]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Don't pipe output of ./types through sed to
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
e62f1a89 471999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
150* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
151
bfa74976
RS
152Examples
153
154* RPN Calc:: Reverse polish notation calculator;
155 a first example with no operator precedence.
156* Infix Calc:: Infix (algebraic) notation calculator.
157 Operator precedence is introduced.
158* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 159* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
160* Multi-function Calc:: Calculator with memory and trig functions.
161 It uses multiple data-types for semantic values.
bfa74976
RS
162* Exercises:: Ideas for improving the multi-function calculator.
163
164Reverse Polish Notation Calculator
165
75f5aaea 166* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
167* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
168* Lexer: Rpcalc Lexer. The lexical analyzer.
169* Main: Rpcalc Main. The controlling function.
170* Error: Rpcalc Error. The error reporting function.
171* Gen: Rpcalc Gen. Running Bison on the grammar file.
172* Comp: Rpcalc Compile. Run the C compiler on the output code.
173
174Grammar Rules for @code{rpcalc}
175
13863333
AD
176* Rpcalc Input::
177* Rpcalc Line::
178* Rpcalc Expr::
bfa74976 179
342b8b6e
AD
180Location Tracking Calculator: @code{ltcalc}
181
182* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
183* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
184* Lexer: Ltcalc Lexer. The lexical analyzer.
185
bfa74976
RS
186Multi-Function Calculator: @code{mfcalc}
187
188* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
189* Rules: Mfcalc Rules. Grammar rules for the calculator.
190* Symtab: Mfcalc Symtab. Symbol table management subroutines.
191
192Bison Grammar Files
193
194* Grammar Outline:: Overall layout of the grammar file.
195* Symbols:: Terminal and nonterminal symbols.
196* Rules:: How to write grammar rules.
197* Recursion:: Writing recursive rules.
198* Semantics:: Semantic values and actions.
93dd49ab 199* Locations:: Locations and actions.
bfa74976
RS
200* Declarations:: All kinds of Bison declarations are described here.
201* Multiple Parsers:: Putting more than one Bison parser in one program.
202
203Outline of a Bison Grammar
204
93dd49ab 205* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
206* Bison Declarations:: Syntax and usage of the Bison declarations section.
207* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 208* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
209
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
214* Actions:: An action is the semantic definition of a grammar rule.
215* Action Types:: Specifying data types for actions to operate on.
216* Mid-Rule Actions:: Most actions go at the end of a rule.
217 This says when, why and how to use the exceptional
218 action in the middle of a rule.
219
93dd49ab
PE
220Tracking Locations
221
222* Location Type:: Specifying a data type for locations.
223* Actions and Locations:: Using locations in actions.
224* Location Default Action:: Defining a general way to compute locations.
225
bfa74976
RS
226Bison Declarations
227
228* Token Decl:: Declaring terminal symbols.
229* Precedence Decl:: Declaring terminals with precedence and associativity.
230* Union Decl:: Declaring the set of all semantic value types.
231* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 232* Initial Action Decl:: Code run before parsing starts.
72f889cc 233* Destructor Decl:: Declaring how symbols are freed.
d6328241 234* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
235* Start Decl:: Specifying the start symbol.
236* Pure Decl:: Requesting a reentrant parser.
237* Decl Summary:: Table of all Bison declarations.
238
239Parser C-Language Interface
240
241* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 242* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
f7ab6a50
PE
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
95923bd6 254* Token Locations:: How @code{yylex} must return the text location
bfa74976 255 (line number, etc.) of the token, if the
93dd49ab 256 actions want that.
bfa74976
RS
257* Pure Calling:: How the calling convention differs
258 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
259
13863333 260The Bison Parser Algorithm
bfa74976
RS
261
262* Look-Ahead:: Parser looks one token ahead when deciding what to do.
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
268* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 269* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 270* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
271
272Operator Precedence
273
274* Why Precedence:: An example showing why precedence is needed.
275* Using Precedence:: How to specify precedence in Bison grammars.
276* Precedence Examples:: How these features are used in the previous example.
277* How Precedence:: How they work.
278
279Handling Context Dependencies
280
281* Semantic Tokens:: Token parsing can depend on the semantic context.
282* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
283* Tie-in Recovery:: Lexical tie-ins have implications for how
284 error recovery rules must be written.
285
93dd49ab 286Debugging Your Parser
ec3bc396
AD
287
288* Understanding:: Understanding the structure of your parser.
289* Tracing:: Tracing the execution of your parser.
290
bfa74976
RS
291Invoking Bison
292
13863333 293* Bison Options:: All the options described in detail,
c827f760 294 in alphabetical order by short options.
bfa74976 295* Option Cross Key:: Alphabetical list of long options.
93dd49ab 296* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 297
12545799
AD
298C++ Language Interface
299
300* C++ Parsers:: The interface to generate C++ parser classes
301* A Complete C++ Example:: Demonstrating their use
302
303C++ Parsers
304
305* C++ Bison Interface:: Asking for C++ parser generation
306* C++ Semantic Values:: %union vs. C++
307* C++ Location Values:: The position and location classes
308* C++ Parser Interface:: Instantiating and running the parser
309* C++ Scanner Interface:: Exchanges between yylex and parse
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
d1a1114f
AD
319Frequently Asked Questions
320
1a059451 321* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 322* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 323* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 324* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 325
f2b5126e
PB
326Copying This Manual
327
328* GNU Free Documentation License:: License for copying this manual.
329
342b8b6e 330@end detailmenu
bfa74976
RS
331@end menu
332
342b8b6e 333@node Introduction
bfa74976
RS
334@unnumbered Introduction
335@cindex introduction
336
337@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 338grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
339program to parse that grammar. Once you are proficient with Bison,
340you may use it to develop a wide range of language parsers, from those
341used in simple desk calculators to complex programming languages.
342
343Bison is upward compatible with Yacc: all properly-written Yacc grammars
344ought to work with Bison with no change. Anyone familiar with Yacc
345should be able to use Bison with little trouble. You need to be fluent in
346C programming in order to use Bison or to understand this manual.
347
348We begin with tutorial chapters that explain the basic concepts of using
349Bison and show three explained examples, each building on the last. If you
350don't know Bison or Yacc, start by reading these chapters. Reference
351chapters follow which describe specific aspects of Bison in detail.
352
931c7513
RS
353Bison was written primarily by Robert Corbett; Richard Stallman made it
354Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 355multi-character string literals and other features.
931c7513 356
df1af54c 357This edition corresponds to version @value{VERSION} of Bison.
bfa74976 358
342b8b6e 359@node Conditions
bfa74976
RS
360@unnumbered Conditions for Using Bison
361
a31239f1 362As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 363@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 364Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 365parsers could be used only in programs that were free software.
a31239f1 366
c827f760
PE
367The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
368compiler, have never
9ecbd125 369had such a requirement. They could always be used for nonfree
a31239f1
RS
370software. The reason Bison was different was not due to a special
371policy decision; it resulted from applying the usual General Public
372License to all of the Bison source code.
373
374The output of the Bison utility---the Bison parser file---contains a
375verbatim copy of a sizable piece of Bison, which is the code for the
376@code{yyparse} function. (The actions from your grammar are inserted
377into this function at one point, but the rest of the function is not
c827f760
PE
378changed.) When we applied the @acronym{GPL} terms to the code for
379@code{yyparse},
a31239f1
RS
380the effect was to restrict the use of Bison output to free software.
381
382We didn't change the terms because of sympathy for people who want to
383make software proprietary. @strong{Software should be free.} But we
384concluded that limiting Bison's use to free software was doing little to
385encourage people to make other software free. So we decided to make the
386practical conditions for using Bison match the practical conditions for
c827f760 387using the other @acronym{GNU} tools.
bfa74976 388
eda42934 389This exception applies only when Bison is generating C code for an
c827f760
PE
390@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
391as usual. You can
262aa8dd
PE
392tell whether the exception applies to your @samp{.c} output file by
393inspecting it to see whether it says ``As a special exception, when
394this file is copied by Bison into a Bison output file, you may use
395that output file without restriction.''
396
c67a198d 397@include gpl.texi
bfa74976 398
342b8b6e 399@node Concepts
bfa74976
RS
400@chapter The Concepts of Bison
401
402This chapter introduces many of the basic concepts without which the
403details of Bison will not make sense. If you do not already know how to
404use Bison or Yacc, we suggest you start by reading this chapter carefully.
405
406@menu
407* Language and Grammar:: Languages and context-free grammars,
408 as mathematical ideas.
409* Grammar in Bison:: How we represent grammars for Bison's sake.
410* Semantic Values:: Each token or syntactic grouping can have
411 a semantic value (the value of an integer,
412 the name of an identifier, etc.).
413* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 414* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 415* Locations Overview:: Tracking Locations.
bfa74976
RS
416* Bison Parser:: What are Bison's input and output,
417 how is the output used?
418* Stages:: Stages in writing and running Bison grammars.
419* Grammar Layout:: Overall structure of a Bison grammar file.
420@end menu
421
342b8b6e 422@node Language and Grammar
bfa74976
RS
423@section Languages and Context-Free Grammars
424
bfa74976
RS
425@cindex context-free grammar
426@cindex grammar, context-free
427In order for Bison to parse a language, it must be described by a
428@dfn{context-free grammar}. This means that you specify one or more
429@dfn{syntactic groupings} and give rules for constructing them from their
430parts. For example, in the C language, one kind of grouping is called an
431`expression'. One rule for making an expression might be, ``An expression
432can be made of a minus sign and another expression''. Another would be,
433``An expression can be an integer''. As you can see, rules are often
434recursive, but there must be at least one rule which leads out of the
435recursion.
436
c827f760 437@cindex @acronym{BNF}
bfa74976
RS
438@cindex Backus-Naur form
439The most common formal system for presenting such rules for humans to read
c827f760
PE
440is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
441order to specify the language Algol 60. Any grammar expressed in
442@acronym{BNF} is a context-free grammar. The input to Bison is
443essentially machine-readable @acronym{BNF}.
bfa74976 444
c827f760
PE
445@cindex @acronym{LALR}(1) grammars
446@cindex @acronym{LR}(1) grammars
676385e2
PH
447There are various important subclasses of context-free grammar. Although it
448can handle almost all context-free grammars, Bison is optimized for what
c827f760 449are called @acronym{LALR}(1) grammars.
676385e2 450In brief, in these grammars, it must be possible to
bfa74976
RS
451tell how to parse any portion of an input string with just a single
452token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
453@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
454restrictions that are
bfa74976 455hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
456@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
457@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
458more information on this.
bfa74976 459
c827f760
PE
460@cindex @acronym{GLR} parsing
461@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
462@cindex ambiguous grammars
463@cindex non-deterministic parsing
9501dc6e
AD
464
465Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
466roughly that the next grammar rule to apply at any point in the input is
467uniquely determined by the preceding input and a fixed, finite portion
468(called a @dfn{look-ahead}) of the remaining input. A context-free
469grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 470apply the grammar rules to get the same inputs. Even unambiguous
9501dc6e
AD
471grammars can be @dfn{non-deterministic}, meaning that no fixed
472look-ahead always suffices to determine the next grammar rule to apply.
473With the proper declarations, Bison is also able to parse these more
474general context-free grammars, using a technique known as @acronym{GLR}
475parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
476are able to handle any context-free grammar for which the number of
477possible parses of any given string is finite.
676385e2 478
bfa74976
RS
479@cindex symbols (abstract)
480@cindex token
481@cindex syntactic grouping
482@cindex grouping, syntactic
9501dc6e
AD
483In the formal grammatical rules for a language, each kind of syntactic
484unit or grouping is named by a @dfn{symbol}. Those which are built by
485grouping smaller constructs according to grammatical rules are called
bfa74976
RS
486@dfn{nonterminal symbols}; those which can't be subdivided are called
487@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
488corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 489corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
490
491We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
492nonterminal, mean. The tokens of C are identifiers, constants (numeric
493and string), and the various keywords, arithmetic operators and
494punctuation marks. So the terminal symbols of a grammar for C include
495`identifier', `number', `string', plus one symbol for each keyword,
496operator or punctuation mark: `if', `return', `const', `static', `int',
497`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
498(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
499lexicography, not grammar.)
500
501Here is a simple C function subdivided into tokens:
502
9edcd895
AD
503@ifinfo
504@example
505int /* @r{keyword `int'} */
14d4662b 506square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
507 @r{identifier, close-paren} */
508@{ /* @r{open-brace} */
509 return x * x; /* @r{keyword `return', identifier, asterisk,
510 identifier, semicolon} */
511@} /* @r{close-brace} */
512@end example
513@end ifinfo
514@ifnotinfo
bfa74976
RS
515@example
516int /* @r{keyword `int'} */
14d4662b 517square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 518@{ /* @r{open-brace} */
9edcd895 519 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
520@} /* @r{close-brace} */
521@end example
9edcd895 522@end ifnotinfo
bfa74976
RS
523
524The syntactic groupings of C include the expression, the statement, the
525declaration, and the function definition. These are represented in the
526grammar of C by nonterminal symbols `expression', `statement',
527`declaration' and `function definition'. The full grammar uses dozens of
528additional language constructs, each with its own nonterminal symbol, in
529order to express the meanings of these four. The example above is a
530function definition; it contains one declaration, and one statement. In
531the statement, each @samp{x} is an expression and so is @samp{x * x}.
532
533Each nonterminal symbol must have grammatical rules showing how it is made
534out of simpler constructs. For example, one kind of C statement is the
535@code{return} statement; this would be described with a grammar rule which
536reads informally as follows:
537
538@quotation
539A `statement' can be made of a `return' keyword, an `expression' and a
540`semicolon'.
541@end quotation
542
543@noindent
544There would be many other rules for `statement', one for each kind of
545statement in C.
546
547@cindex start symbol
548One nonterminal symbol must be distinguished as the special one which
549defines a complete utterance in the language. It is called the @dfn{start
550symbol}. In a compiler, this means a complete input program. In the C
551language, the nonterminal symbol `sequence of definitions and declarations'
552plays this role.
553
554For example, @samp{1 + 2} is a valid C expression---a valid part of a C
555program---but it is not valid as an @emph{entire} C program. In the
556context-free grammar of C, this follows from the fact that `expression' is
557not the start symbol.
558
559The Bison parser reads a sequence of tokens as its input, and groups the
560tokens using the grammar rules. If the input is valid, the end result is
561that the entire token sequence reduces to a single grouping whose symbol is
562the grammar's start symbol. If we use a grammar for C, the entire input
563must be a `sequence of definitions and declarations'. If not, the parser
564reports a syntax error.
565
342b8b6e 566@node Grammar in Bison
bfa74976
RS
567@section From Formal Rules to Bison Input
568@cindex Bison grammar
569@cindex grammar, Bison
570@cindex formal grammar
571
572A formal grammar is a mathematical construct. To define the language
573for Bison, you must write a file expressing the grammar in Bison syntax:
574a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
575
576A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 577as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
578in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
579
580The Bison representation for a terminal symbol is also called a @dfn{token
581type}. Token types as well can be represented as C-like identifiers. By
582convention, these identifiers should be upper case to distinguish them from
583nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
584@code{RETURN}. A terminal symbol that stands for a particular keyword in
585the language should be named after that keyword converted to upper case.
586The terminal symbol @code{error} is reserved for error recovery.
931c7513 587@xref{Symbols}.
bfa74976
RS
588
589A terminal symbol can also be represented as a character literal, just like
590a C character constant. You should do this whenever a token is just a
591single character (parenthesis, plus-sign, etc.): use that same character in
592a literal as the terminal symbol for that token.
593
931c7513
RS
594A third way to represent a terminal symbol is with a C string constant
595containing several characters. @xref{Symbols}, for more information.
596
bfa74976
RS
597The grammar rules also have an expression in Bison syntax. For example,
598here is the Bison rule for a C @code{return} statement. The semicolon in
599quotes is a literal character token, representing part of the C syntax for
600the statement; the naked semicolon, and the colon, are Bison punctuation
601used in every rule.
602
603@example
604stmt: RETURN expr ';'
605 ;
606@end example
607
608@noindent
609@xref{Rules, ,Syntax of Grammar Rules}.
610
342b8b6e 611@node Semantic Values
bfa74976
RS
612@section Semantic Values
613@cindex semantic value
614@cindex value, semantic
615
616A formal grammar selects tokens only by their classifications: for example,
617if a rule mentions the terminal symbol `integer constant', it means that
618@emph{any} integer constant is grammatically valid in that position. The
619precise value of the constant is irrelevant to how to parse the input: if
620@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 621grammatical.
bfa74976
RS
622
623But the precise value is very important for what the input means once it is
624parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6253989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
626has both a token type and a @dfn{semantic value}. @xref{Semantics,
627,Defining Language Semantics},
bfa74976
RS
628for details.
629
630The token type is a terminal symbol defined in the grammar, such as
631@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
632you need to know to decide where the token may validly appear and how to
633group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 634except their types.
bfa74976
RS
635
636The semantic value has all the rest of the information about the
637meaning of the token, such as the value of an integer, or the name of an
638identifier. (A token such as @code{','} which is just punctuation doesn't
639need to have any semantic value.)
640
641For example, an input token might be classified as token type
642@code{INTEGER} and have the semantic value 4. Another input token might
643have the same token type @code{INTEGER} but value 3989. When a grammar
644rule says that @code{INTEGER} is allowed, either of these tokens is
645acceptable because each is an @code{INTEGER}. When the parser accepts the
646token, it keeps track of the token's semantic value.
647
648Each grouping can also have a semantic value as well as its nonterminal
649symbol. For example, in a calculator, an expression typically has a
650semantic value that is a number. In a compiler for a programming
651language, an expression typically has a semantic value that is a tree
652structure describing the meaning of the expression.
653
342b8b6e 654@node Semantic Actions
bfa74976
RS
655@section Semantic Actions
656@cindex semantic actions
657@cindex actions, semantic
658
659In order to be useful, a program must do more than parse input; it must
660also produce some output based on the input. In a Bison grammar, a grammar
661rule can have an @dfn{action} made up of C statements. Each time the
662parser recognizes a match for that rule, the action is executed.
663@xref{Actions}.
13863333 664
bfa74976
RS
665Most of the time, the purpose of an action is to compute the semantic value
666of the whole construct from the semantic values of its parts. For example,
667suppose we have a rule which says an expression can be the sum of two
668expressions. When the parser recognizes such a sum, each of the
669subexpressions has a semantic value which describes how it was built up.
670The action for this rule should create a similar sort of value for the
671newly recognized larger expression.
672
673For example, here is a rule that says an expression can be the sum of
674two subexpressions:
675
676@example
677expr: expr '+' expr @{ $$ = $1 + $3; @}
678 ;
679@end example
680
681@noindent
682The action says how to produce the semantic value of the sum expression
683from the values of the two subexpressions.
684
676385e2 685@node GLR Parsers
c827f760
PE
686@section Writing @acronym{GLR} Parsers
687@cindex @acronym{GLR} parsing
688@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
689@findex %glr-parser
690@cindex conflicts
691@cindex shift/reduce conflicts
fa7e68c3 692@cindex reduce/reduce conflicts
676385e2 693
fa7e68c3 694In some grammars, Bison's standard
9501dc6e
AD
695@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
696certain grammar rule at a given point. That is, it may not be able to
697decide (on the basis of the input read so far) which of two possible
698reductions (applications of a grammar rule) applies, or whether to apply
699a reduction or read more of the input and apply a reduction later in the
700input. These are known respectively as @dfn{reduce/reduce} conflicts
701(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
702(@pxref{Shift/Reduce}).
703
704To use a grammar that is not easily modified to be @acronym{LALR}(1), a
705more general parsing algorithm is sometimes necessary. If you include
676385e2 706@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 707(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
708(@acronym{GLR}) parser. These parsers handle Bison grammars that
709contain no unresolved conflicts (i.e., after applying precedence
710declarations) identically to @acronym{LALR}(1) parsers. However, when
711faced with unresolved shift/reduce and reduce/reduce conflicts,
712@acronym{GLR} parsers use the simple expedient of doing both,
713effectively cloning the parser to follow both possibilities. Each of
714the resulting parsers can again split, so that at any given time, there
715can be any number of possible parses being explored. The parsers
676385e2
PH
716proceed in lockstep; that is, all of them consume (shift) a given input
717symbol before any of them proceed to the next. Each of the cloned
718parsers eventually meets one of two possible fates: either it runs into
719a parsing error, in which case it simply vanishes, or it merges with
720another parser, because the two of them have reduced the input to an
721identical set of symbols.
722
723During the time that there are multiple parsers, semantic actions are
724recorded, but not performed. When a parser disappears, its recorded
725semantic actions disappear as well, and are never performed. When a
726reduction makes two parsers identical, causing them to merge, Bison
727records both sets of semantic actions. Whenever the last two parsers
728merge, reverting to the single-parser case, Bison resolves all the
729outstanding actions either by precedences given to the grammar rules
730involved, or by performing both actions, and then calling a designated
731user-defined function on the resulting values to produce an arbitrary
732merged result.
733
fa7e68c3
PE
734@menu
735* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
736* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
737* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
738@end menu
739
740@node Simple GLR Parsers
741@subsection Using @acronym{GLR} on Unambiguous Grammars
742@cindex @acronym{GLR} parsing, unambiguous grammars
743@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
744@findex %glr-parser
745@findex %expect-rr
746@cindex conflicts
747@cindex reduce/reduce conflicts
748@cindex shift/reduce conflicts
749
750In the simplest cases, you can use the @acronym{GLR} algorithm
751to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
752Such grammars typically require more than one symbol of look-ahead,
753or (in rare cases) fall into the category of grammars in which the
754@acronym{LALR}(1) algorithm throws away too much information (they are in
755@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
756
757Consider a problem that
758arises in the declaration of enumerated and subrange types in the
759programming language Pascal. Here are some examples:
760
761@example
762type subrange = lo .. hi;
763type enum = (a, b, c);
764@end example
765
766@noindent
767The original language standard allows only numeric
768literals and constant identifiers for the subrange bounds (@samp{lo}
769and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77010206) and many other
771Pascal implementations allow arbitrary expressions there. This gives
772rise to the following situation, containing a superfluous pair of
773parentheses:
774
775@example
776type subrange = (a) .. b;
777@end example
778
779@noindent
780Compare this to the following declaration of an enumerated
781type with only one value:
782
783@example
784type enum = (a);
785@end example
786
787@noindent
788(These declarations are contrived, but they are syntactically
789valid, and more-complicated cases can come up in practical programs.)
790
791These two declarations look identical until the @samp{..} token.
792With normal @acronym{LALR}(1) one-token look-ahead it is not
793possible to decide between the two forms when the identifier
794@samp{a} is parsed. It is, however, desirable
795for a parser to decide this, since in the latter case
796@samp{a} must become a new identifier to represent the enumeration
797value, while in the former case @samp{a} must be evaluated with its
798current meaning, which may be a constant or even a function call.
799
800You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
801to be resolved later, but this typically requires substantial
802contortions in both semantic actions and large parts of the
803grammar, where the parentheses are nested in the recursive rules for
804expressions.
805
806You might think of using the lexer to distinguish between the two
807forms by returning different tokens for currently defined and
808undefined identifiers. But if these declarations occur in a local
809scope, and @samp{a} is defined in an outer scope, then both forms
810are possible---either locally redefining @samp{a}, or using the
811value of @samp{a} from the outer scope. So this approach cannot
812work.
813
e757bb10 814A simple solution to this problem is to declare the parser to
fa7e68c3
PE
815use the @acronym{GLR} algorithm.
816When the @acronym{GLR} parser reaches the critical state, it
817merely splits into two branches and pursues both syntax rules
818simultaneously. Sooner or later, one of them runs into a parsing
819error. If there is a @samp{..} token before the next
820@samp{;}, the rule for enumerated types fails since it cannot
821accept @samp{..} anywhere; otherwise, the subrange type rule
822fails since it requires a @samp{..} token. So one of the branches
823fails silently, and the other one continues normally, performing
824all the intermediate actions that were postponed during the split.
825
826If the input is syntactically incorrect, both branches fail and the parser
827reports a syntax error as usual.
828
829The effect of all this is that the parser seems to ``guess'' the
830correct branch to take, or in other words, it seems to use more
831look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
832for. In this example, @acronym{LALR}(2) would suffice, but also some cases
833that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
834
835In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
836and the current Bison parser even takes exponential time and space
837for some grammars. In practice, this rarely happens, and for many
838grammars it is possible to prove that it cannot happen.
839The present example contains only one conflict between two
840rules, and the type-declaration context containing the conflict
841cannot be nested. So the number of
842branches that can exist at any time is limited by the constant 2,
843and the parsing time is still linear.
844
845Here is a Bison grammar corresponding to the example above. It
846parses a vastly simplified form of Pascal type declarations.
847
848@example
849%token TYPE DOTDOT ID
850
851@group
852%left '+' '-'
853%left '*' '/'
854@end group
855
856%%
857
858@group
859type_decl : TYPE ID '=' type ';'
860 ;
861@end group
862
863@group
864type : '(' id_list ')'
865 | expr DOTDOT expr
866 ;
867@end group
868
869@group
870id_list : ID
871 | id_list ',' ID
872 ;
873@end group
874
875@group
876expr : '(' expr ')'
877 | expr '+' expr
878 | expr '-' expr
879 | expr '*' expr
880 | expr '/' expr
881 | ID
882 ;
883@end group
884@end example
885
886When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
887about one reduce/reduce conflict. In the conflicting situation the
888parser chooses one of the alternatives, arbitrarily the one
889declared first. Therefore the following correct input is not
890recognized:
891
892@example
893type t = (a) .. b;
894@end example
895
896The parser can be turned into a @acronym{GLR} parser, while also telling Bison
897to be silent about the one known reduce/reduce conflict, by
e757bb10 898adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
899@samp{%%}):
900
901@example
902%glr-parser
903%expect-rr 1
904@end example
905
906@noindent
907No change in the grammar itself is required. Now the
908parser recognizes all valid declarations, according to the
909limited syntax above, transparently. In fact, the user does not even
910notice when the parser splits.
911
912So here we have a case where we can use the benefits of @acronym{GLR}, almost
913without disadvantages. Even in simple cases like this, however, there
914are at least two potential problems to beware.
915First, always analyze the conflicts reported by
916Bison to make sure that @acronym{GLR} splitting is only done where it is
917intended. A @acronym{GLR} parser splitting inadvertently may cause
918problems less obvious than an @acronym{LALR} parser statically choosing the
919wrong alternative in a conflict.
e757bb10 920Second, consider interactions with the lexer (@pxref{Semantic Tokens})
fa7e68c3
PE
921with great care. Since a split parser consumes tokens
922without performing any actions during the split, the lexer cannot
923obtain information via parser actions. Some cases of
924lexer interactions can be eliminated by using @acronym{GLR} to
925shift the complications from the lexer to the parser. You must check
926the remaining cases for correctness.
927
928In our example, it would be safe for the lexer to return tokens
929based on their current meanings in some symbol table, because no new
930symbols are defined in the middle of a type declaration. Though it
931is possible for a parser to define the enumeration
932constants as they are parsed, before the type declaration is
933completed, it actually makes no difference since they cannot be used
934within the same enumerated type declaration.
935
936@node Merging GLR Parses
937@subsection Using @acronym{GLR} to Resolve Ambiguities
938@cindex @acronym{GLR} parsing, ambiguous grammars
939@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
940@findex %dprec
941@findex %merge
942@cindex conflicts
943@cindex reduce/reduce conflicts
944
2a8d363a 945Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
946
947@example
948%@{
38a92d50
PE
949 #include <stdio.h>
950 #define YYSTYPE char const *
951 int yylex (void);
952 void yyerror (char const *);
676385e2
PH
953%@}
954
955%token TYPENAME ID
956
957%right '='
958%left '+'
959
960%glr-parser
961
962%%
963
fae437e8 964prog :
676385e2
PH
965 | prog stmt @{ printf ("\n"); @}
966 ;
967
968stmt : expr ';' %dprec 1
969 | decl %dprec 2
970 ;
971
2a8d363a 972expr : ID @{ printf ("%s ", $$); @}
fae437e8 973 | TYPENAME '(' expr ')'
2a8d363a
AD
974 @{ printf ("%s <cast> ", $1); @}
975 | expr '+' expr @{ printf ("+ "); @}
976 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
977 ;
978
fae437e8 979decl : TYPENAME declarator ';'
2a8d363a 980 @{ printf ("%s <declare> ", $1); @}
676385e2 981 | TYPENAME declarator '=' expr ';'
2a8d363a 982 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
983 ;
984
2a8d363a 985declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
986 | '(' declarator ')'
987 ;
988@end example
989
990@noindent
991This models a problematic part of the C++ grammar---the ambiguity between
992certain declarations and statements. For example,
993
994@example
995T (x) = y+z;
996@end example
997
998@noindent
999parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1000(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1001@samp{x} as an @code{ID}).
676385e2 1002Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1003@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1004time it encounters @code{x} in the example above. Since this is a
1005@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1006each choice of resolving the reduce/reduce conflict.
1007Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1008however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1009ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1010the other reduces @code{stmt : decl}, after which both parsers are in an
1011identical state: they've seen @samp{prog stmt} and have the same unprocessed
1012input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1013
1014At this point, the @acronym{GLR} parser requires a specification in the
1015grammar of how to choose between the competing parses.
1016In the example above, the two @code{%dprec}
e757bb10 1017declarations specify that Bison is to give precedence
fa7e68c3 1018to the parse that interprets the example as a
676385e2
PH
1019@code{decl}, which implies that @code{x} is a declarator.
1020The parser therefore prints
1021
1022@example
fae437e8 1023"x" y z + T <init-declare>
676385e2
PH
1024@end example
1025
fa7e68c3
PE
1026The @code{%dprec} declarations only come into play when more than one
1027parse survives. Consider a different input string for this parser:
676385e2
PH
1028
1029@example
1030T (x) + y;
1031@end example
1032
1033@noindent
e757bb10 1034This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1035construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1036Here, there is no ambiguity (this cannot be parsed as a declaration).
1037However, at the time the Bison parser encounters @code{x}, it does not
1038have enough information to resolve the reduce/reduce conflict (again,
1039between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1040case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1041into two, one assuming that @code{x} is an @code{expr}, and the other
1042assuming @code{x} is a @code{declarator}. The second of these parsers
1043then vanishes when it sees @code{+}, and the parser prints
1044
1045@example
fae437e8 1046x T <cast> y +
676385e2
PH
1047@end example
1048
1049Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1050the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1051actions of the two possible parsers, rather than choosing one over the
1052other. To do so, you could change the declaration of @code{stmt} as
1053follows:
1054
1055@example
1056stmt : expr ';' %merge <stmtMerge>
1057 | decl %merge <stmtMerge>
1058 ;
1059@end example
1060
1061@noindent
676385e2
PH
1062and define the @code{stmtMerge} function as:
1063
1064@example
38a92d50
PE
1065static YYSTYPE
1066stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1067@{
1068 printf ("<OR> ");
1069 return "";
1070@}
1071@end example
1072
1073@noindent
1074with an accompanying forward declaration
1075in the C declarations at the beginning of the file:
1076
1077@example
1078%@{
38a92d50 1079 #define YYSTYPE char const *
676385e2
PH
1080 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1081%@}
1082@end example
1083
1084@noindent
fa7e68c3
PE
1085With these declarations, the resulting parser parses the first example
1086as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1087
1088@example
fae437e8 1089"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1090@end example
1091
fa7e68c3 1092Bison requires that all of the
e757bb10 1093productions that participate in any particular merge have identical
fa7e68c3
PE
1094@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1095and the parser will report an error during any parse that results in
1096the offending merge.
9501dc6e 1097
fa7e68c3
PE
1098@node Compiler Requirements
1099@subsection Considerations when Compiling @acronym{GLR} Parsers
1100@cindex @code{inline}
9501dc6e 1101@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1102
38a92d50
PE
1103The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1104later. In addition, they use the @code{inline} keyword, which is not
1105C89, but is C99 and is a common extension in pre-C99 compilers. It is
1106up to the user of these parsers to handle
9501dc6e
AD
1107portability issues. For instance, if using Autoconf and the Autoconf
1108macro @code{AC_C_INLINE}, a mere
1109
1110@example
1111%@{
38a92d50 1112 #include <config.h>
9501dc6e
AD
1113%@}
1114@end example
1115
1116@noindent
1117will suffice. Otherwise, we suggest
1118
1119@example
1120%@{
38a92d50
PE
1121 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1122 #define inline
1123 #endif
9501dc6e
AD
1124%@}
1125@end example
676385e2 1126
342b8b6e 1127@node Locations Overview
847bf1f5
AD
1128@section Locations
1129@cindex location
95923bd6
AD
1130@cindex textual location
1131@cindex location, textual
847bf1f5
AD
1132
1133Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1134and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1135the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1136Bison provides a mechanism for handling these locations.
1137
72d2299c 1138Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1139associated location, but the type of locations is the same for all tokens and
72d2299c 1140groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1141structure for storing locations (@pxref{Locations}, for more details).
1142
1143Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1144set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1145is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1146@code{@@3}.
1147
1148When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1149of its left hand side (@pxref{Actions}). In the same way, another default
1150action is used for locations. However, the action for locations is general
847bf1f5 1151enough for most cases, meaning there is usually no need to describe for each
72d2299c 1152rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1153grouping, the default behavior of the output parser is to take the beginning
1154of the first symbol, and the end of the last symbol.
1155
342b8b6e 1156@node Bison Parser
bfa74976
RS
1157@section Bison Output: the Parser File
1158@cindex Bison parser
1159@cindex Bison utility
1160@cindex lexical analyzer, purpose
1161@cindex parser
1162
1163When you run Bison, you give it a Bison grammar file as input. The output
1164is a C source file that parses the language described by the grammar.
1165This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1166utility and the Bison parser are two distinct programs: the Bison utility
1167is a program whose output is the Bison parser that becomes part of your
1168program.
1169
1170The job of the Bison parser is to group tokens into groupings according to
1171the grammar rules---for example, to build identifiers and operators into
1172expressions. As it does this, it runs the actions for the grammar rules it
1173uses.
1174
704a47c4
AD
1175The tokens come from a function called the @dfn{lexical analyzer} that
1176you must supply in some fashion (such as by writing it in C). The Bison
1177parser calls the lexical analyzer each time it wants a new token. It
1178doesn't know what is ``inside'' the tokens (though their semantic values
1179may reflect this). Typically the lexical analyzer makes the tokens by
1180parsing characters of text, but Bison does not depend on this.
1181@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1182
1183The Bison parser file is C code which defines a function named
1184@code{yyparse} which implements that grammar. This function does not make
1185a complete C program: you must supply some additional functions. One is
1186the lexical analyzer. Another is an error-reporting function which the
1187parser calls to report an error. In addition, a complete C program must
1188start with a function called @code{main}; you have to provide this, and
1189arrange for it to call @code{yyparse} or the parser will never run.
1190@xref{Interface, ,Parser C-Language Interface}.
1191
f7ab6a50 1192Aside from the token type names and the symbols in the actions you
7093d0f5 1193write, all symbols defined in the Bison parser file itself
bfa74976
RS
1194begin with @samp{yy} or @samp{YY}. This includes interface functions
1195such as the lexical analyzer function @code{yylex}, the error reporting
1196function @code{yyerror} and the parser function @code{yyparse} itself.
1197This also includes numerous identifiers used for internal purposes.
1198Therefore, you should avoid using C identifiers starting with @samp{yy}
1199or @samp{YY} in the Bison grammar file except for the ones defined in
1200this manual.
1201
7093d0f5
AD
1202In some cases the Bison parser file includes system headers, and in
1203those cases your code should respect the identifiers reserved by those
c827f760 1204headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
7093d0f5 1205@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1206declare memory allocators and related types. @code{<libintl.h>} is
1207included if message translation is in use
1208(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1209be included if you define @code{YYDEBUG} to a nonzero value
1210(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1211
342b8b6e 1212@node Stages
bfa74976
RS
1213@section Stages in Using Bison
1214@cindex stages in using Bison
1215@cindex using Bison
1216
1217The actual language-design process using Bison, from grammar specification
1218to a working compiler or interpreter, has these parts:
1219
1220@enumerate
1221@item
1222Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1223(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1224in the language, describe the action that is to be taken when an
1225instance of that rule is recognized. The action is described by a
1226sequence of C statements.
bfa74976
RS
1227
1228@item
704a47c4
AD
1229Write a lexical analyzer to process input and pass tokens to the parser.
1230The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1231Lexical Analyzer Function @code{yylex}}). It could also be produced
1232using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1233
1234@item
1235Write a controlling function that calls the Bison-produced parser.
1236
1237@item
1238Write error-reporting routines.
1239@end enumerate
1240
1241To turn this source code as written into a runnable program, you
1242must follow these steps:
1243
1244@enumerate
1245@item
1246Run Bison on the grammar to produce the parser.
1247
1248@item
1249Compile the code output by Bison, as well as any other source files.
1250
1251@item
1252Link the object files to produce the finished product.
1253@end enumerate
1254
342b8b6e 1255@node Grammar Layout
bfa74976
RS
1256@section The Overall Layout of a Bison Grammar
1257@cindex grammar file
1258@cindex file format
1259@cindex format of grammar file
1260@cindex layout of Bison grammar
1261
1262The input file for the Bison utility is a @dfn{Bison grammar file}. The
1263general form of a Bison grammar file is as follows:
1264
1265@example
1266%@{
08e49d20 1267@var{Prologue}
bfa74976
RS
1268%@}
1269
1270@var{Bison declarations}
1271
1272%%
1273@var{Grammar rules}
1274%%
08e49d20 1275@var{Epilogue}
bfa74976
RS
1276@end example
1277
1278@noindent
1279The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1280in every Bison grammar file to separate the sections.
1281
72d2299c 1282The prologue may define types and variables used in the actions. You can
342b8b6e 1283also use preprocessor commands to define macros used there, and use
bfa74976 1284@code{#include} to include header files that do any of these things.
38a92d50
PE
1285You need to declare the lexical analyzer @code{yylex} and the error
1286printer @code{yyerror} here, along with any other global identifiers
1287used by the actions in the grammar rules.
bfa74976
RS
1288
1289The Bison declarations declare the names of the terminal and nonterminal
1290symbols, and may also describe operator precedence and the data types of
1291semantic values of various symbols.
1292
1293The grammar rules define how to construct each nonterminal symbol from its
1294parts.
1295
38a92d50
PE
1296The epilogue can contain any code you want to use. Often the
1297definitions of functions declared in the prologue go here. In a
1298simple program, all the rest of the program can go here.
bfa74976 1299
342b8b6e 1300@node Examples
bfa74976
RS
1301@chapter Examples
1302@cindex simple examples
1303@cindex examples, simple
1304
1305Now we show and explain three sample programs written using Bison: a
1306reverse polish notation calculator, an algebraic (infix) notation
1307calculator, and a multi-function calculator. All three have been tested
1308under BSD Unix 4.3; each produces a usable, though limited, interactive
1309desk-top calculator.
1310
1311These examples are simple, but Bison grammars for real programming
1312languages are written the same way.
1313@ifinfo
1314You can copy these examples out of the Info file and into a source file
1315to try them.
1316@end ifinfo
1317
1318@menu
1319* RPN Calc:: Reverse polish notation calculator;
1320 a first example with no operator precedence.
1321* Infix Calc:: Infix (algebraic) notation calculator.
1322 Operator precedence is introduced.
1323* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1324* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1325* Multi-function Calc:: Calculator with memory and trig functions.
1326 It uses multiple data-types for semantic values.
1327* Exercises:: Ideas for improving the multi-function calculator.
1328@end menu
1329
342b8b6e 1330@node RPN Calc
bfa74976
RS
1331@section Reverse Polish Notation Calculator
1332@cindex reverse polish notation
1333@cindex polish notation calculator
1334@cindex @code{rpcalc}
1335@cindex calculator, simple
1336
1337The first example is that of a simple double-precision @dfn{reverse polish
1338notation} calculator (a calculator using postfix operators). This example
1339provides a good starting point, since operator precedence is not an issue.
1340The second example will illustrate how operator precedence is handled.
1341
1342The source code for this calculator is named @file{rpcalc.y}. The
1343@samp{.y} extension is a convention used for Bison input files.
1344
1345@menu
75f5aaea 1346* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1347* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1348* Lexer: Rpcalc Lexer. The lexical analyzer.
1349* Main: Rpcalc Main. The controlling function.
1350* Error: Rpcalc Error. The error reporting function.
1351* Gen: Rpcalc Gen. Running Bison on the grammar file.
1352* Comp: Rpcalc Compile. Run the C compiler on the output code.
1353@end menu
1354
342b8b6e 1355@node Rpcalc Decls
bfa74976
RS
1356@subsection Declarations for @code{rpcalc}
1357
1358Here are the C and Bison declarations for the reverse polish notation
1359calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1360
1361@example
72d2299c 1362/* Reverse polish notation calculator. */
bfa74976
RS
1363
1364%@{
38a92d50
PE
1365 #define YYSTYPE double
1366 #include <math.h>
1367 int yylex (void);
1368 void yyerror (char const *);
bfa74976
RS
1369%@}
1370
1371%token NUM
1372
72d2299c 1373%% /* Grammar rules and actions follow. */
bfa74976
RS
1374@end example
1375
75f5aaea 1376The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1377preprocessor directives and two forward declarations.
bfa74976
RS
1378
1379The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1380specifying the C data type for semantic values of both tokens and
1381groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1382Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1383don't define it, @code{int} is the default. Because we specify
1384@code{double}, each token and each expression has an associated value,
1385which is a floating point number.
bfa74976
RS
1386
1387The @code{#include} directive is used to declare the exponentiation
1388function @code{pow}.
1389
38a92d50
PE
1390The forward declarations for @code{yylex} and @code{yyerror} are
1391needed because the C language requires that functions be declared
1392before they are used. These functions will be defined in the
1393epilogue, but the parser calls them so they must be declared in the
1394prologue.
1395
704a47c4
AD
1396The second section, Bison declarations, provides information to Bison
1397about the token types (@pxref{Bison Declarations, ,The Bison
1398Declarations Section}). Each terminal symbol that is not a
1399single-character literal must be declared here. (Single-character
bfa74976
RS
1400literals normally don't need to be declared.) In this example, all the
1401arithmetic operators are designated by single-character literals, so the
1402only terminal symbol that needs to be declared is @code{NUM}, the token
1403type for numeric constants.
1404
342b8b6e 1405@node Rpcalc Rules
bfa74976
RS
1406@subsection Grammar Rules for @code{rpcalc}
1407
1408Here are the grammar rules for the reverse polish notation calculator.
1409
1410@example
1411input: /* empty */
1412 | input line
1413;
1414
1415line: '\n'
18b519c0 1416 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1417;
1418
18b519c0
AD
1419exp: NUM @{ $$ = $1; @}
1420 | exp exp '+' @{ $$ = $1 + $2; @}
1421 | exp exp '-' @{ $$ = $1 - $2; @}
1422 | exp exp '*' @{ $$ = $1 * $2; @}
1423 | exp exp '/' @{ $$ = $1 / $2; @}
1424 /* Exponentiation */
1425 | exp exp '^' @{ $$ = pow ($1, $2); @}
1426 /* Unary minus */
1427 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1428;
1429%%
1430@end example
1431
1432The groupings of the rpcalc ``language'' defined here are the expression
1433(given the name @code{exp}), the line of input (@code{line}), and the
1434complete input transcript (@code{input}). Each of these nonterminal
1435symbols has several alternate rules, joined by the @samp{|} punctuator
1436which is read as ``or''. The following sections explain what these rules
1437mean.
1438
1439The semantics of the language is determined by the actions taken when a
1440grouping is recognized. The actions are the C code that appears inside
1441braces. @xref{Actions}.
1442
1443You must specify these actions in C, but Bison provides the means for
1444passing semantic values between the rules. In each action, the
1445pseudo-variable @code{$$} stands for the semantic value for the grouping
1446that the rule is going to construct. Assigning a value to @code{$$} is the
1447main job of most actions. The semantic values of the components of the
1448rule are referred to as @code{$1}, @code{$2}, and so on.
1449
1450@menu
13863333
AD
1451* Rpcalc Input::
1452* Rpcalc Line::
1453* Rpcalc Expr::
bfa74976
RS
1454@end menu
1455
342b8b6e 1456@node Rpcalc Input
bfa74976
RS
1457@subsubsection Explanation of @code{input}
1458
1459Consider the definition of @code{input}:
1460
1461@example
1462input: /* empty */
1463 | input line
1464;
1465@end example
1466
1467This definition reads as follows: ``A complete input is either an empty
1468string, or a complete input followed by an input line''. Notice that
1469``complete input'' is defined in terms of itself. This definition is said
1470to be @dfn{left recursive} since @code{input} appears always as the
1471leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1472
1473The first alternative is empty because there are no symbols between the
1474colon and the first @samp{|}; this means that @code{input} can match an
1475empty string of input (no tokens). We write the rules this way because it
1476is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1477It's conventional to put an empty alternative first and write the comment
1478@samp{/* empty */} in it.
1479
1480The second alternate rule (@code{input line}) handles all nontrivial input.
1481It means, ``After reading any number of lines, read one more line if
1482possible.'' The left recursion makes this rule into a loop. Since the
1483first alternative matches empty input, the loop can be executed zero or
1484more times.
1485
1486The parser function @code{yyparse} continues to process input until a
1487grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1488input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1489
342b8b6e 1490@node Rpcalc Line
bfa74976
RS
1491@subsubsection Explanation of @code{line}
1492
1493Now consider the definition of @code{line}:
1494
1495@example
1496line: '\n'
1497 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1498;
1499@end example
1500
1501The first alternative is a token which is a newline character; this means
1502that rpcalc accepts a blank line (and ignores it, since there is no
1503action). The second alternative is an expression followed by a newline.
1504This is the alternative that makes rpcalc useful. The semantic value of
1505the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1506question is the first symbol in the alternative. The action prints this
1507value, which is the result of the computation the user asked for.
1508
1509This action is unusual because it does not assign a value to @code{$$}. As
1510a consequence, the semantic value associated with the @code{line} is
1511uninitialized (its value will be unpredictable). This would be a bug if
1512that value were ever used, but we don't use it: once rpcalc has printed the
1513value of the user's input line, that value is no longer needed.
1514
342b8b6e 1515@node Rpcalc Expr
bfa74976
RS
1516@subsubsection Explanation of @code{expr}
1517
1518The @code{exp} grouping has several rules, one for each kind of expression.
1519The first rule handles the simplest expressions: those that are just numbers.
1520The second handles an addition-expression, which looks like two expressions
1521followed by a plus-sign. The third handles subtraction, and so on.
1522
1523@example
1524exp: NUM
1525 | exp exp '+' @{ $$ = $1 + $2; @}
1526 | exp exp '-' @{ $$ = $1 - $2; @}
1527 @dots{}
1528 ;
1529@end example
1530
1531We have used @samp{|} to join all the rules for @code{exp}, but we could
1532equally well have written them separately:
1533
1534@example
1535exp: NUM ;
1536exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1537exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1538 @dots{}
1539@end example
1540
1541Most of the rules have actions that compute the value of the expression in
1542terms of the value of its parts. For example, in the rule for addition,
1543@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1544the second one. The third component, @code{'+'}, has no meaningful
1545associated semantic value, but if it had one you could refer to it as
1546@code{$3}. When @code{yyparse} recognizes a sum expression using this
1547rule, the sum of the two subexpressions' values is produced as the value of
1548the entire expression. @xref{Actions}.
1549
1550You don't have to give an action for every rule. When a rule has no
1551action, Bison by default copies the value of @code{$1} into @code{$$}.
1552This is what happens in the first rule (the one that uses @code{NUM}).
1553
1554The formatting shown here is the recommended convention, but Bison does
72d2299c 1555not require it. You can add or change white space as much as you wish.
bfa74976
RS
1556For example, this:
1557
1558@example
99a9344e 1559exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1560@end example
1561
1562@noindent
1563means the same thing as this:
1564
1565@example
1566exp: NUM
1567 | exp exp '+' @{ $$ = $1 + $2; @}
1568 | @dots{}
99a9344e 1569;
bfa74976
RS
1570@end example
1571
1572@noindent
1573The latter, however, is much more readable.
1574
342b8b6e 1575@node Rpcalc Lexer
bfa74976
RS
1576@subsection The @code{rpcalc} Lexical Analyzer
1577@cindex writing a lexical analyzer
1578@cindex lexical analyzer, writing
1579
704a47c4
AD
1580The lexical analyzer's job is low-level parsing: converting characters
1581or sequences of characters into tokens. The Bison parser gets its
1582tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1583Analyzer Function @code{yylex}}.
bfa74976 1584
c827f760
PE
1585Only a simple lexical analyzer is needed for the @acronym{RPN}
1586calculator. This
bfa74976
RS
1587lexical analyzer skips blanks and tabs, then reads in numbers as
1588@code{double} and returns them as @code{NUM} tokens. Any other character
1589that isn't part of a number is a separate token. Note that the token-code
1590for such a single-character token is the character itself.
1591
1592The return value of the lexical analyzer function is a numeric code which
1593represents a token type. The same text used in Bison rules to stand for
1594this token type is also a C expression for the numeric code for the type.
1595This works in two ways. If the token type is a character literal, then its
e966383b 1596numeric code is that of the character; you can use the same
bfa74976
RS
1597character literal in the lexical analyzer to express the number. If the
1598token type is an identifier, that identifier is defined by Bison as a C
1599macro whose definition is the appropriate number. In this example,
1600therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1601
1964ad8c
AD
1602The semantic value of the token (if it has one) is stored into the
1603global variable @code{yylval}, which is where the Bison parser will look
1604for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1605defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1606,Declarations for @code{rpcalc}}.)
bfa74976 1607
72d2299c
PE
1608A token type code of zero is returned if the end-of-input is encountered.
1609(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1610
1611Here is the code for the lexical analyzer:
1612
1613@example
1614@group
72d2299c 1615/* The lexical analyzer returns a double floating point
e966383b 1616 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1617 of the character read if not a number. It skips all blanks
1618 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1619
1620#include <ctype.h>
1621@end group
1622
1623@group
13863333
AD
1624int
1625yylex (void)
bfa74976
RS
1626@{
1627 int c;
1628
72d2299c 1629 /* Skip white space. */
13863333 1630 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1631 ;
1632@end group
1633@group
72d2299c 1634 /* Process numbers. */
13863333 1635 if (c == '.' || isdigit (c))
bfa74976
RS
1636 @{
1637 ungetc (c, stdin);
1638 scanf ("%lf", &yylval);
1639 return NUM;
1640 @}
1641@end group
1642@group
72d2299c 1643 /* Return end-of-input. */
13863333 1644 if (c == EOF)
bfa74976 1645 return 0;
72d2299c 1646 /* Return a single char. */
13863333 1647 return c;
bfa74976
RS
1648@}
1649@end group
1650@end example
1651
342b8b6e 1652@node Rpcalc Main
bfa74976
RS
1653@subsection The Controlling Function
1654@cindex controlling function
1655@cindex main function in simple example
1656
1657In keeping with the spirit of this example, the controlling function is
1658kept to the bare minimum. The only requirement is that it call
1659@code{yyparse} to start the process of parsing.
1660
1661@example
1662@group
13863333
AD
1663int
1664main (void)
bfa74976 1665@{
13863333 1666 return yyparse ();
bfa74976
RS
1667@}
1668@end group
1669@end example
1670
342b8b6e 1671@node Rpcalc Error
bfa74976
RS
1672@subsection The Error Reporting Routine
1673@cindex error reporting routine
1674
1675When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1676function @code{yyerror} to print an error message (usually but not
6e649e65 1677always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1678@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1679here is the definition we will use:
bfa74976
RS
1680
1681@example
1682@group
1683#include <stdio.h>
1684
38a92d50 1685/* Called by yyparse on error. */
13863333 1686void
38a92d50 1687yyerror (char const *s)
bfa74976 1688@{
4e03e201 1689 fprintf (stderr, "%s\n", s);
bfa74976
RS
1690@}
1691@end group
1692@end example
1693
1694After @code{yyerror} returns, the Bison parser may recover from the error
1695and continue parsing if the grammar contains a suitable error rule
1696(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1697have not written any error rules in this example, so any invalid input will
1698cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1699real calculator, but it is adequate for the first example.
bfa74976 1700
342b8b6e 1701@node Rpcalc Gen
bfa74976
RS
1702@subsection Running Bison to Make the Parser
1703@cindex running Bison (introduction)
1704
ceed8467
AD
1705Before running Bison to produce a parser, we need to decide how to
1706arrange all the source code in one or more source files. For such a
1707simple example, the easiest thing is to put everything in one file. The
1708definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1709end, in the epilogue of the file
75f5aaea 1710(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1711
1712For a large project, you would probably have several source files, and use
1713@code{make} to arrange to recompile them.
1714
1715With all the source in a single file, you use the following command to
1716convert it into a parser file:
1717
1718@example
1719bison @var{file_name}.y
1720@end example
1721
1722@noindent
1723In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
c827f760 1724@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c},
72d2299c 1725removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1726Bison contains the source code for @code{yyparse}. The additional
1727functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1728are copied verbatim to the output.
1729
342b8b6e 1730@node Rpcalc Compile
bfa74976
RS
1731@subsection Compiling the Parser File
1732@cindex compiling the parser
1733
1734Here is how to compile and run the parser file:
1735
1736@example
1737@group
1738# @r{List files in current directory.}
9edcd895 1739$ @kbd{ls}
bfa74976
RS
1740rpcalc.tab.c rpcalc.y
1741@end group
1742
1743@group
1744# @r{Compile the Bison parser.}
1745# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1746$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1747@end group
1748
1749@group
1750# @r{List files again.}
9edcd895 1751$ @kbd{ls}
bfa74976
RS
1752rpcalc rpcalc.tab.c rpcalc.y
1753@end group
1754@end example
1755
1756The file @file{rpcalc} now contains the executable code. Here is an
1757example session using @code{rpcalc}.
1758
1759@example
9edcd895
AD
1760$ @kbd{rpcalc}
1761@kbd{4 9 +}
bfa74976 176213
9edcd895 1763@kbd{3 7 + 3 4 5 *+-}
bfa74976 1764-13
9edcd895 1765@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 176613
9edcd895 1767@kbd{5 6 / 4 n +}
bfa74976 1768-3.166666667
9edcd895 1769@kbd{3 4 ^} @r{Exponentiation}
bfa74976 177081
9edcd895
AD
1771@kbd{^D} @r{End-of-file indicator}
1772$
bfa74976
RS
1773@end example
1774
342b8b6e 1775@node Infix Calc
bfa74976
RS
1776@section Infix Notation Calculator: @code{calc}
1777@cindex infix notation calculator
1778@cindex @code{calc}
1779@cindex calculator, infix notation
1780
1781We now modify rpcalc to handle infix operators instead of postfix. Infix
1782notation involves the concept of operator precedence and the need for
1783parentheses nested to arbitrary depth. Here is the Bison code for
1784@file{calc.y}, an infix desk-top calculator.
1785
1786@example
38a92d50 1787/* Infix notation calculator. */
bfa74976
RS
1788
1789%@{
38a92d50
PE
1790 #define YYSTYPE double
1791 #include <math.h>
1792 #include <stdio.h>
1793 int yylex (void);
1794 void yyerror (char const *);
bfa74976
RS
1795%@}
1796
38a92d50 1797/* Bison declarations. */
bfa74976
RS
1798%token NUM
1799%left '-' '+'
1800%left '*' '/'
1801%left NEG /* negation--unary minus */
38a92d50 1802%right '^' /* exponentiation */
bfa74976 1803
38a92d50
PE
1804%% /* The grammar follows. */
1805input: /* empty */
bfa74976
RS
1806 | input line
1807;
1808
1809line: '\n'
1810 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1811;
1812
1813exp: NUM @{ $$ = $1; @}
1814 | exp '+' exp @{ $$ = $1 + $3; @}
1815 | exp '-' exp @{ $$ = $1 - $3; @}
1816 | exp '*' exp @{ $$ = $1 * $3; @}
1817 | exp '/' exp @{ $$ = $1 / $3; @}
1818 | '-' exp %prec NEG @{ $$ = -$2; @}
1819 | exp '^' exp @{ $$ = pow ($1, $3); @}
1820 | '(' exp ')' @{ $$ = $2; @}
1821;
1822%%
1823@end example
1824
1825@noindent
ceed8467
AD
1826The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1827same as before.
bfa74976
RS
1828
1829There are two important new features shown in this code.
1830
1831In the second section (Bison declarations), @code{%left} declares token
1832types and says they are left-associative operators. The declarations
1833@code{%left} and @code{%right} (right associativity) take the place of
1834@code{%token} which is used to declare a token type name without
1835associativity. (These tokens are single-character literals, which
1836ordinarily don't need to be declared. We declare them here to specify
1837the associativity.)
1838
1839Operator precedence is determined by the line ordering of the
1840declarations; the higher the line number of the declaration (lower on
1841the page or screen), the higher the precedence. Hence, exponentiation
1842has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1843by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1844Precedence}.
bfa74976 1845
704a47c4
AD
1846The other important new feature is the @code{%prec} in the grammar
1847section for the unary minus operator. The @code{%prec} simply instructs
1848Bison that the rule @samp{| '-' exp} has the same precedence as
1849@code{NEG}---in this case the next-to-highest. @xref{Contextual
1850Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1851
1852Here is a sample run of @file{calc.y}:
1853
1854@need 500
1855@example
9edcd895
AD
1856$ @kbd{calc}
1857@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 18586.880952381
9edcd895 1859@kbd{-56 + 2}
bfa74976 1860-54
9edcd895 1861@kbd{3 ^ 2}
bfa74976
RS
18629
1863@end example
1864
342b8b6e 1865@node Simple Error Recovery
bfa74976
RS
1866@section Simple Error Recovery
1867@cindex error recovery, simple
1868
1869Up to this point, this manual has not addressed the issue of @dfn{error
1870recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1871error. All we have handled is error reporting with @code{yyerror}.
1872Recall that by default @code{yyparse} returns after calling
1873@code{yyerror}. This means that an erroneous input line causes the
1874calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1875
1876The Bison language itself includes the reserved word @code{error}, which
1877may be included in the grammar rules. In the example below it has
1878been added to one of the alternatives for @code{line}:
1879
1880@example
1881@group
1882line: '\n'
1883 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1884 | error '\n' @{ yyerrok; @}
1885;
1886@end group
1887@end example
1888
ceed8467 1889This addition to the grammar allows for simple error recovery in the
6e649e65 1890event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1891read, the error will be recognized by the third rule for @code{line},
1892and parsing will continue. (The @code{yyerror} function is still called
1893upon to print its message as well.) The action executes the statement
1894@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1895that error recovery is complete (@pxref{Error Recovery}). Note the
1896difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1897misprint.
bfa74976
RS
1898
1899This form of error recovery deals with syntax errors. There are other
1900kinds of errors; for example, division by zero, which raises an exception
1901signal that is normally fatal. A real calculator program must handle this
1902signal and use @code{longjmp} to return to @code{main} and resume parsing
1903input lines; it would also have to discard the rest of the current line of
1904input. We won't discuss this issue further because it is not specific to
1905Bison programs.
1906
342b8b6e
AD
1907@node Location Tracking Calc
1908@section Location Tracking Calculator: @code{ltcalc}
1909@cindex location tracking calculator
1910@cindex @code{ltcalc}
1911@cindex calculator, location tracking
1912
9edcd895
AD
1913This example extends the infix notation calculator with location
1914tracking. This feature will be used to improve the error messages. For
1915the sake of clarity, this example is a simple integer calculator, since
1916most of the work needed to use locations will be done in the lexical
72d2299c 1917analyzer.
342b8b6e
AD
1918
1919@menu
1920* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1921* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1922* Lexer: Ltcalc Lexer. The lexical analyzer.
1923@end menu
1924
1925@node Ltcalc Decls
1926@subsection Declarations for @code{ltcalc}
1927
9edcd895
AD
1928The C and Bison declarations for the location tracking calculator are
1929the same as the declarations for the infix notation calculator.
342b8b6e
AD
1930
1931@example
1932/* Location tracking calculator. */
1933
1934%@{
38a92d50
PE
1935 #define YYSTYPE int
1936 #include <math.h>
1937 int yylex (void);
1938 void yyerror (char const *);
342b8b6e
AD
1939%@}
1940
1941/* Bison declarations. */
1942%token NUM
1943
1944%left '-' '+'
1945%left '*' '/'
1946%left NEG
1947%right '^'
1948
38a92d50 1949%% /* The grammar follows. */
342b8b6e
AD
1950@end example
1951
9edcd895
AD
1952@noindent
1953Note there are no declarations specific to locations. Defining a data
1954type for storing locations is not needed: we will use the type provided
1955by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1956four member structure with the following integer fields:
1957@code{first_line}, @code{first_column}, @code{last_line} and
1958@code{last_column}.
342b8b6e
AD
1959
1960@node Ltcalc Rules
1961@subsection Grammar Rules for @code{ltcalc}
1962
9edcd895
AD
1963Whether handling locations or not has no effect on the syntax of your
1964language. Therefore, grammar rules for this example will be very close
1965to those of the previous example: we will only modify them to benefit
1966from the new information.
342b8b6e 1967
9edcd895
AD
1968Here, we will use locations to report divisions by zero, and locate the
1969wrong expressions or subexpressions.
342b8b6e
AD
1970
1971@example
1972@group
1973input : /* empty */
1974 | input line
1975;
1976@end group
1977
1978@group
1979line : '\n'
1980 | exp '\n' @{ printf ("%d\n", $1); @}
1981;
1982@end group
1983
1984@group
1985exp : NUM @{ $$ = $1; @}
1986 | exp '+' exp @{ $$ = $1 + $3; @}
1987 | exp '-' exp @{ $$ = $1 - $3; @}
1988 | exp '*' exp @{ $$ = $1 * $3; @}
1989@end group
342b8b6e 1990@group
9edcd895 1991 | exp '/' exp
342b8b6e
AD
1992 @{
1993 if ($3)
1994 $$ = $1 / $3;
1995 else
1996 @{
1997 $$ = 1;
9edcd895
AD
1998 fprintf (stderr, "%d.%d-%d.%d: division by zero",
1999 @@3.first_line, @@3.first_column,
2000 @@3.last_line, @@3.last_column);
342b8b6e
AD
2001 @}
2002 @}
2003@end group
2004@group
2005 | '-' exp %preg NEG @{ $$ = -$2; @}
2006 | exp '^' exp @{ $$ = pow ($1, $3); @}
2007 | '(' exp ')' @{ $$ = $2; @}
2008@end group
2009@end example
2010
2011This code shows how to reach locations inside of semantic actions, by
2012using the pseudo-variables @code{@@@var{n}} for rule components, and the
2013pseudo-variable @code{@@$} for groupings.
2014
9edcd895
AD
2015We don't need to assign a value to @code{@@$}: the output parser does it
2016automatically. By default, before executing the C code of each action,
2017@code{@@$} is set to range from the beginning of @code{@@1} to the end
2018of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2019can be redefined (@pxref{Location Default Action, , Default Action for
2020Locations}), and for very specific rules, @code{@@$} can be computed by
2021hand.
342b8b6e
AD
2022
2023@node Ltcalc Lexer
2024@subsection The @code{ltcalc} Lexical Analyzer.
2025
9edcd895 2026Until now, we relied on Bison's defaults to enable location
72d2299c 2027tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2028able to feed the parser with the token locations, as it already does for
2029semantic values.
342b8b6e 2030
9edcd895
AD
2031To this end, we must take into account every single character of the
2032input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2033
2034@example
2035@group
2036int
2037yylex (void)
2038@{
2039 int c;
18b519c0 2040@end group
342b8b6e 2041
18b519c0 2042@group
72d2299c 2043 /* Skip white space. */
342b8b6e
AD
2044 while ((c = getchar ()) == ' ' || c == '\t')
2045 ++yylloc.last_column;
18b519c0 2046@end group
342b8b6e 2047
18b519c0 2048@group
72d2299c 2049 /* Step. */
342b8b6e
AD
2050 yylloc.first_line = yylloc.last_line;
2051 yylloc.first_column = yylloc.last_column;
2052@end group
2053
2054@group
72d2299c 2055 /* Process numbers. */
342b8b6e
AD
2056 if (isdigit (c))
2057 @{
2058 yylval = c - '0';
2059 ++yylloc.last_column;
2060 while (isdigit (c = getchar ()))
2061 @{
2062 ++yylloc.last_column;
2063 yylval = yylval * 10 + c - '0';
2064 @}
2065 ungetc (c, stdin);
2066 return NUM;
2067 @}
2068@end group
2069
72d2299c 2070 /* Return end-of-input. */
342b8b6e
AD
2071 if (c == EOF)
2072 return 0;
2073
72d2299c 2074 /* Return a single char, and update location. */
342b8b6e
AD
2075 if (c == '\n')
2076 @{
2077 ++yylloc.last_line;
2078 yylloc.last_column = 0;
2079 @}
2080 else
2081 ++yylloc.last_column;
2082 return c;
2083@}
2084@end example
2085
9edcd895
AD
2086Basically, the lexical analyzer performs the same processing as before:
2087it skips blanks and tabs, and reads numbers or single-character tokens.
2088In addition, it updates @code{yylloc}, the global variable (of type
2089@code{YYLTYPE}) containing the token's location.
342b8b6e 2090
9edcd895 2091Now, each time this function returns a token, the parser has its number
72d2299c 2092as well as its semantic value, and its location in the text. The last
9edcd895
AD
2093needed change is to initialize @code{yylloc}, for example in the
2094controlling function:
342b8b6e
AD
2095
2096@example
9edcd895 2097@group
342b8b6e
AD
2098int
2099main (void)
2100@{
2101 yylloc.first_line = yylloc.last_line = 1;
2102 yylloc.first_column = yylloc.last_column = 0;
2103 return yyparse ();
2104@}
9edcd895 2105@end group
342b8b6e
AD
2106@end example
2107
9edcd895
AD
2108Remember that computing locations is not a matter of syntax. Every
2109character must be associated to a location update, whether it is in
2110valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2111
2112@node Multi-function Calc
bfa74976
RS
2113@section Multi-Function Calculator: @code{mfcalc}
2114@cindex multi-function calculator
2115@cindex @code{mfcalc}
2116@cindex calculator, multi-function
2117
2118Now that the basics of Bison have been discussed, it is time to move on to
2119a more advanced problem. The above calculators provided only five
2120functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2121be nice to have a calculator that provides other mathematical functions such
2122as @code{sin}, @code{cos}, etc.
2123
2124It is easy to add new operators to the infix calculator as long as they are
2125only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 2126back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
2127adding a new operator. But we want something more flexible: built-in
2128functions whose syntax has this form:
2129
2130@example
2131@var{function_name} (@var{argument})
2132@end example
2133
2134@noindent
2135At the same time, we will add memory to the calculator, by allowing you
2136to create named variables, store values in them, and use them later.
2137Here is a sample session with the multi-function calculator:
2138
2139@example
9edcd895
AD
2140$ @kbd{mfcalc}
2141@kbd{pi = 3.141592653589}
bfa74976 21423.1415926536
9edcd895 2143@kbd{sin(pi)}
bfa74976 21440.0000000000
9edcd895 2145@kbd{alpha = beta1 = 2.3}
bfa74976 21462.3000000000
9edcd895 2147@kbd{alpha}
bfa74976 21482.3000000000
9edcd895 2149@kbd{ln(alpha)}
bfa74976 21500.8329091229
9edcd895 2151@kbd{exp(ln(beta1))}
bfa74976 21522.3000000000
9edcd895 2153$
bfa74976
RS
2154@end example
2155
2156Note that multiple assignment and nested function calls are permitted.
2157
2158@menu
2159* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2160* Rules: Mfcalc Rules. Grammar rules for the calculator.
2161* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2162@end menu
2163
342b8b6e 2164@node Mfcalc Decl
bfa74976
RS
2165@subsection Declarations for @code{mfcalc}
2166
2167Here are the C and Bison declarations for the multi-function calculator.
2168
2169@smallexample
18b519c0 2170@group
bfa74976 2171%@{
38a92d50
PE
2172 #include <math.h> /* For math functions, cos(), sin(), etc. */
2173 #include "calc.h" /* Contains definition of `symrec'. */
2174 int yylex (void);
2175 void yyerror (char const *);
bfa74976 2176%@}
18b519c0
AD
2177@end group
2178@group
bfa74976 2179%union @{
38a92d50
PE
2180 double val; /* For returning numbers. */
2181 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2182@}
18b519c0 2183@end group
38a92d50
PE
2184%token <val> NUM /* Simple double precision number. */
2185%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2186%type <val> exp
2187
18b519c0 2188@group
bfa74976
RS
2189%right '='
2190%left '-' '+'
2191%left '*' '/'
38a92d50
PE
2192%left NEG /* negation--unary minus */
2193%right '^' /* exponentiation */
18b519c0 2194@end group
38a92d50 2195%% /* The grammar follows. */
bfa74976
RS
2196@end smallexample
2197
2198The above grammar introduces only two new features of the Bison language.
2199These features allow semantic values to have various data types
2200(@pxref{Multiple Types, ,More Than One Value Type}).
2201
2202The @code{%union} declaration specifies the entire list of possible types;
2203this is instead of defining @code{YYSTYPE}. The allowable types are now
2204double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2205the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2206
2207Since values can now have various types, it is necessary to associate a
2208type with each grammar symbol whose semantic value is used. These symbols
2209are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2210declarations are augmented with information about their data type (placed
2211between angle brackets).
2212
704a47c4
AD
2213The Bison construct @code{%type} is used for declaring nonterminal
2214symbols, just as @code{%token} is used for declaring token types. We
2215have not used @code{%type} before because nonterminal symbols are
2216normally declared implicitly by the rules that define them. But
2217@code{exp} must be declared explicitly so we can specify its value type.
2218@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2219
342b8b6e 2220@node Mfcalc Rules
bfa74976
RS
2221@subsection Grammar Rules for @code{mfcalc}
2222
2223Here are the grammar rules for the multi-function calculator.
2224Most of them are copied directly from @code{calc}; three rules,
2225those which mention @code{VAR} or @code{FNCT}, are new.
2226
2227@smallexample
18b519c0 2228@group
bfa74976
RS
2229input: /* empty */
2230 | input line
2231;
18b519c0 2232@end group
bfa74976 2233
18b519c0 2234@group
bfa74976
RS
2235line:
2236 '\n'
2237 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2238 | error '\n' @{ yyerrok; @}
2239;
18b519c0 2240@end group
bfa74976 2241
18b519c0 2242@group
bfa74976
RS
2243exp: NUM @{ $$ = $1; @}
2244 | VAR @{ $$ = $1->value.var; @}
2245 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2246 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2247 | exp '+' exp @{ $$ = $1 + $3; @}
2248 | exp '-' exp @{ $$ = $1 - $3; @}
2249 | exp '*' exp @{ $$ = $1 * $3; @}
2250 | exp '/' exp @{ $$ = $1 / $3; @}
2251 | '-' exp %prec NEG @{ $$ = -$2; @}
2252 | exp '^' exp @{ $$ = pow ($1, $3); @}
2253 | '(' exp ')' @{ $$ = $2; @}
2254;
18b519c0 2255@end group
38a92d50 2256/* End of grammar. */
bfa74976
RS
2257%%
2258@end smallexample
2259
342b8b6e 2260@node Mfcalc Symtab
bfa74976
RS
2261@subsection The @code{mfcalc} Symbol Table
2262@cindex symbol table example
2263
2264The multi-function calculator requires a symbol table to keep track of the
2265names and meanings of variables and functions. This doesn't affect the
2266grammar rules (except for the actions) or the Bison declarations, but it
2267requires some additional C functions for support.
2268
2269The symbol table itself consists of a linked list of records. Its
2270definition, which is kept in the header @file{calc.h}, is as follows. It
2271provides for either functions or variables to be placed in the table.
2272
2273@smallexample
2274@group
38a92d50 2275/* Function type. */
32dfccf8 2276typedef double (*func_t) (double);
72f889cc 2277@end group
32dfccf8 2278
72f889cc 2279@group
38a92d50 2280/* Data type for links in the chain of symbols. */
bfa74976
RS
2281struct symrec
2282@{
38a92d50 2283 char *name; /* name of symbol */
bfa74976 2284 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2285 union
2286 @{
38a92d50
PE
2287 double var; /* value of a VAR */
2288 func_t fnctptr; /* value of a FNCT */
bfa74976 2289 @} value;
38a92d50 2290 struct symrec *next; /* link field */
bfa74976
RS
2291@};
2292@end group
2293
2294@group
2295typedef struct symrec symrec;
2296
38a92d50 2297/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2298extern symrec *sym_table;
2299
a730d142 2300symrec *putsym (char const *, int);
38a92d50 2301symrec *getsym (char const *);
bfa74976
RS
2302@end group
2303@end smallexample
2304
2305The new version of @code{main} includes a call to @code{init_table}, a
2306function that initializes the symbol table. Here it is, and
2307@code{init_table} as well:
2308
2309@smallexample
bfa74976
RS
2310#include <stdio.h>
2311
18b519c0 2312@group
38a92d50 2313/* Called by yyparse on error. */
13863333 2314void
38a92d50 2315yyerror (char const *s)
bfa74976
RS
2316@{
2317 printf ("%s\n", s);
2318@}
18b519c0 2319@end group
bfa74976 2320
18b519c0 2321@group
bfa74976
RS
2322struct init
2323@{
38a92d50
PE
2324 char const *fname;
2325 double (*fnct) (double);
bfa74976
RS
2326@};
2327@end group
2328
2329@group
38a92d50 2330struct init const arith_fncts[] =
13863333 2331@{
32dfccf8
AD
2332 "sin", sin,
2333 "cos", cos,
13863333 2334 "atan", atan,
32dfccf8
AD
2335 "ln", log,
2336 "exp", exp,
13863333
AD
2337 "sqrt", sqrt,
2338 0, 0
2339@};
18b519c0 2340@end group
bfa74976 2341
18b519c0 2342@group
bfa74976 2343/* The symbol table: a chain of `struct symrec'. */
38a92d50 2344symrec *sym_table;
bfa74976
RS
2345@end group
2346
2347@group
72d2299c 2348/* Put arithmetic functions in table. */
13863333
AD
2349void
2350init_table (void)
bfa74976
RS
2351@{
2352 int i;
2353 symrec *ptr;
2354 for (i = 0; arith_fncts[i].fname != 0; i++)
2355 @{
2356 ptr = putsym (arith_fncts[i].fname, FNCT);
2357 ptr->value.fnctptr = arith_fncts[i].fnct;
2358 @}
2359@}
2360@end group
38a92d50
PE
2361
2362@group
2363int
2364main (void)
2365@{
2366 init_table ();
2367 return yyparse ();
2368@}
2369@end group
bfa74976
RS
2370@end smallexample
2371
2372By simply editing the initialization list and adding the necessary include
2373files, you can add additional functions to the calculator.
2374
2375Two important functions allow look-up and installation of symbols in the
2376symbol table. The function @code{putsym} is passed a name and the type
2377(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2378linked to the front of the list, and a pointer to the object is returned.
2379The function @code{getsym} is passed the name of the symbol to look up. If
2380found, a pointer to that symbol is returned; otherwise zero is returned.
2381
2382@smallexample
2383symrec *
38a92d50 2384putsym (char const *sym_name, int sym_type)
bfa74976
RS
2385@{
2386 symrec *ptr;
2387 ptr = (symrec *) malloc (sizeof (symrec));
2388 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2389 strcpy (ptr->name,sym_name);
2390 ptr->type = sym_type;
72d2299c 2391 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2392 ptr->next = (struct symrec *)sym_table;
2393 sym_table = ptr;
2394 return ptr;
2395@}
2396
2397symrec *
38a92d50 2398getsym (char const *sym_name)
bfa74976
RS
2399@{
2400 symrec *ptr;
2401 for (ptr = sym_table; ptr != (symrec *) 0;
2402 ptr = (symrec *)ptr->next)
2403 if (strcmp (ptr->name,sym_name) == 0)
2404 return ptr;
2405 return 0;
2406@}
2407@end smallexample
2408
2409The function @code{yylex} must now recognize variables, numeric values, and
2410the single-character arithmetic operators. Strings of alphanumeric
14ded682 2411characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2412functions depending on what the symbol table says about them.
2413
2414The string is passed to @code{getsym} for look up in the symbol table. If
2415the name appears in the table, a pointer to its location and its type
2416(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2417already in the table, then it is installed as a @code{VAR} using
2418@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2419returned to @code{yyparse}.
bfa74976
RS
2420
2421No change is needed in the handling of numeric values and arithmetic
2422operators in @code{yylex}.
2423
2424@smallexample
2425@group
2426#include <ctype.h>
18b519c0 2427@end group
13863333 2428
18b519c0 2429@group
13863333
AD
2430int
2431yylex (void)
bfa74976
RS
2432@{
2433 int c;
2434
72d2299c 2435 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2436 while ((c = getchar ()) == ' ' || c == '\t');
2437
2438 if (c == EOF)
2439 return 0;
2440@end group
2441
2442@group
2443 /* Char starts a number => parse the number. */
2444 if (c == '.' || isdigit (c))
2445 @{
2446 ungetc (c, stdin);
2447 scanf ("%lf", &yylval.val);
2448 return NUM;
2449 @}
2450@end group
2451
2452@group
2453 /* Char starts an identifier => read the name. */
2454 if (isalpha (c))
2455 @{
2456 symrec *s;
2457 static char *symbuf = 0;
2458 static int length = 0;
2459 int i;
2460@end group
2461
2462@group
2463 /* Initially make the buffer long enough
2464 for a 40-character symbol name. */
2465 if (length == 0)
2466 length = 40, symbuf = (char *)malloc (length + 1);
2467
2468 i = 0;
2469 do
2470@end group
2471@group
2472 @{
2473 /* If buffer is full, make it bigger. */
2474 if (i == length)
2475 @{
2476 length *= 2;
18b519c0 2477 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2478 @}
2479 /* Add this character to the buffer. */
2480 symbuf[i++] = c;
2481 /* Get another character. */
2482 c = getchar ();
2483 @}
2484@end group
2485@group
72d2299c 2486 while (isalnum (c));
bfa74976
RS
2487
2488 ungetc (c, stdin);
2489 symbuf[i] = '\0';
2490@end group
2491
2492@group
2493 s = getsym (symbuf);
2494 if (s == 0)
2495 s = putsym (symbuf, VAR);
2496 yylval.tptr = s;
2497 return s->type;
2498 @}
2499
2500 /* Any other character is a token by itself. */
2501 return c;
2502@}
2503@end group
2504@end smallexample
2505
72d2299c 2506This program is both powerful and flexible. You may easily add new
704a47c4
AD
2507functions, and it is a simple job to modify this code to install
2508predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2509
342b8b6e 2510@node Exercises
bfa74976
RS
2511@section Exercises
2512@cindex exercises
2513
2514@enumerate
2515@item
2516Add some new functions from @file{math.h} to the initialization list.
2517
2518@item
2519Add another array that contains constants and their values. Then
2520modify @code{init_table} to add these constants to the symbol table.
2521It will be easiest to give the constants type @code{VAR}.
2522
2523@item
2524Make the program report an error if the user refers to an
2525uninitialized variable in any way except to store a value in it.
2526@end enumerate
2527
342b8b6e 2528@node Grammar File
bfa74976
RS
2529@chapter Bison Grammar Files
2530
2531Bison takes as input a context-free grammar specification and produces a
2532C-language function that recognizes correct instances of the grammar.
2533
2534The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2535@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2536
2537@menu
2538* Grammar Outline:: Overall layout of the grammar file.
2539* Symbols:: Terminal and nonterminal symbols.
2540* Rules:: How to write grammar rules.
2541* Recursion:: Writing recursive rules.
2542* Semantics:: Semantic values and actions.
847bf1f5 2543* Locations:: Locations and actions.
bfa74976
RS
2544* Declarations:: All kinds of Bison declarations are described here.
2545* Multiple Parsers:: Putting more than one Bison parser in one program.
2546@end menu
2547
342b8b6e 2548@node Grammar Outline
bfa74976
RS
2549@section Outline of a Bison Grammar
2550
2551A Bison grammar file has four main sections, shown here with the
2552appropriate delimiters:
2553
2554@example
2555%@{
38a92d50 2556 @var{Prologue}
bfa74976
RS
2557%@}
2558
2559@var{Bison declarations}
2560
2561%%
2562@var{Grammar rules}
2563%%
2564
75f5aaea 2565@var{Epilogue}
bfa74976
RS
2566@end example
2567
2568Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2569As a @acronym{GNU} extension, @samp{//} introduces a comment that
2570continues until end of line.
bfa74976
RS
2571
2572@menu
75f5aaea 2573* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2574* Bison Declarations:: Syntax and usage of the Bison declarations section.
2575* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2576* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2577@end menu
2578
38a92d50 2579@node Prologue
75f5aaea
MA
2580@subsection The prologue
2581@cindex declarations section
2582@cindex Prologue
2583@cindex declarations
bfa74976 2584
08e49d20 2585The @var{Prologue} section contains macro definitions and
bfa74976
RS
2586declarations of functions and variables that are used in the actions in the
2587grammar rules. These are copied to the beginning of the parser file so
2588that they precede the definition of @code{yyparse}. You can use
2589@samp{#include} to get the declarations from a header file. If you don't
2590need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2591delimiters that bracket this section.
2592
c732d2c6
AD
2593You may have more than one @var{Prologue} section, intermixed with the
2594@var{Bison declarations}. This allows you to have C and Bison
2595declarations that refer to each other. For example, the @code{%union}
2596declaration may use types defined in a header file, and you may wish to
2597prototype functions that take arguments of type @code{YYSTYPE}. This
2598can be done with two @var{Prologue} blocks, one before and one after the
2599@code{%union} declaration.
2600
2601@smallexample
2602%@{
38a92d50
PE
2603 #include <stdio.h>
2604 #include "ptypes.h"
c732d2c6
AD
2605%@}
2606
2607%union @{
779e7ceb 2608 long int n;
c732d2c6
AD
2609 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2610@}
2611
2612%@{
38a92d50
PE
2613 static void print_token_value (FILE *, int, YYSTYPE);
2614 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2615%@}
2616
2617@dots{}
2618@end smallexample
2619
342b8b6e 2620@node Bison Declarations
bfa74976
RS
2621@subsection The Bison Declarations Section
2622@cindex Bison declarations (introduction)
2623@cindex declarations, Bison (introduction)
2624
2625The @var{Bison declarations} section contains declarations that define
2626terminal and nonterminal symbols, specify precedence, and so on.
2627In some simple grammars you may not need any declarations.
2628@xref{Declarations, ,Bison Declarations}.
2629
342b8b6e 2630@node Grammar Rules
bfa74976
RS
2631@subsection The Grammar Rules Section
2632@cindex grammar rules section
2633@cindex rules section for grammar
2634
2635The @dfn{grammar rules} section contains one or more Bison grammar
2636rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2637
2638There must always be at least one grammar rule, and the first
2639@samp{%%} (which precedes the grammar rules) may never be omitted even
2640if it is the first thing in the file.
2641
38a92d50 2642@node Epilogue
75f5aaea 2643@subsection The epilogue
bfa74976 2644@cindex additional C code section
75f5aaea 2645@cindex epilogue
bfa74976
RS
2646@cindex C code, section for additional
2647
08e49d20
PE
2648The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2649the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2650place to put anything that you want to have in the parser file but which need
2651not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2652definitions of @code{yylex} and @code{yyerror} often go here. Because
2653C requires functions to be declared before being used, you often need
2654to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2655even if you define them in the Epilogue.
75f5aaea 2656@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2657
2658If the last section is empty, you may omit the @samp{%%} that separates it
2659from the grammar rules.
2660
38a92d50
PE
2661The Bison parser itself contains many macros and identifiers whose
2662names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2663good idea to avoid using any such names (except those documented in this
75f5aaea 2664manual) in the epilogue of the grammar file.
bfa74976 2665
342b8b6e 2666@node Symbols
bfa74976
RS
2667@section Symbols, Terminal and Nonterminal
2668@cindex nonterminal symbol
2669@cindex terminal symbol
2670@cindex token type
2671@cindex symbol
2672
2673@dfn{Symbols} in Bison grammars represent the grammatical classifications
2674of the language.
2675
2676A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2677class of syntactically equivalent tokens. You use the symbol in grammar
2678rules to mean that a token in that class is allowed. The symbol is
2679represented in the Bison parser by a numeric code, and the @code{yylex}
2680function returns a token type code to indicate what kind of token has been
2681read. You don't need to know what the code value is; you can use the
2682symbol to stand for it.
2683
2684A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2685groupings. The symbol name is used in writing grammar rules. By convention,
2686it should be all lower case.
2687
2688Symbol names can contain letters, digits (not at the beginning),
2689underscores and periods. Periods make sense only in nonterminals.
2690
931c7513 2691There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2692
2693@itemize @bullet
2694@item
2695A @dfn{named token type} is written with an identifier, like an
c827f760 2696identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2697such name must be defined with a Bison declaration such as
2698@code{%token}. @xref{Token Decl, ,Token Type Names}.
2699
2700@item
2701@cindex character token
2702@cindex literal token
2703@cindex single-character literal
931c7513
RS
2704A @dfn{character token type} (or @dfn{literal character token}) is
2705written in the grammar using the same syntax used in C for character
2706constants; for example, @code{'+'} is a character token type. A
2707character token type doesn't need to be declared unless you need to
2708specify its semantic value data type (@pxref{Value Type, ,Data Types of
2709Semantic Values}), associativity, or precedence (@pxref{Precedence,
2710,Operator Precedence}).
bfa74976
RS
2711
2712By convention, a character token type is used only to represent a
2713token that consists of that particular character. Thus, the token
2714type @code{'+'} is used to represent the character @samp{+} as a
2715token. Nothing enforces this convention, but if you depart from it,
2716your program will confuse other readers.
2717
2718All the usual escape sequences used in character literals in C can be
2719used in Bison as well, but you must not use the null character as a
72d2299c
PE
2720character literal because its numeric code, zero, signifies
2721end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2722for @code{yylex}}). Also, unlike standard C, trigraphs have no
2723special meaning in Bison character literals, nor is backslash-newline
2724allowed.
931c7513
RS
2725
2726@item
2727@cindex string token
2728@cindex literal string token
9ecbd125 2729@cindex multicharacter literal
931c7513
RS
2730A @dfn{literal string token} is written like a C string constant; for
2731example, @code{"<="} is a literal string token. A literal string token
2732doesn't need to be declared unless you need to specify its semantic
14ded682 2733value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2734(@pxref{Precedence}).
2735
2736You can associate the literal string token with a symbolic name as an
2737alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2738Declarations}). If you don't do that, the lexical analyzer has to
2739retrieve the token number for the literal string token from the
2740@code{yytname} table (@pxref{Calling Convention}).
2741
c827f760 2742@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2743
2744By convention, a literal string token is used only to represent a token
2745that consists of that particular string. Thus, you should use the token
2746type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2747does not enforce this convention, but if you depart from it, people who
931c7513
RS
2748read your program will be confused.
2749
2750All the escape sequences used in string literals in C can be used in
92ac3705
PE
2751Bison as well, except that you must not use a null character within a
2752string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2753meaning in Bison string literals, nor is backslash-newline allowed. A
2754literal string token must contain two or more characters; for a token
2755containing just one character, use a character token (see above).
bfa74976
RS
2756@end itemize
2757
2758How you choose to write a terminal symbol has no effect on its
2759grammatical meaning. That depends only on where it appears in rules and
2760on when the parser function returns that symbol.
2761
72d2299c
PE
2762The value returned by @code{yylex} is always one of the terminal
2763symbols, except that a zero or negative value signifies end-of-input.
2764Whichever way you write the token type in the grammar rules, you write
2765it the same way in the definition of @code{yylex}. The numeric code
2766for a character token type is simply the positive numeric code of the
2767character, so @code{yylex} can use the identical value to generate the
2768requisite code, though you may need to convert it to @code{unsigned
2769char} to avoid sign-extension on hosts where @code{char} is signed.
2770Each named token type becomes a C macro in
bfa74976 2771the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2772(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2773@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2774
2775If @code{yylex} is defined in a separate file, you need to arrange for the
2776token-type macro definitions to be available there. Use the @samp{-d}
2777option when you run Bison, so that it will write these macro definitions
2778into a separate header file @file{@var{name}.tab.h} which you can include
2779in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2780
72d2299c
PE
2781If you want to write a grammar that is portable to any Standard C
2782host, you must use only non-null character tokens taken from the basic
c827f760 2783execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2784digits, the 52 lower- and upper-case English letters, and the
2785characters in the following C-language string:
2786
2787@example
2788"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2789@end example
2790
2791The @code{yylex} function and Bison must use a consistent character
2792set and encoding for character tokens. For example, if you run Bison in an
c827f760 2793@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2794in an environment that uses an incompatible character set like
c827f760
PE
2795@acronym{EBCDIC}, the resulting program may not work because the
2796tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2797character tokens. It is standard
e966383b 2798practice for software distributions to contain C source files that
c827f760
PE
2799were generated by Bison in an @acronym{ASCII} environment, so installers on
2800platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2801files before compiling them.
2802
bfa74976
RS
2803The symbol @code{error} is a terminal symbol reserved for error recovery
2804(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2805In particular, @code{yylex} should never return this value. The default
2806value of the error token is 256, unless you explicitly assigned 256 to
2807one of your tokens with a @code{%token} declaration.
bfa74976 2808
342b8b6e 2809@node Rules
bfa74976
RS
2810@section Syntax of Grammar Rules
2811@cindex rule syntax
2812@cindex grammar rule syntax
2813@cindex syntax of grammar rules
2814
2815A Bison grammar rule has the following general form:
2816
2817@example
e425e872 2818@group
bfa74976
RS
2819@var{result}: @var{components}@dots{}
2820 ;
e425e872 2821@end group
bfa74976
RS
2822@end example
2823
2824@noindent
9ecbd125 2825where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2826and @var{components} are various terminal and nonterminal symbols that
13863333 2827are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2828
2829For example,
2830
2831@example
2832@group
2833exp: exp '+' exp
2834 ;
2835@end group
2836@end example
2837
2838@noindent
2839says that two groupings of type @code{exp}, with a @samp{+} token in between,
2840can be combined into a larger grouping of type @code{exp}.
2841
72d2299c
PE
2842White space in rules is significant only to separate symbols. You can add
2843extra white space as you wish.
bfa74976
RS
2844
2845Scattered among the components can be @var{actions} that determine
2846the semantics of the rule. An action looks like this:
2847
2848@example
2849@{@var{C statements}@}
2850@end example
2851
2852@noindent
2853Usually there is only one action and it follows the components.
2854@xref{Actions}.
2855
2856@findex |
2857Multiple rules for the same @var{result} can be written separately or can
2858be joined with the vertical-bar character @samp{|} as follows:
2859
2860@ifinfo
2861@example
2862@var{result}: @var{rule1-components}@dots{}
2863 | @var{rule2-components}@dots{}
2864 @dots{}
2865 ;
2866@end example
2867@end ifinfo
2868@iftex
2869@example
2870@group
2871@var{result}: @var{rule1-components}@dots{}
2872 | @var{rule2-components}@dots{}
2873 @dots{}
2874 ;
2875@end group
2876@end example
2877@end iftex
2878
2879@noindent
2880They are still considered distinct rules even when joined in this way.
2881
2882If @var{components} in a rule is empty, it means that @var{result} can
2883match the empty string. For example, here is how to define a
2884comma-separated sequence of zero or more @code{exp} groupings:
2885
2886@example
2887@group
2888expseq: /* empty */
2889 | expseq1
2890 ;
2891@end group
2892
2893@group
2894expseq1: exp
2895 | expseq1 ',' exp
2896 ;
2897@end group
2898@end example
2899
2900@noindent
2901It is customary to write a comment @samp{/* empty */} in each rule
2902with no components.
2903
342b8b6e 2904@node Recursion
bfa74976
RS
2905@section Recursive Rules
2906@cindex recursive rule
2907
2908A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2909also on its right hand side. Nearly all Bison grammars need to use
2910recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2911of a particular thing. Consider this recursive definition of a
2912comma-separated sequence of one or more expressions:
bfa74976
RS
2913
2914@example
2915@group
2916expseq1: exp
2917 | expseq1 ',' exp
2918 ;
2919@end group
2920@end example
2921
2922@cindex left recursion
2923@cindex right recursion
2924@noindent
2925Since the recursive use of @code{expseq1} is the leftmost symbol in the
2926right hand side, we call this @dfn{left recursion}. By contrast, here
2927the same construct is defined using @dfn{right recursion}:
2928
2929@example
2930@group
2931expseq1: exp
2932 | exp ',' expseq1
2933 ;
2934@end group
2935@end example
2936
2937@noindent
ec3bc396
AD
2938Any kind of sequence can be defined using either left recursion or right
2939recursion, but you should always use left recursion, because it can
2940parse a sequence of any number of elements with bounded stack space.
2941Right recursion uses up space on the Bison stack in proportion to the
2942number of elements in the sequence, because all the elements must be
2943shifted onto the stack before the rule can be applied even once.
2944@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2945of this.
bfa74976
RS
2946
2947@cindex mutual recursion
2948@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2949rule does not appear directly on its right hand side, but does appear
2950in rules for other nonterminals which do appear on its right hand
13863333 2951side.
bfa74976
RS
2952
2953For example:
2954
2955@example
2956@group
2957expr: primary
2958 | primary '+' primary
2959 ;
2960@end group
2961
2962@group
2963primary: constant
2964 | '(' expr ')'
2965 ;
2966@end group
2967@end example
2968
2969@noindent
2970defines two mutually-recursive nonterminals, since each refers to the
2971other.
2972
342b8b6e 2973@node Semantics
bfa74976
RS
2974@section Defining Language Semantics
2975@cindex defining language semantics
13863333 2976@cindex language semantics, defining
bfa74976
RS
2977
2978The grammar rules for a language determine only the syntax. The semantics
2979are determined by the semantic values associated with various tokens and
2980groupings, and by the actions taken when various groupings are recognized.
2981
2982For example, the calculator calculates properly because the value
2983associated with each expression is the proper number; it adds properly
2984because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2985the numbers associated with @var{x} and @var{y}.
2986
2987@menu
2988* Value Type:: Specifying one data type for all semantic values.
2989* Multiple Types:: Specifying several alternative data types.
2990* Actions:: An action is the semantic definition of a grammar rule.
2991* Action Types:: Specifying data types for actions to operate on.
2992* Mid-Rule Actions:: Most actions go at the end of a rule.
2993 This says when, why and how to use the exceptional
2994 action in the middle of a rule.
2995@end menu
2996
342b8b6e 2997@node Value Type
bfa74976
RS
2998@subsection Data Types of Semantic Values
2999@cindex semantic value type
3000@cindex value type, semantic
3001@cindex data types of semantic values
3002@cindex default data type
3003
3004In a simple program it may be sufficient to use the same data type for
3005the semantic values of all language constructs. This was true in the
c827f760 3006@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3007Notation Calculator}).
bfa74976
RS
3008
3009Bison's default is to use type @code{int} for all semantic values. To
3010specify some other type, define @code{YYSTYPE} as a macro, like this:
3011
3012@example
3013#define YYSTYPE double
3014@end example
3015
3016@noindent
342b8b6e 3017This macro definition must go in the prologue of the grammar file
75f5aaea 3018(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3019
342b8b6e 3020@node Multiple Types
bfa74976
RS
3021@subsection More Than One Value Type
3022
3023In most programs, you will need different data types for different kinds
3024of tokens and groupings. For example, a numeric constant may need type
779e7ceb 3025@code{int} or @code{long int}, while a string constant needs type @code{char *},
bfa74976
RS
3026and an identifier might need a pointer to an entry in the symbol table.
3027
3028To use more than one data type for semantic values in one parser, Bison
3029requires you to do two things:
3030
3031@itemize @bullet
3032@item
3033Specify the entire collection of possible data types, with the
704a47c4
AD
3034@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3035Value Types}).
bfa74976
RS
3036
3037@item
14ded682
AD
3038Choose one of those types for each symbol (terminal or nonterminal) for
3039which semantic values are used. This is done for tokens with the
3040@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3041and for groupings with the @code{%type} Bison declaration (@pxref{Type
3042Decl, ,Nonterminal Symbols}).
bfa74976
RS
3043@end itemize
3044
342b8b6e 3045@node Actions
bfa74976
RS
3046@subsection Actions
3047@cindex action
3048@vindex $$
3049@vindex $@var{n}
3050
3051An action accompanies a syntactic rule and contains C code to be executed
3052each time an instance of that rule is recognized. The task of most actions
3053is to compute a semantic value for the grouping built by the rule from the
3054semantic values associated with tokens or smaller groupings.
3055
3056An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
3057compound statement in C@. An action can contain any sequence of C
3058statements. Bison does not look for trigraphs, though, so if your C
3059code uses trigraphs you should ensure that they do not affect the
3060nesting of braces or the boundaries of comments, strings, or character
3061literals.
3062
3063An action can be placed at any position in the rule;
704a47c4
AD
3064it is executed at that position. Most rules have just one action at the
3065end of the rule, following all the components. Actions in the middle of
3066a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3067Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3068
3069The C code in an action can refer to the semantic values of the components
3070matched by the rule with the construct @code{$@var{n}}, which stands for
3071the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3072being constructed is @code{$$}. Bison translates both of these
3073constructs into expressions of the appropriate type when it copies the
3074actions into the parser file. @code{$$} is translated to a modifiable
3075lvalue, so it can be assigned to.
bfa74976
RS
3076
3077Here is a typical example:
3078
3079@example
3080@group
3081exp: @dots{}
3082 | exp '+' exp
3083 @{ $$ = $1 + $3; @}
3084@end group
3085@end example
3086
3087@noindent
3088This rule constructs an @code{exp} from two smaller @code{exp} groupings
3089connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3090refer to the semantic values of the two component @code{exp} groupings,
3091which are the first and third symbols on the right hand side of the rule.
3092The sum is stored into @code{$$} so that it becomes the semantic value of
3093the addition-expression just recognized by the rule. If there were a
3094useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3095referred to as @code{$2}.
bfa74976 3096
3ded9a63
AD
3097Note that the vertical-bar character @samp{|} is really a rule
3098separator, and actions are attached to a single rule. This is a
3099difference with tools like Flex, for which @samp{|} stands for either
3100``or'', or ``the same action as that of the next rule''. In the
3101following example, the action is triggered only when @samp{b} is found:
3102
3103@example
3104@group
3105a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3106@end group
3107@end example
3108
bfa74976
RS
3109@cindex default action
3110If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3111@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3112becomes the value of the whole rule. Of course, the default action is
3113valid only if the two data types match. There is no meaningful default
3114action for an empty rule; every empty rule must have an explicit action
3115unless the rule's value does not matter.
bfa74976
RS
3116
3117@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3118to tokens and groupings on the stack @emph{before} those that match the
3119current rule. This is a very risky practice, and to use it reliably
3120you must be certain of the context in which the rule is applied. Here
3121is a case in which you can use this reliably:
3122
3123@example
3124@group
3125foo: expr bar '+' expr @{ @dots{} @}
3126 | expr bar '-' expr @{ @dots{} @}
3127 ;
3128@end group
3129
3130@group
3131bar: /* empty */
3132 @{ previous_expr = $0; @}
3133 ;
3134@end group
3135@end example
3136
3137As long as @code{bar} is used only in the fashion shown here, @code{$0}
3138always refers to the @code{expr} which precedes @code{bar} in the
3139definition of @code{foo}.
3140
342b8b6e 3141@node Action Types
bfa74976
RS
3142@subsection Data Types of Values in Actions
3143@cindex action data types
3144@cindex data types in actions
3145
3146If you have chosen a single data type for semantic values, the @code{$$}
3147and @code{$@var{n}} constructs always have that data type.
3148
3149If you have used @code{%union} to specify a variety of data types, then you
3150must declare a choice among these types for each terminal or nonterminal
3151symbol that can have a semantic value. Then each time you use @code{$$} or
3152@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3153in the rule. In this example,
bfa74976
RS
3154
3155@example
3156@group
3157exp: @dots{}
3158 | exp '+' exp
3159 @{ $$ = $1 + $3; @}
3160@end group
3161@end example
3162
3163@noindent
3164@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3165have the data type declared for the nonterminal symbol @code{exp}. If
3166@code{$2} were used, it would have the data type declared for the
e0c471a9 3167terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3168
3169Alternatively, you can specify the data type when you refer to the value,
3170by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3171reference. For example, if you have defined types as shown here:
3172
3173@example
3174@group
3175%union @{
3176 int itype;
3177 double dtype;
3178@}
3179@end group
3180@end example
3181
3182@noindent
3183then you can write @code{$<itype>1} to refer to the first subunit of the
3184rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3185
342b8b6e 3186@node Mid-Rule Actions
bfa74976
RS
3187@subsection Actions in Mid-Rule
3188@cindex actions in mid-rule
3189@cindex mid-rule actions
3190
3191Occasionally it is useful to put an action in the middle of a rule.
3192These actions are written just like usual end-of-rule actions, but they
3193are executed before the parser even recognizes the following components.
3194
3195A mid-rule action may refer to the components preceding it using
3196@code{$@var{n}}, but it may not refer to subsequent components because
3197it is run before they are parsed.
3198
3199The mid-rule action itself counts as one of the components of the rule.
3200This makes a difference when there is another action later in the same rule
3201(and usually there is another at the end): you have to count the actions
3202along with the symbols when working out which number @var{n} to use in
3203@code{$@var{n}}.
3204
3205The mid-rule action can also have a semantic value. The action can set
3206its value with an assignment to @code{$$}, and actions later in the rule
3207can refer to the value using @code{$@var{n}}. Since there is no symbol
3208to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3209in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3210specify a data type each time you refer to this value.
bfa74976
RS
3211
3212There is no way to set the value of the entire rule with a mid-rule
3213action, because assignments to @code{$$} do not have that effect. The
3214only way to set the value for the entire rule is with an ordinary action
3215at the end of the rule.
3216
3217Here is an example from a hypothetical compiler, handling a @code{let}
3218statement that looks like @samp{let (@var{variable}) @var{statement}} and
3219serves to create a variable named @var{variable} temporarily for the
3220duration of @var{statement}. To parse this construct, we must put
3221@var{variable} into the symbol table while @var{statement} is parsed, then
3222remove it afterward. Here is how it is done:
3223
3224@example
3225@group
3226stmt: LET '(' var ')'
3227 @{ $<context>$ = push_context ();
3228 declare_variable ($3); @}
3229 stmt @{ $$ = $6;
3230 pop_context ($<context>5); @}
3231@end group
3232@end example
3233
3234@noindent
3235As soon as @samp{let (@var{variable})} has been recognized, the first
3236action is run. It saves a copy of the current semantic context (the
3237list of accessible variables) as its semantic value, using alternative
3238@code{context} in the data-type union. Then it calls
3239@code{declare_variable} to add the new variable to that list. Once the
3240first action is finished, the embedded statement @code{stmt} can be
3241parsed. Note that the mid-rule action is component number 5, so the
3242@samp{stmt} is component number 6.
3243
3244After the embedded statement is parsed, its semantic value becomes the
3245value of the entire @code{let}-statement. Then the semantic value from the
3246earlier action is used to restore the prior list of variables. This
3247removes the temporary @code{let}-variable from the list so that it won't
3248appear to exist while the rest of the program is parsed.
3249
3250Taking action before a rule is completely recognized often leads to
3251conflicts since the parser must commit to a parse in order to execute the
3252action. For example, the following two rules, without mid-rule actions,
3253can coexist in a working parser because the parser can shift the open-brace
3254token and look at what follows before deciding whether there is a
3255declaration or not:
3256
3257@example
3258@group
3259compound: '@{' declarations statements '@}'
3260 | '@{' statements '@}'
3261 ;
3262@end group
3263@end example
3264
3265@noindent
3266But when we add a mid-rule action as follows, the rules become nonfunctional:
3267
3268@example
3269@group
3270compound: @{ prepare_for_local_variables (); @}
3271 '@{' declarations statements '@}'
3272@end group
3273@group
3274 | '@{' statements '@}'
3275 ;
3276@end group
3277@end example
3278
3279@noindent
3280Now the parser is forced to decide whether to run the mid-rule action
3281when it has read no farther than the open-brace. In other words, it
3282must commit to using one rule or the other, without sufficient
3283information to do it correctly. (The open-brace token is what is called
3284the @dfn{look-ahead} token at this time, since the parser is still
3285deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3286
3287You might think that you could correct the problem by putting identical
3288actions into the two rules, like this:
3289
3290@example
3291@group
3292compound: @{ prepare_for_local_variables (); @}
3293 '@{' declarations statements '@}'
3294 | @{ prepare_for_local_variables (); @}
3295 '@{' statements '@}'
3296 ;
3297@end group
3298@end example
3299
3300@noindent
3301But this does not help, because Bison does not realize that the two actions
3302are identical. (Bison never tries to understand the C code in an action.)
3303
3304If the grammar is such that a declaration can be distinguished from a
3305statement by the first token (which is true in C), then one solution which
3306does work is to put the action after the open-brace, like this:
3307
3308@example
3309@group
3310compound: '@{' @{ prepare_for_local_variables (); @}
3311 declarations statements '@}'
3312 | '@{' statements '@}'
3313 ;
3314@end group
3315@end example
3316
3317@noindent
3318Now the first token of the following declaration or statement,
3319which would in any case tell Bison which rule to use, can still do so.
3320
3321Another solution is to bury the action inside a nonterminal symbol which
3322serves as a subroutine:
3323
3324@example
3325@group
3326subroutine: /* empty */
3327 @{ prepare_for_local_variables (); @}
3328 ;
3329
3330@end group
3331
3332@group
3333compound: subroutine
3334 '@{' declarations statements '@}'
3335 | subroutine
3336 '@{' statements '@}'
3337 ;
3338@end group
3339@end example
3340
3341@noindent
3342Now Bison can execute the action in the rule for @code{subroutine} without
3343deciding which rule for @code{compound} it will eventually use. Note that
3344the action is now at the end of its rule. Any mid-rule action can be
3345converted to an end-of-rule action in this way, and this is what Bison
3346actually does to implement mid-rule actions.
3347
342b8b6e 3348@node Locations
847bf1f5
AD
3349@section Tracking Locations
3350@cindex location
95923bd6
AD
3351@cindex textual location
3352@cindex location, textual
847bf1f5
AD
3353
3354Though grammar rules and semantic actions are enough to write a fully
72d2299c 3355functional parser, it can be useful to process some additional information,
3e259915
MA
3356especially symbol locations.
3357
704a47c4
AD
3358The way locations are handled is defined by providing a data type, and
3359actions to take when rules are matched.
847bf1f5
AD
3360
3361@menu
3362* Location Type:: Specifying a data type for locations.
3363* Actions and Locations:: Using locations in actions.
3364* Location Default Action:: Defining a general way to compute locations.
3365@end menu
3366
342b8b6e 3367@node Location Type
847bf1f5
AD
3368@subsection Data Type of Locations
3369@cindex data type of locations
3370@cindex default location type
3371
3372Defining a data type for locations is much simpler than for semantic values,
3373since all tokens and groupings always use the same type.
3374
3375The type of locations is specified by defining a macro called @code{YYLTYPE}.
3376When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3377four members:
3378
3379@example
6273355b 3380typedef struct YYLTYPE
847bf1f5
AD
3381@{
3382 int first_line;
3383 int first_column;
3384 int last_line;
3385 int last_column;
6273355b 3386@} YYLTYPE;
847bf1f5
AD
3387@end example
3388
342b8b6e 3389@node Actions and Locations
847bf1f5
AD
3390@subsection Actions and Locations
3391@cindex location actions
3392@cindex actions, location
3393@vindex @@$
3394@vindex @@@var{n}
3395
3396Actions are not only useful for defining language semantics, but also for
3397describing the behavior of the output parser with locations.
3398
3399The most obvious way for building locations of syntactic groupings is very
72d2299c 3400similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3401constructs can be used to access the locations of the elements being matched.
3402The location of the @var{n}th component of the right hand side is
3403@code{@@@var{n}}, while the location of the left hand side grouping is
3404@code{@@$}.
3405
3e259915 3406Here is a basic example using the default data type for locations:
847bf1f5
AD
3407
3408@example
3409@group
3410exp: @dots{}
3e259915 3411 | exp '/' exp
847bf1f5 3412 @{
3e259915
MA
3413 @@$.first_column = @@1.first_column;
3414 @@$.first_line = @@1.first_line;
847bf1f5
AD
3415 @@$.last_column = @@3.last_column;
3416 @@$.last_line = @@3.last_line;
3e259915
MA
3417 if ($3)
3418 $$ = $1 / $3;
3419 else
3420 @{
3421 $$ = 1;
4e03e201
AD
3422 fprintf (stderr,
3423 "Division by zero, l%d,c%d-l%d,c%d",
3424 @@3.first_line, @@3.first_column,
3425 @@3.last_line, @@3.last_column);
3e259915 3426 @}
847bf1f5
AD
3427 @}
3428@end group
3429@end example
3430
3e259915 3431As for semantic values, there is a default action for locations that is
72d2299c 3432run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3433beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3434last symbol.
3e259915 3435
72d2299c 3436With this default action, the location tracking can be fully automatic. The
3e259915
MA
3437example above simply rewrites this way:
3438
3439@example
3440@group
3441exp: @dots{}
3442 | exp '/' exp
3443 @{
3444 if ($3)
3445 $$ = $1 / $3;
3446 else
3447 @{
3448 $$ = 1;
4e03e201
AD
3449 fprintf (stderr,
3450 "Division by zero, l%d,c%d-l%d,c%d",
3451 @@3.first_line, @@3.first_column,
3452 @@3.last_line, @@3.last_column);
3e259915
MA
3453 @}
3454 @}
3455@end group
3456@end example
847bf1f5 3457
342b8b6e 3458@node Location Default Action
847bf1f5
AD
3459@subsection Default Action for Locations
3460@vindex YYLLOC_DEFAULT
3461
72d2299c 3462Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3463locations are much more general than semantic values, there is room in
3464the output parser to redefine the default action to take for each
72d2299c 3465rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3466matched, before the associated action is run. It is also invoked
3467while processing a syntax error, to compute the error's location.
847bf1f5 3468
3e259915 3469Most of the time, this macro is general enough to suppress location
79282c6c 3470dedicated code from semantic actions.
847bf1f5 3471
72d2299c 3472The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3473the location of the grouping (the result of the computation). When a
766de5eb 3474rule is matched, the second parameter identifies locations of
96b93a3d
PE
3475all right hand side elements of the rule being matched, and the third
3476parameter is the size of the rule's right hand side. When processing
766de5eb 3477a syntax error, the second parameter identifies locations of
96b93a3d
PE
3478the symbols that were discarded during error processing, and the third
3479parameter is the number of discarded symbols.
847bf1f5 3480
766de5eb 3481By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3482
766de5eb 3483@smallexample
847bf1f5 3484@group
766de5eb
PE
3485# define YYLLOC_DEFAULT(Current, Rhs, N) \
3486 do \
3487 if (N) \
3488 @{ \
3489 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3490 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3491 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3492 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3493 @} \
3494 else \
3495 @{ \
3496 (Current).first_line = (Current).last_line = \
3497 YYRHSLOC(Rhs, 0).last_line; \
3498 (Current).first_column = (Current).last_column = \
3499 YYRHSLOC(Rhs, 0).last_column; \
3500 @} \
3501 while (0)
847bf1f5 3502@end group
766de5eb 3503@end smallexample
676385e2 3504
766de5eb
PE
3505where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3506in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3507just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3508
3e259915 3509When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3510
3e259915 3511@itemize @bullet
79282c6c 3512@item
72d2299c 3513All arguments are free of side-effects. However, only the first one (the
3e259915 3514result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3515
3e259915 3516@item
766de5eb
PE
3517For consistency with semantic actions, valid indexes within the
3518right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3519valid index, and it refers to the symbol just before the reduction.
3520During error processing @var{n} is always positive.
0ae99356
PE
3521
3522@item
3523Your macro should parenthesize its arguments, if need be, since the
3524actual arguments may not be surrounded by parentheses. Also, your
3525macro should expand to something that can be used as a single
3526statement when it is followed by a semicolon.
3e259915 3527@end itemize
847bf1f5 3528
342b8b6e 3529@node Declarations
bfa74976
RS
3530@section Bison Declarations
3531@cindex declarations, Bison
3532@cindex Bison declarations
3533
3534The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3535used in formulating the grammar and the data types of semantic values.
3536@xref{Symbols}.
3537
3538All token type names (but not single-character literal tokens such as
3539@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3540declared if you need to specify which data type to use for the semantic
3541value (@pxref{Multiple Types, ,More Than One Value Type}).
3542
3543The first rule in the file also specifies the start symbol, by default.
3544If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3545it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3546Grammars}).
bfa74976
RS
3547
3548@menu
3549* Token Decl:: Declaring terminal symbols.
3550* Precedence Decl:: Declaring terminals with precedence and associativity.
3551* Union Decl:: Declaring the set of all semantic value types.
3552* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3553* Initial Action Decl:: Code run before parsing starts.
72f889cc 3554* Destructor Decl:: Declaring how symbols are freed.
d6328241 3555* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3556* Start Decl:: Specifying the start symbol.
3557* Pure Decl:: Requesting a reentrant parser.
3558* Decl Summary:: Table of all Bison declarations.
3559@end menu
3560
342b8b6e 3561@node Token Decl
bfa74976
RS
3562@subsection Token Type Names
3563@cindex declaring token type names
3564@cindex token type names, declaring
931c7513 3565@cindex declaring literal string tokens
bfa74976
RS
3566@findex %token
3567
3568The basic way to declare a token type name (terminal symbol) is as follows:
3569
3570@example
3571%token @var{name}
3572@end example
3573
3574Bison will convert this into a @code{#define} directive in
3575the parser, so that the function @code{yylex} (if it is in this file)
3576can use the name @var{name} to stand for this token type's code.
3577
14ded682
AD
3578Alternatively, you can use @code{%left}, @code{%right}, or
3579@code{%nonassoc} instead of @code{%token}, if you wish to specify
3580associativity and precedence. @xref{Precedence Decl, ,Operator
3581Precedence}.
bfa74976
RS
3582
3583You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3584a decimal or hexadecimal integer value in the field immediately
3585following the token name:
bfa74976
RS
3586
3587@example
3588%token NUM 300
1452af69 3589%token XNUM 0x12d // a GNU extension
bfa74976
RS
3590@end example
3591
3592@noindent
3593It is generally best, however, to let Bison choose the numeric codes for
3594all token types. Bison will automatically select codes that don't conflict
e966383b 3595with each other or with normal characters.
bfa74976
RS
3596
3597In the event that the stack type is a union, you must augment the
3598@code{%token} or other token declaration to include the data type
704a47c4
AD
3599alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3600Than One Value Type}).
bfa74976
RS
3601
3602For example:
3603
3604@example
3605@group
3606%union @{ /* define stack type */
3607 double val;
3608 symrec *tptr;
3609@}
3610%token <val> NUM /* define token NUM and its type */
3611@end group
3612@end example
3613
931c7513
RS
3614You can associate a literal string token with a token type name by
3615writing the literal string at the end of a @code{%token}
3616declaration which declares the name. For example:
3617
3618@example
3619%token arrow "=>"
3620@end example
3621
3622@noindent
3623For example, a grammar for the C language might specify these names with
3624equivalent literal string tokens:
3625
3626@example
3627%token <operator> OR "||"
3628%token <operator> LE 134 "<="
3629%left OR "<="
3630@end example
3631
3632@noindent
3633Once you equate the literal string and the token name, you can use them
3634interchangeably in further declarations or the grammar rules. The
3635@code{yylex} function can use the token name or the literal string to
3636obtain the token type code number (@pxref{Calling Convention}).
3637
342b8b6e 3638@node Precedence Decl
bfa74976
RS
3639@subsection Operator Precedence
3640@cindex precedence declarations
3641@cindex declaring operator precedence
3642@cindex operator precedence, declaring
3643
3644Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3645declare a token and specify its precedence and associativity, all at
3646once. These are called @dfn{precedence declarations}.
704a47c4
AD
3647@xref{Precedence, ,Operator Precedence}, for general information on
3648operator precedence.
bfa74976
RS
3649
3650The syntax of a precedence declaration is the same as that of
3651@code{%token}: either
3652
3653@example
3654%left @var{symbols}@dots{}
3655@end example
3656
3657@noindent
3658or
3659
3660@example
3661%left <@var{type}> @var{symbols}@dots{}
3662@end example
3663
3664And indeed any of these declarations serves the purposes of @code{%token}.
3665But in addition, they specify the associativity and relative precedence for
3666all the @var{symbols}:
3667
3668@itemize @bullet
3669@item
3670The associativity of an operator @var{op} determines how repeated uses
3671of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3672@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3673grouping @var{y} with @var{z} first. @code{%left} specifies
3674left-associativity (grouping @var{x} with @var{y} first) and
3675@code{%right} specifies right-associativity (grouping @var{y} with
3676@var{z} first). @code{%nonassoc} specifies no associativity, which
3677means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3678considered a syntax error.
3679
3680@item
3681The precedence of an operator determines how it nests with other operators.
3682All the tokens declared in a single precedence declaration have equal
3683precedence and nest together according to their associativity.
3684When two tokens declared in different precedence declarations associate,
3685the one declared later has the higher precedence and is grouped first.
3686@end itemize
3687
342b8b6e 3688@node Union Decl
bfa74976
RS
3689@subsection The Collection of Value Types
3690@cindex declaring value types
3691@cindex value types, declaring
3692@findex %union
3693
3694The @code{%union} declaration specifies the entire collection of possible
3695data types for semantic values. The keyword @code{%union} is followed by a
3696pair of braces containing the same thing that goes inside a @code{union} in
13863333 3697C.
bfa74976
RS
3698
3699For example:
3700
3701@example
3702@group
3703%union @{
3704 double val;
3705 symrec *tptr;
3706@}
3707@end group
3708@end example
3709
3710@noindent
3711This says that the two alternative types are @code{double} and @code{symrec
3712*}. They are given names @code{val} and @code{tptr}; these names are used
3713in the @code{%token} and @code{%type} declarations to pick one of the types
3714for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3715
6273355b
PE
3716As an extension to @acronym{POSIX}, a tag is allowed after the
3717@code{union}. For example:
3718
3719@example
3720@group
3721%union value @{
3722 double val;
3723 symrec *tptr;
3724@}
3725@end group
3726@end example
3727
3728specifies the union tag @code{value}, so the corresponding C type is
3729@code{union value}. If you do not specify a tag, it defaults to
3730@code{YYSTYPE}.
3731
3732Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3733a semicolon after the closing brace.
3734
342b8b6e 3735@node Type Decl
bfa74976
RS
3736@subsection Nonterminal Symbols
3737@cindex declaring value types, nonterminals
3738@cindex value types, nonterminals, declaring
3739@findex %type
3740
3741@noindent
3742When you use @code{%union} to specify multiple value types, you must
3743declare the value type of each nonterminal symbol for which values are
3744used. This is done with a @code{%type} declaration, like this:
3745
3746@example
3747%type <@var{type}> @var{nonterminal}@dots{}
3748@end example
3749
3750@noindent
704a47c4
AD
3751Here @var{nonterminal} is the name of a nonterminal symbol, and
3752@var{type} is the name given in the @code{%union} to the alternative
3753that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3754can give any number of nonterminal symbols in the same @code{%type}
3755declaration, if they have the same value type. Use spaces to separate
3756the symbol names.
bfa74976 3757
931c7513
RS
3758You can also declare the value type of a terminal symbol. To do this,
3759use the same @code{<@var{type}>} construction in a declaration for the
3760terminal symbol. All kinds of token declarations allow
3761@code{<@var{type}>}.
3762
18d192f0
AD
3763@node Initial Action Decl
3764@subsection Performing Actions before Parsing
3765@findex %initial-action
3766
3767Sometimes your parser needs to perform some initializations before
3768parsing. The @code{%initial-action} directive allows for such arbitrary
3769code.
3770
3771@deffn {Directive} %initial-action @{ @var{code} @}
3772@findex %initial-action
3773Declare that the @var{code} must be invoked before parsing each time
451364ed
AD
3774@code{yyparse} is called. The @var{code} may use @code{$$} and
3775@code{@@$} --- initial value and location of the look-ahead --- and the
3776@code{%parse-param}.
18d192f0
AD
3777@end deffn
3778
451364ed
AD
3779For instance, if your locations use a file name, you may use
3780
3781@example
3782%parse-param @{ const char *filename @};
3783%initial-action
3784@{
3785 @@$.begin.filename = @@$.end.filename = filename;
3786@};
3787@end example
3788
18d192f0 3789
72f889cc
AD
3790@node Destructor Decl
3791@subsection Freeing Discarded Symbols
3792@cindex freeing discarded symbols
3793@findex %destructor
3794
258b75ca
PE
3795Some symbols can be discarded by the parser. During error
3796recovery (@pxref{Error Recovery}), symbols already pushed
3797on the stack and tokens coming from the rest of the file
3798are discarded until the parser falls on its feet. If the parser
3799runs out of memory, all the symbols on the stack must be discarded.
3800Even if the parser succeeds, it must discard the start symbol.
3801
3802When discarded symbols convey heap based information, this memory is
3803lost. While this behavior can be tolerable for batch parsers, such as
3804in traditional compilers, it is unacceptable for programs like shells
3805or protocol implementations that may parse and execute indefinitely.
3806
3807The @code{%destructor} directive defines code that
3808is called when a symbol is discarded.
72f889cc
AD
3809
3810@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3811@findex %destructor
258b75ca
PE
3812Invoke @var{code} whenever the parser discards one of the
3813@var{symbols}. Within @var{code}, @code{$$} designates the semantic
3814value associated with the discarded symbol. The additional
3815parser parameters are also available
72f889cc
AD
3816(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3817
258b75ca
PE
3818@strong{Warning:} as of Bison 2.1, this feature is still
3819experimental, as there has not been enough user feedback. In particular,
3df37415 3820the syntax might still change.
72f889cc
AD
3821@end deffn
3822
3823For instance:
3824
3825@smallexample
3826%union
3827@{
3828 char *string;
3829@}
3830%token <string> STRING
3831%type <string> string
3832%destructor @{ free ($$); @} STRING string
3833@end smallexample
3834
3835@noindent
258b75ca 3836guarantees that when a @code{STRING} or a @code{string} is discarded,
72f889cc
AD
3837its associated memory will be freed.
3838
3839Note that in the future, Bison might also consider that right hand side
3840members that are not mentioned in the action can be destroyed. For
3841instance, in:
3842
3843@smallexample
3844comment: "/*" STRING "*/";
3845@end smallexample
3846
3847@noindent
3848the parser is entitled to destroy the semantic value of the
3849@code{string}. Of course, this will not apply to the default action;
3850compare:
3851
3852@smallexample
3853typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3854typefull: string; // $$ = $1 applies, $1 is not destroyed.
3855@end smallexample
3856
e757bb10
AD
3857@sp 1
3858
3859@cindex discarded symbols
3860@dfn{Discarded symbols} are the following:
3861
3862@itemize
3863@item
3864stacked symbols popped during the first phase of error recovery,
3865@item
3866incoming terminals during the second phase of error recovery,
3867@item
258b75ca
PE
3868the current look-ahead and the entire stack when the parser aborts
3869(either via an explicit call to @code{YYABORT}, or as a consequence of
3870a failed error recovery or of memory exhaustion), and
3871@item
3872the start symbol, when the parser succeeds.
e757bb10
AD
3873@end itemize
3874
3875
342b8b6e 3876@node Expect Decl
bfa74976
RS
3877@subsection Suppressing Conflict Warnings
3878@cindex suppressing conflict warnings
3879@cindex preventing warnings about conflicts
3880@cindex warnings, preventing
3881@cindex conflicts, suppressing warnings of
3882@findex %expect
d6328241 3883@findex %expect-rr
bfa74976
RS
3884
3885Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3886(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3887have harmless shift/reduce conflicts which are resolved in a predictable
3888way and would be difficult to eliminate. It is desirable to suppress
3889the warning about these conflicts unless the number of conflicts
3890changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3891
3892The declaration looks like this:
3893
3894@example
3895%expect @var{n}
3896@end example
3897
7da99ede
AD
3898Here @var{n} is a decimal integer. The declaration says there should be
3899no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3900reduce/reduce conflicts. The usual warning is
7da99ede
AD
3901given if there are either more or fewer conflicts, or if there are any
3902reduce/reduce conflicts.
bfa74976 3903
fa7e68c3 3904For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more serious,
d6328241 3905and should be eliminated entirely. Bison will always report
fa7e68c3 3906reduce/reduce conflicts for these parsers. With @acronym{GLR} parsers, however,
d6328241 3907both shift/reduce and reduce/reduce are routine (otherwise, there
fa7e68c3
PE
3908would be no need to use @acronym{GLR} parsing). Therefore, it is also possible
3909to specify an expected number of reduce/reduce conflicts in @acronym{GLR}
d6328241
PH
3910parsers, using the declaration:
3911
3912@example
3913%expect-rr @var{n}
3914@end example
3915
bfa74976
RS
3916In general, using @code{%expect} involves these steps:
3917
3918@itemize @bullet
3919@item
3920Compile your grammar without @code{%expect}. Use the @samp{-v} option
3921to get a verbose list of where the conflicts occur. Bison will also
3922print the number of conflicts.
3923
3924@item
3925Check each of the conflicts to make sure that Bison's default
3926resolution is what you really want. If not, rewrite the grammar and
3927go back to the beginning.
3928
3929@item
3930Add an @code{%expect} declaration, copying the number @var{n} from the
3931number which Bison printed.
3932@end itemize
3933
69363a9e
PE
3934Now Bison will stop annoying you if you do not change the number of
3935conflicts, but it will warn you again if changes in the grammar result
3936in more or fewer conflicts.
bfa74976 3937
342b8b6e 3938@node Start Decl
bfa74976
RS
3939@subsection The Start-Symbol
3940@cindex declaring the start symbol
3941@cindex start symbol, declaring
3942@cindex default start symbol
3943@findex %start
3944
3945Bison assumes by default that the start symbol for the grammar is the first
3946nonterminal specified in the grammar specification section. The programmer
3947may override this restriction with the @code{%start} declaration as follows:
3948
3949@example
3950%start @var{symbol}
3951@end example
3952
342b8b6e 3953@node Pure Decl
bfa74976
RS
3954@subsection A Pure (Reentrant) Parser
3955@cindex reentrant parser
3956@cindex pure parser
8c9a50be 3957@findex %pure-parser
bfa74976
RS
3958
3959A @dfn{reentrant} program is one which does not alter in the course of
3960execution; in other words, it consists entirely of @dfn{pure} (read-only)
3961code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3962for example, a non-reentrant program may not be safe to call from a signal
3963handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3964program must be called only within interlocks.
3965
70811b85 3966Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3967suitable for most uses, and it permits compatibility with Yacc. (The
3968standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3969statically allocated variables for communication with @code{yylex},
3970including @code{yylval} and @code{yylloc}.)
bfa74976 3971
70811b85 3972Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3973declaration @code{%pure-parser} says that you want the parser to be
70811b85 3974reentrant. It looks like this:
bfa74976
RS
3975
3976@example
8c9a50be 3977%pure-parser
bfa74976
RS
3978@end example
3979
70811b85
RS
3980The result is that the communication variables @code{yylval} and
3981@code{yylloc} become local variables in @code{yyparse}, and a different
3982calling convention is used for the lexical analyzer function
3983@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3984Parsers}, for the details of this. The variable @code{yynerrs} also
3985becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3986Reporting Function @code{yyerror}}). The convention for calling
3987@code{yyparse} itself is unchanged.
3988
3989Whether the parser is pure has nothing to do with the grammar rules.
3990You can generate either a pure parser or a nonreentrant parser from any
3991valid grammar.
bfa74976 3992
342b8b6e 3993@node Decl Summary
bfa74976
RS
3994@subsection Bison Declaration Summary
3995@cindex Bison declaration summary
3996@cindex declaration summary
3997@cindex summary, Bison declaration
3998
d8988b2f 3999Here is a summary of the declarations used to define a grammar:
bfa74976 4000
18b519c0 4001@deffn {Directive} %union
bfa74976
RS
4002Declare the collection of data types that semantic values may have
4003(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4004@end deffn
bfa74976 4005
18b519c0 4006@deffn {Directive} %token
bfa74976
RS
4007Declare a terminal symbol (token type name) with no precedence
4008or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4009@end deffn
bfa74976 4010
18b519c0 4011@deffn {Directive} %right
bfa74976
RS
4012Declare a terminal symbol (token type name) that is right-associative
4013(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4014@end deffn
bfa74976 4015
18b519c0 4016@deffn {Directive} %left
bfa74976
RS
4017Declare a terminal symbol (token type name) that is left-associative
4018(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4019@end deffn
bfa74976 4020
18b519c0 4021@deffn {Directive} %nonassoc
bfa74976 4022Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4023(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4024Using it in a way that would be associative is a syntax error.
4025@end deffn
4026
91d2c560 4027@ifset defaultprec
39a06c25 4028@deffn {Directive} %default-prec
22fccf95 4029Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4030(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4031@end deffn
91d2c560 4032@end ifset
bfa74976 4033
18b519c0 4034@deffn {Directive} %type
bfa74976
RS
4035Declare the type of semantic values for a nonterminal symbol
4036(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4037@end deffn
bfa74976 4038
18b519c0 4039@deffn {Directive} %start
89cab50d
AD
4040Specify the grammar's start symbol (@pxref{Start Decl, ,The
4041Start-Symbol}).
18b519c0 4042@end deffn
bfa74976 4043
18b519c0 4044@deffn {Directive} %expect
bfa74976
RS
4045Declare the expected number of shift-reduce conflicts
4046(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4047@end deffn
4048
bfa74976 4049
d8988b2f
AD
4050@sp 1
4051@noindent
4052In order to change the behavior of @command{bison}, use the following
4053directives:
4054
18b519c0 4055@deffn {Directive} %debug
4947ebdb
PE
4056In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4057already defined, so that the debugging facilities are compiled.
18b519c0 4058@end deffn
ec3bc396 4059@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4060
18b519c0 4061@deffn {Directive} %defines
4bfd5e4e
PE
4062Write a header file containing macro definitions for the token type
4063names defined in the grammar as well as a few other declarations.
d8988b2f 4064If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4065is named @file{@var{name}.h}.
d8988b2f 4066
4bfd5e4e 4067Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d
PE
4068declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
4069(@pxref{Multiple Types, ,More Than One Value Type}) with components
4070that require other definitions, or if you have defined a
4bfd5e4e 4071@code{YYSTYPE} macro (@pxref{Value Type, ,Data Types of Semantic
5c9be03d
PE
4072Values}), you need to arrange for these definitions to be propagated to
4073all modules, e.g., by putting them in a
4bfd5e4e
PE
4074prerequisite header that is included both by your parser and by any
4075other module that needs @code{YYSTYPE}.
4076
4077Unless your parser is pure, the output header declares @code{yylval}
4078as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4079Parser}.
4080
4081If you have also used locations, the output header declares
4082@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4083@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4084Locations}.
4085
4086This output file is normally essential if you wish to put the
4087definition of @code{yylex} in a separate source file, because
4088@code{yylex} typically needs to be able to refer to the
4089above-mentioned declarations and to the token type codes.
4090@xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 4091@end deffn
d8988b2f 4092
18b519c0 4093@deffn {Directive} %destructor
258b75ca 4094Specify how the parser should reclaim the memory associated to
fa7e68c3 4095discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4096@end deffn
72f889cc 4097
18b519c0 4098@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4099Specify a prefix to use for all Bison output file names. The names are
4100chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4101@end deffn
d8988b2f 4102
18b519c0 4103@deffn {Directive} %locations
89cab50d
AD
4104Generate the code processing the locations (@pxref{Action Features,
4105,Special Features for Use in Actions}). This mode is enabled as soon as
4106the grammar uses the special @samp{@@@var{n}} tokens, but if your
4107grammar does not use it, using @samp{%locations} allows for more
6e649e65 4108accurate syntax error messages.
18b519c0 4109@end deffn
89cab50d 4110
18b519c0 4111@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4112Rename the external symbols used in the parser so that they start with
4113@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4114is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4115@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4116possible @code{yylloc}. For example, if you use
4117@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4118and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4119Program}.
18b519c0 4120@end deffn
931c7513 4121
91d2c560 4122@ifset defaultprec
22fccf95
PE
4123@deffn {Directive} %no-default-prec
4124Do not assign a precedence to rules lacking an explicit @code{%prec}
4125modifier (@pxref{Contextual Precedence, ,Context-Dependent
4126Precedence}).
4127@end deffn
91d2c560 4128@end ifset
22fccf95 4129
18b519c0 4130@deffn {Directive} %no-parser
6deb4447
AD
4131Do not include any C code in the parser file; generate tables only. The
4132parser file contains just @code{#define} directives and static variable
4133declarations.
4134
4135This option also tells Bison to write the C code for the grammar actions
4136into a file named @file{@var{filename}.act}, in the form of a
4137brace-surrounded body fit for a @code{switch} statement.
18b519c0 4138@end deffn
6deb4447 4139
18b519c0 4140@deffn {Directive} %no-lines
931c7513
RS
4141Don't generate any @code{#line} preprocessor commands in the parser
4142file. Ordinarily Bison writes these commands in the parser file so that
4143the C compiler and debuggers will associate errors and object code with
4144your source file (the grammar file). This directive causes them to
4145associate errors with the parser file, treating it an independent source
4146file in its own right.
18b519c0 4147@end deffn
931c7513 4148
18b519c0 4149@deffn {Directive} %output="@var{filename}"
d8988b2f 4150Specify the @var{filename} for the parser file.
18b519c0 4151@end deffn
6deb4447 4152
18b519c0 4153@deffn {Directive} %pure-parser
d8988b2f
AD
4154Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4155(Reentrant) Parser}).
18b519c0 4156@end deffn
6deb4447 4157
18b519c0 4158@deffn {Directive} %token-table
931c7513
RS
4159Generate an array of token names in the parser file. The name of the
4160array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4161token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4162three elements of @code{yytname} correspond to the predefined tokens
4163@code{"$end"},
88bce5a2
AD
4164@code{"error"}, and @code{"$undefined"}; after these come the symbols
4165defined in the grammar file.
931c7513
RS
4166
4167For single-character literal tokens and literal string tokens, the name
4168in the table includes the single-quote or double-quote characters: for
4169example, @code{"'+'"} is a single-character literal and @code{"\"<=\""}
4170is a literal string token. All the characters of the literal string
4171token appear verbatim in the string found in the table; even
4172double-quote characters are not escaped. For example, if the token
4173consists of three characters @samp{*"*}, its string in @code{yytname}
4174contains @samp{"*"*"}. (In C, that would be written as
4175@code{"\"*\"*\""}).
4176
8c9a50be 4177When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4178definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4179@code{YYNRULES}, and @code{YYNSTATES}:
4180
4181@table @code
4182@item YYNTOKENS
4183The highest token number, plus one.
4184@item YYNNTS
9ecbd125 4185The number of nonterminal symbols.
931c7513
RS
4186@item YYNRULES
4187The number of grammar rules,
4188@item YYNSTATES
4189The number of parser states (@pxref{Parser States}).
4190@end table
18b519c0 4191@end deffn
d8988b2f 4192
18b519c0 4193@deffn {Directive} %verbose
d8988b2f
AD
4194Write an extra output file containing verbose descriptions of the
4195parser states and what is done for each type of look-ahead token in
72d2299c 4196that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4197information.
18b519c0 4198@end deffn
d8988b2f 4199
18b519c0 4200@deffn {Directive} %yacc
d8988b2f
AD
4201Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4202including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4203@end deffn
d8988b2f
AD
4204
4205
342b8b6e 4206@node Multiple Parsers
bfa74976
RS
4207@section Multiple Parsers in the Same Program
4208
4209Most programs that use Bison parse only one language and therefore contain
4210only one Bison parser. But what if you want to parse more than one
4211language with the same program? Then you need to avoid a name conflict
4212between different definitions of @code{yyparse}, @code{yylval}, and so on.
4213
4214The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4215(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4216functions and variables of the Bison parser to start with @var{prefix}
4217instead of @samp{yy}. You can use this to give each parser distinct
4218names that do not conflict.
bfa74976
RS
4219
4220The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4221@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4222@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4223the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4224
4225@strong{All the other variables and macros associated with Bison are not
4226renamed.} These others are not global; there is no conflict if the same
4227name is used in different parsers. For example, @code{YYSTYPE} is not
4228renamed, but defining this in different ways in different parsers causes
4229no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4230
4231The @samp{-p} option works by adding macro definitions to the beginning
4232of the parser source file, defining @code{yyparse} as
4233@code{@var{prefix}parse}, and so on. This effectively substitutes one
4234name for the other in the entire parser file.
4235
342b8b6e 4236@node Interface
bfa74976
RS
4237@chapter Parser C-Language Interface
4238@cindex C-language interface
4239@cindex interface
4240
4241The Bison parser is actually a C function named @code{yyparse}. Here we
4242describe the interface conventions of @code{yyparse} and the other
4243functions that it needs to use.
4244
4245Keep in mind that the parser uses many C identifiers starting with
4246@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4247identifier (aside from those in this manual) in an action or in epilogue
4248in the grammar file, you are likely to run into trouble.
bfa74976
RS
4249
4250@menu
4251* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4252* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4253 which reads tokens.
4254* Error Reporting:: You must supply a function @code{yyerror}.
4255* Action Features:: Special features for use in actions.
f7ab6a50
PE
4256* Internationalization:: How to let the parser speak in the user's
4257 native language.
bfa74976
RS
4258@end menu
4259
342b8b6e 4260@node Parser Function
bfa74976
RS
4261@section The Parser Function @code{yyparse}
4262@findex yyparse
4263
4264You call the function @code{yyparse} to cause parsing to occur. This
4265function reads tokens, executes actions, and ultimately returns when it
4266encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4267write an action which directs @code{yyparse} to return immediately
4268without reading further.
bfa74976 4269
2a8d363a
AD
4270
4271@deftypefun int yyparse (void)
bfa74976
RS
4272The value returned by @code{yyparse} is 0 if parsing was successful (return
4273is due to end-of-input).
4274
4275The value is 1 if parsing failed (return is due to a syntax error).
2a8d363a 4276@end deftypefun
bfa74976
RS
4277
4278In an action, you can cause immediate return from @code{yyparse} by using
4279these macros:
4280
2a8d363a 4281@defmac YYACCEPT
bfa74976
RS
4282@findex YYACCEPT
4283Return immediately with value 0 (to report success).
2a8d363a 4284@end defmac
bfa74976 4285
2a8d363a 4286@defmac YYABORT
bfa74976
RS
4287@findex YYABORT
4288Return immediately with value 1 (to report failure).
2a8d363a
AD
4289@end defmac
4290
4291If you use a reentrant parser, you can optionally pass additional
4292parameter information to it in a reentrant way. To do so, use the
4293declaration @code{%parse-param}:
4294
feeb0eda 4295@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4296@findex %parse-param
feeb0eda 4297Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
4298additional @code{yyparse} argument.
4299The @var{argument-declaration} is used when declaring
feeb0eda
PE
4300functions or prototypes. The last identifier in
4301@var{argument-declaration} must be the argument name.
2a8d363a
AD
4302@end deffn
4303
4304Here's an example. Write this in the parser:
4305
4306@example
feeb0eda
PE
4307%parse-param @{int *nastiness@}
4308%parse-param @{int *randomness@}
2a8d363a
AD
4309@end example
4310
4311@noindent
4312Then call the parser like this:
4313
4314@example
4315@{
4316 int nastiness, randomness;
4317 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4318 value = yyparse (&nastiness, &randomness);
4319 @dots{}
4320@}
4321@end example
4322
4323@noindent
4324In the grammar actions, use expressions like this to refer to the data:
4325
4326@example
4327exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4328@end example
4329
bfa74976 4330
342b8b6e 4331@node Lexical
bfa74976
RS
4332@section The Lexical Analyzer Function @code{yylex}
4333@findex yylex
4334@cindex lexical analyzer
4335
4336The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4337the input stream and returns them to the parser. Bison does not create
4338this function automatically; you must write it so that @code{yyparse} can
4339call it. The function is sometimes referred to as a lexical scanner.
4340
4341In simple programs, @code{yylex} is often defined at the end of the Bison
4342grammar file. If @code{yylex} is defined in a separate source file, you
4343need to arrange for the token-type macro definitions to be available there.
4344To do this, use the @samp{-d} option when you run Bison, so that it will
4345write these macro definitions into a separate header file
4346@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4347that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4348
4349@menu
4350* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4351* Token Values:: How @code{yylex} must return the semantic value
4352 of the token it has read.
95923bd6 4353* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4354 (line number, etc.) of the token, if the
4355 actions want that.
4356* Pure Calling:: How the calling convention differs
4357 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4358@end menu
4359
342b8b6e 4360@node Calling Convention
bfa74976
RS
4361@subsection Calling Convention for @code{yylex}
4362
72d2299c
PE
4363The value that @code{yylex} returns must be the positive numeric code
4364for the type of token it has just found; a zero or negative value
4365signifies end-of-input.
bfa74976
RS
4366
4367When a token is referred to in the grammar rules by a name, that name
4368in the parser file becomes a C macro whose definition is the proper
4369numeric code for that token type. So @code{yylex} can use the name
4370to indicate that type. @xref{Symbols}.
4371
4372When a token is referred to in the grammar rules by a character literal,
4373the numeric code for that character is also the code for the token type.
72d2299c
PE
4374So @code{yylex} can simply return that character code, possibly converted
4375to @code{unsigned char} to avoid sign-extension. The null character
4376must not be used this way, because its code is zero and that
bfa74976
RS
4377signifies end-of-input.
4378
4379Here is an example showing these things:
4380
4381@example
13863333
AD
4382int
4383yylex (void)
bfa74976
RS
4384@{
4385 @dots{}
72d2299c 4386 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4387 return 0;
4388 @dots{}
4389 if (c == '+' || c == '-')
72d2299c 4390 return c; /* Assume token type for `+' is '+'. */
bfa74976 4391 @dots{}
72d2299c 4392 return INT; /* Return the type of the token. */
bfa74976
RS
4393 @dots{}
4394@}
4395@end example
4396
4397@noindent
4398This interface has been designed so that the output from the @code{lex}
4399utility can be used without change as the definition of @code{yylex}.
4400
931c7513
RS
4401If the grammar uses literal string tokens, there are two ways that
4402@code{yylex} can determine the token type codes for them:
4403
4404@itemize @bullet
4405@item
4406If the grammar defines symbolic token names as aliases for the
4407literal string tokens, @code{yylex} can use these symbolic names like
4408all others. In this case, the use of the literal string tokens in
4409the grammar file has no effect on @code{yylex}.
4410
4411@item
9ecbd125 4412@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4413table. The index of the token in the table is the token type's code.
9ecbd125 4414The name of a multicharacter token is recorded in @code{yytname} with a
931c7513
RS
4415double-quote, the token's characters, and another double-quote. The
4416token's characters are not escaped in any way; they appear verbatim in
4417the contents of the string in the table.
4418
4419Here's code for looking up a token in @code{yytname}, assuming that the
4420characters of the token are stored in @code{token_buffer}.
4421
4422@smallexample
4423for (i = 0; i < YYNTOKENS; i++)
4424 @{
4425 if (yytname[i] != 0
4426 && yytname[i][0] == '"'
68449b3a
PE
4427 && ! strncmp (yytname[i] + 1, token_buffer,
4428 strlen (token_buffer))
931c7513
RS
4429 && yytname[i][strlen (token_buffer) + 1] == '"'
4430 && yytname[i][strlen (token_buffer) + 2] == 0)
4431 break;
4432 @}
4433@end smallexample
4434
4435The @code{yytname} table is generated only if you use the
8c9a50be 4436@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4437@end itemize
4438
342b8b6e 4439@node Token Values
bfa74976
RS
4440@subsection Semantic Values of Tokens
4441
4442@vindex yylval
14ded682 4443In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4444be stored into the global variable @code{yylval}. When you are using
4445just one data type for semantic values, @code{yylval} has that type.
4446Thus, if the type is @code{int} (the default), you might write this in
4447@code{yylex}:
4448
4449@example
4450@group
4451 @dots{}
72d2299c
PE
4452 yylval = value; /* Put value onto Bison stack. */
4453 return INT; /* Return the type of the token. */
bfa74976
RS
4454 @dots{}
4455@end group
4456@end example
4457
4458When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4459made from the @code{%union} declaration (@pxref{Union Decl, ,The
4460Collection of Value Types}). So when you store a token's value, you
4461must use the proper member of the union. If the @code{%union}
4462declaration looks like this:
bfa74976
RS
4463
4464@example
4465@group
4466%union @{
4467 int intval;
4468 double val;
4469 symrec *tptr;
4470@}
4471@end group
4472@end example
4473
4474@noindent
4475then the code in @code{yylex} might look like this:
4476
4477@example
4478@group
4479 @dots{}
72d2299c
PE
4480 yylval.intval = value; /* Put value onto Bison stack. */
4481 return INT; /* Return the type of the token. */
bfa74976
RS
4482 @dots{}
4483@end group
4484@end example
4485
95923bd6
AD
4486@node Token Locations
4487@subsection Textual Locations of Tokens
bfa74976
RS
4488
4489@vindex yylloc
847bf1f5
AD
4490If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4491Tracking Locations}) in actions to keep track of the
89cab50d
AD
4492textual locations of tokens and groupings, then you must provide this
4493information in @code{yylex}. The function @code{yyparse} expects to
4494find the textual location of a token just parsed in the global variable
4495@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4496variable.
4497
4498By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4499initialize the members that are going to be used by the actions. The
4500four members are called @code{first_line}, @code{first_column},
4501@code{last_line} and @code{last_column}. Note that the use of this
4502feature makes the parser noticeably slower.
bfa74976
RS
4503
4504@tindex YYLTYPE
4505The data type of @code{yylloc} has the name @code{YYLTYPE}.
4506
342b8b6e 4507@node Pure Calling
c656404a 4508@subsection Calling Conventions for Pure Parsers
bfa74976 4509
8c9a50be 4510When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4511pure, reentrant parser, the global communication variables @code{yylval}
4512and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4513Parser}.) In such parsers the two global variables are replaced by
4514pointers passed as arguments to @code{yylex}. You must declare them as
4515shown here, and pass the information back by storing it through those
4516pointers.
bfa74976
RS
4517
4518@example
13863333
AD
4519int
4520yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4521@{
4522 @dots{}
4523 *lvalp = value; /* Put value onto Bison stack. */
4524 return INT; /* Return the type of the token. */
4525 @dots{}
4526@}
4527@end example
4528
4529If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4530textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4531this case, omit the second argument; @code{yylex} will be called with
4532only one argument.
4533
e425e872 4534
2a8d363a
AD
4535If you wish to pass the additional parameter data to @code{yylex}, use
4536@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4537Function}).
e425e872 4538
feeb0eda 4539@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4540@findex %lex-param
feeb0eda
PE
4541Declare that @code{argument-declaration} is an additional @code{yylex}
4542argument declaration.
2a8d363a 4543@end deffn
e425e872 4544
2a8d363a 4545For instance:
e425e872
RS
4546
4547@example
feeb0eda
PE
4548%parse-param @{int *nastiness@}
4549%lex-param @{int *nastiness@}
4550%parse-param @{int *randomness@}
e425e872
RS
4551@end example
4552
4553@noindent
2a8d363a 4554results in the following signature:
e425e872
RS
4555
4556@example
2a8d363a
AD
4557int yylex (int *nastiness);
4558int yyparse (int *nastiness, int *randomness);
e425e872
RS
4559@end example
4560
2a8d363a 4561If @code{%pure-parser} is added:
c656404a
RS
4562
4563@example
2a8d363a
AD
4564int yylex (YYSTYPE *lvalp, int *nastiness);
4565int yyparse (int *nastiness, int *randomness);
c656404a
RS
4566@end example
4567
2a8d363a
AD
4568@noindent
4569and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4570
2a8d363a
AD
4571@example
4572int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4573int yyparse (int *nastiness, int *randomness);
4574@end example
931c7513 4575
342b8b6e 4576@node Error Reporting
bfa74976
RS
4577@section The Error Reporting Function @code{yyerror}
4578@cindex error reporting function
4579@findex yyerror
4580@cindex parse error
4581@cindex syntax error
4582
6e649e65 4583The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4584whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4585action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4586macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4587in Actions}).
bfa74976
RS
4588
4589The Bison parser expects to report the error by calling an error
4590reporting function named @code{yyerror}, which you must supply. It is
4591called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4592receives one argument. For a syntax error, the string is normally
4593@w{@code{"syntax error"}}.
bfa74976 4594
2a8d363a
AD
4595@findex %error-verbose
4596If you invoke the directive @code{%error-verbose} in the Bison
4597declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4598Section}), then Bison provides a more verbose and specific error message
6e649e65 4599string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4600
1a059451
PE
4601The parser can detect one other kind of error: memory exhaustion. This
4602can happen when the input contains constructions that are very deeply
bfa74976 4603nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4604parser normally extends its stack automatically up to a very large limit. But
4605if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4606fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4607
4608In some cases diagnostics like @w{@code{"syntax error"}} are
4609translated automatically from English to some other language before
4610they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4611
4612The following definition suffices in simple programs:
4613
4614@example
4615@group
13863333 4616void
38a92d50 4617yyerror (char const *s)
bfa74976
RS
4618@{
4619@end group
4620@group
4621 fprintf (stderr, "%s\n", s);
4622@}
4623@end group
4624@end example
4625
4626After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4627error recovery if you have written suitable error recovery grammar rules
4628(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4629immediately return 1.
4630
93724f13 4631Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4632an access to the current location.
4633This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4634parsers, but not for the Yacc parser, for historical reasons. I.e., if
4635@samp{%locations %pure-parser} is passed then the prototypes for
4636@code{yyerror} are:
4637
4638@example
38a92d50
PE
4639void yyerror (char const *msg); /* Yacc parsers. */
4640void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4641@end example
4642
feeb0eda 4643If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4644
4645@example
b317297e
PE
4646void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4647void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4648@end example
4649
fa7e68c3 4650Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4651convention for absolutely pure parsers, i.e., when the calling
4652convention of @code{yylex} @emph{and} the calling convention of
4653@code{%pure-parser} are pure. I.e.:
4654
4655@example
4656/* Location tracking. */
4657%locations
4658/* Pure yylex. */
4659%pure-parser
feeb0eda 4660%lex-param @{int *nastiness@}
2a8d363a 4661/* Pure yyparse. */
feeb0eda
PE
4662%parse-param @{int *nastiness@}
4663%parse-param @{int *randomness@}
2a8d363a
AD
4664@end example
4665
4666@noindent
4667results in the following signatures for all the parser kinds:
4668
4669@example
4670int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4671int yyparse (int *nastiness, int *randomness);
93724f13
AD
4672void yyerror (YYLTYPE *locp,
4673 int *nastiness, int *randomness,
38a92d50 4674 char const *msg);
2a8d363a
AD
4675@end example
4676
1c0c3e95 4677@noindent
38a92d50
PE
4678The prototypes are only indications of how the code produced by Bison
4679uses @code{yyerror}. Bison-generated code always ignores the returned
4680value, so @code{yyerror} can return any type, including @code{void}.
4681Also, @code{yyerror} can be a variadic function; that is why the
4682message is always passed last.
4683
4684Traditionally @code{yyerror} returns an @code{int} that is always
4685ignored, but this is purely for historical reasons, and @code{void} is
4686preferable since it more accurately describes the return type for
4687@code{yyerror}.
93724f13 4688
bfa74976
RS
4689@vindex yynerrs
4690The variable @code{yynerrs} contains the number of syntax errors
4691encountered so far. Normally this variable is global; but if you
704a47c4
AD
4692request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4693then it is a local variable which only the actions can access.
bfa74976 4694
342b8b6e 4695@node Action Features
bfa74976
RS
4696@section Special Features for Use in Actions
4697@cindex summary, action features
4698@cindex action features summary
4699
4700Here is a table of Bison constructs, variables and macros that
4701are useful in actions.
4702
18b519c0 4703@deffn {Variable} $$
bfa74976
RS
4704Acts like a variable that contains the semantic value for the
4705grouping made by the current rule. @xref{Actions}.
18b519c0 4706@end deffn
bfa74976 4707
18b519c0 4708@deffn {Variable} $@var{n}
bfa74976
RS
4709Acts like a variable that contains the semantic value for the
4710@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4711@end deffn
bfa74976 4712
18b519c0 4713@deffn {Variable} $<@var{typealt}>$
bfa74976 4714Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4715specified by the @code{%union} declaration. @xref{Action Types, ,Data
4716Types of Values in Actions}.
18b519c0 4717@end deffn
bfa74976 4718
18b519c0 4719@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4720Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4721union specified by the @code{%union} declaration.
e0c471a9 4722@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4723@end deffn
bfa74976 4724
18b519c0 4725@deffn {Macro} YYABORT;
bfa74976
RS
4726Return immediately from @code{yyparse}, indicating failure.
4727@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4728@end deffn
bfa74976 4729
18b519c0 4730@deffn {Macro} YYACCEPT;
bfa74976
RS
4731Return immediately from @code{yyparse}, indicating success.
4732@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4733@end deffn
bfa74976 4734
18b519c0 4735@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4736@findex YYBACKUP
4737Unshift a token. This macro is allowed only for rules that reduce
4738a single value, and only when there is no look-ahead token.
c827f760 4739It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4740It installs a look-ahead token with token type @var{token} and
4741semantic value @var{value}; then it discards the value that was
4742going to be reduced by this rule.
4743
4744If the macro is used when it is not valid, such as when there is
4745a look-ahead token already, then it reports a syntax error with
4746a message @samp{cannot back up} and performs ordinary error
4747recovery.
4748
4749In either case, the rest of the action is not executed.
18b519c0 4750@end deffn
bfa74976 4751
18b519c0 4752@deffn {Macro} YYEMPTY
bfa74976
RS
4753@vindex YYEMPTY
4754Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4755@end deffn
bfa74976 4756
18b519c0 4757@deffn {Macro} YYERROR;
bfa74976
RS
4758@findex YYERROR
4759Cause an immediate syntax error. This statement initiates error
4760recovery just as if the parser itself had detected an error; however, it
4761does not call @code{yyerror}, and does not print any message. If you
4762want to print an error message, call @code{yyerror} explicitly before
4763the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4764@end deffn
bfa74976 4765
18b519c0 4766@deffn {Macro} YYRECOVERING
bfa74976
RS
4767This macro stands for an expression that has the value 1 when the parser
4768is recovering from a syntax error, and 0 the rest of the time.
4769@xref{Error Recovery}.
18b519c0 4770@end deffn
bfa74976 4771
18b519c0 4772@deffn {Variable} yychar
bfa74976
RS
4773Variable containing the current look-ahead token. (In a pure parser,
4774this is actually a local variable within @code{yyparse}.) When there is
4775no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4776@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4777@end deffn
bfa74976 4778
18b519c0 4779@deffn {Macro} yyclearin;
bfa74976
RS
4780Discard the current look-ahead token. This is useful primarily in
4781error rules. @xref{Error Recovery}.
18b519c0 4782@end deffn
bfa74976 4783
18b519c0 4784@deffn {Macro} yyerrok;
bfa74976 4785Resume generating error messages immediately for subsequent syntax
13863333 4786errors. This is useful primarily in error rules.
bfa74976 4787@xref{Error Recovery}.
18b519c0 4788@end deffn
bfa74976 4789
18b519c0 4790@deffn {Value} @@$
847bf1f5 4791@findex @@$
95923bd6 4792Acts like a structure variable containing information on the textual location
847bf1f5
AD
4793of the grouping made by the current rule. @xref{Locations, ,
4794Tracking Locations}.
bfa74976 4795
847bf1f5
AD
4796@c Check if those paragraphs are still useful or not.
4797
4798@c @example
4799@c struct @{
4800@c int first_line, last_line;
4801@c int first_column, last_column;
4802@c @};
4803@c @end example
4804
4805@c Thus, to get the starting line number of the third component, you would
4806@c use @samp{@@3.first_line}.
bfa74976 4807
847bf1f5
AD
4808@c In order for the members of this structure to contain valid information,
4809@c you must make @code{yylex} supply this information about each token.
4810@c If you need only certain members, then @code{yylex} need only fill in
4811@c those members.
bfa74976 4812
847bf1f5 4813@c The use of this feature makes the parser noticeably slower.
18b519c0 4814@end deffn
847bf1f5 4815
18b519c0 4816@deffn {Value} @@@var{n}
847bf1f5 4817@findex @@@var{n}
95923bd6 4818Acts like a structure variable containing information on the textual location
847bf1f5
AD
4819of the @var{n}th component of the current rule. @xref{Locations, ,
4820Tracking Locations}.
18b519c0 4821@end deffn
bfa74976 4822
f7ab6a50
PE
4823@node Internationalization
4824@section Parser Internationalization
4825@cindex internationalization
4826@cindex i18n
4827@cindex NLS
4828@cindex gettext
4829@cindex bison-po
4830
4831A Bison-generated parser can print diagnostics, including error and
4832tracing messages. By default, they appear in English. However, Bison
4833also supports outputting diagnostics in the user's native language.
4834To make this work, the user should set the usual environment
30757c8c
PE
4835variables. @xref{Users, , The User's View, gettext, GNU
4836@code{gettext} utilities}. For
f7ab6a50
PE
4837example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might set
4838the user's locale to French Canadian using the @acronym{UTF}-8
4839encoding. The exact set of available locales depends on the user's
4840installation.
4841
4842The maintainer of a package that uses a Bison-generated parser enables
4843the internationalization of the parser's output through the following
4844steps. Here we assume a package that uses @acronym{GNU} Autoconf and
4845@acronym{GNU} Automake.
4846
4847@enumerate
4848@item
30757c8c 4849@cindex bison-i18n.m4
f7ab6a50
PE
4850Into the directory containing the @acronym{GNU} Autoconf macros used
4851by the package---often called @file{m4}---copy the
4852@file{bison-i18n.m4} file installed by Bison under
4853@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
4854For example:
4855
4856@example
4857cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
4858@end example
4859
4860@item
30757c8c
PE
4861@findex BISON_I18N
4862@vindex BISON_LOCALEDIR
4863@vindex YYENABLE_NLS
f7ab6a50
PE
4864In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
4865invocation, add an invocation of @code{BISON_I18N}. This macro is
4866defined in the file @file{bison-i18n.m4} that you copied earlier. It
4867causes @samp{configure} to find the value of the
30757c8c
PE
4868@code{BISON_LOCALEDIR} variable, and it defines the source-language
4869symbol @code{YYENABLE_NLS} to enable translations in the
4870Bison-generated parser.
f7ab6a50
PE
4871
4872@item
4873In the @code{main} function of your program, designate the directory
4874containing Bison's runtime message catalog, through a call to
4875@samp{bindtextdomain} with domain name @samp{bison-runtime}.
4876For example:
4877
4878@example
4879bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
4880@end example
4881
4882Typically this appears after any other call @code{bindtextdomain
4883(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
4884@samp{BISON_LOCALEDIR} to be defined as a string through the
4885@file{Makefile}.
4886
4887@item
4888In the @file{Makefile.am} that controls the compilation of the @code{main}
4889function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
4890either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
4891
4892@example
4893DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4894@end example
4895
4896or:
4897
4898@example
4899AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4900@end example
4901
4902@item
4903Finally, invoke the command @command{autoreconf} to generate the build
4904infrastructure.
4905@end enumerate
4906
bfa74976 4907
342b8b6e 4908@node Algorithm
13863333
AD
4909@chapter The Bison Parser Algorithm
4910@cindex Bison parser algorithm
bfa74976
RS
4911@cindex algorithm of parser
4912@cindex shifting
4913@cindex reduction
4914@cindex parser stack
4915@cindex stack, parser
4916
4917As Bison reads tokens, it pushes them onto a stack along with their
4918semantic values. The stack is called the @dfn{parser stack}. Pushing a
4919token is traditionally called @dfn{shifting}.
4920
4921For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4922@samp{3} to come. The stack will have four elements, one for each token
4923that was shifted.
4924
4925But the stack does not always have an element for each token read. When
4926the last @var{n} tokens and groupings shifted match the components of a
4927grammar rule, they can be combined according to that rule. This is called
4928@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4929single grouping whose symbol is the result (left hand side) of that rule.
4930Running the rule's action is part of the process of reduction, because this
4931is what computes the semantic value of the resulting grouping.
4932
4933For example, if the infix calculator's parser stack contains this:
4934
4935@example
49361 + 5 * 3
4937@end example
4938
4939@noindent
4940and the next input token is a newline character, then the last three
4941elements can be reduced to 15 via the rule:
4942
4943@example
4944expr: expr '*' expr;
4945@end example
4946
4947@noindent
4948Then the stack contains just these three elements:
4949
4950@example
49511 + 15
4952@end example
4953
4954@noindent
4955At this point, another reduction can be made, resulting in the single value
495616. Then the newline token can be shifted.
4957
4958The parser tries, by shifts and reductions, to reduce the entire input down
4959to a single grouping whose symbol is the grammar's start-symbol
4960(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4961
4962This kind of parser is known in the literature as a bottom-up parser.
4963
4964@menu
4965* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4966* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4967* Precedence:: Operator precedence works by resolving conflicts.
4968* Contextual Precedence:: When an operator's precedence depends on context.
4969* Parser States:: The parser is a finite-state-machine with stack.
4970* Reduce/Reduce:: When two rules are applicable in the same situation.
4971* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4972* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 4973* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
4974@end menu
4975
342b8b6e 4976@node Look-Ahead
bfa74976
RS
4977@section Look-Ahead Tokens
4978@cindex look-ahead token
4979
4980The Bison parser does @emph{not} always reduce immediately as soon as the
4981last @var{n} tokens and groupings match a rule. This is because such a
4982simple strategy is inadequate to handle most languages. Instead, when a
4983reduction is possible, the parser sometimes ``looks ahead'' at the next
4984token in order to decide what to do.
4985
4986When a token is read, it is not immediately shifted; first it becomes the
4987@dfn{look-ahead token}, which is not on the stack. Now the parser can
4988perform one or more reductions of tokens and groupings on the stack, while
4989the look-ahead token remains off to the side. When no more reductions
4990should take place, the look-ahead token is shifted onto the stack. This
4991does not mean that all possible reductions have been done; depending on the
4992token type of the look-ahead token, some rules may choose to delay their
4993application.
4994
4995Here is a simple case where look-ahead is needed. These three rules define
4996expressions which contain binary addition operators and postfix unary
4997factorial operators (@samp{!}), and allow parentheses for grouping.
4998
4999@example
5000@group
5001expr: term '+' expr
5002 | term
5003 ;
5004@end group
5005
5006@group
5007term: '(' expr ')'
5008 | term '!'
5009 | NUMBER
5010 ;
5011@end group
5012@end example
5013
5014Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5015should be done? If the following token is @samp{)}, then the first three
5016tokens must be reduced to form an @code{expr}. This is the only valid
5017course, because shifting the @samp{)} would produce a sequence of symbols
5018@w{@code{term ')'}}, and no rule allows this.
5019
5020If the following token is @samp{!}, then it must be shifted immediately so
5021that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5022parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5023@code{expr}. It would then be impossible to shift the @samp{!} because
5024doing so would produce on the stack the sequence of symbols @code{expr
5025'!'}. No rule allows that sequence.
5026
5027@vindex yychar
5028The current look-ahead token is stored in the variable @code{yychar}.
5029@xref{Action Features, ,Special Features for Use in Actions}.
5030
342b8b6e 5031@node Shift/Reduce
bfa74976
RS
5032@section Shift/Reduce Conflicts
5033@cindex conflicts
5034@cindex shift/reduce conflicts
5035@cindex dangling @code{else}
5036@cindex @code{else}, dangling
5037
5038Suppose we are parsing a language which has if-then and if-then-else
5039statements, with a pair of rules like this:
5040
5041@example
5042@group
5043if_stmt:
5044 IF expr THEN stmt
5045 | IF expr THEN stmt ELSE stmt
5046 ;
5047@end group
5048@end example
5049
5050@noindent
5051Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5052terminal symbols for specific keyword tokens.
5053
5054When the @code{ELSE} token is read and becomes the look-ahead token, the
5055contents of the stack (assuming the input is valid) are just right for
5056reduction by the first rule. But it is also legitimate to shift the
5057@code{ELSE}, because that would lead to eventual reduction by the second
5058rule.
5059
5060This situation, where either a shift or a reduction would be valid, is
5061called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5062these conflicts by choosing to shift, unless otherwise directed by
5063operator precedence declarations. To see the reason for this, let's
5064contrast it with the other alternative.
5065
5066Since the parser prefers to shift the @code{ELSE}, the result is to attach
5067the else-clause to the innermost if-statement, making these two inputs
5068equivalent:
5069
5070@example
5071if x then if y then win (); else lose;
5072
5073if x then do; if y then win (); else lose; end;
5074@end example
5075
5076But if the parser chose to reduce when possible rather than shift, the
5077result would be to attach the else-clause to the outermost if-statement,
5078making these two inputs equivalent:
5079
5080@example
5081if x then if y then win (); else lose;
5082
5083if x then do; if y then win (); end; else lose;
5084@end example
5085
5086The conflict exists because the grammar as written is ambiguous: either
5087parsing of the simple nested if-statement is legitimate. The established
5088convention is that these ambiguities are resolved by attaching the
5089else-clause to the innermost if-statement; this is what Bison accomplishes
5090by choosing to shift rather than reduce. (It would ideally be cleaner to
5091write an unambiguous grammar, but that is very hard to do in this case.)
5092This particular ambiguity was first encountered in the specifications of
5093Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5094
5095To avoid warnings from Bison about predictable, legitimate shift/reduce
5096conflicts, use the @code{%expect @var{n}} declaration. There will be no
5097warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5098@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5099
5100The definition of @code{if_stmt} above is solely to blame for the
5101conflict, but the conflict does not actually appear without additional
5102rules. Here is a complete Bison input file that actually manifests the
5103conflict:
5104
5105@example
5106@group
5107%token IF THEN ELSE variable
5108%%
5109@end group
5110@group
5111stmt: expr
5112 | if_stmt
5113 ;
5114@end group
5115
5116@group
5117if_stmt:
5118 IF expr THEN stmt
5119 | IF expr THEN stmt ELSE stmt
5120 ;
5121@end group
5122
5123expr: variable
5124 ;
5125@end example
5126
342b8b6e 5127@node Precedence
bfa74976
RS
5128@section Operator Precedence
5129@cindex operator precedence
5130@cindex precedence of operators
5131
5132Another situation where shift/reduce conflicts appear is in arithmetic
5133expressions. Here shifting is not always the preferred resolution; the
5134Bison declarations for operator precedence allow you to specify when to
5135shift and when to reduce.
5136
5137@menu
5138* Why Precedence:: An example showing why precedence is needed.
5139* Using Precedence:: How to specify precedence in Bison grammars.
5140* Precedence Examples:: How these features are used in the previous example.
5141* How Precedence:: How they work.
5142@end menu
5143
342b8b6e 5144@node Why Precedence
bfa74976
RS
5145@subsection When Precedence is Needed
5146
5147Consider the following ambiguous grammar fragment (ambiguous because the
5148input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5149
5150@example
5151@group
5152expr: expr '-' expr
5153 | expr '*' expr
5154 | expr '<' expr
5155 | '(' expr ')'
5156 @dots{}
5157 ;
5158@end group
5159@end example
5160
5161@noindent
5162Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5163should it reduce them via the rule for the subtraction operator? It
5164depends on the next token. Of course, if the next token is @samp{)}, we
5165must reduce; shifting is invalid because no single rule can reduce the
5166token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5167the next token is @samp{*} or @samp{<}, we have a choice: either
5168shifting or reduction would allow the parse to complete, but with
5169different results.
5170
5171To decide which one Bison should do, we must consider the results. If
5172the next operator token @var{op} is shifted, then it must be reduced
5173first in order to permit another opportunity to reduce the difference.
5174The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5175hand, if the subtraction is reduced before shifting @var{op}, the result
5176is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5177reduce should depend on the relative precedence of the operators
5178@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5179@samp{<}.
bfa74976
RS
5180
5181@cindex associativity
5182What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5183@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5184operators we prefer the former, which is called @dfn{left association}.
5185The latter alternative, @dfn{right association}, is desirable for
5186assignment operators. The choice of left or right association is a
5187matter of whether the parser chooses to shift or reduce when the stack
5188contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5189makes right-associativity.
bfa74976 5190
342b8b6e 5191@node Using Precedence
bfa74976
RS
5192@subsection Specifying Operator Precedence
5193@findex %left
5194@findex %right
5195@findex %nonassoc
5196
5197Bison allows you to specify these choices with the operator precedence
5198declarations @code{%left} and @code{%right}. Each such declaration
5199contains a list of tokens, which are operators whose precedence and
5200associativity is being declared. The @code{%left} declaration makes all
5201those operators left-associative and the @code{%right} declaration makes
5202them right-associative. A third alternative is @code{%nonassoc}, which
5203declares that it is a syntax error to find the same operator twice ``in a
5204row''.
5205
5206The relative precedence of different operators is controlled by the
5207order in which they are declared. The first @code{%left} or
5208@code{%right} declaration in the file declares the operators whose
5209precedence is lowest, the next such declaration declares the operators
5210whose precedence is a little higher, and so on.
5211
342b8b6e 5212@node Precedence Examples
bfa74976
RS
5213@subsection Precedence Examples
5214
5215In our example, we would want the following declarations:
5216
5217@example
5218%left '<'
5219%left '-'
5220%left '*'
5221@end example
5222
5223In a more complete example, which supports other operators as well, we
5224would declare them in groups of equal precedence. For example, @code{'+'} is
5225declared with @code{'-'}:
5226
5227@example
5228%left '<' '>' '=' NE LE GE
5229%left '+' '-'
5230%left '*' '/'
5231@end example
5232
5233@noindent
5234(Here @code{NE} and so on stand for the operators for ``not equal''
5235and so on. We assume that these tokens are more than one character long
5236and therefore are represented by names, not character literals.)
5237
342b8b6e 5238@node How Precedence
bfa74976
RS
5239@subsection How Precedence Works
5240
5241The first effect of the precedence declarations is to assign precedence
5242levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5243precedence levels to certain rules: each rule gets its precedence from
5244the last terminal symbol mentioned in the components. (You can also
5245specify explicitly the precedence of a rule. @xref{Contextual
5246Precedence, ,Context-Dependent Precedence}.)
5247
5248Finally, the resolution of conflicts works by comparing the precedence
5249of the rule being considered with that of the look-ahead token. If the
5250token's precedence is higher, the choice is to shift. If the rule's
5251precedence is higher, the choice is to reduce. If they have equal
5252precedence, the choice is made based on the associativity of that
5253precedence level. The verbose output file made by @samp{-v}
5254(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5255resolved.
bfa74976
RS
5256
5257Not all rules and not all tokens have precedence. If either the rule or
5258the look-ahead token has no precedence, then the default is to shift.
5259
342b8b6e 5260@node Contextual Precedence
bfa74976
RS
5261@section Context-Dependent Precedence
5262@cindex context-dependent precedence
5263@cindex unary operator precedence
5264@cindex precedence, context-dependent
5265@cindex precedence, unary operator
5266@findex %prec
5267
5268Often the precedence of an operator depends on the context. This sounds
5269outlandish at first, but it is really very common. For example, a minus
5270sign typically has a very high precedence as a unary operator, and a
5271somewhat lower precedence (lower than multiplication) as a binary operator.
5272
5273The Bison precedence declarations, @code{%left}, @code{%right} and
5274@code{%nonassoc}, can only be used once for a given token; so a token has
5275only one precedence declared in this way. For context-dependent
5276precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5277modifier for rules.
bfa74976
RS
5278
5279The @code{%prec} modifier declares the precedence of a particular rule by
5280specifying a terminal symbol whose precedence should be used for that rule.
5281It's not necessary for that symbol to appear otherwise in the rule. The
5282modifier's syntax is:
5283
5284@example
5285%prec @var{terminal-symbol}
5286@end example
5287
5288@noindent
5289and it is written after the components of the rule. Its effect is to
5290assign the rule the precedence of @var{terminal-symbol}, overriding
5291the precedence that would be deduced for it in the ordinary way. The
5292altered rule precedence then affects how conflicts involving that rule
5293are resolved (@pxref{Precedence, ,Operator Precedence}).
5294
5295Here is how @code{%prec} solves the problem of unary minus. First, declare
5296a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5297are no tokens of this type, but the symbol serves to stand for its
5298precedence:
5299
5300@example
5301@dots{}
5302%left '+' '-'
5303%left '*'
5304%left UMINUS
5305@end example
5306
5307Now the precedence of @code{UMINUS} can be used in specific rules:
5308
5309@example
5310@group
5311exp: @dots{}
5312 | exp '-' exp
5313 @dots{}
5314 | '-' exp %prec UMINUS
5315@end group
5316@end example
5317
91d2c560 5318@ifset defaultprec
39a06c25
PE
5319If you forget to append @code{%prec UMINUS} to the rule for unary
5320minus, Bison silently assumes that minus has its usual precedence.
5321This kind of problem can be tricky to debug, since one typically
5322discovers the mistake only by testing the code.
5323
22fccf95 5324The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5325this kind of problem systematically. It causes rules that lack a
5326@code{%prec} modifier to have no precedence, even if the last terminal
5327symbol mentioned in their components has a declared precedence.
5328
22fccf95 5329If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5330for all rules that participate in precedence conflict resolution.
5331Then you will see any shift/reduce conflict until you tell Bison how
5332to resolve it, either by changing your grammar or by adding an
5333explicit precedence. This will probably add declarations to the
5334grammar, but it helps to protect against incorrect rule precedences.
5335
22fccf95
PE
5336The effect of @code{%no-default-prec;} can be reversed by giving
5337@code{%default-prec;}, which is the default.
91d2c560 5338@end ifset
39a06c25 5339
342b8b6e 5340@node Parser States
bfa74976
RS
5341@section Parser States
5342@cindex finite-state machine
5343@cindex parser state
5344@cindex state (of parser)
5345
5346The function @code{yyparse} is implemented using a finite-state machine.
5347The values pushed on the parser stack are not simply token type codes; they
5348represent the entire sequence of terminal and nonterminal symbols at or
5349near the top of the stack. The current state collects all the information
5350about previous input which is relevant to deciding what to do next.
5351
5352Each time a look-ahead token is read, the current parser state together
5353with the type of look-ahead token are looked up in a table. This table
5354entry can say, ``Shift the look-ahead token.'' In this case, it also
5355specifies the new parser state, which is pushed onto the top of the
5356parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5357This means that a certain number of tokens or groupings are taken off
5358the top of the stack, and replaced by one grouping. In other words,
5359that number of states are popped from the stack, and one new state is
5360pushed.
5361
5362There is one other alternative: the table can say that the look-ahead token
5363is erroneous in the current state. This causes error processing to begin
5364(@pxref{Error Recovery}).
5365
342b8b6e 5366@node Reduce/Reduce
bfa74976
RS
5367@section Reduce/Reduce Conflicts
5368@cindex reduce/reduce conflict
5369@cindex conflicts, reduce/reduce
5370
5371A reduce/reduce conflict occurs if there are two or more rules that apply
5372to the same sequence of input. This usually indicates a serious error
5373in the grammar.
5374
5375For example, here is an erroneous attempt to define a sequence
5376of zero or more @code{word} groupings.
5377
5378@example
5379sequence: /* empty */
5380 @{ printf ("empty sequence\n"); @}
5381 | maybeword
5382 | sequence word
5383 @{ printf ("added word %s\n", $2); @}
5384 ;
5385
5386maybeword: /* empty */
5387 @{ printf ("empty maybeword\n"); @}
5388 | word
5389 @{ printf ("single word %s\n", $1); @}
5390 ;
5391@end example
5392
5393@noindent
5394The error is an ambiguity: there is more than one way to parse a single
5395@code{word} into a @code{sequence}. It could be reduced to a
5396@code{maybeword} and then into a @code{sequence} via the second rule.
5397Alternatively, nothing-at-all could be reduced into a @code{sequence}
5398via the first rule, and this could be combined with the @code{word}
5399using the third rule for @code{sequence}.
5400
5401There is also more than one way to reduce nothing-at-all into a
5402@code{sequence}. This can be done directly via the first rule,
5403or indirectly via @code{maybeword} and then the second rule.
5404
5405You might think that this is a distinction without a difference, because it
5406does not change whether any particular input is valid or not. But it does
5407affect which actions are run. One parsing order runs the second rule's
5408action; the other runs the first rule's action and the third rule's action.
5409In this example, the output of the program changes.
5410
5411Bison resolves a reduce/reduce conflict by choosing to use the rule that
5412appears first in the grammar, but it is very risky to rely on this. Every
5413reduce/reduce conflict must be studied and usually eliminated. Here is the
5414proper way to define @code{sequence}:
5415
5416@example
5417sequence: /* empty */
5418 @{ printf ("empty sequence\n"); @}
5419 | sequence word
5420 @{ printf ("added word %s\n", $2); @}
5421 ;
5422@end example
5423
5424Here is another common error that yields a reduce/reduce conflict:
5425
5426@example
5427sequence: /* empty */
5428 | sequence words
5429 | sequence redirects
5430 ;
5431
5432words: /* empty */
5433 | words word
5434 ;
5435
5436redirects:/* empty */
5437 | redirects redirect
5438 ;
5439@end example
5440
5441@noindent
5442The intention here is to define a sequence which can contain either
5443@code{word} or @code{redirect} groupings. The individual definitions of
5444@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5445three together make a subtle ambiguity: even an empty input can be parsed
5446in infinitely many ways!
5447
5448Consider: nothing-at-all could be a @code{words}. Or it could be two
5449@code{words} in a row, or three, or any number. It could equally well be a
5450@code{redirects}, or two, or any number. Or it could be a @code{words}
5451followed by three @code{redirects} and another @code{words}. And so on.
5452
5453Here are two ways to correct these rules. First, to make it a single level
5454of sequence:
5455
5456@example
5457sequence: /* empty */
5458 | sequence word
5459 | sequence redirect
5460 ;
5461@end example
5462
5463Second, to prevent either a @code{words} or a @code{redirects}
5464from being empty:
5465
5466@example
5467sequence: /* empty */
5468 | sequence words
5469 | sequence redirects
5470 ;
5471
5472words: word
5473 | words word
5474 ;
5475
5476redirects:redirect
5477 | redirects redirect
5478 ;
5479@end example
5480
342b8b6e 5481@node Mystery Conflicts
bfa74976
RS
5482@section Mysterious Reduce/Reduce Conflicts
5483
5484Sometimes reduce/reduce conflicts can occur that don't look warranted.
5485Here is an example:
5486
5487@example
5488@group
5489%token ID
5490
5491%%
5492def: param_spec return_spec ','
5493 ;
5494param_spec:
5495 type
5496 | name_list ':' type
5497 ;
5498@end group
5499@group
5500return_spec:
5501 type
5502 | name ':' type
5503 ;
5504@end group
5505@group
5506type: ID
5507 ;
5508@end group
5509@group
5510name: ID
5511 ;
5512name_list:
5513 name
5514 | name ',' name_list
5515 ;
5516@end group
5517@end example
5518
5519It would seem that this grammar can be parsed with only a single token
13863333 5520of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5521a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5522@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5523
c827f760
PE
5524@cindex @acronym{LR}(1)
5525@cindex @acronym{LALR}(1)
bfa74976 5526However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5527@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5528an @code{ID}
bfa74976
RS
5529at the beginning of a @code{param_spec} and likewise at the beginning of
5530a @code{return_spec}, are similar enough that Bison assumes they are the
5531same. They appear similar because the same set of rules would be
5532active---the rule for reducing to a @code{name} and that for reducing to
5533a @code{type}. Bison is unable to determine at that stage of processing
5534that the rules would require different look-ahead tokens in the two
5535contexts, so it makes a single parser state for them both. Combining
5536the two contexts causes a conflict later. In parser terminology, this
c827f760 5537occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5538
5539In general, it is better to fix deficiencies than to document them. But
5540this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5541generators that can handle @acronym{LR}(1) grammars are hard to write
5542and tend to
bfa74976
RS
5543produce parsers that are very large. In practice, Bison is more useful
5544as it is now.
5545
5546When the problem arises, you can often fix it by identifying the two
a220f555
MA
5547parser states that are being confused, and adding something to make them
5548look distinct. In the above example, adding one rule to
bfa74976
RS
5549@code{return_spec} as follows makes the problem go away:
5550
5551@example
5552@group
5553%token BOGUS
5554@dots{}
5555%%
5556@dots{}
5557return_spec:
5558 type
5559 | name ':' type
5560 /* This rule is never used. */
5561 | ID BOGUS
5562 ;
5563@end group
5564@end example
5565
5566This corrects the problem because it introduces the possibility of an
5567additional active rule in the context after the @code{ID} at the beginning of
5568@code{return_spec}. This rule is not active in the corresponding context
5569in a @code{param_spec}, so the two contexts receive distinct parser states.
5570As long as the token @code{BOGUS} is never generated by @code{yylex},
5571the added rule cannot alter the way actual input is parsed.
5572
5573In this particular example, there is another way to solve the problem:
5574rewrite the rule for @code{return_spec} to use @code{ID} directly
5575instead of via @code{name}. This also causes the two confusing
5576contexts to have different sets of active rules, because the one for
5577@code{return_spec} activates the altered rule for @code{return_spec}
5578rather than the one for @code{name}.
5579
5580@example
5581param_spec:
5582 type
5583 | name_list ':' type
5584 ;
5585return_spec:
5586 type
5587 | ID ':' type
5588 ;
5589@end example
5590
e054b190
PE
5591For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5592generators, please see:
5593Frank DeRemer and Thomas Pennello, Efficient Computation of
5594@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5595Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5596pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5597
fae437e8 5598@node Generalized LR Parsing
c827f760
PE
5599@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5600@cindex @acronym{GLR} parsing
5601@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5602@cindex ambiguous grammars
5603@cindex non-deterministic parsing
5604
fae437e8
AD
5605Bison produces @emph{deterministic} parsers that choose uniquely
5606when to reduce and which reduction to apply
8dd162d3 5607based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5608As a result, normal Bison handles a proper subset of the family of
5609context-free languages.
fae437e8 5610Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5611sequence of reductions cannot have deterministic parsers in this sense.
5612The same is true of languages that require more than one symbol of
8dd162d3 5613look-ahead, since the parser lacks the information necessary to make a
676385e2 5614decision at the point it must be made in a shift-reduce parser.
fae437e8 5615Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5616there are languages where Bison's particular choice of how to
5617summarize the input seen so far loses necessary information.
5618
5619When you use the @samp{%glr-parser} declaration in your grammar file,
5620Bison generates a parser that uses a different algorithm, called
c827f760
PE
5621Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5622parser uses the same basic
676385e2
PH
5623algorithm for parsing as an ordinary Bison parser, but behaves
5624differently in cases where there is a shift-reduce conflict that has not
fae437e8 5625been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5626reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5627situation, it
fae437e8 5628effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5629shift or reduction. These parsers then proceed as usual, consuming
5630tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5631and split further, with the result that instead of a sequence of states,
c827f760 5632a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5633
5634In effect, each stack represents a guess as to what the proper parse
5635is. Additional input may indicate that a guess was wrong, in which case
5636the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5637actions generated in each stack are saved, rather than being executed
676385e2 5638immediately. When a stack disappears, its saved semantic actions never
fae437e8 5639get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5640their sets of semantic actions are both saved with the state that
5641results from the reduction. We say that two stacks are equivalent
fae437e8 5642when they both represent the same sequence of states,
676385e2
PH
5643and each pair of corresponding states represents a
5644grammar symbol that produces the same segment of the input token
5645stream.
5646
5647Whenever the parser makes a transition from having multiple
c827f760 5648states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5649algorithm, after resolving and executing the saved-up actions.
5650At this transition, some of the states on the stack will have semantic
5651values that are sets (actually multisets) of possible actions. The
5652parser tries to pick one of the actions by first finding one whose rule
5653has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5654declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5655precedence, but there the same merging function is declared for both
fae437e8 5656rules by the @samp{%merge} declaration,
676385e2
PH
5657Bison resolves and evaluates both and then calls the merge function on
5658the result. Otherwise, it reports an ambiguity.
5659
c827f760
PE
5660It is possible to use a data structure for the @acronym{GLR} parsing tree that
5661permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5662size of the input), any unambiguous (not necessarily
5663@acronym{LALR}(1)) grammar in
fae437e8 5664quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5665context-free grammar in cubic worst-case time. However, Bison currently
5666uses a simpler data structure that requires time proportional to the
5667length of the input times the maximum number of stacks required for any
5668prefix of the input. Thus, really ambiguous or non-deterministic
5669grammars can require exponential time and space to process. Such badly
5670behaving examples, however, are not generally of practical interest.
5671Usually, non-determinism in a grammar is local---the parser is ``in
5672doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5673structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5674grammar, in particular, it is only slightly slower than with the default
5675Bison parser.
5676
fa7e68c3 5677For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5678Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5679Generalised @acronym{LR} Parsers, Royal Holloway, University of
5680London, Department of Computer Science, TR-00-12,
5681@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5682(2000-12-24).
5683
1a059451
PE
5684@node Memory Management
5685@section Memory Management, and How to Avoid Memory Exhaustion
5686@cindex memory exhaustion
5687@cindex memory management
bfa74976
RS
5688@cindex stack overflow
5689@cindex parser stack overflow
5690@cindex overflow of parser stack
5691
1a059451 5692The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5693not reduced. When this happens, the parser function @code{yyparse}
1a059451 5694calls @code{yyerror} and then returns 2.
bfa74976 5695
c827f760 5696Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5697usually results from using a right recursion instead of a left
5698recursion, @xref{Recursion, ,Recursive Rules}.
5699
bfa74976
RS
5700@vindex YYMAXDEPTH
5701By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5702parser stack can become before memory is exhausted. Define the
bfa74976
RS
5703macro with a value that is an integer. This value is the maximum number
5704of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5705
5706The stack space allowed is not necessarily allocated. If you specify a
1a059451 5707large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5708stack at first, and then makes it bigger by stages as needed. This
5709increasing allocation happens automatically and silently. Therefore,
5710you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5711space for ordinary inputs that do not need much stack.
5712
d7e14fc0
PE
5713However, do not allow @code{YYMAXDEPTH} to be a value so large that
5714arithmetic overflow could occur when calculating the size of the stack
5715space. Also, do not allow @code{YYMAXDEPTH} to be less than
5716@code{YYINITDEPTH}.
5717
bfa74976
RS
5718@cindex default stack limit
5719The default value of @code{YYMAXDEPTH}, if you do not define it, is
572010000.
5721
5722@vindex YYINITDEPTH
5723You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5724macro @code{YYINITDEPTH} to a positive integer. For the C
5725@acronym{LALR}(1) parser, this value must be a compile-time constant
5726unless you are assuming C99 or some other target language or compiler
5727that allows variable-length arrays. The default is 200.
5728
1a059451 5729Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5730
d1a1114f 5731@c FIXME: C++ output.
c827f760 5732Because of semantical differences between C and C++, the
1a059451
PE
5733@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5734by C++ compilers. In this precise case (compiling a C parser as C++) you are
5735suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5736this deficiency in a future release.
d1a1114f 5737
342b8b6e 5738@node Error Recovery
bfa74976
RS
5739@chapter Error Recovery
5740@cindex error recovery
5741@cindex recovery from errors
5742
6e649e65 5743It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5744error. For example, a compiler should recover sufficiently to parse the
5745rest of the input file and check it for errors; a calculator should accept
5746another expression.
5747
5748In a simple interactive command parser where each input is one line, it may
5749be sufficient to allow @code{yyparse} to return 1 on error and have the
5750caller ignore the rest of the input line when that happens (and then call
5751@code{yyparse} again). But this is inadequate for a compiler, because it
5752forgets all the syntactic context leading up to the error. A syntax error
5753deep within a function in the compiler input should not cause the compiler
5754to treat the following line like the beginning of a source file.
5755
5756@findex error
5757You can define how to recover from a syntax error by writing rules to
5758recognize the special token @code{error}. This is a terminal symbol that
5759is always defined (you need not declare it) and reserved for error
5760handling. The Bison parser generates an @code{error} token whenever a
5761syntax error happens; if you have provided a rule to recognize this token
13863333 5762in the current context, the parse can continue.
bfa74976
RS
5763
5764For example:
5765
5766@example
5767stmnts: /* empty string */
5768 | stmnts '\n'
5769 | stmnts exp '\n'
5770 | stmnts error '\n'
5771@end example
5772
5773The fourth rule in this example says that an error followed by a newline
5774makes a valid addition to any @code{stmnts}.
5775
5776What happens if a syntax error occurs in the middle of an @code{exp}? The
5777error recovery rule, interpreted strictly, applies to the precise sequence
5778of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5779the middle of an @code{exp}, there will probably be some additional tokens
5780and subexpressions on the stack after the last @code{stmnts}, and there
5781will be tokens to read before the next newline. So the rule is not
5782applicable in the ordinary way.
5783
5784But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5785the semantic context and part of the input. First it discards states
5786and objects from the stack until it gets back to a state in which the
bfa74976 5787@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5788already parsed are discarded, back to the last complete @code{stmnts}.)
5789At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5790look-ahead token is not acceptable to be shifted next, the parser reads
5791tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5792this example, Bison reads and discards input until the next newline so
5793that the fourth rule can apply. Note that discarded symbols are
5794possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5795Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5796
5797The choice of error rules in the grammar is a choice of strategies for
5798error recovery. A simple and useful strategy is simply to skip the rest of
5799the current input line or current statement if an error is detected:
5800
5801@example
72d2299c 5802stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5803@end example
5804
5805It is also useful to recover to the matching close-delimiter of an
5806opening-delimiter that has already been parsed. Otherwise the
5807close-delimiter will probably appear to be unmatched, and generate another,
5808spurious error message:
5809
5810@example
5811primary: '(' expr ')'
5812 | '(' error ')'
5813 @dots{}
5814 ;
5815@end example
5816
5817Error recovery strategies are necessarily guesses. When they guess wrong,
5818one syntax error often leads to another. In the above example, the error
5819recovery rule guesses that an error is due to bad input within one
5820@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5821middle of a valid @code{stmnt}. After the error recovery rule recovers
5822from the first error, another syntax error will be found straightaway,
5823since the text following the spurious semicolon is also an invalid
5824@code{stmnt}.
5825
5826To prevent an outpouring of error messages, the parser will output no error
5827message for another syntax error that happens shortly after the first; only
5828after three consecutive input tokens have been successfully shifted will
5829error messages resume.
5830
5831Note that rules which accept the @code{error} token may have actions, just
5832as any other rules can.
5833
5834@findex yyerrok
5835You can make error messages resume immediately by using the macro
5836@code{yyerrok} in an action. If you do this in the error rule's action, no
5837error messages will be suppressed. This macro requires no arguments;
5838@samp{yyerrok;} is a valid C statement.
5839
5840@findex yyclearin
5841The previous look-ahead token is reanalyzed immediately after an error. If
5842this is unacceptable, then the macro @code{yyclearin} may be used to clear
5843this token. Write the statement @samp{yyclearin;} in the error rule's
5844action.
5845
6e649e65 5846For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5847called that advances the input stream to some point where parsing should
5848once again commence. The next symbol returned by the lexical scanner is
5849probably correct. The previous look-ahead token ought to be discarded
5850with @samp{yyclearin;}.
5851
5852@vindex YYRECOVERING
5853The macro @code{YYRECOVERING} stands for an expression that has the
5854value 1 when the parser is recovering from a syntax error, and 0 the
5855rest of the time. A value of 1 indicates that error messages are
5856currently suppressed for new syntax errors.
5857
342b8b6e 5858@node Context Dependency
bfa74976
RS
5859@chapter Handling Context Dependencies
5860
5861The Bison paradigm is to parse tokens first, then group them into larger
5862syntactic units. In many languages, the meaning of a token is affected by
5863its context. Although this violates the Bison paradigm, certain techniques
5864(known as @dfn{kludges}) may enable you to write Bison parsers for such
5865languages.
5866
5867@menu
5868* Semantic Tokens:: Token parsing can depend on the semantic context.
5869* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5870* Tie-in Recovery:: Lexical tie-ins have implications for how
5871 error recovery rules must be written.
5872@end menu
5873
5874(Actually, ``kludge'' means any technique that gets its job done but is
5875neither clean nor robust.)
5876
342b8b6e 5877@node Semantic Tokens
bfa74976
RS
5878@section Semantic Info in Token Types
5879
5880The C language has a context dependency: the way an identifier is used
5881depends on what its current meaning is. For example, consider this:
5882
5883@example
5884foo (x);
5885@end example
5886
5887This looks like a function call statement, but if @code{foo} is a typedef
5888name, then this is actually a declaration of @code{x}. How can a Bison
5889parser for C decide how to parse this input?
5890
c827f760 5891The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5892@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5893identifier, it looks up the current declaration of the identifier in order
5894to decide which token type to return: @code{TYPENAME} if the identifier is
5895declared as a typedef, @code{IDENTIFIER} otherwise.
5896
5897The grammar rules can then express the context dependency by the choice of
5898token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5899but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5900@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5901is @emph{not} significant, such as in declarations that can shadow a
5902typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5903accepted---there is one rule for each of the two token types.
5904
5905This technique is simple to use if the decision of which kinds of
5906identifiers to allow is made at a place close to where the identifier is
5907parsed. But in C this is not always so: C allows a declaration to
5908redeclare a typedef name provided an explicit type has been specified
5909earlier:
5910
5911@example
3a4f411f
PE
5912typedef int foo, bar;
5913int baz (void)
5914@{
5915 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
5916 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
5917 return foo (bar);
5918@}
bfa74976
RS
5919@end example
5920
5921Unfortunately, the name being declared is separated from the declaration
5922construct itself by a complicated syntactic structure---the ``declarator''.
5923
9ecbd125 5924As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5925all the nonterminal names changed: once for parsing a declaration in
5926which a typedef name can be redefined, and once for parsing a
5927declaration in which that can't be done. Here is a part of the
5928duplication, with actions omitted for brevity:
bfa74976
RS
5929
5930@example
5931initdcl:
5932 declarator maybeasm '='
5933 init
5934 | declarator maybeasm
5935 ;
5936
5937notype_initdcl:
5938 notype_declarator maybeasm '='
5939 init
5940 | notype_declarator maybeasm
5941 ;
5942@end example
5943
5944@noindent
5945Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5946cannot. The distinction between @code{declarator} and
5947@code{notype_declarator} is the same sort of thing.
5948
5949There is some similarity between this technique and a lexical tie-in
5950(described next), in that information which alters the lexical analysis is
5951changed during parsing by other parts of the program. The difference is
5952here the information is global, and is used for other purposes in the
5953program. A true lexical tie-in has a special-purpose flag controlled by
5954the syntactic context.
5955
342b8b6e 5956@node Lexical Tie-ins
bfa74976
RS
5957@section Lexical Tie-ins
5958@cindex lexical tie-in
5959
5960One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5961which is set by Bison actions, whose purpose is to alter the way tokens are
5962parsed.
5963
5964For example, suppose we have a language vaguely like C, but with a special
5965construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5966an expression in parentheses in which all integers are hexadecimal. In
5967particular, the token @samp{a1b} must be treated as an integer rather than
5968as an identifier if it appears in that context. Here is how you can do it:
5969
5970@example
5971@group
5972%@{
38a92d50
PE
5973 int hexflag;
5974 int yylex (void);
5975 void yyerror (char const *);
bfa74976
RS
5976%@}
5977%%
5978@dots{}
5979@end group
5980@group
5981expr: IDENTIFIER
5982 | constant
5983 | HEX '('
5984 @{ hexflag = 1; @}
5985 expr ')'
5986 @{ hexflag = 0;
5987 $$ = $4; @}
5988 | expr '+' expr
5989 @{ $$ = make_sum ($1, $3); @}
5990 @dots{}
5991 ;
5992@end group
5993
5994@group
5995constant:
5996 INTEGER
5997 | STRING
5998 ;
5999@end group
6000@end example
6001
6002@noindent
6003Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6004it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6005with letters are parsed as integers if possible.
6006
342b8b6e
AD
6007The declaration of @code{hexflag} shown in the prologue of the parser file
6008is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6009You must also write the code in @code{yylex} to obey the flag.
bfa74976 6010
342b8b6e 6011@node Tie-in Recovery
bfa74976
RS
6012@section Lexical Tie-ins and Error Recovery
6013
6014Lexical tie-ins make strict demands on any error recovery rules you have.
6015@xref{Error Recovery}.
6016
6017The reason for this is that the purpose of an error recovery rule is to
6018abort the parsing of one construct and resume in some larger construct.
6019For example, in C-like languages, a typical error recovery rule is to skip
6020tokens until the next semicolon, and then start a new statement, like this:
6021
6022@example
6023stmt: expr ';'
6024 | IF '(' expr ')' stmt @{ @dots{} @}
6025 @dots{}
6026 error ';'
6027 @{ hexflag = 0; @}
6028 ;
6029@end example
6030
6031If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6032construct, this error rule will apply, and then the action for the
6033completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6034remain set for the entire rest of the input, or until the next @code{hex}
6035keyword, causing identifiers to be misinterpreted as integers.
6036
6037To avoid this problem the error recovery rule itself clears @code{hexflag}.
6038
6039There may also be an error recovery rule that works within expressions.
6040For example, there could be a rule which applies within parentheses
6041and skips to the close-parenthesis:
6042
6043@example
6044@group
6045expr: @dots{}
6046 | '(' expr ')'
6047 @{ $$ = $2; @}
6048 | '(' error ')'
6049 @dots{}
6050@end group
6051@end example
6052
6053If this rule acts within the @code{hex} construct, it is not going to abort
6054that construct (since it applies to an inner level of parentheses within
6055the construct). Therefore, it should not clear the flag: the rest of
6056the @code{hex} construct should be parsed with the flag still in effect.
6057
6058What if there is an error recovery rule which might abort out of the
6059@code{hex} construct or might not, depending on circumstances? There is no
6060way you can write the action to determine whether a @code{hex} construct is
6061being aborted or not. So if you are using a lexical tie-in, you had better
6062make sure your error recovery rules are not of this kind. Each rule must
6063be such that you can be sure that it always will, or always won't, have to
6064clear the flag.
6065
ec3bc396
AD
6066@c ================================================== Debugging Your Parser
6067
342b8b6e 6068@node Debugging
bfa74976 6069@chapter Debugging Your Parser
ec3bc396
AD
6070
6071Developing a parser can be a challenge, especially if you don't
6072understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6073Algorithm}). Even so, sometimes a detailed description of the automaton
6074can help (@pxref{Understanding, , Understanding Your Parser}), or
6075tracing the execution of the parser can give some insight on why it
6076behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6077
6078@menu
6079* Understanding:: Understanding the structure of your parser.
6080* Tracing:: Tracing the execution of your parser.
6081@end menu
6082
6083@node Understanding
6084@section Understanding Your Parser
6085
6086As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6087Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6088frequent than one would hope), looking at this automaton is required to
6089tune or simply fix a parser. Bison provides two different
c827f760 6090representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6091file).
6092
6093The textual file is generated when the options @option{--report} or
6094@option{--verbose} are specified, see @xref{Invocation, , Invoking
6095Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6096the parser output file name, and adding @samp{.output} instead.
6097Therefore, if the input file is @file{foo.y}, then the parser file is
6098called @file{foo.tab.c} by default. As a consequence, the verbose
6099output file is called @file{foo.output}.
6100
6101The following grammar file, @file{calc.y}, will be used in the sequel:
6102
6103@example
6104%token NUM STR
6105%left '+' '-'
6106%left '*'
6107%%
6108exp: exp '+' exp
6109 | exp '-' exp
6110 | exp '*' exp
6111 | exp '/' exp
6112 | NUM
6113 ;
6114useless: STR;
6115%%
6116@end example
6117
88bce5a2
AD
6118@command{bison} reports:
6119
6120@example
6121calc.y: warning: 1 useless nonterminal and 1 useless rule
6122calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6123calc.y:11.10-12: warning: useless rule: useless: STR
6124calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6125@end example
6126
6127When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6128creates a file @file{calc.output} with contents detailed below. The
6129order of the output and the exact presentation might vary, but the
6130interpretation is the same.
ec3bc396
AD
6131
6132The first section includes details on conflicts that were solved thanks
6133to precedence and/or associativity:
6134
6135@example
6136Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6137Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6138Conflict in state 8 between rule 2 and token '*' resolved as shift.
6139@exdent @dots{}
6140@end example
6141
6142@noindent
6143The next section lists states that still have conflicts.
6144
6145@example
5a99098d
PE
6146State 8 conflicts: 1 shift/reduce
6147State 9 conflicts: 1 shift/reduce
6148State 10 conflicts: 1 shift/reduce
6149State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6150@end example
6151
6152@noindent
6153@cindex token, useless
6154@cindex useless token
6155@cindex nonterminal, useless
6156@cindex useless nonterminal
6157@cindex rule, useless
6158@cindex useless rule
6159The next section reports useless tokens, nonterminal and rules. Useless
6160nonterminals and rules are removed in order to produce a smaller parser,
6161but useless tokens are preserved, since they might be used by the
6162scanner (note the difference between ``useless'' and ``not used''
6163below):
6164
6165@example
6166Useless nonterminals:
6167 useless
6168
6169Terminals which are not used:
6170 STR
6171
6172Useless rules:
6173#6 useless: STR;
6174@end example
6175
6176@noindent
6177The next section reproduces the exact grammar that Bison used:
6178
6179@example
6180Grammar
6181
6182 Number, Line, Rule
88bce5a2 6183 0 5 $accept -> exp $end
ec3bc396
AD
6184 1 5 exp -> exp '+' exp
6185 2 6 exp -> exp '-' exp
6186 3 7 exp -> exp '*' exp
6187 4 8 exp -> exp '/' exp
6188 5 9 exp -> NUM
6189@end example
6190
6191@noindent
6192and reports the uses of the symbols:
6193
6194@example
6195Terminals, with rules where they appear
6196
88bce5a2 6197$end (0) 0
ec3bc396
AD
6198'*' (42) 3
6199'+' (43) 1
6200'-' (45) 2
6201'/' (47) 4
6202error (256)
6203NUM (258) 5
6204
6205Nonterminals, with rules where they appear
6206
88bce5a2 6207$accept (8)
ec3bc396
AD
6208 on left: 0
6209exp (9)
6210 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6211@end example
6212
6213@noindent
6214@cindex item
6215@cindex pointed rule
6216@cindex rule, pointed
6217Bison then proceeds onto the automaton itself, describing each state
6218with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6219item is a production rule together with a point (marked by @samp{.})
6220that the input cursor.
6221
6222@example
6223state 0
6224
88bce5a2 6225 $accept -> . exp $ (rule 0)
ec3bc396 6226
2a8d363a 6227 NUM shift, and go to state 1
ec3bc396 6228
2a8d363a 6229 exp go to state 2
ec3bc396
AD
6230@end example
6231
6232This reads as follows: ``state 0 corresponds to being at the very
6233beginning of the parsing, in the initial rule, right before the start
6234symbol (here, @code{exp}). When the parser returns to this state right
6235after having reduced a rule that produced an @code{exp}, the control
6236flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6237symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6238the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6239look-ahead triggers a syntax error.''
ec3bc396
AD
6240
6241@cindex core, item set
6242@cindex item set core
6243@cindex kernel, item set
6244@cindex item set core
6245Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6246report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6247at the beginning of any rule deriving an @code{exp}. By default Bison
6248reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6249you want to see more detail you can invoke @command{bison} with
6250@option{--report=itemset} to list all the items, include those that can
6251be derived:
6252
6253@example
6254state 0
6255
88bce5a2 6256 $accept -> . exp $ (rule 0)
ec3bc396
AD
6257 exp -> . exp '+' exp (rule 1)
6258 exp -> . exp '-' exp (rule 2)
6259 exp -> . exp '*' exp (rule 3)
6260 exp -> . exp '/' exp (rule 4)
6261 exp -> . NUM (rule 5)
6262
6263 NUM shift, and go to state 1
6264
6265 exp go to state 2
6266@end example
6267
6268@noindent
6269In the state 1...
6270
6271@example
6272state 1
6273
6274 exp -> NUM . (rule 5)
6275
2a8d363a 6276 $default reduce using rule 5 (exp)
ec3bc396
AD
6277@end example
6278
6279@noindent
8dd162d3 6280the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6281(@samp{$default}), the parser will reduce it. If it was coming from
6282state 0, then, after this reduction it will return to state 0, and will
6283jump to state 2 (@samp{exp: go to state 2}).
6284
6285@example
6286state 2
6287
88bce5a2 6288 $accept -> exp . $ (rule 0)
ec3bc396
AD
6289 exp -> exp . '+' exp (rule 1)
6290 exp -> exp . '-' exp (rule 2)
6291 exp -> exp . '*' exp (rule 3)
6292 exp -> exp . '/' exp (rule 4)
6293
2a8d363a
AD
6294 $ shift, and go to state 3
6295 '+' shift, and go to state 4
6296 '-' shift, and go to state 5
6297 '*' shift, and go to state 6
6298 '/' shift, and go to state 7
ec3bc396
AD
6299@end example
6300
6301@noindent
6302In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6303because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6304@samp{+}, it will be shifted on the parse stack, and the automaton
6305control will jump to state 4, corresponding to the item @samp{exp -> exp
6306'+' . exp}. Since there is no default action, any other token than
6e649e65 6307those listed above will trigger a syntax error.
ec3bc396
AD
6308
6309The state 3 is named the @dfn{final state}, or the @dfn{accepting
6310state}:
6311
6312@example
6313state 3
6314
88bce5a2 6315 $accept -> exp $ . (rule 0)
ec3bc396 6316
2a8d363a 6317 $default accept
ec3bc396
AD
6318@end example
6319
6320@noindent
6321the initial rule is completed (the start symbol and the end
6322of input were read), the parsing exits successfully.
6323
6324The interpretation of states 4 to 7 is straightforward, and is left to
6325the reader.
6326
6327@example
6328state 4
6329
6330 exp -> exp '+' . exp (rule 1)
6331
2a8d363a 6332 NUM shift, and go to state 1
ec3bc396 6333
2a8d363a 6334 exp go to state 8
ec3bc396
AD
6335
6336state 5
6337
6338 exp -> exp '-' . exp (rule 2)
6339
2a8d363a 6340 NUM shift, and go to state 1
ec3bc396 6341
2a8d363a 6342 exp go to state 9
ec3bc396
AD
6343
6344state 6
6345
6346 exp -> exp '*' . exp (rule 3)
6347
2a8d363a 6348 NUM shift, and go to state 1
ec3bc396 6349
2a8d363a 6350 exp go to state 10
ec3bc396
AD
6351
6352state 7
6353
6354 exp -> exp '/' . exp (rule 4)
6355
2a8d363a 6356 NUM shift, and go to state 1
ec3bc396 6357
2a8d363a 6358 exp go to state 11
ec3bc396
AD
6359@end example
6360
5a99098d
PE
6361As was announced in beginning of the report, @samp{State 8 conflicts:
63621 shift/reduce}:
ec3bc396
AD
6363
6364@example
6365state 8
6366
6367 exp -> exp . '+' exp (rule 1)
6368 exp -> exp '+' exp . (rule 1)
6369 exp -> exp . '-' exp (rule 2)
6370 exp -> exp . '*' exp (rule 3)
6371 exp -> exp . '/' exp (rule 4)
6372
2a8d363a
AD
6373 '*' shift, and go to state 6
6374 '/' shift, and go to state 7
ec3bc396 6375
2a8d363a
AD
6376 '/' [reduce using rule 1 (exp)]
6377 $default reduce using rule 1 (exp)
ec3bc396
AD
6378@end example
6379
8dd162d3 6380Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6381either shifting (and going to state 7), or reducing rule 1. The
6382conflict means that either the grammar is ambiguous, or the parser lacks
6383information to make the right decision. Indeed the grammar is
6384ambiguous, as, since we did not specify the precedence of @samp{/}, the
6385sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6386NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6387NUM}, which corresponds to reducing rule 1.
6388
c827f760 6389Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6390arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6391Shift/Reduce Conflicts}. Discarded actions are reported in between
6392square brackets.
6393
6394Note that all the previous states had a single possible action: either
6395shifting the next token and going to the corresponding state, or
6396reducing a single rule. In the other cases, i.e., when shifting
6397@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6398possible, the look-ahead is required to select the action. State 8 is
6399one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6400is shifting, otherwise the action is reducing rule 1. In other words,
6401the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6402look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6403precedence than @samp{+}. More generally, some items are eligible only
6404with some set of possible look-ahead tokens. When run with
6405@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6406
6407@example
6408state 8
6409
6410 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6411 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6412 exp -> exp . '-' exp (rule 2)
6413 exp -> exp . '*' exp (rule 3)
6414 exp -> exp . '/' exp (rule 4)
6415
6416 '*' shift, and go to state 6
6417 '/' shift, and go to state 7
6418
6419 '/' [reduce using rule 1 (exp)]
6420 $default reduce using rule 1 (exp)
6421@end example
6422
6423The remaining states are similar:
6424
6425@example
6426state 9
6427
6428 exp -> exp . '+' exp (rule 1)
6429 exp -> exp . '-' exp (rule 2)
6430 exp -> exp '-' exp . (rule 2)
6431 exp -> exp . '*' exp (rule 3)
6432 exp -> exp . '/' exp (rule 4)
6433
2a8d363a
AD
6434 '*' shift, and go to state 6
6435 '/' shift, and go to state 7
ec3bc396 6436
2a8d363a
AD
6437 '/' [reduce using rule 2 (exp)]
6438 $default reduce using rule 2 (exp)
ec3bc396
AD
6439
6440state 10
6441
6442 exp -> exp . '+' exp (rule 1)
6443 exp -> exp . '-' exp (rule 2)
6444 exp -> exp . '*' exp (rule 3)
6445 exp -> exp '*' exp . (rule 3)
6446 exp -> exp . '/' exp (rule 4)
6447
2a8d363a 6448 '/' shift, and go to state 7
ec3bc396 6449
2a8d363a
AD
6450 '/' [reduce using rule 3 (exp)]
6451 $default reduce using rule 3 (exp)
ec3bc396
AD
6452
6453state 11
6454
6455 exp -> exp . '+' exp (rule 1)
6456 exp -> exp . '-' exp (rule 2)
6457 exp -> exp . '*' exp (rule 3)
6458 exp -> exp . '/' exp (rule 4)
6459 exp -> exp '/' exp . (rule 4)
6460
2a8d363a
AD
6461 '+' shift, and go to state 4
6462 '-' shift, and go to state 5
6463 '*' shift, and go to state 6
6464 '/' shift, and go to state 7
ec3bc396 6465
2a8d363a
AD
6466 '+' [reduce using rule 4 (exp)]
6467 '-' [reduce using rule 4 (exp)]
6468 '*' [reduce using rule 4 (exp)]
6469 '/' [reduce using rule 4 (exp)]
6470 $default reduce using rule 4 (exp)
ec3bc396
AD
6471@end example
6472
6473@noindent
fa7e68c3
PE
6474Observe that state 11 contains conflicts not only due to the lack of
6475precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6476@samp{*}, but also because the
ec3bc396
AD
6477associativity of @samp{/} is not specified.
6478
6479
6480@node Tracing
6481@section Tracing Your Parser
bfa74976
RS
6482@findex yydebug
6483@cindex debugging
6484@cindex tracing the parser
6485
6486If a Bison grammar compiles properly but doesn't do what you want when it
6487runs, the @code{yydebug} parser-trace feature can help you figure out why.
6488
3ded9a63
AD
6489There are several means to enable compilation of trace facilities:
6490
6491@table @asis
6492@item the macro @code{YYDEBUG}
6493@findex YYDEBUG
6494Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6495parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6496@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6497YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6498Prologue}).
6499
6500@item the option @option{-t}, @option{--debug}
6501Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6502,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6503
6504@item the directive @samp{%debug}
6505@findex %debug
6506Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6507Declaration Summary}). This is a Bison extension, which will prove
6508useful when Bison will output parsers for languages that don't use a
c827f760
PE
6509preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6510you, this is
3ded9a63
AD
6511the preferred solution.
6512@end table
6513
6514We suggest that you always enable the debug option so that debugging is
6515always possible.
bfa74976 6516
02a81e05 6517The trace facility outputs messages with macro calls of the form
e2742e46 6518@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6519@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6520arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6521define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6522and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6523
6524Once you have compiled the program with trace facilities, the way to
6525request a trace is to store a nonzero value in the variable @code{yydebug}.
6526You can do this by making the C code do it (in @code{main}, perhaps), or
6527you can alter the value with a C debugger.
6528
6529Each step taken by the parser when @code{yydebug} is nonzero produces a
6530line or two of trace information, written on @code{stderr}. The trace
6531messages tell you these things:
6532
6533@itemize @bullet
6534@item
6535Each time the parser calls @code{yylex}, what kind of token was read.
6536
6537@item
6538Each time a token is shifted, the depth and complete contents of the
6539state stack (@pxref{Parser States}).
6540
6541@item
6542Each time a rule is reduced, which rule it is, and the complete contents
6543of the state stack afterward.
6544@end itemize
6545
6546To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6547produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6548Bison}). This file shows the meaning of each state in terms of
6549positions in various rules, and also what each state will do with each
6550possible input token. As you read the successive trace messages, you
6551can see that the parser is functioning according to its specification in
6552the listing file. Eventually you will arrive at the place where
6553something undesirable happens, and you will see which parts of the
6554grammar are to blame.
bfa74976
RS
6555
6556The parser file is a C program and you can use C debuggers on it, but it's
6557not easy to interpret what it is doing. The parser function is a
6558finite-state machine interpreter, and aside from the actions it executes
6559the same code over and over. Only the values of variables show where in
6560the grammar it is working.
6561
6562@findex YYPRINT
6563The debugging information normally gives the token type of each token
6564read, but not its semantic value. You can optionally define a macro
6565named @code{YYPRINT} to provide a way to print the value. If you define
6566@code{YYPRINT}, it should take three arguments. The parser will pass a
6567standard I/O stream, the numeric code for the token type, and the token
6568value (from @code{yylval}).
6569
6570Here is an example of @code{YYPRINT} suitable for the multi-function
6571calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6572
6573@smallexample
38a92d50
PE
6574%@{
6575 static void print_token_value (FILE *, int, YYSTYPE);
6576 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6577%@}
6578
6579@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6580
6581static void
831d3c99 6582print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6583@{
6584 if (type == VAR)
d3c4e709 6585 fprintf (file, "%s", value.tptr->name);
bfa74976 6586 else if (type == NUM)
d3c4e709 6587 fprintf (file, "%d", value.val);
bfa74976
RS
6588@}
6589@end smallexample
6590
ec3bc396
AD
6591@c ================================================= Invoking Bison
6592
342b8b6e 6593@node Invocation
bfa74976
RS
6594@chapter Invoking Bison
6595@cindex invoking Bison
6596@cindex Bison invocation
6597@cindex options for invoking Bison
6598
6599The usual way to invoke Bison is as follows:
6600
6601@example
6602bison @var{infile}
6603@end example
6604
6605Here @var{infile} is the grammar file name, which usually ends in
6606@samp{.y}. The parser file's name is made by replacing the @samp{.y}
6607with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
6608@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
72d2299c 6609@file{hack/foo.tab.c}. It's also possible, in case you are writing
79282c6c 6610C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6611or @file{foo.y++}. Then, the output files will take an extension like
6612the given one as input (respectively @file{foo.tab.cpp} and
6613@file{foo.tab.c++}).
234a3be3
AD
6614This feature takes effect with all options that manipulate filenames like
6615@samp{-o} or @samp{-d}.
6616
6617For example :
6618
6619@example
6620bison -d @var{infile.yxx}
6621@end example
84163231 6622@noindent
72d2299c 6623will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6624
6625@example
b56471a6 6626bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6627@end example
84163231 6628@noindent
234a3be3
AD
6629will produce @file{output.c++} and @file{outfile.h++}.
6630
397ec073
PE
6631For compatibility with @acronym{POSIX}, the standard Bison
6632distribution also contains a shell script called @command{yacc} that
6633invokes Bison with the @option{-y} option.
6634
bfa74976 6635@menu
13863333 6636* Bison Options:: All the options described in detail,
c827f760 6637 in alphabetical order by short options.
bfa74976 6638* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6639* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6640@end menu
6641
342b8b6e 6642@node Bison Options
bfa74976
RS
6643@section Bison Options
6644
6645Bison supports both traditional single-letter options and mnemonic long
6646option names. Long option names are indicated with @samp{--} instead of
6647@samp{-}. Abbreviations for option names are allowed as long as they
6648are unique. When a long option takes an argument, like
6649@samp{--file-prefix}, connect the option name and the argument with
6650@samp{=}.
6651
6652Here is a list of options that can be used with Bison, alphabetized by
6653short option. It is followed by a cross key alphabetized by long
6654option.
6655
89cab50d
AD
6656@c Please, keep this ordered as in `bison --help'.
6657@noindent
6658Operations modes:
6659@table @option
6660@item -h
6661@itemx --help
6662Print a summary of the command-line options to Bison and exit.
bfa74976 6663
89cab50d
AD
6664@item -V
6665@itemx --version
6666Print the version number of Bison and exit.
bfa74976 6667
f7ab6a50
PE
6668@item --print-localedir
6669Print the name of the directory containing locale-dependent data.
6670
89cab50d
AD
6671@need 1750
6672@item -y
6673@itemx --yacc
89cab50d
AD
6674Equivalent to @samp{-o y.tab.c}; the parser output file is called
6675@file{y.tab.c}, and the other outputs are called @file{y.output} and
6676@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6677file name conventions. Thus, the following shell script can substitute
397ec073
PE
6678for Yacc, and the Bison distribution contains such a script for
6679compatibility with @acronym{POSIX}:
bfa74976 6680
89cab50d 6681@example
397ec073 6682#! /bin/sh
26e06a21 6683bison -y "$@@"
89cab50d
AD
6684@end example
6685@end table
6686
6687@noindent
6688Tuning the parser:
6689
6690@table @option
cd5bd6ac
AD
6691@item -S @var{file}
6692@itemx --skeleton=@var{file}
6693Specify the skeleton to use. You probably don't need this option unless
6694you are developing Bison.
6695
89cab50d
AD
6696@item -t
6697@itemx --debug
4947ebdb
PE
6698In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6699already defined, so that the debugging facilities are compiled.
ec3bc396 6700@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6701
6702@item --locations
d8988b2f 6703Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6704
6705@item -p @var{prefix}
6706@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6707Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6708@xref{Decl Summary}.
bfa74976
RS
6709
6710@item -l
6711@itemx --no-lines
6712Don't put any @code{#line} preprocessor commands in the parser file.
6713Ordinarily Bison puts them in the parser file so that the C compiler
6714and debuggers will associate errors with your source file, the
6715grammar file. This option causes them to associate errors with the
95e742f7 6716parser file, treating it as an independent source file in its own right.
bfa74976 6717
931c7513
RS
6718@item -n
6719@itemx --no-parser
d8988b2f 6720Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6721
89cab50d
AD
6722@item -k
6723@itemx --token-table
d8988b2f 6724Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6725@end table
bfa74976 6726
89cab50d
AD
6727@noindent
6728Adjust the output:
bfa74976 6729
89cab50d
AD
6730@table @option
6731@item -d
d8988b2f
AD
6732@itemx --defines
6733Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6734file containing macro definitions for the token type names defined in
4bfd5e4e 6735the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6736
342b8b6e 6737@item --defines=@var{defines-file}
d8988b2f 6738Same as above, but save in the file @var{defines-file}.
342b8b6e 6739
89cab50d
AD
6740@item -b @var{file-prefix}
6741@itemx --file-prefix=@var{prefix}
d8988b2f 6742Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6743for all Bison output file names. @xref{Decl Summary}.
bfa74976 6744
ec3bc396
AD
6745@item -r @var{things}
6746@itemx --report=@var{things}
6747Write an extra output file containing verbose description of the comma
6748separated list of @var{things} among:
6749
6750@table @code
6751@item state
6752Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6753@acronym{LALR} automaton.
ec3bc396 6754
8dd162d3 6755@item look-ahead
ec3bc396 6756Implies @code{state} and augments the description of the automaton with
8dd162d3 6757each rule's look-ahead set.
ec3bc396
AD
6758
6759@item itemset
6760Implies @code{state} and augments the description of the automaton with
6761the full set of items for each state, instead of its core only.
6762@end table
6763
6764For instance, on the following grammar
6765
bfa74976
RS
6766@item -v
6767@itemx --verbose
6deb4447
AD
6768Pretend that @code{%verbose} was specified, i.e, write an extra output
6769file containing verbose descriptions of the grammar and
72d2299c 6770parser. @xref{Decl Summary}.
bfa74976 6771
d8988b2f
AD
6772@item -o @var{filename}
6773@itemx --output=@var{filename}
6774Specify the @var{filename} for the parser file.
bfa74976 6775
d8988b2f
AD
6776The other output files' names are constructed from @var{filename} as
6777described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6778
6779@item -g
c827f760
PE
6780Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6781automaton computed by Bison. If the grammar file is @file{foo.y}, the
6782@acronym{VCG} output file will
342b8b6e
AD
6783be @file{foo.vcg}.
6784
6785@item --graph=@var{graph-file}
72d2299c
PE
6786The behavior of @var{--graph} is the same than @samp{-g}. The only
6787difference is that it has an optional argument which is the name of
342b8b6e 6788the output graph filename.
bfa74976
RS
6789@end table
6790
342b8b6e 6791@node Option Cross Key
bfa74976
RS
6792@section Option Cross Key
6793
6794Here is a list of options, alphabetized by long option, to help you find
6795the corresponding short option.
6796
6797@tex
6798\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6799
6800{\tt
6801\line{ --debug \leaderfill -t}
6802\line{ --defines \leaderfill -d}
6803\line{ --file-prefix \leaderfill -b}
342b8b6e 6804\line{ --graph \leaderfill -g}
ff51d159 6805\line{ --help \leaderfill -h}
bfa74976
RS
6806\line{ --name-prefix \leaderfill -p}
6807\line{ --no-lines \leaderfill -l}
931c7513 6808\line{ --no-parser \leaderfill -n}
d8988b2f 6809\line{ --output \leaderfill -o}
f7ab6a50 6810\line{ --print-localedir}
931c7513 6811\line{ --token-table \leaderfill -k}
bfa74976
RS
6812\line{ --verbose \leaderfill -v}
6813\line{ --version \leaderfill -V}
6814\line{ --yacc \leaderfill -y}
6815}
6816@end tex
6817
6818@ifinfo
6819@example
6820--debug -t
342b8b6e 6821--defines=@var{defines-file} -d
bfa74976 6822--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6823--graph=@var{graph-file} -d
ff51d159 6824--help -h
931c7513 6825--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6826--no-lines -l
931c7513 6827--no-parser -n
d8988b2f 6828--output=@var{outfile} -o @var{outfile}
f7ab6a50 6829--print-localedir
931c7513 6830--token-table -k
bfa74976
RS
6831--verbose -v
6832--version -V
8c9a50be 6833--yacc -y
bfa74976
RS
6834@end example
6835@end ifinfo
6836
93dd49ab
PE
6837@node Yacc Library
6838@section Yacc Library
6839
6840The Yacc library contains default implementations of the
6841@code{yyerror} and @code{main} functions. These default
6842implementations are normally not useful, but @acronym{POSIX} requires
6843them. To use the Yacc library, link your program with the
6844@option{-ly} option. Note that Bison's implementation of the Yacc
6845library is distributed under the terms of the @acronym{GNU} General
6846Public License (@pxref{Copying}).
6847
6848If you use the Yacc library's @code{yyerror} function, you should
6849declare @code{yyerror} as follows:
6850
6851@example
6852int yyerror (char const *);
6853@end example
6854
6855Bison ignores the @code{int} value returned by this @code{yyerror}.
6856If you use the Yacc library's @code{main} function, your
6857@code{yyparse} function should have the following type signature:
6858
6859@example
6860int yyparse (void);
6861@end example
6862
12545799
AD
6863@c ================================================= C++ Bison
6864
6865@node C++ Language Interface
6866@chapter C++ Language Interface
6867
6868@menu
6869* C++ Parsers:: The interface to generate C++ parser classes
6870* A Complete C++ Example:: Demonstrating their use
6871@end menu
6872
6873@node C++ Parsers
6874@section C++ Parsers
6875
6876@menu
6877* C++ Bison Interface:: Asking for C++ parser generation
6878* C++ Semantic Values:: %union vs. C++
6879* C++ Location Values:: The position and location classes
6880* C++ Parser Interface:: Instantiating and running the parser
6881* C++ Scanner Interface:: Exchanges between yylex and parse
6882@end menu
6883
6884@node C++ Bison Interface
6885@subsection C++ Bison Interface
6886@c - %skeleton "lalr1.cc"
6887@c - Always pure
6888@c - initial action
6889
e054b190 6890The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To select
12545799
AD
6891it, you may either pass the option @option{--skeleton=lalr1.cc} to
6892Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
6893grammar preamble. When run, @command{bison} will create several
6894files:
6895@table @file
6896@item position.hh
6897@itemx location.hh
6898The definition of the classes @code{position} and @code{location},
6899used for location tracking. @xref{C++ Location Values}.
6900
6901@item stack.hh
6902An auxiliary class @code{stack} used by the parser.
6903
6904@item @var{filename}.hh
6905@itemx @var{filename}.cc
6906The declaration and implementation of the C++ parser class.
6907@var{filename} is the name of the output file. It follows the same
6908rules as with regular C parsers.
6909
6910Note that @file{@var{filename}.hh} is @emph{mandatory}, the C++ cannot
6911work without the parser class declaration. Therefore, you must either
6912pass @option{-d}/@option{--defines} to @command{bison}, or use the
6913@samp{%defines} directive.
6914@end table
6915
6916All these files are documented using Doxygen; run @command{doxygen}
6917for a complete and accurate documentation.
6918
6919@node C++ Semantic Values
6920@subsection C++ Semantic Values
6921@c - No objects in unions
6922@c - YSTYPE
6923@c - Printer and destructor
6924
6925The @code{%union} directive works as for C, see @ref{Union Decl, ,The
6926Collection of Value Types}. In particular it produces a genuine
6927@code{union}@footnote{In the future techniques to allow complex types
6928within pseudo-unions (variants) might be implemented to alleviate
6929these issues.}, which have a few specific features in C++.
6930@itemize @minus
6931@item
6932The name @code{YYSTYPE} also denotes @samp{union YYSTYPE}. You may
6933forward declare it just with @samp{union YYSTYPE;}.
6934@item
6935Non POD (Plain Old Data) types cannot be used. C++ forbids any
6936instance of classes with constructors in unions: only @emph{pointers}
6937to such objects are allowed.
6938@end itemize
6939
6940Because objects have to be stored via pointers, memory is not
6941reclaimed automatically: using the @code{%destructor} directive is the
6942only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
6943Symbols}.
6944
6945
6946@node C++ Location Values
6947@subsection C++ Location Values
6948@c - %locations
6949@c - class Position
6950@c - class Location
6951@c - %define "filename_type" "const symbol::Symbol"
6952
6953When the directive @code{%locations} is used, the C++ parser supports
6954location tracking, see @ref{Locations, , Locations Overview}. Two
6955auxiliary classes define a @code{position}, a single point in a file,
6956and a @code{location}, a range composed of a pair of
6957@code{position}s (possibly spanning several files).
6958
6959@deftypemethod {position} {std::string*} filename
6960The name of the file. It will always be handled as a pointer, the
6961parser will never duplicate nor deallocate it. As an experimental
6962feature you may change it to @samp{@var{type}*} using @samp{%define
6963"filename_type" "@var{type}"}.
6964@end deftypemethod
6965
6966@deftypemethod {position} {unsigned int} line
6967The line, starting at 1.
6968@end deftypemethod
6969
6970@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
6971Advance by @var{height} lines, resetting the column number.
6972@end deftypemethod
6973
6974@deftypemethod {position} {unsigned int} column
6975The column, starting at 0.
6976@end deftypemethod
6977
6978@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
6979Advance by @var{width} columns, without changing the line number.
6980@end deftypemethod
6981
6982@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
6983@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
6984@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
6985@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
6986Various forms of syntactic sugar for @code{columns}.
6987@end deftypemethod
6988
6989@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
6990Report @var{p} on @var{o} like this:
6991@samp{@var{filename}:@var{line}.@var{column}}, or
6992@samp{@var{line}.@var{column}} if @var{filename} is null.
6993@end deftypemethod
6994
6995@deftypemethod {location} {position} begin
6996@deftypemethodx {location} {position} end
6997The first, inclusive, position of the range, and the first beyond.
6998@end deftypemethod
6999
7000@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7001@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7002Advance the @code{end} position.
7003@end deftypemethod
7004
7005@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7006@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7007@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7008Various forms of syntactic sugar.
7009@end deftypemethod
7010
7011@deftypemethod {location} {void} step ()
7012Move @code{begin} onto @code{end}.
7013@end deftypemethod
7014
7015
7016@node C++ Parser Interface
7017@subsection C++ Parser Interface
7018@c - define parser_class_name
7019@c - Ctor
7020@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7021@c debug_stream.
7022@c - Reporting errors
7023
7024The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7025declare and define the parser class in the namespace @code{yy}. The
7026class name defaults to @code{parser}, but may be changed using
7027@samp{%define "parser_class_name" "@var{name}"}. The interface of
7028this class is detailled below. It can be extended using the
7029@code{%parse-param} feature: its semantics is slightly changed since
7030it describes an additional member of the parser class, and an
7031additional argument for its constructor.
7032
8a0adb01
AD
7033@defcv {Type} {parser} {semantic_value_type}
7034@defcvx {Type} {parser} {location_value_type}
12545799 7035The types for semantics value and locations.
8a0adb01 7036@end defcv
12545799
AD
7037
7038@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7039Build a new parser object. There are no arguments by default, unless
7040@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7041@end deftypemethod
7042
7043@deftypemethod {parser} {int} parse ()
7044Run the syntactic analysis, and return 0 on success, 1 otherwise.
7045@end deftypemethod
7046
7047@deftypemethod {parser} {std::ostream&} debug_stream ()
7048@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7049Get or set the stream used for tracing the parsing. It defaults to
7050@code{std::cerr}.
7051@end deftypemethod
7052
7053@deftypemethod {parser} {debug_level_type} debug_level ()
7054@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7055Get or set the tracing level. Currently its value is either 0, no trace,
7056or non-zero, full tracing.
7057@end deftypemethod
7058
7059@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7060The definition for this member function must be supplied by the user:
7061the parser uses it to report a parser error occurring at @var{l},
7062described by @var{m}.
7063@end deftypemethod
7064
7065
7066@node C++ Scanner Interface
7067@subsection C++ Scanner Interface
7068@c - prefix for yylex.
7069@c - Pure interface to yylex
7070@c - %lex-param
7071
7072The parser invokes the scanner by calling @code{yylex}. Contrary to C
7073parsers, C++ parsers are always pure: there is no point in using the
7074@code{%pure-parser} directive. Therefore the interface is as follows.
7075
7076@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7077Return the next token. Its type is the return value, its semantic
7078value and location being @var{yylval} and @var{yylloc}. Invocations of
7079@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7080@end deftypemethod
7081
7082
7083@node A Complete C++ Example
7084@section A Complete C++ Example
7085
7086This section demonstrates the use of a C++ parser with a simple but
7087complete example. This example should be available on your system,
7088ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7089focuses on the use of Bison, therefore the design of the various C++
7090classes is very naive: no accessors, no encapsulation of members etc.
7091We will use a Lex scanner, and more precisely, a Flex scanner, to
7092demonstrate the various interaction. A hand written scanner is
7093actually easier to interface with.
7094
7095@menu
7096* Calc++ --- C++ Calculator:: The specifications
7097* Calc++ Parsing Driver:: An active parsing context
7098* Calc++ Parser:: A parser class
7099* Calc++ Scanner:: A pure C++ Flex scanner
7100* Calc++ Top Level:: Conducting the band
7101@end menu
7102
7103@node Calc++ --- C++ Calculator
7104@subsection Calc++ --- C++ Calculator
7105
7106Of course the grammar is dedicated to arithmetics, a single
7107expression, possibily preceded by variable assignments. An
7108environment containing possibly predefined variables such as
7109@code{one} and @code{two}, is exchanged with the parser. An example
7110of valid input follows.
7111
7112@example
7113three := 3
7114seven := one + two * three
7115seven * seven
7116@end example
7117
7118@node Calc++ Parsing Driver
7119@subsection Calc++ Parsing Driver
7120@c - An env
7121@c - A place to store error messages
7122@c - A place for the result
7123
7124To support a pure interface with the parser (and the scanner) the
7125technique of the ``parsing context'' is convenient: a structure
7126containing all the data to exchange. Since, in addition to simply
7127launch the parsing, there are several auxiliary tasks to execute (open
7128the file for parsing, instantiate the parser etc.), we recommend
7129transforming the simple parsing context structure into a fully blown
7130@dfn{parsing driver} class.
7131
7132The declaration of this driver class, @file{calc++-driver.hh}, is as
7133follows. The first part includes the CPP guard and imports the
7134required standard library components.
7135
1c59e0a1 7136@comment file: calc++-driver.hh
12545799
AD
7137@example
7138#ifndef CALCXX_DRIVER_HH
7139# define CALCXX_DRIVER_HH
7140# include <string>
7141# include <map>
7142@end example
7143
7144@noindent
7145Then come forward declarations. Because the parser uses the parsing
7146driver and reciprocally, simple inclusions of header files will not
7147do. Because the driver's declaration is the one that will be imported
7148by the rest of the project, it is saner to forward declare the
7149parser's information here.
7150
1c59e0a1 7151@comment file: calc++-driver.hh
12545799
AD
7152@example
7153// Forward declarations.
7154union YYSTYPE;
1c59e0a1
AD
7155namespace yy
7156@{
7157 class location;
7158 class calcxx_parser;
7159@}
12545799
AD
7160class calcxx_driver;
7161@end example
7162
7163@noindent
7164Then comes the declaration of the scanning function. Flex expects
7165the signature of @code{yylex} to be defined in the macro
7166@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7167factor both as follows.
1c59e0a1
AD
7168
7169@comment file: calc++-driver.hh
12545799
AD
7170@example
7171// Announce to Flex the prototype we want for lexing function, ...
1c59e0a1 7172# define YY_DECL \
12545799
AD
7173 int yylex (YYSTYPE* yylval, yy::location* yylloc, calcxx_driver& driver)
7174// ... and declare it for the parser's sake.
7175YY_DECL;
7176@end example
7177
7178@noindent
7179The @code{calcxx_driver} class is then declared with its most obvious
7180members.
7181
1c59e0a1 7182@comment file: calc++-driver.hh
12545799
AD
7183@example
7184// Conducting the whole scanning and parsing of Calc++.
7185class calcxx_driver
7186@{
7187public:
7188 calcxx_driver ();
7189 virtual ~calcxx_driver ();
7190
7191 std::map<std::string, int> variables;
7192
7193 int result;
7194@end example
7195
7196@noindent
7197To encapsulate the coordination with the Flex scanner, it is useful to
7198have two members function to open and close the scanning phase.
7199members.
7200
1c59e0a1 7201@comment file: calc++-driver.hh
12545799
AD
7202@example
7203 // Handling the scanner.
7204 void scan_begin ();
7205 void scan_end ();
7206 bool trace_scanning;
7207@end example
7208
7209@noindent
7210Similarly for the parser itself.
7211
1c59e0a1 7212@comment file: calc++-driver.hh
12545799
AD
7213@example
7214 // Handling the parser.
7215 void parse (const std::string& f);
7216 std::string file;
7217 bool trace_parsing;
7218@end example
7219
7220@noindent
7221To demonstrate pure handling of parse errors, instead of simply
7222dumping them on the standard error output, we will pass them to the
7223compiler driver using the following two member functions. Finally, we
7224close the class declaration and CPP guard.
7225
1c59e0a1 7226@comment file: calc++-driver.hh
12545799
AD
7227@example
7228 // Error handling.
7229 void error (const yy::location& l, const std::string& m);
7230 void error (const std::string& m);
7231@};
7232#endif // ! CALCXX_DRIVER_HH
7233@end example
7234
7235The implementation of the driver is straightforward. The @code{parse}
7236member function deserves some attention. The @code{error} functions
7237are simple stubs, they should actually register the located error
7238messages and set error state.
7239
1c59e0a1 7240@comment file: calc++-driver.cc
12545799
AD
7241@example
7242#include "calc++-driver.hh"
7243#include "calc++-parser.hh"
7244
7245calcxx_driver::calcxx_driver ()
7246 : trace_scanning (false), trace_parsing (false)
7247@{
7248 variables["one"] = 1;
7249 variables["two"] = 2;
7250@}
7251
7252calcxx_driver::~calcxx_driver ()
7253@{
7254@}
7255
7256void
7257calcxx_driver::parse (const std::string &f)
7258@{
7259 file = f;
7260 scan_begin ();
7261 yy::calcxx_parser parser (*this);
7262 parser.set_debug_level (trace_parsing);
7263 parser.parse ();
7264 scan_end ();
7265@}
7266
7267void
7268calcxx_driver::error (const yy::location& l, const std::string& m)
7269@{
7270 std::cerr << l << ": " << m << std::endl;
7271@}
7272
7273void
7274calcxx_driver::error (const std::string& m)
7275@{
7276 std::cerr << m << std::endl;
7277@}
7278@end example
7279
7280@node Calc++ Parser
7281@subsection Calc++ Parser
7282
7283The parser definition file @file{calc++-parser.yy} starts by asking
7284for the C++ skeleton, the creation of the parser header file, and
7285specifies the name of the parser class. It then includes the required
7286headers.
1c59e0a1
AD
7287
7288@comment file: calc++-parser.yy
12545799
AD
7289@example
7290%skeleton "lalr1.cc" /* -*- C++ -*- */
7291%define "parser_class_name" "calcxx_parser"
7292%defines
7293%@{
7294# include <string>
7295# include "calc++-driver.hh"
7296%@}
7297@end example
7298
7299@noindent
7300The driver is passed by reference to the parser and to the scanner.
7301This provides a simple but effective pure interface, not relying on
7302global variables.
7303
1c59e0a1 7304@comment file: calc++-parser.yy
12545799
AD
7305@example
7306// The parsing context.
7307%parse-param @{ calcxx_driver& driver @}
7308%lex-param @{ calcxx_driver& driver @}
7309@end example
7310
7311@noindent
7312Then we request the location tracking feature, and initialize the
7313first location's file name. Afterwards new locations are computed
7314relatively to the previous locations: the file name will be
7315automatically propagated.
7316
1c59e0a1 7317@comment file: calc++-parser.yy
12545799
AD
7318@example
7319%locations
7320%initial-action
7321@{
7322 // Initialize the initial location.
7323 @@$.begin.filename = @@$.end.filename = &driver.file;
7324@};
7325@end example
7326
7327@noindent
7328Use the two following directives to enable parser tracing and verbose
7329error messages.
7330
1c59e0a1 7331@comment file: calc++-parser.yy
12545799
AD
7332@example
7333%debug
7334%error-verbose
7335@end example
7336
7337@noindent
7338Semantic values cannot use ``real'' objects, but only pointers to
7339them.
7340
1c59e0a1 7341@comment file: calc++-parser.yy
12545799
AD
7342@example
7343// Symbols.
7344%union
7345@{
7346 int ival;
7347 std::string *sval;
7348@};
7349@end example
7350
7351@noindent
7352The token numbered as 0 corresponds to end of file; the following line
7353allows for nicer error messages referring to ``end of file'' instead
7354of ``$end''. Similarly user friendly named are provided for each
7355symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7356avoid name clashes.
7357
1c59e0a1 7358@comment file: calc++-parser.yy
12545799
AD
7359@example
7360%token YYEOF 0 "end of file"
7361%token TOKEN_ASSIGN ":="
7362%token <sval> TOKEN_IDENTIFIER "identifier"
7363%token <ival> TOKEN_NUMBER "number"
7364%type <ival> exp "expression"
7365@end example
7366
7367@noindent
7368To enable memory deallocation during error recovery, use
7369@code{%destructor}.
7370
1c59e0a1 7371@comment file: calc++-parser.yy
12545799
AD
7372@example
7373%printer @{ debug_stream () << *$$; @} "identifier"
7374%destructor @{ delete $$; @} "identifier"
7375
7376%printer @{ debug_stream () << $$; @} "number" "expression"
7377@end example
7378
7379@noindent
7380The grammar itself is straightforward.
7381
1c59e0a1 7382@comment file: calc++-parser.yy
12545799
AD
7383@example
7384%%
7385%start unit;
7386unit: assignments exp @{ driver.result = $2; @};
7387
7388assignments: assignments assignment @{@}
7389 | /* Nothing. */ @{@};
7390
7391assignment: TOKEN_IDENTIFIER ":=" exp @{ driver.variables[*$1] = $3; @};
7392
7393%left '+' '-';
7394%left '*' '/';
7395exp: exp '+' exp @{ $$ = $1 + $3; @}
7396 | exp '-' exp @{ $$ = $1 - $3; @}
7397 | exp '*' exp @{ $$ = $1 * $3; @}
7398 | exp '/' exp @{ $$ = $1 / $3; @}
7399 | TOKEN_IDENTIFIER @{ $$ = driver.variables[*$1]; @}
7400 | TOKEN_NUMBER @{ $$ = $1; @};
7401%%
7402@end example
7403
7404@noindent
7405Finally the @code{error} member function registers the errors to the
7406driver.
7407
1c59e0a1 7408@comment file: calc++-parser.yy
12545799
AD
7409@example
7410void
1c59e0a1
AD
7411yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7412 const std::string& m)
12545799
AD
7413@{
7414 driver.error (l, m);
7415@}
7416@end example
7417
7418@node Calc++ Scanner
7419@subsection Calc++ Scanner
7420
7421The Flex scanner first includes the driver declaration, then the
7422parser's to get the set of defined tokens.
7423
1c59e0a1 7424@comment file: calc++-scanner.ll
12545799
AD
7425@example
7426%@{ /* -*- C++ -*- */
7427# include <string>
7428# include "calc++-driver.hh"
7429# include "calc++-parser.hh"
7430%@}
7431@end example
7432
7433@noindent
7434Because there is no @code{#include}-like feature we don't need
7435@code{yywrap}, we don't need @code{unput} either, and we parse an
7436actual file, this is not an interactive session with the user.
7437Finally we enable the scanner tracing features.
7438
1c59e0a1 7439@comment file: calc++-scanner.ll
12545799
AD
7440@example
7441%option noyywrap nounput batch debug
7442@end example
7443
7444@noindent
7445Abbreviations allow for more readable rules.
7446
1c59e0a1 7447@comment file: calc++-scanner.ll
12545799
AD
7448@example
7449id [a-zA-Z][a-zA-Z_0-9]*
7450int [0-9]+
7451blank [ \t]
7452@end example
7453
7454@noindent
7455The following paragraph suffices to track locations acurately. Each
7456time @code{yylex} is invoked, the begin position is moved onto the end
7457position. Then when a pattern is matched, the end position is
7458advanced of its width. In case it matched ends of lines, the end
7459cursor is adjusted, and each time blanks are matched, the begin cursor
7460is moved onto the end cursor to effectively ignore the blanks
7461preceding tokens. Comments would be treated equally.
7462
1c59e0a1 7463@comment file: calc++-scanner.ll
12545799 7464@example
828c373b
AD
7465%@{
7466# define YY_USER_ACTION yylloc->columns (yyleng);
7467%@}
12545799
AD
7468%%
7469%@{
7470 yylloc->step ();
12545799
AD
7471%@}
7472@{blank@}+ yylloc->step ();
7473[\n]+ yylloc->lines (yyleng); yylloc->step ();
7474@end example
7475
7476@noindent
7477The rules are simple, just note the use of the driver to report
7478errors.
7479
1c59e0a1 7480@comment file: calc++-scanner.ll
12545799
AD
7481@example
7482[-+*/] return yytext[0];
7483":=" return TOKEN_ASSIGN;
7484@{int@} yylval->ival = atoi (yytext); return TOKEN_NUMBER;
7485@{id@} yylval->sval = new std::string (yytext); return TOKEN_IDENTIFIER;
7486. driver.error (*yylloc, "invalid character");
7487%%
7488@end example
7489
7490@noindent
7491Finally, because the scanner related driver's member function depend
7492on the scanner's data, it is simpler to implement them in this file.
7493
1c59e0a1 7494@comment file: calc++-scanner.ll
12545799
AD
7495@example
7496void
7497calcxx_driver::scan_begin ()
7498@{
7499 yy_flex_debug = trace_scanning;
7500 if (!(yyin = fopen (file.c_str (), "r")))
7501 error (std::string ("cannot open ") + file);
7502@}
7503
7504void
7505calcxx_driver::scan_end ()
7506@{
7507 fclose (yyin);
7508@}
7509@end example
7510
7511@node Calc++ Top Level
7512@subsection Calc++ Top Level
7513
7514The top level file, @file{calc++.cc}, poses no problem.
7515
1c59e0a1 7516@comment file: calc++.cc
12545799
AD
7517@example
7518#include <iostream>
7519#include "calc++-driver.hh"
7520
7521int
7522main (int argc, const char* argv[])
7523@{
7524 calcxx_driver driver;
7525 for (++argv; argv[0]; ++argv)
7526 if (*argv == std::string ("-p"))
7527 driver.trace_parsing = true;
7528 else if (*argv == std::string ("-s"))
7529 driver.trace_scanning = true;
7530 else
7531 @{
7532 driver.parse (*argv);
7533 std::cout << driver.result << std::endl;
7534 @}
7535@}
7536@end example
7537
7538@c ================================================= FAQ
d1a1114f
AD
7539
7540@node FAQ
7541@chapter Frequently Asked Questions
7542@cindex frequently asked questions
7543@cindex questions
7544
7545Several questions about Bison come up occasionally. Here some of them
7546are addressed.
7547
7548@menu
1a059451 7549* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 7550* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 7551* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 7552* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
7553@end menu
7554
1a059451
PE
7555@node Memory Exhausted
7556@section Memory Exhausted
d1a1114f
AD
7557
7558@display
1a059451 7559My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7560message. What can I do?
7561@end display
7562
7563This question is already addressed elsewhere, @xref{Recursion,
7564,Recursive Rules}.
7565
e64fec0a
PE
7566@node How Can I Reset the Parser
7567@section How Can I Reset the Parser
5b066063 7568
0e14ad77
PE
7569The following phenomenon has several symptoms, resulting in the
7570following typical questions:
5b066063
AD
7571
7572@display
7573I invoke @code{yyparse} several times, and on correct input it works
7574properly; but when a parse error is found, all the other calls fail
0e14ad77 7575too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7576@end display
7577
7578@noindent
7579or
7580
7581@display
0e14ad77 7582My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7583which case I run @code{yyparse} from @code{yyparse}. This fails
7584although I did specify I needed a @code{%pure-parser}.
7585@end display
7586
0e14ad77
PE
7587These problems typically come not from Bison itself, but from
7588Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7589speed, they might not notice a change of input file. As a
7590demonstration, consider the following source file,
7591@file{first-line.l}:
7592
7593@verbatim
7594%{
7595#include <stdio.h>
7596#include <stdlib.h>
7597%}
7598%%
7599.*\n ECHO; return 1;
7600%%
7601int
0e14ad77 7602yyparse (char const *file)
5b066063
AD
7603{
7604 yyin = fopen (file, "r");
7605 if (!yyin)
7606 exit (2);
fa7e68c3 7607 /* One token only. */
5b066063 7608 yylex ();
0e14ad77 7609 if (fclose (yyin) != 0)
5b066063
AD
7610 exit (3);
7611 return 0;
7612}
7613
7614int
0e14ad77 7615main (void)
5b066063
AD
7616{
7617 yyparse ("input");
7618 yyparse ("input");
7619 return 0;
7620}
7621@end verbatim
7622
7623@noindent
7624If the file @file{input} contains
7625
7626@verbatim
7627input:1: Hello,
7628input:2: World!
7629@end verbatim
7630
7631@noindent
0e14ad77 7632then instead of getting the first line twice, you get:
5b066063
AD
7633
7634@example
7635$ @kbd{flex -ofirst-line.c first-line.l}
7636$ @kbd{gcc -ofirst-line first-line.c -ll}
7637$ @kbd{./first-line}
7638input:1: Hello,
7639input:2: World!
7640@end example
7641
0e14ad77
PE
7642Therefore, whenever you change @code{yyin}, you must tell the
7643Lex-generated scanner to discard its current buffer and switch to the
7644new one. This depends upon your implementation of Lex; see its
7645documentation for more. For Flex, it suffices to call
7646@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7647Flex-generated scanner needs to read from several input streams to
7648handle features like include files, you might consider using Flex
7649functions like @samp{yy_switch_to_buffer} that manipulate multiple
7650input buffers.
5b066063 7651
b165c324
AD
7652If your Flex-generated scanner uses start conditions (@pxref{Start
7653conditions, , Start conditions, flex, The Flex Manual}), you might
7654also want to reset the scanner's state, i.e., go back to the initial
7655start condition, through a call to @samp{BEGIN (0)}.
7656
fef4cb51
AD
7657@node Strings are Destroyed
7658@section Strings are Destroyed
7659
7660@display
c7e441b4 7661My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7662them. Instead of reporting @samp{"foo", "bar"}, it reports
7663@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7664@end display
7665
7666This error is probably the single most frequent ``bug report'' sent to
7667Bison lists, but is only concerned with a misunderstanding of the role
7668of scanner. Consider the following Lex code:
7669
7670@verbatim
7671%{
7672#include <stdio.h>
7673char *yylval = NULL;
7674%}
7675%%
7676.* yylval = yytext; return 1;
7677\n /* IGNORE */
7678%%
7679int
7680main ()
7681{
fa7e68c3 7682 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7683 char *fst = (yylex (), yylval);
7684 char *snd = (yylex (), yylval);
7685 printf ("\"%s\", \"%s\"\n", fst, snd);
7686 return 0;
7687}
7688@end verbatim
7689
7690If you compile and run this code, you get:
7691
7692@example
7693$ @kbd{flex -osplit-lines.c split-lines.l}
7694$ @kbd{gcc -osplit-lines split-lines.c -ll}
7695$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7696"one
7697two", "two"
7698@end example
7699
7700@noindent
7701this is because @code{yytext} is a buffer provided for @emph{reading}
7702in the action, but if you want to keep it, you have to duplicate it
7703(e.g., using @code{strdup}). Note that the output may depend on how
7704your implementation of Lex handles @code{yytext}. For instance, when
7705given the Lex compatibility option @option{-l} (which triggers the
7706option @samp{%array}) Flex generates a different behavior:
7707
7708@example
7709$ @kbd{flex -l -osplit-lines.c split-lines.l}
7710$ @kbd{gcc -osplit-lines split-lines.c -ll}
7711$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7712"two", "two"
7713@end example
7714
7715
2fa09258
AD
7716@node Implementing Gotos/Loops
7717@section Implementing Gotos/Loops
a06ea4aa
AD
7718
7719@display
7720My simple calculator supports variables, assignments, and functions,
2fa09258 7721but how can I implement gotos, or loops?
a06ea4aa
AD
7722@end display
7723
7724Although very pedagogical, the examples included in the document blur
a1c84f45 7725the distinction to make between the parser---whose job is to recover
a06ea4aa 7726the structure of a text and to transmit it to subsequent modules of
a1c84f45 7727the program---and the processing (such as the execution) of this
a06ea4aa
AD
7728structure. This works well with so called straight line programs,
7729i.e., precisely those that have a straightforward execution model:
7730execute simple instructions one after the others.
7731
7732@cindex abstract syntax tree
7733@cindex @acronym{AST}
7734If you want a richer model, you will probably need to use the parser
7735to construct a tree that does represent the structure it has
7736recovered; this tree is usually called the @dfn{abstract syntax tree},
7737or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7738traversing it in various ways, will enable treatments such as its
7739execution or its translation, which will result in an interpreter or a
7740compiler.
7741
7742This topic is way beyond the scope of this manual, and the reader is
7743invited to consult the dedicated literature.
7744
7745
7746
d1a1114f
AD
7747@c ================================================= Table of Symbols
7748
342b8b6e 7749@node Table of Symbols
bfa74976
RS
7750@appendix Bison Symbols
7751@cindex Bison symbols, table of
7752@cindex symbols in Bison, table of
7753
18b519c0 7754@deffn {Variable} @@$
3ded9a63 7755In an action, the location of the left-hand side of the rule.
88bce5a2 7756@xref{Locations, , Locations Overview}.
18b519c0 7757@end deffn
3ded9a63 7758
18b519c0 7759@deffn {Variable} @@@var{n}
3ded9a63
AD
7760In an action, the location of the @var{n}-th symbol of the right-hand
7761side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 7762@end deffn
3ded9a63 7763
18b519c0 7764@deffn {Variable} $$
3ded9a63
AD
7765In an action, the semantic value of the left-hand side of the rule.
7766@xref{Actions}.
18b519c0 7767@end deffn
3ded9a63 7768
18b519c0 7769@deffn {Variable} $@var{n}
3ded9a63
AD
7770In an action, the semantic value of the @var{n}-th symbol of the
7771right-hand side of the rule. @xref{Actions}.
18b519c0 7772@end deffn
3ded9a63 7773
dd8d9022
AD
7774@deffn {Delimiter} %%
7775Delimiter used to separate the grammar rule section from the
7776Bison declarations section or the epilogue.
7777@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7778@end deffn
bfa74976 7779
dd8d9022
AD
7780@c Don't insert spaces, or check the DVI output.
7781@deffn {Delimiter} %@{@var{code}%@}
7782All code listed between @samp{%@{} and @samp{%@}} is copied directly to
7783the output file uninterpreted. Such code forms the prologue of the input
7784file. @xref{Grammar Outline, ,Outline of a Bison
7785Grammar}.
18b519c0 7786@end deffn
bfa74976 7787
dd8d9022
AD
7788@deffn {Construct} /*@dots{}*/
7789Comment delimiters, as in C.
18b519c0 7790@end deffn
bfa74976 7791
dd8d9022
AD
7792@deffn {Delimiter} :
7793Separates a rule's result from its components. @xref{Rules, ,Syntax of
7794Grammar Rules}.
18b519c0 7795@end deffn
bfa74976 7796
dd8d9022
AD
7797@deffn {Delimiter} ;
7798Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7799@end deffn
bfa74976 7800
dd8d9022
AD
7801@deffn {Delimiter} |
7802Separates alternate rules for the same result nonterminal.
7803@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7804@end deffn
bfa74976 7805
dd8d9022
AD
7806@deffn {Symbol} $accept
7807The predefined nonterminal whose only rule is @samp{$accept: @var{start}
7808$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
7809Start-Symbol}. It cannot be used in the grammar.
18b519c0 7810@end deffn
bfa74976 7811
18b519c0 7812@deffn {Directive} %debug
6deb4447 7813Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7814@end deffn
6deb4447 7815
91d2c560 7816@ifset defaultprec
22fccf95
PE
7817@deffn {Directive} %default-prec
7818Assign a precedence to rules that lack an explicit @samp{%prec}
7819modifier. @xref{Contextual Precedence, ,Context-Dependent
7820Precedence}.
39a06c25 7821@end deffn
91d2c560 7822@end ifset
39a06c25 7823
18b519c0 7824@deffn {Directive} %defines
6deb4447
AD
7825Bison declaration to create a header file meant for the scanner.
7826@xref{Decl Summary}.
18b519c0 7827@end deffn
6deb4447 7828
18b519c0 7829@deffn {Directive} %destructor
258b75ca 7830Specify how the parser should reclaim the memory associated to
fa7e68c3 7831discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7832@end deffn
72f889cc 7833
18b519c0 7834@deffn {Directive} %dprec
676385e2 7835Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7836time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7837@acronym{GLR} Parsers}.
18b519c0 7838@end deffn
676385e2 7839
dd8d9022
AD
7840@deffn {Symbol} $end
7841The predefined token marking the end of the token stream. It cannot be
7842used in the grammar.
7843@end deffn
7844
7845@deffn {Symbol} error
7846A token name reserved for error recovery. This token may be used in
7847grammar rules so as to allow the Bison parser to recognize an error in
7848the grammar without halting the process. In effect, a sentence
7849containing an error may be recognized as valid. On a syntax error, the
7850token @code{error} becomes the current look-ahead token. Actions
7851corresponding to @code{error} are then executed, and the look-ahead
7852token is reset to the token that originally caused the violation.
7853@xref{Error Recovery}.
18d192f0
AD
7854@end deffn
7855
18b519c0 7856@deffn {Directive} %error-verbose
2a8d363a
AD
7857Bison declaration to request verbose, specific error message strings
7858when @code{yyerror} is called.
18b519c0 7859@end deffn
2a8d363a 7860
18b519c0 7861@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 7862Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 7863Summary}.
18b519c0 7864@end deffn
d8988b2f 7865
18b519c0 7866@deffn {Directive} %glr-parser
c827f760
PE
7867Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
7868Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7869@end deffn
676385e2 7870
dd8d9022
AD
7871@deffn {Directive} %initial-action
7872Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
7873@end deffn
7874
18b519c0 7875@deffn {Directive} %left
bfa74976
RS
7876Bison declaration to assign left associativity to token(s).
7877@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7878@end deffn
bfa74976 7879
feeb0eda 7880@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
7881Bison declaration to specifying an additional parameter that
7882@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
7883for Pure Parsers}.
18b519c0 7884@end deffn
2a8d363a 7885
18b519c0 7886@deffn {Directive} %merge
676385e2 7887Bison declaration to assign a merging function to a rule. If there is a
fae437e8 7888reduce/reduce conflict with a rule having the same merging function, the
676385e2 7889function is applied to the two semantic values to get a single result.
c827f760 7890@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7891@end deffn
676385e2 7892
18b519c0 7893@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 7894Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 7895@end deffn
d8988b2f 7896
91d2c560 7897@ifset defaultprec
22fccf95
PE
7898@deffn {Directive} %no-default-prec
7899Do not assign a precedence to rules that lack an explicit @samp{%prec}
7900modifier. @xref{Contextual Precedence, ,Context-Dependent
7901Precedence}.
7902@end deffn
91d2c560 7903@end ifset
22fccf95 7904
18b519c0 7905@deffn {Directive} %no-lines
931c7513
RS
7906Bison declaration to avoid generating @code{#line} directives in the
7907parser file. @xref{Decl Summary}.
18b519c0 7908@end deffn
931c7513 7909
18b519c0 7910@deffn {Directive} %nonassoc
14ded682 7911Bison declaration to assign non-associativity to token(s).
bfa74976 7912@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7913@end deffn
bfa74976 7914
18b519c0 7915@deffn {Directive} %output="@var{filename}"
72d2299c 7916Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 7917Summary}.
18b519c0 7918@end deffn
d8988b2f 7919
feeb0eda 7920@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
7921Bison declaration to specifying an additional parameter that
7922@code{yyparse} should accept. @xref{Parser Function,, The Parser
7923Function @code{yyparse}}.
18b519c0 7924@end deffn
2a8d363a 7925
18b519c0 7926@deffn {Directive} %prec
bfa74976
RS
7927Bison declaration to assign a precedence to a specific rule.
7928@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 7929@end deffn
bfa74976 7930
18b519c0 7931@deffn {Directive} %pure-parser
bfa74976
RS
7932Bison declaration to request a pure (reentrant) parser.
7933@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 7934@end deffn
bfa74976 7935
18b519c0 7936@deffn {Directive} %right
bfa74976
RS
7937Bison declaration to assign right associativity to token(s).
7938@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7939@end deffn
bfa74976 7940
18b519c0 7941@deffn {Directive} %start
704a47c4
AD
7942Bison declaration to specify the start symbol. @xref{Start Decl, ,The
7943Start-Symbol}.
18b519c0 7944@end deffn
bfa74976 7945
18b519c0 7946@deffn {Directive} %token
bfa74976
RS
7947Bison declaration to declare token(s) without specifying precedence.
7948@xref{Token Decl, ,Token Type Names}.
18b519c0 7949@end deffn
bfa74976 7950
18b519c0 7951@deffn {Directive} %token-table
931c7513
RS
7952Bison declaration to include a token name table in the parser file.
7953@xref{Decl Summary}.
18b519c0 7954@end deffn
931c7513 7955
18b519c0 7956@deffn {Directive} %type
704a47c4
AD
7957Bison declaration to declare nonterminals. @xref{Type Decl,
7958,Nonterminal Symbols}.
18b519c0 7959@end deffn
bfa74976 7960
dd8d9022
AD
7961@deffn {Symbol} $undefined
7962The predefined token onto which all undefined values returned by
7963@code{yylex} are mapped. It cannot be used in the grammar, rather, use
7964@code{error}.
7965@end deffn
7966
18b519c0 7967@deffn {Directive} %union
bfa74976
RS
7968Bison declaration to specify several possible data types for semantic
7969values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 7970@end deffn
bfa74976 7971
dd8d9022
AD
7972@deffn {Macro} YYABORT
7973Macro to pretend that an unrecoverable syntax error has occurred, by
7974making @code{yyparse} return 1 immediately. The error reporting
7975function @code{yyerror} is not called. @xref{Parser Function, ,The
7976Parser Function @code{yyparse}}.
7977@end deffn
3ded9a63 7978
dd8d9022
AD
7979@deffn {Macro} YYACCEPT
7980Macro to pretend that a complete utterance of the language has been
7981read, by making @code{yyparse} return 0 immediately.
7982@xref{Parser Function, ,The Parser Function @code{yyparse}}.
7983@end deffn
bfa74976 7984
dd8d9022
AD
7985@deffn {Macro} YYBACKUP
7986Macro to discard a value from the parser stack and fake a look-ahead
7987token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7988@end deffn
bfa74976 7989
dd8d9022
AD
7990@deffn {Variable} yychar
7991External integer variable that contains the integer value of the current
7992look-ahead token. (In a pure parser, it is a local variable within
7993@code{yyparse}.) Error-recovery rule actions may examine this variable.
7994@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7995@end deffn
bfa74976 7996
dd8d9022
AD
7997@deffn {Variable} yyclearin
7998Macro used in error-recovery rule actions. It clears the previous
7999look-ahead token. @xref{Error Recovery}.
18b519c0 8000@end deffn
bfa74976 8001
dd8d9022
AD
8002@deffn {Macro} YYDEBUG
8003Macro to define to equip the parser with tracing code. @xref{Tracing,
8004,Tracing Your Parser}.
18b519c0 8005@end deffn
bfa74976 8006
dd8d9022
AD
8007@deffn {Variable} yydebug
8008External integer variable set to zero by default. If @code{yydebug}
8009is given a nonzero value, the parser will output information on input
8010symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8011@end deffn
bfa74976 8012
dd8d9022
AD
8013@deffn {Macro} yyerrok
8014Macro to cause parser to recover immediately to its normal mode
8015after a syntax error. @xref{Error Recovery}.
8016@end deffn
8017
8018@deffn {Macro} YYERROR
8019Macro to pretend that a syntax error has just been detected: call
8020@code{yyerror} and then perform normal error recovery if possible
8021(@pxref{Error Recovery}), or (if recovery is impossible) make
8022@code{yyparse} return 1. @xref{Error Recovery}.
8023@end deffn
8024
8025@deffn {Function} yyerror
8026User-supplied function to be called by @code{yyparse} on error.
8027@xref{Error Reporting, ,The Error
8028Reporting Function @code{yyerror}}.
8029@end deffn
8030
8031@deffn {Macro} YYERROR_VERBOSE
8032An obsolete macro that you define with @code{#define} in the prologue
8033to request verbose, specific error message strings
8034when @code{yyerror} is called. It doesn't matter what definition you
8035use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8036@code{%error-verbose} is preferred.
8037@end deffn
8038
8039@deffn {Macro} YYINITDEPTH
8040Macro for specifying the initial size of the parser stack.
1a059451 8041@xref{Memory Management}.
dd8d9022
AD
8042@end deffn
8043
8044@deffn {Function} yylex
8045User-supplied lexical analyzer function, called with no arguments to get
8046the next token. @xref{Lexical, ,The Lexical Analyzer Function
8047@code{yylex}}.
8048@end deffn
8049
8050@deffn {Macro} YYLEX_PARAM
8051An obsolete macro for specifying an extra argument (or list of extra
8052arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
8053macro is deprecated, and is supported only for Yacc like parsers.
8054@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8055@end deffn
8056
8057@deffn {Variable} yylloc
8058External variable in which @code{yylex} should place the line and column
8059numbers associated with a token. (In a pure parser, it is a local
8060variable within @code{yyparse}, and its address is passed to
8061@code{yylex}.) You can ignore this variable if you don't use the
8062@samp{@@} feature in the grammar actions. @xref{Token Locations,
8063,Textual Locations of Tokens}.
8064@end deffn
8065
8066@deffn {Type} YYLTYPE
8067Data type of @code{yylloc}; by default, a structure with four
8068members. @xref{Location Type, , Data Types of Locations}.
8069@end deffn
8070
8071@deffn {Variable} yylval
8072External variable in which @code{yylex} should place the semantic
8073value associated with a token. (In a pure parser, it is a local
8074variable within @code{yyparse}, and its address is passed to
8075@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
8076@end deffn
8077
8078@deffn {Macro} YYMAXDEPTH
1a059451
PE
8079Macro for specifying the maximum size of the parser stack. @xref{Memory
8080Management}.
dd8d9022
AD
8081@end deffn
8082
8083@deffn {Variable} yynerrs
8084Global variable which Bison increments each time there is a syntax error.
8085(In a pure parser, it is a local variable within @code{yyparse}.)
8086@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8087@end deffn
8088
8089@deffn {Function} yyparse
8090The parser function produced by Bison; call this function to start
8091parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8092@end deffn
8093
8094@deffn {Macro} YYPARSE_PARAM
8095An obsolete macro for specifying the name of a parameter that
8096@code{yyparse} should accept. The use of this macro is deprecated, and
8097is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8098Conventions for Pure Parsers}.
8099@end deffn
8100
8101@deffn {Macro} YYRECOVERING
8102Macro whose value indicates whether the parser is recovering from a
8103syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8104@end deffn
8105
8106@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8107Macro used to control the use of @code{alloca} when the C
8108@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8109the parser will use @code{malloc} to extend its stacks. If defined to
81101, the parser will use @code{alloca}. Values other than 0 and 1 are
8111reserved for future Bison extensions. If not defined,
8112@code{YYSTACK_USE_ALLOCA} defaults to 0.
8113
8114If you define @code{YYSTACK_USE_ALLOCA} to 1, it is your
8115responsibility to make sure that @code{alloca} is visible, e.g., by
8116using @acronym{GCC} or by including @code{<stdlib.h>}. Furthermore,
8117in the all-too-common case where your code may run on a host with a
8118limited stack and with unreliable stack-overflow checking, you should
8119set @code{YYMAXDEPTH} to a value that cannot possibly result in
8120unchecked stack overflow on any of your target hosts when
8121@code{alloca} is called. You can inspect the code that Bison
8122generates in order to determine the proper numeric values. This will
8123require some expertise in low-level implementation details.
dd8d9022
AD
8124@end deffn
8125
8126@deffn {Type} YYSTYPE
8127Data type of semantic values; @code{int} by default.
8128@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8129@end deffn
bfa74976 8130
342b8b6e 8131@node Glossary
bfa74976
RS
8132@appendix Glossary
8133@cindex glossary
8134
8135@table @asis
c827f760
PE
8136@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8137Formal method of specifying context-free grammars originally proposed
8138by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8139committee document contributing to what became the Algol 60 report.
8140@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8141
8142@item Context-free grammars
8143Grammars specified as rules that can be applied regardless of context.
8144Thus, if there is a rule which says that an integer can be used as an
8145expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8146permitted. @xref{Language and Grammar, ,Languages and Context-Free
8147Grammars}.
bfa74976
RS
8148
8149@item Dynamic allocation
8150Allocation of memory that occurs during execution, rather than at
8151compile time or on entry to a function.
8152
8153@item Empty string
8154Analogous to the empty set in set theory, the empty string is a
8155character string of length zero.
8156
8157@item Finite-state stack machine
8158A ``machine'' that has discrete states in which it is said to exist at
8159each instant in time. As input to the machine is processed, the
8160machine moves from state to state as specified by the logic of the
8161machine. In the case of the parser, the input is the language being
8162parsed, and the states correspond to various stages in the grammar
c827f760 8163rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8164
c827f760 8165@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8166A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8167that are not @acronym{LALR}(1). It resolves situations that Bison's
8168usual @acronym{LALR}(1)
676385e2
PH
8169algorithm cannot by effectively splitting off multiple parsers, trying all
8170possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8171right context. @xref{Generalized LR Parsing, ,Generalized
8172@acronym{LR} Parsing}.
676385e2 8173
bfa74976
RS
8174@item Grouping
8175A language construct that is (in general) grammatically divisible;
c827f760 8176for example, `expression' or `declaration' in C@.
bfa74976
RS
8177@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8178
8179@item Infix operator
8180An arithmetic operator that is placed between the operands on which it
8181performs some operation.
8182
8183@item Input stream
8184A continuous flow of data between devices or programs.
8185
8186@item Language construct
8187One of the typical usage schemas of the language. For example, one of
8188the constructs of the C language is the @code{if} statement.
8189@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8190
8191@item Left associativity
8192Operators having left associativity are analyzed from left to right:
8193@samp{a+b+c} first computes @samp{a+b} and then combines with
8194@samp{c}. @xref{Precedence, ,Operator Precedence}.
8195
8196@item Left recursion
89cab50d
AD
8197A rule whose result symbol is also its first component symbol; for
8198example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8199Rules}.
bfa74976
RS
8200
8201@item Left-to-right parsing
8202Parsing a sentence of a language by analyzing it token by token from
c827f760 8203left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8204
8205@item Lexical analyzer (scanner)
8206A function that reads an input stream and returns tokens one by one.
8207@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8208
8209@item Lexical tie-in
8210A flag, set by actions in the grammar rules, which alters the way
8211tokens are parsed. @xref{Lexical Tie-ins}.
8212
931c7513 8213@item Literal string token
14ded682 8214A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8215
bfa74976 8216@item Look-ahead token
89cab50d
AD
8217A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8218Tokens}.
bfa74976 8219
c827f760 8220@item @acronym{LALR}(1)
bfa74976 8221The class of context-free grammars that Bison (like most other parser
c827f760
PE
8222generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8223Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8224
c827f760 8225@item @acronym{LR}(1)
bfa74976
RS
8226The class of context-free grammars in which at most one token of
8227look-ahead is needed to disambiguate the parsing of any piece of input.
8228
8229@item Nonterminal symbol
8230A grammar symbol standing for a grammatical construct that can
8231be expressed through rules in terms of smaller constructs; in other
8232words, a construct that is not a token. @xref{Symbols}.
8233
bfa74976
RS
8234@item Parser
8235A function that recognizes valid sentences of a language by analyzing
8236the syntax structure of a set of tokens passed to it from a lexical
8237analyzer.
8238
8239@item Postfix operator
8240An arithmetic operator that is placed after the operands upon which it
8241performs some operation.
8242
8243@item Reduction
8244Replacing a string of nonterminals and/or terminals with a single
89cab50d 8245nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8246Parser Algorithm}.
bfa74976
RS
8247
8248@item Reentrant
8249A reentrant subprogram is a subprogram which can be in invoked any
8250number of times in parallel, without interference between the various
8251invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8252
8253@item Reverse polish notation
8254A language in which all operators are postfix operators.
8255
8256@item Right recursion
89cab50d
AD
8257A rule whose result symbol is also its last component symbol; for
8258example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8259Rules}.
bfa74976
RS
8260
8261@item Semantics
8262In computer languages, the semantics are specified by the actions
8263taken for each instance of the language, i.e., the meaning of
8264each statement. @xref{Semantics, ,Defining Language Semantics}.
8265
8266@item Shift
8267A parser is said to shift when it makes the choice of analyzing
8268further input from the stream rather than reducing immediately some
c827f760 8269already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8270
8271@item Single-character literal
8272A single character that is recognized and interpreted as is.
8273@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8274
8275@item Start symbol
8276The nonterminal symbol that stands for a complete valid utterance in
8277the language being parsed. The start symbol is usually listed as the
13863333 8278first nonterminal symbol in a language specification.
bfa74976
RS
8279@xref{Start Decl, ,The Start-Symbol}.
8280
8281@item Symbol table
8282A data structure where symbol names and associated data are stored
8283during parsing to allow for recognition and use of existing
8284information in repeated uses of a symbol. @xref{Multi-function Calc}.
8285
6e649e65
PE
8286@item Syntax error
8287An error encountered during parsing of an input stream due to invalid
8288syntax. @xref{Error Recovery}.
8289
bfa74976
RS
8290@item Token
8291A basic, grammatically indivisible unit of a language. The symbol
8292that describes a token in the grammar is a terminal symbol.
8293The input of the Bison parser is a stream of tokens which comes from
8294the lexical analyzer. @xref{Symbols}.
8295
8296@item Terminal symbol
89cab50d
AD
8297A grammar symbol that has no rules in the grammar and therefore is
8298grammatically indivisible. The piece of text it represents is a token.
8299@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8300@end table
8301
342b8b6e 8302@node Copying This Manual
f2b5126e 8303@appendix Copying This Manual
f9a8293a 8304
f2b5126e
PB
8305@menu
8306* GNU Free Documentation License:: License for copying this manual.
8307@end menu
f9a8293a 8308
f2b5126e
PB
8309@include fdl.texi
8310
342b8b6e 8311@node Index
bfa74976
RS
8312@unnumbered Index
8313
8314@printindex cp
8315
bfa74976 8316@bye
a06ea4aa
AD
8317
8318@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8319@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8320@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8321@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8322@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8323@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8324@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8325@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8326@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8327@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8328@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8329@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8330@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8331@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8332@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8333@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8334@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8335@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8336@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8337@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8338@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
8339@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
8340@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8341@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8342@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8343@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8344@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8345@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8346@c LocalWords: YYSTACK DVI fdl printindex