]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: use only @example, not @smallexample.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
d6328241 229* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
230* Start Decl:: Specifying the start symbol.
231* Pure Decl:: Requesting a reentrant parser.
9987d1b3 232* Push Decl:: Requesting a push parser.
bfa74976 233* Decl Summary:: Table of all Bison declarations.
35c1e5f0 234* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 235* %code Summary:: Inserting code into the parser source.
bfa74976
RS
236
237Parser C-Language Interface
238
f5f419de
DJ
239* Parser Function:: How to call @code{yyparse} and what it returns.
240* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
241* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
242* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
243* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
244* Lexical:: You must supply a function @code{yylex}
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
256* Token Locations:: How @code{yylex} must return the text location
257 (line number, etc.) of the token, if the
258 actions want that.
259* Pure Calling:: How the calling convention differs in a pure parser
260 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 261
13863333 262The Bison Parser Algorithm
bfa74976 263
742e4900 264* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 270* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 271* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 272* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 273* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
274
275Operator Precedence
276
277* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
278* Using Precedence:: How to specify precedence and associativity.
279* Precedence Only:: How to specify precedence only.
bfa74976
RS
280* Precedence Examples:: How these features are used in the previous example.
281* How Precedence:: How they work.
282
7fceb615
JD
283Tuning LR
284
285* LR Table Construction:: Choose a different construction algorithm.
286* Default Reductions:: Disable default reductions.
287* LAC:: Correct lookahead sets in the parser states.
288* Unreachable States:: Keep unreachable parser states for debugging.
289
bfa74976
RS
290Handling Context Dependencies
291
292* Semantic Tokens:: Token parsing can depend on the semantic context.
293* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
294* Tie-in Recovery:: Lexical tie-ins have implications for how
295 error recovery rules must be written.
296
93dd49ab 297Debugging Your Parser
ec3bc396
AD
298
299* Understanding:: Understanding the structure of your parser.
300* Tracing:: Tracing the execution of your parser.
301
bfa74976
RS
302Invoking Bison
303
13863333 304* Bison Options:: All the options described in detail,
c827f760 305 in alphabetical order by short options.
bfa74976 306* Option Cross Key:: Alphabetical list of long options.
93dd49ab 307* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 308
8405b70c 309Parsers Written In Other Languages
12545799
AD
310
311* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 312* Java Parsers:: The interface to generate Java parser classes
12545799
AD
313
314C++ Parsers
315
316* C++ Bison Interface:: Asking for C++ parser generation
317* C++ Semantic Values:: %union vs. C++
318* C++ Location Values:: The position and location classes
319* C++ Parser Interface:: Instantiating and running the parser
320* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 321* A Complete C++ Example:: Demonstrating their use
12545799
AD
322
323A Complete C++ Example
324
325* Calc++ --- C++ Calculator:: The specifications
326* Calc++ Parsing Driver:: An active parsing context
327* Calc++ Parser:: A parser class
328* Calc++ Scanner:: A pure C++ Flex scanner
329* Calc++ Top Level:: Conducting the band
330
8405b70c
PB
331Java Parsers
332
f5f419de
DJ
333* Java Bison Interface:: Asking for Java parser generation
334* Java Semantic Values:: %type and %token vs. Java
335* Java Location Values:: The position and location classes
336* Java Parser Interface:: Instantiating and running the parser
337* Java Scanner Interface:: Specifying the scanner for the parser
338* Java Action Features:: Special features for use in actions
339* Java Differences:: Differences between C/C++ and Java Grammars
340* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 341
d1a1114f
AD
342Frequently Asked Questions
343
f5f419de
DJ
344* Memory Exhausted:: Breaking the Stack Limits
345* How Can I Reset the Parser:: @code{yyparse} Keeps some State
346* Strings are Destroyed:: @code{yylval} Loses Track of Strings
347* Implementing Gotos/Loops:: Control Flow in the Calculator
348* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 349* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
350* I can't build Bison:: Troubleshooting
351* Where can I find help?:: Troubleshouting
352* Bug Reports:: Troublereporting
353* More Languages:: Parsers in C++, Java, and so on
354* Beta Testing:: Experimenting development versions
355* Mailing Lists:: Meeting other Bison users
d1a1114f 356
f2b5126e
PB
357Copying This Manual
358
f5f419de 359* Copying This Manual:: License for copying this manual.
f2b5126e 360
342b8b6e 361@end detailmenu
bfa74976
RS
362@end menu
363
342b8b6e 364@node Introduction
bfa74976
RS
365@unnumbered Introduction
366@cindex introduction
367
6077da58 368@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
369annotated context-free grammar into a deterministic LR or generalized
370LR (GLR) parser employing LALR(1) parser tables. As an experimental
371feature, Bison can also generate IELR(1) or canonical LR(1) parser
372tables. Once you are proficient with Bison, you can use it to develop
373a wide range of language parsers, from those used in simple desk
374calculators to complex programming languages.
375
376Bison is upward compatible with Yacc: all properly-written Yacc
377grammars ought to work with Bison with no change. Anyone familiar
378with Yacc should be able to use Bison with little trouble. You need
379to be fluent in C or C++ programming in order to use Bison or to
380understand this manual. Java is also supported as an experimental
381feature.
382
383We begin with tutorial chapters that explain the basic concepts of
384using Bison and show three explained examples, each building on the
385last. If you don't know Bison or Yacc, start by reading these
386chapters. Reference chapters follow, which describe specific aspects
387of Bison in detail.
bfa74976 388
679e9935
JD
389Bison was written originally by Robert Corbett. Richard Stallman made
390it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
391added multi-character string literals and other features. Since then,
392Bison has grown more robust and evolved many other new features thanks
393to the hard work of a long list of volunteers. For details, see the
394@file{THANKS} and @file{ChangeLog} files included in the Bison
395distribution.
931c7513 396
df1af54c 397This edition corresponds to version @value{VERSION} of Bison.
bfa74976 398
342b8b6e 399@node Conditions
bfa74976
RS
400@unnumbered Conditions for Using Bison
401
193d7c70
PE
402The distribution terms for Bison-generated parsers permit using the
403parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 404permissions applied only when Bison was generating LALR(1)
193d7c70 405parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 406parsers could be used only in programs that were free software.
a31239f1 407
8a4281b9 408The other GNU programming tools, such as the GNU C
c827f760 409compiler, have never
9ecbd125 410had such a requirement. They could always be used for nonfree
a31239f1
RS
411software. The reason Bison was different was not due to a special
412policy decision; it resulted from applying the usual General Public
413License to all of the Bison source code.
414
ff7571c0
JD
415The main output of the Bison utility---the Bison parser implementation
416file---contains a verbatim copy of a sizable piece of Bison, which is
417the code for the parser's implementation. (The actions from your
418grammar are inserted into this implementation at one point, but most
419of the rest of the implementation is not changed.) When we applied
420the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
421the effect was to restrict the use of Bison output to free software.
422
423We didn't change the terms because of sympathy for people who want to
424make software proprietary. @strong{Software should be free.} But we
425concluded that limiting Bison's use to free software was doing little to
426encourage people to make other software free. So we decided to make the
427practical conditions for using Bison match the practical conditions for
8a4281b9 428using the other GNU tools.
bfa74976 429
193d7c70
PE
430This exception applies when Bison is generating code for a parser.
431You can tell whether the exception applies to a Bison output file by
432inspecting the file for text beginning with ``As a special
433exception@dots{}''. The text spells out the exact terms of the
434exception.
262aa8dd 435
f16b0819
PE
436@node Copying
437@unnumbered GNU GENERAL PUBLIC LICENSE
438@include gpl-3.0.texi
bfa74976 439
342b8b6e 440@node Concepts
bfa74976
RS
441@chapter The Concepts of Bison
442
443This chapter introduces many of the basic concepts without which the
444details of Bison will not make sense. If you do not already know how to
445use Bison or Yacc, we suggest you start by reading this chapter carefully.
446
447@menu
f5f419de
DJ
448* Language and Grammar:: Languages and context-free grammars,
449 as mathematical ideas.
450* Grammar in Bison:: How we represent grammars for Bison's sake.
451* Semantic Values:: Each token or syntactic grouping can have
452 a semantic value (the value of an integer,
453 the name of an identifier, etc.).
454* Semantic Actions:: Each rule can have an action containing C code.
455* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 456* Locations:: Overview of location tracking.
f5f419de
DJ
457* Bison Parser:: What are Bison's input and output,
458 how is the output used?
459* Stages:: Stages in writing and running Bison grammars.
460* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
461@end menu
462
342b8b6e 463@node Language and Grammar
bfa74976
RS
464@section Languages and Context-Free Grammars
465
bfa74976
RS
466@cindex context-free grammar
467@cindex grammar, context-free
468In order for Bison to parse a language, it must be described by a
469@dfn{context-free grammar}. This means that you specify one or more
470@dfn{syntactic groupings} and give rules for constructing them from their
471parts. For example, in the C language, one kind of grouping is called an
472`expression'. One rule for making an expression might be, ``An expression
473can be made of a minus sign and another expression''. Another would be,
474``An expression can be an integer''. As you can see, rules are often
475recursive, but there must be at least one rule which leads out of the
476recursion.
477
8a4281b9 478@cindex BNF
bfa74976
RS
479@cindex Backus-Naur form
480The most common formal system for presenting such rules for humans to read
8a4281b9 481is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 482order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
483BNF is a context-free grammar. The input to Bison is
484essentially machine-readable BNF.
bfa74976 485
7fceb615
JD
486@cindex LALR grammars
487@cindex IELR grammars
488@cindex LR grammars
489There are various important subclasses of context-free grammars. Although
490it can handle almost all context-free grammars, Bison is optimized for what
491are called LR(1) grammars. In brief, in these grammars, it must be possible
492to tell how to parse any portion of an input string with just a single token
493of lookahead. For historical reasons, Bison by default is limited by the
494additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
495@xref{Mysterious Conflicts}, for more information on this. As an
496experimental feature, you can escape these additional restrictions by
497requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
498Construction}, to learn how.
bfa74976 499
8a4281b9
JD
500@cindex GLR parsing
501@cindex generalized LR (GLR) parsing
676385e2 502@cindex ambiguous grammars
9d9b8b70 503@cindex nondeterministic parsing
9501dc6e 504
8a4281b9 505Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
506roughly that the next grammar rule to apply at any point in the input is
507uniquely determined by the preceding input and a fixed, finite portion
742e4900 508(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 509grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 510apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 511grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 512lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 513With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
514general context-free grammars, using a technique known as GLR
515parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
516are able to handle any context-free grammar for which the number of
517possible parses of any given string is finite.
676385e2 518
bfa74976
RS
519@cindex symbols (abstract)
520@cindex token
521@cindex syntactic grouping
522@cindex grouping, syntactic
9501dc6e
AD
523In the formal grammatical rules for a language, each kind of syntactic
524unit or grouping is named by a @dfn{symbol}. Those which are built by
525grouping smaller constructs according to grammatical rules are called
bfa74976
RS
526@dfn{nonterminal symbols}; those which can't be subdivided are called
527@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
528corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 529corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
530
531We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
532nonterminal, mean. The tokens of C are identifiers, constants (numeric
533and string), and the various keywords, arithmetic operators and
534punctuation marks. So the terminal symbols of a grammar for C include
535`identifier', `number', `string', plus one symbol for each keyword,
536operator or punctuation mark: `if', `return', `const', `static', `int',
537`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
538(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
539lexicography, not grammar.)
540
541Here is a simple C function subdivided into tokens:
542
9edcd895
AD
543@ifinfo
544@example
545int /* @r{keyword `int'} */
14d4662b 546square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
547 @r{identifier, close-paren} */
548@{ /* @r{open-brace} */
aa08666d
AD
549 return x * x; /* @r{keyword `return', identifier, asterisk,}
550 @r{identifier, semicolon} */
9edcd895
AD
551@} /* @r{close-brace} */
552@end example
553@end ifinfo
554@ifnotinfo
bfa74976
RS
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 558@{ /* @r{open-brace} */
9edcd895 559 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
560@} /* @r{close-brace} */
561@end example
9edcd895 562@end ifnotinfo
bfa74976
RS
563
564The syntactic groupings of C include the expression, the statement, the
565declaration, and the function definition. These are represented in the
566grammar of C by nonterminal symbols `expression', `statement',
567`declaration' and `function definition'. The full grammar uses dozens of
568additional language constructs, each with its own nonterminal symbol, in
569order to express the meanings of these four. The example above is a
570function definition; it contains one declaration, and one statement. In
571the statement, each @samp{x} is an expression and so is @samp{x * x}.
572
573Each nonterminal symbol must have grammatical rules showing how it is made
574out of simpler constructs. For example, one kind of C statement is the
575@code{return} statement; this would be described with a grammar rule which
576reads informally as follows:
577
578@quotation
579A `statement' can be made of a `return' keyword, an `expression' and a
580`semicolon'.
581@end quotation
582
583@noindent
584There would be many other rules for `statement', one for each kind of
585statement in C.
586
587@cindex start symbol
588One nonterminal symbol must be distinguished as the special one which
589defines a complete utterance in the language. It is called the @dfn{start
590symbol}. In a compiler, this means a complete input program. In the C
591language, the nonterminal symbol `sequence of definitions and declarations'
592plays this role.
593
594For example, @samp{1 + 2} is a valid C expression---a valid part of a C
595program---but it is not valid as an @emph{entire} C program. In the
596context-free grammar of C, this follows from the fact that `expression' is
597not the start symbol.
598
599The Bison parser reads a sequence of tokens as its input, and groups the
600tokens using the grammar rules. If the input is valid, the end result is
601that the entire token sequence reduces to a single grouping whose symbol is
602the grammar's start symbol. If we use a grammar for C, the entire input
603must be a `sequence of definitions and declarations'. If not, the parser
604reports a syntax error.
605
342b8b6e 606@node Grammar in Bison
bfa74976
RS
607@section From Formal Rules to Bison Input
608@cindex Bison grammar
609@cindex grammar, Bison
610@cindex formal grammar
611
612A formal grammar is a mathematical construct. To define the language
613for Bison, you must write a file expressing the grammar in Bison syntax:
614a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
615
616A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 617as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
618in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
619
620The Bison representation for a terminal symbol is also called a @dfn{token
621type}. Token types as well can be represented as C-like identifiers. By
622convention, these identifiers should be upper case to distinguish them from
623nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
624@code{RETURN}. A terminal symbol that stands for a particular keyword in
625the language should be named after that keyword converted to upper case.
626The terminal symbol @code{error} is reserved for error recovery.
931c7513 627@xref{Symbols}.
bfa74976
RS
628
629A terminal symbol can also be represented as a character literal, just like
630a C character constant. You should do this whenever a token is just a
631single character (parenthesis, plus-sign, etc.): use that same character in
632a literal as the terminal symbol for that token.
633
931c7513
RS
634A third way to represent a terminal symbol is with a C string constant
635containing several characters. @xref{Symbols}, for more information.
636
bfa74976
RS
637The grammar rules also have an expression in Bison syntax. For example,
638here is the Bison rule for a C @code{return} statement. The semicolon in
639quotes is a literal character token, representing part of the C syntax for
640the statement; the naked semicolon, and the colon, are Bison punctuation
641used in every rule.
642
643@example
644stmt: RETURN expr ';'
645 ;
646@end example
647
648@noindent
649@xref{Rules, ,Syntax of Grammar Rules}.
650
342b8b6e 651@node Semantic Values
bfa74976
RS
652@section Semantic Values
653@cindex semantic value
654@cindex value, semantic
655
656A formal grammar selects tokens only by their classifications: for example,
657if a rule mentions the terminal symbol `integer constant', it means that
658@emph{any} integer constant is grammatically valid in that position. The
659precise value of the constant is irrelevant to how to parse the input: if
660@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 661grammatical.
bfa74976
RS
662
663But the precise value is very important for what the input means once it is
664parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6653989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
666has both a token type and a @dfn{semantic value}. @xref{Semantics,
667,Defining Language Semantics},
bfa74976
RS
668for details.
669
670The token type is a terminal symbol defined in the grammar, such as
671@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
672you need to know to decide where the token may validly appear and how to
673group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 674except their types.
bfa74976
RS
675
676The semantic value has all the rest of the information about the
677meaning of the token, such as the value of an integer, or the name of an
678identifier. (A token such as @code{','} which is just punctuation doesn't
679need to have any semantic value.)
680
681For example, an input token might be classified as token type
682@code{INTEGER} and have the semantic value 4. Another input token might
683have the same token type @code{INTEGER} but value 3989. When a grammar
684rule says that @code{INTEGER} is allowed, either of these tokens is
685acceptable because each is an @code{INTEGER}. When the parser accepts the
686token, it keeps track of the token's semantic value.
687
688Each grouping can also have a semantic value as well as its nonterminal
689symbol. For example, in a calculator, an expression typically has a
690semantic value that is a number. In a compiler for a programming
691language, an expression typically has a semantic value that is a tree
692structure describing the meaning of the expression.
693
342b8b6e 694@node Semantic Actions
bfa74976
RS
695@section Semantic Actions
696@cindex semantic actions
697@cindex actions, semantic
698
699In order to be useful, a program must do more than parse input; it must
700also produce some output based on the input. In a Bison grammar, a grammar
701rule can have an @dfn{action} made up of C statements. Each time the
702parser recognizes a match for that rule, the action is executed.
703@xref{Actions}.
13863333 704
bfa74976
RS
705Most of the time, the purpose of an action is to compute the semantic value
706of the whole construct from the semantic values of its parts. For example,
707suppose we have a rule which says an expression can be the sum of two
708expressions. When the parser recognizes such a sum, each of the
709subexpressions has a semantic value which describes how it was built up.
710The action for this rule should create a similar sort of value for the
711newly recognized larger expression.
712
713For example, here is a rule that says an expression can be the sum of
714two subexpressions:
715
716@example
717expr: expr '+' expr @{ $$ = $1 + $3; @}
718 ;
719@end example
720
721@noindent
722The action says how to produce the semantic value of the sum expression
723from the values of the two subexpressions.
724
676385e2 725@node GLR Parsers
8a4281b9
JD
726@section Writing GLR Parsers
727@cindex GLR parsing
728@cindex generalized LR (GLR) parsing
676385e2
PH
729@findex %glr-parser
730@cindex conflicts
731@cindex shift/reduce conflicts
fa7e68c3 732@cindex reduce/reduce conflicts
676385e2 733
eb45ef3b 734In some grammars, Bison's deterministic
8a4281b9 735LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
736certain grammar rule at a given point. That is, it may not be able to
737decide (on the basis of the input read so far) which of two possible
738reductions (applications of a grammar rule) applies, or whether to apply
739a reduction or read more of the input and apply a reduction later in the
740input. These are known respectively as @dfn{reduce/reduce} conflicts
741(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
742(@pxref{Shift/Reduce}).
743
8a4281b9 744To use a grammar that is not easily modified to be LR(1), a
9501dc6e 745more general parsing algorithm is sometimes necessary. If you include
676385e2 746@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
747(@pxref{Grammar Outline}), the result is a Generalized LR
748(GLR) parser. These parsers handle Bison grammars that
9501dc6e 749contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 750declarations) identically to deterministic parsers. However, when
9501dc6e 751faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 752GLR parsers use the simple expedient of doing both,
9501dc6e
AD
753effectively cloning the parser to follow both possibilities. Each of
754the resulting parsers can again split, so that at any given time, there
755can be any number of possible parses being explored. The parsers
676385e2
PH
756proceed in lockstep; that is, all of them consume (shift) a given input
757symbol before any of them proceed to the next. Each of the cloned
758parsers eventually meets one of two possible fates: either it runs into
759a parsing error, in which case it simply vanishes, or it merges with
760another parser, because the two of them have reduced the input to an
761identical set of symbols.
762
763During the time that there are multiple parsers, semantic actions are
764recorded, but not performed. When a parser disappears, its recorded
765semantic actions disappear as well, and are never performed. When a
766reduction makes two parsers identical, causing them to merge, Bison
767records both sets of semantic actions. Whenever the last two parsers
768merge, reverting to the single-parser case, Bison resolves all the
769outstanding actions either by precedences given to the grammar rules
770involved, or by performing both actions, and then calling a designated
771user-defined function on the resulting values to produce an arbitrary
772merged result.
773
fa7e68c3 774@menu
8a4281b9
JD
775* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
776* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 777* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 778* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 779* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
780@end menu
781
782@node Simple GLR Parsers
8a4281b9
JD
783@subsection Using GLR on Unambiguous Grammars
784@cindex GLR parsing, unambiguous grammars
785@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
786@findex %glr-parser
787@findex %expect-rr
788@cindex conflicts
789@cindex reduce/reduce conflicts
790@cindex shift/reduce conflicts
791
8a4281b9
JD
792In the simplest cases, you can use the GLR algorithm
793to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 794Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
795
796Consider a problem that
797arises in the declaration of enumerated and subrange types in the
798programming language Pascal. Here are some examples:
799
800@example
801type subrange = lo .. hi;
802type enum = (a, b, c);
803@end example
804
805@noindent
806The original language standard allows only numeric
807literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 808and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80910206) and many other
810Pascal implementations allow arbitrary expressions there. This gives
811rise to the following situation, containing a superfluous pair of
812parentheses:
813
814@example
815type subrange = (a) .. b;
816@end example
817
818@noindent
819Compare this to the following declaration of an enumerated
820type with only one value:
821
822@example
823type enum = (a);
824@end example
825
826@noindent
827(These declarations are contrived, but they are syntactically
828valid, and more-complicated cases can come up in practical programs.)
829
830These two declarations look identical until the @samp{..} token.
8a4281b9 831With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
832possible to decide between the two forms when the identifier
833@samp{a} is parsed. It is, however, desirable
834for a parser to decide this, since in the latter case
835@samp{a} must become a new identifier to represent the enumeration
836value, while in the former case @samp{a} must be evaluated with its
837current meaning, which may be a constant or even a function call.
838
839You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
840to be resolved later, but this typically requires substantial
841contortions in both semantic actions and large parts of the
842grammar, where the parentheses are nested in the recursive rules for
843expressions.
844
845You might think of using the lexer to distinguish between the two
846forms by returning different tokens for currently defined and
847undefined identifiers. But if these declarations occur in a local
848scope, and @samp{a} is defined in an outer scope, then both forms
849are possible---either locally redefining @samp{a}, or using the
850value of @samp{a} from the outer scope. So this approach cannot
851work.
852
e757bb10 853A simple solution to this problem is to declare the parser to
8a4281b9
JD
854use the GLR algorithm.
855When the GLR parser reaches the critical state, it
fa7e68c3
PE
856merely splits into two branches and pursues both syntax rules
857simultaneously. Sooner or later, one of them runs into a parsing
858error. If there is a @samp{..} token before the next
859@samp{;}, the rule for enumerated types fails since it cannot
860accept @samp{..} anywhere; otherwise, the subrange type rule
861fails since it requires a @samp{..} token. So one of the branches
862fails silently, and the other one continues normally, performing
863all the intermediate actions that were postponed during the split.
864
865If the input is syntactically incorrect, both branches fail and the parser
866reports a syntax error as usual.
867
868The effect of all this is that the parser seems to ``guess'' the
869correct branch to take, or in other words, it seems to use more
8a4281b9
JD
870lookahead than the underlying LR(1) algorithm actually allows
871for. In this example, LR(2) would suffice, but also some cases
872that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 873
8a4281b9 874In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
875and the current Bison parser even takes exponential time and space
876for some grammars. In practice, this rarely happens, and for many
877grammars it is possible to prove that it cannot happen.
878The present example contains only one conflict between two
879rules, and the type-declaration context containing the conflict
880cannot be nested. So the number of
881branches that can exist at any time is limited by the constant 2,
882and the parsing time is still linear.
883
884Here is a Bison grammar corresponding to the example above. It
885parses a vastly simplified form of Pascal type declarations.
886
887@example
888%token TYPE DOTDOT ID
889
890@group
891%left '+' '-'
892%left '*' '/'
893@end group
894
895%%
896
897@group
898type_decl : TYPE ID '=' type ';'
899 ;
900@end group
901
902@group
903type : '(' id_list ')'
904 | expr DOTDOT expr
905 ;
906@end group
907
908@group
909id_list : ID
910 | id_list ',' ID
911 ;
912@end group
913
914@group
915expr : '(' expr ')'
916 | expr '+' expr
917 | expr '-' expr
918 | expr '*' expr
919 | expr '/' expr
920 | ID
921 ;
922@end group
923@end example
924
8a4281b9 925When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
926about one reduce/reduce conflict. In the conflicting situation the
927parser chooses one of the alternatives, arbitrarily the one
928declared first. Therefore the following correct input is not
929recognized:
930
931@example
932type t = (a) .. b;
933@end example
934
8a4281b9 935The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
936to be silent about the one known reduce/reduce conflict, by adding
937these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
938@samp{%%}):
939
940@example
941%glr-parser
942%expect-rr 1
943@end example
944
945@noindent
946No change in the grammar itself is required. Now the
947parser recognizes all valid declarations, according to the
948limited syntax above, transparently. In fact, the user does not even
949notice when the parser splits.
950
8a4281b9 951So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
952almost without disadvantages. Even in simple cases like this, however,
953there are at least two potential problems to beware. First, always
8a4281b9
JD
954analyze the conflicts reported by Bison to make sure that GLR
955splitting is only done where it is intended. A GLR parser
f8e1c9e5 956splitting inadvertently may cause problems less obvious than an
8a4281b9 957LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
958conflict. Second, consider interactions with the lexer (@pxref{Semantic
959Tokens}) with great care. Since a split parser consumes tokens without
960performing any actions during the split, the lexer cannot obtain
961information via parser actions. Some cases of lexer interactions can be
8a4281b9 962eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
963lexer to the parser. You must check the remaining cases for
964correctness.
965
966In our example, it would be safe for the lexer to return tokens based on
967their current meanings in some symbol table, because no new symbols are
968defined in the middle of a type declaration. Though it is possible for
969a parser to define the enumeration constants as they are parsed, before
970the type declaration is completed, it actually makes no difference since
971they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
972
973@node Merging GLR Parses
8a4281b9
JD
974@subsection Using GLR to Resolve Ambiguities
975@cindex GLR parsing, ambiguous grammars
976@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
977@findex %dprec
978@findex %merge
979@cindex conflicts
980@cindex reduce/reduce conflicts
981
2a8d363a 982Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
983
984@example
985%@{
38a92d50
PE
986 #include <stdio.h>
987 #define YYSTYPE char const *
988 int yylex (void);
989 void yyerror (char const *);
676385e2
PH
990%@}
991
992%token TYPENAME ID
993
994%right '='
995%left '+'
996
997%glr-parser
998
999%%
1000
fae437e8 1001prog :
676385e2
PH
1002 | prog stmt @{ printf ("\n"); @}
1003 ;
1004
1005stmt : expr ';' %dprec 1
1006 | decl %dprec 2
1007 ;
1008
2a8d363a 1009expr : ID @{ printf ("%s ", $$); @}
fae437e8 1010 | TYPENAME '(' expr ')'
2a8d363a
AD
1011 @{ printf ("%s <cast> ", $1); @}
1012 | expr '+' expr @{ printf ("+ "); @}
1013 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1014 ;
1015
fae437e8 1016decl : TYPENAME declarator ';'
2a8d363a 1017 @{ printf ("%s <declare> ", $1); @}
676385e2 1018 | TYPENAME declarator '=' expr ';'
2a8d363a 1019 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1020 ;
1021
2a8d363a 1022declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1023 | '(' declarator ')'
1024 ;
1025@end example
1026
1027@noindent
1028This models a problematic part of the C++ grammar---the ambiguity between
1029certain declarations and statements. For example,
1030
1031@example
1032T (x) = y+z;
1033@end example
1034
1035@noindent
1036parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1037(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1038@samp{x} as an @code{ID}).
676385e2 1039Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1040@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1041time it encounters @code{x} in the example above. Since this is a
8a4281b9 1042GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1043each choice of resolving the reduce/reduce conflict.
1044Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1045however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1046ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1047the other reduces @code{stmt : decl}, after which both parsers are in an
1048identical state: they've seen @samp{prog stmt} and have the same unprocessed
1049input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1050
8a4281b9 1051At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1052grammar of how to choose between the competing parses.
1053In the example above, the two @code{%dprec}
e757bb10 1054declarations specify that Bison is to give precedence
fa7e68c3 1055to the parse that interprets the example as a
676385e2
PH
1056@code{decl}, which implies that @code{x} is a declarator.
1057The parser therefore prints
1058
1059@example
fae437e8 1060"x" y z + T <init-declare>
676385e2
PH
1061@end example
1062
fa7e68c3
PE
1063The @code{%dprec} declarations only come into play when more than one
1064parse survives. Consider a different input string for this parser:
676385e2
PH
1065
1066@example
1067T (x) + y;
1068@end example
1069
1070@noindent
8a4281b9 1071This is another example of using GLR to parse an unambiguous
fa7e68c3 1072construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1073Here, there is no ambiguity (this cannot be parsed as a declaration).
1074However, at the time the Bison parser encounters @code{x}, it does not
1075have enough information to resolve the reduce/reduce conflict (again,
1076between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1077case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1078into two, one assuming that @code{x} is an @code{expr}, and the other
1079assuming @code{x} is a @code{declarator}. The second of these parsers
1080then vanishes when it sees @code{+}, and the parser prints
1081
1082@example
fae437e8 1083x T <cast> y +
676385e2
PH
1084@end example
1085
1086Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1087the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1088actions of the two possible parsers, rather than choosing one over the
1089other. To do so, you could change the declaration of @code{stmt} as
1090follows:
1091
1092@example
1093stmt : expr ';' %merge <stmtMerge>
1094 | decl %merge <stmtMerge>
1095 ;
1096@end example
1097
1098@noindent
676385e2
PH
1099and define the @code{stmtMerge} function as:
1100
1101@example
38a92d50
PE
1102static YYSTYPE
1103stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1104@{
1105 printf ("<OR> ");
1106 return "";
1107@}
1108@end example
1109
1110@noindent
1111with an accompanying forward declaration
1112in the C declarations at the beginning of the file:
1113
1114@example
1115%@{
38a92d50 1116 #define YYSTYPE char const *
676385e2
PH
1117 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1118%@}
1119@end example
1120
1121@noindent
fa7e68c3
PE
1122With these declarations, the resulting parser parses the first example
1123as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1124
1125@example
fae437e8 1126"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1127@end example
1128
fa7e68c3 1129Bison requires that all of the
e757bb10 1130productions that participate in any particular merge have identical
fa7e68c3
PE
1131@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1132and the parser will report an error during any parse that results in
1133the offending merge.
9501dc6e 1134
32c29292
JD
1135@node GLR Semantic Actions
1136@subsection GLR Semantic Actions
1137
8a4281b9 1138The nature of GLR parsing and the structure of the generated
20be2f92
PH
1139parsers give rise to certain restrictions on semantic values and actions.
1140
1141@subsubsection Deferred semantic actions
32c29292
JD
1142@cindex deferred semantic actions
1143By definition, a deferred semantic action is not performed at the same time as
1144the associated reduction.
1145This raises caveats for several Bison features you might use in a semantic
8a4281b9 1146action in a GLR parser.
32c29292
JD
1147
1148@vindex yychar
8a4281b9 1149@cindex GLR parsers and @code{yychar}
32c29292 1150@vindex yylval
8a4281b9 1151@cindex GLR parsers and @code{yylval}
32c29292 1152@vindex yylloc
8a4281b9 1153@cindex GLR parsers and @code{yylloc}
32c29292 1154In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1155the lookahead token present at the time of the associated reduction.
32c29292
JD
1156After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1157you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1158lookahead token's semantic value and location, if any.
32c29292
JD
1159In a nondeferred semantic action, you can also modify any of these variables to
1160influence syntax analysis.
742e4900 1161@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1162
1163@findex yyclearin
8a4281b9 1164@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1165In a deferred semantic action, it's too late to influence syntax analysis.
1166In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1167shallow copies of the values they had at the time of the associated reduction.
1168For this reason alone, modifying them is dangerous.
1169Moreover, the result of modifying them is undefined and subject to change with
1170future versions of Bison.
1171For example, if a semantic action might be deferred, you should never write it
1172to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1173memory referenced by @code{yylval}.
1174
20be2f92 1175@subsubsection YYERROR
32c29292 1176@findex YYERROR
8a4281b9 1177@cindex GLR parsers and @code{YYERROR}
32c29292 1178Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1179(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1180initiate error recovery.
8a4281b9 1181During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1182the same as its effect in a deterministic parser.
411614fa
JM
1183The effect in a deferred action is similar, but the precise point of the
1184error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1185selecting an unspecified stack on which to continue with a syntax error.
1186In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1187parsing, @code{YYERROR} silently prunes
1188the parse that invoked the test.
1189
1190@subsubsection Restrictions on semantic values and locations
8a4281b9 1191GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1192semantic values and location types when using the generated parsers as
1193C++ code.
8710fc41 1194
ca2a6d15
PH
1195@node Semantic Predicates
1196@subsection Controlling a Parse with Arbitrary Predicates
1197@findex %?
8a4281b9 1198@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1199
1200In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1201GLR parsers
ca2a6d15
PH
1202allow you to reject parses on the basis of arbitrary computations executed
1203in user code, without having Bison treat this rejection as an error
1204if there are alternative parses. (This feature is experimental and may
1205evolve. We welcome user feedback.) For example,
1206
c93f22fc
AD
1207@example
1208widget:
1209 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1210 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1211 ;
1212@end example
ca2a6d15
PH
1213
1214@noindent
411614fa 1215is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1216widgets. The clause preceded by @code{%?} is treated like an ordinary
1217action, except that its text is treated as an expression and is always
411614fa 1218evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1219expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1220which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1221to die. In a deterministic parser, it acts like YYERROR.
1222
1223As the example shows, predicates otherwise look like semantic actions, and
1224therefore you must be take them into account when determining the numbers
1225to use for denoting the semantic values of right-hand side symbols.
1226Predicate actions, however, have no defined value, and may not be given
1227labels.
1228
1229There is a subtle difference between semantic predicates and ordinary
1230actions in nondeterministic mode, since the latter are deferred.
411614fa 1231For example, we could try to rewrite the previous example as
ca2a6d15 1232
c93f22fc
AD
1233@example
1234widget:
1235 @{ if (!new_syntax) YYERROR; @}
1236 "widget" id new_args @{ $$ = f($3, $4); @}
1237 | @{ if (new_syntax) YYERROR; @}
1238 "widget" id old_args @{ $$ = f($3, $4); @}
1239 ;
1240@end example
ca2a6d15
PH
1241
1242@noindent
1243(reversing the sense of the predicate tests to cause an error when they are
1244false). However, this
1245does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1246have overlapping syntax.
411614fa 1247Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1248a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1249for cases where @code{new_args} and @code{old_args} recognize the same string
1250@emph{before} performing the tests of @code{new_syntax}. It therefore
1251reports an error.
1252
1253Finally, be careful in writing predicates: deferred actions have not been
1254evaluated, so that using them in a predicate will have undefined effects.
1255
fa7e68c3 1256@node Compiler Requirements
8a4281b9 1257@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1258@cindex @code{inline}
8a4281b9 1259@cindex GLR parsers and @code{inline}
fa7e68c3 1260
8a4281b9 1261The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1262later. In addition, they use the @code{inline} keyword, which is not
1263C89, but is C99 and is a common extension in pre-C99 compilers. It is
1264up to the user of these parsers to handle
9501dc6e
AD
1265portability issues. For instance, if using Autoconf and the Autoconf
1266macro @code{AC_C_INLINE}, a mere
1267
1268@example
1269%@{
38a92d50 1270 #include <config.h>
9501dc6e
AD
1271%@}
1272@end example
1273
1274@noindent
1275will suffice. Otherwise, we suggest
1276
1277@example
1278%@{
aaaa2aae
AD
1279 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1280 && ! defined inline)
1281 # define inline
38a92d50 1282 #endif
9501dc6e
AD
1283%@}
1284@end example
676385e2 1285
1769eb30 1286@node Locations
847bf1f5
AD
1287@section Locations
1288@cindex location
95923bd6
AD
1289@cindex textual location
1290@cindex location, textual
847bf1f5
AD
1291
1292Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1293and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1294the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1295Bison provides a mechanism for handling these locations.
1296
72d2299c 1297Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1298associated location, but the type of locations is the same for all tokens
1299and groupings. Moreover, the output parser is equipped with a default data
1300structure for storing locations (@pxref{Tracking Locations}, for more
1301details).
847bf1f5
AD
1302
1303Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1304set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1305is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1306@code{@@3}.
1307
1308When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1309of its left hand side (@pxref{Actions}). In the same way, another default
1310action is used for locations. However, the action for locations is general
847bf1f5 1311enough for most cases, meaning there is usually no need to describe for each
72d2299c 1312rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1313grouping, the default behavior of the output parser is to take the beginning
1314of the first symbol, and the end of the last symbol.
1315
342b8b6e 1316@node Bison Parser
ff7571c0 1317@section Bison Output: the Parser Implementation File
bfa74976
RS
1318@cindex Bison parser
1319@cindex Bison utility
1320@cindex lexical analyzer, purpose
1321@cindex parser
1322
ff7571c0
JD
1323When you run Bison, you give it a Bison grammar file as input. The
1324most important output is a C source file that implements a parser for
1325the language described by the grammar. This parser is called a
1326@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1327implementation file}. Keep in mind that the Bison utility and the
1328Bison parser are two distinct programs: the Bison utility is a program
1329whose output is the Bison parser implementation file that becomes part
1330of your program.
bfa74976
RS
1331
1332The job of the Bison parser is to group tokens into groupings according to
1333the grammar rules---for example, to build identifiers and operators into
1334expressions. As it does this, it runs the actions for the grammar rules it
1335uses.
1336
704a47c4
AD
1337The tokens come from a function called the @dfn{lexical analyzer} that
1338you must supply in some fashion (such as by writing it in C). The Bison
1339parser calls the lexical analyzer each time it wants a new token. It
1340doesn't know what is ``inside'' the tokens (though their semantic values
1341may reflect this). Typically the lexical analyzer makes the tokens by
1342parsing characters of text, but Bison does not depend on this.
1343@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1344
ff7571c0
JD
1345The Bison parser implementation file is C code which defines a
1346function named @code{yyparse} which implements that grammar. This
1347function does not make a complete C program: you must supply some
1348additional functions. One is the lexical analyzer. Another is an
1349error-reporting function which the parser calls to report an error.
1350In addition, a complete C program must start with a function called
1351@code{main}; you have to provide this, and arrange for it to call
1352@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1353C-Language Interface}.
bfa74976 1354
f7ab6a50 1355Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1356write, all symbols defined in the Bison parser implementation file
1357itself begin with @samp{yy} or @samp{YY}. This includes interface
1358functions such as the lexical analyzer function @code{yylex}, the
1359error reporting function @code{yyerror} and the parser function
1360@code{yyparse} itself. This also includes numerous identifiers used
1361for internal purposes. Therefore, you should avoid using C
1362identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1363file except for the ones defined in this manual. Also, you should
1364avoid using the C identifiers @samp{malloc} and @samp{free} for
1365anything other than their usual meanings.
1366
1367In some cases the Bison parser implementation file includes system
1368headers, and in those cases your code should respect the identifiers
1369reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1370@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1371included as needed to declare memory allocators and related types.
1372@code{<libintl.h>} is included if message translation is in use
1373(@pxref{Internationalization}). Other system headers may be included
1374if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1375,Tracing Your Parser}).
7093d0f5 1376
342b8b6e 1377@node Stages
bfa74976
RS
1378@section Stages in Using Bison
1379@cindex stages in using Bison
1380@cindex using Bison
1381
1382The actual language-design process using Bison, from grammar specification
1383to a working compiler or interpreter, has these parts:
1384
1385@enumerate
1386@item
1387Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1388(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1389in the language, describe the action that is to be taken when an
1390instance of that rule is recognized. The action is described by a
1391sequence of C statements.
bfa74976
RS
1392
1393@item
704a47c4
AD
1394Write a lexical analyzer to process input and pass tokens to the parser.
1395The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1396Lexical Analyzer Function @code{yylex}}). It could also be produced
1397using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1398
1399@item
1400Write a controlling function that calls the Bison-produced parser.
1401
1402@item
1403Write error-reporting routines.
1404@end enumerate
1405
1406To turn this source code as written into a runnable program, you
1407must follow these steps:
1408
1409@enumerate
1410@item
1411Run Bison on the grammar to produce the parser.
1412
1413@item
1414Compile the code output by Bison, as well as any other source files.
1415
1416@item
1417Link the object files to produce the finished product.
1418@end enumerate
1419
342b8b6e 1420@node Grammar Layout
bfa74976
RS
1421@section The Overall Layout of a Bison Grammar
1422@cindex grammar file
1423@cindex file format
1424@cindex format of grammar file
1425@cindex layout of Bison grammar
1426
1427The input file for the Bison utility is a @dfn{Bison grammar file}. The
1428general form of a Bison grammar file is as follows:
1429
1430@example
1431%@{
08e49d20 1432@var{Prologue}
bfa74976
RS
1433%@}
1434
1435@var{Bison declarations}
1436
1437%%
1438@var{Grammar rules}
1439%%
08e49d20 1440@var{Epilogue}
bfa74976
RS
1441@end example
1442
1443@noindent
1444The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1445in every Bison grammar file to separate the sections.
1446
72d2299c 1447The prologue may define types and variables used in the actions. You can
342b8b6e 1448also use preprocessor commands to define macros used there, and use
bfa74976 1449@code{#include} to include header files that do any of these things.
38a92d50
PE
1450You need to declare the lexical analyzer @code{yylex} and the error
1451printer @code{yyerror} here, along with any other global identifiers
1452used by the actions in the grammar rules.
bfa74976
RS
1453
1454The Bison declarations declare the names of the terminal and nonterminal
1455symbols, and may also describe operator precedence and the data types of
1456semantic values of various symbols.
1457
1458The grammar rules define how to construct each nonterminal symbol from its
1459parts.
1460
38a92d50
PE
1461The epilogue can contain any code you want to use. Often the
1462definitions of functions declared in the prologue go here. In a
1463simple program, all the rest of the program can go here.
bfa74976 1464
342b8b6e 1465@node Examples
bfa74976
RS
1466@chapter Examples
1467@cindex simple examples
1468@cindex examples, simple
1469
aaaa2aae 1470Now we show and explain several sample programs written using Bison: a
bfa74976 1471reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1472calculator --- later extended to track ``locations'' ---
1473and a multi-function calculator. All
1474produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1475
1476These examples are simple, but Bison grammars for real programming
aa08666d
AD
1477languages are written the same way. You can copy these examples into a
1478source file to try them.
bfa74976
RS
1479
1480@menu
f5f419de
DJ
1481* RPN Calc:: Reverse polish notation calculator;
1482 a first example with no operator precedence.
1483* Infix Calc:: Infix (algebraic) notation calculator.
1484 Operator precedence is introduced.
bfa74976 1485* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1486* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1487* Multi-function Calc:: Calculator with memory and trig functions.
1488 It uses multiple data-types for semantic values.
1489* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1490@end menu
1491
342b8b6e 1492@node RPN Calc
bfa74976
RS
1493@section Reverse Polish Notation Calculator
1494@cindex reverse polish notation
1495@cindex polish notation calculator
1496@cindex @code{rpcalc}
1497@cindex calculator, simple
1498
1499The first example is that of a simple double-precision @dfn{reverse polish
1500notation} calculator (a calculator using postfix operators). This example
1501provides a good starting point, since operator precedence is not an issue.
1502The second example will illustrate how operator precedence is handled.
1503
1504The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1505@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1506
1507@menu
f5f419de
DJ
1508* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1509* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1510* Rpcalc Lexer:: The lexical analyzer.
1511* Rpcalc Main:: The controlling function.
1512* Rpcalc Error:: The error reporting function.
1513* Rpcalc Generate:: Running Bison on the grammar file.
1514* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1515@end menu
1516
f5f419de 1517@node Rpcalc Declarations
bfa74976
RS
1518@subsection Declarations for @code{rpcalc}
1519
1520Here are the C and Bison declarations for the reverse polish notation
1521calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1522
24ec0837 1523@comment file: rpcalc.y
bfa74976 1524@example
72d2299c 1525/* Reverse polish notation calculator. */
bfa74976
RS
1526
1527%@{
38a92d50 1528 #define YYSTYPE double
24ec0837 1529 #include <stdio.h>
38a92d50
PE
1530 #include <math.h>
1531 int yylex (void);
1532 void yyerror (char const *);
bfa74976
RS
1533%@}
1534
1535%token NUM
1536
72d2299c 1537%% /* Grammar rules and actions follow. */
bfa74976
RS
1538@end example
1539
75f5aaea 1540The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1541preprocessor directives and two forward declarations.
bfa74976
RS
1542
1543The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1544specifying the C data type for semantic values of both tokens and
1545groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1546Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1547don't define it, @code{int} is the default. Because we specify
1548@code{double}, each token and each expression has an associated value,
1549which is a floating point number.
bfa74976
RS
1550
1551The @code{#include} directive is used to declare the exponentiation
1552function @code{pow}.
1553
38a92d50
PE
1554The forward declarations for @code{yylex} and @code{yyerror} are
1555needed because the C language requires that functions be declared
1556before they are used. These functions will be defined in the
1557epilogue, but the parser calls them so they must be declared in the
1558prologue.
1559
704a47c4
AD
1560The second section, Bison declarations, provides information to Bison
1561about the token types (@pxref{Bison Declarations, ,The Bison
1562Declarations Section}). Each terminal symbol that is not a
1563single-character literal must be declared here. (Single-character
bfa74976
RS
1564literals normally don't need to be declared.) In this example, all the
1565arithmetic operators are designated by single-character literals, so the
1566only terminal symbol that needs to be declared is @code{NUM}, the token
1567type for numeric constants.
1568
342b8b6e 1569@node Rpcalc Rules
bfa74976
RS
1570@subsection Grammar Rules for @code{rpcalc}
1571
1572Here are the grammar rules for the reverse polish notation calculator.
1573
24ec0837 1574@comment file: rpcalc.y
bfa74976 1575@example
aaaa2aae 1576@group
bfa74976
RS
1577input: /* empty */
1578 | input line
1579;
aaaa2aae 1580@end group
bfa74976 1581
aaaa2aae 1582@group
bfa74976 1583line: '\n'
24ec0837 1584 | exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1585;
aaaa2aae 1586@end group
bfa74976 1587
aaaa2aae 1588@group
18b519c0
AD
1589exp: NUM @{ $$ = $1; @}
1590 | exp exp '+' @{ $$ = $1 + $2; @}
1591 | exp exp '-' @{ $$ = $1 - $2; @}
1592 | exp exp '*' @{ $$ = $1 * $2; @}
1593 | exp exp '/' @{ $$ = $1 / $2; @}
aaaa2aae
AD
1594 | exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1595 | exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1596;
aaaa2aae 1597@end group
bfa74976
RS
1598%%
1599@end example
1600
1601The groupings of the rpcalc ``language'' defined here are the expression
1602(given the name @code{exp}), the line of input (@code{line}), and the
1603complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1604symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1605which is read as ``or''. The following sections explain what these rules
1606mean.
1607
1608The semantics of the language is determined by the actions taken when a
1609grouping is recognized. The actions are the C code that appears inside
1610braces. @xref{Actions}.
1611
1612You must specify these actions in C, but Bison provides the means for
1613passing semantic values between the rules. In each action, the
1614pseudo-variable @code{$$} stands for the semantic value for the grouping
1615that the rule is going to construct. Assigning a value to @code{$$} is the
1616main job of most actions. The semantic values of the components of the
1617rule are referred to as @code{$1}, @code{$2}, and so on.
1618
1619@menu
24ec0837
AD
1620* Rpcalc Input:: Explanation of the @code{input} nonterminal
1621* Rpcalc Line:: Explanation of the @code{line} nonterminal
1622* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1623@end menu
1624
342b8b6e 1625@node Rpcalc Input
bfa74976
RS
1626@subsubsection Explanation of @code{input}
1627
1628Consider the definition of @code{input}:
1629
1630@example
1631input: /* empty */
1632 | input line
1633;
1634@end example
1635
1636This definition reads as follows: ``A complete input is either an empty
1637string, or a complete input followed by an input line''. Notice that
1638``complete input'' is defined in terms of itself. This definition is said
1639to be @dfn{left recursive} since @code{input} appears always as the
1640leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1641
1642The first alternative is empty because there are no symbols between the
1643colon and the first @samp{|}; this means that @code{input} can match an
1644empty string of input (no tokens). We write the rules this way because it
1645is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1646It's conventional to put an empty alternative first and write the comment
1647@samp{/* empty */} in it.
1648
1649The second alternate rule (@code{input line}) handles all nontrivial input.
1650It means, ``After reading any number of lines, read one more line if
1651possible.'' The left recursion makes this rule into a loop. Since the
1652first alternative matches empty input, the loop can be executed zero or
1653more times.
1654
1655The parser function @code{yyparse} continues to process input until a
1656grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1657input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1658
342b8b6e 1659@node Rpcalc Line
bfa74976
RS
1660@subsubsection Explanation of @code{line}
1661
1662Now consider the definition of @code{line}:
1663
1664@example
1665line: '\n'
24ec0837 1666 | exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1667;
1668@end example
1669
1670The first alternative is a token which is a newline character; this means
1671that rpcalc accepts a blank line (and ignores it, since there is no
1672action). The second alternative is an expression followed by a newline.
1673This is the alternative that makes rpcalc useful. The semantic value of
1674the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1675question is the first symbol in the alternative. The action prints this
1676value, which is the result of the computation the user asked for.
1677
1678This action is unusual because it does not assign a value to @code{$$}. As
1679a consequence, the semantic value associated with the @code{line} is
1680uninitialized (its value will be unpredictable). This would be a bug if
1681that value were ever used, but we don't use it: once rpcalc has printed the
1682value of the user's input line, that value is no longer needed.
1683
342b8b6e 1684@node Rpcalc Expr
bfa74976
RS
1685@subsubsection Explanation of @code{expr}
1686
1687The @code{exp} grouping has several rules, one for each kind of expression.
1688The first rule handles the simplest expressions: those that are just numbers.
1689The second handles an addition-expression, which looks like two expressions
1690followed by a plus-sign. The third handles subtraction, and so on.
1691
1692@example
1693exp: NUM
1694 | exp exp '+' @{ $$ = $1 + $2; @}
1695 | exp exp '-' @{ $$ = $1 - $2; @}
1696 @dots{}
1697 ;
1698@end example
1699
1700We have used @samp{|} to join all the rules for @code{exp}, but we could
1701equally well have written them separately:
1702
1703@example
1704exp: NUM ;
1705exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1706exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1707 @dots{}
1708@end example
1709
1710Most of the rules have actions that compute the value of the expression in
1711terms of the value of its parts. For example, in the rule for addition,
1712@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1713the second one. The third component, @code{'+'}, has no meaningful
1714associated semantic value, but if it had one you could refer to it as
1715@code{$3}. When @code{yyparse} recognizes a sum expression using this
1716rule, the sum of the two subexpressions' values is produced as the value of
1717the entire expression. @xref{Actions}.
1718
1719You don't have to give an action for every rule. When a rule has no
1720action, Bison by default copies the value of @code{$1} into @code{$$}.
1721This is what happens in the first rule (the one that uses @code{NUM}).
1722
1723The formatting shown here is the recommended convention, but Bison does
72d2299c 1724not require it. You can add or change white space as much as you wish.
bfa74976
RS
1725For example, this:
1726
1727@example
99a9344e 1728exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1729@end example
1730
1731@noindent
1732means the same thing as this:
1733
1734@example
1735exp: NUM
1736 | exp exp '+' @{ $$ = $1 + $2; @}
1737 | @dots{}
99a9344e 1738;
bfa74976
RS
1739@end example
1740
1741@noindent
1742The latter, however, is much more readable.
1743
342b8b6e 1744@node Rpcalc Lexer
bfa74976
RS
1745@subsection The @code{rpcalc} Lexical Analyzer
1746@cindex writing a lexical analyzer
1747@cindex lexical analyzer, writing
1748
704a47c4
AD
1749The lexical analyzer's job is low-level parsing: converting characters
1750or sequences of characters into tokens. The Bison parser gets its
1751tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1752Analyzer Function @code{yylex}}.
bfa74976 1753
8a4281b9 1754Only a simple lexical analyzer is needed for the RPN
c827f760 1755calculator. This
bfa74976
RS
1756lexical analyzer skips blanks and tabs, then reads in numbers as
1757@code{double} and returns them as @code{NUM} tokens. Any other character
1758that isn't part of a number is a separate token. Note that the token-code
1759for such a single-character token is the character itself.
1760
1761The return value of the lexical analyzer function is a numeric code which
1762represents a token type. The same text used in Bison rules to stand for
1763this token type is also a C expression for the numeric code for the type.
1764This works in two ways. If the token type is a character literal, then its
e966383b 1765numeric code is that of the character; you can use the same
bfa74976
RS
1766character literal in the lexical analyzer to express the number. If the
1767token type is an identifier, that identifier is defined by Bison as a C
1768macro whose definition is the appropriate number. In this example,
1769therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1770
1964ad8c
AD
1771The semantic value of the token (if it has one) is stored into the
1772global variable @code{yylval}, which is where the Bison parser will look
1773for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1774defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1775,Declarations for @code{rpcalc}}.)
bfa74976 1776
72d2299c
PE
1777A token type code of zero is returned if the end-of-input is encountered.
1778(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1779
1780Here is the code for the lexical analyzer:
1781
24ec0837 1782@comment file: rpcalc.y
bfa74976
RS
1783@example
1784@group
72d2299c 1785/* The lexical analyzer returns a double floating point
e966383b 1786 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1787 of the character read if not a number. It skips all blanks
1788 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1789
1790#include <ctype.h>
1791@end group
1792
1793@group
13863333
AD
1794int
1795yylex (void)
bfa74976
RS
1796@{
1797 int c;
1798
72d2299c 1799 /* Skip white space. */
13863333 1800 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1801 continue;
bfa74976
RS
1802@end group
1803@group
72d2299c 1804 /* Process numbers. */
13863333 1805 if (c == '.' || isdigit (c))
bfa74976
RS
1806 @{
1807 ungetc (c, stdin);
1808 scanf ("%lf", &yylval);
1809 return NUM;
1810 @}
1811@end group
1812@group
72d2299c 1813 /* Return end-of-input. */
13863333 1814 if (c == EOF)
bfa74976 1815 return 0;
72d2299c 1816 /* Return a single char. */
13863333 1817 return c;
bfa74976
RS
1818@}
1819@end group
1820@end example
1821
342b8b6e 1822@node Rpcalc Main
bfa74976
RS
1823@subsection The Controlling Function
1824@cindex controlling function
1825@cindex main function in simple example
1826
1827In keeping with the spirit of this example, the controlling function is
1828kept to the bare minimum. The only requirement is that it call
1829@code{yyparse} to start the process of parsing.
1830
24ec0837 1831@comment file: rpcalc.y
bfa74976
RS
1832@example
1833@group
13863333
AD
1834int
1835main (void)
bfa74976 1836@{
13863333 1837 return yyparse ();
bfa74976
RS
1838@}
1839@end group
1840@end example
1841
342b8b6e 1842@node Rpcalc Error
bfa74976
RS
1843@subsection The Error Reporting Routine
1844@cindex error reporting routine
1845
1846When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1847function @code{yyerror} to print an error message (usually but not
6e649e65 1848always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1849@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1850here is the definition we will use:
bfa74976 1851
24ec0837 1852@comment file: rpcalc.y
bfa74976
RS
1853@example
1854@group
1855#include <stdio.h>
aaaa2aae 1856@end group
bfa74976 1857
aaaa2aae 1858@group
38a92d50 1859/* Called by yyparse on error. */
13863333 1860void
38a92d50 1861yyerror (char const *s)
bfa74976 1862@{
4e03e201 1863 fprintf (stderr, "%s\n", s);
bfa74976
RS
1864@}
1865@end group
1866@end example
1867
1868After @code{yyerror} returns, the Bison parser may recover from the error
1869and continue parsing if the grammar contains a suitable error rule
1870(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1871have not written any error rules in this example, so any invalid input will
1872cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1873real calculator, but it is adequate for the first example.
bfa74976 1874
f5f419de 1875@node Rpcalc Generate
bfa74976
RS
1876@subsection Running Bison to Make the Parser
1877@cindex running Bison (introduction)
1878
ceed8467
AD
1879Before running Bison to produce a parser, we need to decide how to
1880arrange all the source code in one or more source files. For such a
ff7571c0
JD
1881simple example, the easiest thing is to put everything in one file,
1882the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1883@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1884(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1885
1886For a large project, you would probably have several source files, and use
1887@code{make} to arrange to recompile them.
1888
ff7571c0
JD
1889With all the source in the grammar file, you use the following command
1890to convert it into a parser implementation file:
bfa74976
RS
1891
1892@example
fa4d969f 1893bison @var{file}.y
bfa74976
RS
1894@end example
1895
1896@noindent
ff7571c0
JD
1897In this example, the grammar file is called @file{rpcalc.y} (for
1898``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1899implementation file named @file{@var{file}.tab.c}, removing the
1900@samp{.y} from the grammar file name. The parser implementation file
1901contains the source code for @code{yyparse}. The additional functions
1902in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1903copied verbatim to the parser implementation file.
bfa74976 1904
342b8b6e 1905@node Rpcalc Compile
ff7571c0 1906@subsection Compiling the Parser Implementation File
bfa74976
RS
1907@cindex compiling the parser
1908
ff7571c0 1909Here is how to compile and run the parser implementation file:
bfa74976
RS
1910
1911@example
1912@group
1913# @r{List files in current directory.}
9edcd895 1914$ @kbd{ls}
bfa74976
RS
1915rpcalc.tab.c rpcalc.y
1916@end group
1917
1918@group
1919# @r{Compile the Bison parser.}
1920# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1921$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1922@end group
1923
1924@group
1925# @r{List files again.}
9edcd895 1926$ @kbd{ls}
bfa74976
RS
1927rpcalc rpcalc.tab.c rpcalc.y
1928@end group
1929@end example
1930
1931The file @file{rpcalc} now contains the executable code. Here is an
1932example session using @code{rpcalc}.
1933
1934@example
9edcd895
AD
1935$ @kbd{rpcalc}
1936@kbd{4 9 +}
24ec0837 1937@result{} 13
9edcd895 1938@kbd{3 7 + 3 4 5 *+-}
24ec0837 1939@result{} -13
9edcd895 1940@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1941@result{} 13
9edcd895 1942@kbd{5 6 / 4 n +}
24ec0837 1943@result{} -3.166666667
9edcd895 1944@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1945@result{} 81
9edcd895
AD
1946@kbd{^D} @r{End-of-file indicator}
1947$
bfa74976
RS
1948@end example
1949
342b8b6e 1950@node Infix Calc
bfa74976
RS
1951@section Infix Notation Calculator: @code{calc}
1952@cindex infix notation calculator
1953@cindex @code{calc}
1954@cindex calculator, infix notation
1955
1956We now modify rpcalc to handle infix operators instead of postfix. Infix
1957notation involves the concept of operator precedence and the need for
1958parentheses nested to arbitrary depth. Here is the Bison code for
1959@file{calc.y}, an infix desk-top calculator.
1960
1961@example
38a92d50 1962/* Infix notation calculator. */
bfa74976 1963
aaaa2aae 1964@group
bfa74976 1965%@{
38a92d50
PE
1966 #define YYSTYPE double
1967 #include <math.h>
1968 #include <stdio.h>
1969 int yylex (void);
1970 void yyerror (char const *);
bfa74976 1971%@}
aaaa2aae 1972@end group
bfa74976 1973
aaaa2aae 1974@group
38a92d50 1975/* Bison declarations. */
bfa74976
RS
1976%token NUM
1977%left '-' '+'
1978%left '*' '/'
d78f0ac9
AD
1979%precedence NEG /* negation--unary minus */
1980%right '^' /* exponentiation */
aaaa2aae 1981@end group
bfa74976 1982
38a92d50 1983%% /* The grammar follows. */
aaaa2aae 1984@group
38a92d50 1985input: /* empty */
bfa74976
RS
1986 | input line
1987;
aaaa2aae 1988@end group
bfa74976 1989
aaaa2aae 1990@group
bfa74976
RS
1991line: '\n'
1992 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1993;
aaaa2aae 1994@end group
bfa74976 1995
aaaa2aae
AD
1996@group
1997exp: NUM @{ $$ = $1; @}
1998 | exp '+' exp @{ $$ = $1 + $3; @}
1999 | exp '-' exp @{ $$ = $1 - $3; @}
2000 | exp '*' exp @{ $$ = $1 * $3; @}
2001 | exp '/' exp @{ $$ = $1 / $3; @}
2002 | '-' exp %prec NEG @{ $$ = -$2; @}
bfa74976 2003 | exp '^' exp @{ $$ = pow ($1, $3); @}
aaaa2aae 2004 | '(' exp ')' @{ $$ = $2; @}
bfa74976 2005;
aaaa2aae 2006@end group
bfa74976
RS
2007%%
2008@end example
2009
2010@noindent
ceed8467
AD
2011The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2012same as before.
bfa74976
RS
2013
2014There are two important new features shown in this code.
2015
2016In the second section (Bison declarations), @code{%left} declares token
2017types and says they are left-associative operators. The declarations
2018@code{%left} and @code{%right} (right associativity) take the place of
2019@code{%token} which is used to declare a token type name without
d78f0ac9 2020associativity/precedence. (These tokens are single-character literals, which
bfa74976 2021ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2022the associativity/precedence.)
bfa74976
RS
2023
2024Operator precedence is determined by the line ordering of the
2025declarations; the higher the line number of the declaration (lower on
2026the page or screen), the higher the precedence. Hence, exponentiation
2027has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2028by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2029only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2030Precedence}.
bfa74976 2031
704a47c4
AD
2032The other important new feature is the @code{%prec} in the grammar
2033section for the unary minus operator. The @code{%prec} simply instructs
2034Bison that the rule @samp{| '-' exp} has the same precedence as
2035@code{NEG}---in this case the next-to-highest. @xref{Contextual
2036Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2037
2038Here is a sample run of @file{calc.y}:
2039
2040@need 500
2041@example
9edcd895
AD
2042$ @kbd{calc}
2043@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20446.880952381
9edcd895 2045@kbd{-56 + 2}
bfa74976 2046-54
9edcd895 2047@kbd{3 ^ 2}
bfa74976
RS
20489
2049@end example
2050
342b8b6e 2051@node Simple Error Recovery
bfa74976
RS
2052@section Simple Error Recovery
2053@cindex error recovery, simple
2054
2055Up to this point, this manual has not addressed the issue of @dfn{error
2056recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2057error. All we have handled is error reporting with @code{yyerror}.
2058Recall that by default @code{yyparse} returns after calling
2059@code{yyerror}. This means that an erroneous input line causes the
2060calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2061
2062The Bison language itself includes the reserved word @code{error}, which
2063may be included in the grammar rules. In the example below it has
2064been added to one of the alternatives for @code{line}:
2065
2066@example
2067@group
2068line: '\n'
2069 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2070 | error '\n' @{ yyerrok; @}
2071;
2072@end group
2073@end example
2074
ceed8467 2075This addition to the grammar allows for simple error recovery in the
6e649e65 2076event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2077read, the error will be recognized by the third rule for @code{line},
2078and parsing will continue. (The @code{yyerror} function is still called
2079upon to print its message as well.) The action executes the statement
2080@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2081that error recovery is complete (@pxref{Error Recovery}). Note the
2082difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2083misprint.
bfa74976
RS
2084
2085This form of error recovery deals with syntax errors. There are other
2086kinds of errors; for example, division by zero, which raises an exception
2087signal that is normally fatal. A real calculator program must handle this
2088signal and use @code{longjmp} to return to @code{main} and resume parsing
2089input lines; it would also have to discard the rest of the current line of
2090input. We won't discuss this issue further because it is not specific to
2091Bison programs.
2092
342b8b6e
AD
2093@node Location Tracking Calc
2094@section Location Tracking Calculator: @code{ltcalc}
2095@cindex location tracking calculator
2096@cindex @code{ltcalc}
2097@cindex calculator, location tracking
2098
9edcd895
AD
2099This example extends the infix notation calculator with location
2100tracking. This feature will be used to improve the error messages. For
2101the sake of clarity, this example is a simple integer calculator, since
2102most of the work needed to use locations will be done in the lexical
72d2299c 2103analyzer.
342b8b6e
AD
2104
2105@menu
f5f419de
DJ
2106* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2107* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2108* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2109@end menu
2110
f5f419de 2111@node Ltcalc Declarations
342b8b6e
AD
2112@subsection Declarations for @code{ltcalc}
2113
9edcd895
AD
2114The C and Bison declarations for the location tracking calculator are
2115the same as the declarations for the infix notation calculator.
342b8b6e
AD
2116
2117@example
2118/* Location tracking calculator. */
2119
2120%@{
38a92d50
PE
2121 #define YYSTYPE int
2122 #include <math.h>
2123 int yylex (void);
2124 void yyerror (char const *);
342b8b6e
AD
2125%@}
2126
2127/* Bison declarations. */
2128%token NUM
2129
2130%left '-' '+'
2131%left '*' '/'
d78f0ac9 2132%precedence NEG
342b8b6e
AD
2133%right '^'
2134
38a92d50 2135%% /* The grammar follows. */
342b8b6e
AD
2136@end example
2137
9edcd895
AD
2138@noindent
2139Note there are no declarations specific to locations. Defining a data
2140type for storing locations is not needed: we will use the type provided
2141by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2142four member structure with the following integer fields:
2143@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2144@code{last_column}. By conventions, and in accordance with the GNU
2145Coding Standards and common practice, the line and column count both
2146start at 1.
342b8b6e
AD
2147
2148@node Ltcalc Rules
2149@subsection Grammar Rules for @code{ltcalc}
2150
9edcd895
AD
2151Whether handling locations or not has no effect on the syntax of your
2152language. Therefore, grammar rules for this example will be very close
2153to those of the previous example: we will only modify them to benefit
2154from the new information.
342b8b6e 2155
9edcd895
AD
2156Here, we will use locations to report divisions by zero, and locate the
2157wrong expressions or subexpressions.
342b8b6e
AD
2158
2159@example
2160@group
2161input : /* empty */
2162 | input line
2163;
2164@end group
2165
2166@group
2167line : '\n'
2168 | exp '\n' @{ printf ("%d\n", $1); @}
2169;
2170@end group
2171
2172@group
2173exp : NUM @{ $$ = $1; @}
2174 | exp '+' exp @{ $$ = $1 + $3; @}
2175 | exp '-' exp @{ $$ = $1 - $3; @}
2176 | exp '*' exp @{ $$ = $1 * $3; @}
2177@end group
342b8b6e 2178@group
9edcd895 2179 | exp '/' exp
342b8b6e
AD
2180 @{
2181 if ($3)
2182 $$ = $1 / $3;
2183 else
2184 @{
2185 $$ = 1;
9edcd895
AD
2186 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2187 @@3.first_line, @@3.first_column,
2188 @@3.last_line, @@3.last_column);
342b8b6e
AD
2189 @}
2190 @}
2191@end group
2192@group
178e123e 2193 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2194 | exp '^' exp @{ $$ = pow ($1, $3); @}
2195 | '(' exp ')' @{ $$ = $2; @}
2196@end group
2197@end example
2198
2199This code shows how to reach locations inside of semantic actions, by
2200using the pseudo-variables @code{@@@var{n}} for rule components, and the
2201pseudo-variable @code{@@$} for groupings.
2202
9edcd895
AD
2203We don't need to assign a value to @code{@@$}: the output parser does it
2204automatically. By default, before executing the C code of each action,
2205@code{@@$} is set to range from the beginning of @code{@@1} to the end
2206of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2207can be redefined (@pxref{Location Default Action, , Default Action for
2208Locations}), and for very specific rules, @code{@@$} can be computed by
2209hand.
342b8b6e
AD
2210
2211@node Ltcalc Lexer
2212@subsection The @code{ltcalc} Lexical Analyzer.
2213
9edcd895 2214Until now, we relied on Bison's defaults to enable location
72d2299c 2215tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2216able to feed the parser with the token locations, as it already does for
2217semantic values.
342b8b6e 2218
9edcd895
AD
2219To this end, we must take into account every single character of the
2220input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2221
2222@example
2223@group
2224int
2225yylex (void)
2226@{
2227 int c;
18b519c0 2228@end group
342b8b6e 2229
18b519c0 2230@group
72d2299c 2231 /* Skip white space. */
342b8b6e
AD
2232 while ((c = getchar ()) == ' ' || c == '\t')
2233 ++yylloc.last_column;
18b519c0 2234@end group
342b8b6e 2235
18b519c0 2236@group
72d2299c 2237 /* Step. */
342b8b6e
AD
2238 yylloc.first_line = yylloc.last_line;
2239 yylloc.first_column = yylloc.last_column;
2240@end group
2241
2242@group
72d2299c 2243 /* Process numbers. */
342b8b6e
AD
2244 if (isdigit (c))
2245 @{
2246 yylval = c - '0';
2247 ++yylloc.last_column;
2248 while (isdigit (c = getchar ()))
2249 @{
2250 ++yylloc.last_column;
2251 yylval = yylval * 10 + c - '0';
2252 @}
2253 ungetc (c, stdin);
2254 return NUM;
2255 @}
2256@end group
2257
72d2299c 2258 /* Return end-of-input. */
342b8b6e
AD
2259 if (c == EOF)
2260 return 0;
2261
d4fca427 2262@group
72d2299c 2263 /* Return a single char, and update location. */
342b8b6e
AD
2264 if (c == '\n')
2265 @{
2266 ++yylloc.last_line;
2267 yylloc.last_column = 0;
2268 @}
2269 else
2270 ++yylloc.last_column;
2271 return c;
2272@}
d4fca427 2273@end group
342b8b6e
AD
2274@end example
2275
9edcd895
AD
2276Basically, the lexical analyzer performs the same processing as before:
2277it skips blanks and tabs, and reads numbers or single-character tokens.
2278In addition, it updates @code{yylloc}, the global variable (of type
2279@code{YYLTYPE}) containing the token's location.
342b8b6e 2280
9edcd895 2281Now, each time this function returns a token, the parser has its number
72d2299c 2282as well as its semantic value, and its location in the text. The last
9edcd895
AD
2283needed change is to initialize @code{yylloc}, for example in the
2284controlling function:
342b8b6e
AD
2285
2286@example
9edcd895 2287@group
342b8b6e
AD
2288int
2289main (void)
2290@{
2291 yylloc.first_line = yylloc.last_line = 1;
2292 yylloc.first_column = yylloc.last_column = 0;
2293 return yyparse ();
2294@}
9edcd895 2295@end group
342b8b6e
AD
2296@end example
2297
9edcd895
AD
2298Remember that computing locations is not a matter of syntax. Every
2299character must be associated to a location update, whether it is in
2300valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2301
2302@node Multi-function Calc
bfa74976
RS
2303@section Multi-Function Calculator: @code{mfcalc}
2304@cindex multi-function calculator
2305@cindex @code{mfcalc}
2306@cindex calculator, multi-function
2307
2308Now that the basics of Bison have been discussed, it is time to move on to
2309a more advanced problem. The above calculators provided only five
2310functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2311be nice to have a calculator that provides other mathematical functions such
2312as @code{sin}, @code{cos}, etc.
2313
2314It is easy to add new operators to the infix calculator as long as they are
2315only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2316back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2317adding a new operator. But we want something more flexible: built-in
2318functions whose syntax has this form:
2319
2320@example
2321@var{function_name} (@var{argument})
2322@end example
2323
2324@noindent
2325At the same time, we will add memory to the calculator, by allowing you
2326to create named variables, store values in them, and use them later.
2327Here is a sample session with the multi-function calculator:
2328
2329@example
d4fca427 2330@group
9edcd895
AD
2331$ @kbd{mfcalc}
2332@kbd{pi = 3.141592653589}
f9c75dd0 2333@result{} 3.1415926536
d4fca427
AD
2334@end group
2335@group
9edcd895 2336@kbd{sin(pi)}
f9c75dd0 2337@result{} 0.0000000000
d4fca427 2338@end group
9edcd895 2339@kbd{alpha = beta1 = 2.3}
f9c75dd0 2340@result{} 2.3000000000
9edcd895 2341@kbd{alpha}
f9c75dd0 2342@result{} 2.3000000000
9edcd895 2343@kbd{ln(alpha)}
f9c75dd0 2344@result{} 0.8329091229
9edcd895 2345@kbd{exp(ln(beta1))}
f9c75dd0 2346@result{} 2.3000000000
9edcd895 2347$
bfa74976
RS
2348@end example
2349
2350Note that multiple assignment and nested function calls are permitted.
2351
2352@menu
f5f419de
DJ
2353* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2354* Mfcalc Rules:: Grammar rules for the calculator.
2355* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2356* Mfcalc Lexer:: The lexical analyzer.
2357* Mfcalc Main:: The controlling function.
bfa74976
RS
2358@end menu
2359
f5f419de 2360@node Mfcalc Declarations
bfa74976
RS
2361@subsection Declarations for @code{mfcalc}
2362
2363Here are the C and Bison declarations for the multi-function calculator.
2364
f9c75dd0 2365@comment file: mfcalc.y
c93f22fc 2366@example
18b519c0 2367@group
bfa74976 2368%@{
f9c75dd0 2369 #include <stdio.h> /* For printf, etc. */
578e3413 2370 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2371 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2372 int yylex (void);
2373 void yyerror (char const *);
bfa74976 2374%@}
18b519c0
AD
2375@end group
2376@group
bfa74976 2377%union @{
38a92d50
PE
2378 double val; /* For returning numbers. */
2379 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2380@}
18b519c0 2381@end group
38a92d50
PE
2382%token <val> NUM /* Simple double precision number. */
2383%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2384%type <val> exp
2385
18b519c0 2386@group
bfa74976
RS
2387%right '='
2388%left '-' '+'
2389%left '*' '/'
d78f0ac9
AD
2390%precedence NEG /* negation--unary minus */
2391%right '^' /* exponentiation */
18b519c0 2392@end group
38a92d50 2393%% /* The grammar follows. */
c93f22fc 2394@end example
bfa74976
RS
2395
2396The above grammar introduces only two new features of the Bison language.
2397These features allow semantic values to have various data types
2398(@pxref{Multiple Types, ,More Than One Value Type}).
2399
2400The @code{%union} declaration specifies the entire list of possible types;
2401this is instead of defining @code{YYSTYPE}. The allowable types are now
2402double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2403the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2404
2405Since values can now have various types, it is necessary to associate a
2406type with each grammar symbol whose semantic value is used. These symbols
2407are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2408declarations are augmented with information about their data type (placed
2409between angle brackets).
2410
704a47c4
AD
2411The Bison construct @code{%type} is used for declaring nonterminal
2412symbols, just as @code{%token} is used for declaring token types. We
2413have not used @code{%type} before because nonterminal symbols are
2414normally declared implicitly by the rules that define them. But
2415@code{exp} must be declared explicitly so we can specify its value type.
2416@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2417
342b8b6e 2418@node Mfcalc Rules
bfa74976
RS
2419@subsection Grammar Rules for @code{mfcalc}
2420
2421Here are the grammar rules for the multi-function calculator.
2422Most of them are copied directly from @code{calc}; three rules,
2423those which mention @code{VAR} or @code{FNCT}, are new.
2424
f9c75dd0 2425@comment file: mfcalc.y
c93f22fc 2426@example
18b519c0 2427@group
bfa74976
RS
2428input: /* empty */
2429 | input line
2430;
18b519c0 2431@end group
bfa74976 2432
18b519c0 2433@group
bfa74976
RS
2434line:
2435 '\n'
f9c75dd0
AD
2436 | exp '\n' @{ printf ("%.10g\n", $1); @}
2437 | error '\n' @{ yyerrok; @}
bfa74976 2438;
18b519c0 2439@end group
bfa74976 2440
18b519c0 2441@group
bfa74976
RS
2442exp: NUM @{ $$ = $1; @}
2443 | VAR @{ $$ = $1->value.var; @}
2444 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2445 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2446 | exp '+' exp @{ $$ = $1 + $3; @}
2447 | exp '-' exp @{ $$ = $1 - $3; @}
2448 | exp '*' exp @{ $$ = $1 * $3; @}
2449 | exp '/' exp @{ $$ = $1 / $3; @}
2450 | '-' exp %prec NEG @{ $$ = -$2; @}
2451 | exp '^' exp @{ $$ = pow ($1, $3); @}
2452 | '(' exp ')' @{ $$ = $2; @}
2453;
18b519c0 2454@end group
38a92d50 2455/* End of grammar. */
bfa74976 2456%%
c93f22fc 2457@end example
bfa74976 2458
f5f419de 2459@node Mfcalc Symbol Table
bfa74976
RS
2460@subsection The @code{mfcalc} Symbol Table
2461@cindex symbol table example
2462
2463The multi-function calculator requires a symbol table to keep track of the
2464names and meanings of variables and functions. This doesn't affect the
2465grammar rules (except for the actions) or the Bison declarations, but it
2466requires some additional C functions for support.
2467
2468The symbol table itself consists of a linked list of records. Its
2469definition, which is kept in the header @file{calc.h}, is as follows. It
2470provides for either functions or variables to be placed in the table.
2471
f9c75dd0 2472@comment file: calc.h
c93f22fc 2473@example
bfa74976 2474@group
38a92d50 2475/* Function type. */
32dfccf8 2476typedef double (*func_t) (double);
72f889cc 2477@end group
32dfccf8 2478
72f889cc 2479@group
38a92d50 2480/* Data type for links in the chain of symbols. */
bfa74976
RS
2481struct symrec
2482@{
38a92d50 2483 char *name; /* name of symbol */
bfa74976 2484 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2485 union
2486 @{
38a92d50
PE
2487 double var; /* value of a VAR */
2488 func_t fnctptr; /* value of a FNCT */
bfa74976 2489 @} value;
38a92d50 2490 struct symrec *next; /* link field */
bfa74976
RS
2491@};
2492@end group
2493
2494@group
2495typedef struct symrec symrec;
2496
38a92d50 2497/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2498extern symrec *sym_table;
2499
a730d142 2500symrec *putsym (char const *, int);
38a92d50 2501symrec *getsym (char const *);
bfa74976 2502@end group
c93f22fc 2503@end example
bfa74976 2504
aeb57fb6
AD
2505The new version of @code{main} will call @code{init_table} to initialize
2506the symbol table:
bfa74976 2507
f9c75dd0 2508@comment file: mfcalc.y
c93f22fc 2509@example
18b519c0 2510@group
bfa74976
RS
2511struct init
2512@{
38a92d50
PE
2513 char const *fname;
2514 double (*fnct) (double);
bfa74976
RS
2515@};
2516@end group
2517
2518@group
38a92d50 2519struct init const arith_fncts[] =
13863333 2520@{
f9c75dd0
AD
2521 @{ "atan", atan @},
2522 @{ "cos", cos @},
2523 @{ "exp", exp @},
2524 @{ "ln", log @},
2525 @{ "sin", sin @},
2526 @{ "sqrt", sqrt @},
2527 @{ 0, 0 @},
13863333 2528@};
18b519c0 2529@end group
bfa74976 2530
18b519c0 2531@group
bfa74976 2532/* The symbol table: a chain of `struct symrec'. */
38a92d50 2533symrec *sym_table;
bfa74976
RS
2534@end group
2535
2536@group
72d2299c 2537/* Put arithmetic functions in table. */
f9c75dd0 2538static
13863333
AD
2539void
2540init_table (void)
bfa74976
RS
2541@{
2542 int i;
bfa74976
RS
2543 for (i = 0; arith_fncts[i].fname != 0; i++)
2544 @{
aaaa2aae 2545 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2546 ptr->value.fnctptr = arith_fncts[i].fnct;
2547 @}
2548@}
2549@end group
c93f22fc 2550@end example
bfa74976
RS
2551
2552By simply editing the initialization list and adding the necessary include
2553files, you can add additional functions to the calculator.
2554
2555Two important functions allow look-up and installation of symbols in the
2556symbol table. The function @code{putsym} is passed a name and the type
2557(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2558linked to the front of the list, and a pointer to the object is returned.
2559The function @code{getsym} is passed the name of the symbol to look up. If
2560found, a pointer to that symbol is returned; otherwise zero is returned.
2561
f9c75dd0 2562@comment file: mfcalc.y
c93f22fc 2563@example
f9c75dd0
AD
2564#include <stdlib.h> /* malloc. */
2565#include <string.h> /* strlen. */
2566
d4fca427 2567@group
bfa74976 2568symrec *
38a92d50 2569putsym (char const *sym_name, int sym_type)
bfa74976 2570@{
aaaa2aae 2571 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2572 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2573 strcpy (ptr->name,sym_name);
2574 ptr->type = sym_type;
72d2299c 2575 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2576 ptr->next = (struct symrec *)sym_table;
2577 sym_table = ptr;
2578 return ptr;
2579@}
d4fca427 2580@end group
bfa74976 2581
d4fca427 2582@group
bfa74976 2583symrec *
38a92d50 2584getsym (char const *sym_name)
bfa74976
RS
2585@{
2586 symrec *ptr;
2587 for (ptr = sym_table; ptr != (symrec *) 0;
2588 ptr = (symrec *)ptr->next)
f518dbaf 2589 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2590 return ptr;
2591 return 0;
2592@}
d4fca427 2593@end group
c93f22fc 2594@end example
bfa74976 2595
aeb57fb6
AD
2596@node Mfcalc Lexer
2597@subsection The @code{mfcalc} Lexer
2598
bfa74976
RS
2599The function @code{yylex} must now recognize variables, numeric values, and
2600the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2601characters with a leading letter are recognized as either variables or
bfa74976
RS
2602functions depending on what the symbol table says about them.
2603
2604The string is passed to @code{getsym} for look up in the symbol table. If
2605the name appears in the table, a pointer to its location and its type
2606(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2607already in the table, then it is installed as a @code{VAR} using
2608@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2609returned to @code{yyparse}.
bfa74976
RS
2610
2611No change is needed in the handling of numeric values and arithmetic
2612operators in @code{yylex}.
2613
f9c75dd0 2614@comment file: mfcalc.y
c93f22fc 2615@example
bfa74976
RS
2616@group
2617#include <ctype.h>
18b519c0 2618@end group
13863333 2619
18b519c0 2620@group
13863333
AD
2621int
2622yylex (void)
bfa74976
RS
2623@{
2624 int c;
2625
72d2299c 2626 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2627 while ((c = getchar ()) == ' ' || c == '\t')
2628 continue;
bfa74976
RS
2629
2630 if (c == EOF)
2631 return 0;
2632@end group
2633
2634@group
2635 /* Char starts a number => parse the number. */
2636 if (c == '.' || isdigit (c))
2637 @{
2638 ungetc (c, stdin);
2639 scanf ("%lf", &yylval.val);
2640 return NUM;
2641 @}
2642@end group
2643
2644@group
2645 /* Char starts an identifier => read the name. */
2646 if (isalpha (c))
2647 @{
aaaa2aae
AD
2648 /* Initially make the buffer long enough
2649 for a 40-character symbol name. */
2650 static size_t length = 40;
bfa74976 2651 static char *symbuf = 0;
aaaa2aae 2652 symrec *s;
bfa74976
RS
2653 int i;
2654@end group
aaaa2aae
AD
2655 if (!symbuf)
2656 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2657
2658 i = 0;
2659 do
bfa74976
RS
2660@group
2661 @{
2662 /* If buffer is full, make it bigger. */
2663 if (i == length)
2664 @{
2665 length *= 2;
18b519c0 2666 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2667 @}
2668 /* Add this character to the buffer. */
2669 symbuf[i++] = c;
2670 /* Get another character. */
2671 c = getchar ();
2672 @}
2673@end group
2674@group
72d2299c 2675 while (isalnum (c));
bfa74976
RS
2676
2677 ungetc (c, stdin);
2678 symbuf[i] = '\0';
2679@end group
2680
2681@group
2682 s = getsym (symbuf);
2683 if (s == 0)
2684 s = putsym (symbuf, VAR);
2685 yylval.tptr = s;
2686 return s->type;
2687 @}
2688
2689 /* Any other character is a token by itself. */
2690 return c;
2691@}
2692@end group
c93f22fc 2693@end example
bfa74976 2694
aeb57fb6
AD
2695@node Mfcalc Main
2696@subsection The @code{mfcalc} Main
2697
2698The error reporting function is unchanged, and the new version of
2699@code{main} includes a call to @code{init_table}:
2700
2701@comment file: mfcalc.y
c93f22fc 2702@example
aeb57fb6
AD
2703@group
2704/* Called by yyparse on error. */
2705void
2706yyerror (char const *s)
2707@{
2708 fprintf (stderr, "%s\n", s);
2709@}
2710@end group
2711
aaaa2aae 2712@group
aeb57fb6
AD
2713int
2714main (int argc, char const* argv[])
2715@{
2716 init_table ();
2717 return yyparse ();
2718@}
2719@end group
c93f22fc 2720@end example
aeb57fb6 2721
72d2299c 2722This program is both powerful and flexible. You may easily add new
704a47c4
AD
2723functions, and it is a simple job to modify this code to install
2724predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2725
342b8b6e 2726@node Exercises
bfa74976
RS
2727@section Exercises
2728@cindex exercises
2729
2730@enumerate
2731@item
2732Add some new functions from @file{math.h} to the initialization list.
2733
2734@item
2735Add another array that contains constants and their values. Then
2736modify @code{init_table} to add these constants to the symbol table.
2737It will be easiest to give the constants type @code{VAR}.
2738
2739@item
2740Make the program report an error if the user refers to an
2741uninitialized variable in any way except to store a value in it.
2742@end enumerate
2743
342b8b6e 2744@node Grammar File
bfa74976
RS
2745@chapter Bison Grammar Files
2746
2747Bison takes as input a context-free grammar specification and produces a
2748C-language function that recognizes correct instances of the grammar.
2749
ff7571c0 2750The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2751@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2752
2753@menu
303834cc
JD
2754* Grammar Outline:: Overall layout of the grammar file.
2755* Symbols:: Terminal and nonterminal symbols.
2756* Rules:: How to write grammar rules.
2757* Recursion:: Writing recursive rules.
2758* Semantics:: Semantic values and actions.
2759* Tracking Locations:: Locations and actions.
2760* Named References:: Using named references in actions.
2761* Declarations:: All kinds of Bison declarations are described here.
2762* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2763@end menu
2764
342b8b6e 2765@node Grammar Outline
bfa74976
RS
2766@section Outline of a Bison Grammar
2767
2768A Bison grammar file has four main sections, shown here with the
2769appropriate delimiters:
2770
2771@example
2772%@{
38a92d50 2773 @var{Prologue}
bfa74976
RS
2774%@}
2775
2776@var{Bison declarations}
2777
2778%%
2779@var{Grammar rules}
2780%%
2781
75f5aaea 2782@var{Epilogue}
bfa74976
RS
2783@end example
2784
2785Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2786As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2787continues until end of line.
bfa74976
RS
2788
2789@menu
f5f419de 2790* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2791* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2792* Bison Declarations:: Syntax and usage of the Bison declarations section.
2793* Grammar Rules:: Syntax and usage of the grammar rules section.
2794* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2795@end menu
2796
38a92d50 2797@node Prologue
75f5aaea
MA
2798@subsection The prologue
2799@cindex declarations section
2800@cindex Prologue
2801@cindex declarations
bfa74976 2802
f8e1c9e5
AD
2803The @var{Prologue} section contains macro definitions and declarations
2804of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2805rules. These are copied to the beginning of the parser implementation
2806file so that they precede the definition of @code{yyparse}. You can
2807use @samp{#include} to get the declarations from a header file. If
2808you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2809@samp{%@}} delimiters that bracket this section.
bfa74976 2810
9c437126 2811The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2812of @samp{%@}} that is outside a comment, a string literal, or a
2813character constant.
2814
c732d2c6
AD
2815You may have more than one @var{Prologue} section, intermixed with the
2816@var{Bison declarations}. This allows you to have C and Bison
2817declarations that refer to each other. For example, the @code{%union}
2818declaration may use types defined in a header file, and you may wish to
2819prototype functions that take arguments of type @code{YYSTYPE}. This
2820can be done with two @var{Prologue} blocks, one before and one after the
2821@code{%union} declaration.
2822
c93f22fc 2823@example
c732d2c6 2824%@{
aef3da86 2825 #define _GNU_SOURCE
38a92d50
PE
2826 #include <stdio.h>
2827 #include "ptypes.h"
c732d2c6
AD
2828%@}
2829
2830%union @{
779e7ceb 2831 long int n;
c732d2c6
AD
2832 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2833@}
2834
2835%@{
38a92d50
PE
2836 static void print_token_value (FILE *, int, YYSTYPE);
2837 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2838%@}
2839
2840@dots{}
c93f22fc 2841@end example
c732d2c6 2842
aef3da86
PE
2843When in doubt, it is usually safer to put prologue code before all
2844Bison declarations, rather than after. For example, any definitions
2845of feature test macros like @code{_GNU_SOURCE} or
2846@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2847feature test macros can affect the behavior of Bison-generated
2848@code{#include} directives.
2849
2cbe6b7f
JD
2850@node Prologue Alternatives
2851@subsection Prologue Alternatives
2852@cindex Prologue Alternatives
2853
136a0f76 2854@findex %code
16dc6a9e
JD
2855@findex %code requires
2856@findex %code provides
2857@findex %code top
85894313 2858
2cbe6b7f 2859The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2860inflexible. As an alternative, Bison provides a @code{%code}
2861directive with an explicit qualifier field, which identifies the
2862purpose of the code and thus the location(s) where Bison should
2863generate it. For C/C++, the qualifier can be omitted for the default
2864location, or it can be one of @code{requires}, @code{provides},
e0c07222 2865@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2866
2867Look again at the example of the previous section:
2868
c93f22fc 2869@example
2cbe6b7f
JD
2870%@{
2871 #define _GNU_SOURCE
2872 #include <stdio.h>
2873 #include "ptypes.h"
2874%@}
2875
2876%union @{
2877 long int n;
2878 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2879@}
2880
2881%@{
2882 static void print_token_value (FILE *, int, YYSTYPE);
2883 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2884%@}
2885
2886@dots{}
c93f22fc 2887@end example
2cbe6b7f
JD
2888
2889@noindent
ff7571c0
JD
2890Notice that there are two @var{Prologue} sections here, but there's a
2891subtle distinction between their functionality. For example, if you
2892decide to override Bison's default definition for @code{YYLTYPE}, in
2893which @var{Prologue} section should you write your new definition?
2894You should write it in the first since Bison will insert that code
2895into the parser implementation file @emph{before} the default
2896@code{YYLTYPE} definition. In which @var{Prologue} section should you
2897prototype an internal function, @code{trace_token}, that accepts
2898@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2899prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2900@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2901
2902This distinction in functionality between the two @var{Prologue} sections is
2903established by the appearance of the @code{%union} between them.
a501eca9 2904This behavior raises a few questions.
2cbe6b7f
JD
2905First, why should the position of a @code{%union} affect definitions related to
2906@code{YYLTYPE} and @code{yytokentype}?
2907Second, what if there is no @code{%union}?
2908In that case, the second kind of @var{Prologue} section is not available.
2909This behavior is not intuitive.
2910
8e0a5e9e 2911To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2912@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2913Let's go ahead and add the new @code{YYLTYPE} definition and the
2914@code{trace_token} prototype at the same time:
2915
c93f22fc 2916@example
16dc6a9e 2917%code top @{
2cbe6b7f
JD
2918 #define _GNU_SOURCE
2919 #include <stdio.h>
8e0a5e9e
JD
2920
2921 /* WARNING: The following code really belongs
16dc6a9e 2922 * in a `%code requires'; see below. */
8e0a5e9e 2923
2cbe6b7f
JD
2924 #include "ptypes.h"
2925 #define YYLTYPE YYLTYPE
2926 typedef struct YYLTYPE
2927 @{
2928 int first_line;
2929 int first_column;
2930 int last_line;
2931 int last_column;
2932 char *filename;
2933 @} YYLTYPE;
2934@}
2935
2936%union @{
2937 long int n;
2938 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2939@}
2940
2941%code @{
2942 static void print_token_value (FILE *, int, YYSTYPE);
2943 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2944 static void trace_token (enum yytokentype token, YYLTYPE loc);
2945@}
2946
2947@dots{}
c93f22fc 2948@end example
2cbe6b7f
JD
2949
2950@noindent
16dc6a9e
JD
2951In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2952functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2953explicit which kind you intend.
2cbe6b7f
JD
2954Moreover, both kinds are always available even in the absence of @code{%union}.
2955
ff7571c0
JD
2956The @code{%code top} block above logically contains two parts. The
2957first two lines before the warning need to appear near the top of the
2958parser implementation file. The first line after the warning is
2959required by @code{YYSTYPE} and thus also needs to appear in the parser
2960implementation file. However, if you've instructed Bison to generate
2961a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2962want that line to appear before the @code{YYSTYPE} definition in that
2963header file as well. The @code{YYLTYPE} definition should also appear
2964in the parser header file to override the default @code{YYLTYPE}
2965definition there.
2cbe6b7f 2966
16dc6a9e 2967In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2968lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2969definitions.
16dc6a9e 2970Thus, they belong in one or more @code{%code requires}:
9bc0dd67 2971
c93f22fc 2972@example
d4fca427 2973@group
16dc6a9e 2974%code top @{
2cbe6b7f
JD
2975 #define _GNU_SOURCE
2976 #include <stdio.h>
2977@}
d4fca427 2978@end group
2cbe6b7f 2979
d4fca427 2980@group
16dc6a9e 2981%code requires @{
9bc0dd67
JD
2982 #include "ptypes.h"
2983@}
d4fca427
AD
2984@end group
2985@group
9bc0dd67
JD
2986%union @{
2987 long int n;
2988 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2989@}
d4fca427 2990@end group
9bc0dd67 2991
d4fca427 2992@group
16dc6a9e 2993%code requires @{
2cbe6b7f
JD
2994 #define YYLTYPE YYLTYPE
2995 typedef struct YYLTYPE
2996 @{
2997 int first_line;
2998 int first_column;
2999 int last_line;
3000 int last_column;
3001 char *filename;
3002 @} YYLTYPE;
3003@}
d4fca427 3004@end group
2cbe6b7f 3005
d4fca427 3006@group
136a0f76 3007%code @{
2cbe6b7f
JD
3008 static void print_token_value (FILE *, int, YYSTYPE);
3009 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3010 static void trace_token (enum yytokentype token, YYLTYPE loc);
3011@}
d4fca427 3012@end group
2cbe6b7f
JD
3013
3014@dots{}
c93f22fc 3015@end example
2cbe6b7f
JD
3016
3017@noindent
ff7571c0
JD
3018Now Bison will insert @code{#include "ptypes.h"} and the new
3019@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3020and @code{YYLTYPE} definitions in both the parser implementation file
3021and the parser header file. (By the same reasoning, @code{%code
3022requires} would also be the appropriate place to write your own
3023definition for @code{YYSTYPE}.)
3024
3025When you are writing dependency code for @code{YYSTYPE} and
3026@code{YYLTYPE}, you should prefer @code{%code requires} over
3027@code{%code top} regardless of whether you instruct Bison to generate
3028a parser header file. When you are writing code that you need Bison
3029to insert only into the parser implementation file and that has no
3030special need to appear at the top of that file, you should prefer the
3031unqualified @code{%code} over @code{%code top}. These practices will
3032make the purpose of each block of your code explicit to Bison and to
3033other developers reading your grammar file. Following these
3034practices, we expect the unqualified @code{%code} and @code{%code
3035requires} to be the most important of the four @var{Prologue}
16dc6a9e 3036alternatives.
a501eca9 3037
ff7571c0
JD
3038At some point while developing your parser, you might decide to
3039provide @code{trace_token} to modules that are external to your
3040parser. Thus, you might wish for Bison to insert the prototype into
3041both the parser header file and the parser implementation file. Since
3042this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3043@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3044@code{%code requires}. More importantly, since it depends upon
3045@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3046sufficient. Instead, move its prototype from the unqualified
3047@code{%code} to a @code{%code provides}:
2cbe6b7f 3048
c93f22fc 3049@example
d4fca427 3050@group
16dc6a9e 3051%code top @{
2cbe6b7f 3052 #define _GNU_SOURCE
136a0f76 3053 #include <stdio.h>
2cbe6b7f 3054@}
d4fca427 3055@end group
136a0f76 3056
d4fca427 3057@group
16dc6a9e 3058%code requires @{
2cbe6b7f
JD
3059 #include "ptypes.h"
3060@}
d4fca427
AD
3061@end group
3062@group
2cbe6b7f
JD
3063%union @{
3064 long int n;
3065 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3066@}
d4fca427 3067@end group
2cbe6b7f 3068
d4fca427 3069@group
16dc6a9e 3070%code requires @{
2cbe6b7f
JD
3071 #define YYLTYPE YYLTYPE
3072 typedef struct YYLTYPE
3073 @{
3074 int first_line;
3075 int first_column;
3076 int last_line;
3077 int last_column;
3078 char *filename;
3079 @} YYLTYPE;
3080@}
d4fca427 3081@end group
2cbe6b7f 3082
d4fca427 3083@group
16dc6a9e 3084%code provides @{
2cbe6b7f
JD
3085 void trace_token (enum yytokentype token, YYLTYPE loc);
3086@}
d4fca427 3087@end group
2cbe6b7f 3088
d4fca427 3089@group
2cbe6b7f 3090%code @{
9bc0dd67
JD
3091 static void print_token_value (FILE *, int, YYSTYPE);
3092 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3093@}
d4fca427 3094@end group
9bc0dd67
JD
3095
3096@dots{}
c93f22fc 3097@end example
9bc0dd67 3098
2cbe6b7f 3099@noindent
ff7571c0
JD
3100Bison will insert the @code{trace_token} prototype into both the
3101parser header file and the parser implementation file after the
3102definitions for @code{yytokentype}, @code{YYLTYPE}, and
3103@code{YYSTYPE}.
2cbe6b7f 3104
ff7571c0
JD
3105The above examples are careful to write directives in an order that
3106reflects the layout of the generated parser implementation and header
3107files: @code{%code top}, @code{%code requires}, @code{%code provides},
3108and then @code{%code}. While your grammar files may generally be
3109easier to read if you also follow this order, Bison does not require
3110it. Instead, Bison lets you choose an organization that makes sense
3111to you.
2cbe6b7f 3112
a501eca9 3113You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3114In that case, Bison concatenates the contained code in declaration order.
3115This is the only way in which the position of one of these directives within
3116the grammar file affects its functionality.
3117
3118The result of the previous two properties is greater flexibility in how you may
3119organize your grammar file.
3120For example, you may organize semantic-type-related directives by semantic
3121type:
3122
c93f22fc 3123@example
d4fca427 3124@group
16dc6a9e 3125%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3126%union @{ type1 field1; @}
3127%destructor @{ type1_free ($$); @} <field1>
3128%printer @{ type1_print ($$); @} <field1>
d4fca427 3129@end group
2cbe6b7f 3130
d4fca427 3131@group
16dc6a9e 3132%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3133%union @{ type2 field2; @}
3134%destructor @{ type2_free ($$); @} <field2>
3135%printer @{ type2_print ($$); @} <field2>
d4fca427 3136@end group
c93f22fc 3137@end example
2cbe6b7f
JD
3138
3139@noindent
3140You could even place each of the above directive groups in the rules section of
3141the grammar file next to the set of rules that uses the associated semantic
3142type.
61fee93e
JD
3143(In the rules section, you must terminate each of those directives with a
3144semicolon.)
2cbe6b7f
JD
3145And you don't have to worry that some directive (like a @code{%union}) in the
3146definitions section is going to adversely affect their functionality in some
3147counter-intuitive manner just because it comes first.
3148Such an organization is not possible using @var{Prologue} sections.
3149
a501eca9 3150This section has been concerned with explaining the advantages of the four
8e0a5e9e 3151@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3152However, in most cases when using these directives, you shouldn't need to
3153think about all the low-level ordering issues discussed here.
3154Instead, you should simply use these directives to label each block of your
3155code according to its purpose and let Bison handle the ordering.
3156@code{%code} is the most generic label.
16dc6a9e
JD
3157Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3158as needed.
a501eca9 3159
342b8b6e 3160@node Bison Declarations
bfa74976
RS
3161@subsection The Bison Declarations Section
3162@cindex Bison declarations (introduction)
3163@cindex declarations, Bison (introduction)
3164
3165The @var{Bison declarations} section contains declarations that define
3166terminal and nonterminal symbols, specify precedence, and so on.
3167In some simple grammars you may not need any declarations.
3168@xref{Declarations, ,Bison Declarations}.
3169
342b8b6e 3170@node Grammar Rules
bfa74976
RS
3171@subsection The Grammar Rules Section
3172@cindex grammar rules section
3173@cindex rules section for grammar
3174
3175The @dfn{grammar rules} section contains one or more Bison grammar
3176rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3177
3178There must always be at least one grammar rule, and the first
3179@samp{%%} (which precedes the grammar rules) may never be omitted even
3180if it is the first thing in the file.
3181
38a92d50 3182@node Epilogue
75f5aaea 3183@subsection The epilogue
bfa74976 3184@cindex additional C code section
75f5aaea 3185@cindex epilogue
bfa74976
RS
3186@cindex C code, section for additional
3187
ff7571c0
JD
3188The @var{Epilogue} is copied verbatim to the end of the parser
3189implementation file, just as the @var{Prologue} is copied to the
3190beginning. This is the most convenient place to put anything that you
3191want to have in the parser implementation file but which need not come
3192before the definition of @code{yyparse}. For example, the definitions
3193of @code{yylex} and @code{yyerror} often go here. Because C requires
3194functions to be declared before being used, you often need to declare
3195functions like @code{yylex} and @code{yyerror} in the Prologue, even
3196if you define them in the Epilogue. @xref{Interface, ,Parser
3197C-Language Interface}.
bfa74976
RS
3198
3199If the last section is empty, you may omit the @samp{%%} that separates it
3200from the grammar rules.
3201
f8e1c9e5
AD
3202The Bison parser itself contains many macros and identifiers whose names
3203start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3204any such names (except those documented in this manual) in the epilogue
3205of the grammar file.
bfa74976 3206
342b8b6e 3207@node Symbols
bfa74976
RS
3208@section Symbols, Terminal and Nonterminal
3209@cindex nonterminal symbol
3210@cindex terminal symbol
3211@cindex token type
3212@cindex symbol
3213
3214@dfn{Symbols} in Bison grammars represent the grammatical classifications
3215of the language.
3216
3217A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3218class of syntactically equivalent tokens. You use the symbol in grammar
3219rules to mean that a token in that class is allowed. The symbol is
3220represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3221function returns a token type code to indicate what kind of token has
3222been read. You don't need to know what the code value is; you can use
3223the symbol to stand for it.
bfa74976 3224
f8e1c9e5
AD
3225A @dfn{nonterminal symbol} stands for a class of syntactically
3226equivalent groupings. The symbol name is used in writing grammar rules.
3227By convention, it should be all lower case.
bfa74976 3228
82f3355e
JD
3229Symbol names can contain letters, underscores, periods, and non-initial
3230digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3231with POSIX Yacc. Periods and dashes make symbol names less convenient to
3232use with named references, which require brackets around such names
3233(@pxref{Named References}). Terminal symbols that contain periods or dashes
3234make little sense: since they are not valid symbols (in most programming
3235languages) they are not exported as token names.
bfa74976 3236
931c7513 3237There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3238
3239@itemize @bullet
3240@item
3241A @dfn{named token type} is written with an identifier, like an
c827f760 3242identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3243such name must be defined with a Bison declaration such as
3244@code{%token}. @xref{Token Decl, ,Token Type Names}.
3245
3246@item
3247@cindex character token
3248@cindex literal token
3249@cindex single-character literal
931c7513
RS
3250A @dfn{character token type} (or @dfn{literal character token}) is
3251written in the grammar using the same syntax used in C for character
3252constants; for example, @code{'+'} is a character token type. A
3253character token type doesn't need to be declared unless you need to
3254specify its semantic value data type (@pxref{Value Type, ,Data Types of
3255Semantic Values}), associativity, or precedence (@pxref{Precedence,
3256,Operator Precedence}).
bfa74976
RS
3257
3258By convention, a character token type is used only to represent a
3259token that consists of that particular character. Thus, the token
3260type @code{'+'} is used to represent the character @samp{+} as a
3261token. Nothing enforces this convention, but if you depart from it,
3262your program will confuse other readers.
3263
3264All the usual escape sequences used in character literals in C can be
3265used in Bison as well, but you must not use the null character as a
72d2299c
PE
3266character literal because its numeric code, zero, signifies
3267end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3268for @code{yylex}}). Also, unlike standard C, trigraphs have no
3269special meaning in Bison character literals, nor is backslash-newline
3270allowed.
931c7513
RS
3271
3272@item
3273@cindex string token
3274@cindex literal string token
9ecbd125 3275@cindex multicharacter literal
931c7513
RS
3276A @dfn{literal string token} is written like a C string constant; for
3277example, @code{"<="} is a literal string token. A literal string token
3278doesn't need to be declared unless you need to specify its semantic
14ded682 3279value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3280(@pxref{Precedence}).
3281
3282You can associate the literal string token with a symbolic name as an
3283alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3284Declarations}). If you don't do that, the lexical analyzer has to
3285retrieve the token number for the literal string token from the
3286@code{yytname} table (@pxref{Calling Convention}).
3287
c827f760 3288@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3289
3290By convention, a literal string token is used only to represent a token
3291that consists of that particular string. Thus, you should use the token
3292type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3293does not enforce this convention, but if you depart from it, people who
931c7513
RS
3294read your program will be confused.
3295
3296All the escape sequences used in string literals in C can be used in
92ac3705
PE
3297Bison as well, except that you must not use a null character within a
3298string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3299meaning in Bison string literals, nor is backslash-newline allowed. A
3300literal string token must contain two or more characters; for a token
3301containing just one character, use a character token (see above).
bfa74976
RS
3302@end itemize
3303
3304How you choose to write a terminal symbol has no effect on its
3305grammatical meaning. That depends only on where it appears in rules and
3306on when the parser function returns that symbol.
3307
72d2299c
PE
3308The value returned by @code{yylex} is always one of the terminal
3309symbols, except that a zero or negative value signifies end-of-input.
3310Whichever way you write the token type in the grammar rules, you write
3311it the same way in the definition of @code{yylex}. The numeric code
3312for a character token type is simply the positive numeric code of the
3313character, so @code{yylex} can use the identical value to generate the
3314requisite code, though you may need to convert it to @code{unsigned
3315char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3316Each named token type becomes a C macro in the parser implementation
3317file, so @code{yylex} can use the name to stand for the code. (This
3318is why periods don't make sense in terminal symbols.) @xref{Calling
3319Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3320
3321If @code{yylex} is defined in a separate file, you need to arrange for the
3322token-type macro definitions to be available there. Use the @samp{-d}
3323option when you run Bison, so that it will write these macro definitions
3324into a separate header file @file{@var{name}.tab.h} which you can include
3325in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3326
72d2299c 3327If you want to write a grammar that is portable to any Standard C
9d9b8b70 3328host, you must use only nonnull character tokens taken from the basic
c827f760 3329execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3330digits, the 52 lower- and upper-case English letters, and the
3331characters in the following C-language string:
3332
3333@example
3334"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3335@end example
3336
f8e1c9e5
AD
3337The @code{yylex} function and Bison must use a consistent character set
3338and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3339ASCII environment, but then compile and run the resulting
f8e1c9e5 3340program in an environment that uses an incompatible character set like
8a4281b9
JD
3341EBCDIC, the resulting program may not work because the tables
3342generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3343character tokens. It is standard practice for software distributions to
3344contain C source files that were generated by Bison in an
8a4281b9
JD
3345ASCII environment, so installers on platforms that are
3346incompatible with ASCII must rebuild those files before
f8e1c9e5 3347compiling them.
e966383b 3348
bfa74976
RS
3349The symbol @code{error} is a terminal symbol reserved for error recovery
3350(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3351In particular, @code{yylex} should never return this value. The default
3352value of the error token is 256, unless you explicitly assigned 256 to
3353one of your tokens with a @code{%token} declaration.
bfa74976 3354
342b8b6e 3355@node Rules
bfa74976
RS
3356@section Syntax of Grammar Rules
3357@cindex rule syntax
3358@cindex grammar rule syntax
3359@cindex syntax of grammar rules
3360
3361A Bison grammar rule has the following general form:
3362
3363@example
e425e872 3364@group
bfa74976
RS
3365@var{result}: @var{components}@dots{}
3366 ;
e425e872 3367@end group
bfa74976
RS
3368@end example
3369
3370@noindent
9ecbd125 3371where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3372and @var{components} are various terminal and nonterminal symbols that
13863333 3373are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3374
3375For example,
3376
3377@example
3378@group
3379exp: exp '+' exp
3380 ;
3381@end group
3382@end example
3383
3384@noindent
3385says that two groupings of type @code{exp}, with a @samp{+} token in between,
3386can be combined into a larger grouping of type @code{exp}.
3387
72d2299c
PE
3388White space in rules is significant only to separate symbols. You can add
3389extra white space as you wish.
bfa74976
RS
3390
3391Scattered among the components can be @var{actions} that determine
3392the semantics of the rule. An action looks like this:
3393
3394@example
3395@{@var{C statements}@}
3396@end example
3397
3398@noindent
287c78f6
PE
3399@cindex braced code
3400This is an example of @dfn{braced code}, that is, C code surrounded by
3401braces, much like a compound statement in C@. Braced code can contain
3402any sequence of C tokens, so long as its braces are balanced. Bison
3403does not check the braced code for correctness directly; it merely
ff7571c0
JD
3404copies the code to the parser implementation file, where the C
3405compiler can check it.
287c78f6
PE
3406
3407Within braced code, the balanced-brace count is not affected by braces
3408within comments, string literals, or character constants, but it is
3409affected by the C digraphs @samp{<%} and @samp{%>} that represent
3410braces. At the top level braced code must be terminated by @samp{@}}
3411and not by a digraph. Bison does not look for trigraphs, so if braced
3412code uses trigraphs you should ensure that they do not affect the
3413nesting of braces or the boundaries of comments, string literals, or
3414character constants.
3415
bfa74976
RS
3416Usually there is only one action and it follows the components.
3417@xref{Actions}.
3418
3419@findex |
3420Multiple rules for the same @var{result} can be written separately or can
3421be joined with the vertical-bar character @samp{|} as follows:
3422
bfa74976
RS
3423@example
3424@group
3425@var{result}: @var{rule1-components}@dots{}
3426 | @var{rule2-components}@dots{}
3427 @dots{}
3428 ;
3429@end group
3430@end example
bfa74976
RS
3431
3432@noindent
3433They are still considered distinct rules even when joined in this way.
3434
3435If @var{components} in a rule is empty, it means that @var{result} can
3436match the empty string. For example, here is how to define a
3437comma-separated sequence of zero or more @code{exp} groupings:
3438
3439@example
3440@group
3441expseq: /* empty */
3442 | expseq1
3443 ;
3444@end group
3445
3446@group
3447expseq1: exp
3448 | expseq1 ',' exp
3449 ;
3450@end group
3451@end example
3452
3453@noindent
3454It is customary to write a comment @samp{/* empty */} in each rule
3455with no components.
3456
342b8b6e 3457@node Recursion
bfa74976
RS
3458@section Recursive Rules
3459@cindex recursive rule
3460
f8e1c9e5
AD
3461A rule is called @dfn{recursive} when its @var{result} nonterminal
3462appears also on its right hand side. Nearly all Bison grammars need to
3463use recursion, because that is the only way to define a sequence of any
3464number of a particular thing. Consider this recursive definition of a
9ecbd125 3465comma-separated sequence of one or more expressions:
bfa74976
RS
3466
3467@example
3468@group
3469expseq1: exp
3470 | expseq1 ',' exp
3471 ;
3472@end group
3473@end example
3474
3475@cindex left recursion
3476@cindex right recursion
3477@noindent
3478Since the recursive use of @code{expseq1} is the leftmost symbol in the
3479right hand side, we call this @dfn{left recursion}. By contrast, here
3480the same construct is defined using @dfn{right recursion}:
3481
3482@example
3483@group
3484expseq1: exp
3485 | exp ',' expseq1
3486 ;
3487@end group
3488@end example
3489
3490@noindent
ec3bc396
AD
3491Any kind of sequence can be defined using either left recursion or right
3492recursion, but you should always use left recursion, because it can
3493parse a sequence of any number of elements with bounded stack space.
3494Right recursion uses up space on the Bison stack in proportion to the
3495number of elements in the sequence, because all the elements must be
3496shifted onto the stack before the rule can be applied even once.
3497@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3498of this.
bfa74976
RS
3499
3500@cindex mutual recursion
3501@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3502rule does not appear directly on its right hand side, but does appear
3503in rules for other nonterminals which do appear on its right hand
13863333 3504side.
bfa74976
RS
3505
3506For example:
3507
3508@example
3509@group
3510expr: primary
3511 | primary '+' primary
3512 ;
3513@end group
3514
3515@group
3516primary: constant
3517 | '(' expr ')'
3518 ;
3519@end group
3520@end example
3521
3522@noindent
3523defines two mutually-recursive nonterminals, since each refers to the
3524other.
3525
342b8b6e 3526@node Semantics
bfa74976
RS
3527@section Defining Language Semantics
3528@cindex defining language semantics
13863333 3529@cindex language semantics, defining
bfa74976
RS
3530
3531The grammar rules for a language determine only the syntax. The semantics
3532are determined by the semantic values associated with various tokens and
3533groupings, and by the actions taken when various groupings are recognized.
3534
3535For example, the calculator calculates properly because the value
3536associated with each expression is the proper number; it adds properly
3537because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3538the numbers associated with @var{x} and @var{y}.
3539
3540@menu
3541* Value Type:: Specifying one data type for all semantic values.
3542* Multiple Types:: Specifying several alternative data types.
3543* Actions:: An action is the semantic definition of a grammar rule.
3544* Action Types:: Specifying data types for actions to operate on.
3545* Mid-Rule Actions:: Most actions go at the end of a rule.
3546 This says when, why and how to use the exceptional
3547 action in the middle of a rule.
3548@end menu
3549
342b8b6e 3550@node Value Type
bfa74976
RS
3551@subsection Data Types of Semantic Values
3552@cindex semantic value type
3553@cindex value type, semantic
3554@cindex data types of semantic values
3555@cindex default data type
3556
3557In a simple program it may be sufficient to use the same data type for
3558the semantic values of all language constructs. This was true in the
8a4281b9 3559RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3560Notation Calculator}).
bfa74976 3561
ddc8ede1
PE
3562Bison normally uses the type @code{int} for semantic values if your
3563program uses the same data type for all language constructs. To
bfa74976
RS
3564specify some other type, define @code{YYSTYPE} as a macro, like this:
3565
3566@example
3567#define YYSTYPE double
3568@end example
3569
3570@noindent
50cce58e
PE
3571@code{YYSTYPE}'s replacement list should be a type name
3572that does not contain parentheses or square brackets.
342b8b6e 3573This macro definition must go in the prologue of the grammar file
75f5aaea 3574(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3575
342b8b6e 3576@node Multiple Types
bfa74976
RS
3577@subsection More Than One Value Type
3578
3579In most programs, you will need different data types for different kinds
3580of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3581@code{int} or @code{long int}, while a string constant needs type
3582@code{char *}, and an identifier might need a pointer to an entry in the
3583symbol table.
bfa74976
RS
3584
3585To use more than one data type for semantic values in one parser, Bison
3586requires you to do two things:
3587
3588@itemize @bullet
3589@item
ddc8ede1 3590Specify the entire collection of possible data types, either by using the
704a47c4 3591@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3592Value Types}), or by using a @code{typedef} or a @code{#define} to
3593define @code{YYSTYPE} to be a union type whose member names are
3594the type tags.
bfa74976
RS
3595
3596@item
14ded682
AD
3597Choose one of those types for each symbol (terminal or nonterminal) for
3598which semantic values are used. This is done for tokens with the
3599@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3600and for groupings with the @code{%type} Bison declaration (@pxref{Type
3601Decl, ,Nonterminal Symbols}).
bfa74976
RS
3602@end itemize
3603
342b8b6e 3604@node Actions
bfa74976
RS
3605@subsection Actions
3606@cindex action
3607@vindex $$
3608@vindex $@var{n}
d013372c
AR
3609@vindex $@var{name}
3610@vindex $[@var{name}]
bfa74976
RS
3611
3612An action accompanies a syntactic rule and contains C code to be executed
3613each time an instance of that rule is recognized. The task of most actions
3614is to compute a semantic value for the grouping built by the rule from the
3615semantic values associated with tokens or smaller groupings.
3616
287c78f6
PE
3617An action consists of braced code containing C statements, and can be
3618placed at any position in the rule;
704a47c4
AD
3619it is executed at that position. Most rules have just one action at the
3620end of the rule, following all the components. Actions in the middle of
3621a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3622Actions, ,Actions in Mid-Rule}).
bfa74976 3623
ff7571c0
JD
3624The C code in an action can refer to the semantic values of the
3625components matched by the rule with the construct @code{$@var{n}},
3626which stands for the value of the @var{n}th component. The semantic
3627value for the grouping being constructed is @code{$$}. In addition,
3628the semantic values of symbols can be accessed with the named
3629references construct @code{$@var{name}} or @code{$[@var{name}]}.
3630Bison translates both of these constructs into expressions of the
3631appropriate type when it copies the actions into the parser
3632implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3633for the current grouping) is translated to a modifiable lvalue, so it
3634can be assigned to.
bfa74976
RS
3635
3636Here is a typical example:
3637
3638@example
3639@group
3640exp: @dots{}
3641 | exp '+' exp
3642 @{ $$ = $1 + $3; @}
3643@end group
3644@end example
3645
d013372c
AR
3646Or, in terms of named references:
3647
3648@example
3649@group
3650exp[result]: @dots{}
3651 | exp[left] '+' exp[right]
3652 @{ $result = $left + $right; @}
3653@end group
3654@end example
3655
bfa74976
RS
3656@noindent
3657This rule constructs an @code{exp} from two smaller @code{exp} groupings
3658connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3659(@code{$left} and @code{$right})
bfa74976
RS
3660refer to the semantic values of the two component @code{exp} groupings,
3661which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3662The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3663semantic value of
bfa74976
RS
3664the addition-expression just recognized by the rule. If there were a
3665useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3666referred to as @code{$2}.
bfa74976 3667
a7b15ab9
JD
3668@xref{Named References}, for more information about using the named
3669references construct.
d013372c 3670
3ded9a63
AD
3671Note that the vertical-bar character @samp{|} is really a rule
3672separator, and actions are attached to a single rule. This is a
3673difference with tools like Flex, for which @samp{|} stands for either
3674``or'', or ``the same action as that of the next rule''. In the
3675following example, the action is triggered only when @samp{b} is found:
3676
3677@example
3678@group
3679a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3680@end group
3681@end example
3682
bfa74976
RS
3683@cindex default action
3684If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3685@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3686becomes the value of the whole rule. Of course, the default action is
3687valid only if the two data types match. There is no meaningful default
3688action for an empty rule; every empty rule must have an explicit action
3689unless the rule's value does not matter.
bfa74976
RS
3690
3691@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3692to tokens and groupings on the stack @emph{before} those that match the
3693current rule. This is a very risky practice, and to use it reliably
3694you must be certain of the context in which the rule is applied. Here
3695is a case in which you can use this reliably:
3696
3697@example
3698@group
3699foo: expr bar '+' expr @{ @dots{} @}
3700 | expr bar '-' expr @{ @dots{} @}
3701 ;
3702@end group
3703
3704@group
3705bar: /* empty */
3706 @{ previous_expr = $0; @}
3707 ;
3708@end group
3709@end example
3710
3711As long as @code{bar} is used only in the fashion shown here, @code{$0}
3712always refers to the @code{expr} which precedes @code{bar} in the
3713definition of @code{foo}.
3714
32c29292 3715@vindex yylval
742e4900 3716It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3717any, from a semantic action.
3718This semantic value is stored in @code{yylval}.
3719@xref{Action Features, ,Special Features for Use in Actions}.
3720
342b8b6e 3721@node Action Types
bfa74976
RS
3722@subsection Data Types of Values in Actions
3723@cindex action data types
3724@cindex data types in actions
3725
3726If you have chosen a single data type for semantic values, the @code{$$}
3727and @code{$@var{n}} constructs always have that data type.
3728
3729If you have used @code{%union} to specify a variety of data types, then you
3730must declare a choice among these types for each terminal or nonterminal
3731symbol that can have a semantic value. Then each time you use @code{$$} or
3732@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3733in the rule. In this example,
bfa74976
RS
3734
3735@example
3736@group
3737exp: @dots{}
3738 | exp '+' exp
3739 @{ $$ = $1 + $3; @}
3740@end group
3741@end example
3742
3743@noindent
3744@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3745have the data type declared for the nonterminal symbol @code{exp}. If
3746@code{$2} were used, it would have the data type declared for the
e0c471a9 3747terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3748
3749Alternatively, you can specify the data type when you refer to the value,
3750by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3751reference. For example, if you have defined types as shown here:
3752
3753@example
3754@group
3755%union @{
3756 int itype;
3757 double dtype;
3758@}
3759@end group
3760@end example
3761
3762@noindent
3763then you can write @code{$<itype>1} to refer to the first subunit of the
3764rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3765
342b8b6e 3766@node Mid-Rule Actions
bfa74976
RS
3767@subsection Actions in Mid-Rule
3768@cindex actions in mid-rule
3769@cindex mid-rule actions
3770
3771Occasionally it is useful to put an action in the middle of a rule.
3772These actions are written just like usual end-of-rule actions, but they
3773are executed before the parser even recognizes the following components.
3774
3775A mid-rule action may refer to the components preceding it using
3776@code{$@var{n}}, but it may not refer to subsequent components because
3777it is run before they are parsed.
3778
3779The mid-rule action itself counts as one of the components of the rule.
3780This makes a difference when there is another action later in the same rule
3781(and usually there is another at the end): you have to count the actions
3782along with the symbols when working out which number @var{n} to use in
3783@code{$@var{n}}.
3784
3785The mid-rule action can also have a semantic value. The action can set
3786its value with an assignment to @code{$$}, and actions later in the rule
3787can refer to the value using @code{$@var{n}}. Since there is no symbol
3788to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3789in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3790specify a data type each time you refer to this value.
bfa74976
RS
3791
3792There is no way to set the value of the entire rule with a mid-rule
3793action, because assignments to @code{$$} do not have that effect. The
3794only way to set the value for the entire rule is with an ordinary action
3795at the end of the rule.
3796
3797Here is an example from a hypothetical compiler, handling a @code{let}
3798statement that looks like @samp{let (@var{variable}) @var{statement}} and
3799serves to create a variable named @var{variable} temporarily for the
3800duration of @var{statement}. To parse this construct, we must put
3801@var{variable} into the symbol table while @var{statement} is parsed, then
3802remove it afterward. Here is how it is done:
3803
3804@example
3805@group
3806stmt: LET '(' var ')'
3807 @{ $<context>$ = push_context ();
3808 declare_variable ($3); @}
3809 stmt @{ $$ = $6;
3810 pop_context ($<context>5); @}
3811@end group
3812@end example
3813
3814@noindent
3815As soon as @samp{let (@var{variable})} has been recognized, the first
3816action is run. It saves a copy of the current semantic context (the
3817list of accessible variables) as its semantic value, using alternative
3818@code{context} in the data-type union. Then it calls
3819@code{declare_variable} to add the new variable to that list. Once the
3820first action is finished, the embedded statement @code{stmt} can be
3821parsed. Note that the mid-rule action is component number 5, so the
3822@samp{stmt} is component number 6.
3823
3824After the embedded statement is parsed, its semantic value becomes the
3825value of the entire @code{let}-statement. Then the semantic value from the
3826earlier action is used to restore the prior list of variables. This
3827removes the temporary @code{let}-variable from the list so that it won't
3828appear to exist while the rest of the program is parsed.
3829
841a7737
JD
3830@findex %destructor
3831@cindex discarded symbols, mid-rule actions
3832@cindex error recovery, mid-rule actions
3833In the above example, if the parser initiates error recovery (@pxref{Error
3834Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3835it might discard the previous semantic context @code{$<context>5} without
3836restoring it.
3837Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3838Discarded Symbols}).
ec5479ce
JD
3839However, Bison currently provides no means to declare a destructor specific to
3840a particular mid-rule action's semantic value.
841a7737
JD
3841
3842One solution is to bury the mid-rule action inside a nonterminal symbol and to
3843declare a destructor for that symbol:
3844
3845@example
3846@group
3847%type <context> let
3848%destructor @{ pop_context ($$); @} let
3849
3850%%
3851
3852stmt: let stmt
3853 @{ $$ = $2;
3854 pop_context ($1); @}
3855 ;
3856
3857let: LET '(' var ')'
3858 @{ $$ = push_context ();
3859 declare_variable ($3); @}
3860 ;
3861
3862@end group
3863@end example
3864
3865@noindent
3866Note that the action is now at the end of its rule.
3867Any mid-rule action can be converted to an end-of-rule action in this way, and
3868this is what Bison actually does to implement mid-rule actions.
3869
bfa74976
RS
3870Taking action before a rule is completely recognized often leads to
3871conflicts since the parser must commit to a parse in order to execute the
3872action. For example, the following two rules, without mid-rule actions,
3873can coexist in a working parser because the parser can shift the open-brace
3874token and look at what follows before deciding whether there is a
3875declaration or not:
3876
3877@example
3878@group
3879compound: '@{' declarations statements '@}'
3880 | '@{' statements '@}'
3881 ;
3882@end group
3883@end example
3884
3885@noindent
3886But when we add a mid-rule action as follows, the rules become nonfunctional:
3887
3888@example
3889@group
3890compound: @{ prepare_for_local_variables (); @}
3891 '@{' declarations statements '@}'
3892@end group
3893@group
3894 | '@{' statements '@}'
3895 ;
3896@end group
3897@end example
3898
3899@noindent
3900Now the parser is forced to decide whether to run the mid-rule action
3901when it has read no farther than the open-brace. In other words, it
3902must commit to using one rule or the other, without sufficient
3903information to do it correctly. (The open-brace token is what is called
742e4900
JD
3904the @dfn{lookahead} token at this time, since the parser is still
3905deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3906
3907You might think that you could correct the problem by putting identical
3908actions into the two rules, like this:
3909
3910@example
3911@group
3912compound: @{ prepare_for_local_variables (); @}
3913 '@{' declarations statements '@}'
3914 | @{ prepare_for_local_variables (); @}
3915 '@{' statements '@}'
3916 ;
3917@end group
3918@end example
3919
3920@noindent
3921But this does not help, because Bison does not realize that the two actions
3922are identical. (Bison never tries to understand the C code in an action.)
3923
3924If the grammar is such that a declaration can be distinguished from a
3925statement by the first token (which is true in C), then one solution which
3926does work is to put the action after the open-brace, like this:
3927
3928@example
3929@group
3930compound: '@{' @{ prepare_for_local_variables (); @}
3931 declarations statements '@}'
3932 | '@{' statements '@}'
3933 ;
3934@end group
3935@end example
3936
3937@noindent
3938Now the first token of the following declaration or statement,
3939which would in any case tell Bison which rule to use, can still do so.
3940
3941Another solution is to bury the action inside a nonterminal symbol which
3942serves as a subroutine:
3943
3944@example
3945@group
3946subroutine: /* empty */
3947 @{ prepare_for_local_variables (); @}
3948 ;
3949
3950@end group
3951
3952@group
3953compound: subroutine
3954 '@{' declarations statements '@}'
3955 | subroutine
3956 '@{' statements '@}'
3957 ;
3958@end group
3959@end example
3960
3961@noindent
3962Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3963deciding which rule for @code{compound} it will eventually use.
bfa74976 3964
303834cc 3965@node Tracking Locations
847bf1f5
AD
3966@section Tracking Locations
3967@cindex location
95923bd6
AD
3968@cindex textual location
3969@cindex location, textual
847bf1f5
AD
3970
3971Though grammar rules and semantic actions are enough to write a fully
72d2299c 3972functional parser, it can be useful to process some additional information,
3e259915
MA
3973especially symbol locations.
3974
704a47c4
AD
3975The way locations are handled is defined by providing a data type, and
3976actions to take when rules are matched.
847bf1f5
AD
3977
3978@menu
3979* Location Type:: Specifying a data type for locations.
3980* Actions and Locations:: Using locations in actions.
3981* Location Default Action:: Defining a general way to compute locations.
3982@end menu
3983
342b8b6e 3984@node Location Type
847bf1f5
AD
3985@subsection Data Type of Locations
3986@cindex data type of locations
3987@cindex default location type
3988
3989Defining a data type for locations is much simpler than for semantic values,
3990since all tokens and groupings always use the same type.
3991
50cce58e
PE
3992You can specify the type of locations by defining a macro called
3993@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3994defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3995When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3996four members:
3997
3998@example
6273355b 3999typedef struct YYLTYPE
847bf1f5
AD
4000@{
4001 int first_line;
4002 int first_column;
4003 int last_line;
4004 int last_column;
6273355b 4005@} YYLTYPE;
847bf1f5
AD
4006@end example
4007
d59e456d
AD
4008When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4009initializes all these fields to 1 for @code{yylloc}. To initialize
4010@code{yylloc} with a custom location type (or to chose a different
4011initialization), use the @code{%initial-action} directive. @xref{Initial
4012Action Decl, , Performing Actions before Parsing}.
cd48d21d 4013
342b8b6e 4014@node Actions and Locations
847bf1f5
AD
4015@subsection Actions and Locations
4016@cindex location actions
4017@cindex actions, location
4018@vindex @@$
4019@vindex @@@var{n}
d013372c
AR
4020@vindex @@@var{name}
4021@vindex @@[@var{name}]
847bf1f5
AD
4022
4023Actions are not only useful for defining language semantics, but also for
4024describing the behavior of the output parser with locations.
4025
4026The most obvious way for building locations of syntactic groupings is very
72d2299c 4027similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4028constructs can be used to access the locations of the elements being matched.
4029The location of the @var{n}th component of the right hand side is
4030@code{@@@var{n}}, while the location of the left hand side grouping is
4031@code{@@$}.
4032
d013372c
AR
4033In addition, the named references construct @code{@@@var{name}} and
4034@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4035@xref{Named References}, for more information about using the named
4036references construct.
d013372c 4037
3e259915 4038Here is a basic example using the default data type for locations:
847bf1f5
AD
4039
4040@example
4041@group
4042exp: @dots{}
3e259915 4043 | exp '/' exp
847bf1f5 4044 @{
3e259915
MA
4045 @@$.first_column = @@1.first_column;
4046 @@$.first_line = @@1.first_line;
847bf1f5
AD
4047 @@$.last_column = @@3.last_column;
4048 @@$.last_line = @@3.last_line;
3e259915
MA
4049 if ($3)
4050 $$ = $1 / $3;
4051 else
4052 @{
4053 $$ = 1;
4e03e201
AD
4054 fprintf (stderr,
4055 "Division by zero, l%d,c%d-l%d,c%d",
4056 @@3.first_line, @@3.first_column,
4057 @@3.last_line, @@3.last_column);
3e259915 4058 @}
847bf1f5
AD
4059 @}
4060@end group
4061@end example
4062
3e259915 4063As for semantic values, there is a default action for locations that is
72d2299c 4064run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4065beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4066last symbol.
3e259915 4067
72d2299c 4068With this default action, the location tracking can be fully automatic. The
3e259915
MA
4069example above simply rewrites this way:
4070
4071@example
4072@group
4073exp: @dots{}
4074 | exp '/' exp
4075 @{
4076 if ($3)
4077 $$ = $1 / $3;
4078 else
4079 @{
4080 $$ = 1;
4e03e201
AD
4081 fprintf (stderr,
4082 "Division by zero, l%d,c%d-l%d,c%d",
4083 @@3.first_line, @@3.first_column,
4084 @@3.last_line, @@3.last_column);
3e259915
MA
4085 @}
4086 @}
4087@end group
4088@end example
847bf1f5 4089
32c29292 4090@vindex yylloc
742e4900 4091It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4092from a semantic action.
4093This location is stored in @code{yylloc}.
4094@xref{Action Features, ,Special Features for Use in Actions}.
4095
342b8b6e 4096@node Location Default Action
847bf1f5
AD
4097@subsection Default Action for Locations
4098@vindex YYLLOC_DEFAULT
8a4281b9 4099@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4100
72d2299c 4101Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4102locations are much more general than semantic values, there is room in
4103the output parser to redefine the default action to take for each
72d2299c 4104rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4105matched, before the associated action is run. It is also invoked
4106while processing a syntax error, to compute the error's location.
8a4281b9 4107Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4108parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4109of that ambiguity.
847bf1f5 4110
3e259915 4111Most of the time, this macro is general enough to suppress location
79282c6c 4112dedicated code from semantic actions.
847bf1f5 4113
72d2299c 4114The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4115the location of the grouping (the result of the computation). When a
766de5eb 4116rule is matched, the second parameter identifies locations of
96b93a3d 4117all right hand side elements of the rule being matched, and the third
8710fc41 4118parameter is the size of the rule's right hand side.
8a4281b9 4119When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4120right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4121When processing a syntax error, the second parameter identifies locations
4122of the symbols that were discarded during error processing, and the third
96b93a3d 4123parameter is the number of discarded symbols.
847bf1f5 4124
766de5eb 4125By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4126
c93f22fc
AD
4127@example
4128@group
4129# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4130do \
4131 if (N) \
4132 @{ \
4133 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4134 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4135 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4136 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4137 @} \
4138 else \
4139 @{ \
4140 (Cur).first_line = (Cur).last_line = \
4141 YYRHSLOC(Rhs, 0).last_line; \
4142 (Cur).first_column = (Cur).last_column = \
4143 YYRHSLOC(Rhs, 0).last_column; \
4144 @} \
4145while (0)
4146@end group
4147@end example
676385e2 4148
aaaa2aae 4149@noindent
766de5eb
PE
4150where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4151in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4152just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4153
3e259915 4154When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4155
3e259915 4156@itemize @bullet
79282c6c 4157@item
72d2299c 4158All arguments are free of side-effects. However, only the first one (the
3e259915 4159result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4160
3e259915 4161@item
766de5eb
PE
4162For consistency with semantic actions, valid indexes within the
4163right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4164valid index, and it refers to the symbol just before the reduction.
4165During error processing @var{n} is always positive.
0ae99356
PE
4166
4167@item
4168Your macro should parenthesize its arguments, if need be, since the
4169actual arguments may not be surrounded by parentheses. Also, your
4170macro should expand to something that can be used as a single
4171statement when it is followed by a semicolon.
3e259915 4172@end itemize
847bf1f5 4173
378e917c 4174@node Named References
a7b15ab9 4175@section Named References
378e917c
JD
4176@cindex named references
4177
a40e77eb
JD
4178As described in the preceding sections, the traditional way to refer to any
4179semantic value or location is a @dfn{positional reference}, which takes the
4180form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4181such a reference is not very descriptive. Moreover, if you later decide to
4182insert or remove symbols in the right-hand side of a grammar rule, the need
4183to renumber such references can be tedious and error-prone.
4184
4185To avoid these issues, you can also refer to a semantic value or location
4186using a @dfn{named reference}. First of all, original symbol names may be
4187used as named references. For example:
378e917c
JD
4188
4189@example
4190@group
4191invocation: op '(' args ')'
4192 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4193@end group
4194@end example
4195
4196@noindent
a40e77eb 4197Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4198
4199@example
4200@group
4201invocation: op '(' args ')'
4202 @{ $$ = new_invocation ($op, $args, @@$); @}
4203@end group
4204@end example
4205
4206@noindent
4207However, sometimes regular symbol names are not sufficient due to
4208ambiguities:
4209
4210@example
4211@group
4212exp: exp '/' exp
4213 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4214
4215exp: exp '/' exp
4216 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4217
4218exp: exp '/' exp
4219 @{ $$ = $1 / $3; @} // No error.
4220@end group
4221@end example
4222
4223@noindent
4224When ambiguity occurs, explicitly declared names may be used for values and
4225locations. Explicit names are declared as a bracketed name after a symbol
4226appearance in rule definitions. For example:
4227@example
4228@group
4229exp[result]: exp[left] '/' exp[right]
4230 @{ $result = $left / $right; @}
4231@end group
4232@end example
4233
4234@noindent
a7b15ab9
JD
4235In order to access a semantic value generated by a mid-rule action, an
4236explicit name may also be declared by putting a bracketed name after the
4237closing brace of the mid-rule action code:
378e917c
JD
4238@example
4239@group
4240exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4241 @{ $res = $left + $right; @}
4242@end group
4243@end example
4244
4245@noindent
4246
4247In references, in order to specify names containing dots and dashes, an explicit
4248bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4249@example
4250@group
762caaf6 4251if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4252 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4253@end group
4254@end example
4255
4256It often happens that named references are followed by a dot, dash or other
4257C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4258@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4259@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4260value. In order to force Bison to recognize @samp{name.suffix} in its
4261entirety as the name of a semantic value, the bracketed syntax
4262@samp{$[name.suffix]} must be used.
4263
4264The named references feature is experimental. More user feedback will help
4265to stabilize it.
378e917c 4266
342b8b6e 4267@node Declarations
bfa74976
RS
4268@section Bison Declarations
4269@cindex declarations, Bison
4270@cindex Bison declarations
4271
4272The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4273used in formulating the grammar and the data types of semantic values.
4274@xref{Symbols}.
4275
4276All token type names (but not single-character literal tokens such as
4277@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4278declared if you need to specify which data type to use for the semantic
4279value (@pxref{Multiple Types, ,More Than One Value Type}).
4280
ff7571c0
JD
4281The first rule in the grammar file also specifies the start symbol, by
4282default. If you want some other symbol to be the start symbol, you
4283must declare it explicitly (@pxref{Language and Grammar, ,Languages
4284and Context-Free Grammars}).
bfa74976
RS
4285
4286@menu
b50d2359 4287* Require Decl:: Requiring a Bison version.
bfa74976
RS
4288* Token Decl:: Declaring terminal symbols.
4289* Precedence Decl:: Declaring terminals with precedence and associativity.
4290* Union Decl:: Declaring the set of all semantic value types.
4291* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4292* Initial Action Decl:: Code run before parsing starts.
72f889cc 4293* Destructor Decl:: Declaring how symbols are freed.
d6328241 4294* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4295* Start Decl:: Specifying the start symbol.
4296* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4297* Push Decl:: Requesting a push parser.
bfa74976 4298* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4299* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4300* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4301@end menu
4302
b50d2359
AD
4303@node Require Decl
4304@subsection Require a Version of Bison
4305@cindex version requirement
4306@cindex requiring a version of Bison
4307@findex %require
4308
4309You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4310the requirement is not met, @command{bison} exits with an error (exit
4311status 63).
b50d2359
AD
4312
4313@example
4314%require "@var{version}"
4315@end example
4316
342b8b6e 4317@node Token Decl
bfa74976
RS
4318@subsection Token Type Names
4319@cindex declaring token type names
4320@cindex token type names, declaring
931c7513 4321@cindex declaring literal string tokens
bfa74976
RS
4322@findex %token
4323
4324The basic way to declare a token type name (terminal symbol) is as follows:
4325
4326@example
4327%token @var{name}
4328@end example
4329
4330Bison will convert this into a @code{#define} directive in
4331the parser, so that the function @code{yylex} (if it is in this file)
4332can use the name @var{name} to stand for this token type's code.
4333
d78f0ac9
AD
4334Alternatively, you can use @code{%left}, @code{%right},
4335@code{%precedence}, or
14ded682
AD
4336@code{%nonassoc} instead of @code{%token}, if you wish to specify
4337associativity and precedence. @xref{Precedence Decl, ,Operator
4338Precedence}.
bfa74976
RS
4339
4340You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4341a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4342following the token name:
bfa74976
RS
4343
4344@example
4345%token NUM 300
1452af69 4346%token XNUM 0x12d // a GNU extension
bfa74976
RS
4347@end example
4348
4349@noindent
4350It is generally best, however, to let Bison choose the numeric codes for
4351all token types. Bison will automatically select codes that don't conflict
e966383b 4352with each other or with normal characters.
bfa74976
RS
4353
4354In the event that the stack type is a union, you must augment the
4355@code{%token} or other token declaration to include the data type
704a47c4
AD
4356alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4357Than One Value Type}).
bfa74976
RS
4358
4359For example:
4360
4361@example
4362@group
4363%union @{ /* define stack type */
4364 double val;
4365 symrec *tptr;
4366@}
4367%token <val> NUM /* define token NUM and its type */
4368@end group
4369@end example
4370
931c7513
RS
4371You can associate a literal string token with a token type name by
4372writing the literal string at the end of a @code{%token}
4373declaration which declares the name. For example:
4374
4375@example
4376%token arrow "=>"
4377@end example
4378
4379@noindent
4380For example, a grammar for the C language might specify these names with
4381equivalent literal string tokens:
4382
4383@example
4384%token <operator> OR "||"
4385%token <operator> LE 134 "<="
4386%left OR "<="
4387@end example
4388
4389@noindent
4390Once you equate the literal string and the token name, you can use them
4391interchangeably in further declarations or the grammar rules. The
4392@code{yylex} function can use the token name or the literal string to
4393obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4394Syntax error messages passed to @code{yyerror} from the parser will reference
4395the literal string instead of the token name.
4396
4397The token numbered as 0 corresponds to end of file; the following line
4398allows for nicer error messages referring to ``end of file'' instead
4399of ``$end'':
4400
4401@example
4402%token END 0 "end of file"
4403@end example
931c7513 4404
342b8b6e 4405@node Precedence Decl
bfa74976
RS
4406@subsection Operator Precedence
4407@cindex precedence declarations
4408@cindex declaring operator precedence
4409@cindex operator precedence, declaring
4410
d78f0ac9
AD
4411Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4412@code{%precedence} declaration to
bfa74976
RS
4413declare a token and specify its precedence and associativity, all at
4414once. These are called @dfn{precedence declarations}.
704a47c4
AD
4415@xref{Precedence, ,Operator Precedence}, for general information on
4416operator precedence.
bfa74976 4417
ab7f29f8 4418The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4419@code{%token}: either
4420
4421@example
4422%left @var{symbols}@dots{}
4423@end example
4424
4425@noindent
4426or
4427
4428@example
4429%left <@var{type}> @var{symbols}@dots{}
4430@end example
4431
4432And indeed any of these declarations serves the purposes of @code{%token}.
4433But in addition, they specify the associativity and relative precedence for
4434all the @var{symbols}:
4435
4436@itemize @bullet
4437@item
4438The associativity of an operator @var{op} determines how repeated uses
4439of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4440@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4441grouping @var{y} with @var{z} first. @code{%left} specifies
4442left-associativity (grouping @var{x} with @var{y} first) and
4443@code{%right} specifies right-associativity (grouping @var{y} with
4444@var{z} first). @code{%nonassoc} specifies no associativity, which
4445means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4446considered a syntax error.
4447
d78f0ac9
AD
4448@code{%precedence} gives only precedence to the @var{symbols}, and
4449defines no associativity at all. Use this to define precedence only,
4450and leave any potential conflict due to associativity enabled.
4451
bfa74976
RS
4452@item
4453The precedence of an operator determines how it nests with other operators.
4454All the tokens declared in a single precedence declaration have equal
4455precedence and nest together according to their associativity.
4456When two tokens declared in different precedence declarations associate,
4457the one declared later has the higher precedence and is grouped first.
4458@end itemize
4459
ab7f29f8
JD
4460For backward compatibility, there is a confusing difference between the
4461argument lists of @code{%token} and precedence declarations.
4462Only a @code{%token} can associate a literal string with a token type name.
4463A precedence declaration always interprets a literal string as a reference to a
4464separate token.
4465For example:
4466
4467@example
4468%left OR "<=" // Does not declare an alias.
4469%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4470@end example
4471
342b8b6e 4472@node Union Decl
bfa74976
RS
4473@subsection The Collection of Value Types
4474@cindex declaring value types
4475@cindex value types, declaring
4476@findex %union
4477
287c78f6
PE
4478The @code{%union} declaration specifies the entire collection of
4479possible data types for semantic values. The keyword @code{%union} is
4480followed by braced code containing the same thing that goes inside a
4481@code{union} in C@.
bfa74976
RS
4482
4483For example:
4484
4485@example
4486@group
4487%union @{
4488 double val;
4489 symrec *tptr;
4490@}
4491@end group
4492@end example
4493
4494@noindent
4495This says that the two alternative types are @code{double} and @code{symrec
4496*}. They are given names @code{val} and @code{tptr}; these names are used
4497in the @code{%token} and @code{%type} declarations to pick one of the types
4498for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4499
8a4281b9 4500As an extension to POSIX, a tag is allowed after the
6273355b
PE
4501@code{union}. For example:
4502
4503@example
4504@group
4505%union value @{
4506 double val;
4507 symrec *tptr;
4508@}
4509@end group
4510@end example
4511
d6ca7905 4512@noindent
6273355b
PE
4513specifies the union tag @code{value}, so the corresponding C type is
4514@code{union value}. If you do not specify a tag, it defaults to
4515@code{YYSTYPE}.
4516
8a4281b9 4517As another extension to POSIX, you may specify multiple
d6ca7905
PE
4518@code{%union} declarations; their contents are concatenated. However,
4519only the first @code{%union} declaration can specify a tag.
4520
6273355b 4521Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4522a semicolon after the closing brace.
4523
ddc8ede1
PE
4524Instead of @code{%union}, you can define and use your own union type
4525@code{YYSTYPE} if your grammar contains at least one
4526@samp{<@var{type}>} tag. For example, you can put the following into
4527a header file @file{parser.h}:
4528
4529@example
4530@group
4531union YYSTYPE @{
4532 double val;
4533 symrec *tptr;
4534@};
4535typedef union YYSTYPE YYSTYPE;
4536@end group
4537@end example
4538
4539@noindent
4540and then your grammar can use the following
4541instead of @code{%union}:
4542
4543@example
4544@group
4545%@{
4546#include "parser.h"
4547%@}
4548%type <val> expr
4549%token <tptr> ID
4550@end group
4551@end example
4552
342b8b6e 4553@node Type Decl
bfa74976
RS
4554@subsection Nonterminal Symbols
4555@cindex declaring value types, nonterminals
4556@cindex value types, nonterminals, declaring
4557@findex %type
4558
4559@noindent
4560When you use @code{%union} to specify multiple value types, you must
4561declare the value type of each nonterminal symbol for which values are
4562used. This is done with a @code{%type} declaration, like this:
4563
4564@example
4565%type <@var{type}> @var{nonterminal}@dots{}
4566@end example
4567
4568@noindent
704a47c4
AD
4569Here @var{nonterminal} is the name of a nonterminal symbol, and
4570@var{type} is the name given in the @code{%union} to the alternative
4571that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4572can give any number of nonterminal symbols in the same @code{%type}
4573declaration, if they have the same value type. Use spaces to separate
4574the symbol names.
bfa74976 4575
931c7513
RS
4576You can also declare the value type of a terminal symbol. To do this,
4577use the same @code{<@var{type}>} construction in a declaration for the
4578terminal symbol. All kinds of token declarations allow
4579@code{<@var{type}>}.
4580
18d192f0
AD
4581@node Initial Action Decl
4582@subsection Performing Actions before Parsing
4583@findex %initial-action
4584
4585Sometimes your parser needs to perform some initializations before
4586parsing. The @code{%initial-action} directive allows for such arbitrary
4587code.
4588
4589@deffn {Directive} %initial-action @{ @var{code} @}
4590@findex %initial-action
287c78f6 4591Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4592@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4593@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4594@code{%parse-param}.
18d192f0
AD
4595@end deffn
4596
451364ed
AD
4597For instance, if your locations use a file name, you may use
4598
4599@example
48b16bbc 4600%parse-param @{ char const *file_name @};
451364ed
AD
4601%initial-action
4602@{
4626a15d 4603 @@$.initialize (file_name);
451364ed
AD
4604@};
4605@end example
4606
18d192f0 4607
72f889cc
AD
4608@node Destructor Decl
4609@subsection Freeing Discarded Symbols
4610@cindex freeing discarded symbols
4611@findex %destructor
12e35840 4612@findex <*>
3ebecc24 4613@findex <>
a85284cf
AD
4614During error recovery (@pxref{Error Recovery}), symbols already pushed
4615on the stack and tokens coming from the rest of the file are discarded
4616until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4617or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4618symbols on the stack must be discarded. Even if the parser succeeds, it
4619must discard the start symbol.
258b75ca
PE
4620
4621When discarded symbols convey heap based information, this memory is
4622lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4623in traditional compilers, it is unacceptable for programs like shells or
4624protocol implementations that may parse and execute indefinitely.
258b75ca 4625
a85284cf
AD
4626The @code{%destructor} directive defines code that is called when a
4627symbol is automatically discarded.
72f889cc
AD
4628
4629@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4630@findex %destructor
287c78f6
PE
4631Invoke the braced @var{code} whenever the parser discards one of the
4632@var{symbols}.
4b367315 4633Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4634with the discarded symbol, and @code{@@$} designates its location.
4635The additional parser parameters are also available (@pxref{Parser Function, ,
4636The Parser Function @code{yyparse}}).
ec5479ce 4637
b2a0b7ca
JD
4638When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4639per-symbol @code{%destructor}.
4640You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4641tag among @var{symbols}.
b2a0b7ca 4642In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4643grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4644per-symbol @code{%destructor}.
4645
12e35840 4646Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4647(These default forms are experimental.
4648More user feedback will help to determine whether they should become permanent
4649features.)
3ebecc24 4650You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4651exactly one @code{%destructor} declaration in your grammar file.
4652The parser will invoke the @var{code} associated with one of these whenever it
4653discards any user-defined grammar symbol that has no per-symbol and no per-type
4654@code{%destructor}.
4655The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4656symbol for which you have formally declared a semantic type tag (@code{%type}
4657counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4658The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4659symbol that has no declared semantic type tag.
72f889cc
AD
4660@end deffn
4661
b2a0b7ca 4662@noindent
12e35840 4663For example:
72f889cc 4664
c93f22fc 4665@example
ec5479ce
JD
4666%union @{ char *string; @}
4667%token <string> STRING1
4668%token <string> STRING2
4669%type <string> string1
4670%type <string> string2
b2a0b7ca
JD
4671%union @{ char character; @}
4672%token <character> CHR
4673%type <character> chr
12e35840
JD
4674%token TAGLESS
4675
b2a0b7ca 4676%destructor @{ @} <character>
12e35840
JD
4677%destructor @{ free ($$); @} <*>
4678%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4679%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4680@end example
72f889cc
AD
4681
4682@noindent
b2a0b7ca
JD
4683guarantees that, when the parser discards any user-defined symbol that has a
4684semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4685to @code{free} by default.
ec5479ce
JD
4686However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4687prints its line number to @code{stdout}.
4688It performs only the second @code{%destructor} in this case, so it invokes
4689@code{free} only once.
12e35840
JD
4690Finally, the parser merely prints a message whenever it discards any symbol,
4691such as @code{TAGLESS}, that has no semantic type tag.
4692
4693A Bison-generated parser invokes the default @code{%destructor}s only for
4694user-defined as opposed to Bison-defined symbols.
4695For example, the parser will not invoke either kind of default
4696@code{%destructor} for the special Bison-defined symbols @code{$accept},
4697@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4698none of which you can reference in your grammar.
4699It also will not invoke either for the @code{error} token (@pxref{Table of
4700Symbols, ,error}), which is always defined by Bison regardless of whether you
4701reference it in your grammar.
4702However, it may invoke one of them for the end token (token 0) if you
4703redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4704
c93f22fc 4705@example
3508ce36 4706%token END 0
c93f22fc 4707@end example
3508ce36 4708
12e35840
JD
4709@cindex actions in mid-rule
4710@cindex mid-rule actions
4711Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4712mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4713That is, Bison does not consider a mid-rule to have a semantic value if you
4714do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4715(where @var{n} is the right-hand side symbol position of the mid-rule) in
4716any later action in that rule. However, if you do reference either, the
4717Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4718it discards the mid-rule symbol.
12e35840 4719
3508ce36
JD
4720@ignore
4721@noindent
4722In the future, it may be possible to redefine the @code{error} token as a
4723nonterminal that captures the discarded symbols.
4724In that case, the parser will invoke the default destructor for it as well.
4725@end ignore
4726
e757bb10
AD
4727@sp 1
4728
4729@cindex discarded symbols
4730@dfn{Discarded symbols} are the following:
4731
4732@itemize
4733@item
4734stacked symbols popped during the first phase of error recovery,
4735@item
4736incoming terminals during the second phase of error recovery,
4737@item
742e4900 4738the current lookahead and the entire stack (except the current
9d9b8b70 4739right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4740@item
4741the start symbol, when the parser succeeds.
e757bb10
AD
4742@end itemize
4743
9d9b8b70
PE
4744The parser can @dfn{return immediately} because of an explicit call to
4745@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4746exhaustion.
4747
29553547 4748Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4749error via @code{YYERROR} are not discarded automatically. As a rule
4750of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4751the memory.
e757bb10 4752
342b8b6e 4753@node Expect Decl
bfa74976
RS
4754@subsection Suppressing Conflict Warnings
4755@cindex suppressing conflict warnings
4756@cindex preventing warnings about conflicts
4757@cindex warnings, preventing
4758@cindex conflicts, suppressing warnings of
4759@findex %expect
d6328241 4760@findex %expect-rr
bfa74976
RS
4761
4762Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4763(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4764have harmless shift/reduce conflicts which are resolved in a predictable
4765way and would be difficult to eliminate. It is desirable to suppress
4766the warning about these conflicts unless the number of conflicts
4767changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4768
4769The declaration looks like this:
4770
4771@example
4772%expect @var{n}
4773@end example
4774
035aa4a0
PE
4775Here @var{n} is a decimal integer. The declaration says there should
4776be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4777Bison reports an error if the number of shift/reduce conflicts differs
4778from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4779
eb45ef3b 4780For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4781serious, and should be eliminated entirely. Bison will always report
8a4281b9 4782reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4783parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4784there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4785also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4786in GLR parsers, using the declaration:
d6328241
PH
4787
4788@example
4789%expect-rr @var{n}
4790@end example
4791
bfa74976
RS
4792In general, using @code{%expect} involves these steps:
4793
4794@itemize @bullet
4795@item
4796Compile your grammar without @code{%expect}. Use the @samp{-v} option
4797to get a verbose list of where the conflicts occur. Bison will also
4798print the number of conflicts.
4799
4800@item
4801Check each of the conflicts to make sure that Bison's default
4802resolution is what you really want. If not, rewrite the grammar and
4803go back to the beginning.
4804
4805@item
4806Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4807number which Bison printed. With GLR parsers, add an
035aa4a0 4808@code{%expect-rr} declaration as well.
bfa74976
RS
4809@end itemize
4810
93d7dde9
JD
4811Now Bison will report an error if you introduce an unexpected conflict,
4812but will keep silent otherwise.
bfa74976 4813
342b8b6e 4814@node Start Decl
bfa74976
RS
4815@subsection The Start-Symbol
4816@cindex declaring the start symbol
4817@cindex start symbol, declaring
4818@cindex default start symbol
4819@findex %start
4820
4821Bison assumes by default that the start symbol for the grammar is the first
4822nonterminal specified in the grammar specification section. The programmer
4823may override this restriction with the @code{%start} declaration as follows:
4824
4825@example
4826%start @var{symbol}
4827@end example
4828
342b8b6e 4829@node Pure Decl
bfa74976
RS
4830@subsection A Pure (Reentrant) Parser
4831@cindex reentrant parser
4832@cindex pure parser
d9df47b6 4833@findex %define api.pure
bfa74976
RS
4834
4835A @dfn{reentrant} program is one which does not alter in the course of
4836execution; in other words, it consists entirely of @dfn{pure} (read-only)
4837code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4838for example, a nonreentrant program may not be safe to call from a signal
4839handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4840program must be called only within interlocks.
4841
70811b85 4842Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4843suitable for most uses, and it permits compatibility with Yacc. (The
4844standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4845statically allocated variables for communication with @code{yylex},
4846including @code{yylval} and @code{yylloc}.)
bfa74976 4847
70811b85 4848Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4849declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4850reentrant. It looks like this:
bfa74976
RS
4851
4852@example
d9df47b6 4853%define api.pure
bfa74976
RS
4854@end example
4855
70811b85
RS
4856The result is that the communication variables @code{yylval} and
4857@code{yylloc} become local variables in @code{yyparse}, and a different
4858calling convention is used for the lexical analyzer function
4859@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4860Parsers}, for the details of this. The variable @code{yynerrs}
4861becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4862of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4863Reporting Function @code{yyerror}}). The convention for calling
4864@code{yyparse} itself is unchanged.
4865
4866Whether the parser is pure has nothing to do with the grammar rules.
4867You can generate either a pure parser or a nonreentrant parser from any
4868valid grammar.
bfa74976 4869
9987d1b3
JD
4870@node Push Decl
4871@subsection A Push Parser
4872@cindex push parser
4873@cindex push parser
67212941 4874@findex %define api.push-pull
9987d1b3 4875
59da312b
JD
4876(The current push parsing interface is experimental and may evolve.
4877More user feedback will help to stabilize it.)
4878
f4101aa6
AD
4879A pull parser is called once and it takes control until all its input
4880is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4881each time a new token is made available.
4882
f4101aa6 4883A push parser is typically useful when the parser is part of a
9987d1b3 4884main event loop in the client's application. This is typically
f4101aa6
AD
4885a requirement of a GUI, when the main event loop needs to be triggered
4886within a certain time period.
9987d1b3 4887
d782395d
JD
4888Normally, Bison generates a pull parser.
4889The following Bison declaration says that you want the parser to be a push
35c1e5f0 4890parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4891
4892@example
cf499cff 4893%define api.push-pull push
9987d1b3
JD
4894@end example
4895
4896In almost all cases, you want to ensure that your push parser is also
4897a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4898time you should create an impure push parser is to have backwards
9987d1b3
JD
4899compatibility with the impure Yacc pull mode interface. Unless you know
4900what you are doing, your declarations should look like this:
4901
4902@example
d9df47b6 4903%define api.pure
cf499cff 4904%define api.push-pull push
9987d1b3
JD
4905@end example
4906
f4101aa6
AD
4907There is a major notable functional difference between the pure push parser
4908and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4909many parser instances, of the same type of parser, in memory at the same time.
4910An impure push parser should only use one parser at a time.
4911
4912When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4913the generated parser. @code{yypstate} is a structure that the generated
4914parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4915function that will create a new parser instance. @code{yypstate_delete}
4916will free the resources associated with the corresponding parser instance.
f4101aa6 4917Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4918token is available to provide the parser. A trivial example
4919of using a pure push parser would look like this:
4920
4921@example
4922int status;
4923yypstate *ps = yypstate_new ();
4924do @{
4925 status = yypush_parse (ps, yylex (), NULL);
4926@} while (status == YYPUSH_MORE);
4927yypstate_delete (ps);
4928@end example
4929
4930If the user decided to use an impure push parser, a few things about
f4101aa6 4931the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4932a global variable instead of a variable in the @code{yypush_parse} function.
4933For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4934changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4935example would thus look like this:
4936
4937@example
4938extern int yychar;
4939int status;
4940yypstate *ps = yypstate_new ();
4941do @{
4942 yychar = yylex ();
4943 status = yypush_parse (ps);
4944@} while (status == YYPUSH_MORE);
4945yypstate_delete (ps);
4946@end example
4947
f4101aa6 4948That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4949for use by the next invocation of the @code{yypush_parse} function.
4950
f4101aa6 4951Bison also supports both the push parser interface along with the pull parser
9987d1b3 4952interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4953you should replace the @samp{%define api.push-pull push} declaration with the
4954@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4955the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4956and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4957would be used. However, the user should note that it is implemented in the
d782395d
JD
4958generated parser by calling @code{yypull_parse}.
4959This makes the @code{yyparse} function that is generated with the
cf499cff 4960@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4961@code{yyparse} function. If the user
4962calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4963stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4964and then @code{yypull_parse} the rest of the input stream. If you would like
4965to switch back and forth between between parsing styles, you would have to
4966write your own @code{yypull_parse} function that knows when to quit looking
4967for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4968like this:
4969
4970@example
4971yypstate *ps = yypstate_new ();
4972yypull_parse (ps); /* Will call the lexer */
4973yypstate_delete (ps);
4974@end example
4975
67501061 4976Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4977the generated parser with @samp{%define api.push-pull both} as it did for
4978@samp{%define api.push-pull push}.
9987d1b3 4979
342b8b6e 4980@node Decl Summary
bfa74976
RS
4981@subsection Bison Declaration Summary
4982@cindex Bison declaration summary
4983@cindex declaration summary
4984@cindex summary, Bison declaration
4985
d8988b2f 4986Here is a summary of the declarations used to define a grammar:
bfa74976 4987
18b519c0 4988@deffn {Directive} %union
bfa74976
RS
4989Declare the collection of data types that semantic values may have
4990(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4991@end deffn
bfa74976 4992
18b519c0 4993@deffn {Directive} %token
bfa74976
RS
4994Declare a terminal symbol (token type name) with no precedence
4995or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4996@end deffn
bfa74976 4997
18b519c0 4998@deffn {Directive} %right
bfa74976
RS
4999Declare a terminal symbol (token type name) that is right-associative
5000(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5001@end deffn
bfa74976 5002
18b519c0 5003@deffn {Directive} %left
bfa74976
RS
5004Declare a terminal symbol (token type name) that is left-associative
5005(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5006@end deffn
bfa74976 5007
18b519c0 5008@deffn {Directive} %nonassoc
bfa74976 5009Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5010(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5011Using it in a way that would be associative is a syntax error.
5012@end deffn
5013
91d2c560 5014@ifset defaultprec
39a06c25 5015@deffn {Directive} %default-prec
22fccf95 5016Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5017(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5018@end deffn
91d2c560 5019@end ifset
bfa74976 5020
18b519c0 5021@deffn {Directive} %type
bfa74976
RS
5022Declare the type of semantic values for a nonterminal symbol
5023(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5024@end deffn
bfa74976 5025
18b519c0 5026@deffn {Directive} %start
89cab50d
AD
5027Specify the grammar's start symbol (@pxref{Start Decl, ,The
5028Start-Symbol}).
18b519c0 5029@end deffn
bfa74976 5030
18b519c0 5031@deffn {Directive} %expect
bfa74976
RS
5032Declare the expected number of shift-reduce conflicts
5033(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5034@end deffn
5035
bfa74976 5036
d8988b2f
AD
5037@sp 1
5038@noindent
5039In order to change the behavior of @command{bison}, use the following
5040directives:
5041
148d66d8 5042@deffn {Directive} %code @{@var{code}@}
e0c07222 5043@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5044@findex %code
e0c07222
JD
5045Insert @var{code} verbatim into the output parser source at the
5046default location or at the location specified by @var{qualifier}.
5047@xref{%code Summary}.
148d66d8
JD
5048@end deffn
5049
18b519c0 5050@deffn {Directive} %debug
fa819509
AD
5051Instrument the output parser for traces. Obsoleted by @samp{%define
5052parse.trace}.
ec3bc396 5053@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5054@end deffn
d8988b2f 5055
35c1e5f0
JD
5056@deffn {Directive} %define @var{variable}
5057@deffnx {Directive} %define @var{variable} @var{value}
5058@deffnx {Directive} %define @var{variable} "@var{value}"
5059Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5060@end deffn
5061
5062@deffn {Directive} %defines
5063Write a parser header file containing macro definitions for the token
5064type names defined in the grammar as well as a few other declarations.
5065If the parser implementation file is named @file{@var{name}.c} then
5066the parser header file is named @file{@var{name}.h}.
5067
5068For C parsers, the parser header file declares @code{YYSTYPE} unless
5069@code{YYSTYPE} is already defined as a macro or you have used a
5070@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5071you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5072Value Type}) with components that require other definitions, or if you
5073have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5074Type, ,Data Types of Semantic Values}), you need to arrange for these
5075definitions to be propagated to all modules, e.g., by putting them in
5076a prerequisite header that is included both by your parser and by any
5077other module that needs @code{YYSTYPE}.
5078
5079Unless your parser is pure, the parser header file declares
5080@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5081(Reentrant) Parser}.
5082
5083If you have also used locations, the parser header file declares
303834cc
JD
5084@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5085@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5086
5087This parser header file is normally essential if you wish to put the
5088definition of @code{yylex} in a separate source file, because
5089@code{yylex} typically needs to be able to refer to the
5090above-mentioned declarations and to the token type codes. @xref{Token
5091Values, ,Semantic Values of Tokens}.
5092
5093@findex %code requires
5094@findex %code provides
5095If you have declared @code{%code requires} or @code{%code provides}, the output
5096header also contains their code.
5097@xref{%code Summary}.
5098@end deffn
5099
5100@deffn {Directive} %defines @var{defines-file}
5101Same as above, but save in the file @var{defines-file}.
5102@end deffn
5103
5104@deffn {Directive} %destructor
5105Specify how the parser should reclaim the memory associated to
5106discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5107@end deffn
5108
5109@deffn {Directive} %file-prefix "@var{prefix}"
5110Specify a prefix to use for all Bison output file names. The names
5111are chosen as if the grammar file were named @file{@var{prefix}.y}.
5112@end deffn
5113
5114@deffn {Directive} %language "@var{language}"
5115Specify the programming language for the generated parser. Currently
5116supported languages include C, C++, and Java.
5117@var{language} is case-insensitive.
5118
5119This directive is experimental and its effect may be modified in future
5120releases.
5121@end deffn
5122
5123@deffn {Directive} %locations
5124Generate the code processing the locations (@pxref{Action Features,
5125,Special Features for Use in Actions}). This mode is enabled as soon as
5126the grammar uses the special @samp{@@@var{n}} tokens, but if your
5127grammar does not use it, using @samp{%locations} allows for more
5128accurate syntax error messages.
5129@end deffn
5130
5131@deffn {Directive} %name-prefix "@var{prefix}"
5132Rename the external symbols used in the parser so that they start with
5133@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5134in C parsers
5135is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5136@code{yylval}, @code{yychar}, @code{yydebug}, and
5137(if locations are used) @code{yylloc}. If you use a push parser,
5138@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5139@code{yypstate_new} and @code{yypstate_delete} will
5140also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5141names become @code{c_parse}, @code{c_lex}, and so on.
5142For C++ parsers, see the @samp{%define api.namespace} documentation in this
5143section.
5144@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5145@end deffn
5146
5147@ifset defaultprec
5148@deffn {Directive} %no-default-prec
5149Do not assign a precedence to rules lacking an explicit @code{%prec}
5150modifier (@pxref{Contextual Precedence, ,Context-Dependent
5151Precedence}).
5152@end deffn
5153@end ifset
5154
5155@deffn {Directive} %no-lines
5156Don't generate any @code{#line} preprocessor commands in the parser
5157implementation file. Ordinarily Bison writes these commands in the
5158parser implementation file so that the C compiler and debuggers will
5159associate errors and object code with your source file (the grammar
5160file). This directive causes them to associate errors with the parser
5161implementation file, treating it as an independent source file in its
5162own right.
5163@end deffn
5164
5165@deffn {Directive} %output "@var{file}"
5166Specify @var{file} for the parser implementation file.
5167@end deffn
5168
5169@deffn {Directive} %pure-parser
5170Deprecated version of @samp{%define api.pure} (@pxref{%define
5171Summary,,api.pure}), for which Bison is more careful to warn about
5172unreasonable usage.
5173@end deffn
5174
5175@deffn {Directive} %require "@var{version}"
5176Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5177Require a Version of Bison}.
5178@end deffn
5179
5180@deffn {Directive} %skeleton "@var{file}"
5181Specify the skeleton to use.
5182
5183@c You probably don't need this option unless you are developing Bison.
5184@c You should use @code{%language} if you want to specify the skeleton for a
5185@c different language, because it is clearer and because it will always choose the
5186@c correct skeleton for non-deterministic or push parsers.
5187
5188If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5189file in the Bison installation directory.
5190If it does, @var{file} is an absolute file name or a file name relative to the
5191directory of the grammar file.
5192This is similar to how most shells resolve commands.
5193@end deffn
5194
5195@deffn {Directive} %token-table
5196Generate an array of token names in the parser implementation file.
5197The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5198the name of the token whose internal Bison token code number is
5199@var{i}. The first three elements of @code{yytname} correspond to the
5200predefined tokens @code{"$end"}, @code{"error"}, and
5201@code{"$undefined"}; after these come the symbols defined in the
5202grammar file.
5203
5204The name in the table includes all the characters needed to represent
5205the token in Bison. For single-character literals and literal
5206strings, this includes the surrounding quoting characters and any
5207escape sequences. For example, the Bison single-character literal
5208@code{'+'} corresponds to a three-character name, represented in C as
5209@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5210corresponds to a five-character name, represented in C as
5211@code{"\"\\\\/\""}.
5212
5213When you specify @code{%token-table}, Bison also generates macro
5214definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5215@code{YYNRULES}, and @code{YYNSTATES}:
5216
5217@table @code
5218@item YYNTOKENS
5219The highest token number, plus one.
5220@item YYNNTS
5221The number of nonterminal symbols.
5222@item YYNRULES
5223The number of grammar rules,
5224@item YYNSTATES
5225The number of parser states (@pxref{Parser States}).
5226@end table
5227@end deffn
5228
5229@deffn {Directive} %verbose
5230Write an extra output file containing verbose descriptions of the
5231parser states and what is done for each type of lookahead token in
5232that state. @xref{Understanding, , Understanding Your Parser}, for more
5233information.
5234@end deffn
5235
5236@deffn {Directive} %yacc
5237Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5238including its naming conventions. @xref{Bison Options}, for more.
5239@end deffn
5240
5241
5242@node %define Summary
5243@subsection %define Summary
51151d91
JD
5244
5245There are many features of Bison's behavior that can be controlled by
5246assigning the feature a single value. For historical reasons, some
5247such features are assigned values by dedicated directives, such as
5248@code{%start}, which assigns the start symbol. However, newer such
5249features are associated with variables, which are assigned by the
5250@code{%define} directive:
5251
c1d19e10 5252@deffn {Directive} %define @var{variable}
cf499cff 5253@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5254@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5255Define @var{variable} to @var{value}.
9611cfa2 5256
51151d91
JD
5257@var{value} must be placed in quotation marks if it contains any
5258character other than a letter, underscore, period, or non-initial dash
5259or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5260to specifying @code{""}.
9611cfa2 5261
51151d91
JD
5262It is an error if a @var{variable} is defined by @code{%define}
5263multiple times, but see @ref{Bison Options,,-D
5264@var{name}[=@var{value}]}.
5265@end deffn
cf499cff 5266
51151d91
JD
5267The rest of this section summarizes variables and values that
5268@code{%define} accepts.
9611cfa2 5269
51151d91
JD
5270Some @var{variable}s take Boolean values. In this case, Bison will
5271complain if the variable definition does not meet one of the following
5272four conditions:
9611cfa2
JD
5273
5274@enumerate
cf499cff 5275@item @code{@var{value}} is @code{true}
9611cfa2 5276
cf499cff
JD
5277@item @code{@var{value}} is omitted (or @code{""} is specified).
5278This is equivalent to @code{true}.
9611cfa2 5279
cf499cff 5280@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5281
5282@item @var{variable} is never defined.
c6abeab1 5283In this case, Bison selects a default value.
9611cfa2 5284@end enumerate
148d66d8 5285
c6abeab1
JD
5286What @var{variable}s are accepted, as well as their meanings and default
5287values, depend on the selected target language and/or the parser
5288skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5289Summary,,%skeleton}).
5290Unaccepted @var{variable}s produce an error.
793fbca5
JD
5291Some of the accepted @var{variable}s are:
5292
fa819509 5293@table @code
6b5a0de9 5294@c ================================================== api.namespace
67501061
AD
5295@item api.namespace
5296@findex %define api.namespace
5297@itemize
5298@item Languages(s): C++
5299
f1b238df 5300@item Purpose: Specify the namespace for the parser class.
67501061
AD
5301For example, if you specify:
5302
c93f22fc 5303@example
67501061 5304%define api.namespace "foo::bar"
c93f22fc 5305@end example
67501061
AD
5306
5307Bison uses @code{foo::bar} verbatim in references such as:
5308
c93f22fc 5309@example
67501061 5310foo::bar::parser::semantic_type
c93f22fc 5311@end example
67501061
AD
5312
5313However, to open a namespace, Bison removes any leading @code{::} and then
5314splits on any remaining occurrences:
5315
c93f22fc 5316@example
67501061
AD
5317namespace foo @{ namespace bar @{
5318 class position;
5319 class location;
5320@} @}
c93f22fc 5321@end example
67501061
AD
5322
5323@item Accepted Values:
5324Any absolute or relative C++ namespace reference without a trailing
5325@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5326
5327@item Default Value:
5328The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5329This usage of @code{%name-prefix} is for backward compatibility and can
5330be confusing since @code{%name-prefix} also specifies the textual prefix
5331for the lexical analyzer function. Thus, if you specify
5332@code{%name-prefix}, it is best to also specify @samp{%define
5333api.namespace} so that @code{%name-prefix} @emph{only} affects the
5334lexical analyzer function. For example, if you specify:
5335
c93f22fc 5336@example
67501061
AD
5337%define api.namespace "foo"
5338%name-prefix "bar::"
c93f22fc 5339@end example
67501061
AD
5340
5341The parser namespace is @code{foo} and @code{yylex} is referenced as
5342@code{bar::lex}.
5343@end itemize
5344@c namespace
5345
5346
5347
5348@c ================================================== api.pure
d9df47b6
JD
5349@item api.pure
5350@findex %define api.pure
5351
5352@itemize @bullet
5353@item Language(s): C
5354
5355@item Purpose: Request a pure (reentrant) parser program.
5356@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5357
5358@item Accepted Values: Boolean
5359
cf499cff 5360@item Default Value: @code{false}
d9df47b6 5361@end itemize
71b00ed8 5362@c api.pure
d9df47b6 5363
67501061
AD
5364
5365
5366@c ================================================== api.push-pull
67212941
JD
5367@item api.push-pull
5368@findex %define api.push-pull
793fbca5
JD
5369
5370@itemize @bullet
eb45ef3b 5371@item Language(s): C (deterministic parsers only)
793fbca5 5372
f1b238df 5373@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5374@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5375(The current push parsing interface is experimental and may evolve.
5376More user feedback will help to stabilize it.)
793fbca5 5377
cf499cff 5378@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5379
cf499cff 5380@item Default Value: @code{pull}
793fbca5 5381@end itemize
67212941 5382@c api.push-pull
71b00ed8 5383
6b5a0de9
AD
5384
5385
5386@c ================================================== api.tokens.prefix
4c6622c2
AD
5387@item api.tokens.prefix
5388@findex %define api.tokens.prefix
5389
5390@itemize
5391@item Languages(s): all
5392
5393@item Purpose:
5394Add a prefix to the token names when generating their definition in the
5395target language. For instance
5396
5397@example
5398%token FILE for ERROR
5399%define api.tokens.prefix "TOK_"
5400%%
5401start: FILE for ERROR;
5402@end example
5403
5404@noindent
5405generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5406and @code{TOK_ERROR} in the generated source files. In particular, the
5407scanner must use these prefixed token names, while the grammar itself
5408may still use the short names (as in the sample rule given above). The
5409generated informational files (@file{*.output}, @file{*.xml},
5410@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5411and @ref{Calc++ Scanner}, for a complete example.
5412
5413@item Accepted Values:
5414Any string. Should be a valid identifier prefix in the target language,
5415in other words, it should typically be an identifier itself (sequence of
5416letters, underscores, and ---not at the beginning--- digits).
5417
5418@item Default Value:
5419empty
5420@end itemize
5421@c api.tokens.prefix
5422
5423
3cdc21cf 5424@c ================================================== lex_symbol
84072495 5425@item lex_symbol
3cdc21cf
AD
5426@findex %define lex_symbol
5427
5428@itemize @bullet
5429@item Language(s):
5430C++
5431
5432@item Purpose:
5433When variant-based semantic values are enabled (@pxref{C++ Variants}),
5434request that symbols be handled as a whole (type, value, and possibly
5435location) in the scanner. @xref{Complete Symbols}, for details.
5436
5437@item Accepted Values:
5438Boolean.
5439
5440@item Default Value:
5441@code{false}
5442@end itemize
5443@c lex_symbol
5444
5445
6b5a0de9
AD
5446@c ================================================== lr.default-reductions
5447
5bab9d08 5448@item lr.default-reductions
5bab9d08 5449@findex %define lr.default-reductions
eb45ef3b
JD
5450
5451@itemize @bullet
5452@item Language(s): all
5453
fcf834f9 5454@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5455contain default reductions. @xref{Default Reductions}. (The ability to
5456specify where default reductions should be used is experimental. More user
5457feedback will help to stabilize it.)
eb45ef3b 5458
f0ad1b2f 5459@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5460@item Default Value:
5461@itemize
cf499cff 5462@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5463@item @code{most} otherwise.
eb45ef3b
JD
5464@end itemize
5465@end itemize
5466
6b5a0de9
AD
5467@c ============================================ lr.keep-unreachable-states
5468
67212941
JD
5469@item lr.keep-unreachable-states
5470@findex %define lr.keep-unreachable-states
31984206
JD
5471
5472@itemize @bullet
5473@item Language(s): all
f1b238df 5474@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5475remain in the parser tables. @xref{Unreachable States}.
31984206 5476@item Accepted Values: Boolean
cf499cff 5477@item Default Value: @code{false}
31984206 5478@end itemize
67212941 5479@c lr.keep-unreachable-states
31984206 5480
6b5a0de9
AD
5481@c ================================================== lr.type
5482
eb45ef3b
JD
5483@item lr.type
5484@findex %define lr.type
eb45ef3b
JD
5485
5486@itemize @bullet
5487@item Language(s): all
5488
f1b238df 5489@item Purpose: Specify the type of parser tables within the
7fceb615 5490LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5491More user feedback will help to stabilize it.)
5492
7fceb615 5493@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5494
cf499cff 5495@item Default Value: @code{lalr}
eb45ef3b
JD
5496@end itemize
5497
67501061
AD
5498
5499@c ================================================== namespace
793fbca5
JD
5500@item namespace
5501@findex %define namespace
67501061 5502Obsoleted by @code{api.namespace}
fa819509
AD
5503@c namespace
5504
31b850d2
AD
5505
5506@c ================================================== parse.assert
0c90a1f5
AD
5507@item parse.assert
5508@findex %define parse.assert
5509
5510@itemize
5511@item Languages(s): C++
5512
5513@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5514In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5515constructed and
0c90a1f5
AD
5516destroyed properly. This option checks these constraints.
5517
5518@item Accepted Values: Boolean
5519
5520@item Default Value: @code{false}
5521@end itemize
5522@c parse.assert
5523
31b850d2
AD
5524
5525@c ================================================== parse.error
5526@item parse.error
5527@findex %define parse.error
5528@itemize
5529@item Languages(s):
fcf834f9 5530all
31b850d2
AD
5531@item Purpose:
5532Control the kind of error messages passed to the error reporting
5533function. @xref{Error Reporting, ,The Error Reporting Function
5534@code{yyerror}}.
5535@item Accepted Values:
5536@itemize
cf499cff 5537@item @code{simple}
31b850d2
AD
5538Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5539error"}}.
cf499cff 5540@item @code{verbose}
7fceb615
JD
5541Error messages report the unexpected token, and possibly the expected ones.
5542However, this report can often be incorrect when LAC is not enabled
5543(@pxref{LAC}).
31b850d2
AD
5544@end itemize
5545
5546@item Default Value:
5547@code{simple}
5548@end itemize
5549@c parse.error
5550
5551
fcf834f9
JD
5552@c ================================================== parse.lac
5553@item parse.lac
5554@findex %define parse.lac
fcf834f9
JD
5555
5556@itemize
7fceb615 5557@item Languages(s): C (deterministic parsers only)
fcf834f9 5558
8a4281b9 5559@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5560syntax error handling. @xref{LAC}.
fcf834f9 5561@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5562@item Default Value: @code{none}
5563@end itemize
5564@c parse.lac
5565
31b850d2 5566@c ================================================== parse.trace
fa819509
AD
5567@item parse.trace
5568@findex %define parse.trace
5569
5570@itemize
5571@item Languages(s): C, C++
5572
5573@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5574In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5575file if it is not already defined, so that the debugging facilities are
5576compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5577
fa819509
AD
5578@item Accepted Values: Boolean
5579
5580@item Default Value: @code{false}
5581@end itemize
fa819509 5582@c parse.trace
99c08fb6 5583
3cdc21cf
AD
5584@c ================================================== variant
5585@item variant
5586@findex %define variant
5587
5588@itemize @bullet
5589@item Language(s):
5590C++
5591
5592@item Purpose:
f1b238df 5593Request variant-based semantic values.
3cdc21cf
AD
5594@xref{C++ Variants}.
5595
5596@item Accepted Values:
5597Boolean.
5598
5599@item Default Value:
5600@code{false}
5601@end itemize
5602@c variant
99c08fb6 5603@end table
592d0b1e 5604
d8988b2f 5605
e0c07222
JD
5606@node %code Summary
5607@subsection %code Summary
e0c07222 5608@findex %code
e0c07222 5609@cindex Prologue
51151d91
JD
5610
5611The @code{%code} directive inserts code verbatim into the output
5612parser source at any of a predefined set of locations. It thus serves
5613as a flexible and user-friendly alternative to the traditional Yacc
5614prologue, @code{%@{@var{code}%@}}. This section summarizes the
5615functionality of @code{%code} for the various target languages
5616supported by Bison. For a detailed discussion of how to use
5617@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5618is advantageous to do so, @pxref{Prologue Alternatives}.
5619
5620@deffn {Directive} %code @{@var{code}@}
5621This is the unqualified form of the @code{%code} directive. It
5622inserts @var{code} verbatim at a language-dependent default location
5623in the parser implementation.
5624
e0c07222 5625For C/C++, the default location is the parser implementation file
51151d91
JD
5626after the usual contents of the parser header file. Thus, the
5627unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5628
5629For Java, the default location is inside the parser class.
5630@end deffn
5631
5632@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5633This is the qualified form of the @code{%code} directive.
51151d91
JD
5634@var{qualifier} identifies the purpose of @var{code} and thus the
5635location(s) where Bison should insert it. That is, if you need to
5636specify location-sensitive @var{code} that does not belong at the
5637default location selected by the unqualified @code{%code} form, use
5638this form instead.
5639@end deffn
5640
5641For any particular qualifier or for the unqualified form, if there are
5642multiple occurrences of the @code{%code} directive, Bison concatenates
5643the specified code in the order in which it appears in the grammar
5644file.
e0c07222 5645
51151d91
JD
5646Not all qualifiers are accepted for all target languages. Unaccepted
5647qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5648
84072495 5649@table @code
e0c07222
JD
5650@item requires
5651@findex %code requires
5652
5653@itemize @bullet
5654@item Language(s): C, C++
5655
5656@item Purpose: This is the best place to write dependency code required for
5657@code{YYSTYPE} and @code{YYLTYPE}.
5658In other words, it's the best place to define types referenced in @code{%union}
5659directives, and it's the best place to override Bison's default @code{YYSTYPE}
5660and @code{YYLTYPE} definitions.
5661
5662@item Location(s): The parser header file and the parser implementation file
5663before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5664definitions.
5665@end itemize
5666
5667@item provides
5668@findex %code provides
5669
5670@itemize @bullet
5671@item Language(s): C, C++
5672
5673@item Purpose: This is the best place to write additional definitions and
5674declarations that should be provided to other modules.
5675
5676@item Location(s): The parser header file and the parser implementation
5677file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5678token definitions.
5679@end itemize
5680
5681@item top
5682@findex %code top
5683
5684@itemize @bullet
5685@item Language(s): C, C++
5686
5687@item Purpose: The unqualified @code{%code} or @code{%code requires}
5688should usually be more appropriate than @code{%code top}. However,
5689occasionally it is necessary to insert code much nearer the top of the
5690parser implementation file. For example:
5691
c93f22fc 5692@example
e0c07222
JD
5693%code top @{
5694 #define _GNU_SOURCE
5695 #include <stdio.h>
5696@}
c93f22fc 5697@end example
e0c07222
JD
5698
5699@item Location(s): Near the top of the parser implementation file.
5700@end itemize
5701
5702@item imports
5703@findex %code imports
5704
5705@itemize @bullet
5706@item Language(s): Java
5707
5708@item Purpose: This is the best place to write Java import directives.
5709
5710@item Location(s): The parser Java file after any Java package directive and
5711before any class definitions.
5712@end itemize
84072495 5713@end table
e0c07222 5714
51151d91
JD
5715Though we say the insertion locations are language-dependent, they are
5716technically skeleton-dependent. Writers of non-standard skeletons
5717however should choose their locations consistently with the behavior
5718of the standard Bison skeletons.
e0c07222 5719
d8988b2f 5720
342b8b6e 5721@node Multiple Parsers
bfa74976
RS
5722@section Multiple Parsers in the Same Program
5723
5724Most programs that use Bison parse only one language and therefore contain
5725only one Bison parser. But what if you want to parse more than one
5726language with the same program? Then you need to avoid a name conflict
5727between different definitions of @code{yyparse}, @code{yylval}, and so on.
5728
5729The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5730(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5731functions and variables of the Bison parser to start with @var{prefix}
5732instead of @samp{yy}. You can use this to give each parser distinct
5733names that do not conflict.
bfa74976
RS
5734
5735The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5736@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5737@code{yychar} and @code{yydebug}. If you use a push parser,
5738@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5739@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5740For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5741@code{clex}, and so on.
bfa74976
RS
5742
5743@strong{All the other variables and macros associated with Bison are not
5744renamed.} These others are not global; there is no conflict if the same
5745name is used in different parsers. For example, @code{YYSTYPE} is not
5746renamed, but defining this in different ways in different parsers causes
5747no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5748
ff7571c0
JD
5749The @samp{-p} option works by adding macro definitions to the
5750beginning of the parser implementation file, defining @code{yyparse}
5751as @code{@var{prefix}parse}, and so on. This effectively substitutes
5752one name for the other in the entire parser implementation file.
bfa74976 5753
342b8b6e 5754@node Interface
bfa74976
RS
5755@chapter Parser C-Language Interface
5756@cindex C-language interface
5757@cindex interface
5758
5759The Bison parser is actually a C function named @code{yyparse}. Here we
5760describe the interface conventions of @code{yyparse} and the other
5761functions that it needs to use.
5762
5763Keep in mind that the parser uses many C identifiers starting with
5764@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5765identifier (aside from those in this manual) in an action or in epilogue
5766in the grammar file, you are likely to run into trouble.
bfa74976
RS
5767
5768@menu
f5f419de
DJ
5769* Parser Function:: How to call @code{yyparse} and what it returns.
5770* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5771* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5772* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5773* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5774* Lexical:: You must supply a function @code{yylex}
5775 which reads tokens.
5776* Error Reporting:: You must supply a function @code{yyerror}.
5777* Action Features:: Special features for use in actions.
5778* Internationalization:: How to let the parser speak in the user's
5779 native language.
bfa74976
RS
5780@end menu
5781
342b8b6e 5782@node Parser Function
bfa74976
RS
5783@section The Parser Function @code{yyparse}
5784@findex yyparse
5785
5786You call the function @code{yyparse} to cause parsing to occur. This
5787function reads tokens, executes actions, and ultimately returns when it
5788encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5789write an action which directs @code{yyparse} to return immediately
5790without reading further.
bfa74976 5791
2a8d363a
AD
5792
5793@deftypefun int yyparse (void)
bfa74976
RS
5794The value returned by @code{yyparse} is 0 if parsing was successful (return
5795is due to end-of-input).
5796
b47dbebe
PE
5797The value is 1 if parsing failed because of invalid input, i.e., input
5798that contains a syntax error or that causes @code{YYABORT} to be
5799invoked.
5800
5801The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5802@end deftypefun
bfa74976
RS
5803
5804In an action, you can cause immediate return from @code{yyparse} by using
5805these macros:
5806
2a8d363a 5807@defmac YYACCEPT
bfa74976
RS
5808@findex YYACCEPT
5809Return immediately with value 0 (to report success).
2a8d363a 5810@end defmac
bfa74976 5811
2a8d363a 5812@defmac YYABORT
bfa74976
RS
5813@findex YYABORT
5814Return immediately with value 1 (to report failure).
2a8d363a
AD
5815@end defmac
5816
5817If you use a reentrant parser, you can optionally pass additional
5818parameter information to it in a reentrant way. To do so, use the
5819declaration @code{%parse-param}:
5820
2055a44e 5821@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5822@findex %parse-param
2055a44e
AD
5823Declare that one or more
5824@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5825The @var{argument-declaration} is used when declaring
feeb0eda
PE
5826functions or prototypes. The last identifier in
5827@var{argument-declaration} must be the argument name.
2a8d363a
AD
5828@end deffn
5829
5830Here's an example. Write this in the parser:
5831
5832@example
2055a44e 5833%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5834@end example
5835
5836@noindent
5837Then call the parser like this:
5838
5839@example
5840@{
5841 int nastiness, randomness;
5842 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5843 value = yyparse (&nastiness, &randomness);
5844 @dots{}
5845@}
5846@end example
5847
5848@noindent
5849In the grammar actions, use expressions like this to refer to the data:
5850
5851@example
5852exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5853@end example
5854
9987d1b3
JD
5855@node Push Parser Function
5856@section The Push Parser Function @code{yypush_parse}
5857@findex yypush_parse
5858
59da312b
JD
5859(The current push parsing interface is experimental and may evolve.
5860More user feedback will help to stabilize it.)
5861
f4101aa6 5862You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5863function is available if either the @samp{%define api.push-pull push} or
5864@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5865@xref{Push Decl, ,A Push Parser}.
5866
5867@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5868The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5869following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5870is required to finish parsing the grammar.
5871@end deftypefun
5872
5873@node Pull Parser Function
5874@section The Pull Parser Function @code{yypull_parse}
5875@findex yypull_parse
5876
59da312b
JD
5877(The current push parsing interface is experimental and may evolve.
5878More user feedback will help to stabilize it.)
5879
f4101aa6 5880You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5881stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5882declaration is used.
9987d1b3
JD
5883@xref{Push Decl, ,A Push Parser}.
5884
5885@deftypefun int yypull_parse (yypstate *yyps)
5886The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5887@end deftypefun
5888
5889@node Parser Create Function
5890@section The Parser Create Function @code{yystate_new}
5891@findex yypstate_new
5892
59da312b
JD
5893(The current push parsing interface is experimental and may evolve.
5894More user feedback will help to stabilize it.)
5895
f4101aa6 5896You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5897This function is available if either the @samp{%define api.push-pull push} or
5898@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5899@xref{Push Decl, ,A Push Parser}.
5900
5901@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5902The function will return a valid parser instance if there was memory available
333e670c
JD
5903or 0 if no memory was available.
5904In impure mode, it will also return 0 if a parser instance is currently
5905allocated.
9987d1b3
JD
5906@end deftypefun
5907
5908@node Parser Delete Function
5909@section The Parser Delete Function @code{yystate_delete}
5910@findex yypstate_delete
5911
59da312b
JD
5912(The current push parsing interface is experimental and may evolve.
5913More user feedback will help to stabilize it.)
5914
9987d1b3 5915You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5916function is available if either the @samp{%define api.push-pull push} or
5917@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5918@xref{Push Decl, ,A Push Parser}.
5919
5920@deftypefun void yypstate_delete (yypstate *yyps)
5921This function will reclaim the memory associated with a parser instance.
5922After this call, you should no longer attempt to use the parser instance.
5923@end deftypefun
bfa74976 5924
342b8b6e 5925@node Lexical
bfa74976
RS
5926@section The Lexical Analyzer Function @code{yylex}
5927@findex yylex
5928@cindex lexical analyzer
5929
5930The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5931the input stream and returns them to the parser. Bison does not create
5932this function automatically; you must write it so that @code{yyparse} can
5933call it. The function is sometimes referred to as a lexical scanner.
5934
ff7571c0
JD
5935In simple programs, @code{yylex} is often defined at the end of the
5936Bison grammar file. If @code{yylex} is defined in a separate source
5937file, you need to arrange for the token-type macro definitions to be
5938available there. To do this, use the @samp{-d} option when you run
5939Bison, so that it will write these macro definitions into the separate
5940parser header file, @file{@var{name}.tab.h}, which you can include in
5941the other source files that need it. @xref{Invocation, ,Invoking
5942Bison}.
bfa74976
RS
5943
5944@menu
5945* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5946* Token Values:: How @code{yylex} must return the semantic value
5947 of the token it has read.
5948* Token Locations:: How @code{yylex} must return the text location
5949 (line number, etc.) of the token, if the
5950 actions want that.
5951* Pure Calling:: How the calling convention differs in a pure parser
5952 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5953@end menu
5954
342b8b6e 5955@node Calling Convention
bfa74976
RS
5956@subsection Calling Convention for @code{yylex}
5957
72d2299c
PE
5958The value that @code{yylex} returns must be the positive numeric code
5959for the type of token it has just found; a zero or negative value
5960signifies end-of-input.
bfa74976
RS
5961
5962When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
5963in the parser implementation file becomes a C macro whose definition
5964is the proper numeric code for that token type. So @code{yylex} can
5965use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5966
5967When a token is referred to in the grammar rules by a character literal,
5968the numeric code for that character is also the code for the token type.
72d2299c
PE
5969So @code{yylex} can simply return that character code, possibly converted
5970to @code{unsigned char} to avoid sign-extension. The null character
5971must not be used this way, because its code is zero and that
bfa74976
RS
5972signifies end-of-input.
5973
5974Here is an example showing these things:
5975
5976@example
13863333
AD
5977int
5978yylex (void)
bfa74976
RS
5979@{
5980 @dots{}
72d2299c 5981 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5982 return 0;
5983 @dots{}
5984 if (c == '+' || c == '-')
72d2299c 5985 return c; /* Assume token type for `+' is '+'. */
bfa74976 5986 @dots{}
72d2299c 5987 return INT; /* Return the type of the token. */
bfa74976
RS
5988 @dots{}
5989@}
5990@end example
5991
5992@noindent
5993This interface has been designed so that the output from the @code{lex}
5994utility can be used without change as the definition of @code{yylex}.
5995
931c7513
RS
5996If the grammar uses literal string tokens, there are two ways that
5997@code{yylex} can determine the token type codes for them:
5998
5999@itemize @bullet
6000@item
6001If the grammar defines symbolic token names as aliases for the
6002literal string tokens, @code{yylex} can use these symbolic names like
6003all others. In this case, the use of the literal string tokens in
6004the grammar file has no effect on @code{yylex}.
6005
6006@item
9ecbd125 6007@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6008table. The index of the token in the table is the token type's code.
9ecbd125 6009The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6010double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6011token's characters are escaped as necessary to be suitable as input
6012to Bison.
931c7513 6013
9e0876fb
PE
6014Here's code for looking up a multicharacter token in @code{yytname},
6015assuming that the characters of the token are stored in
6016@code{token_buffer}, and assuming that the token does not contain any
6017characters like @samp{"} that require escaping.
931c7513 6018
c93f22fc 6019@example
931c7513
RS
6020for (i = 0; i < YYNTOKENS; i++)
6021 @{
6022 if (yytname[i] != 0
6023 && yytname[i][0] == '"'
68449b3a
PE
6024 && ! strncmp (yytname[i] + 1, token_buffer,
6025 strlen (token_buffer))
931c7513
RS
6026 && yytname[i][strlen (token_buffer) + 1] == '"'
6027 && yytname[i][strlen (token_buffer) + 2] == 0)
6028 break;
6029 @}
c93f22fc 6030@end example
931c7513
RS
6031
6032The @code{yytname} table is generated only if you use the
8c9a50be 6033@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6034@end itemize
6035
342b8b6e 6036@node Token Values
bfa74976
RS
6037@subsection Semantic Values of Tokens
6038
6039@vindex yylval
9d9b8b70 6040In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6041be stored into the global variable @code{yylval}. When you are using
6042just one data type for semantic values, @code{yylval} has that type.
6043Thus, if the type is @code{int} (the default), you might write this in
6044@code{yylex}:
6045
6046@example
6047@group
6048 @dots{}
72d2299c
PE
6049 yylval = value; /* Put value onto Bison stack. */
6050 return INT; /* Return the type of the token. */
bfa74976
RS
6051 @dots{}
6052@end group
6053@end example
6054
6055When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6056made from the @code{%union} declaration (@pxref{Union Decl, ,The
6057Collection of Value Types}). So when you store a token's value, you
6058must use the proper member of the union. If the @code{%union}
6059declaration looks like this:
bfa74976
RS
6060
6061@example
6062@group
6063%union @{
6064 int intval;
6065 double val;
6066 symrec *tptr;
6067@}
6068@end group
6069@end example
6070
6071@noindent
6072then the code in @code{yylex} might look like this:
6073
6074@example
6075@group
6076 @dots{}
72d2299c
PE
6077 yylval.intval = value; /* Put value onto Bison stack. */
6078 return INT; /* Return the type of the token. */
bfa74976
RS
6079 @dots{}
6080@end group
6081@end example
6082
95923bd6
AD
6083@node Token Locations
6084@subsection Textual Locations of Tokens
bfa74976
RS
6085
6086@vindex yylloc
303834cc
JD
6087If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6088in actions to keep track of the textual locations of tokens and groupings,
6089then you must provide this information in @code{yylex}. The function
6090@code{yyparse} expects to find the textual location of a token just parsed
6091in the global variable @code{yylloc}. So @code{yylex} must store the proper
6092data in that variable.
847bf1f5
AD
6093
6094By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6095initialize the members that are going to be used by the actions. The
6096four members are called @code{first_line}, @code{first_column},
6097@code{last_line} and @code{last_column}. Note that the use of this
6098feature makes the parser noticeably slower.
bfa74976
RS
6099
6100@tindex YYLTYPE
6101The data type of @code{yylloc} has the name @code{YYLTYPE}.
6102
342b8b6e 6103@node Pure Calling
c656404a 6104@subsection Calling Conventions for Pure Parsers
bfa74976 6105
67501061 6106When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6107pure, reentrant parser, the global communication variables @code{yylval}
6108and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6109Parser}.) In such parsers the two global variables are replaced by
6110pointers passed as arguments to @code{yylex}. You must declare them as
6111shown here, and pass the information back by storing it through those
6112pointers.
bfa74976
RS
6113
6114@example
13863333
AD
6115int
6116yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6117@{
6118 @dots{}
6119 *lvalp = value; /* Put value onto Bison stack. */
6120 return INT; /* Return the type of the token. */
6121 @dots{}
6122@}
6123@end example
6124
6125If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6126textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6127this case, omit the second argument; @code{yylex} will be called with
6128only one argument.
6129
2055a44e 6130If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6131@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6132Function}). To pass additional arguments to both @code{yylex} and
6133@code{yyparse}, use @code{%param}.
e425e872 6134
2055a44e 6135@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6136@findex %lex-param
2055a44e
AD
6137Specify that @var{argument-declaration} are additional @code{yylex} argument
6138declarations. You may pass one or more such declarations, which is
6139equivalent to repeating @code{%lex-param}.
6140@end deffn
6141
6142@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6143@findex %param
6144Specify that @var{argument-declaration} are additional
6145@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6146@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6147@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6148declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6149@end deffn
e425e872 6150
2a8d363a 6151For instance:
e425e872
RS
6152
6153@example
2055a44e
AD
6154%lex-param @{scanner_mode *mode@}
6155%parse-param @{parser_mode *mode@}
6156%param @{environment_type *env@}
e425e872
RS
6157@end example
6158
6159@noindent
2a8d363a 6160results in the following signature:
e425e872
RS
6161
6162@example
2055a44e
AD
6163int yylex (scanner_mode *mode, environment_type *env);
6164int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6165@end example
6166
67501061 6167If @samp{%define api.pure} is added:
c656404a
RS
6168
6169@example
2055a44e
AD
6170int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6171int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6172@end example
6173
2a8d363a 6174@noindent
67501061 6175and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6176
2a8d363a 6177@example
2055a44e
AD
6178int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6179 scanner_mode *mode, environment_type *env);
6180int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6181@end example
931c7513 6182
342b8b6e 6183@node Error Reporting
bfa74976
RS
6184@section The Error Reporting Function @code{yyerror}
6185@cindex error reporting function
6186@findex yyerror
6187@cindex parse error
6188@cindex syntax error
6189
31b850d2 6190The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6191whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6192action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6193macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6194in Actions}).
bfa74976
RS
6195
6196The Bison parser expects to report the error by calling an error
6197reporting function named @code{yyerror}, which you must supply. It is
6198called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6199receives one argument. For a syntax error, the string is normally
6200@w{@code{"syntax error"}}.
bfa74976 6201
31b850d2 6202@findex %define parse.error
7fceb615
JD
6203If you invoke @samp{%define parse.error verbose} in the Bison declarations
6204section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6205Bison provides a more verbose and specific error message string instead of
6206just plain @w{@code{"syntax error"}}. However, that message sometimes
6207contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6208
1a059451
PE
6209The parser can detect one other kind of error: memory exhaustion. This
6210can happen when the input contains constructions that are very deeply
bfa74976 6211nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6212parser normally extends its stack automatically up to a very large limit. But
6213if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6214fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6215
6216In some cases diagnostics like @w{@code{"syntax error"}} are
6217translated automatically from English to some other language before
6218they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6219
6220The following definition suffices in simple programs:
6221
6222@example
6223@group
13863333 6224void
38a92d50 6225yyerror (char const *s)
bfa74976
RS
6226@{
6227@end group
6228@group
6229 fprintf (stderr, "%s\n", s);
6230@}
6231@end group
6232@end example
6233
6234After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6235error recovery if you have written suitable error recovery grammar rules
6236(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6237immediately return 1.
6238
93724f13 6239Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6240an access to the current location.
8a4281b9 6241This is indeed the case for the GLR
2a8d363a 6242parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6243@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6244@code{yyerror} are:
6245
6246@example
38a92d50
PE
6247void yyerror (char const *msg); /* Yacc parsers. */
6248void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6249@end example
6250
feeb0eda 6251If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6252
6253@example
b317297e
PE
6254void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6255void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6256@end example
6257
8a4281b9 6258Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6259convention for absolutely pure parsers, i.e., when the calling
6260convention of @code{yylex} @emph{and} the calling convention of
67501061 6261@samp{%define api.pure} are pure.
d9df47b6 6262I.e.:
2a8d363a
AD
6263
6264@example
6265/* Location tracking. */
6266%locations
6267/* Pure yylex. */
d9df47b6 6268%define api.pure
feeb0eda 6269%lex-param @{int *nastiness@}
2a8d363a 6270/* Pure yyparse. */
feeb0eda
PE
6271%parse-param @{int *nastiness@}
6272%parse-param @{int *randomness@}
2a8d363a
AD
6273@end example
6274
6275@noindent
6276results in the following signatures for all the parser kinds:
6277
6278@example
6279int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6280int yyparse (int *nastiness, int *randomness);
93724f13
AD
6281void yyerror (YYLTYPE *locp,
6282 int *nastiness, int *randomness,
38a92d50 6283 char const *msg);
2a8d363a
AD
6284@end example
6285
1c0c3e95 6286@noindent
38a92d50
PE
6287The prototypes are only indications of how the code produced by Bison
6288uses @code{yyerror}. Bison-generated code always ignores the returned
6289value, so @code{yyerror} can return any type, including @code{void}.
6290Also, @code{yyerror} can be a variadic function; that is why the
6291message is always passed last.
6292
6293Traditionally @code{yyerror} returns an @code{int} that is always
6294ignored, but this is purely for historical reasons, and @code{void} is
6295preferable since it more accurately describes the return type for
6296@code{yyerror}.
93724f13 6297
bfa74976
RS
6298@vindex yynerrs
6299The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6300reported so far. Normally this variable is global; but if you
704a47c4
AD
6301request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6302then it is a local variable which only the actions can access.
bfa74976 6303
342b8b6e 6304@node Action Features
bfa74976
RS
6305@section Special Features for Use in Actions
6306@cindex summary, action features
6307@cindex action features summary
6308
6309Here is a table of Bison constructs, variables and macros that
6310are useful in actions.
6311
18b519c0 6312@deffn {Variable} $$
bfa74976
RS
6313Acts like a variable that contains the semantic value for the
6314grouping made by the current rule. @xref{Actions}.
18b519c0 6315@end deffn
bfa74976 6316
18b519c0 6317@deffn {Variable} $@var{n}
bfa74976
RS
6318Acts like a variable that contains the semantic value for the
6319@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6320@end deffn
bfa74976 6321
18b519c0 6322@deffn {Variable} $<@var{typealt}>$
bfa74976 6323Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6324specified by the @code{%union} declaration. @xref{Action Types, ,Data
6325Types of Values in Actions}.
18b519c0 6326@end deffn
bfa74976 6327
18b519c0 6328@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6329Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6330union specified by the @code{%union} declaration.
e0c471a9 6331@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6332@end deffn
bfa74976 6333
18b519c0 6334@deffn {Macro} YYABORT;
bfa74976
RS
6335Return immediately from @code{yyparse}, indicating failure.
6336@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6337@end deffn
bfa74976 6338
18b519c0 6339@deffn {Macro} YYACCEPT;
bfa74976
RS
6340Return immediately from @code{yyparse}, indicating success.
6341@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6342@end deffn
bfa74976 6343
18b519c0 6344@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6345@findex YYBACKUP
6346Unshift a token. This macro is allowed only for rules that reduce
742e4900 6347a single value, and only when there is no lookahead token.
8a4281b9 6348It is also disallowed in GLR parsers.
742e4900 6349It installs a lookahead token with token type @var{token} and
bfa74976
RS
6350semantic value @var{value}; then it discards the value that was
6351going to be reduced by this rule.
6352
6353If the macro is used when it is not valid, such as when there is
742e4900 6354a lookahead token already, then it reports a syntax error with
bfa74976
RS
6355a message @samp{cannot back up} and performs ordinary error
6356recovery.
6357
6358In either case, the rest of the action is not executed.
18b519c0 6359@end deffn
bfa74976 6360
18b519c0 6361@deffn {Macro} YYEMPTY
bfa74976 6362@vindex YYEMPTY
742e4900 6363Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6364@end deffn
bfa74976 6365
32c29292
JD
6366@deffn {Macro} YYEOF
6367@vindex YYEOF
742e4900 6368Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6369stream.
6370@end deffn
6371
18b519c0 6372@deffn {Macro} YYERROR;
bfa74976
RS
6373@findex YYERROR
6374Cause an immediate syntax error. This statement initiates error
6375recovery just as if the parser itself had detected an error; however, it
6376does not call @code{yyerror}, and does not print any message. If you
6377want to print an error message, call @code{yyerror} explicitly before
6378the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6379@end deffn
bfa74976 6380
18b519c0 6381@deffn {Macro} YYRECOVERING
02103984
PE
6382@findex YYRECOVERING
6383The expression @code{YYRECOVERING ()} yields 1 when the parser
6384is recovering from a syntax error, and 0 otherwise.
bfa74976 6385@xref{Error Recovery}.
18b519c0 6386@end deffn
bfa74976 6387
18b519c0 6388@deffn {Variable} yychar
742e4900
JD
6389Variable containing either the lookahead token, or @code{YYEOF} when the
6390lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6391has been performed so the next token is not yet known.
6392Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6393Actions}).
742e4900 6394@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6395@end deffn
bfa74976 6396
18b519c0 6397@deffn {Macro} yyclearin;
742e4900 6398Discard the current lookahead token. This is useful primarily in
32c29292
JD
6399error rules.
6400Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6401Semantic Actions}).
6402@xref{Error Recovery}.
18b519c0 6403@end deffn
bfa74976 6404
18b519c0 6405@deffn {Macro} yyerrok;
bfa74976 6406Resume generating error messages immediately for subsequent syntax
13863333 6407errors. This is useful primarily in error rules.
bfa74976 6408@xref{Error Recovery}.
18b519c0 6409@end deffn
bfa74976 6410
32c29292 6411@deffn {Variable} yylloc
742e4900 6412Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6413to @code{YYEMPTY} or @code{YYEOF}.
6414Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6415Actions}).
6416@xref{Actions and Locations, ,Actions and Locations}.
6417@end deffn
6418
6419@deffn {Variable} yylval
742e4900 6420Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6421not set to @code{YYEMPTY} or @code{YYEOF}.
6422Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6423Actions}).
6424@xref{Actions, ,Actions}.
6425@end deffn
6426
18b519c0 6427@deffn {Value} @@$
847bf1f5 6428@findex @@$
303834cc
JD
6429Acts like a structure variable containing information on the textual
6430location of the grouping made by the current rule. @xref{Tracking
6431Locations}.
bfa74976 6432
847bf1f5
AD
6433@c Check if those paragraphs are still useful or not.
6434
6435@c @example
6436@c struct @{
6437@c int first_line, last_line;
6438@c int first_column, last_column;
6439@c @};
6440@c @end example
6441
6442@c Thus, to get the starting line number of the third component, you would
6443@c use @samp{@@3.first_line}.
bfa74976 6444
847bf1f5
AD
6445@c In order for the members of this structure to contain valid information,
6446@c you must make @code{yylex} supply this information about each token.
6447@c If you need only certain members, then @code{yylex} need only fill in
6448@c those members.
bfa74976 6449
847bf1f5 6450@c The use of this feature makes the parser noticeably slower.
18b519c0 6451@end deffn
847bf1f5 6452
18b519c0 6453@deffn {Value} @@@var{n}
847bf1f5 6454@findex @@@var{n}
303834cc
JD
6455Acts like a structure variable containing information on the textual
6456location of the @var{n}th component of the current rule. @xref{Tracking
6457Locations}.
18b519c0 6458@end deffn
bfa74976 6459
f7ab6a50
PE
6460@node Internationalization
6461@section Parser Internationalization
6462@cindex internationalization
6463@cindex i18n
6464@cindex NLS
6465@cindex gettext
6466@cindex bison-po
6467
6468A Bison-generated parser can print diagnostics, including error and
6469tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6470also supports outputting diagnostics in the user's native language. To
6471make this work, the user should set the usual environment variables.
6472@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6473For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6474set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6475encoding. The exact set of available locales depends on the user's
6476installation.
6477
6478The maintainer of a package that uses a Bison-generated parser enables
6479the internationalization of the parser's output through the following
8a4281b9
JD
6480steps. Here we assume a package that uses GNU Autoconf and
6481GNU Automake.
f7ab6a50
PE
6482
6483@enumerate
6484@item
30757c8c 6485@cindex bison-i18n.m4
8a4281b9 6486Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6487by the package---often called @file{m4}---copy the
6488@file{bison-i18n.m4} file installed by Bison under
6489@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6490For example:
6491
6492@example
6493cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6494@end example
6495
6496@item
30757c8c
PE
6497@findex BISON_I18N
6498@vindex BISON_LOCALEDIR
6499@vindex YYENABLE_NLS
f7ab6a50
PE
6500In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6501invocation, add an invocation of @code{BISON_I18N}. This macro is
6502defined in the file @file{bison-i18n.m4} that you copied earlier. It
6503causes @samp{configure} to find the value of the
30757c8c
PE
6504@code{BISON_LOCALEDIR} variable, and it defines the source-language
6505symbol @code{YYENABLE_NLS} to enable translations in the
6506Bison-generated parser.
f7ab6a50
PE
6507
6508@item
6509In the @code{main} function of your program, designate the directory
6510containing Bison's runtime message catalog, through a call to
6511@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6512For example:
6513
6514@example
6515bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6516@end example
6517
6518Typically this appears after any other call @code{bindtextdomain
6519(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6520@samp{BISON_LOCALEDIR} to be defined as a string through the
6521@file{Makefile}.
6522
6523@item
6524In the @file{Makefile.am} that controls the compilation of the @code{main}
6525function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6526either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6527
6528@example
6529DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6530@end example
6531
6532or:
6533
6534@example
6535AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6536@end example
6537
6538@item
6539Finally, invoke the command @command{autoreconf} to generate the build
6540infrastructure.
6541@end enumerate
6542
bfa74976 6543
342b8b6e 6544@node Algorithm
13863333
AD
6545@chapter The Bison Parser Algorithm
6546@cindex Bison parser algorithm
bfa74976
RS
6547@cindex algorithm of parser
6548@cindex shifting
6549@cindex reduction
6550@cindex parser stack
6551@cindex stack, parser
6552
6553As Bison reads tokens, it pushes them onto a stack along with their
6554semantic values. The stack is called the @dfn{parser stack}. Pushing a
6555token is traditionally called @dfn{shifting}.
6556
6557For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6558@samp{3} to come. The stack will have four elements, one for each token
6559that was shifted.
6560
6561But the stack does not always have an element for each token read. When
6562the last @var{n} tokens and groupings shifted match the components of a
6563grammar rule, they can be combined according to that rule. This is called
6564@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6565single grouping whose symbol is the result (left hand side) of that rule.
6566Running the rule's action is part of the process of reduction, because this
6567is what computes the semantic value of the resulting grouping.
6568
6569For example, if the infix calculator's parser stack contains this:
6570
6571@example
65721 + 5 * 3
6573@end example
6574
6575@noindent
6576and the next input token is a newline character, then the last three
6577elements can be reduced to 15 via the rule:
6578
6579@example
6580expr: expr '*' expr;
6581@end example
6582
6583@noindent
6584Then the stack contains just these three elements:
6585
6586@example
65871 + 15
6588@end example
6589
6590@noindent
6591At this point, another reduction can be made, resulting in the single value
659216. Then the newline token can be shifted.
6593
6594The parser tries, by shifts and reductions, to reduce the entire input down
6595to a single grouping whose symbol is the grammar's start-symbol
6596(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6597
6598This kind of parser is known in the literature as a bottom-up parser.
6599
6600@menu
742e4900 6601* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6602* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6603* Precedence:: Operator precedence works by resolving conflicts.
6604* Contextual Precedence:: When an operator's precedence depends on context.
6605* Parser States:: The parser is a finite-state-machine with stack.
6606* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6607* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6608* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6609* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6610* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6611@end menu
6612
742e4900
JD
6613@node Lookahead
6614@section Lookahead Tokens
6615@cindex lookahead token
bfa74976
RS
6616
6617The Bison parser does @emph{not} always reduce immediately as soon as the
6618last @var{n} tokens and groupings match a rule. This is because such a
6619simple strategy is inadequate to handle most languages. Instead, when a
6620reduction is possible, the parser sometimes ``looks ahead'' at the next
6621token in order to decide what to do.
6622
6623When a token is read, it is not immediately shifted; first it becomes the
742e4900 6624@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6625perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6626the lookahead token remains off to the side. When no more reductions
6627should take place, the lookahead token is shifted onto the stack. This
bfa74976 6628does not mean that all possible reductions have been done; depending on the
742e4900 6629token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6630application.
6631
742e4900 6632Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6633expressions which contain binary addition operators and postfix unary
6634factorial operators (@samp{!}), and allow parentheses for grouping.
6635
6636@example
6637@group
6638expr: term '+' expr
6639 | term
6640 ;
6641@end group
6642
6643@group
6644term: '(' expr ')'
6645 | term '!'
6646 | NUMBER
6647 ;
6648@end group
6649@end example
6650
6651Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6652should be done? If the following token is @samp{)}, then the first three
6653tokens must be reduced to form an @code{expr}. This is the only valid
6654course, because shifting the @samp{)} would produce a sequence of symbols
6655@w{@code{term ')'}}, and no rule allows this.
6656
6657If the following token is @samp{!}, then it must be shifted immediately so
6658that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6659parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6660@code{expr}. It would then be impossible to shift the @samp{!} because
6661doing so would produce on the stack the sequence of symbols @code{expr
6662'!'}. No rule allows that sequence.
6663
6664@vindex yychar
32c29292
JD
6665@vindex yylval
6666@vindex yylloc
742e4900 6667The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6668Its semantic value and location, if any, are stored in the variables
6669@code{yylval} and @code{yylloc}.
bfa74976
RS
6670@xref{Action Features, ,Special Features for Use in Actions}.
6671
342b8b6e 6672@node Shift/Reduce
bfa74976
RS
6673@section Shift/Reduce Conflicts
6674@cindex conflicts
6675@cindex shift/reduce conflicts
6676@cindex dangling @code{else}
6677@cindex @code{else}, dangling
6678
6679Suppose we are parsing a language which has if-then and if-then-else
6680statements, with a pair of rules like this:
6681
6682@example
6683@group
6684if_stmt:
6685 IF expr THEN stmt
6686 | IF expr THEN stmt ELSE stmt
6687 ;
6688@end group
6689@end example
6690
6691@noindent
6692Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6693terminal symbols for specific keyword tokens.
6694
742e4900 6695When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6696contents of the stack (assuming the input is valid) are just right for
6697reduction by the first rule. But it is also legitimate to shift the
6698@code{ELSE}, because that would lead to eventual reduction by the second
6699rule.
6700
6701This situation, where either a shift or a reduction would be valid, is
6702called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6703these conflicts by choosing to shift, unless otherwise directed by
6704operator precedence declarations. To see the reason for this, let's
6705contrast it with the other alternative.
6706
6707Since the parser prefers to shift the @code{ELSE}, the result is to attach
6708the else-clause to the innermost if-statement, making these two inputs
6709equivalent:
6710
6711@example
6712if x then if y then win (); else lose;
6713
6714if x then do; if y then win (); else lose; end;
6715@end example
6716
6717But if the parser chose to reduce when possible rather than shift, the
6718result would be to attach the else-clause to the outermost if-statement,
6719making these two inputs equivalent:
6720
6721@example
6722if x then if y then win (); else lose;
6723
6724if x then do; if y then win (); end; else lose;
6725@end example
6726
6727The conflict exists because the grammar as written is ambiguous: either
6728parsing of the simple nested if-statement is legitimate. The established
6729convention is that these ambiguities are resolved by attaching the
6730else-clause to the innermost if-statement; this is what Bison accomplishes
6731by choosing to shift rather than reduce. (It would ideally be cleaner to
6732write an unambiguous grammar, but that is very hard to do in this case.)
6733This particular ambiguity was first encountered in the specifications of
6734Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6735
6736To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6737conflicts, use the @code{%expect @var{n}} declaration.
6738There will be no warning as long as the number of shift/reduce conflicts
6739is exactly @var{n}, and Bison will report an error if there is a
6740different number.
bfa74976
RS
6741@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6742
6743The definition of @code{if_stmt} above is solely to blame for the
6744conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6745rules. Here is a complete Bison grammar file that actually manifests
6746the conflict:
bfa74976
RS
6747
6748@example
6749@group
6750%token IF THEN ELSE variable
6751%%
6752@end group
6753@group
6754stmt: expr
6755 | if_stmt
6756 ;
6757@end group
6758
6759@group
6760if_stmt:
6761 IF expr THEN stmt
6762 | IF expr THEN stmt ELSE stmt
6763 ;
6764@end group
6765
6766expr: variable
6767 ;
6768@end example
6769
342b8b6e 6770@node Precedence
bfa74976
RS
6771@section Operator Precedence
6772@cindex operator precedence
6773@cindex precedence of operators
6774
6775Another situation where shift/reduce conflicts appear is in arithmetic
6776expressions. Here shifting is not always the preferred resolution; the
6777Bison declarations for operator precedence allow you to specify when to
6778shift and when to reduce.
6779
6780@menu
6781* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6782* Using Precedence:: How to specify precedence and associativity.
6783* Precedence Only:: How to specify precedence only.
bfa74976
RS
6784* Precedence Examples:: How these features are used in the previous example.
6785* How Precedence:: How they work.
6786@end menu
6787
342b8b6e 6788@node Why Precedence
bfa74976
RS
6789@subsection When Precedence is Needed
6790
6791Consider the following ambiguous grammar fragment (ambiguous because the
6792input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6793
6794@example
6795@group
6796expr: expr '-' expr
6797 | expr '*' expr
6798 | expr '<' expr
6799 | '(' expr ')'
6800 @dots{}
6801 ;
6802@end group
6803@end example
6804
6805@noindent
6806Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6807should it reduce them via the rule for the subtraction operator? It
6808depends on the next token. Of course, if the next token is @samp{)}, we
6809must reduce; shifting is invalid because no single rule can reduce the
6810token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6811the next token is @samp{*} or @samp{<}, we have a choice: either
6812shifting or reduction would allow the parse to complete, but with
6813different results.
6814
6815To decide which one Bison should do, we must consider the results. If
6816the next operator token @var{op} is shifted, then it must be reduced
6817first in order to permit another opportunity to reduce the difference.
6818The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6819hand, if the subtraction is reduced before shifting @var{op}, the result
6820is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6821reduce should depend on the relative precedence of the operators
6822@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6823@samp{<}.
bfa74976
RS
6824
6825@cindex associativity
6826What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6827@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6828operators we prefer the former, which is called @dfn{left association}.
6829The latter alternative, @dfn{right association}, is desirable for
6830assignment operators. The choice of left or right association is a
6831matter of whether the parser chooses to shift or reduce when the stack
742e4900 6832contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6833makes right-associativity.
bfa74976 6834
342b8b6e 6835@node Using Precedence
bfa74976
RS
6836@subsection Specifying Operator Precedence
6837@findex %left
bfa74976 6838@findex %nonassoc
d78f0ac9
AD
6839@findex %precedence
6840@findex %right
bfa74976
RS
6841
6842Bison allows you to specify these choices with the operator precedence
6843declarations @code{%left} and @code{%right}. Each such declaration
6844contains a list of tokens, which are operators whose precedence and
6845associativity is being declared. The @code{%left} declaration makes all
6846those operators left-associative and the @code{%right} declaration makes
6847them right-associative. A third alternative is @code{%nonassoc}, which
6848declares that it is a syntax error to find the same operator twice ``in a
6849row''.
d78f0ac9
AD
6850The last alternative, @code{%precedence}, allows to define only
6851precedence and no associativity at all. As a result, any
6852associativity-related conflict that remains will be reported as an
6853compile-time error. The directive @code{%nonassoc} creates run-time
6854error: using the operator in a associative way is a syntax error. The
6855directive @code{%precedence} creates compile-time errors: an operator
6856@emph{can} be involved in an associativity-related conflict, contrary to
6857what expected the grammar author.
bfa74976
RS
6858
6859The relative precedence of different operators is controlled by the
d78f0ac9
AD
6860order in which they are declared. The first precedence/associativity
6861declaration in the file declares the operators whose
bfa74976
RS
6862precedence is lowest, the next such declaration declares the operators
6863whose precedence is a little higher, and so on.
6864
d78f0ac9
AD
6865@node Precedence Only
6866@subsection Specifying Precedence Only
6867@findex %precedence
6868
8a4281b9 6869Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6870@code{%nonassoc}, which all defines precedence and associativity, little
6871attention is paid to the fact that precedence cannot be defined without
6872defining associativity. Yet, sometimes, when trying to solve a
6873conflict, precedence suffices. In such a case, using @code{%left},
6874@code{%right}, or @code{%nonassoc} might hide future (associativity
6875related) conflicts that would remain hidden.
6876
6877The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6878Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6879in the following situation, where the period denotes the current parsing
6880state:
6881
6882@example
6883if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6884@end example
6885
6886The conflict involves the reduction of the rule @samp{IF expr THEN
6887stmt}, which precedence is by default that of its last token
6888(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6889disambiguation (attach the @code{else} to the closest @code{if}),
6890shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6891higher than that of @code{THEN}. But neither is expected to be involved
6892in an associativity related conflict, which can be specified as follows.
6893
6894@example
6895%precedence THEN
6896%precedence ELSE
6897@end example
6898
6899The unary-minus is another typical example where associativity is
6900usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6901Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6902used to declare the precedence of @code{NEG}, which is more than needed
6903since it also defines its associativity. While this is harmless in the
6904traditional example, who knows how @code{NEG} might be used in future
6905evolutions of the grammar@dots{}
6906
342b8b6e 6907@node Precedence Examples
bfa74976
RS
6908@subsection Precedence Examples
6909
6910In our example, we would want the following declarations:
6911
6912@example
6913%left '<'
6914%left '-'
6915%left '*'
6916@end example
6917
6918In a more complete example, which supports other operators as well, we
6919would declare them in groups of equal precedence. For example, @code{'+'} is
6920declared with @code{'-'}:
6921
6922@example
6923%left '<' '>' '=' NE LE GE
6924%left '+' '-'
6925%left '*' '/'
6926@end example
6927
6928@noindent
6929(Here @code{NE} and so on stand for the operators for ``not equal''
6930and so on. We assume that these tokens are more than one character long
6931and therefore are represented by names, not character literals.)
6932
342b8b6e 6933@node How Precedence
bfa74976
RS
6934@subsection How Precedence Works
6935
6936The first effect of the precedence declarations is to assign precedence
6937levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6938precedence levels to certain rules: each rule gets its precedence from
6939the last terminal symbol mentioned in the components. (You can also
6940specify explicitly the precedence of a rule. @xref{Contextual
6941Precedence, ,Context-Dependent Precedence}.)
6942
6943Finally, the resolution of conflicts works by comparing the precedence
742e4900 6944of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6945token's precedence is higher, the choice is to shift. If the rule's
6946precedence is higher, the choice is to reduce. If they have equal
6947precedence, the choice is made based on the associativity of that
6948precedence level. The verbose output file made by @samp{-v}
6949(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6950resolved.
bfa74976
RS
6951
6952Not all rules and not all tokens have precedence. If either the rule or
742e4900 6953the lookahead token has no precedence, then the default is to shift.
bfa74976 6954
342b8b6e 6955@node Contextual Precedence
bfa74976
RS
6956@section Context-Dependent Precedence
6957@cindex context-dependent precedence
6958@cindex unary operator precedence
6959@cindex precedence, context-dependent
6960@cindex precedence, unary operator
6961@findex %prec
6962
6963Often the precedence of an operator depends on the context. This sounds
6964outlandish at first, but it is really very common. For example, a minus
6965sign typically has a very high precedence as a unary operator, and a
6966somewhat lower precedence (lower than multiplication) as a binary operator.
6967
d78f0ac9
AD
6968The Bison precedence declarations
6969can only be used once for a given token; so a token has
bfa74976
RS
6970only one precedence declared in this way. For context-dependent
6971precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6972modifier for rules.
bfa74976
RS
6973
6974The @code{%prec} modifier declares the precedence of a particular rule by
6975specifying a terminal symbol whose precedence should be used for that rule.
6976It's not necessary for that symbol to appear otherwise in the rule. The
6977modifier's syntax is:
6978
6979@example
6980%prec @var{terminal-symbol}
6981@end example
6982
6983@noindent
6984and it is written after the components of the rule. Its effect is to
6985assign the rule the precedence of @var{terminal-symbol}, overriding
6986the precedence that would be deduced for it in the ordinary way. The
6987altered rule precedence then affects how conflicts involving that rule
6988are resolved (@pxref{Precedence, ,Operator Precedence}).
6989
6990Here is how @code{%prec} solves the problem of unary minus. First, declare
6991a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6992are no tokens of this type, but the symbol serves to stand for its
6993precedence:
6994
6995@example
6996@dots{}
6997%left '+' '-'
6998%left '*'
6999%left UMINUS
7000@end example
7001
7002Now the precedence of @code{UMINUS} can be used in specific rules:
7003
7004@example
7005@group
7006exp: @dots{}
7007 | exp '-' exp
7008 @dots{}
7009 | '-' exp %prec UMINUS
7010@end group
7011@end example
7012
91d2c560 7013@ifset defaultprec
39a06c25
PE
7014If you forget to append @code{%prec UMINUS} to the rule for unary
7015minus, Bison silently assumes that minus has its usual precedence.
7016This kind of problem can be tricky to debug, since one typically
7017discovers the mistake only by testing the code.
7018
22fccf95 7019The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7020this kind of problem systematically. It causes rules that lack a
7021@code{%prec} modifier to have no precedence, even if the last terminal
7022symbol mentioned in their components has a declared precedence.
7023
22fccf95 7024If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7025for all rules that participate in precedence conflict resolution.
7026Then you will see any shift/reduce conflict until you tell Bison how
7027to resolve it, either by changing your grammar or by adding an
7028explicit precedence. This will probably add declarations to the
7029grammar, but it helps to protect against incorrect rule precedences.
7030
22fccf95
PE
7031The effect of @code{%no-default-prec;} can be reversed by giving
7032@code{%default-prec;}, which is the default.
91d2c560 7033@end ifset
39a06c25 7034
342b8b6e 7035@node Parser States
bfa74976
RS
7036@section Parser States
7037@cindex finite-state machine
7038@cindex parser state
7039@cindex state (of parser)
7040
7041The function @code{yyparse} is implemented using a finite-state machine.
7042The values pushed on the parser stack are not simply token type codes; they
7043represent the entire sequence of terminal and nonterminal symbols at or
7044near the top of the stack. The current state collects all the information
7045about previous input which is relevant to deciding what to do next.
7046
742e4900
JD
7047Each time a lookahead token is read, the current parser state together
7048with the type of lookahead token are looked up in a table. This table
7049entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7050specifies the new parser state, which is pushed onto the top of the
7051parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7052This means that a certain number of tokens or groupings are taken off
7053the top of the stack, and replaced by one grouping. In other words,
7054that number of states are popped from the stack, and one new state is
7055pushed.
7056
742e4900 7057There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7058is erroneous in the current state. This causes error processing to begin
7059(@pxref{Error Recovery}).
7060
342b8b6e 7061@node Reduce/Reduce
bfa74976
RS
7062@section Reduce/Reduce Conflicts
7063@cindex reduce/reduce conflict
7064@cindex conflicts, reduce/reduce
7065
7066A reduce/reduce conflict occurs if there are two or more rules that apply
7067to the same sequence of input. This usually indicates a serious error
7068in the grammar.
7069
7070For example, here is an erroneous attempt to define a sequence
7071of zero or more @code{word} groupings.
7072
7073@example
d4fca427 7074@group
bfa74976
RS
7075sequence: /* empty */
7076 @{ printf ("empty sequence\n"); @}
7077 | maybeword
7078 | sequence word
7079 @{ printf ("added word %s\n", $2); @}
7080 ;
d4fca427 7081@end group
bfa74976 7082
d4fca427 7083@group
bfa74976
RS
7084maybeword: /* empty */
7085 @{ printf ("empty maybeword\n"); @}
7086 | word
7087 @{ printf ("single word %s\n", $1); @}
7088 ;
d4fca427 7089@end group
bfa74976
RS
7090@end example
7091
7092@noindent
7093The error is an ambiguity: there is more than one way to parse a single
7094@code{word} into a @code{sequence}. It could be reduced to a
7095@code{maybeword} and then into a @code{sequence} via the second rule.
7096Alternatively, nothing-at-all could be reduced into a @code{sequence}
7097via the first rule, and this could be combined with the @code{word}
7098using the third rule for @code{sequence}.
7099
7100There is also more than one way to reduce nothing-at-all into a
7101@code{sequence}. This can be done directly via the first rule,
7102or indirectly via @code{maybeword} and then the second rule.
7103
7104You might think that this is a distinction without a difference, because it
7105does not change whether any particular input is valid or not. But it does
7106affect which actions are run. One parsing order runs the second rule's
7107action; the other runs the first rule's action and the third rule's action.
7108In this example, the output of the program changes.
7109
7110Bison resolves a reduce/reduce conflict by choosing to use the rule that
7111appears first in the grammar, but it is very risky to rely on this. Every
7112reduce/reduce conflict must be studied and usually eliminated. Here is the
7113proper way to define @code{sequence}:
7114
7115@example
7116sequence: /* empty */
7117 @{ printf ("empty sequence\n"); @}
7118 | sequence word
7119 @{ printf ("added word %s\n", $2); @}
7120 ;
7121@end example
7122
7123Here is another common error that yields a reduce/reduce conflict:
7124
7125@example
7126sequence: /* empty */
7127 | sequence words
7128 | sequence redirects
7129 ;
7130
7131words: /* empty */
7132 | words word
7133 ;
7134
7135redirects:/* empty */
7136 | redirects redirect
7137 ;
7138@end example
7139
7140@noindent
7141The intention here is to define a sequence which can contain either
7142@code{word} or @code{redirect} groupings. The individual definitions of
7143@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7144three together make a subtle ambiguity: even an empty input can be parsed
7145in infinitely many ways!
7146
7147Consider: nothing-at-all could be a @code{words}. Or it could be two
7148@code{words} in a row, or three, or any number. It could equally well be a
7149@code{redirects}, or two, or any number. Or it could be a @code{words}
7150followed by three @code{redirects} and another @code{words}. And so on.
7151
7152Here are two ways to correct these rules. First, to make it a single level
7153of sequence:
7154
7155@example
7156sequence: /* empty */
7157 | sequence word
7158 | sequence redirect
7159 ;
7160@end example
7161
7162Second, to prevent either a @code{words} or a @code{redirects}
7163from being empty:
7164
7165@example
d4fca427 7166@group
bfa74976
RS
7167sequence: /* empty */
7168 | sequence words
7169 | sequence redirects
7170 ;
d4fca427 7171@end group
bfa74976 7172
d4fca427 7173@group
bfa74976
RS
7174words: word
7175 | words word
7176 ;
d4fca427 7177@end group
bfa74976 7178
d4fca427 7179@group
bfa74976
RS
7180redirects:redirect
7181 | redirects redirect
7182 ;
d4fca427 7183@end group
bfa74976
RS
7184@end example
7185
cc09e5be
JD
7186@node Mysterious Conflicts
7187@section Mysterious Conflicts
7fceb615 7188@cindex Mysterious Conflicts
bfa74976
RS
7189
7190Sometimes reduce/reduce conflicts can occur that don't look warranted.
7191Here is an example:
7192
7193@example
7194@group
7195%token ID
7196
7197%%
7198def: param_spec return_spec ','
7199 ;
7200param_spec:
7201 type
7202 | name_list ':' type
7203 ;
7204@end group
7205@group
7206return_spec:
7207 type
7208 | name ':' type
7209 ;
7210@end group
7211@group
7212type: ID
7213 ;
7214@end group
7215@group
7216name: ID
7217 ;
7218name_list:
7219 name
7220 | name ',' name_list
7221 ;
7222@end group
7223@end example
7224
7225It would seem that this grammar can be parsed with only a single token
742e4900 7226of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7227a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7228@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7229
7fceb615
JD
7230@cindex LR
7231@cindex LALR
eb45ef3b 7232However, for historical reasons, Bison cannot by default handle all
8a4281b9 7233LR(1) grammars.
eb45ef3b
JD
7234In this grammar, two contexts, that after an @code{ID} at the beginning
7235of a @code{param_spec} and likewise at the beginning of a
7236@code{return_spec}, are similar enough that Bison assumes they are the
7237same.
7238They appear similar because the same set of rules would be
bfa74976
RS
7239active---the rule for reducing to a @code{name} and that for reducing to
7240a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7241that the rules would require different lookahead tokens in the two
bfa74976
RS
7242contexts, so it makes a single parser state for them both. Combining
7243the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7244occurrence means that the grammar is not LALR(1).
bfa74976 7245
7fceb615
JD
7246@cindex IELR
7247@cindex canonical LR
7248For many practical grammars (specifically those that fall into the non-LR(1)
7249class), the limitations of LALR(1) result in difficulties beyond just
7250mysterious reduce/reduce conflicts. The best way to fix all these problems
7251is to select a different parser table construction algorithm. Either
7252IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7253and easier to debug during development. @xref{LR Table Construction}, for
7254details. (Bison's IELR(1) and canonical LR(1) implementations are
7255experimental. More user feedback will help to stabilize them.)
eb45ef3b 7256
8a4281b9 7257If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7258can often fix a mysterious conflict by identifying the two parser states
7259that are being confused, and adding something to make them look
7260distinct. In the above example, adding one rule to
bfa74976
RS
7261@code{return_spec} as follows makes the problem go away:
7262
7263@example
7264@group
7265%token BOGUS
7266@dots{}
7267%%
7268@dots{}
7269return_spec:
7270 type
7271 | name ':' type
7272 /* This rule is never used. */
7273 | ID BOGUS
7274 ;
7275@end group
7276@end example
7277
7278This corrects the problem because it introduces the possibility of an
7279additional active rule in the context after the @code{ID} at the beginning of
7280@code{return_spec}. This rule is not active in the corresponding context
7281in a @code{param_spec}, so the two contexts receive distinct parser states.
7282As long as the token @code{BOGUS} is never generated by @code{yylex},
7283the added rule cannot alter the way actual input is parsed.
7284
7285In this particular example, there is another way to solve the problem:
7286rewrite the rule for @code{return_spec} to use @code{ID} directly
7287instead of via @code{name}. This also causes the two confusing
7288contexts to have different sets of active rules, because the one for
7289@code{return_spec} activates the altered rule for @code{return_spec}
7290rather than the one for @code{name}.
7291
7292@example
7293param_spec:
7294 type
7295 | name_list ':' type
7296 ;
7297return_spec:
7298 type
7299 | ID ':' type
7300 ;
7301@end example
7302
8a4281b9 7303For a more detailed exposition of LALR(1) parsers and parser
5e528941 7304generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7305
7fceb615
JD
7306@node Tuning LR
7307@section Tuning LR
7308
7309The default behavior of Bison's LR-based parsers is chosen mostly for
7310historical reasons, but that behavior is often not robust. For example, in
7311the previous section, we discussed the mysterious conflicts that can be
7312produced by LALR(1), Bison's default parser table construction algorithm.
7313Another example is Bison's @code{%define parse.error verbose} directive,
7314which instructs the generated parser to produce verbose syntax error
7315messages, which can sometimes contain incorrect information.
7316
7317In this section, we explore several modern features of Bison that allow you
7318to tune fundamental aspects of the generated LR-based parsers. Some of
7319these features easily eliminate shortcomings like those mentioned above.
7320Others can be helpful purely for understanding your parser.
7321
7322Most of the features discussed in this section are still experimental. More
7323user feedback will help to stabilize them.
7324
7325@menu
7326* LR Table Construction:: Choose a different construction algorithm.
7327* Default Reductions:: Disable default reductions.
7328* LAC:: Correct lookahead sets in the parser states.
7329* Unreachable States:: Keep unreachable parser states for debugging.
7330@end menu
7331
7332@node LR Table Construction
7333@subsection LR Table Construction
7334@cindex Mysterious Conflict
7335@cindex LALR
7336@cindex IELR
7337@cindex canonical LR
7338@findex %define lr.type
7339
7340For historical reasons, Bison constructs LALR(1) parser tables by default.
7341However, LALR does not possess the full language-recognition power of LR.
7342As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7343mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7344Conflicts}.
7345
7346As we also demonstrated in that example, the traditional approach to
7347eliminating such mysterious behavior is to restructure the grammar.
7348Unfortunately, doing so correctly is often difficult. Moreover, merely
7349discovering that LALR causes mysterious behavior in your parser can be
7350difficult as well.
7351
7352Fortunately, Bison provides an easy way to eliminate the possibility of such
7353mysterious behavior altogether. You simply need to activate a more powerful
7354parser table construction algorithm by using the @code{%define lr.type}
7355directive.
7356
7357@deffn {Directive} {%define lr.type @var{TYPE}}
7358Specify the type of parser tables within the LR(1) family. The accepted
7359values for @var{TYPE} are:
7360
7361@itemize
7362@item @code{lalr} (default)
7363@item @code{ielr}
7364@item @code{canonical-lr}
7365@end itemize
7366
7367(This feature is experimental. More user feedback will help to stabilize
7368it.)
7369@end deffn
7370
7371For example, to activate IELR, you might add the following directive to you
7372grammar file:
7373
7374@example
7375%define lr.type ielr
7376@end example
7377
cc09e5be 7378@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7379conflict is then eliminated, so there is no need to invest time in
7380comprehending the conflict or restructuring the grammar to fix it. If,
7381during future development, the grammar evolves such that all mysterious
7382behavior would have disappeared using just LALR, you need not fear that
7383continuing to use IELR will result in unnecessarily large parser tables.
7384That is, IELR generates LALR tables when LALR (using a deterministic parsing
7385algorithm) is sufficient to support the full language-recognition power of
7386LR. Thus, by enabling IELR at the start of grammar development, you can
7387safely and completely eliminate the need to consider LALR's shortcomings.
7388
7389While IELR is almost always preferable, there are circumstances where LALR
7390or the canonical LR parser tables described by Knuth
7391(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7392relative advantages of each parser table construction algorithm within
7393Bison:
7394
7395@itemize
7396@item LALR
7397
7398There are at least two scenarios where LALR can be worthwhile:
7399
7400@itemize
7401@item GLR without static conflict resolution.
7402
7403@cindex GLR with LALR
7404When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7405conflicts statically (for example, with @code{%left} or @code{%prec}), then
7406the parser explores all potential parses of any given input. In this case,
7407the choice of parser table construction algorithm is guaranteed not to alter
7408the language accepted by the parser. LALR parser tables are the smallest
7409parser tables Bison can currently construct, so they may then be preferable.
7410Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7411more like a deterministic parser in the syntactic contexts where those
7412conflicts appear, and so either IELR or canonical LR can then be helpful to
7413avoid LALR's mysterious behavior.
7414
7415@item Malformed grammars.
7416
7417Occasionally during development, an especially malformed grammar with a
7418major recurring flaw may severely impede the IELR or canonical LR parser
7419table construction algorithm. LALR can be a quick way to construct parser
7420tables in order to investigate such problems while ignoring the more subtle
7421differences from IELR and canonical LR.
7422@end itemize
7423
7424@item IELR
7425
7426IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7427any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7428always accept exactly the same set of sentences. However, like LALR, IELR
7429merges parser states during parser table construction so that the number of
7430parser states is often an order of magnitude less than for canonical LR.
7431More importantly, because canonical LR's extra parser states may contain
7432duplicate conflicts in the case of non-LR grammars, the number of conflicts
7433for IELR is often an order of magnitude less as well. This effect can
7434significantly reduce the complexity of developing a grammar.
7435
7436@item Canonical LR
7437
7438@cindex delayed syntax error detection
7439@cindex LAC
7440@findex %nonassoc
7441While inefficient, canonical LR parser tables can be an interesting means to
7442explore a grammar because they possess a property that IELR and LALR tables
7443do not. That is, if @code{%nonassoc} is not used and default reductions are
7444left disabled (@pxref{Default Reductions}), then, for every left context of
7445every canonical LR state, the set of tokens accepted by that state is
7446guaranteed to be the exact set of tokens that is syntactically acceptable in
7447that left context. It might then seem that an advantage of canonical LR
7448parsers in production is that, under the above constraints, they are
7449guaranteed to detect a syntax error as soon as possible without performing
7450any unnecessary reductions. However, IELR parsers that use LAC are also
7451able to achieve this behavior without sacrificing @code{%nonassoc} or
7452default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7453@end itemize
7454
7455For a more detailed exposition of the mysterious behavior in LALR parsers
7456and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7457@ref{Bibliography,,Denny 2010 November}.
7458
7459@node Default Reductions
7460@subsection Default Reductions
7461@cindex default reductions
7462@findex %define lr.default-reductions
7463@findex %nonassoc
7464
7465After parser table construction, Bison identifies the reduction with the
7466largest lookahead set in each parser state. To reduce the size of the
7467parser state, traditional Bison behavior is to remove that lookahead set and
7468to assign that reduction to be the default parser action. Such a reduction
7469is known as a @dfn{default reduction}.
7470
7471Default reductions affect more than the size of the parser tables. They
7472also affect the behavior of the parser:
7473
7474@itemize
7475@item Delayed @code{yylex} invocations.
7476
7477@cindex delayed yylex invocations
7478@cindex consistent states
7479@cindex defaulted states
7480A @dfn{consistent state} is a state that has only one possible parser
7481action. If that action is a reduction and is encoded as a default
7482reduction, then that consistent state is called a @dfn{defaulted state}.
7483Upon reaching a defaulted state, a Bison-generated parser does not bother to
7484invoke @code{yylex} to fetch the next token before performing the reduction.
7485In other words, whether default reductions are enabled in consistent states
7486determines how soon a Bison-generated parser invokes @code{yylex} for a
7487token: immediately when it @emph{reaches} that token in the input or when it
7488eventually @emph{needs} that token as a lookahead to determine the next
7489parser action. Traditionally, default reductions are enabled, and so the
7490parser exhibits the latter behavior.
7491
7492The presence of defaulted states is an important consideration when
7493designing @code{yylex} and the grammar file. That is, if the behavior of
7494@code{yylex} can influence or be influenced by the semantic actions
7495associated with the reductions in defaulted states, then the delay of the
7496next @code{yylex} invocation until after those reductions is significant.
7497For example, the semantic actions might pop a scope stack that @code{yylex}
7498uses to determine what token to return. Thus, the delay might be necessary
7499to ensure that @code{yylex} does not look up the next token in a scope that
7500should already be considered closed.
7501
7502@item Delayed syntax error detection.
7503
7504@cindex delayed syntax error detection
7505When the parser fetches a new token by invoking @code{yylex}, it checks
7506whether there is an action for that token in the current parser state. The
7507parser detects a syntax error if and only if either (1) there is no action
7508for that token or (2) the action for that token is the error action (due to
7509the use of @code{%nonassoc}). However, if there is a default reduction in
7510that state (which might or might not be a defaulted state), then it is
7511impossible for condition 1 to exist. That is, all tokens have an action.
7512Thus, the parser sometimes fails to detect the syntax error until it reaches
7513a later state.
7514
7515@cindex LAC
7516@c If there's an infinite loop, default reductions can prevent an incorrect
7517@c sentence from being rejected.
7518While default reductions never cause the parser to accept syntactically
7519incorrect sentences, the delay of syntax error detection can have unexpected
7520effects on the behavior of the parser. However, the delay can be caused
7521anyway by parser state merging and the use of @code{%nonassoc}, and it can
7522be fixed by another Bison feature, LAC. We discuss the effects of delayed
7523syntax error detection and LAC more in the next section (@pxref{LAC}).
7524@end itemize
7525
7526For canonical LR, the only default reduction that Bison enables by default
7527is the accept action, which appears only in the accepting state, which has
7528no other action and is thus a defaulted state. However, the default accept
7529action does not delay any @code{yylex} invocation or syntax error detection
7530because the accept action ends the parse.
7531
7532For LALR and IELR, Bison enables default reductions in nearly all states by
7533default. There are only two exceptions. First, states that have a shift
7534action on the @code{error} token do not have default reductions because
7535delayed syntax error detection could then prevent the @code{error} token
7536from ever being shifted in that state. However, parser state merging can
7537cause the same effect anyway, and LAC fixes it in both cases, so future
7538versions of Bison might drop this exception when LAC is activated. Second,
7539GLR parsers do not record the default reduction as the action on a lookahead
7540token for which there is a conflict. The correct action in this case is to
7541split the parse instead.
7542
7543To adjust which states have default reductions enabled, use the
7544@code{%define lr.default-reductions} directive.
7545
7546@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7547Specify the kind of states that are permitted to contain default reductions.
7548The accepted values of @var{WHERE} are:
7549@itemize
f0ad1b2f 7550@item @code{most} (default for LALR and IELR)
7fceb615
JD
7551@item @code{consistent}
7552@item @code{accepting} (default for canonical LR)
7553@end itemize
7554
7555(The ability to specify where default reductions are permitted is
7556experimental. More user feedback will help to stabilize it.)
7557@end deffn
7558
7fceb615
JD
7559@node LAC
7560@subsection LAC
7561@findex %define parse.lac
7562@cindex LAC
7563@cindex lookahead correction
7564
7565Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7566encountering a syntax error. First, the parser might perform additional
7567parser stack reductions before discovering the syntax error. Such
7568reductions can perform user semantic actions that are unexpected because
7569they are based on an invalid token, and they cause error recovery to begin
7570in a different syntactic context than the one in which the invalid token was
7571encountered. Second, when verbose error messages are enabled (@pxref{Error
7572Reporting}), the expected token list in the syntax error message can both
7573contain invalid tokens and omit valid tokens.
7574
7575The culprits for the above problems are @code{%nonassoc}, default reductions
7576in inconsistent states (@pxref{Default Reductions}), and parser state
7577merging. Because IELR and LALR merge parser states, they suffer the most.
7578Canonical LR can suffer only if @code{%nonassoc} is used or if default
7579reductions are enabled for inconsistent states.
7580
7581LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7582that solves these problems for canonical LR, IELR, and LALR without
7583sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7584enable LAC with the @code{%define parse.lac} directive.
7585
7586@deffn {Directive} {%define parse.lac @var{VALUE}}
7587Enable LAC to improve syntax error handling.
7588@itemize
7589@item @code{none} (default)
7590@item @code{full}
7591@end itemize
7592(This feature is experimental. More user feedback will help to stabilize
7593it. Moreover, it is currently only available for deterministic parsers in
7594C.)
7595@end deffn
7596
7597Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7598fetches a new token from the scanner so that it can determine the next
7599parser action, it immediately suspends normal parsing and performs an
7600exploratory parse using a temporary copy of the normal parser state stack.
7601During this exploratory parse, the parser does not perform user semantic
7602actions. If the exploratory parse reaches a shift action, normal parsing
7603then resumes on the normal parser stacks. If the exploratory parse reaches
7604an error instead, the parser reports a syntax error. If verbose syntax
7605error messages are enabled, the parser must then discover the list of
7606expected tokens, so it performs a separate exploratory parse for each token
7607in the grammar.
7608
7609There is one subtlety about the use of LAC. That is, when in a consistent
7610parser state with a default reduction, the parser will not attempt to fetch
7611a token from the scanner because no lookahead is needed to determine the
7612next parser action. Thus, whether default reductions are enabled in
7613consistent states (@pxref{Default Reductions}) affects how soon the parser
7614detects a syntax error: immediately when it @emph{reaches} an erroneous
7615token or when it eventually @emph{needs} that token as a lookahead to
7616determine the next parser action. The latter behavior is probably more
7617intuitive, so Bison currently provides no way to achieve the former behavior
7618while default reductions are enabled in consistent states.
7619
7620Thus, when LAC is in use, for some fixed decision of whether to enable
7621default reductions in consistent states, canonical LR and IELR behave almost
7622exactly the same for both syntactically acceptable and syntactically
7623unacceptable input. While LALR still does not support the full
7624language-recognition power of canonical LR and IELR, LAC at least enables
7625LALR's syntax error handling to correctly reflect LALR's
7626language-recognition power.
7627
7628There are a few caveats to consider when using LAC:
7629
7630@itemize
7631@item Infinite parsing loops.
7632
7633IELR plus LAC does have one shortcoming relative to canonical LR. Some
7634parsers generated by Bison can loop infinitely. LAC does not fix infinite
7635parsing loops that occur between encountering a syntax error and detecting
7636it, but enabling canonical LR or disabling default reductions sometimes
7637does.
7638
7639@item Verbose error message limitations.
7640
7641Because of internationalization considerations, Bison-generated parsers
7642limit the size of the expected token list they are willing to report in a
7643verbose syntax error message. If the number of expected tokens exceeds that
7644limit, the list is simply dropped from the message. Enabling LAC can
7645increase the size of the list and thus cause the parser to drop it. Of
7646course, dropping the list is better than reporting an incorrect list.
7647
7648@item Performance.
7649
7650Because LAC requires many parse actions to be performed twice, it can have a
7651performance penalty. However, not all parse actions must be performed
7652twice. Specifically, during a series of default reductions in consistent
7653states and shift actions, the parser never has to initiate an exploratory
7654parse. Moreover, the most time-consuming tasks in a parse are often the
7655file I/O, the lexical analysis performed by the scanner, and the user's
7656semantic actions, but none of these are performed during the exploratory
7657parse. Finally, the base of the temporary stack used during an exploratory
7658parse is a pointer into the normal parser state stack so that the stack is
7659never physically copied. In our experience, the performance penalty of LAC
7660has proven insignificant for practical grammars.
7661@end itemize
7662
709c7d11
JD
7663While the LAC algorithm shares techniques that have been recognized in the
7664parser community for years, for the publication that introduces LAC,
7665@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7666
7fceb615
JD
7667@node Unreachable States
7668@subsection Unreachable States
7669@findex %define lr.keep-unreachable-states
7670@cindex unreachable states
7671
7672If there exists no sequence of transitions from the parser's start state to
7673some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7674state}. A state can become unreachable during conflict resolution if Bison
7675disables a shift action leading to it from a predecessor state.
7676
7677By default, Bison removes unreachable states from the parser after conflict
7678resolution because they are useless in the generated parser. However,
7679keeping unreachable states is sometimes useful when trying to understand the
7680relationship between the parser and the grammar.
7681
7682@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7683Request that Bison allow unreachable states to remain in the parser tables.
7684@var{VALUE} must be a Boolean. The default is @code{false}.
7685@end deffn
7686
7687There are a few caveats to consider:
7688
7689@itemize @bullet
7690@item Missing or extraneous warnings.
7691
7692Unreachable states may contain conflicts and may use rules not used in any
7693other state. Thus, keeping unreachable states may induce warnings that are
7694irrelevant to your parser's behavior, and it may eliminate warnings that are
7695relevant. Of course, the change in warnings may actually be relevant to a
7696parser table analysis that wants to keep unreachable states, so this
7697behavior will likely remain in future Bison releases.
7698
7699@item Other useless states.
7700
7701While Bison is able to remove unreachable states, it is not guaranteed to
7702remove other kinds of useless states. Specifically, when Bison disables
7703reduce actions during conflict resolution, some goto actions may become
7704useless, and thus some additional states may become useless. If Bison were
7705to compute which goto actions were useless and then disable those actions,
7706it could identify such states as unreachable and then remove those states.
7707However, Bison does not compute which goto actions are useless.
7708@end itemize
7709
fae437e8 7710@node Generalized LR Parsing
8a4281b9
JD
7711@section Generalized LR (GLR) Parsing
7712@cindex GLR parsing
7713@cindex generalized LR (GLR) parsing
676385e2 7714@cindex ambiguous grammars
9d9b8b70 7715@cindex nondeterministic parsing
676385e2 7716
fae437e8
AD
7717Bison produces @emph{deterministic} parsers that choose uniquely
7718when to reduce and which reduction to apply
742e4900 7719based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7720As a result, normal Bison handles a proper subset of the family of
7721context-free languages.
fae437e8 7722Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7723sequence of reductions cannot have deterministic parsers in this sense.
7724The same is true of languages that require more than one symbol of
742e4900 7725lookahead, since the parser lacks the information necessary to make a
676385e2 7726decision at the point it must be made in a shift-reduce parser.
cc09e5be 7727Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7728there are languages where Bison's default choice of how to
676385e2
PH
7729summarize the input seen so far loses necessary information.
7730
7731When you use the @samp{%glr-parser} declaration in your grammar file,
7732Bison generates a parser that uses a different algorithm, called
8a4281b9 7733Generalized LR (or GLR). A Bison GLR
c827f760 7734parser uses the same basic
676385e2
PH
7735algorithm for parsing as an ordinary Bison parser, but behaves
7736differently in cases where there is a shift-reduce conflict that has not
fae437e8 7737been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7738reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7739situation, it
fae437e8 7740effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7741shift or reduction. These parsers then proceed as usual, consuming
7742tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7743and split further, with the result that instead of a sequence of states,
8a4281b9 7744a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7745
7746In effect, each stack represents a guess as to what the proper parse
7747is. Additional input may indicate that a guess was wrong, in which case
7748the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7749actions generated in each stack are saved, rather than being executed
676385e2 7750immediately. When a stack disappears, its saved semantic actions never
fae437e8 7751get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7752their sets of semantic actions are both saved with the state that
7753results from the reduction. We say that two stacks are equivalent
fae437e8 7754when they both represent the same sequence of states,
676385e2
PH
7755and each pair of corresponding states represents a
7756grammar symbol that produces the same segment of the input token
7757stream.
7758
7759Whenever the parser makes a transition from having multiple
eb45ef3b 7760states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7761algorithm, after resolving and executing the saved-up actions.
7762At this transition, some of the states on the stack will have semantic
7763values that are sets (actually multisets) of possible actions. The
7764parser tries to pick one of the actions by first finding one whose rule
7765has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7766declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7767precedence, but there the same merging function is declared for both
fae437e8 7768rules by the @samp{%merge} declaration,
676385e2
PH
7769Bison resolves and evaluates both and then calls the merge function on
7770the result. Otherwise, it reports an ambiguity.
7771
8a4281b9
JD
7772It is possible to use a data structure for the GLR parsing tree that
7773permits the processing of any LR(1) grammar in linear time (in the
c827f760 7774size of the input), any unambiguous (not necessarily
8a4281b9 7775LR(1)) grammar in
fae437e8 7776quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7777context-free grammar in cubic worst-case time. However, Bison currently
7778uses a simpler data structure that requires time proportional to the
7779length of the input times the maximum number of stacks required for any
9d9b8b70 7780prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7781grammars can require exponential time and space to process. Such badly
7782behaving examples, however, are not generally of practical interest.
9d9b8b70 7783Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7784doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7785structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7786grammar, in particular, it is only slightly slower than with the
8a4281b9 7787deterministic LR(1) Bison parser.
676385e2 7788
5e528941
JD
7789For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
77902000}.
f6481e2f 7791
1a059451
PE
7792@node Memory Management
7793@section Memory Management, and How to Avoid Memory Exhaustion
7794@cindex memory exhaustion
7795@cindex memory management
bfa74976
RS
7796@cindex stack overflow
7797@cindex parser stack overflow
7798@cindex overflow of parser stack
7799
1a059451 7800The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7801not reduced. When this happens, the parser function @code{yyparse}
1a059451 7802calls @code{yyerror} and then returns 2.
bfa74976 7803
c827f760 7804Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7805usually results from using a right recursion instead of a left
7806recursion, @xref{Recursion, ,Recursive Rules}.
7807
bfa74976
RS
7808@vindex YYMAXDEPTH
7809By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7810parser stack can become before memory is exhausted. Define the
bfa74976
RS
7811macro with a value that is an integer. This value is the maximum number
7812of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7813
7814The stack space allowed is not necessarily allocated. If you specify a
1a059451 7815large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7816stack at first, and then makes it bigger by stages as needed. This
7817increasing allocation happens automatically and silently. Therefore,
7818you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7819space for ordinary inputs that do not need much stack.
7820
d7e14fc0
PE
7821However, do not allow @code{YYMAXDEPTH} to be a value so large that
7822arithmetic overflow could occur when calculating the size of the stack
7823space. Also, do not allow @code{YYMAXDEPTH} to be less than
7824@code{YYINITDEPTH}.
7825
bfa74976
RS
7826@cindex default stack limit
7827The default value of @code{YYMAXDEPTH}, if you do not define it, is
782810000.
7829
7830@vindex YYINITDEPTH
7831You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7832macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7833parser in C, this value must be a compile-time constant
d7e14fc0
PE
7834unless you are assuming C99 or some other target language or compiler
7835that allows variable-length arrays. The default is 200.
7836
1a059451 7837Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7838
20be2f92 7839You can generate a deterministic parser containing C++ user code from
411614fa 7840the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
7841(@pxref{C++ Parsers}). However, if you do use the default skeleton
7842and want to allow the parsing stack to grow,
7843be careful not to use semantic types or location types that require
7844non-trivial copy constructors.
7845The C skeleton bypasses these constructors when copying data to
7846new, larger stacks.
d1a1114f 7847
342b8b6e 7848@node Error Recovery
bfa74976
RS
7849@chapter Error Recovery
7850@cindex error recovery
7851@cindex recovery from errors
7852
6e649e65 7853It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7854error. For example, a compiler should recover sufficiently to parse the
7855rest of the input file and check it for errors; a calculator should accept
7856another expression.
7857
7858In a simple interactive command parser where each input is one line, it may
7859be sufficient to allow @code{yyparse} to return 1 on error and have the
7860caller ignore the rest of the input line when that happens (and then call
7861@code{yyparse} again). But this is inadequate for a compiler, because it
7862forgets all the syntactic context leading up to the error. A syntax error
7863deep within a function in the compiler input should not cause the compiler
7864to treat the following line like the beginning of a source file.
7865
7866@findex error
7867You can define how to recover from a syntax error by writing rules to
7868recognize the special token @code{error}. This is a terminal symbol that
7869is always defined (you need not declare it) and reserved for error
7870handling. The Bison parser generates an @code{error} token whenever a
7871syntax error happens; if you have provided a rule to recognize this token
13863333 7872in the current context, the parse can continue.
bfa74976
RS
7873
7874For example:
7875
7876@example
7877stmnts: /* empty string */
7878 | stmnts '\n'
7879 | stmnts exp '\n'
7880 | stmnts error '\n'
7881@end example
7882
7883The fourth rule in this example says that an error followed by a newline
7884makes a valid addition to any @code{stmnts}.
7885
7886What happens if a syntax error occurs in the middle of an @code{exp}? The
7887error recovery rule, interpreted strictly, applies to the precise sequence
7888of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7889the middle of an @code{exp}, there will probably be some additional tokens
7890and subexpressions on the stack after the last @code{stmnts}, and there
7891will be tokens to read before the next newline. So the rule is not
7892applicable in the ordinary way.
7893
7894But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7895the semantic context and part of the input. First it discards states
7896and objects from the stack until it gets back to a state in which the
bfa74976 7897@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7898already parsed are discarded, back to the last complete @code{stmnts}.)
7899At this point the @code{error} token can be shifted. Then, if the old
742e4900 7900lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7901tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7902this example, Bison reads and discards input until the next newline so
7903that the fourth rule can apply. Note that discarded symbols are
7904possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7905Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7906
7907The choice of error rules in the grammar is a choice of strategies for
7908error recovery. A simple and useful strategy is simply to skip the rest of
7909the current input line or current statement if an error is detected:
7910
7911@example
72d2299c 7912stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7913@end example
7914
7915It is also useful to recover to the matching close-delimiter of an
7916opening-delimiter that has already been parsed. Otherwise the
7917close-delimiter will probably appear to be unmatched, and generate another,
7918spurious error message:
7919
7920@example
7921primary: '(' expr ')'
7922 | '(' error ')'
7923 @dots{}
7924 ;
7925@end example
7926
7927Error recovery strategies are necessarily guesses. When they guess wrong,
7928one syntax error often leads to another. In the above example, the error
7929recovery rule guesses that an error is due to bad input within one
7930@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7931middle of a valid @code{stmnt}. After the error recovery rule recovers
7932from the first error, another syntax error will be found straightaway,
7933since the text following the spurious semicolon is also an invalid
7934@code{stmnt}.
7935
7936To prevent an outpouring of error messages, the parser will output no error
7937message for another syntax error that happens shortly after the first; only
7938after three consecutive input tokens have been successfully shifted will
7939error messages resume.
7940
7941Note that rules which accept the @code{error} token may have actions, just
7942as any other rules can.
7943
7944@findex yyerrok
7945You can make error messages resume immediately by using the macro
7946@code{yyerrok} in an action. If you do this in the error rule's action, no
7947error messages will be suppressed. This macro requires no arguments;
7948@samp{yyerrok;} is a valid C statement.
7949
7950@findex yyclearin
742e4900 7951The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7952this is unacceptable, then the macro @code{yyclearin} may be used to clear
7953this token. Write the statement @samp{yyclearin;} in the error rule's
7954action.
32c29292 7955@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7956
6e649e65 7957For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7958called that advances the input stream to some point where parsing should
7959once again commence. The next symbol returned by the lexical scanner is
742e4900 7960probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7961with @samp{yyclearin;}.
7962
7963@vindex YYRECOVERING
02103984
PE
7964The expression @code{YYRECOVERING ()} yields 1 when the parser
7965is recovering from a syntax error, and 0 otherwise.
7966Syntax error diagnostics are suppressed while recovering from a syntax
7967error.
bfa74976 7968
342b8b6e 7969@node Context Dependency
bfa74976
RS
7970@chapter Handling Context Dependencies
7971
7972The Bison paradigm is to parse tokens first, then group them into larger
7973syntactic units. In many languages, the meaning of a token is affected by
7974its context. Although this violates the Bison paradigm, certain techniques
7975(known as @dfn{kludges}) may enable you to write Bison parsers for such
7976languages.
7977
7978@menu
7979* Semantic Tokens:: Token parsing can depend on the semantic context.
7980* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7981* Tie-in Recovery:: Lexical tie-ins have implications for how
7982 error recovery rules must be written.
7983@end menu
7984
7985(Actually, ``kludge'' means any technique that gets its job done but is
7986neither clean nor robust.)
7987
342b8b6e 7988@node Semantic Tokens
bfa74976
RS
7989@section Semantic Info in Token Types
7990
7991The C language has a context dependency: the way an identifier is used
7992depends on what its current meaning is. For example, consider this:
7993
7994@example
7995foo (x);
7996@end example
7997
7998This looks like a function call statement, but if @code{foo} is a typedef
7999name, then this is actually a declaration of @code{x}. How can a Bison
8000parser for C decide how to parse this input?
8001
8a4281b9 8002The method used in GNU C is to have two different token types,
bfa74976
RS
8003@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8004identifier, it looks up the current declaration of the identifier in order
8005to decide which token type to return: @code{TYPENAME} if the identifier is
8006declared as a typedef, @code{IDENTIFIER} otherwise.
8007
8008The grammar rules can then express the context dependency by the choice of
8009token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8010but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8011@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8012is @emph{not} significant, such as in declarations that can shadow a
8013typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8014accepted---there is one rule for each of the two token types.
8015
8016This technique is simple to use if the decision of which kinds of
8017identifiers to allow is made at a place close to where the identifier is
8018parsed. But in C this is not always so: C allows a declaration to
8019redeclare a typedef name provided an explicit type has been specified
8020earlier:
8021
8022@example
3a4f411f
PE
8023typedef int foo, bar;
8024int baz (void)
d4fca427 8025@group
3a4f411f
PE
8026@{
8027 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8028 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8029 return foo (bar);
8030@}
d4fca427 8031@end group
bfa74976
RS
8032@end example
8033
8034Unfortunately, the name being declared is separated from the declaration
8035construct itself by a complicated syntactic structure---the ``declarator''.
8036
9ecbd125 8037As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8038all the nonterminal names changed: once for parsing a declaration in
8039which a typedef name can be redefined, and once for parsing a
8040declaration in which that can't be done. Here is a part of the
8041duplication, with actions omitted for brevity:
bfa74976
RS
8042
8043@example
d4fca427 8044@group
bfa74976
RS
8045initdcl:
8046 declarator maybeasm '='
8047 init
8048 | declarator maybeasm
8049 ;
d4fca427 8050@end group
bfa74976 8051
d4fca427 8052@group
bfa74976
RS
8053notype_initdcl:
8054 notype_declarator maybeasm '='
8055 init
8056 | notype_declarator maybeasm
8057 ;
d4fca427 8058@end group
bfa74976
RS
8059@end example
8060
8061@noindent
8062Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8063cannot. The distinction between @code{declarator} and
8064@code{notype_declarator} is the same sort of thing.
8065
8066There is some similarity between this technique and a lexical tie-in
8067(described next), in that information which alters the lexical analysis is
8068changed during parsing by other parts of the program. The difference is
8069here the information is global, and is used for other purposes in the
8070program. A true lexical tie-in has a special-purpose flag controlled by
8071the syntactic context.
8072
342b8b6e 8073@node Lexical Tie-ins
bfa74976
RS
8074@section Lexical Tie-ins
8075@cindex lexical tie-in
8076
8077One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8078which is set by Bison actions, whose purpose is to alter the way tokens are
8079parsed.
8080
8081For example, suppose we have a language vaguely like C, but with a special
8082construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8083an expression in parentheses in which all integers are hexadecimal. In
8084particular, the token @samp{a1b} must be treated as an integer rather than
8085as an identifier if it appears in that context. Here is how you can do it:
8086
8087@example
8088@group
8089%@{
38a92d50
PE
8090 int hexflag;
8091 int yylex (void);
8092 void yyerror (char const *);
bfa74976
RS
8093%@}
8094%%
8095@dots{}
8096@end group
8097@group
8098expr: IDENTIFIER
8099 | constant
8100 | HEX '('
8101 @{ hexflag = 1; @}
8102 expr ')'
8103 @{ hexflag = 0;
8104 $$ = $4; @}
8105 | expr '+' expr
8106 @{ $$ = make_sum ($1, $3); @}
8107 @dots{}
8108 ;
8109@end group
8110
8111@group
8112constant:
8113 INTEGER
8114 | STRING
8115 ;
8116@end group
8117@end example
8118
8119@noindent
8120Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8121it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8122with letters are parsed as integers if possible.
8123
ff7571c0
JD
8124The declaration of @code{hexflag} shown in the prologue of the grammar
8125file is needed to make it accessible to the actions (@pxref{Prologue,
8126,The Prologue}). You must also write the code in @code{yylex} to obey
8127the flag.
bfa74976 8128
342b8b6e 8129@node Tie-in Recovery
bfa74976
RS
8130@section Lexical Tie-ins and Error Recovery
8131
8132Lexical tie-ins make strict demands on any error recovery rules you have.
8133@xref{Error Recovery}.
8134
8135The reason for this is that the purpose of an error recovery rule is to
8136abort the parsing of one construct and resume in some larger construct.
8137For example, in C-like languages, a typical error recovery rule is to skip
8138tokens until the next semicolon, and then start a new statement, like this:
8139
8140@example
8141stmt: expr ';'
8142 | IF '(' expr ')' stmt @{ @dots{} @}
8143 @dots{}
8144 error ';'
8145 @{ hexflag = 0; @}
8146 ;
8147@end example
8148
8149If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8150construct, this error rule will apply, and then the action for the
8151completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8152remain set for the entire rest of the input, or until the next @code{hex}
8153keyword, causing identifiers to be misinterpreted as integers.
8154
8155To avoid this problem the error recovery rule itself clears @code{hexflag}.
8156
8157There may also be an error recovery rule that works within expressions.
8158For example, there could be a rule which applies within parentheses
8159and skips to the close-parenthesis:
8160
8161@example
8162@group
8163expr: @dots{}
8164 | '(' expr ')'
8165 @{ $$ = $2; @}
8166 | '(' error ')'
8167 @dots{}
8168@end group
8169@end example
8170
8171If this rule acts within the @code{hex} construct, it is not going to abort
8172that construct (since it applies to an inner level of parentheses within
8173the construct). Therefore, it should not clear the flag: the rest of
8174the @code{hex} construct should be parsed with the flag still in effect.
8175
8176What if there is an error recovery rule which might abort out of the
8177@code{hex} construct or might not, depending on circumstances? There is no
8178way you can write the action to determine whether a @code{hex} construct is
8179being aborted or not. So if you are using a lexical tie-in, you had better
8180make sure your error recovery rules are not of this kind. Each rule must
8181be such that you can be sure that it always will, or always won't, have to
8182clear the flag.
8183
ec3bc396
AD
8184@c ================================================== Debugging Your Parser
8185
342b8b6e 8186@node Debugging
bfa74976 8187@chapter Debugging Your Parser
ec3bc396
AD
8188
8189Developing a parser can be a challenge, especially if you don't
8190understand the algorithm (@pxref{Algorithm, ,The Bison Parser
8191Algorithm}). Even so, sometimes a detailed description of the automaton
8192can help (@pxref{Understanding, , Understanding Your Parser}), or
8193tracing the execution of the parser can give some insight on why it
8194behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
8195
8196@menu
8197* Understanding:: Understanding the structure of your parser.
8198* Tracing:: Tracing the execution of your parser.
8199@end menu
8200
8201@node Understanding
8202@section Understanding Your Parser
8203
8204As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8205Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8206frequent than one would hope), looking at this automaton is required to
8207tune or simply fix a parser. Bison provides two different
35fe0834 8208representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8209
8210The textual file is generated when the options @option{--report} or
8211@option{--verbose} are specified, see @xref{Invocation, , Invoking
8212Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8213the parser implementation file name, and adding @samp{.output}
8214instead. Therefore, if the grammar file is @file{foo.y}, then the
8215parser implementation file is called @file{foo.tab.c} by default. As
8216a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8217
8218The following grammar file, @file{calc.y}, will be used in the sequel:
8219
8220@example
8221%token NUM STR
8222%left '+' '-'
8223%left '*'
8224%%
8225exp: exp '+' exp
8226 | exp '-' exp
8227 | exp '*' exp
8228 | exp '/' exp
8229 | NUM
8230 ;
8231useless: STR;
8232%%
8233@end example
8234
88bce5a2
AD
8235@command{bison} reports:
8236
8237@example
8f0d265e
JD
8238calc.y: warning: 1 nonterminal useless in grammar
8239calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8240calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8241calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8242calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8243@end example
8244
8245When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8246creates a file @file{calc.output} with contents detailed below. The
8247order of the output and the exact presentation might vary, but the
8248interpretation is the same.
ec3bc396
AD
8249
8250The first section includes details on conflicts that were solved thanks
8251to precedence and/or associativity:
8252
8253@example
8254Conflict in state 8 between rule 2 and token '+' resolved as reduce.
8255Conflict in state 8 between rule 2 and token '-' resolved as reduce.
8256Conflict in state 8 between rule 2 and token '*' resolved as shift.
8257@exdent @dots{}
8258@end example
8259
8260@noindent
8261The next section lists states that still have conflicts.
8262
8263@example
5a99098d
PE
8264State 8 conflicts: 1 shift/reduce
8265State 9 conflicts: 1 shift/reduce
8266State 10 conflicts: 1 shift/reduce
8267State 11 conflicts: 4 shift/reduce
ec3bc396
AD
8268@end example
8269
8270@noindent
8271@cindex token, useless
8272@cindex useless token
8273@cindex nonterminal, useless
8274@cindex useless nonterminal
8275@cindex rule, useless
8276@cindex useless rule
8277The next section reports useless tokens, nonterminal and rules. Useless
8278nonterminals and rules are removed in order to produce a smaller parser,
8279but useless tokens are preserved, since they might be used by the
d80fb37a 8280scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
8281below):
8282
8283@example
d80fb37a 8284Nonterminals useless in grammar:
ec3bc396
AD
8285 useless
8286
d80fb37a 8287Terminals unused in grammar:
ec3bc396
AD
8288 STR
8289
cff03fb2 8290Rules useless in grammar:
ec3bc396
AD
8291#6 useless: STR;
8292@end example
8293
8294@noindent
8295The next section reproduces the exact grammar that Bison used:
8296
8297@example
8298Grammar
8299
8300 Number, Line, Rule
88bce5a2 8301 0 5 $accept -> exp $end
ec3bc396
AD
8302 1 5 exp -> exp '+' exp
8303 2 6 exp -> exp '-' exp
8304 3 7 exp -> exp '*' exp
8305 4 8 exp -> exp '/' exp
8306 5 9 exp -> NUM
8307@end example
8308
8309@noindent
8310and reports the uses of the symbols:
8311
8312@example
d4fca427 8313@group
ec3bc396
AD
8314Terminals, with rules where they appear
8315
88bce5a2 8316$end (0) 0
ec3bc396
AD
8317'*' (42) 3
8318'+' (43) 1
8319'-' (45) 2
8320'/' (47) 4
8321error (256)
8322NUM (258) 5
d4fca427 8323@end group
ec3bc396 8324
d4fca427 8325@group
ec3bc396
AD
8326Nonterminals, with rules where they appear
8327
88bce5a2 8328$accept (8)
ec3bc396
AD
8329 on left: 0
8330exp (9)
8331 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8332@end group
ec3bc396
AD
8333@end example
8334
8335@noindent
8336@cindex item
8337@cindex pointed rule
8338@cindex rule, pointed
8339Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8340with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8341item is a production rule together with a point (@samp{.}) marking
8342the location of the input cursor.
ec3bc396
AD
8343
8344@example
8345state 0
8346
88bce5a2 8347 $accept -> . exp $ (rule 0)
ec3bc396 8348
2a8d363a 8349 NUM shift, and go to state 1
ec3bc396 8350
2a8d363a 8351 exp go to state 2
ec3bc396
AD
8352@end example
8353
8354This reads as follows: ``state 0 corresponds to being at the very
8355beginning of the parsing, in the initial rule, right before the start
8356symbol (here, @code{exp}). When the parser returns to this state right
8357after having reduced a rule that produced an @code{exp}, the control
8358flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8359symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8360the parse stack, and the control flow jumps to state 1. Any other
742e4900 8361lookahead triggers a syntax error.''
ec3bc396
AD
8362
8363@cindex core, item set
8364@cindex item set core
8365@cindex kernel, item set
8366@cindex item set core
8367Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8368report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8369at the beginning of any rule deriving an @code{exp}. By default Bison
8370reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8371you want to see more detail you can invoke @command{bison} with
35880c82 8372@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8373
8374@example
8375state 0
8376
88bce5a2 8377 $accept -> . exp $ (rule 0)
ec3bc396
AD
8378 exp -> . exp '+' exp (rule 1)
8379 exp -> . exp '-' exp (rule 2)
8380 exp -> . exp '*' exp (rule 3)
8381 exp -> . exp '/' exp (rule 4)
8382 exp -> . NUM (rule 5)
8383
8384 NUM shift, and go to state 1
8385
8386 exp go to state 2
8387@end example
8388
8389@noindent
8390In the state 1...
8391
8392@example
8393state 1
8394
8395 exp -> NUM . (rule 5)
8396
2a8d363a 8397 $default reduce using rule 5 (exp)
ec3bc396
AD
8398@end example
8399
8400@noindent
742e4900 8401the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8402(@samp{$default}), the parser will reduce it. If it was coming from
8403state 0, then, after this reduction it will return to state 0, and will
8404jump to state 2 (@samp{exp: go to state 2}).
8405
8406@example
8407state 2
8408
88bce5a2 8409 $accept -> exp . $ (rule 0)
ec3bc396
AD
8410 exp -> exp . '+' exp (rule 1)
8411 exp -> exp . '-' exp (rule 2)
8412 exp -> exp . '*' exp (rule 3)
8413 exp -> exp . '/' exp (rule 4)
8414
2a8d363a
AD
8415 $ shift, and go to state 3
8416 '+' shift, and go to state 4
8417 '-' shift, and go to state 5
8418 '*' shift, and go to state 6
8419 '/' shift, and go to state 7
ec3bc396
AD
8420@end example
8421
8422@noindent
8423In state 2, the automaton can only shift a symbol. For instance,
35880c82
PE
8424because of the item @samp{exp -> exp . '+' exp}, if the lookahead is
8425@samp{+} it is shifted onto the parse stack, and the automaton
8426jumps to state 4, corresponding to the item @samp{exp -> exp '+' . exp}.
8427Since there is no default action, any lookahead not listed triggers a syntax
8428error.
ec3bc396 8429
eb45ef3b 8430@cindex accepting state
ec3bc396
AD
8431The state 3 is named the @dfn{final state}, or the @dfn{accepting
8432state}:
8433
8434@example
8435state 3
8436
88bce5a2 8437 $accept -> exp $ . (rule 0)
ec3bc396 8438
2a8d363a 8439 $default accept
ec3bc396
AD
8440@end example
8441
8442@noindent
8443the initial rule is completed (the start symbol and the end
8444of input were read), the parsing exits successfully.
8445
8446The interpretation of states 4 to 7 is straightforward, and is left to
8447the reader.
8448
8449@example
8450state 4
8451
8452 exp -> exp '+' . exp (rule 1)
8453
2a8d363a 8454 NUM shift, and go to state 1
ec3bc396 8455
2a8d363a 8456 exp go to state 8
ec3bc396
AD
8457
8458state 5
8459
8460 exp -> exp '-' . exp (rule 2)
8461
2a8d363a 8462 NUM shift, and go to state 1
ec3bc396 8463
2a8d363a 8464 exp go to state 9
ec3bc396
AD
8465
8466state 6
8467
8468 exp -> exp '*' . exp (rule 3)
8469
2a8d363a 8470 NUM shift, and go to state 1
ec3bc396 8471
2a8d363a 8472 exp go to state 10
ec3bc396
AD
8473
8474state 7
8475
8476 exp -> exp '/' . exp (rule 4)
8477
2a8d363a 8478 NUM shift, and go to state 1
ec3bc396 8479
2a8d363a 8480 exp go to state 11
ec3bc396
AD
8481@end example
8482
5a99098d
PE
8483As was announced in beginning of the report, @samp{State 8 conflicts:
84841 shift/reduce}:
ec3bc396
AD
8485
8486@example
8487state 8
8488
8489 exp -> exp . '+' exp (rule 1)
8490 exp -> exp '+' exp . (rule 1)
8491 exp -> exp . '-' exp (rule 2)
8492 exp -> exp . '*' exp (rule 3)
8493 exp -> exp . '/' exp (rule 4)
8494
2a8d363a
AD
8495 '*' shift, and go to state 6
8496 '/' shift, and go to state 7
ec3bc396 8497
2a8d363a
AD
8498 '/' [reduce using rule 1 (exp)]
8499 $default reduce using rule 1 (exp)
ec3bc396
AD
8500@end example
8501
742e4900 8502Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8503either shifting (and going to state 7), or reducing rule 1. The
8504conflict means that either the grammar is ambiguous, or the parser lacks
8505information to make the right decision. Indeed the grammar is
8506ambiguous, as, since we did not specify the precedence of @samp{/}, the
8507sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8508NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8509NUM}, which corresponds to reducing rule 1.
8510
eb45ef3b 8511Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8512arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8513Shift/Reduce Conflicts}. Discarded actions are reported in between
8514square brackets.
8515
8516Note that all the previous states had a single possible action: either
8517shifting the next token and going to the corresponding state, or
8518reducing a single rule. In the other cases, i.e., when shifting
8519@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8520possible, the lookahead is required to select the action. State 8 is
8521one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8522is shifting, otherwise the action is reducing rule 1. In other words,
8523the first two items, corresponding to rule 1, are not eligible when the
742e4900 8524lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8525precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8526with some set of possible lookahead tokens. When run with
8527@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8528
8529@example
8530state 8
8531
88c78747 8532 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8533 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8534 exp -> exp . '-' exp (rule 2)
8535 exp -> exp . '*' exp (rule 3)
8536 exp -> exp . '/' exp (rule 4)
8537
8538 '*' shift, and go to state 6
8539 '/' shift, and go to state 7
8540
8541 '/' [reduce using rule 1 (exp)]
8542 $default reduce using rule 1 (exp)
8543@end example
8544
8545The remaining states are similar:
8546
8547@example
d4fca427 8548@group
ec3bc396
AD
8549state 9
8550
8551 exp -> exp . '+' exp (rule 1)
8552 exp -> exp . '-' exp (rule 2)
8553 exp -> exp '-' exp . (rule 2)
8554 exp -> exp . '*' exp (rule 3)
8555 exp -> exp . '/' exp (rule 4)
8556
2a8d363a
AD
8557 '*' shift, and go to state 6
8558 '/' shift, and go to state 7
ec3bc396 8559
2a8d363a
AD
8560 '/' [reduce using rule 2 (exp)]
8561 $default reduce using rule 2 (exp)
d4fca427 8562@end group
ec3bc396 8563
d4fca427 8564@group
ec3bc396
AD
8565state 10
8566
8567 exp -> exp . '+' exp (rule 1)
8568 exp -> exp . '-' exp (rule 2)
8569 exp -> exp . '*' exp (rule 3)
8570 exp -> exp '*' exp . (rule 3)
8571 exp -> exp . '/' exp (rule 4)
8572
2a8d363a 8573 '/' shift, and go to state 7
ec3bc396 8574
2a8d363a
AD
8575 '/' [reduce using rule 3 (exp)]
8576 $default reduce using rule 3 (exp)
d4fca427 8577@end group
ec3bc396 8578
d4fca427 8579@group
ec3bc396
AD
8580state 11
8581
8582 exp -> exp . '+' exp (rule 1)
8583 exp -> exp . '-' exp (rule 2)
8584 exp -> exp . '*' exp (rule 3)
8585 exp -> exp . '/' exp (rule 4)
8586 exp -> exp '/' exp . (rule 4)
8587
2a8d363a
AD
8588 '+' shift, and go to state 4
8589 '-' shift, and go to state 5
8590 '*' shift, and go to state 6
8591 '/' shift, and go to state 7
ec3bc396 8592
2a8d363a
AD
8593 '+' [reduce using rule 4 (exp)]
8594 '-' [reduce using rule 4 (exp)]
8595 '*' [reduce using rule 4 (exp)]
8596 '/' [reduce using rule 4 (exp)]
8597 $default reduce using rule 4 (exp)
d4fca427 8598@end group
ec3bc396
AD
8599@end example
8600
8601@noindent
fa7e68c3
PE
8602Observe that state 11 contains conflicts not only due to the lack of
8603precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8604@samp{*}, but also because the
ec3bc396
AD
8605associativity of @samp{/} is not specified.
8606
8607
8608@node Tracing
8609@section Tracing Your Parser
bfa74976
RS
8610@findex yydebug
8611@cindex debugging
8612@cindex tracing the parser
8613
8614If a Bison grammar compiles properly but doesn't do what you want when it
8615runs, the @code{yydebug} parser-trace feature can help you figure out why.
8616
3ded9a63
AD
8617There are several means to enable compilation of trace facilities:
8618
8619@table @asis
8620@item the macro @code{YYDEBUG}
8621@findex YYDEBUG
8622Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8623parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8624@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8625YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8626Prologue}).
8627
8628@item the option @option{-t}, @option{--debug}
8629Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8630,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8631
8632@item the directive @samp{%debug}
8633@findex %debug
fa819509
AD
8634Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8635Summary}). This Bison extension is maintained for backward
8636compatibility with previous versions of Bison.
8637
8638@item the variable @samp{parse.trace}
8639@findex %define parse.trace
35c1e5f0
JD
8640Add the @samp{%define parse.trace} directive (@pxref{%define
8641Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8642(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8643useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8644portability matter to you, this is the preferred solution.
3ded9a63
AD
8645@end table
8646
fa819509 8647We suggest that you always enable the trace option so that debugging is
3ded9a63 8648always possible.
bfa74976 8649
02a81e05 8650The trace facility outputs messages with macro calls of the form
e2742e46 8651@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8652@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8653arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8654define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8655and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8656
8657Once you have compiled the program with trace facilities, the way to
8658request a trace is to store a nonzero value in the variable @code{yydebug}.
8659You can do this by making the C code do it (in @code{main}, perhaps), or
8660you can alter the value with a C debugger.
8661
8662Each step taken by the parser when @code{yydebug} is nonzero produces a
8663line or two of trace information, written on @code{stderr}. The trace
8664messages tell you these things:
8665
8666@itemize @bullet
8667@item
8668Each time the parser calls @code{yylex}, what kind of token was read.
8669
8670@item
8671Each time a token is shifted, the depth and complete contents of the
8672state stack (@pxref{Parser States}).
8673
8674@item
8675Each time a rule is reduced, which rule it is, and the complete contents
8676of the state stack afterward.
8677@end itemize
8678
8679To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8680produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8681Bison}). This file shows the meaning of each state in terms of
8682positions in various rules, and also what each state will do with each
8683possible input token. As you read the successive trace messages, you
8684can see that the parser is functioning according to its specification in
8685the listing file. Eventually you will arrive at the place where
8686something undesirable happens, and you will see which parts of the
8687grammar are to blame.
bfa74976 8688
ff7571c0
JD
8689The parser implementation file is a C program and you can use C
8690debuggers on it, but it's not easy to interpret what it is doing. The
8691parser function is a finite-state machine interpreter, and aside from
8692the actions it executes the same code over and over. Only the values
8693of variables show where in the grammar it is working.
bfa74976
RS
8694
8695@findex YYPRINT
8696The debugging information normally gives the token type of each token
8697read, but not its semantic value. You can optionally define a macro
8698named @code{YYPRINT} to provide a way to print the value. If you define
8699@code{YYPRINT}, it should take three arguments. The parser will pass a
8700standard I/O stream, the numeric code for the token type, and the token
8701value (from @code{yylval}).
8702
8703Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8704calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 8705
c93f22fc 8706@example
38a92d50
PE
8707%@{
8708 static void print_token_value (FILE *, int, YYSTYPE);
c93f22fc
AD
8709 #define YYPRINT(file, type, value) \
8710 print_token_value (file, type, value)
38a92d50
PE
8711%@}
8712
8713@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8714
8715static void
831d3c99 8716print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8717@{
8718 if (type == VAR)
d3c4e709 8719 fprintf (file, "%s", value.tptr->name);
bfa74976 8720 else if (type == NUM)
d3c4e709 8721 fprintf (file, "%d", value.val);
bfa74976 8722@}
c93f22fc 8723@end example
bfa74976 8724
ec3bc396
AD
8725@c ================================================= Invoking Bison
8726
342b8b6e 8727@node Invocation
bfa74976
RS
8728@chapter Invoking Bison
8729@cindex invoking Bison
8730@cindex Bison invocation
8731@cindex options for invoking Bison
8732
8733The usual way to invoke Bison is as follows:
8734
8735@example
8736bison @var{infile}
8737@end example
8738
8739Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8740@samp{.y}. The parser implementation file's name is made by replacing
8741the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8742Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8743the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8744also possible, in case you are writing C++ code instead of C in your
8745grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8746output files will take an extension like the given one as input
8747(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8748feature takes effect with all options that manipulate file names like
234a3be3
AD
8749@samp{-o} or @samp{-d}.
8750
8751For example :
8752
8753@example
8754bison -d @var{infile.yxx}
8755@end example
84163231 8756@noindent
72d2299c 8757will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8758
8759@example
b56471a6 8760bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8761@end example
84163231 8762@noindent
234a3be3
AD
8763will produce @file{output.c++} and @file{outfile.h++}.
8764
8a4281b9 8765For compatibility with POSIX, the standard Bison
397ec073
PE
8766distribution also contains a shell script called @command{yacc} that
8767invokes Bison with the @option{-y} option.
8768
bfa74976 8769@menu
13863333 8770* Bison Options:: All the options described in detail,
c827f760 8771 in alphabetical order by short options.
bfa74976 8772* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8773* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8774@end menu
8775
342b8b6e 8776@node Bison Options
bfa74976
RS
8777@section Bison Options
8778
8779Bison supports both traditional single-letter options and mnemonic long
8780option names. Long option names are indicated with @samp{--} instead of
8781@samp{-}. Abbreviations for option names are allowed as long as they
8782are unique. When a long option takes an argument, like
8783@samp{--file-prefix}, connect the option name and the argument with
8784@samp{=}.
8785
8786Here is a list of options that can be used with Bison, alphabetized by
8787short option. It is followed by a cross key alphabetized by long
8788option.
8789
89cab50d
AD
8790@c Please, keep this ordered as in `bison --help'.
8791@noindent
8792Operations modes:
8793@table @option
8794@item -h
8795@itemx --help
8796Print a summary of the command-line options to Bison and exit.
bfa74976 8797
89cab50d
AD
8798@item -V
8799@itemx --version
8800Print the version number of Bison and exit.
bfa74976 8801
f7ab6a50
PE
8802@item --print-localedir
8803Print the name of the directory containing locale-dependent data.
8804
a0de5091
JD
8805@item --print-datadir
8806Print the name of the directory containing skeletons and XSLT.
8807
89cab50d
AD
8808@item -y
8809@itemx --yacc
ff7571c0
JD
8810Act more like the traditional Yacc command. This can cause different
8811diagnostics to be generated, and may change behavior in other minor
8812ways. Most importantly, imitate Yacc's output file name conventions,
8813so that the parser implementation file is called @file{y.tab.c}, and
8814the other outputs are called @file{y.output} and @file{y.tab.h}.
8815Also, if generating a deterministic parser in C, generate
8816@code{#define} statements in addition to an @code{enum} to associate
8817token numbers with token names. Thus, the following shell script can
8818substitute for Yacc, and the Bison distribution contains such a script
8819for compatibility with POSIX:
bfa74976 8820
89cab50d 8821@example
397ec073 8822#! /bin/sh
26e06a21 8823bison -y "$@@"
89cab50d 8824@end example
54662697
PE
8825
8826The @option{-y}/@option{--yacc} option is intended for use with
8827traditional Yacc grammars. If your grammar uses a Bison extension
8828like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8829this option is specified.
8830
1d5b3c08
JD
8831@item -W [@var{category}]
8832@itemx --warnings[=@var{category}]
118d4978
AD
8833Output warnings falling in @var{category}. @var{category} can be one
8834of:
8835@table @code
8836@item midrule-values
8e55b3aa
JD
8837Warn about mid-rule values that are set but not used within any of the actions
8838of the parent rule.
8839For example, warn about unused @code{$2} in:
118d4978
AD
8840
8841@example
8842exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8843@end example
8844
8e55b3aa
JD
8845Also warn about mid-rule values that are used but not set.
8846For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8847
8848@example
8849 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8850@end example
8851
8852These warnings are not enabled by default since they sometimes prove to
8853be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8854@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8855
118d4978 8856@item yacc
8a4281b9 8857Incompatibilities with POSIX Yacc.
118d4978 8858
786743d5
JD
8859@item conflicts-sr
8860@itemx conflicts-rr
8861S/R and R/R conflicts. These warnings are enabled by default. However, if
8862the @code{%expect} or @code{%expect-rr} directive is specified, an
8863unexpected number of conflicts is an error, and an expected number of
8864conflicts is not reported, so @option{-W} and @option{--warning} then have
8865no effect on the conflict report.
8866
c39014ae
JD
8867@item other
8868All warnings not categorized above. These warnings are enabled by default.
8869
8870This category is provided merely for the sake of completeness. Future
8871releases of Bison may move warnings from this category to new, more specific
8872categories.
8873
118d4978 8874@item all
8e55b3aa 8875All the warnings.
118d4978 8876@item none
8e55b3aa 8877Turn off all the warnings.
118d4978 8878@item error
8e55b3aa 8879Treat warnings as errors.
118d4978
AD
8880@end table
8881
8882A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8883instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8884POSIX Yacc incompatibilities.
89cab50d
AD
8885@end table
8886
8887@noindent
8888Tuning the parser:
8889
8890@table @option
8891@item -t
8892@itemx --debug
ff7571c0
JD
8893In the parser implementation file, define the macro @code{YYDEBUG} to
88941 if it is not already defined, so that the debugging facilities are
8895compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8896
58697c6d
AD
8897@item -D @var{name}[=@var{value}]
8898@itemx --define=@var{name}[=@var{value}]
17aed602 8899@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8900@itemx --force-define=@var{name}[=@var{value}]
8901Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 8902(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
8903definitions for the same @var{name} as follows:
8904
8905@itemize
8906@item
0b6d43c5
JD
8907Bison quietly ignores all command-line definitions for @var{name} except
8908the last.
de5ab940 8909@item
0b6d43c5
JD
8910If that command-line definition is specified by a @code{-D} or
8911@code{--define}, Bison reports an error for any @code{%define}
8912definition for @var{name}.
de5ab940 8913@item
0b6d43c5
JD
8914If that command-line definition is specified by a @code{-F} or
8915@code{--force-define} instead, Bison quietly ignores all @code{%define}
8916definitions for @var{name}.
8917@item
8918Otherwise, Bison reports an error if there are multiple @code{%define}
8919definitions for @var{name}.
de5ab940
JD
8920@end itemize
8921
8922You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8923make files unless you are confident that it is safe to quietly ignore
8924any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8925
0e021770
PE
8926@item -L @var{language}
8927@itemx --language=@var{language}
8928Specify the programming language for the generated parser, as if
8929@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8930Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8931@var{language} is case-insensitive.
0e021770 8932
ed4d67dc
JD
8933This option is experimental and its effect may be modified in future
8934releases.
8935
89cab50d 8936@item --locations
d8988b2f 8937Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8938
8939@item -p @var{prefix}
8940@itemx --name-prefix=@var{prefix}
02975b9a 8941Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8942@xref{Decl Summary}.
bfa74976
RS
8943
8944@item -l
8945@itemx --no-lines
ff7571c0
JD
8946Don't put any @code{#line} preprocessor commands in the parser
8947implementation file. Ordinarily Bison puts them in the parser
8948implementation file so that the C compiler and debuggers will
8949associate errors with your source file, the grammar file. This option
8950causes them to associate errors with the parser implementation file,
8951treating it as an independent source file in its own right.
bfa74976 8952
e6e704dc
JD
8953@item -S @var{file}
8954@itemx --skeleton=@var{file}
a7867f53 8955Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8956(@pxref{Decl Summary, , Bison Declaration Summary}).
8957
ed4d67dc
JD
8958@c You probably don't need this option unless you are developing Bison.
8959@c You should use @option{--language} if you want to specify the skeleton for a
8960@c different language, because it is clearer and because it will always
8961@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8962
a7867f53
JD
8963If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8964file in the Bison installation directory.
8965If it does, @var{file} is an absolute file name or a file name relative to the
8966current working directory.
8967This is similar to how most shells resolve commands.
8968
89cab50d
AD
8969@item -k
8970@itemx --token-table
d8988b2f 8971Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8972@end table
bfa74976 8973
89cab50d
AD
8974@noindent
8975Adjust the output:
bfa74976 8976
89cab50d 8977@table @option
8e55b3aa 8978@item --defines[=@var{file}]
d8988b2f 8979Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8980file containing macro definitions for the token type names defined in
4bfd5e4e 8981the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8982
8e55b3aa
JD
8983@item -d
8984This is the same as @code{--defines} except @code{-d} does not accept a
8985@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8986with other short options.
342b8b6e 8987
89cab50d
AD
8988@item -b @var{file-prefix}
8989@itemx --file-prefix=@var{prefix}
9c437126 8990Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8991for all Bison output file names. @xref{Decl Summary}.
bfa74976 8992
ec3bc396
AD
8993@item -r @var{things}
8994@itemx --report=@var{things}
8995Write an extra output file containing verbose description of the comma
8996separated list of @var{things} among:
8997
8998@table @code
8999@item state
9000Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9001parser's automaton.
ec3bc396 9002
742e4900 9003@item lookahead
ec3bc396 9004Implies @code{state} and augments the description of the automaton with
742e4900 9005each rule's lookahead set.
ec3bc396
AD
9006
9007@item itemset
9008Implies @code{state} and augments the description of the automaton with
9009the full set of items for each state, instead of its core only.
9010@end table
9011
1bb2bd75
JD
9012@item --report-file=@var{file}
9013Specify the @var{file} for the verbose description.
9014
bfa74976
RS
9015@item -v
9016@itemx --verbose
9c437126 9017Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9018file containing verbose descriptions of the grammar and
72d2299c 9019parser. @xref{Decl Summary}.
bfa74976 9020
fa4d969f
PE
9021@item -o @var{file}
9022@itemx --output=@var{file}
ff7571c0 9023Specify the @var{file} for the parser implementation file.
bfa74976 9024
fa4d969f 9025The other output files' names are constructed from @var{file} as
d8988b2f 9026described under the @samp{-v} and @samp{-d} options.
342b8b6e 9027
a7c09cba 9028@item -g [@var{file}]
8e55b3aa 9029@itemx --graph[=@var{file}]
eb45ef3b 9030Output a graphical representation of the parser's
35fe0834 9031automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9032@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9033@code{@var{file}} is optional.
9034If omitted and the grammar file is @file{foo.y}, the output file will be
9035@file{foo.dot}.
59da312b 9036
a7c09cba 9037@item -x [@var{file}]
8e55b3aa 9038@itemx --xml[=@var{file}]
eb45ef3b 9039Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9040@code{@var{file}} is optional.
59da312b
JD
9041If omitted and the grammar file is @file{foo.y}, the output file will be
9042@file{foo.xml}.
9043(The current XML schema is experimental and may evolve.
9044More user feedback will help to stabilize it.)
bfa74976
RS
9045@end table
9046
342b8b6e 9047@node Option Cross Key
bfa74976
RS
9048@section Option Cross Key
9049
9050Here is a list of options, alphabetized by long option, to help you find
de5ab940 9051the corresponding short option and directive.
bfa74976 9052
de5ab940 9053@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9054@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9055@include cross-options.texi
aa08666d 9056@end multitable
bfa74976 9057
93dd49ab
PE
9058@node Yacc Library
9059@section Yacc Library
9060
9061The Yacc library contains default implementations of the
9062@code{yyerror} and @code{main} functions. These default
8a4281b9 9063implementations are normally not useful, but POSIX requires
93dd49ab
PE
9064them. To use the Yacc library, link your program with the
9065@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9066library is distributed under the terms of the GNU General
93dd49ab
PE
9067Public License (@pxref{Copying}).
9068
9069If you use the Yacc library's @code{yyerror} function, you should
9070declare @code{yyerror} as follows:
9071
9072@example
9073int yyerror (char const *);
9074@end example
9075
9076Bison ignores the @code{int} value returned by this @code{yyerror}.
9077If you use the Yacc library's @code{main} function, your
9078@code{yyparse} function should have the following type signature:
9079
9080@example
9081int yyparse (void);
9082@end example
9083
12545799
AD
9084@c ================================================= C++ Bison
9085
8405b70c
PB
9086@node Other Languages
9087@chapter Parsers Written In Other Languages
12545799
AD
9088
9089@menu
9090* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9091* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9092@end menu
9093
9094@node C++ Parsers
9095@section C++ Parsers
9096
9097@menu
9098* C++ Bison Interface:: Asking for C++ parser generation
9099* C++ Semantic Values:: %union vs. C++
9100* C++ Location Values:: The position and location classes
9101* C++ Parser Interface:: Instantiating and running the parser
9102* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9103* A Complete C++ Example:: Demonstrating their use
12545799
AD
9104@end menu
9105
9106@node C++ Bison Interface
9107@subsection C++ Bison Interface
ed4d67dc 9108@c - %skeleton "lalr1.cc"
12545799
AD
9109@c - Always pure
9110@c - initial action
9111
eb45ef3b 9112The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9113@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9114@option{--skeleton=lalr1.cc}.
e6e704dc 9115@xref{Decl Summary}.
0e021770 9116
793fbca5
JD
9117When run, @command{bison} will create several entities in the @samp{yy}
9118namespace.
67501061 9119@findex %define api.namespace
35c1e5f0
JD
9120Use the @samp{%define api.namespace} directive to change the namespace name,
9121see @ref{%define Summary,,api.namespace}. The various classes are generated
9122in the following files:
aa08666d 9123
12545799
AD
9124@table @file
9125@item position.hh
9126@itemx location.hh
9127The definition of the classes @code{position} and @code{location},
3cdc21cf 9128used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9129
9130@item stack.hh
9131An auxiliary class @code{stack} used by the parser.
9132
fa4d969f
PE
9133@item @var{file}.hh
9134@itemx @var{file}.cc
ff7571c0 9135(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9136declaration and implementation of the C++ parser class. The basename
9137and extension of these two files follow the same rules as with regular C
9138parsers (@pxref{Invocation}).
12545799 9139
cd8b5791
AD
9140The header is @emph{mandatory}; you must either pass
9141@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9142@samp{%defines} directive.
9143@end table
9144
9145All these files are documented using Doxygen; run @command{doxygen}
9146for a complete and accurate documentation.
9147
9148@node C++ Semantic Values
9149@subsection C++ Semantic Values
9150@c - No objects in unions
178e123e 9151@c - YYSTYPE
12545799
AD
9152@c - Printer and destructor
9153
3cdc21cf
AD
9154Bison supports two different means to handle semantic values in C++. One is
9155alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9156practitioners know, unions are inconvenient in C++, therefore another
9157approach is provided, based on variants (@pxref{C++ Variants}).
9158
9159@menu
9160* C++ Unions:: Semantic values cannot be objects
9161* C++ Variants:: Using objects as semantic values
9162@end menu
9163
9164@node C++ Unions
9165@subsubsection C++ Unions
9166
12545799
AD
9167The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9168Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9169@code{union}, which have a few specific features in C++.
12545799
AD
9170@itemize @minus
9171@item
fb9712a9
AD
9172The type @code{YYSTYPE} is defined but its use is discouraged: rather
9173you should refer to the parser's encapsulated type
9174@code{yy::parser::semantic_type}.
12545799
AD
9175@item
9176Non POD (Plain Old Data) types cannot be used. C++ forbids any
9177instance of classes with constructors in unions: only @emph{pointers}
9178to such objects are allowed.
9179@end itemize
9180
9181Because objects have to be stored via pointers, memory is not
9182reclaimed automatically: using the @code{%destructor} directive is the
9183only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9184Symbols}.
9185
3cdc21cf
AD
9186@node C++ Variants
9187@subsubsection C++ Variants
9188
9189Starting with version 2.6, Bison provides a @emph{variant} based
9190implementation of semantic values for C++. This alleviates all the
9191limitations reported in the previous section, and in particular, object
9192types can be used without pointers.
9193
9194To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9195@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9196@code{%union} is ignored, and instead of using the name of the fields of the
9197@code{%union} to ``type'' the symbols, use genuine types.
9198
9199For instance, instead of
9200
9201@example
9202%union
9203@{
9204 int ival;
9205 std::string* sval;
9206@}
9207%token <ival> NUMBER;
9208%token <sval> STRING;
9209@end example
9210
9211@noindent
9212write
9213
9214@example
9215%token <int> NUMBER;
9216%token <std::string> STRING;
9217@end example
9218
9219@code{STRING} is no longer a pointer, which should fairly simplify the user
9220actions in the grammar and in the scanner (in particular the memory
9221management).
9222
9223Since C++ features destructors, and since it is customary to specialize
9224@code{operator<<} to support uniform printing of values, variants also
9225typically simplify Bison printers and destructors.
9226
9227Variants are stricter than unions. When based on unions, you may play any
9228dirty game with @code{yylval}, say storing an @code{int}, reading a
9229@code{char*}, and then storing a @code{double} in it. This is no longer
9230possible with variants: they must be initialized, then assigned to, and
9231eventually, destroyed.
9232
9233@deftypemethod {semantic_type} {T&} build<T> ()
9234Initialize, but leave empty. Returns the address where the actual value may
9235be stored. Requires that the variant was not initialized yet.
9236@end deftypemethod
9237
9238@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9239Initialize, and copy-construct from @var{t}.
9240@end deftypemethod
9241
9242
9243@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9244appeared unacceptable to require Boost on the user's machine (i.e., the
9245machine on which the generated parser will be compiled, not the machine on
9246which @command{bison} was run). Second, for each possible semantic value,
9247Boost.Variant not only stores the value, but also a tag specifying its
9248type. But the parser already ``knows'' the type of the semantic value, so
9249that would be duplicating the information.
9250
9251Therefore we developed light-weight variants whose type tag is external (so
9252they are really like @code{unions} for C++ actually). But our code is much
9253less mature that Boost.Variant. So there is a number of limitations in
9254(the current implementation of) variants:
9255@itemize
9256@item
9257Alignment must be enforced: values should be aligned in memory according to
9258the most demanding type. Computing the smallest alignment possible requires
9259meta-programming techniques that are not currently implemented in Bison, and
9260therefore, since, as far as we know, @code{double} is the most demanding
9261type on all platforms, alignments are enforced for @code{double} whatever
9262types are actually used. This may waste space in some cases.
9263
9264@item
9265Our implementation is not conforming with strict aliasing rules. Alias
9266analysis is a technique used in optimizing compilers to detect when two
9267pointers are disjoint (they cannot ``meet''). Our implementation breaks
9268some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9269alias analysis must be disabled}. Use the option
9270@option{-fno-strict-aliasing} to compile the generated parser.
9271
9272@item
9273There might be portability issues we are not aware of.
9274@end itemize
9275
a6ca4ce2 9276As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9277is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9278
9279@node C++ Location Values
9280@subsection C++ Location Values
9281@c - %locations
9282@c - class Position
9283@c - class Location
16dc6a9e 9284@c - %define filename_type "const symbol::Symbol"
12545799
AD
9285
9286When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9287location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9288define a @code{position}, a single point in a file, and a @code{location}, a
9289range composed of a pair of @code{position}s (possibly spanning several
9290files).
12545799 9291
fa4d969f 9292@deftypemethod {position} {std::string*} file
12545799
AD
9293The name of the file. It will always be handled as a pointer, the
9294parser will never duplicate nor deallocate it. As an experimental
9295feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9296filename_type "@var{type}"}.
12545799
AD
9297@end deftypemethod
9298
9299@deftypemethod {position} {unsigned int} line
9300The line, starting at 1.
9301@end deftypemethod
9302
9303@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
9304Advance by @var{height} lines, resetting the column number.
9305@end deftypemethod
9306
9307@deftypemethod {position} {unsigned int} column
9308The column, starting at 0.
9309@end deftypemethod
9310
9311@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
9312Advance by @var{width} columns, without changing the line number.
9313@end deftypemethod
9314
9315@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
9316@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
9317@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
9318@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
9319Various forms of syntactic sugar for @code{columns}.
9320@end deftypemethod
9321
9322@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
9323Report @var{p} on @var{o} like this:
fa4d969f
PE
9324@samp{@var{file}:@var{line}.@var{column}}, or
9325@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
9326@end deftypemethod
9327
9328@deftypemethod {location} {position} begin
9329@deftypemethodx {location} {position} end
9330The first, inclusive, position of the range, and the first beyond.
9331@end deftypemethod
9332
9333@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
9334@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
9335Advance the @code{end} position.
9336@end deftypemethod
9337
9338@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
9339@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
9340@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
9341Various forms of syntactic sugar.
9342@end deftypemethod
9343
9344@deftypemethod {location} {void} step ()
9345Move @code{begin} onto @code{end}.
9346@end deftypemethod
9347
9348
9349@node C++ Parser Interface
9350@subsection C++ Parser Interface
9351@c - define parser_class_name
9352@c - Ctor
9353@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9354@c debug_stream.
9355@c - Reporting errors
9356
9357The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9358declare and define the parser class in the namespace @code{yy}. The
9359class name defaults to @code{parser}, but may be changed using
16dc6a9e 9360@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9361this class is detailed below. It can be extended using the
12545799
AD
9362@code{%parse-param} feature: its semantics is slightly changed since
9363it describes an additional member of the parser class, and an
9364additional argument for its constructor.
9365
3cdc21cf
AD
9366@defcv {Type} {parser} {semantic_type}
9367@defcvx {Type} {parser} {location_type}
9368The types for semantic values and locations (if enabled).
9369@end defcv
9370
86e5b440 9371@defcv {Type} {parser} {token}
aaaa2aae
AD
9372A structure that contains (only) the @code{yytokentype} enumeration, which
9373defines the tokens. To refer to the token @code{FOO},
9374use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
9375@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9376(@pxref{Calc++ Scanner}).
9377@end defcv
9378
3cdc21cf
AD
9379@defcv {Type} {parser} {syntax_error}
9380This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9381from the scanner or from the user actions to raise parse errors. This is
9382equivalent with first
3cdc21cf
AD
9383invoking @code{error} to report the location and message of the syntax
9384error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9385But contrary to @code{YYERROR} which can only be invoked from user actions
9386(i.e., written in the action itself), the exception can be thrown from
9387function invoked from the user action.
8a0adb01 9388@end defcv
12545799
AD
9389
9390@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9391Build a new parser object. There are no arguments by default, unless
9392@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9393@end deftypemethod
9394
3cdc21cf
AD
9395@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9396@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9397Instantiate a syntax-error exception.
9398@end deftypemethod
9399
12545799
AD
9400@deftypemethod {parser} {int} parse ()
9401Run the syntactic analysis, and return 0 on success, 1 otherwise.
9402@end deftypemethod
9403
9404@deftypemethod {parser} {std::ostream&} debug_stream ()
9405@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9406Get or set the stream used for tracing the parsing. It defaults to
9407@code{std::cerr}.
9408@end deftypemethod
9409
9410@deftypemethod {parser} {debug_level_type} debug_level ()
9411@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9412Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9413or nonzero, full tracing.
12545799
AD
9414@end deftypemethod
9415
9416@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9417@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9418The definition for this member function must be supplied by the user:
9419the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9420described by @var{m}. If location tracking is not enabled, the second
9421signature is used.
12545799
AD
9422@end deftypemethod
9423
9424
9425@node C++ Scanner Interface
9426@subsection C++ Scanner Interface
9427@c - prefix for yylex.
9428@c - Pure interface to yylex
9429@c - %lex-param
9430
9431The parser invokes the scanner by calling @code{yylex}. Contrary to C
9432parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9433@samp{%define api.pure} directive. The actual interface with @code{yylex}
9434depends whether you use unions, or variants.
12545799 9435
3cdc21cf
AD
9436@menu
9437* Split Symbols:: Passing symbols as two/three components
9438* Complete Symbols:: Making symbols a whole
9439@end menu
9440
9441@node Split Symbols
9442@subsubsection Split Symbols
9443
9444Therefore the interface is as follows.
9445
86e5b440
AD
9446@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9447@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9448Return the next token. Its type is the return value, its semantic value and
9449location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9450@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9451@end deftypemethod
9452
3cdc21cf
AD
9453Note that when using variants, the interface for @code{yylex} is the same,
9454but @code{yylval} is handled differently.
9455
9456Regular union-based code in Lex scanner typically look like:
9457
9458@example
9459[0-9]+ @{
9460 yylval.ival = text_to_int (yytext);
9461 return yy::parser::INTEGER;
9462 @}
9463[a-z]+ @{
9464 yylval.sval = new std::string (yytext);
9465 return yy::parser::IDENTIFIER;
9466 @}
9467@end example
9468
9469Using variants, @code{yylval} is already constructed, but it is not
9470initialized. So the code would look like:
9471
9472@example
9473[0-9]+ @{
9474 yylval.build<int>() = text_to_int (yytext);
9475 return yy::parser::INTEGER;
9476 @}
9477[a-z]+ @{
9478 yylval.build<std::string> = yytext;
9479 return yy::parser::IDENTIFIER;
9480 @}
9481@end example
9482
9483@noindent
9484or
9485
9486@example
9487[0-9]+ @{
9488 yylval.build(text_to_int (yytext));
9489 return yy::parser::INTEGER;
9490 @}
9491[a-z]+ @{
9492 yylval.build(yytext);
9493 return yy::parser::IDENTIFIER;
9494 @}
9495@end example
9496
9497
9498@node Complete Symbols
9499@subsubsection Complete Symbols
9500
9501If you specified both @code{%define variant} and @code{%define lex_symbol},
9502the @code{parser} class also defines the class @code{parser::symbol_type}
9503which defines a @emph{complete} symbol, aggregating its type (i.e., the
9504traditional value returned by @code{yylex}), its semantic value (i.e., the
9505value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9506
9507@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9508Build a complete terminal symbol which token type is @var{type}, and which
9509semantic value is @var{value}. If location tracking is enabled, also pass
9510the @var{location}.
9511@end deftypemethod
9512
9513This interface is low-level and should not be used for two reasons. First,
9514it is inconvenient, as you still have to build the semantic value, which is
9515a variant, and second, because consistency is not enforced: as with unions,
9516it is still possible to give an integer as semantic value for a string.
9517
9518So for each token type, Bison generates named constructors as follows.
9519
9520@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9521@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9522Build a complete terminal symbol for the token type @var{token} (not
9523including the @code{api.tokens.prefix}) whose possible semantic value is
9524@var{value} of adequate @var{value_type}. If location tracking is enabled,
9525also pass the @var{location}.
9526@end deftypemethod
9527
9528For instance, given the following declarations:
9529
9530@example
9531%define api.tokens.prefix "TOK_"
9532%token <std::string> IDENTIFIER;
9533%token <int> INTEGER;
9534%token COLON;
9535@end example
9536
9537@noindent
9538Bison generates the following functions:
9539
9540@example
9541symbol_type make_IDENTIFIER(const std::string& v,
9542 const location_type& l);
9543symbol_type make_INTEGER(const int& v,
9544 const location_type& loc);
9545symbol_type make_COLON(const location_type& loc);
9546@end example
9547
9548@noindent
9549which should be used in a Lex-scanner as follows.
9550
9551@example
9552[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9553[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9554":" return yy::parser::make_COLON(loc);
9555@end example
9556
9557Tokens that do not have an identifier are not accessible: you cannot simply
9558use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9559
9560@node A Complete C++ Example
8405b70c 9561@subsection A Complete C++ Example
12545799
AD
9562
9563This section demonstrates the use of a C++ parser with a simple but
9564complete example. This example should be available on your system,
3cdc21cf 9565ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9566focuses on the use of Bison, therefore the design of the various C++
9567classes is very naive: no accessors, no encapsulation of members etc.
9568We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9569demonstrate the various interactions. A hand-written scanner is
12545799
AD
9570actually easier to interface with.
9571
9572@menu
9573* Calc++ --- C++ Calculator:: The specifications
9574* Calc++ Parsing Driver:: An active parsing context
9575* Calc++ Parser:: A parser class
9576* Calc++ Scanner:: A pure C++ Flex scanner
9577* Calc++ Top Level:: Conducting the band
9578@end menu
9579
9580@node Calc++ --- C++ Calculator
8405b70c 9581@subsubsection Calc++ --- C++ Calculator
12545799
AD
9582
9583Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9584expression, possibly preceded by variable assignments. An
12545799
AD
9585environment containing possibly predefined variables such as
9586@code{one} and @code{two}, is exchanged with the parser. An example
9587of valid input follows.
9588
9589@example
9590three := 3
9591seven := one + two * three
9592seven * seven
9593@end example
9594
9595@node Calc++ Parsing Driver
8405b70c 9596@subsubsection Calc++ Parsing Driver
12545799
AD
9597@c - An env
9598@c - A place to store error messages
9599@c - A place for the result
9600
9601To support a pure interface with the parser (and the scanner) the
9602technique of the ``parsing context'' is convenient: a structure
9603containing all the data to exchange. Since, in addition to simply
9604launch the parsing, there are several auxiliary tasks to execute (open
9605the file for parsing, instantiate the parser etc.), we recommend
9606transforming the simple parsing context structure into a fully blown
9607@dfn{parsing driver} class.
9608
9609The declaration of this driver class, @file{calc++-driver.hh}, is as
9610follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9611required standard library components, and the declaration of the parser
9612class.
12545799 9613
1c59e0a1 9614@comment file: calc++-driver.hh
12545799
AD
9615@example
9616#ifndef CALCXX_DRIVER_HH
9617# define CALCXX_DRIVER_HH
9618# include <string>
9619# include <map>
fb9712a9 9620# include "calc++-parser.hh"
12545799
AD
9621@end example
9622
12545799
AD
9623
9624@noindent
9625Then comes the declaration of the scanning function. Flex expects
9626the signature of @code{yylex} to be defined in the macro
9627@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9628factor both as follows.
1c59e0a1
AD
9629
9630@comment file: calc++-driver.hh
12545799 9631@example
3dc5e96b 9632// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9633# define YY_DECL \
9634 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9635// ... and declare it for the parser's sake.
9636YY_DECL;
9637@end example
9638
9639@noindent
9640The @code{calcxx_driver} class is then declared with its most obvious
9641members.
9642
1c59e0a1 9643@comment file: calc++-driver.hh
12545799
AD
9644@example
9645// Conducting the whole scanning and parsing of Calc++.
9646class calcxx_driver
9647@{
9648public:
9649 calcxx_driver ();
9650 virtual ~calcxx_driver ();
9651
9652 std::map<std::string, int> variables;
9653
9654 int result;
9655@end example
9656
9657@noindent
3cdc21cf
AD
9658To encapsulate the coordination with the Flex scanner, it is useful to have
9659member functions to open and close the scanning phase.
12545799 9660
1c59e0a1 9661@comment file: calc++-driver.hh
12545799
AD
9662@example
9663 // Handling the scanner.
9664 void scan_begin ();
9665 void scan_end ();
9666 bool trace_scanning;
9667@end example
9668
9669@noindent
9670Similarly for the parser itself.
9671
1c59e0a1 9672@comment file: calc++-driver.hh
12545799 9673@example
3cdc21cf
AD
9674 // Run the parser on file F.
9675 // Return 0 on success.
bb32f4f2 9676 int parse (const std::string& f);
3cdc21cf
AD
9677 // The name of the file being parsed.
9678 // Used later to pass the file name to the location tracker.
12545799 9679 std::string file;
3cdc21cf 9680 // Whether parser traces should be generated.
12545799
AD
9681 bool trace_parsing;
9682@end example
9683
9684@noindent
9685To demonstrate pure handling of parse errors, instead of simply
9686dumping them on the standard error output, we will pass them to the
9687compiler driver using the following two member functions. Finally, we
9688close the class declaration and CPP guard.
9689
1c59e0a1 9690@comment file: calc++-driver.hh
12545799
AD
9691@example
9692 // Error handling.
9693 void error (const yy::location& l, const std::string& m);
9694 void error (const std::string& m);
9695@};
9696#endif // ! CALCXX_DRIVER_HH
9697@end example
9698
9699The implementation of the driver is straightforward. The @code{parse}
9700member function deserves some attention. The @code{error} functions
9701are simple stubs, they should actually register the located error
9702messages and set error state.
9703
1c59e0a1 9704@comment file: calc++-driver.cc
12545799
AD
9705@example
9706#include "calc++-driver.hh"
9707#include "calc++-parser.hh"
9708
9709calcxx_driver::calcxx_driver ()
9710 : trace_scanning (false), trace_parsing (false)
9711@{
9712 variables["one"] = 1;
9713 variables["two"] = 2;
9714@}
9715
9716calcxx_driver::~calcxx_driver ()
9717@{
9718@}
9719
bb32f4f2 9720int
12545799
AD
9721calcxx_driver::parse (const std::string &f)
9722@{
9723 file = f;
9724 scan_begin ();
9725 yy::calcxx_parser parser (*this);
9726 parser.set_debug_level (trace_parsing);
bb32f4f2 9727 int res = parser.parse ();
12545799 9728 scan_end ();
bb32f4f2 9729 return res;
12545799
AD
9730@}
9731
9732void
9733calcxx_driver::error (const yy::location& l, const std::string& m)
9734@{
9735 std::cerr << l << ": " << m << std::endl;
9736@}
9737
9738void
9739calcxx_driver::error (const std::string& m)
9740@{
9741 std::cerr << m << std::endl;
9742@}
9743@end example
9744
9745@node Calc++ Parser
8405b70c 9746@subsubsection Calc++ Parser
12545799 9747
ff7571c0
JD
9748The grammar file @file{calc++-parser.yy} starts by asking for the C++
9749deterministic parser skeleton, the creation of the parser header file,
9750and specifies the name of the parser class. Because the C++ skeleton
9751changed several times, it is safer to require the version you designed
9752the grammar for.
1c59e0a1
AD
9753
9754@comment file: calc++-parser.yy
12545799 9755@example
c93f22fc 9756%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9757%require "@value{VERSION}"
12545799 9758%defines
16dc6a9e 9759%define parser_class_name "calcxx_parser"
fb9712a9
AD
9760@end example
9761
3cdc21cf
AD
9762@noindent
9763@findex %define variant
9764@findex %define lex_symbol
9765This example will use genuine C++ objects as semantic values, therefore, we
9766require the variant-based interface. To make sure we properly use it, we
9767enable assertions. To fully benefit from type-safety and more natural
9768definition of ``symbol'', we enable @code{lex_symbol}.
9769
9770@comment file: calc++-parser.yy
9771@example
9772%define variant
9773%define parse.assert
9774%define lex_symbol
9775@end example
9776
fb9712a9 9777@noindent
16dc6a9e 9778@findex %code requires
3cdc21cf
AD
9779Then come the declarations/inclusions needed by the semantic values.
9780Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9781to include the header of the other, which is, of course, insane. This
3cdc21cf 9782mutual dependency will be broken using forward declarations. Because the
fb9712a9 9783driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9784particular its inner types), it is the parser's header which will use a
e0c07222 9785forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9786
9787@comment file: calc++-parser.yy
9788@example
3cdc21cf
AD
9789%code requires
9790@{
12545799 9791# include <string>
fb9712a9 9792class calcxx_driver;
9bc0dd67 9793@}
12545799
AD
9794@end example
9795
9796@noindent
9797The driver is passed by reference to the parser and to the scanner.
9798This provides a simple but effective pure interface, not relying on
9799global variables.
9800
1c59e0a1 9801@comment file: calc++-parser.yy
12545799
AD
9802@example
9803// The parsing context.
2055a44e 9804%param @{ calcxx_driver& driver @}
12545799
AD
9805@end example
9806
9807@noindent
2055a44e 9808Then we request location tracking, and initialize the
f50bfcd6 9809first location's file name. Afterward new locations are computed
12545799 9810relatively to the previous locations: the file name will be
2055a44e 9811propagated.
12545799 9812
1c59e0a1 9813@comment file: calc++-parser.yy
12545799
AD
9814@example
9815%locations
9816%initial-action
9817@{
9818 // Initialize the initial location.
b47dbebe 9819 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9820@};
9821@end example
9822
9823@noindent
7fceb615
JD
9824Use the following two directives to enable parser tracing and verbose error
9825messages. However, verbose error messages can contain incorrect information
9826(@pxref{LAC}).
12545799 9827
1c59e0a1 9828@comment file: calc++-parser.yy
12545799 9829@example
fa819509 9830%define parse.trace
cf499cff 9831%define parse.error verbose
12545799
AD
9832@end example
9833
fb9712a9 9834@noindent
136a0f76
PB
9835@findex %code
9836The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9837@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9838
9839@comment file: calc++-parser.yy
9840@example
3cdc21cf
AD
9841%code
9842@{
fb9712a9 9843# include "calc++-driver.hh"
34f98f46 9844@}
fb9712a9
AD
9845@end example
9846
9847
12545799
AD
9848@noindent
9849The token numbered as 0 corresponds to end of file; the following line
99c08fb6 9850allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
9851``$end''. Similarly user friendly names are provided for each symbol. To
9852avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
9853tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 9854
1c59e0a1 9855@comment file: calc++-parser.yy
12545799 9856@example
4c6622c2 9857%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9858%token
9859 END 0 "end of file"
9860 ASSIGN ":="
9861 MINUS "-"
9862 PLUS "+"
9863 STAR "*"
9864 SLASH "/"
9865 LPAREN "("
9866 RPAREN ")"
9867;
12545799
AD
9868@end example
9869
9870@noindent
3cdc21cf
AD
9871Since we use variant-based semantic values, @code{%union} is not used, and
9872both @code{%type} and @code{%token} expect genuine types, as opposed to type
9873tags.
12545799 9874
1c59e0a1 9875@comment file: calc++-parser.yy
12545799 9876@example
3cdc21cf
AD
9877%token <std::string> IDENTIFIER "identifier"
9878%token <int> NUMBER "number"
9879%type <int> exp
9880@end example
9881
9882@noindent
9883No @code{%destructor} is needed to enable memory deallocation during error
9884recovery; the memory, for strings for instance, will be reclaimed by the
9885regular destructors. All the values are printed using their
9886@code{operator<<}.
12545799 9887
3cdc21cf
AD
9888@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9889@comment file: calc++-parser.yy
9890@example
9891%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9892@end example
9893
9894@noindent
3cdc21cf
AD
9895The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9896Location Tracking Calculator: @code{ltcalc}}).
12545799 9897
1c59e0a1 9898@comment file: calc++-parser.yy
12545799
AD
9899@example
9900%%
9901%start unit;
9902unit: assignments exp @{ driver.result = $2; @};
9903
99c08fb6
AD
9904assignments:
9905 assignments assignment @{@}
9906| /* Nothing. */ @{@};
12545799 9907
3dc5e96b 9908assignment:
3cdc21cf 9909 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9910
3cdc21cf
AD
9911%left "+" "-";
9912%left "*" "/";
99c08fb6 9913exp:
3cdc21cf
AD
9914 exp "+" exp @{ $$ = $1 + $3; @}
9915| exp "-" exp @{ $$ = $1 - $3; @}
9916| exp "*" exp @{ $$ = $1 * $3; @}
9917| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9918| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9919| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9920| "number" @{ std::swap ($$, $1); @};
12545799
AD
9921%%
9922@end example
9923
9924@noindent
9925Finally the @code{error} member function registers the errors to the
9926driver.
9927
1c59e0a1 9928@comment file: calc++-parser.yy
12545799
AD
9929@example
9930void
3cdc21cf 9931yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9932 const std::string& m)
12545799
AD
9933@{
9934 driver.error (l, m);
9935@}
9936@end example
9937
9938@node Calc++ Scanner
8405b70c 9939@subsubsection Calc++ Scanner
12545799
AD
9940
9941The Flex scanner first includes the driver declaration, then the
9942parser's to get the set of defined tokens.
9943
1c59e0a1 9944@comment file: calc++-scanner.ll
12545799 9945@example
c93f22fc 9946%@{ /* -*- C++ -*- */
3c248d70
AD
9947# include <cerrno>
9948# include <climits>
3cdc21cf 9949# include <cstdlib>
12545799
AD
9950# include <string>
9951# include "calc++-driver.hh"
9952# include "calc++-parser.hh"
eaea13f5 9953
3cdc21cf
AD
9954// Work around an incompatibility in flex (at least versions
9955// 2.5.31 through 2.5.33): it generates code that does
9956// not conform to C89. See Debian bug 333231
9957// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9958# undef yywrap
9959# define yywrap() 1
eaea13f5 9960
3cdc21cf
AD
9961// The location of the current token.
9962static yy::location loc;
12545799
AD
9963%@}
9964@end example
9965
9966@noindent
9967Because there is no @code{#include}-like feature we don't need
9968@code{yywrap}, we don't need @code{unput} either, and we parse an
9969actual file, this is not an interactive session with the user.
3cdc21cf 9970Finally, we enable scanner tracing.
12545799 9971
1c59e0a1 9972@comment file: calc++-scanner.ll
12545799
AD
9973@example
9974%option noyywrap nounput batch debug
9975@end example
9976
9977@noindent
9978Abbreviations allow for more readable rules.
9979
1c59e0a1 9980@comment file: calc++-scanner.ll
12545799
AD
9981@example
9982id [a-zA-Z][a-zA-Z_0-9]*
9983int [0-9]+
9984blank [ \t]
9985@end example
9986
9987@noindent
9d9b8b70 9988The following paragraph suffices to track locations accurately. Each
12545799 9989time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9990position. Then when a pattern is matched, its width is added to the end
9991column. When matching ends of lines, the end
12545799
AD
9992cursor is adjusted, and each time blanks are matched, the begin cursor
9993is moved onto the end cursor to effectively ignore the blanks
9994preceding tokens. Comments would be treated equally.
9995
1c59e0a1 9996@comment file: calc++-scanner.ll
12545799 9997@example
d4fca427 9998@group
828c373b 9999%@{
3cdc21cf
AD
10000 // Code run each time a pattern is matched.
10001 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10002%@}
d4fca427 10003@end group
12545799 10004%%
d4fca427 10005@group
12545799 10006%@{
3cdc21cf
AD
10007 // Code run each time yylex is called.
10008 loc.step ();
12545799 10009%@}
d4fca427 10010@end group
3cdc21cf
AD
10011@{blank@}+ loc.step ();
10012[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10013@end example
10014
10015@noindent
3cdc21cf 10016The rules are simple. The driver is used to report errors.
12545799 10017
1c59e0a1 10018@comment file: calc++-scanner.ll
12545799 10019@example
3cdc21cf
AD
10020"-" return yy::calcxx_parser::make_MINUS(loc);
10021"+" return yy::calcxx_parser::make_PLUS(loc);
10022"*" return yy::calcxx_parser::make_STAR(loc);
10023"/" return yy::calcxx_parser::make_SLASH(loc);
10024"(" return yy::calcxx_parser::make_LPAREN(loc);
10025")" return yy::calcxx_parser::make_RPAREN(loc);
10026":=" return yy::calcxx_parser::make_ASSIGN(loc);
10027
d4fca427 10028@group
04098407
PE
10029@{int@} @{
10030 errno = 0;
10031 long n = strtol (yytext, NULL, 10);
10032 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10033 driver.error (loc, "integer is out of range");
10034 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10035@}
d4fca427 10036@end group
3cdc21cf
AD
10037@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10038. driver.error (loc, "invalid character");
10039<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10040%%
10041@end example
10042
10043@noindent
3cdc21cf 10044Finally, because the scanner-related driver's member-functions depend
12545799
AD
10045on the scanner's data, it is simpler to implement them in this file.
10046
1c59e0a1 10047@comment file: calc++-scanner.ll
12545799 10048@example
d4fca427 10049@group
12545799
AD
10050void
10051calcxx_driver::scan_begin ()
10052@{
10053 yy_flex_debug = trace_scanning;
bb32f4f2
AD
10054 if (file == "-")
10055 yyin = stdin;
10056 else if (!(yyin = fopen (file.c_str (), "r")))
10057 @{
aaaa2aae 10058 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10059 exit (EXIT_FAILURE);
bb32f4f2 10060 @}
12545799 10061@}
d4fca427 10062@end group
12545799 10063
d4fca427 10064@group
12545799
AD
10065void
10066calcxx_driver::scan_end ()
10067@{
10068 fclose (yyin);
10069@}
d4fca427 10070@end group
12545799
AD
10071@end example
10072
10073@node Calc++ Top Level
8405b70c 10074@subsubsection Calc++ Top Level
12545799
AD
10075
10076The top level file, @file{calc++.cc}, poses no problem.
10077
1c59e0a1 10078@comment file: calc++.cc
12545799
AD
10079@example
10080#include <iostream>
10081#include "calc++-driver.hh"
10082
d4fca427 10083@group
12545799 10084int
fa4d969f 10085main (int argc, char *argv[])
12545799 10086@{
414c76a4 10087 int res = 0;
12545799
AD
10088 calcxx_driver driver;
10089 for (++argv; argv[0]; ++argv)
10090 if (*argv == std::string ("-p"))
10091 driver.trace_parsing = true;
10092 else if (*argv == std::string ("-s"))
10093 driver.trace_scanning = true;
bb32f4f2
AD
10094 else if (!driver.parse (*argv))
10095 std::cout << driver.result << std::endl;
414c76a4
AD
10096 else
10097 res = 1;
10098 return res;
12545799 10099@}
d4fca427 10100@end group
12545799
AD
10101@end example
10102
8405b70c
PB
10103@node Java Parsers
10104@section Java Parsers
10105
10106@menu
f5f419de
DJ
10107* Java Bison Interface:: Asking for Java parser generation
10108* Java Semantic Values:: %type and %token vs. Java
10109* Java Location Values:: The position and location classes
10110* Java Parser Interface:: Instantiating and running the parser
10111* Java Scanner Interface:: Specifying the scanner for the parser
10112* Java Action Features:: Special features for use in actions
10113* Java Differences:: Differences between C/C++ and Java Grammars
10114* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10115@end menu
10116
10117@node Java Bison Interface
10118@subsection Java Bison Interface
10119@c - %language "Java"
8405b70c 10120
59da312b
JD
10121(The current Java interface is experimental and may evolve.
10122More user feedback will help to stabilize it.)
10123
e254a580
DJ
10124The Java parser skeletons are selected using the @code{%language "Java"}
10125directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10126
e254a580 10127@c FIXME: Documented bug.
ff7571c0
JD
10128When generating a Java parser, @code{bison @var{basename}.y} will
10129create a single Java source file named @file{@var{basename}.java}
10130containing the parser implementation. Using a grammar file without a
10131@file{.y} suffix is currently broken. The basename of the parser
10132implementation file can be changed by the @code{%file-prefix}
10133directive or the @option{-p}/@option{--name-prefix} option. The
10134entire parser implementation file name can be changed by the
10135@code{%output} directive or the @option{-o}/@option{--output} option.
10136The parser implementation file contains a single class for the parser.
8405b70c 10137
e254a580 10138You can create documentation for generated parsers using Javadoc.
8405b70c 10139
e254a580
DJ
10140Contrary to C parsers, Java parsers do not use global variables; the
10141state of the parser is always local to an instance of the parser class.
10142Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10143and @samp{%define api.pure} directives does not do anything when used in
e254a580 10144Java.
8405b70c 10145
e254a580 10146Push parsers are currently unsupported in Java and @code{%define
67212941 10147api.push-pull} have no effect.
01b477c6 10148
8a4281b9 10149GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10150@code{glr-parser} directive.
10151
10152No header file can be generated for Java parsers. Do not use the
10153@code{%defines} directive or the @option{-d}/@option{--defines} options.
10154
10155@c FIXME: Possible code change.
fa819509
AD
10156Currently, support for tracing is always compiled
10157in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10158directives and the
e254a580
DJ
10159@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10160options have no effect. This may change in the future to eliminate
fa819509
AD
10161unused code in the generated parser, so use @samp{%define parse.trace}
10162explicitly
1979121c 10163if needed. Also, in the future the
e254a580
DJ
10164@code{%token-table} directive might enable a public interface to
10165access the token names and codes.
8405b70c 10166
09ccae9b 10167Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10168hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10169Try reducing the amount of code in actions and static initializers;
10170otherwise, report a bug so that the parser skeleton will be improved.
10171
10172
8405b70c
PB
10173@node Java Semantic Values
10174@subsection Java Semantic Values
10175@c - No %union, specify type in %type/%token.
10176@c - YYSTYPE
10177@c - Printer and destructor
10178
10179There is no @code{%union} directive in Java parsers. Instead, the
10180semantic values' types (class names) should be specified in the
10181@code{%type} or @code{%token} directive:
10182
10183@example
10184%type <Expression> expr assignment_expr term factor
10185%type <Integer> number
10186@end example
10187
10188By default, the semantic stack is declared to have @code{Object} members,
10189which means that the class types you specify can be of any class.
10190To improve the type safety of the parser, you can declare the common
67501061 10191superclass of all the semantic values using the @samp{%define stype}
e254a580 10192directive. For example, after the following declaration:
8405b70c
PB
10193
10194@example
e254a580 10195%define stype "ASTNode"
8405b70c
PB
10196@end example
10197
10198@noindent
10199any @code{%type} or @code{%token} specifying a semantic type which
10200is not a subclass of ASTNode, will cause a compile-time error.
10201
e254a580 10202@c FIXME: Documented bug.
8405b70c
PB
10203Types used in the directives may be qualified with a package name.
10204Primitive data types are accepted for Java version 1.5 or later. Note
10205that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10206Generic types may not be used; this is due to a limitation in the
10207implementation of Bison, and may change in future releases.
8405b70c
PB
10208
10209Java parsers do not support @code{%destructor}, since the language
10210adopts garbage collection. The parser will try to hold references
10211to semantic values for as little time as needed.
10212
10213Java parsers do not support @code{%printer}, as @code{toString()}
10214can be used to print the semantic values. This however may change
10215(in a backwards-compatible way) in future versions of Bison.
10216
10217
10218@node Java Location Values
10219@subsection Java Location Values
10220@c - %locations
10221@c - class Position
10222@c - class Location
10223
303834cc
JD
10224When the directive @code{%locations} is used, the Java parser supports
10225location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10226class defines a @dfn{position}, a single point in a file; Bison itself
10227defines a class representing a @dfn{location}, a range composed of a pair of
10228positions (possibly spanning several files). The location class is an inner
10229class of the parser; the name is @code{Location} by default, and may also be
10230renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10231
10232The location class treats the position as a completely opaque value.
10233By default, the class name is @code{Position}, but this can be changed
67501061 10234with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10235be supplied by the user.
8405b70c
PB
10236
10237
e254a580
DJ
10238@deftypeivar {Location} {Position} begin
10239@deftypeivarx {Location} {Position} end
8405b70c 10240The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10241@end deftypeivar
10242
10243@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10244Create a @code{Location} denoting an empty range located at a given point.
e254a580 10245@end deftypeop
8405b70c 10246
e254a580
DJ
10247@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10248Create a @code{Location} from the endpoints of the range.
10249@end deftypeop
10250
10251@deftypemethod {Location} {String} toString ()
8405b70c
PB
10252Prints the range represented by the location. For this to work
10253properly, the position class should override the @code{equals} and
10254@code{toString} methods appropriately.
10255@end deftypemethod
10256
10257
10258@node Java Parser Interface
10259@subsection Java Parser Interface
10260@c - define parser_class_name
10261@c - Ctor
10262@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10263@c debug_stream.
10264@c - Reporting errors
10265
e254a580
DJ
10266The name of the generated parser class defaults to @code{YYParser}. The
10267@code{YY} prefix may be changed using the @code{%name-prefix} directive
10268or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10269@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10270the class. The interface of this class is detailed below.
8405b70c 10271
e254a580 10272By default, the parser class has package visibility. A declaration
67501061 10273@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10274according to the Java language specification, the name of the @file{.java}
10275file should match the name of the class in this case. Similarly, you can
10276use @code{abstract}, @code{final} and @code{strictfp} with the
10277@code{%define} declaration to add other modifiers to the parser class.
67501061 10278A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10279be used to add any number of annotations to the parser class.
e254a580
DJ
10280
10281The Java package name of the parser class can be specified using the
67501061 10282@samp{%define package} directive. The superclass and the implemented
e254a580 10283interfaces of the parser class can be specified with the @code{%define
67501061 10284extends} and @samp{%define implements} directives.
e254a580
DJ
10285
10286The parser class defines an inner class, @code{Location}, that is used
10287for location tracking (see @ref{Java Location Values}), and a inner
10288interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10289these inner class/interface, and the members described in the interface
10290below, all the other members and fields are preceded with a @code{yy} or
10291@code{YY} prefix to avoid clashes with user code.
10292
e254a580
DJ
10293The parser class can be extended using the @code{%parse-param}
10294directive. Each occurrence of the directive will add a @code{protected
10295final} field to the parser class, and an argument to its constructor,
10296which initialize them automatically.
10297
e254a580
DJ
10298@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10299Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10300no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10301@code{%lex-param}s are used.
1979121c
DJ
10302
10303Use @code{%code init} for code added to the start of the constructor
10304body. This is especially useful to initialize superclasses. Use
f50bfcd6 10305@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10306@end deftypeop
10307
10308@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10309Build a new parser object using the specified scanner. There are no
2055a44e
AD
10310additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10311used.
e254a580
DJ
10312
10313If the scanner is defined by @code{%code lexer}, this constructor is
10314declared @code{protected} and is called automatically with a scanner
2055a44e 10315created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10316
10317Use @code{%code init} for code added to the start of the constructor
10318body. This is especially useful to initialize superclasses. Use
67501061 10319@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 10320@end deftypeop
8405b70c
PB
10321
10322@deftypemethod {YYParser} {boolean} parse ()
10323Run the syntactic analysis, and return @code{true} on success,
10324@code{false} otherwise.
10325@end deftypemethod
10326
1979121c
DJ
10327@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10328@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10329Get or set the option to produce verbose error messages. These are only
cf499cff 10330available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10331verbose error messages.
10332@end deftypemethod
10333
10334@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10335@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10336@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10337Print an error message using the @code{yyerror} method of the scanner
10338instance in use. The @code{Location} and @code{Position} parameters are
10339available only if location tracking is active.
10340@end deftypemethod
10341
01b477c6 10342@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10343During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10344from a syntax error.
10345@xref{Error Recovery}.
8405b70c
PB
10346@end deftypemethod
10347
10348@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10349@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10350Get or set the stream used for tracing the parsing. It defaults to
10351@code{System.err}.
10352@end deftypemethod
10353
10354@deftypemethod {YYParser} {int} getDebugLevel ()
10355@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10356Get or set the tracing level. Currently its value is either 0, no trace,
10357or nonzero, full tracing.
10358@end deftypemethod
10359
1979121c
DJ
10360@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10361@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10362Identify the Bison version and skeleton used to generate this parser.
10363@end deftypecv
10364
8405b70c
PB
10365
10366@node Java Scanner Interface
10367@subsection Java Scanner Interface
01b477c6 10368@c - %code lexer
8405b70c 10369@c - %lex-param
01b477c6 10370@c - Lexer interface
8405b70c 10371
e254a580
DJ
10372There are two possible ways to interface a Bison-generated Java parser
10373with a scanner: the scanner may be defined by @code{%code lexer}, or
10374defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10375@code{Lexer} inner interface of the parser class. This interface also
10376contain constants for all user-defined token names and the predefined
10377@code{EOF} token.
e254a580
DJ
10378
10379In the first case, the body of the scanner class is placed in
10380@code{%code lexer} blocks. If you want to pass parameters from the
10381parser constructor to the scanner constructor, specify them with
10382@code{%lex-param}; they are passed before @code{%parse-param}s to the
10383constructor.
01b477c6 10384
59c5ac72 10385In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10386which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10387The constructor of the parser object will then accept an object
10388implementing the interface; @code{%lex-param} is not used in this
10389case.
10390
10391In both cases, the scanner has to implement the following methods.
10392
e254a580
DJ
10393@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10394This method is defined by the user to emit an error message. The first
10395parameter is omitted if location tracking is not active. Its type can be
67501061 10396changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10397@end deftypemethod
10398
e254a580 10399@deftypemethod {Lexer} {int} yylex ()
8405b70c 10400Return the next token. Its type is the return value, its semantic
f50bfcd6 10401value and location are saved and returned by the their methods in the
e254a580
DJ
10402interface.
10403
67501061 10404Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10405Default is @code{java.io.IOException}.
8405b70c
PB
10406@end deftypemethod
10407
10408@deftypemethod {Lexer} {Position} getStartPos ()
10409@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10410Return respectively the first position of the last token that
10411@code{yylex} returned, and the first position beyond it. These
10412methods are not needed unless location tracking is active.
8405b70c 10413
67501061 10414The return type can be changed using @samp{%define position_type
8405b70c
PB
10415"@var{class-name}".}
10416@end deftypemethod
10417
10418@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10419Return the semantic value of the last token that yylex returned.
8405b70c 10420
67501061 10421The return type can be changed using @samp{%define stype
8405b70c
PB
10422"@var{class-name}".}
10423@end deftypemethod
10424
10425
e254a580
DJ
10426@node Java Action Features
10427@subsection Special Features for Use in Java Actions
10428
10429The following special constructs can be uses in Java actions.
10430Other analogous C action features are currently unavailable for Java.
10431
67501061 10432Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10433actions, and initial actions specified by @code{%initial-action}.
10434
10435@defvar $@var{n}
10436The semantic value for the @var{n}th component of the current rule.
10437This may not be assigned to.
10438@xref{Java Semantic Values}.
10439@end defvar
10440
10441@defvar $<@var{typealt}>@var{n}
10442Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10443@xref{Java Semantic Values}.
10444@end defvar
10445
10446@defvar $$
10447The semantic value for the grouping made by the current rule. As a
10448value, this is in the base type (@code{Object} or as specified by
67501061 10449@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10450casts are not allowed on the left-hand side of Java assignments.
10451Use an explicit Java cast if the correct subtype is needed.
10452@xref{Java Semantic Values}.
10453@end defvar
10454
10455@defvar $<@var{typealt}>$
10456Same as @code{$$} since Java always allow assigning to the base type.
10457Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10458for setting the value but there is currently no easy way to distinguish
10459these constructs.
10460@xref{Java Semantic Values}.
10461@end defvar
10462
10463@defvar @@@var{n}
10464The location information of the @var{n}th component of the current rule.
10465This may not be assigned to.
10466@xref{Java Location Values}.
10467@end defvar
10468
10469@defvar @@$
10470The location information of the grouping made by the current rule.
10471@xref{Java Location Values}.
10472@end defvar
10473
10474@deffn {Statement} {return YYABORT;}
10475Return immediately from the parser, indicating failure.
10476@xref{Java Parser Interface}.
10477@end deffn
8405b70c 10478
e254a580
DJ
10479@deffn {Statement} {return YYACCEPT;}
10480Return immediately from the parser, indicating success.
10481@xref{Java Parser Interface}.
10482@end deffn
8405b70c 10483
e254a580 10484@deffn {Statement} {return YYERROR;}
c265fd6b 10485Start error recovery without printing an error message.
e254a580
DJ
10486@xref{Error Recovery}.
10487@end deffn
8405b70c 10488
e254a580
DJ
10489@deftypefn {Function} {boolean} recovering ()
10490Return whether error recovery is being done. In this state, the parser
10491reads token until it reaches a known state, and then restarts normal
10492operation.
10493@xref{Error Recovery}.
10494@end deftypefn
8405b70c 10495
1979121c
DJ
10496@deftypefn {Function} {void} yyerror (String @var{msg})
10497@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10498@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10499Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10500instance in use. The @code{Location} and @code{Position} parameters are
10501available only if location tracking is active.
e254a580 10502@end deftypefn
8405b70c 10503
8405b70c 10504
8405b70c
PB
10505@node Java Differences
10506@subsection Differences between C/C++ and Java Grammars
10507
10508The different structure of the Java language forces several differences
10509between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10510section summarizes these differences.
8405b70c
PB
10511
10512@itemize
10513@item
01b477c6 10514Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10515@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10516macros. Instead, they should be preceded by @code{return} when they
10517appear in an action. The actual definition of these symbols is
8405b70c
PB
10518opaque to the Bison grammar, and it might change in the future. The
10519only meaningful operation that you can do, is to return them.
e254a580 10520See @pxref{Java Action Features}.
8405b70c
PB
10521
10522Note that of these three symbols, only @code{YYACCEPT} and
10523@code{YYABORT} will cause a return from the @code{yyparse}
10524method@footnote{Java parsers include the actions in a separate
10525method than @code{yyparse} in order to have an intuitive syntax that
10526corresponds to these C macros.}.
10527
e254a580
DJ
10528@item
10529Java lacks unions, so @code{%union} has no effect. Instead, semantic
10530values have a common base type: @code{Object} or as specified by
f50bfcd6 10531@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10532@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10533an union. The type of @code{$$}, even with angle brackets, is the base
10534type since Java casts are not allow on the left-hand side of assignments.
10535Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10536left-hand side of assignments. See @pxref{Java Semantic Values} and
10537@pxref{Java Action Features}.
10538
8405b70c 10539@item
f50bfcd6 10540The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10541@table @asis
10542@item @code{%code imports}
10543blocks are placed at the beginning of the Java source code. They may
10544include copyright notices. For a @code{package} declarations, it is
67501061 10545suggested to use @samp{%define package} instead.
8405b70c 10546
01b477c6
PB
10547@item unqualified @code{%code}
10548blocks are placed inside the parser class.
10549
10550@item @code{%code lexer}
10551blocks, if specified, should include the implementation of the
10552scanner. If there is no such block, the scanner can be any class
10553that implements the appropriate interface (see @pxref{Java Scanner
10554Interface}).
29553547 10555@end table
8405b70c
PB
10556
10557Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10558In particular, @code{%@{ @dots{} %@}} blocks should not be used
10559and may give an error in future versions of Bison.
10560
01b477c6 10561The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10562be used to define other classes used by the parser @emph{outside}
10563the parser class.
8405b70c
PB
10564@end itemize
10565
e254a580
DJ
10566
10567@node Java Declarations Summary
10568@subsection Java Declarations Summary
10569
10570This summary only include declarations specific to Java or have special
10571meaning when used in a Java parser.
10572
10573@deffn {Directive} {%language "Java"}
10574Generate a Java class for the parser.
10575@end deffn
10576
10577@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10578A parameter for the lexer class defined by @code{%code lexer}
10579@emph{only}, added as parameters to the lexer constructor and the parser
10580constructor that @emph{creates} a lexer. Default is none.
10581@xref{Java Scanner Interface}.
10582@end deffn
10583
10584@deffn {Directive} %name-prefix "@var{prefix}"
10585The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10586@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10587@xref{Java Bison Interface}.
10588@end deffn
10589
10590@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10591A parameter for the parser class added as parameters to constructor(s)
10592and as fields initialized by the constructor(s). Default is none.
10593@xref{Java Parser Interface}.
10594@end deffn
10595
10596@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10597Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10598@xref{Java Semantic Values}.
10599@end deffn
10600
10601@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10602Declare the type of nonterminals. Note that the angle brackets enclose
10603a Java @emph{type}.
10604@xref{Java Semantic Values}.
10605@end deffn
10606
10607@deffn {Directive} %code @{ @var{code} @dots{} @}
10608Code appended to the inside of the parser class.
10609@xref{Java Differences}.
10610@end deffn
10611
10612@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10613Code inserted just after the @code{package} declaration.
10614@xref{Java Differences}.
10615@end deffn
10616
1979121c
DJ
10617@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10618Code inserted at the beginning of the parser constructor body.
10619@xref{Java Parser Interface}.
10620@end deffn
10621
e254a580
DJ
10622@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10623Code added to the body of a inner lexer class within the parser class.
10624@xref{Java Scanner Interface}.
10625@end deffn
10626
10627@deffn {Directive} %% @var{code} @dots{}
10628Code (after the second @code{%%}) appended to the end of the file,
10629@emph{outside} the parser class.
10630@xref{Java Differences}.
10631@end deffn
10632
10633@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10634Not supported. Use @code{%code imports} instead.
e254a580
DJ
10635@xref{Java Differences}.
10636@end deffn
10637
10638@deffn {Directive} {%define abstract}
10639Whether the parser class is declared @code{abstract}. Default is false.
10640@xref{Java Bison Interface}.
10641@end deffn
10642
1979121c
DJ
10643@deffn {Directive} {%define annotations} "@var{annotations}"
10644The Java annotations for the parser class. Default is none.
10645@xref{Java Bison Interface}.
10646@end deffn
10647
e254a580
DJ
10648@deffn {Directive} {%define extends} "@var{superclass}"
10649The superclass of the parser class. Default is none.
10650@xref{Java Bison Interface}.
10651@end deffn
10652
10653@deffn {Directive} {%define final}
10654Whether the parser class is declared @code{final}. Default is false.
10655@xref{Java Bison Interface}.
10656@end deffn
10657
10658@deffn {Directive} {%define implements} "@var{interfaces}"
10659The implemented interfaces of the parser class, a comma-separated list.
10660Default is none.
10661@xref{Java Bison Interface}.
10662@end deffn
10663
1979121c
DJ
10664@deffn {Directive} {%define init_throws} "@var{exceptions}"
10665The exceptions thrown by @code{%code init} from the parser class
10666constructor. Default is none.
10667@xref{Java Parser Interface}.
10668@end deffn
10669
e254a580
DJ
10670@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10671The exceptions thrown by the @code{yylex} method of the lexer, a
10672comma-separated list. Default is @code{java.io.IOException}.
10673@xref{Java Scanner Interface}.
10674@end deffn
10675
10676@deffn {Directive} {%define location_type} "@var{class}"
10677The name of the class used for locations (a range between two
10678positions). This class is generated as an inner class of the parser
10679class by @command{bison}. Default is @code{Location}.
10680@xref{Java Location Values}.
10681@end deffn
10682
10683@deffn {Directive} {%define package} "@var{package}"
10684The package to put the parser class in. Default is none.
10685@xref{Java Bison Interface}.
10686@end deffn
10687
10688@deffn {Directive} {%define parser_class_name} "@var{name}"
10689The name of the parser class. Default is @code{YYParser} or
10690@code{@var{name-prefix}Parser}.
10691@xref{Java Bison Interface}.
10692@end deffn
10693
10694@deffn {Directive} {%define position_type} "@var{class}"
10695The name of the class used for positions. This class must be supplied by
10696the user. Default is @code{Position}.
10697@xref{Java Location Values}.
10698@end deffn
10699
10700@deffn {Directive} {%define public}
10701Whether the parser class is declared @code{public}. Default is false.
10702@xref{Java Bison Interface}.
10703@end deffn
10704
10705@deffn {Directive} {%define stype} "@var{class}"
10706The base type of semantic values. Default is @code{Object}.
10707@xref{Java Semantic Values}.
10708@end deffn
10709
10710@deffn {Directive} {%define strictfp}
10711Whether the parser class is declared @code{strictfp}. Default is false.
10712@xref{Java Bison Interface}.
10713@end deffn
10714
10715@deffn {Directive} {%define throws} "@var{exceptions}"
10716The exceptions thrown by user-supplied parser actions and
10717@code{%initial-action}, a comma-separated list. Default is none.
10718@xref{Java Parser Interface}.
10719@end deffn
10720
10721
12545799 10722@c ================================================= FAQ
d1a1114f
AD
10723
10724@node FAQ
10725@chapter Frequently Asked Questions
10726@cindex frequently asked questions
10727@cindex questions
10728
10729Several questions about Bison come up occasionally. Here some of them
10730are addressed.
10731
10732@menu
55ba27be
AD
10733* Memory Exhausted:: Breaking the Stack Limits
10734* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10735* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10736* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10737* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10738* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10739* I can't build Bison:: Troubleshooting
10740* Where can I find help?:: Troubleshouting
10741* Bug Reports:: Troublereporting
8405b70c 10742* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10743* Beta Testing:: Experimenting development versions
10744* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10745@end menu
10746
1a059451
PE
10747@node Memory Exhausted
10748@section Memory Exhausted
d1a1114f 10749
71b52b13 10750@quotation
1a059451 10751My parser returns with error with a @samp{memory exhausted}
d1a1114f 10752message. What can I do?
71b52b13 10753@end quotation
d1a1114f
AD
10754
10755This question is already addressed elsewhere, @xref{Recursion,
10756,Recursive Rules}.
10757
e64fec0a
PE
10758@node How Can I Reset the Parser
10759@section How Can I Reset the Parser
5b066063 10760
0e14ad77
PE
10761The following phenomenon has several symptoms, resulting in the
10762following typical questions:
5b066063 10763
71b52b13 10764@quotation
5b066063
AD
10765I invoke @code{yyparse} several times, and on correct input it works
10766properly; but when a parse error is found, all the other calls fail
0e14ad77 10767too. How can I reset the error flag of @code{yyparse}?
71b52b13 10768@end quotation
5b066063
AD
10769
10770@noindent
10771or
10772
71b52b13 10773@quotation
0e14ad77 10774My parser includes support for an @samp{#include}-like feature, in
5b066063 10775which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10776although I did specify @samp{%define api.pure}.
71b52b13 10777@end quotation
5b066063 10778
0e14ad77
PE
10779These problems typically come not from Bison itself, but from
10780Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10781speed, they might not notice a change of input file. As a
10782demonstration, consider the following source file,
10783@file{first-line.l}:
10784
d4fca427
AD
10785@example
10786@group
10787%@{
5b066063
AD
10788#include <stdio.h>
10789#include <stdlib.h>
d4fca427
AD
10790%@}
10791@end group
5b066063
AD
10792%%
10793.*\n ECHO; return 1;
10794%%
d4fca427 10795@group
5b066063 10796int
0e14ad77 10797yyparse (char const *file)
d4fca427 10798@{
5b066063
AD
10799 yyin = fopen (file, "r");
10800 if (!yyin)
d4fca427
AD
10801 @{
10802 perror ("fopen");
10803 exit (EXIT_FAILURE);
10804 @}
10805@end group
10806@group
fa7e68c3 10807 /* One token only. */
5b066063 10808 yylex ();
0e14ad77 10809 if (fclose (yyin) != 0)
d4fca427
AD
10810 @{
10811 perror ("fclose");
10812 exit (EXIT_FAILURE);
10813 @}
5b066063 10814 return 0;
d4fca427
AD
10815@}
10816@end group
5b066063 10817
d4fca427 10818@group
5b066063 10819int
0e14ad77 10820main (void)
d4fca427 10821@{
5b066063
AD
10822 yyparse ("input");
10823 yyparse ("input");
10824 return 0;
d4fca427
AD
10825@}
10826@end group
10827@end example
5b066063
AD
10828
10829@noindent
10830If the file @file{input} contains
10831
71b52b13 10832@example
5b066063
AD
10833input:1: Hello,
10834input:2: World!
71b52b13 10835@end example
5b066063
AD
10836
10837@noindent
0e14ad77 10838then instead of getting the first line twice, you get:
5b066063
AD
10839
10840@example
10841$ @kbd{flex -ofirst-line.c first-line.l}
10842$ @kbd{gcc -ofirst-line first-line.c -ll}
10843$ @kbd{./first-line}
10844input:1: Hello,
10845input:2: World!
10846@end example
10847
0e14ad77
PE
10848Therefore, whenever you change @code{yyin}, you must tell the
10849Lex-generated scanner to discard its current buffer and switch to the
10850new one. This depends upon your implementation of Lex; see its
10851documentation for more. For Flex, it suffices to call
10852@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10853Flex-generated scanner needs to read from several input streams to
10854handle features like include files, you might consider using Flex
10855functions like @samp{yy_switch_to_buffer} that manipulate multiple
10856input buffers.
5b066063 10857
b165c324
AD
10858If your Flex-generated scanner uses start conditions (@pxref{Start
10859conditions, , Start conditions, flex, The Flex Manual}), you might
10860also want to reset the scanner's state, i.e., go back to the initial
10861start condition, through a call to @samp{BEGIN (0)}.
10862
fef4cb51
AD
10863@node Strings are Destroyed
10864@section Strings are Destroyed
10865
71b52b13 10866@quotation
c7e441b4 10867My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10868them. Instead of reporting @samp{"foo", "bar"}, it reports
10869@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 10870@end quotation
fef4cb51
AD
10871
10872This error is probably the single most frequent ``bug report'' sent to
10873Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10874of the scanner. Consider the following Lex code:
fef4cb51 10875
71b52b13 10876@example
d4fca427 10877@group
71b52b13 10878%@{
fef4cb51
AD
10879#include <stdio.h>
10880char *yylval = NULL;
71b52b13 10881%@}
d4fca427
AD
10882@end group
10883@group
fef4cb51
AD
10884%%
10885.* yylval = yytext; return 1;
10886\n /* IGNORE */
10887%%
d4fca427
AD
10888@end group
10889@group
fef4cb51
AD
10890int
10891main ()
71b52b13 10892@{
fa7e68c3 10893 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10894 char *fst = (yylex (), yylval);
10895 char *snd = (yylex (), yylval);
10896 printf ("\"%s\", \"%s\"\n", fst, snd);
10897 return 0;
71b52b13 10898@}
d4fca427 10899@end group
71b52b13 10900@end example
fef4cb51
AD
10901
10902If you compile and run this code, you get:
10903
10904@example
10905$ @kbd{flex -osplit-lines.c split-lines.l}
10906$ @kbd{gcc -osplit-lines split-lines.c -ll}
10907$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10908"one
10909two", "two"
10910@end example
10911
10912@noindent
10913this is because @code{yytext} is a buffer provided for @emph{reading}
10914in the action, but if you want to keep it, you have to duplicate it
10915(e.g., using @code{strdup}). Note that the output may depend on how
10916your implementation of Lex handles @code{yytext}. For instance, when
10917given the Lex compatibility option @option{-l} (which triggers the
10918option @samp{%array}) Flex generates a different behavior:
10919
10920@example
10921$ @kbd{flex -l -osplit-lines.c split-lines.l}
10922$ @kbd{gcc -osplit-lines split-lines.c -ll}
10923$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10924"two", "two"
10925@end example
10926
10927
2fa09258
AD
10928@node Implementing Gotos/Loops
10929@section Implementing Gotos/Loops
a06ea4aa 10930
71b52b13 10931@quotation
a06ea4aa 10932My simple calculator supports variables, assignments, and functions,
2fa09258 10933but how can I implement gotos, or loops?
71b52b13 10934@end quotation
a06ea4aa
AD
10935
10936Although very pedagogical, the examples included in the document blur
a1c84f45 10937the distinction to make between the parser---whose job is to recover
a06ea4aa 10938the structure of a text and to transmit it to subsequent modules of
a1c84f45 10939the program---and the processing (such as the execution) of this
a06ea4aa
AD
10940structure. This works well with so called straight line programs,
10941i.e., precisely those that have a straightforward execution model:
10942execute simple instructions one after the others.
10943
10944@cindex abstract syntax tree
8a4281b9 10945@cindex AST
a06ea4aa
AD
10946If you want a richer model, you will probably need to use the parser
10947to construct a tree that does represent the structure it has
10948recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10949or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10950traversing it in various ways, will enable treatments such as its
10951execution or its translation, which will result in an interpreter or a
10952compiler.
10953
10954This topic is way beyond the scope of this manual, and the reader is
10955invited to consult the dedicated literature.
10956
10957
ed2e6384
AD
10958@node Multiple start-symbols
10959@section Multiple start-symbols
10960
71b52b13 10961@quotation
ed2e6384
AD
10962I have several closely related grammars, and I would like to share their
10963implementations. In fact, I could use a single grammar but with
10964multiple entry points.
71b52b13 10965@end quotation
ed2e6384
AD
10966
10967Bison does not support multiple start-symbols, but there is a very
10968simple means to simulate them. If @code{foo} and @code{bar} are the two
10969pseudo start-symbols, then introduce two new tokens, say
10970@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10971real start-symbol:
10972
10973@example
10974%token START_FOO START_BAR;
10975%start start;
10976start: START_FOO foo
10977 | START_BAR bar;
10978@end example
10979
10980These tokens prevents the introduction of new conflicts. As far as the
10981parser goes, that is all that is needed.
10982
10983Now the difficult part is ensuring that the scanner will send these
10984tokens first. If your scanner is hand-written, that should be
10985straightforward. If your scanner is generated by Lex, them there is
10986simple means to do it: recall that anything between @samp{%@{ ... %@}}
10987after the first @code{%%} is copied verbatim in the top of the generated
10988@code{yylex} function. Make sure a variable @code{start_token} is
10989available in the scanner (e.g., a global variable or using
10990@code{%lex-param} etc.), and use the following:
10991
10992@example
10993 /* @r{Prologue.} */
10994%%
10995%@{
10996 if (start_token)
10997 @{
10998 int t = start_token;
10999 start_token = 0;
11000 return t;
11001 @}
11002%@}
11003 /* @r{The rules.} */
11004@end example
11005
11006
55ba27be
AD
11007@node Secure? Conform?
11008@section Secure? Conform?
11009
71b52b13 11010@quotation
55ba27be 11011Is Bison secure? Does it conform to POSIX?
71b52b13 11012@end quotation
55ba27be
AD
11013
11014If you're looking for a guarantee or certification, we don't provide it.
11015However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11016POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11017please send us a bug report.
11018
11019@node I can't build Bison
11020@section I can't build Bison
11021
71b52b13 11022@quotation
8c5b881d
PE
11023I can't build Bison because @command{make} complains that
11024@code{msgfmt} is not found.
55ba27be 11025What should I do?
71b52b13 11026@end quotation
55ba27be
AD
11027
11028Like most GNU packages with internationalization support, that feature
11029is turned on by default. If you have problems building in the @file{po}
11030subdirectory, it indicates that your system's internationalization
11031support is lacking. You can re-configure Bison with
11032@option{--disable-nls} to turn off this support, or you can install GNU
11033gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11034Bison. See the file @file{ABOUT-NLS} for more information.
11035
11036
11037@node Where can I find help?
11038@section Where can I find help?
11039
71b52b13 11040@quotation
55ba27be 11041I'm having trouble using Bison. Where can I find help?
71b52b13 11042@end quotation
55ba27be
AD
11043
11044First, read this fine manual. Beyond that, you can send mail to
11045@email{help-bison@@gnu.org}. This mailing list is intended to be
11046populated with people who are willing to answer questions about using
11047and installing Bison. Please keep in mind that (most of) the people on
11048the list have aspects of their lives which are not related to Bison (!),
11049so you may not receive an answer to your question right away. This can
11050be frustrating, but please try not to honk them off; remember that any
11051help they provide is purely voluntary and out of the kindness of their
11052hearts.
11053
11054@node Bug Reports
11055@section Bug Reports
11056
71b52b13 11057@quotation
55ba27be 11058I found a bug. What should I include in the bug report?
71b52b13 11059@end quotation
55ba27be
AD
11060
11061Before you send a bug report, make sure you are using the latest
11062version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11063mirrors. Be sure to include the version number in your bug report. If
11064the bug is present in the latest version but not in a previous version,
11065try to determine the most recent version which did not contain the bug.
11066
11067If the bug is parser-related, you should include the smallest grammar
11068you can which demonstrates the bug. The grammar file should also be
11069complete (i.e., I should be able to run it through Bison without having
11070to edit or add anything). The smaller and simpler the grammar, the
11071easier it will be to fix the bug.
11072
11073Include information about your compilation environment, including your
11074operating system's name and version and your compiler's name and
11075version. If you have trouble compiling, you should also include a
11076transcript of the build session, starting with the invocation of
11077`configure'. Depending on the nature of the bug, you may be asked to
11078send additional files as well (such as `config.h' or `config.cache').
11079
11080Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11081send a bug report just because you cannot provide a fix.
55ba27be
AD
11082
11083Send bug reports to @email{bug-bison@@gnu.org}.
11084
8405b70c
PB
11085@node More Languages
11086@section More Languages
55ba27be 11087
71b52b13 11088@quotation
8405b70c 11089Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11090favorite language here}?
71b52b13 11091@end quotation
55ba27be 11092
8405b70c 11093C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11094languages; contributions are welcome.
11095
11096@node Beta Testing
11097@section Beta Testing
11098
71b52b13 11099@quotation
55ba27be 11100What is involved in being a beta tester?
71b52b13 11101@end quotation
55ba27be
AD
11102
11103It's not terribly involved. Basically, you would download a test
11104release, compile it, and use it to build and run a parser or two. After
11105that, you would submit either a bug report or a message saying that
11106everything is okay. It is important to report successes as well as
11107failures because test releases eventually become mainstream releases,
11108but only if they are adequately tested. If no one tests, development is
11109essentially halted.
11110
11111Beta testers are particularly needed for operating systems to which the
11112developers do not have easy access. They currently have easy access to
11113recent GNU/Linux and Solaris versions. Reports about other operating
11114systems are especially welcome.
11115
11116@node Mailing Lists
11117@section Mailing Lists
11118
71b52b13 11119@quotation
55ba27be 11120How do I join the help-bison and bug-bison mailing lists?
71b52b13 11121@end quotation
55ba27be
AD
11122
11123See @url{http://lists.gnu.org/}.
a06ea4aa 11124
d1a1114f
AD
11125@c ================================================= Table of Symbols
11126
342b8b6e 11127@node Table of Symbols
bfa74976
RS
11128@appendix Bison Symbols
11129@cindex Bison symbols, table of
11130@cindex symbols in Bison, table of
11131
18b519c0 11132@deffn {Variable} @@$
3ded9a63 11133In an action, the location of the left-hand side of the rule.
303834cc 11134@xref{Tracking Locations}.
18b519c0 11135@end deffn
3ded9a63 11136
18b519c0 11137@deffn {Variable} @@@var{n}
303834cc
JD
11138In an action, the location of the @var{n}-th symbol of the right-hand side
11139of the rule. @xref{Tracking Locations}.
18b519c0 11140@end deffn
3ded9a63 11141
d013372c 11142@deffn {Variable} @@@var{name}
303834cc
JD
11143In an action, the location of a symbol addressed by name. @xref{Tracking
11144Locations}.
d013372c
AR
11145@end deffn
11146
11147@deffn {Variable} @@[@var{name}]
303834cc
JD
11148In an action, the location of a symbol addressed by name. @xref{Tracking
11149Locations}.
d013372c
AR
11150@end deffn
11151
18b519c0 11152@deffn {Variable} $$
3ded9a63
AD
11153In an action, the semantic value of the left-hand side of the rule.
11154@xref{Actions}.
18b519c0 11155@end deffn
3ded9a63 11156
18b519c0 11157@deffn {Variable} $@var{n}
3ded9a63
AD
11158In an action, the semantic value of the @var{n}-th symbol of the
11159right-hand side of the rule. @xref{Actions}.
18b519c0 11160@end deffn
3ded9a63 11161
d013372c
AR
11162@deffn {Variable} $@var{name}
11163In an action, the semantic value of a symbol addressed by name.
11164@xref{Actions}.
11165@end deffn
11166
11167@deffn {Variable} $[@var{name}]
11168In an action, the semantic value of a symbol addressed by name.
11169@xref{Actions}.
11170@end deffn
11171
dd8d9022
AD
11172@deffn {Delimiter} %%
11173Delimiter used to separate the grammar rule section from the
11174Bison declarations section or the epilogue.
11175@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11176@end deffn
bfa74976 11177
dd8d9022
AD
11178@c Don't insert spaces, or check the DVI output.
11179@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11180All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11181to the parser implementation file. Such code forms the prologue of
11182the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11183Grammar}.
18b519c0 11184@end deffn
bfa74976 11185
ca2a6d15
PH
11186@deffn {Directive} %?@{@var{expression}@}
11187Predicate actions. This is a type of action clause that may appear in
11188rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11189GLR parsers during nondeterministic operation,
ca2a6d15
PH
11190this silently causes an alternative parse to die. During deterministic
11191operation, it is the same as the effect of YYERROR.
11192@xref{Semantic Predicates}.
11193
11194This feature is experimental.
11195More user feedback will help to determine whether it should become a permanent
11196feature.
11197@end deffn
11198
dd8d9022
AD
11199@deffn {Construct} /*@dots{}*/
11200Comment delimiters, as in C.
18b519c0 11201@end deffn
bfa74976 11202
dd8d9022
AD
11203@deffn {Delimiter} :
11204Separates a rule's result from its components. @xref{Rules, ,Syntax of
11205Grammar Rules}.
18b519c0 11206@end deffn
bfa74976 11207
dd8d9022
AD
11208@deffn {Delimiter} ;
11209Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11210@end deffn
bfa74976 11211
dd8d9022
AD
11212@deffn {Delimiter} |
11213Separates alternate rules for the same result nonterminal.
11214@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11215@end deffn
bfa74976 11216
12e35840
JD
11217@deffn {Directive} <*>
11218Used to define a default tagged @code{%destructor} or default tagged
11219@code{%printer}.
85894313
JD
11220
11221This feature is experimental.
11222More user feedback will help to determine whether it should become a permanent
11223feature.
11224
12e35840
JD
11225@xref{Destructor Decl, , Freeing Discarded Symbols}.
11226@end deffn
11227
3ebecc24 11228@deffn {Directive} <>
12e35840
JD
11229Used to define a default tagless @code{%destructor} or default tagless
11230@code{%printer}.
85894313
JD
11231
11232This feature is experimental.
11233More user feedback will help to determine whether it should become a permanent
11234feature.
11235
12e35840
JD
11236@xref{Destructor Decl, , Freeing Discarded Symbols}.
11237@end deffn
11238
dd8d9022
AD
11239@deffn {Symbol} $accept
11240The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11241$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11242Start-Symbol}. It cannot be used in the grammar.
18b519c0 11243@end deffn
bfa74976 11244
136a0f76 11245@deffn {Directive} %code @{@var{code}@}
148d66d8 11246@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11247Insert @var{code} verbatim into the output parser source at the
11248default location or at the location specified by @var{qualifier}.
e0c07222 11249@xref{%code Summary}.
9bc0dd67
JD
11250@end deffn
11251
11252@deffn {Directive} %debug
11253Equip the parser for debugging. @xref{Decl Summary}.
11254@end deffn
11255
91d2c560 11256@ifset defaultprec
22fccf95
PE
11257@deffn {Directive} %default-prec
11258Assign a precedence to rules that lack an explicit @samp{%prec}
11259modifier. @xref{Contextual Precedence, ,Context-Dependent
11260Precedence}.
39a06c25 11261@end deffn
91d2c560 11262@end ifset
39a06c25 11263
7fceb615
JD
11264@deffn {Directive} %define @var{variable}
11265@deffnx {Directive} %define @var{variable} @var{value}
11266@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11267Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11268@end deffn
11269
18b519c0 11270@deffn {Directive} %defines
ff7571c0
JD
11271Bison declaration to create a parser header file, which is usually
11272meant for the scanner. @xref{Decl Summary}.
18b519c0 11273@end deffn
6deb4447 11274
02975b9a
JD
11275@deffn {Directive} %defines @var{defines-file}
11276Same as above, but save in the file @var{defines-file}.
11277@xref{Decl Summary}.
11278@end deffn
11279
18b519c0 11280@deffn {Directive} %destructor
258b75ca 11281Specify how the parser should reclaim the memory associated to
fa7e68c3 11282discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11283@end deffn
72f889cc 11284
18b519c0 11285@deffn {Directive} %dprec
676385e2 11286Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11287time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11288GLR Parsers}.
18b519c0 11289@end deffn
676385e2 11290
dd8d9022
AD
11291@deffn {Symbol} $end
11292The predefined token marking the end of the token stream. It cannot be
11293used in the grammar.
11294@end deffn
11295
11296@deffn {Symbol} error
11297A token name reserved for error recovery. This token may be used in
11298grammar rules so as to allow the Bison parser to recognize an error in
11299the grammar without halting the process. In effect, a sentence
11300containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11301token @code{error} becomes the current lookahead token. Actions
11302corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11303token is reset to the token that originally caused the violation.
11304@xref{Error Recovery}.
18d192f0
AD
11305@end deffn
11306
18b519c0 11307@deffn {Directive} %error-verbose
7fceb615
JD
11308An obsolete directive standing for @samp{%define parse.error verbose}
11309(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11310@end deffn
2a8d363a 11311
02975b9a 11312@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11313Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11314Summary}.
18b519c0 11315@end deffn
d8988b2f 11316
18b519c0 11317@deffn {Directive} %glr-parser
8a4281b9
JD
11318Bison declaration to produce a GLR parser. @xref{GLR
11319Parsers, ,Writing GLR Parsers}.
18b519c0 11320@end deffn
676385e2 11321
dd8d9022
AD
11322@deffn {Directive} %initial-action
11323Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11324@end deffn
11325
e6e704dc
JD
11326@deffn {Directive} %language
11327Specify the programming language for the generated parser.
11328@xref{Decl Summary}.
11329@end deffn
11330
18b519c0 11331@deffn {Directive} %left
d78f0ac9 11332Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11333@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11334@end deffn
bfa74976 11335
2055a44e
AD
11336@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11337Bison declaration to specifying additional arguments that
2a8d363a
AD
11338@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11339for Pure Parsers}.
18b519c0 11340@end deffn
2a8d363a 11341
18b519c0 11342@deffn {Directive} %merge
676385e2 11343Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11344reduce/reduce conflict with a rule having the same merging function, the
676385e2 11345function is applied to the two semantic values to get a single result.
8a4281b9 11346@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11347@end deffn
676385e2 11348
02975b9a 11349@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11350Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11351@end deffn
d8988b2f 11352
91d2c560 11353@ifset defaultprec
22fccf95
PE
11354@deffn {Directive} %no-default-prec
11355Do not assign a precedence to rules that lack an explicit @samp{%prec}
11356modifier. @xref{Contextual Precedence, ,Context-Dependent
11357Precedence}.
11358@end deffn
91d2c560 11359@end ifset
22fccf95 11360
18b519c0 11361@deffn {Directive} %no-lines
931c7513 11362Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11363parser implementation file. @xref{Decl Summary}.
18b519c0 11364@end deffn
931c7513 11365
18b519c0 11366@deffn {Directive} %nonassoc
d78f0ac9 11367Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11368@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11369@end deffn
bfa74976 11370
02975b9a 11371@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11372Bison declaration to set the name of the parser implementation file.
11373@xref{Decl Summary}.
18b519c0 11374@end deffn
d8988b2f 11375
2055a44e
AD
11376@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11377Bison declaration to specify additional arguments that both
11378@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11379Parser Function @code{yyparse}}.
11380@end deffn
11381
11382@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11383Bison declaration to specify additional arguments that @code{yyparse}
11384should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11385@end deffn
2a8d363a 11386
18b519c0 11387@deffn {Directive} %prec
bfa74976
RS
11388Bison declaration to assign a precedence to a specific rule.
11389@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11390@end deffn
bfa74976 11391
d78f0ac9
AD
11392@deffn {Directive} %precedence
11393Bison declaration to assign precedence to token(s), but no associativity
11394@xref{Precedence Decl, ,Operator Precedence}.
11395@end deffn
11396
18b519c0 11397@deffn {Directive} %pure-parser
35c1e5f0
JD
11398Deprecated version of @samp{%define api.pure} (@pxref{%define
11399Summary,,api.pure}), for which Bison is more careful to warn about
11400unreasonable usage.
18b519c0 11401@end deffn
bfa74976 11402
b50d2359 11403@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11404Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11405Require a Version of Bison}.
b50d2359
AD
11406@end deffn
11407
18b519c0 11408@deffn {Directive} %right
d78f0ac9 11409Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11410@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11411@end deffn
bfa74976 11412
e6e704dc
JD
11413@deffn {Directive} %skeleton
11414Specify the skeleton to use; usually for development.
11415@xref{Decl Summary}.
11416@end deffn
11417
18b519c0 11418@deffn {Directive} %start
704a47c4
AD
11419Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11420Start-Symbol}.
18b519c0 11421@end deffn
bfa74976 11422
18b519c0 11423@deffn {Directive} %token
bfa74976
RS
11424Bison declaration to declare token(s) without specifying precedence.
11425@xref{Token Decl, ,Token Type Names}.
18b519c0 11426@end deffn
bfa74976 11427
18b519c0 11428@deffn {Directive} %token-table
ff7571c0
JD
11429Bison declaration to include a token name table in the parser
11430implementation file. @xref{Decl Summary}.
18b519c0 11431@end deffn
931c7513 11432
18b519c0 11433@deffn {Directive} %type
704a47c4
AD
11434Bison declaration to declare nonterminals. @xref{Type Decl,
11435,Nonterminal Symbols}.
18b519c0 11436@end deffn
bfa74976 11437
dd8d9022
AD
11438@deffn {Symbol} $undefined
11439The predefined token onto which all undefined values returned by
11440@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11441@code{error}.
11442@end deffn
11443
18b519c0 11444@deffn {Directive} %union
bfa74976
RS
11445Bison declaration to specify several possible data types for semantic
11446values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11447@end deffn
bfa74976 11448
dd8d9022
AD
11449@deffn {Macro} YYABORT
11450Macro to pretend that an unrecoverable syntax error has occurred, by
11451making @code{yyparse} return 1 immediately. The error reporting
11452function @code{yyerror} is not called. @xref{Parser Function, ,The
11453Parser Function @code{yyparse}}.
8405b70c
PB
11454
11455For Java parsers, this functionality is invoked using @code{return YYABORT;}
11456instead.
dd8d9022 11457@end deffn
3ded9a63 11458
dd8d9022
AD
11459@deffn {Macro} YYACCEPT
11460Macro to pretend that a complete utterance of the language has been
11461read, by making @code{yyparse} return 0 immediately.
11462@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11463
11464For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11465instead.
dd8d9022 11466@end deffn
bfa74976 11467
dd8d9022 11468@deffn {Macro} YYBACKUP
742e4900 11469Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11470token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11471@end deffn
bfa74976 11472
dd8d9022 11473@deffn {Variable} yychar
32c29292 11474External integer variable that contains the integer value of the
742e4900 11475lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11476@code{yyparse}.) Error-recovery rule actions may examine this variable.
11477@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11478@end deffn
bfa74976 11479
dd8d9022
AD
11480@deffn {Variable} yyclearin
11481Macro used in error-recovery rule actions. It clears the previous
742e4900 11482lookahead token. @xref{Error Recovery}.
18b519c0 11483@end deffn
bfa74976 11484
dd8d9022
AD
11485@deffn {Macro} YYDEBUG
11486Macro to define to equip the parser with tracing code. @xref{Tracing,
11487,Tracing Your Parser}.
18b519c0 11488@end deffn
bfa74976 11489
dd8d9022
AD
11490@deffn {Variable} yydebug
11491External integer variable set to zero by default. If @code{yydebug}
11492is given a nonzero value, the parser will output information on input
11493symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11494@end deffn
bfa74976 11495
dd8d9022
AD
11496@deffn {Macro} yyerrok
11497Macro to cause parser to recover immediately to its normal mode
11498after a syntax error. @xref{Error Recovery}.
11499@end deffn
11500
11501@deffn {Macro} YYERROR
11502Macro to pretend that a syntax error has just been detected: call
11503@code{yyerror} and then perform normal error recovery if possible
11504(@pxref{Error Recovery}), or (if recovery is impossible) make
11505@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11506
11507For Java parsers, this functionality is invoked using @code{return YYERROR;}
11508instead.
dd8d9022
AD
11509@end deffn
11510
11511@deffn {Function} yyerror
11512User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11513@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11514@end deffn
11515
11516@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11517An obsolete macro used in the @file{yacc.c} skeleton, that you define
11518with @code{#define} in the prologue to request verbose, specific error
11519message strings when @code{yyerror} is called. It doesn't matter what
11520definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11521it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11522(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11523@end deffn
11524
11525@deffn {Macro} YYINITDEPTH
11526Macro for specifying the initial size of the parser stack.
1a059451 11527@xref{Memory Management}.
dd8d9022
AD
11528@end deffn
11529
11530@deffn {Function} yylex
11531User-supplied lexical analyzer function, called with no arguments to get
11532the next token. @xref{Lexical, ,The Lexical Analyzer Function
11533@code{yylex}}.
11534@end deffn
11535
11536@deffn {Macro} YYLEX_PARAM
11537An obsolete macro for specifying an extra argument (or list of extra
32c29292 11538arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11539macro is deprecated, and is supported only for Yacc like parsers.
11540@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11541@end deffn
11542
11543@deffn {Variable} yylloc
11544External variable in which @code{yylex} should place the line and column
11545numbers associated with a token. (In a pure parser, it is a local
11546variable within @code{yyparse}, and its address is passed to
32c29292
JD
11547@code{yylex}.)
11548You can ignore this variable if you don't use the @samp{@@} feature in the
11549grammar actions.
11550@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11551In semantic actions, it stores the location of the lookahead token.
32c29292 11552@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11553@end deffn
11554
11555@deffn {Type} YYLTYPE
11556Data type of @code{yylloc}; by default, a structure with four
11557members. @xref{Location Type, , Data Types of Locations}.
11558@end deffn
11559
11560@deffn {Variable} yylval
11561External variable in which @code{yylex} should place the semantic
11562value associated with a token. (In a pure parser, it is a local
11563variable within @code{yyparse}, and its address is passed to
32c29292
JD
11564@code{yylex}.)
11565@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11566In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11567@xref{Actions, ,Actions}.
dd8d9022
AD
11568@end deffn
11569
11570@deffn {Macro} YYMAXDEPTH
1a059451
PE
11571Macro for specifying the maximum size of the parser stack. @xref{Memory
11572Management}.
dd8d9022
AD
11573@end deffn
11574
11575@deffn {Variable} yynerrs
8a2800e7 11576Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11577(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11578pure push parser, it is a member of yypstate.)
dd8d9022
AD
11579@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11580@end deffn
11581
11582@deffn {Function} yyparse
11583The parser function produced by Bison; call this function to start
11584parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11585@end deffn
11586
9987d1b3 11587@deffn {Function} yypstate_delete
f4101aa6 11588The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11589call this function to delete the memory associated with a parser.
f4101aa6 11590@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11591@code{yypstate_delete}}.
59da312b
JD
11592(The current push parsing interface is experimental and may evolve.
11593More user feedback will help to stabilize it.)
9987d1b3
JD
11594@end deffn
11595
11596@deffn {Function} yypstate_new
f4101aa6 11597The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11598call this function to create a new parser.
f4101aa6 11599@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11600@code{yypstate_new}}.
59da312b
JD
11601(The current push parsing interface is experimental and may evolve.
11602More user feedback will help to stabilize it.)
9987d1b3
JD
11603@end deffn
11604
11605@deffn {Function} yypull_parse
f4101aa6
AD
11606The parser function produced by Bison in push mode; call this function to
11607parse the rest of the input stream.
11608@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11609@code{yypull_parse}}.
59da312b
JD
11610(The current push parsing interface is experimental and may evolve.
11611More user feedback will help to stabilize it.)
9987d1b3
JD
11612@end deffn
11613
11614@deffn {Function} yypush_parse
f4101aa6
AD
11615The parser function produced by Bison in push mode; call this function to
11616parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11617@code{yypush_parse}}.
59da312b
JD
11618(The current push parsing interface is experimental and may evolve.
11619More user feedback will help to stabilize it.)
9987d1b3
JD
11620@end deffn
11621
dd8d9022
AD
11622@deffn {Macro} YYPARSE_PARAM
11623An obsolete macro for specifying the name of a parameter that
11624@code{yyparse} should accept. The use of this macro is deprecated, and
11625is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11626Conventions for Pure Parsers}.
11627@end deffn
11628
11629@deffn {Macro} YYRECOVERING
02103984
PE
11630The expression @code{YYRECOVERING ()} yields 1 when the parser
11631is recovering from a syntax error, and 0 otherwise.
11632@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11633@end deffn
11634
11635@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11636Macro used to control the use of @code{alloca} when the
11637deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11638the parser will use @code{malloc} to extend its stacks. If defined to
116391, the parser will use @code{alloca}. Values other than 0 and 1 are
11640reserved for future Bison extensions. If not defined,
11641@code{YYSTACK_USE_ALLOCA} defaults to 0.
11642
55289366 11643In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11644limited stack and with unreliable stack-overflow checking, you should
11645set @code{YYMAXDEPTH} to a value that cannot possibly result in
11646unchecked stack overflow on any of your target hosts when
11647@code{alloca} is called. You can inspect the code that Bison
11648generates in order to determine the proper numeric values. This will
11649require some expertise in low-level implementation details.
dd8d9022
AD
11650@end deffn
11651
11652@deffn {Type} YYSTYPE
11653Data type of semantic values; @code{int} by default.
11654@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11655@end deffn
bfa74976 11656
342b8b6e 11657@node Glossary
bfa74976
RS
11658@appendix Glossary
11659@cindex glossary
11660
11661@table @asis
7fceb615 11662@item Accepting state
eb45ef3b
JD
11663A state whose only action is the accept action.
11664The accepting state is thus a consistent state.
11665@xref{Understanding,,}.
11666
8a4281b9 11667@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11668Formal method of specifying context-free grammars originally proposed
11669by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11670committee document contributing to what became the Algol 60 report.
11671@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11672
7fceb615
JD
11673@item Consistent state
11674A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 11675
bfa74976
RS
11676@item Context-free grammars
11677Grammars specified as rules that can be applied regardless of context.
11678Thus, if there is a rule which says that an integer can be used as an
11679expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11680permitted. @xref{Language and Grammar, ,Languages and Context-Free
11681Grammars}.
bfa74976 11682
7fceb615 11683@item Default reduction
110ef36a 11684The reduction that a parser should perform if the current parser state
35c1e5f0 11685contains no other action for the lookahead token. In permitted parser
7fceb615
JD
11686states, Bison declares the reduction with the largest lookahead set to be
11687the default reduction and removes that lookahead set. @xref{Default
11688Reductions}.
11689
11690@item Defaulted state
11691A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 11692
bfa74976
RS
11693@item Dynamic allocation
11694Allocation of memory that occurs during execution, rather than at
11695compile time or on entry to a function.
11696
11697@item Empty string
11698Analogous to the empty set in set theory, the empty string is a
11699character string of length zero.
11700
11701@item Finite-state stack machine
11702A ``machine'' that has discrete states in which it is said to exist at
11703each instant in time. As input to the machine is processed, the
11704machine moves from state to state as specified by the logic of the
11705machine. In the case of the parser, the input is the language being
11706parsed, and the states correspond to various stages in the grammar
c827f760 11707rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11708
8a4281b9 11709@item Generalized LR (GLR)
676385e2 11710A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11711that are not LR(1). It resolves situations that Bison's
eb45ef3b 11712deterministic parsing
676385e2
PH
11713algorithm cannot by effectively splitting off multiple parsers, trying all
11714possible parsers, and discarding those that fail in the light of additional
c827f760 11715right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11716LR Parsing}.
676385e2 11717
bfa74976
RS
11718@item Grouping
11719A language construct that is (in general) grammatically divisible;
c827f760 11720for example, `expression' or `declaration' in C@.
bfa74976
RS
11721@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11722
7fceb615
JD
11723@item IELR(1) (Inadequacy Elimination LR(1))
11724A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 11725context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
11726language-recognition power of canonical LR(1) but with nearly the same
11727number of parser states as LALR(1). This reduction in parser states is
11728often an order of magnitude. More importantly, because canonical LR(1)'s
11729extra parser states may contain duplicate conflicts in the case of non-LR(1)
11730grammars, the number of conflicts for IELR(1) is often an order of magnitude
11731less as well. This can significantly reduce the complexity of developing a
11732grammar. @xref{LR Table Construction}.
eb45ef3b 11733
bfa74976
RS
11734@item Infix operator
11735An arithmetic operator that is placed between the operands on which it
11736performs some operation.
11737
11738@item Input stream
11739A continuous flow of data between devices or programs.
11740
8a4281b9 11741@item LAC (Lookahead Correction)
fcf834f9 11742A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
11743detection, which is caused by LR state merging, default reductions, and the
11744use of @code{%nonassoc}. Delayed syntax error detection results in
11745unexpected semantic actions, initiation of error recovery in the wrong
11746syntactic context, and an incorrect list of expected tokens in a verbose
11747syntax error message. @xref{LAC}.
fcf834f9 11748
bfa74976
RS
11749@item Language construct
11750One of the typical usage schemas of the language. For example, one of
11751the constructs of the C language is the @code{if} statement.
11752@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11753
11754@item Left associativity
11755Operators having left associativity are analyzed from left to right:
11756@samp{a+b+c} first computes @samp{a+b} and then combines with
11757@samp{c}. @xref{Precedence, ,Operator Precedence}.
11758
11759@item Left recursion
89cab50d
AD
11760A rule whose result symbol is also its first component symbol; for
11761example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11762Rules}.
bfa74976
RS
11763
11764@item Left-to-right parsing
11765Parsing a sentence of a language by analyzing it token by token from
c827f760 11766left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11767
11768@item Lexical analyzer (scanner)
11769A function that reads an input stream and returns tokens one by one.
11770@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11771
11772@item Lexical tie-in
11773A flag, set by actions in the grammar rules, which alters the way
11774tokens are parsed. @xref{Lexical Tie-ins}.
11775
931c7513 11776@item Literal string token
14ded682 11777A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11778
742e4900
JD
11779@item Lookahead token
11780A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11781Tokens}.
bfa74976 11782
8a4281b9 11783@item LALR(1)
bfa74976 11784The class of context-free grammars that Bison (like most other parser
8a4281b9 11785generators) can handle by default; a subset of LR(1).
cc09e5be 11786@xref{Mysterious Conflicts}.
bfa74976 11787
8a4281b9 11788@item LR(1)
bfa74976 11789The class of context-free grammars in which at most one token of
742e4900 11790lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11791
11792@item Nonterminal symbol
11793A grammar symbol standing for a grammatical construct that can
11794be expressed through rules in terms of smaller constructs; in other
11795words, a construct that is not a token. @xref{Symbols}.
11796
bfa74976
RS
11797@item Parser
11798A function that recognizes valid sentences of a language by analyzing
11799the syntax structure of a set of tokens passed to it from a lexical
11800analyzer.
11801
11802@item Postfix operator
11803An arithmetic operator that is placed after the operands upon which it
11804performs some operation.
11805
11806@item Reduction
11807Replacing a string of nonterminals and/or terminals with a single
89cab50d 11808nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11809Parser Algorithm}.
bfa74976
RS
11810
11811@item Reentrant
11812A reentrant subprogram is a subprogram which can be in invoked any
11813number of times in parallel, without interference between the various
11814invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11815
11816@item Reverse polish notation
11817A language in which all operators are postfix operators.
11818
11819@item Right recursion
89cab50d
AD
11820A rule whose result symbol is also its last component symbol; for
11821example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11822Rules}.
bfa74976
RS
11823
11824@item Semantics
11825In computer languages, the semantics are specified by the actions
11826taken for each instance of the language, i.e., the meaning of
11827each statement. @xref{Semantics, ,Defining Language Semantics}.
11828
11829@item Shift
11830A parser is said to shift when it makes the choice of analyzing
11831further input from the stream rather than reducing immediately some
c827f760 11832already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11833
11834@item Single-character literal
11835A single character that is recognized and interpreted as is.
11836@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11837
11838@item Start symbol
11839The nonterminal symbol that stands for a complete valid utterance in
11840the language being parsed. The start symbol is usually listed as the
13863333 11841first nonterminal symbol in a language specification.
bfa74976
RS
11842@xref{Start Decl, ,The Start-Symbol}.
11843
11844@item Symbol table
11845A data structure where symbol names and associated data are stored
11846during parsing to allow for recognition and use of existing
11847information in repeated uses of a symbol. @xref{Multi-function Calc}.
11848
6e649e65
PE
11849@item Syntax error
11850An error encountered during parsing of an input stream due to invalid
11851syntax. @xref{Error Recovery}.
11852
bfa74976
RS
11853@item Token
11854A basic, grammatically indivisible unit of a language. The symbol
11855that describes a token in the grammar is a terminal symbol.
11856The input of the Bison parser is a stream of tokens which comes from
11857the lexical analyzer. @xref{Symbols}.
11858
11859@item Terminal symbol
89cab50d
AD
11860A grammar symbol that has no rules in the grammar and therefore is
11861grammatically indivisible. The piece of text it represents is a token.
11862@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
11863
11864@item Unreachable state
11865A parser state to which there does not exist a sequence of transitions from
11866the parser's start state. A state can become unreachable during conflict
11867resolution. @xref{Unreachable States}.
bfa74976
RS
11868@end table
11869
342b8b6e 11870@node Copying This Manual
f2b5126e 11871@appendix Copying This Manual
f2b5126e
PB
11872@include fdl.texi
11873
5e528941
JD
11874@node Bibliography
11875@unnumbered Bibliography
11876
11877@table @asis
11878@item [Denny 2008]
11879Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11880for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
118812008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11882pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11883
11884@item [Denny 2010 May]
11885Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11886Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11887University, Clemson, SC, USA (May 2010).
11888@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11889
11890@item [Denny 2010 November]
11891Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11892Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11893in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
118942010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11895
11896@item [DeRemer 1982]
11897Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11898Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11899Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11900615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11901
11902@item [Knuth 1965]
11903Donald E. Knuth, On the Translation of Languages from Left to Right, in
11904@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11905607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11906
11907@item [Scott 2000]
11908Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11909@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11910London, Department of Computer Science, TR-00-12 (December 2000).
11911@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11912@end table
11913
342b8b6e 11914@node Index
bfa74976
RS
11915@unnumbered Index
11916
11917@printindex cp
11918
bfa74976 11919@bye
a06ea4aa 11920
6b5a0de9
AD
11921@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11922@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11923@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11924@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11925@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11926@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11927@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11928@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11929@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11930@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11931@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11932@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11933@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
c93f22fc 11934@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum
6b5a0de9
AD
11935@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11936@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11937@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11938@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11939@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11940@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11941@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11942@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11943@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11944@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11945@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11946@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11947@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11948@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11949@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11950@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9 11951@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
ff7571c0 11952@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
6b5a0de9
AD
11953@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11954@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11955@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11956@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11957@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11958@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11959@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
ff7571c0 11960@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
6b5a0de9
AD
11961@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11962@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11963@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11964@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11965@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11966@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11967@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11968@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11969@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11970@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
679e9935 11971@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
6b5a0de9 11972@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11973
11974@c Local Variables:
11975@c ispell-dictionary: "american"
11976@c fill-column: 76
11977@c End: