]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
%define push_pull -> %define api.push_pull. Discussed starting at
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
bb32f4f2 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
8405b70c 107* Other Languages:: Creating C++ and Java parsers.
12545799 108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
208
93dd49ab
PE
209Tracking Locations
210
211* Location Type:: Specifying a data type for locations.
212* Actions and Locations:: Using locations in actions.
213* Location Default Action:: Defining a general way to compute locations.
214
bfa74976
RS
215Bison Declarations
216
b50d2359 217* Require Decl:: Requiring a Bison version.
bfa74976
RS
218* Token Decl:: Declaring terminal symbols.
219* Precedence Decl:: Declaring terminals with precedence and associativity.
220* Union Decl:: Declaring the set of all semantic value types.
221* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 222* Initial Action Decl:: Code run before parsing starts.
72f889cc 223* Destructor Decl:: Declaring how symbols are freed.
d6328241 224* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
225* Start Decl:: Specifying the start symbol.
226* Pure Decl:: Requesting a reentrant parser.
9987d1b3 227* Push Decl:: Requesting a push parser.
bfa74976
RS
228* Decl Summary:: Table of all Bison declarations.
229
230Parser C-Language Interface
231
232* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 233* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
234 which reads tokens.
235* Error Reporting:: You must supply a function @code{yyerror}.
236* Action Features:: Special features for use in actions.
f7ab6a50
PE
237* Internationalization:: How to let the parser speak in the user's
238 native language.
bfa74976
RS
239
240The Lexical Analyzer Function @code{yylex}
241
242* Calling Convention:: How @code{yyparse} calls @code{yylex}.
243* Token Values:: How @code{yylex} must return the semantic value
244 of the token it has read.
95923bd6 245* Token Locations:: How @code{yylex} must return the text location
bfa74976 246 (line number, etc.) of the token, if the
93dd49ab 247 actions want that.
bfa74976
RS
248* Pure Calling:: How the calling convention differs
249 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
250
13863333 251The Bison Parser Algorithm
bfa74976 252
742e4900 253* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
254* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
255* Precedence:: Operator precedence works by resolving conflicts.
256* Contextual Precedence:: When an operator's precedence depends on context.
257* Parser States:: The parser is a finite-state-machine with stack.
258* Reduce/Reduce:: When two rules are applicable in the same situation.
259* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 260* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 261* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
262
263Operator Precedence
264
265* Why Precedence:: An example showing why precedence is needed.
266* Using Precedence:: How to specify precedence in Bison grammars.
267* Precedence Examples:: How these features are used in the previous example.
268* How Precedence:: How they work.
269
270Handling Context Dependencies
271
272* Semantic Tokens:: Token parsing can depend on the semantic context.
273* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
274* Tie-in Recovery:: Lexical tie-ins have implications for how
275 error recovery rules must be written.
276
93dd49ab 277Debugging Your Parser
ec3bc396
AD
278
279* Understanding:: Understanding the structure of your parser.
280* Tracing:: Tracing the execution of your parser.
281
bfa74976
RS
282Invoking Bison
283
13863333 284* Bison Options:: All the options described in detail,
c827f760 285 in alphabetical order by short options.
bfa74976 286* Option Cross Key:: Alphabetical list of long options.
93dd49ab 287* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 288
8405b70c 289Parsers Written In Other Languages
12545799
AD
290
291* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 292* Java Parsers:: The interface to generate Java parser classes
12545799
AD
293
294C++ Parsers
295
296* C++ Bison Interface:: Asking for C++ parser generation
297* C++ Semantic Values:: %union vs. C++
298* C++ Location Values:: The position and location classes
299* C++ Parser Interface:: Instantiating and running the parser
300* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 301* A Complete C++ Example:: Demonstrating their use
12545799
AD
302
303A Complete C++ Example
304
305* Calc++ --- C++ Calculator:: The specifications
306* Calc++ Parsing Driver:: An active parsing context
307* Calc++ Parser:: A parser class
308* Calc++ Scanner:: A pure C++ Flex scanner
309* Calc++ Top Level:: Conducting the band
310
8405b70c
PB
311Java Parsers
312
313* Java Bison Interface:: Asking for Java parser generation
314* Java Semantic Values:: %type and %token vs. Java
315* Java Location Values:: The position and location classes
316* Java Parser Interface:: Instantiating and running the parser
317* Java Scanner Interface:: Java scanners, and pure parsers
318* Java Differences:: Differences between C/C++ and Java Grammars
319
d1a1114f
AD
320Frequently Asked Questions
321
1a059451 322* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 323* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 324* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 325* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 326* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
327* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
328* I can't build Bison:: Troubleshooting
329* Where can I find help?:: Troubleshouting
330* Bug Reports:: Troublereporting
331* Other Languages:: Parsers in Java and others
332* Beta Testing:: Experimenting development versions
333* Mailing Lists:: Meeting other Bison users
d1a1114f 334
f2b5126e
PB
335Copying This Manual
336
f16b0819 337* Copying This Manual:: License for copying this manual.
f2b5126e 338
342b8b6e 339@end detailmenu
bfa74976
RS
340@end menu
341
342b8b6e 342@node Introduction
bfa74976
RS
343@unnumbered Introduction
344@cindex introduction
345
6077da58
PE
346@dfn{Bison} is a general-purpose parser generator that converts an
347annotated context-free grammar into an @acronym{LALR}(1) or
348@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 349Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
350used in simple desk calculators to complex programming languages.
351
352Bison is upward compatible with Yacc: all properly-written Yacc grammars
353ought to work with Bison with no change. Anyone familiar with Yacc
354should be able to use Bison with little trouble. You need to be fluent in
1e137b71 355C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
356
357We begin with tutorial chapters that explain the basic concepts of using
358Bison and show three explained examples, each building on the last. If you
359don't know Bison or Yacc, start by reading these chapters. Reference
360chapters follow which describe specific aspects of Bison in detail.
361
931c7513
RS
362Bison was written primarily by Robert Corbett; Richard Stallman made it
363Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 364multi-character string literals and other features.
931c7513 365
df1af54c 366This edition corresponds to version @value{VERSION} of Bison.
bfa74976 367
342b8b6e 368@node Conditions
bfa74976
RS
369@unnumbered Conditions for Using Bison
370
193d7c70
PE
371The distribution terms for Bison-generated parsers permit using the
372parsers in nonfree programs. Before Bison version 2.2, these extra
373permissions applied only when Bison was generating @acronym{LALR}(1)
374parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 375parsers could be used only in programs that were free software.
a31239f1 376
c827f760
PE
377The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
378compiler, have never
9ecbd125 379had such a requirement. They could always be used for nonfree
a31239f1
RS
380software. The reason Bison was different was not due to a special
381policy decision; it resulted from applying the usual General Public
382License to all of the Bison source code.
383
384The output of the Bison utility---the Bison parser file---contains a
385verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
386parser's implementation. (The actions from your grammar are inserted
387into this implementation at one point, but most of the rest of the
388implementation is not changed.) When we applied the @acronym{GPL}
389terms to the skeleton code for the parser's implementation,
a31239f1
RS
390the effect was to restrict the use of Bison output to free software.
391
392We didn't change the terms because of sympathy for people who want to
393make software proprietary. @strong{Software should be free.} But we
394concluded that limiting Bison's use to free software was doing little to
395encourage people to make other software free. So we decided to make the
396practical conditions for using Bison match the practical conditions for
c827f760 397using the other @acronym{GNU} tools.
bfa74976 398
193d7c70
PE
399This exception applies when Bison is generating code for a parser.
400You can tell whether the exception applies to a Bison output file by
401inspecting the file for text beginning with ``As a special
402exception@dots{}''. The text spells out the exact terms of the
403exception.
262aa8dd 404
f16b0819
PE
405@node Copying
406@unnumbered GNU GENERAL PUBLIC LICENSE
407@include gpl-3.0.texi
bfa74976 408
342b8b6e 409@node Concepts
bfa74976
RS
410@chapter The Concepts of Bison
411
412This chapter introduces many of the basic concepts without which the
413details of Bison will not make sense. If you do not already know how to
414use Bison or Yacc, we suggest you start by reading this chapter carefully.
415
416@menu
417* Language and Grammar:: Languages and context-free grammars,
418 as mathematical ideas.
419* Grammar in Bison:: How we represent grammars for Bison's sake.
420* Semantic Values:: Each token or syntactic grouping can have
421 a semantic value (the value of an integer,
422 the name of an identifier, etc.).
423* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 424* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 425* Locations Overview:: Tracking Locations.
bfa74976
RS
426* Bison Parser:: What are Bison's input and output,
427 how is the output used?
428* Stages:: Stages in writing and running Bison grammars.
429* Grammar Layout:: Overall structure of a Bison grammar file.
430@end menu
431
342b8b6e 432@node Language and Grammar
bfa74976
RS
433@section Languages and Context-Free Grammars
434
bfa74976
RS
435@cindex context-free grammar
436@cindex grammar, context-free
437In order for Bison to parse a language, it must be described by a
438@dfn{context-free grammar}. This means that you specify one or more
439@dfn{syntactic groupings} and give rules for constructing them from their
440parts. For example, in the C language, one kind of grouping is called an
441`expression'. One rule for making an expression might be, ``An expression
442can be made of a minus sign and another expression''. Another would be,
443``An expression can be an integer''. As you can see, rules are often
444recursive, but there must be at least one rule which leads out of the
445recursion.
446
c827f760 447@cindex @acronym{BNF}
bfa74976
RS
448@cindex Backus-Naur form
449The most common formal system for presenting such rules for humans to read
c827f760
PE
450is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
451order to specify the language Algol 60. Any grammar expressed in
452@acronym{BNF} is a context-free grammar. The input to Bison is
453essentially machine-readable @acronym{BNF}.
bfa74976 454
c827f760
PE
455@cindex @acronym{LALR}(1) grammars
456@cindex @acronym{LR}(1) grammars
676385e2
PH
457There are various important subclasses of context-free grammar. Although it
458can handle almost all context-free grammars, Bison is optimized for what
c827f760 459are called @acronym{LALR}(1) grammars.
676385e2 460In brief, in these grammars, it must be possible to
bfa74976 461tell how to parse any portion of an input string with just a single
742e4900 462token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
463@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
464restrictions that are
bfa74976 465hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
466@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
467@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
468more information on this.
bfa74976 469
c827f760
PE
470@cindex @acronym{GLR} parsing
471@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 472@cindex ambiguous grammars
9d9b8b70 473@cindex nondeterministic parsing
9501dc6e
AD
474
475Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
476roughly that the next grammar rule to apply at any point in the input is
477uniquely determined by the preceding input and a fixed, finite portion
742e4900 478(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 479grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 480apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 481grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 482lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
483With the proper declarations, Bison is also able to parse these more
484general context-free grammars, using a technique known as @acronym{GLR}
485parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
486are able to handle any context-free grammar for which the number of
487possible parses of any given string is finite.
676385e2 488
bfa74976
RS
489@cindex symbols (abstract)
490@cindex token
491@cindex syntactic grouping
492@cindex grouping, syntactic
9501dc6e
AD
493In the formal grammatical rules for a language, each kind of syntactic
494unit or grouping is named by a @dfn{symbol}. Those which are built by
495grouping smaller constructs according to grammatical rules are called
bfa74976
RS
496@dfn{nonterminal symbols}; those which can't be subdivided are called
497@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
498corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 499corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
500
501We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
502nonterminal, mean. The tokens of C are identifiers, constants (numeric
503and string), and the various keywords, arithmetic operators and
504punctuation marks. So the terminal symbols of a grammar for C include
505`identifier', `number', `string', plus one symbol for each keyword,
506operator or punctuation mark: `if', `return', `const', `static', `int',
507`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
508(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
509lexicography, not grammar.)
510
511Here is a simple C function subdivided into tokens:
512
9edcd895
AD
513@ifinfo
514@example
515int /* @r{keyword `int'} */
14d4662b 516square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
517 @r{identifier, close-paren} */
518@{ /* @r{open-brace} */
aa08666d
AD
519 return x * x; /* @r{keyword `return', identifier, asterisk,}
520 @r{identifier, semicolon} */
9edcd895
AD
521@} /* @r{close-brace} */
522@end example
523@end ifinfo
524@ifnotinfo
bfa74976
RS
525@example
526int /* @r{keyword `int'} */
14d4662b 527square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 528@{ /* @r{open-brace} */
9edcd895 529 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
530@} /* @r{close-brace} */
531@end example
9edcd895 532@end ifnotinfo
bfa74976
RS
533
534The syntactic groupings of C include the expression, the statement, the
535declaration, and the function definition. These are represented in the
536grammar of C by nonterminal symbols `expression', `statement',
537`declaration' and `function definition'. The full grammar uses dozens of
538additional language constructs, each with its own nonterminal symbol, in
539order to express the meanings of these four. The example above is a
540function definition; it contains one declaration, and one statement. In
541the statement, each @samp{x} is an expression and so is @samp{x * x}.
542
543Each nonterminal symbol must have grammatical rules showing how it is made
544out of simpler constructs. For example, one kind of C statement is the
545@code{return} statement; this would be described with a grammar rule which
546reads informally as follows:
547
548@quotation
549A `statement' can be made of a `return' keyword, an `expression' and a
550`semicolon'.
551@end quotation
552
553@noindent
554There would be many other rules for `statement', one for each kind of
555statement in C.
556
557@cindex start symbol
558One nonterminal symbol must be distinguished as the special one which
559defines a complete utterance in the language. It is called the @dfn{start
560symbol}. In a compiler, this means a complete input program. In the C
561language, the nonterminal symbol `sequence of definitions and declarations'
562plays this role.
563
564For example, @samp{1 + 2} is a valid C expression---a valid part of a C
565program---but it is not valid as an @emph{entire} C program. In the
566context-free grammar of C, this follows from the fact that `expression' is
567not the start symbol.
568
569The Bison parser reads a sequence of tokens as its input, and groups the
570tokens using the grammar rules. If the input is valid, the end result is
571that the entire token sequence reduces to a single grouping whose symbol is
572the grammar's start symbol. If we use a grammar for C, the entire input
573must be a `sequence of definitions and declarations'. If not, the parser
574reports a syntax error.
575
342b8b6e 576@node Grammar in Bison
bfa74976
RS
577@section From Formal Rules to Bison Input
578@cindex Bison grammar
579@cindex grammar, Bison
580@cindex formal grammar
581
582A formal grammar is a mathematical construct. To define the language
583for Bison, you must write a file expressing the grammar in Bison syntax:
584a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
585
586A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 587as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
588in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
589
590The Bison representation for a terminal symbol is also called a @dfn{token
591type}. Token types as well can be represented as C-like identifiers. By
592convention, these identifiers should be upper case to distinguish them from
593nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
594@code{RETURN}. A terminal symbol that stands for a particular keyword in
595the language should be named after that keyword converted to upper case.
596The terminal symbol @code{error} is reserved for error recovery.
931c7513 597@xref{Symbols}.
bfa74976
RS
598
599A terminal symbol can also be represented as a character literal, just like
600a C character constant. You should do this whenever a token is just a
601single character (parenthesis, plus-sign, etc.): use that same character in
602a literal as the terminal symbol for that token.
603
931c7513
RS
604A third way to represent a terminal symbol is with a C string constant
605containing several characters. @xref{Symbols}, for more information.
606
bfa74976
RS
607The grammar rules also have an expression in Bison syntax. For example,
608here is the Bison rule for a C @code{return} statement. The semicolon in
609quotes is a literal character token, representing part of the C syntax for
610the statement; the naked semicolon, and the colon, are Bison punctuation
611used in every rule.
612
613@example
614stmt: RETURN expr ';'
615 ;
616@end example
617
618@noindent
619@xref{Rules, ,Syntax of Grammar Rules}.
620
342b8b6e 621@node Semantic Values
bfa74976
RS
622@section Semantic Values
623@cindex semantic value
624@cindex value, semantic
625
626A formal grammar selects tokens only by their classifications: for example,
627if a rule mentions the terminal symbol `integer constant', it means that
628@emph{any} integer constant is grammatically valid in that position. The
629precise value of the constant is irrelevant to how to parse the input: if
630@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 631grammatical.
bfa74976
RS
632
633But the precise value is very important for what the input means once it is
634parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6353989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
636has both a token type and a @dfn{semantic value}. @xref{Semantics,
637,Defining Language Semantics},
bfa74976
RS
638for details.
639
640The token type is a terminal symbol defined in the grammar, such as
641@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
642you need to know to decide where the token may validly appear and how to
643group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 644except their types.
bfa74976
RS
645
646The semantic value has all the rest of the information about the
647meaning of the token, such as the value of an integer, or the name of an
648identifier. (A token such as @code{','} which is just punctuation doesn't
649need to have any semantic value.)
650
651For example, an input token might be classified as token type
652@code{INTEGER} and have the semantic value 4. Another input token might
653have the same token type @code{INTEGER} but value 3989. When a grammar
654rule says that @code{INTEGER} is allowed, either of these tokens is
655acceptable because each is an @code{INTEGER}. When the parser accepts the
656token, it keeps track of the token's semantic value.
657
658Each grouping can also have a semantic value as well as its nonterminal
659symbol. For example, in a calculator, an expression typically has a
660semantic value that is a number. In a compiler for a programming
661language, an expression typically has a semantic value that is a tree
662structure describing the meaning of the expression.
663
342b8b6e 664@node Semantic Actions
bfa74976
RS
665@section Semantic Actions
666@cindex semantic actions
667@cindex actions, semantic
668
669In order to be useful, a program must do more than parse input; it must
670also produce some output based on the input. In a Bison grammar, a grammar
671rule can have an @dfn{action} made up of C statements. Each time the
672parser recognizes a match for that rule, the action is executed.
673@xref{Actions}.
13863333 674
bfa74976
RS
675Most of the time, the purpose of an action is to compute the semantic value
676of the whole construct from the semantic values of its parts. For example,
677suppose we have a rule which says an expression can be the sum of two
678expressions. When the parser recognizes such a sum, each of the
679subexpressions has a semantic value which describes how it was built up.
680The action for this rule should create a similar sort of value for the
681newly recognized larger expression.
682
683For example, here is a rule that says an expression can be the sum of
684two subexpressions:
685
686@example
687expr: expr '+' expr @{ $$ = $1 + $3; @}
688 ;
689@end example
690
691@noindent
692The action says how to produce the semantic value of the sum expression
693from the values of the two subexpressions.
694
676385e2 695@node GLR Parsers
c827f760
PE
696@section Writing @acronym{GLR} Parsers
697@cindex @acronym{GLR} parsing
698@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
699@findex %glr-parser
700@cindex conflicts
701@cindex shift/reduce conflicts
fa7e68c3 702@cindex reduce/reduce conflicts
676385e2 703
fa7e68c3 704In some grammars, Bison's standard
9501dc6e
AD
705@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
706certain grammar rule at a given point. That is, it may not be able to
707decide (on the basis of the input read so far) which of two possible
708reductions (applications of a grammar rule) applies, or whether to apply
709a reduction or read more of the input and apply a reduction later in the
710input. These are known respectively as @dfn{reduce/reduce} conflicts
711(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
712(@pxref{Shift/Reduce}).
713
714To use a grammar that is not easily modified to be @acronym{LALR}(1), a
715more general parsing algorithm is sometimes necessary. If you include
676385e2 716@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 717(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
718(@acronym{GLR}) parser. These parsers handle Bison grammars that
719contain no unresolved conflicts (i.e., after applying precedence
720declarations) identically to @acronym{LALR}(1) parsers. However, when
721faced with unresolved shift/reduce and reduce/reduce conflicts,
722@acronym{GLR} parsers use the simple expedient of doing both,
723effectively cloning the parser to follow both possibilities. Each of
724the resulting parsers can again split, so that at any given time, there
725can be any number of possible parses being explored. The parsers
676385e2
PH
726proceed in lockstep; that is, all of them consume (shift) a given input
727symbol before any of them proceed to the next. Each of the cloned
728parsers eventually meets one of two possible fates: either it runs into
729a parsing error, in which case it simply vanishes, or it merges with
730another parser, because the two of them have reduced the input to an
731identical set of symbols.
732
733During the time that there are multiple parsers, semantic actions are
734recorded, but not performed. When a parser disappears, its recorded
735semantic actions disappear as well, and are never performed. When a
736reduction makes two parsers identical, causing them to merge, Bison
737records both sets of semantic actions. Whenever the last two parsers
738merge, reverting to the single-parser case, Bison resolves all the
739outstanding actions either by precedences given to the grammar rules
740involved, or by performing both actions, and then calling a designated
741user-defined function on the resulting values to produce an arbitrary
742merged result.
743
fa7e68c3 744@menu
32c29292
JD
745* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
746* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
747* GLR Semantic Actions:: Deferred semantic actions have special concerns.
748* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
749@end menu
750
751@node Simple GLR Parsers
752@subsection Using @acronym{GLR} on Unambiguous Grammars
753@cindex @acronym{GLR} parsing, unambiguous grammars
754@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
755@findex %glr-parser
756@findex %expect-rr
757@cindex conflicts
758@cindex reduce/reduce conflicts
759@cindex shift/reduce conflicts
760
761In the simplest cases, you can use the @acronym{GLR} algorithm
762to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 763Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
764or (in rare cases) fall into the category of grammars in which the
765@acronym{LALR}(1) algorithm throws away too much information (they are in
766@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
767
768Consider a problem that
769arises in the declaration of enumerated and subrange types in the
770programming language Pascal. Here are some examples:
771
772@example
773type subrange = lo .. hi;
774type enum = (a, b, c);
775@end example
776
777@noindent
778The original language standard allows only numeric
779literals and constant identifiers for the subrange bounds (@samp{lo}
780and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78110206) and many other
782Pascal implementations allow arbitrary expressions there. This gives
783rise to the following situation, containing a superfluous pair of
784parentheses:
785
786@example
787type subrange = (a) .. b;
788@end example
789
790@noindent
791Compare this to the following declaration of an enumerated
792type with only one value:
793
794@example
795type enum = (a);
796@end example
797
798@noindent
799(These declarations are contrived, but they are syntactically
800valid, and more-complicated cases can come up in practical programs.)
801
802These two declarations look identical until the @samp{..} token.
742e4900 803With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
804possible to decide between the two forms when the identifier
805@samp{a} is parsed. It is, however, desirable
806for a parser to decide this, since in the latter case
807@samp{a} must become a new identifier to represent the enumeration
808value, while in the former case @samp{a} must be evaluated with its
809current meaning, which may be a constant or even a function call.
810
811You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
812to be resolved later, but this typically requires substantial
813contortions in both semantic actions and large parts of the
814grammar, where the parentheses are nested in the recursive rules for
815expressions.
816
817You might think of using the lexer to distinguish between the two
818forms by returning different tokens for currently defined and
819undefined identifiers. But if these declarations occur in a local
820scope, and @samp{a} is defined in an outer scope, then both forms
821are possible---either locally redefining @samp{a}, or using the
822value of @samp{a} from the outer scope. So this approach cannot
823work.
824
e757bb10 825A simple solution to this problem is to declare the parser to
fa7e68c3
PE
826use the @acronym{GLR} algorithm.
827When the @acronym{GLR} parser reaches the critical state, it
828merely splits into two branches and pursues both syntax rules
829simultaneously. Sooner or later, one of them runs into a parsing
830error. If there is a @samp{..} token before the next
831@samp{;}, the rule for enumerated types fails since it cannot
832accept @samp{..} anywhere; otherwise, the subrange type rule
833fails since it requires a @samp{..} token. So one of the branches
834fails silently, and the other one continues normally, performing
835all the intermediate actions that were postponed during the split.
836
837If the input is syntactically incorrect, both branches fail and the parser
838reports a syntax error as usual.
839
840The effect of all this is that the parser seems to ``guess'' the
841correct branch to take, or in other words, it seems to use more
742e4900 842lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
843for. In this example, @acronym{LALR}(2) would suffice, but also some cases
844that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
845
846In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
847and the current Bison parser even takes exponential time and space
848for some grammars. In practice, this rarely happens, and for many
849grammars it is possible to prove that it cannot happen.
850The present example contains only one conflict between two
851rules, and the type-declaration context containing the conflict
852cannot be nested. So the number of
853branches that can exist at any time is limited by the constant 2,
854and the parsing time is still linear.
855
856Here is a Bison grammar corresponding to the example above. It
857parses a vastly simplified form of Pascal type declarations.
858
859@example
860%token TYPE DOTDOT ID
861
862@group
863%left '+' '-'
864%left '*' '/'
865@end group
866
867%%
868
869@group
870type_decl : TYPE ID '=' type ';'
871 ;
872@end group
873
874@group
875type : '(' id_list ')'
876 | expr DOTDOT expr
877 ;
878@end group
879
880@group
881id_list : ID
882 | id_list ',' ID
883 ;
884@end group
885
886@group
887expr : '(' expr ')'
888 | expr '+' expr
889 | expr '-' expr
890 | expr '*' expr
891 | expr '/' expr
892 | ID
893 ;
894@end group
895@end example
896
897When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
898about one reduce/reduce conflict. In the conflicting situation the
899parser chooses one of the alternatives, arbitrarily the one
900declared first. Therefore the following correct input is not
901recognized:
902
903@example
904type t = (a) .. b;
905@end example
906
907The parser can be turned into a @acronym{GLR} parser, while also telling Bison
908to be silent about the one known reduce/reduce conflict, by
e757bb10 909adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
910@samp{%%}):
911
912@example
913%glr-parser
914%expect-rr 1
915@end example
916
917@noindent
918No change in the grammar itself is required. Now the
919parser recognizes all valid declarations, according to the
920limited syntax above, transparently. In fact, the user does not even
921notice when the parser splits.
922
f8e1c9e5
AD
923So here we have a case where we can use the benefits of @acronym{GLR},
924almost without disadvantages. Even in simple cases like this, however,
925there are at least two potential problems to beware. First, always
926analyze the conflicts reported by Bison to make sure that @acronym{GLR}
927splitting is only done where it is intended. A @acronym{GLR} parser
928splitting inadvertently may cause problems less obvious than an
929@acronym{LALR} parser statically choosing the wrong alternative in a
930conflict. Second, consider interactions with the lexer (@pxref{Semantic
931Tokens}) with great care. Since a split parser consumes tokens without
932performing any actions during the split, the lexer cannot obtain
933information via parser actions. Some cases of lexer interactions can be
934eliminated by using @acronym{GLR} to shift the complications from the
935lexer to the parser. You must check the remaining cases for
936correctness.
937
938In our example, it would be safe for the lexer to return tokens based on
939their current meanings in some symbol table, because no new symbols are
940defined in the middle of a type declaration. Though it is possible for
941a parser to define the enumeration constants as they are parsed, before
942the type declaration is completed, it actually makes no difference since
943they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
944
945@node Merging GLR Parses
946@subsection Using @acronym{GLR} to Resolve Ambiguities
947@cindex @acronym{GLR} parsing, ambiguous grammars
948@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
949@findex %dprec
950@findex %merge
951@cindex conflicts
952@cindex reduce/reduce conflicts
953
2a8d363a 954Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
955
956@example
957%@{
38a92d50
PE
958 #include <stdio.h>
959 #define YYSTYPE char const *
960 int yylex (void);
961 void yyerror (char const *);
676385e2
PH
962%@}
963
964%token TYPENAME ID
965
966%right '='
967%left '+'
968
969%glr-parser
970
971%%
972
fae437e8 973prog :
676385e2
PH
974 | prog stmt @{ printf ("\n"); @}
975 ;
976
977stmt : expr ';' %dprec 1
978 | decl %dprec 2
979 ;
980
2a8d363a 981expr : ID @{ printf ("%s ", $$); @}
fae437e8 982 | TYPENAME '(' expr ')'
2a8d363a
AD
983 @{ printf ("%s <cast> ", $1); @}
984 | expr '+' expr @{ printf ("+ "); @}
985 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
986 ;
987
fae437e8 988decl : TYPENAME declarator ';'
2a8d363a 989 @{ printf ("%s <declare> ", $1); @}
676385e2 990 | TYPENAME declarator '=' expr ';'
2a8d363a 991 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
992 ;
993
2a8d363a 994declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
995 | '(' declarator ')'
996 ;
997@end example
998
999@noindent
1000This models a problematic part of the C++ grammar---the ambiguity between
1001certain declarations and statements. For example,
1002
1003@example
1004T (x) = y+z;
1005@end example
1006
1007@noindent
1008parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1009(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1010@samp{x} as an @code{ID}).
676385e2 1011Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1012@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1013time it encounters @code{x} in the example above. Since this is a
1014@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1015each choice of resolving the reduce/reduce conflict.
1016Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1017however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1018ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1019the other reduces @code{stmt : decl}, after which both parsers are in an
1020identical state: they've seen @samp{prog stmt} and have the same unprocessed
1021input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1022
1023At this point, the @acronym{GLR} parser requires a specification in the
1024grammar of how to choose between the competing parses.
1025In the example above, the two @code{%dprec}
e757bb10 1026declarations specify that Bison is to give precedence
fa7e68c3 1027to the parse that interprets the example as a
676385e2
PH
1028@code{decl}, which implies that @code{x} is a declarator.
1029The parser therefore prints
1030
1031@example
fae437e8 1032"x" y z + T <init-declare>
676385e2
PH
1033@end example
1034
fa7e68c3
PE
1035The @code{%dprec} declarations only come into play when more than one
1036parse survives. Consider a different input string for this parser:
676385e2
PH
1037
1038@example
1039T (x) + y;
1040@end example
1041
1042@noindent
e757bb10 1043This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1044construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1045Here, there is no ambiguity (this cannot be parsed as a declaration).
1046However, at the time the Bison parser encounters @code{x}, it does not
1047have enough information to resolve the reduce/reduce conflict (again,
1048between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1049case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1050into two, one assuming that @code{x} is an @code{expr}, and the other
1051assuming @code{x} is a @code{declarator}. The second of these parsers
1052then vanishes when it sees @code{+}, and the parser prints
1053
1054@example
fae437e8 1055x T <cast> y +
676385e2
PH
1056@end example
1057
1058Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1059the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1060actions of the two possible parsers, rather than choosing one over the
1061other. To do so, you could change the declaration of @code{stmt} as
1062follows:
1063
1064@example
1065stmt : expr ';' %merge <stmtMerge>
1066 | decl %merge <stmtMerge>
1067 ;
1068@end example
1069
1070@noindent
676385e2
PH
1071and define the @code{stmtMerge} function as:
1072
1073@example
38a92d50
PE
1074static YYSTYPE
1075stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1076@{
1077 printf ("<OR> ");
1078 return "";
1079@}
1080@end example
1081
1082@noindent
1083with an accompanying forward declaration
1084in the C declarations at the beginning of the file:
1085
1086@example
1087%@{
38a92d50 1088 #define YYSTYPE char const *
676385e2
PH
1089 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1090%@}
1091@end example
1092
1093@noindent
fa7e68c3
PE
1094With these declarations, the resulting parser parses the first example
1095as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1096
1097@example
fae437e8 1098"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1099@end example
1100
fa7e68c3 1101Bison requires that all of the
e757bb10 1102productions that participate in any particular merge have identical
fa7e68c3
PE
1103@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1104and the parser will report an error during any parse that results in
1105the offending merge.
9501dc6e 1106
32c29292
JD
1107@node GLR Semantic Actions
1108@subsection GLR Semantic Actions
1109
1110@cindex deferred semantic actions
1111By definition, a deferred semantic action is not performed at the same time as
1112the associated reduction.
1113This raises caveats for several Bison features you might use in a semantic
1114action in a @acronym{GLR} parser.
1115
1116@vindex yychar
1117@cindex @acronym{GLR} parsers and @code{yychar}
1118@vindex yylval
1119@cindex @acronym{GLR} parsers and @code{yylval}
1120@vindex yylloc
1121@cindex @acronym{GLR} parsers and @code{yylloc}
1122In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1123the lookahead token present at the time of the associated reduction.
32c29292
JD
1124After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1125you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1126lookahead token's semantic value and location, if any.
32c29292
JD
1127In a nondeferred semantic action, you can also modify any of these variables to
1128influence syntax analysis.
742e4900 1129@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1130
1131@findex yyclearin
1132@cindex @acronym{GLR} parsers and @code{yyclearin}
1133In a deferred semantic action, it's too late to influence syntax analysis.
1134In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1135shallow copies of the values they had at the time of the associated reduction.
1136For this reason alone, modifying them is dangerous.
1137Moreover, the result of modifying them is undefined and subject to change with
1138future versions of Bison.
1139For example, if a semantic action might be deferred, you should never write it
1140to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1141memory referenced by @code{yylval}.
1142
1143@findex YYERROR
1144@cindex @acronym{GLR} parsers and @code{YYERROR}
1145Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1146(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1147initiate error recovery.
1148During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1149the same as its effect in an @acronym{LALR}(1) parser.
1150In a deferred semantic action, its effect is undefined.
1151@c The effect is probably a syntax error at the split point.
1152
8710fc41
JD
1153Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1154describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1155
fa7e68c3
PE
1156@node Compiler Requirements
1157@subsection Considerations when Compiling @acronym{GLR} Parsers
1158@cindex @code{inline}
9501dc6e 1159@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1160
38a92d50
PE
1161The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1162later. In addition, they use the @code{inline} keyword, which is not
1163C89, but is C99 and is a common extension in pre-C99 compilers. It is
1164up to the user of these parsers to handle
9501dc6e
AD
1165portability issues. For instance, if using Autoconf and the Autoconf
1166macro @code{AC_C_INLINE}, a mere
1167
1168@example
1169%@{
38a92d50 1170 #include <config.h>
9501dc6e
AD
1171%@}
1172@end example
1173
1174@noindent
1175will suffice. Otherwise, we suggest
1176
1177@example
1178%@{
38a92d50
PE
1179 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1180 #define inline
1181 #endif
9501dc6e
AD
1182%@}
1183@end example
676385e2 1184
342b8b6e 1185@node Locations Overview
847bf1f5
AD
1186@section Locations
1187@cindex location
95923bd6
AD
1188@cindex textual location
1189@cindex location, textual
847bf1f5
AD
1190
1191Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1192and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1193the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1194Bison provides a mechanism for handling these locations.
1195
72d2299c 1196Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1197associated location, but the type of locations is the same for all tokens and
72d2299c 1198groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1199structure for storing locations (@pxref{Locations}, for more details).
1200
1201Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1202set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1203is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1204@code{@@3}.
1205
1206When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1207of its left hand side (@pxref{Actions}). In the same way, another default
1208action is used for locations. However, the action for locations is general
847bf1f5 1209enough for most cases, meaning there is usually no need to describe for each
72d2299c 1210rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1211grouping, the default behavior of the output parser is to take the beginning
1212of the first symbol, and the end of the last symbol.
1213
342b8b6e 1214@node Bison Parser
bfa74976
RS
1215@section Bison Output: the Parser File
1216@cindex Bison parser
1217@cindex Bison utility
1218@cindex lexical analyzer, purpose
1219@cindex parser
1220
1221When you run Bison, you give it a Bison grammar file as input. The output
1222is a C source file that parses the language described by the grammar.
1223This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1224utility and the Bison parser are two distinct programs: the Bison utility
1225is a program whose output is the Bison parser that becomes part of your
1226program.
1227
1228The job of the Bison parser is to group tokens into groupings according to
1229the grammar rules---for example, to build identifiers and operators into
1230expressions. As it does this, it runs the actions for the grammar rules it
1231uses.
1232
704a47c4
AD
1233The tokens come from a function called the @dfn{lexical analyzer} that
1234you must supply in some fashion (such as by writing it in C). The Bison
1235parser calls the lexical analyzer each time it wants a new token. It
1236doesn't know what is ``inside'' the tokens (though their semantic values
1237may reflect this). Typically the lexical analyzer makes the tokens by
1238parsing characters of text, but Bison does not depend on this.
1239@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1240
1241The Bison parser file is C code which defines a function named
1242@code{yyparse} which implements that grammar. This function does not make
1243a complete C program: you must supply some additional functions. One is
1244the lexical analyzer. Another is an error-reporting function which the
1245parser calls to report an error. In addition, a complete C program must
1246start with a function called @code{main}; you have to provide this, and
1247arrange for it to call @code{yyparse} or the parser will never run.
1248@xref{Interface, ,Parser C-Language Interface}.
1249
f7ab6a50 1250Aside from the token type names and the symbols in the actions you
7093d0f5 1251write, all symbols defined in the Bison parser file itself
bfa74976
RS
1252begin with @samp{yy} or @samp{YY}. This includes interface functions
1253such as the lexical analyzer function @code{yylex}, the error reporting
1254function @code{yyerror} and the parser function @code{yyparse} itself.
1255This also includes numerous identifiers used for internal purposes.
1256Therefore, you should avoid using C identifiers starting with @samp{yy}
1257or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1258this manual. Also, you should avoid using the C identifiers
1259@samp{malloc} and @samp{free} for anything other than their usual
1260meanings.
bfa74976 1261
7093d0f5
AD
1262In some cases the Bison parser file includes system headers, and in
1263those cases your code should respect the identifiers reserved by those
55289366 1264headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1265@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1266declare memory allocators and related types. @code{<libintl.h>} is
1267included if message translation is in use
1268(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1269be included if you define @code{YYDEBUG} to a nonzero value
1270(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1271
342b8b6e 1272@node Stages
bfa74976
RS
1273@section Stages in Using Bison
1274@cindex stages in using Bison
1275@cindex using Bison
1276
1277The actual language-design process using Bison, from grammar specification
1278to a working compiler or interpreter, has these parts:
1279
1280@enumerate
1281@item
1282Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1283(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1284in the language, describe the action that is to be taken when an
1285instance of that rule is recognized. The action is described by a
1286sequence of C statements.
bfa74976
RS
1287
1288@item
704a47c4
AD
1289Write a lexical analyzer to process input and pass tokens to the parser.
1290The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1291Lexical Analyzer Function @code{yylex}}). It could also be produced
1292using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1293
1294@item
1295Write a controlling function that calls the Bison-produced parser.
1296
1297@item
1298Write error-reporting routines.
1299@end enumerate
1300
1301To turn this source code as written into a runnable program, you
1302must follow these steps:
1303
1304@enumerate
1305@item
1306Run Bison on the grammar to produce the parser.
1307
1308@item
1309Compile the code output by Bison, as well as any other source files.
1310
1311@item
1312Link the object files to produce the finished product.
1313@end enumerate
1314
342b8b6e 1315@node Grammar Layout
bfa74976
RS
1316@section The Overall Layout of a Bison Grammar
1317@cindex grammar file
1318@cindex file format
1319@cindex format of grammar file
1320@cindex layout of Bison grammar
1321
1322The input file for the Bison utility is a @dfn{Bison grammar file}. The
1323general form of a Bison grammar file is as follows:
1324
1325@example
1326%@{
08e49d20 1327@var{Prologue}
bfa74976
RS
1328%@}
1329
1330@var{Bison declarations}
1331
1332%%
1333@var{Grammar rules}
1334%%
08e49d20 1335@var{Epilogue}
bfa74976
RS
1336@end example
1337
1338@noindent
1339The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1340in every Bison grammar file to separate the sections.
1341
72d2299c 1342The prologue may define types and variables used in the actions. You can
342b8b6e 1343also use preprocessor commands to define macros used there, and use
bfa74976 1344@code{#include} to include header files that do any of these things.
38a92d50
PE
1345You need to declare the lexical analyzer @code{yylex} and the error
1346printer @code{yyerror} here, along with any other global identifiers
1347used by the actions in the grammar rules.
bfa74976
RS
1348
1349The Bison declarations declare the names of the terminal and nonterminal
1350symbols, and may also describe operator precedence and the data types of
1351semantic values of various symbols.
1352
1353The grammar rules define how to construct each nonterminal symbol from its
1354parts.
1355
38a92d50
PE
1356The epilogue can contain any code you want to use. Often the
1357definitions of functions declared in the prologue go here. In a
1358simple program, all the rest of the program can go here.
bfa74976 1359
342b8b6e 1360@node Examples
bfa74976
RS
1361@chapter Examples
1362@cindex simple examples
1363@cindex examples, simple
1364
1365Now we show and explain three sample programs written using Bison: a
1366reverse polish notation calculator, an algebraic (infix) notation
1367calculator, and a multi-function calculator. All three have been tested
1368under BSD Unix 4.3; each produces a usable, though limited, interactive
1369desk-top calculator.
1370
1371These examples are simple, but Bison grammars for real programming
aa08666d
AD
1372languages are written the same way. You can copy these examples into a
1373source file to try them.
bfa74976
RS
1374
1375@menu
1376* RPN Calc:: Reverse polish notation calculator;
1377 a first example with no operator precedence.
1378* Infix Calc:: Infix (algebraic) notation calculator.
1379 Operator precedence is introduced.
1380* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1381* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1382* Multi-function Calc:: Calculator with memory and trig functions.
1383 It uses multiple data-types for semantic values.
1384* Exercises:: Ideas for improving the multi-function calculator.
1385@end menu
1386
342b8b6e 1387@node RPN Calc
bfa74976
RS
1388@section Reverse Polish Notation Calculator
1389@cindex reverse polish notation
1390@cindex polish notation calculator
1391@cindex @code{rpcalc}
1392@cindex calculator, simple
1393
1394The first example is that of a simple double-precision @dfn{reverse polish
1395notation} calculator (a calculator using postfix operators). This example
1396provides a good starting point, since operator precedence is not an issue.
1397The second example will illustrate how operator precedence is handled.
1398
1399The source code for this calculator is named @file{rpcalc.y}. The
1400@samp{.y} extension is a convention used for Bison input files.
1401
1402@menu
75f5aaea 1403* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1404* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1405* Lexer: Rpcalc Lexer. The lexical analyzer.
1406* Main: Rpcalc Main. The controlling function.
1407* Error: Rpcalc Error. The error reporting function.
1408* Gen: Rpcalc Gen. Running Bison on the grammar file.
1409* Comp: Rpcalc Compile. Run the C compiler on the output code.
1410@end menu
1411
342b8b6e 1412@node Rpcalc Decls
bfa74976
RS
1413@subsection Declarations for @code{rpcalc}
1414
1415Here are the C and Bison declarations for the reverse polish notation
1416calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1417
1418@example
72d2299c 1419/* Reverse polish notation calculator. */
bfa74976
RS
1420
1421%@{
38a92d50
PE
1422 #define YYSTYPE double
1423 #include <math.h>
1424 int yylex (void);
1425 void yyerror (char const *);
bfa74976
RS
1426%@}
1427
1428%token NUM
1429
72d2299c 1430%% /* Grammar rules and actions follow. */
bfa74976
RS
1431@end example
1432
75f5aaea 1433The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1434preprocessor directives and two forward declarations.
bfa74976
RS
1435
1436The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1437specifying the C data type for semantic values of both tokens and
1438groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1439Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1440don't define it, @code{int} is the default. Because we specify
1441@code{double}, each token and each expression has an associated value,
1442which is a floating point number.
bfa74976
RS
1443
1444The @code{#include} directive is used to declare the exponentiation
1445function @code{pow}.
1446
38a92d50
PE
1447The forward declarations for @code{yylex} and @code{yyerror} are
1448needed because the C language requires that functions be declared
1449before they are used. These functions will be defined in the
1450epilogue, but the parser calls them so they must be declared in the
1451prologue.
1452
704a47c4
AD
1453The second section, Bison declarations, provides information to Bison
1454about the token types (@pxref{Bison Declarations, ,The Bison
1455Declarations Section}). Each terminal symbol that is not a
1456single-character literal must be declared here. (Single-character
bfa74976
RS
1457literals normally don't need to be declared.) In this example, all the
1458arithmetic operators are designated by single-character literals, so the
1459only terminal symbol that needs to be declared is @code{NUM}, the token
1460type for numeric constants.
1461
342b8b6e 1462@node Rpcalc Rules
bfa74976
RS
1463@subsection Grammar Rules for @code{rpcalc}
1464
1465Here are the grammar rules for the reverse polish notation calculator.
1466
1467@example
1468input: /* empty */
1469 | input line
1470;
1471
1472line: '\n'
18b519c0 1473 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1474;
1475
18b519c0
AD
1476exp: NUM @{ $$ = $1; @}
1477 | exp exp '+' @{ $$ = $1 + $2; @}
1478 | exp exp '-' @{ $$ = $1 - $2; @}
1479 | exp exp '*' @{ $$ = $1 * $2; @}
1480 | exp exp '/' @{ $$ = $1 / $2; @}
1481 /* Exponentiation */
1482 | exp exp '^' @{ $$ = pow ($1, $2); @}
1483 /* Unary minus */
1484 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1485;
1486%%
1487@end example
1488
1489The groupings of the rpcalc ``language'' defined here are the expression
1490(given the name @code{exp}), the line of input (@code{line}), and the
1491complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1492symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1493which is read as ``or''. The following sections explain what these rules
1494mean.
1495
1496The semantics of the language is determined by the actions taken when a
1497grouping is recognized. The actions are the C code that appears inside
1498braces. @xref{Actions}.
1499
1500You must specify these actions in C, but Bison provides the means for
1501passing semantic values between the rules. In each action, the
1502pseudo-variable @code{$$} stands for the semantic value for the grouping
1503that the rule is going to construct. Assigning a value to @code{$$} is the
1504main job of most actions. The semantic values of the components of the
1505rule are referred to as @code{$1}, @code{$2}, and so on.
1506
1507@menu
13863333
AD
1508* Rpcalc Input::
1509* Rpcalc Line::
1510* Rpcalc Expr::
bfa74976
RS
1511@end menu
1512
342b8b6e 1513@node Rpcalc Input
bfa74976
RS
1514@subsubsection Explanation of @code{input}
1515
1516Consider the definition of @code{input}:
1517
1518@example
1519input: /* empty */
1520 | input line
1521;
1522@end example
1523
1524This definition reads as follows: ``A complete input is either an empty
1525string, or a complete input followed by an input line''. Notice that
1526``complete input'' is defined in terms of itself. This definition is said
1527to be @dfn{left recursive} since @code{input} appears always as the
1528leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1529
1530The first alternative is empty because there are no symbols between the
1531colon and the first @samp{|}; this means that @code{input} can match an
1532empty string of input (no tokens). We write the rules this way because it
1533is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1534It's conventional to put an empty alternative first and write the comment
1535@samp{/* empty */} in it.
1536
1537The second alternate rule (@code{input line}) handles all nontrivial input.
1538It means, ``After reading any number of lines, read one more line if
1539possible.'' The left recursion makes this rule into a loop. Since the
1540first alternative matches empty input, the loop can be executed zero or
1541more times.
1542
1543The parser function @code{yyparse} continues to process input until a
1544grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1545input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1546
342b8b6e 1547@node Rpcalc Line
bfa74976
RS
1548@subsubsection Explanation of @code{line}
1549
1550Now consider the definition of @code{line}:
1551
1552@example
1553line: '\n'
1554 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1555;
1556@end example
1557
1558The first alternative is a token which is a newline character; this means
1559that rpcalc accepts a blank line (and ignores it, since there is no
1560action). The second alternative is an expression followed by a newline.
1561This is the alternative that makes rpcalc useful. The semantic value of
1562the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1563question is the first symbol in the alternative. The action prints this
1564value, which is the result of the computation the user asked for.
1565
1566This action is unusual because it does not assign a value to @code{$$}. As
1567a consequence, the semantic value associated with the @code{line} is
1568uninitialized (its value will be unpredictable). This would be a bug if
1569that value were ever used, but we don't use it: once rpcalc has printed the
1570value of the user's input line, that value is no longer needed.
1571
342b8b6e 1572@node Rpcalc Expr
bfa74976
RS
1573@subsubsection Explanation of @code{expr}
1574
1575The @code{exp} grouping has several rules, one for each kind of expression.
1576The first rule handles the simplest expressions: those that are just numbers.
1577The second handles an addition-expression, which looks like two expressions
1578followed by a plus-sign. The third handles subtraction, and so on.
1579
1580@example
1581exp: NUM
1582 | exp exp '+' @{ $$ = $1 + $2; @}
1583 | exp exp '-' @{ $$ = $1 - $2; @}
1584 @dots{}
1585 ;
1586@end example
1587
1588We have used @samp{|} to join all the rules for @code{exp}, but we could
1589equally well have written them separately:
1590
1591@example
1592exp: NUM ;
1593exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1594exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1595 @dots{}
1596@end example
1597
1598Most of the rules have actions that compute the value of the expression in
1599terms of the value of its parts. For example, in the rule for addition,
1600@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1601the second one. The third component, @code{'+'}, has no meaningful
1602associated semantic value, but if it had one you could refer to it as
1603@code{$3}. When @code{yyparse} recognizes a sum expression using this
1604rule, the sum of the two subexpressions' values is produced as the value of
1605the entire expression. @xref{Actions}.
1606
1607You don't have to give an action for every rule. When a rule has no
1608action, Bison by default copies the value of @code{$1} into @code{$$}.
1609This is what happens in the first rule (the one that uses @code{NUM}).
1610
1611The formatting shown here is the recommended convention, but Bison does
72d2299c 1612not require it. You can add or change white space as much as you wish.
bfa74976
RS
1613For example, this:
1614
1615@example
99a9344e 1616exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1617@end example
1618
1619@noindent
1620means the same thing as this:
1621
1622@example
1623exp: NUM
1624 | exp exp '+' @{ $$ = $1 + $2; @}
1625 | @dots{}
99a9344e 1626;
bfa74976
RS
1627@end example
1628
1629@noindent
1630The latter, however, is much more readable.
1631
342b8b6e 1632@node Rpcalc Lexer
bfa74976
RS
1633@subsection The @code{rpcalc} Lexical Analyzer
1634@cindex writing a lexical analyzer
1635@cindex lexical analyzer, writing
1636
704a47c4
AD
1637The lexical analyzer's job is low-level parsing: converting characters
1638or sequences of characters into tokens. The Bison parser gets its
1639tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1640Analyzer Function @code{yylex}}.
bfa74976 1641
c827f760
PE
1642Only a simple lexical analyzer is needed for the @acronym{RPN}
1643calculator. This
bfa74976
RS
1644lexical analyzer skips blanks and tabs, then reads in numbers as
1645@code{double} and returns them as @code{NUM} tokens. Any other character
1646that isn't part of a number is a separate token. Note that the token-code
1647for such a single-character token is the character itself.
1648
1649The return value of the lexical analyzer function is a numeric code which
1650represents a token type. The same text used in Bison rules to stand for
1651this token type is also a C expression for the numeric code for the type.
1652This works in two ways. If the token type is a character literal, then its
e966383b 1653numeric code is that of the character; you can use the same
bfa74976
RS
1654character literal in the lexical analyzer to express the number. If the
1655token type is an identifier, that identifier is defined by Bison as a C
1656macro whose definition is the appropriate number. In this example,
1657therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1658
1964ad8c
AD
1659The semantic value of the token (if it has one) is stored into the
1660global variable @code{yylval}, which is where the Bison parser will look
1661for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1662defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1663,Declarations for @code{rpcalc}}.)
bfa74976 1664
72d2299c
PE
1665A token type code of zero is returned if the end-of-input is encountered.
1666(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1667
1668Here is the code for the lexical analyzer:
1669
1670@example
1671@group
72d2299c 1672/* The lexical analyzer returns a double floating point
e966383b 1673 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1674 of the character read if not a number. It skips all blanks
1675 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1676
1677#include <ctype.h>
1678@end group
1679
1680@group
13863333
AD
1681int
1682yylex (void)
bfa74976
RS
1683@{
1684 int c;
1685
72d2299c 1686 /* Skip white space. */
13863333 1687 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1688 ;
1689@end group
1690@group
72d2299c 1691 /* Process numbers. */
13863333 1692 if (c == '.' || isdigit (c))
bfa74976
RS
1693 @{
1694 ungetc (c, stdin);
1695 scanf ("%lf", &yylval);
1696 return NUM;
1697 @}
1698@end group
1699@group
72d2299c 1700 /* Return end-of-input. */
13863333 1701 if (c == EOF)
bfa74976 1702 return 0;
72d2299c 1703 /* Return a single char. */
13863333 1704 return c;
bfa74976
RS
1705@}
1706@end group
1707@end example
1708
342b8b6e 1709@node Rpcalc Main
bfa74976
RS
1710@subsection The Controlling Function
1711@cindex controlling function
1712@cindex main function in simple example
1713
1714In keeping with the spirit of this example, the controlling function is
1715kept to the bare minimum. The only requirement is that it call
1716@code{yyparse} to start the process of parsing.
1717
1718@example
1719@group
13863333
AD
1720int
1721main (void)
bfa74976 1722@{
13863333 1723 return yyparse ();
bfa74976
RS
1724@}
1725@end group
1726@end example
1727
342b8b6e 1728@node Rpcalc Error
bfa74976
RS
1729@subsection The Error Reporting Routine
1730@cindex error reporting routine
1731
1732When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1733function @code{yyerror} to print an error message (usually but not
6e649e65 1734always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1735@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1736here is the definition we will use:
bfa74976
RS
1737
1738@example
1739@group
1740#include <stdio.h>
1741
38a92d50 1742/* Called by yyparse on error. */
13863333 1743void
38a92d50 1744yyerror (char const *s)
bfa74976 1745@{
4e03e201 1746 fprintf (stderr, "%s\n", s);
bfa74976
RS
1747@}
1748@end group
1749@end example
1750
1751After @code{yyerror} returns, the Bison parser may recover from the error
1752and continue parsing if the grammar contains a suitable error rule
1753(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1754have not written any error rules in this example, so any invalid input will
1755cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1756real calculator, but it is adequate for the first example.
bfa74976 1757
342b8b6e 1758@node Rpcalc Gen
bfa74976
RS
1759@subsection Running Bison to Make the Parser
1760@cindex running Bison (introduction)
1761
ceed8467
AD
1762Before running Bison to produce a parser, we need to decide how to
1763arrange all the source code in one or more source files. For such a
1764simple example, the easiest thing is to put everything in one file. The
1765definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1766end, in the epilogue of the file
75f5aaea 1767(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1768
1769For a large project, you would probably have several source files, and use
1770@code{make} to arrange to recompile them.
1771
1772With all the source in a single file, you use the following command to
1773convert it into a parser file:
1774
1775@example
fa4d969f 1776bison @var{file}.y
bfa74976
RS
1777@end example
1778
1779@noindent
1780In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1781@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1782removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1783Bison contains the source code for @code{yyparse}. The additional
1784functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1785are copied verbatim to the output.
1786
342b8b6e 1787@node Rpcalc Compile
bfa74976
RS
1788@subsection Compiling the Parser File
1789@cindex compiling the parser
1790
1791Here is how to compile and run the parser file:
1792
1793@example
1794@group
1795# @r{List files in current directory.}
9edcd895 1796$ @kbd{ls}
bfa74976
RS
1797rpcalc.tab.c rpcalc.y
1798@end group
1799
1800@group
1801# @r{Compile the Bison parser.}
1802# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1803$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1804@end group
1805
1806@group
1807# @r{List files again.}
9edcd895 1808$ @kbd{ls}
bfa74976
RS
1809rpcalc rpcalc.tab.c rpcalc.y
1810@end group
1811@end example
1812
1813The file @file{rpcalc} now contains the executable code. Here is an
1814example session using @code{rpcalc}.
1815
1816@example
9edcd895
AD
1817$ @kbd{rpcalc}
1818@kbd{4 9 +}
bfa74976 181913
9edcd895 1820@kbd{3 7 + 3 4 5 *+-}
bfa74976 1821-13
9edcd895 1822@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 182313
9edcd895 1824@kbd{5 6 / 4 n +}
bfa74976 1825-3.166666667
9edcd895 1826@kbd{3 4 ^} @r{Exponentiation}
bfa74976 182781
9edcd895
AD
1828@kbd{^D} @r{End-of-file indicator}
1829$
bfa74976
RS
1830@end example
1831
342b8b6e 1832@node Infix Calc
bfa74976
RS
1833@section Infix Notation Calculator: @code{calc}
1834@cindex infix notation calculator
1835@cindex @code{calc}
1836@cindex calculator, infix notation
1837
1838We now modify rpcalc to handle infix operators instead of postfix. Infix
1839notation involves the concept of operator precedence and the need for
1840parentheses nested to arbitrary depth. Here is the Bison code for
1841@file{calc.y}, an infix desk-top calculator.
1842
1843@example
38a92d50 1844/* Infix notation calculator. */
bfa74976
RS
1845
1846%@{
38a92d50
PE
1847 #define YYSTYPE double
1848 #include <math.h>
1849 #include <stdio.h>
1850 int yylex (void);
1851 void yyerror (char const *);
bfa74976
RS
1852%@}
1853
38a92d50 1854/* Bison declarations. */
bfa74976
RS
1855%token NUM
1856%left '-' '+'
1857%left '*' '/'
1858%left NEG /* negation--unary minus */
38a92d50 1859%right '^' /* exponentiation */
bfa74976 1860
38a92d50
PE
1861%% /* The grammar follows. */
1862input: /* empty */
bfa74976
RS
1863 | input line
1864;
1865
1866line: '\n'
1867 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1868;
1869
1870exp: NUM @{ $$ = $1; @}
1871 | exp '+' exp @{ $$ = $1 + $3; @}
1872 | exp '-' exp @{ $$ = $1 - $3; @}
1873 | exp '*' exp @{ $$ = $1 * $3; @}
1874 | exp '/' exp @{ $$ = $1 / $3; @}
1875 | '-' exp %prec NEG @{ $$ = -$2; @}
1876 | exp '^' exp @{ $$ = pow ($1, $3); @}
1877 | '(' exp ')' @{ $$ = $2; @}
1878;
1879%%
1880@end example
1881
1882@noindent
ceed8467
AD
1883The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1884same as before.
bfa74976
RS
1885
1886There are two important new features shown in this code.
1887
1888In the second section (Bison declarations), @code{%left} declares token
1889types and says they are left-associative operators. The declarations
1890@code{%left} and @code{%right} (right associativity) take the place of
1891@code{%token} which is used to declare a token type name without
1892associativity. (These tokens are single-character literals, which
1893ordinarily don't need to be declared. We declare them here to specify
1894the associativity.)
1895
1896Operator precedence is determined by the line ordering of the
1897declarations; the higher the line number of the declaration (lower on
1898the page or screen), the higher the precedence. Hence, exponentiation
1899has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1900by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1901Precedence}.
bfa74976 1902
704a47c4
AD
1903The other important new feature is the @code{%prec} in the grammar
1904section for the unary minus operator. The @code{%prec} simply instructs
1905Bison that the rule @samp{| '-' exp} has the same precedence as
1906@code{NEG}---in this case the next-to-highest. @xref{Contextual
1907Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1908
1909Here is a sample run of @file{calc.y}:
1910
1911@need 500
1912@example
9edcd895
AD
1913$ @kbd{calc}
1914@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19156.880952381
9edcd895 1916@kbd{-56 + 2}
bfa74976 1917-54
9edcd895 1918@kbd{3 ^ 2}
bfa74976
RS
19199
1920@end example
1921
342b8b6e 1922@node Simple Error Recovery
bfa74976
RS
1923@section Simple Error Recovery
1924@cindex error recovery, simple
1925
1926Up to this point, this manual has not addressed the issue of @dfn{error
1927recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1928error. All we have handled is error reporting with @code{yyerror}.
1929Recall that by default @code{yyparse} returns after calling
1930@code{yyerror}. This means that an erroneous input line causes the
1931calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1932
1933The Bison language itself includes the reserved word @code{error}, which
1934may be included in the grammar rules. In the example below it has
1935been added to one of the alternatives for @code{line}:
1936
1937@example
1938@group
1939line: '\n'
1940 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1941 | error '\n' @{ yyerrok; @}
1942;
1943@end group
1944@end example
1945
ceed8467 1946This addition to the grammar allows for simple error recovery in the
6e649e65 1947event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1948read, the error will be recognized by the third rule for @code{line},
1949and parsing will continue. (The @code{yyerror} function is still called
1950upon to print its message as well.) The action executes the statement
1951@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1952that error recovery is complete (@pxref{Error Recovery}). Note the
1953difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1954misprint.
bfa74976
RS
1955
1956This form of error recovery deals with syntax errors. There are other
1957kinds of errors; for example, division by zero, which raises an exception
1958signal that is normally fatal. A real calculator program must handle this
1959signal and use @code{longjmp} to return to @code{main} and resume parsing
1960input lines; it would also have to discard the rest of the current line of
1961input. We won't discuss this issue further because it is not specific to
1962Bison programs.
1963
342b8b6e
AD
1964@node Location Tracking Calc
1965@section Location Tracking Calculator: @code{ltcalc}
1966@cindex location tracking calculator
1967@cindex @code{ltcalc}
1968@cindex calculator, location tracking
1969
9edcd895
AD
1970This example extends the infix notation calculator with location
1971tracking. This feature will be used to improve the error messages. For
1972the sake of clarity, this example is a simple integer calculator, since
1973most of the work needed to use locations will be done in the lexical
72d2299c 1974analyzer.
342b8b6e
AD
1975
1976@menu
1977* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1978* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1979* Lexer: Ltcalc Lexer. The lexical analyzer.
1980@end menu
1981
1982@node Ltcalc Decls
1983@subsection Declarations for @code{ltcalc}
1984
9edcd895
AD
1985The C and Bison declarations for the location tracking calculator are
1986the same as the declarations for the infix notation calculator.
342b8b6e
AD
1987
1988@example
1989/* Location tracking calculator. */
1990
1991%@{
38a92d50
PE
1992 #define YYSTYPE int
1993 #include <math.h>
1994 int yylex (void);
1995 void yyerror (char const *);
342b8b6e
AD
1996%@}
1997
1998/* Bison declarations. */
1999%token NUM
2000
2001%left '-' '+'
2002%left '*' '/'
2003%left NEG
2004%right '^'
2005
38a92d50 2006%% /* The grammar follows. */
342b8b6e
AD
2007@end example
2008
9edcd895
AD
2009@noindent
2010Note there are no declarations specific to locations. Defining a data
2011type for storing locations is not needed: we will use the type provided
2012by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2013four member structure with the following integer fields:
2014@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2015@code{last_column}. By conventions, and in accordance with the GNU
2016Coding Standards and common practice, the line and column count both
2017start at 1.
342b8b6e
AD
2018
2019@node Ltcalc Rules
2020@subsection Grammar Rules for @code{ltcalc}
2021
9edcd895
AD
2022Whether handling locations or not has no effect on the syntax of your
2023language. Therefore, grammar rules for this example will be very close
2024to those of the previous example: we will only modify them to benefit
2025from the new information.
342b8b6e 2026
9edcd895
AD
2027Here, we will use locations to report divisions by zero, and locate the
2028wrong expressions or subexpressions.
342b8b6e
AD
2029
2030@example
2031@group
2032input : /* empty */
2033 | input line
2034;
2035@end group
2036
2037@group
2038line : '\n'
2039 | exp '\n' @{ printf ("%d\n", $1); @}
2040;
2041@end group
2042
2043@group
2044exp : NUM @{ $$ = $1; @}
2045 | exp '+' exp @{ $$ = $1 + $3; @}
2046 | exp '-' exp @{ $$ = $1 - $3; @}
2047 | exp '*' exp @{ $$ = $1 * $3; @}
2048@end group
342b8b6e 2049@group
9edcd895 2050 | exp '/' exp
342b8b6e
AD
2051 @{
2052 if ($3)
2053 $$ = $1 / $3;
2054 else
2055 @{
2056 $$ = 1;
9edcd895
AD
2057 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2058 @@3.first_line, @@3.first_column,
2059 @@3.last_line, @@3.last_column);
342b8b6e
AD
2060 @}
2061 @}
2062@end group
2063@group
178e123e 2064 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2065 | exp '^' exp @{ $$ = pow ($1, $3); @}
2066 | '(' exp ')' @{ $$ = $2; @}
2067@end group
2068@end example
2069
2070This code shows how to reach locations inside of semantic actions, by
2071using the pseudo-variables @code{@@@var{n}} for rule components, and the
2072pseudo-variable @code{@@$} for groupings.
2073
9edcd895
AD
2074We don't need to assign a value to @code{@@$}: the output parser does it
2075automatically. By default, before executing the C code of each action,
2076@code{@@$} is set to range from the beginning of @code{@@1} to the end
2077of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2078can be redefined (@pxref{Location Default Action, , Default Action for
2079Locations}), and for very specific rules, @code{@@$} can be computed by
2080hand.
342b8b6e
AD
2081
2082@node Ltcalc Lexer
2083@subsection The @code{ltcalc} Lexical Analyzer.
2084
9edcd895 2085Until now, we relied on Bison's defaults to enable location
72d2299c 2086tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2087able to feed the parser with the token locations, as it already does for
2088semantic values.
342b8b6e 2089
9edcd895
AD
2090To this end, we must take into account every single character of the
2091input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2092
2093@example
2094@group
2095int
2096yylex (void)
2097@{
2098 int c;
18b519c0 2099@end group
342b8b6e 2100
18b519c0 2101@group
72d2299c 2102 /* Skip white space. */
342b8b6e
AD
2103 while ((c = getchar ()) == ' ' || c == '\t')
2104 ++yylloc.last_column;
18b519c0 2105@end group
342b8b6e 2106
18b519c0 2107@group
72d2299c 2108 /* Step. */
342b8b6e
AD
2109 yylloc.first_line = yylloc.last_line;
2110 yylloc.first_column = yylloc.last_column;
2111@end group
2112
2113@group
72d2299c 2114 /* Process numbers. */
342b8b6e
AD
2115 if (isdigit (c))
2116 @{
2117 yylval = c - '0';
2118 ++yylloc.last_column;
2119 while (isdigit (c = getchar ()))
2120 @{
2121 ++yylloc.last_column;
2122 yylval = yylval * 10 + c - '0';
2123 @}
2124 ungetc (c, stdin);
2125 return NUM;
2126 @}
2127@end group
2128
72d2299c 2129 /* Return end-of-input. */
342b8b6e
AD
2130 if (c == EOF)
2131 return 0;
2132
72d2299c 2133 /* Return a single char, and update location. */
342b8b6e
AD
2134 if (c == '\n')
2135 @{
2136 ++yylloc.last_line;
2137 yylloc.last_column = 0;
2138 @}
2139 else
2140 ++yylloc.last_column;
2141 return c;
2142@}
2143@end example
2144
9edcd895
AD
2145Basically, the lexical analyzer performs the same processing as before:
2146it skips blanks and tabs, and reads numbers or single-character tokens.
2147In addition, it updates @code{yylloc}, the global variable (of type
2148@code{YYLTYPE}) containing the token's location.
342b8b6e 2149
9edcd895 2150Now, each time this function returns a token, the parser has its number
72d2299c 2151as well as its semantic value, and its location in the text. The last
9edcd895
AD
2152needed change is to initialize @code{yylloc}, for example in the
2153controlling function:
342b8b6e
AD
2154
2155@example
9edcd895 2156@group
342b8b6e
AD
2157int
2158main (void)
2159@{
2160 yylloc.first_line = yylloc.last_line = 1;
2161 yylloc.first_column = yylloc.last_column = 0;
2162 return yyparse ();
2163@}
9edcd895 2164@end group
342b8b6e
AD
2165@end example
2166
9edcd895
AD
2167Remember that computing locations is not a matter of syntax. Every
2168character must be associated to a location update, whether it is in
2169valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2170
2171@node Multi-function Calc
bfa74976
RS
2172@section Multi-Function Calculator: @code{mfcalc}
2173@cindex multi-function calculator
2174@cindex @code{mfcalc}
2175@cindex calculator, multi-function
2176
2177Now that the basics of Bison have been discussed, it is time to move on to
2178a more advanced problem. The above calculators provided only five
2179functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2180be nice to have a calculator that provides other mathematical functions such
2181as @code{sin}, @code{cos}, etc.
2182
2183It is easy to add new operators to the infix calculator as long as they are
2184only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2185back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2186adding a new operator. But we want something more flexible: built-in
2187functions whose syntax has this form:
2188
2189@example
2190@var{function_name} (@var{argument})
2191@end example
2192
2193@noindent
2194At the same time, we will add memory to the calculator, by allowing you
2195to create named variables, store values in them, and use them later.
2196Here is a sample session with the multi-function calculator:
2197
2198@example
9edcd895
AD
2199$ @kbd{mfcalc}
2200@kbd{pi = 3.141592653589}
bfa74976 22013.1415926536
9edcd895 2202@kbd{sin(pi)}
bfa74976 22030.0000000000
9edcd895 2204@kbd{alpha = beta1 = 2.3}
bfa74976 22052.3000000000
9edcd895 2206@kbd{alpha}
bfa74976 22072.3000000000
9edcd895 2208@kbd{ln(alpha)}
bfa74976 22090.8329091229
9edcd895 2210@kbd{exp(ln(beta1))}
bfa74976 22112.3000000000
9edcd895 2212$
bfa74976
RS
2213@end example
2214
2215Note that multiple assignment and nested function calls are permitted.
2216
2217@menu
2218* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2219* Rules: Mfcalc Rules. Grammar rules for the calculator.
2220* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2221@end menu
2222
342b8b6e 2223@node Mfcalc Decl
bfa74976
RS
2224@subsection Declarations for @code{mfcalc}
2225
2226Here are the C and Bison declarations for the multi-function calculator.
2227
2228@smallexample
18b519c0 2229@group
bfa74976 2230%@{
38a92d50
PE
2231 #include <math.h> /* For math functions, cos(), sin(), etc. */
2232 #include "calc.h" /* Contains definition of `symrec'. */
2233 int yylex (void);
2234 void yyerror (char const *);
bfa74976 2235%@}
18b519c0
AD
2236@end group
2237@group
bfa74976 2238%union @{
38a92d50
PE
2239 double val; /* For returning numbers. */
2240 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2241@}
18b519c0 2242@end group
38a92d50
PE
2243%token <val> NUM /* Simple double precision number. */
2244%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2245%type <val> exp
2246
18b519c0 2247@group
bfa74976
RS
2248%right '='
2249%left '-' '+'
2250%left '*' '/'
38a92d50
PE
2251%left NEG /* negation--unary minus */
2252%right '^' /* exponentiation */
18b519c0 2253@end group
38a92d50 2254%% /* The grammar follows. */
bfa74976
RS
2255@end smallexample
2256
2257The above grammar introduces only two new features of the Bison language.
2258These features allow semantic values to have various data types
2259(@pxref{Multiple Types, ,More Than One Value Type}).
2260
2261The @code{%union} declaration specifies the entire list of possible types;
2262this is instead of defining @code{YYSTYPE}. The allowable types are now
2263double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2264the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2265
2266Since values can now have various types, it is necessary to associate a
2267type with each grammar symbol whose semantic value is used. These symbols
2268are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2269declarations are augmented with information about their data type (placed
2270between angle brackets).
2271
704a47c4
AD
2272The Bison construct @code{%type} is used for declaring nonterminal
2273symbols, just as @code{%token} is used for declaring token types. We
2274have not used @code{%type} before because nonterminal symbols are
2275normally declared implicitly by the rules that define them. But
2276@code{exp} must be declared explicitly so we can specify its value type.
2277@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2278
342b8b6e 2279@node Mfcalc Rules
bfa74976
RS
2280@subsection Grammar Rules for @code{mfcalc}
2281
2282Here are the grammar rules for the multi-function calculator.
2283Most of them are copied directly from @code{calc}; three rules,
2284those which mention @code{VAR} or @code{FNCT}, are new.
2285
2286@smallexample
18b519c0 2287@group
bfa74976
RS
2288input: /* empty */
2289 | input line
2290;
18b519c0 2291@end group
bfa74976 2292
18b519c0 2293@group
bfa74976
RS
2294line:
2295 '\n'
2296 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2297 | error '\n' @{ yyerrok; @}
2298;
18b519c0 2299@end group
bfa74976 2300
18b519c0 2301@group
bfa74976
RS
2302exp: NUM @{ $$ = $1; @}
2303 | VAR @{ $$ = $1->value.var; @}
2304 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2305 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2306 | exp '+' exp @{ $$ = $1 + $3; @}
2307 | exp '-' exp @{ $$ = $1 - $3; @}
2308 | exp '*' exp @{ $$ = $1 * $3; @}
2309 | exp '/' exp @{ $$ = $1 / $3; @}
2310 | '-' exp %prec NEG @{ $$ = -$2; @}
2311 | exp '^' exp @{ $$ = pow ($1, $3); @}
2312 | '(' exp ')' @{ $$ = $2; @}
2313;
18b519c0 2314@end group
38a92d50 2315/* End of grammar. */
bfa74976
RS
2316%%
2317@end smallexample
2318
342b8b6e 2319@node Mfcalc Symtab
bfa74976
RS
2320@subsection The @code{mfcalc} Symbol Table
2321@cindex symbol table example
2322
2323The multi-function calculator requires a symbol table to keep track of the
2324names and meanings of variables and functions. This doesn't affect the
2325grammar rules (except for the actions) or the Bison declarations, but it
2326requires some additional C functions for support.
2327
2328The symbol table itself consists of a linked list of records. Its
2329definition, which is kept in the header @file{calc.h}, is as follows. It
2330provides for either functions or variables to be placed in the table.
2331
2332@smallexample
2333@group
38a92d50 2334/* Function type. */
32dfccf8 2335typedef double (*func_t) (double);
72f889cc 2336@end group
32dfccf8 2337
72f889cc 2338@group
38a92d50 2339/* Data type for links in the chain of symbols. */
bfa74976
RS
2340struct symrec
2341@{
38a92d50 2342 char *name; /* name of symbol */
bfa74976 2343 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2344 union
2345 @{
38a92d50
PE
2346 double var; /* value of a VAR */
2347 func_t fnctptr; /* value of a FNCT */
bfa74976 2348 @} value;
38a92d50 2349 struct symrec *next; /* link field */
bfa74976
RS
2350@};
2351@end group
2352
2353@group
2354typedef struct symrec symrec;
2355
38a92d50 2356/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2357extern symrec *sym_table;
2358
a730d142 2359symrec *putsym (char const *, int);
38a92d50 2360symrec *getsym (char const *);
bfa74976
RS
2361@end group
2362@end smallexample
2363
2364The new version of @code{main} includes a call to @code{init_table}, a
2365function that initializes the symbol table. Here it is, and
2366@code{init_table} as well:
2367
2368@smallexample
bfa74976
RS
2369#include <stdio.h>
2370
18b519c0 2371@group
38a92d50 2372/* Called by yyparse on error. */
13863333 2373void
38a92d50 2374yyerror (char const *s)
bfa74976
RS
2375@{
2376 printf ("%s\n", s);
2377@}
18b519c0 2378@end group
bfa74976 2379
18b519c0 2380@group
bfa74976
RS
2381struct init
2382@{
38a92d50
PE
2383 char const *fname;
2384 double (*fnct) (double);
bfa74976
RS
2385@};
2386@end group
2387
2388@group
38a92d50 2389struct init const arith_fncts[] =
13863333 2390@{
32dfccf8
AD
2391 "sin", sin,
2392 "cos", cos,
13863333 2393 "atan", atan,
32dfccf8
AD
2394 "ln", log,
2395 "exp", exp,
13863333
AD
2396 "sqrt", sqrt,
2397 0, 0
2398@};
18b519c0 2399@end group
bfa74976 2400
18b519c0 2401@group
bfa74976 2402/* The symbol table: a chain of `struct symrec'. */
38a92d50 2403symrec *sym_table;
bfa74976
RS
2404@end group
2405
2406@group
72d2299c 2407/* Put arithmetic functions in table. */
13863333
AD
2408void
2409init_table (void)
bfa74976
RS
2410@{
2411 int i;
2412 symrec *ptr;
2413 for (i = 0; arith_fncts[i].fname != 0; i++)
2414 @{
2415 ptr = putsym (arith_fncts[i].fname, FNCT);
2416 ptr->value.fnctptr = arith_fncts[i].fnct;
2417 @}
2418@}
2419@end group
38a92d50
PE
2420
2421@group
2422int
2423main (void)
2424@{
2425 init_table ();
2426 return yyparse ();
2427@}
2428@end group
bfa74976
RS
2429@end smallexample
2430
2431By simply editing the initialization list and adding the necessary include
2432files, you can add additional functions to the calculator.
2433
2434Two important functions allow look-up and installation of symbols in the
2435symbol table. The function @code{putsym} is passed a name and the type
2436(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2437linked to the front of the list, and a pointer to the object is returned.
2438The function @code{getsym} is passed the name of the symbol to look up. If
2439found, a pointer to that symbol is returned; otherwise zero is returned.
2440
2441@smallexample
2442symrec *
38a92d50 2443putsym (char const *sym_name, int sym_type)
bfa74976
RS
2444@{
2445 symrec *ptr;
2446 ptr = (symrec *) malloc (sizeof (symrec));
2447 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2448 strcpy (ptr->name,sym_name);
2449 ptr->type = sym_type;
72d2299c 2450 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2451 ptr->next = (struct symrec *)sym_table;
2452 sym_table = ptr;
2453 return ptr;
2454@}
2455
2456symrec *
38a92d50 2457getsym (char const *sym_name)
bfa74976
RS
2458@{
2459 symrec *ptr;
2460 for (ptr = sym_table; ptr != (symrec *) 0;
2461 ptr = (symrec *)ptr->next)
2462 if (strcmp (ptr->name,sym_name) == 0)
2463 return ptr;
2464 return 0;
2465@}
2466@end smallexample
2467
2468The function @code{yylex} must now recognize variables, numeric values, and
2469the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2470characters with a leading letter are recognized as either variables or
bfa74976
RS
2471functions depending on what the symbol table says about them.
2472
2473The string is passed to @code{getsym} for look up in the symbol table. If
2474the name appears in the table, a pointer to its location and its type
2475(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2476already in the table, then it is installed as a @code{VAR} using
2477@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2478returned to @code{yyparse}.
bfa74976
RS
2479
2480No change is needed in the handling of numeric values and arithmetic
2481operators in @code{yylex}.
2482
2483@smallexample
2484@group
2485#include <ctype.h>
18b519c0 2486@end group
13863333 2487
18b519c0 2488@group
13863333
AD
2489int
2490yylex (void)
bfa74976
RS
2491@{
2492 int c;
2493
72d2299c 2494 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2495 while ((c = getchar ()) == ' ' || c == '\t');
2496
2497 if (c == EOF)
2498 return 0;
2499@end group
2500
2501@group
2502 /* Char starts a number => parse the number. */
2503 if (c == '.' || isdigit (c))
2504 @{
2505 ungetc (c, stdin);
2506 scanf ("%lf", &yylval.val);
2507 return NUM;
2508 @}
2509@end group
2510
2511@group
2512 /* Char starts an identifier => read the name. */
2513 if (isalpha (c))
2514 @{
2515 symrec *s;
2516 static char *symbuf = 0;
2517 static int length = 0;
2518 int i;
2519@end group
2520
2521@group
2522 /* Initially make the buffer long enough
2523 for a 40-character symbol name. */
2524 if (length == 0)
2525 length = 40, symbuf = (char *)malloc (length + 1);
2526
2527 i = 0;
2528 do
2529@end group
2530@group
2531 @{
2532 /* If buffer is full, make it bigger. */
2533 if (i == length)
2534 @{
2535 length *= 2;
18b519c0 2536 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2537 @}
2538 /* Add this character to the buffer. */
2539 symbuf[i++] = c;
2540 /* Get another character. */
2541 c = getchar ();
2542 @}
2543@end group
2544@group
72d2299c 2545 while (isalnum (c));
bfa74976
RS
2546
2547 ungetc (c, stdin);
2548 symbuf[i] = '\0';
2549@end group
2550
2551@group
2552 s = getsym (symbuf);
2553 if (s == 0)
2554 s = putsym (symbuf, VAR);
2555 yylval.tptr = s;
2556 return s->type;
2557 @}
2558
2559 /* Any other character is a token by itself. */
2560 return c;
2561@}
2562@end group
2563@end smallexample
2564
72d2299c 2565This program is both powerful and flexible. You may easily add new
704a47c4
AD
2566functions, and it is a simple job to modify this code to install
2567predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2568
342b8b6e 2569@node Exercises
bfa74976
RS
2570@section Exercises
2571@cindex exercises
2572
2573@enumerate
2574@item
2575Add some new functions from @file{math.h} to the initialization list.
2576
2577@item
2578Add another array that contains constants and their values. Then
2579modify @code{init_table} to add these constants to the symbol table.
2580It will be easiest to give the constants type @code{VAR}.
2581
2582@item
2583Make the program report an error if the user refers to an
2584uninitialized variable in any way except to store a value in it.
2585@end enumerate
2586
342b8b6e 2587@node Grammar File
bfa74976
RS
2588@chapter Bison Grammar Files
2589
2590Bison takes as input a context-free grammar specification and produces a
2591C-language function that recognizes correct instances of the grammar.
2592
2593The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2594@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2595
2596@menu
2597* Grammar Outline:: Overall layout of the grammar file.
2598* Symbols:: Terminal and nonterminal symbols.
2599* Rules:: How to write grammar rules.
2600* Recursion:: Writing recursive rules.
2601* Semantics:: Semantic values and actions.
847bf1f5 2602* Locations:: Locations and actions.
bfa74976
RS
2603* Declarations:: All kinds of Bison declarations are described here.
2604* Multiple Parsers:: Putting more than one Bison parser in one program.
2605@end menu
2606
342b8b6e 2607@node Grammar Outline
bfa74976
RS
2608@section Outline of a Bison Grammar
2609
2610A Bison grammar file has four main sections, shown here with the
2611appropriate delimiters:
2612
2613@example
2614%@{
38a92d50 2615 @var{Prologue}
bfa74976
RS
2616%@}
2617
2618@var{Bison declarations}
2619
2620%%
2621@var{Grammar rules}
2622%%
2623
75f5aaea 2624@var{Epilogue}
bfa74976
RS
2625@end example
2626
2627Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2628As a @acronym{GNU} extension, @samp{//} introduces a comment that
2629continues until end of line.
bfa74976
RS
2630
2631@menu
75f5aaea 2632* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2633* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2634* Bison Declarations:: Syntax and usage of the Bison declarations section.
2635* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2636* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2637@end menu
2638
38a92d50 2639@node Prologue
75f5aaea
MA
2640@subsection The prologue
2641@cindex declarations section
2642@cindex Prologue
2643@cindex declarations
bfa74976 2644
f8e1c9e5
AD
2645The @var{Prologue} section contains macro definitions and declarations
2646of functions and variables that are used in the actions in the grammar
2647rules. These are copied to the beginning of the parser file so that
2648they precede the definition of @code{yyparse}. You can use
2649@samp{#include} to get the declarations from a header file. If you
2650don't need any C declarations, you may omit the @samp{%@{} and
2651@samp{%@}} delimiters that bracket this section.
bfa74976 2652
9c437126 2653The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2654of @samp{%@}} that is outside a comment, a string literal, or a
2655character constant.
2656
c732d2c6
AD
2657You may have more than one @var{Prologue} section, intermixed with the
2658@var{Bison declarations}. This allows you to have C and Bison
2659declarations that refer to each other. For example, the @code{%union}
2660declaration may use types defined in a header file, and you may wish to
2661prototype functions that take arguments of type @code{YYSTYPE}. This
2662can be done with two @var{Prologue} blocks, one before and one after the
2663@code{%union} declaration.
2664
2665@smallexample
2666%@{
aef3da86 2667 #define _GNU_SOURCE
38a92d50
PE
2668 #include <stdio.h>
2669 #include "ptypes.h"
c732d2c6
AD
2670%@}
2671
2672%union @{
779e7ceb 2673 long int n;
c732d2c6
AD
2674 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2675@}
2676
2677%@{
38a92d50
PE
2678 static void print_token_value (FILE *, int, YYSTYPE);
2679 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2680%@}
2681
2682@dots{}
2683@end smallexample
2684
aef3da86
PE
2685When in doubt, it is usually safer to put prologue code before all
2686Bison declarations, rather than after. For example, any definitions
2687of feature test macros like @code{_GNU_SOURCE} or
2688@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2689feature test macros can affect the behavior of Bison-generated
2690@code{#include} directives.
2691
2cbe6b7f
JD
2692@node Prologue Alternatives
2693@subsection Prologue Alternatives
2694@cindex Prologue Alternatives
2695
136a0f76 2696@findex %code
16dc6a9e
JD
2697@findex %code requires
2698@findex %code provides
2699@findex %code top
85894313
JD
2700(The prologue alternatives described here are experimental.
2701More user feedback will help to determine whether they should become permanent
2702features.)
2703
2cbe6b7f
JD
2704The functionality of @var{Prologue} sections can often be subtle and
2705inflexible.
8e0a5e9e
JD
2706As an alternative, Bison provides a %code directive with an explicit qualifier
2707field, which identifies the purpose of the code and thus the location(s) where
2708Bison should generate it.
2709For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2710one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2711@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2712
2713Look again at the example of the previous section:
2714
2715@smallexample
2716%@{
2717 #define _GNU_SOURCE
2718 #include <stdio.h>
2719 #include "ptypes.h"
2720%@}
2721
2722%union @{
2723 long int n;
2724 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2725@}
2726
2727%@{
2728 static void print_token_value (FILE *, int, YYSTYPE);
2729 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2730%@}
2731
2732@dots{}
2733@end smallexample
2734
2735@noindent
2736Notice that there are two @var{Prologue} sections here, but there's a subtle
2737distinction between their functionality.
2738For example, if you decide to override Bison's default definition for
2739@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2740definition?
2741You should write it in the first since Bison will insert that code into the
8e0a5e9e 2742parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2743In which @var{Prologue} section should you prototype an internal function,
2744@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2745arguments?
2746You should prototype it in the second since Bison will insert that code
2747@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2748
2749This distinction in functionality between the two @var{Prologue} sections is
2750established by the appearance of the @code{%union} between them.
a501eca9 2751This behavior raises a few questions.
2cbe6b7f
JD
2752First, why should the position of a @code{%union} affect definitions related to
2753@code{YYLTYPE} and @code{yytokentype}?
2754Second, what if there is no @code{%union}?
2755In that case, the second kind of @var{Prologue} section is not available.
2756This behavior is not intuitive.
2757
8e0a5e9e 2758To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2759@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2760Let's go ahead and add the new @code{YYLTYPE} definition and the
2761@code{trace_token} prototype at the same time:
2762
2763@smallexample
16dc6a9e 2764%code top @{
2cbe6b7f
JD
2765 #define _GNU_SOURCE
2766 #include <stdio.h>
8e0a5e9e
JD
2767
2768 /* WARNING: The following code really belongs
16dc6a9e 2769 * in a `%code requires'; see below. */
8e0a5e9e 2770
2cbe6b7f
JD
2771 #include "ptypes.h"
2772 #define YYLTYPE YYLTYPE
2773 typedef struct YYLTYPE
2774 @{
2775 int first_line;
2776 int first_column;
2777 int last_line;
2778 int last_column;
2779 char *filename;
2780 @} YYLTYPE;
2781@}
2782
2783%union @{
2784 long int n;
2785 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2786@}
2787
2788%code @{
2789 static void print_token_value (FILE *, int, YYSTYPE);
2790 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2791 static void trace_token (enum yytokentype token, YYLTYPE loc);
2792@}
2793
2794@dots{}
2795@end smallexample
2796
2797@noindent
16dc6a9e
JD
2798In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2799functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2800explicit which kind you intend.
2cbe6b7f
JD
2801Moreover, both kinds are always available even in the absence of @code{%union}.
2802
16dc6a9e 2803The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2804The first two lines before the warning need to appear near the top of the
2805parser source code file.
2806The first line after the warning is required by @code{YYSTYPE} and thus also
2807needs to appear in the parser source code file.
2cbe6b7f 2808However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2809(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2810the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2811The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2812override the default @code{YYLTYPE} definition there.
2813
16dc6a9e 2814In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2815lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2816definitions.
16dc6a9e 2817Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2818
2819@smallexample
16dc6a9e 2820%code top @{
2cbe6b7f
JD
2821 #define _GNU_SOURCE
2822 #include <stdio.h>
2823@}
2824
16dc6a9e 2825%code requires @{
9bc0dd67
JD
2826 #include "ptypes.h"
2827@}
2828%union @{
2829 long int n;
2830 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2831@}
2832
16dc6a9e 2833%code requires @{
2cbe6b7f
JD
2834 #define YYLTYPE YYLTYPE
2835 typedef struct YYLTYPE
2836 @{
2837 int first_line;
2838 int first_column;
2839 int last_line;
2840 int last_column;
2841 char *filename;
2842 @} YYLTYPE;
2843@}
2844
136a0f76 2845%code @{
2cbe6b7f
JD
2846 static void print_token_value (FILE *, int, YYSTYPE);
2847 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2848 static void trace_token (enum yytokentype token, YYLTYPE loc);
2849@}
2850
2851@dots{}
2852@end smallexample
2853
2854@noindent
2855Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2856definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2857definitions in both the parser source code file and the parser header file.
16dc6a9e 2858(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2859place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2860
a501eca9 2861When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2862should prefer @code{%code requires} over @code{%code top} regardless of whether
2863you instruct Bison to generate a parser header file.
a501eca9 2864When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2865source code file and that has no special need to appear at the top of that
16dc6a9e 2866file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2867These practices will make the purpose of each block of your code explicit to
2868Bison and to other developers reading your grammar file.
8e0a5e9e 2869Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2870@code{%code requires} to be the most important of the four @var{Prologue}
2871alternatives.
a501eca9 2872
2cbe6b7f
JD
2873At some point while developing your parser, you might decide to provide
2874@code{trace_token} to modules that are external to your parser.
2875Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2876header file and the parser source code file.
2877Since this function is not a dependency required by @code{YYSTYPE} or
2878@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2879@code{%code requires}.
2cbe6b7f 2880More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2881@code{%code requires} is not sufficient.
8e0a5e9e 2882Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2883@code{%code provides}:
2cbe6b7f
JD
2884
2885@smallexample
16dc6a9e 2886%code top @{
2cbe6b7f 2887 #define _GNU_SOURCE
136a0f76 2888 #include <stdio.h>
2cbe6b7f 2889@}
136a0f76 2890
16dc6a9e 2891%code requires @{
2cbe6b7f
JD
2892 #include "ptypes.h"
2893@}
2894%union @{
2895 long int n;
2896 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2897@}
2898
16dc6a9e 2899%code requires @{
2cbe6b7f
JD
2900 #define YYLTYPE YYLTYPE
2901 typedef struct YYLTYPE
2902 @{
2903 int first_line;
2904 int first_column;
2905 int last_line;
2906 int last_column;
2907 char *filename;
2908 @} YYLTYPE;
2909@}
2910
16dc6a9e 2911%code provides @{
2cbe6b7f
JD
2912 void trace_token (enum yytokentype token, YYLTYPE loc);
2913@}
2914
2915%code @{
9bc0dd67
JD
2916 static void print_token_value (FILE *, int, YYSTYPE);
2917 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2918@}
9bc0dd67
JD
2919
2920@dots{}
2921@end smallexample
2922
2cbe6b7f
JD
2923@noindent
2924Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2925file and the parser source code file after the definitions for
2926@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2927
2928The above examples are careful to write directives in an order that reflects
8e0a5e9e 2929the layout of the generated parser source code and header files:
16dc6a9e 2930@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2931@code{%code}.
a501eca9 2932While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2933this order, Bison does not require it.
2934Instead, Bison lets you choose an organization that makes sense to you.
2935
a501eca9 2936You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2937In that case, Bison concatenates the contained code in declaration order.
2938This is the only way in which the position of one of these directives within
2939the grammar file affects its functionality.
2940
2941The result of the previous two properties is greater flexibility in how you may
2942organize your grammar file.
2943For example, you may organize semantic-type-related directives by semantic
2944type:
2945
2946@smallexample
16dc6a9e 2947%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2948%union @{ type1 field1; @}
2949%destructor @{ type1_free ($$); @} <field1>
2950%printer @{ type1_print ($$); @} <field1>
2951
16dc6a9e 2952%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2953%union @{ type2 field2; @}
2954%destructor @{ type2_free ($$); @} <field2>
2955%printer @{ type2_print ($$); @} <field2>
2956@end smallexample
2957
2958@noindent
2959You could even place each of the above directive groups in the rules section of
2960the grammar file next to the set of rules that uses the associated semantic
2961type.
61fee93e
JD
2962(In the rules section, you must terminate each of those directives with a
2963semicolon.)
2cbe6b7f
JD
2964And you don't have to worry that some directive (like a @code{%union}) in the
2965definitions section is going to adversely affect their functionality in some
2966counter-intuitive manner just because it comes first.
2967Such an organization is not possible using @var{Prologue} sections.
2968
a501eca9 2969This section has been concerned with explaining the advantages of the four
8e0a5e9e 2970@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2971However, in most cases when using these directives, you shouldn't need to
2972think about all the low-level ordering issues discussed here.
2973Instead, you should simply use these directives to label each block of your
2974code according to its purpose and let Bison handle the ordering.
2975@code{%code} is the most generic label.
16dc6a9e
JD
2976Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2977as needed.
a501eca9 2978
342b8b6e 2979@node Bison Declarations
bfa74976
RS
2980@subsection The Bison Declarations Section
2981@cindex Bison declarations (introduction)
2982@cindex declarations, Bison (introduction)
2983
2984The @var{Bison declarations} section contains declarations that define
2985terminal and nonterminal symbols, specify precedence, and so on.
2986In some simple grammars you may not need any declarations.
2987@xref{Declarations, ,Bison Declarations}.
2988
342b8b6e 2989@node Grammar Rules
bfa74976
RS
2990@subsection The Grammar Rules Section
2991@cindex grammar rules section
2992@cindex rules section for grammar
2993
2994The @dfn{grammar rules} section contains one or more Bison grammar
2995rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2996
2997There must always be at least one grammar rule, and the first
2998@samp{%%} (which precedes the grammar rules) may never be omitted even
2999if it is the first thing in the file.
3000
38a92d50 3001@node Epilogue
75f5aaea 3002@subsection The epilogue
bfa74976 3003@cindex additional C code section
75f5aaea 3004@cindex epilogue
bfa74976
RS
3005@cindex C code, section for additional
3006
08e49d20
PE
3007The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3008the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3009place to put anything that you want to have in the parser file but which need
3010not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3011definitions of @code{yylex} and @code{yyerror} often go here. Because
3012C requires functions to be declared before being used, you often need
3013to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3014even if you define them in the Epilogue.
75f5aaea 3015@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3016
3017If the last section is empty, you may omit the @samp{%%} that separates it
3018from the grammar rules.
3019
f8e1c9e5
AD
3020The Bison parser itself contains many macros and identifiers whose names
3021start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3022any such names (except those documented in this manual) in the epilogue
3023of the grammar file.
bfa74976 3024
342b8b6e 3025@node Symbols
bfa74976
RS
3026@section Symbols, Terminal and Nonterminal
3027@cindex nonterminal symbol
3028@cindex terminal symbol
3029@cindex token type
3030@cindex symbol
3031
3032@dfn{Symbols} in Bison grammars represent the grammatical classifications
3033of the language.
3034
3035A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3036class of syntactically equivalent tokens. You use the symbol in grammar
3037rules to mean that a token in that class is allowed. The symbol is
3038represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3039function returns a token type code to indicate what kind of token has
3040been read. You don't need to know what the code value is; you can use
3041the symbol to stand for it.
bfa74976 3042
f8e1c9e5
AD
3043A @dfn{nonterminal symbol} stands for a class of syntactically
3044equivalent groupings. The symbol name is used in writing grammar rules.
3045By convention, it should be all lower case.
bfa74976
RS
3046
3047Symbol names can contain letters, digits (not at the beginning),
3048underscores and periods. Periods make sense only in nonterminals.
3049
931c7513 3050There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3051
3052@itemize @bullet
3053@item
3054A @dfn{named token type} is written with an identifier, like an
c827f760 3055identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3056such name must be defined with a Bison declaration such as
3057@code{%token}. @xref{Token Decl, ,Token Type Names}.
3058
3059@item
3060@cindex character token
3061@cindex literal token
3062@cindex single-character literal
931c7513
RS
3063A @dfn{character token type} (or @dfn{literal character token}) is
3064written in the grammar using the same syntax used in C for character
3065constants; for example, @code{'+'} is a character token type. A
3066character token type doesn't need to be declared unless you need to
3067specify its semantic value data type (@pxref{Value Type, ,Data Types of
3068Semantic Values}), associativity, or precedence (@pxref{Precedence,
3069,Operator Precedence}).
bfa74976
RS
3070
3071By convention, a character token type is used only to represent a
3072token that consists of that particular character. Thus, the token
3073type @code{'+'} is used to represent the character @samp{+} as a
3074token. Nothing enforces this convention, but if you depart from it,
3075your program will confuse other readers.
3076
3077All the usual escape sequences used in character literals in C can be
3078used in Bison as well, but you must not use the null character as a
72d2299c
PE
3079character literal because its numeric code, zero, signifies
3080end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3081for @code{yylex}}). Also, unlike standard C, trigraphs have no
3082special meaning in Bison character literals, nor is backslash-newline
3083allowed.
931c7513
RS
3084
3085@item
3086@cindex string token
3087@cindex literal string token
9ecbd125 3088@cindex multicharacter literal
931c7513
RS
3089A @dfn{literal string token} is written like a C string constant; for
3090example, @code{"<="} is a literal string token. A literal string token
3091doesn't need to be declared unless you need to specify its semantic
14ded682 3092value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3093(@pxref{Precedence}).
3094
3095You can associate the literal string token with a symbolic name as an
3096alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3097Declarations}). If you don't do that, the lexical analyzer has to
3098retrieve the token number for the literal string token from the
3099@code{yytname} table (@pxref{Calling Convention}).
3100
c827f760 3101@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3102
3103By convention, a literal string token is used only to represent a token
3104that consists of that particular string. Thus, you should use the token
3105type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3106does not enforce this convention, but if you depart from it, people who
931c7513
RS
3107read your program will be confused.
3108
3109All the escape sequences used in string literals in C can be used in
92ac3705
PE
3110Bison as well, except that you must not use a null character within a
3111string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3112meaning in Bison string literals, nor is backslash-newline allowed. A
3113literal string token must contain two or more characters; for a token
3114containing just one character, use a character token (see above).
bfa74976
RS
3115@end itemize
3116
3117How you choose to write a terminal symbol has no effect on its
3118grammatical meaning. That depends only on where it appears in rules and
3119on when the parser function returns that symbol.
3120
72d2299c
PE
3121The value returned by @code{yylex} is always one of the terminal
3122symbols, except that a zero or negative value signifies end-of-input.
3123Whichever way you write the token type in the grammar rules, you write
3124it the same way in the definition of @code{yylex}. The numeric code
3125for a character token type is simply the positive numeric code of the
3126character, so @code{yylex} can use the identical value to generate the
3127requisite code, though you may need to convert it to @code{unsigned
3128char} to avoid sign-extension on hosts where @code{char} is signed.
3129Each named token type becomes a C macro in
bfa74976 3130the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3131(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3132@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3133
3134If @code{yylex} is defined in a separate file, you need to arrange for the
3135token-type macro definitions to be available there. Use the @samp{-d}
3136option when you run Bison, so that it will write these macro definitions
3137into a separate header file @file{@var{name}.tab.h} which you can include
3138in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3139
72d2299c 3140If you want to write a grammar that is portable to any Standard C
9d9b8b70 3141host, you must use only nonnull character tokens taken from the basic
c827f760 3142execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3143digits, the 52 lower- and upper-case English letters, and the
3144characters in the following C-language string:
3145
3146@example
3147"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3148@end example
3149
f8e1c9e5
AD
3150The @code{yylex} function and Bison must use a consistent character set
3151and encoding for character tokens. For example, if you run Bison in an
3152@acronym{ASCII} environment, but then compile and run the resulting
3153program in an environment that uses an incompatible character set like
3154@acronym{EBCDIC}, the resulting program may not work because the tables
3155generated by Bison will assume @acronym{ASCII} numeric values for
3156character tokens. It is standard practice for software distributions to
3157contain C source files that were generated by Bison in an
3158@acronym{ASCII} environment, so installers on platforms that are
3159incompatible with @acronym{ASCII} must rebuild those files before
3160compiling them.
e966383b 3161
bfa74976
RS
3162The symbol @code{error} is a terminal symbol reserved for error recovery
3163(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3164In particular, @code{yylex} should never return this value. The default
3165value of the error token is 256, unless you explicitly assigned 256 to
3166one of your tokens with a @code{%token} declaration.
bfa74976 3167
342b8b6e 3168@node Rules
bfa74976
RS
3169@section Syntax of Grammar Rules
3170@cindex rule syntax
3171@cindex grammar rule syntax
3172@cindex syntax of grammar rules
3173
3174A Bison grammar rule has the following general form:
3175
3176@example
e425e872 3177@group
bfa74976
RS
3178@var{result}: @var{components}@dots{}
3179 ;
e425e872 3180@end group
bfa74976
RS
3181@end example
3182
3183@noindent
9ecbd125 3184where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3185and @var{components} are various terminal and nonterminal symbols that
13863333 3186are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3187
3188For example,
3189
3190@example
3191@group
3192exp: exp '+' exp
3193 ;
3194@end group
3195@end example
3196
3197@noindent
3198says that two groupings of type @code{exp}, with a @samp{+} token in between,
3199can be combined into a larger grouping of type @code{exp}.
3200
72d2299c
PE
3201White space in rules is significant only to separate symbols. You can add
3202extra white space as you wish.
bfa74976
RS
3203
3204Scattered among the components can be @var{actions} that determine
3205the semantics of the rule. An action looks like this:
3206
3207@example
3208@{@var{C statements}@}
3209@end example
3210
3211@noindent
287c78f6
PE
3212@cindex braced code
3213This is an example of @dfn{braced code}, that is, C code surrounded by
3214braces, much like a compound statement in C@. Braced code can contain
3215any sequence of C tokens, so long as its braces are balanced. Bison
3216does not check the braced code for correctness directly; it merely
3217copies the code to the output file, where the C compiler can check it.
3218
3219Within braced code, the balanced-brace count is not affected by braces
3220within comments, string literals, or character constants, but it is
3221affected by the C digraphs @samp{<%} and @samp{%>} that represent
3222braces. At the top level braced code must be terminated by @samp{@}}
3223and not by a digraph. Bison does not look for trigraphs, so if braced
3224code uses trigraphs you should ensure that they do not affect the
3225nesting of braces or the boundaries of comments, string literals, or
3226character constants.
3227
bfa74976
RS
3228Usually there is only one action and it follows the components.
3229@xref{Actions}.
3230
3231@findex |
3232Multiple rules for the same @var{result} can be written separately or can
3233be joined with the vertical-bar character @samp{|} as follows:
3234
bfa74976
RS
3235@example
3236@group
3237@var{result}: @var{rule1-components}@dots{}
3238 | @var{rule2-components}@dots{}
3239 @dots{}
3240 ;
3241@end group
3242@end example
bfa74976
RS
3243
3244@noindent
3245They are still considered distinct rules even when joined in this way.
3246
3247If @var{components} in a rule is empty, it means that @var{result} can
3248match the empty string. For example, here is how to define a
3249comma-separated sequence of zero or more @code{exp} groupings:
3250
3251@example
3252@group
3253expseq: /* empty */
3254 | expseq1
3255 ;
3256@end group
3257
3258@group
3259expseq1: exp
3260 | expseq1 ',' exp
3261 ;
3262@end group
3263@end example
3264
3265@noindent
3266It is customary to write a comment @samp{/* empty */} in each rule
3267with no components.
3268
342b8b6e 3269@node Recursion
bfa74976
RS
3270@section Recursive Rules
3271@cindex recursive rule
3272
f8e1c9e5
AD
3273A rule is called @dfn{recursive} when its @var{result} nonterminal
3274appears also on its right hand side. Nearly all Bison grammars need to
3275use recursion, because that is the only way to define a sequence of any
3276number of a particular thing. Consider this recursive definition of a
9ecbd125 3277comma-separated sequence of one or more expressions:
bfa74976
RS
3278
3279@example
3280@group
3281expseq1: exp
3282 | expseq1 ',' exp
3283 ;
3284@end group
3285@end example
3286
3287@cindex left recursion
3288@cindex right recursion
3289@noindent
3290Since the recursive use of @code{expseq1} is the leftmost symbol in the
3291right hand side, we call this @dfn{left recursion}. By contrast, here
3292the same construct is defined using @dfn{right recursion}:
3293
3294@example
3295@group
3296expseq1: exp
3297 | exp ',' expseq1
3298 ;
3299@end group
3300@end example
3301
3302@noindent
ec3bc396
AD
3303Any kind of sequence can be defined using either left recursion or right
3304recursion, but you should always use left recursion, because it can
3305parse a sequence of any number of elements with bounded stack space.
3306Right recursion uses up space on the Bison stack in proportion to the
3307number of elements in the sequence, because all the elements must be
3308shifted onto the stack before the rule can be applied even once.
3309@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3310of this.
bfa74976
RS
3311
3312@cindex mutual recursion
3313@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3314rule does not appear directly on its right hand side, but does appear
3315in rules for other nonterminals which do appear on its right hand
13863333 3316side.
bfa74976
RS
3317
3318For example:
3319
3320@example
3321@group
3322expr: primary
3323 | primary '+' primary
3324 ;
3325@end group
3326
3327@group
3328primary: constant
3329 | '(' expr ')'
3330 ;
3331@end group
3332@end example
3333
3334@noindent
3335defines two mutually-recursive nonterminals, since each refers to the
3336other.
3337
342b8b6e 3338@node Semantics
bfa74976
RS
3339@section Defining Language Semantics
3340@cindex defining language semantics
13863333 3341@cindex language semantics, defining
bfa74976
RS
3342
3343The grammar rules for a language determine only the syntax. The semantics
3344are determined by the semantic values associated with various tokens and
3345groupings, and by the actions taken when various groupings are recognized.
3346
3347For example, the calculator calculates properly because the value
3348associated with each expression is the proper number; it adds properly
3349because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3350the numbers associated with @var{x} and @var{y}.
3351
3352@menu
3353* Value Type:: Specifying one data type for all semantic values.
3354* Multiple Types:: Specifying several alternative data types.
3355* Actions:: An action is the semantic definition of a grammar rule.
3356* Action Types:: Specifying data types for actions to operate on.
3357* Mid-Rule Actions:: Most actions go at the end of a rule.
3358 This says when, why and how to use the exceptional
3359 action in the middle of a rule.
3360@end menu
3361
342b8b6e 3362@node Value Type
bfa74976
RS
3363@subsection Data Types of Semantic Values
3364@cindex semantic value type
3365@cindex value type, semantic
3366@cindex data types of semantic values
3367@cindex default data type
3368
3369In a simple program it may be sufficient to use the same data type for
3370the semantic values of all language constructs. This was true in the
c827f760 3371@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3372Notation Calculator}).
bfa74976 3373
ddc8ede1
PE
3374Bison normally uses the type @code{int} for semantic values if your
3375program uses the same data type for all language constructs. To
bfa74976
RS
3376specify some other type, define @code{YYSTYPE} as a macro, like this:
3377
3378@example
3379#define YYSTYPE double
3380@end example
3381
3382@noindent
50cce58e
PE
3383@code{YYSTYPE}'s replacement list should be a type name
3384that does not contain parentheses or square brackets.
342b8b6e 3385This macro definition must go in the prologue of the grammar file
75f5aaea 3386(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3387
342b8b6e 3388@node Multiple Types
bfa74976
RS
3389@subsection More Than One Value Type
3390
3391In most programs, you will need different data types for different kinds
3392of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3393@code{int} or @code{long int}, while a string constant needs type
3394@code{char *}, and an identifier might need a pointer to an entry in the
3395symbol table.
bfa74976
RS
3396
3397To use more than one data type for semantic values in one parser, Bison
3398requires you to do two things:
3399
3400@itemize @bullet
3401@item
ddc8ede1 3402Specify the entire collection of possible data types, either by using the
704a47c4 3403@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3404Value Types}), or by using a @code{typedef} or a @code{#define} to
3405define @code{YYSTYPE} to be a union type whose member names are
3406the type tags.
bfa74976
RS
3407
3408@item
14ded682
AD
3409Choose one of those types for each symbol (terminal or nonterminal) for
3410which semantic values are used. This is done for tokens with the
3411@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3412and for groupings with the @code{%type} Bison declaration (@pxref{Type
3413Decl, ,Nonterminal Symbols}).
bfa74976
RS
3414@end itemize
3415
342b8b6e 3416@node Actions
bfa74976
RS
3417@subsection Actions
3418@cindex action
3419@vindex $$
3420@vindex $@var{n}
3421
3422An action accompanies a syntactic rule and contains C code to be executed
3423each time an instance of that rule is recognized. The task of most actions
3424is to compute a semantic value for the grouping built by the rule from the
3425semantic values associated with tokens or smaller groupings.
3426
287c78f6
PE
3427An action consists of braced code containing C statements, and can be
3428placed at any position in the rule;
704a47c4
AD
3429it is executed at that position. Most rules have just one action at the
3430end of the rule, following all the components. Actions in the middle of
3431a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3432Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3433
3434The C code in an action can refer to the semantic values of the components
3435matched by the rule with the construct @code{$@var{n}}, which stands for
3436the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3437being constructed is @code{$$}. Bison translates both of these
3438constructs into expressions of the appropriate type when it copies the
3439actions into the parser file. @code{$$} is translated to a modifiable
3440lvalue, so it can be assigned to.
bfa74976
RS
3441
3442Here is a typical example:
3443
3444@example
3445@group
3446exp: @dots{}
3447 | exp '+' exp
3448 @{ $$ = $1 + $3; @}
3449@end group
3450@end example
3451
3452@noindent
3453This rule constructs an @code{exp} from two smaller @code{exp} groupings
3454connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3455refer to the semantic values of the two component @code{exp} groupings,
3456which are the first and third symbols on the right hand side of the rule.
3457The sum is stored into @code{$$} so that it becomes the semantic value of
3458the addition-expression just recognized by the rule. If there were a
3459useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3460referred to as @code{$2}.
bfa74976 3461
3ded9a63
AD
3462Note that the vertical-bar character @samp{|} is really a rule
3463separator, and actions are attached to a single rule. This is a
3464difference with tools like Flex, for which @samp{|} stands for either
3465``or'', or ``the same action as that of the next rule''. In the
3466following example, the action is triggered only when @samp{b} is found:
3467
3468@example
3469@group
3470a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3471@end group
3472@end example
3473
bfa74976
RS
3474@cindex default action
3475If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3476@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3477becomes the value of the whole rule. Of course, the default action is
3478valid only if the two data types match. There is no meaningful default
3479action for an empty rule; every empty rule must have an explicit action
3480unless the rule's value does not matter.
bfa74976
RS
3481
3482@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3483to tokens and groupings on the stack @emph{before} those that match the
3484current rule. This is a very risky practice, and to use it reliably
3485you must be certain of the context in which the rule is applied. Here
3486is a case in which you can use this reliably:
3487
3488@example
3489@group
3490foo: expr bar '+' expr @{ @dots{} @}
3491 | expr bar '-' expr @{ @dots{} @}
3492 ;
3493@end group
3494
3495@group
3496bar: /* empty */
3497 @{ previous_expr = $0; @}
3498 ;
3499@end group
3500@end example
3501
3502As long as @code{bar} is used only in the fashion shown here, @code{$0}
3503always refers to the @code{expr} which precedes @code{bar} in the
3504definition of @code{foo}.
3505
32c29292 3506@vindex yylval
742e4900 3507It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3508any, from a semantic action.
3509This semantic value is stored in @code{yylval}.
3510@xref{Action Features, ,Special Features for Use in Actions}.
3511
342b8b6e 3512@node Action Types
bfa74976
RS
3513@subsection Data Types of Values in Actions
3514@cindex action data types
3515@cindex data types in actions
3516
3517If you have chosen a single data type for semantic values, the @code{$$}
3518and @code{$@var{n}} constructs always have that data type.
3519
3520If you have used @code{%union} to specify a variety of data types, then you
3521must declare a choice among these types for each terminal or nonterminal
3522symbol that can have a semantic value. Then each time you use @code{$$} or
3523@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3524in the rule. In this example,
bfa74976
RS
3525
3526@example
3527@group
3528exp: @dots{}
3529 | exp '+' exp
3530 @{ $$ = $1 + $3; @}
3531@end group
3532@end example
3533
3534@noindent
3535@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3536have the data type declared for the nonterminal symbol @code{exp}. If
3537@code{$2} were used, it would have the data type declared for the
e0c471a9 3538terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3539
3540Alternatively, you can specify the data type when you refer to the value,
3541by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3542reference. For example, if you have defined types as shown here:
3543
3544@example
3545@group
3546%union @{
3547 int itype;
3548 double dtype;
3549@}
3550@end group
3551@end example
3552
3553@noindent
3554then you can write @code{$<itype>1} to refer to the first subunit of the
3555rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3556
342b8b6e 3557@node Mid-Rule Actions
bfa74976
RS
3558@subsection Actions in Mid-Rule
3559@cindex actions in mid-rule
3560@cindex mid-rule actions
3561
3562Occasionally it is useful to put an action in the middle of a rule.
3563These actions are written just like usual end-of-rule actions, but they
3564are executed before the parser even recognizes the following components.
3565
3566A mid-rule action may refer to the components preceding it using
3567@code{$@var{n}}, but it may not refer to subsequent components because
3568it is run before they are parsed.
3569
3570The mid-rule action itself counts as one of the components of the rule.
3571This makes a difference when there is another action later in the same rule
3572(and usually there is another at the end): you have to count the actions
3573along with the symbols when working out which number @var{n} to use in
3574@code{$@var{n}}.
3575
3576The mid-rule action can also have a semantic value. The action can set
3577its value with an assignment to @code{$$}, and actions later in the rule
3578can refer to the value using @code{$@var{n}}. Since there is no symbol
3579to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3580in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3581specify a data type each time you refer to this value.
bfa74976
RS
3582
3583There is no way to set the value of the entire rule with a mid-rule
3584action, because assignments to @code{$$} do not have that effect. The
3585only way to set the value for the entire rule is with an ordinary action
3586at the end of the rule.
3587
3588Here is an example from a hypothetical compiler, handling a @code{let}
3589statement that looks like @samp{let (@var{variable}) @var{statement}} and
3590serves to create a variable named @var{variable} temporarily for the
3591duration of @var{statement}. To parse this construct, we must put
3592@var{variable} into the symbol table while @var{statement} is parsed, then
3593remove it afterward. Here is how it is done:
3594
3595@example
3596@group
3597stmt: LET '(' var ')'
3598 @{ $<context>$ = push_context ();
3599 declare_variable ($3); @}
3600 stmt @{ $$ = $6;
3601 pop_context ($<context>5); @}
3602@end group
3603@end example
3604
3605@noindent
3606As soon as @samp{let (@var{variable})} has been recognized, the first
3607action is run. It saves a copy of the current semantic context (the
3608list of accessible variables) as its semantic value, using alternative
3609@code{context} in the data-type union. Then it calls
3610@code{declare_variable} to add the new variable to that list. Once the
3611first action is finished, the embedded statement @code{stmt} can be
3612parsed. Note that the mid-rule action is component number 5, so the
3613@samp{stmt} is component number 6.
3614
3615After the embedded statement is parsed, its semantic value becomes the
3616value of the entire @code{let}-statement. Then the semantic value from the
3617earlier action is used to restore the prior list of variables. This
3618removes the temporary @code{let}-variable from the list so that it won't
3619appear to exist while the rest of the program is parsed.
3620
841a7737
JD
3621@findex %destructor
3622@cindex discarded symbols, mid-rule actions
3623@cindex error recovery, mid-rule actions
3624In the above example, if the parser initiates error recovery (@pxref{Error
3625Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3626it might discard the previous semantic context @code{$<context>5} without
3627restoring it.
3628Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3629Discarded Symbols}).
ec5479ce
JD
3630However, Bison currently provides no means to declare a destructor specific to
3631a particular mid-rule action's semantic value.
841a7737
JD
3632
3633One solution is to bury the mid-rule action inside a nonterminal symbol and to
3634declare a destructor for that symbol:
3635
3636@example
3637@group
3638%type <context> let
3639%destructor @{ pop_context ($$); @} let
3640
3641%%
3642
3643stmt: let stmt
3644 @{ $$ = $2;
3645 pop_context ($1); @}
3646 ;
3647
3648let: LET '(' var ')'
3649 @{ $$ = push_context ();
3650 declare_variable ($3); @}
3651 ;
3652
3653@end group
3654@end example
3655
3656@noindent
3657Note that the action is now at the end of its rule.
3658Any mid-rule action can be converted to an end-of-rule action in this way, and
3659this is what Bison actually does to implement mid-rule actions.
3660
bfa74976
RS
3661Taking action before a rule is completely recognized often leads to
3662conflicts since the parser must commit to a parse in order to execute the
3663action. For example, the following two rules, without mid-rule actions,
3664can coexist in a working parser because the parser can shift the open-brace
3665token and look at what follows before deciding whether there is a
3666declaration or not:
3667
3668@example
3669@group
3670compound: '@{' declarations statements '@}'
3671 | '@{' statements '@}'
3672 ;
3673@end group
3674@end example
3675
3676@noindent
3677But when we add a mid-rule action as follows, the rules become nonfunctional:
3678
3679@example
3680@group
3681compound: @{ prepare_for_local_variables (); @}
3682 '@{' declarations statements '@}'
3683@end group
3684@group
3685 | '@{' statements '@}'
3686 ;
3687@end group
3688@end example
3689
3690@noindent
3691Now the parser is forced to decide whether to run the mid-rule action
3692when it has read no farther than the open-brace. In other words, it
3693must commit to using one rule or the other, without sufficient
3694information to do it correctly. (The open-brace token is what is called
742e4900
JD
3695the @dfn{lookahead} token at this time, since the parser is still
3696deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3697
3698You might think that you could correct the problem by putting identical
3699actions into the two rules, like this:
3700
3701@example
3702@group
3703compound: @{ prepare_for_local_variables (); @}
3704 '@{' declarations statements '@}'
3705 | @{ prepare_for_local_variables (); @}
3706 '@{' statements '@}'
3707 ;
3708@end group
3709@end example
3710
3711@noindent
3712But this does not help, because Bison does not realize that the two actions
3713are identical. (Bison never tries to understand the C code in an action.)
3714
3715If the grammar is such that a declaration can be distinguished from a
3716statement by the first token (which is true in C), then one solution which
3717does work is to put the action after the open-brace, like this:
3718
3719@example
3720@group
3721compound: '@{' @{ prepare_for_local_variables (); @}
3722 declarations statements '@}'
3723 | '@{' statements '@}'
3724 ;
3725@end group
3726@end example
3727
3728@noindent
3729Now the first token of the following declaration or statement,
3730which would in any case tell Bison which rule to use, can still do so.
3731
3732Another solution is to bury the action inside a nonterminal symbol which
3733serves as a subroutine:
3734
3735@example
3736@group
3737subroutine: /* empty */
3738 @{ prepare_for_local_variables (); @}
3739 ;
3740
3741@end group
3742
3743@group
3744compound: subroutine
3745 '@{' declarations statements '@}'
3746 | subroutine
3747 '@{' statements '@}'
3748 ;
3749@end group
3750@end example
3751
3752@noindent
3753Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3754deciding which rule for @code{compound} it will eventually use.
bfa74976 3755
342b8b6e 3756@node Locations
847bf1f5
AD
3757@section Tracking Locations
3758@cindex location
95923bd6
AD
3759@cindex textual location
3760@cindex location, textual
847bf1f5
AD
3761
3762Though grammar rules and semantic actions are enough to write a fully
72d2299c 3763functional parser, it can be useful to process some additional information,
3e259915
MA
3764especially symbol locations.
3765
704a47c4
AD
3766The way locations are handled is defined by providing a data type, and
3767actions to take when rules are matched.
847bf1f5
AD
3768
3769@menu
3770* Location Type:: Specifying a data type for locations.
3771* Actions and Locations:: Using locations in actions.
3772* Location Default Action:: Defining a general way to compute locations.
3773@end menu
3774
342b8b6e 3775@node Location Type
847bf1f5
AD
3776@subsection Data Type of Locations
3777@cindex data type of locations
3778@cindex default location type
3779
3780Defining a data type for locations is much simpler than for semantic values,
3781since all tokens and groupings always use the same type.
3782
50cce58e
PE
3783You can specify the type of locations by defining a macro called
3784@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3785defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3786When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3787four members:
3788
3789@example
6273355b 3790typedef struct YYLTYPE
847bf1f5
AD
3791@{
3792 int first_line;
3793 int first_column;
3794 int last_line;
3795 int last_column;
6273355b 3796@} YYLTYPE;
847bf1f5
AD
3797@end example
3798
cd48d21d
AD
3799At the beginning of the parsing, Bison initializes all these fields to 1
3800for @code{yylloc}.
3801
342b8b6e 3802@node Actions and Locations
847bf1f5
AD
3803@subsection Actions and Locations
3804@cindex location actions
3805@cindex actions, location
3806@vindex @@$
3807@vindex @@@var{n}
3808
3809Actions are not only useful for defining language semantics, but also for
3810describing the behavior of the output parser with locations.
3811
3812The most obvious way for building locations of syntactic groupings is very
72d2299c 3813similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3814constructs can be used to access the locations of the elements being matched.
3815The location of the @var{n}th component of the right hand side is
3816@code{@@@var{n}}, while the location of the left hand side grouping is
3817@code{@@$}.
3818
3e259915 3819Here is a basic example using the default data type for locations:
847bf1f5
AD
3820
3821@example
3822@group
3823exp: @dots{}
3e259915 3824 | exp '/' exp
847bf1f5 3825 @{
3e259915
MA
3826 @@$.first_column = @@1.first_column;
3827 @@$.first_line = @@1.first_line;
847bf1f5
AD
3828 @@$.last_column = @@3.last_column;
3829 @@$.last_line = @@3.last_line;
3e259915
MA
3830 if ($3)
3831 $$ = $1 / $3;
3832 else
3833 @{
3834 $$ = 1;
4e03e201
AD
3835 fprintf (stderr,
3836 "Division by zero, l%d,c%d-l%d,c%d",
3837 @@3.first_line, @@3.first_column,
3838 @@3.last_line, @@3.last_column);
3e259915 3839 @}
847bf1f5
AD
3840 @}
3841@end group
3842@end example
3843
3e259915 3844As for semantic values, there is a default action for locations that is
72d2299c 3845run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3846beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3847last symbol.
3e259915 3848
72d2299c 3849With this default action, the location tracking can be fully automatic. The
3e259915
MA
3850example above simply rewrites this way:
3851
3852@example
3853@group
3854exp: @dots{}
3855 | exp '/' exp
3856 @{
3857 if ($3)
3858 $$ = $1 / $3;
3859 else
3860 @{
3861 $$ = 1;
4e03e201
AD
3862 fprintf (stderr,
3863 "Division by zero, l%d,c%d-l%d,c%d",
3864 @@3.first_line, @@3.first_column,
3865 @@3.last_line, @@3.last_column);
3e259915
MA
3866 @}
3867 @}
3868@end group
3869@end example
847bf1f5 3870
32c29292 3871@vindex yylloc
742e4900 3872It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3873from a semantic action.
3874This location is stored in @code{yylloc}.
3875@xref{Action Features, ,Special Features for Use in Actions}.
3876
342b8b6e 3877@node Location Default Action
847bf1f5
AD
3878@subsection Default Action for Locations
3879@vindex YYLLOC_DEFAULT
8710fc41 3880@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3881
72d2299c 3882Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3883locations are much more general than semantic values, there is room in
3884the output parser to redefine the default action to take for each
72d2299c 3885rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3886matched, before the associated action is run. It is also invoked
3887while processing a syntax error, to compute the error's location.
8710fc41
JD
3888Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3889parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3890of that ambiguity.
847bf1f5 3891
3e259915 3892Most of the time, this macro is general enough to suppress location
79282c6c 3893dedicated code from semantic actions.
847bf1f5 3894
72d2299c 3895The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3896the location of the grouping (the result of the computation). When a
766de5eb 3897rule is matched, the second parameter identifies locations of
96b93a3d 3898all right hand side elements of the rule being matched, and the third
8710fc41
JD
3899parameter is the size of the rule's right hand side.
3900When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3901right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3902When processing a syntax error, the second parameter identifies locations
3903of the symbols that were discarded during error processing, and the third
96b93a3d 3904parameter is the number of discarded symbols.
847bf1f5 3905
766de5eb 3906By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3907
766de5eb 3908@smallexample
847bf1f5 3909@group
766de5eb
PE
3910# define YYLLOC_DEFAULT(Current, Rhs, N) \
3911 do \
3912 if (N) \
3913 @{ \
3914 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3915 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3916 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3917 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3918 @} \
3919 else \
3920 @{ \
3921 (Current).first_line = (Current).last_line = \
3922 YYRHSLOC(Rhs, 0).last_line; \
3923 (Current).first_column = (Current).last_column = \
3924 YYRHSLOC(Rhs, 0).last_column; \
3925 @} \
3926 while (0)
847bf1f5 3927@end group
766de5eb 3928@end smallexample
676385e2 3929
766de5eb
PE
3930where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3931in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3932just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3933
3e259915 3934When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3935
3e259915 3936@itemize @bullet
79282c6c 3937@item
72d2299c 3938All arguments are free of side-effects. However, only the first one (the
3e259915 3939result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3940
3e259915 3941@item
766de5eb
PE
3942For consistency with semantic actions, valid indexes within the
3943right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3944valid index, and it refers to the symbol just before the reduction.
3945During error processing @var{n} is always positive.
0ae99356
PE
3946
3947@item
3948Your macro should parenthesize its arguments, if need be, since the
3949actual arguments may not be surrounded by parentheses. Also, your
3950macro should expand to something that can be used as a single
3951statement when it is followed by a semicolon.
3e259915 3952@end itemize
847bf1f5 3953
342b8b6e 3954@node Declarations
bfa74976
RS
3955@section Bison Declarations
3956@cindex declarations, Bison
3957@cindex Bison declarations
3958
3959The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3960used in formulating the grammar and the data types of semantic values.
3961@xref{Symbols}.
3962
3963All token type names (but not single-character literal tokens such as
3964@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3965declared if you need to specify which data type to use for the semantic
3966value (@pxref{Multiple Types, ,More Than One Value Type}).
3967
3968The first rule in the file also specifies the start symbol, by default.
3969If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3970it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3971Grammars}).
bfa74976
RS
3972
3973@menu
b50d2359 3974* Require Decl:: Requiring a Bison version.
bfa74976
RS
3975* Token Decl:: Declaring terminal symbols.
3976* Precedence Decl:: Declaring terminals with precedence and associativity.
3977* Union Decl:: Declaring the set of all semantic value types.
3978* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3979* Initial Action Decl:: Code run before parsing starts.
72f889cc 3980* Destructor Decl:: Declaring how symbols are freed.
d6328241 3981* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3982* Start Decl:: Specifying the start symbol.
3983* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3984* Push Decl:: Requesting a push parser.
bfa74976
RS
3985* Decl Summary:: Table of all Bison declarations.
3986@end menu
3987
b50d2359
AD
3988@node Require Decl
3989@subsection Require a Version of Bison
3990@cindex version requirement
3991@cindex requiring a version of Bison
3992@findex %require
3993
3994You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3995the requirement is not met, @command{bison} exits with an error (exit
3996status 63).
b50d2359
AD
3997
3998@example
3999%require "@var{version}"
4000@end example
4001
342b8b6e 4002@node Token Decl
bfa74976
RS
4003@subsection Token Type Names
4004@cindex declaring token type names
4005@cindex token type names, declaring
931c7513 4006@cindex declaring literal string tokens
bfa74976
RS
4007@findex %token
4008
4009The basic way to declare a token type name (terminal symbol) is as follows:
4010
4011@example
4012%token @var{name}
4013@end example
4014
4015Bison will convert this into a @code{#define} directive in
4016the parser, so that the function @code{yylex} (if it is in this file)
4017can use the name @var{name} to stand for this token type's code.
4018
14ded682
AD
4019Alternatively, you can use @code{%left}, @code{%right}, or
4020@code{%nonassoc} instead of @code{%token}, if you wish to specify
4021associativity and precedence. @xref{Precedence Decl, ,Operator
4022Precedence}.
bfa74976
RS
4023
4024You can explicitly specify the numeric code for a token type by appending
1452af69
PE
4025a decimal or hexadecimal integer value in the field immediately
4026following the token name:
bfa74976
RS
4027
4028@example
4029%token NUM 300
1452af69 4030%token XNUM 0x12d // a GNU extension
bfa74976
RS
4031@end example
4032
4033@noindent
4034It is generally best, however, to let Bison choose the numeric codes for
4035all token types. Bison will automatically select codes that don't conflict
e966383b 4036with each other or with normal characters.
bfa74976
RS
4037
4038In the event that the stack type is a union, you must augment the
4039@code{%token} or other token declaration to include the data type
704a47c4
AD
4040alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4041Than One Value Type}).
bfa74976
RS
4042
4043For example:
4044
4045@example
4046@group
4047%union @{ /* define stack type */
4048 double val;
4049 symrec *tptr;
4050@}
4051%token <val> NUM /* define token NUM and its type */
4052@end group
4053@end example
4054
931c7513
RS
4055You can associate a literal string token with a token type name by
4056writing the literal string at the end of a @code{%token}
4057declaration which declares the name. For example:
4058
4059@example
4060%token arrow "=>"
4061@end example
4062
4063@noindent
4064For example, a grammar for the C language might specify these names with
4065equivalent literal string tokens:
4066
4067@example
4068%token <operator> OR "||"
4069%token <operator> LE 134 "<="
4070%left OR "<="
4071@end example
4072
4073@noindent
4074Once you equate the literal string and the token name, you can use them
4075interchangeably in further declarations or the grammar rules. The
4076@code{yylex} function can use the token name or the literal string to
4077obtain the token type code number (@pxref{Calling Convention}).
4078
342b8b6e 4079@node Precedence Decl
bfa74976
RS
4080@subsection Operator Precedence
4081@cindex precedence declarations
4082@cindex declaring operator precedence
4083@cindex operator precedence, declaring
4084
4085Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4086declare a token and specify its precedence and associativity, all at
4087once. These are called @dfn{precedence declarations}.
704a47c4
AD
4088@xref{Precedence, ,Operator Precedence}, for general information on
4089operator precedence.
bfa74976
RS
4090
4091The syntax of a precedence declaration is the same as that of
4092@code{%token}: either
4093
4094@example
4095%left @var{symbols}@dots{}
4096@end example
4097
4098@noindent
4099or
4100
4101@example
4102%left <@var{type}> @var{symbols}@dots{}
4103@end example
4104
4105And indeed any of these declarations serves the purposes of @code{%token}.
4106But in addition, they specify the associativity and relative precedence for
4107all the @var{symbols}:
4108
4109@itemize @bullet
4110@item
4111The associativity of an operator @var{op} determines how repeated uses
4112of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4113@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4114grouping @var{y} with @var{z} first. @code{%left} specifies
4115left-associativity (grouping @var{x} with @var{y} first) and
4116@code{%right} specifies right-associativity (grouping @var{y} with
4117@var{z} first). @code{%nonassoc} specifies no associativity, which
4118means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4119considered a syntax error.
4120
4121@item
4122The precedence of an operator determines how it nests with other operators.
4123All the tokens declared in a single precedence declaration have equal
4124precedence and nest together according to their associativity.
4125When two tokens declared in different precedence declarations associate,
4126the one declared later has the higher precedence and is grouped first.
4127@end itemize
4128
342b8b6e 4129@node Union Decl
bfa74976
RS
4130@subsection The Collection of Value Types
4131@cindex declaring value types
4132@cindex value types, declaring
4133@findex %union
4134
287c78f6
PE
4135The @code{%union} declaration specifies the entire collection of
4136possible data types for semantic values. The keyword @code{%union} is
4137followed by braced code containing the same thing that goes inside a
4138@code{union} in C@.
bfa74976
RS
4139
4140For example:
4141
4142@example
4143@group
4144%union @{
4145 double val;
4146 symrec *tptr;
4147@}
4148@end group
4149@end example
4150
4151@noindent
4152This says that the two alternative types are @code{double} and @code{symrec
4153*}. They are given names @code{val} and @code{tptr}; these names are used
4154in the @code{%token} and @code{%type} declarations to pick one of the types
4155for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4156
6273355b
PE
4157As an extension to @acronym{POSIX}, a tag is allowed after the
4158@code{union}. For example:
4159
4160@example
4161@group
4162%union value @{
4163 double val;
4164 symrec *tptr;
4165@}
4166@end group
4167@end example
4168
d6ca7905 4169@noindent
6273355b
PE
4170specifies the union tag @code{value}, so the corresponding C type is
4171@code{union value}. If you do not specify a tag, it defaults to
4172@code{YYSTYPE}.
4173
d6ca7905
PE
4174As another extension to @acronym{POSIX}, you may specify multiple
4175@code{%union} declarations; their contents are concatenated. However,
4176only the first @code{%union} declaration can specify a tag.
4177
6273355b 4178Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4179a semicolon after the closing brace.
4180
ddc8ede1
PE
4181Instead of @code{%union}, you can define and use your own union type
4182@code{YYSTYPE} if your grammar contains at least one
4183@samp{<@var{type}>} tag. For example, you can put the following into
4184a header file @file{parser.h}:
4185
4186@example
4187@group
4188union YYSTYPE @{
4189 double val;
4190 symrec *tptr;
4191@};
4192typedef union YYSTYPE YYSTYPE;
4193@end group
4194@end example
4195
4196@noindent
4197and then your grammar can use the following
4198instead of @code{%union}:
4199
4200@example
4201@group
4202%@{
4203#include "parser.h"
4204%@}
4205%type <val> expr
4206%token <tptr> ID
4207@end group
4208@end example
4209
342b8b6e 4210@node Type Decl
bfa74976
RS
4211@subsection Nonterminal Symbols
4212@cindex declaring value types, nonterminals
4213@cindex value types, nonterminals, declaring
4214@findex %type
4215
4216@noindent
4217When you use @code{%union} to specify multiple value types, you must
4218declare the value type of each nonterminal symbol for which values are
4219used. This is done with a @code{%type} declaration, like this:
4220
4221@example
4222%type <@var{type}> @var{nonterminal}@dots{}
4223@end example
4224
4225@noindent
704a47c4
AD
4226Here @var{nonterminal} is the name of a nonterminal symbol, and
4227@var{type} is the name given in the @code{%union} to the alternative
4228that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4229can give any number of nonterminal symbols in the same @code{%type}
4230declaration, if they have the same value type. Use spaces to separate
4231the symbol names.
bfa74976 4232
931c7513
RS
4233You can also declare the value type of a terminal symbol. To do this,
4234use the same @code{<@var{type}>} construction in a declaration for the
4235terminal symbol. All kinds of token declarations allow
4236@code{<@var{type}>}.
4237
18d192f0
AD
4238@node Initial Action Decl
4239@subsection Performing Actions before Parsing
4240@findex %initial-action
4241
4242Sometimes your parser needs to perform some initializations before
4243parsing. The @code{%initial-action} directive allows for such arbitrary
4244code.
4245
4246@deffn {Directive} %initial-action @{ @var{code} @}
4247@findex %initial-action
287c78f6 4248Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4249@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4250@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4251@code{%parse-param}.
18d192f0
AD
4252@end deffn
4253
451364ed
AD
4254For instance, if your locations use a file name, you may use
4255
4256@example
48b16bbc 4257%parse-param @{ char const *file_name @};
451364ed
AD
4258%initial-action
4259@{
4626a15d 4260 @@$.initialize (file_name);
451364ed
AD
4261@};
4262@end example
4263
18d192f0 4264
72f889cc
AD
4265@node Destructor Decl
4266@subsection Freeing Discarded Symbols
4267@cindex freeing discarded symbols
4268@findex %destructor
12e35840 4269@findex <*>
3ebecc24 4270@findex <>
a85284cf
AD
4271During error recovery (@pxref{Error Recovery}), symbols already pushed
4272on the stack and tokens coming from the rest of the file are discarded
4273until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4274or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4275symbols on the stack must be discarded. Even if the parser succeeds, it
4276must discard the start symbol.
258b75ca
PE
4277
4278When discarded symbols convey heap based information, this memory is
4279lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4280in traditional compilers, it is unacceptable for programs like shells or
4281protocol implementations that may parse and execute indefinitely.
258b75ca 4282
a85284cf
AD
4283The @code{%destructor} directive defines code that is called when a
4284symbol is automatically discarded.
72f889cc
AD
4285
4286@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4287@findex %destructor
287c78f6
PE
4288Invoke the braced @var{code} whenever the parser discards one of the
4289@var{symbols}.
4b367315 4290Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4291with the discarded symbol, and @code{@@$} designates its location.
4292The additional parser parameters are also available (@pxref{Parser Function, ,
4293The Parser Function @code{yyparse}}).
ec5479ce 4294
b2a0b7ca
JD
4295When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4296per-symbol @code{%destructor}.
4297You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4298tag among @var{symbols}.
b2a0b7ca 4299In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4300grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4301per-symbol @code{%destructor}.
4302
12e35840 4303Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4304(These default forms are experimental.
4305More user feedback will help to determine whether they should become permanent
4306features.)
3ebecc24 4307You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4308exactly one @code{%destructor} declaration in your grammar file.
4309The parser will invoke the @var{code} associated with one of these whenever it
4310discards any user-defined grammar symbol that has no per-symbol and no per-type
4311@code{%destructor}.
4312The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4313symbol for which you have formally declared a semantic type tag (@code{%type}
4314counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4315The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4316symbol that has no declared semantic type tag.
72f889cc
AD
4317@end deffn
4318
b2a0b7ca 4319@noindent
12e35840 4320For example:
72f889cc
AD
4321
4322@smallexample
ec5479ce
JD
4323%union @{ char *string; @}
4324%token <string> STRING1
4325%token <string> STRING2
4326%type <string> string1
4327%type <string> string2
b2a0b7ca
JD
4328%union @{ char character; @}
4329%token <character> CHR
4330%type <character> chr
12e35840
JD
4331%token TAGLESS
4332
b2a0b7ca 4333%destructor @{ @} <character>
12e35840
JD
4334%destructor @{ free ($$); @} <*>
4335%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4336%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4337@end smallexample
4338
4339@noindent
b2a0b7ca
JD
4340guarantees that, when the parser discards any user-defined symbol that has a
4341semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4342to @code{free} by default.
ec5479ce
JD
4343However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4344prints its line number to @code{stdout}.
4345It performs only the second @code{%destructor} in this case, so it invokes
4346@code{free} only once.
12e35840
JD
4347Finally, the parser merely prints a message whenever it discards any symbol,
4348such as @code{TAGLESS}, that has no semantic type tag.
4349
4350A Bison-generated parser invokes the default @code{%destructor}s only for
4351user-defined as opposed to Bison-defined symbols.
4352For example, the parser will not invoke either kind of default
4353@code{%destructor} for the special Bison-defined symbols @code{$accept},
4354@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4355none of which you can reference in your grammar.
4356It also will not invoke either for the @code{error} token (@pxref{Table of
4357Symbols, ,error}), which is always defined by Bison regardless of whether you
4358reference it in your grammar.
4359However, it may invoke one of them for the end token (token 0) if you
4360redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4361
4362@smallexample
4363%token END 0
4364@end smallexample
4365
12e35840
JD
4366@cindex actions in mid-rule
4367@cindex mid-rule actions
4368Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4369mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4370That is, Bison does not consider a mid-rule to have a semantic value if you do
4371not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4372@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4373rule.
4374However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4375@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4376
3508ce36
JD
4377@ignore
4378@noindent
4379In the future, it may be possible to redefine the @code{error} token as a
4380nonterminal that captures the discarded symbols.
4381In that case, the parser will invoke the default destructor for it as well.
4382@end ignore
4383
e757bb10
AD
4384@sp 1
4385
4386@cindex discarded symbols
4387@dfn{Discarded symbols} are the following:
4388
4389@itemize
4390@item
4391stacked symbols popped during the first phase of error recovery,
4392@item
4393incoming terminals during the second phase of error recovery,
4394@item
742e4900 4395the current lookahead and the entire stack (except the current
9d9b8b70 4396right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4397@item
4398the start symbol, when the parser succeeds.
e757bb10
AD
4399@end itemize
4400
9d9b8b70
PE
4401The parser can @dfn{return immediately} because of an explicit call to
4402@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4403exhaustion.
4404
29553547 4405Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4406error via @code{YYERROR} are not discarded automatically. As a rule
4407of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4408the memory.
e757bb10 4409
342b8b6e 4410@node Expect Decl
bfa74976
RS
4411@subsection Suppressing Conflict Warnings
4412@cindex suppressing conflict warnings
4413@cindex preventing warnings about conflicts
4414@cindex warnings, preventing
4415@cindex conflicts, suppressing warnings of
4416@findex %expect
d6328241 4417@findex %expect-rr
bfa74976
RS
4418
4419Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4420(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4421have harmless shift/reduce conflicts which are resolved in a predictable
4422way and would be difficult to eliminate. It is desirable to suppress
4423the warning about these conflicts unless the number of conflicts
4424changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4425
4426The declaration looks like this:
4427
4428@example
4429%expect @var{n}
4430@end example
4431
035aa4a0
PE
4432Here @var{n} is a decimal integer. The declaration says there should
4433be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4434Bison reports an error if the number of shift/reduce conflicts differs
4435from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4436
035aa4a0
PE
4437For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4438serious, and should be eliminated entirely. Bison will always report
4439reduce/reduce conflicts for these parsers. With @acronym{GLR}
4440parsers, however, both kinds of conflicts are routine; otherwise,
4441there would be no need to use @acronym{GLR} parsing. Therefore, it is
4442also possible to specify an expected number of reduce/reduce conflicts
4443in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4444
4445@example
4446%expect-rr @var{n}
4447@end example
4448
bfa74976
RS
4449In general, using @code{%expect} involves these steps:
4450
4451@itemize @bullet
4452@item
4453Compile your grammar without @code{%expect}. Use the @samp{-v} option
4454to get a verbose list of where the conflicts occur. Bison will also
4455print the number of conflicts.
4456
4457@item
4458Check each of the conflicts to make sure that Bison's default
4459resolution is what you really want. If not, rewrite the grammar and
4460go back to the beginning.
4461
4462@item
4463Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4464number which Bison printed. With @acronym{GLR} parsers, add an
4465@code{%expect-rr} declaration as well.
bfa74976
RS
4466@end itemize
4467
035aa4a0
PE
4468Now Bison will warn you if you introduce an unexpected conflict, but
4469will keep silent otherwise.
bfa74976 4470
342b8b6e 4471@node Start Decl
bfa74976
RS
4472@subsection The Start-Symbol
4473@cindex declaring the start symbol
4474@cindex start symbol, declaring
4475@cindex default start symbol
4476@findex %start
4477
4478Bison assumes by default that the start symbol for the grammar is the first
4479nonterminal specified in the grammar specification section. The programmer
4480may override this restriction with the @code{%start} declaration as follows:
4481
4482@example
4483%start @var{symbol}
4484@end example
4485
342b8b6e 4486@node Pure Decl
bfa74976
RS
4487@subsection A Pure (Reentrant) Parser
4488@cindex reentrant parser
4489@cindex pure parser
8c9a50be 4490@findex %pure-parser
bfa74976
RS
4491
4492A @dfn{reentrant} program is one which does not alter in the course of
4493execution; in other words, it consists entirely of @dfn{pure} (read-only)
4494code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4495for example, a nonreentrant program may not be safe to call from a signal
4496handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4497program must be called only within interlocks.
4498
70811b85 4499Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4500suitable for most uses, and it permits compatibility with Yacc. (The
4501standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4502statically allocated variables for communication with @code{yylex},
4503including @code{yylval} and @code{yylloc}.)
bfa74976 4504
70811b85 4505Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4506declaration @code{%pure-parser} says that you want the parser to be
70811b85 4507reentrant. It looks like this:
bfa74976
RS
4508
4509@example
8c9a50be 4510%pure-parser
bfa74976
RS
4511@end example
4512
70811b85
RS
4513The result is that the communication variables @code{yylval} and
4514@code{yylloc} become local variables in @code{yyparse}, and a different
4515calling convention is used for the lexical analyzer function
4516@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
9987d1b3
JD
4517Parsers}, for the details of this. The variable @code{yynerrs}
4518becomes local in @code{yyparse} in pull mode but it becomes a member
4519of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4520Reporting Function @code{yyerror}}). The convention for calling
4521@code{yyparse} itself is unchanged.
4522
4523Whether the parser is pure has nothing to do with the grammar rules.
4524You can generate either a pure parser or a nonreentrant parser from any
4525valid grammar.
bfa74976 4526
9987d1b3
JD
4527@node Push Decl
4528@subsection A Push Parser
4529@cindex push parser
4530@cindex push parser
c373bf8b 4531@findex %define api.push_pull
9987d1b3
JD
4532
4533A pull parser is called once and it takes control until all its input
4534is completely parsed. A push parser, on the other hand, is called
4535each time a new token is made available.
4536
4537A push parser is typically useful when the parser is part of a
4538main event loop in the client's application. This is typically
4539a requirement of a GUI, when the main event loop needs to be triggered
4540within a certain time period.
4541
d782395d
JD
4542Normally, Bison generates a pull parser.
4543The following Bison declaration says that you want the parser to be a push
c373bf8b 4544parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4545
4546@example
c373bf8b 4547%define api.push_pull "push"
9987d1b3
JD
4548@end example
4549
4550In almost all cases, you want to ensure that your push parser is also
4551a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
4552time you should create an impure push parser is to have backwards
4553compatibility with the impure Yacc pull mode interface. Unless you know
4554what you are doing, your declarations should look like this:
4555
4556@example
4557%pure-parser
c373bf8b 4558%define api.push_pull "push"
9987d1b3
JD
4559@end example
4560
4561There is a major notable functional difference between the pure push parser
4562and the impure push parser. It is acceptable for a pure push parser to have
4563many parser instances, of the same type of parser, in memory at the same time.
4564An impure push parser should only use one parser at a time.
4565
4566When a push parser is selected, Bison will generate some new symbols in
4567the generated parser. @code{yypstate} is a structure that the generated
4568parser uses to store the parser's state. @code{yypstate_new} is the
4569function that will create a new parser instance. @code{yypstate_delete}
4570will free the resources associated with the corresponding parser instance.
4571Finally, @code{yypush_parse} is the function that should be called whenever a
4572token is available to provide the parser. A trivial example
4573of using a pure push parser would look like this:
4574
4575@example
4576int status;
4577yypstate *ps = yypstate_new ();
4578do @{
4579 status = yypush_parse (ps, yylex (), NULL);
4580@} while (status == YYPUSH_MORE);
4581yypstate_delete (ps);
4582@end example
4583
4584If the user decided to use an impure push parser, a few things about
4585the generated parser will change. The @code{yychar} variable becomes
4586a global variable instead of a variable in the @code{yypush_parse} function.
4587For this reason, the signature of the @code{yypush_parse} function is
4588changed to remove the token as a parameter. A nonreentrant push parser
4589example would thus look like this:
4590
4591@example
4592extern int yychar;
4593int status;
4594yypstate *ps = yypstate_new ();
4595do @{
4596 yychar = yylex ();
4597 status = yypush_parse (ps);
4598@} while (status == YYPUSH_MORE);
4599yypstate_delete (ps);
4600@end example
4601
4602That's it. Notice the next token is put into the global variable @code{yychar}
4603for use by the next invocation of the @code{yypush_parse} function.
4604
4605Bison also supports both the push parser interface along with the pull parser
4606interface in the same generated parser. In order to get this functionality,
c373bf8b
JD
4607you should replace the @code{%define api.push_pull "push"} declaration with the
4608@code{%define api.push_pull "both"} declaration. Doing this will create all of
4609the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
9987d1b3
JD
4610and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4611would be used. However, the user should note that it is implemented in the
d782395d
JD
4612generated parser by calling @code{yypull_parse}.
4613This makes the @code{yyparse} function that is generated with the
c373bf8b 4614@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4615@code{yyparse} function. If the user
4616calls the @code{yypull_parse} function it will parse the rest of the input
9987d1b3
JD
4617stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4618and then @code{yypull_parse} the rest of the input stream. If you would like
4619to switch back and forth between between parsing styles, you would have to
4620write your own @code{yypull_parse} function that knows when to quit looking
4621for input. An example of using the @code{yypull_parse} function would look
4622like this:
4623
4624@example
4625yypstate *ps = yypstate_new ();
4626yypull_parse (ps); /* Will call the lexer */
4627yypstate_delete (ps);
4628@end example
4629
4630Adding the @code{%pure-parser} declaration does exactly the same thing to the
c373bf8b
JD
4631generated parser with @code{%define api.push_pull "both"} as it did for
4632@code{%define api.push_pull "push"}.
9987d1b3 4633
342b8b6e 4634@node Decl Summary
bfa74976
RS
4635@subsection Bison Declaration Summary
4636@cindex Bison declaration summary
4637@cindex declaration summary
4638@cindex summary, Bison declaration
4639
d8988b2f 4640Here is a summary of the declarations used to define a grammar:
bfa74976 4641
18b519c0 4642@deffn {Directive} %union
bfa74976
RS
4643Declare the collection of data types that semantic values may have
4644(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4645@end deffn
bfa74976 4646
18b519c0 4647@deffn {Directive} %token
bfa74976
RS
4648Declare a terminal symbol (token type name) with no precedence
4649or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4650@end deffn
bfa74976 4651
18b519c0 4652@deffn {Directive} %right
bfa74976
RS
4653Declare a terminal symbol (token type name) that is right-associative
4654(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4655@end deffn
bfa74976 4656
18b519c0 4657@deffn {Directive} %left
bfa74976
RS
4658Declare a terminal symbol (token type name) that is left-associative
4659(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4660@end deffn
bfa74976 4661
18b519c0 4662@deffn {Directive} %nonassoc
bfa74976 4663Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4664(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4665Using it in a way that would be associative is a syntax error.
4666@end deffn
4667
91d2c560 4668@ifset defaultprec
39a06c25 4669@deffn {Directive} %default-prec
22fccf95 4670Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4671(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4672@end deffn
91d2c560 4673@end ifset
bfa74976 4674
18b519c0 4675@deffn {Directive} %type
bfa74976
RS
4676Declare the type of semantic values for a nonterminal symbol
4677(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4678@end deffn
bfa74976 4679
18b519c0 4680@deffn {Directive} %start
89cab50d
AD
4681Specify the grammar's start symbol (@pxref{Start Decl, ,The
4682Start-Symbol}).
18b519c0 4683@end deffn
bfa74976 4684
18b519c0 4685@deffn {Directive} %expect
bfa74976
RS
4686Declare the expected number of shift-reduce conflicts
4687(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4688@end deffn
4689
bfa74976 4690
d8988b2f
AD
4691@sp 1
4692@noindent
4693In order to change the behavior of @command{bison}, use the following
4694directives:
4695
148d66d8
JD
4696@deffn {Directive} %code @{@var{code}@}
4697@findex %code
4698This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4699It inserts @var{code} verbatim at a language-dependent default location in the
4700output@footnote{The default location is actually skeleton-dependent;
4701 writers of non-standard skeletons however should choose the default location
4702 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4703
4704@cindex Prologue
8405b70c 4705For C/C++, the default location is the parser source code
148d66d8
JD
4706file after the usual contents of the parser header file.
4707Thus, @code{%code} replaces the traditional Yacc prologue,
4708@code{%@{@var{code}%@}}, for most purposes.
4709For a detailed discussion, see @ref{Prologue Alternatives}.
4710
8405b70c 4711For Java, the default location is inside the parser class.
148d66d8
JD
4712
4713(Like all the Yacc prologue alternatives, this directive is experimental.
4714More user feedback will help to determine whether it should become a permanent
4715feature.)
4716@end deffn
4717
4718@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4719This is the qualified form of the @code{%code} directive.
4720If you need to specify location-sensitive verbatim @var{code} that does not
4721belong at the default location selected by the unqualified @code{%code} form,
4722use this form instead.
4723
4724@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4725where Bison should generate it.
4726Not all values of @var{qualifier} are available for all target languages:
4727
4728@itemize @bullet
148d66d8 4729@item requires
793fbca5 4730@findex %code requires
148d66d8
JD
4731
4732@itemize @bullet
4733@item Language(s): C, C++
4734
4735@item Purpose: This is the best place to write dependency code required for
4736@code{YYSTYPE} and @code{YYLTYPE}.
4737In other words, it's the best place to define types referenced in @code{%union}
4738directives, and it's the best place to override Bison's default @code{YYSTYPE}
4739and @code{YYLTYPE} definitions.
4740
4741@item Location(s): The parser header file and the parser source code file
4742before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4743@end itemize
4744
4745@item provides
4746@findex %code provides
4747
4748@itemize @bullet
4749@item Language(s): C, C++
4750
4751@item Purpose: This is the best place to write additional definitions and
4752declarations that should be provided to other modules.
4753
4754@item Location(s): The parser header file and the parser source code file after
4755the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4756@end itemize
4757
4758@item top
4759@findex %code top
4760
4761@itemize @bullet
4762@item Language(s): C, C++
4763
4764@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4765usually be more appropriate than @code{%code top}.
4766However, occasionally it is necessary to insert code much nearer the top of the
4767parser source code file.
4768For example:
4769
4770@smallexample
4771%code top @{
4772 #define _GNU_SOURCE
4773 #include <stdio.h>
4774@}
4775@end smallexample
4776
4777@item Location(s): Near the top of the parser source code file.
4778@end itemize
8405b70c 4779
148d66d8
JD
4780@item imports
4781@findex %code imports
4782
4783@itemize @bullet
4784@item Language(s): Java
4785
4786@item Purpose: This is the best place to write Java import directives.
4787
4788@item Location(s): The parser Java file after any Java package directive and
4789before any class definitions.
4790@end itemize
148d66d8
JD
4791@end itemize
4792
4793(Like all the Yacc prologue alternatives, this directive is experimental.
4794More user feedback will help to determine whether it should become a permanent
4795feature.)
4796
4797@cindex Prologue
4798For a detailed discussion of how to use @code{%code} in place of the
4799traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4800@end deffn
4801
18b519c0 4802@deffn {Directive} %debug
4947ebdb
PE
4803In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4804already defined, so that the debugging facilities are compiled.
18b519c0 4805@end deffn
ec3bc396 4806@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4807
c1d19e10
PB
4808@deffn {Directive} %define @var{variable}
4809@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4810Define a variable to adjust Bison's behavior.
4811The possible choices for @var{variable}, as well as their meanings, depend on
4812the selected target language and/or the parser skeleton (@pxref{Decl
4813Summary,,%language}).
4814
4815Bison will warn if a @var{variable} is defined multiple times.
4816
4817Omitting @code{"@var{value}"} is always equivalent to specifying it as
4818@code{""}.
4819
922bdd7f 4820Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4821In this case, Bison will complain if the variable definition does not meet one
4822of the following four conditions:
4823
4824@enumerate
4825@item @code{"@var{value}"} is @code{"true"}
4826
4827@item @code{"@var{value}"} is omitted (or is @code{""}).
4828This is equivalent to @code{"true"}.
4829
4830@item @code{"@var{value}"} is @code{"false"}.
4831
4832@item @var{variable} is never defined.
4833In this case, Bison selects a default value, which may depend on the selected
4834target language and/or parser skeleton.
4835@end enumerate
148d66d8 4836
793fbca5
JD
4837Some of the accepted @var{variable}s are:
4838
4839@itemize @bullet
c373bf8b
JD
4840@item api.push_pull
4841@findex %define api.push_pull
793fbca5
JD
4842
4843@itemize @bullet
4844@item Language(s): C (LALR(1) only)
4845
4846@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4847@xref{Push Decl, ,A Push Parser}.
793fbca5
JD
4848
4849@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4850
4851@item Default Value: @code{"pull"}
4852@end itemize
4853
31984206
JD
4854@item lr.keep_unreachable_states
4855@findex %define lr.keep_unreachable_states
4856
4857@itemize @bullet
4858@item Language(s): all
4859
4860@item Purpose: Requests that Bison allow unreachable parser states to remain in
4861the parser tables.
4862Bison considers a state to be unreachable if there exists no sequence of
4863transitions from the start state to that state.
4864A state can become unreachable during conflict resolution if Bison disables a
4865shift action leading to it from a predecessor state.
4866Keeping unreachable states is sometimes useful for analysis purposes, but they
4867are useless in the generated parser.
4868
4869@item Accepted Values: Boolean
4870
4871@item Default Value: @code{"false"}
4872
4873@item Caveats:
4874
4875@itemize @bullet
4876@item Unreachable states may contain conflicts and may reduce rules not
4877reduced in any other state.
4878Thus, keeping unreachable states may induce warnings that are irrelevant to
4879your parser's behavior, and it may eliminate warnings that are relevant.
4880Of course, the change in warnings may actually be relevant to a parser table
4881analysis that wants to keep unreachable states, so this behavior will likely
4882remain in future Bison releases.
4883
4884@item While Bison is able to remove unreachable states, it is not guaranteed to
4885remove other kinds of useless states.
4886Specifically, when Bison disables reduce actions during conflict resolution,
4887some goto actions may become useless, and thus some additional states may
4888become useless.
4889If Bison were to compute which goto actions were useless and then disable those
4890actions, it could identify such states as unreachable and then remove those
4891states.
4892However, Bison does not compute which goto actions are useless.
4893@end itemize
4894@end itemize
4895
793fbca5
JD
4896@item namespace
4897@findex %define namespace
4898
4899@itemize
4900@item Languages(s): C++
4901
4902@item Purpose: Specifies the namespace for the parser class.
4903For example, if you specify:
4904
4905@smallexample
4906%define namespace "foo::bar"
4907@end smallexample
4908
4909Bison uses @code{foo::bar} verbatim in references such as:
4910
4911@smallexample
4912foo::bar::parser::semantic_type
4913@end smallexample
4914
4915However, to open a namespace, Bison removes any leading @code{::} and then
4916splits on any remaining occurrences:
4917
4918@smallexample
4919namespace foo @{ namespace bar @{
4920 class position;
4921 class location;
4922@} @}
4923@end smallexample
4924
4925@item Accepted Values: Any absolute or relative C++ namespace reference without
4926a trailing @code{"::"}.
4927For example, @code{"foo"} or @code{"::foo::bar"}.
4928
4929@item Default Value: The value specified by @code{%name-prefix}, which defaults
4930to @code{yy}.
4931This usage of @code{%name-prefix} is for backward compatibility and can be
4932confusing since @code{%name-prefix} also specifies the textual prefix for the
4933lexical analyzer function.
4934Thus, if you specify @code{%name-prefix}, it is best to also specify
4935@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
4936lexical analyzer function.
4937For example, if you specify:
4938
4939@smallexample
4940%define namespace "foo"
4941%name-prefix "bar::"
4942@end smallexample
4943
4944The parser namespace is @code{foo} and @code{yylex} is referenced as
4945@code{bar::lex}.
4946@end itemize
4947@end itemize
4948
d782395d
JD
4949@end deffn
4950
18b519c0 4951@deffn {Directive} %defines
4bfd5e4e
PE
4952Write a header file containing macro definitions for the token type
4953names defined in the grammar as well as a few other declarations.
d8988b2f 4954If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4955is named @file{@var{name}.h}.
d8988b2f 4956
b321737f 4957For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4958@code{YYSTYPE} is already defined as a macro or you have used a
4959@code{<@var{type}>} tag without using @code{%union}.
4960Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4961(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4962require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4963or type definition
f8e1c9e5
AD
4964(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4965arrange for these definitions to be propagated to all modules, e.g., by
4966putting them in a prerequisite header that is included both by your
4967parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4968
4969Unless your parser is pure, the output header declares @code{yylval}
4970as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4971Parser}.
4972
4973If you have also used locations, the output header declares
4974@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4975the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4976Locations}.
4977
f8e1c9e5
AD
4978This output file is normally essential if you wish to put the definition
4979of @code{yylex} in a separate source file, because @code{yylex}
4980typically needs to be able to refer to the above-mentioned declarations
4981and to the token type codes. @xref{Token Values, ,Semantic Values of
4982Tokens}.
9bc0dd67 4983
16dc6a9e
JD
4984@findex %code requires
4985@findex %code provides
4986If you have declared @code{%code requires} or @code{%code provides}, the output
4987header also contains their code.
148d66d8 4988@xref{Decl Summary, ,%code}.
592d0b1e
PB
4989@end deffn
4990
02975b9a
JD
4991@deffn {Directive} %defines @var{defines-file}
4992Same as above, but save in the file @var{defines-file}.
4993@end deffn
4994
18b519c0 4995@deffn {Directive} %destructor
258b75ca 4996Specify how the parser should reclaim the memory associated to
fa7e68c3 4997discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4998@end deffn
72f889cc 4999
02975b9a 5000@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5001Specify a prefix to use for all Bison output file names. The names are
5002chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5003@end deffn
d8988b2f 5004
e6e704dc 5005@deffn {Directive} %language "@var{language}"
0e021770
PE
5006Specify the programming language for the generated parser. Currently
5007supported languages include C and C++.
e6e704dc 5008@var{language} is case-insensitive.
0e021770
PE
5009@end deffn
5010
18b519c0 5011@deffn {Directive} %locations
89cab50d
AD
5012Generate the code processing the locations (@pxref{Action Features,
5013,Special Features for Use in Actions}). This mode is enabled as soon as
5014the grammar uses the special @samp{@@@var{n}} tokens, but if your
5015grammar does not use it, using @samp{%locations} allows for more
6e649e65 5016accurate syntax error messages.
18b519c0 5017@end deffn
89cab50d 5018
02975b9a 5019@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5020Rename the external symbols used in the parser so that they start with
5021@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5022in C parsers
d8988b2f 5023is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5024@code{yylval}, @code{yychar}, @code{yydebug}, and
9987d1b3
JD
5025(if locations are used) @code{yylloc}. If you use a push parser,
5026@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5027@code{yypstate_new} and @code{yypstate_delete} will
5028also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5029names become @code{c_parse}, @code{c_lex}, and so on.
5030For C++ parsers, see the @code{%define namespace} documentation in this
5031section.
aa08666d 5032@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5033@end deffn
931c7513 5034
91d2c560 5035@ifset defaultprec
22fccf95
PE
5036@deffn {Directive} %no-default-prec
5037Do not assign a precedence to rules lacking an explicit @code{%prec}
5038modifier (@pxref{Contextual Precedence, ,Context-Dependent
5039Precedence}).
5040@end deffn
91d2c560 5041@end ifset
22fccf95 5042
18b519c0 5043@deffn {Directive} %no-lines
931c7513
RS
5044Don't generate any @code{#line} preprocessor commands in the parser
5045file. Ordinarily Bison writes these commands in the parser file so that
5046the C compiler and debuggers will associate errors and object code with
5047your source file (the grammar file). This directive causes them to
5048associate errors with the parser file, treating it an independent source
5049file in its own right.
18b519c0 5050@end deffn
931c7513 5051
02975b9a 5052@deffn {Directive} %output "@var{file}"
fa4d969f 5053Specify @var{file} for the parser file.
18b519c0 5054@end deffn
6deb4447 5055
18b519c0 5056@deffn {Directive} %pure-parser
d8988b2f
AD
5057Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
5058(Reentrant) Parser}).
18b519c0 5059@end deffn
6deb4447 5060
b50d2359 5061@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5062Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5063Require a Version of Bison}.
b50d2359
AD
5064@end deffn
5065
0e021770 5066@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5067Specify the skeleton to use.
5068
5069You probably don't need this option unless you are developing Bison.
5070You should use @code{%language} if you want to specify the skeleton for a
5071different language, because it is clearer and because it will always choose the
5072correct skeleton for non-deterministic or push parsers.
5073
5074If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5075file in the Bison installation directory.
5076If it does, @var{file} is an absolute file name or a file name relative to the
5077directory of the grammar file.
5078This is similar to how most shells resolve commands.
0e021770
PE
5079@end deffn
5080
18b519c0 5081@deffn {Directive} %token-table
931c7513
RS
5082Generate an array of token names in the parser file. The name of the
5083array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5084token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5085three elements of @code{yytname} correspond to the predefined tokens
5086@code{"$end"},
88bce5a2
AD
5087@code{"error"}, and @code{"$undefined"}; after these come the symbols
5088defined in the grammar file.
931c7513 5089
9e0876fb
PE
5090The name in the table includes all the characters needed to represent
5091the token in Bison. For single-character literals and literal
5092strings, this includes the surrounding quoting characters and any
5093escape sequences. For example, the Bison single-character literal
5094@code{'+'} corresponds to a three-character name, represented in C as
5095@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5096corresponds to a five-character name, represented in C as
5097@code{"\"\\\\/\""}.
931c7513 5098
8c9a50be 5099When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5100definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5101@code{YYNRULES}, and @code{YYNSTATES}:
5102
5103@table @code
5104@item YYNTOKENS
5105The highest token number, plus one.
5106@item YYNNTS
9ecbd125 5107The number of nonterminal symbols.
931c7513
RS
5108@item YYNRULES
5109The number of grammar rules,
5110@item YYNSTATES
5111The number of parser states (@pxref{Parser States}).
5112@end table
18b519c0 5113@end deffn
d8988b2f 5114
18b519c0 5115@deffn {Directive} %verbose
d8988b2f 5116Write an extra output file containing verbose descriptions of the
742e4900 5117parser states and what is done for each type of lookahead token in
72d2299c 5118that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5119information.
18b519c0 5120@end deffn
d8988b2f 5121
18b519c0 5122@deffn {Directive} %yacc
d8988b2f
AD
5123Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5124including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5125@end deffn
d8988b2f
AD
5126
5127
342b8b6e 5128@node Multiple Parsers
bfa74976
RS
5129@section Multiple Parsers in the Same Program
5130
5131Most programs that use Bison parse only one language and therefore contain
5132only one Bison parser. But what if you want to parse more than one
5133language with the same program? Then you need to avoid a name conflict
5134between different definitions of @code{yyparse}, @code{yylval}, and so on.
5135
5136The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5137(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5138functions and variables of the Bison parser to start with @var{prefix}
5139instead of @samp{yy}. You can use this to give each parser distinct
5140names that do not conflict.
bfa74976
RS
5141
5142The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5143@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
9987d1b3
JD
5144@code{yychar} and @code{yydebug}. If you use a push parser,
5145@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5146@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
5147For example, if you use @samp{-p c}, the names become @code{cparse},
5148@code{clex}, and so on.
bfa74976
RS
5149
5150@strong{All the other variables and macros associated with Bison are not
5151renamed.} These others are not global; there is no conflict if the same
5152name is used in different parsers. For example, @code{YYSTYPE} is not
5153renamed, but defining this in different ways in different parsers causes
5154no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5155
5156The @samp{-p} option works by adding macro definitions to the beginning
5157of the parser source file, defining @code{yyparse} as
5158@code{@var{prefix}parse}, and so on. This effectively substitutes one
5159name for the other in the entire parser file.
5160
342b8b6e 5161@node Interface
bfa74976
RS
5162@chapter Parser C-Language Interface
5163@cindex C-language interface
5164@cindex interface
5165
5166The Bison parser is actually a C function named @code{yyparse}. Here we
5167describe the interface conventions of @code{yyparse} and the other
5168functions that it needs to use.
5169
5170Keep in mind that the parser uses many C identifiers starting with
5171@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5172identifier (aside from those in this manual) in an action or in epilogue
5173in the grammar file, you are likely to run into trouble.
bfa74976
RS
5174
5175@menu
5176* Parser Function:: How to call @code{yyparse} and what it returns.
9987d1b3
JD
5177* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5178* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5179* Parser Create Function:: How to call @code{yypstate_new} and what it
5180 returns.
5181* Parser Delete Function:: How to call @code{yypstate_delete} and what it
5182 returns.
13863333 5183* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
5184 which reads tokens.
5185* Error Reporting:: You must supply a function @code{yyerror}.
5186* Action Features:: Special features for use in actions.
f7ab6a50
PE
5187* Internationalization:: How to let the parser speak in the user's
5188 native language.
bfa74976
RS
5189@end menu
5190
342b8b6e 5191@node Parser Function
bfa74976
RS
5192@section The Parser Function @code{yyparse}
5193@findex yyparse
5194
5195You call the function @code{yyparse} to cause parsing to occur. This
5196function reads tokens, executes actions, and ultimately returns when it
5197encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5198write an action which directs @code{yyparse} to return immediately
5199without reading further.
bfa74976 5200
2a8d363a
AD
5201
5202@deftypefun int yyparse (void)
bfa74976
RS
5203The value returned by @code{yyparse} is 0 if parsing was successful (return
5204is due to end-of-input).
5205
b47dbebe
PE
5206The value is 1 if parsing failed because of invalid input, i.e., input
5207that contains a syntax error or that causes @code{YYABORT} to be
5208invoked.
5209
5210The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5211@end deftypefun
bfa74976
RS
5212
5213In an action, you can cause immediate return from @code{yyparse} by using
5214these macros:
5215
2a8d363a 5216@defmac YYACCEPT
bfa74976
RS
5217@findex YYACCEPT
5218Return immediately with value 0 (to report success).
2a8d363a 5219@end defmac
bfa74976 5220
2a8d363a 5221@defmac YYABORT
bfa74976
RS
5222@findex YYABORT
5223Return immediately with value 1 (to report failure).
2a8d363a
AD
5224@end defmac
5225
5226If you use a reentrant parser, you can optionally pass additional
5227parameter information to it in a reentrant way. To do so, use the
5228declaration @code{%parse-param}:
5229
feeb0eda 5230@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5231@findex %parse-param
287c78f6
PE
5232Declare that an argument declared by the braced-code
5233@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5234The @var{argument-declaration} is used when declaring
feeb0eda
PE
5235functions or prototypes. The last identifier in
5236@var{argument-declaration} must be the argument name.
2a8d363a
AD
5237@end deffn
5238
5239Here's an example. Write this in the parser:
5240
5241@example
feeb0eda
PE
5242%parse-param @{int *nastiness@}
5243%parse-param @{int *randomness@}
2a8d363a
AD
5244@end example
5245
5246@noindent
5247Then call the parser like this:
5248
5249@example
5250@{
5251 int nastiness, randomness;
5252 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5253 value = yyparse (&nastiness, &randomness);
5254 @dots{}
5255@}
5256@end example
5257
5258@noindent
5259In the grammar actions, use expressions like this to refer to the data:
5260
5261@example
5262exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5263@end example
5264
9987d1b3
JD
5265@node Push Parser Function
5266@section The Push Parser Function @code{yypush_parse}
5267@findex yypush_parse
5268
5269You call the function @code{yypush_parse} to parse a single token. This
c373bf8b
JD
5270function is available if either the @code{%define api.push_pull "push"} or
5271@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5272@xref{Push Decl, ,A Push Parser}.
5273
5274@deftypefun int yypush_parse (yypstate *yyps)
5275The value returned by @code{yypush_parse} is the same as for yyparse with the
5276following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5277is required to finish parsing the grammar.
5278@end deftypefun
5279
5280@node Pull Parser Function
5281@section The Pull Parser Function @code{yypull_parse}
5282@findex yypull_parse
5283
5284You call the function @code{yypull_parse} to parse the rest of the input
c373bf8b 5285stream. This function is available if the @code{%define api.push_pull "both"}
9987d1b3
JD
5286declaration is used.
5287@xref{Push Decl, ,A Push Parser}.
5288
5289@deftypefun int yypull_parse (yypstate *yyps)
5290The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5291@end deftypefun
5292
5293@node Parser Create Function
5294@section The Parser Create Function @code{yystate_new}
5295@findex yypstate_new
5296
5297You call the function @code{yypstate_new} to create a new parser instance.
c373bf8b
JD
5298This function is available if either the @code{%define api.push_pull "push"} or
5299@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5300@xref{Push Decl, ,A Push Parser}.
5301
5302@deftypefun yypstate *yypstate_new (void)
5303The fuction will return a valid parser instance if there was memory available
5304or NULL if no memory was available.
5305@end deftypefun
5306
5307@node Parser Delete Function
5308@section The Parser Delete Function @code{yystate_delete}
5309@findex yypstate_delete
5310
5311You call the function @code{yypstate_delete} to delete a parser instance.
c373bf8b
JD
5312function is available if either the @code{%define api.push_pull "push"} or
5313@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5314@xref{Push Decl, ,A Push Parser}.
5315
5316@deftypefun void yypstate_delete (yypstate *yyps)
5317This function will reclaim the memory associated with a parser instance.
5318After this call, you should no longer attempt to use the parser instance.
5319@end deftypefun
bfa74976 5320
342b8b6e 5321@node Lexical
bfa74976
RS
5322@section The Lexical Analyzer Function @code{yylex}
5323@findex yylex
5324@cindex lexical analyzer
5325
5326The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5327the input stream and returns them to the parser. Bison does not create
5328this function automatically; you must write it so that @code{yyparse} can
5329call it. The function is sometimes referred to as a lexical scanner.
5330
5331In simple programs, @code{yylex} is often defined at the end of the Bison
5332grammar file. If @code{yylex} is defined in a separate source file, you
5333need to arrange for the token-type macro definitions to be available there.
5334To do this, use the @samp{-d} option when you run Bison, so that it will
5335write these macro definitions into a separate header file
5336@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5337that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5338
5339@menu
5340* Calling Convention:: How @code{yyparse} calls @code{yylex}.
5341* Token Values:: How @code{yylex} must return the semantic value
5342 of the token it has read.
95923bd6 5343* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
5344 (line number, etc.) of the token, if the
5345 actions want that.
5346* Pure Calling:: How the calling convention differs
5347 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
5348@end menu
5349
342b8b6e 5350@node Calling Convention
bfa74976
RS
5351@subsection Calling Convention for @code{yylex}
5352
72d2299c
PE
5353The value that @code{yylex} returns must be the positive numeric code
5354for the type of token it has just found; a zero or negative value
5355signifies end-of-input.
bfa74976
RS
5356
5357When a token is referred to in the grammar rules by a name, that name
5358in the parser file becomes a C macro whose definition is the proper
5359numeric code for that token type. So @code{yylex} can use the name
5360to indicate that type. @xref{Symbols}.
5361
5362When a token is referred to in the grammar rules by a character literal,
5363the numeric code for that character is also the code for the token type.
72d2299c
PE
5364So @code{yylex} can simply return that character code, possibly converted
5365to @code{unsigned char} to avoid sign-extension. The null character
5366must not be used this way, because its code is zero and that
bfa74976
RS
5367signifies end-of-input.
5368
5369Here is an example showing these things:
5370
5371@example
13863333
AD
5372int
5373yylex (void)
bfa74976
RS
5374@{
5375 @dots{}
72d2299c 5376 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5377 return 0;
5378 @dots{}
5379 if (c == '+' || c == '-')
72d2299c 5380 return c; /* Assume token type for `+' is '+'. */
bfa74976 5381 @dots{}
72d2299c 5382 return INT; /* Return the type of the token. */
bfa74976
RS
5383 @dots{}
5384@}
5385@end example
5386
5387@noindent
5388This interface has been designed so that the output from the @code{lex}
5389utility can be used without change as the definition of @code{yylex}.
5390
931c7513
RS
5391If the grammar uses literal string tokens, there are two ways that
5392@code{yylex} can determine the token type codes for them:
5393
5394@itemize @bullet
5395@item
5396If the grammar defines symbolic token names as aliases for the
5397literal string tokens, @code{yylex} can use these symbolic names like
5398all others. In this case, the use of the literal string tokens in
5399the grammar file has no effect on @code{yylex}.
5400
5401@item
9ecbd125 5402@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5403table. The index of the token in the table is the token type's code.
9ecbd125 5404The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5405double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5406token's characters are escaped as necessary to be suitable as input
5407to Bison.
931c7513 5408
9e0876fb
PE
5409Here's code for looking up a multicharacter token in @code{yytname},
5410assuming that the characters of the token are stored in
5411@code{token_buffer}, and assuming that the token does not contain any
5412characters like @samp{"} that require escaping.
931c7513
RS
5413
5414@smallexample
5415for (i = 0; i < YYNTOKENS; i++)
5416 @{
5417 if (yytname[i] != 0
5418 && yytname[i][0] == '"'
68449b3a
PE
5419 && ! strncmp (yytname[i] + 1, token_buffer,
5420 strlen (token_buffer))
931c7513
RS
5421 && yytname[i][strlen (token_buffer) + 1] == '"'
5422 && yytname[i][strlen (token_buffer) + 2] == 0)
5423 break;
5424 @}
5425@end smallexample
5426
5427The @code{yytname} table is generated only if you use the
8c9a50be 5428@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5429@end itemize
5430
342b8b6e 5431@node Token Values
bfa74976
RS
5432@subsection Semantic Values of Tokens
5433
5434@vindex yylval
9d9b8b70 5435In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5436be stored into the global variable @code{yylval}. When you are using
5437just one data type for semantic values, @code{yylval} has that type.
5438Thus, if the type is @code{int} (the default), you might write this in
5439@code{yylex}:
5440
5441@example
5442@group
5443 @dots{}
72d2299c
PE
5444 yylval = value; /* Put value onto Bison stack. */
5445 return INT; /* Return the type of the token. */
bfa74976
RS
5446 @dots{}
5447@end group
5448@end example
5449
5450When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5451made from the @code{%union} declaration (@pxref{Union Decl, ,The
5452Collection of Value Types}). So when you store a token's value, you
5453must use the proper member of the union. If the @code{%union}
5454declaration looks like this:
bfa74976
RS
5455
5456@example
5457@group
5458%union @{
5459 int intval;
5460 double val;
5461 symrec *tptr;
5462@}
5463@end group
5464@end example
5465
5466@noindent
5467then the code in @code{yylex} might look like this:
5468
5469@example
5470@group
5471 @dots{}
72d2299c
PE
5472 yylval.intval = value; /* Put value onto Bison stack. */
5473 return INT; /* Return the type of the token. */
bfa74976
RS
5474 @dots{}
5475@end group
5476@end example
5477
95923bd6
AD
5478@node Token Locations
5479@subsection Textual Locations of Tokens
bfa74976
RS
5480
5481@vindex yylloc
847bf1f5 5482If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5483Tracking Locations}) in actions to keep track of the textual locations
5484of tokens and groupings, then you must provide this information in
5485@code{yylex}. The function @code{yyparse} expects to find the textual
5486location of a token just parsed in the global variable @code{yylloc}.
5487So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5488
5489By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5490initialize the members that are going to be used by the actions. The
5491four members are called @code{first_line}, @code{first_column},
5492@code{last_line} and @code{last_column}. Note that the use of this
5493feature makes the parser noticeably slower.
bfa74976
RS
5494
5495@tindex YYLTYPE
5496The data type of @code{yylloc} has the name @code{YYLTYPE}.
5497
342b8b6e 5498@node Pure Calling
c656404a 5499@subsection Calling Conventions for Pure Parsers
bfa74976 5500
8c9a50be 5501When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
5502pure, reentrant parser, the global communication variables @code{yylval}
5503and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5504Parser}.) In such parsers the two global variables are replaced by
5505pointers passed as arguments to @code{yylex}. You must declare them as
5506shown here, and pass the information back by storing it through those
5507pointers.
bfa74976
RS
5508
5509@example
13863333
AD
5510int
5511yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5512@{
5513 @dots{}
5514 *lvalp = value; /* Put value onto Bison stack. */
5515 return INT; /* Return the type of the token. */
5516 @dots{}
5517@}
5518@end example
5519
5520If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5521textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5522this case, omit the second argument; @code{yylex} will be called with
5523only one argument.
5524
e425e872 5525
2a8d363a
AD
5526If you wish to pass the additional parameter data to @code{yylex}, use
5527@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5528Function}).
e425e872 5529
feeb0eda 5530@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5531@findex %lex-param
287c78f6
PE
5532Declare that the braced-code @var{argument-declaration} is an
5533additional @code{yylex} argument declaration.
2a8d363a 5534@end deffn
e425e872 5535
2a8d363a 5536For instance:
e425e872
RS
5537
5538@example
feeb0eda
PE
5539%parse-param @{int *nastiness@}
5540%lex-param @{int *nastiness@}
5541%parse-param @{int *randomness@}
e425e872
RS
5542@end example
5543
5544@noindent
2a8d363a 5545results in the following signature:
e425e872
RS
5546
5547@example
2a8d363a
AD
5548int yylex (int *nastiness);
5549int yyparse (int *nastiness, int *randomness);
e425e872
RS
5550@end example
5551
2a8d363a 5552If @code{%pure-parser} is added:
c656404a
RS
5553
5554@example
2a8d363a
AD
5555int yylex (YYSTYPE *lvalp, int *nastiness);
5556int yyparse (int *nastiness, int *randomness);
c656404a
RS
5557@end example
5558
2a8d363a
AD
5559@noindent
5560and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 5561
2a8d363a
AD
5562@example
5563int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5564int yyparse (int *nastiness, int *randomness);
5565@end example
931c7513 5566
342b8b6e 5567@node Error Reporting
bfa74976
RS
5568@section The Error Reporting Function @code{yyerror}
5569@cindex error reporting function
5570@findex yyerror
5571@cindex parse error
5572@cindex syntax error
5573
6e649e65 5574The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5575whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5576action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5577macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5578in Actions}).
bfa74976
RS
5579
5580The Bison parser expects to report the error by calling an error
5581reporting function named @code{yyerror}, which you must supply. It is
5582called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5583receives one argument. For a syntax error, the string is normally
5584@w{@code{"syntax error"}}.
bfa74976 5585
2a8d363a
AD
5586@findex %error-verbose
5587If you invoke the directive @code{%error-verbose} in the Bison
5588declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5589Section}), then Bison provides a more verbose and specific error message
6e649e65 5590string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5591
1a059451
PE
5592The parser can detect one other kind of error: memory exhaustion. This
5593can happen when the input contains constructions that are very deeply
bfa74976 5594nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5595parser normally extends its stack automatically up to a very large limit. But
5596if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5597fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5598
5599In some cases diagnostics like @w{@code{"syntax error"}} are
5600translated automatically from English to some other language before
5601they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5602
5603The following definition suffices in simple programs:
5604
5605@example
5606@group
13863333 5607void
38a92d50 5608yyerror (char const *s)
bfa74976
RS
5609@{
5610@end group
5611@group
5612 fprintf (stderr, "%s\n", s);
5613@}
5614@end group
5615@end example
5616
5617After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5618error recovery if you have written suitable error recovery grammar rules
5619(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5620immediately return 1.
5621
93724f13 5622Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5623an access to the current location.
5624This is indeed the case for the @acronym{GLR}
2a8d363a
AD
5625parsers, but not for the Yacc parser, for historical reasons. I.e., if
5626@samp{%locations %pure-parser} is passed then the prototypes for
5627@code{yyerror} are:
5628
5629@example
38a92d50
PE
5630void yyerror (char const *msg); /* Yacc parsers. */
5631void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5632@end example
5633
feeb0eda 5634If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5635
5636@example
b317297e
PE
5637void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5638void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5639@end example
5640
fa7e68c3 5641Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5642convention for absolutely pure parsers, i.e., when the calling
5643convention of @code{yylex} @emph{and} the calling convention of
5644@code{%pure-parser} are pure. I.e.:
5645
5646@example
5647/* Location tracking. */
5648%locations
5649/* Pure yylex. */
5650%pure-parser
feeb0eda 5651%lex-param @{int *nastiness@}
2a8d363a 5652/* Pure yyparse. */
feeb0eda
PE
5653%parse-param @{int *nastiness@}
5654%parse-param @{int *randomness@}
2a8d363a
AD
5655@end example
5656
5657@noindent
5658results in the following signatures for all the parser kinds:
5659
5660@example
5661int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5662int yyparse (int *nastiness, int *randomness);
93724f13
AD
5663void yyerror (YYLTYPE *locp,
5664 int *nastiness, int *randomness,
38a92d50 5665 char const *msg);
2a8d363a
AD
5666@end example
5667
1c0c3e95 5668@noindent
38a92d50
PE
5669The prototypes are only indications of how the code produced by Bison
5670uses @code{yyerror}. Bison-generated code always ignores the returned
5671value, so @code{yyerror} can return any type, including @code{void}.
5672Also, @code{yyerror} can be a variadic function; that is why the
5673message is always passed last.
5674
5675Traditionally @code{yyerror} returns an @code{int} that is always
5676ignored, but this is purely for historical reasons, and @code{void} is
5677preferable since it more accurately describes the return type for
5678@code{yyerror}.
93724f13 5679
bfa74976
RS
5680@vindex yynerrs
5681The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5682reported so far. Normally this variable is global; but if you
704a47c4
AD
5683request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5684then it is a local variable which only the actions can access.
bfa74976 5685
342b8b6e 5686@node Action Features
bfa74976
RS
5687@section Special Features for Use in Actions
5688@cindex summary, action features
5689@cindex action features summary
5690
5691Here is a table of Bison constructs, variables and macros that
5692are useful in actions.
5693
18b519c0 5694@deffn {Variable} $$
bfa74976
RS
5695Acts like a variable that contains the semantic value for the
5696grouping made by the current rule. @xref{Actions}.
18b519c0 5697@end deffn
bfa74976 5698
18b519c0 5699@deffn {Variable} $@var{n}
bfa74976
RS
5700Acts like a variable that contains the semantic value for the
5701@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5702@end deffn
bfa74976 5703
18b519c0 5704@deffn {Variable} $<@var{typealt}>$
bfa74976 5705Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5706specified by the @code{%union} declaration. @xref{Action Types, ,Data
5707Types of Values in Actions}.
18b519c0 5708@end deffn
bfa74976 5709
18b519c0 5710@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5711Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5712union specified by the @code{%union} declaration.
e0c471a9 5713@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5714@end deffn
bfa74976 5715
18b519c0 5716@deffn {Macro} YYABORT;
bfa74976
RS
5717Return immediately from @code{yyparse}, indicating failure.
5718@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5719@end deffn
bfa74976 5720
18b519c0 5721@deffn {Macro} YYACCEPT;
bfa74976
RS
5722Return immediately from @code{yyparse}, indicating success.
5723@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5724@end deffn
bfa74976 5725
18b519c0 5726@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5727@findex YYBACKUP
5728Unshift a token. This macro is allowed only for rules that reduce
742e4900 5729a single value, and only when there is no lookahead token.
c827f760 5730It is also disallowed in @acronym{GLR} parsers.
742e4900 5731It installs a lookahead token with token type @var{token} and
bfa74976
RS
5732semantic value @var{value}; then it discards the value that was
5733going to be reduced by this rule.
5734
5735If the macro is used when it is not valid, such as when there is
742e4900 5736a lookahead token already, then it reports a syntax error with
bfa74976
RS
5737a message @samp{cannot back up} and performs ordinary error
5738recovery.
5739
5740In either case, the rest of the action is not executed.
18b519c0 5741@end deffn
bfa74976 5742
18b519c0 5743@deffn {Macro} YYEMPTY
bfa74976 5744@vindex YYEMPTY
742e4900 5745Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5746@end deffn
bfa74976 5747
32c29292
JD
5748@deffn {Macro} YYEOF
5749@vindex YYEOF
742e4900 5750Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5751stream.
5752@end deffn
5753
18b519c0 5754@deffn {Macro} YYERROR;
bfa74976
RS
5755@findex YYERROR
5756Cause an immediate syntax error. This statement initiates error
5757recovery just as if the parser itself had detected an error; however, it
5758does not call @code{yyerror}, and does not print any message. If you
5759want to print an error message, call @code{yyerror} explicitly before
5760the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5761@end deffn
bfa74976 5762
18b519c0 5763@deffn {Macro} YYRECOVERING
02103984
PE
5764@findex YYRECOVERING
5765The expression @code{YYRECOVERING ()} yields 1 when the parser
5766is recovering from a syntax error, and 0 otherwise.
bfa74976 5767@xref{Error Recovery}.
18b519c0 5768@end deffn
bfa74976 5769
18b519c0 5770@deffn {Variable} yychar
742e4900
JD
5771Variable containing either the lookahead token, or @code{YYEOF} when the
5772lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5773has been performed so the next token is not yet known.
5774Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5775Actions}).
742e4900 5776@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5777@end deffn
bfa74976 5778
18b519c0 5779@deffn {Macro} yyclearin;
742e4900 5780Discard the current lookahead token. This is useful primarily in
32c29292
JD
5781error rules.
5782Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5783Semantic Actions}).
5784@xref{Error Recovery}.
18b519c0 5785@end deffn
bfa74976 5786
18b519c0 5787@deffn {Macro} yyerrok;
bfa74976 5788Resume generating error messages immediately for subsequent syntax
13863333 5789errors. This is useful primarily in error rules.
bfa74976 5790@xref{Error Recovery}.
18b519c0 5791@end deffn
bfa74976 5792
32c29292 5793@deffn {Variable} yylloc
742e4900 5794Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5795to @code{YYEMPTY} or @code{YYEOF}.
5796Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5797Actions}).
5798@xref{Actions and Locations, ,Actions and Locations}.
5799@end deffn
5800
5801@deffn {Variable} yylval
742e4900 5802Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5803not set to @code{YYEMPTY} or @code{YYEOF}.
5804Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5805Actions}).
5806@xref{Actions, ,Actions}.
5807@end deffn
5808
18b519c0 5809@deffn {Value} @@$
847bf1f5 5810@findex @@$
95923bd6 5811Acts like a structure variable containing information on the textual location
847bf1f5
AD
5812of the grouping made by the current rule. @xref{Locations, ,
5813Tracking Locations}.
bfa74976 5814
847bf1f5
AD
5815@c Check if those paragraphs are still useful or not.
5816
5817@c @example
5818@c struct @{
5819@c int first_line, last_line;
5820@c int first_column, last_column;
5821@c @};
5822@c @end example
5823
5824@c Thus, to get the starting line number of the third component, you would
5825@c use @samp{@@3.first_line}.
bfa74976 5826
847bf1f5
AD
5827@c In order for the members of this structure to contain valid information,
5828@c you must make @code{yylex} supply this information about each token.
5829@c If you need only certain members, then @code{yylex} need only fill in
5830@c those members.
bfa74976 5831
847bf1f5 5832@c The use of this feature makes the parser noticeably slower.
18b519c0 5833@end deffn
847bf1f5 5834
18b519c0 5835@deffn {Value} @@@var{n}
847bf1f5 5836@findex @@@var{n}
95923bd6 5837Acts like a structure variable containing information on the textual location
847bf1f5
AD
5838of the @var{n}th component of the current rule. @xref{Locations, ,
5839Tracking Locations}.
18b519c0 5840@end deffn
bfa74976 5841
f7ab6a50
PE
5842@node Internationalization
5843@section Parser Internationalization
5844@cindex internationalization
5845@cindex i18n
5846@cindex NLS
5847@cindex gettext
5848@cindex bison-po
5849
5850A Bison-generated parser can print diagnostics, including error and
5851tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5852also supports outputting diagnostics in the user's native language. To
5853make this work, the user should set the usual environment variables.
5854@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5855For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5856set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5857encoding. The exact set of available locales depends on the user's
5858installation.
5859
5860The maintainer of a package that uses a Bison-generated parser enables
5861the internationalization of the parser's output through the following
5862steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5863@acronym{GNU} Automake.
5864
5865@enumerate
5866@item
30757c8c 5867@cindex bison-i18n.m4
f7ab6a50
PE
5868Into the directory containing the @acronym{GNU} Autoconf macros used
5869by the package---often called @file{m4}---copy the
5870@file{bison-i18n.m4} file installed by Bison under
5871@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5872For example:
5873
5874@example
5875cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5876@end example
5877
5878@item
30757c8c
PE
5879@findex BISON_I18N
5880@vindex BISON_LOCALEDIR
5881@vindex YYENABLE_NLS
f7ab6a50
PE
5882In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5883invocation, add an invocation of @code{BISON_I18N}. This macro is
5884defined in the file @file{bison-i18n.m4} that you copied earlier. It
5885causes @samp{configure} to find the value of the
30757c8c
PE
5886@code{BISON_LOCALEDIR} variable, and it defines the source-language
5887symbol @code{YYENABLE_NLS} to enable translations in the
5888Bison-generated parser.
f7ab6a50
PE
5889
5890@item
5891In the @code{main} function of your program, designate the directory
5892containing Bison's runtime message catalog, through a call to
5893@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5894For example:
5895
5896@example
5897bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5898@end example
5899
5900Typically this appears after any other call @code{bindtextdomain
5901(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5902@samp{BISON_LOCALEDIR} to be defined as a string through the
5903@file{Makefile}.
5904
5905@item
5906In the @file{Makefile.am} that controls the compilation of the @code{main}
5907function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5908either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5909
5910@example
5911DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5912@end example
5913
5914or:
5915
5916@example
5917AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5918@end example
5919
5920@item
5921Finally, invoke the command @command{autoreconf} to generate the build
5922infrastructure.
5923@end enumerate
5924
bfa74976 5925
342b8b6e 5926@node Algorithm
13863333
AD
5927@chapter The Bison Parser Algorithm
5928@cindex Bison parser algorithm
bfa74976
RS
5929@cindex algorithm of parser
5930@cindex shifting
5931@cindex reduction
5932@cindex parser stack
5933@cindex stack, parser
5934
5935As Bison reads tokens, it pushes them onto a stack along with their
5936semantic values. The stack is called the @dfn{parser stack}. Pushing a
5937token is traditionally called @dfn{shifting}.
5938
5939For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5940@samp{3} to come. The stack will have four elements, one for each token
5941that was shifted.
5942
5943But the stack does not always have an element for each token read. When
5944the last @var{n} tokens and groupings shifted match the components of a
5945grammar rule, they can be combined according to that rule. This is called
5946@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5947single grouping whose symbol is the result (left hand side) of that rule.
5948Running the rule's action is part of the process of reduction, because this
5949is what computes the semantic value of the resulting grouping.
5950
5951For example, if the infix calculator's parser stack contains this:
5952
5953@example
59541 + 5 * 3
5955@end example
5956
5957@noindent
5958and the next input token is a newline character, then the last three
5959elements can be reduced to 15 via the rule:
5960
5961@example
5962expr: expr '*' expr;
5963@end example
5964
5965@noindent
5966Then the stack contains just these three elements:
5967
5968@example
59691 + 15
5970@end example
5971
5972@noindent
5973At this point, another reduction can be made, resulting in the single value
597416. Then the newline token can be shifted.
5975
5976The parser tries, by shifts and reductions, to reduce the entire input down
5977to a single grouping whose symbol is the grammar's start-symbol
5978(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5979
5980This kind of parser is known in the literature as a bottom-up parser.
5981
5982@menu
742e4900 5983* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5984* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5985* Precedence:: Operator precedence works by resolving conflicts.
5986* Contextual Precedence:: When an operator's precedence depends on context.
5987* Parser States:: The parser is a finite-state-machine with stack.
5988* Reduce/Reduce:: When two rules are applicable in the same situation.
5989* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5990* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5991* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5992@end menu
5993
742e4900
JD
5994@node Lookahead
5995@section Lookahead Tokens
5996@cindex lookahead token
bfa74976
RS
5997
5998The Bison parser does @emph{not} always reduce immediately as soon as the
5999last @var{n} tokens and groupings match a rule. This is because such a
6000simple strategy is inadequate to handle most languages. Instead, when a
6001reduction is possible, the parser sometimes ``looks ahead'' at the next
6002token in order to decide what to do.
6003
6004When a token is read, it is not immediately shifted; first it becomes the
742e4900 6005@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6006perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6007the lookahead token remains off to the side. When no more reductions
6008should take place, the lookahead token is shifted onto the stack. This
bfa74976 6009does not mean that all possible reductions have been done; depending on the
742e4900 6010token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6011application.
6012
742e4900 6013Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6014expressions which contain binary addition operators and postfix unary
6015factorial operators (@samp{!}), and allow parentheses for grouping.
6016
6017@example
6018@group
6019expr: term '+' expr
6020 | term
6021 ;
6022@end group
6023
6024@group
6025term: '(' expr ')'
6026 | term '!'
6027 | NUMBER
6028 ;
6029@end group
6030@end example
6031
6032Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6033should be done? If the following token is @samp{)}, then the first three
6034tokens must be reduced to form an @code{expr}. This is the only valid
6035course, because shifting the @samp{)} would produce a sequence of symbols
6036@w{@code{term ')'}}, and no rule allows this.
6037
6038If the following token is @samp{!}, then it must be shifted immediately so
6039that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6040parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6041@code{expr}. It would then be impossible to shift the @samp{!} because
6042doing so would produce on the stack the sequence of symbols @code{expr
6043'!'}. No rule allows that sequence.
6044
6045@vindex yychar
32c29292
JD
6046@vindex yylval
6047@vindex yylloc
742e4900 6048The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6049Its semantic value and location, if any, are stored in the variables
6050@code{yylval} and @code{yylloc}.
bfa74976
RS
6051@xref{Action Features, ,Special Features for Use in Actions}.
6052
342b8b6e 6053@node Shift/Reduce
bfa74976
RS
6054@section Shift/Reduce Conflicts
6055@cindex conflicts
6056@cindex shift/reduce conflicts
6057@cindex dangling @code{else}
6058@cindex @code{else}, dangling
6059
6060Suppose we are parsing a language which has if-then and if-then-else
6061statements, with a pair of rules like this:
6062
6063@example
6064@group
6065if_stmt:
6066 IF expr THEN stmt
6067 | IF expr THEN stmt ELSE stmt
6068 ;
6069@end group
6070@end example
6071
6072@noindent
6073Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6074terminal symbols for specific keyword tokens.
6075
742e4900 6076When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6077contents of the stack (assuming the input is valid) are just right for
6078reduction by the first rule. But it is also legitimate to shift the
6079@code{ELSE}, because that would lead to eventual reduction by the second
6080rule.
6081
6082This situation, where either a shift or a reduction would be valid, is
6083called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6084these conflicts by choosing to shift, unless otherwise directed by
6085operator precedence declarations. To see the reason for this, let's
6086contrast it with the other alternative.
6087
6088Since the parser prefers to shift the @code{ELSE}, the result is to attach
6089the else-clause to the innermost if-statement, making these two inputs
6090equivalent:
6091
6092@example
6093if x then if y then win (); else lose;
6094
6095if x then do; if y then win (); else lose; end;
6096@end example
6097
6098But if the parser chose to reduce when possible rather than shift, the
6099result would be to attach the else-clause to the outermost if-statement,
6100making these two inputs equivalent:
6101
6102@example
6103if x then if y then win (); else lose;
6104
6105if x then do; if y then win (); end; else lose;
6106@end example
6107
6108The conflict exists because the grammar as written is ambiguous: either
6109parsing of the simple nested if-statement is legitimate. The established
6110convention is that these ambiguities are resolved by attaching the
6111else-clause to the innermost if-statement; this is what Bison accomplishes
6112by choosing to shift rather than reduce. (It would ideally be cleaner to
6113write an unambiguous grammar, but that is very hard to do in this case.)
6114This particular ambiguity was first encountered in the specifications of
6115Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6116
6117To avoid warnings from Bison about predictable, legitimate shift/reduce
6118conflicts, use the @code{%expect @var{n}} declaration. There will be no
6119warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6120@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6121
6122The definition of @code{if_stmt} above is solely to blame for the
6123conflict, but the conflict does not actually appear without additional
6124rules. Here is a complete Bison input file that actually manifests the
6125conflict:
6126
6127@example
6128@group
6129%token IF THEN ELSE variable
6130%%
6131@end group
6132@group
6133stmt: expr
6134 | if_stmt
6135 ;
6136@end group
6137
6138@group
6139if_stmt:
6140 IF expr THEN stmt
6141 | IF expr THEN stmt ELSE stmt
6142 ;
6143@end group
6144
6145expr: variable
6146 ;
6147@end example
6148
342b8b6e 6149@node Precedence
bfa74976
RS
6150@section Operator Precedence
6151@cindex operator precedence
6152@cindex precedence of operators
6153
6154Another situation where shift/reduce conflicts appear is in arithmetic
6155expressions. Here shifting is not always the preferred resolution; the
6156Bison declarations for operator precedence allow you to specify when to
6157shift and when to reduce.
6158
6159@menu
6160* Why Precedence:: An example showing why precedence is needed.
6161* Using Precedence:: How to specify precedence in Bison grammars.
6162* Precedence Examples:: How these features are used in the previous example.
6163* How Precedence:: How they work.
6164@end menu
6165
342b8b6e 6166@node Why Precedence
bfa74976
RS
6167@subsection When Precedence is Needed
6168
6169Consider the following ambiguous grammar fragment (ambiguous because the
6170input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6171
6172@example
6173@group
6174expr: expr '-' expr
6175 | expr '*' expr
6176 | expr '<' expr
6177 | '(' expr ')'
6178 @dots{}
6179 ;
6180@end group
6181@end example
6182
6183@noindent
6184Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6185should it reduce them via the rule for the subtraction operator? It
6186depends on the next token. Of course, if the next token is @samp{)}, we
6187must reduce; shifting is invalid because no single rule can reduce the
6188token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6189the next token is @samp{*} or @samp{<}, we have a choice: either
6190shifting or reduction would allow the parse to complete, but with
6191different results.
6192
6193To decide which one Bison should do, we must consider the results. If
6194the next operator token @var{op} is shifted, then it must be reduced
6195first in order to permit another opportunity to reduce the difference.
6196The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6197hand, if the subtraction is reduced before shifting @var{op}, the result
6198is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6199reduce should depend on the relative precedence of the operators
6200@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6201@samp{<}.
bfa74976
RS
6202
6203@cindex associativity
6204What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6205@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6206operators we prefer the former, which is called @dfn{left association}.
6207The latter alternative, @dfn{right association}, is desirable for
6208assignment operators. The choice of left or right association is a
6209matter of whether the parser chooses to shift or reduce when the stack
742e4900 6210contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6211makes right-associativity.
bfa74976 6212
342b8b6e 6213@node Using Precedence
bfa74976
RS
6214@subsection Specifying Operator Precedence
6215@findex %left
6216@findex %right
6217@findex %nonassoc
6218
6219Bison allows you to specify these choices with the operator precedence
6220declarations @code{%left} and @code{%right}. Each such declaration
6221contains a list of tokens, which are operators whose precedence and
6222associativity is being declared. The @code{%left} declaration makes all
6223those operators left-associative and the @code{%right} declaration makes
6224them right-associative. A third alternative is @code{%nonassoc}, which
6225declares that it is a syntax error to find the same operator twice ``in a
6226row''.
6227
6228The relative precedence of different operators is controlled by the
6229order in which they are declared. The first @code{%left} or
6230@code{%right} declaration in the file declares the operators whose
6231precedence is lowest, the next such declaration declares the operators
6232whose precedence is a little higher, and so on.
6233
342b8b6e 6234@node Precedence Examples
bfa74976
RS
6235@subsection Precedence Examples
6236
6237In our example, we would want the following declarations:
6238
6239@example
6240%left '<'
6241%left '-'
6242%left '*'
6243@end example
6244
6245In a more complete example, which supports other operators as well, we
6246would declare them in groups of equal precedence. For example, @code{'+'} is
6247declared with @code{'-'}:
6248
6249@example
6250%left '<' '>' '=' NE LE GE
6251%left '+' '-'
6252%left '*' '/'
6253@end example
6254
6255@noindent
6256(Here @code{NE} and so on stand for the operators for ``not equal''
6257and so on. We assume that these tokens are more than one character long
6258and therefore are represented by names, not character literals.)
6259
342b8b6e 6260@node How Precedence
bfa74976
RS
6261@subsection How Precedence Works
6262
6263The first effect of the precedence declarations is to assign precedence
6264levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6265precedence levels to certain rules: each rule gets its precedence from
6266the last terminal symbol mentioned in the components. (You can also
6267specify explicitly the precedence of a rule. @xref{Contextual
6268Precedence, ,Context-Dependent Precedence}.)
6269
6270Finally, the resolution of conflicts works by comparing the precedence
742e4900 6271of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6272token's precedence is higher, the choice is to shift. If the rule's
6273precedence is higher, the choice is to reduce. If they have equal
6274precedence, the choice is made based on the associativity of that
6275precedence level. The verbose output file made by @samp{-v}
6276(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6277resolved.
bfa74976
RS
6278
6279Not all rules and not all tokens have precedence. If either the rule or
742e4900 6280the lookahead token has no precedence, then the default is to shift.
bfa74976 6281
342b8b6e 6282@node Contextual Precedence
bfa74976
RS
6283@section Context-Dependent Precedence
6284@cindex context-dependent precedence
6285@cindex unary operator precedence
6286@cindex precedence, context-dependent
6287@cindex precedence, unary operator
6288@findex %prec
6289
6290Often the precedence of an operator depends on the context. This sounds
6291outlandish at first, but it is really very common. For example, a minus
6292sign typically has a very high precedence as a unary operator, and a
6293somewhat lower precedence (lower than multiplication) as a binary operator.
6294
6295The Bison precedence declarations, @code{%left}, @code{%right} and
6296@code{%nonassoc}, can only be used once for a given token; so a token has
6297only one precedence declared in this way. For context-dependent
6298precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6299modifier for rules.
bfa74976
RS
6300
6301The @code{%prec} modifier declares the precedence of a particular rule by
6302specifying a terminal symbol whose precedence should be used for that rule.
6303It's not necessary for that symbol to appear otherwise in the rule. The
6304modifier's syntax is:
6305
6306@example
6307%prec @var{terminal-symbol}
6308@end example
6309
6310@noindent
6311and it is written after the components of the rule. Its effect is to
6312assign the rule the precedence of @var{terminal-symbol}, overriding
6313the precedence that would be deduced for it in the ordinary way. The
6314altered rule precedence then affects how conflicts involving that rule
6315are resolved (@pxref{Precedence, ,Operator Precedence}).
6316
6317Here is how @code{%prec} solves the problem of unary minus. First, declare
6318a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6319are no tokens of this type, but the symbol serves to stand for its
6320precedence:
6321
6322@example
6323@dots{}
6324%left '+' '-'
6325%left '*'
6326%left UMINUS
6327@end example
6328
6329Now the precedence of @code{UMINUS} can be used in specific rules:
6330
6331@example
6332@group
6333exp: @dots{}
6334 | exp '-' exp
6335 @dots{}
6336 | '-' exp %prec UMINUS
6337@end group
6338@end example
6339
91d2c560 6340@ifset defaultprec
39a06c25
PE
6341If you forget to append @code{%prec UMINUS} to the rule for unary
6342minus, Bison silently assumes that minus has its usual precedence.
6343This kind of problem can be tricky to debug, since one typically
6344discovers the mistake only by testing the code.
6345
22fccf95 6346The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6347this kind of problem systematically. It causes rules that lack a
6348@code{%prec} modifier to have no precedence, even if the last terminal
6349symbol mentioned in their components has a declared precedence.
6350
22fccf95 6351If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6352for all rules that participate in precedence conflict resolution.
6353Then you will see any shift/reduce conflict until you tell Bison how
6354to resolve it, either by changing your grammar or by adding an
6355explicit precedence. This will probably add declarations to the
6356grammar, but it helps to protect against incorrect rule precedences.
6357
22fccf95
PE
6358The effect of @code{%no-default-prec;} can be reversed by giving
6359@code{%default-prec;}, which is the default.
91d2c560 6360@end ifset
39a06c25 6361
342b8b6e 6362@node Parser States
bfa74976
RS
6363@section Parser States
6364@cindex finite-state machine
6365@cindex parser state
6366@cindex state (of parser)
6367
6368The function @code{yyparse} is implemented using a finite-state machine.
6369The values pushed on the parser stack are not simply token type codes; they
6370represent the entire sequence of terminal and nonterminal symbols at or
6371near the top of the stack. The current state collects all the information
6372about previous input which is relevant to deciding what to do next.
6373
742e4900
JD
6374Each time a lookahead token is read, the current parser state together
6375with the type of lookahead token are looked up in a table. This table
6376entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6377specifies the new parser state, which is pushed onto the top of the
6378parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6379This means that a certain number of tokens or groupings are taken off
6380the top of the stack, and replaced by one grouping. In other words,
6381that number of states are popped from the stack, and one new state is
6382pushed.
6383
742e4900 6384There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6385is erroneous in the current state. This causes error processing to begin
6386(@pxref{Error Recovery}).
6387
342b8b6e 6388@node Reduce/Reduce
bfa74976
RS
6389@section Reduce/Reduce Conflicts
6390@cindex reduce/reduce conflict
6391@cindex conflicts, reduce/reduce
6392
6393A reduce/reduce conflict occurs if there are two or more rules that apply
6394to the same sequence of input. This usually indicates a serious error
6395in the grammar.
6396
6397For example, here is an erroneous attempt to define a sequence
6398of zero or more @code{word} groupings.
6399
6400@example
6401sequence: /* empty */
6402 @{ printf ("empty sequence\n"); @}
6403 | maybeword
6404 | sequence word
6405 @{ printf ("added word %s\n", $2); @}
6406 ;
6407
6408maybeword: /* empty */
6409 @{ printf ("empty maybeword\n"); @}
6410 | word
6411 @{ printf ("single word %s\n", $1); @}
6412 ;
6413@end example
6414
6415@noindent
6416The error is an ambiguity: there is more than one way to parse a single
6417@code{word} into a @code{sequence}. It could be reduced to a
6418@code{maybeword} and then into a @code{sequence} via the second rule.
6419Alternatively, nothing-at-all could be reduced into a @code{sequence}
6420via the first rule, and this could be combined with the @code{word}
6421using the third rule for @code{sequence}.
6422
6423There is also more than one way to reduce nothing-at-all into a
6424@code{sequence}. This can be done directly via the first rule,
6425or indirectly via @code{maybeword} and then the second rule.
6426
6427You might think that this is a distinction without a difference, because it
6428does not change whether any particular input is valid or not. But it does
6429affect which actions are run. One parsing order runs the second rule's
6430action; the other runs the first rule's action and the third rule's action.
6431In this example, the output of the program changes.
6432
6433Bison resolves a reduce/reduce conflict by choosing to use the rule that
6434appears first in the grammar, but it is very risky to rely on this. Every
6435reduce/reduce conflict must be studied and usually eliminated. Here is the
6436proper way to define @code{sequence}:
6437
6438@example
6439sequence: /* empty */
6440 @{ printf ("empty sequence\n"); @}
6441 | sequence word
6442 @{ printf ("added word %s\n", $2); @}
6443 ;
6444@end example
6445
6446Here is another common error that yields a reduce/reduce conflict:
6447
6448@example
6449sequence: /* empty */
6450 | sequence words
6451 | sequence redirects
6452 ;
6453
6454words: /* empty */
6455 | words word
6456 ;
6457
6458redirects:/* empty */
6459 | redirects redirect
6460 ;
6461@end example
6462
6463@noindent
6464The intention here is to define a sequence which can contain either
6465@code{word} or @code{redirect} groupings. The individual definitions of
6466@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6467three together make a subtle ambiguity: even an empty input can be parsed
6468in infinitely many ways!
6469
6470Consider: nothing-at-all could be a @code{words}. Or it could be two
6471@code{words} in a row, or three, or any number. It could equally well be a
6472@code{redirects}, or two, or any number. Or it could be a @code{words}
6473followed by three @code{redirects} and another @code{words}. And so on.
6474
6475Here are two ways to correct these rules. First, to make it a single level
6476of sequence:
6477
6478@example
6479sequence: /* empty */
6480 | sequence word
6481 | sequence redirect
6482 ;
6483@end example
6484
6485Second, to prevent either a @code{words} or a @code{redirects}
6486from being empty:
6487
6488@example
6489sequence: /* empty */
6490 | sequence words
6491 | sequence redirects
6492 ;
6493
6494words: word
6495 | words word
6496 ;
6497
6498redirects:redirect
6499 | redirects redirect
6500 ;
6501@end example
6502
342b8b6e 6503@node Mystery Conflicts
bfa74976
RS
6504@section Mysterious Reduce/Reduce Conflicts
6505
6506Sometimes reduce/reduce conflicts can occur that don't look warranted.
6507Here is an example:
6508
6509@example
6510@group
6511%token ID
6512
6513%%
6514def: param_spec return_spec ','
6515 ;
6516param_spec:
6517 type
6518 | name_list ':' type
6519 ;
6520@end group
6521@group
6522return_spec:
6523 type
6524 | name ':' type
6525 ;
6526@end group
6527@group
6528type: ID
6529 ;
6530@end group
6531@group
6532name: ID
6533 ;
6534name_list:
6535 name
6536 | name ',' name_list
6537 ;
6538@end group
6539@end example
6540
6541It would seem that this grammar can be parsed with only a single token
742e4900 6542of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6543a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6544@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6545
c827f760
PE
6546@cindex @acronym{LR}(1)
6547@cindex @acronym{LALR}(1)
bfa74976 6548However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6549@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6550an @code{ID}
bfa74976
RS
6551at the beginning of a @code{param_spec} and likewise at the beginning of
6552a @code{return_spec}, are similar enough that Bison assumes they are the
6553same. They appear similar because the same set of rules would be
6554active---the rule for reducing to a @code{name} and that for reducing to
6555a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6556that the rules would require different lookahead tokens in the two
bfa74976
RS
6557contexts, so it makes a single parser state for them both. Combining
6558the two contexts causes a conflict later. In parser terminology, this
c827f760 6559occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6560
6561In general, it is better to fix deficiencies than to document them. But
6562this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6563generators that can handle @acronym{LR}(1) grammars are hard to write
6564and tend to
bfa74976
RS
6565produce parsers that are very large. In practice, Bison is more useful
6566as it is now.
6567
6568When the problem arises, you can often fix it by identifying the two
a220f555
MA
6569parser states that are being confused, and adding something to make them
6570look distinct. In the above example, adding one rule to
bfa74976
RS
6571@code{return_spec} as follows makes the problem go away:
6572
6573@example
6574@group
6575%token BOGUS
6576@dots{}
6577%%
6578@dots{}
6579return_spec:
6580 type
6581 | name ':' type
6582 /* This rule is never used. */
6583 | ID BOGUS
6584 ;
6585@end group
6586@end example
6587
6588This corrects the problem because it introduces the possibility of an
6589additional active rule in the context after the @code{ID} at the beginning of
6590@code{return_spec}. This rule is not active in the corresponding context
6591in a @code{param_spec}, so the two contexts receive distinct parser states.
6592As long as the token @code{BOGUS} is never generated by @code{yylex},
6593the added rule cannot alter the way actual input is parsed.
6594
6595In this particular example, there is another way to solve the problem:
6596rewrite the rule for @code{return_spec} to use @code{ID} directly
6597instead of via @code{name}. This also causes the two confusing
6598contexts to have different sets of active rules, because the one for
6599@code{return_spec} activates the altered rule for @code{return_spec}
6600rather than the one for @code{name}.
6601
6602@example
6603param_spec:
6604 type
6605 | name_list ':' type
6606 ;
6607return_spec:
6608 type
6609 | ID ':' type
6610 ;
6611@end example
6612
e054b190
PE
6613For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6614generators, please see:
6615Frank DeRemer and Thomas Pennello, Efficient Computation of
6616@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6617Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6618pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6619
fae437e8 6620@node Generalized LR Parsing
c827f760
PE
6621@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6622@cindex @acronym{GLR} parsing
6623@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6624@cindex ambiguous grammars
9d9b8b70 6625@cindex nondeterministic parsing
676385e2 6626
fae437e8
AD
6627Bison produces @emph{deterministic} parsers that choose uniquely
6628when to reduce and which reduction to apply
742e4900 6629based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6630As a result, normal Bison handles a proper subset of the family of
6631context-free languages.
fae437e8 6632Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6633sequence of reductions cannot have deterministic parsers in this sense.
6634The same is true of languages that require more than one symbol of
742e4900 6635lookahead, since the parser lacks the information necessary to make a
676385e2 6636decision at the point it must be made in a shift-reduce parser.
fae437e8 6637Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6638there are languages where Bison's particular choice of how to
6639summarize the input seen so far loses necessary information.
6640
6641When you use the @samp{%glr-parser} declaration in your grammar file,
6642Bison generates a parser that uses a different algorithm, called
c827f760
PE
6643Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6644parser uses the same basic
676385e2
PH
6645algorithm for parsing as an ordinary Bison parser, but behaves
6646differently in cases where there is a shift-reduce conflict that has not
fae437e8 6647been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6648reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6649situation, it
fae437e8 6650effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6651shift or reduction. These parsers then proceed as usual, consuming
6652tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6653and split further, with the result that instead of a sequence of states,
c827f760 6654a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6655
6656In effect, each stack represents a guess as to what the proper parse
6657is. Additional input may indicate that a guess was wrong, in which case
6658the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6659actions generated in each stack are saved, rather than being executed
676385e2 6660immediately. When a stack disappears, its saved semantic actions never
fae437e8 6661get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6662their sets of semantic actions are both saved with the state that
6663results from the reduction. We say that two stacks are equivalent
fae437e8 6664when they both represent the same sequence of states,
676385e2
PH
6665and each pair of corresponding states represents a
6666grammar symbol that produces the same segment of the input token
6667stream.
6668
6669Whenever the parser makes a transition from having multiple
c827f760 6670states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6671algorithm, after resolving and executing the saved-up actions.
6672At this transition, some of the states on the stack will have semantic
6673values that are sets (actually multisets) of possible actions. The
6674parser tries to pick one of the actions by first finding one whose rule
6675has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6676declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6677precedence, but there the same merging function is declared for both
fae437e8 6678rules by the @samp{%merge} declaration,
676385e2
PH
6679Bison resolves and evaluates both and then calls the merge function on
6680the result. Otherwise, it reports an ambiguity.
6681
c827f760
PE
6682It is possible to use a data structure for the @acronym{GLR} parsing tree that
6683permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6684size of the input), any unambiguous (not necessarily
6685@acronym{LALR}(1)) grammar in
fae437e8 6686quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6687context-free grammar in cubic worst-case time. However, Bison currently
6688uses a simpler data structure that requires time proportional to the
6689length of the input times the maximum number of stacks required for any
9d9b8b70 6690prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6691grammars can require exponential time and space to process. Such badly
6692behaving examples, however, are not generally of practical interest.
9d9b8b70 6693Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6694doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6695structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6696grammar, in particular, it is only slightly slower than with the default
6697Bison parser.
6698
fa7e68c3 6699For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6700Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6701Generalised @acronym{LR} Parsers, Royal Holloway, University of
6702London, Department of Computer Science, TR-00-12,
6703@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6704(2000-12-24).
6705
1a059451
PE
6706@node Memory Management
6707@section Memory Management, and How to Avoid Memory Exhaustion
6708@cindex memory exhaustion
6709@cindex memory management
bfa74976
RS
6710@cindex stack overflow
6711@cindex parser stack overflow
6712@cindex overflow of parser stack
6713
1a059451 6714The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6715not reduced. When this happens, the parser function @code{yyparse}
1a059451 6716calls @code{yyerror} and then returns 2.
bfa74976 6717
c827f760 6718Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6719usually results from using a right recursion instead of a left
6720recursion, @xref{Recursion, ,Recursive Rules}.
6721
bfa74976
RS
6722@vindex YYMAXDEPTH
6723By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6724parser stack can become before memory is exhausted. Define the
bfa74976
RS
6725macro with a value that is an integer. This value is the maximum number
6726of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6727
6728The stack space allowed is not necessarily allocated. If you specify a
1a059451 6729large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6730stack at first, and then makes it bigger by stages as needed. This
6731increasing allocation happens automatically and silently. Therefore,
6732you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6733space for ordinary inputs that do not need much stack.
6734
d7e14fc0
PE
6735However, do not allow @code{YYMAXDEPTH} to be a value so large that
6736arithmetic overflow could occur when calculating the size of the stack
6737space. Also, do not allow @code{YYMAXDEPTH} to be less than
6738@code{YYINITDEPTH}.
6739
bfa74976
RS
6740@cindex default stack limit
6741The default value of @code{YYMAXDEPTH}, if you do not define it, is
674210000.
6743
6744@vindex YYINITDEPTH
6745You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6746macro @code{YYINITDEPTH} to a positive integer. For the C
6747@acronym{LALR}(1) parser, this value must be a compile-time constant
6748unless you are assuming C99 or some other target language or compiler
6749that allows variable-length arrays. The default is 200.
6750
1a059451 6751Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6752
d1a1114f 6753@c FIXME: C++ output.
c827f760 6754Because of semantical differences between C and C++, the
1a059451
PE
6755@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6756by C++ compilers. In this precise case (compiling a C parser as C++) you are
6757suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6758this deficiency in a future release.
d1a1114f 6759
342b8b6e 6760@node Error Recovery
bfa74976
RS
6761@chapter Error Recovery
6762@cindex error recovery
6763@cindex recovery from errors
6764
6e649e65 6765It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6766error. For example, a compiler should recover sufficiently to parse the
6767rest of the input file and check it for errors; a calculator should accept
6768another expression.
6769
6770In a simple interactive command parser where each input is one line, it may
6771be sufficient to allow @code{yyparse} to return 1 on error and have the
6772caller ignore the rest of the input line when that happens (and then call
6773@code{yyparse} again). But this is inadequate for a compiler, because it
6774forgets all the syntactic context leading up to the error. A syntax error
6775deep within a function in the compiler input should not cause the compiler
6776to treat the following line like the beginning of a source file.
6777
6778@findex error
6779You can define how to recover from a syntax error by writing rules to
6780recognize the special token @code{error}. This is a terminal symbol that
6781is always defined (you need not declare it) and reserved for error
6782handling. The Bison parser generates an @code{error} token whenever a
6783syntax error happens; if you have provided a rule to recognize this token
13863333 6784in the current context, the parse can continue.
bfa74976
RS
6785
6786For example:
6787
6788@example
6789stmnts: /* empty string */
6790 | stmnts '\n'
6791 | stmnts exp '\n'
6792 | stmnts error '\n'
6793@end example
6794
6795The fourth rule in this example says that an error followed by a newline
6796makes a valid addition to any @code{stmnts}.
6797
6798What happens if a syntax error occurs in the middle of an @code{exp}? The
6799error recovery rule, interpreted strictly, applies to the precise sequence
6800of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6801the middle of an @code{exp}, there will probably be some additional tokens
6802and subexpressions on the stack after the last @code{stmnts}, and there
6803will be tokens to read before the next newline. So the rule is not
6804applicable in the ordinary way.
6805
6806But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6807the semantic context and part of the input. First it discards states
6808and objects from the stack until it gets back to a state in which the
bfa74976 6809@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6810already parsed are discarded, back to the last complete @code{stmnts}.)
6811At this point the @code{error} token can be shifted. Then, if the old
742e4900 6812lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6813tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6814this example, Bison reads and discards input until the next newline so
6815that the fourth rule can apply. Note that discarded symbols are
6816possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6817Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6818
6819The choice of error rules in the grammar is a choice of strategies for
6820error recovery. A simple and useful strategy is simply to skip the rest of
6821the current input line or current statement if an error is detected:
6822
6823@example
72d2299c 6824stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6825@end example
6826
6827It is also useful to recover to the matching close-delimiter of an
6828opening-delimiter that has already been parsed. Otherwise the
6829close-delimiter will probably appear to be unmatched, and generate another,
6830spurious error message:
6831
6832@example
6833primary: '(' expr ')'
6834 | '(' error ')'
6835 @dots{}
6836 ;
6837@end example
6838
6839Error recovery strategies are necessarily guesses. When they guess wrong,
6840one syntax error often leads to another. In the above example, the error
6841recovery rule guesses that an error is due to bad input within one
6842@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6843middle of a valid @code{stmnt}. After the error recovery rule recovers
6844from the first error, another syntax error will be found straightaway,
6845since the text following the spurious semicolon is also an invalid
6846@code{stmnt}.
6847
6848To prevent an outpouring of error messages, the parser will output no error
6849message for another syntax error that happens shortly after the first; only
6850after three consecutive input tokens have been successfully shifted will
6851error messages resume.
6852
6853Note that rules which accept the @code{error} token may have actions, just
6854as any other rules can.
6855
6856@findex yyerrok
6857You can make error messages resume immediately by using the macro
6858@code{yyerrok} in an action. If you do this in the error rule's action, no
6859error messages will be suppressed. This macro requires no arguments;
6860@samp{yyerrok;} is a valid C statement.
6861
6862@findex yyclearin
742e4900 6863The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6864this is unacceptable, then the macro @code{yyclearin} may be used to clear
6865this token. Write the statement @samp{yyclearin;} in the error rule's
6866action.
32c29292 6867@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6868
6e649e65 6869For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6870called that advances the input stream to some point where parsing should
6871once again commence. The next symbol returned by the lexical scanner is
742e4900 6872probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6873with @samp{yyclearin;}.
6874
6875@vindex YYRECOVERING
02103984
PE
6876The expression @code{YYRECOVERING ()} yields 1 when the parser
6877is recovering from a syntax error, and 0 otherwise.
6878Syntax error diagnostics are suppressed while recovering from a syntax
6879error.
bfa74976 6880
342b8b6e 6881@node Context Dependency
bfa74976
RS
6882@chapter Handling Context Dependencies
6883
6884The Bison paradigm is to parse tokens first, then group them into larger
6885syntactic units. In many languages, the meaning of a token is affected by
6886its context. Although this violates the Bison paradigm, certain techniques
6887(known as @dfn{kludges}) may enable you to write Bison parsers for such
6888languages.
6889
6890@menu
6891* Semantic Tokens:: Token parsing can depend on the semantic context.
6892* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6893* Tie-in Recovery:: Lexical tie-ins have implications for how
6894 error recovery rules must be written.
6895@end menu
6896
6897(Actually, ``kludge'' means any technique that gets its job done but is
6898neither clean nor robust.)
6899
342b8b6e 6900@node Semantic Tokens
bfa74976
RS
6901@section Semantic Info in Token Types
6902
6903The C language has a context dependency: the way an identifier is used
6904depends on what its current meaning is. For example, consider this:
6905
6906@example
6907foo (x);
6908@end example
6909
6910This looks like a function call statement, but if @code{foo} is a typedef
6911name, then this is actually a declaration of @code{x}. How can a Bison
6912parser for C decide how to parse this input?
6913
c827f760 6914The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6915@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6916identifier, it looks up the current declaration of the identifier in order
6917to decide which token type to return: @code{TYPENAME} if the identifier is
6918declared as a typedef, @code{IDENTIFIER} otherwise.
6919
6920The grammar rules can then express the context dependency by the choice of
6921token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6922but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6923@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6924is @emph{not} significant, such as in declarations that can shadow a
6925typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6926accepted---there is one rule for each of the two token types.
6927
6928This technique is simple to use if the decision of which kinds of
6929identifiers to allow is made at a place close to where the identifier is
6930parsed. But in C this is not always so: C allows a declaration to
6931redeclare a typedef name provided an explicit type has been specified
6932earlier:
6933
6934@example
3a4f411f
PE
6935typedef int foo, bar;
6936int baz (void)
6937@{
6938 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6939 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6940 return foo (bar);
6941@}
bfa74976
RS
6942@end example
6943
6944Unfortunately, the name being declared is separated from the declaration
6945construct itself by a complicated syntactic structure---the ``declarator''.
6946
9ecbd125 6947As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6948all the nonterminal names changed: once for parsing a declaration in
6949which a typedef name can be redefined, and once for parsing a
6950declaration in which that can't be done. Here is a part of the
6951duplication, with actions omitted for brevity:
bfa74976
RS
6952
6953@example
6954initdcl:
6955 declarator maybeasm '='
6956 init
6957 | declarator maybeasm
6958 ;
6959
6960notype_initdcl:
6961 notype_declarator maybeasm '='
6962 init
6963 | notype_declarator maybeasm
6964 ;
6965@end example
6966
6967@noindent
6968Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6969cannot. The distinction between @code{declarator} and
6970@code{notype_declarator} is the same sort of thing.
6971
6972There is some similarity between this technique and a lexical tie-in
6973(described next), in that information which alters the lexical analysis is
6974changed during parsing by other parts of the program. The difference is
6975here the information is global, and is used for other purposes in the
6976program. A true lexical tie-in has a special-purpose flag controlled by
6977the syntactic context.
6978
342b8b6e 6979@node Lexical Tie-ins
bfa74976
RS
6980@section Lexical Tie-ins
6981@cindex lexical tie-in
6982
6983One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6984which is set by Bison actions, whose purpose is to alter the way tokens are
6985parsed.
6986
6987For example, suppose we have a language vaguely like C, but with a special
6988construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6989an expression in parentheses in which all integers are hexadecimal. In
6990particular, the token @samp{a1b} must be treated as an integer rather than
6991as an identifier if it appears in that context. Here is how you can do it:
6992
6993@example
6994@group
6995%@{
38a92d50
PE
6996 int hexflag;
6997 int yylex (void);
6998 void yyerror (char const *);
bfa74976
RS
6999%@}
7000%%
7001@dots{}
7002@end group
7003@group
7004expr: IDENTIFIER
7005 | constant
7006 | HEX '('
7007 @{ hexflag = 1; @}
7008 expr ')'
7009 @{ hexflag = 0;
7010 $$ = $4; @}
7011 | expr '+' expr
7012 @{ $$ = make_sum ($1, $3); @}
7013 @dots{}
7014 ;
7015@end group
7016
7017@group
7018constant:
7019 INTEGER
7020 | STRING
7021 ;
7022@end group
7023@end example
7024
7025@noindent
7026Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7027it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7028with letters are parsed as integers if possible.
7029
342b8b6e
AD
7030The declaration of @code{hexflag} shown in the prologue of the parser file
7031is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7032You must also write the code in @code{yylex} to obey the flag.
bfa74976 7033
342b8b6e 7034@node Tie-in Recovery
bfa74976
RS
7035@section Lexical Tie-ins and Error Recovery
7036
7037Lexical tie-ins make strict demands on any error recovery rules you have.
7038@xref{Error Recovery}.
7039
7040The reason for this is that the purpose of an error recovery rule is to
7041abort the parsing of one construct and resume in some larger construct.
7042For example, in C-like languages, a typical error recovery rule is to skip
7043tokens until the next semicolon, and then start a new statement, like this:
7044
7045@example
7046stmt: expr ';'
7047 | IF '(' expr ')' stmt @{ @dots{} @}
7048 @dots{}
7049 error ';'
7050 @{ hexflag = 0; @}
7051 ;
7052@end example
7053
7054If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7055construct, this error rule will apply, and then the action for the
7056completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7057remain set for the entire rest of the input, or until the next @code{hex}
7058keyword, causing identifiers to be misinterpreted as integers.
7059
7060To avoid this problem the error recovery rule itself clears @code{hexflag}.
7061
7062There may also be an error recovery rule that works within expressions.
7063For example, there could be a rule which applies within parentheses
7064and skips to the close-parenthesis:
7065
7066@example
7067@group
7068expr: @dots{}
7069 | '(' expr ')'
7070 @{ $$ = $2; @}
7071 | '(' error ')'
7072 @dots{}
7073@end group
7074@end example
7075
7076If this rule acts within the @code{hex} construct, it is not going to abort
7077that construct (since it applies to an inner level of parentheses within
7078the construct). Therefore, it should not clear the flag: the rest of
7079the @code{hex} construct should be parsed with the flag still in effect.
7080
7081What if there is an error recovery rule which might abort out of the
7082@code{hex} construct or might not, depending on circumstances? There is no
7083way you can write the action to determine whether a @code{hex} construct is
7084being aborted or not. So if you are using a lexical tie-in, you had better
7085make sure your error recovery rules are not of this kind. Each rule must
7086be such that you can be sure that it always will, or always won't, have to
7087clear the flag.
7088
ec3bc396
AD
7089@c ================================================== Debugging Your Parser
7090
342b8b6e 7091@node Debugging
bfa74976 7092@chapter Debugging Your Parser
ec3bc396
AD
7093
7094Developing a parser can be a challenge, especially if you don't
7095understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7096Algorithm}). Even so, sometimes a detailed description of the automaton
7097can help (@pxref{Understanding, , Understanding Your Parser}), or
7098tracing the execution of the parser can give some insight on why it
7099behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7100
7101@menu
7102* Understanding:: Understanding the structure of your parser.
7103* Tracing:: Tracing the execution of your parser.
7104@end menu
7105
7106@node Understanding
7107@section Understanding Your Parser
7108
7109As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7110Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7111frequent than one would hope), looking at this automaton is required to
7112tune or simply fix a parser. Bison provides two different
35fe0834 7113representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7114
7115The textual file is generated when the options @option{--report} or
7116@option{--verbose} are specified, see @xref{Invocation, , Invoking
7117Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7118the parser output file name, and adding @samp{.output} instead.
7119Therefore, if the input file is @file{foo.y}, then the parser file is
7120called @file{foo.tab.c} by default. As a consequence, the verbose
7121output file is called @file{foo.output}.
7122
7123The following grammar file, @file{calc.y}, will be used in the sequel:
7124
7125@example
7126%token NUM STR
7127%left '+' '-'
7128%left '*'
7129%%
7130exp: exp '+' exp
7131 | exp '-' exp
7132 | exp '*' exp
7133 | exp '/' exp
7134 | NUM
7135 ;
7136useless: STR;
7137%%
7138@end example
7139
88bce5a2
AD
7140@command{bison} reports:
7141
7142@example
7143calc.y: warning: 1 useless nonterminal and 1 useless rule
7144calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
7145calc.y:11.10-12: warning: useless rule: useless: STR
7146calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7147@end example
7148
7149When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7150creates a file @file{calc.output} with contents detailed below. The
7151order of the output and the exact presentation might vary, but the
7152interpretation is the same.
ec3bc396
AD
7153
7154The first section includes details on conflicts that were solved thanks
7155to precedence and/or associativity:
7156
7157@example
7158Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7159Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7160Conflict in state 8 between rule 2 and token '*' resolved as shift.
7161@exdent @dots{}
7162@end example
7163
7164@noindent
7165The next section lists states that still have conflicts.
7166
7167@example
5a99098d
PE
7168State 8 conflicts: 1 shift/reduce
7169State 9 conflicts: 1 shift/reduce
7170State 10 conflicts: 1 shift/reduce
7171State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7172@end example
7173
7174@noindent
7175@cindex token, useless
7176@cindex useless token
7177@cindex nonterminal, useless
7178@cindex useless nonterminal
7179@cindex rule, useless
7180@cindex useless rule
7181The next section reports useless tokens, nonterminal and rules. Useless
7182nonterminals and rules are removed in order to produce a smaller parser,
7183but useless tokens are preserved, since they might be used by the
7184scanner (note the difference between ``useless'' and ``not used''
7185below):
7186
7187@example
7188Useless nonterminals:
7189 useless
7190
7191Terminals which are not used:
7192 STR
7193
7194Useless rules:
7195#6 useless: STR;
7196@end example
7197
7198@noindent
7199The next section reproduces the exact grammar that Bison used:
7200
7201@example
7202Grammar
7203
7204 Number, Line, Rule
88bce5a2 7205 0 5 $accept -> exp $end
ec3bc396
AD
7206 1 5 exp -> exp '+' exp
7207 2 6 exp -> exp '-' exp
7208 3 7 exp -> exp '*' exp
7209 4 8 exp -> exp '/' exp
7210 5 9 exp -> NUM
7211@end example
7212
7213@noindent
7214and reports the uses of the symbols:
7215
7216@example
7217Terminals, with rules where they appear
7218
88bce5a2 7219$end (0) 0
ec3bc396
AD
7220'*' (42) 3
7221'+' (43) 1
7222'-' (45) 2
7223'/' (47) 4
7224error (256)
7225NUM (258) 5
7226
7227Nonterminals, with rules where they appear
7228
88bce5a2 7229$accept (8)
ec3bc396
AD
7230 on left: 0
7231exp (9)
7232 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7233@end example
7234
7235@noindent
7236@cindex item
7237@cindex pointed rule
7238@cindex rule, pointed
7239Bison then proceeds onto the automaton itself, describing each state
7240with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7241item is a production rule together with a point (marked by @samp{.})
7242that the input cursor.
7243
7244@example
7245state 0
7246
88bce5a2 7247 $accept -> . exp $ (rule 0)
ec3bc396 7248
2a8d363a 7249 NUM shift, and go to state 1
ec3bc396 7250
2a8d363a 7251 exp go to state 2
ec3bc396
AD
7252@end example
7253
7254This reads as follows: ``state 0 corresponds to being at the very
7255beginning of the parsing, in the initial rule, right before the start
7256symbol (here, @code{exp}). When the parser returns to this state right
7257after having reduced a rule that produced an @code{exp}, the control
7258flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7259symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7260the parse stack, and the control flow jumps to state 1. Any other
742e4900 7261lookahead triggers a syntax error.''
ec3bc396
AD
7262
7263@cindex core, item set
7264@cindex item set core
7265@cindex kernel, item set
7266@cindex item set core
7267Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7268report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7269at the beginning of any rule deriving an @code{exp}. By default Bison
7270reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7271you want to see more detail you can invoke @command{bison} with
7272@option{--report=itemset} to list all the items, include those that can
7273be derived:
7274
7275@example
7276state 0
7277
88bce5a2 7278 $accept -> . exp $ (rule 0)
ec3bc396
AD
7279 exp -> . exp '+' exp (rule 1)
7280 exp -> . exp '-' exp (rule 2)
7281 exp -> . exp '*' exp (rule 3)
7282 exp -> . exp '/' exp (rule 4)
7283 exp -> . NUM (rule 5)
7284
7285 NUM shift, and go to state 1
7286
7287 exp go to state 2
7288@end example
7289
7290@noindent
7291In the state 1...
7292
7293@example
7294state 1
7295
7296 exp -> NUM . (rule 5)
7297
2a8d363a 7298 $default reduce using rule 5 (exp)
ec3bc396
AD
7299@end example
7300
7301@noindent
742e4900 7302the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7303(@samp{$default}), the parser will reduce it. If it was coming from
7304state 0, then, after this reduction it will return to state 0, and will
7305jump to state 2 (@samp{exp: go to state 2}).
7306
7307@example
7308state 2
7309
88bce5a2 7310 $accept -> exp . $ (rule 0)
ec3bc396
AD
7311 exp -> exp . '+' exp (rule 1)
7312 exp -> exp . '-' exp (rule 2)
7313 exp -> exp . '*' exp (rule 3)
7314 exp -> exp . '/' exp (rule 4)
7315
2a8d363a
AD
7316 $ shift, and go to state 3
7317 '+' shift, and go to state 4
7318 '-' shift, and go to state 5
7319 '*' shift, and go to state 6
7320 '/' shift, and go to state 7
ec3bc396
AD
7321@end example
7322
7323@noindent
7324In state 2, the automaton can only shift a symbol. For instance,
742e4900 7325because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7326@samp{+}, it will be shifted on the parse stack, and the automaton
7327control will jump to state 4, corresponding to the item @samp{exp -> exp
7328'+' . exp}. Since there is no default action, any other token than
6e649e65 7329those listed above will trigger a syntax error.
ec3bc396
AD
7330
7331The state 3 is named the @dfn{final state}, or the @dfn{accepting
7332state}:
7333
7334@example
7335state 3
7336
88bce5a2 7337 $accept -> exp $ . (rule 0)
ec3bc396 7338
2a8d363a 7339 $default accept
ec3bc396
AD
7340@end example
7341
7342@noindent
7343the initial rule is completed (the start symbol and the end
7344of input were read), the parsing exits successfully.
7345
7346The interpretation of states 4 to 7 is straightforward, and is left to
7347the reader.
7348
7349@example
7350state 4
7351
7352 exp -> exp '+' . exp (rule 1)
7353
2a8d363a 7354 NUM shift, and go to state 1
ec3bc396 7355
2a8d363a 7356 exp go to state 8
ec3bc396
AD
7357
7358state 5
7359
7360 exp -> exp '-' . exp (rule 2)
7361
2a8d363a 7362 NUM shift, and go to state 1
ec3bc396 7363
2a8d363a 7364 exp go to state 9
ec3bc396
AD
7365
7366state 6
7367
7368 exp -> exp '*' . exp (rule 3)
7369
2a8d363a 7370 NUM shift, and go to state 1
ec3bc396 7371
2a8d363a 7372 exp go to state 10
ec3bc396
AD
7373
7374state 7
7375
7376 exp -> exp '/' . exp (rule 4)
7377
2a8d363a 7378 NUM shift, and go to state 1
ec3bc396 7379
2a8d363a 7380 exp go to state 11
ec3bc396
AD
7381@end example
7382
5a99098d
PE
7383As was announced in beginning of the report, @samp{State 8 conflicts:
73841 shift/reduce}:
ec3bc396
AD
7385
7386@example
7387state 8
7388
7389 exp -> exp . '+' exp (rule 1)
7390 exp -> exp '+' exp . (rule 1)
7391 exp -> exp . '-' exp (rule 2)
7392 exp -> exp . '*' exp (rule 3)
7393 exp -> exp . '/' exp (rule 4)
7394
2a8d363a
AD
7395 '*' shift, and go to state 6
7396 '/' shift, and go to state 7
ec3bc396 7397
2a8d363a
AD
7398 '/' [reduce using rule 1 (exp)]
7399 $default reduce using rule 1 (exp)
ec3bc396
AD
7400@end example
7401
742e4900 7402Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7403either shifting (and going to state 7), or reducing rule 1. The
7404conflict means that either the grammar is ambiguous, or the parser lacks
7405information to make the right decision. Indeed the grammar is
7406ambiguous, as, since we did not specify the precedence of @samp{/}, the
7407sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7408NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7409NUM}, which corresponds to reducing rule 1.
7410
c827f760 7411Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7412arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7413Shift/Reduce Conflicts}. Discarded actions are reported in between
7414square brackets.
7415
7416Note that all the previous states had a single possible action: either
7417shifting the next token and going to the corresponding state, or
7418reducing a single rule. In the other cases, i.e., when shifting
7419@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7420possible, the lookahead is required to select the action. State 8 is
7421one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7422is shifting, otherwise the action is reducing rule 1. In other words,
7423the first two items, corresponding to rule 1, are not eligible when the
742e4900 7424lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7425precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7426with some set of possible lookahead tokens. When run with
7427@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7428
7429@example
7430state 8
7431
88c78747 7432 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7433 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7434 exp -> exp . '-' exp (rule 2)
7435 exp -> exp . '*' exp (rule 3)
7436 exp -> exp . '/' exp (rule 4)
7437
7438 '*' shift, and go to state 6
7439 '/' shift, and go to state 7
7440
7441 '/' [reduce using rule 1 (exp)]
7442 $default reduce using rule 1 (exp)
7443@end example
7444
7445The remaining states are similar:
7446
7447@example
7448state 9
7449
7450 exp -> exp . '+' exp (rule 1)
7451 exp -> exp . '-' exp (rule 2)
7452 exp -> exp '-' exp . (rule 2)
7453 exp -> exp . '*' exp (rule 3)
7454 exp -> exp . '/' exp (rule 4)
7455
2a8d363a
AD
7456 '*' shift, and go to state 6
7457 '/' shift, and go to state 7
ec3bc396 7458
2a8d363a
AD
7459 '/' [reduce using rule 2 (exp)]
7460 $default reduce using rule 2 (exp)
ec3bc396
AD
7461
7462state 10
7463
7464 exp -> exp . '+' exp (rule 1)
7465 exp -> exp . '-' exp (rule 2)
7466 exp -> exp . '*' exp (rule 3)
7467 exp -> exp '*' exp . (rule 3)
7468 exp -> exp . '/' exp (rule 4)
7469
2a8d363a 7470 '/' shift, and go to state 7
ec3bc396 7471
2a8d363a
AD
7472 '/' [reduce using rule 3 (exp)]
7473 $default reduce using rule 3 (exp)
ec3bc396
AD
7474
7475state 11
7476
7477 exp -> exp . '+' exp (rule 1)
7478 exp -> exp . '-' exp (rule 2)
7479 exp -> exp . '*' exp (rule 3)
7480 exp -> exp . '/' exp (rule 4)
7481 exp -> exp '/' exp . (rule 4)
7482
2a8d363a
AD
7483 '+' shift, and go to state 4
7484 '-' shift, and go to state 5
7485 '*' shift, and go to state 6
7486 '/' shift, and go to state 7
ec3bc396 7487
2a8d363a
AD
7488 '+' [reduce using rule 4 (exp)]
7489 '-' [reduce using rule 4 (exp)]
7490 '*' [reduce using rule 4 (exp)]
7491 '/' [reduce using rule 4 (exp)]
7492 $default reduce using rule 4 (exp)
ec3bc396
AD
7493@end example
7494
7495@noindent
fa7e68c3
PE
7496Observe that state 11 contains conflicts not only due to the lack of
7497precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7498@samp{*}, but also because the
ec3bc396
AD
7499associativity of @samp{/} is not specified.
7500
7501
7502@node Tracing
7503@section Tracing Your Parser
bfa74976
RS
7504@findex yydebug
7505@cindex debugging
7506@cindex tracing the parser
7507
7508If a Bison grammar compiles properly but doesn't do what you want when it
7509runs, the @code{yydebug} parser-trace feature can help you figure out why.
7510
3ded9a63
AD
7511There are several means to enable compilation of trace facilities:
7512
7513@table @asis
7514@item the macro @code{YYDEBUG}
7515@findex YYDEBUG
7516Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7517parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7518@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7519YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7520Prologue}).
7521
7522@item the option @option{-t}, @option{--debug}
7523Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7524,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7525
7526@item the directive @samp{%debug}
7527@findex %debug
7528Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7529Declaration Summary}). This is a Bison extension, which will prove
7530useful when Bison will output parsers for languages that don't use a
c827f760
PE
7531preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7532you, this is
3ded9a63
AD
7533the preferred solution.
7534@end table
7535
7536We suggest that you always enable the debug option so that debugging is
7537always possible.
bfa74976 7538
02a81e05 7539The trace facility outputs messages with macro calls of the form
e2742e46 7540@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7541@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7542arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7543define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7544and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7545
7546Once you have compiled the program with trace facilities, the way to
7547request a trace is to store a nonzero value in the variable @code{yydebug}.
7548You can do this by making the C code do it (in @code{main}, perhaps), or
7549you can alter the value with a C debugger.
7550
7551Each step taken by the parser when @code{yydebug} is nonzero produces a
7552line or two of trace information, written on @code{stderr}. The trace
7553messages tell you these things:
7554
7555@itemize @bullet
7556@item
7557Each time the parser calls @code{yylex}, what kind of token was read.
7558
7559@item
7560Each time a token is shifted, the depth and complete contents of the
7561state stack (@pxref{Parser States}).
7562
7563@item
7564Each time a rule is reduced, which rule it is, and the complete contents
7565of the state stack afterward.
7566@end itemize
7567
7568To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7569produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7570Bison}). This file shows the meaning of each state in terms of
7571positions in various rules, and also what each state will do with each
7572possible input token. As you read the successive trace messages, you
7573can see that the parser is functioning according to its specification in
7574the listing file. Eventually you will arrive at the place where
7575something undesirable happens, and you will see which parts of the
7576grammar are to blame.
bfa74976
RS
7577
7578The parser file is a C program and you can use C debuggers on it, but it's
7579not easy to interpret what it is doing. The parser function is a
7580finite-state machine interpreter, and aside from the actions it executes
7581the same code over and over. Only the values of variables show where in
7582the grammar it is working.
7583
7584@findex YYPRINT
7585The debugging information normally gives the token type of each token
7586read, but not its semantic value. You can optionally define a macro
7587named @code{YYPRINT} to provide a way to print the value. If you define
7588@code{YYPRINT}, it should take three arguments. The parser will pass a
7589standard I/O stream, the numeric code for the token type, and the token
7590value (from @code{yylval}).
7591
7592Here is an example of @code{YYPRINT} suitable for the multi-function
7593calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7594
7595@smallexample
38a92d50
PE
7596%@{
7597 static void print_token_value (FILE *, int, YYSTYPE);
7598 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7599%@}
7600
7601@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7602
7603static void
831d3c99 7604print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7605@{
7606 if (type == VAR)
d3c4e709 7607 fprintf (file, "%s", value.tptr->name);
bfa74976 7608 else if (type == NUM)
d3c4e709 7609 fprintf (file, "%d", value.val);
bfa74976
RS
7610@}
7611@end smallexample
7612
ec3bc396
AD
7613@c ================================================= Invoking Bison
7614
342b8b6e 7615@node Invocation
bfa74976
RS
7616@chapter Invoking Bison
7617@cindex invoking Bison
7618@cindex Bison invocation
7619@cindex options for invoking Bison
7620
7621The usual way to invoke Bison is as follows:
7622
7623@example
7624bison @var{infile}
7625@end example
7626
7627Here @var{infile} is the grammar file name, which usually ends in
7628@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7629with @samp{.tab.c} and removing any leading directory. Thus, the
7630@samp{bison foo.y} file name yields
7631@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7632@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7633C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7634or @file{foo.y++}. Then, the output files will take an extension like
7635the given one as input (respectively @file{foo.tab.cpp} and
7636@file{foo.tab.c++}).
fa4d969f 7637This feature takes effect with all options that manipulate file names like
234a3be3
AD
7638@samp{-o} or @samp{-d}.
7639
7640For example :
7641
7642@example
7643bison -d @var{infile.yxx}
7644@end example
84163231 7645@noindent
72d2299c 7646will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7647
7648@example
b56471a6 7649bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7650@end example
84163231 7651@noindent
234a3be3
AD
7652will produce @file{output.c++} and @file{outfile.h++}.
7653
397ec073
PE
7654For compatibility with @acronym{POSIX}, the standard Bison
7655distribution also contains a shell script called @command{yacc} that
7656invokes Bison with the @option{-y} option.
7657
bfa74976 7658@menu
13863333 7659* Bison Options:: All the options described in detail,
c827f760 7660 in alphabetical order by short options.
bfa74976 7661* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7662* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7663@end menu
7664
342b8b6e 7665@node Bison Options
bfa74976
RS
7666@section Bison Options
7667
7668Bison supports both traditional single-letter options and mnemonic long
7669option names. Long option names are indicated with @samp{--} instead of
7670@samp{-}. Abbreviations for option names are allowed as long as they
7671are unique. When a long option takes an argument, like
7672@samp{--file-prefix}, connect the option name and the argument with
7673@samp{=}.
7674
7675Here is a list of options that can be used with Bison, alphabetized by
7676short option. It is followed by a cross key alphabetized by long
7677option.
7678
89cab50d
AD
7679@c Please, keep this ordered as in `bison --help'.
7680@noindent
7681Operations modes:
7682@table @option
7683@item -h
7684@itemx --help
7685Print a summary of the command-line options to Bison and exit.
bfa74976 7686
89cab50d
AD
7687@item -V
7688@itemx --version
7689Print the version number of Bison and exit.
bfa74976 7690
f7ab6a50
PE
7691@item --print-localedir
7692Print the name of the directory containing locale-dependent data.
7693
a0de5091
JD
7694@item --print-datadir
7695Print the name of the directory containing skeletons and XSLT.
7696
89cab50d
AD
7697@item -y
7698@itemx --yacc
54662697
PE
7699Act more like the traditional Yacc command. This can cause
7700different diagnostics to be generated, and may change behavior in
7701other minor ways. Most importantly, imitate Yacc's output
7702file name conventions, so that the parser output file is called
89cab50d 7703@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7704@file{y.tab.h}.
7705Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7706statements in addition to an @code{enum} to associate token numbers with token
7707names.
7708Thus, the following shell script can substitute for Yacc, and the Bison
7709distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7710
89cab50d 7711@example
397ec073 7712#! /bin/sh
26e06a21 7713bison -y "$@@"
89cab50d 7714@end example
54662697
PE
7715
7716The @option{-y}/@option{--yacc} option is intended for use with
7717traditional Yacc grammars. If your grammar uses a Bison extension
7718like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7719this option is specified.
7720
89cab50d
AD
7721@end table
7722
7723@noindent
7724Tuning the parser:
7725
7726@table @option
7727@item -t
7728@itemx --debug
4947ebdb
PE
7729In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7730already defined, so that the debugging facilities are compiled.
ec3bc396 7731@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7732
0e021770
PE
7733@item -L @var{language}
7734@itemx --language=@var{language}
7735Specify the programming language for the generated parser, as if
7736@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
7737Summary}). Currently supported languages include C and C++.
e6e704dc 7738@var{language} is case-insensitive.
0e021770 7739
89cab50d 7740@item --locations
d8988b2f 7741Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7742
7743@item -p @var{prefix}
7744@itemx --name-prefix=@var{prefix}
02975b9a 7745Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7746@xref{Decl Summary}.
bfa74976
RS
7747
7748@item -l
7749@itemx --no-lines
7750Don't put any @code{#line} preprocessor commands in the parser file.
7751Ordinarily Bison puts them in the parser file so that the C compiler
7752and debuggers will associate errors with your source file, the
7753grammar file. This option causes them to associate errors with the
95e742f7 7754parser file, treating it as an independent source file in its own right.
bfa74976 7755
e6e704dc
JD
7756@item -S @var{file}
7757@itemx --skeleton=@var{file}
a7867f53 7758Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7759(@pxref{Decl Summary, , Bison Declaration Summary}).
7760
a7867f53
JD
7761You probably don't need this option unless you are developing Bison.
7762You should use @option{--language} if you want to specify the skeleton for a
e6e704dc
JD
7763different language, because it is clearer and because it will always
7764choose the correct skeleton for non-deterministic or push parsers.
7765
a7867f53
JD
7766If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7767file in the Bison installation directory.
7768If it does, @var{file} is an absolute file name or a file name relative to the
7769current working directory.
7770This is similar to how most shells resolve commands.
7771
89cab50d
AD
7772@item -k
7773@itemx --token-table
d8988b2f 7774Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7775@end table
bfa74976 7776
89cab50d
AD
7777@noindent
7778Adjust the output:
bfa74976 7779
89cab50d
AD
7780@table @option
7781@item -d
d8988b2f
AD
7782@itemx --defines
7783Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7784file containing macro definitions for the token type names defined in
4bfd5e4e 7785the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7786
342b8b6e 7787@item --defines=@var{defines-file}
d8988b2f 7788Same as above, but save in the file @var{defines-file}.
342b8b6e 7789
89cab50d
AD
7790@item -b @var{file-prefix}
7791@itemx --file-prefix=@var{prefix}
9c437126 7792Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7793for all Bison output file names. @xref{Decl Summary}.
bfa74976 7794
ec3bc396
AD
7795@item -r @var{things}
7796@itemx --report=@var{things}
7797Write an extra output file containing verbose description of the comma
7798separated list of @var{things} among:
7799
7800@table @code
7801@item state
7802Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7803@acronym{LALR} automaton.
ec3bc396 7804
742e4900 7805@item lookahead
ec3bc396 7806Implies @code{state} and augments the description of the automaton with
742e4900 7807each rule's lookahead set.
ec3bc396
AD
7808
7809@item itemset
7810Implies @code{state} and augments the description of the automaton with
7811the full set of items for each state, instead of its core only.
7812@end table
7813
bfa74976
RS
7814@item -v
7815@itemx --verbose
9c437126 7816Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7817file containing verbose descriptions of the grammar and
72d2299c 7818parser. @xref{Decl Summary}.
bfa74976 7819
fa4d969f
PE
7820@item -o @var{file}
7821@itemx --output=@var{file}
7822Specify the @var{file} for the parser file.
bfa74976 7823
fa4d969f 7824The other output files' names are constructed from @var{file} as
d8988b2f 7825described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7826
7827@item -g
35fe0834
PE
7828Output a graphical representation of the @acronym{LALR}(1) grammar
7829automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7830@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7831If the grammar file is @file{foo.y}, the output file will
7832be @file{foo.dot}.
342b8b6e
AD
7833
7834@item --graph=@var{graph-file}
72d2299c
PE
7835The behavior of @var{--graph} is the same than @samp{-g}. The only
7836difference is that it has an optional argument which is the name of
fa4d969f 7837the output graph file.
bfa74976
RS
7838@end table
7839
342b8b6e 7840@node Option Cross Key
bfa74976
RS
7841@section Option Cross Key
7842
aa08666d 7843@c FIXME: How about putting the directives too?
bfa74976
RS
7844Here is a list of options, alphabetized by long option, to help you find
7845the corresponding short option.
7846
aa08666d
AD
7847@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7848@headitem Long Option @tab Short Option
7849@item @option{--debug} @tab @option{-t}
7850@item @option{--defines=@var{defines-file}} @tab @option{-d}
7851@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7852@item @option{--graph=@var{graph-file}} @tab @option{-d}
7853@item @option{--help} @tab @option{-h}
7854@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7855@item @option{--no-lines} @tab @option{-l}
aa08666d
AD
7856@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7857@item @option{--print-localedir} @tab
a0de5091 7858@item @option{--print-datadir} @tab
aa08666d
AD
7859@item @option{--token-table} @tab @option{-k}
7860@item @option{--verbose} @tab @option{-v}
7861@item @option{--version} @tab @option{-V}
7862@item @option{--yacc} @tab @option{-y}
7863@end multitable
bfa74976 7864
93dd49ab
PE
7865@node Yacc Library
7866@section Yacc Library
7867
7868The Yacc library contains default implementations of the
7869@code{yyerror} and @code{main} functions. These default
7870implementations are normally not useful, but @acronym{POSIX} requires
7871them. To use the Yacc library, link your program with the
7872@option{-ly} option. Note that Bison's implementation of the Yacc
7873library is distributed under the terms of the @acronym{GNU} General
7874Public License (@pxref{Copying}).
7875
7876If you use the Yacc library's @code{yyerror} function, you should
7877declare @code{yyerror} as follows:
7878
7879@example
7880int yyerror (char const *);
7881@end example
7882
7883Bison ignores the @code{int} value returned by this @code{yyerror}.
7884If you use the Yacc library's @code{main} function, your
7885@code{yyparse} function should have the following type signature:
7886
7887@example
7888int yyparse (void);
7889@end example
7890
12545799
AD
7891@c ================================================= C++ Bison
7892
8405b70c
PB
7893@node Other Languages
7894@chapter Parsers Written In Other Languages
12545799
AD
7895
7896@menu
7897* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 7898* Java Parsers:: The interface to generate Java parser classes
12545799
AD
7899@end menu
7900
7901@node C++ Parsers
7902@section C++ Parsers
7903
7904@menu
7905* C++ Bison Interface:: Asking for C++ parser generation
7906* C++ Semantic Values:: %union vs. C++
7907* C++ Location Values:: The position and location classes
7908* C++ Parser Interface:: Instantiating and running the parser
7909* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 7910* A Complete C++ Example:: Demonstrating their use
12545799
AD
7911@end menu
7912
7913@node C++ Bison Interface
7914@subsection C++ Bison Interface
0e021770 7915@c - %language "C++"
12545799
AD
7916@c - Always pure
7917@c - initial action
7918
e6e704dc
JD
7919The C++ @acronym{LALR}(1) parser is selected using the language directive,
7920@samp{%language "C++"}, or the synonymous command-line option
7921@option{--language=c++}.
7922@xref{Decl Summary}.
0e021770 7923
793fbca5
JD
7924When run, @command{bison} will create several entities in the @samp{yy}
7925namespace.
7926@findex %define namespace
7927Use the @samp{%define namespace} directive to change the namespace name, see
7928@ref{Decl Summary}.
7929The various classes are generated in the following files:
aa08666d 7930
12545799
AD
7931@table @file
7932@item position.hh
7933@itemx location.hh
7934The definition of the classes @code{position} and @code{location},
7935used for location tracking. @xref{C++ Location Values}.
7936
7937@item stack.hh
7938An auxiliary class @code{stack} used by the parser.
7939
fa4d969f
PE
7940@item @var{file}.hh
7941@itemx @var{file}.cc
cd8b5791
AD
7942(Assuming the extension of the input file was @samp{.yy}.) The
7943declaration and implementation of the C++ parser class. The basename
7944and extension of these two files follow the same rules as with regular C
7945parsers (@pxref{Invocation}).
12545799 7946
cd8b5791
AD
7947The header is @emph{mandatory}; you must either pass
7948@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7949@samp{%defines} directive.
7950@end table
7951
7952All these files are documented using Doxygen; run @command{doxygen}
7953for a complete and accurate documentation.
7954
7955@node C++ Semantic Values
7956@subsection C++ Semantic Values
7957@c - No objects in unions
178e123e 7958@c - YYSTYPE
12545799
AD
7959@c - Printer and destructor
7960
7961The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7962Collection of Value Types}. In particular it produces a genuine
7963@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7964within pseudo-unions (similar to Boost variants) might be implemented to
7965alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7966@itemize @minus
7967@item
fb9712a9
AD
7968The type @code{YYSTYPE} is defined but its use is discouraged: rather
7969you should refer to the parser's encapsulated type
7970@code{yy::parser::semantic_type}.
12545799
AD
7971@item
7972Non POD (Plain Old Data) types cannot be used. C++ forbids any
7973instance of classes with constructors in unions: only @emph{pointers}
7974to such objects are allowed.
7975@end itemize
7976
7977Because objects have to be stored via pointers, memory is not
7978reclaimed automatically: using the @code{%destructor} directive is the
7979only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7980Symbols}.
7981
7982
7983@node C++ Location Values
7984@subsection C++ Location Values
7985@c - %locations
7986@c - class Position
7987@c - class Location
16dc6a9e 7988@c - %define filename_type "const symbol::Symbol"
12545799
AD
7989
7990When the directive @code{%locations} is used, the C++ parser supports
7991location tracking, see @ref{Locations, , Locations Overview}. Two
7992auxiliary classes define a @code{position}, a single point in a file,
7993and a @code{location}, a range composed of a pair of
7994@code{position}s (possibly spanning several files).
7995
fa4d969f 7996@deftypemethod {position} {std::string*} file
12545799
AD
7997The name of the file. It will always be handled as a pointer, the
7998parser will never duplicate nor deallocate it. As an experimental
7999feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8000filename_type "@var{type}"}.
12545799
AD
8001@end deftypemethod
8002
8003@deftypemethod {position} {unsigned int} line
8004The line, starting at 1.
8005@end deftypemethod
8006
8007@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8008Advance by @var{height} lines, resetting the column number.
8009@end deftypemethod
8010
8011@deftypemethod {position} {unsigned int} column
8012The column, starting at 0.
8013@end deftypemethod
8014
8015@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8016Advance by @var{width} columns, without changing the line number.
8017@end deftypemethod
8018
8019@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8020@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8021@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8022@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8023Various forms of syntactic sugar for @code{columns}.
8024@end deftypemethod
8025
8026@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8027Report @var{p} on @var{o} like this:
fa4d969f
PE
8028@samp{@var{file}:@var{line}.@var{column}}, or
8029@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8030@end deftypemethod
8031
8032@deftypemethod {location} {position} begin
8033@deftypemethodx {location} {position} end
8034The first, inclusive, position of the range, and the first beyond.
8035@end deftypemethod
8036
8037@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8038@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8039Advance the @code{end} position.
8040@end deftypemethod
8041
8042@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8043@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8044@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8045Various forms of syntactic sugar.
8046@end deftypemethod
8047
8048@deftypemethod {location} {void} step ()
8049Move @code{begin} onto @code{end}.
8050@end deftypemethod
8051
8052
8053@node C++ Parser Interface
8054@subsection C++ Parser Interface
8055@c - define parser_class_name
8056@c - Ctor
8057@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8058@c debug_stream.
8059@c - Reporting errors
8060
8061The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8062declare and define the parser class in the namespace @code{yy}. The
8063class name defaults to @code{parser}, but may be changed using
16dc6a9e 8064@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8065this class is detailed below. It can be extended using the
12545799
AD
8066@code{%parse-param} feature: its semantics is slightly changed since
8067it describes an additional member of the parser class, and an
8068additional argument for its constructor.
8069
8a0adb01
AD
8070@defcv {Type} {parser} {semantic_value_type}
8071@defcvx {Type} {parser} {location_value_type}
12545799 8072The types for semantics value and locations.
8a0adb01 8073@end defcv
12545799
AD
8074
8075@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8076Build a new parser object. There are no arguments by default, unless
8077@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8078@end deftypemethod
8079
8080@deftypemethod {parser} {int} parse ()
8081Run the syntactic analysis, and return 0 on success, 1 otherwise.
8082@end deftypemethod
8083
8084@deftypemethod {parser} {std::ostream&} debug_stream ()
8085@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8086Get or set the stream used for tracing the parsing. It defaults to
8087@code{std::cerr}.
8088@end deftypemethod
8089
8090@deftypemethod {parser} {debug_level_type} debug_level ()
8091@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8092Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8093or nonzero, full tracing.
12545799
AD
8094@end deftypemethod
8095
8096@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8097The definition for this member function must be supplied by the user:
8098the parser uses it to report a parser error occurring at @var{l},
8099described by @var{m}.
8100@end deftypemethod
8101
8102
8103@node C++ Scanner Interface
8104@subsection C++ Scanner Interface
8105@c - prefix for yylex.
8106@c - Pure interface to yylex
8107@c - %lex-param
8108
8109The parser invokes the scanner by calling @code{yylex}. Contrary to C
8110parsers, C++ parsers are always pure: there is no point in using the
8111@code{%pure-parser} directive. Therefore the interface is as follows.
8112
8113@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8114Return the next token. Its type is the return value, its semantic
8115value and location being @var{yylval} and @var{yylloc}. Invocations of
8116@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8117@end deftypemethod
8118
8119
8120@node A Complete C++ Example
8405b70c 8121@subsection A Complete C++ Example
12545799
AD
8122
8123This section demonstrates the use of a C++ parser with a simple but
8124complete example. This example should be available on your system,
8125ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8126focuses on the use of Bison, therefore the design of the various C++
8127classes is very naive: no accessors, no encapsulation of members etc.
8128We will use a Lex scanner, and more precisely, a Flex scanner, to
8129demonstrate the various interaction. A hand written scanner is
8130actually easier to interface with.
8131
8132@menu
8133* Calc++ --- C++ Calculator:: The specifications
8134* Calc++ Parsing Driver:: An active parsing context
8135* Calc++ Parser:: A parser class
8136* Calc++ Scanner:: A pure C++ Flex scanner
8137* Calc++ Top Level:: Conducting the band
8138@end menu
8139
8140@node Calc++ --- C++ Calculator
8405b70c 8141@subsubsection Calc++ --- C++ Calculator
12545799
AD
8142
8143Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8144expression, possibly preceded by variable assignments. An
12545799
AD
8145environment containing possibly predefined variables such as
8146@code{one} and @code{two}, is exchanged with the parser. An example
8147of valid input follows.
8148
8149@example
8150three := 3
8151seven := one + two * three
8152seven * seven
8153@end example
8154
8155@node Calc++ Parsing Driver
8405b70c 8156@subsubsection Calc++ Parsing Driver
12545799
AD
8157@c - An env
8158@c - A place to store error messages
8159@c - A place for the result
8160
8161To support a pure interface with the parser (and the scanner) the
8162technique of the ``parsing context'' is convenient: a structure
8163containing all the data to exchange. Since, in addition to simply
8164launch the parsing, there are several auxiliary tasks to execute (open
8165the file for parsing, instantiate the parser etc.), we recommend
8166transforming the simple parsing context structure into a fully blown
8167@dfn{parsing driver} class.
8168
8169The declaration of this driver class, @file{calc++-driver.hh}, is as
8170follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8171required standard library components, and the declaration of the parser
8172class.
12545799 8173
1c59e0a1 8174@comment file: calc++-driver.hh
12545799
AD
8175@example
8176#ifndef CALCXX_DRIVER_HH
8177# define CALCXX_DRIVER_HH
8178# include <string>
8179# include <map>
fb9712a9 8180# include "calc++-parser.hh"
12545799
AD
8181@end example
8182
12545799
AD
8183
8184@noindent
8185Then comes the declaration of the scanning function. Flex expects
8186the signature of @code{yylex} to be defined in the macro
8187@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8188factor both as follows.
1c59e0a1
AD
8189
8190@comment file: calc++-driver.hh
12545799 8191@example
3dc5e96b
PE
8192// Tell Flex the lexer's prototype ...
8193# define YY_DECL \
c095d689
AD
8194 yy::calcxx_parser::token_type \
8195 yylex (yy::calcxx_parser::semantic_type* yylval, \
8196 yy::calcxx_parser::location_type* yylloc, \
8197 calcxx_driver& driver)
12545799
AD
8198// ... and declare it for the parser's sake.
8199YY_DECL;
8200@end example
8201
8202@noindent
8203The @code{calcxx_driver} class is then declared with its most obvious
8204members.
8205
1c59e0a1 8206@comment file: calc++-driver.hh
12545799
AD
8207@example
8208// Conducting the whole scanning and parsing of Calc++.
8209class calcxx_driver
8210@{
8211public:
8212 calcxx_driver ();
8213 virtual ~calcxx_driver ();
8214
8215 std::map<std::string, int> variables;
8216
8217 int result;
8218@end example
8219
8220@noindent
8221To encapsulate the coordination with the Flex scanner, it is useful to
8222have two members function to open and close the scanning phase.
12545799 8223
1c59e0a1 8224@comment file: calc++-driver.hh
12545799
AD
8225@example
8226 // Handling the scanner.
8227 void scan_begin ();
8228 void scan_end ();
8229 bool trace_scanning;
8230@end example
8231
8232@noindent
8233Similarly for the parser itself.
8234
1c59e0a1 8235@comment file: calc++-driver.hh
12545799 8236@example
bb32f4f2
AD
8237 // Run the parser. Return 0 on success.
8238 int parse (const std::string& f);
12545799
AD
8239 std::string file;
8240 bool trace_parsing;
8241@end example
8242
8243@noindent
8244To demonstrate pure handling of parse errors, instead of simply
8245dumping them on the standard error output, we will pass them to the
8246compiler driver using the following two member functions. Finally, we
8247close the class declaration and CPP guard.
8248
1c59e0a1 8249@comment file: calc++-driver.hh
12545799
AD
8250@example
8251 // Error handling.
8252 void error (const yy::location& l, const std::string& m);
8253 void error (const std::string& m);
8254@};
8255#endif // ! CALCXX_DRIVER_HH
8256@end example
8257
8258The implementation of the driver is straightforward. The @code{parse}
8259member function deserves some attention. The @code{error} functions
8260are simple stubs, they should actually register the located error
8261messages and set error state.
8262
1c59e0a1 8263@comment file: calc++-driver.cc
12545799
AD
8264@example
8265#include "calc++-driver.hh"
8266#include "calc++-parser.hh"
8267
8268calcxx_driver::calcxx_driver ()
8269 : trace_scanning (false), trace_parsing (false)
8270@{
8271 variables["one"] = 1;
8272 variables["two"] = 2;
8273@}
8274
8275calcxx_driver::~calcxx_driver ()
8276@{
8277@}
8278
bb32f4f2 8279int
12545799
AD
8280calcxx_driver::parse (const std::string &f)
8281@{
8282 file = f;
8283 scan_begin ();
8284 yy::calcxx_parser parser (*this);
8285 parser.set_debug_level (trace_parsing);
bb32f4f2 8286 int res = parser.parse ();
12545799 8287 scan_end ();
bb32f4f2 8288 return res;
12545799
AD
8289@}
8290
8291void
8292calcxx_driver::error (const yy::location& l, const std::string& m)
8293@{
8294 std::cerr << l << ": " << m << std::endl;
8295@}
8296
8297void
8298calcxx_driver::error (const std::string& m)
8299@{
8300 std::cerr << m << std::endl;
8301@}
8302@end example
8303
8304@node Calc++ Parser
8405b70c 8305@subsubsection Calc++ Parser
12545799 8306
b50d2359
AD
8307The parser definition file @file{calc++-parser.yy} starts by asking for
8308the C++ LALR(1) skeleton, the creation of the parser header file, and
8309specifies the name of the parser class. Because the C++ skeleton
8310changed several times, it is safer to require the version you designed
8311the grammar for.
1c59e0a1
AD
8312
8313@comment file: calc++-parser.yy
12545799 8314@example
0e021770 8315%language "C++" /* -*- C++ -*- */
e6e704dc 8316%require "@value{VERSION}"
12545799 8317%defines
16dc6a9e 8318%define parser_class_name "calcxx_parser"
fb9712a9
AD
8319@end example
8320
8321@noindent
16dc6a9e 8322@findex %code requires
fb9712a9
AD
8323Then come the declarations/inclusions needed to define the
8324@code{%union}. Because the parser uses the parsing driver and
8325reciprocally, both cannot include the header of the other. Because the
8326driver's header needs detailed knowledge about the parser class (in
8327particular its inner types), it is the parser's header which will simply
8328use a forward declaration of the driver.
148d66d8 8329@xref{Decl Summary, ,%code}.
fb9712a9
AD
8330
8331@comment file: calc++-parser.yy
8332@example
16dc6a9e 8333%code requires @{
12545799 8334# include <string>
fb9712a9 8335class calcxx_driver;
9bc0dd67 8336@}
12545799
AD
8337@end example
8338
8339@noindent
8340The driver is passed by reference to the parser and to the scanner.
8341This provides a simple but effective pure interface, not relying on
8342global variables.
8343
1c59e0a1 8344@comment file: calc++-parser.yy
12545799
AD
8345@example
8346// The parsing context.
8347%parse-param @{ calcxx_driver& driver @}
8348%lex-param @{ calcxx_driver& driver @}
8349@end example
8350
8351@noindent
8352Then we request the location tracking feature, and initialize the
8353first location's file name. Afterwards new locations are computed
8354relatively to the previous locations: the file name will be
8355automatically propagated.
8356
1c59e0a1 8357@comment file: calc++-parser.yy
12545799
AD
8358@example
8359%locations
8360%initial-action
8361@{
8362 // Initialize the initial location.
b47dbebe 8363 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8364@};
8365@end example
8366
8367@noindent
8368Use the two following directives to enable parser tracing and verbose
8369error messages.
8370
1c59e0a1 8371@comment file: calc++-parser.yy
12545799
AD
8372@example
8373%debug
8374%error-verbose
8375@end example
8376
8377@noindent
8378Semantic values cannot use ``real'' objects, but only pointers to
8379them.
8380
1c59e0a1 8381@comment file: calc++-parser.yy
12545799
AD
8382@example
8383// Symbols.
8384%union
8385@{
8386 int ival;
8387 std::string *sval;
8388@};
8389@end example
8390
fb9712a9 8391@noindent
136a0f76
PB
8392@findex %code
8393The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8394@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8395
8396@comment file: calc++-parser.yy
8397@example
136a0f76 8398%code @{
fb9712a9 8399# include "calc++-driver.hh"
34f98f46 8400@}
fb9712a9
AD
8401@end example
8402
8403
12545799
AD
8404@noindent
8405The token numbered as 0 corresponds to end of file; the following line
8406allows for nicer error messages referring to ``end of file'' instead
8407of ``$end''. Similarly user friendly named are provided for each
8408symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8409avoid name clashes.
8410
1c59e0a1 8411@comment file: calc++-parser.yy
12545799 8412@example
fb9712a9
AD
8413%token END 0 "end of file"
8414%token ASSIGN ":="
8415%token <sval> IDENTIFIER "identifier"
8416%token <ival> NUMBER "number"
a8c2e813 8417%type <ival> exp
12545799
AD
8418@end example
8419
8420@noindent
8421To enable memory deallocation during error recovery, use
8422@code{%destructor}.
8423
287c78f6 8424@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8425@comment file: calc++-parser.yy
12545799
AD
8426@example
8427%printer @{ debug_stream () << *$$; @} "identifier"
8428%destructor @{ delete $$; @} "identifier"
8429
a8c2e813 8430%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8431@end example
8432
8433@noindent
8434The grammar itself is straightforward.
8435
1c59e0a1 8436@comment file: calc++-parser.yy
12545799
AD
8437@example
8438%%
8439%start unit;
8440unit: assignments exp @{ driver.result = $2; @};
8441
8442assignments: assignments assignment @{@}
9d9b8b70 8443 | /* Nothing. */ @{@};
12545799 8444
3dc5e96b
PE
8445assignment:
8446 "identifier" ":=" exp
8447 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8448
8449%left '+' '-';
8450%left '*' '/';
8451exp: exp '+' exp @{ $$ = $1 + $3; @}
8452 | exp '-' exp @{ $$ = $1 - $3; @}
8453 | exp '*' exp @{ $$ = $1 * $3; @}
8454 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8455 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8456 | "number" @{ $$ = $1; @};
12545799
AD
8457%%
8458@end example
8459
8460@noindent
8461Finally the @code{error} member function registers the errors to the
8462driver.
8463
1c59e0a1 8464@comment file: calc++-parser.yy
12545799
AD
8465@example
8466void
1c59e0a1
AD
8467yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8468 const std::string& m)
12545799
AD
8469@{
8470 driver.error (l, m);
8471@}
8472@end example
8473
8474@node Calc++ Scanner
8405b70c 8475@subsubsection Calc++ Scanner
12545799
AD
8476
8477The Flex scanner first includes the driver declaration, then the
8478parser's to get the set of defined tokens.
8479
1c59e0a1 8480@comment file: calc++-scanner.ll
12545799
AD
8481@example
8482%@{ /* -*- C++ -*- */
04098407
PE
8483# include <cstdlib>
8484# include <errno.h>
8485# include <limits.h>
12545799
AD
8486# include <string>
8487# include "calc++-driver.hh"
8488# include "calc++-parser.hh"
eaea13f5
PE
8489
8490/* Work around an incompatibility in flex (at least versions
8491 2.5.31 through 2.5.33): it generates code that does
8492 not conform to C89. See Debian bug 333231
8493 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8494# undef yywrap
8495# define yywrap() 1
eaea13f5 8496
c095d689
AD
8497/* By default yylex returns int, we use token_type.
8498 Unfortunately yyterminate by default returns 0, which is
8499 not of token_type. */
8c5b881d 8500#define yyterminate() return token::END
12545799
AD
8501%@}
8502@end example
8503
8504@noindent
8505Because there is no @code{#include}-like feature we don't need
8506@code{yywrap}, we don't need @code{unput} either, and we parse an
8507actual file, this is not an interactive session with the user.
8508Finally we enable the scanner tracing features.
8509
1c59e0a1 8510@comment file: calc++-scanner.ll
12545799
AD
8511@example
8512%option noyywrap nounput batch debug
8513@end example
8514
8515@noindent
8516Abbreviations allow for more readable rules.
8517
1c59e0a1 8518@comment file: calc++-scanner.ll
12545799
AD
8519@example
8520id [a-zA-Z][a-zA-Z_0-9]*
8521int [0-9]+
8522blank [ \t]
8523@end example
8524
8525@noindent
9d9b8b70 8526The following paragraph suffices to track locations accurately. Each
12545799
AD
8527time @code{yylex} is invoked, the begin position is moved onto the end
8528position. Then when a pattern is matched, the end position is
8529advanced of its width. In case it matched ends of lines, the end
8530cursor is adjusted, and each time blanks are matched, the begin cursor
8531is moved onto the end cursor to effectively ignore the blanks
8532preceding tokens. Comments would be treated equally.
8533
1c59e0a1 8534@comment file: calc++-scanner.ll
12545799 8535@example
828c373b
AD
8536%@{
8537# define YY_USER_ACTION yylloc->columns (yyleng);
8538%@}
12545799
AD
8539%%
8540%@{
8541 yylloc->step ();
12545799
AD
8542%@}
8543@{blank@}+ yylloc->step ();
8544[\n]+ yylloc->lines (yyleng); yylloc->step ();
8545@end example
8546
8547@noindent
fb9712a9
AD
8548The rules are simple, just note the use of the driver to report errors.
8549It is convenient to use a typedef to shorten
8550@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8551@code{token::identifier} for instance.
12545799 8552
1c59e0a1 8553@comment file: calc++-scanner.ll
12545799 8554@example
fb9712a9
AD
8555%@{
8556 typedef yy::calcxx_parser::token token;
8557%@}
8c5b881d 8558 /* Convert ints to the actual type of tokens. */
c095d689 8559[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8560":=" return token::ASSIGN;
04098407
PE
8561@{int@} @{
8562 errno = 0;
8563 long n = strtol (yytext, NULL, 10);
8564 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8565 driver.error (*yylloc, "integer is out of range");
8566 yylval->ival = n;
fb9712a9 8567 return token::NUMBER;
04098407 8568@}
fb9712a9 8569@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8570. driver.error (*yylloc, "invalid character");
8571%%
8572@end example
8573
8574@noindent
8575Finally, because the scanner related driver's member function depend
8576on the scanner's data, it is simpler to implement them in this file.
8577
1c59e0a1 8578@comment file: calc++-scanner.ll
12545799
AD
8579@example
8580void
8581calcxx_driver::scan_begin ()
8582@{
8583 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8584 if (file == "-")
8585 yyin = stdin;
8586 else if (!(yyin = fopen (file.c_str (), "r")))
8587 @{
8588 error (std::string ("cannot open ") + file);
8589 exit (1);
8590 @}
12545799
AD
8591@}
8592
8593void
8594calcxx_driver::scan_end ()
8595@{
8596 fclose (yyin);
8597@}
8598@end example
8599
8600@node Calc++ Top Level
8405b70c 8601@subsubsection Calc++ Top Level
12545799
AD
8602
8603The top level file, @file{calc++.cc}, poses no problem.
8604
1c59e0a1 8605@comment file: calc++.cc
12545799
AD
8606@example
8607#include <iostream>
8608#include "calc++-driver.hh"
8609
8610int
fa4d969f 8611main (int argc, char *argv[])
12545799
AD
8612@{
8613 calcxx_driver driver;
8614 for (++argv; argv[0]; ++argv)
8615 if (*argv == std::string ("-p"))
8616 driver.trace_parsing = true;
8617 else if (*argv == std::string ("-s"))
8618 driver.trace_scanning = true;
bb32f4f2
AD
8619 else if (!driver.parse (*argv))
8620 std::cout << driver.result << std::endl;
12545799
AD
8621@}
8622@end example
8623
8405b70c
PB
8624@node Java Parsers
8625@section Java Parsers
8626
8627@menu
8628* Java Bison Interface:: Asking for Java parser generation
8629* Java Semantic Values:: %type and %token vs. Java
8630* Java Location Values:: The position and location classes
8631* Java Parser Interface:: Instantiating and running the parser
8632* Java Scanner Interface:: Java scanners, and pure parsers
8633* Java Differences:: Differences between C/C++ and Java Grammars
8634@end menu
8635
8636@node Java Bison Interface
8637@subsection Java Bison Interface
8638@c - %language "Java"
8639@c - initial action
8640
8641The Java parser skeletons are selected using a language directive,
8642@samp{%language "Java"}, or the synonymous command-line option
8643@option{--language=java}.
8644
8645When run, @command{bison} will create several entities whose name
8646starts with @samp{YY}. Use the @samp{%name-prefix} directive to
8647change the prefix, see @ref{Decl Summary}; classes can be placed
8648in an arbitrary Java package using a @samp{%define package} section.
8649
8650The parser class defines an inner class, @code{Location}, that is used
8651for location tracking. If the parser is pure, it also defines an
8652inner interface, @code{Lexer}; see~@ref{Java Scanner Interface} for the
8653meaning of pure parsers when the Java language is chosen. Other than
8654these inner class/interface, and the members described in~@ref{Java
8655Parser Interface}, all the other members and fields are preceded
8656with a @code{yy} prefix to avoid clashes with user code.
8657
8658No header file can be generated for Java parsers; you must not pass
8659@option{-d}/@option{--defines} to @command{bison}, nor use the
8660@samp{%defines} directive.
8661
8662By default, the @samp{YYParser} class has package visibility. A
8663declaration @samp{%define "public"} will change to public visibility.
8664Remember that, according to the Java language specification, the name
8665of the @file{.java} file should match the name of the class in this
8666case.
8667
01b477c6
PB
8668Similarly, a declaration @samp{%define "abstract"} will make your
8669class abstract.
8670
8671You can create documentation for generated parsers using Javadoc.
8405b70c
PB
8672
8673@node Java Semantic Values
8674@subsection Java Semantic Values
8675@c - No %union, specify type in %type/%token.
8676@c - YYSTYPE
8677@c - Printer and destructor
8678
8679There is no @code{%union} directive in Java parsers. Instead, the
8680semantic values' types (class names) should be specified in the
8681@code{%type} or @code{%token} directive:
8682
8683@example
8684%type <Expression> expr assignment_expr term factor
8685%type <Integer> number
8686@end example
8687
8688By default, the semantic stack is declared to have @code{Object} members,
8689which means that the class types you specify can be of any class.
8690To improve the type safety of the parser, you can declare the common
8691superclass of all the semantic values using the @samp{%define} directive.
8692For example, after the following declaration:
8693
8694@example
01b477c6 8695%define "stype" "ASTNode"
8405b70c
PB
8696@end example
8697
8698@noindent
8699any @code{%type} or @code{%token} specifying a semantic type which
8700is not a subclass of ASTNode, will cause a compile-time error.
8701
8702Types used in the directives may be qualified with a package name.
8703Primitive data types are accepted for Java version 1.5 or later. Note
8704that in this case the autoboxing feature of Java 1.5 will be used.
8705
8706Java parsers do not support @code{%destructor}, since the language
8707adopts garbage collection. The parser will try to hold references
8708to semantic values for as little time as needed.
8709
8710Java parsers do not support @code{%printer}, as @code{toString()}
8711can be used to print the semantic values. This however may change
8712(in a backwards-compatible way) in future versions of Bison.
8713
8714
8715@node Java Location Values
8716@subsection Java Location Values
8717@c - %locations
8718@c - class Position
8719@c - class Location
8720
8721When the directive @code{%locations} is used, the Java parser
8722supports location tracking, see @ref{Locations, , Locations Overview}.
8723An auxiliary user-defined class defines a @dfn{position}, a single point
8724in a file; Bison itself defines a class representing a @dfn{location},
8725a range composed of a pair of positions (possibly spanning several
8726files). The location class is an inner class of the parser; the name
8727is @code{Location} by default, may also be renamed using @code{%define
8728"location_type" "@var{class-name}}.
8729
8730The location class treats the position as a completely opaque value.
8731By default, the class name is @code{Position}, but this can be changed
8732with @code{%define "position_type" "@var{class-name}"}.
8733
8734
8735@deftypemethod {Location} {Position} begin
8736@deftypemethodx {Location} {Position} end
8737The first, inclusive, position of the range, and the first beyond.
8738@end deftypemethod
8739
8740@deftypemethod {Location} {void} toString ()
8741Prints the range represented by the location. For this to work
8742properly, the position class should override the @code{equals} and
8743@code{toString} methods appropriately.
8744@end deftypemethod
8745
8746
8747@node Java Parser Interface
8748@subsection Java Parser Interface
8749@c - define parser_class_name
8750@c - Ctor
8751@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8752@c debug_stream.
8753@c - Reporting errors
8754
8755The output file defines the parser class in the package optionally
8756indicated in the @code{%define package} section. The class name defaults
8757to @code{YYParser}. The @code{YY} prefix may be changed using
8758@samp{%name-prefix}; alternatively, you can use @samp{%define
8759"parser_class_name" "@var{name}"} to give a custom name to the class.
8760The interface of this class is detailed below. It can be extended using
8761the @code{%parse-param} directive; each occurrence of the directive will
8762add a field to the parser class, and an argument to its constructor.
8763
8764@deftypemethod {YYParser} {} YYParser (@var{type1} @var{arg1}, ...)
8765Build a new parser object. There are no arguments by default, unless
8766@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8767@end deftypemethod
8768
8769@deftypemethod {YYParser} {boolean} parse ()
8770Run the syntactic analysis, and return @code{true} on success,
8771@code{false} otherwise.
8772@end deftypemethod
8773
01b477c6 8774@deftypemethod {YYParser} {boolean} recovering ()
8405b70c
PB
8775During the syntactic analysis, return @code{true} if recovering
8776from a syntax error. @xref{Error Recovery}.
8777@end deftypemethod
8778
8779@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
8780@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
8781Get or set the stream used for tracing the parsing. It defaults to
8782@code{System.err}.
8783@end deftypemethod
8784
8785@deftypemethod {YYParser} {int} getDebugLevel ()
8786@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
8787Get or set the tracing level. Currently its value is either 0, no trace,
8788or nonzero, full tracing.
8789@end deftypemethod
8790
8791@deftypemethod {YYParser} {void} error (Location @var{l}, String @var{m})
8792The definition for this member function must be supplied by the user
8793in the same way as the scanner interface (@pxref{Java Scanner
8794Interface}); the parser uses it to report a parser error occurring at
8795@var{l}, described by @var{m}.
8796@end deftypemethod
8797
8798
8799@node Java Scanner Interface
8800@subsection Java Scanner Interface
01b477c6 8801@c - %code lexer
8405b70c 8802@c - %lex-param
01b477c6 8803@c - Lexer interface
8405b70c 8804
8405b70c
PB
8805Contrary to C parsers, Java parsers do not use global variables; the
8806state of the parser is always local to an instance of the parser class.
01b477c6
PB
8807Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8808directive does not do anything when used in Java.
8809
8810The scanner always resides in a separate class than the parser.
8811Still, Java also two possible ways to interface a Bison-generated Java
8812parser with a scanner, that is, the scanner may reside in a separate file
8813than the Bison grammar, or in the same file. The interface
8814to the scanner is similar in the two cases.
8815
8816In the first case, where the scanner in the same file as the grammar, the
8817scanner code has to be placed in @code{%code lexer} blocks. If you want
8818to pass parameters from the parser constructor to the scanner constructor,
8819specify them with @code{%lex-param}; they are passed before
8820@code{%parse-param}s to the constructor.
8821
8822In the second case, the scanner has to implement interface @code{Lexer},
8823which is defined within the parser class (e.g., @code{YYParser.Lexer}).
8824The constructor of the parser object will then accept an object
8825implementing the interface; @code{%lex-param} is not used in this
8826case.
8827
8828In both cases, the scanner has to implement the following methods.
8829
8830@deftypemethod {Lexer} {void} yyerror (Location @var{l}, String @var{m})
8405b70c 8831As explained in @pxref{Java Parser Interface}, this method is defined
01b477c6
PB
8832by the user to emit an error message. The first parameter is omitted
8833if location tracking is not active. Its type can be changed using
8405b70c
PB
8834@samp{%define "location_type" "@var{class-name}".}
8835@end deftypemethod
8836
8837@deftypemethod {Lexer} {int} yylex (@var{type1} @var{arg1}, ...)
8838Return the next token. Its type is the return value, its semantic
8839value and location are saved and returned by the ther methods in the
8840interface. Invocations of @samp{%lex-param @{@var{type1}
8841@var{arg1}@}} yield additional arguments.
8842@end deftypemethod
8843
8844@deftypemethod {Lexer} {Position} getStartPos ()
8845@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
8846Return respectively the first position of the last token that
8847@code{yylex} returned, and the first position beyond it. These
8848methods are not needed unless location tracking is active.
8405b70c
PB
8849
8850The return type can be changed using @samp{%define "position_type"
8851"@var{class-name}".}
8852@end deftypemethod
8853
8854@deftypemethod {Lexer} {Object} getLVal ()
8855Return respectively the first position of the last token that yylex
8856returned, and the first position beyond it.
8857
01b477c6 8858The return type can be changed using @samp{%define "stype"
8405b70c
PB
8859"@var{class-name}".}
8860@end deftypemethod
8861
8862
8863If @code{%pure-parser} is not specified, the lexer interface
8864resides in the same class (@code{YYParser}) as the Bison-generated
8865parser. The fields and methods that are provided to
8866this end are as follows.
8867
8868@deftypemethod {YYParser} {void} error (Location @var{l}, String @var{m})
8869As explained in @pxref{Java Parser Interface}, this method is defined
8870by the user to emit an error message. The first parameter is not used
8871unless location tracking is active. Its type can be changed using
8872@samp{%define "location_type" "@var{class-name}".}
8873@end deftypemethod
8874
8875@deftypemethod {YYParser} {int} yylex (@var{type1} @var{arg1}, ...)
8876Return the next token. Its type is the return value, its semantic
8877value and location are saved into @code{yylval}, @code{yystartpos},
8878@code{yyendpos}. Invocations of @samp{%lex-param @{@var{type1}
8879@var{arg1}@}} yield additional arguments.
8880@end deftypemethod
8881
8882@deftypecv {Field} {YYParser} Position yystartpos
8883@deftypecvx {Field} {YYParser} Position yyendpos
8884Contain respectively the first position of the last token that yylex
8885returned, and the first position beyond it. These methods are not
8886needed unless location tracking is active.
8887
8888The field's type can be changed using @samp{%define "position_type"
8889"@var{class-name}".}
8890@end deftypecv
8891
8892@deftypecv {Field} {YYParser} Object yylval
8893Return respectively the first position of the last token that yylex
8894returned, and the first position beyond it.
8895
01b477c6 8896The field's type can be changed using @samp{%define "stype"
8405b70c
PB
8897"@var{class-name}".}
8898@end deftypecv
8899
8405b70c
PB
8900@node Java Differences
8901@subsection Differences between C/C++ and Java Grammars
8902
8903The different structure of the Java language forces several differences
8904between C/C++ grammars, and grammars designed for Java parsers. This
29553547 8905section summarizes these differences.
8405b70c
PB
8906
8907@itemize
8908@item
01b477c6 8909Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 8910@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
8911macros. Instead, they should be preceded by @code{return} when they
8912appear in an action. The actual definition of these symbols is
8405b70c
PB
8913opaque to the Bison grammar, and it might change in the future. The
8914only meaningful operation that you can do, is to return them.
8915
8916Note that of these three symbols, only @code{YYACCEPT} and
8917@code{YYABORT} will cause a return from the @code{yyparse}
8918method@footnote{Java parsers include the actions in a separate
8919method than @code{yyparse} in order to have an intuitive syntax that
8920corresponds to these C macros.}.
8921
8922@item
8923The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
8924@table @asis
8925@item @code{%code imports}
8926blocks are placed at the beginning of the Java source code. They may
8927include copyright notices. For a @code{package} declarations, it is
8928suggested to use @code{%define package} instead.
8405b70c 8929
01b477c6
PB
8930@item unqualified @code{%code}
8931blocks are placed inside the parser class.
8932
8933@item @code{%code lexer}
8934blocks, if specified, should include the implementation of the
8935scanner. If there is no such block, the scanner can be any class
8936that implements the appropriate interface (see @pxref{Java Scanner
8937Interface}).
29553547 8938@end table
8405b70c
PB
8939
8940Other @code{%code} blocks are not supported in Java parsers.
01b477c6
PB
8941The epilogue has the same meaning as in C/C++ code and it can
8942be used to define other classes used by the parser.
8405b70c
PB
8943@end itemize
8944
12545799 8945@c ================================================= FAQ
d1a1114f
AD
8946
8947@node FAQ
8948@chapter Frequently Asked Questions
8949@cindex frequently asked questions
8950@cindex questions
8951
8952Several questions about Bison come up occasionally. Here some of them
8953are addressed.
8954
8955@menu
55ba27be
AD
8956* Memory Exhausted:: Breaking the Stack Limits
8957* How Can I Reset the Parser:: @code{yyparse} Keeps some State
8958* Strings are Destroyed:: @code{yylval} Loses Track of Strings
8959* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 8960* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
8961* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
8962* I can't build Bison:: Troubleshooting
8963* Where can I find help?:: Troubleshouting
8964* Bug Reports:: Troublereporting
8405b70c 8965* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
8966* Beta Testing:: Experimenting development versions
8967* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
8968@end menu
8969
1a059451
PE
8970@node Memory Exhausted
8971@section Memory Exhausted
d1a1114f
AD
8972
8973@display
1a059451 8974My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
8975message. What can I do?
8976@end display
8977
8978This question is already addressed elsewhere, @xref{Recursion,
8979,Recursive Rules}.
8980
e64fec0a
PE
8981@node How Can I Reset the Parser
8982@section How Can I Reset the Parser
5b066063 8983
0e14ad77
PE
8984The following phenomenon has several symptoms, resulting in the
8985following typical questions:
5b066063
AD
8986
8987@display
8988I invoke @code{yyparse} several times, and on correct input it works
8989properly; but when a parse error is found, all the other calls fail
0e14ad77 8990too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
8991@end display
8992
8993@noindent
8994or
8995
8996@display
0e14ad77 8997My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
8998which case I run @code{yyparse} from @code{yyparse}. This fails
8999although I did specify I needed a @code{%pure-parser}.
9000@end display
9001
0e14ad77
PE
9002These problems typically come not from Bison itself, but from
9003Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9004speed, they might not notice a change of input file. As a
9005demonstration, consider the following source file,
9006@file{first-line.l}:
9007
9008@verbatim
9009%{
9010#include <stdio.h>
9011#include <stdlib.h>
9012%}
9013%%
9014.*\n ECHO; return 1;
9015%%
9016int
0e14ad77 9017yyparse (char const *file)
5b066063
AD
9018{
9019 yyin = fopen (file, "r");
9020 if (!yyin)
9021 exit (2);
fa7e68c3 9022 /* One token only. */
5b066063 9023 yylex ();
0e14ad77 9024 if (fclose (yyin) != 0)
5b066063
AD
9025 exit (3);
9026 return 0;
9027}
9028
9029int
0e14ad77 9030main (void)
5b066063
AD
9031{
9032 yyparse ("input");
9033 yyparse ("input");
9034 return 0;
9035}
9036@end verbatim
9037
9038@noindent
9039If the file @file{input} contains
9040
9041@verbatim
9042input:1: Hello,
9043input:2: World!
9044@end verbatim
9045
9046@noindent
0e14ad77 9047then instead of getting the first line twice, you get:
5b066063
AD
9048
9049@example
9050$ @kbd{flex -ofirst-line.c first-line.l}
9051$ @kbd{gcc -ofirst-line first-line.c -ll}
9052$ @kbd{./first-line}
9053input:1: Hello,
9054input:2: World!
9055@end example
9056
0e14ad77
PE
9057Therefore, whenever you change @code{yyin}, you must tell the
9058Lex-generated scanner to discard its current buffer and switch to the
9059new one. This depends upon your implementation of Lex; see its
9060documentation for more. For Flex, it suffices to call
9061@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9062Flex-generated scanner needs to read from several input streams to
9063handle features like include files, you might consider using Flex
9064functions like @samp{yy_switch_to_buffer} that manipulate multiple
9065input buffers.
5b066063 9066
b165c324
AD
9067If your Flex-generated scanner uses start conditions (@pxref{Start
9068conditions, , Start conditions, flex, The Flex Manual}), you might
9069also want to reset the scanner's state, i.e., go back to the initial
9070start condition, through a call to @samp{BEGIN (0)}.
9071
fef4cb51
AD
9072@node Strings are Destroyed
9073@section Strings are Destroyed
9074
9075@display
c7e441b4 9076My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9077them. Instead of reporting @samp{"foo", "bar"}, it reports
9078@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9079@end display
9080
9081This error is probably the single most frequent ``bug report'' sent to
9082Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9083of the scanner. Consider the following Lex code:
fef4cb51
AD
9084
9085@verbatim
9086%{
9087#include <stdio.h>
9088char *yylval = NULL;
9089%}
9090%%
9091.* yylval = yytext; return 1;
9092\n /* IGNORE */
9093%%
9094int
9095main ()
9096{
fa7e68c3 9097 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9098 char *fst = (yylex (), yylval);
9099 char *snd = (yylex (), yylval);
9100 printf ("\"%s\", \"%s\"\n", fst, snd);
9101 return 0;
9102}
9103@end verbatim
9104
9105If you compile and run this code, you get:
9106
9107@example
9108$ @kbd{flex -osplit-lines.c split-lines.l}
9109$ @kbd{gcc -osplit-lines split-lines.c -ll}
9110$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9111"one
9112two", "two"
9113@end example
9114
9115@noindent
9116this is because @code{yytext} is a buffer provided for @emph{reading}
9117in the action, but if you want to keep it, you have to duplicate it
9118(e.g., using @code{strdup}). Note that the output may depend on how
9119your implementation of Lex handles @code{yytext}. For instance, when
9120given the Lex compatibility option @option{-l} (which triggers the
9121option @samp{%array}) Flex generates a different behavior:
9122
9123@example
9124$ @kbd{flex -l -osplit-lines.c split-lines.l}
9125$ @kbd{gcc -osplit-lines split-lines.c -ll}
9126$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9127"two", "two"
9128@end example
9129
9130
2fa09258
AD
9131@node Implementing Gotos/Loops
9132@section Implementing Gotos/Loops
a06ea4aa
AD
9133
9134@display
9135My simple calculator supports variables, assignments, and functions,
2fa09258 9136but how can I implement gotos, or loops?
a06ea4aa
AD
9137@end display
9138
9139Although very pedagogical, the examples included in the document blur
a1c84f45 9140the distinction to make between the parser---whose job is to recover
a06ea4aa 9141the structure of a text and to transmit it to subsequent modules of
a1c84f45 9142the program---and the processing (such as the execution) of this
a06ea4aa
AD
9143structure. This works well with so called straight line programs,
9144i.e., precisely those that have a straightforward execution model:
9145execute simple instructions one after the others.
9146
9147@cindex abstract syntax tree
9148@cindex @acronym{AST}
9149If you want a richer model, you will probably need to use the parser
9150to construct a tree that does represent the structure it has
9151recovered; this tree is usually called the @dfn{abstract syntax tree},
9152or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9153traversing it in various ways, will enable treatments such as its
9154execution or its translation, which will result in an interpreter or a
9155compiler.
9156
9157This topic is way beyond the scope of this manual, and the reader is
9158invited to consult the dedicated literature.
9159
9160
ed2e6384
AD
9161@node Multiple start-symbols
9162@section Multiple start-symbols
9163
9164@display
9165I have several closely related grammars, and I would like to share their
9166implementations. In fact, I could use a single grammar but with
9167multiple entry points.
9168@end display
9169
9170Bison does not support multiple start-symbols, but there is a very
9171simple means to simulate them. If @code{foo} and @code{bar} are the two
9172pseudo start-symbols, then introduce two new tokens, say
9173@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9174real start-symbol:
9175
9176@example
9177%token START_FOO START_BAR;
9178%start start;
9179start: START_FOO foo
9180 | START_BAR bar;
9181@end example
9182
9183These tokens prevents the introduction of new conflicts. As far as the
9184parser goes, that is all that is needed.
9185
9186Now the difficult part is ensuring that the scanner will send these
9187tokens first. If your scanner is hand-written, that should be
9188straightforward. If your scanner is generated by Lex, them there is
9189simple means to do it: recall that anything between @samp{%@{ ... %@}}
9190after the first @code{%%} is copied verbatim in the top of the generated
9191@code{yylex} function. Make sure a variable @code{start_token} is
9192available in the scanner (e.g., a global variable or using
9193@code{%lex-param} etc.), and use the following:
9194
9195@example
9196 /* @r{Prologue.} */
9197%%
9198%@{
9199 if (start_token)
9200 @{
9201 int t = start_token;
9202 start_token = 0;
9203 return t;
9204 @}
9205%@}
9206 /* @r{The rules.} */
9207@end example
9208
9209
55ba27be
AD
9210@node Secure? Conform?
9211@section Secure? Conform?
9212
9213@display
9214Is Bison secure? Does it conform to POSIX?
9215@end display
9216
9217If you're looking for a guarantee or certification, we don't provide it.
9218However, Bison is intended to be a reliable program that conforms to the
9219@acronym{POSIX} specification for Yacc. If you run into problems,
9220please send us a bug report.
9221
9222@node I can't build Bison
9223@section I can't build Bison
9224
9225@display
8c5b881d
PE
9226I can't build Bison because @command{make} complains that
9227@code{msgfmt} is not found.
55ba27be
AD
9228What should I do?
9229@end display
9230
9231Like most GNU packages with internationalization support, that feature
9232is turned on by default. If you have problems building in the @file{po}
9233subdirectory, it indicates that your system's internationalization
9234support is lacking. You can re-configure Bison with
9235@option{--disable-nls} to turn off this support, or you can install GNU
9236gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9237Bison. See the file @file{ABOUT-NLS} for more information.
9238
9239
9240@node Where can I find help?
9241@section Where can I find help?
9242
9243@display
9244I'm having trouble using Bison. Where can I find help?
9245@end display
9246
9247First, read this fine manual. Beyond that, you can send mail to
9248@email{help-bison@@gnu.org}. This mailing list is intended to be
9249populated with people who are willing to answer questions about using
9250and installing Bison. Please keep in mind that (most of) the people on
9251the list have aspects of their lives which are not related to Bison (!),
9252so you may not receive an answer to your question right away. This can
9253be frustrating, but please try not to honk them off; remember that any
9254help they provide is purely voluntary and out of the kindness of their
9255hearts.
9256
9257@node Bug Reports
9258@section Bug Reports
9259
9260@display
9261I found a bug. What should I include in the bug report?
9262@end display
9263
9264Before you send a bug report, make sure you are using the latest
9265version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9266mirrors. Be sure to include the version number in your bug report. If
9267the bug is present in the latest version but not in a previous version,
9268try to determine the most recent version which did not contain the bug.
9269
9270If the bug is parser-related, you should include the smallest grammar
9271you can which demonstrates the bug. The grammar file should also be
9272complete (i.e., I should be able to run it through Bison without having
9273to edit or add anything). The smaller and simpler the grammar, the
9274easier it will be to fix the bug.
9275
9276Include information about your compilation environment, including your
9277operating system's name and version and your compiler's name and
9278version. If you have trouble compiling, you should also include a
9279transcript of the build session, starting with the invocation of
9280`configure'. Depending on the nature of the bug, you may be asked to
9281send additional files as well (such as `config.h' or `config.cache').
9282
9283Patches are most welcome, but not required. That is, do not hesitate to
9284send a bug report just because you can not provide a fix.
9285
9286Send bug reports to @email{bug-bison@@gnu.org}.
9287
8405b70c
PB
9288@node More Languages
9289@section More Languages
55ba27be
AD
9290
9291@display
8405b70c 9292Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9293favorite language here}?
9294@end display
9295
8405b70c 9296C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9297languages; contributions are welcome.
9298
9299@node Beta Testing
9300@section Beta Testing
9301
9302@display
9303What is involved in being a beta tester?
9304@end display
9305
9306It's not terribly involved. Basically, you would download a test
9307release, compile it, and use it to build and run a parser or two. After
9308that, you would submit either a bug report or a message saying that
9309everything is okay. It is important to report successes as well as
9310failures because test releases eventually become mainstream releases,
9311but only if they are adequately tested. If no one tests, development is
9312essentially halted.
9313
9314Beta testers are particularly needed for operating systems to which the
9315developers do not have easy access. They currently have easy access to
9316recent GNU/Linux and Solaris versions. Reports about other operating
9317systems are especially welcome.
9318
9319@node Mailing Lists
9320@section Mailing Lists
9321
9322@display
9323How do I join the help-bison and bug-bison mailing lists?
9324@end display
9325
9326See @url{http://lists.gnu.org/}.
a06ea4aa 9327
d1a1114f
AD
9328@c ================================================= Table of Symbols
9329
342b8b6e 9330@node Table of Symbols
bfa74976
RS
9331@appendix Bison Symbols
9332@cindex Bison symbols, table of
9333@cindex symbols in Bison, table of
9334
18b519c0 9335@deffn {Variable} @@$
3ded9a63 9336In an action, the location of the left-hand side of the rule.
88bce5a2 9337@xref{Locations, , Locations Overview}.
18b519c0 9338@end deffn
3ded9a63 9339
18b519c0 9340@deffn {Variable} @@@var{n}
3ded9a63
AD
9341In an action, the location of the @var{n}-th symbol of the right-hand
9342side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9343@end deffn
3ded9a63 9344
18b519c0 9345@deffn {Variable} $$
3ded9a63
AD
9346In an action, the semantic value of the left-hand side of the rule.
9347@xref{Actions}.
18b519c0 9348@end deffn
3ded9a63 9349
18b519c0 9350@deffn {Variable} $@var{n}
3ded9a63
AD
9351In an action, the semantic value of the @var{n}-th symbol of the
9352right-hand side of the rule. @xref{Actions}.
18b519c0 9353@end deffn
3ded9a63 9354
dd8d9022
AD
9355@deffn {Delimiter} %%
9356Delimiter used to separate the grammar rule section from the
9357Bison declarations section or the epilogue.
9358@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9359@end deffn
bfa74976 9360
dd8d9022
AD
9361@c Don't insert spaces, or check the DVI output.
9362@deffn {Delimiter} %@{@var{code}%@}
9363All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9364the output file uninterpreted. Such code forms the prologue of the input
9365file. @xref{Grammar Outline, ,Outline of a Bison
9366Grammar}.
18b519c0 9367@end deffn
bfa74976 9368
dd8d9022
AD
9369@deffn {Construct} /*@dots{}*/
9370Comment delimiters, as in C.
18b519c0 9371@end deffn
bfa74976 9372
dd8d9022
AD
9373@deffn {Delimiter} :
9374Separates a rule's result from its components. @xref{Rules, ,Syntax of
9375Grammar Rules}.
18b519c0 9376@end deffn
bfa74976 9377
dd8d9022
AD
9378@deffn {Delimiter} ;
9379Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9380@end deffn
bfa74976 9381
dd8d9022
AD
9382@deffn {Delimiter} |
9383Separates alternate rules for the same result nonterminal.
9384@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9385@end deffn
bfa74976 9386
12e35840
JD
9387@deffn {Directive} <*>
9388Used to define a default tagged @code{%destructor} or default tagged
9389@code{%printer}.
85894313
JD
9390
9391This feature is experimental.
9392More user feedback will help to determine whether it should become a permanent
9393feature.
9394
12e35840
JD
9395@xref{Destructor Decl, , Freeing Discarded Symbols}.
9396@end deffn
9397
3ebecc24 9398@deffn {Directive} <>
12e35840
JD
9399Used to define a default tagless @code{%destructor} or default tagless
9400@code{%printer}.
85894313
JD
9401
9402This feature is experimental.
9403More user feedback will help to determine whether it should become a permanent
9404feature.
9405
12e35840
JD
9406@xref{Destructor Decl, , Freeing Discarded Symbols}.
9407@end deffn
9408
dd8d9022
AD
9409@deffn {Symbol} $accept
9410The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9411$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9412Start-Symbol}. It cannot be used in the grammar.
18b519c0 9413@end deffn
bfa74976 9414
136a0f76 9415@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9416@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9417Insert @var{code} verbatim into output parser source.
9418@xref{Decl Summary,,%code}.
9bc0dd67
JD
9419@end deffn
9420
9421@deffn {Directive} %debug
9422Equip the parser for debugging. @xref{Decl Summary}.
9423@end deffn
9424
18b519c0 9425@deffn {Directive} %debug
6deb4447 9426Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9427@end deffn
6deb4447 9428
91d2c560 9429@ifset defaultprec
22fccf95
PE
9430@deffn {Directive} %default-prec
9431Assign a precedence to rules that lack an explicit @samp{%prec}
9432modifier. @xref{Contextual Precedence, ,Context-Dependent
9433Precedence}.
39a06c25 9434@end deffn
91d2c560 9435@end ifset
39a06c25 9436
148d66d8
JD
9437@deffn {Directive} %define @var{define-variable}
9438@deffnx {Directive} %define @var{define-variable} @var{value}
9439Define a variable to adjust Bison's behavior.
9440@xref{Decl Summary,,%define}.
9441@end deffn
9442
18b519c0 9443@deffn {Directive} %defines
6deb4447
AD
9444Bison declaration to create a header file meant for the scanner.
9445@xref{Decl Summary}.
18b519c0 9446@end deffn
6deb4447 9447
02975b9a
JD
9448@deffn {Directive} %defines @var{defines-file}
9449Same as above, but save in the file @var{defines-file}.
9450@xref{Decl Summary}.
9451@end deffn
9452
18b519c0 9453@deffn {Directive} %destructor
258b75ca 9454Specify how the parser should reclaim the memory associated to
fa7e68c3 9455discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9456@end deffn
72f889cc 9457
18b519c0 9458@deffn {Directive} %dprec
676385e2 9459Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9460time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9461@acronym{GLR} Parsers}.
18b519c0 9462@end deffn
676385e2 9463
dd8d9022
AD
9464@deffn {Symbol} $end
9465The predefined token marking the end of the token stream. It cannot be
9466used in the grammar.
9467@end deffn
9468
9469@deffn {Symbol} error
9470A token name reserved for error recovery. This token may be used in
9471grammar rules so as to allow the Bison parser to recognize an error in
9472the grammar without halting the process. In effect, a sentence
9473containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9474token @code{error} becomes the current lookahead token. Actions
9475corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9476token is reset to the token that originally caused the violation.
9477@xref{Error Recovery}.
18d192f0
AD
9478@end deffn
9479
18b519c0 9480@deffn {Directive} %error-verbose
2a8d363a
AD
9481Bison declaration to request verbose, specific error message strings
9482when @code{yyerror} is called.
18b519c0 9483@end deffn
2a8d363a 9484
02975b9a 9485@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9486Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9487Summary}.
18b519c0 9488@end deffn
d8988b2f 9489
18b519c0 9490@deffn {Directive} %glr-parser
c827f760
PE
9491Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
9492Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9493@end deffn
676385e2 9494
dd8d9022
AD
9495@deffn {Directive} %initial-action
9496Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
9497@end deffn
9498
e6e704dc
JD
9499@deffn {Directive} %language
9500Specify the programming language for the generated parser.
9501@xref{Decl Summary}.
9502@end deffn
9503
18b519c0 9504@deffn {Directive} %left
bfa74976
RS
9505Bison declaration to assign left associativity to token(s).
9506@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9507@end deffn
bfa74976 9508
feeb0eda 9509@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
9510Bison declaration to specifying an additional parameter that
9511@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
9512for Pure Parsers}.
18b519c0 9513@end deffn
2a8d363a 9514
18b519c0 9515@deffn {Directive} %merge
676385e2 9516Bison declaration to assign a merging function to a rule. If there is a
fae437e8 9517reduce/reduce conflict with a rule having the same merging function, the
676385e2 9518function is applied to the two semantic values to get a single result.
c827f760 9519@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9520@end deffn
676385e2 9521
02975b9a 9522@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 9523Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 9524@end deffn
d8988b2f 9525
91d2c560 9526@ifset defaultprec
22fccf95
PE
9527@deffn {Directive} %no-default-prec
9528Do not assign a precedence to rules that lack an explicit @samp{%prec}
9529modifier. @xref{Contextual Precedence, ,Context-Dependent
9530Precedence}.
9531@end deffn
91d2c560 9532@end ifset
22fccf95 9533
18b519c0 9534@deffn {Directive} %no-lines
931c7513
RS
9535Bison declaration to avoid generating @code{#line} directives in the
9536parser file. @xref{Decl Summary}.
18b519c0 9537@end deffn
931c7513 9538
18b519c0 9539@deffn {Directive} %nonassoc
9d9b8b70 9540Bison declaration to assign nonassociativity to token(s).
bfa74976 9541@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9542@end deffn
bfa74976 9543
02975b9a 9544@deffn {Directive} %output "@var{file}"
72d2299c 9545Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 9546Summary}.
18b519c0 9547@end deffn
d8988b2f 9548
feeb0eda 9549@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
9550Bison declaration to specifying an additional parameter that
9551@code{yyparse} should accept. @xref{Parser Function,, The Parser
9552Function @code{yyparse}}.
18b519c0 9553@end deffn
2a8d363a 9554
18b519c0 9555@deffn {Directive} %prec
bfa74976
RS
9556Bison declaration to assign a precedence to a specific rule.
9557@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 9558@end deffn
bfa74976 9559
18b519c0 9560@deffn {Directive} %pure-parser
bfa74976
RS
9561Bison declaration to request a pure (reentrant) parser.
9562@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 9563@end deffn
bfa74976 9564
b50d2359 9565@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
9566Require version @var{version} or higher of Bison. @xref{Require Decl, ,
9567Require a Version of Bison}.
b50d2359
AD
9568@end deffn
9569
18b519c0 9570@deffn {Directive} %right
bfa74976
RS
9571Bison declaration to assign right associativity to token(s).
9572@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9573@end deffn
bfa74976 9574
e6e704dc
JD
9575@deffn {Directive} %skeleton
9576Specify the skeleton to use; usually for development.
9577@xref{Decl Summary}.
9578@end deffn
9579
18b519c0 9580@deffn {Directive} %start
704a47c4
AD
9581Bison declaration to specify the start symbol. @xref{Start Decl, ,The
9582Start-Symbol}.
18b519c0 9583@end deffn
bfa74976 9584
18b519c0 9585@deffn {Directive} %token
bfa74976
RS
9586Bison declaration to declare token(s) without specifying precedence.
9587@xref{Token Decl, ,Token Type Names}.
18b519c0 9588@end deffn
bfa74976 9589
18b519c0 9590@deffn {Directive} %token-table
931c7513
RS
9591Bison declaration to include a token name table in the parser file.
9592@xref{Decl Summary}.
18b519c0 9593@end deffn
931c7513 9594
18b519c0 9595@deffn {Directive} %type
704a47c4
AD
9596Bison declaration to declare nonterminals. @xref{Type Decl,
9597,Nonterminal Symbols}.
18b519c0 9598@end deffn
bfa74976 9599
dd8d9022
AD
9600@deffn {Symbol} $undefined
9601The predefined token onto which all undefined values returned by
9602@code{yylex} are mapped. It cannot be used in the grammar, rather, use
9603@code{error}.
9604@end deffn
9605
18b519c0 9606@deffn {Directive} %union
bfa74976
RS
9607Bison declaration to specify several possible data types for semantic
9608values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 9609@end deffn
bfa74976 9610
dd8d9022
AD
9611@deffn {Macro} YYABORT
9612Macro to pretend that an unrecoverable syntax error has occurred, by
9613making @code{yyparse} return 1 immediately. The error reporting
9614function @code{yyerror} is not called. @xref{Parser Function, ,The
9615Parser Function @code{yyparse}}.
8405b70c
PB
9616
9617For Java parsers, this functionality is invoked using @code{return YYABORT;}
9618instead.
dd8d9022 9619@end deffn
3ded9a63 9620
dd8d9022
AD
9621@deffn {Macro} YYACCEPT
9622Macro to pretend that a complete utterance of the language has been
9623read, by making @code{yyparse} return 0 immediately.
9624@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
9625
9626For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
9627instead.
dd8d9022 9628@end deffn
bfa74976 9629
dd8d9022 9630@deffn {Macro} YYBACKUP
742e4900 9631Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 9632token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9633@end deffn
bfa74976 9634
dd8d9022 9635@deffn {Variable} yychar
32c29292 9636External integer variable that contains the integer value of the
742e4900 9637lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
9638@code{yyparse}.) Error-recovery rule actions may examine this variable.
9639@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9640@end deffn
bfa74976 9641
dd8d9022
AD
9642@deffn {Variable} yyclearin
9643Macro used in error-recovery rule actions. It clears the previous
742e4900 9644lookahead token. @xref{Error Recovery}.
18b519c0 9645@end deffn
bfa74976 9646
dd8d9022
AD
9647@deffn {Macro} YYDEBUG
9648Macro to define to equip the parser with tracing code. @xref{Tracing,
9649,Tracing Your Parser}.
18b519c0 9650@end deffn
bfa74976 9651
dd8d9022
AD
9652@deffn {Variable} yydebug
9653External integer variable set to zero by default. If @code{yydebug}
9654is given a nonzero value, the parser will output information on input
9655symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 9656@end deffn
bfa74976 9657
dd8d9022
AD
9658@deffn {Macro} yyerrok
9659Macro to cause parser to recover immediately to its normal mode
9660after a syntax error. @xref{Error Recovery}.
9661@end deffn
9662
9663@deffn {Macro} YYERROR
9664Macro to pretend that a syntax error has just been detected: call
9665@code{yyerror} and then perform normal error recovery if possible
9666(@pxref{Error Recovery}), or (if recovery is impossible) make
9667@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
9668
9669For Java parsers, this functionality is invoked using @code{return YYERROR;}
9670instead.
dd8d9022
AD
9671@end deffn
9672
9673@deffn {Function} yyerror
9674User-supplied function to be called by @code{yyparse} on error.
9675@xref{Error Reporting, ,The Error
9676Reporting Function @code{yyerror}}.
9677@end deffn
9678
9679@deffn {Macro} YYERROR_VERBOSE
9680An obsolete macro that you define with @code{#define} in the prologue
9681to request verbose, specific error message strings
9682when @code{yyerror} is called. It doesn't matter what definition you
9683use for @code{YYERROR_VERBOSE}, just whether you define it. Using
9684@code{%error-verbose} is preferred.
9685@end deffn
9686
9687@deffn {Macro} YYINITDEPTH
9688Macro for specifying the initial size of the parser stack.
1a059451 9689@xref{Memory Management}.
dd8d9022
AD
9690@end deffn
9691
9692@deffn {Function} yylex
9693User-supplied lexical analyzer function, called with no arguments to get
9694the next token. @xref{Lexical, ,The Lexical Analyzer Function
9695@code{yylex}}.
9696@end deffn
9697
9698@deffn {Macro} YYLEX_PARAM
9699An obsolete macro for specifying an extra argument (or list of extra
32c29292 9700arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
9701macro is deprecated, and is supported only for Yacc like parsers.
9702@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
9703@end deffn
9704
9705@deffn {Variable} yylloc
9706External variable in which @code{yylex} should place the line and column
9707numbers associated with a token. (In a pure parser, it is a local
9708variable within @code{yyparse}, and its address is passed to
32c29292
JD
9709@code{yylex}.)
9710You can ignore this variable if you don't use the @samp{@@} feature in the
9711grammar actions.
9712@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 9713In semantic actions, it stores the location of the lookahead token.
32c29292 9714@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
9715@end deffn
9716
9717@deffn {Type} YYLTYPE
9718Data type of @code{yylloc}; by default, a structure with four
9719members. @xref{Location Type, , Data Types of Locations}.
9720@end deffn
9721
9722@deffn {Variable} yylval
9723External variable in which @code{yylex} should place the semantic
9724value associated with a token. (In a pure parser, it is a local
9725variable within @code{yyparse}, and its address is passed to
32c29292
JD
9726@code{yylex}.)
9727@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 9728In semantic actions, it stores the semantic value of the lookahead token.
32c29292 9729@xref{Actions, ,Actions}.
dd8d9022
AD
9730@end deffn
9731
9732@deffn {Macro} YYMAXDEPTH
1a059451
PE
9733Macro for specifying the maximum size of the parser stack. @xref{Memory
9734Management}.
dd8d9022
AD
9735@end deffn
9736
9737@deffn {Variable} yynerrs
8a2800e7 9738Global variable which Bison increments each time it reports a syntax error.
9987d1b3
JD
9739(In a pure parser, it is a local variable within @code{yyparse}. In a
9740pure push parser, it is a member of yypstate.)
dd8d9022
AD
9741@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
9742@end deffn
9743
9744@deffn {Function} yyparse
9745The parser function produced by Bison; call this function to start
9746parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
9747@end deffn
9748
9987d1b3
JD
9749@deffn {Function} yypstate_delete
9750The function to delete a parser instance, produced by Bison in push mode;
9751call this function to delete the memory associated with a parser.
9752@xref{Parser Delete Function, ,The Parser Delete Function
9753@code{yypstate_delete}}.
9754@end deffn
9755
9756@deffn {Function} yypstate_new
9757The function to create a parser instance, produced by Bison in push mode;
9758call this function to create a new parser.
9759@xref{Parser Create Function, ,The Parser Create Function
9760@code{yypstate_new}}.
9761@end deffn
9762
9763@deffn {Function} yypull_parse
9764The parser function produced by Bison in push mode; call this function to
9765parse the rest of the input stream.
9766@xref{Pull Parser Function, ,The Pull Parser Function
9767@code{yypull_parse}}.
9768@end deffn
9769
9770@deffn {Function} yypush_parse
9771The parser function produced by Bison in push mode; call this function to
9772parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9773@code{yypush_parse}}.
9774@end deffn
9775
dd8d9022
AD
9776@deffn {Macro} YYPARSE_PARAM
9777An obsolete macro for specifying the name of a parameter that
9778@code{yyparse} should accept. The use of this macro is deprecated, and
9779is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
9780Conventions for Pure Parsers}.
9781@end deffn
9782
9783@deffn {Macro} YYRECOVERING
02103984
PE
9784The expression @code{YYRECOVERING ()} yields 1 when the parser
9785is recovering from a syntax error, and 0 otherwise.
9786@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
9787@end deffn
9788
9789@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
9790Macro used to control the use of @code{alloca} when the C
9791@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
9792the parser will use @code{malloc} to extend its stacks. If defined to
97931, the parser will use @code{alloca}. Values other than 0 and 1 are
9794reserved for future Bison extensions. If not defined,
9795@code{YYSTACK_USE_ALLOCA} defaults to 0.
9796
55289366 9797In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
9798limited stack and with unreliable stack-overflow checking, you should
9799set @code{YYMAXDEPTH} to a value that cannot possibly result in
9800unchecked stack overflow on any of your target hosts when
9801@code{alloca} is called. You can inspect the code that Bison
9802generates in order to determine the proper numeric values. This will
9803require some expertise in low-level implementation details.
dd8d9022
AD
9804@end deffn
9805
9806@deffn {Type} YYSTYPE
9807Data type of semantic values; @code{int} by default.
9808@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 9809@end deffn
bfa74976 9810
342b8b6e 9811@node Glossary
bfa74976
RS
9812@appendix Glossary
9813@cindex glossary
9814
9815@table @asis
c827f760
PE
9816@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
9817Formal method of specifying context-free grammars originally proposed
9818by John Backus, and slightly improved by Peter Naur in his 1960-01-02
9819committee document contributing to what became the Algol 60 report.
9820@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9821
9822@item Context-free grammars
9823Grammars specified as rules that can be applied regardless of context.
9824Thus, if there is a rule which says that an integer can be used as an
9825expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
9826permitted. @xref{Language and Grammar, ,Languages and Context-Free
9827Grammars}.
bfa74976
RS
9828
9829@item Dynamic allocation
9830Allocation of memory that occurs during execution, rather than at
9831compile time or on entry to a function.
9832
9833@item Empty string
9834Analogous to the empty set in set theory, the empty string is a
9835character string of length zero.
9836
9837@item Finite-state stack machine
9838A ``machine'' that has discrete states in which it is said to exist at
9839each instant in time. As input to the machine is processed, the
9840machine moves from state to state as specified by the logic of the
9841machine. In the case of the parser, the input is the language being
9842parsed, and the states correspond to various stages in the grammar
c827f760 9843rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 9844
c827f760 9845@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 9846A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
9847that are not @acronym{LALR}(1). It resolves situations that Bison's
9848usual @acronym{LALR}(1)
676385e2
PH
9849algorithm cannot by effectively splitting off multiple parsers, trying all
9850possible parsers, and discarding those that fail in the light of additional
c827f760
PE
9851right context. @xref{Generalized LR Parsing, ,Generalized
9852@acronym{LR} Parsing}.
676385e2 9853
bfa74976
RS
9854@item Grouping
9855A language construct that is (in general) grammatically divisible;
c827f760 9856for example, `expression' or `declaration' in C@.
bfa74976
RS
9857@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9858
9859@item Infix operator
9860An arithmetic operator that is placed between the operands on which it
9861performs some operation.
9862
9863@item Input stream
9864A continuous flow of data between devices or programs.
9865
9866@item Language construct
9867One of the typical usage schemas of the language. For example, one of
9868the constructs of the C language is the @code{if} statement.
9869@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9870
9871@item Left associativity
9872Operators having left associativity are analyzed from left to right:
9873@samp{a+b+c} first computes @samp{a+b} and then combines with
9874@samp{c}. @xref{Precedence, ,Operator Precedence}.
9875
9876@item Left recursion
89cab50d
AD
9877A rule whose result symbol is also its first component symbol; for
9878example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
9879Rules}.
bfa74976
RS
9880
9881@item Left-to-right parsing
9882Parsing a sentence of a language by analyzing it token by token from
c827f760 9883left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9884
9885@item Lexical analyzer (scanner)
9886A function that reads an input stream and returns tokens one by one.
9887@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
9888
9889@item Lexical tie-in
9890A flag, set by actions in the grammar rules, which alters the way
9891tokens are parsed. @xref{Lexical Tie-ins}.
9892
931c7513 9893@item Literal string token
14ded682 9894A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 9895
742e4900
JD
9896@item Lookahead token
9897A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 9898Tokens}.
bfa74976 9899
c827f760 9900@item @acronym{LALR}(1)
bfa74976 9901The class of context-free grammars that Bison (like most other parser
c827f760
PE
9902generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
9903Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 9904
c827f760 9905@item @acronym{LR}(1)
bfa74976 9906The class of context-free grammars in which at most one token of
742e4900 9907lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
9908
9909@item Nonterminal symbol
9910A grammar symbol standing for a grammatical construct that can
9911be expressed through rules in terms of smaller constructs; in other
9912words, a construct that is not a token. @xref{Symbols}.
9913
bfa74976
RS
9914@item Parser
9915A function that recognizes valid sentences of a language by analyzing
9916the syntax structure of a set of tokens passed to it from a lexical
9917analyzer.
9918
9919@item Postfix operator
9920An arithmetic operator that is placed after the operands upon which it
9921performs some operation.
9922
9923@item Reduction
9924Replacing a string of nonterminals and/or terminals with a single
89cab50d 9925nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 9926Parser Algorithm}.
bfa74976
RS
9927
9928@item Reentrant
9929A reentrant subprogram is a subprogram which can be in invoked any
9930number of times in parallel, without interference between the various
9931invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
9932
9933@item Reverse polish notation
9934A language in which all operators are postfix operators.
9935
9936@item Right recursion
89cab50d
AD
9937A rule whose result symbol is also its last component symbol; for
9938example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
9939Rules}.
bfa74976
RS
9940
9941@item Semantics
9942In computer languages, the semantics are specified by the actions
9943taken for each instance of the language, i.e., the meaning of
9944each statement. @xref{Semantics, ,Defining Language Semantics}.
9945
9946@item Shift
9947A parser is said to shift when it makes the choice of analyzing
9948further input from the stream rather than reducing immediately some
c827f760 9949already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9950
9951@item Single-character literal
9952A single character that is recognized and interpreted as is.
9953@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
9954
9955@item Start symbol
9956The nonterminal symbol that stands for a complete valid utterance in
9957the language being parsed. The start symbol is usually listed as the
13863333 9958first nonterminal symbol in a language specification.
bfa74976
RS
9959@xref{Start Decl, ,The Start-Symbol}.
9960
9961@item Symbol table
9962A data structure where symbol names and associated data are stored
9963during parsing to allow for recognition and use of existing
9964information in repeated uses of a symbol. @xref{Multi-function Calc}.
9965
6e649e65
PE
9966@item Syntax error
9967An error encountered during parsing of an input stream due to invalid
9968syntax. @xref{Error Recovery}.
9969
bfa74976
RS
9970@item Token
9971A basic, grammatically indivisible unit of a language. The symbol
9972that describes a token in the grammar is a terminal symbol.
9973The input of the Bison parser is a stream of tokens which comes from
9974the lexical analyzer. @xref{Symbols}.
9975
9976@item Terminal symbol
89cab50d
AD
9977A grammar symbol that has no rules in the grammar and therefore is
9978grammatically indivisible. The piece of text it represents is a token.
9979@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9980@end table
9981
342b8b6e 9982@node Copying This Manual
f2b5126e 9983@appendix Copying This Manual
f2b5126e
PB
9984@include fdl.texi
9985
342b8b6e 9986@node Index
bfa74976
RS
9987@unnumbered Index
9988
9989@printindex cp
9990
bfa74976 9991@bye
a06ea4aa
AD
9992
9993@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
9994@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
9995@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
9996@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
9997@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
9998@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
9999@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10000@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10001@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10002@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10003@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10004@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10005@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10006@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10007@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10008@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10009@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10010@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10011@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10012@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10013@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10014@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10015@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10016@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10017@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10018@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10019@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10020@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 10021@c LocalWords: YYSTACK DVI fdl printindex