++ --- C++ Calculator:: The specifications
10711* Calc++ Parsing Driver:: An active parsing context
10712* Calc++ Parser:: A parser class
10713* Calc++ Scanner:: A pure C++ Flex scanner
10714* Calc++ Top Level:: Conducting the band
10715@end menu
10716
10717@node Calc++ --- C++ Calculator
8405b70c 10718@subsubsection Calc++ --- C++ Calculator
12545799
AD
10719
10720Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10721expression, possibly preceded by variable assignments. An
12545799
AD
10722environment containing possibly predefined variables such as
10723@code{one} and @code{two}, is exchanged with the parser. An example
10724of valid input follows.
10725
10726@example
10727three := 3
10728seven := one + two * three
10729seven * seven
10730@end example
10731
10732@node Calc++ Parsing Driver
8405b70c 10733@subsubsection Calc++ Parsing Driver
12545799
AD
10734@c - An env
10735@c - A place to store error messages
10736@c - A place for the result
10737
10738To support a pure interface with the parser (and the scanner) the
10739technique of the ``parsing context'' is convenient: a structure
10740containing all the data to exchange. Since, in addition to simply
10741launch the parsing, there are several auxiliary tasks to execute (open
10742the file for parsing, instantiate the parser etc.), we recommend
10743transforming the simple parsing context structure into a fully blown
10744@dfn{parsing driver} class.
10745
10746The declaration of this driver class, @file{calc++-driver.hh}, is as
10747follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10748required standard library components, and the declaration of the parser
10749class.
12545799 10750
1c59e0a1 10751@comment file: calc++-driver.hh
12545799
AD
10752@example
10753#ifndef CALCXX_DRIVER_HH
10754# define CALCXX_DRIVER_HH
10755# include <string>
10756# include <map>
fb9712a9 10757# include "calc++-parser.hh"
12545799
AD
10758@end example
10759
12545799
AD
10760
10761@noindent
10762Then comes the declaration of the scanning function. Flex expects
10763the signature of @code{yylex} to be defined in the macro
10764@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10765factor both as follows.
1c59e0a1
AD
10766
10767@comment file: calc++-driver.hh
12545799 10768@example
3dc5e96b 10769// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10770# define YY_DECL \
10771 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10772// ... and declare it for the parser's sake.
10773YY_DECL;
10774@end example
10775
10776@noindent
10777The @code{calcxx_driver} class is then declared with its most obvious
10778members.
10779
1c59e0a1 10780@comment file: calc++-driver.hh
12545799
AD
10781@example
10782// Conducting the whole scanning and parsing of Calc++.
10783class calcxx_driver
10784@{
10785public:
10786 calcxx_driver ();
10787 virtual ~calcxx_driver ();
10788
10789 std::map<std::string, int> variables;
10790
10791 int result;
10792@end example
10793
10794@noindent
3cdc21cf
AD
10795To encapsulate the coordination with the Flex scanner, it is useful to have
10796member functions to open and close the scanning phase.
12545799 10797
1c59e0a1 10798@comment file: calc++-driver.hh
12545799
AD
10799@example
10800 // Handling the scanner.
10801 void scan_begin ();
10802 void scan_end ();
10803 bool trace_scanning;
10804@end example
10805
10806@noindent
10807Similarly for the parser itself.
10808
1c59e0a1 10809@comment file: calc++-driver.hh
12545799 10810@example
3cdc21cf
AD
10811 // Run the parser on file F.
10812 // Return 0 on success.
bb32f4f2 10813 int parse (const std::string& f);
3cdc21cf
AD
10814 // The name of the file being parsed.
10815 // Used later to pass the file name to the location tracker.
12545799 10816 std::string file;
3cdc21cf 10817 // Whether parser traces should be generated.
12545799
AD
10818 bool trace_parsing;
10819@end example
10820
10821@noindent
10822To demonstrate pure handling of parse errors, instead of simply
10823dumping them on the standard error output, we will pass them to the
10824compiler driver using the following two member functions. Finally, we
10825close the class declaration and CPP guard.
10826
1c59e0a1 10827@comment file: calc++-driver.hh
12545799
AD
10828@example
10829 // Error handling.
10830 void error (const yy::location& l, const std::string& m);
10831 void error (const std::string& m);
10832@};
10833#endif // ! CALCXX_DRIVER_HH
10834@end example
10835
10836The implementation of the driver is straightforward. The @code{parse}
10837member function deserves some attention. The @code{error} functions
10838are simple stubs, they should actually register the located error
10839messages and set error state.
10840
1c59e0a1 10841@comment file: calc++-driver.cc
12545799
AD
10842@example
10843#include "calc++-driver.hh"
10844#include "calc++-parser.hh"
10845
10846calcxx_driver::calcxx_driver ()
10847 : trace_scanning (false), trace_parsing (false)
10848@{
10849 variables["one"] = 1;
10850 variables["two"] = 2;
10851@}
10852
10853calcxx_driver::~calcxx_driver ()
10854@{
10855@}
10856
bb32f4f2 10857int
12545799
AD
10858calcxx_driver::parse (const std::string &f)
10859@{
10860 file = f;
10861 scan_begin ();
10862 yy::calcxx_parser parser (*this);
10863 parser.set_debug_level (trace_parsing);
bb32f4f2 10864 int res = parser.parse ();
12545799 10865 scan_end ();
bb32f4f2 10866 return res;
12545799
AD
10867@}
10868
10869void
10870calcxx_driver::error (const yy::location& l, const std::string& m)
10871@{
10872 std::cerr << l << ": " << m << std::endl;
10873@}
10874
10875void
10876calcxx_driver::error (const std::string& m)
10877@{
10878 std::cerr << m << std::endl;
10879@}
10880@end example
10881
10882@node Calc++ Parser
8405b70c 10883@subsubsection Calc++ Parser
12545799 10884
ff7571c0
JD
10885The grammar file @file{calc++-parser.yy} starts by asking for the C++
10886deterministic parser skeleton, the creation of the parser header file,
10887and specifies the name of the parser class. Because the C++ skeleton
10888changed several times, it is safer to require the version you designed
10889the grammar for.
1c59e0a1
AD
10890
10891@comment file: calc++-parser.yy
12545799 10892@example
c93f22fc 10893%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10894%require "@value{VERSION}"
12545799 10895%defines
16dc6a9e 10896%define parser_class_name "calcxx_parser"
fb9712a9
AD
10897@end example
10898
3cdc21cf 10899@noindent
e36ec1f4 10900@findex %define api.token.constructor
ae8880de 10901@findex %define api.value.type variant
3cdc21cf
AD
10902This example will use genuine C++ objects as semantic values, therefore, we
10903require the variant-based interface. To make sure we properly use it, we
10904enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 10905definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
10906
10907@comment file: calc++-parser.yy
10908@example
e36ec1f4 10909%define api.token.constructor
ae8880de 10910%define api.value.type variant
3cdc21cf 10911%define parse.assert
3cdc21cf
AD
10912@end example
10913
fb9712a9 10914@noindent
16dc6a9e 10915@findex %code requires
3cdc21cf
AD
10916Then come the declarations/inclusions needed by the semantic values.
10917Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10918to include the header of the other, which is, of course, insane. This
3cdc21cf 10919mutual dependency will be broken using forward declarations. Because the
fb9712a9 10920driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10921particular its inner types), it is the parser's header which will use a
e0c07222 10922forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10923
10924@comment file: calc++-parser.yy
10925@example
3cdc21cf
AD
10926%code requires
10927@{
12545799 10928# include <string>
fb9712a9 10929class calcxx_driver;
9bc0dd67 10930@}
12545799
AD
10931@end example
10932
10933@noindent
10934The driver is passed by reference to the parser and to the scanner.
10935This provides a simple but effective pure interface, not relying on
10936global variables.
10937
1c59e0a1 10938@comment file: calc++-parser.yy
12545799
AD
10939@example
10940// The parsing context.
2055a44e 10941%param @{ calcxx_driver& driver @}
12545799
AD
10942@end example
10943
10944@noindent
2055a44e 10945Then we request location tracking, and initialize the
f50bfcd6 10946first location's file name. Afterward new locations are computed
12545799 10947relatively to the previous locations: the file name will be
2055a44e 10948propagated.
12545799 10949
1c59e0a1 10950@comment file: calc++-parser.yy
12545799
AD
10951@example
10952%locations
10953%initial-action
10954@{
10955 // Initialize the initial location.
b47dbebe 10956 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10957@};
10958@end example
10959
10960@noindent
7fceb615
JD
10961Use the following two directives to enable parser tracing and verbose error
10962messages. However, verbose error messages can contain incorrect information
10963(@pxref{LAC}).
12545799 10964
1c59e0a1 10965@comment file: calc++-parser.yy
12545799 10966@example
fa819509 10967%define parse.trace
cf499cff 10968%define parse.error verbose
12545799
AD
10969@end example
10970
fb9712a9 10971@noindent
136a0f76
PB
10972@findex %code
10973The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10974@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10975
10976@comment file: calc++-parser.yy
10977@example
3cdc21cf
AD
10978%code
10979@{
fb9712a9 10980# include "calc++-driver.hh"
34f98f46 10981@}
fb9712a9
AD
10982@end example
10983
10984
12545799
AD
10985@noindent
10986The token numbered as 0 corresponds to end of file; the following line
99c08fb6 10987allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
10988``$end''. Similarly user friendly names are provided for each symbol. To
10989avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 10990tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 10991
1c59e0a1 10992@comment file: calc++-parser.yy
12545799 10993@example
2a6b66c5 10994%define api.token.prefix "TOK_"
3cdc21cf
AD
10995%token
10996 END 0 "end of file"
10997 ASSIGN ":="
10998 MINUS "-"
10999 PLUS "+"
11000 STAR "*"
11001 SLASH "/"
11002 LPAREN "("
11003 RPAREN ")"
11004;
12545799
AD
11005@end example
11006
11007@noindent
3cdc21cf
AD
11008Since we use variant-based semantic values, @code{%union} is not used, and
11009both @code{%type} and @code{%token} expect genuine types, as opposed to type
11010tags.
12545799 11011
1c59e0a1 11012@comment file: calc++-parser.yy
12545799 11013@example
3cdc21cf
AD
11014%token <std::string> IDENTIFIER "identifier"
11015%token <int> NUMBER "number"
11016%type <int> exp
11017@end example
11018
11019@noindent
11020No @code{%destructor} is needed to enable memory deallocation during error
11021recovery; the memory, for strings for instance, will be reclaimed by the
11022regular destructors. All the values are printed using their
a76c741d 11023@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 11024
3cdc21cf
AD
11025@comment file: calc++-parser.yy
11026@example
c5026327 11027%printer @{ yyoutput << $$; @} <*>;
12545799
AD
11028@end example
11029
11030@noindent
3cdc21cf
AD
11031The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
11032Location Tracking Calculator: @code{ltcalc}}).
12545799 11033
1c59e0a1 11034@comment file: calc++-parser.yy
12545799
AD
11035@example
11036%%
11037%start unit;
11038unit: assignments exp @{ driver.result = $2; @};
11039
99c08fb6 11040assignments:
5e9b6624
AD
11041 /* Nothing. */ @{@}
11042| assignments assignment @{@};
12545799 11043
3dc5e96b 11044assignment:
3cdc21cf 11045 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 11046
3cdc21cf
AD
11047%left "+" "-";
11048%left "*" "/";
99c08fb6 11049exp:
3cdc21cf
AD
11050 exp "+" exp @{ $$ = $1 + $3; @}
11051| exp "-" exp @{ $$ = $1 - $3; @}
11052| exp "*" exp @{ $$ = $1 * $3; @}
11053| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 11054| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 11055| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 11056| "number" @{ std::swap ($$, $1); @};
12545799
AD
11057%%
11058@end example
11059
11060@noindent
11061Finally the @code{error} member function registers the errors to the
11062driver.
11063
1c59e0a1 11064@comment file: calc++-parser.yy
12545799
AD
11065@example
11066void
3cdc21cf 11067yy::calcxx_parser::error (const location_type& l,
1c59e0a1 11068 const std::string& m)
12545799
AD
11069@{
11070 driver.error (l, m);
11071@}
11072@end example
11073
11074@node Calc++ Scanner
8405b70c 11075@subsubsection Calc++ Scanner
12545799
AD
11076
11077The Flex scanner first includes the driver declaration, then the
11078parser's to get the set of defined tokens.
11079
1c59e0a1 11080@comment file: calc++-scanner.ll
12545799 11081@example
c93f22fc 11082%@{ /* -*- C++ -*- */
3c248d70
AD
11083# include <cerrno>
11084# include <climits>
3cdc21cf 11085# include <cstdlib>
12545799
AD
11086# include <string>
11087# include "calc++-driver.hh"
11088# include "calc++-parser.hh"
eaea13f5 11089
3cdc21cf
AD
11090// Work around an incompatibility in flex (at least versions
11091// 2.5.31 through 2.5.33): it generates code that does
11092// not conform to C89. See Debian bug 333231
11093// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11094# undef yywrap
11095# define yywrap() 1
eaea13f5 11096
3cdc21cf
AD
11097// The location of the current token.
11098static yy::location loc;
12545799
AD
11099%@}
11100@end example
11101
11102@noindent
11103Because there is no @code{#include}-like feature we don't need
11104@code{yywrap}, we don't need @code{unput} either, and we parse an
11105actual file, this is not an interactive session with the user.
3cdc21cf 11106Finally, we enable scanner tracing.
12545799 11107
1c59e0a1 11108@comment file: calc++-scanner.ll
12545799 11109@example
6908c2e1 11110%option noyywrap nounput batch debug noinput
12545799
AD
11111@end example
11112
11113@noindent
11114Abbreviations allow for more readable rules.
11115
1c59e0a1 11116@comment file: calc++-scanner.ll
12545799
AD
11117@example
11118id [a-zA-Z][a-zA-Z_0-9]*
11119int [0-9]+
11120blank [ \t]
11121@end example
11122
11123@noindent
9d9b8b70 11124The following paragraph suffices to track locations accurately. Each
12545799 11125time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11126position. Then when a pattern is matched, its width is added to the end
11127column. When matching ends of lines, the end
12545799
AD
11128cursor is adjusted, and each time blanks are matched, the begin cursor
11129is moved onto the end cursor to effectively ignore the blanks
11130preceding tokens. Comments would be treated equally.
11131
1c59e0a1 11132@comment file: calc++-scanner.ll
12545799 11133@example
d4fca427 11134@group
828c373b 11135%@{
3cdc21cf
AD
11136 // Code run each time a pattern is matched.
11137 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11138%@}
d4fca427 11139@end group
12545799 11140%%
d4fca427 11141@group
12545799 11142%@{
3cdc21cf
AD
11143 // Code run each time yylex is called.
11144 loc.step ();
12545799 11145%@}
d4fca427 11146@end group
3cdc21cf
AD
11147@{blank@}+ loc.step ();
11148[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11149@end example
11150
11151@noindent
3cdc21cf 11152The rules are simple. The driver is used to report errors.
12545799 11153
1c59e0a1 11154@comment file: calc++-scanner.ll
12545799 11155@example
3cdc21cf
AD
11156"-" return yy::calcxx_parser::make_MINUS(loc);
11157"+" return yy::calcxx_parser::make_PLUS(loc);
11158"*" return yy::calcxx_parser::make_STAR(loc);
11159"/" return yy::calcxx_parser::make_SLASH(loc);
11160"(" return yy::calcxx_parser::make_LPAREN(loc);
11161")" return yy::calcxx_parser::make_RPAREN(loc);
11162":=" return yy::calcxx_parser::make_ASSIGN(loc);
11163
d4fca427 11164@group
04098407
PE
11165@{int@} @{
11166 errno = 0;
11167 long n = strtol (yytext, NULL, 10);
11168 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11169 driver.error (loc, "integer is out of range");
11170 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11171@}
d4fca427 11172@end group
3cdc21cf
AD
11173@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11174. driver.error (loc, "invalid character");
11175<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11176%%
11177@end example
11178
11179@noindent
3cdc21cf 11180Finally, because the scanner-related driver's member-functions depend
12545799
AD
11181on the scanner's data, it is simpler to implement them in this file.
11182
1c59e0a1 11183@comment file: calc++-scanner.ll
12545799 11184@example
d4fca427 11185@group
12545799
AD
11186void
11187calcxx_driver::scan_begin ()
11188@{
11189 yy_flex_debug = trace_scanning;
93c150b6 11190 if (file.empty () || file == "-")
bb32f4f2
AD
11191 yyin = stdin;
11192 else if (!(yyin = fopen (file.c_str (), "r")))
11193 @{
aaaa2aae 11194 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11195 exit (EXIT_FAILURE);
bb32f4f2 11196 @}
12545799 11197@}
d4fca427 11198@end group
12545799 11199
d4fca427 11200@group
12545799
AD
11201void
11202calcxx_driver::scan_end ()
11203@{
11204 fclose (yyin);
11205@}
d4fca427 11206@end group
12545799
AD
11207@end example
11208
11209@node Calc++ Top Level
8405b70c 11210@subsubsection Calc++ Top Level
12545799
AD
11211
11212The top level file, @file{calc++.cc}, poses no problem.
11213
1c59e0a1 11214@comment file: calc++.cc
12545799
AD
11215@example
11216#include <iostream>
11217#include "calc++-driver.hh"
11218
d4fca427 11219@group
12545799 11220int
fa4d969f 11221main (int argc, char *argv[])
12545799 11222@{
414c76a4 11223 int res = 0;
12545799 11224 calcxx_driver driver;
93c150b6
AD
11225 for (int i = 1; i < argc; ++i)
11226 if (argv[i] == std::string ("-p"))
12545799 11227 driver.trace_parsing = true;
93c150b6 11228 else if (argv[i] == std::string ("-s"))
12545799 11229 driver.trace_scanning = true;
93c150b6 11230 else if (!driver.parse (argv[i]))
bb32f4f2 11231 std::cout << driver.result << std::endl;
414c76a4
AD
11232 else
11233 res = 1;
11234 return res;
12545799 11235@}
d4fca427 11236@end group
12545799
AD
11237@end example
11238
8405b70c
PB
11239@node Java Parsers
11240@section Java Parsers
11241
11242@menu
f5f419de
DJ
11243* Java Bison Interface:: Asking for Java parser generation
11244* Java Semantic Values:: %type and %token vs. Java
11245* Java Location Values:: The position and location classes
11246* Java Parser Interface:: Instantiating and running the parser
11247* Java Scanner Interface:: Specifying the scanner for the parser
11248* Java Action Features:: Special features for use in actions
11249* Java Differences:: Differences between C/C++ and Java Grammars
11250* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11251@end menu
11252
11253@node Java Bison Interface
11254@subsection Java Bison Interface
11255@c - %language "Java"
8405b70c 11256
59da312b
JD
11257(The current Java interface is experimental and may evolve.
11258More user feedback will help to stabilize it.)
11259
e254a580
DJ
11260The Java parser skeletons are selected using the @code{%language "Java"}
11261directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11262
e254a580 11263@c FIXME: Documented bug.
ff7571c0
JD
11264When generating a Java parser, @code{bison @var{basename}.y} will
11265create a single Java source file named @file{@var{basename}.java}
11266containing the parser implementation. Using a grammar file without a
11267@file{.y} suffix is currently broken. The basename of the parser
11268implementation file can be changed by the @code{%file-prefix}
11269directive or the @option{-p}/@option{--name-prefix} option. The
11270entire parser implementation file name can be changed by the
11271@code{%output} directive or the @option{-o}/@option{--output} option.
11272The parser implementation file contains a single class for the parser.
8405b70c 11273
e254a580 11274You can create documentation for generated parsers using Javadoc.
8405b70c 11275
e254a580
DJ
11276Contrary to C parsers, Java parsers do not use global variables; the
11277state of the parser is always local to an instance of the parser class.
11278Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11279and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11280
e254a580 11281Push parsers are currently unsupported in Java and @code{%define
67212941 11282api.push-pull} have no effect.
01b477c6 11283
8a4281b9 11284GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11285@code{glr-parser} directive.
11286
11287No header file can be generated for Java parsers. Do not use the
11288@code{%defines} directive or the @option{-d}/@option{--defines} options.
11289
11290@c FIXME: Possible code change.
fa819509
AD
11291Currently, support for tracing is always compiled
11292in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11293directives and the
e254a580
DJ
11294@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11295options have no effect. This may change in the future to eliminate
fa819509
AD
11296unused code in the generated parser, so use @samp{%define parse.trace}
11297explicitly
1979121c 11298if needed. Also, in the future the
e254a580
DJ
11299@code{%token-table} directive might enable a public interface to
11300access the token names and codes.
8405b70c 11301
09ccae9b 11302Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11303hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11304Try reducing the amount of code in actions and static initializers;
11305otherwise, report a bug so that the parser skeleton will be improved.
11306
11307
8405b70c
PB
11308@node Java Semantic Values
11309@subsection Java Semantic Values
11310@c - No %union, specify type in %type/%token.
11311@c - YYSTYPE
11312@c - Printer and destructor
11313
11314There is no @code{%union} directive in Java parsers. Instead, the
11315semantic values' types (class names) should be specified in the
11316@code{%type} or @code{%token} directive:
11317
11318@example
11319%type <Expression> expr assignment_expr term factor
11320%type <Integer> number
11321@end example
11322
11323By default, the semantic stack is declared to have @code{Object} members,
11324which means that the class types you specify can be of any class.
11325To improve the type safety of the parser, you can declare the common
4119d1ea 11326superclass of all the semantic values using the @samp{%define api.value.type}
e254a580 11327directive. For example, after the following declaration:
8405b70c
PB
11328
11329@example
4119d1ea 11330%define api.value.type "ASTNode"
8405b70c
PB
11331@end example
11332
11333@noindent
11334any @code{%type} or @code{%token} specifying a semantic type which
11335is not a subclass of ASTNode, will cause a compile-time error.
11336
e254a580 11337@c FIXME: Documented bug.
8405b70c
PB
11338Types used in the directives may be qualified with a package name.
11339Primitive data types are accepted for Java version 1.5 or later. Note
11340that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11341Generic types may not be used; this is due to a limitation in the
11342implementation of Bison, and may change in future releases.
8405b70c
PB
11343
11344Java parsers do not support @code{%destructor}, since the language
11345adopts garbage collection. The parser will try to hold references
11346to semantic values for as little time as needed.
11347
11348Java parsers do not support @code{%printer}, as @code{toString()}
11349can be used to print the semantic values. This however may change
11350(in a backwards-compatible way) in future versions of Bison.
11351
11352
11353@node Java Location Values
11354@subsection Java Location Values
11355@c - %locations
11356@c - class Position
11357@c - class Location
11358
303834cc
JD
11359When the directive @code{%locations} is used, the Java parser supports
11360location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11361class defines a @dfn{position}, a single point in a file; Bison itself
11362defines a class representing a @dfn{location}, a range composed of a pair of
11363positions (possibly spanning several files). The location class is an inner
11364class of the parser; the name is @code{Location} by default, and may also be
7287be84 11365renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
11366
11367The location class treats the position as a completely opaque value.
11368By default, the class name is @code{Position}, but this can be changed
7287be84 11369with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 11370be supplied by the user.
8405b70c
PB
11371
11372
e254a580
DJ
11373@deftypeivar {Location} {Position} begin
11374@deftypeivarx {Location} {Position} end
8405b70c 11375The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11376@end deftypeivar
11377
11378@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11379Create a @code{Location} denoting an empty range located at a given point.
e254a580 11380@end deftypeop
8405b70c 11381
e254a580
DJ
11382@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11383Create a @code{Location} from the endpoints of the range.
11384@end deftypeop
11385
11386@deftypemethod {Location} {String} toString ()
8405b70c
PB
11387Prints the range represented by the location. For this to work
11388properly, the position class should override the @code{equals} and
11389@code{toString} methods appropriately.
11390@end deftypemethod
11391
11392
11393@node Java Parser Interface
11394@subsection Java Parser Interface
11395@c - define parser_class_name
11396@c - Ctor
11397@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11398@c debug_stream.
11399@c - Reporting errors
11400
e254a580
DJ
11401The name of the generated parser class defaults to @code{YYParser}. The
11402@code{YY} prefix may be changed using the @code{%name-prefix} directive
11403or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 11404@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 11405the class. The interface of this class is detailed below.
8405b70c 11406
e254a580 11407By default, the parser class has package visibility. A declaration
67501061 11408@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11409according to the Java language specification, the name of the @file{.java}
11410file should match the name of the class in this case. Similarly, you can
11411use @code{abstract}, @code{final} and @code{strictfp} with the
11412@code{%define} declaration to add other modifiers to the parser class.
67501061 11413A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 11414be used to add any number of annotations to the parser class.
e254a580
DJ
11415
11416The Java package name of the parser class can be specified using the
67501061 11417@samp{%define package} directive. The superclass and the implemented
e254a580 11418interfaces of the parser class can be specified with the @code{%define
67501061 11419extends} and @samp{%define implements} directives.
e254a580
DJ
11420
11421The parser class defines an inner class, @code{Location}, that is used
11422for location tracking (see @ref{Java Location Values}), and a inner
11423interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11424these inner class/interface, and the members described in the interface
11425below, all the other members and fields are preceded with a @code{yy} or
11426@code{YY} prefix to avoid clashes with user code.
11427
e254a580
DJ
11428The parser class can be extended using the @code{%parse-param}
11429directive. Each occurrence of the directive will add a @code{protected
11430final} field to the parser class, and an argument to its constructor,
11431which initialize them automatically.
11432
e254a580
DJ
11433@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11434Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11435no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11436@code{%lex-param}s are used.
1979121c
DJ
11437
11438Use @code{%code init} for code added to the start of the constructor
11439body. This is especially useful to initialize superclasses. Use
f50bfcd6 11440@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11441@end deftypeop
11442
11443@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11444Build a new parser object using the specified scanner. There are no
2055a44e
AD
11445additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11446used.
e254a580
DJ
11447
11448If the scanner is defined by @code{%code lexer}, this constructor is
11449declared @code{protected} and is called automatically with a scanner
2055a44e 11450created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11451
11452Use @code{%code init} for code added to the start of the constructor
11453body. This is especially useful to initialize superclasses. Use
5a321748 11454@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11455@end deftypeop
8405b70c
PB
11456
11457@deftypemethod {YYParser} {boolean} parse ()
11458Run the syntactic analysis, and return @code{true} on success,
11459@code{false} otherwise.
11460@end deftypemethod
11461
1979121c
DJ
11462@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11463@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11464Get or set the option to produce verbose error messages. These are only
cf499cff 11465available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11466verbose error messages.
11467@end deftypemethod
11468
11469@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11470@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11471@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11472Print an error message using the @code{yyerror} method of the scanner
11473instance in use. The @code{Location} and @code{Position} parameters are
11474available only if location tracking is active.
11475@end deftypemethod
11476
01b477c6 11477@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11478During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11479from a syntax error.
11480@xref{Error Recovery}.
8405b70c
PB
11481@end deftypemethod
11482
11483@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11484@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11485Get or set the stream used for tracing the parsing. It defaults to
11486@code{System.err}.
11487@end deftypemethod
11488
11489@deftypemethod {YYParser} {int} getDebugLevel ()
11490@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11491Get or set the tracing level. Currently its value is either 0, no trace,
11492or nonzero, full tracing.
11493@end deftypemethod
11494
1979121c
DJ
11495@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11496@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11497Identify the Bison version and skeleton used to generate this parser.
11498@end deftypecv
11499
8405b70c
PB
11500
11501@node Java Scanner Interface
11502@subsection Java Scanner Interface
01b477c6 11503@c - %code lexer
8405b70c 11504@c - %lex-param
01b477c6 11505@c - Lexer interface
8405b70c 11506
e254a580
DJ
11507There are two possible ways to interface a Bison-generated Java parser
11508with a scanner: the scanner may be defined by @code{%code lexer}, or
11509defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11510@code{Lexer} inner interface of the parser class. This interface also
11511contain constants for all user-defined token names and the predefined
11512@code{EOF} token.
e254a580
DJ
11513
11514In the first case, the body of the scanner class is placed in
11515@code{%code lexer} blocks. If you want to pass parameters from the
11516parser constructor to the scanner constructor, specify them with
11517@code{%lex-param}; they are passed before @code{%parse-param}s to the
11518constructor.
01b477c6 11519
59c5ac72 11520In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11521which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11522The constructor of the parser object will then accept an object
11523implementing the interface; @code{%lex-param} is not used in this
11524case.
11525
11526In both cases, the scanner has to implement the following methods.
11527
e254a580
DJ
11528@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11529This method is defined by the user to emit an error message. The first
11530parameter is omitted if location tracking is not active. Its type can be
7287be84 11531changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
11532@end deftypemethod
11533
e254a580 11534@deftypemethod {Lexer} {int} yylex ()
8405b70c 11535Return the next token. Its type is the return value, its semantic
f50bfcd6 11536value and location are saved and returned by the their methods in the
e254a580
DJ
11537interface.
11538
67501061 11539Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11540Default is @code{java.io.IOException}.
8405b70c
PB
11541@end deftypemethod
11542
11543@deftypemethod {Lexer} {Position} getStartPos ()
11544@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11545Return respectively the first position of the last token that
11546@code{yylex} returned, and the first position beyond it. These
11547methods are not needed unless location tracking is active.
8405b70c 11548
7287be84 11549The return type can be changed using @code{%define api.position.type
8405b70c
PB
11550"@var{class-name}".}
11551@end deftypemethod
11552
11553@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11554Return the semantic value of the last token that yylex returned.
8405b70c 11555
4119d1ea 11556The return type can be changed using @samp{%define api.value.type
8405b70c
PB
11557"@var{class-name}".}
11558@end deftypemethod
11559
11560
e254a580
DJ
11561@node Java Action Features
11562@subsection Special Features for Use in Java Actions
11563
11564The following special constructs can be uses in Java actions.
11565Other analogous C action features are currently unavailable for Java.
11566
67501061 11567Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11568actions, and initial actions specified by @code{%initial-action}.
11569
11570@defvar $@var{n}
11571The semantic value for the @var{n}th component of the current rule.
11572This may not be assigned to.
11573@xref{Java Semantic Values}.
11574@end defvar
11575
11576@defvar $<@var{typealt}>@var{n}
11577Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11578@xref{Java Semantic Values}.
11579@end defvar
11580
11581@defvar $$
11582The semantic value for the grouping made by the current rule. As a
11583value, this is in the base type (@code{Object} or as specified by
4119d1ea 11584@samp{%define api.value.type}) as in not cast to the declared subtype because
e254a580
DJ
11585casts are not allowed on the left-hand side of Java assignments.
11586Use an explicit Java cast if the correct subtype is needed.
11587@xref{Java Semantic Values}.
11588@end defvar
11589
11590@defvar $<@var{typealt}>$
11591Same as @code{$$} since Java always allow assigning to the base type.
11592Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11593for setting the value but there is currently no easy way to distinguish
11594these constructs.
11595@xref{Java Semantic Values}.
11596@end defvar
11597
11598@defvar @@@var{n}
11599The location information of the @var{n}th component of the current rule.
11600This may not be assigned to.
11601@xref{Java Location Values}.
11602@end defvar
11603
11604@defvar @@$
11605The location information of the grouping made by the current rule.
11606@xref{Java Location Values}.
11607@end defvar
11608
34a41a93 11609@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11610Return immediately from the parser, indicating failure.
11611@xref{Java Parser Interface}.
34a41a93 11612@end deftypefn
8405b70c 11613
34a41a93 11614@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11615Return immediately from the parser, indicating success.
11616@xref{Java Parser Interface}.
34a41a93 11617@end deftypefn
8405b70c 11618
34a41a93 11619@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11620Start error recovery (without printing an error message).
e254a580 11621@xref{Error Recovery}.
34a41a93 11622@end deftypefn
8405b70c 11623
e254a580
DJ
11624@deftypefn {Function} {boolean} recovering ()
11625Return whether error recovery is being done. In this state, the parser
11626reads token until it reaches a known state, and then restarts normal
11627operation.
11628@xref{Error Recovery}.
11629@end deftypefn
8405b70c 11630
1979121c
DJ
11631@deftypefn {Function} {void} yyerror (String @var{msg})
11632@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11633@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11634Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11635instance in use. The @code{Location} and @code{Position} parameters are
11636available only if location tracking is active.
e254a580 11637@end deftypefn
8405b70c 11638
8405b70c 11639
8405b70c
PB
11640@node Java Differences
11641@subsection Differences between C/C++ and Java Grammars
11642
11643The different structure of the Java language forces several differences
11644between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11645section summarizes these differences.
8405b70c
PB
11646
11647@itemize
11648@item
01b477c6 11649Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11650@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11651macros. Instead, they should be preceded by @code{return} when they
11652appear in an action. The actual definition of these symbols is
8405b70c
PB
11653opaque to the Bison grammar, and it might change in the future. The
11654only meaningful operation that you can do, is to return them.
e3fd1dcb 11655@xref{Java Action Features}.
8405b70c
PB
11656
11657Note that of these three symbols, only @code{YYACCEPT} and
11658@code{YYABORT} will cause a return from the @code{yyparse}
11659method@footnote{Java parsers include the actions in a separate
11660method than @code{yyparse} in order to have an intuitive syntax that
11661corresponds to these C macros.}.
11662
e254a580
DJ
11663@item
11664Java lacks unions, so @code{%union} has no effect. Instead, semantic
11665values have a common base type: @code{Object} or as specified by
4119d1ea 11666@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11667@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11668an union. The type of @code{$$}, even with angle brackets, is the base
11669type since Java casts are not allow on the left-hand side of assignments.
11670Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11671left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11672@ref{Java Action Features}.
e254a580 11673
8405b70c 11674@item
f50bfcd6 11675The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11676@table @asis
11677@item @code{%code imports}
11678blocks are placed at the beginning of the Java source code. They may
11679include copyright notices. For a @code{package} declarations, it is
67501061 11680suggested to use @samp{%define package} instead.
8405b70c 11681
01b477c6
PB
11682@item unqualified @code{%code}
11683blocks are placed inside the parser class.
11684
11685@item @code{%code lexer}
11686blocks, if specified, should include the implementation of the
11687scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11688that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11689Interface}).
29553547 11690@end table
8405b70c
PB
11691
11692Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11693In particular, @code{%@{ @dots{} %@}} blocks should not be used
11694and may give an error in future versions of Bison.
11695
01b477c6 11696The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11697be used to define other classes used by the parser @emph{outside}
11698the parser class.
8405b70c
PB
11699@end itemize
11700
e254a580
DJ
11701
11702@node Java Declarations Summary
11703@subsection Java Declarations Summary
11704
11705This summary only include declarations specific to Java or have special
11706meaning when used in a Java parser.
11707
11708@deffn {Directive} {%language "Java"}
11709Generate a Java class for the parser.
11710@end deffn
11711
11712@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11713A parameter for the lexer class defined by @code{%code lexer}
11714@emph{only}, added as parameters to the lexer constructor and the parser
11715constructor that @emph{creates} a lexer. Default is none.
11716@xref{Java Scanner Interface}.
11717@end deffn
11718
11719@deffn {Directive} %name-prefix "@var{prefix}"
11720The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11721@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11722@xref{Java Bison Interface}.
11723@end deffn
11724
11725@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11726A parameter for the parser class added as parameters to constructor(s)
11727and as fields initialized by the constructor(s). Default is none.
11728@xref{Java Parser Interface}.
11729@end deffn
11730
11731@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11732Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11733@xref{Java Semantic Values}.
11734@end deffn
11735
11736@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11737Declare the type of nonterminals. Note that the angle brackets enclose
11738a Java @emph{type}.
11739@xref{Java Semantic Values}.
11740@end deffn
11741
11742@deffn {Directive} %code @{ @var{code} @dots{} @}
11743Code appended to the inside of the parser class.
11744@xref{Java Differences}.
11745@end deffn
11746
11747@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11748Code inserted just after the @code{package} declaration.
11749@xref{Java Differences}.
11750@end deffn
11751
1979121c
DJ
11752@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11753Code inserted at the beginning of the parser constructor body.
11754@xref{Java Parser Interface}.
11755@end deffn
11756
e254a580
DJ
11757@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11758Code added to the body of a inner lexer class within the parser class.
11759@xref{Java Scanner Interface}.
11760@end deffn
11761
11762@deffn {Directive} %% @var{code} @dots{}
11763Code (after the second @code{%%}) appended to the end of the file,
11764@emph{outside} the parser class.
11765@xref{Java Differences}.
11766@end deffn
11767
11768@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11769Not supported. Use @code{%code imports} instead.
e254a580
DJ
11770@xref{Java Differences}.
11771@end deffn
11772
11773@deffn {Directive} {%define abstract}
11774Whether the parser class is declared @code{abstract}. Default is false.
11775@xref{Java Bison Interface}.
11776@end deffn
11777
1979121c
DJ
11778@deffn {Directive} {%define annotations} "@var{annotations}"
11779The Java annotations for the parser class. Default is none.
11780@xref{Java Bison Interface}.
11781@end deffn
11782
e254a580
DJ
11783@deffn {Directive} {%define extends} "@var{superclass}"
11784The superclass of the parser class. Default is none.
11785@xref{Java Bison Interface}.
11786@end deffn
11787
11788@deffn {Directive} {%define final}
11789Whether the parser class is declared @code{final}. Default is false.
11790@xref{Java Bison Interface}.
11791@end deffn
11792
11793@deffn {Directive} {%define implements} "@var{interfaces}"
11794The implemented interfaces of the parser class, a comma-separated list.
11795Default is none.
11796@xref{Java Bison Interface}.
11797@end deffn
11798
1979121c
DJ
11799@deffn {Directive} {%define init_throws} "@var{exceptions}"
11800The exceptions thrown by @code{%code init} from the parser class
11801constructor. Default is none.
11802@xref{Java Parser Interface}.
11803@end deffn
11804
e254a580
DJ
11805@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11806The exceptions thrown by the @code{yylex} method of the lexer, a
11807comma-separated list. Default is @code{java.io.IOException}.
11808@xref{Java Scanner Interface}.
11809@end deffn
11810
7287be84 11811@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
11812The name of the class used for locations (a range between two
11813positions). This class is generated as an inner class of the parser
11814class by @command{bison}. Default is @code{Location}.
7287be84 11815Formerly named @code{location_type}.
e254a580
DJ
11816@xref{Java Location Values}.
11817@end deffn
11818
11819@deffn {Directive} {%define package} "@var{package}"
11820The package to put the parser class in. Default is none.
11821@xref{Java Bison Interface}.
11822@end deffn
11823
11824@deffn {Directive} {%define parser_class_name} "@var{name}"
11825The name of the parser class. Default is @code{YYParser} or
11826@code{@var{name-prefix}Parser}.
11827@xref{Java Bison Interface}.
11828@end deffn
11829
7287be84 11830@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
11831The name of the class used for positions. This class must be supplied by
11832the user. Default is @code{Position}.
7287be84 11833Formerly named @code{position_type}.
e254a580
DJ
11834@xref{Java Location Values}.
11835@end deffn
11836
11837@deffn {Directive} {%define public}
11838Whether the parser class is declared @code{public}. Default is false.
11839@xref{Java Bison Interface}.
11840@end deffn
11841
4119d1ea 11842@deffn {Directive} {%define api.value.type} "@var{class}"
e254a580
DJ
11843The base type of semantic values. Default is @code{Object}.
11844@xref{Java Semantic Values}.
11845@end deffn
11846
11847@deffn {Directive} {%define strictfp}
11848Whether the parser class is declared @code{strictfp}. Default is false.
11849@xref{Java Bison Interface}.
11850@end deffn
11851
11852@deffn {Directive} {%define throws} "@var{exceptions}"
11853The exceptions thrown by user-supplied parser actions and
11854@code{%initial-action}, a comma-separated list. Default is none.
11855@xref{Java Parser Interface}.
11856@end deffn
11857
11858
12545799 11859@c ================================================= FAQ
d1a1114f
AD
11860
11861@node FAQ
11862@chapter Frequently Asked Questions
11863@cindex frequently asked questions
11864@cindex questions
11865
11866Several questions about Bison come up occasionally. Here some of them
11867are addressed.
11868
11869@menu
55ba27be
AD
11870* Memory Exhausted:: Breaking the Stack Limits
11871* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11872* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11873* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11874* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11875* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11876* I can't build Bison:: Troubleshooting
11877* Where can I find help?:: Troubleshouting
11878* Bug Reports:: Troublereporting
8405b70c 11879* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11880* Beta Testing:: Experimenting development versions
11881* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11882@end menu
11883
1a059451
PE
11884@node Memory Exhausted
11885@section Memory Exhausted
d1a1114f 11886
71b52b13 11887@quotation
1a059451 11888My parser returns with error with a @samp{memory exhausted}
d1a1114f 11889message. What can I do?
71b52b13 11890@end quotation
d1a1114f 11891
188867ac
AD
11892This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11893Rules}.
d1a1114f 11894
e64fec0a
PE
11895@node How Can I Reset the Parser
11896@section How Can I Reset the Parser
5b066063 11897
0e14ad77
PE
11898The following phenomenon has several symptoms, resulting in the
11899following typical questions:
5b066063 11900
71b52b13 11901@quotation
5b066063
AD
11902I invoke @code{yyparse} several times, and on correct input it works
11903properly; but when a parse error is found, all the other calls fail
0e14ad77 11904too. How can I reset the error flag of @code{yyparse}?
71b52b13 11905@end quotation
5b066063
AD
11906
11907@noindent
11908or
11909
71b52b13 11910@quotation
0e14ad77 11911My parser includes support for an @samp{#include}-like feature, in
5b066063 11912which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 11913although I did specify @samp{%define api.pure full}.
71b52b13 11914@end quotation
5b066063 11915
0e14ad77
PE
11916These problems typically come not from Bison itself, but from
11917Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11918speed, they might not notice a change of input file. As a
11919demonstration, consider the following source file,
11920@file{first-line.l}:
11921
d4fca427
AD
11922@example
11923@group
11924%@{
5b066063
AD
11925#include <stdio.h>
11926#include <stdlib.h>
d4fca427
AD
11927%@}
11928@end group
5b066063
AD
11929%%
11930.*\n ECHO; return 1;
11931%%
d4fca427 11932@group
5b066063 11933int
0e14ad77 11934yyparse (char const *file)
d4fca427 11935@{
5b066063
AD
11936 yyin = fopen (file, "r");
11937 if (!yyin)
d4fca427
AD
11938 @{
11939 perror ("fopen");
11940 exit (EXIT_FAILURE);
11941 @}
11942@end group
11943@group
fa7e68c3 11944 /* One token only. */
5b066063 11945 yylex ();
0e14ad77 11946 if (fclose (yyin) != 0)
d4fca427
AD
11947 @{
11948 perror ("fclose");
11949 exit (EXIT_FAILURE);
11950 @}
5b066063 11951 return 0;
d4fca427
AD
11952@}
11953@end group
5b066063 11954
d4fca427 11955@group
5b066063 11956int
0e14ad77 11957main (void)
d4fca427 11958@{
5b066063
AD
11959 yyparse ("input");
11960 yyparse ("input");
11961 return 0;
d4fca427
AD
11962@}
11963@end group
11964@end example
5b066063
AD
11965
11966@noindent
11967If the file @file{input} contains
11968
71b52b13 11969@example
5b066063
AD
11970input:1: Hello,
11971input:2: World!
71b52b13 11972@end example
5b066063
AD
11973
11974@noindent
0e14ad77 11975then instead of getting the first line twice, you get:
5b066063
AD
11976
11977@example
11978$ @kbd{flex -ofirst-line.c first-line.l}
11979$ @kbd{gcc -ofirst-line first-line.c -ll}
11980$ @kbd{./first-line}
11981input:1: Hello,
11982input:2: World!
11983@end example
11984
0e14ad77
PE
11985Therefore, whenever you change @code{yyin}, you must tell the
11986Lex-generated scanner to discard its current buffer and switch to the
11987new one. This depends upon your implementation of Lex; see its
11988documentation for more. For Flex, it suffices to call
11989@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11990Flex-generated scanner needs to read from several input streams to
11991handle features like include files, you might consider using Flex
11992functions like @samp{yy_switch_to_buffer} that manipulate multiple
11993input buffers.
5b066063 11994
b165c324
AD
11995If your Flex-generated scanner uses start conditions (@pxref{Start
11996conditions, , Start conditions, flex, The Flex Manual}), you might
11997also want to reset the scanner's state, i.e., go back to the initial
11998start condition, through a call to @samp{BEGIN (0)}.
11999
fef4cb51
AD
12000@node Strings are Destroyed
12001@section Strings are Destroyed
12002
71b52b13 12003@quotation
c7e441b4 12004My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
12005them. Instead of reporting @samp{"foo", "bar"}, it reports
12006@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 12007@end quotation
fef4cb51
AD
12008
12009This error is probably the single most frequent ``bug report'' sent to
12010Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 12011of the scanner. Consider the following Lex code:
fef4cb51 12012
71b52b13 12013@example
d4fca427 12014@group
71b52b13 12015%@{
fef4cb51
AD
12016#include <stdio.h>
12017char *yylval = NULL;
71b52b13 12018%@}
d4fca427
AD
12019@end group
12020@group
fef4cb51
AD
12021%%
12022.* yylval = yytext; return 1;
12023\n /* IGNORE */
12024%%
d4fca427
AD
12025@end group
12026@group
fef4cb51
AD
12027int
12028main ()
71b52b13 12029@{
fa7e68c3 12030 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
12031 char *fst = (yylex (), yylval);
12032 char *snd = (yylex (), yylval);
12033 printf ("\"%s\", \"%s\"\n", fst, snd);
12034 return 0;
71b52b13 12035@}
d4fca427 12036@end group
71b52b13 12037@end example
fef4cb51
AD
12038
12039If you compile and run this code, you get:
12040
12041@example
12042$ @kbd{flex -osplit-lines.c split-lines.l}
12043$ @kbd{gcc -osplit-lines split-lines.c -ll}
12044$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12045"one
12046two", "two"
12047@end example
12048
12049@noindent
12050this is because @code{yytext} is a buffer provided for @emph{reading}
12051in the action, but if you want to keep it, you have to duplicate it
12052(e.g., using @code{strdup}). Note that the output may depend on how
12053your implementation of Lex handles @code{yytext}. For instance, when
12054given the Lex compatibility option @option{-l} (which triggers the
12055option @samp{%array}) Flex generates a different behavior:
12056
12057@example
12058$ @kbd{flex -l -osplit-lines.c split-lines.l}
12059$ @kbd{gcc -osplit-lines split-lines.c -ll}
12060$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12061"two", "two"
12062@end example
12063
12064
2fa09258
AD
12065@node Implementing Gotos/Loops
12066@section Implementing Gotos/Loops
a06ea4aa 12067
71b52b13 12068@quotation
a06ea4aa 12069My simple calculator supports variables, assignments, and functions,
2fa09258 12070but how can I implement gotos, or loops?
71b52b13 12071@end quotation
a06ea4aa
AD
12072
12073Although very pedagogical, the examples included in the document blur
a1c84f45 12074the distinction to make between the parser---whose job is to recover
a06ea4aa 12075the structure of a text and to transmit it to subsequent modules of
a1c84f45 12076the program---and the processing (such as the execution) of this
a06ea4aa
AD
12077structure. This works well with so called straight line programs,
12078i.e., precisely those that have a straightforward execution model:
12079execute simple instructions one after the others.
12080
12081@cindex abstract syntax tree
8a4281b9 12082@cindex AST
a06ea4aa
AD
12083If you want a richer model, you will probably need to use the parser
12084to construct a tree that does represent the structure it has
12085recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 12086or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
12087traversing it in various ways, will enable treatments such as its
12088execution or its translation, which will result in an interpreter or a
12089compiler.
12090
12091This topic is way beyond the scope of this manual, and the reader is
12092invited to consult the dedicated literature.
12093
12094
ed2e6384
AD
12095@node Multiple start-symbols
12096@section Multiple start-symbols
12097
71b52b13 12098@quotation
ed2e6384
AD
12099I have several closely related grammars, and I would like to share their
12100implementations. In fact, I could use a single grammar but with
12101multiple entry points.
71b52b13 12102@end quotation
ed2e6384
AD
12103
12104Bison does not support multiple start-symbols, but there is a very
12105simple means to simulate them. If @code{foo} and @code{bar} are the two
12106pseudo start-symbols, then introduce two new tokens, say
12107@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12108real start-symbol:
12109
12110@example
12111%token START_FOO START_BAR;
12112%start start;
5e9b6624
AD
12113start:
12114 START_FOO foo
12115| START_BAR bar;
ed2e6384
AD
12116@end example
12117
12118These tokens prevents the introduction of new conflicts. As far as the
12119parser goes, that is all that is needed.
12120
12121Now the difficult part is ensuring that the scanner will send these
12122tokens first. If your scanner is hand-written, that should be
12123straightforward. If your scanner is generated by Lex, them there is
12124simple means to do it: recall that anything between @samp{%@{ ... %@}}
12125after the first @code{%%} is copied verbatim in the top of the generated
12126@code{yylex} function. Make sure a variable @code{start_token} is
12127available in the scanner (e.g., a global variable or using
12128@code{%lex-param} etc.), and use the following:
12129
12130@example
12131 /* @r{Prologue.} */
12132%%
12133%@{
12134 if (start_token)
12135 @{
12136 int t = start_token;
12137 start_token = 0;
12138 return t;
12139 @}
12140%@}
12141 /* @r{The rules.} */
12142@end example
12143
12144
55ba27be
AD
12145@node Secure? Conform?
12146@section Secure? Conform?
12147
71b52b13 12148@quotation
55ba27be 12149Is Bison secure? Does it conform to POSIX?
71b52b13 12150@end quotation
55ba27be
AD
12151
12152If you're looking for a guarantee or certification, we don't provide it.
12153However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12154POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12155please send us a bug report.
12156
12157@node I can't build Bison
12158@section I can't build Bison
12159
71b52b13 12160@quotation
8c5b881d
PE
12161I can't build Bison because @command{make} complains that
12162@code{msgfmt} is not found.
55ba27be 12163What should I do?
71b52b13 12164@end quotation
55ba27be
AD
12165
12166Like most GNU packages with internationalization support, that feature
12167is turned on by default. If you have problems building in the @file{po}
12168subdirectory, it indicates that your system's internationalization
12169support is lacking. You can re-configure Bison with
12170@option{--disable-nls} to turn off this support, or you can install GNU
12171gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12172Bison. See the file @file{ABOUT-NLS} for more information.
12173
12174
12175@node Where can I find help?
12176@section Where can I find help?
12177
71b52b13 12178@quotation
55ba27be 12179I'm having trouble using Bison. Where can I find help?
71b52b13 12180@end quotation
55ba27be
AD
12181
12182First, read this fine manual. Beyond that, you can send mail to
12183@email{help-bison@@gnu.org}. This mailing list is intended to be
12184populated with people who are willing to answer questions about using
12185and installing Bison. Please keep in mind that (most of) the people on
12186the list have aspects of their lives which are not related to Bison (!),
12187so you may not receive an answer to your question right away. This can
12188be frustrating, but please try not to honk them off; remember that any
12189help they provide is purely voluntary and out of the kindness of their
12190hearts.
12191
12192@node Bug Reports
12193@section Bug Reports
12194
71b52b13 12195@quotation
55ba27be 12196I found a bug. What should I include in the bug report?
71b52b13 12197@end quotation
55ba27be
AD
12198
12199Before you send a bug report, make sure you are using the latest
12200version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12201mirrors. Be sure to include the version number in your bug report. If
12202the bug is present in the latest version but not in a previous version,
12203try to determine the most recent version which did not contain the bug.
12204
12205If the bug is parser-related, you should include the smallest grammar
12206you can which demonstrates the bug. The grammar file should also be
12207complete (i.e., I should be able to run it through Bison without having
12208to edit or add anything). The smaller and simpler the grammar, the
12209easier it will be to fix the bug.
12210
12211Include information about your compilation environment, including your
12212operating system's name and version and your compiler's name and
12213version. If you have trouble compiling, you should also include a
12214transcript of the build session, starting with the invocation of
12215`configure'. Depending on the nature of the bug, you may be asked to
12216send additional files as well (such as `config.h' or `config.cache').
12217
12218Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12219send a bug report just because you cannot provide a fix.
55ba27be
AD
12220
12221Send bug reports to @email{bug-bison@@gnu.org}.
12222
8405b70c
PB
12223@node More Languages
12224@section More Languages
55ba27be 12225
71b52b13 12226@quotation
8405b70c 12227Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12228favorite language here}?
71b52b13 12229@end quotation
55ba27be 12230
8405b70c 12231C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12232languages; contributions are welcome.
12233
12234@node Beta Testing
12235@section Beta Testing
12236
71b52b13 12237@quotation
55ba27be 12238What is involved in being a beta tester?
71b52b13 12239@end quotation
55ba27be
AD
12240
12241It's not terribly involved. Basically, you would download a test
12242release, compile it, and use it to build and run a parser or two. After
12243that, you would submit either a bug report or a message saying that
12244everything is okay. It is important to report successes as well as
12245failures because test releases eventually become mainstream releases,
12246but only if they are adequately tested. If no one tests, development is
12247essentially halted.
12248
12249Beta testers are particularly needed for operating systems to which the
12250developers do not have easy access. They currently have easy access to
12251recent GNU/Linux and Solaris versions. Reports about other operating
12252systems are especially welcome.
12253
12254@node Mailing Lists
12255@section Mailing Lists
12256
71b52b13 12257@quotation
55ba27be 12258How do I join the help-bison and bug-bison mailing lists?
71b52b13 12259@end quotation
55ba27be
AD
12260
12261See @url{http://lists.gnu.org/}.
a06ea4aa 12262
d1a1114f
AD
12263@c ================================================= Table of Symbols
12264
342b8b6e 12265@node Table of Symbols
bfa74976
RS
12266@appendix Bison Symbols
12267@cindex Bison symbols, table of
12268@cindex symbols in Bison, table of
12269
18b519c0 12270@deffn {Variable} @@$
3ded9a63 12271In an action, the location of the left-hand side of the rule.
303834cc 12272@xref{Tracking Locations}.
18b519c0 12273@end deffn
3ded9a63 12274
18b519c0 12275@deffn {Variable} @@@var{n}
be22823e 12276@deffnx {Symbol} @@@var{n}
303834cc
JD
12277In an action, the location of the @var{n}-th symbol of the right-hand side
12278of the rule. @xref{Tracking Locations}.
be22823e
AD
12279
12280In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12281with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12282@end deffn
3ded9a63 12283
d013372c 12284@deffn {Variable} @@@var{name}
c949ada3
AD
12285@deffnx {Variable} @@[@var{name}]
12286In an action, the location of a symbol addressed by @var{name}.
12287@xref{Tracking Locations}.
d013372c
AR
12288@end deffn
12289
be22823e
AD
12290@deffn {Symbol} $@@@var{n}
12291In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12292with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12293@end deffn
12294
18b519c0 12295@deffn {Variable} $$
3ded9a63
AD
12296In an action, the semantic value of the left-hand side of the rule.
12297@xref{Actions}.
18b519c0 12298@end deffn
3ded9a63 12299
18b519c0 12300@deffn {Variable} $@var{n}
3ded9a63
AD
12301In an action, the semantic value of the @var{n}-th symbol of the
12302right-hand side of the rule. @xref{Actions}.
18b519c0 12303@end deffn
3ded9a63 12304
d013372c 12305@deffn {Variable} $@var{name}
c949ada3
AD
12306@deffnx {Variable} $[@var{name}]
12307In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12308@xref{Actions}.
12309@end deffn
12310
dd8d9022
AD
12311@deffn {Delimiter} %%
12312Delimiter used to separate the grammar rule section from the
12313Bison declarations section or the epilogue.
12314@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12315@end deffn
bfa74976 12316
dd8d9022
AD
12317@c Don't insert spaces, or check the DVI output.
12318@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12319All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12320to the parser implementation file. Such code forms the prologue of
12321the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12322Grammar}.
18b519c0 12323@end deffn
bfa74976 12324
ca2a6d15
PH
12325@deffn {Directive} %?@{@var{expression}@}
12326Predicate actions. This is a type of action clause that may appear in
12327rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12328GLR parsers during nondeterministic operation,
ca2a6d15
PH
12329this silently causes an alternative parse to die. During deterministic
12330operation, it is the same as the effect of YYERROR.
12331@xref{Semantic Predicates}.
12332
12333This feature is experimental.
12334More user feedback will help to determine whether it should become a permanent
12335feature.
12336@end deffn
12337
c949ada3
AD
12338@deffn {Construct} /* @dots{} */
12339@deffnx {Construct} // @dots{}
12340Comments, as in C/C++.
18b519c0 12341@end deffn
bfa74976 12342
dd8d9022
AD
12343@deffn {Delimiter} :
12344Separates a rule's result from its components. @xref{Rules, ,Syntax of
12345Grammar Rules}.
18b519c0 12346@end deffn
bfa74976 12347
dd8d9022
AD
12348@deffn {Delimiter} ;
12349Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12350@end deffn
bfa74976 12351
dd8d9022
AD
12352@deffn {Delimiter} |
12353Separates alternate rules for the same result nonterminal.
12354@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12355@end deffn
bfa74976 12356
12e35840
JD
12357@deffn {Directive} <*>
12358Used to define a default tagged @code{%destructor} or default tagged
12359@code{%printer}.
85894313
JD
12360
12361This feature is experimental.
12362More user feedback will help to determine whether it should become a permanent
12363feature.
12364
12e35840
JD
12365@xref{Destructor Decl, , Freeing Discarded Symbols}.
12366@end deffn
12367
3ebecc24 12368@deffn {Directive} <>
12e35840
JD
12369Used to define a default tagless @code{%destructor} or default tagless
12370@code{%printer}.
85894313
JD
12371
12372This feature is experimental.
12373More user feedback will help to determine whether it should become a permanent
12374feature.
12375
12e35840
JD
12376@xref{Destructor Decl, , Freeing Discarded Symbols}.
12377@end deffn
12378
dd8d9022
AD
12379@deffn {Symbol} $accept
12380The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12381$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12382Start-Symbol}. It cannot be used in the grammar.
18b519c0 12383@end deffn
bfa74976 12384
136a0f76 12385@deffn {Directive} %code @{@var{code}@}
148d66d8 12386@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12387Insert @var{code} verbatim into the output parser source at the
12388default location or at the location specified by @var{qualifier}.
e0c07222 12389@xref{%code Summary}.
9bc0dd67
JD
12390@end deffn
12391
12392@deffn {Directive} %debug
12393Equip the parser for debugging. @xref{Decl Summary}.
12394@end deffn
12395
91d2c560 12396@ifset defaultprec
22fccf95
PE
12397@deffn {Directive} %default-prec
12398Assign a precedence to rules that lack an explicit @samp{%prec}
12399modifier. @xref{Contextual Precedence, ,Context-Dependent
12400Precedence}.
39a06c25 12401@end deffn
91d2c560 12402@end ifset
39a06c25 12403
7fceb615
JD
12404@deffn {Directive} %define @var{variable}
12405@deffnx {Directive} %define @var{variable} @var{value}
12406@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12407Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12408@end deffn
12409
18b519c0 12410@deffn {Directive} %defines
ff7571c0
JD
12411Bison declaration to create a parser header file, which is usually
12412meant for the scanner. @xref{Decl Summary}.
18b519c0 12413@end deffn
6deb4447 12414
02975b9a
JD
12415@deffn {Directive} %defines @var{defines-file}
12416Same as above, but save in the file @var{defines-file}.
12417@xref{Decl Summary}.
12418@end deffn
12419
18b519c0 12420@deffn {Directive} %destructor
258b75ca 12421Specify how the parser should reclaim the memory associated to
fa7e68c3 12422discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12423@end deffn
72f889cc 12424
18b519c0 12425@deffn {Directive} %dprec
676385e2 12426Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12427time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12428GLR Parsers}.
18b519c0 12429@end deffn
676385e2 12430
dd8d9022
AD
12431@deffn {Symbol} $end
12432The predefined token marking the end of the token stream. It cannot be
12433used in the grammar.
12434@end deffn
12435
12436@deffn {Symbol} error
12437A token name reserved for error recovery. This token may be used in
12438grammar rules so as to allow the Bison parser to recognize an error in
12439the grammar without halting the process. In effect, a sentence
12440containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12441token @code{error} becomes the current lookahead token. Actions
12442corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12443token is reset to the token that originally caused the violation.
12444@xref{Error Recovery}.
18d192f0
AD
12445@end deffn
12446
18b519c0 12447@deffn {Directive} %error-verbose
7fceb615
JD
12448An obsolete directive standing for @samp{%define parse.error verbose}
12449(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12450@end deffn
2a8d363a 12451
02975b9a 12452@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12453Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12454Summary}.
18b519c0 12455@end deffn
d8988b2f 12456
18b519c0 12457@deffn {Directive} %glr-parser
8a4281b9
JD
12458Bison declaration to produce a GLR parser. @xref{GLR
12459Parsers, ,Writing GLR Parsers}.
18b519c0 12460@end deffn
676385e2 12461
dd8d9022
AD
12462@deffn {Directive} %initial-action
12463Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12464@end deffn
12465
e6e704dc
JD
12466@deffn {Directive} %language
12467Specify the programming language for the generated parser.
12468@xref{Decl Summary}.
12469@end deffn
12470
18b519c0 12471@deffn {Directive} %left
d78f0ac9 12472Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12473@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12474@end deffn
bfa74976 12475
2055a44e
AD
12476@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12477Bison declaration to specifying additional arguments that
2a8d363a
AD
12478@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12479for Pure Parsers}.
18b519c0 12480@end deffn
2a8d363a 12481
18b519c0 12482@deffn {Directive} %merge
676385e2 12483Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12484reduce/reduce conflict with a rule having the same merging function, the
676385e2 12485function is applied to the two semantic values to get a single result.
8a4281b9 12486@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12487@end deffn
676385e2 12488
02975b9a 12489@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12490Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12491Parsers, ,Multiple Parsers in the Same Program}).
12492
12493Rename the external symbols (variables and functions) used in the parser so
12494that they start with @var{prefix} instead of @samp{yy}. Contrary to
12495@code{api.prefix}, do no rename types and macros.
12496
12497The precise list of symbols renamed in C parsers is @code{yyparse},
12498@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12499@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12500push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12501@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12502example, if you use @samp{%name-prefix "c_"}, the names become
12503@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
12504@code{%define namespace} documentation in this section.
18b519c0 12505@end deffn
d8988b2f 12506
4b3847c3 12507
91d2c560 12508@ifset defaultprec
22fccf95
PE
12509@deffn {Directive} %no-default-prec
12510Do not assign a precedence to rules that lack an explicit @samp{%prec}
12511modifier. @xref{Contextual Precedence, ,Context-Dependent
12512Precedence}.
12513@end deffn
91d2c560 12514@end ifset
22fccf95 12515
18b519c0 12516@deffn {Directive} %no-lines
931c7513 12517Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12518parser implementation file. @xref{Decl Summary}.
18b519c0 12519@end deffn
931c7513 12520
18b519c0 12521@deffn {Directive} %nonassoc
d78f0ac9 12522Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12523@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12524@end deffn
bfa74976 12525
02975b9a 12526@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12527Bison declaration to set the name of the parser implementation file.
12528@xref{Decl Summary}.
18b519c0 12529@end deffn
d8988b2f 12530
2055a44e
AD
12531@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12532Bison declaration to specify additional arguments that both
12533@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12534Parser Function @code{yyparse}}.
12535@end deffn
12536
12537@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12538Bison declaration to specify additional arguments that @code{yyparse}
12539should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12540@end deffn
2a8d363a 12541
18b519c0 12542@deffn {Directive} %prec
bfa74976
RS
12543Bison declaration to assign a precedence to a specific rule.
12544@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12545@end deffn
bfa74976 12546
d78f0ac9
AD
12547@deffn {Directive} %precedence
12548Bison declaration to assign precedence to token(s), but no associativity
12549@xref{Precedence Decl, ,Operator Precedence}.
12550@end deffn
12551
18b519c0 12552@deffn {Directive} %pure-parser
35c1e5f0
JD
12553Deprecated version of @samp{%define api.pure} (@pxref{%define
12554Summary,,api.pure}), for which Bison is more careful to warn about
12555unreasonable usage.
18b519c0 12556@end deffn
bfa74976 12557
b50d2359 12558@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12559Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12560Require a Version of Bison}.
b50d2359
AD
12561@end deffn
12562
18b519c0 12563@deffn {Directive} %right
d78f0ac9 12564Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12565@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12566@end deffn
bfa74976 12567
e6e704dc
JD
12568@deffn {Directive} %skeleton
12569Specify the skeleton to use; usually for development.
12570@xref{Decl Summary}.
12571@end deffn
12572
18b519c0 12573@deffn {Directive} %start
704a47c4
AD
12574Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12575Start-Symbol}.
18b519c0 12576@end deffn
bfa74976 12577
18b519c0 12578@deffn {Directive} %token
bfa74976
RS
12579Bison declaration to declare token(s) without specifying precedence.
12580@xref{Token Decl, ,Token Type Names}.
18b519c0 12581@end deffn
bfa74976 12582
18b519c0 12583@deffn {Directive} %token-table
ff7571c0
JD
12584Bison declaration to include a token name table in the parser
12585implementation file. @xref{Decl Summary}.
18b519c0 12586@end deffn
931c7513 12587
18b519c0 12588@deffn {Directive} %type
704a47c4
AD
12589Bison declaration to declare nonterminals. @xref{Type Decl,
12590,Nonterminal Symbols}.
18b519c0 12591@end deffn
bfa74976 12592
dd8d9022
AD
12593@deffn {Symbol} $undefined
12594The predefined token onto which all undefined values returned by
12595@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12596@code{error}.
12597@end deffn
12598
18b519c0 12599@deffn {Directive} %union
bfa74976
RS
12600Bison declaration to specify several possible data types for semantic
12601values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 12602@end deffn
bfa74976 12603
dd8d9022
AD
12604@deffn {Macro} YYABORT
12605Macro to pretend that an unrecoverable syntax error has occurred, by
12606making @code{yyparse} return 1 immediately. The error reporting
12607function @code{yyerror} is not called. @xref{Parser Function, ,The
12608Parser Function @code{yyparse}}.
8405b70c
PB
12609
12610For Java parsers, this functionality is invoked using @code{return YYABORT;}
12611instead.
dd8d9022 12612@end deffn
3ded9a63 12613
dd8d9022
AD
12614@deffn {Macro} YYACCEPT
12615Macro to pretend that a complete utterance of the language has been
12616read, by making @code{yyparse} return 0 immediately.
12617@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12618
12619For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12620instead.
dd8d9022 12621@end deffn
bfa74976 12622
dd8d9022 12623@deffn {Macro} YYBACKUP
742e4900 12624Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12625token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12626@end deffn
bfa74976 12627
dd8d9022 12628@deffn {Variable} yychar
32c29292 12629External integer variable that contains the integer value of the
742e4900 12630lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12631@code{yyparse}.) Error-recovery rule actions may examine this variable.
12632@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12633@end deffn
bfa74976 12634
dd8d9022
AD
12635@deffn {Variable} yyclearin
12636Macro used in error-recovery rule actions. It clears the previous
742e4900 12637lookahead token. @xref{Error Recovery}.
18b519c0 12638@end deffn
bfa74976 12639
dd8d9022
AD
12640@deffn {Macro} YYDEBUG
12641Macro to define to equip the parser with tracing code. @xref{Tracing,
12642,Tracing Your Parser}.
18b519c0 12643@end deffn
bfa74976 12644
dd8d9022
AD
12645@deffn {Variable} yydebug
12646External integer variable set to zero by default. If @code{yydebug}
12647is given a nonzero value, the parser will output information on input
12648symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12649@end deffn
bfa74976 12650
dd8d9022
AD
12651@deffn {Macro} yyerrok
12652Macro to cause parser to recover immediately to its normal mode
12653after a syntax error. @xref{Error Recovery}.
12654@end deffn
12655
12656@deffn {Macro} YYERROR
4a11b852
AD
12657Cause an immediate syntax error. This statement initiates error
12658recovery just as if the parser itself had detected an error; however, it
12659does not call @code{yyerror}, and does not print any message. If you
12660want to print an error message, call @code{yyerror} explicitly before
12661the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12662
12663For Java parsers, this functionality is invoked using @code{return YYERROR;}
12664instead.
dd8d9022
AD
12665@end deffn
12666
12667@deffn {Function} yyerror
12668User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12669@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12670@end deffn
12671
12672@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12673An obsolete macro used in the @file{yacc.c} skeleton, that you define
12674with @code{#define} in the prologue to request verbose, specific error
12675message strings when @code{yyerror} is called. It doesn't matter what
12676definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12677it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12678(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12679@end deffn
12680
93c150b6
AD
12681@deffn {Macro} YYFPRINTF
12682Macro used to output run-time traces.
12683@xref{Enabling Traces}.
12684@end deffn
12685
dd8d9022
AD
12686@deffn {Macro} YYINITDEPTH
12687Macro for specifying the initial size of the parser stack.
1a059451 12688@xref{Memory Management}.
dd8d9022
AD
12689@end deffn
12690
12691@deffn {Function} yylex
12692User-supplied lexical analyzer function, called with no arguments to get
12693the next token. @xref{Lexical, ,The Lexical Analyzer Function
12694@code{yylex}}.
12695@end deffn
12696
dd8d9022
AD
12697@deffn {Variable} yylloc
12698External variable in which @code{yylex} should place the line and column
12699numbers associated with a token. (In a pure parser, it is a local
12700variable within @code{yyparse}, and its address is passed to
32c29292
JD
12701@code{yylex}.)
12702You can ignore this variable if you don't use the @samp{@@} feature in the
12703grammar actions.
12704@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12705In semantic actions, it stores the location of the lookahead token.
32c29292 12706@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12707@end deffn
12708
12709@deffn {Type} YYLTYPE
12710Data type of @code{yylloc}; by default, a structure with four
12711members. @xref{Location Type, , Data Types of Locations}.
12712@end deffn
12713
12714@deffn {Variable} yylval
12715External variable in which @code{yylex} should place the semantic
12716value associated with a token. (In a pure parser, it is a local
12717variable within @code{yyparse}, and its address is passed to
32c29292
JD
12718@code{yylex}.)
12719@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12720In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12721@xref{Actions, ,Actions}.
dd8d9022
AD
12722@end deffn
12723
12724@deffn {Macro} YYMAXDEPTH
1a059451
PE
12725Macro for specifying the maximum size of the parser stack. @xref{Memory
12726Management}.
dd8d9022
AD
12727@end deffn
12728
12729@deffn {Variable} yynerrs
8a2800e7 12730Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12731(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 12732pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
12733@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12734@end deffn
12735
12736@deffn {Function} yyparse
12737The parser function produced by Bison; call this function to start
12738parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12739@end deffn
12740
93c150b6
AD
12741@deffn {Macro} YYPRINT
12742Macro used to output token semantic values. For @file{yacc.c} only.
12743Obsoleted by @code{%printer}.
12744@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12745@end deffn
12746
9987d1b3 12747@deffn {Function} yypstate_delete
f4101aa6 12748The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12749call this function to delete the memory associated with a parser.
f4101aa6 12750@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12751@code{yypstate_delete}}.
59da312b
JD
12752(The current push parsing interface is experimental and may evolve.
12753More user feedback will help to stabilize it.)
9987d1b3
JD
12754@end deffn
12755
12756@deffn {Function} yypstate_new
f4101aa6 12757The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12758call this function to create a new parser.
f4101aa6 12759@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12760@code{yypstate_new}}.
59da312b
JD
12761(The current push parsing interface is experimental and may evolve.
12762More user feedback will help to stabilize it.)
9987d1b3
JD
12763@end deffn
12764
12765@deffn {Function} yypull_parse
f4101aa6
AD
12766The parser function produced by Bison in push mode; call this function to
12767parse the rest of the input stream.
12768@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12769@code{yypull_parse}}.
59da312b
JD
12770(The current push parsing interface is experimental and may evolve.
12771More user feedback will help to stabilize it.)
9987d1b3
JD
12772@end deffn
12773
12774@deffn {Function} yypush_parse
f4101aa6
AD
12775The parser function produced by Bison in push mode; call this function to
12776parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12777@code{yypush_parse}}.
59da312b
JD
12778(The current push parsing interface is experimental and may evolve.
12779More user feedback will help to stabilize it.)
9987d1b3
JD
12780@end deffn
12781
dd8d9022 12782@deffn {Macro} YYRECOVERING
02103984
PE
12783The expression @code{YYRECOVERING ()} yields 1 when the parser
12784is recovering from a syntax error, and 0 otherwise.
12785@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12786@end deffn
12787
12788@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12789Macro used to control the use of @code{alloca} when the
12790deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12791the parser will use @code{malloc} to extend its stacks. If defined to
127921, the parser will use @code{alloca}. Values other than 0 and 1 are
12793reserved for future Bison extensions. If not defined,
12794@code{YYSTACK_USE_ALLOCA} defaults to 0.
12795
55289366 12796In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12797limited stack and with unreliable stack-overflow checking, you should
12798set @code{YYMAXDEPTH} to a value that cannot possibly result in
12799unchecked stack overflow on any of your target hosts when
12800@code{alloca} is called. You can inspect the code that Bison
12801generates in order to determine the proper numeric values. This will
12802require some expertise in low-level implementation details.
dd8d9022
AD
12803@end deffn
12804
12805@deffn {Type} YYSTYPE
12806Data type of semantic values; @code{int} by default.
12807@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12808@end deffn
bfa74976 12809
342b8b6e 12810@node Glossary
bfa74976
RS
12811@appendix Glossary
12812@cindex glossary
12813
12814@table @asis
7fceb615 12815@item Accepting state
eb45ef3b
JD
12816A state whose only action is the accept action.
12817The accepting state is thus a consistent state.
c949ada3 12818@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 12819
8a4281b9 12820@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12821Formal method of specifying context-free grammars originally proposed
12822by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12823committee document contributing to what became the Algol 60 report.
12824@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12825
7fceb615
JD
12826@item Consistent state
12827A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12828
bfa74976
RS
12829@item Context-free grammars
12830Grammars specified as rules that can be applied regardless of context.
12831Thus, if there is a rule which says that an integer can be used as an
12832expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12833permitted. @xref{Language and Grammar, ,Languages and Context-Free
12834Grammars}.
bfa74976 12835
7fceb615 12836@item Default reduction
110ef36a 12837The reduction that a parser should perform if the current parser state
35c1e5f0 12838contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12839states, Bison declares the reduction with the largest lookahead set to be
12840the default reduction and removes that lookahead set. @xref{Default
12841Reductions}.
12842
12843@item Defaulted state
12844A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12845
bfa74976
RS
12846@item Dynamic allocation
12847Allocation of memory that occurs during execution, rather than at
12848compile time or on entry to a function.
12849
12850@item Empty string
12851Analogous to the empty set in set theory, the empty string is a
12852character string of length zero.
12853
12854@item Finite-state stack machine
12855A ``machine'' that has discrete states in which it is said to exist at
12856each instant in time. As input to the machine is processed, the
12857machine moves from state to state as specified by the logic of the
12858machine. In the case of the parser, the input is the language being
12859parsed, and the states correspond to various stages in the grammar
c827f760 12860rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12861
8a4281b9 12862@item Generalized LR (GLR)
676385e2 12863A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12864that are not LR(1). It resolves situations that Bison's
eb45ef3b 12865deterministic parsing
676385e2
PH
12866algorithm cannot by effectively splitting off multiple parsers, trying all
12867possible parsers, and discarding those that fail in the light of additional
c827f760 12868right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12869LR Parsing}.
676385e2 12870
bfa74976
RS
12871@item Grouping
12872A language construct that is (in general) grammatically divisible;
c827f760 12873for example, `expression' or `declaration' in C@.
bfa74976
RS
12874@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12875
7fceb615
JD
12876@item IELR(1) (Inadequacy Elimination LR(1))
12877A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12878context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12879language-recognition power of canonical LR(1) but with nearly the same
12880number of parser states as LALR(1). This reduction in parser states is
12881often an order of magnitude. More importantly, because canonical LR(1)'s
12882extra parser states may contain duplicate conflicts in the case of non-LR(1)
12883grammars, the number of conflicts for IELR(1) is often an order of magnitude
12884less as well. This can significantly reduce the complexity of developing a
12885grammar. @xref{LR Table Construction}.
eb45ef3b 12886
bfa74976
RS
12887@item Infix operator
12888An arithmetic operator that is placed between the operands on which it
12889performs some operation.
12890
12891@item Input stream
12892A continuous flow of data between devices or programs.
12893
8a4281b9 12894@item LAC (Lookahead Correction)
fcf834f9 12895A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12896detection, which is caused by LR state merging, default reductions, and the
12897use of @code{%nonassoc}. Delayed syntax error detection results in
12898unexpected semantic actions, initiation of error recovery in the wrong
12899syntactic context, and an incorrect list of expected tokens in a verbose
12900syntax error message. @xref{LAC}.
fcf834f9 12901
bfa74976
RS
12902@item Language construct
12903One of the typical usage schemas of the language. For example, one of
12904the constructs of the C language is the @code{if} statement.
12905@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12906
12907@item Left associativity
12908Operators having left associativity are analyzed from left to right:
12909@samp{a+b+c} first computes @samp{a+b} and then combines with
12910@samp{c}. @xref{Precedence, ,Operator Precedence}.
12911
12912@item Left recursion
89cab50d
AD
12913A rule whose result symbol is also its first component symbol; for
12914example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12915Rules}.
bfa74976
RS
12916
12917@item Left-to-right parsing
12918Parsing a sentence of a language by analyzing it token by token from
c827f760 12919left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12920
12921@item Lexical analyzer (scanner)
12922A function that reads an input stream and returns tokens one by one.
12923@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12924
12925@item Lexical tie-in
12926A flag, set by actions in the grammar rules, which alters the way
12927tokens are parsed. @xref{Lexical Tie-ins}.
12928
931c7513 12929@item Literal string token
14ded682 12930A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12931
742e4900
JD
12932@item Lookahead token
12933A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12934Tokens}.
bfa74976 12935
8a4281b9 12936@item LALR(1)
bfa74976 12937The class of context-free grammars that Bison (like most other parser
8a4281b9 12938generators) can handle by default; a subset of LR(1).
cc09e5be 12939@xref{Mysterious Conflicts}.
bfa74976 12940
8a4281b9 12941@item LR(1)
bfa74976 12942The class of context-free grammars in which at most one token of
742e4900 12943lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
12944
12945@item Nonterminal symbol
12946A grammar symbol standing for a grammatical construct that can
12947be expressed through rules in terms of smaller constructs; in other
12948words, a construct that is not a token. @xref{Symbols}.
12949
bfa74976
RS
12950@item Parser
12951A function that recognizes valid sentences of a language by analyzing
12952the syntax structure of a set of tokens passed to it from a lexical
12953analyzer.
12954
12955@item Postfix operator
12956An arithmetic operator that is placed after the operands upon which it
12957performs some operation.
12958
12959@item Reduction
12960Replacing a string of nonterminals and/or terminals with a single
89cab50d 12961nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 12962Parser Algorithm}.
bfa74976
RS
12963
12964@item Reentrant
12965A reentrant subprogram is a subprogram which can be in invoked any
12966number of times in parallel, without interference between the various
12967invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
12968
12969@item Reverse polish notation
12970A language in which all operators are postfix operators.
12971
12972@item Right recursion
89cab50d
AD
12973A rule whose result symbol is also its last component symbol; for
12974example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
12975Rules}.
bfa74976
RS
12976
12977@item Semantics
12978In computer languages, the semantics are specified by the actions
12979taken for each instance of the language, i.e., the meaning of
12980each statement. @xref{Semantics, ,Defining Language Semantics}.
12981
12982@item Shift
12983A parser is said to shift when it makes the choice of analyzing
12984further input from the stream rather than reducing immediately some
c827f760 12985already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12986
12987@item Single-character literal
12988A single character that is recognized and interpreted as is.
12989@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12990
12991@item Start symbol
12992The nonterminal symbol that stands for a complete valid utterance in
12993the language being parsed. The start symbol is usually listed as the
13863333 12994first nonterminal symbol in a language specification.
bfa74976
RS
12995@xref{Start Decl, ,The Start-Symbol}.
12996
12997@item Symbol table
12998A data structure where symbol names and associated data are stored
12999during parsing to allow for recognition and use of existing
13000information in repeated uses of a symbol. @xref{Multi-function Calc}.
13001
6e649e65
PE
13002@item Syntax error
13003An error encountered during parsing of an input stream due to invalid
13004syntax. @xref{Error Recovery}.
13005
bfa74976
RS
13006@item Token
13007A basic, grammatically indivisible unit of a language. The symbol
13008that describes a token in the grammar is a terminal symbol.
13009The input of the Bison parser is a stream of tokens which comes from
13010the lexical analyzer. @xref{Symbols}.
13011
13012@item Terminal symbol
89cab50d
AD
13013A grammar symbol that has no rules in the grammar and therefore is
13014grammatically indivisible. The piece of text it represents is a token.
13015@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
13016
13017@item Unreachable state
13018A parser state to which there does not exist a sequence of transitions from
13019the parser's start state. A state can become unreachable during conflict
13020resolution. @xref{Unreachable States}.
bfa74976
RS
13021@end table
13022
342b8b6e 13023@node Copying This Manual
f2b5126e 13024@appendix Copying This Manual
f2b5126e
PB
13025@include fdl.texi
13026
5e528941
JD
13027@node Bibliography
13028@unnumbered Bibliography
13029
13030@table @asis
13031@item [Denny 2008]
13032Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
13033for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
130342008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
13035pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
13036
13037@item [Denny 2010 May]
13038Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
13039Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
13040University, Clemson, SC, USA (May 2010).
13041@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
13042
13043@item [Denny 2010 November]
13044Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
13045Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
13046in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
130472010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
13048
13049@item [DeRemer 1982]
13050Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
13051Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
13052Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
13053615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
13054
13055@item [Knuth 1965]
13056Donald E. Knuth, On the Translation of Languages from Left to Right, in
13057@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
13058607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
13059
13060@item [Scott 2000]
13061Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
13062@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
13063London, Department of Computer Science, TR-00-12 (December 2000).
13064@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
13065@end table
13066
f9b86351
AD
13067@node Index of Terms
13068@unnumbered Index of Terms
bfa74976
RS
13069
13070@printindex cp
13071
bfa74976 13072@bye
a06ea4aa 13073
6b5a0de9
AD
13074@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
13075@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
13076@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
13077@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
13078@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
13079@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
13080@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
13081@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
13082@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
13083@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
13084@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
13085@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
13086@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 13087@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
13088@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
13089@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13090@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13091@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13092@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13093@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13094@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13095@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13096@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13097@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13098@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13099@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13100@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13101@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13102@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13103@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13104@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13105@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13106@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13107@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13108@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13109@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13110@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13111@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13112@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13113@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13114@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13115@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13116@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13117@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13118@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13119@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13120@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13121@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13122@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13123@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13124@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13125@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13126@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13127@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13128@c LocalWords: parsers parser's
13129@c LocalWords: associativity subclasses precedences unresolvable runnable
13130@c LocalWords: allocators subunit initializations unreferenced untyped
13131@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13132
13133@c Local Variables:
13134@c ispell-dictionary: "american"
13135@c fill-column: 76
13136@c End: