]> git.saurik.com Git - bison.git/blame - doc/bison.texi
build: ship all the files, even if the C++ compiler is broken
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
7d6bad19 36Copyright @copyright{} 1988-1993, 1995, 1998-2013 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
303834cc
JD
189* Semantics:: Semantic values and actions.
190* Tracking Locations:: Locations and actions.
191* Named References:: Using named references in actions.
192* Declarations:: All kinds of Bison declarations are described here.
193* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
194
195Outline of a Bison Grammar
196
f5f419de 197* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 198* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
199* Bison Declarations:: Syntax and usage of the Bison declarations section.
200* Grammar Rules:: Syntax and usage of the grammar rules section.
201* Epilogue:: Syntax and usage of the epilogue.
bfa74976 202
09add9c2
AD
203Grammar Rules
204
205* Rules Syntax:: Syntax of the rules.
206* Empty Rules:: Symbols that can match the empty string.
207* Recursion:: Writing recursive rules.
208
209
bfa74976
RS
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
90b89dad 214* Type Generation:: Generating the semantic value type.
e4d49586
AD
215* Union Decl:: Declaring the set of all semantic value types.
216* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
217* Actions:: An action is the semantic definition of a grammar rule.
218* Action Types:: Specifying data types for actions to operate on.
219* Mid-Rule Actions:: Most actions go at the end of a rule.
220 This says when, why and how to use the exceptional
221 action in the middle of a rule.
222
be22823e
AD
223Actions in Mid-Rule
224
225* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
226* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
227* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
228
93dd49ab
PE
229Tracking Locations
230
231* Location Type:: Specifying a data type for locations.
232* Actions and Locations:: Using locations in actions.
233* Location Default Action:: Defining a general way to compute locations.
234
bfa74976
RS
235Bison Declarations
236
b50d2359 237* Require Decl:: Requiring a Bison version.
bfa74976
RS
238* Token Decl:: Declaring terminal symbols.
239* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 240* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 241* Initial Action Decl:: Code run before parsing starts.
72f889cc 242* Destructor Decl:: Declaring how symbols are freed.
93c150b6 243* Printer Decl:: Declaring how symbol values are displayed.
d6328241 244* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
245* Start Decl:: Specifying the start symbol.
246* Pure Decl:: Requesting a reentrant parser.
9987d1b3 247* Push Decl:: Requesting a push parser.
bfa74976 248* Decl Summary:: Table of all Bison declarations.
35c1e5f0 249* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 250* %code Summary:: Inserting code into the parser source.
bfa74976
RS
251
252Parser C-Language Interface
253
f5f419de
DJ
254* Parser Function:: How to call @code{yyparse} and what it returns.
255* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
256* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
257* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
258* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
259* Lexical:: You must supply a function @code{yylex}
260 which reads tokens.
261* Error Reporting:: You must supply a function @code{yyerror}.
262* Action Features:: Special features for use in actions.
263* Internationalization:: How to let the parser speak in the user's
264 native language.
bfa74976
RS
265
266The Lexical Analyzer Function @code{yylex}
267
268* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
269* Token Values:: How @code{yylex} must return the semantic value
270 of the token it has read.
271* Token Locations:: How @code{yylex} must return the text location
272 (line number, etc.) of the token, if the
273 actions want that.
274* Pure Calling:: How the calling convention differs in a pure parser
275 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 276
13863333 277The Bison Parser Algorithm
bfa74976 278
742e4900 279* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
280* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
281* Precedence:: Operator precedence works by resolving conflicts.
282* Contextual Precedence:: When an operator's precedence depends on context.
283* Parser States:: The parser is a finite-state-machine with stack.
284* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 285* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 286* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 287* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 288* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
289
290Operator Precedence
291
292* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
293* Using Precedence:: How to specify precedence and associativity.
294* Precedence Only:: How to specify precedence only.
bfa74976
RS
295* Precedence Examples:: How these features are used in the previous example.
296* How Precedence:: How they work.
c28cd5dc 297* Non Operators:: Using precedence for general conflicts.
bfa74976 298
7fceb615
JD
299Tuning LR
300
301* LR Table Construction:: Choose a different construction algorithm.
302* Default Reductions:: Disable default reductions.
303* LAC:: Correct lookahead sets in the parser states.
304* Unreachable States:: Keep unreachable parser states for debugging.
305
bfa74976
RS
306Handling Context Dependencies
307
308* Semantic Tokens:: Token parsing can depend on the semantic context.
309* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
310* Tie-in Recovery:: Lexical tie-ins have implications for how
311 error recovery rules must be written.
312
93dd49ab 313Debugging Your Parser
ec3bc396
AD
314
315* Understanding:: Understanding the structure of your parser.
fc4fdd62 316* Graphviz:: Getting a visual representation of the parser.
9c16d399 317* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
318* Tracing:: Tracing the execution of your parser.
319
93c150b6
AD
320Tracing Your Parser
321
322* Enabling Traces:: Activating run-time trace support
323* Mfcalc Traces:: Extending @code{mfcalc} to support traces
324* The YYPRINT Macro:: Obsolete interface for semantic value reports
325
bfa74976
RS
326Invoking Bison
327
13863333 328* Bison Options:: All the options described in detail,
c827f760 329 in alphabetical order by short options.
bfa74976 330* Option Cross Key:: Alphabetical list of long options.
93dd49ab 331* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 332
8405b70c 333Parsers Written In Other Languages
12545799
AD
334
335* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 336* Java Parsers:: The interface to generate Java parser classes
12545799
AD
337
338C++ Parsers
339
340* C++ Bison Interface:: Asking for C++ parser generation
341* C++ Semantic Values:: %union vs. C++
342* C++ Location Values:: The position and location classes
343* C++ Parser Interface:: Instantiating and running the parser
344* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 345* A Complete C++ Example:: Demonstrating their use
12545799 346
936c88d1
AD
347C++ Location Values
348
349* C++ position:: One point in the source file
350* C++ location:: Two points in the source file
db8ab2be 351* User Defined Location Type:: Required interface for locations
936c88d1 352
12545799
AD
353A Complete C++ Example
354
355* Calc++ --- C++ Calculator:: The specifications
356* Calc++ Parsing Driver:: An active parsing context
357* Calc++ Parser:: A parser class
358* Calc++ Scanner:: A pure C++ Flex scanner
359* Calc++ Top Level:: Conducting the band
360
8405b70c
PB
361Java Parsers
362
f5f419de
DJ
363* Java Bison Interface:: Asking for Java parser generation
364* Java Semantic Values:: %type and %token vs. Java
365* Java Location Values:: The position and location classes
366* Java Parser Interface:: Instantiating and running the parser
367* Java Scanner Interface:: Specifying the scanner for the parser
368* Java Action Features:: Special features for use in actions
369* Java Differences:: Differences between C/C++ and Java Grammars
370* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 371
d1a1114f
AD
372Frequently Asked Questions
373
f5f419de
DJ
374* Memory Exhausted:: Breaking the Stack Limits
375* How Can I Reset the Parser:: @code{yyparse} Keeps some State
376* Strings are Destroyed:: @code{yylval} Loses Track of Strings
377* Implementing Gotos/Loops:: Control Flow in the Calculator
378* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 379* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
380* I can't build Bison:: Troubleshooting
381* Where can I find help?:: Troubleshouting
382* Bug Reports:: Troublereporting
383* More Languages:: Parsers in C++, Java, and so on
384* Beta Testing:: Experimenting development versions
385* Mailing Lists:: Meeting other Bison users
d1a1114f 386
f2b5126e
PB
387Copying This Manual
388
f5f419de 389* Copying This Manual:: License for copying this manual.
f2b5126e 390
342b8b6e 391@end detailmenu
bfa74976
RS
392@end menu
393
342b8b6e 394@node Introduction
bfa74976
RS
395@unnumbered Introduction
396@cindex introduction
397
6077da58 398@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
399annotated context-free grammar into a deterministic LR or generalized
400LR (GLR) parser employing LALR(1) parser tables. As an experimental
401feature, Bison can also generate IELR(1) or canonical LR(1) parser
402tables. Once you are proficient with Bison, you can use it to develop
403a wide range of language parsers, from those used in simple desk
404calculators to complex programming languages.
405
406Bison is upward compatible with Yacc: all properly-written Yacc
407grammars ought to work with Bison with no change. Anyone familiar
408with Yacc should be able to use Bison with little trouble. You need
409to be fluent in C or C++ programming in order to use Bison or to
410understand this manual. Java is also supported as an experimental
411feature.
412
413We begin with tutorial chapters that explain the basic concepts of
414using Bison and show three explained examples, each building on the
415last. If you don't know Bison or Yacc, start by reading these
416chapters. Reference chapters follow, which describe specific aspects
417of Bison in detail.
bfa74976 418
679e9935
JD
419Bison was written originally by Robert Corbett. Richard Stallman made
420it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
421added multi-character string literals and other features. Since then,
422Bison has grown more robust and evolved many other new features thanks
423to the hard work of a long list of volunteers. For details, see the
424@file{THANKS} and @file{ChangeLog} files included in the Bison
425distribution.
931c7513 426
df1af54c 427This edition corresponds to version @value{VERSION} of Bison.
bfa74976 428
342b8b6e 429@node Conditions
bfa74976
RS
430@unnumbered Conditions for Using Bison
431
193d7c70
PE
432The distribution terms for Bison-generated parsers permit using the
433parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 434permissions applied only when Bison was generating LALR(1)
193d7c70 435parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 436parsers could be used only in programs that were free software.
a31239f1 437
8a4281b9 438The other GNU programming tools, such as the GNU C
c827f760 439compiler, have never
9ecbd125 440had such a requirement. They could always be used for nonfree
a31239f1
RS
441software. The reason Bison was different was not due to a special
442policy decision; it resulted from applying the usual General Public
443License to all of the Bison source code.
444
ff7571c0
JD
445The main output of the Bison utility---the Bison parser implementation
446file---contains a verbatim copy of a sizable piece of Bison, which is
447the code for the parser's implementation. (The actions from your
448grammar are inserted into this implementation at one point, but most
449of the rest of the implementation is not changed.) When we applied
450the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
451the effect was to restrict the use of Bison output to free software.
452
453We didn't change the terms because of sympathy for people who want to
454make software proprietary. @strong{Software should be free.} But we
455concluded that limiting Bison's use to free software was doing little to
456encourage people to make other software free. So we decided to make the
457practical conditions for using Bison match the practical conditions for
8a4281b9 458using the other GNU tools.
bfa74976 459
193d7c70
PE
460This exception applies when Bison is generating code for a parser.
461You can tell whether the exception applies to a Bison output file by
462inspecting the file for text beginning with ``As a special
463exception@dots{}''. The text spells out the exact terms of the
464exception.
262aa8dd 465
f16b0819
PE
466@node Copying
467@unnumbered GNU GENERAL PUBLIC LICENSE
468@include gpl-3.0.texi
bfa74976 469
342b8b6e 470@node Concepts
bfa74976
RS
471@chapter The Concepts of Bison
472
473This chapter introduces many of the basic concepts without which the
474details of Bison will not make sense. If you do not already know how to
475use Bison or Yacc, we suggest you start by reading this chapter carefully.
476
477@menu
f5f419de
DJ
478* Language and Grammar:: Languages and context-free grammars,
479 as mathematical ideas.
480* Grammar in Bison:: How we represent grammars for Bison's sake.
481* Semantic Values:: Each token or syntactic grouping can have
482 a semantic value (the value of an integer,
483 the name of an identifier, etc.).
484* Semantic Actions:: Each rule can have an action containing C code.
485* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 486* Locations:: Overview of location tracking.
f5f419de
DJ
487* Bison Parser:: What are Bison's input and output,
488 how is the output used?
489* Stages:: Stages in writing and running Bison grammars.
490* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
491@end menu
492
342b8b6e 493@node Language and Grammar
bfa74976
RS
494@section Languages and Context-Free Grammars
495
bfa74976
RS
496@cindex context-free grammar
497@cindex grammar, context-free
498In order for Bison to parse a language, it must be described by a
499@dfn{context-free grammar}. This means that you specify one or more
500@dfn{syntactic groupings} and give rules for constructing them from their
501parts. For example, in the C language, one kind of grouping is called an
502`expression'. One rule for making an expression might be, ``An expression
503can be made of a minus sign and another expression''. Another would be,
504``An expression can be an integer''. As you can see, rules are often
505recursive, but there must be at least one rule which leads out of the
506recursion.
507
8a4281b9 508@cindex BNF
bfa74976
RS
509@cindex Backus-Naur form
510The most common formal system for presenting such rules for humans to read
8a4281b9 511is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 512order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
513BNF is a context-free grammar. The input to Bison is
514essentially machine-readable BNF.
bfa74976 515
7fceb615
JD
516@cindex LALR grammars
517@cindex IELR grammars
518@cindex LR grammars
519There are various important subclasses of context-free grammars. Although
520it can handle almost all context-free grammars, Bison is optimized for what
521are called LR(1) grammars. In brief, in these grammars, it must be possible
522to tell how to parse any portion of an input string with just a single token
523of lookahead. For historical reasons, Bison by default is limited by the
524additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
525@xref{Mysterious Conflicts}, for more information on this. As an
526experimental feature, you can escape these additional restrictions by
527requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
528Construction}, to learn how.
bfa74976 529
8a4281b9
JD
530@cindex GLR parsing
531@cindex generalized LR (GLR) parsing
676385e2 532@cindex ambiguous grammars
9d9b8b70 533@cindex nondeterministic parsing
9501dc6e 534
8a4281b9 535Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
536roughly that the next grammar rule to apply at any point in the input is
537uniquely determined by the preceding input and a fixed, finite portion
742e4900 538(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 539grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 540apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 541grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 542lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 543With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
544general context-free grammars, using a technique known as GLR
545parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
546are able to handle any context-free grammar for which the number of
547possible parses of any given string is finite.
676385e2 548
bfa74976
RS
549@cindex symbols (abstract)
550@cindex token
551@cindex syntactic grouping
552@cindex grouping, syntactic
9501dc6e
AD
553In the formal grammatical rules for a language, each kind of syntactic
554unit or grouping is named by a @dfn{symbol}. Those which are built by
555grouping smaller constructs according to grammatical rules are called
bfa74976
RS
556@dfn{nonterminal symbols}; those which can't be subdivided are called
557@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
558corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 559corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
560
561We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
562nonterminal, mean. The tokens of C are identifiers, constants (numeric
563and string), and the various keywords, arithmetic operators and
564punctuation marks. So the terminal symbols of a grammar for C include
565`identifier', `number', `string', plus one symbol for each keyword,
566operator or punctuation mark: `if', `return', `const', `static', `int',
567`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
568(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
569lexicography, not grammar.)
570
571Here is a simple C function subdivided into tokens:
572
9edcd895
AD
573@example
574int /* @r{keyword `int'} */
14d4662b 575square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
576 @r{identifier, close-paren} */
577@{ /* @r{open-brace} */
aa08666d
AD
578 return x * x; /* @r{keyword `return', identifier, asterisk,}
579 @r{identifier, semicolon} */
9edcd895
AD
580@} /* @r{close-brace} */
581@end example
bfa74976
RS
582
583The syntactic groupings of C include the expression, the statement, the
584declaration, and the function definition. These are represented in the
585grammar of C by nonterminal symbols `expression', `statement',
586`declaration' and `function definition'. The full grammar uses dozens of
587additional language constructs, each with its own nonterminal symbol, in
588order to express the meanings of these four. The example above is a
589function definition; it contains one declaration, and one statement. In
590the statement, each @samp{x} is an expression and so is @samp{x * x}.
591
592Each nonterminal symbol must have grammatical rules showing how it is made
593out of simpler constructs. For example, one kind of C statement is the
594@code{return} statement; this would be described with a grammar rule which
595reads informally as follows:
596
597@quotation
598A `statement' can be made of a `return' keyword, an `expression' and a
599`semicolon'.
600@end quotation
601
602@noindent
603There would be many other rules for `statement', one for each kind of
604statement in C.
605
606@cindex start symbol
607One nonterminal symbol must be distinguished as the special one which
608defines a complete utterance in the language. It is called the @dfn{start
609symbol}. In a compiler, this means a complete input program. In the C
610language, the nonterminal symbol `sequence of definitions and declarations'
611plays this role.
612
613For example, @samp{1 + 2} is a valid C expression---a valid part of a C
614program---but it is not valid as an @emph{entire} C program. In the
615context-free grammar of C, this follows from the fact that `expression' is
616not the start symbol.
617
618The Bison parser reads a sequence of tokens as its input, and groups the
619tokens using the grammar rules. If the input is valid, the end result is
620that the entire token sequence reduces to a single grouping whose symbol is
621the grammar's start symbol. If we use a grammar for C, the entire input
622must be a `sequence of definitions and declarations'. If not, the parser
623reports a syntax error.
624
342b8b6e 625@node Grammar in Bison
bfa74976
RS
626@section From Formal Rules to Bison Input
627@cindex Bison grammar
628@cindex grammar, Bison
629@cindex formal grammar
630
631A formal grammar is a mathematical construct. To define the language
632for Bison, you must write a file expressing the grammar in Bison syntax:
633a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
634
635A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 636as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
637in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
638
639The Bison representation for a terminal symbol is also called a @dfn{token
640type}. Token types as well can be represented as C-like identifiers. By
641convention, these identifiers should be upper case to distinguish them from
642nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
643@code{RETURN}. A terminal symbol that stands for a particular keyword in
644the language should be named after that keyword converted to upper case.
645The terminal symbol @code{error} is reserved for error recovery.
931c7513 646@xref{Symbols}.
bfa74976
RS
647
648A terminal symbol can also be represented as a character literal, just like
649a C character constant. You should do this whenever a token is just a
650single character (parenthesis, plus-sign, etc.): use that same character in
651a literal as the terminal symbol for that token.
652
931c7513
RS
653A third way to represent a terminal symbol is with a C string constant
654containing several characters. @xref{Symbols}, for more information.
655
bfa74976
RS
656The grammar rules also have an expression in Bison syntax. For example,
657here is the Bison rule for a C @code{return} statement. The semicolon in
658quotes is a literal character token, representing part of the C syntax for
659the statement; the naked semicolon, and the colon, are Bison punctuation
660used in every rule.
661
662@example
5e9b6624 663stmt: RETURN expr ';' ;
bfa74976
RS
664@end example
665
666@noindent
667@xref{Rules, ,Syntax of Grammar Rules}.
668
342b8b6e 669@node Semantic Values
bfa74976
RS
670@section Semantic Values
671@cindex semantic value
672@cindex value, semantic
673
674A formal grammar selects tokens only by their classifications: for example,
675if a rule mentions the terminal symbol `integer constant', it means that
676@emph{any} integer constant is grammatically valid in that position. The
677precise value of the constant is irrelevant to how to parse the input: if
678@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 679grammatical.
bfa74976
RS
680
681But the precise value is very important for what the input means once it is
682parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6833989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
684has both a token type and a @dfn{semantic value}. @xref{Semantics,
685,Defining Language Semantics},
bfa74976
RS
686for details.
687
688The token type is a terminal symbol defined in the grammar, such as
689@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
690you need to know to decide where the token may validly appear and how to
691group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 692except their types.
bfa74976
RS
693
694The semantic value has all the rest of the information about the
695meaning of the token, such as the value of an integer, or the name of an
696identifier. (A token such as @code{','} which is just punctuation doesn't
697need to have any semantic value.)
698
699For example, an input token might be classified as token type
700@code{INTEGER} and have the semantic value 4. Another input token might
701have the same token type @code{INTEGER} but value 3989. When a grammar
702rule says that @code{INTEGER} is allowed, either of these tokens is
703acceptable because each is an @code{INTEGER}. When the parser accepts the
704token, it keeps track of the token's semantic value.
705
706Each grouping can also have a semantic value as well as its nonterminal
707symbol. For example, in a calculator, an expression typically has a
708semantic value that is a number. In a compiler for a programming
709language, an expression typically has a semantic value that is a tree
710structure describing the meaning of the expression.
711
342b8b6e 712@node Semantic Actions
bfa74976
RS
713@section Semantic Actions
714@cindex semantic actions
715@cindex actions, semantic
716
717In order to be useful, a program must do more than parse input; it must
718also produce some output based on the input. In a Bison grammar, a grammar
719rule can have an @dfn{action} made up of C statements. Each time the
720parser recognizes a match for that rule, the action is executed.
721@xref{Actions}.
13863333 722
bfa74976
RS
723Most of the time, the purpose of an action is to compute the semantic value
724of the whole construct from the semantic values of its parts. For example,
725suppose we have a rule which says an expression can be the sum of two
726expressions. When the parser recognizes such a sum, each of the
727subexpressions has a semantic value which describes how it was built up.
728The action for this rule should create a similar sort of value for the
729newly recognized larger expression.
730
731For example, here is a rule that says an expression can be the sum of
732two subexpressions:
733
734@example
5e9b6624 735expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
736@end example
737
738@noindent
739The action says how to produce the semantic value of the sum expression
740from the values of the two subexpressions.
741
676385e2 742@node GLR Parsers
8a4281b9
JD
743@section Writing GLR Parsers
744@cindex GLR parsing
745@cindex generalized LR (GLR) parsing
676385e2
PH
746@findex %glr-parser
747@cindex conflicts
748@cindex shift/reduce conflicts
fa7e68c3 749@cindex reduce/reduce conflicts
676385e2 750
eb45ef3b 751In some grammars, Bison's deterministic
8a4281b9 752LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
753certain grammar rule at a given point. That is, it may not be able to
754decide (on the basis of the input read so far) which of two possible
755reductions (applications of a grammar rule) applies, or whether to apply
756a reduction or read more of the input and apply a reduction later in the
757input. These are known respectively as @dfn{reduce/reduce} conflicts
758(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
759(@pxref{Shift/Reduce}).
760
8a4281b9 761To use a grammar that is not easily modified to be LR(1), a
9501dc6e 762more general parsing algorithm is sometimes necessary. If you include
676385e2 763@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
764(@pxref{Grammar Outline}), the result is a Generalized LR
765(GLR) parser. These parsers handle Bison grammars that
9501dc6e 766contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 767declarations) identically to deterministic parsers. However, when
9501dc6e 768faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 769GLR parsers use the simple expedient of doing both,
9501dc6e
AD
770effectively cloning the parser to follow both possibilities. Each of
771the resulting parsers can again split, so that at any given time, there
772can be any number of possible parses being explored. The parsers
676385e2
PH
773proceed in lockstep; that is, all of them consume (shift) a given input
774symbol before any of them proceed to the next. Each of the cloned
775parsers eventually meets one of two possible fates: either it runs into
776a parsing error, in which case it simply vanishes, or it merges with
777another parser, because the two of them have reduced the input to an
778identical set of symbols.
779
780During the time that there are multiple parsers, semantic actions are
781recorded, but not performed. When a parser disappears, its recorded
782semantic actions disappear as well, and are never performed. When a
783reduction makes two parsers identical, causing them to merge, Bison
784records both sets of semantic actions. Whenever the last two parsers
785merge, reverting to the single-parser case, Bison resolves all the
786outstanding actions either by precedences given to the grammar rules
787involved, or by performing both actions, and then calling a designated
788user-defined function on the resulting values to produce an arbitrary
789merged result.
790
fa7e68c3 791@menu
8a4281b9
JD
792* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
793* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 794* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 795* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 796* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
797@end menu
798
799@node Simple GLR Parsers
8a4281b9
JD
800@subsection Using GLR on Unambiguous Grammars
801@cindex GLR parsing, unambiguous grammars
802@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
803@findex %glr-parser
804@findex %expect-rr
805@cindex conflicts
806@cindex reduce/reduce conflicts
807@cindex shift/reduce conflicts
808
8a4281b9
JD
809In the simplest cases, you can use the GLR algorithm
810to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 811Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
812
813Consider a problem that
814arises in the declaration of enumerated and subrange types in the
815programming language Pascal. Here are some examples:
816
817@example
818type subrange = lo .. hi;
819type enum = (a, b, c);
820@end example
821
822@noindent
823The original language standard allows only numeric
824literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 825and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
82610206) and many other
827Pascal implementations allow arbitrary expressions there. This gives
828rise to the following situation, containing a superfluous pair of
829parentheses:
830
831@example
832type subrange = (a) .. b;
833@end example
834
835@noindent
836Compare this to the following declaration of an enumerated
837type with only one value:
838
839@example
840type enum = (a);
841@end example
842
843@noindent
844(These declarations are contrived, but they are syntactically
845valid, and more-complicated cases can come up in practical programs.)
846
847These two declarations look identical until the @samp{..} token.
8a4281b9 848With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
849possible to decide between the two forms when the identifier
850@samp{a} is parsed. It is, however, desirable
851for a parser to decide this, since in the latter case
852@samp{a} must become a new identifier to represent the enumeration
853value, while in the former case @samp{a} must be evaluated with its
854current meaning, which may be a constant or even a function call.
855
856You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
857to be resolved later, but this typically requires substantial
858contortions in both semantic actions and large parts of the
859grammar, where the parentheses are nested in the recursive rules for
860expressions.
861
862You might think of using the lexer to distinguish between the two
863forms by returning different tokens for currently defined and
864undefined identifiers. But if these declarations occur in a local
865scope, and @samp{a} is defined in an outer scope, then both forms
866are possible---either locally redefining @samp{a}, or using the
867value of @samp{a} from the outer scope. So this approach cannot
868work.
869
e757bb10 870A simple solution to this problem is to declare the parser to
8a4281b9
JD
871use the GLR algorithm.
872When the GLR parser reaches the critical state, it
fa7e68c3
PE
873merely splits into two branches and pursues both syntax rules
874simultaneously. Sooner or later, one of them runs into a parsing
875error. If there is a @samp{..} token before the next
876@samp{;}, the rule for enumerated types fails since it cannot
877accept @samp{..} anywhere; otherwise, the subrange type rule
878fails since it requires a @samp{..} token. So one of the branches
879fails silently, and the other one continues normally, performing
880all the intermediate actions that were postponed during the split.
881
882If the input is syntactically incorrect, both branches fail and the parser
883reports a syntax error as usual.
884
885The effect of all this is that the parser seems to ``guess'' the
886correct branch to take, or in other words, it seems to use more
8a4281b9
JD
887lookahead than the underlying LR(1) algorithm actually allows
888for. In this example, LR(2) would suffice, but also some cases
889that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 890
8a4281b9 891In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
892and the current Bison parser even takes exponential time and space
893for some grammars. In practice, this rarely happens, and for many
894grammars it is possible to prove that it cannot happen.
895The present example contains only one conflict between two
896rules, and the type-declaration context containing the conflict
897cannot be nested. So the number of
898branches that can exist at any time is limited by the constant 2,
899and the parsing time is still linear.
900
901Here is a Bison grammar corresponding to the example above. It
902parses a vastly simplified form of Pascal type declarations.
903
904@example
905%token TYPE DOTDOT ID
906
907@group
908%left '+' '-'
909%left '*' '/'
910@end group
911
912%%
5e9b6624 913type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
914
915@group
5e9b6624
AD
916type:
917 '(' id_list ')'
918| expr DOTDOT expr
919;
fa7e68c3
PE
920@end group
921
922@group
5e9b6624
AD
923id_list:
924 ID
925| id_list ',' ID
926;
fa7e68c3
PE
927@end group
928
929@group
5e9b6624
AD
930expr:
931 '(' expr ')'
932| expr '+' expr
933| expr '-' expr
934| expr '*' expr
935| expr '/' expr
936| ID
937;
fa7e68c3
PE
938@end group
939@end example
940
8a4281b9 941When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
942about one reduce/reduce conflict. In the conflicting situation the
943parser chooses one of the alternatives, arbitrarily the one
944declared first. Therefore the following correct input is not
945recognized:
946
947@example
948type t = (a) .. b;
949@end example
950
8a4281b9 951The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
952to be silent about the one known reduce/reduce conflict, by adding
953these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
954@samp{%%}):
955
956@example
957%glr-parser
958%expect-rr 1
959@end example
960
961@noindent
962No change in the grammar itself is required. Now the
963parser recognizes all valid declarations, according to the
964limited syntax above, transparently. In fact, the user does not even
965notice when the parser splits.
966
8a4281b9 967So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
968almost without disadvantages. Even in simple cases like this, however,
969there are at least two potential problems to beware. First, always
8a4281b9
JD
970analyze the conflicts reported by Bison to make sure that GLR
971splitting is only done where it is intended. A GLR parser
f8e1c9e5 972splitting inadvertently may cause problems less obvious than an
8a4281b9 973LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
974conflict. Second, consider interactions with the lexer (@pxref{Semantic
975Tokens}) with great care. Since a split parser consumes tokens without
976performing any actions during the split, the lexer cannot obtain
977information via parser actions. Some cases of lexer interactions can be
8a4281b9 978eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
979lexer to the parser. You must check the remaining cases for
980correctness.
981
982In our example, it would be safe for the lexer to return tokens based on
983their current meanings in some symbol table, because no new symbols are
984defined in the middle of a type declaration. Though it is possible for
985a parser to define the enumeration constants as they are parsed, before
986the type declaration is completed, it actually makes no difference since
987they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
988
989@node Merging GLR Parses
8a4281b9
JD
990@subsection Using GLR to Resolve Ambiguities
991@cindex GLR parsing, ambiguous grammars
992@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
993@findex %dprec
994@findex %merge
995@cindex conflicts
996@cindex reduce/reduce conflicts
997
2a8d363a 998Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
999
1000@example
1001%@{
38a92d50
PE
1002 #include <stdio.h>
1003 #define YYSTYPE char const *
1004 int yylex (void);
1005 void yyerror (char const *);
676385e2
PH
1006%@}
1007
1008%token TYPENAME ID
1009
1010%right '='
1011%left '+'
1012
1013%glr-parser
1014
1015%%
1016
5e9b6624 1017prog:
6240346a 1018 %empty
5e9b6624
AD
1019| prog stmt @{ printf ("\n"); @}
1020;
676385e2 1021
5e9b6624
AD
1022stmt:
1023 expr ';' %dprec 1
1024| decl %dprec 2
1025;
676385e2 1026
5e9b6624
AD
1027expr:
1028 ID @{ printf ("%s ", $$); @}
1029| TYPENAME '(' expr ')'
1030 @{ printf ("%s <cast> ", $1); @}
1031| expr '+' expr @{ printf ("+ "); @}
1032| expr '=' expr @{ printf ("= "); @}
1033;
676385e2 1034
5e9b6624
AD
1035decl:
1036 TYPENAME declarator ';'
1037 @{ printf ("%s <declare> ", $1); @}
1038| TYPENAME declarator '=' expr ';'
1039 @{ printf ("%s <init-declare> ", $1); @}
1040;
676385e2 1041
5e9b6624
AD
1042declarator:
1043 ID @{ printf ("\"%s\" ", $1); @}
1044| '(' declarator ')'
1045;
676385e2
PH
1046@end example
1047
1048@noindent
1049This models a problematic part of the C++ grammar---the ambiguity between
1050certain declarations and statements. For example,
1051
1052@example
1053T (x) = y+z;
1054@end example
1055
1056@noindent
1057parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1058(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1059@samp{x} as an @code{ID}).
676385e2 1060Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1061@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1062time it encounters @code{x} in the example above. Since this is a
8a4281b9 1063GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1064each choice of resolving the reduce/reduce conflict.
1065Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1066however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1067ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1068the other reduces @code{stmt : decl}, after which both parsers are in an
1069identical state: they've seen @samp{prog stmt} and have the same unprocessed
1070input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1071
8a4281b9 1072At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1073grammar of how to choose between the competing parses.
1074In the example above, the two @code{%dprec}
e757bb10 1075declarations specify that Bison is to give precedence
fa7e68c3 1076to the parse that interprets the example as a
676385e2
PH
1077@code{decl}, which implies that @code{x} is a declarator.
1078The parser therefore prints
1079
1080@example
fae437e8 1081"x" y z + T <init-declare>
676385e2
PH
1082@end example
1083
fa7e68c3
PE
1084The @code{%dprec} declarations only come into play when more than one
1085parse survives. Consider a different input string for this parser:
676385e2
PH
1086
1087@example
1088T (x) + y;
1089@end example
1090
1091@noindent
8a4281b9 1092This is another example of using GLR to parse an unambiguous
fa7e68c3 1093construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1094Here, there is no ambiguity (this cannot be parsed as a declaration).
1095However, at the time the Bison parser encounters @code{x}, it does not
1096have enough information to resolve the reduce/reduce conflict (again,
1097between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1098case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1099into two, one assuming that @code{x} is an @code{expr}, and the other
1100assuming @code{x} is a @code{declarator}. The second of these parsers
1101then vanishes when it sees @code{+}, and the parser prints
1102
1103@example
fae437e8 1104x T <cast> y +
676385e2
PH
1105@end example
1106
1107Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1108the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1109actions of the two possible parsers, rather than choosing one over the
1110other. To do so, you could change the declaration of @code{stmt} as
1111follows:
1112
1113@example
5e9b6624
AD
1114stmt:
1115 expr ';' %merge <stmtMerge>
1116| decl %merge <stmtMerge>
1117;
676385e2
PH
1118@end example
1119
1120@noindent
676385e2
PH
1121and define the @code{stmtMerge} function as:
1122
1123@example
38a92d50
PE
1124static YYSTYPE
1125stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1126@{
1127 printf ("<OR> ");
1128 return "";
1129@}
1130@end example
1131
1132@noindent
1133with an accompanying forward declaration
1134in the C declarations at the beginning of the file:
1135
1136@example
1137%@{
38a92d50 1138 #define YYSTYPE char const *
676385e2
PH
1139 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1140%@}
1141@end example
1142
1143@noindent
fa7e68c3
PE
1144With these declarations, the resulting parser parses the first example
1145as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1146
1147@example
fae437e8 1148"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1149@end example
1150
fa7e68c3 1151Bison requires that all of the
e757bb10 1152productions that participate in any particular merge have identical
fa7e68c3
PE
1153@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1154and the parser will report an error during any parse that results in
1155the offending merge.
9501dc6e 1156
32c29292
JD
1157@node GLR Semantic Actions
1158@subsection GLR Semantic Actions
1159
8a4281b9 1160The nature of GLR parsing and the structure of the generated
20be2f92
PH
1161parsers give rise to certain restrictions on semantic values and actions.
1162
1163@subsubsection Deferred semantic actions
32c29292
JD
1164@cindex deferred semantic actions
1165By definition, a deferred semantic action is not performed at the same time as
1166the associated reduction.
1167This raises caveats for several Bison features you might use in a semantic
8a4281b9 1168action in a GLR parser.
32c29292
JD
1169
1170@vindex yychar
8a4281b9 1171@cindex GLR parsers and @code{yychar}
32c29292 1172@vindex yylval
8a4281b9 1173@cindex GLR parsers and @code{yylval}
32c29292 1174@vindex yylloc
8a4281b9 1175@cindex GLR parsers and @code{yylloc}
32c29292 1176In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1177the lookahead token present at the time of the associated reduction.
32c29292
JD
1178After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1179you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1180lookahead token's semantic value and location, if any.
32c29292
JD
1181In a nondeferred semantic action, you can also modify any of these variables to
1182influence syntax analysis.
742e4900 1183@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1184
1185@findex yyclearin
8a4281b9 1186@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1187In a deferred semantic action, it's too late to influence syntax analysis.
1188In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1189shallow copies of the values they had at the time of the associated reduction.
1190For this reason alone, modifying them is dangerous.
1191Moreover, the result of modifying them is undefined and subject to change with
1192future versions of Bison.
1193For example, if a semantic action might be deferred, you should never write it
1194to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1195memory referenced by @code{yylval}.
1196
20be2f92 1197@subsubsection YYERROR
32c29292 1198@findex YYERROR
8a4281b9 1199@cindex GLR parsers and @code{YYERROR}
32c29292 1200Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1201(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1202initiate error recovery.
8a4281b9 1203During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1204the same as its effect in a deterministic parser.
411614fa
JM
1205The effect in a deferred action is similar, but the precise point of the
1206error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1207selecting an unspecified stack on which to continue with a syntax error.
1208In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1209parsing, @code{YYERROR} silently prunes
1210the parse that invoked the test.
1211
1212@subsubsection Restrictions on semantic values and locations
8a4281b9 1213GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1214semantic values and location types when using the generated parsers as
1215C++ code.
8710fc41 1216
ca2a6d15
PH
1217@node Semantic Predicates
1218@subsection Controlling a Parse with Arbitrary Predicates
1219@findex %?
8a4281b9 1220@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1221
1222In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1223GLR parsers
ca2a6d15
PH
1224allow you to reject parses on the basis of arbitrary computations executed
1225in user code, without having Bison treat this rejection as an error
1226if there are alternative parses. (This feature is experimental and may
1227evolve. We welcome user feedback.) For example,
1228
c93f22fc
AD
1229@example
1230widget:
5e9b6624
AD
1231 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1232| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1233;
c93f22fc 1234@end example
ca2a6d15
PH
1235
1236@noindent
411614fa 1237is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1238widgets. The clause preceded by @code{%?} is treated like an ordinary
1239action, except that its text is treated as an expression and is always
411614fa 1240evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1241expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1242which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1243to die. In a deterministic parser, it acts like YYERROR.
1244
1245As the example shows, predicates otherwise look like semantic actions, and
1246therefore you must be take them into account when determining the numbers
1247to use for denoting the semantic values of right-hand side symbols.
1248Predicate actions, however, have no defined value, and may not be given
1249labels.
1250
1251There is a subtle difference between semantic predicates and ordinary
1252actions in nondeterministic mode, since the latter are deferred.
411614fa 1253For example, we could try to rewrite the previous example as
ca2a6d15 1254
c93f22fc
AD
1255@example
1256widget:
5e9b6624
AD
1257 @{ if (!new_syntax) YYERROR; @}
1258 "widget" id new_args @{ $$ = f($3, $4); @}
1259| @{ if (new_syntax) YYERROR; @}
1260 "widget" id old_args @{ $$ = f($3, $4); @}
1261;
c93f22fc 1262@end example
ca2a6d15
PH
1263
1264@noindent
1265(reversing the sense of the predicate tests to cause an error when they are
1266false). However, this
1267does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1268have overlapping syntax.
411614fa 1269Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1270a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1271for cases where @code{new_args} and @code{old_args} recognize the same string
1272@emph{before} performing the tests of @code{new_syntax}. It therefore
1273reports an error.
1274
1275Finally, be careful in writing predicates: deferred actions have not been
1276evaluated, so that using them in a predicate will have undefined effects.
1277
fa7e68c3 1278@node Compiler Requirements
8a4281b9 1279@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1280@cindex @code{inline}
8a4281b9 1281@cindex GLR parsers and @code{inline}
fa7e68c3 1282
8a4281b9 1283The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1284later. In addition, they use the @code{inline} keyword, which is not
1285C89, but is C99 and is a common extension in pre-C99 compilers. It is
1286up to the user of these parsers to handle
9501dc6e
AD
1287portability issues. For instance, if using Autoconf and the Autoconf
1288macro @code{AC_C_INLINE}, a mere
1289
1290@example
1291%@{
38a92d50 1292 #include <config.h>
9501dc6e
AD
1293%@}
1294@end example
1295
1296@noindent
1297will suffice. Otherwise, we suggest
1298
1299@example
1300%@{
aaaa2aae
AD
1301 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1302 && ! defined inline)
1303 # define inline
38a92d50 1304 #endif
9501dc6e
AD
1305%@}
1306@end example
676385e2 1307
1769eb30 1308@node Locations
847bf1f5
AD
1309@section Locations
1310@cindex location
95923bd6
AD
1311@cindex textual location
1312@cindex location, textual
847bf1f5
AD
1313
1314Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1315and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1316the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1317Bison provides a mechanism for handling these locations.
1318
72d2299c 1319Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1320associated location, but the type of locations is the same for all tokens
1321and groupings. Moreover, the output parser is equipped with a default data
1322structure for storing locations (@pxref{Tracking Locations}, for more
1323details).
847bf1f5
AD
1324
1325Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1326set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1327is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1328@code{@@3}.
1329
1330When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1331of its left hand side (@pxref{Actions}). In the same way, another default
1332action is used for locations. However, the action for locations is general
847bf1f5 1333enough for most cases, meaning there is usually no need to describe for each
72d2299c 1334rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1335grouping, the default behavior of the output parser is to take the beginning
1336of the first symbol, and the end of the last symbol.
1337
342b8b6e 1338@node Bison Parser
ff7571c0 1339@section Bison Output: the Parser Implementation File
bfa74976
RS
1340@cindex Bison parser
1341@cindex Bison utility
1342@cindex lexical analyzer, purpose
1343@cindex parser
1344
ff7571c0
JD
1345When you run Bison, you give it a Bison grammar file as input. The
1346most important output is a C source file that implements a parser for
1347the language described by the grammar. This parser is called a
1348@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1349implementation file}. Keep in mind that the Bison utility and the
1350Bison parser are two distinct programs: the Bison utility is a program
1351whose output is the Bison parser implementation file that becomes part
1352of your program.
bfa74976
RS
1353
1354The job of the Bison parser is to group tokens into groupings according to
1355the grammar rules---for example, to build identifiers and operators into
1356expressions. As it does this, it runs the actions for the grammar rules it
1357uses.
1358
704a47c4
AD
1359The tokens come from a function called the @dfn{lexical analyzer} that
1360you must supply in some fashion (such as by writing it in C). The Bison
1361parser calls the lexical analyzer each time it wants a new token. It
1362doesn't know what is ``inside'' the tokens (though their semantic values
1363may reflect this). Typically the lexical analyzer makes the tokens by
1364parsing characters of text, but Bison does not depend on this.
1365@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1366
ff7571c0
JD
1367The Bison parser implementation file is C code which defines a
1368function named @code{yyparse} which implements that grammar. This
1369function does not make a complete C program: you must supply some
1370additional functions. One is the lexical analyzer. Another is an
1371error-reporting function which the parser calls to report an error.
1372In addition, a complete C program must start with a function called
1373@code{main}; you have to provide this, and arrange for it to call
1374@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1375C-Language Interface}.
bfa74976 1376
f7ab6a50 1377Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1378write, all symbols defined in the Bison parser implementation file
1379itself begin with @samp{yy} or @samp{YY}. This includes interface
1380functions such as the lexical analyzer function @code{yylex}, the
1381error reporting function @code{yyerror} and the parser function
1382@code{yyparse} itself. This also includes numerous identifiers used
1383for internal purposes. Therefore, you should avoid using C
1384identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1385file except for the ones defined in this manual. Also, you should
1386avoid using the C identifiers @samp{malloc} and @samp{free} for
1387anything other than their usual meanings.
1388
1389In some cases the Bison parser implementation file includes system
1390headers, and in those cases your code should respect the identifiers
1391reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1392@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1393included as needed to declare memory allocators and related types.
1394@code{<libintl.h>} is included if message translation is in use
1395(@pxref{Internationalization}). Other system headers may be included
1396if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1397,Tracing Your Parser}).
7093d0f5 1398
342b8b6e 1399@node Stages
bfa74976
RS
1400@section Stages in Using Bison
1401@cindex stages in using Bison
1402@cindex using Bison
1403
1404The actual language-design process using Bison, from grammar specification
1405to a working compiler or interpreter, has these parts:
1406
1407@enumerate
1408@item
1409Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1410(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1411in the language, describe the action that is to be taken when an
1412instance of that rule is recognized. The action is described by a
1413sequence of C statements.
bfa74976
RS
1414
1415@item
704a47c4
AD
1416Write a lexical analyzer to process input and pass tokens to the parser.
1417The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1418Lexical Analyzer Function @code{yylex}}). It could also be produced
1419using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1420
1421@item
1422Write a controlling function that calls the Bison-produced parser.
1423
1424@item
1425Write error-reporting routines.
1426@end enumerate
1427
1428To turn this source code as written into a runnable program, you
1429must follow these steps:
1430
1431@enumerate
1432@item
1433Run Bison on the grammar to produce the parser.
1434
1435@item
1436Compile the code output by Bison, as well as any other source files.
1437
1438@item
1439Link the object files to produce the finished product.
1440@end enumerate
1441
342b8b6e 1442@node Grammar Layout
bfa74976
RS
1443@section The Overall Layout of a Bison Grammar
1444@cindex grammar file
1445@cindex file format
1446@cindex format of grammar file
1447@cindex layout of Bison grammar
1448
1449The input file for the Bison utility is a @dfn{Bison grammar file}. The
1450general form of a Bison grammar file is as follows:
1451
1452@example
1453%@{
08e49d20 1454@var{Prologue}
bfa74976
RS
1455%@}
1456
1457@var{Bison declarations}
1458
1459%%
1460@var{Grammar rules}
1461%%
08e49d20 1462@var{Epilogue}
bfa74976
RS
1463@end example
1464
1465@noindent
1466The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1467in every Bison grammar file to separate the sections.
1468
72d2299c 1469The prologue may define types and variables used in the actions. You can
342b8b6e 1470also use preprocessor commands to define macros used there, and use
bfa74976 1471@code{#include} to include header files that do any of these things.
38a92d50
PE
1472You need to declare the lexical analyzer @code{yylex} and the error
1473printer @code{yyerror} here, along with any other global identifiers
1474used by the actions in the grammar rules.
bfa74976
RS
1475
1476The Bison declarations declare the names of the terminal and nonterminal
1477symbols, and may also describe operator precedence and the data types of
1478semantic values of various symbols.
1479
1480The grammar rules define how to construct each nonterminal symbol from its
1481parts.
1482
38a92d50
PE
1483The epilogue can contain any code you want to use. Often the
1484definitions of functions declared in the prologue go here. In a
1485simple program, all the rest of the program can go here.
bfa74976 1486
342b8b6e 1487@node Examples
bfa74976
RS
1488@chapter Examples
1489@cindex simple examples
1490@cindex examples, simple
1491
aaaa2aae 1492Now we show and explain several sample programs written using Bison: a
bfa74976 1493reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1494calculator --- later extended to track ``locations'' ---
1495and a multi-function calculator. All
1496produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1497
1498These examples are simple, but Bison grammars for real programming
aa08666d
AD
1499languages are written the same way. You can copy these examples into a
1500source file to try them.
bfa74976
RS
1501
1502@menu
f5f419de
DJ
1503* RPN Calc:: Reverse polish notation calculator;
1504 a first example with no operator precedence.
1505* Infix Calc:: Infix (algebraic) notation calculator.
1506 Operator precedence is introduced.
bfa74976 1507* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1508* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1509* Multi-function Calc:: Calculator with memory and trig functions.
1510 It uses multiple data-types for semantic values.
1511* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1512@end menu
1513
342b8b6e 1514@node RPN Calc
bfa74976
RS
1515@section Reverse Polish Notation Calculator
1516@cindex reverse polish notation
1517@cindex polish notation calculator
1518@cindex @code{rpcalc}
1519@cindex calculator, simple
1520
1521The first example is that of a simple double-precision @dfn{reverse polish
1522notation} calculator (a calculator using postfix operators). This example
1523provides a good starting point, since operator precedence is not an issue.
1524The second example will illustrate how operator precedence is handled.
1525
1526The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1527@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1528
1529@menu
f5f419de
DJ
1530* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1531* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1532* Rpcalc Lexer:: The lexical analyzer.
1533* Rpcalc Main:: The controlling function.
1534* Rpcalc Error:: The error reporting function.
1535* Rpcalc Generate:: Running Bison on the grammar file.
1536* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1537@end menu
1538
f5f419de 1539@node Rpcalc Declarations
bfa74976
RS
1540@subsection Declarations for @code{rpcalc}
1541
1542Here are the C and Bison declarations for the reverse polish notation
1543calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1544
24ec0837 1545@comment file: rpcalc.y
bfa74976 1546@example
72d2299c 1547/* Reverse polish notation calculator. */
bfa74976 1548
efbc95a7 1549@group
bfa74976 1550%@{
24ec0837 1551 #include <stdio.h>
38a92d50
PE
1552 #include <math.h>
1553 int yylex (void);
1554 void yyerror (char const *);
bfa74976 1555%@}
efbc95a7 1556@end group
bfa74976 1557
435575cb 1558%define api.value.type @{double@}
bfa74976
RS
1559%token NUM
1560
72d2299c 1561%% /* Grammar rules and actions follow. */
bfa74976
RS
1562@end example
1563
75f5aaea 1564The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1565preprocessor directives and two forward declarations.
bfa74976 1566
bfa74976
RS
1567The @code{#include} directive is used to declare the exponentiation
1568function @code{pow}.
1569
38a92d50
PE
1570The forward declarations for @code{yylex} and @code{yyerror} are
1571needed because the C language requires that functions be declared
1572before they are used. These functions will be defined in the
1573epilogue, but the parser calls them so they must be declared in the
1574prologue.
1575
21e3a2b5
AD
1576The second section, Bison declarations, provides information to Bison about
1577the tokens and their types (@pxref{Bison Declarations, ,The Bison
1578Declarations Section}).
1579
1580The @code{%define} directive defines the variable @code{api.value.type},
1581thus specifying the C data type for semantic values of both tokens and
1582groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The Bison
1583parser will use whatever type @code{api.value.type} is defined as; if you
1584don't define it, @code{int} is the default. Because we specify
435575cb
AD
1585@samp{@{double@}}, each token and each expression has an associated value,
1586which is a floating point number. C code can use @code{YYSTYPE} to refer to
1587the value @code{api.value.type}.
21e3a2b5
AD
1588
1589Each terminal symbol that is not a single-character literal must be
1590declared. (Single-character literals normally don't need to be declared.)
1591In this example, all the arithmetic operators are designated by
1592single-character literals, so the only terminal symbol that needs to be
1593declared is @code{NUM}, the token type for numeric constants.
bfa74976 1594
342b8b6e 1595@node Rpcalc Rules
bfa74976
RS
1596@subsection Grammar Rules for @code{rpcalc}
1597
1598Here are the grammar rules for the reverse polish notation calculator.
1599
24ec0837 1600@comment file: rpcalc.y
bfa74976 1601@example
aaaa2aae 1602@group
5e9b6624 1603input:
6240346a 1604 %empty
5e9b6624 1605| input line
bfa74976 1606;
aaaa2aae 1607@end group
bfa74976 1608
aaaa2aae 1609@group
5e9b6624
AD
1610line:
1611 '\n'
1612| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1613;
aaaa2aae 1614@end group
bfa74976 1615
aaaa2aae 1616@group
5e9b6624
AD
1617exp:
1618 NUM @{ $$ = $1; @}
1619| exp exp '+' @{ $$ = $1 + $2; @}
1620| exp exp '-' @{ $$ = $1 - $2; @}
1621| exp exp '*' @{ $$ = $1 * $2; @}
1622| exp exp '/' @{ $$ = $1 / $2; @}
1623| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1624| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1625;
aaaa2aae 1626@end group
bfa74976
RS
1627%%
1628@end example
1629
1630The groupings of the rpcalc ``language'' defined here are the expression
1631(given the name @code{exp}), the line of input (@code{line}), and the
1632complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1633symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1634which is read as ``or''. The following sections explain what these rules
1635mean.
1636
1637The semantics of the language is determined by the actions taken when a
1638grouping is recognized. The actions are the C code that appears inside
1639braces. @xref{Actions}.
1640
1641You must specify these actions in C, but Bison provides the means for
1642passing semantic values between the rules. In each action, the
1643pseudo-variable @code{$$} stands for the semantic value for the grouping
1644that the rule is going to construct. Assigning a value to @code{$$} is the
1645main job of most actions. The semantic values of the components of the
1646rule are referred to as @code{$1}, @code{$2}, and so on.
1647
1648@menu
24ec0837
AD
1649* Rpcalc Input:: Explanation of the @code{input} nonterminal
1650* Rpcalc Line:: Explanation of the @code{line} nonterminal
1651* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1652@end menu
1653
342b8b6e 1654@node Rpcalc Input
bfa74976
RS
1655@subsubsection Explanation of @code{input}
1656
1657Consider the definition of @code{input}:
1658
1659@example
5e9b6624 1660input:
6240346a 1661 %empty
5e9b6624 1662| input line
bfa74976
RS
1663;
1664@end example
1665
1666This definition reads as follows: ``A complete input is either an empty
1667string, or a complete input followed by an input line''. Notice that
1668``complete input'' is defined in terms of itself. This definition is said
1669to be @dfn{left recursive} since @code{input} appears always as the
1670leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1671
1672The first alternative is empty because there are no symbols between the
1673colon and the first @samp{|}; this means that @code{input} can match an
1674empty string of input (no tokens). We write the rules this way because it
1675is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
6240346a
AD
1676It's conventional to put an empty alternative first and to use the
1677(optional) @code{%empty} directive, or to write the comment @samp{/* empty
1678*/} in it (@pxref{Empty Rules}).
bfa74976
RS
1679
1680The second alternate rule (@code{input line}) handles all nontrivial input.
1681It means, ``After reading any number of lines, read one more line if
1682possible.'' The left recursion makes this rule into a loop. Since the
1683first alternative matches empty input, the loop can be executed zero or
1684more times.
1685
1686The parser function @code{yyparse} continues to process input until a
1687grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1688input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1689
342b8b6e 1690@node Rpcalc Line
bfa74976
RS
1691@subsubsection Explanation of @code{line}
1692
1693Now consider the definition of @code{line}:
1694
1695@example
5e9b6624
AD
1696line:
1697 '\n'
1698| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1699;
1700@end example
1701
1702The first alternative is a token which is a newline character; this means
1703that rpcalc accepts a blank line (and ignores it, since there is no
1704action). The second alternative is an expression followed by a newline.
1705This is the alternative that makes rpcalc useful. The semantic value of
1706the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1707question is the first symbol in the alternative. The action prints this
1708value, which is the result of the computation the user asked for.
1709
1710This action is unusual because it does not assign a value to @code{$$}. As
1711a consequence, the semantic value associated with the @code{line} is
1712uninitialized (its value will be unpredictable). This would be a bug if
1713that value were ever used, but we don't use it: once rpcalc has printed the
1714value of the user's input line, that value is no longer needed.
1715
342b8b6e 1716@node Rpcalc Expr
bfa74976
RS
1717@subsubsection Explanation of @code{expr}
1718
1719The @code{exp} grouping has several rules, one for each kind of expression.
1720The first rule handles the simplest expressions: those that are just numbers.
1721The second handles an addition-expression, which looks like two expressions
1722followed by a plus-sign. The third handles subtraction, and so on.
1723
1724@example
5e9b6624
AD
1725exp:
1726 NUM
1727| exp exp '+' @{ $$ = $1 + $2; @}
1728| exp exp '-' @{ $$ = $1 - $2; @}
1729@dots{}
1730;
bfa74976
RS
1731@end example
1732
1733We have used @samp{|} to join all the rules for @code{exp}, but we could
1734equally well have written them separately:
1735
1736@example
5e9b6624
AD
1737exp: NUM ;
1738exp: exp exp '+' @{ $$ = $1 + $2; @};
1739exp: exp exp '-' @{ $$ = $1 - $2; @};
1740@dots{}
bfa74976
RS
1741@end example
1742
1743Most of the rules have actions that compute the value of the expression in
1744terms of the value of its parts. For example, in the rule for addition,
1745@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1746the second one. The third component, @code{'+'}, has no meaningful
1747associated semantic value, but if it had one you could refer to it as
1748@code{$3}. When @code{yyparse} recognizes a sum expression using this
1749rule, the sum of the two subexpressions' values is produced as the value of
1750the entire expression. @xref{Actions}.
1751
1752You don't have to give an action for every rule. When a rule has no
1753action, Bison by default copies the value of @code{$1} into @code{$$}.
1754This is what happens in the first rule (the one that uses @code{NUM}).
1755
1756The formatting shown here is the recommended convention, but Bison does
72d2299c 1757not require it. You can add or change white space as much as you wish.
bfa74976
RS
1758For example, this:
1759
1760@example
5e9b6624 1761exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1762@end example
1763
1764@noindent
1765means the same thing as this:
1766
1767@example
5e9b6624
AD
1768exp:
1769 NUM
1770| exp exp '+' @{ $$ = $1 + $2; @}
1771| @dots{}
99a9344e 1772;
bfa74976
RS
1773@end example
1774
1775@noindent
1776The latter, however, is much more readable.
1777
342b8b6e 1778@node Rpcalc Lexer
bfa74976
RS
1779@subsection The @code{rpcalc} Lexical Analyzer
1780@cindex writing a lexical analyzer
1781@cindex lexical analyzer, writing
1782
704a47c4
AD
1783The lexical analyzer's job is low-level parsing: converting characters
1784or sequences of characters into tokens. The Bison parser gets its
1785tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1786Analyzer Function @code{yylex}}.
bfa74976 1787
8a4281b9 1788Only a simple lexical analyzer is needed for the RPN
c827f760 1789calculator. This
bfa74976
RS
1790lexical analyzer skips blanks and tabs, then reads in numbers as
1791@code{double} and returns them as @code{NUM} tokens. Any other character
1792that isn't part of a number is a separate token. Note that the token-code
1793for such a single-character token is the character itself.
1794
1795The return value of the lexical analyzer function is a numeric code which
1796represents a token type. The same text used in Bison rules to stand for
1797this token type is also a C expression for the numeric code for the type.
1798This works in two ways. If the token type is a character literal, then its
e966383b 1799numeric code is that of the character; you can use the same
bfa74976
RS
1800character literal in the lexical analyzer to express the number. If the
1801token type is an identifier, that identifier is defined by Bison as a C
1802macro whose definition is the appropriate number. In this example,
1803therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1804
1964ad8c
AD
1805The semantic value of the token (if it has one) is stored into the
1806global variable @code{yylval}, which is where the Bison parser will look
21e3a2b5
AD
1807for it. (The C data type of @code{yylval} is @code{YYSTYPE}, whose value
1808was defined at the beginning of the grammar via @samp{%define api.value.type
435575cb 1809@{double@}}; @pxref{Rpcalc Declarations,,Declarations for @code{rpcalc}}.)
bfa74976 1810
72d2299c
PE
1811A token type code of zero is returned if the end-of-input is encountered.
1812(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1813
1814Here is the code for the lexical analyzer:
1815
24ec0837 1816@comment file: rpcalc.y
bfa74976
RS
1817@example
1818@group
72d2299c 1819/* The lexical analyzer returns a double floating point
e966383b 1820 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1821 of the character read if not a number. It skips all blanks
1822 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1823
1824#include <ctype.h>
1825@end group
1826
1827@group
13863333
AD
1828int
1829yylex (void)
bfa74976
RS
1830@{
1831 int c;
1832
72d2299c 1833 /* Skip white space. */
13863333 1834 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1835 continue;
bfa74976
RS
1836@end group
1837@group
72d2299c 1838 /* Process numbers. */
13863333 1839 if (c == '.' || isdigit (c))
bfa74976
RS
1840 @{
1841 ungetc (c, stdin);
1842 scanf ("%lf", &yylval);
1843 return NUM;
1844 @}
1845@end group
1846@group
72d2299c 1847 /* Return end-of-input. */
13863333 1848 if (c == EOF)
bfa74976 1849 return 0;
72d2299c 1850 /* Return a single char. */
13863333 1851 return c;
bfa74976
RS
1852@}
1853@end group
1854@end example
1855
342b8b6e 1856@node Rpcalc Main
bfa74976
RS
1857@subsection The Controlling Function
1858@cindex controlling function
1859@cindex main function in simple example
1860
1861In keeping with the spirit of this example, the controlling function is
1862kept to the bare minimum. The only requirement is that it call
1863@code{yyparse} to start the process of parsing.
1864
24ec0837 1865@comment file: rpcalc.y
bfa74976
RS
1866@example
1867@group
13863333
AD
1868int
1869main (void)
bfa74976 1870@{
13863333 1871 return yyparse ();
bfa74976
RS
1872@}
1873@end group
1874@end example
1875
342b8b6e 1876@node Rpcalc Error
bfa74976
RS
1877@subsection The Error Reporting Routine
1878@cindex error reporting routine
1879
1880When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1881function @code{yyerror} to print an error message (usually but not
6e649e65 1882always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1883@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1884here is the definition we will use:
bfa74976 1885
24ec0837 1886@comment file: rpcalc.y
bfa74976 1887@example
bfa74976
RS
1888#include <stdio.h>
1889
aaaa2aae 1890@group
38a92d50 1891/* Called by yyparse on error. */
13863333 1892void
38a92d50 1893yyerror (char const *s)
bfa74976 1894@{
4e03e201 1895 fprintf (stderr, "%s\n", s);
bfa74976
RS
1896@}
1897@end group
1898@end example
1899
1900After @code{yyerror} returns, the Bison parser may recover from the error
1901and continue parsing if the grammar contains a suitable error rule
1902(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1903have not written any error rules in this example, so any invalid input will
1904cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1905real calculator, but it is adequate for the first example.
bfa74976 1906
f5f419de 1907@node Rpcalc Generate
bfa74976
RS
1908@subsection Running Bison to Make the Parser
1909@cindex running Bison (introduction)
1910
ceed8467
AD
1911Before running Bison to produce a parser, we need to decide how to
1912arrange all the source code in one or more source files. For such a
ff7571c0
JD
1913simple example, the easiest thing is to put everything in one file,
1914the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1915@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1916(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1917
1918For a large project, you would probably have several source files, and use
1919@code{make} to arrange to recompile them.
1920
ff7571c0
JD
1921With all the source in the grammar file, you use the following command
1922to convert it into a parser implementation file:
bfa74976
RS
1923
1924@example
fa4d969f 1925bison @var{file}.y
bfa74976
RS
1926@end example
1927
1928@noindent
ff7571c0
JD
1929In this example, the grammar file is called @file{rpcalc.y} (for
1930``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1931implementation file named @file{@var{file}.tab.c}, removing the
1932@samp{.y} from the grammar file name. The parser implementation file
1933contains the source code for @code{yyparse}. The additional functions
1934in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1935copied verbatim to the parser implementation file.
bfa74976 1936
342b8b6e 1937@node Rpcalc Compile
ff7571c0 1938@subsection Compiling the Parser Implementation File
bfa74976
RS
1939@cindex compiling the parser
1940
ff7571c0 1941Here is how to compile and run the parser implementation file:
bfa74976
RS
1942
1943@example
1944@group
1945# @r{List files in current directory.}
9edcd895 1946$ @kbd{ls}
bfa74976
RS
1947rpcalc.tab.c rpcalc.y
1948@end group
1949
1950@group
1951# @r{Compile the Bison parser.}
1952# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1953$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1954@end group
1955
1956@group
1957# @r{List files again.}
9edcd895 1958$ @kbd{ls}
bfa74976
RS
1959rpcalc rpcalc.tab.c rpcalc.y
1960@end group
1961@end example
1962
1963The file @file{rpcalc} now contains the executable code. Here is an
1964example session using @code{rpcalc}.
1965
1966@example
9edcd895
AD
1967$ @kbd{rpcalc}
1968@kbd{4 9 +}
24ec0837 1969@result{} 13
9edcd895 1970@kbd{3 7 + 3 4 5 *+-}
24ec0837 1971@result{} -13
9edcd895 1972@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1973@result{} 13
9edcd895 1974@kbd{5 6 / 4 n +}
24ec0837 1975@result{} -3.166666667
9edcd895 1976@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1977@result{} 81
9edcd895
AD
1978@kbd{^D} @r{End-of-file indicator}
1979$
bfa74976
RS
1980@end example
1981
342b8b6e 1982@node Infix Calc
bfa74976
RS
1983@section Infix Notation Calculator: @code{calc}
1984@cindex infix notation calculator
1985@cindex @code{calc}
1986@cindex calculator, infix notation
1987
1988We now modify rpcalc to handle infix operators instead of postfix. Infix
1989notation involves the concept of operator precedence and the need for
1990parentheses nested to arbitrary depth. Here is the Bison code for
1991@file{calc.y}, an infix desk-top calculator.
1992
1993@example
38a92d50 1994/* Infix notation calculator. */
bfa74976 1995
aaaa2aae 1996@group
bfa74976 1997%@{
38a92d50
PE
1998 #include <math.h>
1999 #include <stdio.h>
2000 int yylex (void);
2001 void yyerror (char const *);
bfa74976 2002%@}
aaaa2aae 2003@end group
bfa74976 2004
aaaa2aae 2005@group
38a92d50 2006/* Bison declarations. */
435575cb 2007%define api.value.type @{double@}
bfa74976
RS
2008%token NUM
2009%left '-' '+'
2010%left '*' '/'
d78f0ac9
AD
2011%precedence NEG /* negation--unary minus */
2012%right '^' /* exponentiation */
aaaa2aae 2013@end group
bfa74976 2014
38a92d50 2015%% /* The grammar follows. */
aaaa2aae 2016@group
5e9b6624 2017input:
6240346a 2018 %empty
5e9b6624 2019| input line
bfa74976 2020;
aaaa2aae 2021@end group
bfa74976 2022
aaaa2aae 2023@group
5e9b6624
AD
2024line:
2025 '\n'
2026| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2027;
aaaa2aae 2028@end group
bfa74976 2029
aaaa2aae 2030@group
5e9b6624
AD
2031exp:
2032 NUM @{ $$ = $1; @}
2033| exp '+' exp @{ $$ = $1 + $3; @}
2034| exp '-' exp @{ $$ = $1 - $3; @}
2035| exp '*' exp @{ $$ = $1 * $3; @}
2036| exp '/' exp @{ $$ = $1 / $3; @}
2037| '-' exp %prec NEG @{ $$ = -$2; @}
2038| exp '^' exp @{ $$ = pow ($1, $3); @}
2039| '(' exp ')' @{ $$ = $2; @}
bfa74976 2040;
aaaa2aae 2041@end group
bfa74976
RS
2042%%
2043@end example
2044
2045@noindent
ceed8467
AD
2046The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2047same as before.
bfa74976
RS
2048
2049There are two important new features shown in this code.
2050
2051In the second section (Bison declarations), @code{%left} declares token
2052types and says they are left-associative operators. The declarations
2053@code{%left} and @code{%right} (right associativity) take the place of
2054@code{%token} which is used to declare a token type name without
d78f0ac9 2055associativity/precedence. (These tokens are single-character literals, which
bfa74976 2056ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2057the associativity/precedence.)
bfa74976
RS
2058
2059Operator precedence is determined by the line ordering of the
2060declarations; the higher the line number of the declaration (lower on
2061the page or screen), the higher the precedence. Hence, exponentiation
2062has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2063by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2064only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2065Precedence}.
bfa74976 2066
704a47c4
AD
2067The other important new feature is the @code{%prec} in the grammar
2068section for the unary minus operator. The @code{%prec} simply instructs
2069Bison that the rule @samp{| '-' exp} has the same precedence as
2070@code{NEG}---in this case the next-to-highest. @xref{Contextual
2071Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2072
2073Here is a sample run of @file{calc.y}:
2074
2075@need 500
2076@example
9edcd895
AD
2077$ @kbd{calc}
2078@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20796.880952381
9edcd895 2080@kbd{-56 + 2}
bfa74976 2081-54
9edcd895 2082@kbd{3 ^ 2}
bfa74976
RS
20839
2084@end example
2085
342b8b6e 2086@node Simple Error Recovery
bfa74976
RS
2087@section Simple Error Recovery
2088@cindex error recovery, simple
2089
2090Up to this point, this manual has not addressed the issue of @dfn{error
2091recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2092error. All we have handled is error reporting with @code{yyerror}.
2093Recall that by default @code{yyparse} returns after calling
2094@code{yyerror}. This means that an erroneous input line causes the
2095calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2096
2097The Bison language itself includes the reserved word @code{error}, which
2098may be included in the grammar rules. In the example below it has
2099been added to one of the alternatives for @code{line}:
2100
2101@example
2102@group
5e9b6624
AD
2103line:
2104 '\n'
2105| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2106| error '\n' @{ yyerrok; @}
bfa74976
RS
2107;
2108@end group
2109@end example
2110
ceed8467 2111This addition to the grammar allows for simple error recovery in the
6e649e65 2112event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2113read, the error will be recognized by the third rule for @code{line},
2114and parsing will continue. (The @code{yyerror} function is still called
2115upon to print its message as well.) The action executes the statement
2116@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2117that error recovery is complete (@pxref{Error Recovery}). Note the
2118difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2119misprint.
bfa74976
RS
2120
2121This form of error recovery deals with syntax errors. There are other
2122kinds of errors; for example, division by zero, which raises an exception
2123signal that is normally fatal. A real calculator program must handle this
2124signal and use @code{longjmp} to return to @code{main} and resume parsing
2125input lines; it would also have to discard the rest of the current line of
2126input. We won't discuss this issue further because it is not specific to
2127Bison programs.
2128
342b8b6e
AD
2129@node Location Tracking Calc
2130@section Location Tracking Calculator: @code{ltcalc}
2131@cindex location tracking calculator
2132@cindex @code{ltcalc}
2133@cindex calculator, location tracking
2134
9edcd895
AD
2135This example extends the infix notation calculator with location
2136tracking. This feature will be used to improve the error messages. For
2137the sake of clarity, this example is a simple integer calculator, since
2138most of the work needed to use locations will be done in the lexical
72d2299c 2139analyzer.
342b8b6e
AD
2140
2141@menu
f5f419de
DJ
2142* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2143* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2144* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2145@end menu
2146
f5f419de 2147@node Ltcalc Declarations
342b8b6e
AD
2148@subsection Declarations for @code{ltcalc}
2149
9edcd895
AD
2150The C and Bison declarations for the location tracking calculator are
2151the same as the declarations for the infix notation calculator.
342b8b6e
AD
2152
2153@example
2154/* Location tracking calculator. */
2155
2156%@{
38a92d50
PE
2157 #include <math.h>
2158 int yylex (void);
2159 void yyerror (char const *);
342b8b6e
AD
2160%@}
2161
2162/* Bison declarations. */
aba47f56 2163%define api.value.type @{int@}
342b8b6e
AD
2164%token NUM
2165
2166%left '-' '+'
2167%left '*' '/'
d78f0ac9 2168%precedence NEG
342b8b6e
AD
2169%right '^'
2170
38a92d50 2171%% /* The grammar follows. */
342b8b6e
AD
2172@end example
2173
9edcd895
AD
2174@noindent
2175Note there are no declarations specific to locations. Defining a data
2176type for storing locations is not needed: we will use the type provided
2177by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2178four member structure with the following integer fields:
2179@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2180@code{last_column}. By conventions, and in accordance with the GNU
2181Coding Standards and common practice, the line and column count both
2182start at 1.
342b8b6e
AD
2183
2184@node Ltcalc Rules
2185@subsection Grammar Rules for @code{ltcalc}
2186
9edcd895
AD
2187Whether handling locations or not has no effect on the syntax of your
2188language. Therefore, grammar rules for this example will be very close
2189to those of the previous example: we will only modify them to benefit
2190from the new information.
342b8b6e 2191
9edcd895
AD
2192Here, we will use locations to report divisions by zero, and locate the
2193wrong expressions or subexpressions.
342b8b6e
AD
2194
2195@example
2196@group
5e9b6624 2197input:
6240346a 2198 %empty
5e9b6624 2199| input line
342b8b6e
AD
2200;
2201@end group
2202
2203@group
5e9b6624
AD
2204line:
2205 '\n'
2206| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2207;
2208@end group
2209
2210@group
5e9b6624
AD
2211exp:
2212 NUM @{ $$ = $1; @}
2213| exp '+' exp @{ $$ = $1 + $3; @}
2214| exp '-' exp @{ $$ = $1 - $3; @}
2215| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2216@end group
342b8b6e 2217@group
5e9b6624
AD
2218| exp '/' exp
2219 @{
2220 if ($3)
2221 $$ = $1 / $3;
2222 else
2223 @{
2224 $$ = 1;
2225 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2226 @@3.first_line, @@3.first_column,
2227 @@3.last_line, @@3.last_column);
2228 @}
2229 @}
342b8b6e
AD
2230@end group
2231@group
5e9b6624
AD
2232| '-' exp %prec NEG @{ $$ = -$2; @}
2233| exp '^' exp @{ $$ = pow ($1, $3); @}
2234| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2235@end group
2236@end example
2237
2238This code shows how to reach locations inside of semantic actions, by
2239using the pseudo-variables @code{@@@var{n}} for rule components, and the
2240pseudo-variable @code{@@$} for groupings.
2241
9edcd895
AD
2242We don't need to assign a value to @code{@@$}: the output parser does it
2243automatically. By default, before executing the C code of each action,
2244@code{@@$} is set to range from the beginning of @code{@@1} to the end
2245of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2246can be redefined (@pxref{Location Default Action, , Default Action for
2247Locations}), and for very specific rules, @code{@@$} can be computed by
2248hand.
342b8b6e
AD
2249
2250@node Ltcalc Lexer
2251@subsection The @code{ltcalc} Lexical Analyzer.
2252
9edcd895 2253Until now, we relied on Bison's defaults to enable location
72d2299c 2254tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2255able to feed the parser with the token locations, as it already does for
2256semantic values.
342b8b6e 2257
9edcd895
AD
2258To this end, we must take into account every single character of the
2259input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2260
2261@example
2262@group
2263int
2264yylex (void)
2265@{
2266 int c;
18b519c0 2267@end group
342b8b6e 2268
18b519c0 2269@group
72d2299c 2270 /* Skip white space. */
342b8b6e
AD
2271 while ((c = getchar ()) == ' ' || c == '\t')
2272 ++yylloc.last_column;
18b519c0 2273@end group
342b8b6e 2274
18b519c0 2275@group
72d2299c 2276 /* Step. */
342b8b6e
AD
2277 yylloc.first_line = yylloc.last_line;
2278 yylloc.first_column = yylloc.last_column;
2279@end group
2280
2281@group
72d2299c 2282 /* Process numbers. */
342b8b6e
AD
2283 if (isdigit (c))
2284 @{
2285 yylval = c - '0';
2286 ++yylloc.last_column;
2287 while (isdigit (c = getchar ()))
2288 @{
2289 ++yylloc.last_column;
2290 yylval = yylval * 10 + c - '0';
2291 @}
2292 ungetc (c, stdin);
2293 return NUM;
2294 @}
2295@end group
2296
72d2299c 2297 /* Return end-of-input. */
342b8b6e
AD
2298 if (c == EOF)
2299 return 0;
2300
d4fca427 2301@group
72d2299c 2302 /* Return a single char, and update location. */
342b8b6e
AD
2303 if (c == '\n')
2304 @{
2305 ++yylloc.last_line;
2306 yylloc.last_column = 0;
2307 @}
2308 else
2309 ++yylloc.last_column;
2310 return c;
2311@}
d4fca427 2312@end group
342b8b6e
AD
2313@end example
2314
9edcd895
AD
2315Basically, the lexical analyzer performs the same processing as before:
2316it skips blanks and tabs, and reads numbers or single-character tokens.
2317In addition, it updates @code{yylloc}, the global variable (of type
2318@code{YYLTYPE}) containing the token's location.
342b8b6e 2319
9edcd895 2320Now, each time this function returns a token, the parser has its number
72d2299c 2321as well as its semantic value, and its location in the text. The last
9edcd895
AD
2322needed change is to initialize @code{yylloc}, for example in the
2323controlling function:
342b8b6e
AD
2324
2325@example
9edcd895 2326@group
342b8b6e
AD
2327int
2328main (void)
2329@{
2330 yylloc.first_line = yylloc.last_line = 1;
2331 yylloc.first_column = yylloc.last_column = 0;
2332 return yyparse ();
2333@}
9edcd895 2334@end group
342b8b6e
AD
2335@end example
2336
9edcd895
AD
2337Remember that computing locations is not a matter of syntax. Every
2338character must be associated to a location update, whether it is in
2339valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2340
2341@node Multi-function Calc
bfa74976
RS
2342@section Multi-Function Calculator: @code{mfcalc}
2343@cindex multi-function calculator
2344@cindex @code{mfcalc}
2345@cindex calculator, multi-function
2346
2347Now that the basics of Bison have been discussed, it is time to move on to
2348a more advanced problem. The above calculators provided only five
2349functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2350be nice to have a calculator that provides other mathematical functions such
2351as @code{sin}, @code{cos}, etc.
2352
2353It is easy to add new operators to the infix calculator as long as they are
2354only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2355back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2356adding a new operator. But we want something more flexible: built-in
2357functions whose syntax has this form:
2358
2359@example
2360@var{function_name} (@var{argument})
2361@end example
2362
2363@noindent
2364At the same time, we will add memory to the calculator, by allowing you
2365to create named variables, store values in them, and use them later.
2366Here is a sample session with the multi-function calculator:
2367
2368@example
d4fca427 2369@group
9edcd895
AD
2370$ @kbd{mfcalc}
2371@kbd{pi = 3.141592653589}
f9c75dd0 2372@result{} 3.1415926536
d4fca427
AD
2373@end group
2374@group
9edcd895 2375@kbd{sin(pi)}
f9c75dd0 2376@result{} 0.0000000000
d4fca427 2377@end group
9edcd895 2378@kbd{alpha = beta1 = 2.3}
f9c75dd0 2379@result{} 2.3000000000
9edcd895 2380@kbd{alpha}
f9c75dd0 2381@result{} 2.3000000000
9edcd895 2382@kbd{ln(alpha)}
f9c75dd0 2383@result{} 0.8329091229
9edcd895 2384@kbd{exp(ln(beta1))}
f9c75dd0 2385@result{} 2.3000000000
9edcd895 2386$
bfa74976
RS
2387@end example
2388
2389Note that multiple assignment and nested function calls are permitted.
2390
2391@menu
f5f419de
DJ
2392* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2393* Mfcalc Rules:: Grammar rules for the calculator.
2394* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2395* Mfcalc Lexer:: The lexical analyzer.
2396* Mfcalc Main:: The controlling function.
bfa74976
RS
2397@end menu
2398
f5f419de 2399@node Mfcalc Declarations
bfa74976
RS
2400@subsection Declarations for @code{mfcalc}
2401
2402Here are the C and Bison declarations for the multi-function calculator.
2403
93c150b6 2404@comment file: mfcalc.y: 1
c93f22fc 2405@example
18b519c0 2406@group
bfa74976 2407%@{
f9c75dd0 2408 #include <stdio.h> /* For printf, etc. */
578e3413 2409 #include <math.h> /* For pow, used in the grammar. */
4c9b8f13 2410 #include "calc.h" /* Contains definition of 'symrec'. */
38a92d50
PE
2411 int yylex (void);
2412 void yyerror (char const *);
bfa74976 2413%@}
18b519c0 2414@end group
93c150b6 2415
90b89dad
AD
2416%define api.value.type union /* Generate YYSTYPE from these types: */
2417%token <double> NUM /* Simple double precision number. */
2418%token <symrec*> VAR FNCT /* Symbol table pointer: variable and function. */
2419%type <double> exp
bfa74976 2420
18b519c0 2421@group
e8f7155d 2422%precedence '='
bfa74976
RS
2423%left '-' '+'
2424%left '*' '/'
d78f0ac9
AD
2425%precedence NEG /* negation--unary minus */
2426%right '^' /* exponentiation */
18b519c0 2427@end group
c93f22fc 2428@end example
bfa74976
RS
2429
2430The above grammar introduces only two new features of the Bison language.
2431These features allow semantic values to have various data types
2432(@pxref{Multiple Types, ,More Than One Value Type}).
2433
90b89dad
AD
2434The special @code{union} value assigned to the @code{%define} variable
2435@code{api.value.type} specifies that the symbols are defined with their data
2436types. Bison will generate an appropriate definition of @code{YYSTYPE} to
2437store these values.
bfa74976 2438
90b89dad
AD
2439Since values can now have various types, it is necessary to associate a type
2440with each grammar symbol whose semantic value is used. These symbols are
2441@code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their declarations are
2442augmented with their data type (placed between angle brackets). For
2443instance, values of @code{NUM} are stored in @code{double}.
bfa74976 2444
90b89dad
AD
2445The Bison construct @code{%type} is used for declaring nonterminal symbols,
2446just as @code{%token} is used for declaring token types. Previously we did
2447not use @code{%type} before because nonterminal symbols are normally
2448declared implicitly by the rules that define them. But @code{exp} must be
2449declared explicitly so we can specify its value type. @xref{Type Decl,
2450,Nonterminal Symbols}.
bfa74976 2451
342b8b6e 2452@node Mfcalc Rules
bfa74976
RS
2453@subsection Grammar Rules for @code{mfcalc}
2454
2455Here are the grammar rules for the multi-function calculator.
2456Most of them are copied directly from @code{calc}; three rules,
2457those which mention @code{VAR} or @code{FNCT}, are new.
2458
93c150b6 2459@comment file: mfcalc.y: 3
c93f22fc 2460@example
93c150b6 2461%% /* The grammar follows. */
18b519c0 2462@group
5e9b6624 2463input:
6240346a 2464 %empty
5e9b6624 2465| input line
bfa74976 2466;
18b519c0 2467@end group
bfa74976 2468
18b519c0 2469@group
bfa74976 2470line:
5e9b6624
AD
2471 '\n'
2472| exp '\n' @{ printf ("%.10g\n", $1); @}
2473| error '\n' @{ yyerrok; @}
bfa74976 2474;
18b519c0 2475@end group
bfa74976 2476
18b519c0 2477@group
5e9b6624
AD
2478exp:
2479 NUM @{ $$ = $1; @}
2480| VAR @{ $$ = $1->value.var; @}
2481| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2482| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2483| exp '+' exp @{ $$ = $1 + $3; @}
2484| exp '-' exp @{ $$ = $1 - $3; @}
2485| exp '*' exp @{ $$ = $1 * $3; @}
2486| exp '/' exp @{ $$ = $1 / $3; @}
2487| '-' exp %prec NEG @{ $$ = -$2; @}
2488| exp '^' exp @{ $$ = pow ($1, $3); @}
2489| '(' exp ')' @{ $$ = $2; @}
bfa74976 2490;
18b519c0 2491@end group
38a92d50 2492/* End of grammar. */
bfa74976 2493%%
c93f22fc 2494@end example
bfa74976 2495
f5f419de 2496@node Mfcalc Symbol Table
bfa74976
RS
2497@subsection The @code{mfcalc} Symbol Table
2498@cindex symbol table example
2499
2500The multi-function calculator requires a symbol table to keep track of the
2501names and meanings of variables and functions. This doesn't affect the
2502grammar rules (except for the actions) or the Bison declarations, but it
2503requires some additional C functions for support.
2504
2505The symbol table itself consists of a linked list of records. Its
2506definition, which is kept in the header @file{calc.h}, is as follows. It
2507provides for either functions or variables to be placed in the table.
2508
f9c75dd0 2509@comment file: calc.h
c93f22fc 2510@example
bfa74976 2511@group
38a92d50 2512/* Function type. */
32dfccf8 2513typedef double (*func_t) (double);
72f889cc 2514@end group
32dfccf8 2515
72f889cc 2516@group
38a92d50 2517/* Data type for links in the chain of symbols. */
bfa74976
RS
2518struct symrec
2519@{
38a92d50 2520 char *name; /* name of symbol */
bfa74976 2521 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2522 union
2523 @{
38a92d50
PE
2524 double var; /* value of a VAR */
2525 func_t fnctptr; /* value of a FNCT */
bfa74976 2526 @} value;
38a92d50 2527 struct symrec *next; /* link field */
bfa74976
RS
2528@};
2529@end group
2530
2531@group
2532typedef struct symrec symrec;
2533
4c9b8f13 2534/* The symbol table: a chain of 'struct symrec'. */
bfa74976
RS
2535extern symrec *sym_table;
2536
a730d142 2537symrec *putsym (char const *, int);
38a92d50 2538symrec *getsym (char const *);
bfa74976 2539@end group
c93f22fc 2540@end example
bfa74976 2541
aeb57fb6
AD
2542The new version of @code{main} will call @code{init_table} to initialize
2543the symbol table:
bfa74976 2544
93c150b6 2545@comment file: mfcalc.y: 3
c93f22fc 2546@example
18b519c0 2547@group
bfa74976
RS
2548struct init
2549@{
38a92d50
PE
2550 char const *fname;
2551 double (*fnct) (double);
bfa74976
RS
2552@};
2553@end group
2554
2555@group
38a92d50 2556struct init const arith_fncts[] =
13863333 2557@{
f9c75dd0
AD
2558 @{ "atan", atan @},
2559 @{ "cos", cos @},
2560 @{ "exp", exp @},
2561 @{ "ln", log @},
2562 @{ "sin", sin @},
2563 @{ "sqrt", sqrt @},
2564 @{ 0, 0 @},
13863333 2565@};
18b519c0 2566@end group
bfa74976 2567
18b519c0 2568@group
4c9b8f13 2569/* The symbol table: a chain of 'struct symrec'. */
38a92d50 2570symrec *sym_table;
bfa74976
RS
2571@end group
2572
2573@group
72d2299c 2574/* Put arithmetic functions in table. */
f9c75dd0 2575static
13863333
AD
2576void
2577init_table (void)
bfa74976
RS
2578@{
2579 int i;
bfa74976
RS
2580 for (i = 0; arith_fncts[i].fname != 0; i++)
2581 @{
aaaa2aae 2582 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2583 ptr->value.fnctptr = arith_fncts[i].fnct;
2584 @}
2585@}
2586@end group
c93f22fc 2587@end example
bfa74976
RS
2588
2589By simply editing the initialization list and adding the necessary include
2590files, you can add additional functions to the calculator.
2591
2592Two important functions allow look-up and installation of symbols in the
2593symbol table. The function @code{putsym} is passed a name and the type
2594(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2595linked to the front of the list, and a pointer to the object is returned.
2596The function @code{getsym} is passed the name of the symbol to look up. If
2597found, a pointer to that symbol is returned; otherwise zero is returned.
2598
93c150b6 2599@comment file: mfcalc.y: 3
c93f22fc 2600@example
f9c75dd0
AD
2601#include <stdlib.h> /* malloc. */
2602#include <string.h> /* strlen. */
2603
d4fca427 2604@group
bfa74976 2605symrec *
38a92d50 2606putsym (char const *sym_name, int sym_type)
bfa74976 2607@{
aaaa2aae 2608 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2609 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2610 strcpy (ptr->name,sym_name);
2611 ptr->type = sym_type;
72d2299c 2612 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2613 ptr->next = (struct symrec *)sym_table;
2614 sym_table = ptr;
2615 return ptr;
2616@}
d4fca427 2617@end group
bfa74976 2618
d4fca427 2619@group
bfa74976 2620symrec *
38a92d50 2621getsym (char const *sym_name)
bfa74976
RS
2622@{
2623 symrec *ptr;
2624 for (ptr = sym_table; ptr != (symrec *) 0;
2625 ptr = (symrec *)ptr->next)
f518dbaf 2626 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2627 return ptr;
2628 return 0;
2629@}
d4fca427 2630@end group
c93f22fc 2631@end example
bfa74976 2632
aeb57fb6
AD
2633@node Mfcalc Lexer
2634@subsection The @code{mfcalc} Lexer
2635
bfa74976
RS
2636The function @code{yylex} must now recognize variables, numeric values, and
2637the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2638characters with a leading letter are recognized as either variables or
bfa74976
RS
2639functions depending on what the symbol table says about them.
2640
2641The string is passed to @code{getsym} for look up in the symbol table. If
2642the name appears in the table, a pointer to its location and its type
2643(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2644already in the table, then it is installed as a @code{VAR} using
2645@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2646returned to @code{yyparse}.
bfa74976
RS
2647
2648No change is needed in the handling of numeric values and arithmetic
2649operators in @code{yylex}.
2650
93c150b6 2651@comment file: mfcalc.y: 3
c93f22fc 2652@example
bfa74976 2653#include <ctype.h>
13863333 2654
18b519c0 2655@group
13863333
AD
2656int
2657yylex (void)
bfa74976
RS
2658@{
2659 int c;
2660
72d2299c 2661 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2662 while ((c = getchar ()) == ' ' || c == '\t')
2663 continue;
bfa74976
RS
2664
2665 if (c == EOF)
2666 return 0;
2667@end group
2668
2669@group
2670 /* Char starts a number => parse the number. */
2671 if (c == '.' || isdigit (c))
2672 @{
2673 ungetc (c, stdin);
90b89dad 2674 scanf ("%lf", &yylval.NUM);
bfa74976
RS
2675 return NUM;
2676 @}
2677@end group
90b89dad 2678@end example
bfa74976 2679
90b89dad
AD
2680@noindent
2681Bison generated a definition of @code{YYSTYPE} with a member named
2682@code{NUM} to store value of @code{NUM} symbols.
2683
2684@comment file: mfcalc.y: 3
2685@example
bfa74976
RS
2686@group
2687 /* Char starts an identifier => read the name. */
2688 if (isalpha (c))
2689 @{
aaaa2aae
AD
2690 /* Initially make the buffer long enough
2691 for a 40-character symbol name. */
2692 static size_t length = 40;
bfa74976 2693 static char *symbuf = 0;
aaaa2aae 2694 symrec *s;
bfa74976
RS
2695 int i;
2696@end group
aaaa2aae
AD
2697 if (!symbuf)
2698 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2699
2700 i = 0;
2701 do
bfa74976
RS
2702@group
2703 @{
2704 /* If buffer is full, make it bigger. */
2705 if (i == length)
2706 @{
2707 length *= 2;
18b519c0 2708 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2709 @}
2710 /* Add this character to the buffer. */
2711 symbuf[i++] = c;
2712 /* Get another character. */
2713 c = getchar ();
2714 @}
2715@end group
2716@group
72d2299c 2717 while (isalnum (c));
bfa74976
RS
2718
2719 ungetc (c, stdin);
2720 symbuf[i] = '\0';
2721@end group
2722
2723@group
2724 s = getsym (symbuf);
2725 if (s == 0)
2726 s = putsym (symbuf, VAR);
90b89dad 2727 *((symrec**) &yylval) = s;
bfa74976
RS
2728 return s->type;
2729 @}
2730
2731 /* Any other character is a token by itself. */
2732 return c;
2733@}
2734@end group
c93f22fc 2735@end example
bfa74976 2736
aeb57fb6
AD
2737@node Mfcalc Main
2738@subsection The @code{mfcalc} Main
2739
2740The error reporting function is unchanged, and the new version of
93c150b6
AD
2741@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2742on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2743
93c150b6 2744@comment file: mfcalc.y: 3
c93f22fc 2745@example
aeb57fb6
AD
2746@group
2747/* Called by yyparse on error. */
2748void
2749yyerror (char const *s)
2750@{
2751 fprintf (stderr, "%s\n", s);
2752@}
2753@end group
2754
aaaa2aae 2755@group
aeb57fb6
AD
2756int
2757main (int argc, char const* argv[])
2758@{
93c150b6
AD
2759 int i;
2760 /* Enable parse traces on option -p. */
2761 for (i = 1; i < argc; ++i)
2762 if (!strcmp(argv[i], "-p"))
2763 yydebug = 1;
aeb57fb6
AD
2764 init_table ();
2765 return yyparse ();
2766@}
2767@end group
c93f22fc 2768@end example
aeb57fb6 2769
72d2299c 2770This program is both powerful and flexible. You may easily add new
704a47c4
AD
2771functions, and it is a simple job to modify this code to install
2772predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2773
342b8b6e 2774@node Exercises
bfa74976
RS
2775@section Exercises
2776@cindex exercises
2777
2778@enumerate
2779@item
2780Add some new functions from @file{math.h} to the initialization list.
2781
2782@item
2783Add another array that contains constants and their values. Then
2784modify @code{init_table} to add these constants to the symbol table.
2785It will be easiest to give the constants type @code{VAR}.
2786
2787@item
2788Make the program report an error if the user refers to an
2789uninitialized variable in any way except to store a value in it.
2790@end enumerate
2791
342b8b6e 2792@node Grammar File
bfa74976
RS
2793@chapter Bison Grammar Files
2794
2795Bison takes as input a context-free grammar specification and produces a
2796C-language function that recognizes correct instances of the grammar.
2797
ff7571c0 2798The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2799@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2800
2801@menu
303834cc
JD
2802* Grammar Outline:: Overall layout of the grammar file.
2803* Symbols:: Terminal and nonterminal symbols.
2804* Rules:: How to write grammar rules.
303834cc
JD
2805* Semantics:: Semantic values and actions.
2806* Tracking Locations:: Locations and actions.
2807* Named References:: Using named references in actions.
2808* Declarations:: All kinds of Bison declarations are described here.
2809* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2810@end menu
2811
342b8b6e 2812@node Grammar Outline
bfa74976 2813@section Outline of a Bison Grammar
c949ada3
AD
2814@cindex comment
2815@findex // @dots{}
2816@findex /* @dots{} */
bfa74976
RS
2817
2818A Bison grammar file has four main sections, shown here with the
2819appropriate delimiters:
2820
2821@example
2822%@{
38a92d50 2823 @var{Prologue}
bfa74976
RS
2824%@}
2825
2826@var{Bison declarations}
2827
2828%%
2829@var{Grammar rules}
2830%%
2831
75f5aaea 2832@var{Epilogue}
bfa74976
RS
2833@end example
2834
2835Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2836As a GNU extension, @samp{//} introduces a comment that continues until end
2837of line.
bfa74976
RS
2838
2839@menu
f5f419de 2840* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2841* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2842* Bison Declarations:: Syntax and usage of the Bison declarations section.
2843* Grammar Rules:: Syntax and usage of the grammar rules section.
2844* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2845@end menu
2846
38a92d50 2847@node Prologue
75f5aaea
MA
2848@subsection The prologue
2849@cindex declarations section
2850@cindex Prologue
2851@cindex declarations
bfa74976 2852
f8e1c9e5
AD
2853The @var{Prologue} section contains macro definitions and declarations
2854of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2855rules. These are copied to the beginning of the parser implementation
2856file so that they precede the definition of @code{yyparse}. You can
2857use @samp{#include} to get the declarations from a header file. If
2858you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2859@samp{%@}} delimiters that bracket this section.
bfa74976 2860
9c437126 2861The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2862of @samp{%@}} that is outside a comment, a string literal, or a
2863character constant.
2864
c732d2c6
AD
2865You may have more than one @var{Prologue} section, intermixed with the
2866@var{Bison declarations}. This allows you to have C and Bison
2867declarations that refer to each other. For example, the @code{%union}
2868declaration may use types defined in a header file, and you may wish to
2869prototype functions that take arguments of type @code{YYSTYPE}. This
2870can be done with two @var{Prologue} blocks, one before and one after the
2871@code{%union} declaration.
2872
c93f22fc 2873@example
efbc95a7 2874@group
c732d2c6 2875%@{
aef3da86 2876 #define _GNU_SOURCE
38a92d50
PE
2877 #include <stdio.h>
2878 #include "ptypes.h"
c732d2c6 2879%@}
efbc95a7 2880@end group
c732d2c6 2881
efbc95a7 2882@group
c732d2c6 2883%union @{
779e7ceb 2884 long int n;
c732d2c6
AD
2885 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2886@}
efbc95a7 2887@end group
c732d2c6 2888
efbc95a7 2889@group
c732d2c6 2890%@{
38a92d50
PE
2891 static void print_token_value (FILE *, int, YYSTYPE);
2892 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6 2893%@}
efbc95a7 2894@end group
c732d2c6
AD
2895
2896@dots{}
c93f22fc 2897@end example
c732d2c6 2898
aef3da86
PE
2899When in doubt, it is usually safer to put prologue code before all
2900Bison declarations, rather than after. For example, any definitions
2901of feature test macros like @code{_GNU_SOURCE} or
2902@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2903feature test macros can affect the behavior of Bison-generated
2904@code{#include} directives.
2905
2cbe6b7f
JD
2906@node Prologue Alternatives
2907@subsection Prologue Alternatives
2908@cindex Prologue Alternatives
2909
136a0f76 2910@findex %code
16dc6a9e
JD
2911@findex %code requires
2912@findex %code provides
2913@findex %code top
85894313 2914
2cbe6b7f 2915The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2916inflexible. As an alternative, Bison provides a @code{%code}
2917directive with an explicit qualifier field, which identifies the
2918purpose of the code and thus the location(s) where Bison should
2919generate it. For C/C++, the qualifier can be omitted for the default
2920location, or it can be one of @code{requires}, @code{provides},
e0c07222 2921@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2922
2923Look again at the example of the previous section:
2924
c93f22fc 2925@example
efbc95a7 2926@group
2cbe6b7f
JD
2927%@{
2928 #define _GNU_SOURCE
2929 #include <stdio.h>
2930 #include "ptypes.h"
2931%@}
efbc95a7 2932@end group
2cbe6b7f 2933
efbc95a7 2934@group
2cbe6b7f
JD
2935%union @{
2936 long int n;
2937 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2938@}
efbc95a7 2939@end group
2cbe6b7f 2940
efbc95a7 2941@group
2cbe6b7f
JD
2942%@{
2943 static void print_token_value (FILE *, int, YYSTYPE);
2944 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2945%@}
efbc95a7 2946@end group
2cbe6b7f
JD
2947
2948@dots{}
c93f22fc 2949@end example
2cbe6b7f
JD
2950
2951@noindent
ff7571c0
JD
2952Notice that there are two @var{Prologue} sections here, but there's a
2953subtle distinction between their functionality. For example, if you
2954decide to override Bison's default definition for @code{YYLTYPE}, in
2955which @var{Prologue} section should you write your new definition?
2956You should write it in the first since Bison will insert that code
2957into the parser implementation file @emph{before} the default
2958@code{YYLTYPE} definition. In which @var{Prologue} section should you
2959prototype an internal function, @code{trace_token}, that accepts
2960@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2961prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2962@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2963
2964This distinction in functionality between the two @var{Prologue} sections is
2965established by the appearance of the @code{%union} between them.
a501eca9 2966This behavior raises a few questions.
2cbe6b7f
JD
2967First, why should the position of a @code{%union} affect definitions related to
2968@code{YYLTYPE} and @code{yytokentype}?
2969Second, what if there is no @code{%union}?
2970In that case, the second kind of @var{Prologue} section is not available.
2971This behavior is not intuitive.
2972
8e0a5e9e 2973To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2974@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2975Let's go ahead and add the new @code{YYLTYPE} definition and the
2976@code{trace_token} prototype at the same time:
2977
c93f22fc 2978@example
16dc6a9e 2979%code top @{
2cbe6b7f
JD
2980 #define _GNU_SOURCE
2981 #include <stdio.h>
8e0a5e9e
JD
2982
2983 /* WARNING: The following code really belongs
4c9b8f13 2984 * in a '%code requires'; see below. */
8e0a5e9e 2985
2cbe6b7f
JD
2986 #include "ptypes.h"
2987 #define YYLTYPE YYLTYPE
2988 typedef struct YYLTYPE
2989 @{
2990 int first_line;
2991 int first_column;
2992 int last_line;
2993 int last_column;
2994 char *filename;
2995 @} YYLTYPE;
2996@}
2997
efbc95a7 2998@group
2cbe6b7f
JD
2999%union @{
3000 long int n;
3001 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3002@}
efbc95a7 3003@end group
2cbe6b7f 3004
efbc95a7 3005@group
2cbe6b7f
JD
3006%code @{
3007 static void print_token_value (FILE *, int, YYSTYPE);
3008 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3009 static void trace_token (enum yytokentype token, YYLTYPE loc);
3010@}
efbc95a7 3011@end group
2cbe6b7f
JD
3012
3013@dots{}
c93f22fc 3014@end example
2cbe6b7f
JD
3015
3016@noindent
16dc6a9e
JD
3017In this way, @code{%code top} and the unqualified @code{%code} achieve the same
3018functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 3019explicit which kind you intend.
2cbe6b7f
JD
3020Moreover, both kinds are always available even in the absence of @code{%union}.
3021
ff7571c0
JD
3022The @code{%code top} block above logically contains two parts. The
3023first two lines before the warning need to appear near the top of the
3024parser implementation file. The first line after the warning is
3025required by @code{YYSTYPE} and thus also needs to appear in the parser
3026implementation file. However, if you've instructed Bison to generate
3027a parser header file (@pxref{Decl Summary, ,%defines}), you probably
3028want that line to appear before the @code{YYSTYPE} definition in that
3029header file as well. The @code{YYLTYPE} definition should also appear
3030in the parser header file to override the default @code{YYLTYPE}
3031definition there.
2cbe6b7f 3032
16dc6a9e 3033In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3034lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3035definitions.
16dc6a9e 3036Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3037
c93f22fc 3038@example
d4fca427 3039@group
16dc6a9e 3040%code top @{
2cbe6b7f
JD
3041 #define _GNU_SOURCE
3042 #include <stdio.h>
3043@}
d4fca427 3044@end group
2cbe6b7f 3045
d4fca427 3046@group
16dc6a9e 3047%code requires @{
9bc0dd67
JD
3048 #include "ptypes.h"
3049@}
d4fca427
AD
3050@end group
3051@group
9bc0dd67
JD
3052%union @{
3053 long int n;
3054 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3055@}
d4fca427 3056@end group
9bc0dd67 3057
d4fca427 3058@group
16dc6a9e 3059%code requires @{
2cbe6b7f
JD
3060 #define YYLTYPE YYLTYPE
3061 typedef struct YYLTYPE
3062 @{
3063 int first_line;
3064 int first_column;
3065 int last_line;
3066 int last_column;
3067 char *filename;
3068 @} YYLTYPE;
3069@}
d4fca427 3070@end group
2cbe6b7f 3071
d4fca427 3072@group
136a0f76 3073%code @{
2cbe6b7f
JD
3074 static void print_token_value (FILE *, int, YYSTYPE);
3075 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3076 static void trace_token (enum yytokentype token, YYLTYPE loc);
3077@}
d4fca427 3078@end group
2cbe6b7f
JD
3079
3080@dots{}
c93f22fc 3081@end example
2cbe6b7f
JD
3082
3083@noindent
ff7571c0
JD
3084Now Bison will insert @code{#include "ptypes.h"} and the new
3085@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3086and @code{YYLTYPE} definitions in both the parser implementation file
3087and the parser header file. (By the same reasoning, @code{%code
3088requires} would also be the appropriate place to write your own
3089definition for @code{YYSTYPE}.)
3090
3091When you are writing dependency code for @code{YYSTYPE} and
3092@code{YYLTYPE}, you should prefer @code{%code requires} over
3093@code{%code top} regardless of whether you instruct Bison to generate
3094a parser header file. When you are writing code that you need Bison
3095to insert only into the parser implementation file and that has no
3096special need to appear at the top of that file, you should prefer the
3097unqualified @code{%code} over @code{%code top}. These practices will
3098make the purpose of each block of your code explicit to Bison and to
3099other developers reading your grammar file. Following these
3100practices, we expect the unqualified @code{%code} and @code{%code
3101requires} to be the most important of the four @var{Prologue}
16dc6a9e 3102alternatives.
a501eca9 3103
ff7571c0
JD
3104At some point while developing your parser, you might decide to
3105provide @code{trace_token} to modules that are external to your
3106parser. Thus, you might wish for Bison to insert the prototype into
3107both the parser header file and the parser implementation file. Since
3108this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3109@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3110@code{%code requires}. More importantly, since it depends upon
3111@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3112sufficient. Instead, move its prototype from the unqualified
3113@code{%code} to a @code{%code provides}:
2cbe6b7f 3114
c93f22fc 3115@example
d4fca427 3116@group
16dc6a9e 3117%code top @{
2cbe6b7f 3118 #define _GNU_SOURCE
136a0f76 3119 #include <stdio.h>
2cbe6b7f 3120@}
d4fca427 3121@end group
136a0f76 3122
d4fca427 3123@group
16dc6a9e 3124%code requires @{
2cbe6b7f
JD
3125 #include "ptypes.h"
3126@}
d4fca427
AD
3127@end group
3128@group
2cbe6b7f
JD
3129%union @{
3130 long int n;
3131 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3132@}
d4fca427 3133@end group
2cbe6b7f 3134
d4fca427 3135@group
16dc6a9e 3136%code requires @{
2cbe6b7f
JD
3137 #define YYLTYPE YYLTYPE
3138 typedef struct YYLTYPE
3139 @{
3140 int first_line;
3141 int first_column;
3142 int last_line;
3143 int last_column;
3144 char *filename;
3145 @} YYLTYPE;
3146@}
d4fca427 3147@end group
2cbe6b7f 3148
d4fca427 3149@group
16dc6a9e 3150%code provides @{
2cbe6b7f
JD
3151 void trace_token (enum yytokentype token, YYLTYPE loc);
3152@}
d4fca427 3153@end group
2cbe6b7f 3154
d4fca427 3155@group
2cbe6b7f 3156%code @{
9bc0dd67
JD
3157 static void print_token_value (FILE *, int, YYSTYPE);
3158 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3159@}
d4fca427 3160@end group
9bc0dd67
JD
3161
3162@dots{}
c93f22fc 3163@end example
9bc0dd67 3164
2cbe6b7f 3165@noindent
ff7571c0
JD
3166Bison will insert the @code{trace_token} prototype into both the
3167parser header file and the parser implementation file after the
3168definitions for @code{yytokentype}, @code{YYLTYPE}, and
3169@code{YYSTYPE}.
2cbe6b7f 3170
ff7571c0
JD
3171The above examples are careful to write directives in an order that
3172reflects the layout of the generated parser implementation and header
3173files: @code{%code top}, @code{%code requires}, @code{%code provides},
3174and then @code{%code}. While your grammar files may generally be
3175easier to read if you also follow this order, Bison does not require
3176it. Instead, Bison lets you choose an organization that makes sense
3177to you.
2cbe6b7f 3178
a501eca9 3179You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3180In that case, Bison concatenates the contained code in declaration order.
3181This is the only way in which the position of one of these directives within
3182the grammar file affects its functionality.
3183
3184The result of the previous two properties is greater flexibility in how you may
3185organize your grammar file.
3186For example, you may organize semantic-type-related directives by semantic
3187type:
3188
c93f22fc 3189@example
d4fca427 3190@group
16dc6a9e 3191%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3192%union @{ type1 field1; @}
3193%destructor @{ type1_free ($$); @} <field1>
c5026327 3194%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3195@end group
2cbe6b7f 3196
d4fca427 3197@group
16dc6a9e 3198%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3199%union @{ type2 field2; @}
3200%destructor @{ type2_free ($$); @} <field2>
c5026327 3201%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3202@end group
c93f22fc 3203@end example
2cbe6b7f
JD
3204
3205@noindent
3206You could even place each of the above directive groups in the rules section of
3207the grammar file next to the set of rules that uses the associated semantic
3208type.
61fee93e
JD
3209(In the rules section, you must terminate each of those directives with a
3210semicolon.)
2cbe6b7f
JD
3211And you don't have to worry that some directive (like a @code{%union}) in the
3212definitions section is going to adversely affect their functionality in some
3213counter-intuitive manner just because it comes first.
3214Such an organization is not possible using @var{Prologue} sections.
3215
a501eca9 3216This section has been concerned with explaining the advantages of the four
8e0a5e9e 3217@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3218However, in most cases when using these directives, you shouldn't need to
3219think about all the low-level ordering issues discussed here.
3220Instead, you should simply use these directives to label each block of your
3221code according to its purpose and let Bison handle the ordering.
3222@code{%code} is the most generic label.
16dc6a9e
JD
3223Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3224as needed.
a501eca9 3225
342b8b6e 3226@node Bison Declarations
bfa74976
RS
3227@subsection The Bison Declarations Section
3228@cindex Bison declarations (introduction)
3229@cindex declarations, Bison (introduction)
3230
3231The @var{Bison declarations} section contains declarations that define
3232terminal and nonterminal symbols, specify precedence, and so on.
3233In some simple grammars you may not need any declarations.
3234@xref{Declarations, ,Bison Declarations}.
3235
342b8b6e 3236@node Grammar Rules
bfa74976
RS
3237@subsection The Grammar Rules Section
3238@cindex grammar rules section
3239@cindex rules section for grammar
3240
3241The @dfn{grammar rules} section contains one or more Bison grammar
3242rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3243
3244There must always be at least one grammar rule, and the first
3245@samp{%%} (which precedes the grammar rules) may never be omitted even
3246if it is the first thing in the file.
3247
38a92d50 3248@node Epilogue
75f5aaea 3249@subsection The epilogue
bfa74976 3250@cindex additional C code section
75f5aaea 3251@cindex epilogue
bfa74976
RS
3252@cindex C code, section for additional
3253
ff7571c0
JD
3254The @var{Epilogue} is copied verbatim to the end of the parser
3255implementation file, just as the @var{Prologue} is copied to the
3256beginning. This is the most convenient place to put anything that you
3257want to have in the parser implementation file but which need not come
3258before the definition of @code{yyparse}. For example, the definitions
3259of @code{yylex} and @code{yyerror} often go here. Because C requires
3260functions to be declared before being used, you often need to declare
3261functions like @code{yylex} and @code{yyerror} in the Prologue, even
3262if you define them in the Epilogue. @xref{Interface, ,Parser
3263C-Language Interface}.
bfa74976
RS
3264
3265If the last section is empty, you may omit the @samp{%%} that separates it
3266from the grammar rules.
3267
f8e1c9e5
AD
3268The Bison parser itself contains many macros and identifiers whose names
3269start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3270any such names (except those documented in this manual) in the epilogue
3271of the grammar file.
bfa74976 3272
342b8b6e 3273@node Symbols
bfa74976
RS
3274@section Symbols, Terminal and Nonterminal
3275@cindex nonterminal symbol
3276@cindex terminal symbol
3277@cindex token type
3278@cindex symbol
3279
3280@dfn{Symbols} in Bison grammars represent the grammatical classifications
3281of the language.
3282
3283A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3284class of syntactically equivalent tokens. You use the symbol in grammar
3285rules to mean that a token in that class is allowed. The symbol is
3286represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3287function returns a token type code to indicate what kind of token has
3288been read. You don't need to know what the code value is; you can use
3289the symbol to stand for it.
bfa74976 3290
f8e1c9e5
AD
3291A @dfn{nonterminal symbol} stands for a class of syntactically
3292equivalent groupings. The symbol name is used in writing grammar rules.
3293By convention, it should be all lower case.
bfa74976 3294
82f3355e
JD
3295Symbol names can contain letters, underscores, periods, and non-initial
3296digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3297with POSIX Yacc. Periods and dashes make symbol names less convenient to
3298use with named references, which require brackets around such names
3299(@pxref{Named References}). Terminal symbols that contain periods or dashes
3300make little sense: since they are not valid symbols (in most programming
3301languages) they are not exported as token names.
bfa74976 3302
931c7513 3303There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3304
3305@itemize @bullet
3306@item
3307A @dfn{named token type} is written with an identifier, like an
c827f760 3308identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3309such name must be defined with a Bison declaration such as
3310@code{%token}. @xref{Token Decl, ,Token Type Names}.
3311
3312@item
3313@cindex character token
3314@cindex literal token
3315@cindex single-character literal
931c7513
RS
3316A @dfn{character token type} (or @dfn{literal character token}) is
3317written in the grammar using the same syntax used in C for character
3318constants; for example, @code{'+'} is a character token type. A
3319character token type doesn't need to be declared unless you need to
3320specify its semantic value data type (@pxref{Value Type, ,Data Types of
3321Semantic Values}), associativity, or precedence (@pxref{Precedence,
3322,Operator Precedence}).
bfa74976
RS
3323
3324By convention, a character token type is used only to represent a
3325token that consists of that particular character. Thus, the token
3326type @code{'+'} is used to represent the character @samp{+} as a
3327token. Nothing enforces this convention, but if you depart from it,
3328your program will confuse other readers.
3329
3330All the usual escape sequences used in character literals in C can be
3331used in Bison as well, but you must not use the null character as a
72d2299c
PE
3332character literal because its numeric code, zero, signifies
3333end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3334for @code{yylex}}). Also, unlike standard C, trigraphs have no
3335special meaning in Bison character literals, nor is backslash-newline
3336allowed.
931c7513
RS
3337
3338@item
3339@cindex string token
3340@cindex literal string token
9ecbd125 3341@cindex multicharacter literal
931c7513
RS
3342A @dfn{literal string token} is written like a C string constant; for
3343example, @code{"<="} is a literal string token. A literal string token
3344doesn't need to be declared unless you need to specify its semantic
14ded682 3345value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3346(@pxref{Precedence}).
3347
3348You can associate the literal string token with a symbolic name as an
3349alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3350Declarations}). If you don't do that, the lexical analyzer has to
3351retrieve the token number for the literal string token from the
3352@code{yytname} table (@pxref{Calling Convention}).
3353
c827f760 3354@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3355
3356By convention, a literal string token is used only to represent a token
3357that consists of that particular string. Thus, you should use the token
3358type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3359does not enforce this convention, but if you depart from it, people who
931c7513
RS
3360read your program will be confused.
3361
3362All the escape sequences used in string literals in C can be used in
92ac3705
PE
3363Bison as well, except that you must not use a null character within a
3364string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3365meaning in Bison string literals, nor is backslash-newline allowed. A
3366literal string token must contain two or more characters; for a token
3367containing just one character, use a character token (see above).
bfa74976
RS
3368@end itemize
3369
3370How you choose to write a terminal symbol has no effect on its
3371grammatical meaning. That depends only on where it appears in rules and
3372on when the parser function returns that symbol.
3373
72d2299c
PE
3374The value returned by @code{yylex} is always one of the terminal
3375symbols, except that a zero or negative value signifies end-of-input.
3376Whichever way you write the token type in the grammar rules, you write
3377it the same way in the definition of @code{yylex}. The numeric code
3378for a character token type is simply the positive numeric code of the
3379character, so @code{yylex} can use the identical value to generate the
3380requisite code, though you may need to convert it to @code{unsigned
3381char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3382Each named token type becomes a C macro in the parser implementation
3383file, so @code{yylex} can use the name to stand for the code. (This
3384is why periods don't make sense in terminal symbols.) @xref{Calling
3385Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3386
3387If @code{yylex} is defined in a separate file, you need to arrange for the
3388token-type macro definitions to be available there. Use the @samp{-d}
3389option when you run Bison, so that it will write these macro definitions
3390into a separate header file @file{@var{name}.tab.h} which you can include
3391in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3392
72d2299c 3393If you want to write a grammar that is portable to any Standard C
9d9b8b70 3394host, you must use only nonnull character tokens taken from the basic
c827f760 3395execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3396digits, the 52 lower- and upper-case English letters, and the
3397characters in the following C-language string:
3398
3399@example
3400"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3401@end example
3402
f8e1c9e5
AD
3403The @code{yylex} function and Bison must use a consistent character set
3404and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3405ASCII environment, but then compile and run the resulting
f8e1c9e5 3406program in an environment that uses an incompatible character set like
8a4281b9
JD
3407EBCDIC, the resulting program may not work because the tables
3408generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3409character tokens. It is standard practice for software distributions to
3410contain C source files that were generated by Bison in an
8a4281b9
JD
3411ASCII environment, so installers on platforms that are
3412incompatible with ASCII must rebuild those files before
f8e1c9e5 3413compiling them.
e966383b 3414
bfa74976
RS
3415The symbol @code{error} is a terminal symbol reserved for error recovery
3416(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3417In particular, @code{yylex} should never return this value. The default
3418value of the error token is 256, unless you explicitly assigned 256 to
3419one of your tokens with a @code{%token} declaration.
bfa74976 3420
342b8b6e 3421@node Rules
09add9c2
AD
3422@section Grammar Rules
3423
3424A Bison grammar is a list of rules.
3425
3426@menu
3427* Rules Syntax:: Syntax of the rules.
3428* Empty Rules:: Symbols that can match the empty string.
3429* Recursion:: Writing recursive rules.
3430@end menu
3431
3432@node Rules Syntax
3433@subsection Syntax of Grammar Rules
bfa74976
RS
3434@cindex rule syntax
3435@cindex grammar rule syntax
3436@cindex syntax of grammar rules
3437
3438A Bison grammar rule has the following general form:
3439
3440@example
5e9b6624 3441@var{result}: @var{components}@dots{};
bfa74976
RS
3442@end example
3443
3444@noindent
9ecbd125 3445where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3446and @var{components} are various terminal and nonterminal symbols that
13863333 3447are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3448
3449For example,
3450
3451@example
5e9b6624 3452exp: exp '+' exp;
bfa74976
RS
3453@end example
3454
3455@noindent
3456says that two groupings of type @code{exp}, with a @samp{+} token in between,
3457can be combined into a larger grouping of type @code{exp}.
3458
72d2299c
PE
3459White space in rules is significant only to separate symbols. You can add
3460extra white space as you wish.
bfa74976
RS
3461
3462Scattered among the components can be @var{actions} that determine
3463the semantics of the rule. An action looks like this:
3464
3465@example
3466@{@var{C statements}@}
3467@end example
3468
3469@noindent
287c78f6
PE
3470@cindex braced code
3471This is an example of @dfn{braced code}, that is, C code surrounded by
3472braces, much like a compound statement in C@. Braced code can contain
3473any sequence of C tokens, so long as its braces are balanced. Bison
3474does not check the braced code for correctness directly; it merely
ff7571c0
JD
3475copies the code to the parser implementation file, where the C
3476compiler can check it.
287c78f6
PE
3477
3478Within braced code, the balanced-brace count is not affected by braces
3479within comments, string literals, or character constants, but it is
3480affected by the C digraphs @samp{<%} and @samp{%>} that represent
3481braces. At the top level braced code must be terminated by @samp{@}}
3482and not by a digraph. Bison does not look for trigraphs, so if braced
3483code uses trigraphs you should ensure that they do not affect the
3484nesting of braces or the boundaries of comments, string literals, or
3485character constants.
3486
bfa74976
RS
3487Usually there is only one action and it follows the components.
3488@xref{Actions}.
3489
3490@findex |
3491Multiple rules for the same @var{result} can be written separately or can
3492be joined with the vertical-bar character @samp{|} as follows:
3493
bfa74976
RS
3494@example
3495@group
5e9b6624
AD
3496@var{result}:
3497 @var{rule1-components}@dots{}
3498| @var{rule2-components}@dots{}
3499@dots{}
3500;
bfa74976
RS
3501@end group
3502@end example
bfa74976
RS
3503
3504@noindent
3505They are still considered distinct rules even when joined in this way.
3506
09add9c2
AD
3507@node Empty Rules
3508@subsection Empty Rules
3509@cindex empty rule
3510@cindex rule, empty
3511@findex %empty
3512
3513A rule is said to be @dfn{empty} if its right-hand side (@var{components})
3514is empty. It means that @var{result} can match the empty string. For
3515example, here is how to define an optional semicolon:
3516
3517@example
3518semicolon.opt: | ";";
3519@end example
3520
3521@noindent
3522It is easy not to see an empty rule, especially when @code{|} is used. The
3523@code{%empty} directive allows to make explicit that a rule is empty on
3524purpose:
bfa74976
RS
3525
3526@example
3527@group
09add9c2
AD
3528semicolon.opt:
3529 %empty
3530| ";"
5e9b6624 3531;
bfa74976 3532@end group
09add9c2 3533@end example
bfa74976 3534
09add9c2
AD
3535Flagging a non-empty rule with @code{%empty} is an error. If run with
3536@option{-Wempty-rule}, @command{bison} will report empty rules without
3537@code{%empty}. Using @code{%empty} enables this warning, unless
3538@option{-Wno-empty-rule} was specified.
3539
3540The @code{%empty} directive is a Bison extension, it does not work with
3541Yacc. To remain compatible with POSIX Yacc, it is customary to write a
3542comment @samp{/* empty */} in each rule with no components:
3543
3544@example
bfa74976 3545@group
09add9c2
AD
3546semicolon.opt:
3547 /* empty */
3548| ";"
5e9b6624 3549;
bfa74976
RS
3550@end group
3551@end example
3552
bfa74976 3553
342b8b6e 3554@node Recursion
09add9c2 3555@subsection Recursive Rules
bfa74976 3556@cindex recursive rule
09add9c2 3557@cindex rule, recursive
bfa74976 3558
f8e1c9e5
AD
3559A rule is called @dfn{recursive} when its @var{result} nonterminal
3560appears also on its right hand side. Nearly all Bison grammars need to
3561use recursion, because that is the only way to define a sequence of any
3562number of a particular thing. Consider this recursive definition of a
9ecbd125 3563comma-separated sequence of one or more expressions:
bfa74976
RS
3564
3565@example
3566@group
5e9b6624
AD
3567expseq1:
3568 exp
3569| expseq1 ',' exp
3570;
bfa74976
RS
3571@end group
3572@end example
3573
3574@cindex left recursion
3575@cindex right recursion
3576@noindent
3577Since the recursive use of @code{expseq1} is the leftmost symbol in the
3578right hand side, we call this @dfn{left recursion}. By contrast, here
3579the same construct is defined using @dfn{right recursion}:
3580
3581@example
3582@group
5e9b6624
AD
3583expseq1:
3584 exp
3585| exp ',' expseq1
3586;
bfa74976
RS
3587@end group
3588@end example
3589
3590@noindent
ec3bc396
AD
3591Any kind of sequence can be defined using either left recursion or right
3592recursion, but you should always use left recursion, because it can
3593parse a sequence of any number of elements with bounded stack space.
3594Right recursion uses up space on the Bison stack in proportion to the
3595number of elements in the sequence, because all the elements must be
3596shifted onto the stack before the rule can be applied even once.
3597@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3598of this.
bfa74976
RS
3599
3600@cindex mutual recursion
3601@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3602rule does not appear directly on its right hand side, but does appear
3603in rules for other nonterminals which do appear on its right hand
13863333 3604side.
bfa74976
RS
3605
3606For example:
3607
3608@example
3609@group
5e9b6624
AD
3610expr:
3611 primary
3612| primary '+' primary
3613;
bfa74976
RS
3614@end group
3615
3616@group
5e9b6624
AD
3617primary:
3618 constant
3619| '(' expr ')'
3620;
bfa74976
RS
3621@end group
3622@end example
3623
3624@noindent
3625defines two mutually-recursive nonterminals, since each refers to the
3626other.
3627
342b8b6e 3628@node Semantics
bfa74976
RS
3629@section Defining Language Semantics
3630@cindex defining language semantics
13863333 3631@cindex language semantics, defining
bfa74976
RS
3632
3633The grammar rules for a language determine only the syntax. The semantics
3634are determined by the semantic values associated with various tokens and
3635groupings, and by the actions taken when various groupings are recognized.
3636
3637For example, the calculator calculates properly because the value
3638associated with each expression is the proper number; it adds properly
3639because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3640the numbers associated with @var{x} and @var{y}.
3641
3642@menu
3643* Value Type:: Specifying one data type for all semantic values.
3644* Multiple Types:: Specifying several alternative data types.
90b89dad 3645* Type Generation:: Generating the semantic value type.
e4d49586
AD
3646* Union Decl:: Declaring the set of all semantic value types.
3647* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
3648* Actions:: An action is the semantic definition of a grammar rule.
3649* Action Types:: Specifying data types for actions to operate on.
3650* Mid-Rule Actions:: Most actions go at the end of a rule.
3651 This says when, why and how to use the exceptional
3652 action in the middle of a rule.
3653@end menu
3654
342b8b6e 3655@node Value Type
bfa74976
RS
3656@subsection Data Types of Semantic Values
3657@cindex semantic value type
3658@cindex value type, semantic
3659@cindex data types of semantic values
3660@cindex default data type
3661
3662In a simple program it may be sufficient to use the same data type for
3663the semantic values of all language constructs. This was true in the
8a4281b9 3664RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3665Notation Calculator}).
bfa74976 3666
ddc8ede1
PE
3667Bison normally uses the type @code{int} for semantic values if your
3668program uses the same data type for all language constructs. To
21e3a2b5
AD
3669specify some other type, define the @code{%define} variable
3670@code{api.value.type} like this:
3671
3672@example
435575cb 3673%define api.value.type @{double@}
21e3a2b5
AD
3674@end example
3675
3676@noindent
3677or
3678
3679@example
435575cb 3680%define api.value.type @{struct semantic_type@}
21e3a2b5
AD
3681@end example
3682
3683The value of @code{api.value.type} should be a type name that does not
3684contain parentheses or square brackets.
3685
3686Alternatively, instead of relying of Bison's @code{%define} support, you may
3687rely on the C/C++ preprocessor and define @code{YYSTYPE} as a macro, like
3688this:
bfa74976
RS
3689
3690@example
3691#define YYSTYPE double
3692@end example
3693
3694@noindent
342b8b6e 3695This macro definition must go in the prologue of the grammar file
21e3a2b5
AD
3696(@pxref{Grammar Outline, ,Outline of a Bison Grammar}). If compatibility
3697with POSIX Yacc matters to you, use this. Note however that Bison cannot
3698know @code{YYSTYPE}'s value, not even whether it is defined, so there are
3699services it cannot provide. Besides this works only for languages that have
3700a preprocessor.
bfa74976 3701
342b8b6e 3702@node Multiple Types
bfa74976
RS
3703@subsection More Than One Value Type
3704
3705In most programs, you will need different data types for different kinds
3706of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3707@code{int} or @code{long int}, while a string constant needs type
3708@code{char *}, and an identifier might need a pointer to an entry in the
3709symbol table.
bfa74976
RS
3710
3711To use more than one data type for semantic values in one parser, Bison
3712requires you to do two things:
3713
3714@itemize @bullet
3715@item
e4d49586
AD
3716Specify the entire collection of possible data types. There are several
3717options:
3718@itemize @bullet
90b89dad
AD
3719@item
3720let Bison compute the union type from the tags you assign to symbols;
3721
e4d49586
AD
3722@item
3723use the @code{%union} Bison declaration (@pxref{Union Decl, ,The Union
3724Declaration});
3725
3726@item
3727define the @code{%define} variable @code{api.value.type} to be a union type
3728whose members are the type tags (@pxref{Structured Value Type,, Providing a
3729Structured Semantic Value Type});
3730
3731@item
3732use a @code{typedef} or a @code{#define} to define @code{YYSTYPE} to be a
3733union type whose member names are the type tags.
3734@end itemize
bfa74976
RS
3735
3736@item
14ded682
AD
3737Choose one of those types for each symbol (terminal or nonterminal) for
3738which semantic values are used. This is done for tokens with the
3739@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3740and for groupings with the @code{%type} Bison declaration (@pxref{Type
3741Decl, ,Nonterminal Symbols}).
bfa74976
RS
3742@end itemize
3743
90b89dad
AD
3744@node Type Generation
3745@subsection Generating the Semantic Value Type
3746@cindex declaring value types
3747@cindex value types, declaring
3748@findex %define api.value.type union
3749
3750The special value @code{union} of the @code{%define} variable
3751@code{api.value.type} instructs Bison that the tags used with the
3752@code{%token} and @code{%type} directives are genuine types, not names of
3753members of @code{YYSTYPE}.
3754
3755For example:
3756
3757@example
3758%define api.value.type union
3759%token <int> INT "integer"
3760%token <int> 'n'
3761%type <int> expr
3762%token <char const *> ID "identifier"
3763@end example
3764
3765@noindent
3766generates an appropriate value of @code{YYSTYPE} to support each symbol
3767type. The name of the member of @code{YYSTYPE} for tokens than have a
3768declared identifier @var{id} (such as @code{INT} and @code{ID} above, but
3769not @code{'n'}) is @code{@var{id}}. The other symbols have unspecified
3770names on which you should not depend; instead, relying on C casts to access
3771the semantic value with the appropriate type:
3772
3773@example
3774/* For an "integer". */
3775yylval.INT = 42;
3776return INT;
3777
3778/* For an 'n', also declared as int. */
3779*((int*)&yylval) = 42;
3780return 'n';
3781
3782/* For an "identifier". */
3783yylval.ID = "42";
3784return ID;
3785@end example
3786
3787If the @code{%define} variable @code{api.token.prefix} is defined
3788(@pxref{%define Summary,,api.token.prefix}), then it is also used to prefix
3789the union member names. For instance, with @samp{%define api.token.prefix
630a0218 3790@{TOK_@}}:
90b89dad
AD
3791
3792@example
3793/* For an "integer". */
3794yylval.TOK_INT = 42;
3795return TOK_INT;
3796@end example
3797
1fa19a76
AD
3798This Bison extension cannot work if @code{%yacc} (or
3799@option{-y}/@option{--yacc}) is enabled, as POSIX mandates that Yacc
3800generate tokens as macros (e.g., @samp{#define INT 258}, or @samp{#define
3801TOK_INT 258}).
3802
90b89dad
AD
3803This feature is new, and user feedback would be most welcome.
3804
3805A similar feature is provided for C++ that in addition overcomes C++
3806limitations (that forbid non-trivial objects to be part of a @code{union}):
3807@samp{%define api.value.type variant}, see @ref{C++ Variants}.
3808
e4d49586
AD
3809@node Union Decl
3810@subsection The Union Declaration
3811@cindex declaring value types
3812@cindex value types, declaring
3813@findex %union
3814
3815The @code{%union} declaration specifies the entire collection of possible
3816data types for semantic values. The keyword @code{%union} is followed by
3817braced code containing the same thing that goes inside a @code{union} in C@.
3818
3819For example:
3820
3821@example
3822@group
3823%union @{
3824 double val;
3825 symrec *tptr;
3826@}
3827@end group
3828@end example
3829
3830@noindent
3831This says that the two alternative types are @code{double} and @code{symrec
3832*}. They are given names @code{val} and @code{tptr}; these names are used
3833in the @code{%token} and @code{%type} declarations to pick one of the types
3834for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3835
3836As an extension to POSIX, a tag is allowed after the @code{%union}. For
3837example:
3838
3839@example
3840@group
3841%union value @{
3842 double val;
3843 symrec *tptr;
3844@}
3845@end group
3846@end example
3847
3848@noindent
3849specifies the union tag @code{value}, so the corresponding C type is
3850@code{union value}. If you do not specify a tag, it defaults to
3851@code{YYSTYPE}.
3852
3853As another extension to POSIX, you may specify multiple @code{%union}
3854declarations; their contents are concatenated. However, only the first
3855@code{%union} declaration can specify a tag.
3856
3857Note that, unlike making a @code{union} declaration in C, you need not write
3858a semicolon after the closing brace.
3859
3860@node Structured Value Type
3861@subsection Providing a Structured Semantic Value Type
3862@cindex declaring value types
3863@cindex value types, declaring
3864@findex %union
3865
3866Instead of @code{%union}, you can define and use your own union type
3867@code{YYSTYPE} if your grammar contains at least one @samp{<@var{type}>}
3868tag. For example, you can put the following into a header file
3869@file{parser.h}:
3870
3871@example
3872@group
3873union YYSTYPE @{
3874 double val;
3875 symrec *tptr;
3876@};
3877@end group
3878@end example
3879
3880@noindent
3881and then your grammar can use the following instead of @code{%union}:
3882
3883@example
3884@group
3885%@{
3886#include "parser.h"
3887%@}
aba47f56 3888%define api.value.type @{union YYSTYPE@}
e4d49586
AD
3889%type <val> expr
3890%token <tptr> ID
3891@end group
3892@end example
3893
3894Actually, you may also provide a @code{struct} rather that a @code{union},
3895which may be handy if you want to track information for every symbol (such
3896as preceding comments).
3897
3898The type you provide may even be structured and include pointers, in which
3899case the type tags you provide may be composite, with @samp{.} and @samp{->}
3900operators.
3901
342b8b6e 3902@node Actions
bfa74976
RS
3903@subsection Actions
3904@cindex action
3905@vindex $$
3906@vindex $@var{n}
d013372c
AR
3907@vindex $@var{name}
3908@vindex $[@var{name}]
bfa74976
RS
3909
3910An action accompanies a syntactic rule and contains C code to be executed
3911each time an instance of that rule is recognized. The task of most actions
3912is to compute a semantic value for the grouping built by the rule from the
3913semantic values associated with tokens or smaller groupings.
3914
287c78f6
PE
3915An action consists of braced code containing C statements, and can be
3916placed at any position in the rule;
704a47c4
AD
3917it is executed at that position. Most rules have just one action at the
3918end of the rule, following all the components. Actions in the middle of
3919a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3920Actions, ,Actions in Mid-Rule}).
bfa74976 3921
ff7571c0
JD
3922The C code in an action can refer to the semantic values of the
3923components matched by the rule with the construct @code{$@var{n}},
3924which stands for the value of the @var{n}th component. The semantic
3925value for the grouping being constructed is @code{$$}. In addition,
3926the semantic values of symbols can be accessed with the named
3927references construct @code{$@var{name}} or @code{$[@var{name}]}.
3928Bison translates both of these constructs into expressions of the
3929appropriate type when it copies the actions into the parser
3930implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3931for the current grouping) is translated to a modifiable lvalue, so it
3932can be assigned to.
bfa74976
RS
3933
3934Here is a typical example:
3935
3936@example
3937@group
5e9b6624
AD
3938exp:
3939@dots{}
3940| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3941@end group
3942@end example
3943
d013372c
AR
3944Or, in terms of named references:
3945
3946@example
3947@group
5e9b6624
AD
3948exp[result]:
3949@dots{}
3950| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3951@end group
3952@end example
3953
bfa74976
RS
3954@noindent
3955This rule constructs an @code{exp} from two smaller @code{exp} groupings
3956connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3957(@code{$left} and @code{$right})
bfa74976
RS
3958refer to the semantic values of the two component @code{exp} groupings,
3959which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3960The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3961semantic value of
bfa74976
RS
3962the addition-expression just recognized by the rule. If there were a
3963useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3964referred to as @code{$2}.
bfa74976 3965
a7b15ab9
JD
3966@xref{Named References}, for more information about using the named
3967references construct.
d013372c 3968
3ded9a63
AD
3969Note that the vertical-bar character @samp{|} is really a rule
3970separator, and actions are attached to a single rule. This is a
3971difference with tools like Flex, for which @samp{|} stands for either
3972``or'', or ``the same action as that of the next rule''. In the
3973following example, the action is triggered only when @samp{b} is found:
3974
3975@example
3ded9a63 3976a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3977@end example
3978
bfa74976
RS
3979@cindex default action
3980If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3981@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3982becomes the value of the whole rule. Of course, the default action is
3983valid only if the two data types match. There is no meaningful default
3984action for an empty rule; every empty rule must have an explicit action
3985unless the rule's value does not matter.
bfa74976
RS
3986
3987@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3988to tokens and groupings on the stack @emph{before} those that match the
3989current rule. This is a very risky practice, and to use it reliably
3990you must be certain of the context in which the rule is applied. Here
3991is a case in which you can use this reliably:
3992
3993@example
3994@group
5e9b6624
AD
3995foo:
3996 expr bar '+' expr @{ @dots{} @}
3997| expr bar '-' expr @{ @dots{} @}
3998;
bfa74976
RS
3999@end group
4000
4001@group
5e9b6624 4002bar:
6240346a 4003 %empty @{ previous_expr = $0; @}
5e9b6624 4004;
bfa74976
RS
4005@end group
4006@end example
4007
4008As long as @code{bar} is used only in the fashion shown here, @code{$0}
4009always refers to the @code{expr} which precedes @code{bar} in the
4010definition of @code{foo}.
4011
32c29292 4012@vindex yylval
742e4900 4013It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
4014any, from a semantic action.
4015This semantic value is stored in @code{yylval}.
4016@xref{Action Features, ,Special Features for Use in Actions}.
4017
342b8b6e 4018@node Action Types
bfa74976
RS
4019@subsection Data Types of Values in Actions
4020@cindex action data types
4021@cindex data types in actions
4022
4023If you have chosen a single data type for semantic values, the @code{$$}
4024and @code{$@var{n}} constructs always have that data type.
4025
4026If you have used @code{%union} to specify a variety of data types, then you
4027must declare a choice among these types for each terminal or nonterminal
4028symbol that can have a semantic value. Then each time you use @code{$$} or
4029@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 4030in the rule. In this example,
bfa74976
RS
4031
4032@example
4033@group
5e9b6624
AD
4034exp:
4035 @dots{}
4036| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
4037@end group
4038@end example
4039
4040@noindent
4041@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
4042have the data type declared for the nonterminal symbol @code{exp}. If
4043@code{$2} were used, it would have the data type declared for the
e0c471a9 4044terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
4045
4046Alternatively, you can specify the data type when you refer to the value,
4047by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
4048reference. For example, if you have defined types as shown here:
4049
4050@example
4051@group
4052%union @{
4053 int itype;
4054 double dtype;
4055@}
4056@end group
4057@end example
4058
4059@noindent
4060then you can write @code{$<itype>1} to refer to the first subunit of the
4061rule as an integer, or @code{$<dtype>1} to refer to it as a double.
4062
342b8b6e 4063@node Mid-Rule Actions
bfa74976
RS
4064@subsection Actions in Mid-Rule
4065@cindex actions in mid-rule
4066@cindex mid-rule actions
4067
4068Occasionally it is useful to put an action in the middle of a rule.
4069These actions are written just like usual end-of-rule actions, but they
4070are executed before the parser even recognizes the following components.
4071
be22823e
AD
4072@menu
4073* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
4074* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
4075* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
4076@end menu
4077
4078@node Using Mid-Rule Actions
4079@subsubsection Using Mid-Rule Actions
4080
bfa74976
RS
4081A mid-rule action may refer to the components preceding it using
4082@code{$@var{n}}, but it may not refer to subsequent components because
4083it is run before they are parsed.
4084
4085The mid-rule action itself counts as one of the components of the rule.
4086This makes a difference when there is another action later in the same rule
4087(and usually there is another at the end): you have to count the actions
4088along with the symbols when working out which number @var{n} to use in
4089@code{$@var{n}}.
4090
4091The mid-rule action can also have a semantic value. The action can set
4092its value with an assignment to @code{$$}, and actions later in the rule
4093can refer to the value using @code{$@var{n}}. Since there is no symbol
4094to name the action, there is no way to declare a data type for the value
fdc6758b
MA
4095in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
4096specify a data type each time you refer to this value.
bfa74976
RS
4097
4098There is no way to set the value of the entire rule with a mid-rule
4099action, because assignments to @code{$$} do not have that effect. The
4100only way to set the value for the entire rule is with an ordinary action
4101at the end of the rule.
4102
4103Here is an example from a hypothetical compiler, handling a @code{let}
4104statement that looks like @samp{let (@var{variable}) @var{statement}} and
4105serves to create a variable named @var{variable} temporarily for the
4106duration of @var{statement}. To parse this construct, we must put
4107@var{variable} into the symbol table while @var{statement} is parsed, then
4108remove it afterward. Here is how it is done:
4109
4110@example
4111@group
5e9b6624 4112stmt:
c949ada3
AD
4113 "let" '(' var ')'
4114 @{
4115 $<context>$ = push_context ();
4116 declare_variable ($3);
4117 @}
5e9b6624 4118 stmt
c949ada3
AD
4119 @{
4120 $$ = $6;
4121 pop_context ($<context>5);
4122 @}
bfa74976
RS
4123@end group
4124@end example
4125
4126@noindent
4127As soon as @samp{let (@var{variable})} has been recognized, the first
4128action is run. It saves a copy of the current semantic context (the
4129list of accessible variables) as its semantic value, using alternative
4130@code{context} in the data-type union. Then it calls
4131@code{declare_variable} to add the new variable to that list. Once the
4132first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
4133parsed.
4134
4135Note that the mid-rule action is component number 5, so the @samp{stmt} is
4136component number 6. Named references can be used to improve the readability
4137and maintainability (@pxref{Named References}):
4138
4139@example
4140@group
4141stmt:
4142 "let" '(' var ')'
4143 @{
4144 $<context>let = push_context ();
4145 declare_variable ($3);
4146 @}[let]
4147 stmt
4148 @{
4149 $$ = $6;
4150 pop_context ($<context>let);
4151 @}
4152@end group
4153@end example
bfa74976
RS
4154
4155After the embedded statement is parsed, its semantic value becomes the
4156value of the entire @code{let}-statement. Then the semantic value from the
4157earlier action is used to restore the prior list of variables. This
4158removes the temporary @code{let}-variable from the list so that it won't
4159appear to exist while the rest of the program is parsed.
4160
841a7737
JD
4161@findex %destructor
4162@cindex discarded symbols, mid-rule actions
4163@cindex error recovery, mid-rule actions
4164In the above example, if the parser initiates error recovery (@pxref{Error
4165Recovery}) while parsing the tokens in the embedded statement @code{stmt},
4166it might discard the previous semantic context @code{$<context>5} without
4167restoring it.
4168Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
4169Discarded Symbols}).
ec5479ce
JD
4170However, Bison currently provides no means to declare a destructor specific to
4171a particular mid-rule action's semantic value.
841a7737
JD
4172
4173One solution is to bury the mid-rule action inside a nonterminal symbol and to
4174declare a destructor for that symbol:
4175
4176@example
4177@group
4178%type <context> let
4179%destructor @{ pop_context ($$); @} let
09add9c2 4180@end group
841a7737
JD
4181
4182%%
4183
09add9c2 4184@group
5e9b6624
AD
4185stmt:
4186 let stmt
4187 @{
4188 $$ = $2;
be22823e 4189 pop_context ($let);
5e9b6624 4190 @};
09add9c2 4191@end group
841a7737 4192
09add9c2 4193@group
5e9b6624 4194let:
c949ada3 4195 "let" '(' var ')'
5e9b6624 4196 @{
be22823e 4197 $let = push_context ();
5e9b6624
AD
4198 declare_variable ($3);
4199 @};
841a7737
JD
4200
4201@end group
4202@end example
4203
4204@noindent
4205Note that the action is now at the end of its rule.
4206Any mid-rule action can be converted to an end-of-rule action in this way, and
4207this is what Bison actually does to implement mid-rule actions.
4208
be22823e
AD
4209@node Mid-Rule Action Translation
4210@subsubsection Mid-Rule Action Translation
4211@vindex $@@@var{n}
4212@vindex @@@var{n}
4213
4214As hinted earlier, mid-rule actions are actually transformed into regular
4215rules and actions. The various reports generated by Bison (textual,
4216graphical, etc., see @ref{Understanding, , Understanding Your Parser})
4217reveal this translation, best explained by means of an example. The
4218following rule:
4219
4220@example
4221exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
4222@end example
4223
4224@noindent
4225is translated into:
4226
4227@example
6240346a
AD
4228$@@1: %empty @{ a(); @};
4229$@@2: %empty @{ c(); @};
4230$@@3: %empty @{ d(); @};
be22823e
AD
4231exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
4232@end example
4233
4234@noindent
4235with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
4236
4237A mid-rule action is expected to generate a value if it uses @code{$$}, or
4238the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
4239action. In that case its nonterminal is rather named @code{@@@var{n}}:
4240
4241@example
4242exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4243@end example
4244
4245@noindent
4246is translated into
4247
4248@example
6240346a
AD
4249@@1: %empty @{ a(); @};
4250@@2: %empty @{ $$ = c(); @};
4251$@@3: %empty @{ d(); @};
be22823e
AD
4252exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
4253@end example
4254
4255There are probably two errors in the above example: the first mid-rule
4256action does not generate a value (it does not use @code{$$} although the
4257final action uses it), and the value of the second one is not used (the
4258final action does not use @code{$3}). Bison reports these errors when the
4259@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
4260Bison}):
4261
4262@example
4263$ bison -fcaret -Wmidrule-value mid.y
4264@group
4265mid.y:2.6-13: warning: unset value: $$
4266 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4267 ^^^^^^^^
4268@end group
4269@group
4270mid.y:2.19-31: warning: unused value: $3
4271 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4272 ^^^^^^^^^^^^^
4273@end group
4274@end example
4275
4276
4277@node Mid-Rule Conflicts
4278@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4279Taking action before a rule is completely recognized often leads to
4280conflicts since the parser must commit to a parse in order to execute the
4281action. For example, the following two rules, without mid-rule actions,
4282can coexist in a working parser because the parser can shift the open-brace
4283token and look at what follows before deciding whether there is a
4284declaration or not:
4285
4286@example
4287@group
5e9b6624
AD
4288compound:
4289 '@{' declarations statements '@}'
4290| '@{' statements '@}'
4291;
bfa74976
RS
4292@end group
4293@end example
4294
4295@noindent
4296But when we add a mid-rule action as follows, the rules become nonfunctional:
4297
4298@example
4299@group
5e9b6624
AD
4300compound:
4301 @{ prepare_for_local_variables (); @}
4302 '@{' declarations statements '@}'
bfa74976
RS
4303@end group
4304@group
5e9b6624
AD
4305| '@{' statements '@}'
4306;
bfa74976
RS
4307@end group
4308@end example
4309
4310@noindent
4311Now the parser is forced to decide whether to run the mid-rule action
4312when it has read no farther than the open-brace. In other words, it
4313must commit to using one rule or the other, without sufficient
4314information to do it correctly. (The open-brace token is what is called
742e4900
JD
4315the @dfn{lookahead} token at this time, since the parser is still
4316deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4317
4318You might think that you could correct the problem by putting identical
4319actions into the two rules, like this:
4320
4321@example
4322@group
5e9b6624
AD
4323compound:
4324 @{ prepare_for_local_variables (); @}
4325 '@{' declarations statements '@}'
4326| @{ prepare_for_local_variables (); @}
4327 '@{' statements '@}'
4328;
bfa74976
RS
4329@end group
4330@end example
4331
4332@noindent
4333But this does not help, because Bison does not realize that the two actions
4334are identical. (Bison never tries to understand the C code in an action.)
4335
4336If the grammar is such that a declaration can be distinguished from a
4337statement by the first token (which is true in C), then one solution which
4338does work is to put the action after the open-brace, like this:
4339
4340@example
4341@group
5e9b6624
AD
4342compound:
4343 '@{' @{ prepare_for_local_variables (); @}
4344 declarations statements '@}'
4345| '@{' statements '@}'
4346;
bfa74976
RS
4347@end group
4348@end example
4349
4350@noindent
4351Now the first token of the following declaration or statement,
4352which would in any case tell Bison which rule to use, can still do so.
4353
4354Another solution is to bury the action inside a nonterminal symbol which
4355serves as a subroutine:
4356
4357@example
4358@group
5e9b6624 4359subroutine:
6240346a 4360 %empty @{ prepare_for_local_variables (); @}
5e9b6624 4361;
bfa74976
RS
4362@end group
4363
4364@group
5e9b6624
AD
4365compound:
4366 subroutine '@{' declarations statements '@}'
4367| subroutine '@{' statements '@}'
4368;
bfa74976
RS
4369@end group
4370@end example
4371
4372@noindent
4373Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4374deciding which rule for @code{compound} it will eventually use.
bfa74976 4375
be22823e 4376
303834cc 4377@node Tracking Locations
847bf1f5
AD
4378@section Tracking Locations
4379@cindex location
95923bd6
AD
4380@cindex textual location
4381@cindex location, textual
847bf1f5
AD
4382
4383Though grammar rules and semantic actions are enough to write a fully
72d2299c 4384functional parser, it can be useful to process some additional information,
3e259915
MA
4385especially symbol locations.
4386
704a47c4
AD
4387The way locations are handled is defined by providing a data type, and
4388actions to take when rules are matched.
847bf1f5
AD
4389
4390@menu
4391* Location Type:: Specifying a data type for locations.
4392* Actions and Locations:: Using locations in actions.
4393* Location Default Action:: Defining a general way to compute locations.
4394@end menu
4395
342b8b6e 4396@node Location Type
847bf1f5
AD
4397@subsection Data Type of Locations
4398@cindex data type of locations
4399@cindex default location type
4400
4401Defining a data type for locations is much simpler than for semantic values,
4402since all tokens and groupings always use the same type.
4403
50cce58e
PE
4404You can specify the type of locations by defining a macro called
4405@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4406defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4407When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4408four members:
4409
4410@example
6273355b 4411typedef struct YYLTYPE
847bf1f5
AD
4412@{
4413 int first_line;
4414 int first_column;
4415 int last_line;
4416 int last_column;
6273355b 4417@} YYLTYPE;
847bf1f5
AD
4418@end example
4419
d59e456d
AD
4420When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4421initializes all these fields to 1 for @code{yylloc}. To initialize
4422@code{yylloc} with a custom location type (or to chose a different
4423initialization), use the @code{%initial-action} directive. @xref{Initial
4424Action Decl, , Performing Actions before Parsing}.
cd48d21d 4425
342b8b6e 4426@node Actions and Locations
847bf1f5
AD
4427@subsection Actions and Locations
4428@cindex location actions
4429@cindex actions, location
4430@vindex @@$
4431@vindex @@@var{n}
d013372c
AR
4432@vindex @@@var{name}
4433@vindex @@[@var{name}]
847bf1f5
AD
4434
4435Actions are not only useful for defining language semantics, but also for
4436describing the behavior of the output parser with locations.
4437
4438The most obvious way for building locations of syntactic groupings is very
72d2299c 4439similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4440constructs can be used to access the locations of the elements being matched.
4441The location of the @var{n}th component of the right hand side is
4442@code{@@@var{n}}, while the location of the left hand side grouping is
4443@code{@@$}.
4444
d013372c
AR
4445In addition, the named references construct @code{@@@var{name}} and
4446@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4447@xref{Named References}, for more information about using the named
4448references construct.
d013372c 4449
3e259915 4450Here is a basic example using the default data type for locations:
847bf1f5
AD
4451
4452@example
4453@group
5e9b6624
AD
4454exp:
4455 @dots{}
4456| exp '/' exp
4457 @{
4458 @@$.first_column = @@1.first_column;
4459 @@$.first_line = @@1.first_line;
4460 @@$.last_column = @@3.last_column;
4461 @@$.last_line = @@3.last_line;
4462 if ($3)
4463 $$ = $1 / $3;
4464 else
4465 @{
4466 $$ = 1;
71846502 4467 fprintf (stderr, "%d.%d-%d.%d: division by zero",
5e9b6624
AD
4468 @@3.first_line, @@3.first_column,
4469 @@3.last_line, @@3.last_column);
4470 @}
4471 @}
847bf1f5
AD
4472@end group
4473@end example
4474
3e259915 4475As for semantic values, there is a default action for locations that is
72d2299c 4476run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4477beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4478last symbol.
3e259915 4479
72d2299c 4480With this default action, the location tracking can be fully automatic. The
3e259915
MA
4481example above simply rewrites this way:
4482
4483@example
4484@group
5e9b6624
AD
4485exp:
4486 @dots{}
4487| exp '/' exp
4488 @{
4489 if ($3)
4490 $$ = $1 / $3;
4491 else
4492 @{
4493 $$ = 1;
71846502 4494 fprintf (stderr, "%d.%d-%d.%d: division by zero",
5e9b6624
AD
4495 @@3.first_line, @@3.first_column,
4496 @@3.last_line, @@3.last_column);
4497 @}
4498 @}
3e259915
MA
4499@end group
4500@end example
847bf1f5 4501
32c29292 4502@vindex yylloc
742e4900 4503It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4504from a semantic action.
4505This location is stored in @code{yylloc}.
4506@xref{Action Features, ,Special Features for Use in Actions}.
4507
342b8b6e 4508@node Location Default Action
847bf1f5
AD
4509@subsection Default Action for Locations
4510@vindex YYLLOC_DEFAULT
8a4281b9 4511@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4512
72d2299c 4513Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4514locations are much more general than semantic values, there is room in
4515the output parser to redefine the default action to take for each
72d2299c 4516rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4517matched, before the associated action is run. It is also invoked
4518while processing a syntax error, to compute the error's location.
8a4281b9 4519Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4520parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4521of that ambiguity.
847bf1f5 4522
3e259915 4523Most of the time, this macro is general enough to suppress location
79282c6c 4524dedicated code from semantic actions.
847bf1f5 4525
72d2299c 4526The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4527the location of the grouping (the result of the computation). When a
766de5eb 4528rule is matched, the second parameter identifies locations of
96b93a3d 4529all right hand side elements of the rule being matched, and the third
8710fc41 4530parameter is the size of the rule's right hand side.
8a4281b9 4531When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4532right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4533When processing a syntax error, the second parameter identifies locations
4534of the symbols that were discarded during error processing, and the third
96b93a3d 4535parameter is the number of discarded symbols.
847bf1f5 4536
766de5eb 4537By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4538
c93f22fc
AD
4539@example
4540@group
4541# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4542do \
4543 if (N) \
4544 @{ \
4545 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4546 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4547 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4548 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4549 @} \
4550 else \
4551 @{ \
4552 (Cur).first_line = (Cur).last_line = \
4553 YYRHSLOC(Rhs, 0).last_line; \
4554 (Cur).first_column = (Cur).last_column = \
4555 YYRHSLOC(Rhs, 0).last_column; \
4556 @} \
4557while (0)
4558@end group
4559@end example
676385e2 4560
aaaa2aae 4561@noindent
766de5eb
PE
4562where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4563in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4564just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4565
3e259915 4566When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4567
3e259915 4568@itemize @bullet
79282c6c 4569@item
72d2299c 4570All arguments are free of side-effects. However, only the first one (the
3e259915 4571result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4572
3e259915 4573@item
766de5eb
PE
4574For consistency with semantic actions, valid indexes within the
4575right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4576valid index, and it refers to the symbol just before the reduction.
4577During error processing @var{n} is always positive.
0ae99356
PE
4578
4579@item
4580Your macro should parenthesize its arguments, if need be, since the
4581actual arguments may not be surrounded by parentheses. Also, your
4582macro should expand to something that can be used as a single
4583statement when it is followed by a semicolon.
3e259915 4584@end itemize
847bf1f5 4585
378e917c 4586@node Named References
a7b15ab9 4587@section Named References
378e917c
JD
4588@cindex named references
4589
a40e77eb
JD
4590As described in the preceding sections, the traditional way to refer to any
4591semantic value or location is a @dfn{positional reference}, which takes the
4592form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4593such a reference is not very descriptive. Moreover, if you later decide to
4594insert or remove symbols in the right-hand side of a grammar rule, the need
4595to renumber such references can be tedious and error-prone.
4596
4597To avoid these issues, you can also refer to a semantic value or location
4598using a @dfn{named reference}. First of all, original symbol names may be
4599used as named references. For example:
378e917c
JD
4600
4601@example
4602@group
4603invocation: op '(' args ')'
4604 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4605@end group
4606@end example
4607
4608@noindent
a40e77eb 4609Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4610
4611@example
4612@group
4613invocation: op '(' args ')'
4614 @{ $$ = new_invocation ($op, $args, @@$); @}
4615@end group
4616@end example
4617
4618@noindent
4619However, sometimes regular symbol names are not sufficient due to
4620ambiguities:
4621
4622@example
4623@group
4624exp: exp '/' exp
4625 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4626
4627exp: exp '/' exp
4628 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4629
4630exp: exp '/' exp
4631 @{ $$ = $1 / $3; @} // No error.
4632@end group
4633@end example
4634
4635@noindent
4636When ambiguity occurs, explicitly declared names may be used for values and
4637locations. Explicit names are declared as a bracketed name after a symbol
4638appearance in rule definitions. For example:
4639@example
4640@group
4641exp[result]: exp[left] '/' exp[right]
4642 @{ $result = $left / $right; @}
4643@end group
4644@end example
4645
4646@noindent
a7b15ab9
JD
4647In order to access a semantic value generated by a mid-rule action, an
4648explicit name may also be declared by putting a bracketed name after the
4649closing brace of the mid-rule action code:
378e917c
JD
4650@example
4651@group
4652exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4653 @{ $res = $left + $right; @}
4654@end group
4655@end example
4656
4657@noindent
4658
4659In references, in order to specify names containing dots and dashes, an explicit
4660bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4661@example
4662@group
762caaf6 4663if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4664 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4665@end group
4666@end example
4667
4668It often happens that named references are followed by a dot, dash or other
4669C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4670@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4671@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4672value. In order to force Bison to recognize @samp{name.suffix} in its
4673entirety as the name of a semantic value, the bracketed syntax
4674@samp{$[name.suffix]} must be used.
4675
4676The named references feature is experimental. More user feedback will help
4677to stabilize it.
378e917c 4678
342b8b6e 4679@node Declarations
bfa74976
RS
4680@section Bison Declarations
4681@cindex declarations, Bison
4682@cindex Bison declarations
4683
4684The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4685used in formulating the grammar and the data types of semantic values.
4686@xref{Symbols}.
4687
4688All token type names (but not single-character literal tokens such as
4689@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4690declared if you need to specify which data type to use for the semantic
4691value (@pxref{Multiple Types, ,More Than One Value Type}).
4692
ff7571c0
JD
4693The first rule in the grammar file also specifies the start symbol, by
4694default. If you want some other symbol to be the start symbol, you
4695must declare it explicitly (@pxref{Language and Grammar, ,Languages
4696and Context-Free Grammars}).
bfa74976
RS
4697
4698@menu
b50d2359 4699* Require Decl:: Requiring a Bison version.
bfa74976
RS
4700* Token Decl:: Declaring terminal symbols.
4701* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 4702* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4703* Initial Action Decl:: Code run before parsing starts.
72f889cc 4704* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4705* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4706* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4707* Start Decl:: Specifying the start symbol.
4708* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4709* Push Decl:: Requesting a push parser.
bfa74976 4710* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4711* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4712* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4713@end menu
4714
b50d2359
AD
4715@node Require Decl
4716@subsection Require a Version of Bison
4717@cindex version requirement
4718@cindex requiring a version of Bison
4719@findex %require
4720
4721You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4722the requirement is not met, @command{bison} exits with an error (exit
4723status 63).
b50d2359
AD
4724
4725@example
4726%require "@var{version}"
4727@end example
4728
342b8b6e 4729@node Token Decl
bfa74976
RS
4730@subsection Token Type Names
4731@cindex declaring token type names
4732@cindex token type names, declaring
931c7513 4733@cindex declaring literal string tokens
bfa74976
RS
4734@findex %token
4735
4736The basic way to declare a token type name (terminal symbol) is as follows:
4737
4738@example
4739%token @var{name}
4740@end example
4741
4742Bison will convert this into a @code{#define} directive in
4743the parser, so that the function @code{yylex} (if it is in this file)
4744can use the name @var{name} to stand for this token type's code.
4745
d78f0ac9
AD
4746Alternatively, you can use @code{%left}, @code{%right},
4747@code{%precedence}, or
14ded682
AD
4748@code{%nonassoc} instead of @code{%token}, if you wish to specify
4749associativity and precedence. @xref{Precedence Decl, ,Operator
4750Precedence}.
bfa74976
RS
4751
4752You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4753a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4754following the token name:
bfa74976
RS
4755
4756@example
4757%token NUM 300
1452af69 4758%token XNUM 0x12d // a GNU extension
bfa74976
RS
4759@end example
4760
4761@noindent
4762It is generally best, however, to let Bison choose the numeric codes for
4763all token types. Bison will automatically select codes that don't conflict
e966383b 4764with each other or with normal characters.
bfa74976
RS
4765
4766In the event that the stack type is a union, you must augment the
4767@code{%token} or other token declaration to include the data type
704a47c4
AD
4768alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4769Than One Value Type}).
bfa74976
RS
4770
4771For example:
4772
4773@example
4774@group
4775%union @{ /* define stack type */
4776 double val;
4777 symrec *tptr;
4778@}
4779%token <val> NUM /* define token NUM and its type */
4780@end group
4781@end example
4782
931c7513
RS
4783You can associate a literal string token with a token type name by
4784writing the literal string at the end of a @code{%token}
4785declaration which declares the name. For example:
4786
4787@example
4788%token arrow "=>"
4789@end example
4790
4791@noindent
4792For example, a grammar for the C language might specify these names with
4793equivalent literal string tokens:
4794
4795@example
4796%token <operator> OR "||"
4797%token <operator> LE 134 "<="
4798%left OR "<="
4799@end example
4800
4801@noindent
4802Once you equate the literal string and the token name, you can use them
4803interchangeably in further declarations or the grammar rules. The
4804@code{yylex} function can use the token name or the literal string to
4805obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4806Syntax error messages passed to @code{yyerror} from the parser will reference
4807the literal string instead of the token name.
4808
4809The token numbered as 0 corresponds to end of file; the following line
4810allows for nicer error messages referring to ``end of file'' instead
4811of ``$end'':
4812
4813@example
4814%token END 0 "end of file"
4815@end example
931c7513 4816
342b8b6e 4817@node Precedence Decl
bfa74976
RS
4818@subsection Operator Precedence
4819@cindex precedence declarations
4820@cindex declaring operator precedence
4821@cindex operator precedence, declaring
4822
d78f0ac9
AD
4823Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4824@code{%precedence} declaration to
bfa74976
RS
4825declare a token and specify its precedence and associativity, all at
4826once. These are called @dfn{precedence declarations}.
704a47c4
AD
4827@xref{Precedence, ,Operator Precedence}, for general information on
4828operator precedence.
bfa74976 4829
ab7f29f8 4830The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4831@code{%token}: either
4832
4833@example
4834%left @var{symbols}@dots{}
4835@end example
4836
4837@noindent
4838or
4839
4840@example
4841%left <@var{type}> @var{symbols}@dots{}
4842@end example
4843
4844And indeed any of these declarations serves the purposes of @code{%token}.
4845But in addition, they specify the associativity and relative precedence for
4846all the @var{symbols}:
4847
4848@itemize @bullet
4849@item
4850The associativity of an operator @var{op} determines how repeated uses
4851of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4852@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4853grouping @var{y} with @var{z} first. @code{%left} specifies
4854left-associativity (grouping @var{x} with @var{y} first) and
4855@code{%right} specifies right-associativity (grouping @var{y} with
4856@var{z} first). @code{%nonassoc} specifies no associativity, which
4857means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4858considered a syntax error.
4859
d78f0ac9
AD
4860@code{%precedence} gives only precedence to the @var{symbols}, and
4861defines no associativity at all. Use this to define precedence only,
4862and leave any potential conflict due to associativity enabled.
4863
bfa74976
RS
4864@item
4865The precedence of an operator determines how it nests with other operators.
4866All the tokens declared in a single precedence declaration have equal
4867precedence and nest together according to their associativity.
4868When two tokens declared in different precedence declarations associate,
4869the one declared later has the higher precedence and is grouped first.
4870@end itemize
4871
ab7f29f8
JD
4872For backward compatibility, there is a confusing difference between the
4873argument lists of @code{%token} and precedence declarations.
4874Only a @code{%token} can associate a literal string with a token type name.
4875A precedence declaration always interprets a literal string as a reference to a
4876separate token.
4877For example:
4878
4879@example
4880%left OR "<=" // Does not declare an alias.
4881%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4882@end example
4883
342b8b6e 4884@node Type Decl
bfa74976
RS
4885@subsection Nonterminal Symbols
4886@cindex declaring value types, nonterminals
4887@cindex value types, nonterminals, declaring
4888@findex %type
4889
4890@noindent
4891When you use @code{%union} to specify multiple value types, you must
4892declare the value type of each nonterminal symbol for which values are
4893used. This is done with a @code{%type} declaration, like this:
4894
4895@example
4896%type <@var{type}> @var{nonterminal}@dots{}
4897@end example
4898
4899@noindent
704a47c4
AD
4900Here @var{nonterminal} is the name of a nonterminal symbol, and
4901@var{type} is the name given in the @code{%union} to the alternative
e4d49586 4902that you want (@pxref{Union Decl, ,The Union Declaration}). You
704a47c4
AD
4903can give any number of nonterminal symbols in the same @code{%type}
4904declaration, if they have the same value type. Use spaces to separate
4905the symbol names.
bfa74976 4906
931c7513
RS
4907You can also declare the value type of a terminal symbol. To do this,
4908use the same @code{<@var{type}>} construction in a declaration for the
4909terminal symbol. All kinds of token declarations allow
4910@code{<@var{type}>}.
4911
18d192f0
AD
4912@node Initial Action Decl
4913@subsection Performing Actions before Parsing
4914@findex %initial-action
4915
4916Sometimes your parser needs to perform some initializations before
4917parsing. The @code{%initial-action} directive allows for such arbitrary
4918code.
4919
4920@deffn {Directive} %initial-action @{ @var{code} @}
4921@findex %initial-action
287c78f6 4922Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4923@code{yyparse} is called. The @var{code} may use @code{$$} (or
4924@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4925lookahead --- and the @code{%parse-param}.
18d192f0
AD
4926@end deffn
4927
451364ed
AD
4928For instance, if your locations use a file name, you may use
4929
4930@example
48b16bbc 4931%parse-param @{ char const *file_name @};
451364ed
AD
4932%initial-action
4933@{
4626a15d 4934 @@$.initialize (file_name);
451364ed
AD
4935@};
4936@end example
4937
18d192f0 4938
72f889cc
AD
4939@node Destructor Decl
4940@subsection Freeing Discarded Symbols
4941@cindex freeing discarded symbols
4942@findex %destructor
12e35840 4943@findex <*>
3ebecc24 4944@findex <>
a85284cf
AD
4945During error recovery (@pxref{Error Recovery}), symbols already pushed
4946on the stack and tokens coming from the rest of the file are discarded
4947until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4948or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4949symbols on the stack must be discarded. Even if the parser succeeds, it
4950must discard the start symbol.
258b75ca
PE
4951
4952When discarded symbols convey heap based information, this memory is
4953lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4954in traditional compilers, it is unacceptable for programs like shells or
4955protocol implementations that may parse and execute indefinitely.
258b75ca 4956
a85284cf
AD
4957The @code{%destructor} directive defines code that is called when a
4958symbol is automatically discarded.
72f889cc
AD
4959
4960@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4961@findex %destructor
287c78f6 4962Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4963@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4964designates the semantic value associated with the discarded symbol, and
4965@code{@@$} designates its location. The additional parser parameters are
4966also available (@pxref{Parser Function, , The Parser Function
4967@code{yyparse}}).
ec5479ce 4968
b2a0b7ca
JD
4969When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4970per-symbol @code{%destructor}.
4971You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4972tag among @var{symbols}.
b2a0b7ca 4973In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4974grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4975per-symbol @code{%destructor}.
4976
12e35840 4977Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4978(These default forms are experimental.
4979More user feedback will help to determine whether they should become permanent
4980features.)
3ebecc24 4981You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4982exactly one @code{%destructor} declaration in your grammar file.
4983The parser will invoke the @var{code} associated with one of these whenever it
4984discards any user-defined grammar symbol that has no per-symbol and no per-type
4985@code{%destructor}.
4986The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4987symbol for which you have formally declared a semantic type tag (@code{%type}
4988counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4989The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4990symbol that has no declared semantic type tag.
72f889cc
AD
4991@end deffn
4992
b2a0b7ca 4993@noindent
12e35840 4994For example:
72f889cc 4995
c93f22fc 4996@example
ec5479ce 4997%union @{ char *string; @}
d1a07886
AD
4998%token <string> STRING1 STRING2
4999%type <string> string1 string2
b2a0b7ca
JD
5000%union @{ char character; @}
5001%token <character> CHR
5002%type <character> chr
12e35840
JD
5003%token TAGLESS
5004
b2a0b7ca 5005%destructor @{ @} <character>
12e35840
JD
5006%destructor @{ free ($$); @} <*>
5007%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 5008%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 5009@end example
72f889cc
AD
5010
5011@noindent
b2a0b7ca
JD
5012guarantees that, when the parser discards any user-defined symbol that has a
5013semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 5014to @code{free} by default.
ec5479ce
JD
5015However, when the parser discards a @code{STRING1} or a @code{string1}, it also
5016prints its line number to @code{stdout}.
5017It performs only the second @code{%destructor} in this case, so it invokes
5018@code{free} only once.
12e35840
JD
5019Finally, the parser merely prints a message whenever it discards any symbol,
5020such as @code{TAGLESS}, that has no semantic type tag.
5021
5022A Bison-generated parser invokes the default @code{%destructor}s only for
5023user-defined as opposed to Bison-defined symbols.
5024For example, the parser will not invoke either kind of default
5025@code{%destructor} for the special Bison-defined symbols @code{$accept},
5026@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
5027none of which you can reference in your grammar.
5028It also will not invoke either for the @code{error} token (@pxref{Table of
5029Symbols, ,error}), which is always defined by Bison regardless of whether you
5030reference it in your grammar.
5031However, it may invoke one of them for the end token (token 0) if you
5032redefine it from @code{$end} to, for example, @code{END}:
3508ce36 5033
c93f22fc 5034@example
3508ce36 5035%token END 0
c93f22fc 5036@end example
3508ce36 5037
12e35840
JD
5038@cindex actions in mid-rule
5039@cindex mid-rule actions
5040Finally, Bison will never invoke a @code{%destructor} for an unreferenced
5041mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
5042That is, Bison does not consider a mid-rule to have a semantic value if you
5043do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
5044(where @var{n} is the right-hand side symbol position of the mid-rule) in
5045any later action in that rule. However, if you do reference either, the
5046Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
5047it discards the mid-rule symbol.
12e35840 5048
3508ce36
JD
5049@ignore
5050@noindent
5051In the future, it may be possible to redefine the @code{error} token as a
5052nonterminal that captures the discarded symbols.
5053In that case, the parser will invoke the default destructor for it as well.
5054@end ignore
5055
e757bb10
AD
5056@sp 1
5057
5058@cindex discarded symbols
5059@dfn{Discarded symbols} are the following:
5060
5061@itemize
5062@item
5063stacked symbols popped during the first phase of error recovery,
5064@item
5065incoming terminals during the second phase of error recovery,
5066@item
742e4900 5067the current lookahead and the entire stack (except the current
9d9b8b70 5068right-hand side symbols) when the parser returns immediately, and
258b75ca 5069@item
d3e4409a
AD
5070the current lookahead and the entire stack (including the current right-hand
5071side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
5072@code{parse},
5073@item
258b75ca 5074the start symbol, when the parser succeeds.
e757bb10
AD
5075@end itemize
5076
9d9b8b70
PE
5077The parser can @dfn{return immediately} because of an explicit call to
5078@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
5079exhaustion.
5080
29553547 5081Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
5082error via @code{YYERROR} are not discarded automatically. As a rule
5083of thumb, destructors are invoked only when user actions cannot manage
a85284cf 5084the memory.
e757bb10 5085
93c150b6
AD
5086@node Printer Decl
5087@subsection Printing Semantic Values
5088@cindex printing semantic values
5089@findex %printer
5090@findex <*>
5091@findex <>
5092When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
5093the parser reports its actions, such as reductions. When a symbol involved
5094in an action is reported, only its kind is displayed, as the parser cannot
5095know how semantic values should be formatted.
5096
5097The @code{%printer} directive defines code that is called when a symbol is
5098reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
5099Decl, , Freeing Discarded Symbols}).
5100
5101@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
5102@findex %printer
5103@vindex yyoutput
5104@c This is the same text as for %destructor.
5105Invoke the braced @var{code} whenever the parser displays one of the
5106@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
5107(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
5108@code{$<@var{tag}>$}) designates the semantic value associated with the
5109symbol, and @code{@@$} its location. The additional parser parameters are
5110also available (@pxref{Parser Function, , The Parser Function
5111@code{yyparse}}).
93c150b6
AD
5112
5113The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
5114Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
5115@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
5116typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
5117@samp{<>}).
5118@end deffn
5119
5120@noindent
5121For example:
5122
5123@example
5124%union @{ char *string; @}
d1a07886
AD
5125%token <string> STRING1 STRING2
5126%type <string> string1 string2
93c150b6
AD
5127%union @{ char character; @}
5128%token <character> CHR
5129%type <character> chr
5130%token TAGLESS
5131
5132%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
5133%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
5134%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
5135%printer @{ fprintf (yyoutput, "<>"); @} <>
5136@end example
5137
5138@noindent
5139guarantees that, when the parser print any symbol that has a semantic type
5140tag other than @code{<character>}, it display the address of the semantic
5141value by default. However, when the parser displays a @code{STRING1} or a
5142@code{string1}, it formats it as a string in double quotes. It performs
5143only the second @code{%printer} in this case, so it prints only once.
5144Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
5145that has no semantic type tag. See also
5146
5147
342b8b6e 5148@node Expect Decl
bfa74976
RS
5149@subsection Suppressing Conflict Warnings
5150@cindex suppressing conflict warnings
5151@cindex preventing warnings about conflicts
5152@cindex warnings, preventing
5153@cindex conflicts, suppressing warnings of
5154@findex %expect
d6328241 5155@findex %expect-rr
bfa74976
RS
5156
5157Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
5158(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
5159have harmless shift/reduce conflicts which are resolved in a predictable
5160way and would be difficult to eliminate. It is desirable to suppress
5161the warning about these conflicts unless the number of conflicts
5162changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
5163
5164The declaration looks like this:
5165
5166@example
5167%expect @var{n}
5168@end example
5169
035aa4a0
PE
5170Here @var{n} is a decimal integer. The declaration says there should
5171be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
5172Bison reports an error if the number of shift/reduce conflicts differs
5173from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 5174
eb45ef3b 5175For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 5176serious, and should be eliminated entirely. Bison will always report
8a4281b9 5177reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5178parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5179there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5180also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5181in GLR parsers, using the declaration:
d6328241
PH
5182
5183@example
5184%expect-rr @var{n}
5185@end example
5186
bfa74976
RS
5187In general, using @code{%expect} involves these steps:
5188
5189@itemize @bullet
5190@item
5191Compile your grammar without @code{%expect}. Use the @samp{-v} option
5192to get a verbose list of where the conflicts occur. Bison will also
5193print the number of conflicts.
5194
5195@item
5196Check each of the conflicts to make sure that Bison's default
5197resolution is what you really want. If not, rewrite the grammar and
5198go back to the beginning.
5199
5200@item
5201Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5202number which Bison printed. With GLR parsers, add an
035aa4a0 5203@code{%expect-rr} declaration as well.
bfa74976
RS
5204@end itemize
5205
93d7dde9
JD
5206Now Bison will report an error if you introduce an unexpected conflict,
5207but will keep silent otherwise.
bfa74976 5208
342b8b6e 5209@node Start Decl
bfa74976
RS
5210@subsection The Start-Symbol
5211@cindex declaring the start symbol
5212@cindex start symbol, declaring
5213@cindex default start symbol
5214@findex %start
5215
5216Bison assumes by default that the start symbol for the grammar is the first
5217nonterminal specified in the grammar specification section. The programmer
5218may override this restriction with the @code{%start} declaration as follows:
5219
5220@example
5221%start @var{symbol}
5222@end example
5223
342b8b6e 5224@node Pure Decl
bfa74976
RS
5225@subsection A Pure (Reentrant) Parser
5226@cindex reentrant parser
5227@cindex pure parser
d9df47b6 5228@findex %define api.pure
bfa74976
RS
5229
5230A @dfn{reentrant} program is one which does not alter in the course of
5231execution; in other words, it consists entirely of @dfn{pure} (read-only)
5232code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5233for example, a nonreentrant program may not be safe to call from a signal
5234handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5235program must be called only within interlocks.
5236
70811b85 5237Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5238suitable for most uses, and it permits compatibility with Yacc. (The
5239standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5240statically allocated variables for communication with @code{yylex},
5241including @code{yylval} and @code{yylloc}.)
bfa74976 5242
70811b85 5243Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5244declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5245reentrant. It looks like this:
bfa74976
RS
5246
5247@example
1f1bd572 5248%define api.pure full
bfa74976
RS
5249@end example
5250
70811b85
RS
5251The result is that the communication variables @code{yylval} and
5252@code{yylloc} become local variables in @code{yyparse}, and a different
5253calling convention is used for the lexical analyzer function
5254@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5255Parsers}, for the details of this. The variable @code{yynerrs}
5256becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5257of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5258Reporting Function @code{yyerror}}). The convention for calling
5259@code{yyparse} itself is unchanged.
5260
5261Whether the parser is pure has nothing to do with the grammar rules.
5262You can generate either a pure parser or a nonreentrant parser from any
5263valid grammar.
bfa74976 5264
9987d1b3
JD
5265@node Push Decl
5266@subsection A Push Parser
5267@cindex push parser
5268@cindex push parser
67212941 5269@findex %define api.push-pull
9987d1b3 5270
59da312b
JD
5271(The current push parsing interface is experimental and may evolve.
5272More user feedback will help to stabilize it.)
5273
f4101aa6
AD
5274A pull parser is called once and it takes control until all its input
5275is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5276each time a new token is made available.
5277
f4101aa6 5278A push parser is typically useful when the parser is part of a
9987d1b3 5279main event loop in the client's application. This is typically
f4101aa6
AD
5280a requirement of a GUI, when the main event loop needs to be triggered
5281within a certain time period.
9987d1b3 5282
d782395d
JD
5283Normally, Bison generates a pull parser.
5284The following Bison declaration says that you want the parser to be a push
35c1e5f0 5285parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5286
5287@example
cf499cff 5288%define api.push-pull push
9987d1b3
JD
5289@end example
5290
5291In almost all cases, you want to ensure that your push parser is also
5292a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5293time you should create an impure push parser is to have backwards
9987d1b3
JD
5294compatibility with the impure Yacc pull mode interface. Unless you know
5295what you are doing, your declarations should look like this:
5296
5297@example
1f1bd572 5298%define api.pure full
cf499cff 5299%define api.push-pull push
9987d1b3
JD
5300@end example
5301
f4101aa6
AD
5302There is a major notable functional difference between the pure push parser
5303and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5304many parser instances, of the same type of parser, in memory at the same time.
5305An impure push parser should only use one parser at a time.
5306
5307When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5308the generated parser. @code{yypstate} is a structure that the generated
5309parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5310function that will create a new parser instance. @code{yypstate_delete}
5311will free the resources associated with the corresponding parser instance.
f4101aa6 5312Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5313token is available to provide the parser. A trivial example
5314of using a pure push parser would look like this:
5315
5316@example
5317int status;
5318yypstate *ps = yypstate_new ();
5319do @{
5320 status = yypush_parse (ps, yylex (), NULL);
5321@} while (status == YYPUSH_MORE);
5322yypstate_delete (ps);
5323@end example
5324
5325If the user decided to use an impure push parser, a few things about
f4101aa6 5326the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5327a global variable instead of a variable in the @code{yypush_parse} function.
5328For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5329changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5330example would thus look like this:
5331
5332@example
5333extern int yychar;
5334int status;
5335yypstate *ps = yypstate_new ();
5336do @{
5337 yychar = yylex ();
5338 status = yypush_parse (ps);
5339@} while (status == YYPUSH_MORE);
5340yypstate_delete (ps);
5341@end example
5342
f4101aa6 5343That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5344for use by the next invocation of the @code{yypush_parse} function.
5345
f4101aa6 5346Bison also supports both the push parser interface along with the pull parser
9987d1b3 5347interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5348you should replace the @samp{%define api.push-pull push} declaration with the
5349@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5350the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5351and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5352would be used. However, the user should note that it is implemented in the
d782395d
JD
5353generated parser by calling @code{yypull_parse}.
5354This makes the @code{yyparse} function that is generated with the
cf499cff 5355@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5356@code{yyparse} function. If the user
5357calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5358stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5359and then @code{yypull_parse} the rest of the input stream. If you would like
5360to switch back and forth between between parsing styles, you would have to
5361write your own @code{yypull_parse} function that knows when to quit looking
5362for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5363like this:
5364
5365@example
5366yypstate *ps = yypstate_new ();
5367yypull_parse (ps); /* Will call the lexer */
5368yypstate_delete (ps);
5369@end example
5370
67501061 5371Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5372the generated parser with @samp{%define api.push-pull both} as it did for
5373@samp{%define api.push-pull push}.
9987d1b3 5374
342b8b6e 5375@node Decl Summary
bfa74976
RS
5376@subsection Bison Declaration Summary
5377@cindex Bison declaration summary
5378@cindex declaration summary
5379@cindex summary, Bison declaration
5380
d8988b2f 5381Here is a summary of the declarations used to define a grammar:
bfa74976 5382
18b519c0 5383@deffn {Directive} %union
bfa74976 5384Declare the collection of data types that semantic values may have
e4d49586 5385(@pxref{Union Decl, ,The Union Declaration}).
18b519c0 5386@end deffn
bfa74976 5387
18b519c0 5388@deffn {Directive} %token
bfa74976
RS
5389Declare a terminal symbol (token type name) with no precedence
5390or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5391@end deffn
bfa74976 5392
18b519c0 5393@deffn {Directive} %right
bfa74976
RS
5394Declare a terminal symbol (token type name) that is right-associative
5395(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5396@end deffn
bfa74976 5397
18b519c0 5398@deffn {Directive} %left
bfa74976
RS
5399Declare a terminal symbol (token type name) that is left-associative
5400(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5401@end deffn
bfa74976 5402
18b519c0 5403@deffn {Directive} %nonassoc
bfa74976 5404Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5405(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5406Using it in a way that would be associative is a syntax error.
5407@end deffn
5408
91d2c560 5409@ifset defaultprec
39a06c25 5410@deffn {Directive} %default-prec
22fccf95 5411Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5412(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5413@end deffn
91d2c560 5414@end ifset
bfa74976 5415
18b519c0 5416@deffn {Directive} %type
bfa74976
RS
5417Declare the type of semantic values for a nonterminal symbol
5418(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5419@end deffn
bfa74976 5420
18b519c0 5421@deffn {Directive} %start
89cab50d
AD
5422Specify the grammar's start symbol (@pxref{Start Decl, ,The
5423Start-Symbol}).
18b519c0 5424@end deffn
bfa74976 5425
18b519c0 5426@deffn {Directive} %expect
bfa74976
RS
5427Declare the expected number of shift-reduce conflicts
5428(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5429@end deffn
5430
bfa74976 5431
d8988b2f
AD
5432@sp 1
5433@noindent
5434In order to change the behavior of @command{bison}, use the following
5435directives:
5436
148d66d8 5437@deffn {Directive} %code @{@var{code}@}
e0c07222 5438@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5439@findex %code
e0c07222
JD
5440Insert @var{code} verbatim into the output parser source at the
5441default location or at the location specified by @var{qualifier}.
5442@xref{%code Summary}.
148d66d8
JD
5443@end deffn
5444
18b519c0 5445@deffn {Directive} %debug
60aa04a2 5446Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5447parse.trace}.
ec3bc396 5448@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5449@end deffn
d8988b2f 5450
35c1e5f0
JD
5451@deffn {Directive} %define @var{variable}
5452@deffnx {Directive} %define @var{variable} @var{value}
aba47f56 5453@deffnx {Directive} %define @var{variable} @{@var{value}@}
35c1e5f0
JD
5454@deffnx {Directive} %define @var{variable} "@var{value}"
5455Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5456@end deffn
5457
5458@deffn {Directive} %defines
5459Write a parser header file containing macro definitions for the token
5460type names defined in the grammar as well as a few other declarations.
5461If the parser implementation file is named @file{@var{name}.c} then
5462the parser header file is named @file{@var{name}.h}.
5463
5464For C parsers, the parser header file declares @code{YYSTYPE} unless
5465@code{YYSTYPE} is already defined as a macro or you have used a
5466@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5467you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5468Value Type}) with components that require other definitions, or if you
5469have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5470Type, ,Data Types of Semantic Values}), you need to arrange for these
5471definitions to be propagated to all modules, e.g., by putting them in
5472a prerequisite header that is included both by your parser and by any
5473other module that needs @code{YYSTYPE}.
5474
5475Unless your parser is pure, the parser header file declares
5476@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5477(Reentrant) Parser}.
5478
5479If you have also used locations, the parser header file declares
303834cc
JD
5480@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5481@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5482
5483This parser header file is normally essential if you wish to put the
5484definition of @code{yylex} in a separate source file, because
5485@code{yylex} typically needs to be able to refer to the
5486above-mentioned declarations and to the token type codes. @xref{Token
5487Values, ,Semantic Values of Tokens}.
5488
5489@findex %code requires
5490@findex %code provides
5491If you have declared @code{%code requires} or @code{%code provides}, the output
5492header also contains their code.
5493@xref{%code Summary}.
c9d5bcc9
AD
5494
5495@cindex Header guard
5496The generated header is protected against multiple inclusions with a C
5497preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5498@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5499,Multiple Parsers in the Same Program}) and generated file name turned
5500uppercase, with each series of non alphanumerical characters converted to a
5501single underscore.
5502
aba47f56 5503For instance with @samp{%define api.prefix @{calc@}} and @samp{%defines
c9d5bcc9
AD
5504"lib/parse.h"}, the header will be guarded as follows.
5505@example
5506#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5507# define YY_CALC_LIB_PARSE_H_INCLUDED
5508...
5509#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5510@end example
35c1e5f0
JD
5511@end deffn
5512
5513@deffn {Directive} %defines @var{defines-file}
fe65b144 5514Same as above, but save in the file @file{@var{defines-file}}.
35c1e5f0
JD
5515@end deffn
5516
5517@deffn {Directive} %destructor
5518Specify how the parser should reclaim the memory associated to
5519discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5520@end deffn
5521
5522@deffn {Directive} %file-prefix "@var{prefix}"
5523Specify a prefix to use for all Bison output file names. The names
5524are chosen as if the grammar file were named @file{@var{prefix}.y}.
5525@end deffn
5526
5527@deffn {Directive} %language "@var{language}"
5528Specify the programming language for the generated parser. Currently
5529supported languages include C, C++, and Java.
5530@var{language} is case-insensitive.
5531
35c1e5f0
JD
5532@end deffn
5533
5534@deffn {Directive} %locations
5535Generate the code processing the locations (@pxref{Action Features,
5536,Special Features for Use in Actions}). This mode is enabled as soon as
5537the grammar uses the special @samp{@@@var{n}} tokens, but if your
5538grammar does not use it, using @samp{%locations} allows for more
5539accurate syntax error messages.
5540@end deffn
5541
5542@deffn {Directive} %name-prefix "@var{prefix}"
5543Rename the external symbols used in the parser so that they start with
5544@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5545in C parsers
5546is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5547@code{yylval}, @code{yychar}, @code{yydebug}, and
5548(if locations are used) @code{yylloc}. If you use a push parser,
5549@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5550@code{yypstate_new} and @code{yypstate_delete} will
5551also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5552names become @code{c_parse}, @code{c_lex}, and so on.
5553For C++ parsers, see the @samp{%define api.namespace} documentation in this
5554section.
5555@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5556@end deffn
5557
5558@ifset defaultprec
5559@deffn {Directive} %no-default-prec
5560Do not assign a precedence to rules lacking an explicit @code{%prec}
5561modifier (@pxref{Contextual Precedence, ,Context-Dependent
5562Precedence}).
5563@end deffn
5564@end ifset
5565
5566@deffn {Directive} %no-lines
5567Don't generate any @code{#line} preprocessor commands in the parser
5568implementation file. Ordinarily Bison writes these commands in the
5569parser implementation file so that the C compiler and debuggers will
5570associate errors and object code with your source file (the grammar
5571file). This directive causes them to associate errors with the parser
5572implementation file, treating it as an independent source file in its
5573own right.
5574@end deffn
5575
5576@deffn {Directive} %output "@var{file}"
fe65b144 5577Generate the parser implementation in @file{@var{file}}.
35c1e5f0
JD
5578@end deffn
5579
5580@deffn {Directive} %pure-parser
5581Deprecated version of @samp{%define api.pure} (@pxref{%define
5582Summary,,api.pure}), for which Bison is more careful to warn about
5583unreasonable usage.
5584@end deffn
5585
5586@deffn {Directive} %require "@var{version}"
5587Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5588Require a Version of Bison}.
5589@end deffn
5590
5591@deffn {Directive} %skeleton "@var{file}"
5592Specify the skeleton to use.
5593
5594@c You probably don't need this option unless you are developing Bison.
5595@c You should use @code{%language} if you want to specify the skeleton for a
5596@c different language, because it is clearer and because it will always choose the
5597@c correct skeleton for non-deterministic or push parsers.
5598
5599If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5600file in the Bison installation directory.
5601If it does, @var{file} is an absolute file name or a file name relative to the
5602directory of the grammar file.
5603This is similar to how most shells resolve commands.
5604@end deffn
5605
5606@deffn {Directive} %token-table
5607Generate an array of token names in the parser implementation file.
5608The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5609the name of the token whose internal Bison token code number is
5610@var{i}. The first three elements of @code{yytname} correspond to the
5611predefined tokens @code{"$end"}, @code{"error"}, and
5612@code{"$undefined"}; after these come the symbols defined in the
5613grammar file.
5614
5615The name in the table includes all the characters needed to represent
5616the token in Bison. For single-character literals and literal
5617strings, this includes the surrounding quoting characters and any
5618escape sequences. For example, the Bison single-character literal
5619@code{'+'} corresponds to a three-character name, represented in C as
5620@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5621corresponds to a five-character name, represented in C as
5622@code{"\"\\\\/\""}.
5623
5624When you specify @code{%token-table}, Bison also generates macro
5625definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5626@code{YYNRULES}, and @code{YYNSTATES}:
5627
5628@table @code
5629@item YYNTOKENS
5630The highest token number, plus one.
5631@item YYNNTS
5632The number of nonterminal symbols.
5633@item YYNRULES
5634The number of grammar rules,
5635@item YYNSTATES
5636The number of parser states (@pxref{Parser States}).
5637@end table
5638@end deffn
5639
5640@deffn {Directive} %verbose
5641Write an extra output file containing verbose descriptions of the
5642parser states and what is done for each type of lookahead token in
5643that state. @xref{Understanding, , Understanding Your Parser}, for more
5644information.
5645@end deffn
5646
5647@deffn {Directive} %yacc
5648Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5649including its naming conventions. @xref{Bison Options}, for more.
5650@end deffn
5651
5652
5653@node %define Summary
5654@subsection %define Summary
51151d91
JD
5655
5656There are many features of Bison's behavior that can be controlled by
5657assigning the feature a single value. For historical reasons, some
5658such features are assigned values by dedicated directives, such as
5659@code{%start}, which assigns the start symbol. However, newer such
5660features are associated with variables, which are assigned by the
5661@code{%define} directive:
5662
c1d19e10 5663@deffn {Directive} %define @var{variable}
cf499cff 5664@deffnx {Directive} %define @var{variable} @var{value}
aba47f56 5665@deffnx {Directive} %define @var{variable} @{@var{value}@}
c1d19e10 5666@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5667Define @var{variable} to @var{value}.
9611cfa2 5668
aba47f56
AD
5669The type of the values depend on the syntax. Braces denote value in the
5670target language (e.g., a namespace, a type, etc.). Keyword values (no
5671delimiters) denote finite choice (e.g., a variation of a feature). String
5672values denote remaining cases (e.g., a file name).
9611cfa2 5673
aba47f56
AD
5674It is an error if a @var{variable} is defined by @code{%define} multiple
5675times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
51151d91 5676@end deffn
cf499cff 5677
51151d91
JD
5678The rest of this section summarizes variables and values that
5679@code{%define} accepts.
9611cfa2 5680
51151d91
JD
5681Some @var{variable}s take Boolean values. In this case, Bison will
5682complain if the variable definition does not meet one of the following
5683four conditions:
9611cfa2
JD
5684
5685@enumerate
cf499cff 5686@item @code{@var{value}} is @code{true}
9611cfa2 5687
cf499cff
JD
5688@item @code{@var{value}} is omitted (or @code{""} is specified).
5689This is equivalent to @code{true}.
9611cfa2 5690
cf499cff 5691@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5692
5693@item @var{variable} is never defined.
c6abeab1 5694In this case, Bison selects a default value.
9611cfa2 5695@end enumerate
148d66d8 5696
c6abeab1
JD
5697What @var{variable}s are accepted, as well as their meanings and default
5698values, depend on the selected target language and/or the parser
5699skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5700Summary,,%skeleton}).
5701Unaccepted @var{variable}s produce an error.
dbf3962c 5702Some of the accepted @var{variable}s are described below.
793fbca5 5703
6574576c 5704@c ================================================== api.namespace
eb0e86ac 5705@deffn Directive {%define api.namespace} @{@var{namespace}@}
67501061
AD
5706@itemize
5707@item Languages(s): C++
5708
f1b238df 5709@item Purpose: Specify the namespace for the parser class.
67501061
AD
5710For example, if you specify:
5711
c93f22fc 5712@example
eb0e86ac 5713%define api.namespace @{foo::bar@}
c93f22fc 5714@end example
67501061
AD
5715
5716Bison uses @code{foo::bar} verbatim in references such as:
5717
c93f22fc 5718@example
67501061 5719foo::bar::parser::semantic_type
c93f22fc 5720@end example
67501061
AD
5721
5722However, to open a namespace, Bison removes any leading @code{::} and then
5723splits on any remaining occurrences:
5724
c93f22fc 5725@example
67501061
AD
5726namespace foo @{ namespace bar @{
5727 class position;
5728 class location;
5729@} @}
c93f22fc 5730@end example
67501061
AD
5731
5732@item Accepted Values:
5733Any absolute or relative C++ namespace reference without a trailing
5734@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5735
5736@item Default Value:
5737The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5738This usage of @code{%name-prefix} is for backward compatibility and can
5739be confusing since @code{%name-prefix} also specifies the textual prefix
5740for the lexical analyzer function. Thus, if you specify
5741@code{%name-prefix}, it is best to also specify @samp{%define
5742api.namespace} so that @code{%name-prefix} @emph{only} affects the
5743lexical analyzer function. For example, if you specify:
5744
c93f22fc 5745@example
eb0e86ac 5746%define api.namespace @{foo@}
67501061 5747%name-prefix "bar::"
c93f22fc 5748@end example
67501061
AD
5749
5750The parser namespace is @code{foo} and @code{yylex} is referenced as
5751@code{bar::lex}.
5752@end itemize
dbf3962c
AD
5753@end deffn
5754@c api.namespace
67501061 5755
db8ab2be 5756@c ================================================== api.location.type
aba47f56 5757@deffn {Directive} {%define api.location.type} @{@var{type}@}
db8ab2be
AD
5758
5759@itemize @bullet
7287be84 5760@item Language(s): C++, Java
db8ab2be
AD
5761
5762@item Purpose: Define the location type.
5763@xref{User Defined Location Type}.
5764
5765@item Accepted Values: String
5766
5767@item Default Value: none
5768
a256496a
AD
5769@item History:
5770Introduced in Bison 2.7 for C, C++ and Java. Introduced under the name
5771@code{location_type} for C++ in Bison 2.5 and for Java in Bison 2.4.
db8ab2be 5772@end itemize
dbf3962c 5773@end deffn
67501061 5774
4b3847c3 5775@c ================================================== api.prefix
aba47f56 5776@deffn {Directive} {%define api.prefix} @{@var{prefix}@}
4b3847c3
AD
5777
5778@itemize @bullet
5779@item Language(s): All
5780
db8ab2be 5781@item Purpose: Rename exported symbols.
4b3847c3
AD
5782@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5783
5784@item Accepted Values: String
5785
5786@item Default Value: @code{yy}
e358222b
AD
5787
5788@item History: introduced in Bison 2.6
4b3847c3 5789@end itemize
dbf3962c 5790@end deffn
67501061
AD
5791
5792@c ================================================== api.pure
aba47f56 5793@deffn Directive {%define api.pure} @var{purity}
d9df47b6
JD
5794
5795@itemize @bullet
5796@item Language(s): C
5797
5798@item Purpose: Request a pure (reentrant) parser program.
5799@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5800
1f1bd572
TR
5801@item Accepted Values: @code{true}, @code{false}, @code{full}
5802
5803The value may be omitted: this is equivalent to specifying @code{true}, as is
5804the case for Boolean values.
5805
5806When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5807changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5808@code{yyerror} when the tracking of locations has been activated, as shown
5809below.
1f1bd572
TR
5810
5811The @code{true} value is very similar to the @code{full} value, the only
5812difference is in the signature of @code{yyerror} on Yacc parsers without
5813@code{%parse-param}, for historical reasons.
5814
5815I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5816@code{yyerror} are:
5817
5818@example
c949ada3
AD
5819void yyerror (char const *msg); // Yacc parsers.
5820void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5821@end example
5822
5823But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5824used, then both parsers have the same signature:
5825
5826@example
5827void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5828@end example
5829
5830(@pxref{Error Reporting, ,The Error
5831Reporting Function @code{yyerror}})
d9df47b6 5832
cf499cff 5833@item Default Value: @code{false}
1f1bd572 5834
a256496a
AD
5835@item History:
5836the @code{full} value was introduced in Bison 2.7
d9df47b6 5837@end itemize
dbf3962c 5838@end deffn
71b00ed8 5839@c api.pure
d9df47b6 5840
67501061
AD
5841
5842
5843@c ================================================== api.push-pull
dbf3962c 5844@deffn Directive {%define api.push-pull} @var{kind}
793fbca5
JD
5845
5846@itemize @bullet
eb45ef3b 5847@item Language(s): C (deterministic parsers only)
793fbca5 5848
f1b238df 5849@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5850@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5851(The current push parsing interface is experimental and may evolve.
5852More user feedback will help to stabilize it.)
793fbca5 5853
cf499cff 5854@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5855
cf499cff 5856@item Default Value: @code{pull}
793fbca5 5857@end itemize
dbf3962c 5858@end deffn
67212941 5859@c api.push-pull
71b00ed8 5860
6b5a0de9
AD
5861
5862
e36ec1f4 5863@c ================================================== api.token.constructor
dbf3962c 5864@deffn Directive {%define api.token.constructor}
e36ec1f4
AD
5865
5866@itemize @bullet
5867@item Language(s):
5868C++
5869
5870@item Purpose:
5871When variant-based semantic values are enabled (@pxref{C++ Variants}),
5872request that symbols be handled as a whole (type, value, and possibly
5873location) in the scanner. @xref{Complete Symbols}, for details.
5874
5875@item Accepted Values:
5876Boolean.
5877
5878@item Default Value:
5879@code{false}
5880@item History:
c53b6848 5881introduced in Bison 3.0
e36ec1f4 5882@end itemize
dbf3962c 5883@end deffn
e36ec1f4
AD
5884@c api.token.constructor
5885
5886
2a6b66c5 5887@c ================================================== api.token.prefix
630a0218 5888@deffn Directive {%define api.token.prefix} @{@var{prefix}@}
4c6622c2
AD
5889
5890@itemize
5891@item Languages(s): all
5892
5893@item Purpose:
5894Add a prefix to the token names when generating their definition in the
5895target language. For instance
5896
5897@example
5898%token FILE for ERROR
630a0218 5899%define api.token.prefix @{TOK_@}
4c6622c2
AD
5900%%
5901start: FILE for ERROR;
5902@end example
5903
5904@noindent
5905generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5906and @code{TOK_ERROR} in the generated source files. In particular, the
5907scanner must use these prefixed token names, while the grammar itself
5908may still use the short names (as in the sample rule given above). The
5909generated informational files (@file{*.output}, @file{*.xml},
90b89dad
AD
5910@file{*.dot}) are not modified by this prefix.
5911
5912Bison also prefixes the generated member names of the semantic value union.
5913@xref{Type Generation,, Generating the Semantic Value Type}, for more
5914details.
5915
5916See @ref{Calc++ Parser} and @ref{Calc++ Scanner}, for a complete example.
4c6622c2
AD
5917
5918@item Accepted Values:
5919Any string. Should be a valid identifier prefix in the target language,
5920in other words, it should typically be an identifier itself (sequence of
5921letters, underscores, and ---not at the beginning--- digits).
5922
5923@item Default Value:
5924empty
2a6b66c5 5925@item History:
630a0218 5926introduced in Bison 3.0
4c6622c2 5927@end itemize
dbf3962c 5928@end deffn
2a6b66c5 5929@c api.token.prefix
4c6622c2
AD
5930
5931
ae8880de 5932@c ================================================== api.value.type
6ce4b4ff
AD
5933@deffn Directive {%define api.value.type} @var{support}
5934@deffnx Directive {%define api.value.type} @{@var{type}@}
ae8880de
AD
5935@itemize @bullet
5936@item Language(s):
6574576c 5937all
ae8880de
AD
5938
5939@item Purpose:
6574576c
AD
5940The type for semantic values.
5941
5942@item Accepted Values:
5943@table @asis
6ce4b4ff 5944@item @samp{@{@}}
6574576c
AD
5945This grammar has no semantic value at all. This is not properly supported
5946yet.
6ce4b4ff 5947@item @samp{union-directive} (C, C++)
6574576c
AD
5948The type is defined thanks to the @code{%union} directive. You don't have
5949to define @code{api.value.type} in that case, using @code{%union} suffices.
e4d49586 5950@xref{Union Decl, ,The Union Declaration}.
6574576c
AD
5951For instance:
5952@example
6ce4b4ff 5953%define api.value.type union-directive
6574576c
AD
5954%union
5955@{
5956 int ival;
5957 char *sval;
5958@}
5959%token <ival> INT "integer"
5960%token <sval> STR "string"
5961@end example
5962
6ce4b4ff 5963@item @samp{union} (C, C++)
6574576c
AD
5964The symbols are defined with type names, from which Bison will generate a
5965@code{union}. For instance:
5966@example
6ce4b4ff 5967%define api.value.type union
6574576c
AD
5968%token <int> INT "integer"
5969%token <char *> STR "string"
5970@end example
5971This feature needs user feedback to stabilize. Note that most C++ objects
5972cannot be stored in a @code{union}.
5973
6ce4b4ff 5974@item @samp{variant} (C++)
6574576c
AD
5975This is similar to @code{union}, but special storage techniques are used to
5976allow any kind of C++ object to be used. For instance:
5977@example
6ce4b4ff 5978%define api.value.type variant
6574576c
AD
5979%token <int> INT "integer"
5980%token <std::string> STR "string"
5981@end example
5982This feature needs user feedback to stabilize.
ae8880de
AD
5983@xref{C++ Variants}.
5984
6ce4b4ff
AD
5985@item @samp{@{@var{type}@}}
5986Use this @var{type} as semantic value.
6574576c
AD
5987@example
5988%code requires
5989@{
5990 struct my_value
5991 @{
5992 enum
5993 @{
5994 is_int, is_str
5995 @} kind;
5996 union
5997 @{
5998 int ival;
5999 char *sval;
6000 @} u;
6001 @};
6002@}
6ce4b4ff 6003%define api.value.type @{struct my_value@}
6574576c
AD
6004%token <u.ival> INT "integer"
6005%token <u.sval> STR "string"
6006@end example
6007@end table
6008
dbf3962c 6009@item Default Value:
6574576c
AD
6010@itemize @minus
6011@item
6012@code{%union} if @code{%union} is used, otherwise @dots{}
6013@item
6014@code{int} if type tags are used (i.e., @samp{%token <@var{type}>@dots{}} or
6015@samp{%token <@var{type}>@dots{}} is used), otherwise @dots{}
6016@item
6017@code{""}
6018@end itemize
6019
dbf3962c 6020@item History:
c53b6848 6021introduced in Bison 3.0. Was introduced for Java only in 2.3b as
dbf3962c
AD
6022@code{stype}.
6023@end itemize
6024@end deffn
ae8880de
AD
6025@c api.value.type
6026
a256496a
AD
6027
6028@c ================================================== location_type
dbf3962c 6029@deffn Directive {%define location_type}
a256496a 6030Obsoleted by @code{api.location.type} since Bison 2.7.
dbf3962c 6031@end deffn
a256496a
AD
6032
6033
f3bc3386 6034@c ================================================== lr.default-reduction
6b5a0de9 6035
dbf3962c 6036@deffn Directive {%define lr.default-reduction} @var{when}
eb45ef3b
JD
6037
6038@itemize @bullet
6039@item Language(s): all
6040
fcf834f9 6041@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
6042contain default reductions. @xref{Default Reductions}. (The ability to
6043specify where default reductions should be used is experimental. More user
6044feedback will help to stabilize it.)
eb45ef3b 6045
f0ad1b2f 6046@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
6047@item Default Value:
6048@itemize
cf499cff 6049@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 6050@item @code{most} otherwise.
eb45ef3b 6051@end itemize
f3bc3386 6052@item History:
c53b6848
AD
6053introduced as @code{lr.default-reductions} in 2.5, renamed as
6054@code{lr.default-reduction} in 3.0.
eb45ef3b 6055@end itemize
dbf3962c 6056@end deffn
eb45ef3b 6057
f3bc3386 6058@c ============================================ lr.keep-unreachable-state
6b5a0de9 6059
dbf3962c 6060@deffn Directive {%define lr.keep-unreachable-state}
31984206
JD
6061
6062@itemize @bullet
6063@item Language(s): all
f1b238df 6064@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 6065remain in the parser tables. @xref{Unreachable States}.
31984206 6066@item Accepted Values: Boolean
cf499cff 6067@item Default Value: @code{false}
a256496a 6068@item History:
f3bc3386 6069introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 6070@code{lr.keep-unreachable-states} in 2.5, and as
c53b6848 6071@code{lr.keep-unreachable-state} in 3.0.
dbf3962c
AD
6072@end itemize
6073@end deffn
f3bc3386 6074@c lr.keep-unreachable-state
31984206 6075
6b5a0de9
AD
6076@c ================================================== lr.type
6077
dbf3962c 6078@deffn Directive {%define lr.type} @var{type}
eb45ef3b
JD
6079
6080@itemize @bullet
6081@item Language(s): all
6082
f1b238df 6083@item Purpose: Specify the type of parser tables within the
7fceb615 6084LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
6085More user feedback will help to stabilize it.)
6086
7fceb615 6087@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 6088
cf499cff 6089@item Default Value: @code{lalr}
eb45ef3b 6090@end itemize
dbf3962c 6091@end deffn
67501061
AD
6092
6093@c ================================================== namespace
eb0e86ac 6094@deffn Directive %define namespace @{@var{namespace}@}
67501061 6095Obsoleted by @code{api.namespace}
fa819509 6096@c namespace
dbf3962c 6097@end deffn
31b850d2
AD
6098
6099@c ================================================== parse.assert
dbf3962c 6100@deffn Directive {%define parse.assert}
0c90a1f5
AD
6101
6102@itemize
6103@item Languages(s): C++
6104
6105@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
6106In C++, when variants are used (@pxref{C++ Variants}), symbols must be
6107constructed and
0c90a1f5
AD
6108destroyed properly. This option checks these constraints.
6109
6110@item Accepted Values: Boolean
6111
6112@item Default Value: @code{false}
6113@end itemize
dbf3962c 6114@end deffn
0c90a1f5
AD
6115@c parse.assert
6116
31b850d2
AD
6117
6118@c ================================================== parse.error
6ce4b4ff 6119@deffn Directive {%define parse.error} @var{verbosity}
31b850d2
AD
6120@itemize
6121@item Languages(s):
fcf834f9 6122all
31b850d2
AD
6123@item Purpose:
6124Control the kind of error messages passed to the error reporting
6125function. @xref{Error Reporting, ,The Error Reporting Function
6126@code{yyerror}}.
6127@item Accepted Values:
6128@itemize
cf499cff 6129@item @code{simple}
31b850d2
AD
6130Error messages passed to @code{yyerror} are simply @w{@code{"syntax
6131error"}}.
cf499cff 6132@item @code{verbose}
7fceb615
JD
6133Error messages report the unexpected token, and possibly the expected ones.
6134However, this report can often be incorrect when LAC is not enabled
6135(@pxref{LAC}).
31b850d2
AD
6136@end itemize
6137
6138@item Default Value:
6139@code{simple}
6140@end itemize
dbf3962c 6141@end deffn
31b850d2
AD
6142@c parse.error
6143
6144
fcf834f9 6145@c ================================================== parse.lac
6ce4b4ff 6146@deffn Directive {%define parse.lac} @var{when}
fcf834f9
JD
6147
6148@itemize
7fceb615 6149@item Languages(s): C (deterministic parsers only)
fcf834f9 6150
8a4281b9 6151@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 6152syntax error handling. @xref{LAC}.
fcf834f9 6153@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
6154@item Default Value: @code{none}
6155@end itemize
dbf3962c 6156@end deffn
fcf834f9
JD
6157@c parse.lac
6158
31b850d2 6159@c ================================================== parse.trace
dbf3962c 6160@deffn Directive {%define parse.trace}
fa819509
AD
6161
6162@itemize
60aa04a2 6163@item Languages(s): C, C++, Java
fa819509
AD
6164
6165@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
6166@xref{Tracing, ,Tracing Your Parser}.
6167
6168In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
6ce4b4ff 6169@samp{%define api.prefix @{@var{prefix}@}}), see @ref{Multiple Parsers,
60aa04a2 6170,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 6171file if it is not already defined, so that the debugging facilities are
60aa04a2 6172compiled.
793fbca5 6173
fa819509
AD
6174@item Accepted Values: Boolean
6175
6176@item Default Value: @code{false}
6177@end itemize
dbf3962c 6178@end deffn
fa819509 6179@c parse.trace
592d0b1e 6180
e0c07222
JD
6181@node %code Summary
6182@subsection %code Summary
e0c07222 6183@findex %code
e0c07222 6184@cindex Prologue
51151d91
JD
6185
6186The @code{%code} directive inserts code verbatim into the output
6187parser source at any of a predefined set of locations. It thus serves
6188as a flexible and user-friendly alternative to the traditional Yacc
6189prologue, @code{%@{@var{code}%@}}. This section summarizes the
6190functionality of @code{%code} for the various target languages
6191supported by Bison. For a detailed discussion of how to use
6192@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
6193is advantageous to do so, @pxref{Prologue Alternatives}.
6194
6195@deffn {Directive} %code @{@var{code}@}
6196This is the unqualified form of the @code{%code} directive. It
6197inserts @var{code} verbatim at a language-dependent default location
6198in the parser implementation.
6199
e0c07222 6200For C/C++, the default location is the parser implementation file
51151d91
JD
6201after the usual contents of the parser header file. Thus, the
6202unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
6203
6204For Java, the default location is inside the parser class.
6205@end deffn
6206
6207@deffn {Directive} %code @var{qualifier} @{@var{code}@}
6208This is the qualified form of the @code{%code} directive.
51151d91
JD
6209@var{qualifier} identifies the purpose of @var{code} and thus the
6210location(s) where Bison should insert it. That is, if you need to
6211specify location-sensitive @var{code} that does not belong at the
6212default location selected by the unqualified @code{%code} form, use
6213this form instead.
6214@end deffn
6215
6216For any particular qualifier or for the unqualified form, if there are
6217multiple occurrences of the @code{%code} directive, Bison concatenates
6218the specified code in the order in which it appears in the grammar
6219file.
e0c07222 6220
51151d91
JD
6221Not all qualifiers are accepted for all target languages. Unaccepted
6222qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 6223
84072495 6224@table @code
e0c07222
JD
6225@item requires
6226@findex %code requires
6227
6228@itemize @bullet
6229@item Language(s): C, C++
6230
6231@item Purpose: This is the best place to write dependency code required for
21e3a2b5
AD
6232@code{YYSTYPE} and @code{YYLTYPE}. In other words, it's the best place to
6233define types referenced in @code{%union} directives. If you use
6234@code{#define} to override Bison's default @code{YYSTYPE} and @code{YYLTYPE}
6235definitions, then it is also the best place. However you should rather
6236@code{%define} @code{api.value.type} and @code{api.location.type}.
e0c07222
JD
6237
6238@item Location(s): The parser header file and the parser implementation file
6239before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
6240definitions.
6241@end itemize
6242
6243@item provides
6244@findex %code provides
6245
6246@itemize @bullet
6247@item Language(s): C, C++
6248
6249@item Purpose: This is the best place to write additional definitions and
6250declarations that should be provided to other modules.
6251
6252@item Location(s): The parser header file and the parser implementation
6253file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
6254token definitions.
6255@end itemize
6256
6257@item top
6258@findex %code top
6259
6260@itemize @bullet
6261@item Language(s): C, C++
6262
6263@item Purpose: The unqualified @code{%code} or @code{%code requires}
6264should usually be more appropriate than @code{%code top}. However,
6265occasionally it is necessary to insert code much nearer the top of the
6266parser implementation file. For example:
6267
c93f22fc 6268@example
e0c07222
JD
6269%code top @{
6270 #define _GNU_SOURCE
6271 #include <stdio.h>
6272@}
c93f22fc 6273@end example
e0c07222
JD
6274
6275@item Location(s): Near the top of the parser implementation file.
6276@end itemize
6277
6278@item imports
6279@findex %code imports
6280
6281@itemize @bullet
6282@item Language(s): Java
6283
6284@item Purpose: This is the best place to write Java import directives.
6285
6286@item Location(s): The parser Java file after any Java package directive and
6287before any class definitions.
6288@end itemize
84072495 6289@end table
e0c07222 6290
51151d91
JD
6291Though we say the insertion locations are language-dependent, they are
6292technically skeleton-dependent. Writers of non-standard skeletons
6293however should choose their locations consistently with the behavior
6294of the standard Bison skeletons.
e0c07222 6295
d8988b2f 6296
342b8b6e 6297@node Multiple Parsers
bfa74976
RS
6298@section Multiple Parsers in the Same Program
6299
6300Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6301only one Bison parser. But what if you want to parse more than one language
6302with the same program? Then you need to avoid name conflicts between
6303different definitions of functions and variables such as @code{yyparse},
6304@code{yylval}. To use different parsers from the same compilation unit, you
6305also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6306exported in the generated header.
6307
6308The easy way to do this is to define the @code{%define} variable
e358222b
AD
6309@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6310headers do not conflict when included together, and that compiled objects
6311can be linked together too. Specifying @samp{%define api.prefix
6ce4b4ff 6312@{@var{prefix}@}} (or passing the option @samp{-Dapi.prefix=@{@var{prefix}@}}, see
e358222b
AD
6313@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6314variables of the Bison parser to start with @var{prefix} instead of
6315@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6316upper-cased) instead of @samp{YY}.
4b3847c3
AD
6317
6318The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6319@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6320@code{yydebug}. If you use a push parser, @code{yypush_parse},
6321@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6322@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6323@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6324specifically --- more about this below.
4b3847c3 6325
6ce4b4ff 6326For example, if you use @samp{%define api.prefix @{c@}}, the names become
4b3847c3
AD
6327@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6328on.
6329
6330The @code{%define} variable @code{api.prefix} works in two different ways.
6331In the implementation file, it works by adding macro definitions to the
6332beginning of the parser implementation file, defining @code{yyparse} as
6333@code{@var{prefix}parse}, and so on:
6334
6335@example
6336#define YYSTYPE CTYPE
6337#define yyparse cparse
6338#define yylval clval
6339...
6340YYSTYPE yylval;
6341int yyparse (void);
6342@end example
6343
6344This effectively substitutes one name for the other in the entire parser
6345implementation file, thus the ``original'' names (@code{yylex},
6346@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6347
6348However, in the parser header file, the symbols are defined renamed, for
6349instance:
bfa74976 6350
4b3847c3
AD
6351@example
6352extern CSTYPE clval;
6353int cparse (void);
6354@end example
bfa74976 6355
e358222b
AD
6356The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6357parsers. To comply with this tradition, when @code{api.prefix} is used,
6358@code{YYDEBUG} (not renamed) is used as a default value:
6359
6360@example
4d9bdbe3 6361/* Debug traces. */
e358222b
AD
6362#ifndef CDEBUG
6363# if defined YYDEBUG
6364# if YYDEBUG
6365# define CDEBUG 1
6366# else
6367# define CDEBUG 0
6368# endif
6369# else
6370# define CDEBUG 0
6371# endif
6372#endif
6373#if CDEBUG
6374extern int cdebug;
6375#endif
6376@end example
6377
6378@sp 2
6379
6380Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6381the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6382Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6383
342b8b6e 6384@node Interface
bfa74976
RS
6385@chapter Parser C-Language Interface
6386@cindex C-language interface
6387@cindex interface
6388
6389The Bison parser is actually a C function named @code{yyparse}. Here we
6390describe the interface conventions of @code{yyparse} and the other
6391functions that it needs to use.
6392
6393Keep in mind that the parser uses many C identifiers starting with
6394@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6395identifier (aside from those in this manual) in an action or in epilogue
6396in the grammar file, you are likely to run into trouble.
bfa74976
RS
6397
6398@menu
f5f419de
DJ
6399* Parser Function:: How to call @code{yyparse} and what it returns.
6400* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6401* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6402* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6403* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6404* Lexical:: You must supply a function @code{yylex}
6405 which reads tokens.
6406* Error Reporting:: You must supply a function @code{yyerror}.
6407* Action Features:: Special features for use in actions.
6408* Internationalization:: How to let the parser speak in the user's
6409 native language.
bfa74976
RS
6410@end menu
6411
342b8b6e 6412@node Parser Function
bfa74976
RS
6413@section The Parser Function @code{yyparse}
6414@findex yyparse
6415
6416You call the function @code{yyparse} to cause parsing to occur. This
6417function reads tokens, executes actions, and ultimately returns when it
6418encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6419write an action which directs @code{yyparse} to return immediately
6420without reading further.
bfa74976 6421
2a8d363a
AD
6422
6423@deftypefun int yyparse (void)
bfa74976
RS
6424The value returned by @code{yyparse} is 0 if parsing was successful (return
6425is due to end-of-input).
6426
b47dbebe
PE
6427The value is 1 if parsing failed because of invalid input, i.e., input
6428that contains a syntax error or that causes @code{YYABORT} to be
6429invoked.
6430
6431The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6432@end deftypefun
bfa74976
RS
6433
6434In an action, you can cause immediate return from @code{yyparse} by using
6435these macros:
6436
2a8d363a 6437@defmac YYACCEPT
bfa74976
RS
6438@findex YYACCEPT
6439Return immediately with value 0 (to report success).
2a8d363a 6440@end defmac
bfa74976 6441
2a8d363a 6442@defmac YYABORT
bfa74976
RS
6443@findex YYABORT
6444Return immediately with value 1 (to report failure).
2a8d363a
AD
6445@end defmac
6446
6447If you use a reentrant parser, you can optionally pass additional
6448parameter information to it in a reentrant way. To do so, use the
6449declaration @code{%parse-param}:
6450
2055a44e 6451@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6452@findex %parse-param
2055a44e
AD
6453Declare that one or more
6454@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6455The @var{argument-declaration} is used when declaring
feeb0eda
PE
6456functions or prototypes. The last identifier in
6457@var{argument-declaration} must be the argument name.
2a8d363a
AD
6458@end deffn
6459
6460Here's an example. Write this in the parser:
6461
6462@example
2055a44e 6463%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6464@end example
6465
6466@noindent
6467Then call the parser like this:
6468
6469@example
6470@{
6471 int nastiness, randomness;
6472 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6473 value = yyparse (&nastiness, &randomness);
6474 @dots{}
6475@}
6476@end example
6477
6478@noindent
6479In the grammar actions, use expressions like this to refer to the data:
6480
6481@example
6482exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6483@end example
6484
1f1bd572
TR
6485@noindent
6486Using the following:
6487@example
6488%parse-param @{int *randomness@}
6489@end example
6490
6491Results in these signatures:
6492@example
6493void yyerror (int *randomness, const char *msg);
6494int yyparse (int *randomness);
6495@end example
6496
6497@noindent
6498Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6499and @code{%locations} are used:
6500
6501@example
6502void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6503int yyparse (int *randomness);
6504@end example
6505
9987d1b3
JD
6506@node Push Parser Function
6507@section The Push Parser Function @code{yypush_parse}
6508@findex yypush_parse
6509
59da312b
JD
6510(The current push parsing interface is experimental and may evolve.
6511More user feedback will help to stabilize it.)
6512
f4101aa6 6513You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6514function is available if either the @samp{%define api.push-pull push} or
6515@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6516@xref{Push Decl, ,A Push Parser}.
6517
a73aa764 6518@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6519The value returned by @code{yypush_parse} is the same as for yyparse with
6520the following exception: it returns @code{YYPUSH_MORE} if more input is
6521required to finish parsing the grammar.
9987d1b3
JD
6522@end deftypefun
6523
6524@node Pull Parser Function
6525@section The Pull Parser Function @code{yypull_parse}
6526@findex yypull_parse
6527
59da312b
JD
6528(The current push parsing interface is experimental and may evolve.
6529More user feedback will help to stabilize it.)
6530
f4101aa6 6531You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6532stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6533declaration is used.
9987d1b3
JD
6534@xref{Push Decl, ,A Push Parser}.
6535
a73aa764 6536@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6537The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6538@end deftypefun
6539
6540@node Parser Create Function
6541@section The Parser Create Function @code{yystate_new}
6542@findex yypstate_new
6543
59da312b
JD
6544(The current push parsing interface is experimental and may evolve.
6545More user feedback will help to stabilize it.)
6546
f4101aa6 6547You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6548This function is available if either the @samp{%define api.push-pull push} or
6549@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6550@xref{Push Decl, ,A Push Parser}.
6551
34a41a93 6552@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6553The function will return a valid parser instance if there was memory available
333e670c
JD
6554or 0 if no memory was available.
6555In impure mode, it will also return 0 if a parser instance is currently
6556allocated.
9987d1b3
JD
6557@end deftypefun
6558
6559@node Parser Delete Function
6560@section The Parser Delete Function @code{yystate_delete}
6561@findex yypstate_delete
6562
59da312b
JD
6563(The current push parsing interface is experimental and may evolve.
6564More user feedback will help to stabilize it.)
6565
9987d1b3 6566You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6567function is available if either the @samp{%define api.push-pull push} or
6568@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6569@xref{Push Decl, ,A Push Parser}.
6570
a73aa764 6571@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6572This function will reclaim the memory associated with a parser instance.
6573After this call, you should no longer attempt to use the parser instance.
6574@end deftypefun
bfa74976 6575
342b8b6e 6576@node Lexical
bfa74976
RS
6577@section The Lexical Analyzer Function @code{yylex}
6578@findex yylex
6579@cindex lexical analyzer
6580
6581The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6582the input stream and returns them to the parser. Bison does not create
6583this function automatically; you must write it so that @code{yyparse} can
6584call it. The function is sometimes referred to as a lexical scanner.
6585
ff7571c0
JD
6586In simple programs, @code{yylex} is often defined at the end of the
6587Bison grammar file. If @code{yylex} is defined in a separate source
6588file, you need to arrange for the token-type macro definitions to be
6589available there. To do this, use the @samp{-d} option when you run
6590Bison, so that it will write these macro definitions into the separate
6591parser header file, @file{@var{name}.tab.h}, which you can include in
6592the other source files that need it. @xref{Invocation, ,Invoking
6593Bison}.
bfa74976
RS
6594
6595@menu
6596* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6597* Token Values:: How @code{yylex} must return the semantic value
6598 of the token it has read.
6599* Token Locations:: How @code{yylex} must return the text location
6600 (line number, etc.) of the token, if the
6601 actions want that.
6602* Pure Calling:: How the calling convention differs in a pure parser
6603 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6604@end menu
6605
342b8b6e 6606@node Calling Convention
bfa74976
RS
6607@subsection Calling Convention for @code{yylex}
6608
72d2299c
PE
6609The value that @code{yylex} returns must be the positive numeric code
6610for the type of token it has just found; a zero or negative value
6611signifies end-of-input.
bfa74976
RS
6612
6613When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6614in the parser implementation file becomes a C macro whose definition
6615is the proper numeric code for that token type. So @code{yylex} can
6616use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6617
6618When a token is referred to in the grammar rules by a character literal,
6619the numeric code for that character is also the code for the token type.
72d2299c
PE
6620So @code{yylex} can simply return that character code, possibly converted
6621to @code{unsigned char} to avoid sign-extension. The null character
6622must not be used this way, because its code is zero and that
bfa74976
RS
6623signifies end-of-input.
6624
6625Here is an example showing these things:
6626
6627@example
13863333
AD
6628int
6629yylex (void)
bfa74976
RS
6630@{
6631 @dots{}
72d2299c 6632 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6633 return 0;
6634 @dots{}
6635 if (c == '+' || c == '-')
4c9b8f13 6636 return c; /* Assume token type for '+' is '+'. */
bfa74976 6637 @dots{}
72d2299c 6638 return INT; /* Return the type of the token. */
bfa74976
RS
6639 @dots{}
6640@}
6641@end example
6642
6643@noindent
6644This interface has been designed so that the output from the @code{lex}
6645utility can be used without change as the definition of @code{yylex}.
6646
931c7513
RS
6647If the grammar uses literal string tokens, there are two ways that
6648@code{yylex} can determine the token type codes for them:
6649
6650@itemize @bullet
6651@item
6652If the grammar defines symbolic token names as aliases for the
6653literal string tokens, @code{yylex} can use these symbolic names like
6654all others. In this case, the use of the literal string tokens in
6655the grammar file has no effect on @code{yylex}.
6656
6657@item
9ecbd125 6658@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6659table. The index of the token in the table is the token type's code.
9ecbd125 6660The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6661double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6662token's characters are escaped as necessary to be suitable as input
6663to Bison.
931c7513 6664
9e0876fb
PE
6665Here's code for looking up a multicharacter token in @code{yytname},
6666assuming that the characters of the token are stored in
6667@code{token_buffer}, and assuming that the token does not contain any
6668characters like @samp{"} that require escaping.
931c7513 6669
c93f22fc 6670@example
931c7513
RS
6671for (i = 0; i < YYNTOKENS; i++)
6672 @{
6673 if (yytname[i] != 0
6674 && yytname[i][0] == '"'
68449b3a
PE
6675 && ! strncmp (yytname[i] + 1, token_buffer,
6676 strlen (token_buffer))
931c7513
RS
6677 && yytname[i][strlen (token_buffer) + 1] == '"'
6678 && yytname[i][strlen (token_buffer) + 2] == 0)
6679 break;
6680 @}
c93f22fc 6681@end example
931c7513
RS
6682
6683The @code{yytname} table is generated only if you use the
8c9a50be 6684@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6685@end itemize
6686
342b8b6e 6687@node Token Values
bfa74976
RS
6688@subsection Semantic Values of Tokens
6689
6690@vindex yylval
9d9b8b70 6691In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6692be stored into the global variable @code{yylval}. When you are using
6693just one data type for semantic values, @code{yylval} has that type.
6694Thus, if the type is @code{int} (the default), you might write this in
6695@code{yylex}:
6696
6697@example
6698@group
6699 @dots{}
72d2299c
PE
6700 yylval = value; /* Put value onto Bison stack. */
6701 return INT; /* Return the type of the token. */
bfa74976
RS
6702 @dots{}
6703@end group
6704@end example
6705
6706When you are using multiple data types, @code{yylval}'s type is a union
704a47c4 6707made from the @code{%union} declaration (@pxref{Union Decl, ,The
e4d49586 6708Union Declaration}). So when you store a token's value, you
704a47c4
AD
6709must use the proper member of the union. If the @code{%union}
6710declaration looks like this:
bfa74976
RS
6711
6712@example
6713@group
6714%union @{
6715 int intval;
6716 double val;
6717 symrec *tptr;
6718@}
6719@end group
6720@end example
6721
6722@noindent
6723then the code in @code{yylex} might look like this:
6724
6725@example
6726@group
6727 @dots{}
72d2299c
PE
6728 yylval.intval = value; /* Put value onto Bison stack. */
6729 return INT; /* Return the type of the token. */
bfa74976
RS
6730 @dots{}
6731@end group
6732@end example
6733
95923bd6
AD
6734@node Token Locations
6735@subsection Textual Locations of Tokens
bfa74976
RS
6736
6737@vindex yylloc
303834cc
JD
6738If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6739in actions to keep track of the textual locations of tokens and groupings,
6740then you must provide this information in @code{yylex}. The function
6741@code{yyparse} expects to find the textual location of a token just parsed
6742in the global variable @code{yylloc}. So @code{yylex} must store the proper
6743data in that variable.
847bf1f5
AD
6744
6745By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6746initialize the members that are going to be used by the actions. The
6747four members are called @code{first_line}, @code{first_column},
6748@code{last_line} and @code{last_column}. Note that the use of this
6749feature makes the parser noticeably slower.
bfa74976
RS
6750
6751@tindex YYLTYPE
6752The data type of @code{yylloc} has the name @code{YYLTYPE}.
6753
342b8b6e 6754@node Pure Calling
c656404a 6755@subsection Calling Conventions for Pure Parsers
bfa74976 6756
1f1bd572 6757When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6758pure, reentrant parser, the global communication variables @code{yylval}
6759and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6760Parser}.) In such parsers the two global variables are replaced by
6761pointers passed as arguments to @code{yylex}. You must declare them as
6762shown here, and pass the information back by storing it through those
6763pointers.
bfa74976
RS
6764
6765@example
13863333
AD
6766int
6767yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6768@{
6769 @dots{}
6770 *lvalp = value; /* Put value onto Bison stack. */
6771 return INT; /* Return the type of the token. */
6772 @dots{}
6773@}
6774@end example
6775
6776If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6777textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6778this case, omit the second argument; @code{yylex} will be called with
6779only one argument.
6780
2055a44e 6781If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6782@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6783Function}). To pass additional arguments to both @code{yylex} and
6784@code{yyparse}, use @code{%param}.
e425e872 6785
2055a44e 6786@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6787@findex %lex-param
2055a44e
AD
6788Specify that @var{argument-declaration} are additional @code{yylex} argument
6789declarations. You may pass one or more such declarations, which is
6790equivalent to repeating @code{%lex-param}.
6791@end deffn
6792
6793@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6794@findex %param
6795Specify that @var{argument-declaration} are additional
6796@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6797@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6798@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6799declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6800@end deffn
e425e872 6801
1f1bd572 6802@noindent
2a8d363a 6803For instance:
e425e872
RS
6804
6805@example
2055a44e
AD
6806%lex-param @{scanner_mode *mode@}
6807%parse-param @{parser_mode *mode@}
6808%param @{environment_type *env@}
e425e872
RS
6809@end example
6810
6811@noindent
18ad57b3 6812results in the following signatures:
e425e872
RS
6813
6814@example
2055a44e
AD
6815int yylex (scanner_mode *mode, environment_type *env);
6816int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6817@end example
6818
5807bb91 6819If @samp{%define api.pure full} is added:
c656404a
RS
6820
6821@example
2055a44e
AD
6822int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6823int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6824@end example
6825
2a8d363a 6826@noindent
5807bb91
AD
6827and finally, if both @samp{%define api.pure full} and @code{%locations} are
6828used:
c656404a 6829
2a8d363a 6830@example
2055a44e
AD
6831int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6832 scanner_mode *mode, environment_type *env);
6833int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6834@end example
931c7513 6835
342b8b6e 6836@node Error Reporting
bfa74976
RS
6837@section The Error Reporting Function @code{yyerror}
6838@cindex error reporting function
6839@findex yyerror
6840@cindex parse error
6841@cindex syntax error
6842
31b850d2 6843The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6844whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6845action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6846macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6847in Actions}).
bfa74976
RS
6848
6849The Bison parser expects to report the error by calling an error
6850reporting function named @code{yyerror}, which you must supply. It is
6851called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6852receives one argument. For a syntax error, the string is normally
6853@w{@code{"syntax error"}}.
bfa74976 6854
31b850d2 6855@findex %define parse.error
7fceb615
JD
6856If you invoke @samp{%define parse.error verbose} in the Bison declarations
6857section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6858Bison provides a more verbose and specific error message string instead of
6859just plain @w{@code{"syntax error"}}. However, that message sometimes
6860contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6861
1a059451
PE
6862The parser can detect one other kind of error: memory exhaustion. This
6863can happen when the input contains constructions that are very deeply
bfa74976 6864nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6865parser normally extends its stack automatically up to a very large limit. But
6866if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6867fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6868
6869In some cases diagnostics like @w{@code{"syntax error"}} are
6870translated automatically from English to some other language before
6871they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6872
6873The following definition suffices in simple programs:
6874
6875@example
6876@group
13863333 6877void
38a92d50 6878yyerror (char const *s)
bfa74976
RS
6879@{
6880@end group
6881@group
6882 fprintf (stderr, "%s\n", s);
6883@}
6884@end group
6885@end example
6886
6887After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6888error recovery if you have written suitable error recovery grammar rules
6889(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6890immediately return 1.
6891
93724f13 6892Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6893an access to the current location. With @code{%define api.pure}, this is
6894indeed the case for the GLR parsers, but not for the Yacc parser, for
6895historical reasons, and this is the why @code{%define api.pure full} should be
6896prefered over @code{%define api.pure}.
2a8d363a 6897
1f1bd572
TR
6898When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6899following signature:
2a8d363a
AD
6900
6901@example
1f1bd572 6902void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6903@end example
6904
1c0c3e95 6905@noindent
38a92d50
PE
6906The prototypes are only indications of how the code produced by Bison
6907uses @code{yyerror}. Bison-generated code always ignores the returned
6908value, so @code{yyerror} can return any type, including @code{void}.
6909Also, @code{yyerror} can be a variadic function; that is why the
6910message is always passed last.
6911
6912Traditionally @code{yyerror} returns an @code{int} that is always
6913ignored, but this is purely for historical reasons, and @code{void} is
6914preferable since it more accurately describes the return type for
6915@code{yyerror}.
93724f13 6916
bfa74976
RS
6917@vindex yynerrs
6918The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6919reported so far. Normally this variable is global; but if you
704a47c4
AD
6920request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6921then it is a local variable which only the actions can access.
bfa74976 6922
342b8b6e 6923@node Action Features
bfa74976
RS
6924@section Special Features for Use in Actions
6925@cindex summary, action features
6926@cindex action features summary
6927
6928Here is a table of Bison constructs, variables and macros that
6929are useful in actions.
6930
18b519c0 6931@deffn {Variable} $$
bfa74976
RS
6932Acts like a variable that contains the semantic value for the
6933grouping made by the current rule. @xref{Actions}.
18b519c0 6934@end deffn
bfa74976 6935
18b519c0 6936@deffn {Variable} $@var{n}
bfa74976
RS
6937Acts like a variable that contains the semantic value for the
6938@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6939@end deffn
bfa74976 6940
18b519c0 6941@deffn {Variable} $<@var{typealt}>$
bfa74976 6942Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6943specified by the @code{%union} declaration. @xref{Action Types, ,Data
6944Types of Values in Actions}.
18b519c0 6945@end deffn
bfa74976 6946
18b519c0 6947@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6948Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6949union specified by the @code{%union} declaration.
e0c471a9 6950@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6951@end deffn
bfa74976 6952
34a41a93 6953@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6954Return immediately from @code{yyparse}, indicating failure.
6955@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6956@end deffn
bfa74976 6957
34a41a93 6958@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6959Return immediately from @code{yyparse}, indicating success.
6960@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6961@end deffn
bfa74976 6962
34a41a93 6963@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6964@findex YYBACKUP
6965Unshift a token. This macro is allowed only for rules that reduce
742e4900 6966a single value, and only when there is no lookahead token.
8a4281b9 6967It is also disallowed in GLR parsers.
742e4900 6968It installs a lookahead token with token type @var{token} and
bfa74976
RS
6969semantic value @var{value}; then it discards the value that was
6970going to be reduced by this rule.
6971
6972If the macro is used when it is not valid, such as when there is
742e4900 6973a lookahead token already, then it reports a syntax error with
bfa74976
RS
6974a message @samp{cannot back up} and performs ordinary error
6975recovery.
6976
6977In either case, the rest of the action is not executed.
18b519c0 6978@end deffn
bfa74976 6979
18b519c0 6980@deffn {Macro} YYEMPTY
742e4900 6981Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6982@end deffn
bfa74976 6983
32c29292 6984@deffn {Macro} YYEOF
742e4900 6985Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6986stream.
6987@end deffn
6988
34a41a93 6989@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6990Cause an immediate syntax error. This statement initiates error
6991recovery just as if the parser itself had detected an error; however, it
6992does not call @code{yyerror}, and does not print any message. If you
6993want to print an error message, call @code{yyerror} explicitly before
6994the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6995@end deffn
bfa74976 6996
18b519c0 6997@deffn {Macro} YYRECOVERING
02103984
PE
6998@findex YYRECOVERING
6999The expression @code{YYRECOVERING ()} yields 1 when the parser
7000is recovering from a syntax error, and 0 otherwise.
bfa74976 7001@xref{Error Recovery}.
18b519c0 7002@end deffn
bfa74976 7003
18b519c0 7004@deffn {Variable} yychar
742e4900
JD
7005Variable containing either the lookahead token, or @code{YYEOF} when the
7006lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
7007has been performed so the next token is not yet known.
7008Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
7009Actions}).
742e4900 7010@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 7011@end deffn
bfa74976 7012
34a41a93 7013@deffn {Macro} yyclearin @code{;}
742e4900 7014Discard the current lookahead token. This is useful primarily in
32c29292
JD
7015error rules.
7016Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
7017Semantic Actions}).
7018@xref{Error Recovery}.
18b519c0 7019@end deffn
bfa74976 7020
34a41a93 7021@deffn {Macro} yyerrok @code{;}
bfa74976 7022Resume generating error messages immediately for subsequent syntax
13863333 7023errors. This is useful primarily in error rules.
bfa74976 7024@xref{Error Recovery}.
18b519c0 7025@end deffn
bfa74976 7026
32c29292 7027@deffn {Variable} yylloc
742e4900 7028Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
7029to @code{YYEMPTY} or @code{YYEOF}.
7030Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
7031Actions}).
7032@xref{Actions and Locations, ,Actions and Locations}.
7033@end deffn
7034
7035@deffn {Variable} yylval
742e4900 7036Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
7037not set to @code{YYEMPTY} or @code{YYEOF}.
7038Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
7039Actions}).
7040@xref{Actions, ,Actions}.
7041@end deffn
7042
18b519c0 7043@deffn {Value} @@$
303834cc
JD
7044Acts like a structure variable containing information on the textual
7045location of the grouping made by the current rule. @xref{Tracking
7046Locations}.
bfa74976 7047
847bf1f5
AD
7048@c Check if those paragraphs are still useful or not.
7049
7050@c @example
7051@c struct @{
7052@c int first_line, last_line;
7053@c int first_column, last_column;
7054@c @};
7055@c @end example
7056
7057@c Thus, to get the starting line number of the third component, you would
7058@c use @samp{@@3.first_line}.
bfa74976 7059
847bf1f5
AD
7060@c In order for the members of this structure to contain valid information,
7061@c you must make @code{yylex} supply this information about each token.
7062@c If you need only certain members, then @code{yylex} need only fill in
7063@c those members.
bfa74976 7064
847bf1f5 7065@c The use of this feature makes the parser noticeably slower.
18b519c0 7066@end deffn
847bf1f5 7067
18b519c0 7068@deffn {Value} @@@var{n}
847bf1f5 7069@findex @@@var{n}
303834cc
JD
7070Acts like a structure variable containing information on the textual
7071location of the @var{n}th component of the current rule. @xref{Tracking
7072Locations}.
18b519c0 7073@end deffn
bfa74976 7074
f7ab6a50
PE
7075@node Internationalization
7076@section Parser Internationalization
7077@cindex internationalization
7078@cindex i18n
7079@cindex NLS
7080@cindex gettext
7081@cindex bison-po
7082
7083A Bison-generated parser can print diagnostics, including error and
7084tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
7085also supports outputting diagnostics in the user's native language. To
7086make this work, the user should set the usual environment variables.
7087@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
7088For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 7089set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
7090encoding. The exact set of available locales depends on the user's
7091installation.
7092
7093The maintainer of a package that uses a Bison-generated parser enables
7094the internationalization of the parser's output through the following
8a4281b9
JD
7095steps. Here we assume a package that uses GNU Autoconf and
7096GNU Automake.
f7ab6a50
PE
7097
7098@enumerate
7099@item
30757c8c 7100@cindex bison-i18n.m4
8a4281b9 7101Into the directory containing the GNU Autoconf macros used
c949ada3 7102by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
7103@file{bison-i18n.m4} file installed by Bison under
7104@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
7105For example:
7106
7107@example
7108cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
7109@end example
7110
7111@item
30757c8c
PE
7112@findex BISON_I18N
7113@vindex BISON_LOCALEDIR
7114@vindex YYENABLE_NLS
f7ab6a50
PE
7115In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
7116invocation, add an invocation of @code{BISON_I18N}. This macro is
7117defined in the file @file{bison-i18n.m4} that you copied earlier. It
7118causes @samp{configure} to find the value of the
30757c8c
PE
7119@code{BISON_LOCALEDIR} variable, and it defines the source-language
7120symbol @code{YYENABLE_NLS} to enable translations in the
7121Bison-generated parser.
f7ab6a50
PE
7122
7123@item
7124In the @code{main} function of your program, designate the directory
7125containing Bison's runtime message catalog, through a call to
7126@samp{bindtextdomain} with domain name @samp{bison-runtime}.
7127For example:
7128
7129@example
7130bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
7131@end example
7132
7133Typically this appears after any other call @code{bindtextdomain
7134(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
7135@samp{BISON_LOCALEDIR} to be defined as a string through the
7136@file{Makefile}.
7137
7138@item
7139In the @file{Makefile.am} that controls the compilation of the @code{main}
7140function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
7141either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
7142
7143@example
7144DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7145@end example
7146
7147or:
7148
7149@example
7150AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7151@end example
7152
7153@item
7154Finally, invoke the command @command{autoreconf} to generate the build
7155infrastructure.
7156@end enumerate
7157
bfa74976 7158
342b8b6e 7159@node Algorithm
13863333
AD
7160@chapter The Bison Parser Algorithm
7161@cindex Bison parser algorithm
bfa74976
RS
7162@cindex algorithm of parser
7163@cindex shifting
7164@cindex reduction
7165@cindex parser stack
7166@cindex stack, parser
7167
7168As Bison reads tokens, it pushes them onto a stack along with their
7169semantic values. The stack is called the @dfn{parser stack}. Pushing a
7170token is traditionally called @dfn{shifting}.
7171
7172For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
7173@samp{3} to come. The stack will have four elements, one for each token
7174that was shifted.
7175
7176But the stack does not always have an element for each token read. When
7177the last @var{n} tokens and groupings shifted match the components of a
7178grammar rule, they can be combined according to that rule. This is called
7179@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
7180single grouping whose symbol is the result (left hand side) of that rule.
7181Running the rule's action is part of the process of reduction, because this
7182is what computes the semantic value of the resulting grouping.
7183
7184For example, if the infix calculator's parser stack contains this:
7185
7186@example
71871 + 5 * 3
7188@end example
7189
7190@noindent
7191and the next input token is a newline character, then the last three
7192elements can be reduced to 15 via the rule:
7193
7194@example
7195expr: expr '*' expr;
7196@end example
7197
7198@noindent
7199Then the stack contains just these three elements:
7200
7201@example
72021 + 15
7203@end example
7204
7205@noindent
7206At this point, another reduction can be made, resulting in the single value
720716. Then the newline token can be shifted.
7208
7209The parser tries, by shifts and reductions, to reduce the entire input down
7210to a single grouping whose symbol is the grammar's start-symbol
7211(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
7212
7213This kind of parser is known in the literature as a bottom-up parser.
7214
7215@menu
742e4900 7216* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
7217* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
7218* Precedence:: Operator precedence works by resolving conflicts.
7219* Contextual Precedence:: When an operator's precedence depends on context.
7220* Parser States:: The parser is a finite-state-machine with stack.
7221* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 7222* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 7223* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 7224* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 7225* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
7226@end menu
7227
742e4900
JD
7228@node Lookahead
7229@section Lookahead Tokens
7230@cindex lookahead token
bfa74976
RS
7231
7232The Bison parser does @emph{not} always reduce immediately as soon as the
7233last @var{n} tokens and groupings match a rule. This is because such a
7234simple strategy is inadequate to handle most languages. Instead, when a
7235reduction is possible, the parser sometimes ``looks ahead'' at the next
7236token in order to decide what to do.
7237
7238When a token is read, it is not immediately shifted; first it becomes the
742e4900 7239@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 7240perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
7241the lookahead token remains off to the side. When no more reductions
7242should take place, the lookahead token is shifted onto the stack. This
bfa74976 7243does not mean that all possible reductions have been done; depending on the
742e4900 7244token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
7245application.
7246
742e4900 7247Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
7248expressions which contain binary addition operators and postfix unary
7249factorial operators (@samp{!}), and allow parentheses for grouping.
7250
7251@example
7252@group
5e9b6624
AD
7253expr:
7254 term '+' expr
7255| term
7256;
bfa74976
RS
7257@end group
7258
7259@group
5e9b6624
AD
7260term:
7261 '(' expr ')'
7262| term '!'
534cee7a 7263| "number"
5e9b6624 7264;
bfa74976
RS
7265@end group
7266@end example
7267
7268Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7269should be done? If the following token is @samp{)}, then the first three
7270tokens must be reduced to form an @code{expr}. This is the only valid
7271course, because shifting the @samp{)} would produce a sequence of symbols
7272@w{@code{term ')'}}, and no rule allows this.
7273
7274If the following token is @samp{!}, then it must be shifted immediately so
7275that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7276parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7277@code{expr}. It would then be impossible to shift the @samp{!} because
7278doing so would produce on the stack the sequence of symbols @code{expr
7279'!'}. No rule allows that sequence.
7280
7281@vindex yychar
32c29292
JD
7282@vindex yylval
7283@vindex yylloc
742e4900 7284The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7285Its semantic value and location, if any, are stored in the variables
7286@code{yylval} and @code{yylloc}.
bfa74976
RS
7287@xref{Action Features, ,Special Features for Use in Actions}.
7288
342b8b6e 7289@node Shift/Reduce
bfa74976
RS
7290@section Shift/Reduce Conflicts
7291@cindex conflicts
7292@cindex shift/reduce conflicts
7293@cindex dangling @code{else}
7294@cindex @code{else}, dangling
7295
7296Suppose we are parsing a language which has if-then and if-then-else
7297statements, with a pair of rules like this:
7298
7299@example
7300@group
7301if_stmt:
534cee7a
AD
7302 "if" expr "then" stmt
7303| "if" expr "then" stmt "else" stmt
5e9b6624 7304;
bfa74976
RS
7305@end group
7306@end example
7307
7308@noindent
534cee7a
AD
7309Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7310specific keyword tokens.
bfa74976 7311
534cee7a 7312When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7313contents of the stack (assuming the input is valid) are just right for
7314reduction by the first rule. But it is also legitimate to shift the
534cee7a 7315@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7316rule.
7317
7318This situation, where either a shift or a reduction would be valid, is
7319called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7320these conflicts by choosing to shift, unless otherwise directed by
7321operator precedence declarations. To see the reason for this, let's
7322contrast it with the other alternative.
7323
534cee7a 7324Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7325the else-clause to the innermost if-statement, making these two inputs
7326equivalent:
7327
7328@example
534cee7a 7329if x then if y then win; else lose;
bfa74976 7330
534cee7a 7331if x then do; if y then win; else lose; end;
bfa74976
RS
7332@end example
7333
7334But if the parser chose to reduce when possible rather than shift, the
7335result would be to attach the else-clause to the outermost if-statement,
7336making these two inputs equivalent:
7337
7338@example
534cee7a 7339if x then if y then win; else lose;
bfa74976 7340
534cee7a 7341if x then do; if y then win; end; else lose;
bfa74976
RS
7342@end example
7343
7344The conflict exists because the grammar as written is ambiguous: either
7345parsing of the simple nested if-statement is legitimate. The established
7346convention is that these ambiguities are resolved by attaching the
7347else-clause to the innermost if-statement; this is what Bison accomplishes
7348by choosing to shift rather than reduce. (It would ideally be cleaner to
7349write an unambiguous grammar, but that is very hard to do in this case.)
7350This particular ambiguity was first encountered in the specifications of
7351Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7352
7353To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7354conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7355There will be no warning as long as the number of shift/reduce conflicts
7356is exactly @var{n}, and Bison will report an error if there is a
7357different number.
c28cd5dc
AD
7358@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7359recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7360number of conflicts does not mean that they are the @emph{same}. When
7361possible, you should rather use precedence directives to @emph{fix} the
7362conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7363Operators}).
bfa74976
RS
7364
7365The definition of @code{if_stmt} above is solely to blame for the
7366conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7367rules. Here is a complete Bison grammar file that actually manifests
7368the conflict:
bfa74976
RS
7369
7370@example
bfa74976 7371%%
bfa74976 7372@group
5e9b6624
AD
7373stmt:
7374 expr
7375| if_stmt
7376;
bfa74976
RS
7377@end group
7378
7379@group
7380if_stmt:
534cee7a
AD
7381 "if" expr "then" stmt
7382| "if" expr "then" stmt "else" stmt
5e9b6624 7383;
bfa74976
RS
7384@end group
7385
5e9b6624 7386expr:
534cee7a 7387 "identifier"
5e9b6624 7388;
bfa74976
RS
7389@end example
7390
342b8b6e 7391@node Precedence
bfa74976
RS
7392@section Operator Precedence
7393@cindex operator precedence
7394@cindex precedence of operators
7395
7396Another situation where shift/reduce conflicts appear is in arithmetic
7397expressions. Here shifting is not always the preferred resolution; the
7398Bison declarations for operator precedence allow you to specify when to
7399shift and when to reduce.
7400
7401@menu
7402* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7403* Using Precedence:: How to specify precedence and associativity.
7404* Precedence Only:: How to specify precedence only.
bfa74976
RS
7405* Precedence Examples:: How these features are used in the previous example.
7406* How Precedence:: How they work.
c28cd5dc 7407* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7408@end menu
7409
342b8b6e 7410@node Why Precedence
bfa74976
RS
7411@subsection When Precedence is Needed
7412
7413Consider the following ambiguous grammar fragment (ambiguous because the
7414input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7415
7416@example
7417@group
5e9b6624
AD
7418expr:
7419 expr '-' expr
7420| expr '*' expr
7421| expr '<' expr
7422| '(' expr ')'
7423@dots{}
7424;
bfa74976
RS
7425@end group
7426@end example
7427
7428@noindent
7429Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7430should it reduce them via the rule for the subtraction operator? It
7431depends on the next token. Of course, if the next token is @samp{)}, we
7432must reduce; shifting is invalid because no single rule can reduce the
7433token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7434the next token is @samp{*} or @samp{<}, we have a choice: either
7435shifting or reduction would allow the parse to complete, but with
7436different results.
7437
7438To decide which one Bison should do, we must consider the results. If
7439the next operator token @var{op} is shifted, then it must be reduced
7440first in order to permit another opportunity to reduce the difference.
7441The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7442hand, if the subtraction is reduced before shifting @var{op}, the result
7443is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7444reduce should depend on the relative precedence of the operators
7445@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7446@samp{<}.
bfa74976
RS
7447
7448@cindex associativity
7449What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7450@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7451operators we prefer the former, which is called @dfn{left association}.
7452The latter alternative, @dfn{right association}, is desirable for
7453assignment operators. The choice of left or right association is a
7454matter of whether the parser chooses to shift or reduce when the stack
742e4900 7455contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7456makes right-associativity.
bfa74976 7457
342b8b6e 7458@node Using Precedence
bfa74976
RS
7459@subsection Specifying Operator Precedence
7460@findex %left
bfa74976 7461@findex %nonassoc
d78f0ac9
AD
7462@findex %precedence
7463@findex %right
bfa74976
RS
7464
7465Bison allows you to specify these choices with the operator precedence
7466declarations @code{%left} and @code{%right}. Each such declaration
7467contains a list of tokens, which are operators whose precedence and
7468associativity is being declared. The @code{%left} declaration makes all
7469those operators left-associative and the @code{%right} declaration makes
7470them right-associative. A third alternative is @code{%nonassoc}, which
7471declares that it is a syntax error to find the same operator twice ``in a
7472row''.
d78f0ac9
AD
7473The last alternative, @code{%precedence}, allows to define only
7474precedence and no associativity at all. As a result, any
7475associativity-related conflict that remains will be reported as an
7476compile-time error. The directive @code{%nonassoc} creates run-time
7477error: using the operator in a associative way is a syntax error. The
7478directive @code{%precedence} creates compile-time errors: an operator
7479@emph{can} be involved in an associativity-related conflict, contrary to
7480what expected the grammar author.
bfa74976
RS
7481
7482The relative precedence of different operators is controlled by the
d78f0ac9
AD
7483order in which they are declared. The first precedence/associativity
7484declaration in the file declares the operators whose
bfa74976
RS
7485precedence is lowest, the next such declaration declares the operators
7486whose precedence is a little higher, and so on.
7487
d78f0ac9
AD
7488@node Precedence Only
7489@subsection Specifying Precedence Only
7490@findex %precedence
7491
8a4281b9 7492Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7493@code{%nonassoc}, which all defines precedence and associativity, little
7494attention is paid to the fact that precedence cannot be defined without
7495defining associativity. Yet, sometimes, when trying to solve a
7496conflict, precedence suffices. In such a case, using @code{%left},
7497@code{%right}, or @code{%nonassoc} might hide future (associativity
7498related) conflicts that would remain hidden.
7499
7500The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7501Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7502in the following situation, where the period denotes the current parsing
7503state:
7504
7505@example
7506if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7507@end example
7508
7509The conflict involves the reduction of the rule @samp{IF expr THEN
7510stmt}, which precedence is by default that of its last token
7511(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7512disambiguation (attach the @code{else} to the closest @code{if}),
7513shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7514higher than that of @code{THEN}. But neither is expected to be involved
7515in an associativity related conflict, which can be specified as follows.
7516
7517@example
7518%precedence THEN
7519%precedence ELSE
7520@end example
7521
7522The unary-minus is another typical example where associativity is
7523usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7524Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7525used to declare the precedence of @code{NEG}, which is more than needed
7526since it also defines its associativity. While this is harmless in the
7527traditional example, who knows how @code{NEG} might be used in future
7528evolutions of the grammar@dots{}
7529
342b8b6e 7530@node Precedence Examples
bfa74976
RS
7531@subsection Precedence Examples
7532
7533In our example, we would want the following declarations:
7534
7535@example
7536%left '<'
7537%left '-'
7538%left '*'
7539@end example
7540
7541In a more complete example, which supports other operators as well, we
7542would declare them in groups of equal precedence. For example, @code{'+'} is
7543declared with @code{'-'}:
7544
7545@example
534cee7a 7546%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7547%left '+' '-'
7548%left '*' '/'
7549@end example
7550
342b8b6e 7551@node How Precedence
bfa74976
RS
7552@subsection How Precedence Works
7553
7554The first effect of the precedence declarations is to assign precedence
7555levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7556precedence levels to certain rules: each rule gets its precedence from
7557the last terminal symbol mentioned in the components. (You can also
7558specify explicitly the precedence of a rule. @xref{Contextual
7559Precedence, ,Context-Dependent Precedence}.)
7560
7561Finally, the resolution of conflicts works by comparing the precedence
742e4900 7562of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7563token's precedence is higher, the choice is to shift. If the rule's
7564precedence is higher, the choice is to reduce. If they have equal
7565precedence, the choice is made based on the associativity of that
7566precedence level. The verbose output file made by @samp{-v}
7567(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7568resolved.
bfa74976
RS
7569
7570Not all rules and not all tokens have precedence. If either the rule or
742e4900 7571the lookahead token has no precedence, then the default is to shift.
bfa74976 7572
c28cd5dc
AD
7573@node Non Operators
7574@subsection Using Precedence For Non Operators
7575
7576Using properly precedence and associativity directives can help fixing
7577shift/reduce conflicts that do not involve arithmetics-like operators. For
7578instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7579Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7580
7581In the present case, the conflict is between the token @code{"else"} willing
7582to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7583for reduction. By default, the precedence of a rule is that of its last
7584token, here @code{"then"}, so the conflict will be solved appropriately
7585by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7586instance as follows:
7587
7588@example
7589@group
589149dc
AD
7590%precedence "then"
7591%precedence "else"
c28cd5dc
AD
7592@end group
7593@end example
7594
7595Alternatively, you may give both tokens the same precedence, in which case
7596associativity is used to solve the conflict. To preserve the shift action,
7597use right associativity:
7598
7599@example
7600%right "then" "else"
7601@end example
7602
7603Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7604``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7605of these keywords with respect to the other operators your grammar.
7606Therefore, instead of being warned about new conflicts you would be unaware
7607of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7608being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7609else 2) + 3}?), the conflict will be already ``fixed''.
7610
342b8b6e 7611@node Contextual Precedence
bfa74976
RS
7612@section Context-Dependent Precedence
7613@cindex context-dependent precedence
7614@cindex unary operator precedence
7615@cindex precedence, context-dependent
7616@cindex precedence, unary operator
7617@findex %prec
7618
7619Often the precedence of an operator depends on the context. This sounds
7620outlandish at first, but it is really very common. For example, a minus
7621sign typically has a very high precedence as a unary operator, and a
7622somewhat lower precedence (lower than multiplication) as a binary operator.
7623
d78f0ac9
AD
7624The Bison precedence declarations
7625can only be used once for a given token; so a token has
bfa74976
RS
7626only one precedence declared in this way. For context-dependent
7627precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7628modifier for rules.
bfa74976
RS
7629
7630The @code{%prec} modifier declares the precedence of a particular rule by
7631specifying a terminal symbol whose precedence should be used for that rule.
7632It's not necessary for that symbol to appear otherwise in the rule. The
7633modifier's syntax is:
7634
7635@example
7636%prec @var{terminal-symbol}
7637@end example
7638
7639@noindent
7640and it is written after the components of the rule. Its effect is to
7641assign the rule the precedence of @var{terminal-symbol}, overriding
7642the precedence that would be deduced for it in the ordinary way. The
7643altered rule precedence then affects how conflicts involving that rule
7644are resolved (@pxref{Precedence, ,Operator Precedence}).
7645
7646Here is how @code{%prec} solves the problem of unary minus. First, declare
7647a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7648are no tokens of this type, but the symbol serves to stand for its
7649precedence:
7650
7651@example
7652@dots{}
7653%left '+' '-'
7654%left '*'
7655%left UMINUS
7656@end example
7657
7658Now the precedence of @code{UMINUS} can be used in specific rules:
7659
7660@example
7661@group
5e9b6624
AD
7662exp:
7663 @dots{}
7664| exp '-' exp
7665 @dots{}
7666| '-' exp %prec UMINUS
bfa74976
RS
7667@end group
7668@end example
7669
91d2c560 7670@ifset defaultprec
39a06c25
PE
7671If you forget to append @code{%prec UMINUS} to the rule for unary
7672minus, Bison silently assumes that minus has its usual precedence.
7673This kind of problem can be tricky to debug, since one typically
7674discovers the mistake only by testing the code.
7675
22fccf95 7676The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7677this kind of problem systematically. It causes rules that lack a
7678@code{%prec} modifier to have no precedence, even if the last terminal
7679symbol mentioned in their components has a declared precedence.
7680
22fccf95 7681If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7682for all rules that participate in precedence conflict resolution.
7683Then you will see any shift/reduce conflict until you tell Bison how
7684to resolve it, either by changing your grammar or by adding an
7685explicit precedence. This will probably add declarations to the
7686grammar, but it helps to protect against incorrect rule precedences.
7687
22fccf95
PE
7688The effect of @code{%no-default-prec;} can be reversed by giving
7689@code{%default-prec;}, which is the default.
91d2c560 7690@end ifset
39a06c25 7691
342b8b6e 7692@node Parser States
bfa74976
RS
7693@section Parser States
7694@cindex finite-state machine
7695@cindex parser state
7696@cindex state (of parser)
7697
7698The function @code{yyparse} is implemented using a finite-state machine.
7699The values pushed on the parser stack are not simply token type codes; they
7700represent the entire sequence of terminal and nonterminal symbols at or
7701near the top of the stack. The current state collects all the information
7702about previous input which is relevant to deciding what to do next.
7703
742e4900
JD
7704Each time a lookahead token is read, the current parser state together
7705with the type of lookahead token are looked up in a table. This table
7706entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7707specifies the new parser state, which is pushed onto the top of the
7708parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7709This means that a certain number of tokens or groupings are taken off
7710the top of the stack, and replaced by one grouping. In other words,
7711that number of states are popped from the stack, and one new state is
7712pushed.
7713
742e4900 7714There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7715is erroneous in the current state. This causes error processing to begin
7716(@pxref{Error Recovery}).
7717
342b8b6e 7718@node Reduce/Reduce
bfa74976
RS
7719@section Reduce/Reduce Conflicts
7720@cindex reduce/reduce conflict
7721@cindex conflicts, reduce/reduce
7722
7723A reduce/reduce conflict occurs if there are two or more rules that apply
7724to the same sequence of input. This usually indicates a serious error
7725in the grammar.
7726
7727For example, here is an erroneous attempt to define a sequence
7728of zero or more @code{word} groupings.
7729
7730@example
d4fca427 7731@group
5e9b6624 7732sequence:
6240346a 7733 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7734| maybeword
7735| sequence word @{ printf ("added word %s\n", $2); @}
7736;
d4fca427 7737@end group
bfa74976 7738
d4fca427 7739@group
5e9b6624 7740maybeword:
6240346a
AD
7741 %empty @{ printf ("empty maybeword\n"); @}
7742| word @{ printf ("single word %s\n", $1); @}
5e9b6624 7743;
d4fca427 7744@end group
bfa74976
RS
7745@end example
7746
7747@noindent
7748The error is an ambiguity: there is more than one way to parse a single
7749@code{word} into a @code{sequence}. It could be reduced to a
7750@code{maybeword} and then into a @code{sequence} via the second rule.
7751Alternatively, nothing-at-all could be reduced into a @code{sequence}
7752via the first rule, and this could be combined with the @code{word}
7753using the third rule for @code{sequence}.
7754
7755There is also more than one way to reduce nothing-at-all into a
7756@code{sequence}. This can be done directly via the first rule,
7757or indirectly via @code{maybeword} and then the second rule.
7758
7759You might think that this is a distinction without a difference, because it
7760does not change whether any particular input is valid or not. But it does
7761affect which actions are run. One parsing order runs the second rule's
7762action; the other runs the first rule's action and the third rule's action.
7763In this example, the output of the program changes.
7764
7765Bison resolves a reduce/reduce conflict by choosing to use the rule that
7766appears first in the grammar, but it is very risky to rely on this. Every
7767reduce/reduce conflict must be studied and usually eliminated. Here is the
7768proper way to define @code{sequence}:
7769
7770@example
51356dd2 7771@group
5e9b6624 7772sequence:
6240346a 7773 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7774| sequence word @{ printf ("added word %s\n", $2); @}
7775;
51356dd2 7776@end group
bfa74976
RS
7777@end example
7778
7779Here is another common error that yields a reduce/reduce conflict:
7780
7781@example
51356dd2 7782@group
589149dc 7783sequence:
6240346a 7784 %empty
5e9b6624
AD
7785| sequence words
7786| sequence redirects
7787;
51356dd2 7788@end group
bfa74976 7789
51356dd2 7790@group
5e9b6624 7791words:
6240346a 7792 %empty
5e9b6624
AD
7793| words word
7794;
51356dd2 7795@end group
bfa74976 7796
51356dd2 7797@group
5e9b6624 7798redirects:
6240346a 7799 %empty
5e9b6624
AD
7800| redirects redirect
7801;
51356dd2 7802@end group
bfa74976
RS
7803@end example
7804
7805@noindent
7806The intention here is to define a sequence which can contain either
7807@code{word} or @code{redirect} groupings. The individual definitions of
7808@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7809three together make a subtle ambiguity: even an empty input can be parsed
7810in infinitely many ways!
7811
7812Consider: nothing-at-all could be a @code{words}. Or it could be two
7813@code{words} in a row, or three, or any number. It could equally well be a
7814@code{redirects}, or two, or any number. Or it could be a @code{words}
7815followed by three @code{redirects} and another @code{words}. And so on.
7816
7817Here are two ways to correct these rules. First, to make it a single level
7818of sequence:
7819
7820@example
5e9b6624 7821sequence:
6240346a 7822 %empty
5e9b6624
AD
7823| sequence word
7824| sequence redirect
7825;
bfa74976
RS
7826@end example
7827
7828Second, to prevent either a @code{words} or a @code{redirects}
7829from being empty:
7830
7831@example
d4fca427 7832@group
5e9b6624 7833sequence:
6240346a 7834 %empty
5e9b6624
AD
7835| sequence words
7836| sequence redirects
7837;
d4fca427 7838@end group
bfa74976 7839
d4fca427 7840@group
5e9b6624
AD
7841words:
7842 word
7843| words word
7844;
d4fca427 7845@end group
bfa74976 7846
d4fca427 7847@group
5e9b6624
AD
7848redirects:
7849 redirect
7850| redirects redirect
7851;
d4fca427 7852@end group
bfa74976
RS
7853@end example
7854
53e2cd1e
AD
7855Yet this proposal introduces another kind of ambiguity! The input
7856@samp{word word} can be parsed as a single @code{words} composed of two
7857@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7858@code{redirect}/@code{redirects}). However this ambiguity is now a
7859shift/reduce conflict, and therefore it can now be addressed with precedence
7860directives.
7861
7862To simplify the matter, we will proceed with @code{word} and @code{redirect}
7863being tokens: @code{"word"} and @code{"redirect"}.
7864
7865To prefer the longest @code{words}, the conflict between the token
7866@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7867as a shift. To this end, we use the same techniques as exposed above, see
7868@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7869relies on precedences: use @code{%prec} to give a lower precedence to the
7870rule:
7871
7872@example
589149dc
AD
7873%precedence "word"
7874%precedence "sequence"
53e2cd1e
AD
7875%%
7876@group
7877sequence:
6240346a 7878 %empty
53e2cd1e
AD
7879| sequence word %prec "sequence"
7880| sequence redirect %prec "sequence"
7881;
7882@end group
7883
7884@group
7885words:
7886 word
7887| words "word"
7888;
7889@end group
7890@end example
7891
7892Another solution relies on associativity: provide both the token and the
7893rule with the same precedence, but make them right-associative:
7894
7895@example
7896%right "word" "redirect"
7897%%
7898@group
7899sequence:
6240346a 7900 %empty
53e2cd1e
AD
7901| sequence word %prec "word"
7902| sequence redirect %prec "redirect"
7903;
7904@end group
7905@end example
7906
cc09e5be
JD
7907@node Mysterious Conflicts
7908@section Mysterious Conflicts
7fceb615 7909@cindex Mysterious Conflicts
bfa74976
RS
7910
7911Sometimes reduce/reduce conflicts can occur that don't look warranted.
7912Here is an example:
7913
7914@example
7915@group
bfa74976 7916%%
5e9b6624 7917def: param_spec return_spec ',';
bfa74976 7918param_spec:
5e9b6624
AD
7919 type
7920| name_list ':' type
7921;
bfa74976 7922@end group
589149dc 7923
bfa74976
RS
7924@group
7925return_spec:
5e9b6624
AD
7926 type
7927| name ':' type
7928;
bfa74976 7929@end group
589149dc 7930
534cee7a 7931type: "id";
589149dc 7932
bfa74976 7933@group
534cee7a 7934name: "id";
bfa74976 7935name_list:
5e9b6624
AD
7936 name
7937| name ',' name_list
7938;
bfa74976
RS
7939@end group
7940@end example
7941
534cee7a
AD
7942It would seem that this grammar can be parsed with only a single token of
7943lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7944@code{name} if a comma or colon follows, or a @code{type} if another
7945@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7946
7fceb615
JD
7947@cindex LR
7948@cindex LALR
eb45ef3b 7949However, for historical reasons, Bison cannot by default handle all
8a4281b9 7950LR(1) grammars.
534cee7a 7951In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7952of a @code{param_spec} and likewise at the beginning of a
7953@code{return_spec}, are similar enough that Bison assumes they are the
7954same.
7955They appear similar because the same set of rules would be
bfa74976
RS
7956active---the rule for reducing to a @code{name} and that for reducing to
7957a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7958that the rules would require different lookahead tokens in the two
bfa74976
RS
7959contexts, so it makes a single parser state for them both. Combining
7960the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7961occurrence means that the grammar is not LALR(1).
bfa74976 7962
7fceb615
JD
7963@cindex IELR
7964@cindex canonical LR
7965For many practical grammars (specifically those that fall into the non-LR(1)
7966class), the limitations of LALR(1) result in difficulties beyond just
7967mysterious reduce/reduce conflicts. The best way to fix all these problems
7968is to select a different parser table construction algorithm. Either
7969IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7970and easier to debug during development. @xref{LR Table Construction}, for
7971details. (Bison's IELR(1) and canonical LR(1) implementations are
7972experimental. More user feedback will help to stabilize them.)
eb45ef3b 7973
8a4281b9 7974If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7975can often fix a mysterious conflict by identifying the two parser states
7976that are being confused, and adding something to make them look
7977distinct. In the above example, adding one rule to
bfa74976
RS
7978@code{return_spec} as follows makes the problem go away:
7979
7980@example
7981@group
bfa74976
RS
7982@dots{}
7983return_spec:
5e9b6624
AD
7984 type
7985| name ':' type
534cee7a 7986| "id" "bogus" /* This rule is never used. */
5e9b6624 7987;
bfa74976
RS
7988@end group
7989@end example
7990
7991This corrects the problem because it introduces the possibility of an
534cee7a 7992additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7993@code{return_spec}. This rule is not active in the corresponding context
7994in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7995As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7996the added rule cannot alter the way actual input is parsed.
7997
7998In this particular example, there is another way to solve the problem:
534cee7a 7999rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
8000instead of via @code{name}. This also causes the two confusing
8001contexts to have different sets of active rules, because the one for
8002@code{return_spec} activates the altered rule for @code{return_spec}
8003rather than the one for @code{name}.
8004
8005@example
589149dc 8006@group
bfa74976 8007param_spec:
5e9b6624
AD
8008 type
8009| name_list ':' type
8010;
589149dc
AD
8011@end group
8012
8013@group
bfa74976 8014return_spec:
5e9b6624 8015 type
534cee7a 8016| "id" ':' type
5e9b6624 8017;
589149dc 8018@end group
bfa74976
RS
8019@end example
8020
8a4281b9 8021For a more detailed exposition of LALR(1) parsers and parser
5e528941 8022generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 8023
7fceb615
JD
8024@node Tuning LR
8025@section Tuning LR
8026
8027The default behavior of Bison's LR-based parsers is chosen mostly for
8028historical reasons, but that behavior is often not robust. For example, in
8029the previous section, we discussed the mysterious conflicts that can be
8030produced by LALR(1), Bison's default parser table construction algorithm.
8031Another example is Bison's @code{%define parse.error verbose} directive,
8032which instructs the generated parser to produce verbose syntax error
8033messages, which can sometimes contain incorrect information.
8034
8035In this section, we explore several modern features of Bison that allow you
8036to tune fundamental aspects of the generated LR-based parsers. Some of
8037these features easily eliminate shortcomings like those mentioned above.
8038Others can be helpful purely for understanding your parser.
8039
8040Most of the features discussed in this section are still experimental. More
8041user feedback will help to stabilize them.
8042
8043@menu
8044* LR Table Construction:: Choose a different construction algorithm.
8045* Default Reductions:: Disable default reductions.
8046* LAC:: Correct lookahead sets in the parser states.
8047* Unreachable States:: Keep unreachable parser states for debugging.
8048@end menu
8049
8050@node LR Table Construction
8051@subsection LR Table Construction
8052@cindex Mysterious Conflict
8053@cindex LALR
8054@cindex IELR
8055@cindex canonical LR
8056@findex %define lr.type
8057
8058For historical reasons, Bison constructs LALR(1) parser tables by default.
8059However, LALR does not possess the full language-recognition power of LR.
8060As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 8061mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
8062Conflicts}.
8063
8064As we also demonstrated in that example, the traditional approach to
8065eliminating such mysterious behavior is to restructure the grammar.
8066Unfortunately, doing so correctly is often difficult. Moreover, merely
8067discovering that LALR causes mysterious behavior in your parser can be
8068difficult as well.
8069
8070Fortunately, Bison provides an easy way to eliminate the possibility of such
8071mysterious behavior altogether. You simply need to activate a more powerful
8072parser table construction algorithm by using the @code{%define lr.type}
8073directive.
8074
511dd971 8075@deffn {Directive} {%define lr.type} @var{type}
7fceb615 8076Specify the type of parser tables within the LR(1) family. The accepted
511dd971 8077values for @var{type} are:
7fceb615
JD
8078
8079@itemize
8080@item @code{lalr} (default)
8081@item @code{ielr}
8082@item @code{canonical-lr}
8083@end itemize
8084
8085(This feature is experimental. More user feedback will help to stabilize
8086it.)
8087@end deffn
8088
8089For example, to activate IELR, you might add the following directive to you
8090grammar file:
8091
8092@example
8093%define lr.type ielr
8094@end example
8095
cc09e5be 8096@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
8097conflict is then eliminated, so there is no need to invest time in
8098comprehending the conflict or restructuring the grammar to fix it. If,
8099during future development, the grammar evolves such that all mysterious
8100behavior would have disappeared using just LALR, you need not fear that
8101continuing to use IELR will result in unnecessarily large parser tables.
8102That is, IELR generates LALR tables when LALR (using a deterministic parsing
8103algorithm) is sufficient to support the full language-recognition power of
8104LR. Thus, by enabling IELR at the start of grammar development, you can
8105safely and completely eliminate the need to consider LALR's shortcomings.
8106
8107While IELR is almost always preferable, there are circumstances where LALR
8108or the canonical LR parser tables described by Knuth
8109(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
8110relative advantages of each parser table construction algorithm within
8111Bison:
8112
8113@itemize
8114@item LALR
8115
8116There are at least two scenarios where LALR can be worthwhile:
8117
8118@itemize
8119@item GLR without static conflict resolution.
8120
8121@cindex GLR with LALR
8122When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
8123conflicts statically (for example, with @code{%left} or @code{%precedence}),
8124then
7fceb615
JD
8125the parser explores all potential parses of any given input. In this case,
8126the choice of parser table construction algorithm is guaranteed not to alter
8127the language accepted by the parser. LALR parser tables are the smallest
8128parser tables Bison can currently construct, so they may then be preferable.
8129Nevertheless, once you begin to resolve conflicts statically, GLR behaves
8130more like a deterministic parser in the syntactic contexts where those
8131conflicts appear, and so either IELR or canonical LR can then be helpful to
8132avoid LALR's mysterious behavior.
8133
8134@item Malformed grammars.
8135
8136Occasionally during development, an especially malformed grammar with a
8137major recurring flaw may severely impede the IELR or canonical LR parser
8138table construction algorithm. LALR can be a quick way to construct parser
8139tables in order to investigate such problems while ignoring the more subtle
8140differences from IELR and canonical LR.
8141@end itemize
8142
8143@item IELR
8144
8145IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
8146any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
8147always accept exactly the same set of sentences. However, like LALR, IELR
8148merges parser states during parser table construction so that the number of
8149parser states is often an order of magnitude less than for canonical LR.
8150More importantly, because canonical LR's extra parser states may contain
8151duplicate conflicts in the case of non-LR grammars, the number of conflicts
8152for IELR is often an order of magnitude less as well. This effect can
8153significantly reduce the complexity of developing a grammar.
8154
8155@item Canonical LR
8156
8157@cindex delayed syntax error detection
8158@cindex LAC
8159@findex %nonassoc
8160While inefficient, canonical LR parser tables can be an interesting means to
8161explore a grammar because they possess a property that IELR and LALR tables
8162do not. That is, if @code{%nonassoc} is not used and default reductions are
8163left disabled (@pxref{Default Reductions}), then, for every left context of
8164every canonical LR state, the set of tokens accepted by that state is
8165guaranteed to be the exact set of tokens that is syntactically acceptable in
8166that left context. It might then seem that an advantage of canonical LR
8167parsers in production is that, under the above constraints, they are
8168guaranteed to detect a syntax error as soon as possible without performing
8169any unnecessary reductions. However, IELR parsers that use LAC are also
8170able to achieve this behavior without sacrificing @code{%nonassoc} or
8171default reductions. For details and a few caveats of LAC, @pxref{LAC}.
8172@end itemize
8173
8174For a more detailed exposition of the mysterious behavior in LALR parsers
8175and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
8176@ref{Bibliography,,Denny 2010 November}.
8177
8178@node Default Reductions
8179@subsection Default Reductions
8180@cindex default reductions
f3bc3386 8181@findex %define lr.default-reduction
7fceb615
JD
8182@findex %nonassoc
8183
8184After parser table construction, Bison identifies the reduction with the
8185largest lookahead set in each parser state. To reduce the size of the
8186parser state, traditional Bison behavior is to remove that lookahead set and
8187to assign that reduction to be the default parser action. Such a reduction
8188is known as a @dfn{default reduction}.
8189
8190Default reductions affect more than the size of the parser tables. They
8191also affect the behavior of the parser:
8192
8193@itemize
8194@item Delayed @code{yylex} invocations.
8195
8196@cindex delayed yylex invocations
8197@cindex consistent states
8198@cindex defaulted states
8199A @dfn{consistent state} is a state that has only one possible parser
8200action. If that action is a reduction and is encoded as a default
8201reduction, then that consistent state is called a @dfn{defaulted state}.
8202Upon reaching a defaulted state, a Bison-generated parser does not bother to
8203invoke @code{yylex} to fetch the next token before performing the reduction.
8204In other words, whether default reductions are enabled in consistent states
8205determines how soon a Bison-generated parser invokes @code{yylex} for a
8206token: immediately when it @emph{reaches} that token in the input or when it
8207eventually @emph{needs} that token as a lookahead to determine the next
8208parser action. Traditionally, default reductions are enabled, and so the
8209parser exhibits the latter behavior.
8210
8211The presence of defaulted states is an important consideration when
8212designing @code{yylex} and the grammar file. That is, if the behavior of
8213@code{yylex} can influence or be influenced by the semantic actions
8214associated with the reductions in defaulted states, then the delay of the
8215next @code{yylex} invocation until after those reductions is significant.
8216For example, the semantic actions might pop a scope stack that @code{yylex}
8217uses to determine what token to return. Thus, the delay might be necessary
8218to ensure that @code{yylex} does not look up the next token in a scope that
8219should already be considered closed.
8220
8221@item Delayed syntax error detection.
8222
8223@cindex delayed syntax error detection
8224When the parser fetches a new token by invoking @code{yylex}, it checks
8225whether there is an action for that token in the current parser state. The
8226parser detects a syntax error if and only if either (1) there is no action
8227for that token or (2) the action for that token is the error action (due to
8228the use of @code{%nonassoc}). However, if there is a default reduction in
8229that state (which might or might not be a defaulted state), then it is
8230impossible for condition 1 to exist. That is, all tokens have an action.
8231Thus, the parser sometimes fails to detect the syntax error until it reaches
8232a later state.
8233
8234@cindex LAC
8235@c If there's an infinite loop, default reductions can prevent an incorrect
8236@c sentence from being rejected.
8237While default reductions never cause the parser to accept syntactically
8238incorrect sentences, the delay of syntax error detection can have unexpected
8239effects on the behavior of the parser. However, the delay can be caused
8240anyway by parser state merging and the use of @code{%nonassoc}, and it can
8241be fixed by another Bison feature, LAC. We discuss the effects of delayed
8242syntax error detection and LAC more in the next section (@pxref{LAC}).
8243@end itemize
8244
8245For canonical LR, the only default reduction that Bison enables by default
8246is the accept action, which appears only in the accepting state, which has
8247no other action and is thus a defaulted state. However, the default accept
8248action does not delay any @code{yylex} invocation or syntax error detection
8249because the accept action ends the parse.
8250
8251For LALR and IELR, Bison enables default reductions in nearly all states by
8252default. There are only two exceptions. First, states that have a shift
8253action on the @code{error} token do not have default reductions because
8254delayed syntax error detection could then prevent the @code{error} token
8255from ever being shifted in that state. However, parser state merging can
8256cause the same effect anyway, and LAC fixes it in both cases, so future
8257versions of Bison might drop this exception when LAC is activated. Second,
8258GLR parsers do not record the default reduction as the action on a lookahead
8259token for which there is a conflict. The correct action in this case is to
8260split the parse instead.
8261
8262To adjust which states have default reductions enabled, use the
f3bc3386 8263@code{%define lr.default-reduction} directive.
7fceb615 8264
5807bb91 8265@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8266Specify the kind of states that are permitted to contain default reductions.
511dd971 8267The accepted values of @var{where} are:
7fceb615 8268@itemize
f0ad1b2f 8269@item @code{most} (default for LALR and IELR)
7fceb615
JD
8270@item @code{consistent}
8271@item @code{accepting} (default for canonical LR)
8272@end itemize
8273
8274(The ability to specify where default reductions are permitted is
8275experimental. More user feedback will help to stabilize it.)
8276@end deffn
8277
7fceb615
JD
8278@node LAC
8279@subsection LAC
8280@findex %define parse.lac
8281@cindex LAC
8282@cindex lookahead correction
8283
8284Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8285encountering a syntax error. First, the parser might perform additional
8286parser stack reductions before discovering the syntax error. Such
8287reductions can perform user semantic actions that are unexpected because
8288they are based on an invalid token, and they cause error recovery to begin
8289in a different syntactic context than the one in which the invalid token was
8290encountered. Second, when verbose error messages are enabled (@pxref{Error
8291Reporting}), the expected token list in the syntax error message can both
8292contain invalid tokens and omit valid tokens.
8293
8294The culprits for the above problems are @code{%nonassoc}, default reductions
8295in inconsistent states (@pxref{Default Reductions}), and parser state
8296merging. Because IELR and LALR merge parser states, they suffer the most.
8297Canonical LR can suffer only if @code{%nonassoc} is used or if default
8298reductions are enabled for inconsistent states.
8299
8300LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8301that solves these problems for canonical LR, IELR, and LALR without
8302sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8303enable LAC with the @code{%define parse.lac} directive.
8304
511dd971 8305@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8306Enable LAC to improve syntax error handling.
8307@itemize
8308@item @code{none} (default)
8309@item @code{full}
8310@end itemize
8311(This feature is experimental. More user feedback will help to stabilize
8312it. Moreover, it is currently only available for deterministic parsers in
8313C.)
8314@end deffn
8315
8316Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8317fetches a new token from the scanner so that it can determine the next
8318parser action, it immediately suspends normal parsing and performs an
8319exploratory parse using a temporary copy of the normal parser state stack.
8320During this exploratory parse, the parser does not perform user semantic
8321actions. If the exploratory parse reaches a shift action, normal parsing
8322then resumes on the normal parser stacks. If the exploratory parse reaches
8323an error instead, the parser reports a syntax error. If verbose syntax
8324error messages are enabled, the parser must then discover the list of
8325expected tokens, so it performs a separate exploratory parse for each token
8326in the grammar.
8327
8328There is one subtlety about the use of LAC. That is, when in a consistent
8329parser state with a default reduction, the parser will not attempt to fetch
8330a token from the scanner because no lookahead is needed to determine the
8331next parser action. Thus, whether default reductions are enabled in
8332consistent states (@pxref{Default Reductions}) affects how soon the parser
8333detects a syntax error: immediately when it @emph{reaches} an erroneous
8334token or when it eventually @emph{needs} that token as a lookahead to
8335determine the next parser action. The latter behavior is probably more
8336intuitive, so Bison currently provides no way to achieve the former behavior
8337while default reductions are enabled in consistent states.
8338
8339Thus, when LAC is in use, for some fixed decision of whether to enable
8340default reductions in consistent states, canonical LR and IELR behave almost
8341exactly the same for both syntactically acceptable and syntactically
8342unacceptable input. While LALR still does not support the full
8343language-recognition power of canonical LR and IELR, LAC at least enables
8344LALR's syntax error handling to correctly reflect LALR's
8345language-recognition power.
8346
8347There are a few caveats to consider when using LAC:
8348
8349@itemize
8350@item Infinite parsing loops.
8351
8352IELR plus LAC does have one shortcoming relative to canonical LR. Some
8353parsers generated by Bison can loop infinitely. LAC does not fix infinite
8354parsing loops that occur between encountering a syntax error and detecting
8355it, but enabling canonical LR or disabling default reductions sometimes
8356does.
8357
8358@item Verbose error message limitations.
8359
8360Because of internationalization considerations, Bison-generated parsers
8361limit the size of the expected token list they are willing to report in a
8362verbose syntax error message. If the number of expected tokens exceeds that
8363limit, the list is simply dropped from the message. Enabling LAC can
8364increase the size of the list and thus cause the parser to drop it. Of
8365course, dropping the list is better than reporting an incorrect list.
8366
8367@item Performance.
8368
8369Because LAC requires many parse actions to be performed twice, it can have a
8370performance penalty. However, not all parse actions must be performed
8371twice. Specifically, during a series of default reductions in consistent
8372states and shift actions, the parser never has to initiate an exploratory
8373parse. Moreover, the most time-consuming tasks in a parse are often the
8374file I/O, the lexical analysis performed by the scanner, and the user's
8375semantic actions, but none of these are performed during the exploratory
8376parse. Finally, the base of the temporary stack used during an exploratory
8377parse is a pointer into the normal parser state stack so that the stack is
8378never physically copied. In our experience, the performance penalty of LAC
5a321748 8379has proved insignificant for practical grammars.
7fceb615
JD
8380@end itemize
8381
709c7d11
JD
8382While the LAC algorithm shares techniques that have been recognized in the
8383parser community for years, for the publication that introduces LAC,
8384@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8385
7fceb615
JD
8386@node Unreachable States
8387@subsection Unreachable States
f3bc3386 8388@findex %define lr.keep-unreachable-state
7fceb615
JD
8389@cindex unreachable states
8390
8391If there exists no sequence of transitions from the parser's start state to
8392some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8393state}. A state can become unreachable during conflict resolution if Bison
8394disables a shift action leading to it from a predecessor state.
8395
8396By default, Bison removes unreachable states from the parser after conflict
8397resolution because they are useless in the generated parser. However,
8398keeping unreachable states is sometimes useful when trying to understand the
8399relationship between the parser and the grammar.
8400
5807bb91 8401@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8402Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8403@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8404@end deffn
8405
8406There are a few caveats to consider:
8407
8408@itemize @bullet
8409@item Missing or extraneous warnings.
8410
8411Unreachable states may contain conflicts and may use rules not used in any
8412other state. Thus, keeping unreachable states may induce warnings that are
8413irrelevant to your parser's behavior, and it may eliminate warnings that are
8414relevant. Of course, the change in warnings may actually be relevant to a
8415parser table analysis that wants to keep unreachable states, so this
8416behavior will likely remain in future Bison releases.
8417
8418@item Other useless states.
8419
8420While Bison is able to remove unreachable states, it is not guaranteed to
8421remove other kinds of useless states. Specifically, when Bison disables
8422reduce actions during conflict resolution, some goto actions may become
8423useless, and thus some additional states may become useless. If Bison were
8424to compute which goto actions were useless and then disable those actions,
8425it could identify such states as unreachable and then remove those states.
8426However, Bison does not compute which goto actions are useless.
8427@end itemize
8428
fae437e8 8429@node Generalized LR Parsing
8a4281b9
JD
8430@section Generalized LR (GLR) Parsing
8431@cindex GLR parsing
8432@cindex generalized LR (GLR) parsing
676385e2 8433@cindex ambiguous grammars
9d9b8b70 8434@cindex nondeterministic parsing
676385e2 8435
fae437e8
AD
8436Bison produces @emph{deterministic} parsers that choose uniquely
8437when to reduce and which reduction to apply
742e4900 8438based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8439As a result, normal Bison handles a proper subset of the family of
8440context-free languages.
fae437e8 8441Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8442sequence of reductions cannot have deterministic parsers in this sense.
8443The same is true of languages that require more than one symbol of
742e4900 8444lookahead, since the parser lacks the information necessary to make a
676385e2 8445decision at the point it must be made in a shift-reduce parser.
cc09e5be 8446Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8447there are languages where Bison's default choice of how to
676385e2
PH
8448summarize the input seen so far loses necessary information.
8449
8450When you use the @samp{%glr-parser} declaration in your grammar file,
8451Bison generates a parser that uses a different algorithm, called
8a4281b9 8452Generalized LR (or GLR). A Bison GLR
c827f760 8453parser uses the same basic
676385e2
PH
8454algorithm for parsing as an ordinary Bison parser, but behaves
8455differently in cases where there is a shift-reduce conflict that has not
fae437e8 8456been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8457reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8458situation, it
fae437e8 8459effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8460shift or reduction. These parsers then proceed as usual, consuming
8461tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8462and split further, with the result that instead of a sequence of states,
8a4281b9 8463a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8464
8465In effect, each stack represents a guess as to what the proper parse
8466is. Additional input may indicate that a guess was wrong, in which case
8467the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8468actions generated in each stack are saved, rather than being executed
676385e2 8469immediately. When a stack disappears, its saved semantic actions never
fae437e8 8470get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8471their sets of semantic actions are both saved with the state that
8472results from the reduction. We say that two stacks are equivalent
fae437e8 8473when they both represent the same sequence of states,
676385e2
PH
8474and each pair of corresponding states represents a
8475grammar symbol that produces the same segment of the input token
8476stream.
8477
8478Whenever the parser makes a transition from having multiple
eb45ef3b 8479states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8480algorithm, after resolving and executing the saved-up actions.
8481At this transition, some of the states on the stack will have semantic
8482values that are sets (actually multisets) of possible actions. The
8483parser tries to pick one of the actions by first finding one whose rule
8484has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8485declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8486precedence, but there the same merging function is declared for both
fae437e8 8487rules by the @samp{%merge} declaration,
676385e2
PH
8488Bison resolves and evaluates both and then calls the merge function on
8489the result. Otherwise, it reports an ambiguity.
8490
8a4281b9
JD
8491It is possible to use a data structure for the GLR parsing tree that
8492permits the processing of any LR(1) grammar in linear time (in the
c827f760 8493size of the input), any unambiguous (not necessarily
8a4281b9 8494LR(1)) grammar in
fae437e8 8495quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8496context-free grammar in cubic worst-case time. However, Bison currently
8497uses a simpler data structure that requires time proportional to the
8498length of the input times the maximum number of stacks required for any
9d9b8b70 8499prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8500grammars can require exponential time and space to process. Such badly
8501behaving examples, however, are not generally of practical interest.
9d9b8b70 8502Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8503doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8504structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8505grammar, in particular, it is only slightly slower than with the
8a4281b9 8506deterministic LR(1) Bison parser.
676385e2 8507
5e528941
JD
8508For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
85092000}.
f6481e2f 8510
1a059451
PE
8511@node Memory Management
8512@section Memory Management, and How to Avoid Memory Exhaustion
8513@cindex memory exhaustion
8514@cindex memory management
bfa74976
RS
8515@cindex stack overflow
8516@cindex parser stack overflow
8517@cindex overflow of parser stack
8518
1a059451 8519The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8520not reduced. When this happens, the parser function @code{yyparse}
1a059451 8521calls @code{yyerror} and then returns 2.
bfa74976 8522
c827f760 8523Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8524usually results from using a right recursion instead of a left
188867ac 8525recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8526
bfa74976
RS
8527@vindex YYMAXDEPTH
8528By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8529parser stack can become before memory is exhausted. Define the
bfa74976
RS
8530macro with a value that is an integer. This value is the maximum number
8531of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8532
8533The stack space allowed is not necessarily allocated. If you specify a
1a059451 8534large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8535stack at first, and then makes it bigger by stages as needed. This
8536increasing allocation happens automatically and silently. Therefore,
8537you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8538space for ordinary inputs that do not need much stack.
8539
d7e14fc0
PE
8540However, do not allow @code{YYMAXDEPTH} to be a value so large that
8541arithmetic overflow could occur when calculating the size of the stack
8542space. Also, do not allow @code{YYMAXDEPTH} to be less than
8543@code{YYINITDEPTH}.
8544
bfa74976
RS
8545@cindex default stack limit
8546The default value of @code{YYMAXDEPTH}, if you do not define it, is
854710000.
8548
8549@vindex YYINITDEPTH
8550You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8551macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8552parser in C, this value must be a compile-time constant
d7e14fc0
PE
8553unless you are assuming C99 or some other target language or compiler
8554that allows variable-length arrays. The default is 200.
8555
1a059451 8556Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8557
20be2f92 8558You can generate a deterministic parser containing C++ user code from
411614fa 8559the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8560(@pxref{C++ Parsers}). However, if you do use the default skeleton
8561and want to allow the parsing stack to grow,
8562be careful not to use semantic types or location types that require
8563non-trivial copy constructors.
8564The C skeleton bypasses these constructors when copying data to
8565new, larger stacks.
d1a1114f 8566
342b8b6e 8567@node Error Recovery
bfa74976
RS
8568@chapter Error Recovery
8569@cindex error recovery
8570@cindex recovery from errors
8571
6e649e65 8572It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8573error. For example, a compiler should recover sufficiently to parse the
8574rest of the input file and check it for errors; a calculator should accept
8575another expression.
8576
8577In a simple interactive command parser where each input is one line, it may
8578be sufficient to allow @code{yyparse} to return 1 on error and have the
8579caller ignore the rest of the input line when that happens (and then call
8580@code{yyparse} again). But this is inadequate for a compiler, because it
8581forgets all the syntactic context leading up to the error. A syntax error
8582deep within a function in the compiler input should not cause the compiler
8583to treat the following line like the beginning of a source file.
8584
8585@findex error
8586You can define how to recover from a syntax error by writing rules to
8587recognize the special token @code{error}. This is a terminal symbol that
8588is always defined (you need not declare it) and reserved for error
8589handling. The Bison parser generates an @code{error} token whenever a
8590syntax error happens; if you have provided a rule to recognize this token
13863333 8591in the current context, the parse can continue.
bfa74976
RS
8592
8593For example:
8594
8595@example
0860e383 8596stmts:
6240346a 8597 %empty
0860e383
AD
8598| stmts '\n'
8599| stmts exp '\n'
8600| stmts error '\n'
bfa74976
RS
8601@end example
8602
8603The fourth rule in this example says that an error followed by a newline
0860e383 8604makes a valid addition to any @code{stmts}.
bfa74976
RS
8605
8606What happens if a syntax error occurs in the middle of an @code{exp}? The
8607error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8608of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8609the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8610and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8611will be tokens to read before the next newline. So the rule is not
8612applicable in the ordinary way.
8613
8614But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8615the semantic context and part of the input. First it discards states
8616and objects from the stack until it gets back to a state in which the
bfa74976 8617@code{error} token is acceptable. (This means that the subexpressions
0860e383 8618already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8619At this point the @code{error} token can be shifted. Then, if the old
742e4900 8620lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8621tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8622this example, Bison reads and discards input until the next newline so
8623that the fourth rule can apply. Note that discarded symbols are
8624possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8625Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8626
8627The choice of error rules in the grammar is a choice of strategies for
8628error recovery. A simple and useful strategy is simply to skip the rest of
8629the current input line or current statement if an error is detected:
8630
8631@example
0860e383 8632stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8633@end example
8634
8635It is also useful to recover to the matching close-delimiter of an
8636opening-delimiter that has already been parsed. Otherwise the
8637close-delimiter will probably appear to be unmatched, and generate another,
8638spurious error message:
8639
8640@example
5e9b6624
AD
8641primary:
8642 '(' expr ')'
8643| '(' error ')'
8644@dots{}
8645;
bfa74976
RS
8646@end example
8647
8648Error recovery strategies are necessarily guesses. When they guess wrong,
8649one syntax error often leads to another. In the above example, the error
8650recovery rule guesses that an error is due to bad input within one
0860e383
AD
8651@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8652middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8653from the first error, another syntax error will be found straightaway,
8654since the text following the spurious semicolon is also an invalid
0860e383 8655@code{stmt}.
bfa74976
RS
8656
8657To prevent an outpouring of error messages, the parser will output no error
8658message for another syntax error that happens shortly after the first; only
8659after three consecutive input tokens have been successfully shifted will
8660error messages resume.
8661
8662Note that rules which accept the @code{error} token may have actions, just
8663as any other rules can.
8664
8665@findex yyerrok
8666You can make error messages resume immediately by using the macro
8667@code{yyerrok} in an action. If you do this in the error rule's action, no
8668error messages will be suppressed. This macro requires no arguments;
8669@samp{yyerrok;} is a valid C statement.
8670
8671@findex yyclearin
742e4900 8672The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8673this is unacceptable, then the macro @code{yyclearin} may be used to clear
8674this token. Write the statement @samp{yyclearin;} in the error rule's
8675action.
32c29292 8676@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8677
6e649e65 8678For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8679called that advances the input stream to some point where parsing should
8680once again commence. The next symbol returned by the lexical scanner is
742e4900 8681probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8682with @samp{yyclearin;}.
8683
8684@vindex YYRECOVERING
02103984
PE
8685The expression @code{YYRECOVERING ()} yields 1 when the parser
8686is recovering from a syntax error, and 0 otherwise.
8687Syntax error diagnostics are suppressed while recovering from a syntax
8688error.
bfa74976 8689
342b8b6e 8690@node Context Dependency
bfa74976
RS
8691@chapter Handling Context Dependencies
8692
8693The Bison paradigm is to parse tokens first, then group them into larger
8694syntactic units. In many languages, the meaning of a token is affected by
8695its context. Although this violates the Bison paradigm, certain techniques
8696(known as @dfn{kludges}) may enable you to write Bison parsers for such
8697languages.
8698
8699@menu
8700* Semantic Tokens:: Token parsing can depend on the semantic context.
8701* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8702* Tie-in Recovery:: Lexical tie-ins have implications for how
8703 error recovery rules must be written.
8704@end menu
8705
8706(Actually, ``kludge'' means any technique that gets its job done but is
8707neither clean nor robust.)
8708
342b8b6e 8709@node Semantic Tokens
bfa74976
RS
8710@section Semantic Info in Token Types
8711
8712The C language has a context dependency: the way an identifier is used
8713depends on what its current meaning is. For example, consider this:
8714
8715@example
8716foo (x);
8717@end example
8718
8719This looks like a function call statement, but if @code{foo} is a typedef
8720name, then this is actually a declaration of @code{x}. How can a Bison
8721parser for C decide how to parse this input?
8722
8a4281b9 8723The method used in GNU C is to have two different token types,
bfa74976
RS
8724@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8725identifier, it looks up the current declaration of the identifier in order
8726to decide which token type to return: @code{TYPENAME} if the identifier is
8727declared as a typedef, @code{IDENTIFIER} otherwise.
8728
8729The grammar rules can then express the context dependency by the choice of
8730token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8731but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8732@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8733is @emph{not} significant, such as in declarations that can shadow a
8734typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8735accepted---there is one rule for each of the two token types.
8736
8737This technique is simple to use if the decision of which kinds of
8738identifiers to allow is made at a place close to where the identifier is
8739parsed. But in C this is not always so: C allows a declaration to
8740redeclare a typedef name provided an explicit type has been specified
8741earlier:
8742
8743@example
3a4f411f
PE
8744typedef int foo, bar;
8745int baz (void)
d4fca427 8746@group
3a4f411f
PE
8747@{
8748 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8749 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8750 return foo (bar);
8751@}
d4fca427 8752@end group
bfa74976
RS
8753@end example
8754
8755Unfortunately, the name being declared is separated from the declaration
8756construct itself by a complicated syntactic structure---the ``declarator''.
8757
9ecbd125 8758As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8759all the nonterminal names changed: once for parsing a declaration in
8760which a typedef name can be redefined, and once for parsing a
8761declaration in which that can't be done. Here is a part of the
8762duplication, with actions omitted for brevity:
bfa74976
RS
8763
8764@example
d4fca427 8765@group
bfa74976 8766initdcl:
5e9b6624
AD
8767 declarator maybeasm '=' init
8768| declarator maybeasm
8769;
d4fca427 8770@end group
bfa74976 8771
d4fca427 8772@group
bfa74976 8773notype_initdcl:
5e9b6624
AD
8774 notype_declarator maybeasm '=' init
8775| notype_declarator maybeasm
8776;
d4fca427 8777@end group
bfa74976
RS
8778@end example
8779
8780@noindent
8781Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8782cannot. The distinction between @code{declarator} and
8783@code{notype_declarator} is the same sort of thing.
8784
8785There is some similarity between this technique and a lexical tie-in
8786(described next), in that information which alters the lexical analysis is
8787changed during parsing by other parts of the program. The difference is
8788here the information is global, and is used for other purposes in the
8789program. A true lexical tie-in has a special-purpose flag controlled by
8790the syntactic context.
8791
342b8b6e 8792@node Lexical Tie-ins
bfa74976
RS
8793@section Lexical Tie-ins
8794@cindex lexical tie-in
8795
8796One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8797which is set by Bison actions, whose purpose is to alter the way tokens are
8798parsed.
8799
8800For example, suppose we have a language vaguely like C, but with a special
8801construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8802an expression in parentheses in which all integers are hexadecimal. In
8803particular, the token @samp{a1b} must be treated as an integer rather than
8804as an identifier if it appears in that context. Here is how you can do it:
8805
8806@example
8807@group
8808%@{
38a92d50
PE
8809 int hexflag;
8810 int yylex (void);
8811 void yyerror (char const *);
bfa74976
RS
8812%@}
8813%%
8814@dots{}
8815@end group
8816@group
5e9b6624
AD
8817expr:
8818 IDENTIFIER
8819| constant
8820| HEX '(' @{ hexflag = 1; @}
8821 expr ')' @{ hexflag = 0; $$ = $4; @}
8822| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8823@dots{}
8824;
bfa74976
RS
8825@end group
8826
8827@group
8828constant:
5e9b6624
AD
8829 INTEGER
8830| STRING
8831;
bfa74976
RS
8832@end group
8833@end example
8834
8835@noindent
8836Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8837it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8838with letters are parsed as integers if possible.
8839
ff7571c0
JD
8840The declaration of @code{hexflag} shown in the prologue of the grammar
8841file is needed to make it accessible to the actions (@pxref{Prologue,
8842,The Prologue}). You must also write the code in @code{yylex} to obey
8843the flag.
bfa74976 8844
342b8b6e 8845@node Tie-in Recovery
bfa74976
RS
8846@section Lexical Tie-ins and Error Recovery
8847
8848Lexical tie-ins make strict demands on any error recovery rules you have.
8849@xref{Error Recovery}.
8850
8851The reason for this is that the purpose of an error recovery rule is to
8852abort the parsing of one construct and resume in some larger construct.
8853For example, in C-like languages, a typical error recovery rule is to skip
8854tokens until the next semicolon, and then start a new statement, like this:
8855
8856@example
5e9b6624
AD
8857stmt:
8858 expr ';'
8859| IF '(' expr ')' stmt @{ @dots{} @}
8860@dots{}
8861| error ';' @{ hexflag = 0; @}
8862;
bfa74976
RS
8863@end example
8864
8865If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8866construct, this error rule will apply, and then the action for the
8867completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8868remain set for the entire rest of the input, or until the next @code{hex}
8869keyword, causing identifiers to be misinterpreted as integers.
8870
8871To avoid this problem the error recovery rule itself clears @code{hexflag}.
8872
8873There may also be an error recovery rule that works within expressions.
8874For example, there could be a rule which applies within parentheses
8875and skips to the close-parenthesis:
8876
8877@example
8878@group
5e9b6624
AD
8879expr:
8880 @dots{}
8881| '(' expr ')' @{ $$ = $2; @}
8882| '(' error ')'
8883@dots{}
bfa74976
RS
8884@end group
8885@end example
8886
8887If this rule acts within the @code{hex} construct, it is not going to abort
8888that construct (since it applies to an inner level of parentheses within
8889the construct). Therefore, it should not clear the flag: the rest of
8890the @code{hex} construct should be parsed with the flag still in effect.
8891
8892What if there is an error recovery rule which might abort out of the
8893@code{hex} construct or might not, depending on circumstances? There is no
8894way you can write the action to determine whether a @code{hex} construct is
8895being aborted or not. So if you are using a lexical tie-in, you had better
8896make sure your error recovery rules are not of this kind. Each rule must
8897be such that you can be sure that it always will, or always won't, have to
8898clear the flag.
8899
ec3bc396
AD
8900@c ================================================== Debugging Your Parser
8901
342b8b6e 8902@node Debugging
bfa74976 8903@chapter Debugging Your Parser
ec3bc396 8904
93c150b6
AD
8905Developing a parser can be a challenge, especially if you don't understand
8906the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8907chapter explains how understand and debug a parser.
8908
8909The first sections focus on the static part of the parser: its structure.
8910They explain how to generate and read the detailed description of the
8911automaton. There are several formats available:
8912@itemize @minus
8913@item
8914as text, see @ref{Understanding, , Understanding Your Parser};
8915
8916@item
8917as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8918
8919@item
8920or as a markup report that can be turned, for instance, into HTML, see
8921@ref{Xml,, Visualizing your parser in multiple formats}.
8922@end itemize
8923
8924The last section focuses on the dynamic part of the parser: how to enable
8925and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8926Parser}).
ec3bc396
AD
8927
8928@menu
8929* Understanding:: Understanding the structure of your parser.
fc4fdd62 8930* Graphviz:: Getting a visual representation of the parser.
9c16d399 8931* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8932* Tracing:: Tracing the execution of your parser.
8933@end menu
8934
8935@node Understanding
8936@section Understanding Your Parser
8937
8938As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8939Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8940frequent than one would hope), looking at this automaton is required to
c949ada3 8941tune or simply fix a parser.
ec3bc396
AD
8942
8943The textual file is generated when the options @option{--report} or
e3fd1dcb 8944@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8945Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8946the parser implementation file name, and adding @samp{.output}
8947instead. Therefore, if the grammar file is @file{foo.y}, then the
8948parser implementation file is called @file{foo.tab.c} by default. As
8949a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8950
8951The following grammar file, @file{calc.y}, will be used in the sequel:
8952
8953@example
8954%token NUM STR
c949ada3 8955@group
ec3bc396
AD
8956%left '+' '-'
8957%left '*'
c949ada3 8958@end group
ec3bc396 8959%%
c949ada3 8960@group
5e9b6624
AD
8961exp:
8962 exp '+' exp
8963| exp '-' exp
8964| exp '*' exp
8965| exp '/' exp
8966| NUM
8967;
c949ada3 8968@end group
ec3bc396
AD
8969useless: STR;
8970%%
8971@end example
8972
88bce5a2
AD
8973@command{bison} reports:
8974
8975@example
8f0d265e
JD
8976calc.y: warning: 1 nonterminal useless in grammar
8977calc.y: warning: 1 rule useless in grammar
c949ada3
AD
8978calc.y:12.1-7: warning: nonterminal useless in grammar: useless
8979calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8980calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8981@end example
8982
8983When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8984creates a file @file{calc.output} with contents detailed below. The
8985order of the output and the exact presentation might vary, but the
8986interpretation is the same.
ec3bc396 8987
ec3bc396
AD
8988@noindent
8989@cindex token, useless
8990@cindex useless token
8991@cindex nonterminal, useless
8992@cindex useless nonterminal
8993@cindex rule, useless
8994@cindex useless rule
62243aa5 8995The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8996nonterminals and rules are removed in order to produce a smaller parser, but
8997useless tokens are preserved, since they might be used by the scanner (note
8998the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8999
9000@example
29e20e22 9001Nonterminals useless in grammar
ec3bc396
AD
9002 useless
9003
29e20e22 9004Terminals unused in grammar
ec3bc396
AD
9005 STR
9006
29e20e22
AD
9007Rules useless in grammar
9008 6 useless: STR
ec3bc396
AD
9009@end example
9010
9011@noindent
29e20e22
AD
9012The next section lists states that still have conflicts.
9013
9014@example
9015State 8 conflicts: 1 shift/reduce
9016State 9 conflicts: 1 shift/reduce
9017State 10 conflicts: 1 shift/reduce
9018State 11 conflicts: 4 shift/reduce
9019@end example
9020
9021@noindent
9022Then Bison reproduces the exact grammar it used:
ec3bc396
AD
9023
9024@example
9025Grammar
9026
29e20e22
AD
9027 0 $accept: exp $end
9028
9029 1 exp: exp '+' exp
9030 2 | exp '-' exp
9031 3 | exp '*' exp
9032 4 | exp '/' exp
9033 5 | NUM
ec3bc396
AD
9034@end example
9035
9036@noindent
9037and reports the uses of the symbols:
9038
9039@example
d4fca427 9040@group
ec3bc396
AD
9041Terminals, with rules where they appear
9042
88bce5a2 9043$end (0) 0
ec3bc396
AD
9044'*' (42) 3
9045'+' (43) 1
9046'-' (45) 2
9047'/' (47) 4
9048error (256)
9049NUM (258) 5
29e20e22 9050STR (259)
d4fca427 9051@end group
ec3bc396 9052
d4fca427 9053@group
ec3bc396
AD
9054Nonterminals, with rules where they appear
9055
29e20e22 9056$accept (9)
ec3bc396 9057 on left: 0
29e20e22 9058exp (10)
ec3bc396 9059 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 9060@end group
ec3bc396
AD
9061@end example
9062
9063@noindent
9064@cindex item
9065@cindex pointed rule
9066@cindex rule, pointed
9067Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
9068with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
9069item is a production rule together with a point (@samp{.}) marking
9070the location of the input cursor.
ec3bc396
AD
9071
9072@example
c949ada3 9073State 0
ec3bc396 9074
29e20e22 9075 0 $accept: . exp $end
ec3bc396 9076
29e20e22 9077 NUM shift, and go to state 1
ec3bc396 9078
29e20e22 9079 exp go to state 2
ec3bc396
AD
9080@end example
9081
9082This reads as follows: ``state 0 corresponds to being at the very
9083beginning of the parsing, in the initial rule, right before the start
9084symbol (here, @code{exp}). When the parser returns to this state right
9085after having reduced a rule that produced an @code{exp}, the control
9086flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 9087symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 9088the parse stack, and the control flow jumps to state 1. Any other
742e4900 9089lookahead triggers a syntax error.''
ec3bc396
AD
9090
9091@cindex core, item set
9092@cindex item set core
9093@cindex kernel, item set
9094@cindex item set core
9095Even though the only active rule in state 0 seems to be rule 0, the
742e4900 9096report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
9097at the beginning of any rule deriving an @code{exp}. By default Bison
9098reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
9099you want to see more detail you can invoke @command{bison} with
35880c82 9100@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
9101
9102@example
c949ada3 9103State 0
ec3bc396 9104
29e20e22
AD
9105 0 $accept: . exp $end
9106 1 exp: . exp '+' exp
9107 2 | . exp '-' exp
9108 3 | . exp '*' exp
9109 4 | . exp '/' exp
9110 5 | . NUM
ec3bc396 9111
29e20e22 9112 NUM shift, and go to state 1
ec3bc396 9113
29e20e22 9114 exp go to state 2
ec3bc396
AD
9115@end example
9116
9117@noindent
29e20e22 9118In the state 1@dots{}
ec3bc396
AD
9119
9120@example
c949ada3 9121State 1
ec3bc396 9122
29e20e22 9123 5 exp: NUM .
ec3bc396 9124
29e20e22 9125 $default reduce using rule 5 (exp)
ec3bc396
AD
9126@end example
9127
9128@noindent
742e4900 9129the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 9130(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 9131State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
9132jump to state 2 (@samp{exp: go to state 2}).
9133
9134@example
c949ada3 9135State 2
ec3bc396 9136
29e20e22
AD
9137 0 $accept: exp . $end
9138 1 exp: exp . '+' exp
9139 2 | exp . '-' exp
9140 3 | exp . '*' exp
9141 4 | exp . '/' exp
ec3bc396 9142
29e20e22
AD
9143 $end shift, and go to state 3
9144 '+' shift, and go to state 4
9145 '-' shift, and go to state 5
9146 '*' shift, and go to state 6
9147 '/' shift, and go to state 7
ec3bc396
AD
9148@end example
9149
9150@noindent
9151In state 2, the automaton can only shift a symbol. For instance,
29e20e22 9152because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 9153@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 9154jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
9155Since there is no default action, any lookahead not listed triggers a syntax
9156error.
ec3bc396 9157
eb45ef3b 9158@cindex accepting state
ec3bc396
AD
9159The state 3 is named the @dfn{final state}, or the @dfn{accepting
9160state}:
9161
9162@example
c949ada3 9163State 3
ec3bc396 9164
29e20e22 9165 0 $accept: exp $end .
ec3bc396 9166
29e20e22 9167 $default accept
ec3bc396
AD
9168@end example
9169
9170@noindent
29e20e22
AD
9171the initial rule is completed (the start symbol and the end-of-input were
9172read), the parsing exits successfully.
ec3bc396
AD
9173
9174The interpretation of states 4 to 7 is straightforward, and is left to
9175the reader.
9176
9177@example
c949ada3 9178State 4
ec3bc396 9179
29e20e22 9180 1 exp: exp '+' . exp
ec3bc396 9181
29e20e22
AD
9182 NUM shift, and go to state 1
9183
9184 exp go to state 8
ec3bc396 9185
ec3bc396 9186
c949ada3 9187State 5
ec3bc396 9188
29e20e22
AD
9189 2 exp: exp '-' . exp
9190
9191 NUM shift, and go to state 1
ec3bc396 9192
29e20e22 9193 exp go to state 9
ec3bc396 9194
ec3bc396 9195
c949ada3 9196State 6
ec3bc396 9197
29e20e22 9198 3 exp: exp '*' . exp
ec3bc396 9199
29e20e22
AD
9200 NUM shift, and go to state 1
9201
9202 exp go to state 10
ec3bc396 9203
ec3bc396 9204
c949ada3 9205State 7
ec3bc396 9206
29e20e22 9207 4 exp: exp '/' . exp
ec3bc396 9208
29e20e22 9209 NUM shift, and go to state 1
ec3bc396 9210
29e20e22 9211 exp go to state 11
ec3bc396
AD
9212@end example
9213
5a99098d
PE
9214As was announced in beginning of the report, @samp{State 8 conflicts:
92151 shift/reduce}:
ec3bc396
AD
9216
9217@example
c949ada3 9218State 8
ec3bc396 9219
29e20e22
AD
9220 1 exp: exp . '+' exp
9221 1 | exp '+' exp .
9222 2 | exp . '-' exp
9223 3 | exp . '*' exp
9224 4 | exp . '/' exp
ec3bc396 9225
29e20e22
AD
9226 '*' shift, and go to state 6
9227 '/' shift, and go to state 7
ec3bc396 9228
29e20e22
AD
9229 '/' [reduce using rule 1 (exp)]
9230 $default reduce using rule 1 (exp)
ec3bc396
AD
9231@end example
9232
742e4900 9233Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
9234either shifting (and going to state 7), or reducing rule 1. The
9235conflict means that either the grammar is ambiguous, or the parser lacks
9236information to make the right decision. Indeed the grammar is
9237ambiguous, as, since we did not specify the precedence of @samp{/}, the
9238sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
9239NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
9240NUM}, which corresponds to reducing rule 1.
9241
eb45ef3b 9242Because in deterministic parsing a single decision can be made, Bison
ec3bc396 9243arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 9244Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
9245square brackets.
9246
9247Note that all the previous states had a single possible action: either
9248shifting the next token and going to the corresponding state, or
9249reducing a single rule. In the other cases, i.e., when shifting
9250@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
9251possible, the lookahead is required to select the action. State 8 is
9252one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
9253is shifting, otherwise the action is reducing rule 1. In other words,
9254the first two items, corresponding to rule 1, are not eligible when the
742e4900 9255lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 9256precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
9257with some set of possible lookahead tokens. When run with
9258@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
9259
9260@example
c949ada3 9261State 8
ec3bc396 9262
29e20e22
AD
9263 1 exp: exp . '+' exp
9264 1 | exp '+' exp . [$end, '+', '-', '/']
9265 2 | exp . '-' exp
9266 3 | exp . '*' exp
9267 4 | exp . '/' exp
9268
9269 '*' shift, and go to state 6
9270 '/' shift, and go to state 7
ec3bc396 9271
29e20e22
AD
9272 '/' [reduce using rule 1 (exp)]
9273 $default reduce using rule 1 (exp)
9274@end example
9275
9276Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9277the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9278solved thanks to associativity and precedence directives. If invoked with
9279@option{--report=solved}, Bison includes information about the solved
9280conflicts in the report:
ec3bc396 9281
29e20e22
AD
9282@example
9283Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9284Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9285Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9286@end example
9287
29e20e22 9288
ec3bc396
AD
9289The remaining states are similar:
9290
9291@example
d4fca427 9292@group
c949ada3 9293State 9
ec3bc396 9294
29e20e22
AD
9295 1 exp: exp . '+' exp
9296 2 | exp . '-' exp
9297 2 | exp '-' exp .
9298 3 | exp . '*' exp
9299 4 | exp . '/' exp
ec3bc396 9300
29e20e22
AD
9301 '*' shift, and go to state 6
9302 '/' shift, and go to state 7
ec3bc396 9303
29e20e22
AD
9304 '/' [reduce using rule 2 (exp)]
9305 $default reduce using rule 2 (exp)
d4fca427 9306@end group
ec3bc396 9307
d4fca427 9308@group
c949ada3 9309State 10
ec3bc396 9310
29e20e22
AD
9311 1 exp: exp . '+' exp
9312 2 | exp . '-' exp
9313 3 | exp . '*' exp
9314 3 | exp '*' exp .
9315 4 | exp . '/' exp
ec3bc396 9316
29e20e22 9317 '/' shift, and go to state 7
ec3bc396 9318
29e20e22
AD
9319 '/' [reduce using rule 3 (exp)]
9320 $default reduce using rule 3 (exp)
d4fca427 9321@end group
ec3bc396 9322
d4fca427 9323@group
c949ada3 9324State 11
ec3bc396 9325
29e20e22
AD
9326 1 exp: exp . '+' exp
9327 2 | exp . '-' exp
9328 3 | exp . '*' exp
9329 4 | exp . '/' exp
9330 4 | exp '/' exp .
9331
9332 '+' shift, and go to state 4
9333 '-' shift, and go to state 5
9334 '*' shift, and go to state 6
9335 '/' shift, and go to state 7
9336
9337 '+' [reduce using rule 4 (exp)]
9338 '-' [reduce using rule 4 (exp)]
9339 '*' [reduce using rule 4 (exp)]
9340 '/' [reduce using rule 4 (exp)]
9341 $default reduce using rule 4 (exp)
d4fca427 9342@end group
ec3bc396
AD
9343@end example
9344
9345@noindent
fa7e68c3 9346Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9347precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9348also because the associativity of @samp{/} is not specified.
ec3bc396 9349
c949ada3
AD
9350Bison may also produce an HTML version of this output, via an XML file and
9351XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9352
fc4fdd62
TR
9353@c ================================================= Graphical Representation
9354
9355@node Graphviz
9356@section Visualizing Your Parser
9357@cindex dot
9358
9359As another means to gain better understanding of the shift/reduce
9360automaton corresponding to the Bison parser, a DOT file can be generated. Note
9361that debugging a real grammar with this is tedious at best, and impractical
9362most of the times, because the generated files are huge (the generation of
9363a PDF or PNG file from it will take very long, and more often than not it will
9364fail due to memory exhaustion). This option was rather designed for beginners,
9365to help them understand LR parsers.
9366
bfdcc3a0
AD
9367This file is generated when the @option{--graph} option is specified
9368(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9369@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9370adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9371Graphviz output file is called @file{foo.dot}. A DOT file may also be
9372produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9373parser in multiple formats}).
9374
fc4fdd62
TR
9375
9376The following grammar file, @file{rr.y}, will be used in the sequel:
9377
9378@example
9379%%
9380@group
9381exp: a ";" | b ".";
9382a: "0";
9383b: "0";
9384@end group
9385@end example
9386
c949ada3
AD
9387The graphical output
9388@ifnotinfo
9389(see @ref{fig:graph})
9390@end ifnotinfo
9391is very similar to the textual one, and as such it is easier understood by
9392making direct comparisons between them. @xref{Debugging, , Debugging Your
9393Parser}, for a detailled analysis of the textual report.
9394
9395@ifnotinfo
9396@float Figure,fig:graph
9397@image{figs/example, 430pt}
9398@caption{A graphical rendering of the parser.}
9399@end float
9400@end ifnotinfo
fc4fdd62
TR
9401
9402@subheading Graphical Representation of States
9403
9404The items (pointed rules) for each state are grouped together in graph nodes.
9405Their numbering is the same as in the verbose file. See the following points,
9406about transitions, for examples
9407
9408When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9409needed, are shown next to the relevant rule between square brackets as a
9410comma separated list. This is the case in the figure for the representation of
9411reductions, below.
9412
9413@sp 1
9414
9415The transitions are represented as directed edges between the current and
9416the target states.
9417
9418@subheading Graphical Representation of Shifts
9419
9420Shifts are shown as solid arrows, labelled with the lookahead token for that
9421shift. The following describes a reduction in the @file{rr.output} file:
9422
9423@example
9424@group
c949ada3 9425State 3
fc4fdd62
TR
9426
9427 1 exp: a . ";"
9428
9429 ";" shift, and go to state 6
9430@end group
9431@end example
9432
9433A Graphviz rendering of this portion of the graph could be:
9434
9435@center @image{figs/example-shift, 100pt}
9436
9437@subheading Graphical Representation of Reductions
9438
9439Reductions are shown as solid arrows, leading to a diamond-shaped node
9440bearing the number of the reduction rule. The arrow is labelled with the
9441appropriate comma separated lookahead tokens. If the reduction is the default
9442action for the given state, there is no such label.
9443
9444This is how reductions are represented in the verbose file @file{rr.output}:
9445@example
c949ada3 9446State 1
fc4fdd62
TR
9447
9448 3 a: "0" . [";"]
9449 4 b: "0" . ["."]
9450
9451 "." reduce using rule 4 (b)
9452 $default reduce using rule 3 (a)
9453@end example
9454
9455A Graphviz rendering of this portion of the graph could be:
9456
9457@center @image{figs/example-reduce, 120pt}
9458
9459When unresolved conflicts are present, because in deterministic parsing
9460a single decision can be made, Bison can arbitrarily choose to disable a
9461reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9462are distinguished by a red filling color on these nodes, just like how they are
9463reported between square brackets in the verbose file.
9464
c949ada3
AD
9465The reduction corresponding to the rule number 0 is the acceptation
9466state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9467
9468@subheading Graphical representation of go tos
9469
9470The @samp{go to} jump transitions are represented as dotted lines bearing
9471the name of the rule being jumped to.
9472
9c16d399
TR
9473@c ================================================= XML
9474
9475@node Xml
9476@section Visualizing your parser in multiple formats
9477@cindex xml
9478
9479Bison supports two major report formats: textual output
c949ada3
AD
9480(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9481with option @option{--verbose}, and DOT
9482(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9483option @option{--graph}. However,
9c16d399
TR
9484another alternative is to output an XML file that may then be, with
9485@command{xsltproc}, rendered as either a raw text format equivalent to the
9486verbose file, or as an HTML version of the same file, with clickable
9487transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9488XSLT have no difference whatsoever with those obtained by invoking
9489@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9490
c949ada3 9491The XML file is generated when the options @option{-x} or
9c16d399
TR
9492@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9493If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9494from the parser implementation file name, and adding @samp{.xml} instead.
9495For instance, if the grammar file is @file{foo.y}, the default XML output
9496file is @file{foo.xml}.
9497
9498Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9499files to apply to the XML file. Their names are non-ambiguous:
9500
9501@table @file
9502@item xml2dot.xsl
be3517b0 9503Used to output a copy of the DOT visualization of the automaton.
9c16d399 9504@item xml2text.xsl
c949ada3 9505Used to output a copy of the @samp{.output} file.
9c16d399 9506@item xml2xhtml.xsl
c949ada3 9507Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9508@end table
9509
c949ada3 9510Sample usage (requires @command{xsltproc}):
9c16d399 9511@example
c949ada3 9512$ bison -x gr.y
9c16d399
TR
9513@group
9514$ bison --print-datadir
9515/usr/local/share/bison
9516@end group
c949ada3 9517$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9518@end example
9519
fc4fdd62 9520@c ================================================= Tracing
ec3bc396
AD
9521
9522@node Tracing
9523@section Tracing Your Parser
bfa74976
RS
9524@findex yydebug
9525@cindex debugging
9526@cindex tracing the parser
9527
93c150b6
AD
9528When a Bison grammar compiles properly but parses ``incorrectly'', the
9529@code{yydebug} parser-trace feature helps figuring out why.
9530
9531@menu
9532* Enabling Traces:: Activating run-time trace support
9533* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9534* The YYPRINT Macro:: Obsolete interface for semantic value reports
9535@end menu
bfa74976 9536
93c150b6
AD
9537@node Enabling Traces
9538@subsection Enabling Traces
3ded9a63
AD
9539There are several means to enable compilation of trace facilities:
9540
9541@table @asis
9542@item the macro @code{YYDEBUG}
9543@findex YYDEBUG
9544Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9545parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9546@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9547YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9548Prologue}).
9549
e6ae99fe 9550If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9551Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9552api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9553tracing feature (enabled if and only if nonzero); otherwise tracing is
9554enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9555
9556@item the option @option{-t} (POSIX Yacc compliant)
9557@itemx the option @option{--debug} (Bison extension)
9558Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
6ce4b4ff 9559Bison}). With @samp{%define api.prefix @{c@}}, it defines @code{CDEBUG} to 1,
e358222b 9560otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9561
9562@item the directive @samp{%debug}
9563@findex %debug
fa819509
AD
9564Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9565Summary}). This Bison extension is maintained for backward
9566compatibility with previous versions of Bison.
9567
9568@item the variable @samp{parse.trace}
9569@findex %define parse.trace
35c1e5f0
JD
9570Add the @samp{%define parse.trace} directive (@pxref{%define
9571Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9572(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9573useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9574portability matter to you, this is the preferred solution.
3ded9a63
AD
9575@end table
9576
fa819509 9577We suggest that you always enable the trace option so that debugging is
3ded9a63 9578always possible.
bfa74976 9579
93c150b6 9580@findex YYFPRINTF
02a81e05 9581The trace facility outputs messages with macro calls of the form
e2742e46 9582@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9583@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9584arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9585define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9586and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9587
9588Once you have compiled the program with trace facilities, the way to
9589request a trace is to store a nonzero value in the variable @code{yydebug}.
9590You can do this by making the C code do it (in @code{main}, perhaps), or
9591you can alter the value with a C debugger.
9592
9593Each step taken by the parser when @code{yydebug} is nonzero produces a
9594line or two of trace information, written on @code{stderr}. The trace
9595messages tell you these things:
9596
9597@itemize @bullet
9598@item
9599Each time the parser calls @code{yylex}, what kind of token was read.
9600
9601@item
9602Each time a token is shifted, the depth and complete contents of the
9603state stack (@pxref{Parser States}).
9604
9605@item
9606Each time a rule is reduced, which rule it is, and the complete contents
9607of the state stack afterward.
9608@end itemize
9609
93c150b6
AD
9610To make sense of this information, it helps to refer to the automaton
9611description file (@pxref{Understanding, ,Understanding Your Parser}).
9612This file shows the meaning of each state in terms of
704a47c4
AD
9613positions in various rules, and also what each state will do with each
9614possible input token. As you read the successive trace messages, you
9615can see that the parser is functioning according to its specification in
9616the listing file. Eventually you will arrive at the place where
9617something undesirable happens, and you will see which parts of the
9618grammar are to blame.
bfa74976 9619
93c150b6 9620The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9621debuggers on it, but it's not easy to interpret what it is doing. The
9622parser function is a finite-state machine interpreter, and aside from
9623the actions it executes the same code over and over. Only the values
9624of variables show where in the grammar it is working.
bfa74976 9625
93c150b6
AD
9626@node Mfcalc Traces
9627@subsection Enabling Debug Traces for @code{mfcalc}
9628
9629The debugging information normally gives the token type of each token read,
9630but not its semantic value. The @code{%printer} directive allows specify
9631how semantic values are reported, see @ref{Printer Decl, , Printing
9632Semantic Values}. For backward compatibility, Yacc like C parsers may also
9633use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9634Macro}), but its use is discouraged.
9635
9636As a demonstration of @code{%printer}, consider the multi-function
9637calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9638traces, and semantic value reports, insert the following directives in its
9639prologue:
9640
9641@comment file: mfcalc.y: 2
9642@example
9643/* Generate the parser description file. */
9644%verbose
9645/* Enable run-time traces (yydebug). */
9646%define parse.trace
9647
9648/* Formatting semantic values. */
9649%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9650%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
90b89dad 9651%printer @{ fprintf (yyoutput, "%g", $$); @} <double>;
93c150b6
AD
9652@end example
9653
9654The @code{%define} directive instructs Bison to generate run-time trace
9655support. Then, activation of these traces is controlled at run-time by the
9656@code{yydebug} variable, which is disabled by default. Because these traces
9657will refer to the ``states'' of the parser, it is helpful to ask for the
9658creation of a description of that parser; this is the purpose of (admittedly
9659ill-named) @code{%verbose} directive.
9660
9661The set of @code{%printer} directives demonstrates how to format the
9662semantic value in the traces. Note that the specification can be done
9663either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
90b89dad
AD
9664tag: since @code{<double>} is the type for both @code{NUM} and @code{exp},
9665this printer will be used for them.
93c150b6
AD
9666
9667Here is a sample of the information provided by run-time traces. The traces
9668are sent onto standard error.
9669
9670@example
9671$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9672Starting parse
9673Entering state 0
9674Reducing stack by rule 1 (line 34):
9675-> $$ = nterm input ()
9676Stack now 0
9677Entering state 1
9678@end example
9679
9680@noindent
9681This first batch shows a specific feature of this grammar: the first rule
9682(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9683to look for the first token. The resulting left-hand symbol (@code{$$}) is
9684a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9685
9686Then the parser calls the scanner.
9687@example
9688Reading a token: Next token is token FNCT (sin())
9689Shifting token FNCT (sin())
9690Entering state 6
9691@end example
9692
9693@noindent
9694That token (@code{token}) is a function (@code{FNCT}) whose value is
9695@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9696The parser stores (@code{Shifting}) that token, and others, until it can do
9697something about it.
9698
9699@example
9700Reading a token: Next token is token '(' ()
9701Shifting token '(' ()
9702Entering state 14
9703Reading a token: Next token is token NUM (1.000000)
9704Shifting token NUM (1.000000)
9705Entering state 4
9706Reducing stack by rule 6 (line 44):
9707 $1 = token NUM (1.000000)
9708-> $$ = nterm exp (1.000000)
9709Stack now 0 1 6 14
9710Entering state 24
9711@end example
9712
9713@noindent
9714The previous reduction demonstrates the @code{%printer} directive for
90b89dad 9715@code{<double>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9716@code{exp} have @samp{1} as value.
9717
9718@example
9719Reading a token: Next token is token '-' ()
9720Shifting token '-' ()
9721Entering state 17
9722Reading a token: Next token is token NUM (1.000000)
9723Shifting token NUM (1.000000)
9724Entering state 4
9725Reducing stack by rule 6 (line 44):
9726 $1 = token NUM (1.000000)
9727-> $$ = nterm exp (1.000000)
9728Stack now 0 1 6 14 24 17
9729Entering state 26
9730Reading a token: Next token is token ')' ()
9731Reducing stack by rule 11 (line 49):
9732 $1 = nterm exp (1.000000)
9733 $2 = token '-' ()
9734 $3 = nterm exp (1.000000)
9735-> $$ = nterm exp (0.000000)
9736Stack now 0 1 6 14
9737Entering state 24
9738@end example
9739
9740@noindent
9741The rule for the subtraction was just reduced. The parser is about to
9742discover the end of the call to @code{sin}.
9743
9744@example
9745Next token is token ')' ()
9746Shifting token ')' ()
9747Entering state 31
9748Reducing stack by rule 9 (line 47):
9749 $1 = token FNCT (sin())
9750 $2 = token '(' ()
9751 $3 = nterm exp (0.000000)
9752 $4 = token ')' ()
9753-> $$ = nterm exp (0.000000)
9754Stack now 0 1
9755Entering state 11
9756@end example
9757
9758@noindent
9759Finally, the end-of-line allow the parser to complete the computation, and
9760display its result.
9761
9762@example
9763Reading a token: Next token is token '\n' ()
9764Shifting token '\n' ()
9765Entering state 22
9766Reducing stack by rule 4 (line 40):
9767 $1 = nterm exp (0.000000)
9768 $2 = token '\n' ()
9769@result{} 0
9770-> $$ = nterm line ()
9771Stack now 0 1
9772Entering state 10
9773Reducing stack by rule 2 (line 35):
9774 $1 = nterm input ()
9775 $2 = nterm line ()
9776-> $$ = nterm input ()
9777Stack now 0
9778Entering state 1
9779@end example
9780
9781The parser has returned into state 1, in which it is waiting for the next
9782expression to evaluate, or for the end-of-file token, which causes the
9783completion of the parsing.
9784
9785@example
9786Reading a token: Now at end of input.
9787Shifting token $end ()
9788Entering state 2
9789Stack now 0 1 2
9790Cleanup: popping token $end ()
9791Cleanup: popping nterm input ()
9792@end example
9793
9794
9795@node The YYPRINT Macro
9796@subsection The @code{YYPRINT} Macro
9797
bfa74976 9798@findex YYPRINT
93c150b6
AD
9799Before @code{%printer} support, semantic values could be displayed using the
9800@code{YYPRINT} macro, which works only for terminal symbols and only with
9801the @file{yacc.c} skeleton.
9802
9803@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9804@findex YYPRINT
9805If you define @code{YYPRINT}, it should take three arguments. The parser
9806will pass a standard I/O stream, the numeric code for the token type, and
9807the token value (from @code{yylval}).
9808
9809For @file{yacc.c} only. Obsoleted by @code{%printer}.
9810@end deffn
bfa74976
RS
9811
9812Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9813calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9814
c93f22fc 9815@example
38a92d50
PE
9816%@{
9817 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9818 #define YYPRINT(File, Type, Value) \
9819 print_token_value (File, Type, Value)
38a92d50
PE
9820%@}
9821
9822@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9823
9824static void
831d3c99 9825print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9826@{
9827 if (type == VAR)
d3c4e709 9828 fprintf (file, "%s", value.tptr->name);
bfa74976 9829 else if (type == NUM)
d3c4e709 9830 fprintf (file, "%d", value.val);
bfa74976 9831@}
c93f22fc 9832@end example
bfa74976 9833
ec3bc396
AD
9834@c ================================================= Invoking Bison
9835
342b8b6e 9836@node Invocation
bfa74976
RS
9837@chapter Invoking Bison
9838@cindex invoking Bison
9839@cindex Bison invocation
9840@cindex options for invoking Bison
9841
9842The usual way to invoke Bison is as follows:
9843
9844@example
9845bison @var{infile}
9846@end example
9847
9848Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9849@samp{.y}. The parser implementation file's name is made by replacing
9850the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9851Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9852the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9853also possible, in case you are writing C++ code instead of C in your
9854grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9855output files will take an extension like the given one as input
9856(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9857feature takes effect with all options that manipulate file names like
234a3be3
AD
9858@samp{-o} or @samp{-d}.
9859
9860For example :
9861
9862@example
9863bison -d @var{infile.yxx}
9864@end example
84163231 9865@noindent
72d2299c 9866will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9867
9868@example
b56471a6 9869bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9870@end example
84163231 9871@noindent
234a3be3
AD
9872will produce @file{output.c++} and @file{outfile.h++}.
9873
8a4281b9 9874For compatibility with POSIX, the standard Bison
397ec073
PE
9875distribution also contains a shell script called @command{yacc} that
9876invokes Bison with the @option{-y} option.
9877
bfa74976 9878@menu
13863333 9879* Bison Options:: All the options described in detail,
c827f760 9880 in alphabetical order by short options.
bfa74976 9881* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9882* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9883@end menu
9884
342b8b6e 9885@node Bison Options
bfa74976
RS
9886@section Bison Options
9887
9888Bison supports both traditional single-letter options and mnemonic long
9889option names. Long option names are indicated with @samp{--} instead of
9890@samp{-}. Abbreviations for option names are allowed as long as they
9891are unique. When a long option takes an argument, like
9892@samp{--file-prefix}, connect the option name and the argument with
9893@samp{=}.
9894
9895Here is a list of options that can be used with Bison, alphabetized by
9896short option. It is followed by a cross key alphabetized by long
9897option.
9898
4c9b8f13 9899@c Please, keep this ordered as in 'bison --help'.
89cab50d
AD
9900@noindent
9901Operations modes:
9902@table @option
9903@item -h
9904@itemx --help
9905Print a summary of the command-line options to Bison and exit.
bfa74976 9906
89cab50d
AD
9907@item -V
9908@itemx --version
9909Print the version number of Bison and exit.
bfa74976 9910
f7ab6a50
PE
9911@item --print-localedir
9912Print the name of the directory containing locale-dependent data.
9913
a0de5091
JD
9914@item --print-datadir
9915Print the name of the directory containing skeletons and XSLT.
9916
89cab50d
AD
9917@item -y
9918@itemx --yacc
ff7571c0
JD
9919Act more like the traditional Yacc command. This can cause different
9920diagnostics to be generated, and may change behavior in other minor
9921ways. Most importantly, imitate Yacc's output file name conventions,
9922so that the parser implementation file is called @file{y.tab.c}, and
9923the other outputs are called @file{y.output} and @file{y.tab.h}.
9924Also, if generating a deterministic parser in C, generate
9925@code{#define} statements in addition to an @code{enum} to associate
9926token numbers with token names. Thus, the following shell script can
9927substitute for Yacc, and the Bison distribution contains such a script
9928for compatibility with POSIX:
bfa74976 9929
89cab50d 9930@example
397ec073 9931#! /bin/sh
26e06a21 9932bison -y "$@@"
89cab50d 9933@end example
54662697
PE
9934
9935The @option{-y}/@option{--yacc} option is intended for use with
9936traditional Yacc grammars. If your grammar uses a Bison extension
9937like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9938this option is specified.
9939
1d5b3c08
JD
9940@item -W [@var{category}]
9941@itemx --warnings[=@var{category}]
118d4978
AD
9942Output warnings falling in @var{category}. @var{category} can be one
9943of:
9944@table @code
9945@item midrule-values
8e55b3aa
JD
9946Warn about mid-rule values that are set but not used within any of the actions
9947of the parent rule.
9948For example, warn about unused @code{$2} in:
118d4978
AD
9949
9950@example
9951exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9952@end example
9953
8e55b3aa
JD
9954Also warn about mid-rule values that are used but not set.
9955For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9956
9957@example
5e9b6624 9958exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9959@end example
9960
9961These warnings are not enabled by default since they sometimes prove to
9962be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9963@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9964
118d4978 9965@item yacc
8a4281b9 9966Incompatibilities with POSIX Yacc.
118d4978 9967
786743d5
JD
9968@item conflicts-sr
9969@itemx conflicts-rr
9970S/R and R/R conflicts. These warnings are enabled by default. However, if
9971the @code{%expect} or @code{%expect-rr} directive is specified, an
9972unexpected number of conflicts is an error, and an expected number of
9973conflicts is not reported, so @option{-W} and @option{--warning} then have
9974no effect on the conflict report.
9975
518e8830
AD
9976@item deprecated
9977Deprecated constructs whose support will be removed in future versions of
9978Bison.
9979
09add9c2
AD
9980@item empty-rule
9981Empty rules without @code{%empty}. @xref{Empty Rules}. Disabled by
9982default, but enabled by uses of @code{%empty}, unless
9983@option{-Wno-empty-rule} was specified.
9984
cc2235ac
VT
9985@item precedence
9986Useless precedence and associativity directives. Disabled by default.
9987
9988Consider for instance the following grammar:
9989
9990@example
9991@group
9992%nonassoc "="
9993%left "+"
9994%left "*"
9995%precedence "("
9996@end group
9997%%
9998@group
9999stmt:
10000 exp
10001| "var" "=" exp
10002;
10003@end group
10004
10005@group
10006exp:
10007 exp "+" exp
10008| exp "*" "num"
10009| "(" exp ")"
10010| "num"
10011;
10012@end group
10013@end example
10014
10015Bison reports:
10016
10017@c cannot leave the location and the [-Wprecedence] for lack of
10018@c width in PDF.
10019@example
10020@group
10021warning: useless precedence and associativity for "="
10022 %nonassoc "="
10023 ^^^
10024@end group
10025@group
10026warning: useless associativity for "*", use %precedence
10027 %left "*"
10028 ^^^
10029@end group
10030@group
10031warning: useless precedence for "("
10032 %precedence "("
10033 ^^^
10034@end group
10035@end example
10036
10037One would get the exact same parser with the following directives instead:
10038
10039@example
10040@group
10041%left "+"
10042%precedence "*"
10043@end group
10044@end example
10045
c39014ae
JD
10046@item other
10047All warnings not categorized above. These warnings are enabled by default.
10048
10049This category is provided merely for the sake of completeness. Future
10050releases of Bison may move warnings from this category to new, more specific
10051categories.
10052
118d4978 10053@item all
f24695ef
AD
10054All the warnings except @code{yacc}.
10055
118d4978 10056@item none
8e55b3aa 10057Turn off all the warnings.
f24695ef 10058
118d4978 10059@item error
1048a1c9 10060See @option{-Werror}, below.
118d4978
AD
10061@end table
10062
10063A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 10064instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 10065POSIX Yacc incompatibilities.
1048a1c9
AD
10066
10067@item -Werror[=@var{category}]
10068@itemx -Wno-error[=@var{category}]
10069Enable warnings falling in @var{category}, and treat them as errors. If no
10070@var{category} is given, it defaults to making all enabled warnings into errors.
10071
10072@var{category} is the same as for @option{--warnings}, with the exception that
10073it may not be prefixed with @samp{no-} (see above).
10074
10075Prefixed with @samp{no}, it deactivates the error treatment for this
10076@var{category}. However, the warning itself won't be disabled, or enabled, by
10077this option.
10078
10079Note that the precedence of the @samp{=} and @samp{,} operators is such that
10080the following commands are @emph{not} equivalent, as the first will not treat
10081S/R conflicts as errors.
10082
10083@example
10084$ bison -Werror=yacc,conflicts-sr input.y
10085$ bison -Werror=yacc,error=conflicts-sr input.y
10086@end example
f3ead217 10087
7bada535
TR
10088@item -f [@var{feature}]
10089@itemx --feature[=@var{feature}]
10090Activate miscellaneous @var{feature}. @var{feature} can be one of:
10091@table @code
10092@item caret
10093@itemx diagnostics-show-caret
10094Show caret errors, in a manner similar to GCC's
10095@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
10096location provided with the message is used to quote the corresponding line of
10097the source file, underlining the important part of it with carets (^). Here is
c949ada3 10098an example, using the following file @file{in.y}:
7bada535
TR
10099
10100@example
10101%type <ival> exp
10102%%
10103exp: exp '+' exp @{ $exp = $1 + $2; @};
10104@end example
10105
016426c1 10106When invoked with @option{-fcaret} (or nothing), Bison will report:
7bada535
TR
10107
10108@example
10109@group
c949ada3 10110in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
10111 exp: exp '+' exp @{ $exp = $1 + $2; @};
10112 ^^^^
10113@end group
10114@group
c949ada3 10115in.y:3.1-3: refers to: $exp at $$
7bada535
TR
10116 exp: exp '+' exp @{ $exp = $1 + $2; @};
10117 ^^^
10118@end group
10119@group
c949ada3 10120in.y:3.6-8: refers to: $exp at $1
7bada535
TR
10121 exp: exp '+' exp @{ $exp = $1 + $2; @};
10122 ^^^
10123@end group
10124@group
c949ada3 10125in.y:3.14-16: refers to: $exp at $3
7bada535
TR
10126 exp: exp '+' exp @{ $exp = $1 + $2; @};
10127 ^^^
10128@end group
10129@group
c949ada3 10130in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
10131 exp: exp '+' exp @{ $exp = $1 + $2; @};
10132 ^^
10133@end group
10134@end example
10135
016426c1
TR
10136Whereas, when invoked with @option{-fno-caret}, Bison will only report:
10137
10138@example
10139@group
10140in.y:3.20-23: error: ambiguous reference: ‘$exp’
10141in.y:3.1-3: refers to: $exp at $$
10142in.y:3.6-8: refers to: $exp at $1
10143in.y:3.14-16: refers to: $exp at $3
10144in.y:3.32-33: error: $2 of ‘exp’ has no declared type
10145@end group
10146@end example
10147
10148This option is activated by default.
10149
7bada535 10150@end table
89cab50d
AD
10151@end table
10152
10153@noindent
10154Tuning the parser:
10155
10156@table @option
10157@item -t
10158@itemx --debug
ff7571c0
JD
10159In the parser implementation file, define the macro @code{YYDEBUG} to
101601 if it is not already defined, so that the debugging facilities are
10161compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 10162
58697c6d
AD
10163@item -D @var{name}[=@var{value}]
10164@itemx --define=@var{name}[=@var{value}]
17aed602 10165@itemx -F @var{name}[=@var{value}]
de5ab940
JD
10166@itemx --force-define=@var{name}[=@var{value}]
10167Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 10168(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
10169definitions for the same @var{name} as follows:
10170
10171@itemize
10172@item
0b6d43c5
JD
10173Bison quietly ignores all command-line definitions for @var{name} except
10174the last.
de5ab940 10175@item
0b6d43c5
JD
10176If that command-line definition is specified by a @code{-D} or
10177@code{--define}, Bison reports an error for any @code{%define}
10178definition for @var{name}.
de5ab940 10179@item
0b6d43c5
JD
10180If that command-line definition is specified by a @code{-F} or
10181@code{--force-define} instead, Bison quietly ignores all @code{%define}
10182definitions for @var{name}.
10183@item
10184Otherwise, Bison reports an error if there are multiple @code{%define}
10185definitions for @var{name}.
de5ab940
JD
10186@end itemize
10187
10188You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
10189make files unless you are confident that it is safe to quietly ignore
10190any conflicting @code{%define} that may be added to the grammar file.
58697c6d 10191
0e021770
PE
10192@item -L @var{language}
10193@itemx --language=@var{language}
10194Specify the programming language for the generated parser, as if
10195@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 10196Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 10197@var{language} is case-insensitive.
0e021770 10198
89cab50d 10199@item --locations
d8988b2f 10200Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
10201
10202@item -p @var{prefix}
10203@itemx --name-prefix=@var{prefix}
4b3847c3
AD
10204Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
10205Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
10206Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
10207
10208@item -l
10209@itemx --no-lines
ff7571c0
JD
10210Don't put any @code{#line} preprocessor commands in the parser
10211implementation file. Ordinarily Bison puts them in the parser
10212implementation file so that the C compiler and debuggers will
10213associate errors with your source file, the grammar file. This option
10214causes them to associate errors with the parser implementation file,
10215treating it as an independent source file in its own right.
bfa74976 10216
e6e704dc
JD
10217@item -S @var{file}
10218@itemx --skeleton=@var{file}
a7867f53 10219Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
10220(@pxref{Decl Summary, , Bison Declaration Summary}).
10221
ed4d67dc
JD
10222@c You probably don't need this option unless you are developing Bison.
10223@c You should use @option{--language} if you want to specify the skeleton for a
10224@c different language, because it is clearer and because it will always
10225@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 10226
a7867f53
JD
10227If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
10228file in the Bison installation directory.
10229If it does, @var{file} is an absolute file name or a file name relative to the
10230current working directory.
10231This is similar to how most shells resolve commands.
10232
89cab50d
AD
10233@item -k
10234@itemx --token-table
d8988b2f 10235Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 10236@end table
bfa74976 10237
89cab50d
AD
10238@noindent
10239Adjust the output:
bfa74976 10240
89cab50d 10241@table @option
8e55b3aa 10242@item --defines[=@var{file}]
d8988b2f 10243Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 10244file containing macro definitions for the token type names defined in
4bfd5e4e 10245the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 10246
8e55b3aa
JD
10247@item -d
10248This is the same as @code{--defines} except @code{-d} does not accept a
10249@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
10250with other short options.
342b8b6e 10251
89cab50d
AD
10252@item -b @var{file-prefix}
10253@itemx --file-prefix=@var{prefix}
9c437126 10254Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 10255for all Bison output file names. @xref{Decl Summary}.
bfa74976 10256
ec3bc396
AD
10257@item -r @var{things}
10258@itemx --report=@var{things}
10259Write an extra output file containing verbose description of the comma
10260separated list of @var{things} among:
10261
10262@table @code
10263@item state
10264Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 10265parser's automaton.
ec3bc396 10266
57f8bd8d
AD
10267@item itemset
10268Implies @code{state} and augments the description of the automaton with
10269the full set of items for each state, instead of its core only.
10270
742e4900 10271@item lookahead
ec3bc396 10272Implies @code{state} and augments the description of the automaton with
742e4900 10273each rule's lookahead set.
ec3bc396 10274
57f8bd8d
AD
10275@item solved
10276Implies @code{state}. Explain how conflicts were solved thanks to
10277precedence and associativity directives.
10278
10279@item all
10280Enable all the items.
10281
10282@item none
10283Do not generate the report.
ec3bc396
AD
10284@end table
10285
1bb2bd75
JD
10286@item --report-file=@var{file}
10287Specify the @var{file} for the verbose description.
10288
bfa74976
RS
10289@item -v
10290@itemx --verbose
9c437126 10291Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 10292file containing verbose descriptions of the grammar and
72d2299c 10293parser. @xref{Decl Summary}.
bfa74976 10294
fa4d969f
PE
10295@item -o @var{file}
10296@itemx --output=@var{file}
ff7571c0 10297Specify the @var{file} for the parser implementation file.
bfa74976 10298
fa4d969f 10299The other output files' names are constructed from @var{file} as
d8988b2f 10300described under the @samp{-v} and @samp{-d} options.
342b8b6e 10301
a7c09cba 10302@item -g [@var{file}]
8e55b3aa 10303@itemx --graph[=@var{file}]
eb45ef3b 10304Output a graphical representation of the parser's
35fe0834 10305automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 10306@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
10307@code{@var{file}} is optional.
10308If omitted and the grammar file is @file{foo.y}, the output file will be
10309@file{foo.dot}.
59da312b 10310
a7c09cba 10311@item -x [@var{file}]
8e55b3aa 10312@itemx --xml[=@var{file}]
eb45ef3b 10313Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 10314@code{@var{file}} is optional.
59da312b
JD
10315If omitted and the grammar file is @file{foo.y}, the output file will be
10316@file{foo.xml}.
10317(The current XML schema is experimental and may evolve.
10318More user feedback will help to stabilize it.)
bfa74976
RS
10319@end table
10320
342b8b6e 10321@node Option Cross Key
bfa74976
RS
10322@section Option Cross Key
10323
10324Here is a list of options, alphabetized by long option, to help you find
de5ab940 10325the corresponding short option and directive.
bfa74976 10326
de5ab940 10327@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 10328@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 10329@include cross-options.texi
aa08666d 10330@end multitable
bfa74976 10331
93dd49ab
PE
10332@node Yacc Library
10333@section Yacc Library
10334
10335The Yacc library contains default implementations of the
10336@code{yyerror} and @code{main} functions. These default
8a4281b9 10337implementations are normally not useful, but POSIX requires
93dd49ab
PE
10338them. To use the Yacc library, link your program with the
10339@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 10340library is distributed under the terms of the GNU General
93dd49ab
PE
10341Public License (@pxref{Copying}).
10342
10343If you use the Yacc library's @code{yyerror} function, you should
10344declare @code{yyerror} as follows:
10345
10346@example
10347int yyerror (char const *);
10348@end example
10349
10350Bison ignores the @code{int} value returned by this @code{yyerror}.
10351If you use the Yacc library's @code{main} function, your
10352@code{yyparse} function should have the following type signature:
10353
10354@example
10355int yyparse (void);
10356@end example
10357
12545799
AD
10358@c ================================================= C++ Bison
10359
8405b70c
PB
10360@node Other Languages
10361@chapter Parsers Written In Other Languages
12545799
AD
10362
10363@menu
10364* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10365* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10366@end menu
10367
10368@node C++ Parsers
10369@section C++ Parsers
10370
10371@menu
10372* C++ Bison Interface:: Asking for C++ parser generation
10373* C++ Semantic Values:: %union vs. C++
10374* C++ Location Values:: The position and location classes
10375* C++ Parser Interface:: Instantiating and running the parser
10376* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10377* A Complete C++ Example:: Demonstrating their use
12545799
AD
10378@end menu
10379
10380@node C++ Bison Interface
10381@subsection C++ Bison Interface
ed4d67dc 10382@c - %skeleton "lalr1.cc"
12545799
AD
10383@c - Always pure
10384@c - initial action
10385
eb45ef3b 10386The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10387@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10388@option{--skeleton=lalr1.cc}.
e6e704dc 10389@xref{Decl Summary}.
0e021770 10390
793fbca5
JD
10391When run, @command{bison} will create several entities in the @samp{yy}
10392namespace.
67501061 10393@findex %define api.namespace
35c1e5f0
JD
10394Use the @samp{%define api.namespace} directive to change the namespace name,
10395see @ref{%define Summary,,api.namespace}. The various classes are generated
10396in the following files:
aa08666d 10397
12545799
AD
10398@table @file
10399@item position.hh
10400@itemx location.hh
db8ab2be 10401The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10402location tracking when enabled. These files are not generated if the
10403@code{%define} variable @code{api.location.type} is defined. @xref{C++
10404Location Values}.
12545799
AD
10405
10406@item stack.hh
10407An auxiliary class @code{stack} used by the parser.
10408
fa4d969f
PE
10409@item @var{file}.hh
10410@itemx @var{file}.cc
ff7571c0 10411(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10412declaration and implementation of the C++ parser class. The basename
10413and extension of these two files follow the same rules as with regular C
10414parsers (@pxref{Invocation}).
12545799 10415
cd8b5791
AD
10416The header is @emph{mandatory}; you must either pass
10417@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10418@samp{%defines} directive.
10419@end table
10420
10421All these files are documented using Doxygen; run @command{doxygen}
10422for a complete and accurate documentation.
10423
10424@node C++ Semantic Values
10425@subsection C++ Semantic Values
10426@c - No objects in unions
178e123e 10427@c - YYSTYPE
12545799
AD
10428@c - Printer and destructor
10429
3cdc21cf
AD
10430Bison supports two different means to handle semantic values in C++. One is
10431alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10432practitioners know, unions are inconvenient in C++, therefore another
10433approach is provided, based on variants (@pxref{C++ Variants}).
10434
10435@menu
10436* C++ Unions:: Semantic values cannot be objects
10437* C++ Variants:: Using objects as semantic values
10438@end menu
10439
10440@node C++ Unions
10441@subsubsection C++ Unions
10442
12545799 10443The @code{%union} directive works as for C, see @ref{Union Decl, ,The
e4d49586 10444Union Declaration}. In particular it produces a genuine
3cdc21cf 10445@code{union}, which have a few specific features in C++.
12545799
AD
10446@itemize @minus
10447@item
fb9712a9
AD
10448The type @code{YYSTYPE} is defined but its use is discouraged: rather
10449you should refer to the parser's encapsulated type
10450@code{yy::parser::semantic_type}.
12545799
AD
10451@item
10452Non POD (Plain Old Data) types cannot be used. C++ forbids any
10453instance of classes with constructors in unions: only @emph{pointers}
10454to such objects are allowed.
10455@end itemize
10456
10457Because objects have to be stored via pointers, memory is not
10458reclaimed automatically: using the @code{%destructor} directive is the
10459only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10460Symbols}.
10461
3cdc21cf
AD
10462@node C++ Variants
10463@subsubsection C++ Variants
10464
ae8880de
AD
10465Bison provides a @emph{variant} based implementation of semantic values for
10466C++. This alleviates all the limitations reported in the previous section,
10467and in particular, object types can be used without pointers.
3cdc21cf
AD
10468
10469To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10470@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10471@code{%union} is ignored, and instead of using the name of the fields of the
10472@code{%union} to ``type'' the symbols, use genuine types.
10473
10474For instance, instead of
10475
10476@example
10477%union
10478@{
10479 int ival;
10480 std::string* sval;
10481@}
10482%token <ival> NUMBER;
10483%token <sval> STRING;
10484@end example
10485
10486@noindent
10487write
10488
10489@example
10490%token <int> NUMBER;
10491%token <std::string> STRING;
10492@end example
10493
10494@code{STRING} is no longer a pointer, which should fairly simplify the user
10495actions in the grammar and in the scanner (in particular the memory
10496management).
10497
10498Since C++ features destructors, and since it is customary to specialize
10499@code{operator<<} to support uniform printing of values, variants also
10500typically simplify Bison printers and destructors.
10501
10502Variants are stricter than unions. When based on unions, you may play any
10503dirty game with @code{yylval}, say storing an @code{int}, reading a
10504@code{char*}, and then storing a @code{double} in it. This is no longer
10505possible with variants: they must be initialized, then assigned to, and
10506eventually, destroyed.
10507
10508@deftypemethod {semantic_type} {T&} build<T> ()
10509Initialize, but leave empty. Returns the address where the actual value may
10510be stored. Requires that the variant was not initialized yet.
10511@end deftypemethod
10512
10513@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10514Initialize, and copy-construct from @var{t}.
10515@end deftypemethod
10516
10517
10518@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10519appeared unacceptable to require Boost on the user's machine (i.e., the
10520machine on which the generated parser will be compiled, not the machine on
10521which @command{bison} was run). Second, for each possible semantic value,
10522Boost.Variant not only stores the value, but also a tag specifying its
10523type. But the parser already ``knows'' the type of the semantic value, so
10524that would be duplicating the information.
10525
10526Therefore we developed light-weight variants whose type tag is external (so
10527they are really like @code{unions} for C++ actually). But our code is much
10528less mature that Boost.Variant. So there is a number of limitations in
10529(the current implementation of) variants:
10530@itemize
10531@item
10532Alignment must be enforced: values should be aligned in memory according to
10533the most demanding type. Computing the smallest alignment possible requires
10534meta-programming techniques that are not currently implemented in Bison, and
10535therefore, since, as far as we know, @code{double} is the most demanding
10536type on all platforms, alignments are enforced for @code{double} whatever
10537types are actually used. This may waste space in some cases.
10538
3cdc21cf
AD
10539@item
10540There might be portability issues we are not aware of.
10541@end itemize
10542
a6ca4ce2 10543As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10544is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10545
10546@node C++ Location Values
10547@subsection C++ Location Values
10548@c - %locations
10549@c - class Position
10550@c - class Location
16dc6a9e 10551@c - %define filename_type "const symbol::Symbol"
12545799
AD
10552
10553When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10554location tracking, see @ref{Tracking Locations}.
10555
10556By default, two auxiliary classes define a @code{position}, a single point
10557in a file, and a @code{location}, a range composed of a pair of
10558@code{position}s (possibly spanning several files). But if the
10559@code{%define} variable @code{api.location.type} is defined, then these
10560classes will not be generated, and the user defined type will be used.
12545799 10561
936c88d1
AD
10562@tindex uint
10563In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10564genuine code only the latter is used.
10565
10566@menu
10567* C++ position:: One point in the source file
10568* C++ location:: Two points in the source file
db8ab2be 10569* User Defined Location Type:: Required interface for locations
936c88d1
AD
10570@end menu
10571
10572@node C++ position
10573@subsubsection C++ @code{position}
10574
10575@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10576Create a @code{position} denoting a given point. Note that @code{file} is
10577not reclaimed when the @code{position} is destroyed: memory managed must be
10578handled elsewhere.
10579@end deftypeop
10580
10581@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10582Reset the position to the given values.
10583@end deftypemethod
10584
10585@deftypeivar {position} {std::string*} file
12545799
AD
10586The name of the file. It will always be handled as a pointer, the
10587parser will never duplicate nor deallocate it. As an experimental
10588feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10589filename_type "@var{type}"}.
936c88d1 10590@end deftypeivar
12545799 10591
936c88d1 10592@deftypeivar {position} {uint} line
12545799 10593The line, starting at 1.
936c88d1 10594@end deftypeivar
12545799 10595
75ae8299
AD
10596@deftypemethod {position} {void} lines (int @var{height} = 1)
10597If @var{height} is not null, advance by @var{height} lines, resetting the
10598column number. The resulting line number cannot be less than 1.
12545799
AD
10599@end deftypemethod
10600
936c88d1
AD
10601@deftypeivar {position} {uint} column
10602The column, starting at 1.
10603@end deftypeivar
12545799 10604
75ae8299
AD
10605@deftypemethod {position} {void} columns (int @var{width} = 1)
10606Advance by @var{width} columns, without changing the line number. The
10607resulting column number cannot be less than 1.
12545799
AD
10608@end deftypemethod
10609
936c88d1
AD
10610@deftypemethod {position} {position&} operator+= (int @var{width})
10611@deftypemethodx {position} {position} operator+ (int @var{width})
10612@deftypemethodx {position} {position&} operator-= (int @var{width})
10613@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10614Various forms of syntactic sugar for @code{columns}.
10615@end deftypemethod
10616
936c88d1
AD
10617@deftypemethod {position} {bool} operator== (const position& @var{that})
10618@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10619Whether @code{*this} and @code{that} denote equal/different positions.
10620@end deftypemethod
10621
10622@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10623Report @var{p} on @var{o} like this:
fa4d969f
PE
10624@samp{@var{file}:@var{line}.@var{column}}, or
10625@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10626@end deftypefun
10627
10628@node C++ location
10629@subsubsection C++ @code{location}
10630
10631@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10632Create a @code{Location} from the endpoints of the range.
10633@end deftypeop
10634
10635@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10636@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10637Create a @code{Location} denoting an empty range located at a given point.
10638@end deftypeop
10639
10640@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10641Reset the location to an empty range at the given values.
12545799
AD
10642@end deftypemethod
10643
936c88d1
AD
10644@deftypeivar {location} {position} begin
10645@deftypeivarx {location} {position} end
12545799 10646The first, inclusive, position of the range, and the first beyond.
936c88d1 10647@end deftypeivar
12545799 10648
75ae8299
AD
10649@deftypemethod {location} {void} columns (int @var{width} = 1)
10650@deftypemethodx {location} {void} lines (int @var{height} = 1)
10651Forwarded to the @code{end} position.
12545799
AD
10652@end deftypemethod
10653
936c88d1
AD
10654@deftypemethod {location} {location} operator+ (const location& @var{end})
10655@deftypemethodx {location} {location} operator+ (int @var{width})
10656@deftypemethodx {location} {location} operator+= (int @var{width})
75ae8299
AD
10657@deftypemethodx {location} {location} operator- (int @var{width})
10658@deftypemethodx {location} {location} operator-= (int @var{width})
12545799
AD
10659Various forms of syntactic sugar.
10660@end deftypemethod
10661
10662@deftypemethod {location} {void} step ()
10663Move @code{begin} onto @code{end}.
10664@end deftypemethod
10665
936c88d1
AD
10666@deftypemethod {location} {bool} operator== (const location& @var{that})
10667@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10668Whether @code{*this} and @code{that} denote equal/different ranges of
10669positions.
10670@end deftypemethod
10671
10672@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10673Report @var{p} on @var{o}, taking care of special cases such as: no
10674@code{filename} defined, or equal filename/line or column.
10675@end deftypefun
12545799 10676
db8ab2be
AD
10677@node User Defined Location Type
10678@subsubsection User Defined Location Type
10679@findex %define api.location.type
10680
10681Instead of using the built-in types you may use the @code{%define} variable
10682@code{api.location.type} to specify your own type:
10683
10684@example
6ce4b4ff 10685%define api.location.type @{@var{LocationType}@}
db8ab2be
AD
10686@end example
10687
10688The requirements over your @var{LocationType} are:
10689@itemize
10690@item
10691it must be copyable;
10692
10693@item
10694in order to compute the (default) value of @code{@@$} in a reduction, the
10695parser basically runs
10696@example
10697@@$.begin = @@$1.begin;
10698@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10699@end example
10700@noindent
10701so there must be copyable @code{begin} and @code{end} members;
10702
10703@item
10704alternatively you may redefine the computation of the default location, in
10705which case these members are not required (@pxref{Location Default Action});
10706
10707@item
10708if traces are enabled, then there must exist an @samp{std::ostream&
10709 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10710@end itemize
10711
10712@sp 1
10713
10714In programs with several C++ parsers, you may also use the @code{%define}
10715variable @code{api.location.type} to share a common set of built-in
10716definitions for @code{position} and @code{location}. For instance, one
10717parser @file{master/parser.yy} might use:
10718
10719@example
10720%defines
10721%locations
6ce4b4ff 10722%define api.namespace @{master::@}
db8ab2be
AD
10723@end example
10724
10725@noindent
10726to generate the @file{master/position.hh} and @file{master/location.hh}
10727files, reused by other parsers as follows:
10728
10729@example
6ce4b4ff 10730%define api.location.type @{master::location@}
db8ab2be
AD
10731%code requires @{ #include <master/location.hh> @}
10732@end example
10733
12545799
AD
10734@node C++ Parser Interface
10735@subsection C++ Parser Interface
10736@c - define parser_class_name
10737@c - Ctor
10738@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10739@c debug_stream.
10740@c - Reporting errors
10741
10742The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10743declare and define the parser class in the namespace @code{yy}. The
10744class name defaults to @code{parser}, but may be changed using
6ce4b4ff 10745@samp{%define parser_class_name @{@var{name}@}}. The interface of
9d9b8b70 10746this class is detailed below. It can be extended using the
12545799
AD
10747@code{%parse-param} feature: its semantics is slightly changed since
10748it describes an additional member of the parser class, and an
10749additional argument for its constructor.
10750
3cdc21cf
AD
10751@defcv {Type} {parser} {semantic_type}
10752@defcvx {Type} {parser} {location_type}
10753The types for semantic values and locations (if enabled).
10754@end defcv
10755
86e5b440 10756@defcv {Type} {parser} {token}
aaaa2aae
AD
10757A structure that contains (only) the @code{yytokentype} enumeration, which
10758defines the tokens. To refer to the token @code{FOO},
10759use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10760@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10761(@pxref{Calc++ Scanner}).
10762@end defcv
10763
3cdc21cf
AD
10764@defcv {Type} {parser} {syntax_error}
10765This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10766from the scanner or from the user actions to raise parse errors. This is
10767equivalent with first
3cdc21cf
AD
10768invoking @code{error} to report the location and message of the syntax
10769error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10770But contrary to @code{YYERROR} which can only be invoked from user actions
10771(i.e., written in the action itself), the exception can be thrown from
10772function invoked from the user action.
8a0adb01 10773@end defcv
12545799
AD
10774
10775@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10776Build a new parser object. There are no arguments by default, unless
10777@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10778@end deftypemethod
10779
3cdc21cf
AD
10780@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10781@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10782Instantiate a syntax-error exception.
10783@end deftypemethod
10784
12545799
AD
10785@deftypemethod {parser} {int} parse ()
10786Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10787
10788@cindex exceptions
10789The whole function is wrapped in a @code{try}/@code{catch} block, so that
10790when an exception is thrown, the @code{%destructor}s are called to release
10791the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10792@end deftypemethod
10793
10794@deftypemethod {parser} {std::ostream&} debug_stream ()
10795@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10796Get or set the stream used for tracing the parsing. It defaults to
10797@code{std::cerr}.
10798@end deftypemethod
10799
10800@deftypemethod {parser} {debug_level_type} debug_level ()
10801@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10802Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10803or nonzero, full tracing.
12545799
AD
10804@end deftypemethod
10805
10806@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10807@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10808The definition for this member function must be supplied by the user:
10809the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10810described by @var{m}. If location tracking is not enabled, the second
10811signature is used.
12545799
AD
10812@end deftypemethod
10813
10814
10815@node C++ Scanner Interface
10816@subsection C++ Scanner Interface
10817@c - prefix for yylex.
10818@c - Pure interface to yylex
10819@c - %lex-param
10820
10821The parser invokes the scanner by calling @code{yylex}. Contrary to C
10822parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10823@samp{%define api.pure} directive. The actual interface with @code{yylex}
10824depends whether you use unions, or variants.
12545799 10825
3cdc21cf
AD
10826@menu
10827* Split Symbols:: Passing symbols as two/three components
10828* Complete Symbols:: Making symbols a whole
10829@end menu
10830
10831@node Split Symbols
10832@subsubsection Split Symbols
10833
5807bb91 10834The interface is as follows.
3cdc21cf 10835
86e5b440
AD
10836@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10837@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10838Return the next token. Its type is the return value, its semantic value and
10839location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10840@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10841@end deftypemethod
10842
3cdc21cf
AD
10843Note that when using variants, the interface for @code{yylex} is the same,
10844but @code{yylval} is handled differently.
10845
10846Regular union-based code in Lex scanner typically look like:
10847
10848@example
10849[0-9]+ @{
10850 yylval.ival = text_to_int (yytext);
10851 return yy::parser::INTEGER;
10852 @}
10853[a-z]+ @{
10854 yylval.sval = new std::string (yytext);
10855 return yy::parser::IDENTIFIER;
10856 @}
10857@end example
10858
10859Using variants, @code{yylval} is already constructed, but it is not
10860initialized. So the code would look like:
10861
10862@example
10863[0-9]+ @{
10864 yylval.build<int>() = text_to_int (yytext);
10865 return yy::parser::INTEGER;
10866 @}
10867[a-z]+ @{
10868 yylval.build<std::string> = yytext;
10869 return yy::parser::IDENTIFIER;
10870 @}
10871@end example
10872
10873@noindent
10874or
10875
10876@example
10877[0-9]+ @{
10878 yylval.build(text_to_int (yytext));
10879 return yy::parser::INTEGER;
10880 @}
10881[a-z]+ @{
10882 yylval.build(yytext);
10883 return yy::parser::IDENTIFIER;
10884 @}
10885@end example
10886
10887
10888@node Complete Symbols
10889@subsubsection Complete Symbols
10890
ae8880de 10891If you specified both @code{%define api.value.type variant} and
e36ec1f4 10892@code{%define api.token.constructor},
3cdc21cf
AD
10893the @code{parser} class also defines the class @code{parser::symbol_type}
10894which defines a @emph{complete} symbol, aggregating its type (i.e., the
10895traditional value returned by @code{yylex}), its semantic value (i.e., the
10896value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10897
10898@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10899Build a complete terminal symbol which token type is @var{type}, and which
10900semantic value is @var{value}. If location tracking is enabled, also pass
10901the @var{location}.
10902@end deftypemethod
10903
10904This interface is low-level and should not be used for two reasons. First,
10905it is inconvenient, as you still have to build the semantic value, which is
10906a variant, and second, because consistency is not enforced: as with unions,
10907it is still possible to give an integer as semantic value for a string.
10908
10909So for each token type, Bison generates named constructors as follows.
10910
10911@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10912@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10913Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10914including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10915@var{value} of adequate @var{value_type}. If location tracking is enabled,
10916also pass the @var{location}.
10917@end deftypemethod
10918
10919For instance, given the following declarations:
10920
10921@example
630a0218 10922%define api.token.prefix @{TOK_@}
3cdc21cf
AD
10923%token <std::string> IDENTIFIER;
10924%token <int> INTEGER;
10925%token COLON;
10926@end example
10927
10928@noindent
10929Bison generates the following functions:
10930
10931@example
10932symbol_type make_IDENTIFIER(const std::string& v,
10933 const location_type& l);
10934symbol_type make_INTEGER(const int& v,
10935 const location_type& loc);
10936symbol_type make_COLON(const location_type& loc);
10937@end example
10938
10939@noindent
10940which should be used in a Lex-scanner as follows.
10941
10942@example
10943[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10944[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10945":" return yy::parser::make_COLON(loc);
10946@end example
10947
10948Tokens that do not have an identifier are not accessible: you cannot simply
10949use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10950
10951@node A Complete C++ Example
8405b70c 10952@subsection A Complete C++ Example
12545799
AD
10953
10954This section demonstrates the use of a C++ parser with a simple but
10955complete example. This example should be available on your system,
3cdc21cf 10956ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10957focuses on the use of Bison, therefore the design of the various C++
10958classes is very naive: no accessors, no encapsulation of members etc.
10959We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10960demonstrate the various interactions. A hand-written scanner is
12545799
AD
10961actually easier to interface with.
10962
10963@menu
10964* Calc++ --- C++ Calculator:: The specifications
10965* Calc++ Parsing Driver:: An active parsing context
10966* Calc++ Parser:: A parser class
10967* Calc++ Scanner:: A pure C++ Flex scanner
10968* Calc++ Top Level:: Conducting the band
10969@end menu
10970
10971@node Calc++ --- C++ Calculator
8405b70c 10972@subsubsection Calc++ --- C++ Calculator
12545799
AD
10973
10974Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10975expression, possibly preceded by variable assignments. An
12545799
AD
10976environment containing possibly predefined variables such as
10977@code{one} and @code{two}, is exchanged with the parser. An example
10978of valid input follows.
10979
10980@example
10981three := 3
10982seven := one + two * three
10983seven * seven
10984@end example
10985
10986@node Calc++ Parsing Driver
8405b70c 10987@subsubsection Calc++ Parsing Driver
12545799
AD
10988@c - An env
10989@c - A place to store error messages
10990@c - A place for the result
10991
10992To support a pure interface with the parser (and the scanner) the
10993technique of the ``parsing context'' is convenient: a structure
10994containing all the data to exchange. Since, in addition to simply
10995launch the parsing, there are several auxiliary tasks to execute (open
10996the file for parsing, instantiate the parser etc.), we recommend
10997transforming the simple parsing context structure into a fully blown
10998@dfn{parsing driver} class.
10999
11000The declaration of this driver class, @file{calc++-driver.hh}, is as
11001follows. The first part includes the CPP guard and imports the
fb9712a9
AD
11002required standard library components, and the declaration of the parser
11003class.
12545799 11004
1c59e0a1 11005@comment file: calc++-driver.hh
12545799
AD
11006@example
11007#ifndef CALCXX_DRIVER_HH
11008# define CALCXX_DRIVER_HH
11009# include <string>
11010# include <map>
fb9712a9 11011# include "calc++-parser.hh"
12545799
AD
11012@end example
11013
12545799
AD
11014
11015@noindent
11016Then comes the declaration of the scanning function. Flex expects
11017the signature of @code{yylex} to be defined in the macro
11018@code{YY_DECL}, and the C++ parser expects it to be declared. We can
11019factor both as follows.
1c59e0a1
AD
11020
11021@comment file: calc++-driver.hh
12545799 11022@example
3dc5e96b 11023// Tell Flex the lexer's prototype ...
3cdc21cf
AD
11024# define YY_DECL \
11025 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
11026// ... and declare it for the parser's sake.
11027YY_DECL;
11028@end example
11029
11030@noindent
11031The @code{calcxx_driver} class is then declared with its most obvious
11032members.
11033
1c59e0a1 11034@comment file: calc++-driver.hh
12545799
AD
11035@example
11036// Conducting the whole scanning and parsing of Calc++.
11037class calcxx_driver
11038@{
11039public:
11040 calcxx_driver ();
11041 virtual ~calcxx_driver ();
11042
11043 std::map<std::string, int> variables;
11044
11045 int result;
11046@end example
11047
11048@noindent
3cdc21cf
AD
11049To encapsulate the coordination with the Flex scanner, it is useful to have
11050member functions to open and close the scanning phase.
12545799 11051
1c59e0a1 11052@comment file: calc++-driver.hh
12545799
AD
11053@example
11054 // Handling the scanner.
11055 void scan_begin ();
11056 void scan_end ();
11057 bool trace_scanning;
11058@end example
11059
11060@noindent
11061Similarly for the parser itself.
11062
1c59e0a1 11063@comment file: calc++-driver.hh
12545799 11064@example
3cdc21cf
AD
11065 // Run the parser on file F.
11066 // Return 0 on success.
bb32f4f2 11067 int parse (const std::string& f);
3cdc21cf
AD
11068 // The name of the file being parsed.
11069 // Used later to pass the file name to the location tracker.
12545799 11070 std::string file;
3cdc21cf 11071 // Whether parser traces should be generated.
12545799
AD
11072 bool trace_parsing;
11073@end example
11074
11075@noindent
11076To demonstrate pure handling of parse errors, instead of simply
11077dumping them on the standard error output, we will pass them to the
11078compiler driver using the following two member functions. Finally, we
11079close the class declaration and CPP guard.
11080
1c59e0a1 11081@comment file: calc++-driver.hh
12545799
AD
11082@example
11083 // Error handling.
11084 void error (const yy::location& l, const std::string& m);
11085 void error (const std::string& m);
11086@};
11087#endif // ! CALCXX_DRIVER_HH
11088@end example
11089
11090The implementation of the driver is straightforward. The @code{parse}
11091member function deserves some attention. The @code{error} functions
11092are simple stubs, they should actually register the located error
11093messages and set error state.
11094
1c59e0a1 11095@comment file: calc++-driver.cc
12545799
AD
11096@example
11097#include "calc++-driver.hh"
11098#include "calc++-parser.hh"
11099
11100calcxx_driver::calcxx_driver ()
11101 : trace_scanning (false), trace_parsing (false)
11102@{
11103 variables["one"] = 1;
11104 variables["two"] = 2;
11105@}
11106
11107calcxx_driver::~calcxx_driver ()
11108@{
11109@}
11110
bb32f4f2 11111int
12545799
AD
11112calcxx_driver::parse (const std::string &f)
11113@{
11114 file = f;
11115 scan_begin ();
11116 yy::calcxx_parser parser (*this);
11117 parser.set_debug_level (trace_parsing);
bb32f4f2 11118 int res = parser.parse ();
12545799 11119 scan_end ();
bb32f4f2 11120 return res;
12545799
AD
11121@}
11122
11123void
11124calcxx_driver::error (const yy::location& l, const std::string& m)
11125@{
11126 std::cerr << l << ": " << m << std::endl;
11127@}
11128
11129void
11130calcxx_driver::error (const std::string& m)
11131@{
11132 std::cerr << m << std::endl;
11133@}
11134@end example
11135
11136@node Calc++ Parser
8405b70c 11137@subsubsection Calc++ Parser
12545799 11138
ff7571c0
JD
11139The grammar file @file{calc++-parser.yy} starts by asking for the C++
11140deterministic parser skeleton, the creation of the parser header file,
11141and specifies the name of the parser class. Because the C++ skeleton
11142changed several times, it is safer to require the version you designed
11143the grammar for.
1c59e0a1
AD
11144
11145@comment file: calc++-parser.yy
12545799 11146@example
c93f22fc 11147%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 11148%require "@value{VERSION}"
12545799 11149%defines
6ce4b4ff 11150%define parser_class_name @{calcxx_parser@}
fb9712a9
AD
11151@end example
11152
3cdc21cf 11153@noindent
e36ec1f4 11154@findex %define api.token.constructor
ae8880de 11155@findex %define api.value.type variant
3cdc21cf
AD
11156This example will use genuine C++ objects as semantic values, therefore, we
11157require the variant-based interface. To make sure we properly use it, we
11158enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 11159definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
11160
11161@comment file: calc++-parser.yy
11162@example
e36ec1f4 11163%define api.token.constructor
ae8880de 11164%define api.value.type variant
3cdc21cf 11165%define parse.assert
3cdc21cf
AD
11166@end example
11167
fb9712a9 11168@noindent
16dc6a9e 11169@findex %code requires
3cdc21cf
AD
11170Then come the declarations/inclusions needed by the semantic values.
11171Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 11172to include the header of the other, which is, of course, insane. This
3cdc21cf 11173mutual dependency will be broken using forward declarations. Because the
fb9712a9 11174driver's header needs detailed knowledge about the parser class (in
3cdc21cf 11175particular its inner types), it is the parser's header which will use a
e0c07222 11176forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
11177
11178@comment file: calc++-parser.yy
11179@example
3cdc21cf
AD
11180%code requires
11181@{
12545799 11182# include <string>
fb9712a9 11183class calcxx_driver;
9bc0dd67 11184@}
12545799
AD
11185@end example
11186
11187@noindent
11188The driver is passed by reference to the parser and to the scanner.
11189This provides a simple but effective pure interface, not relying on
11190global variables.
11191
1c59e0a1 11192@comment file: calc++-parser.yy
12545799
AD
11193@example
11194// The parsing context.
2055a44e 11195%param @{ calcxx_driver& driver @}
12545799
AD
11196@end example
11197
11198@noindent
2055a44e 11199Then we request location tracking, and initialize the
f50bfcd6 11200first location's file name. Afterward new locations are computed
12545799 11201relatively to the previous locations: the file name will be
2055a44e 11202propagated.
12545799 11203
1c59e0a1 11204@comment file: calc++-parser.yy
12545799
AD
11205@example
11206%locations
11207%initial-action
11208@{
11209 // Initialize the initial location.
b47dbebe 11210 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
11211@};
11212@end example
11213
11214@noindent
7fceb615
JD
11215Use the following two directives to enable parser tracing and verbose error
11216messages. However, verbose error messages can contain incorrect information
11217(@pxref{LAC}).
12545799 11218
1c59e0a1 11219@comment file: calc++-parser.yy
12545799 11220@example
fa819509 11221%define parse.trace
cf499cff 11222%define parse.error verbose
12545799
AD
11223@end example
11224
fb9712a9 11225@noindent
136a0f76
PB
11226@findex %code
11227The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 11228@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
11229
11230@comment file: calc++-parser.yy
11231@example
3cdc21cf
AD
11232%code
11233@{
fb9712a9 11234# include "calc++-driver.hh"
34f98f46 11235@}
fb9712a9
AD
11236@end example
11237
11238
12545799
AD
11239@noindent
11240The token numbered as 0 corresponds to end of file; the following line
99c08fb6 11241allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
11242``$end''. Similarly user friendly names are provided for each symbol. To
11243avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 11244tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 11245
1c59e0a1 11246@comment file: calc++-parser.yy
12545799 11247@example
630a0218 11248%define api.token.prefix @{TOK_@}
3cdc21cf
AD
11249%token
11250 END 0 "end of file"
11251 ASSIGN ":="
11252 MINUS "-"
11253 PLUS "+"
11254 STAR "*"
11255 SLASH "/"
11256 LPAREN "("
11257 RPAREN ")"
11258;
12545799
AD
11259@end example
11260
11261@noindent
3cdc21cf
AD
11262Since we use variant-based semantic values, @code{%union} is not used, and
11263both @code{%type} and @code{%token} expect genuine types, as opposed to type
11264tags.
12545799 11265
1c59e0a1 11266@comment file: calc++-parser.yy
12545799 11267@example
3cdc21cf
AD
11268%token <std::string> IDENTIFIER "identifier"
11269%token <int> NUMBER "number"
11270%type <int> exp
11271@end example
11272
11273@noindent
11274No @code{%destructor} is needed to enable memory deallocation during error
11275recovery; the memory, for strings for instance, will be reclaimed by the
11276regular destructors. All the values are printed using their
a76c741d 11277@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 11278
3cdc21cf
AD
11279@comment file: calc++-parser.yy
11280@example
c5026327 11281%printer @{ yyoutput << $$; @} <*>;
12545799
AD
11282@end example
11283
11284@noindent
3cdc21cf
AD
11285The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
11286Location Tracking Calculator: @code{ltcalc}}).
12545799 11287
1c59e0a1 11288@comment file: calc++-parser.yy
12545799
AD
11289@example
11290%%
11291%start unit;
11292unit: assignments exp @{ driver.result = $2; @};
11293
99c08fb6 11294assignments:
6240346a 11295 %empty @{@}
5e9b6624 11296| assignments assignment @{@};
12545799 11297
3dc5e96b 11298assignment:
3cdc21cf 11299 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 11300
3cdc21cf
AD
11301%left "+" "-";
11302%left "*" "/";
99c08fb6 11303exp:
3cdc21cf
AD
11304 exp "+" exp @{ $$ = $1 + $3; @}
11305| exp "-" exp @{ $$ = $1 - $3; @}
11306| exp "*" exp @{ $$ = $1 * $3; @}
11307| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 11308| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 11309| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 11310| "number" @{ std::swap ($$, $1); @};
12545799
AD
11311%%
11312@end example
11313
11314@noindent
11315Finally the @code{error} member function registers the errors to the
11316driver.
11317
1c59e0a1 11318@comment file: calc++-parser.yy
12545799
AD
11319@example
11320void
3cdc21cf 11321yy::calcxx_parser::error (const location_type& l,
1c59e0a1 11322 const std::string& m)
12545799
AD
11323@{
11324 driver.error (l, m);
11325@}
11326@end example
11327
11328@node Calc++ Scanner
8405b70c 11329@subsubsection Calc++ Scanner
12545799
AD
11330
11331The Flex scanner first includes the driver declaration, then the
11332parser's to get the set of defined tokens.
11333
1c59e0a1 11334@comment file: calc++-scanner.ll
12545799 11335@example
c93f22fc 11336%@{ /* -*- C++ -*- */
3c248d70
AD
11337# include <cerrno>
11338# include <climits>
3cdc21cf 11339# include <cstdlib>
12545799
AD
11340# include <string>
11341# include "calc++-driver.hh"
11342# include "calc++-parser.hh"
eaea13f5 11343
3cdc21cf
AD
11344// Work around an incompatibility in flex (at least versions
11345// 2.5.31 through 2.5.33): it generates code that does
11346// not conform to C89. See Debian bug 333231
11347// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11348# undef yywrap
11349# define yywrap() 1
eaea13f5 11350
3cdc21cf
AD
11351// The location of the current token.
11352static yy::location loc;
12545799
AD
11353%@}
11354@end example
11355
11356@noindent
11357Because there is no @code{#include}-like feature we don't need
11358@code{yywrap}, we don't need @code{unput} either, and we parse an
11359actual file, this is not an interactive session with the user.
3cdc21cf 11360Finally, we enable scanner tracing.
12545799 11361
1c59e0a1 11362@comment file: calc++-scanner.ll
12545799 11363@example
6908c2e1 11364%option noyywrap nounput batch debug noinput
12545799
AD
11365@end example
11366
11367@noindent
11368Abbreviations allow for more readable rules.
11369
1c59e0a1 11370@comment file: calc++-scanner.ll
12545799
AD
11371@example
11372id [a-zA-Z][a-zA-Z_0-9]*
11373int [0-9]+
11374blank [ \t]
11375@end example
11376
11377@noindent
9d9b8b70 11378The following paragraph suffices to track locations accurately. Each
12545799 11379time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11380position. Then when a pattern is matched, its width is added to the end
11381column. When matching ends of lines, the end
12545799
AD
11382cursor is adjusted, and each time blanks are matched, the begin cursor
11383is moved onto the end cursor to effectively ignore the blanks
11384preceding tokens. Comments would be treated equally.
11385
1c59e0a1 11386@comment file: calc++-scanner.ll
12545799 11387@example
d4fca427 11388@group
828c373b 11389%@{
3cdc21cf
AD
11390 // Code run each time a pattern is matched.
11391 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11392%@}
d4fca427 11393@end group
12545799 11394%%
d4fca427 11395@group
12545799 11396%@{
3cdc21cf
AD
11397 // Code run each time yylex is called.
11398 loc.step ();
12545799 11399%@}
d4fca427 11400@end group
3cdc21cf
AD
11401@{blank@}+ loc.step ();
11402[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11403@end example
11404
11405@noindent
3cdc21cf 11406The rules are simple. The driver is used to report errors.
12545799 11407
1c59e0a1 11408@comment file: calc++-scanner.ll
12545799 11409@example
3cdc21cf
AD
11410"-" return yy::calcxx_parser::make_MINUS(loc);
11411"+" return yy::calcxx_parser::make_PLUS(loc);
11412"*" return yy::calcxx_parser::make_STAR(loc);
11413"/" return yy::calcxx_parser::make_SLASH(loc);
11414"(" return yy::calcxx_parser::make_LPAREN(loc);
11415")" return yy::calcxx_parser::make_RPAREN(loc);
11416":=" return yy::calcxx_parser::make_ASSIGN(loc);
11417
d4fca427 11418@group
04098407
PE
11419@{int@} @{
11420 errno = 0;
11421 long n = strtol (yytext, NULL, 10);
11422 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11423 driver.error (loc, "integer is out of range");
11424 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11425@}
d4fca427 11426@end group
3cdc21cf
AD
11427@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11428. driver.error (loc, "invalid character");
11429<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11430%%
11431@end example
11432
11433@noindent
3cdc21cf 11434Finally, because the scanner-related driver's member-functions depend
12545799
AD
11435on the scanner's data, it is simpler to implement them in this file.
11436
1c59e0a1 11437@comment file: calc++-scanner.ll
12545799 11438@example
d4fca427 11439@group
12545799
AD
11440void
11441calcxx_driver::scan_begin ()
11442@{
11443 yy_flex_debug = trace_scanning;
93c150b6 11444 if (file.empty () || file == "-")
bb32f4f2
AD
11445 yyin = stdin;
11446 else if (!(yyin = fopen (file.c_str (), "r")))
11447 @{
aaaa2aae 11448 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11449 exit (EXIT_FAILURE);
bb32f4f2 11450 @}
12545799 11451@}
d4fca427 11452@end group
12545799 11453
d4fca427 11454@group
12545799
AD
11455void
11456calcxx_driver::scan_end ()
11457@{
11458 fclose (yyin);
11459@}
d4fca427 11460@end group
12545799
AD
11461@end example
11462
11463@node Calc++ Top Level
8405b70c 11464@subsubsection Calc++ Top Level
12545799
AD
11465
11466The top level file, @file{calc++.cc}, poses no problem.
11467
1c59e0a1 11468@comment file: calc++.cc
12545799
AD
11469@example
11470#include <iostream>
11471#include "calc++-driver.hh"
11472
d4fca427 11473@group
12545799 11474int
fa4d969f 11475main (int argc, char *argv[])
12545799 11476@{
414c76a4 11477 int res = 0;
12545799 11478 calcxx_driver driver;
93c150b6
AD
11479 for (int i = 1; i < argc; ++i)
11480 if (argv[i] == std::string ("-p"))
12545799 11481 driver.trace_parsing = true;
93c150b6 11482 else if (argv[i] == std::string ("-s"))
12545799 11483 driver.trace_scanning = true;
93c150b6 11484 else if (!driver.parse (argv[i]))
bb32f4f2 11485 std::cout << driver.result << std::endl;
414c76a4
AD
11486 else
11487 res = 1;
11488 return res;
12545799 11489@}
d4fca427 11490@end group
12545799
AD
11491@end example
11492
8405b70c
PB
11493@node Java Parsers
11494@section Java Parsers
11495
11496@menu
f5f419de
DJ
11497* Java Bison Interface:: Asking for Java parser generation
11498* Java Semantic Values:: %type and %token vs. Java
11499* Java Location Values:: The position and location classes
11500* Java Parser Interface:: Instantiating and running the parser
11501* Java Scanner Interface:: Specifying the scanner for the parser
11502* Java Action Features:: Special features for use in actions
11503* Java Differences:: Differences between C/C++ and Java Grammars
11504* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11505@end menu
11506
11507@node Java Bison Interface
11508@subsection Java Bison Interface
11509@c - %language "Java"
8405b70c 11510
59da312b
JD
11511(The current Java interface is experimental and may evolve.
11512More user feedback will help to stabilize it.)
11513
e254a580
DJ
11514The Java parser skeletons are selected using the @code{%language "Java"}
11515directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11516
e254a580 11517@c FIXME: Documented bug.
ff7571c0
JD
11518When generating a Java parser, @code{bison @var{basename}.y} will
11519create a single Java source file named @file{@var{basename}.java}
11520containing the parser implementation. Using a grammar file without a
11521@file{.y} suffix is currently broken. The basename of the parser
11522implementation file can be changed by the @code{%file-prefix}
11523directive or the @option{-p}/@option{--name-prefix} option. The
11524entire parser implementation file name can be changed by the
11525@code{%output} directive or the @option{-o}/@option{--output} option.
11526The parser implementation file contains a single class for the parser.
8405b70c 11527
e254a580 11528You can create documentation for generated parsers using Javadoc.
8405b70c 11529
e254a580
DJ
11530Contrary to C parsers, Java parsers do not use global variables; the
11531state of the parser is always local to an instance of the parser class.
11532Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11533and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11534
e254a580 11535Push parsers are currently unsupported in Java and @code{%define
67212941 11536api.push-pull} have no effect.
01b477c6 11537
8a4281b9 11538GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11539@code{glr-parser} directive.
11540
11541No header file can be generated for Java parsers. Do not use the
11542@code{%defines} directive or the @option{-d}/@option{--defines} options.
11543
11544@c FIXME: Possible code change.
fa819509
AD
11545Currently, support for tracing is always compiled
11546in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11547directives and the
e254a580
DJ
11548@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11549options have no effect. This may change in the future to eliminate
fa819509
AD
11550unused code in the generated parser, so use @samp{%define parse.trace}
11551explicitly
1979121c 11552if needed. Also, in the future the
e254a580
DJ
11553@code{%token-table} directive might enable a public interface to
11554access the token names and codes.
8405b70c 11555
09ccae9b 11556Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11557hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11558Try reducing the amount of code in actions and static initializers;
11559otherwise, report a bug so that the parser skeleton will be improved.
11560
11561
8405b70c
PB
11562@node Java Semantic Values
11563@subsection Java Semantic Values
11564@c - No %union, specify type in %type/%token.
11565@c - YYSTYPE
11566@c - Printer and destructor
11567
11568There is no @code{%union} directive in Java parsers. Instead, the
11569semantic values' types (class names) should be specified in the
11570@code{%type} or @code{%token} directive:
11571
11572@example
11573%type <Expression> expr assignment_expr term factor
11574%type <Integer> number
11575@end example
11576
11577By default, the semantic stack is declared to have @code{Object} members,
11578which means that the class types you specify can be of any class.
11579To improve the type safety of the parser, you can declare the common
4119d1ea 11580superclass of all the semantic values using the @samp{%define api.value.type}
e254a580 11581directive. For example, after the following declaration:
8405b70c
PB
11582
11583@example
6ce4b4ff 11584%define api.value.type @{ASTNode@}
8405b70c
PB
11585@end example
11586
11587@noindent
11588any @code{%type} or @code{%token} specifying a semantic type which
11589is not a subclass of ASTNode, will cause a compile-time error.
11590
e254a580 11591@c FIXME: Documented bug.
8405b70c
PB
11592Types used in the directives may be qualified with a package name.
11593Primitive data types are accepted for Java version 1.5 or later. Note
11594that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11595Generic types may not be used; this is due to a limitation in the
11596implementation of Bison, and may change in future releases.
8405b70c
PB
11597
11598Java parsers do not support @code{%destructor}, since the language
11599adopts garbage collection. The parser will try to hold references
11600to semantic values for as little time as needed.
11601
11602Java parsers do not support @code{%printer}, as @code{toString()}
11603can be used to print the semantic values. This however may change
11604(in a backwards-compatible way) in future versions of Bison.
11605
11606
11607@node Java Location Values
11608@subsection Java Location Values
11609@c - %locations
11610@c - class Position
11611@c - class Location
11612
303834cc
JD
11613When the directive @code{%locations} is used, the Java parser supports
11614location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11615class defines a @dfn{position}, a single point in a file; Bison itself
11616defines a class representing a @dfn{location}, a range composed of a pair of
11617positions (possibly spanning several files). The location class is an inner
11618class of the parser; the name is @code{Location} by default, and may also be
6ce4b4ff 11619renamed using @code{%define api.location.type @{@var{class-name}@}}.
8405b70c
PB
11620
11621The location class treats the position as a completely opaque value.
11622By default, the class name is @code{Position}, but this can be changed
6ce4b4ff 11623with @code{%define api.position.type @{@var{class-name}@}}. This class must
e254a580 11624be supplied by the user.
8405b70c
PB
11625
11626
e254a580
DJ
11627@deftypeivar {Location} {Position} begin
11628@deftypeivarx {Location} {Position} end
8405b70c 11629The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11630@end deftypeivar
11631
11632@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11633Create a @code{Location} denoting an empty range located at a given point.
e254a580 11634@end deftypeop
8405b70c 11635
e254a580
DJ
11636@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11637Create a @code{Location} from the endpoints of the range.
11638@end deftypeop
11639
11640@deftypemethod {Location} {String} toString ()
8405b70c
PB
11641Prints the range represented by the location. For this to work
11642properly, the position class should override the @code{equals} and
11643@code{toString} methods appropriately.
11644@end deftypemethod
11645
11646
11647@node Java Parser Interface
11648@subsection Java Parser Interface
11649@c - define parser_class_name
11650@c - Ctor
11651@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11652@c debug_stream.
11653@c - Reporting errors
11654
e254a580
DJ
11655The name of the generated parser class defaults to @code{YYParser}. The
11656@code{YY} prefix may be changed using the @code{%name-prefix} directive
11657or the @option{-p}/@option{--name-prefix} option. Alternatively, use
6ce4b4ff 11658@samp{%define parser_class_name @{@var{name}@}} to give a custom name to
e254a580 11659the class. The interface of this class is detailed below.
8405b70c 11660
e254a580 11661By default, the parser class has package visibility. A declaration
67501061 11662@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11663according to the Java language specification, the name of the @file{.java}
11664file should match the name of the class in this case. Similarly, you can
11665use @code{abstract}, @code{final} and @code{strictfp} with the
11666@code{%define} declaration to add other modifiers to the parser class.
6ce4b4ff 11667A single @samp{%define annotations @{@var{annotations}@}} directive can
1979121c 11668be used to add any number of annotations to the parser class.
e254a580
DJ
11669
11670The Java package name of the parser class can be specified using the
67501061 11671@samp{%define package} directive. The superclass and the implemented
e254a580 11672interfaces of the parser class can be specified with the @code{%define
67501061 11673extends} and @samp{%define implements} directives.
e254a580
DJ
11674
11675The parser class defines an inner class, @code{Location}, that is used
11676for location tracking (see @ref{Java Location Values}), and a inner
11677interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11678these inner class/interface, and the members described in the interface
11679below, all the other members and fields are preceded with a @code{yy} or
11680@code{YY} prefix to avoid clashes with user code.
11681
e254a580
DJ
11682The parser class can be extended using the @code{%parse-param}
11683directive. Each occurrence of the directive will add a @code{protected
11684final} field to the parser class, and an argument to its constructor,
11685which initialize them automatically.
11686
e254a580
DJ
11687@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11688Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11689no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11690@code{%lex-param}s are used.
1979121c
DJ
11691
11692Use @code{%code init} for code added to the start of the constructor
11693body. This is especially useful to initialize superclasses. Use
f50bfcd6 11694@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11695@end deftypeop
11696
11697@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11698Build a new parser object using the specified scanner. There are no
2055a44e
AD
11699additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11700used.
e254a580
DJ
11701
11702If the scanner is defined by @code{%code lexer}, this constructor is
11703declared @code{protected} and is called automatically with a scanner
2055a44e 11704created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11705
11706Use @code{%code init} for code added to the start of the constructor
11707body. This is especially useful to initialize superclasses. Use
5a321748 11708@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11709@end deftypeop
8405b70c
PB
11710
11711@deftypemethod {YYParser} {boolean} parse ()
11712Run the syntactic analysis, and return @code{true} on success,
11713@code{false} otherwise.
11714@end deftypemethod
11715
1979121c
DJ
11716@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11717@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11718Get or set the option to produce verbose error messages. These are only
cf499cff 11719available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11720verbose error messages.
11721@end deftypemethod
11722
11723@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11724@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11725@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11726Print an error message using the @code{yyerror} method of the scanner
11727instance in use. The @code{Location} and @code{Position} parameters are
11728available only if location tracking is active.
11729@end deftypemethod
11730
01b477c6 11731@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11732During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11733from a syntax error.
11734@xref{Error Recovery}.
8405b70c
PB
11735@end deftypemethod
11736
11737@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11738@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11739Get or set the stream used for tracing the parsing. It defaults to
11740@code{System.err}.
11741@end deftypemethod
11742
11743@deftypemethod {YYParser} {int} getDebugLevel ()
11744@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11745Get or set the tracing level. Currently its value is either 0, no trace,
11746or nonzero, full tracing.
11747@end deftypemethod
11748
1979121c
DJ
11749@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11750@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11751Identify the Bison version and skeleton used to generate this parser.
11752@end deftypecv
11753
8405b70c
PB
11754
11755@node Java Scanner Interface
11756@subsection Java Scanner Interface
01b477c6 11757@c - %code lexer
8405b70c 11758@c - %lex-param
01b477c6 11759@c - Lexer interface
8405b70c 11760
e254a580
DJ
11761There are two possible ways to interface a Bison-generated Java parser
11762with a scanner: the scanner may be defined by @code{%code lexer}, or
11763defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11764@code{Lexer} inner interface of the parser class. This interface also
11765contain constants for all user-defined token names and the predefined
11766@code{EOF} token.
e254a580
DJ
11767
11768In the first case, the body of the scanner class is placed in
11769@code{%code lexer} blocks. If you want to pass parameters from the
11770parser constructor to the scanner constructor, specify them with
11771@code{%lex-param}; they are passed before @code{%parse-param}s to the
11772constructor.
01b477c6 11773
59c5ac72 11774In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11775which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11776The constructor of the parser object will then accept an object
11777implementing the interface; @code{%lex-param} is not used in this
11778case.
11779
11780In both cases, the scanner has to implement the following methods.
11781
e254a580
DJ
11782@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11783This method is defined by the user to emit an error message. The first
11784parameter is omitted if location tracking is not active. Its type can be
6ce4b4ff 11785changed using @code{%define api.location.type @{@var{class-name}@}}.
8405b70c
PB
11786@end deftypemethod
11787
e254a580 11788@deftypemethod {Lexer} {int} yylex ()
8405b70c 11789Return the next token. Its type is the return value, its semantic
f50bfcd6 11790value and location are saved and returned by the their methods in the
e254a580
DJ
11791interface.
11792
67501061 11793Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11794Default is @code{java.io.IOException}.
8405b70c
PB
11795@end deftypemethod
11796
11797@deftypemethod {Lexer} {Position} getStartPos ()
11798@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11799Return respectively the first position of the last token that
11800@code{yylex} returned, and the first position beyond it. These
11801methods are not needed unless location tracking is active.
8405b70c 11802
7287be84 11803The return type can be changed using @code{%define api.position.type
6ce4b4ff 11804@{@var{class-name}@}}.
8405b70c
PB
11805@end deftypemethod
11806
11807@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11808Return the semantic value of the last token that yylex returned.
8405b70c 11809
4119d1ea 11810The return type can be changed using @samp{%define api.value.type
6ce4b4ff 11811@{@var{class-name}@}}.
8405b70c
PB
11812@end deftypemethod
11813
11814
e254a580
DJ
11815@node Java Action Features
11816@subsection Special Features for Use in Java Actions
11817
11818The following special constructs can be uses in Java actions.
11819Other analogous C action features are currently unavailable for Java.
11820
67501061 11821Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11822actions, and initial actions specified by @code{%initial-action}.
11823
11824@defvar $@var{n}
11825The semantic value for the @var{n}th component of the current rule.
11826This may not be assigned to.
11827@xref{Java Semantic Values}.
11828@end defvar
11829
11830@defvar $<@var{typealt}>@var{n}
11831Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11832@xref{Java Semantic Values}.
11833@end defvar
11834
11835@defvar $$
11836The semantic value for the grouping made by the current rule. As a
11837value, this is in the base type (@code{Object} or as specified by
4119d1ea 11838@samp{%define api.value.type}) as in not cast to the declared subtype because
e254a580
DJ
11839casts are not allowed on the left-hand side of Java assignments.
11840Use an explicit Java cast if the correct subtype is needed.
11841@xref{Java Semantic Values}.
11842@end defvar
11843
11844@defvar $<@var{typealt}>$
11845Same as @code{$$} since Java always allow assigning to the base type.
11846Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11847for setting the value but there is currently no easy way to distinguish
11848these constructs.
11849@xref{Java Semantic Values}.
11850@end defvar
11851
11852@defvar @@@var{n}
11853The location information of the @var{n}th component of the current rule.
11854This may not be assigned to.
11855@xref{Java Location Values}.
11856@end defvar
11857
11858@defvar @@$
11859The location information of the grouping made by the current rule.
11860@xref{Java Location Values}.
11861@end defvar
11862
34a41a93 11863@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11864Return immediately from the parser, indicating failure.
11865@xref{Java Parser Interface}.
34a41a93 11866@end deftypefn
8405b70c 11867
34a41a93 11868@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11869Return immediately from the parser, indicating success.
11870@xref{Java Parser Interface}.
34a41a93 11871@end deftypefn
8405b70c 11872
34a41a93 11873@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11874Start error recovery (without printing an error message).
e254a580 11875@xref{Error Recovery}.
34a41a93 11876@end deftypefn
8405b70c 11877
e254a580
DJ
11878@deftypefn {Function} {boolean} recovering ()
11879Return whether error recovery is being done. In this state, the parser
11880reads token until it reaches a known state, and then restarts normal
11881operation.
11882@xref{Error Recovery}.
11883@end deftypefn
8405b70c 11884
1979121c
DJ
11885@deftypefn {Function} {void} yyerror (String @var{msg})
11886@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11887@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11888Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11889instance in use. The @code{Location} and @code{Position} parameters are
11890available only if location tracking is active.
e254a580 11891@end deftypefn
8405b70c 11892
8405b70c 11893
8405b70c
PB
11894@node Java Differences
11895@subsection Differences between C/C++ and Java Grammars
11896
11897The different structure of the Java language forces several differences
11898between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11899section summarizes these differences.
8405b70c
PB
11900
11901@itemize
11902@item
01b477c6 11903Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11904@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11905macros. Instead, they should be preceded by @code{return} when they
11906appear in an action. The actual definition of these symbols is
8405b70c
PB
11907opaque to the Bison grammar, and it might change in the future. The
11908only meaningful operation that you can do, is to return them.
e3fd1dcb 11909@xref{Java Action Features}.
8405b70c
PB
11910
11911Note that of these three symbols, only @code{YYACCEPT} and
11912@code{YYABORT} will cause a return from the @code{yyparse}
11913method@footnote{Java parsers include the actions in a separate
11914method than @code{yyparse} in order to have an intuitive syntax that
11915corresponds to these C macros.}.
11916
e254a580
DJ
11917@item
11918Java lacks unions, so @code{%union} has no effect. Instead, semantic
11919values have a common base type: @code{Object} or as specified by
4119d1ea 11920@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11921@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11922an union. The type of @code{$$}, even with angle brackets, is the base
11923type since Java casts are not allow on the left-hand side of assignments.
11924Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11925left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11926@ref{Java Action Features}.
e254a580 11927
8405b70c 11928@item
f50bfcd6 11929The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11930@table @asis
11931@item @code{%code imports}
11932blocks are placed at the beginning of the Java source code. They may
11933include copyright notices. For a @code{package} declarations, it is
67501061 11934suggested to use @samp{%define package} instead.
8405b70c 11935
01b477c6
PB
11936@item unqualified @code{%code}
11937blocks are placed inside the parser class.
11938
11939@item @code{%code lexer}
11940blocks, if specified, should include the implementation of the
11941scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11942that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11943Interface}).
29553547 11944@end table
8405b70c
PB
11945
11946Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11947In particular, @code{%@{ @dots{} %@}} blocks should not be used
11948and may give an error in future versions of Bison.
11949
01b477c6 11950The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11951be used to define other classes used by the parser @emph{outside}
11952the parser class.
8405b70c
PB
11953@end itemize
11954
e254a580
DJ
11955
11956@node Java Declarations Summary
11957@subsection Java Declarations Summary
11958
11959This summary only include declarations specific to Java or have special
11960meaning when used in a Java parser.
11961
11962@deffn {Directive} {%language "Java"}
11963Generate a Java class for the parser.
11964@end deffn
11965
11966@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11967A parameter for the lexer class defined by @code{%code lexer}
11968@emph{only}, added as parameters to the lexer constructor and the parser
11969constructor that @emph{creates} a lexer. Default is none.
11970@xref{Java Scanner Interface}.
11971@end deffn
11972
11973@deffn {Directive} %name-prefix "@var{prefix}"
11974The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11975@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11976@xref{Java Bison Interface}.
11977@end deffn
11978
11979@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11980A parameter for the parser class added as parameters to constructor(s)
11981and as fields initialized by the constructor(s). Default is none.
11982@xref{Java Parser Interface}.
11983@end deffn
11984
11985@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11986Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11987@xref{Java Semantic Values}.
11988@end deffn
11989
11990@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11991Declare the type of nonterminals. Note that the angle brackets enclose
11992a Java @emph{type}.
11993@xref{Java Semantic Values}.
11994@end deffn
11995
11996@deffn {Directive} %code @{ @var{code} @dots{} @}
11997Code appended to the inside of the parser class.
11998@xref{Java Differences}.
11999@end deffn
12000
12001@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
12002Code inserted just after the @code{package} declaration.
12003@xref{Java Differences}.
12004@end deffn
12005
1979121c
DJ
12006@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
12007Code inserted at the beginning of the parser constructor body.
12008@xref{Java Parser Interface}.
12009@end deffn
12010
e254a580
DJ
12011@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
12012Code added to the body of a inner lexer class within the parser class.
12013@xref{Java Scanner Interface}.
12014@end deffn
12015
12016@deffn {Directive} %% @var{code} @dots{}
12017Code (after the second @code{%%}) appended to the end of the file,
12018@emph{outside} the parser class.
12019@xref{Java Differences}.
12020@end deffn
12021
12022@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 12023Not supported. Use @code{%code imports} instead.
e254a580
DJ
12024@xref{Java Differences}.
12025@end deffn
12026
12027@deffn {Directive} {%define abstract}
12028Whether the parser class is declared @code{abstract}. Default is false.
12029@xref{Java Bison Interface}.
12030@end deffn
12031
6ce4b4ff 12032@deffn {Directive} {%define annotations} @{@var{annotations}@}
1979121c
DJ
12033The Java annotations for the parser class. Default is none.
12034@xref{Java Bison Interface}.
12035@end deffn
12036
6ce4b4ff 12037@deffn {Directive} {%define extends} @{@var{superclass}@}
e254a580
DJ
12038The superclass of the parser class. Default is none.
12039@xref{Java Bison Interface}.
12040@end deffn
12041
12042@deffn {Directive} {%define final}
12043Whether the parser class is declared @code{final}. Default is false.
12044@xref{Java Bison Interface}.
12045@end deffn
12046
6ce4b4ff 12047@deffn {Directive} {%define implements} @{@var{interfaces}@}
e254a580
DJ
12048The implemented interfaces of the parser class, a comma-separated list.
12049Default is none.
12050@xref{Java Bison Interface}.
12051@end deffn
12052
6ce4b4ff 12053@deffn {Directive} {%define init_throws} @{@var{exceptions}@}
1979121c
DJ
12054The exceptions thrown by @code{%code init} from the parser class
12055constructor. Default is none.
12056@xref{Java Parser Interface}.
12057@end deffn
12058
6ce4b4ff 12059@deffn {Directive} {%define lex_throws} @{@var{exceptions}@}
e254a580
DJ
12060The exceptions thrown by the @code{yylex} method of the lexer, a
12061comma-separated list. Default is @code{java.io.IOException}.
12062@xref{Java Scanner Interface}.
12063@end deffn
12064
6ce4b4ff 12065@deffn {Directive} {%define api.location.type} @{@var{class}@}
e254a580
DJ
12066The name of the class used for locations (a range between two
12067positions). This class is generated as an inner class of the parser
12068class by @command{bison}. Default is @code{Location}.
7287be84 12069Formerly named @code{location_type}.
e254a580
DJ
12070@xref{Java Location Values}.
12071@end deffn
12072
6ce4b4ff 12073@deffn {Directive} {%define package} @{@var{package}@}
e254a580
DJ
12074The package to put the parser class in. Default is none.
12075@xref{Java Bison Interface}.
12076@end deffn
12077
6ce4b4ff 12078@deffn {Directive} {%define parser_class_name} @{@var{name}@}
e254a580
DJ
12079The name of the parser class. Default is @code{YYParser} or
12080@code{@var{name-prefix}Parser}.
12081@xref{Java Bison Interface}.
12082@end deffn
12083
6ce4b4ff 12084@deffn {Directive} {%define api.position.type} @{@var{class}@}
e254a580
DJ
12085The name of the class used for positions. This class must be supplied by
12086the user. Default is @code{Position}.
7287be84 12087Formerly named @code{position_type}.
e254a580
DJ
12088@xref{Java Location Values}.
12089@end deffn
12090
12091@deffn {Directive} {%define public}
12092Whether the parser class is declared @code{public}. Default is false.
12093@xref{Java Bison Interface}.
12094@end deffn
12095
6ce4b4ff 12096@deffn {Directive} {%define api.value.type} @{@var{class}@}
e254a580
DJ
12097The base type of semantic values. Default is @code{Object}.
12098@xref{Java Semantic Values}.
12099@end deffn
12100
12101@deffn {Directive} {%define strictfp}
12102Whether the parser class is declared @code{strictfp}. Default is false.
12103@xref{Java Bison Interface}.
12104@end deffn
12105
6ce4b4ff 12106@deffn {Directive} {%define throws} @{@var{exceptions}@}
e254a580
DJ
12107The exceptions thrown by user-supplied parser actions and
12108@code{%initial-action}, a comma-separated list. Default is none.
12109@xref{Java Parser Interface}.
12110@end deffn
12111
12112
12545799 12113@c ================================================= FAQ
d1a1114f
AD
12114
12115@node FAQ
12116@chapter Frequently Asked Questions
12117@cindex frequently asked questions
12118@cindex questions
12119
12120Several questions about Bison come up occasionally. Here some of them
12121are addressed.
12122
12123@menu
55ba27be
AD
12124* Memory Exhausted:: Breaking the Stack Limits
12125* How Can I Reset the Parser:: @code{yyparse} Keeps some State
12126* Strings are Destroyed:: @code{yylval} Loses Track of Strings
12127* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 12128* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 12129* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
12130* I can't build Bison:: Troubleshooting
12131* Where can I find help?:: Troubleshouting
12132* Bug Reports:: Troublereporting
8405b70c 12133* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
12134* Beta Testing:: Experimenting development versions
12135* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
12136@end menu
12137
1a059451
PE
12138@node Memory Exhausted
12139@section Memory Exhausted
d1a1114f 12140
71b52b13 12141@quotation
1a059451 12142My parser returns with error with a @samp{memory exhausted}
d1a1114f 12143message. What can I do?
71b52b13 12144@end quotation
d1a1114f 12145
188867ac
AD
12146This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
12147Rules}.
d1a1114f 12148
e64fec0a
PE
12149@node How Can I Reset the Parser
12150@section How Can I Reset the Parser
5b066063 12151
0e14ad77
PE
12152The following phenomenon has several symptoms, resulting in the
12153following typical questions:
5b066063 12154
71b52b13 12155@quotation
5b066063
AD
12156I invoke @code{yyparse} several times, and on correct input it works
12157properly; but when a parse error is found, all the other calls fail
0e14ad77 12158too. How can I reset the error flag of @code{yyparse}?
71b52b13 12159@end quotation
5b066063
AD
12160
12161@noindent
12162or
12163
71b52b13 12164@quotation
0e14ad77 12165My parser includes support for an @samp{#include}-like feature, in
5b066063 12166which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 12167although I did specify @samp{%define api.pure full}.
71b52b13 12168@end quotation
5b066063 12169
0e14ad77
PE
12170These problems typically come not from Bison itself, but from
12171Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
12172speed, they might not notice a change of input file. As a
12173demonstration, consider the following source file,
12174@file{first-line.l}:
12175
d4fca427
AD
12176@example
12177@group
12178%@{
5b066063
AD
12179#include <stdio.h>
12180#include <stdlib.h>
d4fca427
AD
12181%@}
12182@end group
5b066063
AD
12183%%
12184.*\n ECHO; return 1;
12185%%
d4fca427 12186@group
5b066063 12187int
0e14ad77 12188yyparse (char const *file)
d4fca427 12189@{
5b066063
AD
12190 yyin = fopen (file, "r");
12191 if (!yyin)
d4fca427
AD
12192 @{
12193 perror ("fopen");
12194 exit (EXIT_FAILURE);
12195 @}
12196@end group
12197@group
fa7e68c3 12198 /* One token only. */
5b066063 12199 yylex ();
0e14ad77 12200 if (fclose (yyin) != 0)
d4fca427
AD
12201 @{
12202 perror ("fclose");
12203 exit (EXIT_FAILURE);
12204 @}
5b066063 12205 return 0;
d4fca427
AD
12206@}
12207@end group
5b066063 12208
d4fca427 12209@group
5b066063 12210int
0e14ad77 12211main (void)
d4fca427 12212@{
5b066063
AD
12213 yyparse ("input");
12214 yyparse ("input");
12215 return 0;
d4fca427
AD
12216@}
12217@end group
12218@end example
5b066063
AD
12219
12220@noindent
12221If the file @file{input} contains
12222
71b52b13 12223@example
5b066063
AD
12224input:1: Hello,
12225input:2: World!
71b52b13 12226@end example
5b066063
AD
12227
12228@noindent
0e14ad77 12229then instead of getting the first line twice, you get:
5b066063
AD
12230
12231@example
12232$ @kbd{flex -ofirst-line.c first-line.l}
12233$ @kbd{gcc -ofirst-line first-line.c -ll}
12234$ @kbd{./first-line}
12235input:1: Hello,
12236input:2: World!
12237@end example
12238
0e14ad77
PE
12239Therefore, whenever you change @code{yyin}, you must tell the
12240Lex-generated scanner to discard its current buffer and switch to the
12241new one. This depends upon your implementation of Lex; see its
12242documentation for more. For Flex, it suffices to call
12243@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
12244Flex-generated scanner needs to read from several input streams to
12245handle features like include files, you might consider using Flex
12246functions like @samp{yy_switch_to_buffer} that manipulate multiple
12247input buffers.
5b066063 12248
b165c324
AD
12249If your Flex-generated scanner uses start conditions (@pxref{Start
12250conditions, , Start conditions, flex, The Flex Manual}), you might
12251also want to reset the scanner's state, i.e., go back to the initial
12252start condition, through a call to @samp{BEGIN (0)}.
12253
fef4cb51
AD
12254@node Strings are Destroyed
12255@section Strings are Destroyed
12256
71b52b13 12257@quotation
c7e441b4 12258My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
12259them. Instead of reporting @samp{"foo", "bar"}, it reports
12260@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 12261@end quotation
fef4cb51
AD
12262
12263This error is probably the single most frequent ``bug report'' sent to
12264Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 12265of the scanner. Consider the following Lex code:
fef4cb51 12266
71b52b13 12267@example
d4fca427 12268@group
71b52b13 12269%@{
fef4cb51
AD
12270#include <stdio.h>
12271char *yylval = NULL;
71b52b13 12272%@}
d4fca427
AD
12273@end group
12274@group
fef4cb51
AD
12275%%
12276.* yylval = yytext; return 1;
12277\n /* IGNORE */
12278%%
d4fca427
AD
12279@end group
12280@group
fef4cb51
AD
12281int
12282main ()
71b52b13 12283@{
fa7e68c3 12284 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
12285 char *fst = (yylex (), yylval);
12286 char *snd = (yylex (), yylval);
12287 printf ("\"%s\", \"%s\"\n", fst, snd);
12288 return 0;
71b52b13 12289@}
d4fca427 12290@end group
71b52b13 12291@end example
fef4cb51
AD
12292
12293If you compile and run this code, you get:
12294
12295@example
12296$ @kbd{flex -osplit-lines.c split-lines.l}
12297$ @kbd{gcc -osplit-lines split-lines.c -ll}
12298$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12299"one
12300two", "two"
12301@end example
12302
12303@noindent
12304this is because @code{yytext} is a buffer provided for @emph{reading}
12305in the action, but if you want to keep it, you have to duplicate it
12306(e.g., using @code{strdup}). Note that the output may depend on how
12307your implementation of Lex handles @code{yytext}. For instance, when
12308given the Lex compatibility option @option{-l} (which triggers the
12309option @samp{%array}) Flex generates a different behavior:
12310
12311@example
12312$ @kbd{flex -l -osplit-lines.c split-lines.l}
12313$ @kbd{gcc -osplit-lines split-lines.c -ll}
12314$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12315"two", "two"
12316@end example
12317
12318
2fa09258
AD
12319@node Implementing Gotos/Loops
12320@section Implementing Gotos/Loops
a06ea4aa 12321
71b52b13 12322@quotation
a06ea4aa 12323My simple calculator supports variables, assignments, and functions,
2fa09258 12324but how can I implement gotos, or loops?
71b52b13 12325@end quotation
a06ea4aa
AD
12326
12327Although very pedagogical, the examples included in the document blur
a1c84f45 12328the distinction to make between the parser---whose job is to recover
a06ea4aa 12329the structure of a text and to transmit it to subsequent modules of
a1c84f45 12330the program---and the processing (such as the execution) of this
a06ea4aa
AD
12331structure. This works well with so called straight line programs,
12332i.e., precisely those that have a straightforward execution model:
12333execute simple instructions one after the others.
12334
12335@cindex abstract syntax tree
8a4281b9 12336@cindex AST
a06ea4aa
AD
12337If you want a richer model, you will probably need to use the parser
12338to construct a tree that does represent the structure it has
12339recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 12340or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
12341traversing it in various ways, will enable treatments such as its
12342execution or its translation, which will result in an interpreter or a
12343compiler.
12344
12345This topic is way beyond the scope of this manual, and the reader is
12346invited to consult the dedicated literature.
12347
12348
ed2e6384
AD
12349@node Multiple start-symbols
12350@section Multiple start-symbols
12351
71b52b13 12352@quotation
ed2e6384
AD
12353I have several closely related grammars, and I would like to share their
12354implementations. In fact, I could use a single grammar but with
12355multiple entry points.
71b52b13 12356@end quotation
ed2e6384
AD
12357
12358Bison does not support multiple start-symbols, but there is a very
12359simple means to simulate them. If @code{foo} and @code{bar} are the two
12360pseudo start-symbols, then introduce two new tokens, say
12361@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12362real start-symbol:
12363
12364@example
12365%token START_FOO START_BAR;
12366%start start;
5e9b6624
AD
12367start:
12368 START_FOO foo
12369| START_BAR bar;
ed2e6384
AD
12370@end example
12371
12372These tokens prevents the introduction of new conflicts. As far as the
12373parser goes, that is all that is needed.
12374
12375Now the difficult part is ensuring that the scanner will send these
12376tokens first. If your scanner is hand-written, that should be
12377straightforward. If your scanner is generated by Lex, them there is
12378simple means to do it: recall that anything between @samp{%@{ ... %@}}
12379after the first @code{%%} is copied verbatim in the top of the generated
12380@code{yylex} function. Make sure a variable @code{start_token} is
12381available in the scanner (e.g., a global variable or using
12382@code{%lex-param} etc.), and use the following:
12383
12384@example
12385 /* @r{Prologue.} */
12386%%
12387%@{
12388 if (start_token)
12389 @{
12390 int t = start_token;
12391 start_token = 0;
12392 return t;
12393 @}
12394%@}
12395 /* @r{The rules.} */
12396@end example
12397
12398
55ba27be
AD
12399@node Secure? Conform?
12400@section Secure? Conform?
12401
71b52b13 12402@quotation
55ba27be 12403Is Bison secure? Does it conform to POSIX?
71b52b13 12404@end quotation
55ba27be
AD
12405
12406If you're looking for a guarantee or certification, we don't provide it.
12407However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12408POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12409please send us a bug report.
12410
12411@node I can't build Bison
12412@section I can't build Bison
12413
71b52b13 12414@quotation
8c5b881d
PE
12415I can't build Bison because @command{make} complains that
12416@code{msgfmt} is not found.
55ba27be 12417What should I do?
71b52b13 12418@end quotation
55ba27be
AD
12419
12420Like most GNU packages with internationalization support, that feature
12421is turned on by default. If you have problems building in the @file{po}
12422subdirectory, it indicates that your system's internationalization
12423support is lacking. You can re-configure Bison with
12424@option{--disable-nls} to turn off this support, or you can install GNU
12425gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12426Bison. See the file @file{ABOUT-NLS} for more information.
12427
12428
12429@node Where can I find help?
12430@section Where can I find help?
12431
71b52b13 12432@quotation
55ba27be 12433I'm having trouble using Bison. Where can I find help?
71b52b13 12434@end quotation
55ba27be
AD
12435
12436First, read this fine manual. Beyond that, you can send mail to
12437@email{help-bison@@gnu.org}. This mailing list is intended to be
12438populated with people who are willing to answer questions about using
12439and installing Bison. Please keep in mind that (most of) the people on
12440the list have aspects of their lives which are not related to Bison (!),
12441so you may not receive an answer to your question right away. This can
12442be frustrating, but please try not to honk them off; remember that any
12443help they provide is purely voluntary and out of the kindness of their
12444hearts.
12445
12446@node Bug Reports
12447@section Bug Reports
12448
71b52b13 12449@quotation
55ba27be 12450I found a bug. What should I include in the bug report?
71b52b13 12451@end quotation
55ba27be
AD
12452
12453Before you send a bug report, make sure you are using the latest
12454version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12455mirrors. Be sure to include the version number in your bug report. If
12456the bug is present in the latest version but not in a previous version,
12457try to determine the most recent version which did not contain the bug.
12458
12459If the bug is parser-related, you should include the smallest grammar
12460you can which demonstrates the bug. The grammar file should also be
12461complete (i.e., I should be able to run it through Bison without having
12462to edit or add anything). The smaller and simpler the grammar, the
12463easier it will be to fix the bug.
12464
12465Include information about your compilation environment, including your
12466operating system's name and version and your compiler's name and
12467version. If you have trouble compiling, you should also include a
12468transcript of the build session, starting with the invocation of
12469`configure'. Depending on the nature of the bug, you may be asked to
4c9b8f13 12470send additional files as well (such as @file{config.h} or @file{config.cache}).
55ba27be
AD
12471
12472Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12473send a bug report just because you cannot provide a fix.
55ba27be
AD
12474
12475Send bug reports to @email{bug-bison@@gnu.org}.
12476
8405b70c
PB
12477@node More Languages
12478@section More Languages
55ba27be 12479
71b52b13 12480@quotation
8405b70c 12481Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12482favorite language here}?
71b52b13 12483@end quotation
55ba27be 12484
8405b70c 12485C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12486languages; contributions are welcome.
12487
12488@node Beta Testing
12489@section Beta Testing
12490
71b52b13 12491@quotation
55ba27be 12492What is involved in being a beta tester?
71b52b13 12493@end quotation
55ba27be
AD
12494
12495It's not terribly involved. Basically, you would download a test
12496release, compile it, and use it to build and run a parser or two. After
12497that, you would submit either a bug report or a message saying that
12498everything is okay. It is important to report successes as well as
12499failures because test releases eventually become mainstream releases,
12500but only if they are adequately tested. If no one tests, development is
12501essentially halted.
12502
12503Beta testers are particularly needed for operating systems to which the
12504developers do not have easy access. They currently have easy access to
12505recent GNU/Linux and Solaris versions. Reports about other operating
12506systems are especially welcome.
12507
12508@node Mailing Lists
12509@section Mailing Lists
12510
71b52b13 12511@quotation
55ba27be 12512How do I join the help-bison and bug-bison mailing lists?
71b52b13 12513@end quotation
55ba27be
AD
12514
12515See @url{http://lists.gnu.org/}.
a06ea4aa 12516
d1a1114f
AD
12517@c ================================================= Table of Symbols
12518
342b8b6e 12519@node Table of Symbols
bfa74976
RS
12520@appendix Bison Symbols
12521@cindex Bison symbols, table of
12522@cindex symbols in Bison, table of
12523
18b519c0 12524@deffn {Variable} @@$
3ded9a63 12525In an action, the location of the left-hand side of the rule.
303834cc 12526@xref{Tracking Locations}.
18b519c0 12527@end deffn
3ded9a63 12528
18b519c0 12529@deffn {Variable} @@@var{n}
be22823e 12530@deffnx {Symbol} @@@var{n}
303834cc
JD
12531In an action, the location of the @var{n}-th symbol of the right-hand side
12532of the rule. @xref{Tracking Locations}.
be22823e
AD
12533
12534In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12535with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12536@end deffn
3ded9a63 12537
d013372c 12538@deffn {Variable} @@@var{name}
c949ada3
AD
12539@deffnx {Variable} @@[@var{name}]
12540In an action, the location of a symbol addressed by @var{name}.
12541@xref{Tracking Locations}.
d013372c
AR
12542@end deffn
12543
be22823e
AD
12544@deffn {Symbol} $@@@var{n}
12545In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12546with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12547@end deffn
12548
18b519c0 12549@deffn {Variable} $$
3ded9a63
AD
12550In an action, the semantic value of the left-hand side of the rule.
12551@xref{Actions}.
18b519c0 12552@end deffn
3ded9a63 12553
18b519c0 12554@deffn {Variable} $@var{n}
3ded9a63
AD
12555In an action, the semantic value of the @var{n}-th symbol of the
12556right-hand side of the rule. @xref{Actions}.
18b519c0 12557@end deffn
3ded9a63 12558
d013372c 12559@deffn {Variable} $@var{name}
c949ada3
AD
12560@deffnx {Variable} $[@var{name}]
12561In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12562@xref{Actions}.
12563@end deffn
12564
dd8d9022
AD
12565@deffn {Delimiter} %%
12566Delimiter used to separate the grammar rule section from the
12567Bison declarations section or the epilogue.
12568@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12569@end deffn
bfa74976 12570
dd8d9022
AD
12571@c Don't insert spaces, or check the DVI output.
12572@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12573All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12574to the parser implementation file. Such code forms the prologue of
12575the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12576Grammar}.
18b519c0 12577@end deffn
bfa74976 12578
ca2a6d15
PH
12579@deffn {Directive} %?@{@var{expression}@}
12580Predicate actions. This is a type of action clause that may appear in
12581rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12582GLR parsers during nondeterministic operation,
ca2a6d15
PH
12583this silently causes an alternative parse to die. During deterministic
12584operation, it is the same as the effect of YYERROR.
12585@xref{Semantic Predicates}.
12586
12587This feature is experimental.
12588More user feedback will help to determine whether it should become a permanent
12589feature.
12590@end deffn
12591
c949ada3
AD
12592@deffn {Construct} /* @dots{} */
12593@deffnx {Construct} // @dots{}
12594Comments, as in C/C++.
18b519c0 12595@end deffn
bfa74976 12596
dd8d9022
AD
12597@deffn {Delimiter} :
12598Separates a rule's result from its components. @xref{Rules, ,Syntax of
12599Grammar Rules}.
18b519c0 12600@end deffn
bfa74976 12601
dd8d9022
AD
12602@deffn {Delimiter} ;
12603Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12604@end deffn
bfa74976 12605
dd8d9022
AD
12606@deffn {Delimiter} |
12607Separates alternate rules for the same result nonterminal.
12608@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12609@end deffn
bfa74976 12610
12e35840
JD
12611@deffn {Directive} <*>
12612Used to define a default tagged @code{%destructor} or default tagged
12613@code{%printer}.
85894313
JD
12614
12615This feature is experimental.
12616More user feedback will help to determine whether it should become a permanent
12617feature.
12618
12e35840
JD
12619@xref{Destructor Decl, , Freeing Discarded Symbols}.
12620@end deffn
12621
3ebecc24 12622@deffn {Directive} <>
12e35840
JD
12623Used to define a default tagless @code{%destructor} or default tagless
12624@code{%printer}.
85894313
JD
12625
12626This feature is experimental.
12627More user feedback will help to determine whether it should become a permanent
12628feature.
12629
12e35840
JD
12630@xref{Destructor Decl, , Freeing Discarded Symbols}.
12631@end deffn
12632
dd8d9022
AD
12633@deffn {Symbol} $accept
12634The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12635$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12636Start-Symbol}. It cannot be used in the grammar.
18b519c0 12637@end deffn
bfa74976 12638
136a0f76 12639@deffn {Directive} %code @{@var{code}@}
148d66d8 12640@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12641Insert @var{code} verbatim into the output parser source at the
12642default location or at the location specified by @var{qualifier}.
e0c07222 12643@xref{%code Summary}.
9bc0dd67
JD
12644@end deffn
12645
12646@deffn {Directive} %debug
12647Equip the parser for debugging. @xref{Decl Summary}.
12648@end deffn
12649
91d2c560 12650@ifset defaultprec
22fccf95
PE
12651@deffn {Directive} %default-prec
12652Assign a precedence to rules that lack an explicit @samp{%prec}
12653modifier. @xref{Contextual Precedence, ,Context-Dependent
12654Precedence}.
39a06c25 12655@end deffn
91d2c560 12656@end ifset
39a06c25 12657
7fceb615
JD
12658@deffn {Directive} %define @var{variable}
12659@deffnx {Directive} %define @var{variable} @var{value}
6ce4b4ff 12660@deffnx {Directive} %define @var{variable} @{@var{value}@}
7fceb615 12661@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12662Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12663@end deffn
12664
18b519c0 12665@deffn {Directive} %defines
ff7571c0
JD
12666Bison declaration to create a parser header file, which is usually
12667meant for the scanner. @xref{Decl Summary}.
18b519c0 12668@end deffn
6deb4447 12669
02975b9a
JD
12670@deffn {Directive} %defines @var{defines-file}
12671Same as above, but save in the file @var{defines-file}.
12672@xref{Decl Summary}.
12673@end deffn
12674
18b519c0 12675@deffn {Directive} %destructor
258b75ca 12676Specify how the parser should reclaim the memory associated to
fa7e68c3 12677discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12678@end deffn
72f889cc 12679
18b519c0 12680@deffn {Directive} %dprec
676385e2 12681Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12682time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12683GLR Parsers}.
18b519c0 12684@end deffn
676385e2 12685
09add9c2
AD
12686@deffn {Directive} %empty
12687Bison declaration to declare make explicit that a rule has an empty
12688right-hand side. @xref{Empty Rules}.
12689@end deffn
12690
dd8d9022
AD
12691@deffn {Symbol} $end
12692The predefined token marking the end of the token stream. It cannot be
12693used in the grammar.
12694@end deffn
12695
12696@deffn {Symbol} error
12697A token name reserved for error recovery. This token may be used in
12698grammar rules so as to allow the Bison parser to recognize an error in
12699the grammar without halting the process. In effect, a sentence
12700containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12701token @code{error} becomes the current lookahead token. Actions
12702corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12703token is reset to the token that originally caused the violation.
12704@xref{Error Recovery}.
18d192f0
AD
12705@end deffn
12706
18b519c0 12707@deffn {Directive} %error-verbose
7fceb615
JD
12708An obsolete directive standing for @samp{%define parse.error verbose}
12709(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12710@end deffn
2a8d363a 12711
02975b9a 12712@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12713Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12714Summary}.
18b519c0 12715@end deffn
d8988b2f 12716
18b519c0 12717@deffn {Directive} %glr-parser
8a4281b9
JD
12718Bison declaration to produce a GLR parser. @xref{GLR
12719Parsers, ,Writing GLR Parsers}.
18b519c0 12720@end deffn
676385e2 12721
dd8d9022
AD
12722@deffn {Directive} %initial-action
12723Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12724@end deffn
12725
e6e704dc
JD
12726@deffn {Directive} %language
12727Specify the programming language for the generated parser.
12728@xref{Decl Summary}.
12729@end deffn
12730
18b519c0 12731@deffn {Directive} %left
d78f0ac9 12732Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12733@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12734@end deffn
bfa74976 12735
2055a44e
AD
12736@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12737Bison declaration to specifying additional arguments that
2a8d363a
AD
12738@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12739for Pure Parsers}.
18b519c0 12740@end deffn
2a8d363a 12741
18b519c0 12742@deffn {Directive} %merge
676385e2 12743Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12744reduce/reduce conflict with a rule having the same merging function, the
676385e2 12745function is applied to the two semantic values to get a single result.
8a4281b9 12746@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12747@end deffn
676385e2 12748
02975b9a 12749@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12750Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12751Parsers, ,Multiple Parsers in the Same Program}).
12752
12753Rename the external symbols (variables and functions) used in the parser so
12754that they start with @var{prefix} instead of @samp{yy}. Contrary to
12755@code{api.prefix}, do no rename types and macros.
12756
12757The precise list of symbols renamed in C parsers is @code{yyparse},
12758@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12759@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12760push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12761@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12762example, if you use @samp{%name-prefix "c_"}, the names become
12763@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
07e65a77 12764@code{%define api.namespace} documentation in this section.
18b519c0 12765@end deffn
d8988b2f 12766
4b3847c3 12767
91d2c560 12768@ifset defaultprec
22fccf95
PE
12769@deffn {Directive} %no-default-prec
12770Do not assign a precedence to rules that lack an explicit @samp{%prec}
12771modifier. @xref{Contextual Precedence, ,Context-Dependent
12772Precedence}.
12773@end deffn
91d2c560 12774@end ifset
22fccf95 12775
18b519c0 12776@deffn {Directive} %no-lines
931c7513 12777Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12778parser implementation file. @xref{Decl Summary}.
18b519c0 12779@end deffn
931c7513 12780
18b519c0 12781@deffn {Directive} %nonassoc
d78f0ac9 12782Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12783@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12784@end deffn
bfa74976 12785
02975b9a 12786@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12787Bison declaration to set the name of the parser implementation file.
12788@xref{Decl Summary}.
18b519c0 12789@end deffn
d8988b2f 12790
2055a44e
AD
12791@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12792Bison declaration to specify additional arguments that both
12793@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12794Parser Function @code{yyparse}}.
12795@end deffn
12796
12797@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12798Bison declaration to specify additional arguments that @code{yyparse}
12799should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12800@end deffn
2a8d363a 12801
18b519c0 12802@deffn {Directive} %prec
bfa74976
RS
12803Bison declaration to assign a precedence to a specific rule.
12804@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12805@end deffn
bfa74976 12806
d78f0ac9
AD
12807@deffn {Directive} %precedence
12808Bison declaration to assign precedence to token(s), but no associativity
12809@xref{Precedence Decl, ,Operator Precedence}.
12810@end deffn
12811
18b519c0 12812@deffn {Directive} %pure-parser
35c1e5f0
JD
12813Deprecated version of @samp{%define api.pure} (@pxref{%define
12814Summary,,api.pure}), for which Bison is more careful to warn about
12815unreasonable usage.
18b519c0 12816@end deffn
bfa74976 12817
b50d2359 12818@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12819Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12820Require a Version of Bison}.
b50d2359
AD
12821@end deffn
12822
18b519c0 12823@deffn {Directive} %right
d78f0ac9 12824Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12825@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12826@end deffn
bfa74976 12827
e6e704dc
JD
12828@deffn {Directive} %skeleton
12829Specify the skeleton to use; usually for development.
12830@xref{Decl Summary}.
12831@end deffn
12832
18b519c0 12833@deffn {Directive} %start
704a47c4
AD
12834Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12835Start-Symbol}.
18b519c0 12836@end deffn
bfa74976 12837
18b519c0 12838@deffn {Directive} %token
bfa74976
RS
12839Bison declaration to declare token(s) without specifying precedence.
12840@xref{Token Decl, ,Token Type Names}.
18b519c0 12841@end deffn
bfa74976 12842
18b519c0 12843@deffn {Directive} %token-table
ff7571c0
JD
12844Bison declaration to include a token name table in the parser
12845implementation file. @xref{Decl Summary}.
18b519c0 12846@end deffn
931c7513 12847
18b519c0 12848@deffn {Directive} %type
704a47c4
AD
12849Bison declaration to declare nonterminals. @xref{Type Decl,
12850,Nonterminal Symbols}.
18b519c0 12851@end deffn
bfa74976 12852
dd8d9022
AD
12853@deffn {Symbol} $undefined
12854The predefined token onto which all undefined values returned by
12855@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12856@code{error}.
12857@end deffn
12858
18b519c0 12859@deffn {Directive} %union
bfa74976 12860Bison declaration to specify several possible data types for semantic
e4d49586 12861values. @xref{Union Decl, ,The Union Declaration}.
18b519c0 12862@end deffn
bfa74976 12863
dd8d9022
AD
12864@deffn {Macro} YYABORT
12865Macro to pretend that an unrecoverable syntax error has occurred, by
12866making @code{yyparse} return 1 immediately. The error reporting
12867function @code{yyerror} is not called. @xref{Parser Function, ,The
12868Parser Function @code{yyparse}}.
8405b70c
PB
12869
12870For Java parsers, this functionality is invoked using @code{return YYABORT;}
12871instead.
dd8d9022 12872@end deffn
3ded9a63 12873
dd8d9022
AD
12874@deffn {Macro} YYACCEPT
12875Macro to pretend that a complete utterance of the language has been
12876read, by making @code{yyparse} return 0 immediately.
12877@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12878
12879For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12880instead.
dd8d9022 12881@end deffn
bfa74976 12882
dd8d9022 12883@deffn {Macro} YYBACKUP
742e4900 12884Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12885token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12886@end deffn
bfa74976 12887
dd8d9022 12888@deffn {Variable} yychar
32c29292 12889External integer variable that contains the integer value of the
742e4900 12890lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12891@code{yyparse}.) Error-recovery rule actions may examine this variable.
12892@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12893@end deffn
bfa74976 12894
dd8d9022
AD
12895@deffn {Variable} yyclearin
12896Macro used in error-recovery rule actions. It clears the previous
742e4900 12897lookahead token. @xref{Error Recovery}.
18b519c0 12898@end deffn
bfa74976 12899
dd8d9022
AD
12900@deffn {Macro} YYDEBUG
12901Macro to define to equip the parser with tracing code. @xref{Tracing,
12902,Tracing Your Parser}.
18b519c0 12903@end deffn
bfa74976 12904
dd8d9022
AD
12905@deffn {Variable} yydebug
12906External integer variable set to zero by default. If @code{yydebug}
12907is given a nonzero value, the parser will output information on input
12908symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12909@end deffn
bfa74976 12910
dd8d9022
AD
12911@deffn {Macro} yyerrok
12912Macro to cause parser to recover immediately to its normal mode
12913after a syntax error. @xref{Error Recovery}.
12914@end deffn
12915
12916@deffn {Macro} YYERROR
4a11b852
AD
12917Cause an immediate syntax error. This statement initiates error
12918recovery just as if the parser itself had detected an error; however, it
12919does not call @code{yyerror}, and does not print any message. If you
12920want to print an error message, call @code{yyerror} explicitly before
12921the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12922
12923For Java parsers, this functionality is invoked using @code{return YYERROR;}
12924instead.
dd8d9022
AD
12925@end deffn
12926
12927@deffn {Function} yyerror
12928User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12929@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12930@end deffn
12931
12932@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12933An obsolete macro used in the @file{yacc.c} skeleton, that you define
12934with @code{#define} in the prologue to request verbose, specific error
12935message strings when @code{yyerror} is called. It doesn't matter what
12936definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12937it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12938(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12939@end deffn
12940
93c150b6
AD
12941@deffn {Macro} YYFPRINTF
12942Macro used to output run-time traces.
12943@xref{Enabling Traces}.
12944@end deffn
12945
dd8d9022
AD
12946@deffn {Macro} YYINITDEPTH
12947Macro for specifying the initial size of the parser stack.
1a059451 12948@xref{Memory Management}.
dd8d9022
AD
12949@end deffn
12950
12951@deffn {Function} yylex
12952User-supplied lexical analyzer function, called with no arguments to get
12953the next token. @xref{Lexical, ,The Lexical Analyzer Function
12954@code{yylex}}.
12955@end deffn
12956
dd8d9022
AD
12957@deffn {Variable} yylloc
12958External variable in which @code{yylex} should place the line and column
12959numbers associated with a token. (In a pure parser, it is a local
12960variable within @code{yyparse}, and its address is passed to
32c29292
JD
12961@code{yylex}.)
12962You can ignore this variable if you don't use the @samp{@@} feature in the
12963grammar actions.
12964@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12965In semantic actions, it stores the location of the lookahead token.
32c29292 12966@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12967@end deffn
12968
12969@deffn {Type} YYLTYPE
12970Data type of @code{yylloc}; by default, a structure with four
12971members. @xref{Location Type, , Data Types of Locations}.
12972@end deffn
12973
12974@deffn {Variable} yylval
12975External variable in which @code{yylex} should place the semantic
12976value associated with a token. (In a pure parser, it is a local
12977variable within @code{yyparse}, and its address is passed to
32c29292
JD
12978@code{yylex}.)
12979@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12980In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12981@xref{Actions, ,Actions}.
dd8d9022
AD
12982@end deffn
12983
12984@deffn {Macro} YYMAXDEPTH
1a059451
PE
12985Macro for specifying the maximum size of the parser stack. @xref{Memory
12986Management}.
dd8d9022
AD
12987@end deffn
12988
12989@deffn {Variable} yynerrs
8a2800e7 12990Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12991(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 12992pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
12993@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12994@end deffn
12995
12996@deffn {Function} yyparse
12997The parser function produced by Bison; call this function to start
12998parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12999@end deffn
13000
93c150b6
AD
13001@deffn {Macro} YYPRINT
13002Macro used to output token semantic values. For @file{yacc.c} only.
13003Obsoleted by @code{%printer}.
13004@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
13005@end deffn
13006
9987d1b3 13007@deffn {Function} yypstate_delete
f4101aa6 13008The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 13009call this function to delete the memory associated with a parser.
f4101aa6 13010@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 13011@code{yypstate_delete}}.
59da312b
JD
13012(The current push parsing interface is experimental and may evolve.
13013More user feedback will help to stabilize it.)
9987d1b3
JD
13014@end deffn
13015
13016@deffn {Function} yypstate_new
f4101aa6 13017The function to create a parser instance, produced by Bison in push mode;
9987d1b3 13018call this function to create a new parser.
f4101aa6 13019@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 13020@code{yypstate_new}}.
59da312b
JD
13021(The current push parsing interface is experimental and may evolve.
13022More user feedback will help to stabilize it.)
9987d1b3
JD
13023@end deffn
13024
13025@deffn {Function} yypull_parse
f4101aa6
AD
13026The parser function produced by Bison in push mode; call this function to
13027parse the rest of the input stream.
13028@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 13029@code{yypull_parse}}.
59da312b
JD
13030(The current push parsing interface is experimental and may evolve.
13031More user feedback will help to stabilize it.)
9987d1b3
JD
13032@end deffn
13033
13034@deffn {Function} yypush_parse
f4101aa6
AD
13035The parser function produced by Bison in push mode; call this function to
13036parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 13037@code{yypush_parse}}.
59da312b
JD
13038(The current push parsing interface is experimental and may evolve.
13039More user feedback will help to stabilize it.)
9987d1b3
JD
13040@end deffn
13041
dd8d9022 13042@deffn {Macro} YYRECOVERING
02103984
PE
13043The expression @code{YYRECOVERING ()} yields 1 when the parser
13044is recovering from a syntax error, and 0 otherwise.
13045@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
13046@end deffn
13047
13048@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
13049Macro used to control the use of @code{alloca} when the
13050deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
13051the parser will use @code{malloc} to extend its stacks. If defined to
130521, the parser will use @code{alloca}. Values other than 0 and 1 are
13053reserved for future Bison extensions. If not defined,
13054@code{YYSTACK_USE_ALLOCA} defaults to 0.
13055
55289366 13056In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
13057limited stack and with unreliable stack-overflow checking, you should
13058set @code{YYMAXDEPTH} to a value that cannot possibly result in
13059unchecked stack overflow on any of your target hosts when
13060@code{alloca} is called. You can inspect the code that Bison
13061generates in order to determine the proper numeric values. This will
13062require some expertise in low-level implementation details.
dd8d9022
AD
13063@end deffn
13064
13065@deffn {Type} YYSTYPE
21e3a2b5 13066Deprecated in favor of the @code{%define} variable @code{api.value.type}.
dd8d9022
AD
13067Data type of semantic values; @code{int} by default.
13068@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 13069@end deffn
bfa74976 13070
342b8b6e 13071@node Glossary
bfa74976
RS
13072@appendix Glossary
13073@cindex glossary
13074
13075@table @asis
7fceb615 13076@item Accepting state
eb45ef3b
JD
13077A state whose only action is the accept action.
13078The accepting state is thus a consistent state.
c949ada3 13079@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 13080
8a4281b9 13081@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
13082Formal method of specifying context-free grammars originally proposed
13083by John Backus, and slightly improved by Peter Naur in his 1960-01-02
13084committee document contributing to what became the Algol 60 report.
13085@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 13086
7fceb615
JD
13087@item Consistent state
13088A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 13089
bfa74976
RS
13090@item Context-free grammars
13091Grammars specified as rules that can be applied regardless of context.
13092Thus, if there is a rule which says that an integer can be used as an
13093expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
13094permitted. @xref{Language and Grammar, ,Languages and Context-Free
13095Grammars}.
bfa74976 13096
7fceb615 13097@item Default reduction
110ef36a 13098The reduction that a parser should perform if the current parser state
35c1e5f0 13099contains no other action for the lookahead token. In permitted parser
7fceb615
JD
13100states, Bison declares the reduction with the largest lookahead set to be
13101the default reduction and removes that lookahead set. @xref{Default
13102Reductions}.
13103
13104@item Defaulted state
13105A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 13106
bfa74976
RS
13107@item Dynamic allocation
13108Allocation of memory that occurs during execution, rather than at
13109compile time or on entry to a function.
13110
13111@item Empty string
13112Analogous to the empty set in set theory, the empty string is a
13113character string of length zero.
13114
13115@item Finite-state stack machine
13116A ``machine'' that has discrete states in which it is said to exist at
13117each instant in time. As input to the machine is processed, the
13118machine moves from state to state as specified by the logic of the
13119machine. In the case of the parser, the input is the language being
13120parsed, and the states correspond to various stages in the grammar
c827f760 13121rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 13122
8a4281b9 13123@item Generalized LR (GLR)
676385e2 13124A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 13125that are not LR(1). It resolves situations that Bison's
eb45ef3b 13126deterministic parsing
676385e2
PH
13127algorithm cannot by effectively splitting off multiple parsers, trying all
13128possible parsers, and discarding those that fail in the light of additional
c827f760 13129right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 13130LR Parsing}.
676385e2 13131
bfa74976
RS
13132@item Grouping
13133A language construct that is (in general) grammatically divisible;
c827f760 13134for example, `expression' or `declaration' in C@.
bfa74976
RS
13135@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13136
7fceb615
JD
13137@item IELR(1) (Inadequacy Elimination LR(1))
13138A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 13139context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
13140language-recognition power of canonical LR(1) but with nearly the same
13141number of parser states as LALR(1). This reduction in parser states is
13142often an order of magnitude. More importantly, because canonical LR(1)'s
13143extra parser states may contain duplicate conflicts in the case of non-LR(1)
13144grammars, the number of conflicts for IELR(1) is often an order of magnitude
13145less as well. This can significantly reduce the complexity of developing a
13146grammar. @xref{LR Table Construction}.
eb45ef3b 13147
bfa74976
RS
13148@item Infix operator
13149An arithmetic operator that is placed between the operands on which it
13150performs some operation.
13151
13152@item Input stream
13153A continuous flow of data between devices or programs.
13154
8a4281b9 13155@item LAC (Lookahead Correction)
fcf834f9 13156A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
13157detection, which is caused by LR state merging, default reductions, and the
13158use of @code{%nonassoc}. Delayed syntax error detection results in
13159unexpected semantic actions, initiation of error recovery in the wrong
13160syntactic context, and an incorrect list of expected tokens in a verbose
13161syntax error message. @xref{LAC}.
fcf834f9 13162
bfa74976
RS
13163@item Language construct
13164One of the typical usage schemas of the language. For example, one of
13165the constructs of the C language is the @code{if} statement.
13166@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13167
13168@item Left associativity
13169Operators having left associativity are analyzed from left to right:
13170@samp{a+b+c} first computes @samp{a+b} and then combines with
13171@samp{c}. @xref{Precedence, ,Operator Precedence}.
13172
13173@item Left recursion
89cab50d
AD
13174A rule whose result symbol is also its first component symbol; for
13175example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
13176Rules}.
bfa74976
RS
13177
13178@item Left-to-right parsing
13179Parsing a sentence of a language by analyzing it token by token from
c827f760 13180left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13181
13182@item Lexical analyzer (scanner)
13183A function that reads an input stream and returns tokens one by one.
13184@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
13185
13186@item Lexical tie-in
13187A flag, set by actions in the grammar rules, which alters the way
13188tokens are parsed. @xref{Lexical Tie-ins}.
13189
931c7513 13190@item Literal string token
14ded682 13191A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 13192
742e4900
JD
13193@item Lookahead token
13194A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 13195Tokens}.
bfa74976 13196
8a4281b9 13197@item LALR(1)
bfa74976 13198The class of context-free grammars that Bison (like most other parser
8a4281b9 13199generators) can handle by default; a subset of LR(1).
cc09e5be 13200@xref{Mysterious Conflicts}.
bfa74976 13201
8a4281b9 13202@item LR(1)
bfa74976 13203The class of context-free grammars in which at most one token of
742e4900 13204lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
13205
13206@item Nonterminal symbol
13207A grammar symbol standing for a grammatical construct that can
13208be expressed through rules in terms of smaller constructs; in other
13209words, a construct that is not a token. @xref{Symbols}.
13210
bfa74976
RS
13211@item Parser
13212A function that recognizes valid sentences of a language by analyzing
13213the syntax structure of a set of tokens passed to it from a lexical
13214analyzer.
13215
13216@item Postfix operator
13217An arithmetic operator that is placed after the operands upon which it
13218performs some operation.
13219
13220@item Reduction
13221Replacing a string of nonterminals and/or terminals with a single
89cab50d 13222nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 13223Parser Algorithm}.
bfa74976
RS
13224
13225@item Reentrant
13226A reentrant subprogram is a subprogram which can be in invoked any
13227number of times in parallel, without interference between the various
13228invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
13229
13230@item Reverse polish notation
13231A language in which all operators are postfix operators.
13232
13233@item Right recursion
89cab50d
AD
13234A rule whose result symbol is also its last component symbol; for
13235example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
13236Rules}.
bfa74976
RS
13237
13238@item Semantics
13239In computer languages, the semantics are specified by the actions
13240taken for each instance of the language, i.e., the meaning of
13241each statement. @xref{Semantics, ,Defining Language Semantics}.
13242
13243@item Shift
13244A parser is said to shift when it makes the choice of analyzing
13245further input from the stream rather than reducing immediately some
c827f760 13246already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13247
13248@item Single-character literal
13249A single character that is recognized and interpreted as is.
13250@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
13251
13252@item Start symbol
13253The nonterminal symbol that stands for a complete valid utterance in
13254the language being parsed. The start symbol is usually listed as the
13863333 13255first nonterminal symbol in a language specification.
bfa74976
RS
13256@xref{Start Decl, ,The Start-Symbol}.
13257
13258@item Symbol table
13259A data structure where symbol names and associated data are stored
13260during parsing to allow for recognition and use of existing
13261information in repeated uses of a symbol. @xref{Multi-function Calc}.
13262
6e649e65
PE
13263@item Syntax error
13264An error encountered during parsing of an input stream due to invalid
13265syntax. @xref{Error Recovery}.
13266
bfa74976
RS
13267@item Token
13268A basic, grammatically indivisible unit of a language. The symbol
13269that describes a token in the grammar is a terminal symbol.
13270The input of the Bison parser is a stream of tokens which comes from
13271the lexical analyzer. @xref{Symbols}.
13272
13273@item Terminal symbol
89cab50d
AD
13274A grammar symbol that has no rules in the grammar and therefore is
13275grammatically indivisible. The piece of text it represents is a token.
13276@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
13277
13278@item Unreachable state
13279A parser state to which there does not exist a sequence of transitions from
13280the parser's start state. A state can become unreachable during conflict
13281resolution. @xref{Unreachable States}.
bfa74976
RS
13282@end table
13283
342b8b6e 13284@node Copying This Manual
f2b5126e 13285@appendix Copying This Manual
f2b5126e
PB
13286@include fdl.texi
13287
5e528941
JD
13288@node Bibliography
13289@unnumbered Bibliography
13290
13291@table @asis
13292@item [Denny 2008]
13293Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
13294for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
132952008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
13296pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
13297
13298@item [Denny 2010 May]
13299Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
13300Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
13301University, Clemson, SC, USA (May 2010).
13302@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
13303
13304@item [Denny 2010 November]
13305Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
13306Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
13307in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
133082010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
13309
13310@item [DeRemer 1982]
13311Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
13312Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
13313Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
13314615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
13315
13316@item [Knuth 1965]
13317Donald E. Knuth, On the Translation of Languages from Left to Right, in
13318@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
13319607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
13320
13321@item [Scott 2000]
13322Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
13323@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
13324London, Department of Computer Science, TR-00-12 (December 2000).
13325@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
13326@end table
13327
f9b86351
AD
13328@node Index of Terms
13329@unnumbered Index of Terms
bfa74976
RS
13330
13331@printindex cp
13332
bfa74976 13333@bye
a06ea4aa 13334
6b5a0de9
AD
13335@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
13336@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
13337@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
13338@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
13339@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
13340@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
13341@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
13342@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
13343@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
13344@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
13345@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
13346@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
13347@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 13348@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
13349@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
13350@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13351@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13352@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13353@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13354@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13355@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13356@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13357@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13358@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13359@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13360@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13361@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13362@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13363@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13364@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13365@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13366@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13367@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13368@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13369@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13370@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13371@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13372@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13373@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13374@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13375@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13376@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13377@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13378@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13379@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13380@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13381@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13382@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13383@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13384@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13385@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13386@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13387@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13388@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13389@c LocalWords: parsers parser's
13390@c LocalWords: associativity subclasses precedences unresolvable runnable
13391@c LocalWords: allocators subunit initializations unreferenced untyped
13392@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13393
13394@c Local Variables:
13395@c ispell-dictionary: "american"
13396@c fill-column: 76
13397@c End: