]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: style changes.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
d6328241 229* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
230* Start Decl:: Specifying the start symbol.
231* Pure Decl:: Requesting a reentrant parser.
9987d1b3 232* Push Decl:: Requesting a push parser.
bfa74976 233* Decl Summary:: Table of all Bison declarations.
35c1e5f0 234* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 235* %code Summary:: Inserting code into the parser source.
bfa74976
RS
236
237Parser C-Language Interface
238
f5f419de
DJ
239* Parser Function:: How to call @code{yyparse} and what it returns.
240* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
241* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
242* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
243* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
244* Lexical:: You must supply a function @code{yylex}
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
256* Token Locations:: How @code{yylex} must return the text location
257 (line number, etc.) of the token, if the
258 actions want that.
259* Pure Calling:: How the calling convention differs in a pure parser
260 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 261
13863333 262The Bison Parser Algorithm
bfa74976 263
742e4900 264* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 270* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 271* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 272* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 273* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
274
275Operator Precedence
276
277* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
278* Using Precedence:: How to specify precedence and associativity.
279* Precedence Only:: How to specify precedence only.
bfa74976
RS
280* Precedence Examples:: How these features are used in the previous example.
281* How Precedence:: How they work.
282
7fceb615
JD
283Tuning LR
284
285* LR Table Construction:: Choose a different construction algorithm.
286* Default Reductions:: Disable default reductions.
287* LAC:: Correct lookahead sets in the parser states.
288* Unreachable States:: Keep unreachable parser states for debugging.
289
bfa74976
RS
290Handling Context Dependencies
291
292* Semantic Tokens:: Token parsing can depend on the semantic context.
293* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
294* Tie-in Recovery:: Lexical tie-ins have implications for how
295 error recovery rules must be written.
296
93dd49ab 297Debugging Your Parser
ec3bc396
AD
298
299* Understanding:: Understanding the structure of your parser.
300* Tracing:: Tracing the execution of your parser.
301
bfa74976
RS
302Invoking Bison
303
13863333 304* Bison Options:: All the options described in detail,
c827f760 305 in alphabetical order by short options.
bfa74976 306* Option Cross Key:: Alphabetical list of long options.
93dd49ab 307* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 308
8405b70c 309Parsers Written In Other Languages
12545799
AD
310
311* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 312* Java Parsers:: The interface to generate Java parser classes
12545799
AD
313
314C++ Parsers
315
316* C++ Bison Interface:: Asking for C++ parser generation
317* C++ Semantic Values:: %union vs. C++
318* C++ Location Values:: The position and location classes
319* C++ Parser Interface:: Instantiating and running the parser
320* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 321* A Complete C++ Example:: Demonstrating their use
12545799
AD
322
323A Complete C++ Example
324
325* Calc++ --- C++ Calculator:: The specifications
326* Calc++ Parsing Driver:: An active parsing context
327* Calc++ Parser:: A parser class
328* Calc++ Scanner:: A pure C++ Flex scanner
329* Calc++ Top Level:: Conducting the band
330
8405b70c
PB
331Java Parsers
332
f5f419de
DJ
333* Java Bison Interface:: Asking for Java parser generation
334* Java Semantic Values:: %type and %token vs. Java
335* Java Location Values:: The position and location classes
336* Java Parser Interface:: Instantiating and running the parser
337* Java Scanner Interface:: Specifying the scanner for the parser
338* Java Action Features:: Special features for use in actions
339* Java Differences:: Differences between C/C++ and Java Grammars
340* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 341
d1a1114f
AD
342Frequently Asked Questions
343
f5f419de
DJ
344* Memory Exhausted:: Breaking the Stack Limits
345* How Can I Reset the Parser:: @code{yyparse} Keeps some State
346* Strings are Destroyed:: @code{yylval} Loses Track of Strings
347* Implementing Gotos/Loops:: Control Flow in the Calculator
348* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 349* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
350* I can't build Bison:: Troubleshooting
351* Where can I find help?:: Troubleshouting
352* Bug Reports:: Troublereporting
353* More Languages:: Parsers in C++, Java, and so on
354* Beta Testing:: Experimenting development versions
355* Mailing Lists:: Meeting other Bison users
d1a1114f 356
f2b5126e
PB
357Copying This Manual
358
f5f419de 359* Copying This Manual:: License for copying this manual.
f2b5126e 360
342b8b6e 361@end detailmenu
bfa74976
RS
362@end menu
363
342b8b6e 364@node Introduction
bfa74976
RS
365@unnumbered Introduction
366@cindex introduction
367
6077da58 368@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
369annotated context-free grammar into a deterministic LR or generalized
370LR (GLR) parser employing LALR(1) parser tables. As an experimental
371feature, Bison can also generate IELR(1) or canonical LR(1) parser
372tables. Once you are proficient with Bison, you can use it to develop
373a wide range of language parsers, from those used in simple desk
374calculators to complex programming languages.
375
376Bison is upward compatible with Yacc: all properly-written Yacc
377grammars ought to work with Bison with no change. Anyone familiar
378with Yacc should be able to use Bison with little trouble. You need
379to be fluent in C or C++ programming in order to use Bison or to
380understand this manual. Java is also supported as an experimental
381feature.
382
383We begin with tutorial chapters that explain the basic concepts of
384using Bison and show three explained examples, each building on the
385last. If you don't know Bison or Yacc, start by reading these
386chapters. Reference chapters follow, which describe specific aspects
387of Bison in detail.
bfa74976 388
679e9935
JD
389Bison was written originally by Robert Corbett. Richard Stallman made
390it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
391added multi-character string literals and other features. Since then,
392Bison has grown more robust and evolved many other new features thanks
393to the hard work of a long list of volunteers. For details, see the
394@file{THANKS} and @file{ChangeLog} files included in the Bison
395distribution.
931c7513 396
df1af54c 397This edition corresponds to version @value{VERSION} of Bison.
bfa74976 398
342b8b6e 399@node Conditions
bfa74976
RS
400@unnumbered Conditions for Using Bison
401
193d7c70
PE
402The distribution terms for Bison-generated parsers permit using the
403parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 404permissions applied only when Bison was generating LALR(1)
193d7c70 405parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 406parsers could be used only in programs that were free software.
a31239f1 407
8a4281b9 408The other GNU programming tools, such as the GNU C
c827f760 409compiler, have never
9ecbd125 410had such a requirement. They could always be used for nonfree
a31239f1
RS
411software. The reason Bison was different was not due to a special
412policy decision; it resulted from applying the usual General Public
413License to all of the Bison source code.
414
ff7571c0
JD
415The main output of the Bison utility---the Bison parser implementation
416file---contains a verbatim copy of a sizable piece of Bison, which is
417the code for the parser's implementation. (The actions from your
418grammar are inserted into this implementation at one point, but most
419of the rest of the implementation is not changed.) When we applied
420the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
421the effect was to restrict the use of Bison output to free software.
422
423We didn't change the terms because of sympathy for people who want to
424make software proprietary. @strong{Software should be free.} But we
425concluded that limiting Bison's use to free software was doing little to
426encourage people to make other software free. So we decided to make the
427practical conditions for using Bison match the practical conditions for
8a4281b9 428using the other GNU tools.
bfa74976 429
193d7c70
PE
430This exception applies when Bison is generating code for a parser.
431You can tell whether the exception applies to a Bison output file by
432inspecting the file for text beginning with ``As a special
433exception@dots{}''. The text spells out the exact terms of the
434exception.
262aa8dd 435
f16b0819
PE
436@node Copying
437@unnumbered GNU GENERAL PUBLIC LICENSE
438@include gpl-3.0.texi
bfa74976 439
342b8b6e 440@node Concepts
bfa74976
RS
441@chapter The Concepts of Bison
442
443This chapter introduces many of the basic concepts without which the
444details of Bison will not make sense. If you do not already know how to
445use Bison or Yacc, we suggest you start by reading this chapter carefully.
446
447@menu
f5f419de
DJ
448* Language and Grammar:: Languages and context-free grammars,
449 as mathematical ideas.
450* Grammar in Bison:: How we represent grammars for Bison's sake.
451* Semantic Values:: Each token or syntactic grouping can have
452 a semantic value (the value of an integer,
453 the name of an identifier, etc.).
454* Semantic Actions:: Each rule can have an action containing C code.
455* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 456* Locations:: Overview of location tracking.
f5f419de
DJ
457* Bison Parser:: What are Bison's input and output,
458 how is the output used?
459* Stages:: Stages in writing and running Bison grammars.
460* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
461@end menu
462
342b8b6e 463@node Language and Grammar
bfa74976
RS
464@section Languages and Context-Free Grammars
465
bfa74976
RS
466@cindex context-free grammar
467@cindex grammar, context-free
468In order for Bison to parse a language, it must be described by a
469@dfn{context-free grammar}. This means that you specify one or more
470@dfn{syntactic groupings} and give rules for constructing them from their
471parts. For example, in the C language, one kind of grouping is called an
472`expression'. One rule for making an expression might be, ``An expression
473can be made of a minus sign and another expression''. Another would be,
474``An expression can be an integer''. As you can see, rules are often
475recursive, but there must be at least one rule which leads out of the
476recursion.
477
8a4281b9 478@cindex BNF
bfa74976
RS
479@cindex Backus-Naur form
480The most common formal system for presenting such rules for humans to read
8a4281b9 481is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 482order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
483BNF is a context-free grammar. The input to Bison is
484essentially machine-readable BNF.
bfa74976 485
7fceb615
JD
486@cindex LALR grammars
487@cindex IELR grammars
488@cindex LR grammars
489There are various important subclasses of context-free grammars. Although
490it can handle almost all context-free grammars, Bison is optimized for what
491are called LR(1) grammars. In brief, in these grammars, it must be possible
492to tell how to parse any portion of an input string with just a single token
493of lookahead. For historical reasons, Bison by default is limited by the
494additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
495@xref{Mysterious Conflicts}, for more information on this. As an
496experimental feature, you can escape these additional restrictions by
497requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
498Construction}, to learn how.
bfa74976 499
8a4281b9
JD
500@cindex GLR parsing
501@cindex generalized LR (GLR) parsing
676385e2 502@cindex ambiguous grammars
9d9b8b70 503@cindex nondeterministic parsing
9501dc6e 504
8a4281b9 505Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
506roughly that the next grammar rule to apply at any point in the input is
507uniquely determined by the preceding input and a fixed, finite portion
742e4900 508(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 509grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 510apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 511grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 512lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 513With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
514general context-free grammars, using a technique known as GLR
515parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
516are able to handle any context-free grammar for which the number of
517possible parses of any given string is finite.
676385e2 518
bfa74976
RS
519@cindex symbols (abstract)
520@cindex token
521@cindex syntactic grouping
522@cindex grouping, syntactic
9501dc6e
AD
523In the formal grammatical rules for a language, each kind of syntactic
524unit or grouping is named by a @dfn{symbol}. Those which are built by
525grouping smaller constructs according to grammatical rules are called
bfa74976
RS
526@dfn{nonterminal symbols}; those which can't be subdivided are called
527@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
528corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 529corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
530
531We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
532nonterminal, mean. The tokens of C are identifiers, constants (numeric
533and string), and the various keywords, arithmetic operators and
534punctuation marks. So the terminal symbols of a grammar for C include
535`identifier', `number', `string', plus one symbol for each keyword,
536operator or punctuation mark: `if', `return', `const', `static', `int',
537`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
538(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
539lexicography, not grammar.)
540
541Here is a simple C function subdivided into tokens:
542
9edcd895
AD
543@ifinfo
544@example
545int /* @r{keyword `int'} */
14d4662b 546square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
547 @r{identifier, close-paren} */
548@{ /* @r{open-brace} */
aa08666d
AD
549 return x * x; /* @r{keyword `return', identifier, asterisk,}
550 @r{identifier, semicolon} */
9edcd895
AD
551@} /* @r{close-brace} */
552@end example
553@end ifinfo
554@ifnotinfo
bfa74976
RS
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 558@{ /* @r{open-brace} */
9edcd895 559 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
560@} /* @r{close-brace} */
561@end example
9edcd895 562@end ifnotinfo
bfa74976
RS
563
564The syntactic groupings of C include the expression, the statement, the
565declaration, and the function definition. These are represented in the
566grammar of C by nonterminal symbols `expression', `statement',
567`declaration' and `function definition'. The full grammar uses dozens of
568additional language constructs, each with its own nonterminal symbol, in
569order to express the meanings of these four. The example above is a
570function definition; it contains one declaration, and one statement. In
571the statement, each @samp{x} is an expression and so is @samp{x * x}.
572
573Each nonterminal symbol must have grammatical rules showing how it is made
574out of simpler constructs. For example, one kind of C statement is the
575@code{return} statement; this would be described with a grammar rule which
576reads informally as follows:
577
578@quotation
579A `statement' can be made of a `return' keyword, an `expression' and a
580`semicolon'.
581@end quotation
582
583@noindent
584There would be many other rules for `statement', one for each kind of
585statement in C.
586
587@cindex start symbol
588One nonterminal symbol must be distinguished as the special one which
589defines a complete utterance in the language. It is called the @dfn{start
590symbol}. In a compiler, this means a complete input program. In the C
591language, the nonterminal symbol `sequence of definitions and declarations'
592plays this role.
593
594For example, @samp{1 + 2} is a valid C expression---a valid part of a C
595program---but it is not valid as an @emph{entire} C program. In the
596context-free grammar of C, this follows from the fact that `expression' is
597not the start symbol.
598
599The Bison parser reads a sequence of tokens as its input, and groups the
600tokens using the grammar rules. If the input is valid, the end result is
601that the entire token sequence reduces to a single grouping whose symbol is
602the grammar's start symbol. If we use a grammar for C, the entire input
603must be a `sequence of definitions and declarations'. If not, the parser
604reports a syntax error.
605
342b8b6e 606@node Grammar in Bison
bfa74976
RS
607@section From Formal Rules to Bison Input
608@cindex Bison grammar
609@cindex grammar, Bison
610@cindex formal grammar
611
612A formal grammar is a mathematical construct. To define the language
613for Bison, you must write a file expressing the grammar in Bison syntax:
614a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
615
616A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 617as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
618in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
619
620The Bison representation for a terminal symbol is also called a @dfn{token
621type}. Token types as well can be represented as C-like identifiers. By
622convention, these identifiers should be upper case to distinguish them from
623nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
624@code{RETURN}. A terminal symbol that stands for a particular keyword in
625the language should be named after that keyword converted to upper case.
626The terminal symbol @code{error} is reserved for error recovery.
931c7513 627@xref{Symbols}.
bfa74976
RS
628
629A terminal symbol can also be represented as a character literal, just like
630a C character constant. You should do this whenever a token is just a
631single character (parenthesis, plus-sign, etc.): use that same character in
632a literal as the terminal symbol for that token.
633
931c7513
RS
634A third way to represent a terminal symbol is with a C string constant
635containing several characters. @xref{Symbols}, for more information.
636
bfa74976
RS
637The grammar rules also have an expression in Bison syntax. For example,
638here is the Bison rule for a C @code{return} statement. The semicolon in
639quotes is a literal character token, representing part of the C syntax for
640the statement; the naked semicolon, and the colon, are Bison punctuation
641used in every rule.
642
643@example
644stmt: RETURN expr ';'
645 ;
646@end example
647
648@noindent
649@xref{Rules, ,Syntax of Grammar Rules}.
650
342b8b6e 651@node Semantic Values
bfa74976
RS
652@section Semantic Values
653@cindex semantic value
654@cindex value, semantic
655
656A formal grammar selects tokens only by their classifications: for example,
657if a rule mentions the terminal symbol `integer constant', it means that
658@emph{any} integer constant is grammatically valid in that position. The
659precise value of the constant is irrelevant to how to parse the input: if
660@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 661grammatical.
bfa74976
RS
662
663But the precise value is very important for what the input means once it is
664parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6653989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
666has both a token type and a @dfn{semantic value}. @xref{Semantics,
667,Defining Language Semantics},
bfa74976
RS
668for details.
669
670The token type is a terminal symbol defined in the grammar, such as
671@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
672you need to know to decide where the token may validly appear and how to
673group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 674except their types.
bfa74976
RS
675
676The semantic value has all the rest of the information about the
677meaning of the token, such as the value of an integer, or the name of an
678identifier. (A token such as @code{','} which is just punctuation doesn't
679need to have any semantic value.)
680
681For example, an input token might be classified as token type
682@code{INTEGER} and have the semantic value 4. Another input token might
683have the same token type @code{INTEGER} but value 3989. When a grammar
684rule says that @code{INTEGER} is allowed, either of these tokens is
685acceptable because each is an @code{INTEGER}. When the parser accepts the
686token, it keeps track of the token's semantic value.
687
688Each grouping can also have a semantic value as well as its nonterminal
689symbol. For example, in a calculator, an expression typically has a
690semantic value that is a number. In a compiler for a programming
691language, an expression typically has a semantic value that is a tree
692structure describing the meaning of the expression.
693
342b8b6e 694@node Semantic Actions
bfa74976
RS
695@section Semantic Actions
696@cindex semantic actions
697@cindex actions, semantic
698
699In order to be useful, a program must do more than parse input; it must
700also produce some output based on the input. In a Bison grammar, a grammar
701rule can have an @dfn{action} made up of C statements. Each time the
702parser recognizes a match for that rule, the action is executed.
703@xref{Actions}.
13863333 704
bfa74976
RS
705Most of the time, the purpose of an action is to compute the semantic value
706of the whole construct from the semantic values of its parts. For example,
707suppose we have a rule which says an expression can be the sum of two
708expressions. When the parser recognizes such a sum, each of the
709subexpressions has a semantic value which describes how it was built up.
710The action for this rule should create a similar sort of value for the
711newly recognized larger expression.
712
713For example, here is a rule that says an expression can be the sum of
714two subexpressions:
715
716@example
717expr: expr '+' expr @{ $$ = $1 + $3; @}
718 ;
719@end example
720
721@noindent
722The action says how to produce the semantic value of the sum expression
723from the values of the two subexpressions.
724
676385e2 725@node GLR Parsers
8a4281b9
JD
726@section Writing GLR Parsers
727@cindex GLR parsing
728@cindex generalized LR (GLR) parsing
676385e2
PH
729@findex %glr-parser
730@cindex conflicts
731@cindex shift/reduce conflicts
fa7e68c3 732@cindex reduce/reduce conflicts
676385e2 733
eb45ef3b 734In some grammars, Bison's deterministic
8a4281b9 735LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
736certain grammar rule at a given point. That is, it may not be able to
737decide (on the basis of the input read so far) which of two possible
738reductions (applications of a grammar rule) applies, or whether to apply
739a reduction or read more of the input and apply a reduction later in the
740input. These are known respectively as @dfn{reduce/reduce} conflicts
741(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
742(@pxref{Shift/Reduce}).
743
8a4281b9 744To use a grammar that is not easily modified to be LR(1), a
9501dc6e 745more general parsing algorithm is sometimes necessary. If you include
676385e2 746@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
747(@pxref{Grammar Outline}), the result is a Generalized LR
748(GLR) parser. These parsers handle Bison grammars that
9501dc6e 749contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 750declarations) identically to deterministic parsers. However, when
9501dc6e 751faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 752GLR parsers use the simple expedient of doing both,
9501dc6e
AD
753effectively cloning the parser to follow both possibilities. Each of
754the resulting parsers can again split, so that at any given time, there
755can be any number of possible parses being explored. The parsers
676385e2
PH
756proceed in lockstep; that is, all of them consume (shift) a given input
757symbol before any of them proceed to the next. Each of the cloned
758parsers eventually meets one of two possible fates: either it runs into
759a parsing error, in which case it simply vanishes, or it merges with
760another parser, because the two of them have reduced the input to an
761identical set of symbols.
762
763During the time that there are multiple parsers, semantic actions are
764recorded, but not performed. When a parser disappears, its recorded
765semantic actions disappear as well, and are never performed. When a
766reduction makes two parsers identical, causing them to merge, Bison
767records both sets of semantic actions. Whenever the last two parsers
768merge, reverting to the single-parser case, Bison resolves all the
769outstanding actions either by precedences given to the grammar rules
770involved, or by performing both actions, and then calling a designated
771user-defined function on the resulting values to produce an arbitrary
772merged result.
773
fa7e68c3 774@menu
8a4281b9
JD
775* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
776* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 777* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 778* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 779* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
780@end menu
781
782@node Simple GLR Parsers
8a4281b9
JD
783@subsection Using GLR on Unambiguous Grammars
784@cindex GLR parsing, unambiguous grammars
785@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
786@findex %glr-parser
787@findex %expect-rr
788@cindex conflicts
789@cindex reduce/reduce conflicts
790@cindex shift/reduce conflicts
791
8a4281b9
JD
792In the simplest cases, you can use the GLR algorithm
793to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 794Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
795
796Consider a problem that
797arises in the declaration of enumerated and subrange types in the
798programming language Pascal. Here are some examples:
799
800@example
801type subrange = lo .. hi;
802type enum = (a, b, c);
803@end example
804
805@noindent
806The original language standard allows only numeric
807literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 808and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80910206) and many other
810Pascal implementations allow arbitrary expressions there. This gives
811rise to the following situation, containing a superfluous pair of
812parentheses:
813
814@example
815type subrange = (a) .. b;
816@end example
817
818@noindent
819Compare this to the following declaration of an enumerated
820type with only one value:
821
822@example
823type enum = (a);
824@end example
825
826@noindent
827(These declarations are contrived, but they are syntactically
828valid, and more-complicated cases can come up in practical programs.)
829
830These two declarations look identical until the @samp{..} token.
8a4281b9 831With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
832possible to decide between the two forms when the identifier
833@samp{a} is parsed. It is, however, desirable
834for a parser to decide this, since in the latter case
835@samp{a} must become a new identifier to represent the enumeration
836value, while in the former case @samp{a} must be evaluated with its
837current meaning, which may be a constant or even a function call.
838
839You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
840to be resolved later, but this typically requires substantial
841contortions in both semantic actions and large parts of the
842grammar, where the parentheses are nested in the recursive rules for
843expressions.
844
845You might think of using the lexer to distinguish between the two
846forms by returning different tokens for currently defined and
847undefined identifiers. But if these declarations occur in a local
848scope, and @samp{a} is defined in an outer scope, then both forms
849are possible---either locally redefining @samp{a}, or using the
850value of @samp{a} from the outer scope. So this approach cannot
851work.
852
e757bb10 853A simple solution to this problem is to declare the parser to
8a4281b9
JD
854use the GLR algorithm.
855When the GLR parser reaches the critical state, it
fa7e68c3
PE
856merely splits into two branches and pursues both syntax rules
857simultaneously. Sooner or later, one of them runs into a parsing
858error. If there is a @samp{..} token before the next
859@samp{;}, the rule for enumerated types fails since it cannot
860accept @samp{..} anywhere; otherwise, the subrange type rule
861fails since it requires a @samp{..} token. So one of the branches
862fails silently, and the other one continues normally, performing
863all the intermediate actions that were postponed during the split.
864
865If the input is syntactically incorrect, both branches fail and the parser
866reports a syntax error as usual.
867
868The effect of all this is that the parser seems to ``guess'' the
869correct branch to take, or in other words, it seems to use more
8a4281b9
JD
870lookahead than the underlying LR(1) algorithm actually allows
871for. In this example, LR(2) would suffice, but also some cases
872that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 873
8a4281b9 874In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
875and the current Bison parser even takes exponential time and space
876for some grammars. In practice, this rarely happens, and for many
877grammars it is possible to prove that it cannot happen.
878The present example contains only one conflict between two
879rules, and the type-declaration context containing the conflict
880cannot be nested. So the number of
881branches that can exist at any time is limited by the constant 2,
882and the parsing time is still linear.
883
884Here is a Bison grammar corresponding to the example above. It
885parses a vastly simplified form of Pascal type declarations.
886
887@example
888%token TYPE DOTDOT ID
889
890@group
891%left '+' '-'
892%left '*' '/'
893@end group
894
895%%
896
897@group
898type_decl : TYPE ID '=' type ';'
899 ;
900@end group
901
902@group
903type : '(' id_list ')'
904 | expr DOTDOT expr
905 ;
906@end group
907
908@group
909id_list : ID
910 | id_list ',' ID
911 ;
912@end group
913
914@group
915expr : '(' expr ')'
916 | expr '+' expr
917 | expr '-' expr
918 | expr '*' expr
919 | expr '/' expr
920 | ID
921 ;
922@end group
923@end example
924
8a4281b9 925When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
926about one reduce/reduce conflict. In the conflicting situation the
927parser chooses one of the alternatives, arbitrarily the one
928declared first. Therefore the following correct input is not
929recognized:
930
931@example
932type t = (a) .. b;
933@end example
934
8a4281b9 935The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
936to be silent about the one known reduce/reduce conflict, by adding
937these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
938@samp{%%}):
939
940@example
941%glr-parser
942%expect-rr 1
943@end example
944
945@noindent
946No change in the grammar itself is required. Now the
947parser recognizes all valid declarations, according to the
948limited syntax above, transparently. In fact, the user does not even
949notice when the parser splits.
950
8a4281b9 951So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
952almost without disadvantages. Even in simple cases like this, however,
953there are at least two potential problems to beware. First, always
8a4281b9
JD
954analyze the conflicts reported by Bison to make sure that GLR
955splitting is only done where it is intended. A GLR parser
f8e1c9e5 956splitting inadvertently may cause problems less obvious than an
8a4281b9 957LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
958conflict. Second, consider interactions with the lexer (@pxref{Semantic
959Tokens}) with great care. Since a split parser consumes tokens without
960performing any actions during the split, the lexer cannot obtain
961information via parser actions. Some cases of lexer interactions can be
8a4281b9 962eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
963lexer to the parser. You must check the remaining cases for
964correctness.
965
966In our example, it would be safe for the lexer to return tokens based on
967their current meanings in some symbol table, because no new symbols are
968defined in the middle of a type declaration. Though it is possible for
969a parser to define the enumeration constants as they are parsed, before
970the type declaration is completed, it actually makes no difference since
971they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
972
973@node Merging GLR Parses
8a4281b9
JD
974@subsection Using GLR to Resolve Ambiguities
975@cindex GLR parsing, ambiguous grammars
976@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
977@findex %dprec
978@findex %merge
979@cindex conflicts
980@cindex reduce/reduce conflicts
981
2a8d363a 982Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
983
984@example
985%@{
38a92d50
PE
986 #include <stdio.h>
987 #define YYSTYPE char const *
988 int yylex (void);
989 void yyerror (char const *);
676385e2
PH
990%@}
991
992%token TYPENAME ID
993
994%right '='
995%left '+'
996
997%glr-parser
998
999%%
1000
fae437e8 1001prog :
676385e2
PH
1002 | prog stmt @{ printf ("\n"); @}
1003 ;
1004
1005stmt : expr ';' %dprec 1
1006 | decl %dprec 2
1007 ;
1008
2a8d363a 1009expr : ID @{ printf ("%s ", $$); @}
fae437e8 1010 | TYPENAME '(' expr ')'
2a8d363a
AD
1011 @{ printf ("%s <cast> ", $1); @}
1012 | expr '+' expr @{ printf ("+ "); @}
1013 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1014 ;
1015
fae437e8 1016decl : TYPENAME declarator ';'
2a8d363a 1017 @{ printf ("%s <declare> ", $1); @}
676385e2 1018 | TYPENAME declarator '=' expr ';'
2a8d363a 1019 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1020 ;
1021
2a8d363a 1022declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1023 | '(' declarator ')'
1024 ;
1025@end example
1026
1027@noindent
1028This models a problematic part of the C++ grammar---the ambiguity between
1029certain declarations and statements. For example,
1030
1031@example
1032T (x) = y+z;
1033@end example
1034
1035@noindent
1036parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1037(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1038@samp{x} as an @code{ID}).
676385e2 1039Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1040@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1041time it encounters @code{x} in the example above. Since this is a
8a4281b9 1042GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1043each choice of resolving the reduce/reduce conflict.
1044Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1045however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1046ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1047the other reduces @code{stmt : decl}, after which both parsers are in an
1048identical state: they've seen @samp{prog stmt} and have the same unprocessed
1049input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1050
8a4281b9 1051At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1052grammar of how to choose between the competing parses.
1053In the example above, the two @code{%dprec}
e757bb10 1054declarations specify that Bison is to give precedence
fa7e68c3 1055to the parse that interprets the example as a
676385e2
PH
1056@code{decl}, which implies that @code{x} is a declarator.
1057The parser therefore prints
1058
1059@example
fae437e8 1060"x" y z + T <init-declare>
676385e2
PH
1061@end example
1062
fa7e68c3
PE
1063The @code{%dprec} declarations only come into play when more than one
1064parse survives. Consider a different input string for this parser:
676385e2
PH
1065
1066@example
1067T (x) + y;
1068@end example
1069
1070@noindent
8a4281b9 1071This is another example of using GLR to parse an unambiguous
fa7e68c3 1072construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1073Here, there is no ambiguity (this cannot be parsed as a declaration).
1074However, at the time the Bison parser encounters @code{x}, it does not
1075have enough information to resolve the reduce/reduce conflict (again,
1076between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1077case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1078into two, one assuming that @code{x} is an @code{expr}, and the other
1079assuming @code{x} is a @code{declarator}. The second of these parsers
1080then vanishes when it sees @code{+}, and the parser prints
1081
1082@example
fae437e8 1083x T <cast> y +
676385e2
PH
1084@end example
1085
1086Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1087the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1088actions of the two possible parsers, rather than choosing one over the
1089other. To do so, you could change the declaration of @code{stmt} as
1090follows:
1091
1092@example
1093stmt : expr ';' %merge <stmtMerge>
1094 | decl %merge <stmtMerge>
1095 ;
1096@end example
1097
1098@noindent
676385e2
PH
1099and define the @code{stmtMerge} function as:
1100
1101@example
38a92d50
PE
1102static YYSTYPE
1103stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1104@{
1105 printf ("<OR> ");
1106 return "";
1107@}
1108@end example
1109
1110@noindent
1111with an accompanying forward declaration
1112in the C declarations at the beginning of the file:
1113
1114@example
1115%@{
38a92d50 1116 #define YYSTYPE char const *
676385e2
PH
1117 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1118%@}
1119@end example
1120
1121@noindent
fa7e68c3
PE
1122With these declarations, the resulting parser parses the first example
1123as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1124
1125@example
fae437e8 1126"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1127@end example
1128
fa7e68c3 1129Bison requires that all of the
e757bb10 1130productions that participate in any particular merge have identical
fa7e68c3
PE
1131@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1132and the parser will report an error during any parse that results in
1133the offending merge.
9501dc6e 1134
32c29292
JD
1135@node GLR Semantic Actions
1136@subsection GLR Semantic Actions
1137
8a4281b9 1138The nature of GLR parsing and the structure of the generated
20be2f92
PH
1139parsers give rise to certain restrictions on semantic values and actions.
1140
1141@subsubsection Deferred semantic actions
32c29292
JD
1142@cindex deferred semantic actions
1143By definition, a deferred semantic action is not performed at the same time as
1144the associated reduction.
1145This raises caveats for several Bison features you might use in a semantic
8a4281b9 1146action in a GLR parser.
32c29292
JD
1147
1148@vindex yychar
8a4281b9 1149@cindex GLR parsers and @code{yychar}
32c29292 1150@vindex yylval
8a4281b9 1151@cindex GLR parsers and @code{yylval}
32c29292 1152@vindex yylloc
8a4281b9 1153@cindex GLR parsers and @code{yylloc}
32c29292 1154In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1155the lookahead token present at the time of the associated reduction.
32c29292
JD
1156After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1157you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1158lookahead token's semantic value and location, if any.
32c29292
JD
1159In a nondeferred semantic action, you can also modify any of these variables to
1160influence syntax analysis.
742e4900 1161@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1162
1163@findex yyclearin
8a4281b9 1164@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1165In a deferred semantic action, it's too late to influence syntax analysis.
1166In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1167shallow copies of the values they had at the time of the associated reduction.
1168For this reason alone, modifying them is dangerous.
1169Moreover, the result of modifying them is undefined and subject to change with
1170future versions of Bison.
1171For example, if a semantic action might be deferred, you should never write it
1172to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1173memory referenced by @code{yylval}.
1174
20be2f92 1175@subsubsection YYERROR
32c29292 1176@findex YYERROR
8a4281b9 1177@cindex GLR parsers and @code{YYERROR}
32c29292 1178Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1179(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1180initiate error recovery.
8a4281b9 1181During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1182the same as its effect in a deterministic parser.
411614fa
JM
1183The effect in a deferred action is similar, but the precise point of the
1184error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1185selecting an unspecified stack on which to continue with a syntax error.
1186In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1187parsing, @code{YYERROR} silently prunes
1188the parse that invoked the test.
1189
1190@subsubsection Restrictions on semantic values and locations
8a4281b9 1191GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1192semantic values and location types when using the generated parsers as
1193C++ code.
8710fc41 1194
ca2a6d15
PH
1195@node Semantic Predicates
1196@subsection Controlling a Parse with Arbitrary Predicates
1197@findex %?
8a4281b9 1198@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1199
1200In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1201GLR parsers
ca2a6d15
PH
1202allow you to reject parses on the basis of arbitrary computations executed
1203in user code, without having Bison treat this rejection as an error
1204if there are alternative parses. (This feature is experimental and may
1205evolve. We welcome user feedback.) For example,
1206
1207@smallexample
1208widget :
1209 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1210 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1211 ;
1212@end smallexample
1213
1214@noindent
411614fa 1215is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1216widgets. The clause preceded by @code{%?} is treated like an ordinary
1217action, except that its text is treated as an expression and is always
411614fa 1218evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1219expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1220which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1221to die. In a deterministic parser, it acts like YYERROR.
1222
1223As the example shows, predicates otherwise look like semantic actions, and
1224therefore you must be take them into account when determining the numbers
1225to use for denoting the semantic values of right-hand side symbols.
1226Predicate actions, however, have no defined value, and may not be given
1227labels.
1228
1229There is a subtle difference between semantic predicates and ordinary
1230actions in nondeterministic mode, since the latter are deferred.
411614fa 1231For example, we could try to rewrite the previous example as
ca2a6d15
PH
1232
1233@smallexample
1234widget :
1235 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1236 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1237 ;
1238@end smallexample
1239
1240@noindent
1241(reversing the sense of the predicate tests to cause an error when they are
1242false). However, this
1243does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1244have overlapping syntax.
411614fa 1245Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1246a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1247for cases where @code{new_args} and @code{old_args} recognize the same string
1248@emph{before} performing the tests of @code{new_syntax}. It therefore
1249reports an error.
1250
1251Finally, be careful in writing predicates: deferred actions have not been
1252evaluated, so that using them in a predicate will have undefined effects.
1253
fa7e68c3 1254@node Compiler Requirements
8a4281b9 1255@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1256@cindex @code{inline}
8a4281b9 1257@cindex GLR parsers and @code{inline}
fa7e68c3 1258
8a4281b9 1259The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1260later. In addition, they use the @code{inline} keyword, which is not
1261C89, but is C99 and is a common extension in pre-C99 compilers. It is
1262up to the user of these parsers to handle
9501dc6e
AD
1263portability issues. For instance, if using Autoconf and the Autoconf
1264macro @code{AC_C_INLINE}, a mere
1265
1266@example
1267%@{
38a92d50 1268 #include <config.h>
9501dc6e
AD
1269%@}
1270@end example
1271
1272@noindent
1273will suffice. Otherwise, we suggest
1274
1275@example
1276%@{
aaaa2aae
AD
1277 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1278 && ! defined inline)
1279 # define inline
38a92d50 1280 #endif
9501dc6e
AD
1281%@}
1282@end example
676385e2 1283
1769eb30 1284@node Locations
847bf1f5
AD
1285@section Locations
1286@cindex location
95923bd6
AD
1287@cindex textual location
1288@cindex location, textual
847bf1f5
AD
1289
1290Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1291and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1292the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1293Bison provides a mechanism for handling these locations.
1294
72d2299c 1295Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1296associated location, but the type of locations is the same for all tokens
1297and groupings. Moreover, the output parser is equipped with a default data
1298structure for storing locations (@pxref{Tracking Locations}, for more
1299details).
847bf1f5
AD
1300
1301Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1302set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1303is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1304@code{@@3}.
1305
1306When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1307of its left hand side (@pxref{Actions}). In the same way, another default
1308action is used for locations. However, the action for locations is general
847bf1f5 1309enough for most cases, meaning there is usually no need to describe for each
72d2299c 1310rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1311grouping, the default behavior of the output parser is to take the beginning
1312of the first symbol, and the end of the last symbol.
1313
342b8b6e 1314@node Bison Parser
ff7571c0 1315@section Bison Output: the Parser Implementation File
bfa74976
RS
1316@cindex Bison parser
1317@cindex Bison utility
1318@cindex lexical analyzer, purpose
1319@cindex parser
1320
ff7571c0
JD
1321When you run Bison, you give it a Bison grammar file as input. The
1322most important output is a C source file that implements a parser for
1323the language described by the grammar. This parser is called a
1324@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1325implementation file}. Keep in mind that the Bison utility and the
1326Bison parser are two distinct programs: the Bison utility is a program
1327whose output is the Bison parser implementation file that becomes part
1328of your program.
bfa74976
RS
1329
1330The job of the Bison parser is to group tokens into groupings according to
1331the grammar rules---for example, to build identifiers and operators into
1332expressions. As it does this, it runs the actions for the grammar rules it
1333uses.
1334
704a47c4
AD
1335The tokens come from a function called the @dfn{lexical analyzer} that
1336you must supply in some fashion (such as by writing it in C). The Bison
1337parser calls the lexical analyzer each time it wants a new token. It
1338doesn't know what is ``inside'' the tokens (though their semantic values
1339may reflect this). Typically the lexical analyzer makes the tokens by
1340parsing characters of text, but Bison does not depend on this.
1341@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1342
ff7571c0
JD
1343The Bison parser implementation file is C code which defines a
1344function named @code{yyparse} which implements that grammar. This
1345function does not make a complete C program: you must supply some
1346additional functions. One is the lexical analyzer. Another is an
1347error-reporting function which the parser calls to report an error.
1348In addition, a complete C program must start with a function called
1349@code{main}; you have to provide this, and arrange for it to call
1350@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1351C-Language Interface}.
bfa74976 1352
f7ab6a50 1353Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1354write, all symbols defined in the Bison parser implementation file
1355itself begin with @samp{yy} or @samp{YY}. This includes interface
1356functions such as the lexical analyzer function @code{yylex}, the
1357error reporting function @code{yyerror} and the parser function
1358@code{yyparse} itself. This also includes numerous identifiers used
1359for internal purposes. Therefore, you should avoid using C
1360identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1361file except for the ones defined in this manual. Also, you should
1362avoid using the C identifiers @samp{malloc} and @samp{free} for
1363anything other than their usual meanings.
1364
1365In some cases the Bison parser implementation file includes system
1366headers, and in those cases your code should respect the identifiers
1367reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1368@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1369included as needed to declare memory allocators and related types.
1370@code{<libintl.h>} is included if message translation is in use
1371(@pxref{Internationalization}). Other system headers may be included
1372if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1373,Tracing Your Parser}).
7093d0f5 1374
342b8b6e 1375@node Stages
bfa74976
RS
1376@section Stages in Using Bison
1377@cindex stages in using Bison
1378@cindex using Bison
1379
1380The actual language-design process using Bison, from grammar specification
1381to a working compiler or interpreter, has these parts:
1382
1383@enumerate
1384@item
1385Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1386(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1387in the language, describe the action that is to be taken when an
1388instance of that rule is recognized. The action is described by a
1389sequence of C statements.
bfa74976
RS
1390
1391@item
704a47c4
AD
1392Write a lexical analyzer to process input and pass tokens to the parser.
1393The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1394Lexical Analyzer Function @code{yylex}}). It could also be produced
1395using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1396
1397@item
1398Write a controlling function that calls the Bison-produced parser.
1399
1400@item
1401Write error-reporting routines.
1402@end enumerate
1403
1404To turn this source code as written into a runnable program, you
1405must follow these steps:
1406
1407@enumerate
1408@item
1409Run Bison on the grammar to produce the parser.
1410
1411@item
1412Compile the code output by Bison, as well as any other source files.
1413
1414@item
1415Link the object files to produce the finished product.
1416@end enumerate
1417
342b8b6e 1418@node Grammar Layout
bfa74976
RS
1419@section The Overall Layout of a Bison Grammar
1420@cindex grammar file
1421@cindex file format
1422@cindex format of grammar file
1423@cindex layout of Bison grammar
1424
1425The input file for the Bison utility is a @dfn{Bison grammar file}. The
1426general form of a Bison grammar file is as follows:
1427
1428@example
1429%@{
08e49d20 1430@var{Prologue}
bfa74976
RS
1431%@}
1432
1433@var{Bison declarations}
1434
1435%%
1436@var{Grammar rules}
1437%%
08e49d20 1438@var{Epilogue}
bfa74976
RS
1439@end example
1440
1441@noindent
1442The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1443in every Bison grammar file to separate the sections.
1444
72d2299c 1445The prologue may define types and variables used in the actions. You can
342b8b6e 1446also use preprocessor commands to define macros used there, and use
bfa74976 1447@code{#include} to include header files that do any of these things.
38a92d50
PE
1448You need to declare the lexical analyzer @code{yylex} and the error
1449printer @code{yyerror} here, along with any other global identifiers
1450used by the actions in the grammar rules.
bfa74976
RS
1451
1452The Bison declarations declare the names of the terminal and nonterminal
1453symbols, and may also describe operator precedence and the data types of
1454semantic values of various symbols.
1455
1456The grammar rules define how to construct each nonterminal symbol from its
1457parts.
1458
38a92d50
PE
1459The epilogue can contain any code you want to use. Often the
1460definitions of functions declared in the prologue go here. In a
1461simple program, all the rest of the program can go here.
bfa74976 1462
342b8b6e 1463@node Examples
bfa74976
RS
1464@chapter Examples
1465@cindex simple examples
1466@cindex examples, simple
1467
aaaa2aae 1468Now we show and explain several sample programs written using Bison: a
bfa74976 1469reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1470calculator --- later extended to track ``locations'' ---
1471and a multi-function calculator. All
1472produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1473
1474These examples are simple, but Bison grammars for real programming
aa08666d
AD
1475languages are written the same way. You can copy these examples into a
1476source file to try them.
bfa74976
RS
1477
1478@menu
f5f419de
DJ
1479* RPN Calc:: Reverse polish notation calculator;
1480 a first example with no operator precedence.
1481* Infix Calc:: Infix (algebraic) notation calculator.
1482 Operator precedence is introduced.
bfa74976 1483* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1484* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1485* Multi-function Calc:: Calculator with memory and trig functions.
1486 It uses multiple data-types for semantic values.
1487* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1488@end menu
1489
342b8b6e 1490@node RPN Calc
bfa74976
RS
1491@section Reverse Polish Notation Calculator
1492@cindex reverse polish notation
1493@cindex polish notation calculator
1494@cindex @code{rpcalc}
1495@cindex calculator, simple
1496
1497The first example is that of a simple double-precision @dfn{reverse polish
1498notation} calculator (a calculator using postfix operators). This example
1499provides a good starting point, since operator precedence is not an issue.
1500The second example will illustrate how operator precedence is handled.
1501
1502The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1503@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1504
1505@menu
f5f419de
DJ
1506* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1507* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1508* Rpcalc Lexer:: The lexical analyzer.
1509* Rpcalc Main:: The controlling function.
1510* Rpcalc Error:: The error reporting function.
1511* Rpcalc Generate:: Running Bison on the grammar file.
1512* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1513@end menu
1514
f5f419de 1515@node Rpcalc Declarations
bfa74976
RS
1516@subsection Declarations for @code{rpcalc}
1517
1518Here are the C and Bison declarations for the reverse polish notation
1519calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1520
24ec0837 1521@comment file: rpcalc.y
bfa74976 1522@example
72d2299c 1523/* Reverse polish notation calculator. */
bfa74976
RS
1524
1525%@{
38a92d50 1526 #define YYSTYPE double
24ec0837 1527 #include <stdio.h>
38a92d50
PE
1528 #include <math.h>
1529 int yylex (void);
1530 void yyerror (char const *);
bfa74976
RS
1531%@}
1532
1533%token NUM
1534
72d2299c 1535%% /* Grammar rules and actions follow. */
bfa74976
RS
1536@end example
1537
75f5aaea 1538The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1539preprocessor directives and two forward declarations.
bfa74976
RS
1540
1541The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1542specifying the C data type for semantic values of both tokens and
1543groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1544Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1545don't define it, @code{int} is the default. Because we specify
1546@code{double}, each token and each expression has an associated value,
1547which is a floating point number.
bfa74976
RS
1548
1549The @code{#include} directive is used to declare the exponentiation
1550function @code{pow}.
1551
38a92d50
PE
1552The forward declarations for @code{yylex} and @code{yyerror} are
1553needed because the C language requires that functions be declared
1554before they are used. These functions will be defined in the
1555epilogue, but the parser calls them so they must be declared in the
1556prologue.
1557
704a47c4
AD
1558The second section, Bison declarations, provides information to Bison
1559about the token types (@pxref{Bison Declarations, ,The Bison
1560Declarations Section}). Each terminal symbol that is not a
1561single-character literal must be declared here. (Single-character
bfa74976
RS
1562literals normally don't need to be declared.) In this example, all the
1563arithmetic operators are designated by single-character literals, so the
1564only terminal symbol that needs to be declared is @code{NUM}, the token
1565type for numeric constants.
1566
342b8b6e 1567@node Rpcalc Rules
bfa74976
RS
1568@subsection Grammar Rules for @code{rpcalc}
1569
1570Here are the grammar rules for the reverse polish notation calculator.
1571
24ec0837 1572@comment file: rpcalc.y
bfa74976 1573@example
aaaa2aae 1574@group
bfa74976
RS
1575input: /* empty */
1576 | input line
1577;
aaaa2aae 1578@end group
bfa74976 1579
aaaa2aae 1580@group
bfa74976 1581line: '\n'
24ec0837 1582 | exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1583;
aaaa2aae 1584@end group
bfa74976 1585
aaaa2aae 1586@group
18b519c0
AD
1587exp: NUM @{ $$ = $1; @}
1588 | exp exp '+' @{ $$ = $1 + $2; @}
1589 | exp exp '-' @{ $$ = $1 - $2; @}
1590 | exp exp '*' @{ $$ = $1 * $2; @}
1591 | exp exp '/' @{ $$ = $1 / $2; @}
aaaa2aae
AD
1592 | exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1593 | exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1594;
aaaa2aae 1595@end group
bfa74976
RS
1596%%
1597@end example
1598
1599The groupings of the rpcalc ``language'' defined here are the expression
1600(given the name @code{exp}), the line of input (@code{line}), and the
1601complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1602symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1603which is read as ``or''. The following sections explain what these rules
1604mean.
1605
1606The semantics of the language is determined by the actions taken when a
1607grouping is recognized. The actions are the C code that appears inside
1608braces. @xref{Actions}.
1609
1610You must specify these actions in C, but Bison provides the means for
1611passing semantic values between the rules. In each action, the
1612pseudo-variable @code{$$} stands for the semantic value for the grouping
1613that the rule is going to construct. Assigning a value to @code{$$} is the
1614main job of most actions. The semantic values of the components of the
1615rule are referred to as @code{$1}, @code{$2}, and so on.
1616
1617@menu
24ec0837
AD
1618* Rpcalc Input:: Explanation of the @code{input} nonterminal
1619* Rpcalc Line:: Explanation of the @code{line} nonterminal
1620* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1621@end menu
1622
342b8b6e 1623@node Rpcalc Input
bfa74976
RS
1624@subsubsection Explanation of @code{input}
1625
1626Consider the definition of @code{input}:
1627
1628@example
1629input: /* empty */
1630 | input line
1631;
1632@end example
1633
1634This definition reads as follows: ``A complete input is either an empty
1635string, or a complete input followed by an input line''. Notice that
1636``complete input'' is defined in terms of itself. This definition is said
1637to be @dfn{left recursive} since @code{input} appears always as the
1638leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1639
1640The first alternative is empty because there are no symbols between the
1641colon and the first @samp{|}; this means that @code{input} can match an
1642empty string of input (no tokens). We write the rules this way because it
1643is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1644It's conventional to put an empty alternative first and write the comment
1645@samp{/* empty */} in it.
1646
1647The second alternate rule (@code{input line}) handles all nontrivial input.
1648It means, ``After reading any number of lines, read one more line if
1649possible.'' The left recursion makes this rule into a loop. Since the
1650first alternative matches empty input, the loop can be executed zero or
1651more times.
1652
1653The parser function @code{yyparse} continues to process input until a
1654grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1655input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1656
342b8b6e 1657@node Rpcalc Line
bfa74976
RS
1658@subsubsection Explanation of @code{line}
1659
1660Now consider the definition of @code{line}:
1661
1662@example
1663line: '\n'
24ec0837 1664 | exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1665;
1666@end example
1667
1668The first alternative is a token which is a newline character; this means
1669that rpcalc accepts a blank line (and ignores it, since there is no
1670action). The second alternative is an expression followed by a newline.
1671This is the alternative that makes rpcalc useful. The semantic value of
1672the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1673question is the first symbol in the alternative. The action prints this
1674value, which is the result of the computation the user asked for.
1675
1676This action is unusual because it does not assign a value to @code{$$}. As
1677a consequence, the semantic value associated with the @code{line} is
1678uninitialized (its value will be unpredictable). This would be a bug if
1679that value were ever used, but we don't use it: once rpcalc has printed the
1680value of the user's input line, that value is no longer needed.
1681
342b8b6e 1682@node Rpcalc Expr
bfa74976
RS
1683@subsubsection Explanation of @code{expr}
1684
1685The @code{exp} grouping has several rules, one for each kind of expression.
1686The first rule handles the simplest expressions: those that are just numbers.
1687The second handles an addition-expression, which looks like two expressions
1688followed by a plus-sign. The third handles subtraction, and so on.
1689
1690@example
1691exp: NUM
1692 | exp exp '+' @{ $$ = $1 + $2; @}
1693 | exp exp '-' @{ $$ = $1 - $2; @}
1694 @dots{}
1695 ;
1696@end example
1697
1698We have used @samp{|} to join all the rules for @code{exp}, but we could
1699equally well have written them separately:
1700
1701@example
1702exp: NUM ;
1703exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1704exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1705 @dots{}
1706@end example
1707
1708Most of the rules have actions that compute the value of the expression in
1709terms of the value of its parts. For example, in the rule for addition,
1710@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1711the second one. The third component, @code{'+'}, has no meaningful
1712associated semantic value, but if it had one you could refer to it as
1713@code{$3}. When @code{yyparse} recognizes a sum expression using this
1714rule, the sum of the two subexpressions' values is produced as the value of
1715the entire expression. @xref{Actions}.
1716
1717You don't have to give an action for every rule. When a rule has no
1718action, Bison by default copies the value of @code{$1} into @code{$$}.
1719This is what happens in the first rule (the one that uses @code{NUM}).
1720
1721The formatting shown here is the recommended convention, but Bison does
72d2299c 1722not require it. You can add or change white space as much as you wish.
bfa74976
RS
1723For example, this:
1724
1725@example
99a9344e 1726exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1727@end example
1728
1729@noindent
1730means the same thing as this:
1731
1732@example
1733exp: NUM
1734 | exp exp '+' @{ $$ = $1 + $2; @}
1735 | @dots{}
99a9344e 1736;
bfa74976
RS
1737@end example
1738
1739@noindent
1740The latter, however, is much more readable.
1741
342b8b6e 1742@node Rpcalc Lexer
bfa74976
RS
1743@subsection The @code{rpcalc} Lexical Analyzer
1744@cindex writing a lexical analyzer
1745@cindex lexical analyzer, writing
1746
704a47c4
AD
1747The lexical analyzer's job is low-level parsing: converting characters
1748or sequences of characters into tokens. The Bison parser gets its
1749tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1750Analyzer Function @code{yylex}}.
bfa74976 1751
8a4281b9 1752Only a simple lexical analyzer is needed for the RPN
c827f760 1753calculator. This
bfa74976
RS
1754lexical analyzer skips blanks and tabs, then reads in numbers as
1755@code{double} and returns them as @code{NUM} tokens. Any other character
1756that isn't part of a number is a separate token. Note that the token-code
1757for such a single-character token is the character itself.
1758
1759The return value of the lexical analyzer function is a numeric code which
1760represents a token type. The same text used in Bison rules to stand for
1761this token type is also a C expression for the numeric code for the type.
1762This works in two ways. If the token type is a character literal, then its
e966383b 1763numeric code is that of the character; you can use the same
bfa74976
RS
1764character literal in the lexical analyzer to express the number. If the
1765token type is an identifier, that identifier is defined by Bison as a C
1766macro whose definition is the appropriate number. In this example,
1767therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1768
1964ad8c
AD
1769The semantic value of the token (if it has one) is stored into the
1770global variable @code{yylval}, which is where the Bison parser will look
1771for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1772defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1773,Declarations for @code{rpcalc}}.)
bfa74976 1774
72d2299c
PE
1775A token type code of zero is returned if the end-of-input is encountered.
1776(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1777
1778Here is the code for the lexical analyzer:
1779
24ec0837 1780@comment file: rpcalc.y
bfa74976
RS
1781@example
1782@group
72d2299c 1783/* The lexical analyzer returns a double floating point
e966383b 1784 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1785 of the character read if not a number. It skips all blanks
1786 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1787
1788#include <ctype.h>
1789@end group
1790
1791@group
13863333
AD
1792int
1793yylex (void)
bfa74976
RS
1794@{
1795 int c;
1796
72d2299c 1797 /* Skip white space. */
13863333 1798 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1799 continue;
bfa74976
RS
1800@end group
1801@group
72d2299c 1802 /* Process numbers. */
13863333 1803 if (c == '.' || isdigit (c))
bfa74976
RS
1804 @{
1805 ungetc (c, stdin);
1806 scanf ("%lf", &yylval);
1807 return NUM;
1808 @}
1809@end group
1810@group
72d2299c 1811 /* Return end-of-input. */
13863333 1812 if (c == EOF)
bfa74976 1813 return 0;
72d2299c 1814 /* Return a single char. */
13863333 1815 return c;
bfa74976
RS
1816@}
1817@end group
1818@end example
1819
342b8b6e 1820@node Rpcalc Main
bfa74976
RS
1821@subsection The Controlling Function
1822@cindex controlling function
1823@cindex main function in simple example
1824
1825In keeping with the spirit of this example, the controlling function is
1826kept to the bare minimum. The only requirement is that it call
1827@code{yyparse} to start the process of parsing.
1828
24ec0837 1829@comment file: rpcalc.y
bfa74976
RS
1830@example
1831@group
13863333
AD
1832int
1833main (void)
bfa74976 1834@{
13863333 1835 return yyparse ();
bfa74976
RS
1836@}
1837@end group
1838@end example
1839
342b8b6e 1840@node Rpcalc Error
bfa74976
RS
1841@subsection The Error Reporting Routine
1842@cindex error reporting routine
1843
1844When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1845function @code{yyerror} to print an error message (usually but not
6e649e65 1846always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1847@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1848here is the definition we will use:
bfa74976 1849
24ec0837 1850@comment file: rpcalc.y
bfa74976
RS
1851@example
1852@group
1853#include <stdio.h>
aaaa2aae 1854@end group
bfa74976 1855
aaaa2aae 1856@group
38a92d50 1857/* Called by yyparse on error. */
13863333 1858void
38a92d50 1859yyerror (char const *s)
bfa74976 1860@{
4e03e201 1861 fprintf (stderr, "%s\n", s);
bfa74976
RS
1862@}
1863@end group
1864@end example
1865
1866After @code{yyerror} returns, the Bison parser may recover from the error
1867and continue parsing if the grammar contains a suitable error rule
1868(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1869have not written any error rules in this example, so any invalid input will
1870cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1871real calculator, but it is adequate for the first example.
bfa74976 1872
f5f419de 1873@node Rpcalc Generate
bfa74976
RS
1874@subsection Running Bison to Make the Parser
1875@cindex running Bison (introduction)
1876
ceed8467
AD
1877Before running Bison to produce a parser, we need to decide how to
1878arrange all the source code in one or more source files. For such a
ff7571c0
JD
1879simple example, the easiest thing is to put everything in one file,
1880the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1881@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1882(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1883
1884For a large project, you would probably have several source files, and use
1885@code{make} to arrange to recompile them.
1886
ff7571c0
JD
1887With all the source in the grammar file, you use the following command
1888to convert it into a parser implementation file:
bfa74976
RS
1889
1890@example
fa4d969f 1891bison @var{file}.y
bfa74976
RS
1892@end example
1893
1894@noindent
ff7571c0
JD
1895In this example, the grammar file is called @file{rpcalc.y} (for
1896``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1897implementation file named @file{@var{file}.tab.c}, removing the
1898@samp{.y} from the grammar file name. The parser implementation file
1899contains the source code for @code{yyparse}. The additional functions
1900in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1901copied verbatim to the parser implementation file.
bfa74976 1902
342b8b6e 1903@node Rpcalc Compile
ff7571c0 1904@subsection Compiling the Parser Implementation File
bfa74976
RS
1905@cindex compiling the parser
1906
ff7571c0 1907Here is how to compile and run the parser implementation file:
bfa74976
RS
1908
1909@example
1910@group
1911# @r{List files in current directory.}
9edcd895 1912$ @kbd{ls}
bfa74976
RS
1913rpcalc.tab.c rpcalc.y
1914@end group
1915
1916@group
1917# @r{Compile the Bison parser.}
1918# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1919$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1920@end group
1921
1922@group
1923# @r{List files again.}
9edcd895 1924$ @kbd{ls}
bfa74976
RS
1925rpcalc rpcalc.tab.c rpcalc.y
1926@end group
1927@end example
1928
1929The file @file{rpcalc} now contains the executable code. Here is an
1930example session using @code{rpcalc}.
1931
1932@example
9edcd895
AD
1933$ @kbd{rpcalc}
1934@kbd{4 9 +}
24ec0837 1935@result{} 13
9edcd895 1936@kbd{3 7 + 3 4 5 *+-}
24ec0837 1937@result{} -13
9edcd895 1938@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1939@result{} 13
9edcd895 1940@kbd{5 6 / 4 n +}
24ec0837 1941@result{} -3.166666667
9edcd895 1942@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1943@result{} 81
9edcd895
AD
1944@kbd{^D} @r{End-of-file indicator}
1945$
bfa74976
RS
1946@end example
1947
342b8b6e 1948@node Infix Calc
bfa74976
RS
1949@section Infix Notation Calculator: @code{calc}
1950@cindex infix notation calculator
1951@cindex @code{calc}
1952@cindex calculator, infix notation
1953
1954We now modify rpcalc to handle infix operators instead of postfix. Infix
1955notation involves the concept of operator precedence and the need for
1956parentheses nested to arbitrary depth. Here is the Bison code for
1957@file{calc.y}, an infix desk-top calculator.
1958
1959@example
38a92d50 1960/* Infix notation calculator. */
bfa74976 1961
aaaa2aae 1962@group
bfa74976 1963%@{
38a92d50
PE
1964 #define YYSTYPE double
1965 #include <math.h>
1966 #include <stdio.h>
1967 int yylex (void);
1968 void yyerror (char const *);
bfa74976 1969%@}
aaaa2aae 1970@end group
bfa74976 1971
aaaa2aae 1972@group
38a92d50 1973/* Bison declarations. */
bfa74976
RS
1974%token NUM
1975%left '-' '+'
1976%left '*' '/'
d78f0ac9
AD
1977%precedence NEG /* negation--unary minus */
1978%right '^' /* exponentiation */
aaaa2aae 1979@end group
bfa74976 1980
38a92d50 1981%% /* The grammar follows. */
aaaa2aae 1982@group
38a92d50 1983input: /* empty */
bfa74976
RS
1984 | input line
1985;
aaaa2aae 1986@end group
bfa74976 1987
aaaa2aae 1988@group
bfa74976
RS
1989line: '\n'
1990 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1991;
aaaa2aae 1992@end group
bfa74976 1993
aaaa2aae
AD
1994@group
1995exp: NUM @{ $$ = $1; @}
1996 | exp '+' exp @{ $$ = $1 + $3; @}
1997 | exp '-' exp @{ $$ = $1 - $3; @}
1998 | exp '*' exp @{ $$ = $1 * $3; @}
1999 | exp '/' exp @{ $$ = $1 / $3; @}
2000 | '-' exp %prec NEG @{ $$ = -$2; @}
bfa74976 2001 | exp '^' exp @{ $$ = pow ($1, $3); @}
aaaa2aae 2002 | '(' exp ')' @{ $$ = $2; @}
bfa74976 2003;
aaaa2aae 2004@end group
bfa74976
RS
2005%%
2006@end example
2007
2008@noindent
ceed8467
AD
2009The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2010same as before.
bfa74976
RS
2011
2012There are two important new features shown in this code.
2013
2014In the second section (Bison declarations), @code{%left} declares token
2015types and says they are left-associative operators. The declarations
2016@code{%left} and @code{%right} (right associativity) take the place of
2017@code{%token} which is used to declare a token type name without
d78f0ac9 2018associativity/precedence. (These tokens are single-character literals, which
bfa74976 2019ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2020the associativity/precedence.)
bfa74976
RS
2021
2022Operator precedence is determined by the line ordering of the
2023declarations; the higher the line number of the declaration (lower on
2024the page or screen), the higher the precedence. Hence, exponentiation
2025has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2026by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2027only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2028Precedence}.
bfa74976 2029
704a47c4
AD
2030The other important new feature is the @code{%prec} in the grammar
2031section for the unary minus operator. The @code{%prec} simply instructs
2032Bison that the rule @samp{| '-' exp} has the same precedence as
2033@code{NEG}---in this case the next-to-highest. @xref{Contextual
2034Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2035
2036Here is a sample run of @file{calc.y}:
2037
2038@need 500
2039@example
9edcd895
AD
2040$ @kbd{calc}
2041@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20426.880952381
9edcd895 2043@kbd{-56 + 2}
bfa74976 2044-54
9edcd895 2045@kbd{3 ^ 2}
bfa74976
RS
20469
2047@end example
2048
342b8b6e 2049@node Simple Error Recovery
bfa74976
RS
2050@section Simple Error Recovery
2051@cindex error recovery, simple
2052
2053Up to this point, this manual has not addressed the issue of @dfn{error
2054recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2055error. All we have handled is error reporting with @code{yyerror}.
2056Recall that by default @code{yyparse} returns after calling
2057@code{yyerror}. This means that an erroneous input line causes the
2058calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2059
2060The Bison language itself includes the reserved word @code{error}, which
2061may be included in the grammar rules. In the example below it has
2062been added to one of the alternatives for @code{line}:
2063
2064@example
2065@group
2066line: '\n'
2067 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2068 | error '\n' @{ yyerrok; @}
2069;
2070@end group
2071@end example
2072
ceed8467 2073This addition to the grammar allows for simple error recovery in the
6e649e65 2074event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2075read, the error will be recognized by the third rule for @code{line},
2076and parsing will continue. (The @code{yyerror} function is still called
2077upon to print its message as well.) The action executes the statement
2078@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2079that error recovery is complete (@pxref{Error Recovery}). Note the
2080difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2081misprint.
bfa74976
RS
2082
2083This form of error recovery deals with syntax errors. There are other
2084kinds of errors; for example, division by zero, which raises an exception
2085signal that is normally fatal. A real calculator program must handle this
2086signal and use @code{longjmp} to return to @code{main} and resume parsing
2087input lines; it would also have to discard the rest of the current line of
2088input. We won't discuss this issue further because it is not specific to
2089Bison programs.
2090
342b8b6e
AD
2091@node Location Tracking Calc
2092@section Location Tracking Calculator: @code{ltcalc}
2093@cindex location tracking calculator
2094@cindex @code{ltcalc}
2095@cindex calculator, location tracking
2096
9edcd895
AD
2097This example extends the infix notation calculator with location
2098tracking. This feature will be used to improve the error messages. For
2099the sake of clarity, this example is a simple integer calculator, since
2100most of the work needed to use locations will be done in the lexical
72d2299c 2101analyzer.
342b8b6e
AD
2102
2103@menu
f5f419de
DJ
2104* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2105* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2106* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2107@end menu
2108
f5f419de 2109@node Ltcalc Declarations
342b8b6e
AD
2110@subsection Declarations for @code{ltcalc}
2111
9edcd895
AD
2112The C and Bison declarations for the location tracking calculator are
2113the same as the declarations for the infix notation calculator.
342b8b6e
AD
2114
2115@example
2116/* Location tracking calculator. */
2117
2118%@{
38a92d50
PE
2119 #define YYSTYPE int
2120 #include <math.h>
2121 int yylex (void);
2122 void yyerror (char const *);
342b8b6e
AD
2123%@}
2124
2125/* Bison declarations. */
2126%token NUM
2127
2128%left '-' '+'
2129%left '*' '/'
d78f0ac9 2130%precedence NEG
342b8b6e
AD
2131%right '^'
2132
38a92d50 2133%% /* The grammar follows. */
342b8b6e
AD
2134@end example
2135
9edcd895
AD
2136@noindent
2137Note there are no declarations specific to locations. Defining a data
2138type for storing locations is not needed: we will use the type provided
2139by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2140four member structure with the following integer fields:
2141@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2142@code{last_column}. By conventions, and in accordance with the GNU
2143Coding Standards and common practice, the line and column count both
2144start at 1.
342b8b6e
AD
2145
2146@node Ltcalc Rules
2147@subsection Grammar Rules for @code{ltcalc}
2148
9edcd895
AD
2149Whether handling locations or not has no effect on the syntax of your
2150language. Therefore, grammar rules for this example will be very close
2151to those of the previous example: we will only modify them to benefit
2152from the new information.
342b8b6e 2153
9edcd895
AD
2154Here, we will use locations to report divisions by zero, and locate the
2155wrong expressions or subexpressions.
342b8b6e
AD
2156
2157@example
2158@group
2159input : /* empty */
2160 | input line
2161;
2162@end group
2163
2164@group
2165line : '\n'
2166 | exp '\n' @{ printf ("%d\n", $1); @}
2167;
2168@end group
2169
2170@group
2171exp : NUM @{ $$ = $1; @}
2172 | exp '+' exp @{ $$ = $1 + $3; @}
2173 | exp '-' exp @{ $$ = $1 - $3; @}
2174 | exp '*' exp @{ $$ = $1 * $3; @}
2175@end group
342b8b6e 2176@group
9edcd895 2177 | exp '/' exp
342b8b6e
AD
2178 @{
2179 if ($3)
2180 $$ = $1 / $3;
2181 else
2182 @{
2183 $$ = 1;
9edcd895
AD
2184 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2185 @@3.first_line, @@3.first_column,
2186 @@3.last_line, @@3.last_column);
342b8b6e
AD
2187 @}
2188 @}
2189@end group
2190@group
178e123e 2191 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2192 | exp '^' exp @{ $$ = pow ($1, $3); @}
2193 | '(' exp ')' @{ $$ = $2; @}
2194@end group
2195@end example
2196
2197This code shows how to reach locations inside of semantic actions, by
2198using the pseudo-variables @code{@@@var{n}} for rule components, and the
2199pseudo-variable @code{@@$} for groupings.
2200
9edcd895
AD
2201We don't need to assign a value to @code{@@$}: the output parser does it
2202automatically. By default, before executing the C code of each action,
2203@code{@@$} is set to range from the beginning of @code{@@1} to the end
2204of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2205can be redefined (@pxref{Location Default Action, , Default Action for
2206Locations}), and for very specific rules, @code{@@$} can be computed by
2207hand.
342b8b6e
AD
2208
2209@node Ltcalc Lexer
2210@subsection The @code{ltcalc} Lexical Analyzer.
2211
9edcd895 2212Until now, we relied on Bison's defaults to enable location
72d2299c 2213tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2214able to feed the parser with the token locations, as it already does for
2215semantic values.
342b8b6e 2216
9edcd895
AD
2217To this end, we must take into account every single character of the
2218input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2219
2220@example
2221@group
2222int
2223yylex (void)
2224@{
2225 int c;
18b519c0 2226@end group
342b8b6e 2227
18b519c0 2228@group
72d2299c 2229 /* Skip white space. */
342b8b6e
AD
2230 while ((c = getchar ()) == ' ' || c == '\t')
2231 ++yylloc.last_column;
18b519c0 2232@end group
342b8b6e 2233
18b519c0 2234@group
72d2299c 2235 /* Step. */
342b8b6e
AD
2236 yylloc.first_line = yylloc.last_line;
2237 yylloc.first_column = yylloc.last_column;
2238@end group
2239
2240@group
72d2299c 2241 /* Process numbers. */
342b8b6e
AD
2242 if (isdigit (c))
2243 @{
2244 yylval = c - '0';
2245 ++yylloc.last_column;
2246 while (isdigit (c = getchar ()))
2247 @{
2248 ++yylloc.last_column;
2249 yylval = yylval * 10 + c - '0';
2250 @}
2251 ungetc (c, stdin);
2252 return NUM;
2253 @}
2254@end group
2255
72d2299c 2256 /* Return end-of-input. */
342b8b6e
AD
2257 if (c == EOF)
2258 return 0;
2259
d4fca427 2260@group
72d2299c 2261 /* Return a single char, and update location. */
342b8b6e
AD
2262 if (c == '\n')
2263 @{
2264 ++yylloc.last_line;
2265 yylloc.last_column = 0;
2266 @}
2267 else
2268 ++yylloc.last_column;
2269 return c;
2270@}
d4fca427 2271@end group
342b8b6e
AD
2272@end example
2273
9edcd895
AD
2274Basically, the lexical analyzer performs the same processing as before:
2275it skips blanks and tabs, and reads numbers or single-character tokens.
2276In addition, it updates @code{yylloc}, the global variable (of type
2277@code{YYLTYPE}) containing the token's location.
342b8b6e 2278
9edcd895 2279Now, each time this function returns a token, the parser has its number
72d2299c 2280as well as its semantic value, and its location in the text. The last
9edcd895
AD
2281needed change is to initialize @code{yylloc}, for example in the
2282controlling function:
342b8b6e
AD
2283
2284@example
9edcd895 2285@group
342b8b6e
AD
2286int
2287main (void)
2288@{
2289 yylloc.first_line = yylloc.last_line = 1;
2290 yylloc.first_column = yylloc.last_column = 0;
2291 return yyparse ();
2292@}
9edcd895 2293@end group
342b8b6e
AD
2294@end example
2295
9edcd895
AD
2296Remember that computing locations is not a matter of syntax. Every
2297character must be associated to a location update, whether it is in
2298valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2299
2300@node Multi-function Calc
bfa74976
RS
2301@section Multi-Function Calculator: @code{mfcalc}
2302@cindex multi-function calculator
2303@cindex @code{mfcalc}
2304@cindex calculator, multi-function
2305
2306Now that the basics of Bison have been discussed, it is time to move on to
2307a more advanced problem. The above calculators provided only five
2308functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2309be nice to have a calculator that provides other mathematical functions such
2310as @code{sin}, @code{cos}, etc.
2311
2312It is easy to add new operators to the infix calculator as long as they are
2313only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2314back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2315adding a new operator. But we want something more flexible: built-in
2316functions whose syntax has this form:
2317
2318@example
2319@var{function_name} (@var{argument})
2320@end example
2321
2322@noindent
2323At the same time, we will add memory to the calculator, by allowing you
2324to create named variables, store values in them, and use them later.
2325Here is a sample session with the multi-function calculator:
2326
2327@example
d4fca427 2328@group
9edcd895
AD
2329$ @kbd{mfcalc}
2330@kbd{pi = 3.141592653589}
f9c75dd0 2331@result{} 3.1415926536
d4fca427
AD
2332@end group
2333@group
9edcd895 2334@kbd{sin(pi)}
f9c75dd0 2335@result{} 0.0000000000
d4fca427 2336@end group
9edcd895 2337@kbd{alpha = beta1 = 2.3}
f9c75dd0 2338@result{} 2.3000000000
9edcd895 2339@kbd{alpha}
f9c75dd0 2340@result{} 2.3000000000
9edcd895 2341@kbd{ln(alpha)}
f9c75dd0 2342@result{} 0.8329091229
9edcd895 2343@kbd{exp(ln(beta1))}
f9c75dd0 2344@result{} 2.3000000000
9edcd895 2345$
bfa74976
RS
2346@end example
2347
2348Note that multiple assignment and nested function calls are permitted.
2349
2350@menu
f5f419de
DJ
2351* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2352* Mfcalc Rules:: Grammar rules for the calculator.
2353* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2354* Mfcalc Lexer:: The lexical analyzer.
2355* Mfcalc Main:: The controlling function.
bfa74976
RS
2356@end menu
2357
f5f419de 2358@node Mfcalc Declarations
bfa74976
RS
2359@subsection Declarations for @code{mfcalc}
2360
2361Here are the C and Bison declarations for the multi-function calculator.
2362
f9c75dd0 2363@comment file: mfcalc.y
bfa74976 2364@smallexample
18b519c0 2365@group
bfa74976 2366%@{
f9c75dd0 2367 #include <stdio.h> /* For printf, etc. */
578e3413 2368 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2369 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2370 int yylex (void);
2371 void yyerror (char const *);
bfa74976 2372%@}
18b519c0
AD
2373@end group
2374@group
bfa74976 2375%union @{
38a92d50
PE
2376 double val; /* For returning numbers. */
2377 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2378@}
18b519c0 2379@end group
38a92d50
PE
2380%token <val> NUM /* Simple double precision number. */
2381%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2382%type <val> exp
2383
18b519c0 2384@group
bfa74976
RS
2385%right '='
2386%left '-' '+'
2387%left '*' '/'
d78f0ac9
AD
2388%precedence NEG /* negation--unary minus */
2389%right '^' /* exponentiation */
18b519c0 2390@end group
38a92d50 2391%% /* The grammar follows. */
bfa74976
RS
2392@end smallexample
2393
2394The above grammar introduces only two new features of the Bison language.
2395These features allow semantic values to have various data types
2396(@pxref{Multiple Types, ,More Than One Value Type}).
2397
2398The @code{%union} declaration specifies the entire list of possible types;
2399this is instead of defining @code{YYSTYPE}. The allowable types are now
2400double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2401the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2402
2403Since values can now have various types, it is necessary to associate a
2404type with each grammar symbol whose semantic value is used. These symbols
2405are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2406declarations are augmented with information about their data type (placed
2407between angle brackets).
2408
704a47c4
AD
2409The Bison construct @code{%type} is used for declaring nonterminal
2410symbols, just as @code{%token} is used for declaring token types. We
2411have not used @code{%type} before because nonterminal symbols are
2412normally declared implicitly by the rules that define them. But
2413@code{exp} must be declared explicitly so we can specify its value type.
2414@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2415
342b8b6e 2416@node Mfcalc Rules
bfa74976
RS
2417@subsection Grammar Rules for @code{mfcalc}
2418
2419Here are the grammar rules for the multi-function calculator.
2420Most of them are copied directly from @code{calc}; three rules,
2421those which mention @code{VAR} or @code{FNCT}, are new.
2422
f9c75dd0 2423@comment file: mfcalc.y
bfa74976 2424@smallexample
18b519c0 2425@group
bfa74976
RS
2426input: /* empty */
2427 | input line
2428;
18b519c0 2429@end group
bfa74976 2430
18b519c0 2431@group
bfa74976
RS
2432line:
2433 '\n'
f9c75dd0
AD
2434 | exp '\n' @{ printf ("%.10g\n", $1); @}
2435 | error '\n' @{ yyerrok; @}
bfa74976 2436;
18b519c0 2437@end group
bfa74976 2438
18b519c0 2439@group
bfa74976
RS
2440exp: NUM @{ $$ = $1; @}
2441 | VAR @{ $$ = $1->value.var; @}
2442 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2443 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2444 | exp '+' exp @{ $$ = $1 + $3; @}
2445 | exp '-' exp @{ $$ = $1 - $3; @}
2446 | exp '*' exp @{ $$ = $1 * $3; @}
2447 | exp '/' exp @{ $$ = $1 / $3; @}
2448 | '-' exp %prec NEG @{ $$ = -$2; @}
2449 | exp '^' exp @{ $$ = pow ($1, $3); @}
2450 | '(' exp ')' @{ $$ = $2; @}
2451;
18b519c0 2452@end group
38a92d50 2453/* End of grammar. */
bfa74976
RS
2454%%
2455@end smallexample
2456
f5f419de 2457@node Mfcalc Symbol Table
bfa74976
RS
2458@subsection The @code{mfcalc} Symbol Table
2459@cindex symbol table example
2460
2461The multi-function calculator requires a symbol table to keep track of the
2462names and meanings of variables and functions. This doesn't affect the
2463grammar rules (except for the actions) or the Bison declarations, but it
2464requires some additional C functions for support.
2465
2466The symbol table itself consists of a linked list of records. Its
2467definition, which is kept in the header @file{calc.h}, is as follows. It
2468provides for either functions or variables to be placed in the table.
2469
f9c75dd0 2470@comment file: calc.h
bfa74976
RS
2471@smallexample
2472@group
38a92d50 2473/* Function type. */
32dfccf8 2474typedef double (*func_t) (double);
72f889cc 2475@end group
32dfccf8 2476
72f889cc 2477@group
38a92d50 2478/* Data type for links in the chain of symbols. */
bfa74976
RS
2479struct symrec
2480@{
38a92d50 2481 char *name; /* name of symbol */
bfa74976 2482 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2483 union
2484 @{
38a92d50
PE
2485 double var; /* value of a VAR */
2486 func_t fnctptr; /* value of a FNCT */
bfa74976 2487 @} value;
38a92d50 2488 struct symrec *next; /* link field */
bfa74976
RS
2489@};
2490@end group
2491
2492@group
2493typedef struct symrec symrec;
2494
38a92d50 2495/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2496extern symrec *sym_table;
2497
a730d142 2498symrec *putsym (char const *, int);
38a92d50 2499symrec *getsym (char const *);
bfa74976
RS
2500@end group
2501@end smallexample
2502
aeb57fb6
AD
2503The new version of @code{main} will call @code{init_table} to initialize
2504the symbol table:
bfa74976 2505
f9c75dd0 2506@comment file: mfcalc.y
bfa74976 2507@smallexample
18b519c0 2508@group
bfa74976
RS
2509struct init
2510@{
38a92d50
PE
2511 char const *fname;
2512 double (*fnct) (double);
bfa74976
RS
2513@};
2514@end group
2515
2516@group
38a92d50 2517struct init const arith_fncts[] =
13863333 2518@{
f9c75dd0
AD
2519 @{ "atan", atan @},
2520 @{ "cos", cos @},
2521 @{ "exp", exp @},
2522 @{ "ln", log @},
2523 @{ "sin", sin @},
2524 @{ "sqrt", sqrt @},
2525 @{ 0, 0 @},
13863333 2526@};
18b519c0 2527@end group
bfa74976 2528
18b519c0 2529@group
bfa74976 2530/* The symbol table: a chain of `struct symrec'. */
38a92d50 2531symrec *sym_table;
bfa74976
RS
2532@end group
2533
2534@group
72d2299c 2535/* Put arithmetic functions in table. */
f9c75dd0 2536static
13863333
AD
2537void
2538init_table (void)
bfa74976
RS
2539@{
2540 int i;
bfa74976
RS
2541 for (i = 0; arith_fncts[i].fname != 0; i++)
2542 @{
aaaa2aae 2543 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2544 ptr->value.fnctptr = arith_fncts[i].fnct;
2545 @}
2546@}
2547@end group
2548@end smallexample
2549
2550By simply editing the initialization list and adding the necessary include
2551files, you can add additional functions to the calculator.
2552
2553Two important functions allow look-up and installation of symbols in the
2554symbol table. The function @code{putsym} is passed a name and the type
2555(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2556linked to the front of the list, and a pointer to the object is returned.
2557The function @code{getsym} is passed the name of the symbol to look up. If
2558found, a pointer to that symbol is returned; otherwise zero is returned.
2559
f9c75dd0 2560@comment file: mfcalc.y
bfa74976 2561@smallexample
f9c75dd0
AD
2562#include <stdlib.h> /* malloc. */
2563#include <string.h> /* strlen. */
2564
d4fca427 2565@group
bfa74976 2566symrec *
38a92d50 2567putsym (char const *sym_name, int sym_type)
bfa74976 2568@{
aaaa2aae 2569 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2570 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2571 strcpy (ptr->name,sym_name);
2572 ptr->type = sym_type;
72d2299c 2573 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2574 ptr->next = (struct symrec *)sym_table;
2575 sym_table = ptr;
2576 return ptr;
2577@}
d4fca427 2578@end group
bfa74976 2579
d4fca427 2580@group
bfa74976 2581symrec *
38a92d50 2582getsym (char const *sym_name)
bfa74976
RS
2583@{
2584 symrec *ptr;
2585 for (ptr = sym_table; ptr != (symrec *) 0;
2586 ptr = (symrec *)ptr->next)
f518dbaf 2587 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2588 return ptr;
2589 return 0;
2590@}
d4fca427 2591@end group
bfa74976
RS
2592@end smallexample
2593
aeb57fb6
AD
2594@node Mfcalc Lexer
2595@subsection The @code{mfcalc} Lexer
2596
bfa74976
RS
2597The function @code{yylex} must now recognize variables, numeric values, and
2598the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2599characters with a leading letter are recognized as either variables or
bfa74976
RS
2600functions depending on what the symbol table says about them.
2601
2602The string is passed to @code{getsym} for look up in the symbol table. If
2603the name appears in the table, a pointer to its location and its type
2604(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2605already in the table, then it is installed as a @code{VAR} using
2606@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2607returned to @code{yyparse}.
bfa74976
RS
2608
2609No change is needed in the handling of numeric values and arithmetic
2610operators in @code{yylex}.
2611
f9c75dd0 2612@comment file: mfcalc.y
bfa74976
RS
2613@smallexample
2614@group
2615#include <ctype.h>
18b519c0 2616@end group
13863333 2617
18b519c0 2618@group
13863333
AD
2619int
2620yylex (void)
bfa74976
RS
2621@{
2622 int c;
2623
72d2299c 2624 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2625 while ((c = getchar ()) == ' ' || c == '\t')
2626 continue;
bfa74976
RS
2627
2628 if (c == EOF)
2629 return 0;
2630@end group
2631
2632@group
2633 /* Char starts a number => parse the number. */
2634 if (c == '.' || isdigit (c))
2635 @{
2636 ungetc (c, stdin);
2637 scanf ("%lf", &yylval.val);
2638 return NUM;
2639 @}
2640@end group
2641
2642@group
2643 /* Char starts an identifier => read the name. */
2644 if (isalpha (c))
2645 @{
aaaa2aae
AD
2646 /* Initially make the buffer long enough
2647 for a 40-character symbol name. */
2648 static size_t length = 40;
bfa74976 2649 static char *symbuf = 0;
aaaa2aae 2650 symrec *s;
bfa74976
RS
2651 int i;
2652@end group
aaaa2aae
AD
2653 if (!symbuf)
2654 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2655
2656 i = 0;
2657 do
bfa74976
RS
2658@group
2659 @{
2660 /* If buffer is full, make it bigger. */
2661 if (i == length)
2662 @{
2663 length *= 2;
18b519c0 2664 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2665 @}
2666 /* Add this character to the buffer. */
2667 symbuf[i++] = c;
2668 /* Get another character. */
2669 c = getchar ();
2670 @}
2671@end group
2672@group
72d2299c 2673 while (isalnum (c));
bfa74976
RS
2674
2675 ungetc (c, stdin);
2676 symbuf[i] = '\0';
2677@end group
2678
2679@group
2680 s = getsym (symbuf);
2681 if (s == 0)
2682 s = putsym (symbuf, VAR);
2683 yylval.tptr = s;
2684 return s->type;
2685 @}
2686
2687 /* Any other character is a token by itself. */
2688 return c;
2689@}
2690@end group
2691@end smallexample
2692
aeb57fb6
AD
2693@node Mfcalc Main
2694@subsection The @code{mfcalc} Main
2695
2696The error reporting function is unchanged, and the new version of
2697@code{main} includes a call to @code{init_table}:
2698
2699@comment file: mfcalc.y
2700@smallexample
aeb57fb6
AD
2701@group
2702/* Called by yyparse on error. */
2703void
2704yyerror (char const *s)
2705@{
2706 fprintf (stderr, "%s\n", s);
2707@}
2708@end group
2709
aaaa2aae 2710@group
aeb57fb6
AD
2711int
2712main (int argc, char const* argv[])
2713@{
2714 init_table ();
2715 return yyparse ();
2716@}
2717@end group
2718@end smallexample
2719
72d2299c 2720This program is both powerful and flexible. You may easily add new
704a47c4
AD
2721functions, and it is a simple job to modify this code to install
2722predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2723
342b8b6e 2724@node Exercises
bfa74976
RS
2725@section Exercises
2726@cindex exercises
2727
2728@enumerate
2729@item
2730Add some new functions from @file{math.h} to the initialization list.
2731
2732@item
2733Add another array that contains constants and their values. Then
2734modify @code{init_table} to add these constants to the symbol table.
2735It will be easiest to give the constants type @code{VAR}.
2736
2737@item
2738Make the program report an error if the user refers to an
2739uninitialized variable in any way except to store a value in it.
2740@end enumerate
2741
342b8b6e 2742@node Grammar File
bfa74976
RS
2743@chapter Bison Grammar Files
2744
2745Bison takes as input a context-free grammar specification and produces a
2746C-language function that recognizes correct instances of the grammar.
2747
ff7571c0 2748The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2749@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2750
2751@menu
303834cc
JD
2752* Grammar Outline:: Overall layout of the grammar file.
2753* Symbols:: Terminal and nonterminal symbols.
2754* Rules:: How to write grammar rules.
2755* Recursion:: Writing recursive rules.
2756* Semantics:: Semantic values and actions.
2757* Tracking Locations:: Locations and actions.
2758* Named References:: Using named references in actions.
2759* Declarations:: All kinds of Bison declarations are described here.
2760* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2761@end menu
2762
342b8b6e 2763@node Grammar Outline
bfa74976
RS
2764@section Outline of a Bison Grammar
2765
2766A Bison grammar file has four main sections, shown here with the
2767appropriate delimiters:
2768
2769@example
2770%@{
38a92d50 2771 @var{Prologue}
bfa74976
RS
2772%@}
2773
2774@var{Bison declarations}
2775
2776%%
2777@var{Grammar rules}
2778%%
2779
75f5aaea 2780@var{Epilogue}
bfa74976
RS
2781@end example
2782
2783Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2784As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2785continues until end of line.
bfa74976
RS
2786
2787@menu
f5f419de 2788* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2789* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2790* Bison Declarations:: Syntax and usage of the Bison declarations section.
2791* Grammar Rules:: Syntax and usage of the grammar rules section.
2792* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2793@end menu
2794
38a92d50 2795@node Prologue
75f5aaea
MA
2796@subsection The prologue
2797@cindex declarations section
2798@cindex Prologue
2799@cindex declarations
bfa74976 2800
f8e1c9e5
AD
2801The @var{Prologue} section contains macro definitions and declarations
2802of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2803rules. These are copied to the beginning of the parser implementation
2804file so that they precede the definition of @code{yyparse}. You can
2805use @samp{#include} to get the declarations from a header file. If
2806you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2807@samp{%@}} delimiters that bracket this section.
bfa74976 2808
9c437126 2809The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2810of @samp{%@}} that is outside a comment, a string literal, or a
2811character constant.
2812
c732d2c6
AD
2813You may have more than one @var{Prologue} section, intermixed with the
2814@var{Bison declarations}. This allows you to have C and Bison
2815declarations that refer to each other. For example, the @code{%union}
2816declaration may use types defined in a header file, and you may wish to
2817prototype functions that take arguments of type @code{YYSTYPE}. This
2818can be done with two @var{Prologue} blocks, one before and one after the
2819@code{%union} declaration.
2820
2821@smallexample
2822%@{
aef3da86 2823 #define _GNU_SOURCE
38a92d50
PE
2824 #include <stdio.h>
2825 #include "ptypes.h"
c732d2c6
AD
2826%@}
2827
2828%union @{
779e7ceb 2829 long int n;
c732d2c6
AD
2830 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2831@}
2832
2833%@{
38a92d50
PE
2834 static void print_token_value (FILE *, int, YYSTYPE);
2835 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2836%@}
2837
2838@dots{}
2839@end smallexample
2840
aef3da86
PE
2841When in doubt, it is usually safer to put prologue code before all
2842Bison declarations, rather than after. For example, any definitions
2843of feature test macros like @code{_GNU_SOURCE} or
2844@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2845feature test macros can affect the behavior of Bison-generated
2846@code{#include} directives.
2847
2cbe6b7f
JD
2848@node Prologue Alternatives
2849@subsection Prologue Alternatives
2850@cindex Prologue Alternatives
2851
136a0f76 2852@findex %code
16dc6a9e
JD
2853@findex %code requires
2854@findex %code provides
2855@findex %code top
85894313 2856
2cbe6b7f 2857The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2858inflexible. As an alternative, Bison provides a @code{%code}
2859directive with an explicit qualifier field, which identifies the
2860purpose of the code and thus the location(s) where Bison should
2861generate it. For C/C++, the qualifier can be omitted for the default
2862location, or it can be one of @code{requires}, @code{provides},
e0c07222 2863@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2864
2865Look again at the example of the previous section:
2866
2867@smallexample
2868%@{
2869 #define _GNU_SOURCE
2870 #include <stdio.h>
2871 #include "ptypes.h"
2872%@}
2873
2874%union @{
2875 long int n;
2876 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2877@}
2878
2879%@{
2880 static void print_token_value (FILE *, int, YYSTYPE);
2881 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2882%@}
2883
2884@dots{}
2885@end smallexample
2886
2887@noindent
ff7571c0
JD
2888Notice that there are two @var{Prologue} sections here, but there's a
2889subtle distinction between their functionality. For example, if you
2890decide to override Bison's default definition for @code{YYLTYPE}, in
2891which @var{Prologue} section should you write your new definition?
2892You should write it in the first since Bison will insert that code
2893into the parser implementation file @emph{before} the default
2894@code{YYLTYPE} definition. In which @var{Prologue} section should you
2895prototype an internal function, @code{trace_token}, that accepts
2896@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2897prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2898@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2899
2900This distinction in functionality between the two @var{Prologue} sections is
2901established by the appearance of the @code{%union} between them.
a501eca9 2902This behavior raises a few questions.
2cbe6b7f
JD
2903First, why should the position of a @code{%union} affect definitions related to
2904@code{YYLTYPE} and @code{yytokentype}?
2905Second, what if there is no @code{%union}?
2906In that case, the second kind of @var{Prologue} section is not available.
2907This behavior is not intuitive.
2908
8e0a5e9e 2909To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2910@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2911Let's go ahead and add the new @code{YYLTYPE} definition and the
2912@code{trace_token} prototype at the same time:
2913
2914@smallexample
16dc6a9e 2915%code top @{
2cbe6b7f
JD
2916 #define _GNU_SOURCE
2917 #include <stdio.h>
8e0a5e9e
JD
2918
2919 /* WARNING: The following code really belongs
16dc6a9e 2920 * in a `%code requires'; see below. */
8e0a5e9e 2921
2cbe6b7f
JD
2922 #include "ptypes.h"
2923 #define YYLTYPE YYLTYPE
2924 typedef struct YYLTYPE
2925 @{
2926 int first_line;
2927 int first_column;
2928 int last_line;
2929 int last_column;
2930 char *filename;
2931 @} YYLTYPE;
2932@}
2933
2934%union @{
2935 long int n;
2936 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2937@}
2938
2939%code @{
2940 static void print_token_value (FILE *, int, YYSTYPE);
2941 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2942 static void trace_token (enum yytokentype token, YYLTYPE loc);
2943@}
2944
2945@dots{}
2946@end smallexample
2947
2948@noindent
16dc6a9e
JD
2949In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2950functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2951explicit which kind you intend.
2cbe6b7f
JD
2952Moreover, both kinds are always available even in the absence of @code{%union}.
2953
ff7571c0
JD
2954The @code{%code top} block above logically contains two parts. The
2955first two lines before the warning need to appear near the top of the
2956parser implementation file. The first line after the warning is
2957required by @code{YYSTYPE} and thus also needs to appear in the parser
2958implementation file. However, if you've instructed Bison to generate
2959a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2960want that line to appear before the @code{YYSTYPE} definition in that
2961header file as well. The @code{YYLTYPE} definition should also appear
2962in the parser header file to override the default @code{YYLTYPE}
2963definition there.
2cbe6b7f 2964
16dc6a9e 2965In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2966lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2967definitions.
16dc6a9e 2968Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2969
2970@smallexample
d4fca427 2971@group
16dc6a9e 2972%code top @{
2cbe6b7f
JD
2973 #define _GNU_SOURCE
2974 #include <stdio.h>
2975@}
d4fca427 2976@end group
2cbe6b7f 2977
d4fca427 2978@group
16dc6a9e 2979%code requires @{
9bc0dd67
JD
2980 #include "ptypes.h"
2981@}
d4fca427
AD
2982@end group
2983@group
9bc0dd67
JD
2984%union @{
2985 long int n;
2986 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2987@}
d4fca427 2988@end group
9bc0dd67 2989
d4fca427 2990@group
16dc6a9e 2991%code requires @{
2cbe6b7f
JD
2992 #define YYLTYPE YYLTYPE
2993 typedef struct YYLTYPE
2994 @{
2995 int first_line;
2996 int first_column;
2997 int last_line;
2998 int last_column;
2999 char *filename;
3000 @} YYLTYPE;
3001@}
d4fca427 3002@end group
2cbe6b7f 3003
d4fca427 3004@group
136a0f76 3005%code @{
2cbe6b7f
JD
3006 static void print_token_value (FILE *, int, YYSTYPE);
3007 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3008 static void trace_token (enum yytokentype token, YYLTYPE loc);
3009@}
d4fca427 3010@end group
2cbe6b7f
JD
3011
3012@dots{}
3013@end smallexample
3014
3015@noindent
ff7571c0
JD
3016Now Bison will insert @code{#include "ptypes.h"} and the new
3017@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3018and @code{YYLTYPE} definitions in both the parser implementation file
3019and the parser header file. (By the same reasoning, @code{%code
3020requires} would also be the appropriate place to write your own
3021definition for @code{YYSTYPE}.)
3022
3023When you are writing dependency code for @code{YYSTYPE} and
3024@code{YYLTYPE}, you should prefer @code{%code requires} over
3025@code{%code top} regardless of whether you instruct Bison to generate
3026a parser header file. When you are writing code that you need Bison
3027to insert only into the parser implementation file and that has no
3028special need to appear at the top of that file, you should prefer the
3029unqualified @code{%code} over @code{%code top}. These practices will
3030make the purpose of each block of your code explicit to Bison and to
3031other developers reading your grammar file. Following these
3032practices, we expect the unqualified @code{%code} and @code{%code
3033requires} to be the most important of the four @var{Prologue}
16dc6a9e 3034alternatives.
a501eca9 3035
ff7571c0
JD
3036At some point while developing your parser, you might decide to
3037provide @code{trace_token} to modules that are external to your
3038parser. Thus, you might wish for Bison to insert the prototype into
3039both the parser header file and the parser implementation file. Since
3040this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3041@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3042@code{%code requires}. More importantly, since it depends upon
3043@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3044sufficient. Instead, move its prototype from the unqualified
3045@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
3046
3047@smallexample
d4fca427 3048@group
16dc6a9e 3049%code top @{
2cbe6b7f 3050 #define _GNU_SOURCE
136a0f76 3051 #include <stdio.h>
2cbe6b7f 3052@}
d4fca427 3053@end group
136a0f76 3054
d4fca427 3055@group
16dc6a9e 3056%code requires @{
2cbe6b7f
JD
3057 #include "ptypes.h"
3058@}
d4fca427
AD
3059@end group
3060@group
2cbe6b7f
JD
3061%union @{
3062 long int n;
3063 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3064@}
d4fca427 3065@end group
2cbe6b7f 3066
d4fca427 3067@group
16dc6a9e 3068%code requires @{
2cbe6b7f
JD
3069 #define YYLTYPE YYLTYPE
3070 typedef struct YYLTYPE
3071 @{
3072 int first_line;
3073 int first_column;
3074 int last_line;
3075 int last_column;
3076 char *filename;
3077 @} YYLTYPE;
3078@}
d4fca427 3079@end group
2cbe6b7f 3080
d4fca427 3081@group
16dc6a9e 3082%code provides @{
2cbe6b7f
JD
3083 void trace_token (enum yytokentype token, YYLTYPE loc);
3084@}
d4fca427 3085@end group
2cbe6b7f 3086
d4fca427 3087@group
2cbe6b7f 3088%code @{
9bc0dd67
JD
3089 static void print_token_value (FILE *, int, YYSTYPE);
3090 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3091@}
d4fca427 3092@end group
9bc0dd67
JD
3093
3094@dots{}
3095@end smallexample
3096
2cbe6b7f 3097@noindent
ff7571c0
JD
3098Bison will insert the @code{trace_token} prototype into both the
3099parser header file and the parser implementation file after the
3100definitions for @code{yytokentype}, @code{YYLTYPE}, and
3101@code{YYSTYPE}.
2cbe6b7f 3102
ff7571c0
JD
3103The above examples are careful to write directives in an order that
3104reflects the layout of the generated parser implementation and header
3105files: @code{%code top}, @code{%code requires}, @code{%code provides},
3106and then @code{%code}. While your grammar files may generally be
3107easier to read if you also follow this order, Bison does not require
3108it. Instead, Bison lets you choose an organization that makes sense
3109to you.
2cbe6b7f 3110
a501eca9 3111You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3112In that case, Bison concatenates the contained code in declaration order.
3113This is the only way in which the position of one of these directives within
3114the grammar file affects its functionality.
3115
3116The result of the previous two properties is greater flexibility in how you may
3117organize your grammar file.
3118For example, you may organize semantic-type-related directives by semantic
3119type:
3120
3121@smallexample
d4fca427 3122@group
16dc6a9e 3123%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3124%union @{ type1 field1; @}
3125%destructor @{ type1_free ($$); @} <field1>
3126%printer @{ type1_print ($$); @} <field1>
d4fca427 3127@end group
2cbe6b7f 3128
d4fca427 3129@group
16dc6a9e 3130%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3131%union @{ type2 field2; @}
3132%destructor @{ type2_free ($$); @} <field2>
3133%printer @{ type2_print ($$); @} <field2>
d4fca427 3134@end group
2cbe6b7f
JD
3135@end smallexample
3136
3137@noindent
3138You could even place each of the above directive groups in the rules section of
3139the grammar file next to the set of rules that uses the associated semantic
3140type.
61fee93e
JD
3141(In the rules section, you must terminate each of those directives with a
3142semicolon.)
2cbe6b7f
JD
3143And you don't have to worry that some directive (like a @code{%union}) in the
3144definitions section is going to adversely affect their functionality in some
3145counter-intuitive manner just because it comes first.
3146Such an organization is not possible using @var{Prologue} sections.
3147
a501eca9 3148This section has been concerned with explaining the advantages of the four
8e0a5e9e 3149@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3150However, in most cases when using these directives, you shouldn't need to
3151think about all the low-level ordering issues discussed here.
3152Instead, you should simply use these directives to label each block of your
3153code according to its purpose and let Bison handle the ordering.
3154@code{%code} is the most generic label.
16dc6a9e
JD
3155Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3156as needed.
a501eca9 3157
342b8b6e 3158@node Bison Declarations
bfa74976
RS
3159@subsection The Bison Declarations Section
3160@cindex Bison declarations (introduction)
3161@cindex declarations, Bison (introduction)
3162
3163The @var{Bison declarations} section contains declarations that define
3164terminal and nonterminal symbols, specify precedence, and so on.
3165In some simple grammars you may not need any declarations.
3166@xref{Declarations, ,Bison Declarations}.
3167
342b8b6e 3168@node Grammar Rules
bfa74976
RS
3169@subsection The Grammar Rules Section
3170@cindex grammar rules section
3171@cindex rules section for grammar
3172
3173The @dfn{grammar rules} section contains one or more Bison grammar
3174rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3175
3176There must always be at least one grammar rule, and the first
3177@samp{%%} (which precedes the grammar rules) may never be omitted even
3178if it is the first thing in the file.
3179
38a92d50 3180@node Epilogue
75f5aaea 3181@subsection The epilogue
bfa74976 3182@cindex additional C code section
75f5aaea 3183@cindex epilogue
bfa74976
RS
3184@cindex C code, section for additional
3185
ff7571c0
JD
3186The @var{Epilogue} is copied verbatim to the end of the parser
3187implementation file, just as the @var{Prologue} is copied to the
3188beginning. This is the most convenient place to put anything that you
3189want to have in the parser implementation file but which need not come
3190before the definition of @code{yyparse}. For example, the definitions
3191of @code{yylex} and @code{yyerror} often go here. Because C requires
3192functions to be declared before being used, you often need to declare
3193functions like @code{yylex} and @code{yyerror} in the Prologue, even
3194if you define them in the Epilogue. @xref{Interface, ,Parser
3195C-Language Interface}.
bfa74976
RS
3196
3197If the last section is empty, you may omit the @samp{%%} that separates it
3198from the grammar rules.
3199
f8e1c9e5
AD
3200The Bison parser itself contains many macros and identifiers whose names
3201start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3202any such names (except those documented in this manual) in the epilogue
3203of the grammar file.
bfa74976 3204
342b8b6e 3205@node Symbols
bfa74976
RS
3206@section Symbols, Terminal and Nonterminal
3207@cindex nonterminal symbol
3208@cindex terminal symbol
3209@cindex token type
3210@cindex symbol
3211
3212@dfn{Symbols} in Bison grammars represent the grammatical classifications
3213of the language.
3214
3215A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3216class of syntactically equivalent tokens. You use the symbol in grammar
3217rules to mean that a token in that class is allowed. The symbol is
3218represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3219function returns a token type code to indicate what kind of token has
3220been read. You don't need to know what the code value is; you can use
3221the symbol to stand for it.
bfa74976 3222
f8e1c9e5
AD
3223A @dfn{nonterminal symbol} stands for a class of syntactically
3224equivalent groupings. The symbol name is used in writing grammar rules.
3225By convention, it should be all lower case.
bfa74976 3226
82f3355e
JD
3227Symbol names can contain letters, underscores, periods, and non-initial
3228digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3229with POSIX Yacc. Periods and dashes make symbol names less convenient to
3230use with named references, which require brackets around such names
3231(@pxref{Named References}). Terminal symbols that contain periods or dashes
3232make little sense: since they are not valid symbols (in most programming
3233languages) they are not exported as token names.
bfa74976 3234
931c7513 3235There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3236
3237@itemize @bullet
3238@item
3239A @dfn{named token type} is written with an identifier, like an
c827f760 3240identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3241such name must be defined with a Bison declaration such as
3242@code{%token}. @xref{Token Decl, ,Token Type Names}.
3243
3244@item
3245@cindex character token
3246@cindex literal token
3247@cindex single-character literal
931c7513
RS
3248A @dfn{character token type} (or @dfn{literal character token}) is
3249written in the grammar using the same syntax used in C for character
3250constants; for example, @code{'+'} is a character token type. A
3251character token type doesn't need to be declared unless you need to
3252specify its semantic value data type (@pxref{Value Type, ,Data Types of
3253Semantic Values}), associativity, or precedence (@pxref{Precedence,
3254,Operator Precedence}).
bfa74976
RS
3255
3256By convention, a character token type is used only to represent a
3257token that consists of that particular character. Thus, the token
3258type @code{'+'} is used to represent the character @samp{+} as a
3259token. Nothing enforces this convention, but if you depart from it,
3260your program will confuse other readers.
3261
3262All the usual escape sequences used in character literals in C can be
3263used in Bison as well, but you must not use the null character as a
72d2299c
PE
3264character literal because its numeric code, zero, signifies
3265end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3266for @code{yylex}}). Also, unlike standard C, trigraphs have no
3267special meaning in Bison character literals, nor is backslash-newline
3268allowed.
931c7513
RS
3269
3270@item
3271@cindex string token
3272@cindex literal string token
9ecbd125 3273@cindex multicharacter literal
931c7513
RS
3274A @dfn{literal string token} is written like a C string constant; for
3275example, @code{"<="} is a literal string token. A literal string token
3276doesn't need to be declared unless you need to specify its semantic
14ded682 3277value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3278(@pxref{Precedence}).
3279
3280You can associate the literal string token with a symbolic name as an
3281alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3282Declarations}). If you don't do that, the lexical analyzer has to
3283retrieve the token number for the literal string token from the
3284@code{yytname} table (@pxref{Calling Convention}).
3285
c827f760 3286@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3287
3288By convention, a literal string token is used only to represent a token
3289that consists of that particular string. Thus, you should use the token
3290type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3291does not enforce this convention, but if you depart from it, people who
931c7513
RS
3292read your program will be confused.
3293
3294All the escape sequences used in string literals in C can be used in
92ac3705
PE
3295Bison as well, except that you must not use a null character within a
3296string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3297meaning in Bison string literals, nor is backslash-newline allowed. A
3298literal string token must contain two or more characters; for a token
3299containing just one character, use a character token (see above).
bfa74976
RS
3300@end itemize
3301
3302How you choose to write a terminal symbol has no effect on its
3303grammatical meaning. That depends only on where it appears in rules and
3304on when the parser function returns that symbol.
3305
72d2299c
PE
3306The value returned by @code{yylex} is always one of the terminal
3307symbols, except that a zero or negative value signifies end-of-input.
3308Whichever way you write the token type in the grammar rules, you write
3309it the same way in the definition of @code{yylex}. The numeric code
3310for a character token type is simply the positive numeric code of the
3311character, so @code{yylex} can use the identical value to generate the
3312requisite code, though you may need to convert it to @code{unsigned
3313char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3314Each named token type becomes a C macro in the parser implementation
3315file, so @code{yylex} can use the name to stand for the code. (This
3316is why periods don't make sense in terminal symbols.) @xref{Calling
3317Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3318
3319If @code{yylex} is defined in a separate file, you need to arrange for the
3320token-type macro definitions to be available there. Use the @samp{-d}
3321option when you run Bison, so that it will write these macro definitions
3322into a separate header file @file{@var{name}.tab.h} which you can include
3323in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3324
72d2299c 3325If you want to write a grammar that is portable to any Standard C
9d9b8b70 3326host, you must use only nonnull character tokens taken from the basic
c827f760 3327execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3328digits, the 52 lower- and upper-case English letters, and the
3329characters in the following C-language string:
3330
3331@example
3332"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3333@end example
3334
f8e1c9e5
AD
3335The @code{yylex} function and Bison must use a consistent character set
3336and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3337ASCII environment, but then compile and run the resulting
f8e1c9e5 3338program in an environment that uses an incompatible character set like
8a4281b9
JD
3339EBCDIC, the resulting program may not work because the tables
3340generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3341character tokens. It is standard practice for software distributions to
3342contain C source files that were generated by Bison in an
8a4281b9
JD
3343ASCII environment, so installers on platforms that are
3344incompatible with ASCII must rebuild those files before
f8e1c9e5 3345compiling them.
e966383b 3346
bfa74976
RS
3347The symbol @code{error} is a terminal symbol reserved for error recovery
3348(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3349In particular, @code{yylex} should never return this value. The default
3350value of the error token is 256, unless you explicitly assigned 256 to
3351one of your tokens with a @code{%token} declaration.
bfa74976 3352
342b8b6e 3353@node Rules
bfa74976
RS
3354@section Syntax of Grammar Rules
3355@cindex rule syntax
3356@cindex grammar rule syntax
3357@cindex syntax of grammar rules
3358
3359A Bison grammar rule has the following general form:
3360
3361@example
e425e872 3362@group
bfa74976
RS
3363@var{result}: @var{components}@dots{}
3364 ;
e425e872 3365@end group
bfa74976
RS
3366@end example
3367
3368@noindent
9ecbd125 3369where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3370and @var{components} are various terminal and nonterminal symbols that
13863333 3371are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3372
3373For example,
3374
3375@example
3376@group
3377exp: exp '+' exp
3378 ;
3379@end group
3380@end example
3381
3382@noindent
3383says that two groupings of type @code{exp}, with a @samp{+} token in between,
3384can be combined into a larger grouping of type @code{exp}.
3385
72d2299c
PE
3386White space in rules is significant only to separate symbols. You can add
3387extra white space as you wish.
bfa74976
RS
3388
3389Scattered among the components can be @var{actions} that determine
3390the semantics of the rule. An action looks like this:
3391
3392@example
3393@{@var{C statements}@}
3394@end example
3395
3396@noindent
287c78f6
PE
3397@cindex braced code
3398This is an example of @dfn{braced code}, that is, C code surrounded by
3399braces, much like a compound statement in C@. Braced code can contain
3400any sequence of C tokens, so long as its braces are balanced. Bison
3401does not check the braced code for correctness directly; it merely
ff7571c0
JD
3402copies the code to the parser implementation file, where the C
3403compiler can check it.
287c78f6
PE
3404
3405Within braced code, the balanced-brace count is not affected by braces
3406within comments, string literals, or character constants, but it is
3407affected by the C digraphs @samp{<%} and @samp{%>} that represent
3408braces. At the top level braced code must be terminated by @samp{@}}
3409and not by a digraph. Bison does not look for trigraphs, so if braced
3410code uses trigraphs you should ensure that they do not affect the
3411nesting of braces or the boundaries of comments, string literals, or
3412character constants.
3413
bfa74976
RS
3414Usually there is only one action and it follows the components.
3415@xref{Actions}.
3416
3417@findex |
3418Multiple rules for the same @var{result} can be written separately or can
3419be joined with the vertical-bar character @samp{|} as follows:
3420
bfa74976
RS
3421@example
3422@group
3423@var{result}: @var{rule1-components}@dots{}
3424 | @var{rule2-components}@dots{}
3425 @dots{}
3426 ;
3427@end group
3428@end example
bfa74976
RS
3429
3430@noindent
3431They are still considered distinct rules even when joined in this way.
3432
3433If @var{components} in a rule is empty, it means that @var{result} can
3434match the empty string. For example, here is how to define a
3435comma-separated sequence of zero or more @code{exp} groupings:
3436
3437@example
3438@group
3439expseq: /* empty */
3440 | expseq1
3441 ;
3442@end group
3443
3444@group
3445expseq1: exp
3446 | expseq1 ',' exp
3447 ;
3448@end group
3449@end example
3450
3451@noindent
3452It is customary to write a comment @samp{/* empty */} in each rule
3453with no components.
3454
342b8b6e 3455@node Recursion
bfa74976
RS
3456@section Recursive Rules
3457@cindex recursive rule
3458
f8e1c9e5
AD
3459A rule is called @dfn{recursive} when its @var{result} nonterminal
3460appears also on its right hand side. Nearly all Bison grammars need to
3461use recursion, because that is the only way to define a sequence of any
3462number of a particular thing. Consider this recursive definition of a
9ecbd125 3463comma-separated sequence of one or more expressions:
bfa74976
RS
3464
3465@example
3466@group
3467expseq1: exp
3468 | expseq1 ',' exp
3469 ;
3470@end group
3471@end example
3472
3473@cindex left recursion
3474@cindex right recursion
3475@noindent
3476Since the recursive use of @code{expseq1} is the leftmost symbol in the
3477right hand side, we call this @dfn{left recursion}. By contrast, here
3478the same construct is defined using @dfn{right recursion}:
3479
3480@example
3481@group
3482expseq1: exp
3483 | exp ',' expseq1
3484 ;
3485@end group
3486@end example
3487
3488@noindent
ec3bc396
AD
3489Any kind of sequence can be defined using either left recursion or right
3490recursion, but you should always use left recursion, because it can
3491parse a sequence of any number of elements with bounded stack space.
3492Right recursion uses up space on the Bison stack in proportion to the
3493number of elements in the sequence, because all the elements must be
3494shifted onto the stack before the rule can be applied even once.
3495@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3496of this.
bfa74976
RS
3497
3498@cindex mutual recursion
3499@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3500rule does not appear directly on its right hand side, but does appear
3501in rules for other nonterminals which do appear on its right hand
13863333 3502side.
bfa74976
RS
3503
3504For example:
3505
3506@example
3507@group
3508expr: primary
3509 | primary '+' primary
3510 ;
3511@end group
3512
3513@group
3514primary: constant
3515 | '(' expr ')'
3516 ;
3517@end group
3518@end example
3519
3520@noindent
3521defines two mutually-recursive nonterminals, since each refers to the
3522other.
3523
342b8b6e 3524@node Semantics
bfa74976
RS
3525@section Defining Language Semantics
3526@cindex defining language semantics
13863333 3527@cindex language semantics, defining
bfa74976
RS
3528
3529The grammar rules for a language determine only the syntax. The semantics
3530are determined by the semantic values associated with various tokens and
3531groupings, and by the actions taken when various groupings are recognized.
3532
3533For example, the calculator calculates properly because the value
3534associated with each expression is the proper number; it adds properly
3535because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3536the numbers associated with @var{x} and @var{y}.
3537
3538@menu
3539* Value Type:: Specifying one data type for all semantic values.
3540* Multiple Types:: Specifying several alternative data types.
3541* Actions:: An action is the semantic definition of a grammar rule.
3542* Action Types:: Specifying data types for actions to operate on.
3543* Mid-Rule Actions:: Most actions go at the end of a rule.
3544 This says when, why and how to use the exceptional
3545 action in the middle of a rule.
3546@end menu
3547
342b8b6e 3548@node Value Type
bfa74976
RS
3549@subsection Data Types of Semantic Values
3550@cindex semantic value type
3551@cindex value type, semantic
3552@cindex data types of semantic values
3553@cindex default data type
3554
3555In a simple program it may be sufficient to use the same data type for
3556the semantic values of all language constructs. This was true in the
8a4281b9 3557RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3558Notation Calculator}).
bfa74976 3559
ddc8ede1
PE
3560Bison normally uses the type @code{int} for semantic values if your
3561program uses the same data type for all language constructs. To
bfa74976
RS
3562specify some other type, define @code{YYSTYPE} as a macro, like this:
3563
3564@example
3565#define YYSTYPE double
3566@end example
3567
3568@noindent
50cce58e
PE
3569@code{YYSTYPE}'s replacement list should be a type name
3570that does not contain parentheses or square brackets.
342b8b6e 3571This macro definition must go in the prologue of the grammar file
75f5aaea 3572(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3573
342b8b6e 3574@node Multiple Types
bfa74976
RS
3575@subsection More Than One Value Type
3576
3577In most programs, you will need different data types for different kinds
3578of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3579@code{int} or @code{long int}, while a string constant needs type
3580@code{char *}, and an identifier might need a pointer to an entry in the
3581symbol table.
bfa74976
RS
3582
3583To use more than one data type for semantic values in one parser, Bison
3584requires you to do two things:
3585
3586@itemize @bullet
3587@item
ddc8ede1 3588Specify the entire collection of possible data types, either by using the
704a47c4 3589@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3590Value Types}), or by using a @code{typedef} or a @code{#define} to
3591define @code{YYSTYPE} to be a union type whose member names are
3592the type tags.
bfa74976
RS
3593
3594@item
14ded682
AD
3595Choose one of those types for each symbol (terminal or nonterminal) for
3596which semantic values are used. This is done for tokens with the
3597@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3598and for groupings with the @code{%type} Bison declaration (@pxref{Type
3599Decl, ,Nonterminal Symbols}).
bfa74976
RS
3600@end itemize
3601
342b8b6e 3602@node Actions
bfa74976
RS
3603@subsection Actions
3604@cindex action
3605@vindex $$
3606@vindex $@var{n}
d013372c
AR
3607@vindex $@var{name}
3608@vindex $[@var{name}]
bfa74976
RS
3609
3610An action accompanies a syntactic rule and contains C code to be executed
3611each time an instance of that rule is recognized. The task of most actions
3612is to compute a semantic value for the grouping built by the rule from the
3613semantic values associated with tokens or smaller groupings.
3614
287c78f6
PE
3615An action consists of braced code containing C statements, and can be
3616placed at any position in the rule;
704a47c4
AD
3617it is executed at that position. Most rules have just one action at the
3618end of the rule, following all the components. Actions in the middle of
3619a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3620Actions, ,Actions in Mid-Rule}).
bfa74976 3621
ff7571c0
JD
3622The C code in an action can refer to the semantic values of the
3623components matched by the rule with the construct @code{$@var{n}},
3624which stands for the value of the @var{n}th component. The semantic
3625value for the grouping being constructed is @code{$$}. In addition,
3626the semantic values of symbols can be accessed with the named
3627references construct @code{$@var{name}} or @code{$[@var{name}]}.
3628Bison translates both of these constructs into expressions of the
3629appropriate type when it copies the actions into the parser
3630implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3631for the current grouping) is translated to a modifiable lvalue, so it
3632can be assigned to.
bfa74976
RS
3633
3634Here is a typical example:
3635
3636@example
3637@group
3638exp: @dots{}
3639 | exp '+' exp
3640 @{ $$ = $1 + $3; @}
3641@end group
3642@end example
3643
d013372c
AR
3644Or, in terms of named references:
3645
3646@example
3647@group
3648exp[result]: @dots{}
3649 | exp[left] '+' exp[right]
3650 @{ $result = $left + $right; @}
3651@end group
3652@end example
3653
bfa74976
RS
3654@noindent
3655This rule constructs an @code{exp} from two smaller @code{exp} groupings
3656connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3657(@code{$left} and @code{$right})
bfa74976
RS
3658refer to the semantic values of the two component @code{exp} groupings,
3659which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3660The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3661semantic value of
bfa74976
RS
3662the addition-expression just recognized by the rule. If there were a
3663useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3664referred to as @code{$2}.
bfa74976 3665
a7b15ab9
JD
3666@xref{Named References}, for more information about using the named
3667references construct.
d013372c 3668
3ded9a63
AD
3669Note that the vertical-bar character @samp{|} is really a rule
3670separator, and actions are attached to a single rule. This is a
3671difference with tools like Flex, for which @samp{|} stands for either
3672``or'', or ``the same action as that of the next rule''. In the
3673following example, the action is triggered only when @samp{b} is found:
3674
3675@example
3676@group
3677a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3678@end group
3679@end example
3680
bfa74976
RS
3681@cindex default action
3682If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3683@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3684becomes the value of the whole rule. Of course, the default action is
3685valid only if the two data types match. There is no meaningful default
3686action for an empty rule; every empty rule must have an explicit action
3687unless the rule's value does not matter.
bfa74976
RS
3688
3689@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3690to tokens and groupings on the stack @emph{before} those that match the
3691current rule. This is a very risky practice, and to use it reliably
3692you must be certain of the context in which the rule is applied. Here
3693is a case in which you can use this reliably:
3694
3695@example
3696@group
3697foo: expr bar '+' expr @{ @dots{} @}
3698 | expr bar '-' expr @{ @dots{} @}
3699 ;
3700@end group
3701
3702@group
3703bar: /* empty */
3704 @{ previous_expr = $0; @}
3705 ;
3706@end group
3707@end example
3708
3709As long as @code{bar} is used only in the fashion shown here, @code{$0}
3710always refers to the @code{expr} which precedes @code{bar} in the
3711definition of @code{foo}.
3712
32c29292 3713@vindex yylval
742e4900 3714It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3715any, from a semantic action.
3716This semantic value is stored in @code{yylval}.
3717@xref{Action Features, ,Special Features for Use in Actions}.
3718
342b8b6e 3719@node Action Types
bfa74976
RS
3720@subsection Data Types of Values in Actions
3721@cindex action data types
3722@cindex data types in actions
3723
3724If you have chosen a single data type for semantic values, the @code{$$}
3725and @code{$@var{n}} constructs always have that data type.
3726
3727If you have used @code{%union} to specify a variety of data types, then you
3728must declare a choice among these types for each terminal or nonterminal
3729symbol that can have a semantic value. Then each time you use @code{$$} or
3730@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3731in the rule. In this example,
bfa74976
RS
3732
3733@example
3734@group
3735exp: @dots{}
3736 | exp '+' exp
3737 @{ $$ = $1 + $3; @}
3738@end group
3739@end example
3740
3741@noindent
3742@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3743have the data type declared for the nonterminal symbol @code{exp}. If
3744@code{$2} were used, it would have the data type declared for the
e0c471a9 3745terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3746
3747Alternatively, you can specify the data type when you refer to the value,
3748by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3749reference. For example, if you have defined types as shown here:
3750
3751@example
3752@group
3753%union @{
3754 int itype;
3755 double dtype;
3756@}
3757@end group
3758@end example
3759
3760@noindent
3761then you can write @code{$<itype>1} to refer to the first subunit of the
3762rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3763
342b8b6e 3764@node Mid-Rule Actions
bfa74976
RS
3765@subsection Actions in Mid-Rule
3766@cindex actions in mid-rule
3767@cindex mid-rule actions
3768
3769Occasionally it is useful to put an action in the middle of a rule.
3770These actions are written just like usual end-of-rule actions, but they
3771are executed before the parser even recognizes the following components.
3772
3773A mid-rule action may refer to the components preceding it using
3774@code{$@var{n}}, but it may not refer to subsequent components because
3775it is run before they are parsed.
3776
3777The mid-rule action itself counts as one of the components of the rule.
3778This makes a difference when there is another action later in the same rule
3779(and usually there is another at the end): you have to count the actions
3780along with the symbols when working out which number @var{n} to use in
3781@code{$@var{n}}.
3782
3783The mid-rule action can also have a semantic value. The action can set
3784its value with an assignment to @code{$$}, and actions later in the rule
3785can refer to the value using @code{$@var{n}}. Since there is no symbol
3786to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3787in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3788specify a data type each time you refer to this value.
bfa74976
RS
3789
3790There is no way to set the value of the entire rule with a mid-rule
3791action, because assignments to @code{$$} do not have that effect. The
3792only way to set the value for the entire rule is with an ordinary action
3793at the end of the rule.
3794
3795Here is an example from a hypothetical compiler, handling a @code{let}
3796statement that looks like @samp{let (@var{variable}) @var{statement}} and
3797serves to create a variable named @var{variable} temporarily for the
3798duration of @var{statement}. To parse this construct, we must put
3799@var{variable} into the symbol table while @var{statement} is parsed, then
3800remove it afterward. Here is how it is done:
3801
3802@example
3803@group
3804stmt: LET '(' var ')'
3805 @{ $<context>$ = push_context ();
3806 declare_variable ($3); @}
3807 stmt @{ $$ = $6;
3808 pop_context ($<context>5); @}
3809@end group
3810@end example
3811
3812@noindent
3813As soon as @samp{let (@var{variable})} has been recognized, the first
3814action is run. It saves a copy of the current semantic context (the
3815list of accessible variables) as its semantic value, using alternative
3816@code{context} in the data-type union. Then it calls
3817@code{declare_variable} to add the new variable to that list. Once the
3818first action is finished, the embedded statement @code{stmt} can be
3819parsed. Note that the mid-rule action is component number 5, so the
3820@samp{stmt} is component number 6.
3821
3822After the embedded statement is parsed, its semantic value becomes the
3823value of the entire @code{let}-statement. Then the semantic value from the
3824earlier action is used to restore the prior list of variables. This
3825removes the temporary @code{let}-variable from the list so that it won't
3826appear to exist while the rest of the program is parsed.
3827
841a7737
JD
3828@findex %destructor
3829@cindex discarded symbols, mid-rule actions
3830@cindex error recovery, mid-rule actions
3831In the above example, if the parser initiates error recovery (@pxref{Error
3832Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3833it might discard the previous semantic context @code{$<context>5} without
3834restoring it.
3835Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3836Discarded Symbols}).
ec5479ce
JD
3837However, Bison currently provides no means to declare a destructor specific to
3838a particular mid-rule action's semantic value.
841a7737
JD
3839
3840One solution is to bury the mid-rule action inside a nonterminal symbol and to
3841declare a destructor for that symbol:
3842
3843@example
3844@group
3845%type <context> let
3846%destructor @{ pop_context ($$); @} let
3847
3848%%
3849
3850stmt: let stmt
3851 @{ $$ = $2;
3852 pop_context ($1); @}
3853 ;
3854
3855let: LET '(' var ')'
3856 @{ $$ = push_context ();
3857 declare_variable ($3); @}
3858 ;
3859
3860@end group
3861@end example
3862
3863@noindent
3864Note that the action is now at the end of its rule.
3865Any mid-rule action can be converted to an end-of-rule action in this way, and
3866this is what Bison actually does to implement mid-rule actions.
3867
bfa74976
RS
3868Taking action before a rule is completely recognized often leads to
3869conflicts since the parser must commit to a parse in order to execute the
3870action. For example, the following two rules, without mid-rule actions,
3871can coexist in a working parser because the parser can shift the open-brace
3872token and look at what follows before deciding whether there is a
3873declaration or not:
3874
3875@example
3876@group
3877compound: '@{' declarations statements '@}'
3878 | '@{' statements '@}'
3879 ;
3880@end group
3881@end example
3882
3883@noindent
3884But when we add a mid-rule action as follows, the rules become nonfunctional:
3885
3886@example
3887@group
3888compound: @{ prepare_for_local_variables (); @}
3889 '@{' declarations statements '@}'
3890@end group
3891@group
3892 | '@{' statements '@}'
3893 ;
3894@end group
3895@end example
3896
3897@noindent
3898Now the parser is forced to decide whether to run the mid-rule action
3899when it has read no farther than the open-brace. In other words, it
3900must commit to using one rule or the other, without sufficient
3901information to do it correctly. (The open-brace token is what is called
742e4900
JD
3902the @dfn{lookahead} token at this time, since the parser is still
3903deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3904
3905You might think that you could correct the problem by putting identical
3906actions into the two rules, like this:
3907
3908@example
3909@group
3910compound: @{ prepare_for_local_variables (); @}
3911 '@{' declarations statements '@}'
3912 | @{ prepare_for_local_variables (); @}
3913 '@{' statements '@}'
3914 ;
3915@end group
3916@end example
3917
3918@noindent
3919But this does not help, because Bison does not realize that the two actions
3920are identical. (Bison never tries to understand the C code in an action.)
3921
3922If the grammar is such that a declaration can be distinguished from a
3923statement by the first token (which is true in C), then one solution which
3924does work is to put the action after the open-brace, like this:
3925
3926@example
3927@group
3928compound: '@{' @{ prepare_for_local_variables (); @}
3929 declarations statements '@}'
3930 | '@{' statements '@}'
3931 ;
3932@end group
3933@end example
3934
3935@noindent
3936Now the first token of the following declaration or statement,
3937which would in any case tell Bison which rule to use, can still do so.
3938
3939Another solution is to bury the action inside a nonterminal symbol which
3940serves as a subroutine:
3941
3942@example
3943@group
3944subroutine: /* empty */
3945 @{ prepare_for_local_variables (); @}
3946 ;
3947
3948@end group
3949
3950@group
3951compound: subroutine
3952 '@{' declarations statements '@}'
3953 | subroutine
3954 '@{' statements '@}'
3955 ;
3956@end group
3957@end example
3958
3959@noindent
3960Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3961deciding which rule for @code{compound} it will eventually use.
bfa74976 3962
303834cc 3963@node Tracking Locations
847bf1f5
AD
3964@section Tracking Locations
3965@cindex location
95923bd6
AD
3966@cindex textual location
3967@cindex location, textual
847bf1f5
AD
3968
3969Though grammar rules and semantic actions are enough to write a fully
72d2299c 3970functional parser, it can be useful to process some additional information,
3e259915
MA
3971especially symbol locations.
3972
704a47c4
AD
3973The way locations are handled is defined by providing a data type, and
3974actions to take when rules are matched.
847bf1f5
AD
3975
3976@menu
3977* Location Type:: Specifying a data type for locations.
3978* Actions and Locations:: Using locations in actions.
3979* Location Default Action:: Defining a general way to compute locations.
3980@end menu
3981
342b8b6e 3982@node Location Type
847bf1f5
AD
3983@subsection Data Type of Locations
3984@cindex data type of locations
3985@cindex default location type
3986
3987Defining a data type for locations is much simpler than for semantic values,
3988since all tokens and groupings always use the same type.
3989
50cce58e
PE
3990You can specify the type of locations by defining a macro called
3991@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3992defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3993When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3994four members:
3995
3996@example
6273355b 3997typedef struct YYLTYPE
847bf1f5
AD
3998@{
3999 int first_line;
4000 int first_column;
4001 int last_line;
4002 int last_column;
6273355b 4003@} YYLTYPE;
847bf1f5
AD
4004@end example
4005
d59e456d
AD
4006When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4007initializes all these fields to 1 for @code{yylloc}. To initialize
4008@code{yylloc} with a custom location type (or to chose a different
4009initialization), use the @code{%initial-action} directive. @xref{Initial
4010Action Decl, , Performing Actions before Parsing}.
cd48d21d 4011
342b8b6e 4012@node Actions and Locations
847bf1f5
AD
4013@subsection Actions and Locations
4014@cindex location actions
4015@cindex actions, location
4016@vindex @@$
4017@vindex @@@var{n}
d013372c
AR
4018@vindex @@@var{name}
4019@vindex @@[@var{name}]
847bf1f5
AD
4020
4021Actions are not only useful for defining language semantics, but also for
4022describing the behavior of the output parser with locations.
4023
4024The most obvious way for building locations of syntactic groupings is very
72d2299c 4025similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4026constructs can be used to access the locations of the elements being matched.
4027The location of the @var{n}th component of the right hand side is
4028@code{@@@var{n}}, while the location of the left hand side grouping is
4029@code{@@$}.
4030
d013372c
AR
4031In addition, the named references construct @code{@@@var{name}} and
4032@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4033@xref{Named References}, for more information about using the named
4034references construct.
d013372c 4035
3e259915 4036Here is a basic example using the default data type for locations:
847bf1f5
AD
4037
4038@example
4039@group
4040exp: @dots{}
3e259915 4041 | exp '/' exp
847bf1f5 4042 @{
3e259915
MA
4043 @@$.first_column = @@1.first_column;
4044 @@$.first_line = @@1.first_line;
847bf1f5
AD
4045 @@$.last_column = @@3.last_column;
4046 @@$.last_line = @@3.last_line;
3e259915
MA
4047 if ($3)
4048 $$ = $1 / $3;
4049 else
4050 @{
4051 $$ = 1;
4e03e201
AD
4052 fprintf (stderr,
4053 "Division by zero, l%d,c%d-l%d,c%d",
4054 @@3.first_line, @@3.first_column,
4055 @@3.last_line, @@3.last_column);
3e259915 4056 @}
847bf1f5
AD
4057 @}
4058@end group
4059@end example
4060
3e259915 4061As for semantic values, there is a default action for locations that is
72d2299c 4062run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4063beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4064last symbol.
3e259915 4065
72d2299c 4066With this default action, the location tracking can be fully automatic. The
3e259915
MA
4067example above simply rewrites this way:
4068
4069@example
4070@group
4071exp: @dots{}
4072 | exp '/' exp
4073 @{
4074 if ($3)
4075 $$ = $1 / $3;
4076 else
4077 @{
4078 $$ = 1;
4e03e201
AD
4079 fprintf (stderr,
4080 "Division by zero, l%d,c%d-l%d,c%d",
4081 @@3.first_line, @@3.first_column,
4082 @@3.last_line, @@3.last_column);
3e259915
MA
4083 @}
4084 @}
4085@end group
4086@end example
847bf1f5 4087
32c29292 4088@vindex yylloc
742e4900 4089It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4090from a semantic action.
4091This location is stored in @code{yylloc}.
4092@xref{Action Features, ,Special Features for Use in Actions}.
4093
342b8b6e 4094@node Location Default Action
847bf1f5
AD
4095@subsection Default Action for Locations
4096@vindex YYLLOC_DEFAULT
8a4281b9 4097@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4098
72d2299c 4099Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4100locations are much more general than semantic values, there is room in
4101the output parser to redefine the default action to take for each
72d2299c 4102rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4103matched, before the associated action is run. It is also invoked
4104while processing a syntax error, to compute the error's location.
8a4281b9 4105Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4106parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4107of that ambiguity.
847bf1f5 4108
3e259915 4109Most of the time, this macro is general enough to suppress location
79282c6c 4110dedicated code from semantic actions.
847bf1f5 4111
72d2299c 4112The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4113the location of the grouping (the result of the computation). When a
766de5eb 4114rule is matched, the second parameter identifies locations of
96b93a3d 4115all right hand side elements of the rule being matched, and the third
8710fc41 4116parameter is the size of the rule's right hand side.
8a4281b9 4117When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4118right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4119When processing a syntax error, the second parameter identifies locations
4120of the symbols that were discarded during error processing, and the third
96b93a3d 4121parameter is the number of discarded symbols.
847bf1f5 4122
766de5eb 4123By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4124
766de5eb 4125@smallexample
847bf1f5 4126@group
766de5eb
PE
4127# define YYLLOC_DEFAULT(Current, Rhs, N) \
4128 do \
4129 if (N) \
4130 @{ \
4131 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4132 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4133 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4134 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4135 @} \
4136 else \
4137 @{ \
4138 (Current).first_line = (Current).last_line = \
4139 YYRHSLOC(Rhs, 0).last_line; \
4140 (Current).first_column = (Current).last_column = \
4141 YYRHSLOC(Rhs, 0).last_column; \
4142 @} \
4143 while (0)
847bf1f5 4144@end group
766de5eb 4145@end smallexample
676385e2 4146
aaaa2aae 4147@noindent
766de5eb
PE
4148where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4149in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4150just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4151
3e259915 4152When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4153
3e259915 4154@itemize @bullet
79282c6c 4155@item
72d2299c 4156All arguments are free of side-effects. However, only the first one (the
3e259915 4157result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4158
3e259915 4159@item
766de5eb
PE
4160For consistency with semantic actions, valid indexes within the
4161right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4162valid index, and it refers to the symbol just before the reduction.
4163During error processing @var{n} is always positive.
0ae99356
PE
4164
4165@item
4166Your macro should parenthesize its arguments, if need be, since the
4167actual arguments may not be surrounded by parentheses. Also, your
4168macro should expand to something that can be used as a single
4169statement when it is followed by a semicolon.
3e259915 4170@end itemize
847bf1f5 4171
378e917c 4172@node Named References
a7b15ab9 4173@section Named References
378e917c
JD
4174@cindex named references
4175
a40e77eb
JD
4176As described in the preceding sections, the traditional way to refer to any
4177semantic value or location is a @dfn{positional reference}, which takes the
4178form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4179such a reference is not very descriptive. Moreover, if you later decide to
4180insert or remove symbols in the right-hand side of a grammar rule, the need
4181to renumber such references can be tedious and error-prone.
4182
4183To avoid these issues, you can also refer to a semantic value or location
4184using a @dfn{named reference}. First of all, original symbol names may be
4185used as named references. For example:
378e917c
JD
4186
4187@example
4188@group
4189invocation: op '(' args ')'
4190 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4191@end group
4192@end example
4193
4194@noindent
a40e77eb 4195Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4196
4197@example
4198@group
4199invocation: op '(' args ')'
4200 @{ $$ = new_invocation ($op, $args, @@$); @}
4201@end group
4202@end example
4203
4204@noindent
4205However, sometimes regular symbol names are not sufficient due to
4206ambiguities:
4207
4208@example
4209@group
4210exp: exp '/' exp
4211 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4212
4213exp: exp '/' exp
4214 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4215
4216exp: exp '/' exp
4217 @{ $$ = $1 / $3; @} // No error.
4218@end group
4219@end example
4220
4221@noindent
4222When ambiguity occurs, explicitly declared names may be used for values and
4223locations. Explicit names are declared as a bracketed name after a symbol
4224appearance in rule definitions. For example:
4225@example
4226@group
4227exp[result]: exp[left] '/' exp[right]
4228 @{ $result = $left / $right; @}
4229@end group
4230@end example
4231
4232@noindent
a7b15ab9
JD
4233In order to access a semantic value generated by a mid-rule action, an
4234explicit name may also be declared by putting a bracketed name after the
4235closing brace of the mid-rule action code:
378e917c
JD
4236@example
4237@group
4238exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4239 @{ $res = $left + $right; @}
4240@end group
4241@end example
4242
4243@noindent
4244
4245In references, in order to specify names containing dots and dashes, an explicit
4246bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4247@example
4248@group
762caaf6 4249if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4250 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4251@end group
4252@end example
4253
4254It often happens that named references are followed by a dot, dash or other
4255C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4256@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4257@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4258value. In order to force Bison to recognize @samp{name.suffix} in its
4259entirety as the name of a semantic value, the bracketed syntax
4260@samp{$[name.suffix]} must be used.
4261
4262The named references feature is experimental. More user feedback will help
4263to stabilize it.
378e917c 4264
342b8b6e 4265@node Declarations
bfa74976
RS
4266@section Bison Declarations
4267@cindex declarations, Bison
4268@cindex Bison declarations
4269
4270The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4271used in formulating the grammar and the data types of semantic values.
4272@xref{Symbols}.
4273
4274All token type names (but not single-character literal tokens such as
4275@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4276declared if you need to specify which data type to use for the semantic
4277value (@pxref{Multiple Types, ,More Than One Value Type}).
4278
ff7571c0
JD
4279The first rule in the grammar file also specifies the start symbol, by
4280default. If you want some other symbol to be the start symbol, you
4281must declare it explicitly (@pxref{Language and Grammar, ,Languages
4282and Context-Free Grammars}).
bfa74976
RS
4283
4284@menu
b50d2359 4285* Require Decl:: Requiring a Bison version.
bfa74976
RS
4286* Token Decl:: Declaring terminal symbols.
4287* Precedence Decl:: Declaring terminals with precedence and associativity.
4288* Union Decl:: Declaring the set of all semantic value types.
4289* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4290* Initial Action Decl:: Code run before parsing starts.
72f889cc 4291* Destructor Decl:: Declaring how symbols are freed.
d6328241 4292* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4293* Start Decl:: Specifying the start symbol.
4294* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4295* Push Decl:: Requesting a push parser.
bfa74976 4296* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4297* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4298* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4299@end menu
4300
b50d2359
AD
4301@node Require Decl
4302@subsection Require a Version of Bison
4303@cindex version requirement
4304@cindex requiring a version of Bison
4305@findex %require
4306
4307You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4308the requirement is not met, @command{bison} exits with an error (exit
4309status 63).
b50d2359
AD
4310
4311@example
4312%require "@var{version}"
4313@end example
4314
342b8b6e 4315@node Token Decl
bfa74976
RS
4316@subsection Token Type Names
4317@cindex declaring token type names
4318@cindex token type names, declaring
931c7513 4319@cindex declaring literal string tokens
bfa74976
RS
4320@findex %token
4321
4322The basic way to declare a token type name (terminal symbol) is as follows:
4323
4324@example
4325%token @var{name}
4326@end example
4327
4328Bison will convert this into a @code{#define} directive in
4329the parser, so that the function @code{yylex} (if it is in this file)
4330can use the name @var{name} to stand for this token type's code.
4331
d78f0ac9
AD
4332Alternatively, you can use @code{%left}, @code{%right},
4333@code{%precedence}, or
14ded682
AD
4334@code{%nonassoc} instead of @code{%token}, if you wish to specify
4335associativity and precedence. @xref{Precedence Decl, ,Operator
4336Precedence}.
bfa74976
RS
4337
4338You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4339a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4340following the token name:
bfa74976
RS
4341
4342@example
4343%token NUM 300
1452af69 4344%token XNUM 0x12d // a GNU extension
bfa74976
RS
4345@end example
4346
4347@noindent
4348It is generally best, however, to let Bison choose the numeric codes for
4349all token types. Bison will automatically select codes that don't conflict
e966383b 4350with each other or with normal characters.
bfa74976
RS
4351
4352In the event that the stack type is a union, you must augment the
4353@code{%token} or other token declaration to include the data type
704a47c4
AD
4354alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4355Than One Value Type}).
bfa74976
RS
4356
4357For example:
4358
4359@example
4360@group
4361%union @{ /* define stack type */
4362 double val;
4363 symrec *tptr;
4364@}
4365%token <val> NUM /* define token NUM and its type */
4366@end group
4367@end example
4368
931c7513
RS
4369You can associate a literal string token with a token type name by
4370writing the literal string at the end of a @code{%token}
4371declaration which declares the name. For example:
4372
4373@example
4374%token arrow "=>"
4375@end example
4376
4377@noindent
4378For example, a grammar for the C language might specify these names with
4379equivalent literal string tokens:
4380
4381@example
4382%token <operator> OR "||"
4383%token <operator> LE 134 "<="
4384%left OR "<="
4385@end example
4386
4387@noindent
4388Once you equate the literal string and the token name, you can use them
4389interchangeably in further declarations or the grammar rules. The
4390@code{yylex} function can use the token name or the literal string to
4391obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4392Syntax error messages passed to @code{yyerror} from the parser will reference
4393the literal string instead of the token name.
4394
4395The token numbered as 0 corresponds to end of file; the following line
4396allows for nicer error messages referring to ``end of file'' instead
4397of ``$end'':
4398
4399@example
4400%token END 0 "end of file"
4401@end example
931c7513 4402
342b8b6e 4403@node Precedence Decl
bfa74976
RS
4404@subsection Operator Precedence
4405@cindex precedence declarations
4406@cindex declaring operator precedence
4407@cindex operator precedence, declaring
4408
d78f0ac9
AD
4409Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4410@code{%precedence} declaration to
bfa74976
RS
4411declare a token and specify its precedence and associativity, all at
4412once. These are called @dfn{precedence declarations}.
704a47c4
AD
4413@xref{Precedence, ,Operator Precedence}, for general information on
4414operator precedence.
bfa74976 4415
ab7f29f8 4416The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4417@code{%token}: either
4418
4419@example
4420%left @var{symbols}@dots{}
4421@end example
4422
4423@noindent
4424or
4425
4426@example
4427%left <@var{type}> @var{symbols}@dots{}
4428@end example
4429
4430And indeed any of these declarations serves the purposes of @code{%token}.
4431But in addition, they specify the associativity and relative precedence for
4432all the @var{symbols}:
4433
4434@itemize @bullet
4435@item
4436The associativity of an operator @var{op} determines how repeated uses
4437of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4438@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4439grouping @var{y} with @var{z} first. @code{%left} specifies
4440left-associativity (grouping @var{x} with @var{y} first) and
4441@code{%right} specifies right-associativity (grouping @var{y} with
4442@var{z} first). @code{%nonassoc} specifies no associativity, which
4443means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4444considered a syntax error.
4445
d78f0ac9
AD
4446@code{%precedence} gives only precedence to the @var{symbols}, and
4447defines no associativity at all. Use this to define precedence only,
4448and leave any potential conflict due to associativity enabled.
4449
bfa74976
RS
4450@item
4451The precedence of an operator determines how it nests with other operators.
4452All the tokens declared in a single precedence declaration have equal
4453precedence and nest together according to their associativity.
4454When two tokens declared in different precedence declarations associate,
4455the one declared later has the higher precedence and is grouped first.
4456@end itemize
4457
ab7f29f8
JD
4458For backward compatibility, there is a confusing difference between the
4459argument lists of @code{%token} and precedence declarations.
4460Only a @code{%token} can associate a literal string with a token type name.
4461A precedence declaration always interprets a literal string as a reference to a
4462separate token.
4463For example:
4464
4465@example
4466%left OR "<=" // Does not declare an alias.
4467%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4468@end example
4469
342b8b6e 4470@node Union Decl
bfa74976
RS
4471@subsection The Collection of Value Types
4472@cindex declaring value types
4473@cindex value types, declaring
4474@findex %union
4475
287c78f6
PE
4476The @code{%union} declaration specifies the entire collection of
4477possible data types for semantic values. The keyword @code{%union} is
4478followed by braced code containing the same thing that goes inside a
4479@code{union} in C@.
bfa74976
RS
4480
4481For example:
4482
4483@example
4484@group
4485%union @{
4486 double val;
4487 symrec *tptr;
4488@}
4489@end group
4490@end example
4491
4492@noindent
4493This says that the two alternative types are @code{double} and @code{symrec
4494*}. They are given names @code{val} and @code{tptr}; these names are used
4495in the @code{%token} and @code{%type} declarations to pick one of the types
4496for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4497
8a4281b9 4498As an extension to POSIX, a tag is allowed after the
6273355b
PE
4499@code{union}. For example:
4500
4501@example
4502@group
4503%union value @{
4504 double val;
4505 symrec *tptr;
4506@}
4507@end group
4508@end example
4509
d6ca7905 4510@noindent
6273355b
PE
4511specifies the union tag @code{value}, so the corresponding C type is
4512@code{union value}. If you do not specify a tag, it defaults to
4513@code{YYSTYPE}.
4514
8a4281b9 4515As another extension to POSIX, you may specify multiple
d6ca7905
PE
4516@code{%union} declarations; their contents are concatenated. However,
4517only the first @code{%union} declaration can specify a tag.
4518
6273355b 4519Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4520a semicolon after the closing brace.
4521
ddc8ede1
PE
4522Instead of @code{%union}, you can define and use your own union type
4523@code{YYSTYPE} if your grammar contains at least one
4524@samp{<@var{type}>} tag. For example, you can put the following into
4525a header file @file{parser.h}:
4526
4527@example
4528@group
4529union YYSTYPE @{
4530 double val;
4531 symrec *tptr;
4532@};
4533typedef union YYSTYPE YYSTYPE;
4534@end group
4535@end example
4536
4537@noindent
4538and then your grammar can use the following
4539instead of @code{%union}:
4540
4541@example
4542@group
4543%@{
4544#include "parser.h"
4545%@}
4546%type <val> expr
4547%token <tptr> ID
4548@end group
4549@end example
4550
342b8b6e 4551@node Type Decl
bfa74976
RS
4552@subsection Nonterminal Symbols
4553@cindex declaring value types, nonterminals
4554@cindex value types, nonterminals, declaring
4555@findex %type
4556
4557@noindent
4558When you use @code{%union} to specify multiple value types, you must
4559declare the value type of each nonterminal symbol for which values are
4560used. This is done with a @code{%type} declaration, like this:
4561
4562@example
4563%type <@var{type}> @var{nonterminal}@dots{}
4564@end example
4565
4566@noindent
704a47c4
AD
4567Here @var{nonterminal} is the name of a nonterminal symbol, and
4568@var{type} is the name given in the @code{%union} to the alternative
4569that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4570can give any number of nonterminal symbols in the same @code{%type}
4571declaration, if they have the same value type. Use spaces to separate
4572the symbol names.
bfa74976 4573
931c7513
RS
4574You can also declare the value type of a terminal symbol. To do this,
4575use the same @code{<@var{type}>} construction in a declaration for the
4576terminal symbol. All kinds of token declarations allow
4577@code{<@var{type}>}.
4578
18d192f0
AD
4579@node Initial Action Decl
4580@subsection Performing Actions before Parsing
4581@findex %initial-action
4582
4583Sometimes your parser needs to perform some initializations before
4584parsing. The @code{%initial-action} directive allows for such arbitrary
4585code.
4586
4587@deffn {Directive} %initial-action @{ @var{code} @}
4588@findex %initial-action
287c78f6 4589Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4590@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4591@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4592@code{%parse-param}.
18d192f0
AD
4593@end deffn
4594
451364ed
AD
4595For instance, if your locations use a file name, you may use
4596
4597@example
48b16bbc 4598%parse-param @{ char const *file_name @};
451364ed
AD
4599%initial-action
4600@{
4626a15d 4601 @@$.initialize (file_name);
451364ed
AD
4602@};
4603@end example
4604
18d192f0 4605
72f889cc
AD
4606@node Destructor Decl
4607@subsection Freeing Discarded Symbols
4608@cindex freeing discarded symbols
4609@findex %destructor
12e35840 4610@findex <*>
3ebecc24 4611@findex <>
a85284cf
AD
4612During error recovery (@pxref{Error Recovery}), symbols already pushed
4613on the stack and tokens coming from the rest of the file are discarded
4614until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4615or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4616symbols on the stack must be discarded. Even if the parser succeeds, it
4617must discard the start symbol.
258b75ca
PE
4618
4619When discarded symbols convey heap based information, this memory is
4620lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4621in traditional compilers, it is unacceptable for programs like shells or
4622protocol implementations that may parse and execute indefinitely.
258b75ca 4623
a85284cf
AD
4624The @code{%destructor} directive defines code that is called when a
4625symbol is automatically discarded.
72f889cc
AD
4626
4627@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4628@findex %destructor
287c78f6
PE
4629Invoke the braced @var{code} whenever the parser discards one of the
4630@var{symbols}.
4b367315 4631Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4632with the discarded symbol, and @code{@@$} designates its location.
4633The additional parser parameters are also available (@pxref{Parser Function, ,
4634The Parser Function @code{yyparse}}).
ec5479ce 4635
b2a0b7ca
JD
4636When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4637per-symbol @code{%destructor}.
4638You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4639tag among @var{symbols}.
b2a0b7ca 4640In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4641grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4642per-symbol @code{%destructor}.
4643
12e35840 4644Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4645(These default forms are experimental.
4646More user feedback will help to determine whether they should become permanent
4647features.)
3ebecc24 4648You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4649exactly one @code{%destructor} declaration in your grammar file.
4650The parser will invoke the @var{code} associated with one of these whenever it
4651discards any user-defined grammar symbol that has no per-symbol and no per-type
4652@code{%destructor}.
4653The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4654symbol for which you have formally declared a semantic type tag (@code{%type}
4655counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4656The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4657symbol that has no declared semantic type tag.
72f889cc
AD
4658@end deffn
4659
b2a0b7ca 4660@noindent
12e35840 4661For example:
72f889cc
AD
4662
4663@smallexample
ec5479ce
JD
4664%union @{ char *string; @}
4665%token <string> STRING1
4666%token <string> STRING2
4667%type <string> string1
4668%type <string> string2
b2a0b7ca
JD
4669%union @{ char character; @}
4670%token <character> CHR
4671%type <character> chr
12e35840
JD
4672%token TAGLESS
4673
b2a0b7ca 4674%destructor @{ @} <character>
12e35840
JD
4675%destructor @{ free ($$); @} <*>
4676%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4677%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4678@end smallexample
4679
4680@noindent
b2a0b7ca
JD
4681guarantees that, when the parser discards any user-defined symbol that has a
4682semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4683to @code{free} by default.
ec5479ce
JD
4684However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4685prints its line number to @code{stdout}.
4686It performs only the second @code{%destructor} in this case, so it invokes
4687@code{free} only once.
12e35840
JD
4688Finally, the parser merely prints a message whenever it discards any symbol,
4689such as @code{TAGLESS}, that has no semantic type tag.
4690
4691A Bison-generated parser invokes the default @code{%destructor}s only for
4692user-defined as opposed to Bison-defined symbols.
4693For example, the parser will not invoke either kind of default
4694@code{%destructor} for the special Bison-defined symbols @code{$accept},
4695@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4696none of which you can reference in your grammar.
4697It also will not invoke either for the @code{error} token (@pxref{Table of
4698Symbols, ,error}), which is always defined by Bison regardless of whether you
4699reference it in your grammar.
4700However, it may invoke one of them for the end token (token 0) if you
4701redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4702
4703@smallexample
4704%token END 0
4705@end smallexample
4706
12e35840
JD
4707@cindex actions in mid-rule
4708@cindex mid-rule actions
4709Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4710mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4711That is, Bison does not consider a mid-rule to have a semantic value if you
4712do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4713(where @var{n} is the right-hand side symbol position of the mid-rule) in
4714any later action in that rule. However, if you do reference either, the
4715Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4716it discards the mid-rule symbol.
12e35840 4717
3508ce36
JD
4718@ignore
4719@noindent
4720In the future, it may be possible to redefine the @code{error} token as a
4721nonterminal that captures the discarded symbols.
4722In that case, the parser will invoke the default destructor for it as well.
4723@end ignore
4724
e757bb10
AD
4725@sp 1
4726
4727@cindex discarded symbols
4728@dfn{Discarded symbols} are the following:
4729
4730@itemize
4731@item
4732stacked symbols popped during the first phase of error recovery,
4733@item
4734incoming terminals during the second phase of error recovery,
4735@item
742e4900 4736the current lookahead and the entire stack (except the current
9d9b8b70 4737right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4738@item
4739the start symbol, when the parser succeeds.
e757bb10
AD
4740@end itemize
4741
9d9b8b70
PE
4742The parser can @dfn{return immediately} because of an explicit call to
4743@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4744exhaustion.
4745
29553547 4746Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4747error via @code{YYERROR} are not discarded automatically. As a rule
4748of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4749the memory.
e757bb10 4750
342b8b6e 4751@node Expect Decl
bfa74976
RS
4752@subsection Suppressing Conflict Warnings
4753@cindex suppressing conflict warnings
4754@cindex preventing warnings about conflicts
4755@cindex warnings, preventing
4756@cindex conflicts, suppressing warnings of
4757@findex %expect
d6328241 4758@findex %expect-rr
bfa74976
RS
4759
4760Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4761(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4762have harmless shift/reduce conflicts which are resolved in a predictable
4763way and would be difficult to eliminate. It is desirable to suppress
4764the warning about these conflicts unless the number of conflicts
4765changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4766
4767The declaration looks like this:
4768
4769@example
4770%expect @var{n}
4771@end example
4772
035aa4a0
PE
4773Here @var{n} is a decimal integer. The declaration says there should
4774be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4775Bison reports an error if the number of shift/reduce conflicts differs
4776from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4777
eb45ef3b 4778For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4779serious, and should be eliminated entirely. Bison will always report
8a4281b9 4780reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4781parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4782there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4783also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4784in GLR parsers, using the declaration:
d6328241
PH
4785
4786@example
4787%expect-rr @var{n}
4788@end example
4789
bfa74976
RS
4790In general, using @code{%expect} involves these steps:
4791
4792@itemize @bullet
4793@item
4794Compile your grammar without @code{%expect}. Use the @samp{-v} option
4795to get a verbose list of where the conflicts occur. Bison will also
4796print the number of conflicts.
4797
4798@item
4799Check each of the conflicts to make sure that Bison's default
4800resolution is what you really want. If not, rewrite the grammar and
4801go back to the beginning.
4802
4803@item
4804Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4805number which Bison printed. With GLR parsers, add an
035aa4a0 4806@code{%expect-rr} declaration as well.
bfa74976
RS
4807@end itemize
4808
93d7dde9
JD
4809Now Bison will report an error if you introduce an unexpected conflict,
4810but will keep silent otherwise.
bfa74976 4811
342b8b6e 4812@node Start Decl
bfa74976
RS
4813@subsection The Start-Symbol
4814@cindex declaring the start symbol
4815@cindex start symbol, declaring
4816@cindex default start symbol
4817@findex %start
4818
4819Bison assumes by default that the start symbol for the grammar is the first
4820nonterminal specified in the grammar specification section. The programmer
4821may override this restriction with the @code{%start} declaration as follows:
4822
4823@example
4824%start @var{symbol}
4825@end example
4826
342b8b6e 4827@node Pure Decl
bfa74976
RS
4828@subsection A Pure (Reentrant) Parser
4829@cindex reentrant parser
4830@cindex pure parser
d9df47b6 4831@findex %define api.pure
bfa74976
RS
4832
4833A @dfn{reentrant} program is one which does not alter in the course of
4834execution; in other words, it consists entirely of @dfn{pure} (read-only)
4835code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4836for example, a nonreentrant program may not be safe to call from a signal
4837handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4838program must be called only within interlocks.
4839
70811b85 4840Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4841suitable for most uses, and it permits compatibility with Yacc. (The
4842standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4843statically allocated variables for communication with @code{yylex},
4844including @code{yylval} and @code{yylloc}.)
bfa74976 4845
70811b85 4846Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4847declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4848reentrant. It looks like this:
bfa74976
RS
4849
4850@example
d9df47b6 4851%define api.pure
bfa74976
RS
4852@end example
4853
70811b85
RS
4854The result is that the communication variables @code{yylval} and
4855@code{yylloc} become local variables in @code{yyparse}, and a different
4856calling convention is used for the lexical analyzer function
4857@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4858Parsers}, for the details of this. The variable @code{yynerrs}
4859becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4860of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4861Reporting Function @code{yyerror}}). The convention for calling
4862@code{yyparse} itself is unchanged.
4863
4864Whether the parser is pure has nothing to do with the grammar rules.
4865You can generate either a pure parser or a nonreentrant parser from any
4866valid grammar.
bfa74976 4867
9987d1b3
JD
4868@node Push Decl
4869@subsection A Push Parser
4870@cindex push parser
4871@cindex push parser
67212941 4872@findex %define api.push-pull
9987d1b3 4873
59da312b
JD
4874(The current push parsing interface is experimental and may evolve.
4875More user feedback will help to stabilize it.)
4876
f4101aa6
AD
4877A pull parser is called once and it takes control until all its input
4878is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4879each time a new token is made available.
4880
f4101aa6 4881A push parser is typically useful when the parser is part of a
9987d1b3 4882main event loop in the client's application. This is typically
f4101aa6
AD
4883a requirement of a GUI, when the main event loop needs to be triggered
4884within a certain time period.
9987d1b3 4885
d782395d
JD
4886Normally, Bison generates a pull parser.
4887The following Bison declaration says that you want the parser to be a push
35c1e5f0 4888parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4889
4890@example
cf499cff 4891%define api.push-pull push
9987d1b3
JD
4892@end example
4893
4894In almost all cases, you want to ensure that your push parser is also
4895a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4896time you should create an impure push parser is to have backwards
9987d1b3
JD
4897compatibility with the impure Yacc pull mode interface. Unless you know
4898what you are doing, your declarations should look like this:
4899
4900@example
d9df47b6 4901%define api.pure
cf499cff 4902%define api.push-pull push
9987d1b3
JD
4903@end example
4904
f4101aa6
AD
4905There is a major notable functional difference between the pure push parser
4906and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4907many parser instances, of the same type of parser, in memory at the same time.
4908An impure push parser should only use one parser at a time.
4909
4910When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4911the generated parser. @code{yypstate} is a structure that the generated
4912parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4913function that will create a new parser instance. @code{yypstate_delete}
4914will free the resources associated with the corresponding parser instance.
f4101aa6 4915Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4916token is available to provide the parser. A trivial example
4917of using a pure push parser would look like this:
4918
4919@example
4920int status;
4921yypstate *ps = yypstate_new ();
4922do @{
4923 status = yypush_parse (ps, yylex (), NULL);
4924@} while (status == YYPUSH_MORE);
4925yypstate_delete (ps);
4926@end example
4927
4928If the user decided to use an impure push parser, a few things about
f4101aa6 4929the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4930a global variable instead of a variable in the @code{yypush_parse} function.
4931For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4932changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4933example would thus look like this:
4934
4935@example
4936extern int yychar;
4937int status;
4938yypstate *ps = yypstate_new ();
4939do @{
4940 yychar = yylex ();
4941 status = yypush_parse (ps);
4942@} while (status == YYPUSH_MORE);
4943yypstate_delete (ps);
4944@end example
4945
f4101aa6 4946That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4947for use by the next invocation of the @code{yypush_parse} function.
4948
f4101aa6 4949Bison also supports both the push parser interface along with the pull parser
9987d1b3 4950interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4951you should replace the @samp{%define api.push-pull push} declaration with the
4952@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4953the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4954and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4955would be used. However, the user should note that it is implemented in the
d782395d
JD
4956generated parser by calling @code{yypull_parse}.
4957This makes the @code{yyparse} function that is generated with the
cf499cff 4958@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4959@code{yyparse} function. If the user
4960calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4961stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4962and then @code{yypull_parse} the rest of the input stream. If you would like
4963to switch back and forth between between parsing styles, you would have to
4964write your own @code{yypull_parse} function that knows when to quit looking
4965for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4966like this:
4967
4968@example
4969yypstate *ps = yypstate_new ();
4970yypull_parse (ps); /* Will call the lexer */
4971yypstate_delete (ps);
4972@end example
4973
67501061 4974Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4975the generated parser with @samp{%define api.push-pull both} as it did for
4976@samp{%define api.push-pull push}.
9987d1b3 4977
342b8b6e 4978@node Decl Summary
bfa74976
RS
4979@subsection Bison Declaration Summary
4980@cindex Bison declaration summary
4981@cindex declaration summary
4982@cindex summary, Bison declaration
4983
d8988b2f 4984Here is a summary of the declarations used to define a grammar:
bfa74976 4985
18b519c0 4986@deffn {Directive} %union
bfa74976
RS
4987Declare the collection of data types that semantic values may have
4988(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4989@end deffn
bfa74976 4990
18b519c0 4991@deffn {Directive} %token
bfa74976
RS
4992Declare a terminal symbol (token type name) with no precedence
4993or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4994@end deffn
bfa74976 4995
18b519c0 4996@deffn {Directive} %right
bfa74976
RS
4997Declare a terminal symbol (token type name) that is right-associative
4998(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4999@end deffn
bfa74976 5000
18b519c0 5001@deffn {Directive} %left
bfa74976
RS
5002Declare a terminal symbol (token type name) that is left-associative
5003(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5004@end deffn
bfa74976 5005
18b519c0 5006@deffn {Directive} %nonassoc
bfa74976 5007Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5008(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5009Using it in a way that would be associative is a syntax error.
5010@end deffn
5011
91d2c560 5012@ifset defaultprec
39a06c25 5013@deffn {Directive} %default-prec
22fccf95 5014Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5015(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5016@end deffn
91d2c560 5017@end ifset
bfa74976 5018
18b519c0 5019@deffn {Directive} %type
bfa74976
RS
5020Declare the type of semantic values for a nonterminal symbol
5021(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5022@end deffn
bfa74976 5023
18b519c0 5024@deffn {Directive} %start
89cab50d
AD
5025Specify the grammar's start symbol (@pxref{Start Decl, ,The
5026Start-Symbol}).
18b519c0 5027@end deffn
bfa74976 5028
18b519c0 5029@deffn {Directive} %expect
bfa74976
RS
5030Declare the expected number of shift-reduce conflicts
5031(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5032@end deffn
5033
bfa74976 5034
d8988b2f
AD
5035@sp 1
5036@noindent
5037In order to change the behavior of @command{bison}, use the following
5038directives:
5039
148d66d8 5040@deffn {Directive} %code @{@var{code}@}
e0c07222 5041@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5042@findex %code
e0c07222
JD
5043Insert @var{code} verbatim into the output parser source at the
5044default location or at the location specified by @var{qualifier}.
5045@xref{%code Summary}.
148d66d8
JD
5046@end deffn
5047
18b519c0 5048@deffn {Directive} %debug
fa819509
AD
5049Instrument the output parser for traces. Obsoleted by @samp{%define
5050parse.trace}.
ec3bc396 5051@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5052@end deffn
d8988b2f 5053
35c1e5f0
JD
5054@deffn {Directive} %define @var{variable}
5055@deffnx {Directive} %define @var{variable} @var{value}
5056@deffnx {Directive} %define @var{variable} "@var{value}"
5057Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5058@end deffn
5059
5060@deffn {Directive} %defines
5061Write a parser header file containing macro definitions for the token
5062type names defined in the grammar as well as a few other declarations.
5063If the parser implementation file is named @file{@var{name}.c} then
5064the parser header file is named @file{@var{name}.h}.
5065
5066For C parsers, the parser header file declares @code{YYSTYPE} unless
5067@code{YYSTYPE} is already defined as a macro or you have used a
5068@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5069you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5070Value Type}) with components that require other definitions, or if you
5071have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5072Type, ,Data Types of Semantic Values}), you need to arrange for these
5073definitions to be propagated to all modules, e.g., by putting them in
5074a prerequisite header that is included both by your parser and by any
5075other module that needs @code{YYSTYPE}.
5076
5077Unless your parser is pure, the parser header file declares
5078@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5079(Reentrant) Parser}.
5080
5081If you have also used locations, the parser header file declares
303834cc
JD
5082@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5083@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5084
5085This parser header file is normally essential if you wish to put the
5086definition of @code{yylex} in a separate source file, because
5087@code{yylex} typically needs to be able to refer to the
5088above-mentioned declarations and to the token type codes. @xref{Token
5089Values, ,Semantic Values of Tokens}.
5090
5091@findex %code requires
5092@findex %code provides
5093If you have declared @code{%code requires} or @code{%code provides}, the output
5094header also contains their code.
5095@xref{%code Summary}.
5096@end deffn
5097
5098@deffn {Directive} %defines @var{defines-file}
5099Same as above, but save in the file @var{defines-file}.
5100@end deffn
5101
5102@deffn {Directive} %destructor
5103Specify how the parser should reclaim the memory associated to
5104discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5105@end deffn
5106
5107@deffn {Directive} %file-prefix "@var{prefix}"
5108Specify a prefix to use for all Bison output file names. The names
5109are chosen as if the grammar file were named @file{@var{prefix}.y}.
5110@end deffn
5111
5112@deffn {Directive} %language "@var{language}"
5113Specify the programming language for the generated parser. Currently
5114supported languages include C, C++, and Java.
5115@var{language} is case-insensitive.
5116
5117This directive is experimental and its effect may be modified in future
5118releases.
5119@end deffn
5120
5121@deffn {Directive} %locations
5122Generate the code processing the locations (@pxref{Action Features,
5123,Special Features for Use in Actions}). This mode is enabled as soon as
5124the grammar uses the special @samp{@@@var{n}} tokens, but if your
5125grammar does not use it, using @samp{%locations} allows for more
5126accurate syntax error messages.
5127@end deffn
5128
5129@deffn {Directive} %name-prefix "@var{prefix}"
5130Rename the external symbols used in the parser so that they start with
5131@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5132in C parsers
5133is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5134@code{yylval}, @code{yychar}, @code{yydebug}, and
5135(if locations are used) @code{yylloc}. If you use a push parser,
5136@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5137@code{yypstate_new} and @code{yypstate_delete} will
5138also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5139names become @code{c_parse}, @code{c_lex}, and so on.
5140For C++ parsers, see the @samp{%define api.namespace} documentation in this
5141section.
5142@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5143@end deffn
5144
5145@ifset defaultprec
5146@deffn {Directive} %no-default-prec
5147Do not assign a precedence to rules lacking an explicit @code{%prec}
5148modifier (@pxref{Contextual Precedence, ,Context-Dependent
5149Precedence}).
5150@end deffn
5151@end ifset
5152
5153@deffn {Directive} %no-lines
5154Don't generate any @code{#line} preprocessor commands in the parser
5155implementation file. Ordinarily Bison writes these commands in the
5156parser implementation file so that the C compiler and debuggers will
5157associate errors and object code with your source file (the grammar
5158file). This directive causes them to associate errors with the parser
5159implementation file, treating it as an independent source file in its
5160own right.
5161@end deffn
5162
5163@deffn {Directive} %output "@var{file}"
5164Specify @var{file} for the parser implementation file.
5165@end deffn
5166
5167@deffn {Directive} %pure-parser
5168Deprecated version of @samp{%define api.pure} (@pxref{%define
5169Summary,,api.pure}), for which Bison is more careful to warn about
5170unreasonable usage.
5171@end deffn
5172
5173@deffn {Directive} %require "@var{version}"
5174Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5175Require a Version of Bison}.
5176@end deffn
5177
5178@deffn {Directive} %skeleton "@var{file}"
5179Specify the skeleton to use.
5180
5181@c You probably don't need this option unless you are developing Bison.
5182@c You should use @code{%language} if you want to specify the skeleton for a
5183@c different language, because it is clearer and because it will always choose the
5184@c correct skeleton for non-deterministic or push parsers.
5185
5186If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5187file in the Bison installation directory.
5188If it does, @var{file} is an absolute file name or a file name relative to the
5189directory of the grammar file.
5190This is similar to how most shells resolve commands.
5191@end deffn
5192
5193@deffn {Directive} %token-table
5194Generate an array of token names in the parser implementation file.
5195The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5196the name of the token whose internal Bison token code number is
5197@var{i}. The first three elements of @code{yytname} correspond to the
5198predefined tokens @code{"$end"}, @code{"error"}, and
5199@code{"$undefined"}; after these come the symbols defined in the
5200grammar file.
5201
5202The name in the table includes all the characters needed to represent
5203the token in Bison. For single-character literals and literal
5204strings, this includes the surrounding quoting characters and any
5205escape sequences. For example, the Bison single-character literal
5206@code{'+'} corresponds to a three-character name, represented in C as
5207@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5208corresponds to a five-character name, represented in C as
5209@code{"\"\\\\/\""}.
5210
5211When you specify @code{%token-table}, Bison also generates macro
5212definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5213@code{YYNRULES}, and @code{YYNSTATES}:
5214
5215@table @code
5216@item YYNTOKENS
5217The highest token number, plus one.
5218@item YYNNTS
5219The number of nonterminal symbols.
5220@item YYNRULES
5221The number of grammar rules,
5222@item YYNSTATES
5223The number of parser states (@pxref{Parser States}).
5224@end table
5225@end deffn
5226
5227@deffn {Directive} %verbose
5228Write an extra output file containing verbose descriptions of the
5229parser states and what is done for each type of lookahead token in
5230that state. @xref{Understanding, , Understanding Your Parser}, for more
5231information.
5232@end deffn
5233
5234@deffn {Directive} %yacc
5235Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5236including its naming conventions. @xref{Bison Options}, for more.
5237@end deffn
5238
5239
5240@node %define Summary
5241@subsection %define Summary
51151d91
JD
5242
5243There are many features of Bison's behavior that can be controlled by
5244assigning the feature a single value. For historical reasons, some
5245such features are assigned values by dedicated directives, such as
5246@code{%start}, which assigns the start symbol. However, newer such
5247features are associated with variables, which are assigned by the
5248@code{%define} directive:
5249
c1d19e10 5250@deffn {Directive} %define @var{variable}
cf499cff 5251@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5252@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5253Define @var{variable} to @var{value}.
9611cfa2 5254
51151d91
JD
5255@var{value} must be placed in quotation marks if it contains any
5256character other than a letter, underscore, period, or non-initial dash
5257or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5258to specifying @code{""}.
9611cfa2 5259
51151d91
JD
5260It is an error if a @var{variable} is defined by @code{%define}
5261multiple times, but see @ref{Bison Options,,-D
5262@var{name}[=@var{value}]}.
5263@end deffn
cf499cff 5264
51151d91
JD
5265The rest of this section summarizes variables and values that
5266@code{%define} accepts.
9611cfa2 5267
51151d91
JD
5268Some @var{variable}s take Boolean values. In this case, Bison will
5269complain if the variable definition does not meet one of the following
5270four conditions:
9611cfa2
JD
5271
5272@enumerate
cf499cff 5273@item @code{@var{value}} is @code{true}
9611cfa2 5274
cf499cff
JD
5275@item @code{@var{value}} is omitted (or @code{""} is specified).
5276This is equivalent to @code{true}.
9611cfa2 5277
cf499cff 5278@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5279
5280@item @var{variable} is never defined.
c6abeab1 5281In this case, Bison selects a default value.
9611cfa2 5282@end enumerate
148d66d8 5283
c6abeab1
JD
5284What @var{variable}s are accepted, as well as their meanings and default
5285values, depend on the selected target language and/or the parser
5286skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5287Summary,,%skeleton}).
5288Unaccepted @var{variable}s produce an error.
793fbca5
JD
5289Some of the accepted @var{variable}s are:
5290
fa819509 5291@table @code
6b5a0de9 5292@c ================================================== api.namespace
67501061
AD
5293@item api.namespace
5294@findex %define api.namespace
5295@itemize
5296@item Languages(s): C++
5297
f1b238df 5298@item Purpose: Specify the namespace for the parser class.
67501061
AD
5299For example, if you specify:
5300
5301@smallexample
5302%define api.namespace "foo::bar"
5303@end smallexample
5304
5305Bison uses @code{foo::bar} verbatim in references such as:
5306
5307@smallexample
5308foo::bar::parser::semantic_type
5309@end smallexample
5310
5311However, to open a namespace, Bison removes any leading @code{::} and then
5312splits on any remaining occurrences:
5313
5314@smallexample
5315namespace foo @{ namespace bar @{
5316 class position;
5317 class location;
5318@} @}
5319@end smallexample
5320
5321@item Accepted Values:
5322Any absolute or relative C++ namespace reference without a trailing
5323@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5324
5325@item Default Value:
5326The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5327This usage of @code{%name-prefix} is for backward compatibility and can
5328be confusing since @code{%name-prefix} also specifies the textual prefix
5329for the lexical analyzer function. Thus, if you specify
5330@code{%name-prefix}, it is best to also specify @samp{%define
5331api.namespace} so that @code{%name-prefix} @emph{only} affects the
5332lexical analyzer function. For example, if you specify:
5333
5334@smallexample
5335%define api.namespace "foo"
5336%name-prefix "bar::"
5337@end smallexample
5338
5339The parser namespace is @code{foo} and @code{yylex} is referenced as
5340@code{bar::lex}.
5341@end itemize
5342@c namespace
5343
5344
5345
5346@c ================================================== api.pure
d9df47b6
JD
5347@item api.pure
5348@findex %define api.pure
5349
5350@itemize @bullet
5351@item Language(s): C
5352
5353@item Purpose: Request a pure (reentrant) parser program.
5354@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5355
5356@item Accepted Values: Boolean
5357
cf499cff 5358@item Default Value: @code{false}
d9df47b6 5359@end itemize
71b00ed8 5360@c api.pure
d9df47b6 5361
67501061
AD
5362
5363
5364@c ================================================== api.push-pull
67212941
JD
5365@item api.push-pull
5366@findex %define api.push-pull
793fbca5
JD
5367
5368@itemize @bullet
eb45ef3b 5369@item Language(s): C (deterministic parsers only)
793fbca5 5370
f1b238df 5371@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5372@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5373(The current push parsing interface is experimental and may evolve.
5374More user feedback will help to stabilize it.)
793fbca5 5375
cf499cff 5376@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5377
cf499cff 5378@item Default Value: @code{pull}
793fbca5 5379@end itemize
67212941 5380@c api.push-pull
71b00ed8 5381
6b5a0de9
AD
5382
5383
5384@c ================================================== api.tokens.prefix
4c6622c2
AD
5385@item api.tokens.prefix
5386@findex %define api.tokens.prefix
5387
5388@itemize
5389@item Languages(s): all
5390
5391@item Purpose:
5392Add a prefix to the token names when generating their definition in the
5393target language. For instance
5394
5395@example
5396%token FILE for ERROR
5397%define api.tokens.prefix "TOK_"
5398%%
5399start: FILE for ERROR;
5400@end example
5401
5402@noindent
5403generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5404and @code{TOK_ERROR} in the generated source files. In particular, the
5405scanner must use these prefixed token names, while the grammar itself
5406may still use the short names (as in the sample rule given above). The
5407generated informational files (@file{*.output}, @file{*.xml},
5408@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5409and @ref{Calc++ Scanner}, for a complete example.
5410
5411@item Accepted Values:
5412Any string. Should be a valid identifier prefix in the target language,
5413in other words, it should typically be an identifier itself (sequence of
5414letters, underscores, and ---not at the beginning--- digits).
5415
5416@item Default Value:
5417empty
5418@end itemize
5419@c api.tokens.prefix
5420
5421
3cdc21cf 5422@c ================================================== lex_symbol
84072495 5423@item lex_symbol
3cdc21cf
AD
5424@findex %define lex_symbol
5425
5426@itemize @bullet
5427@item Language(s):
5428C++
5429
5430@item Purpose:
5431When variant-based semantic values are enabled (@pxref{C++ Variants}),
5432request that symbols be handled as a whole (type, value, and possibly
5433location) in the scanner. @xref{Complete Symbols}, for details.
5434
5435@item Accepted Values:
5436Boolean.
5437
5438@item Default Value:
5439@code{false}
5440@end itemize
5441@c lex_symbol
5442
5443
6b5a0de9
AD
5444@c ================================================== lr.default-reductions
5445
5bab9d08 5446@item lr.default-reductions
5bab9d08 5447@findex %define lr.default-reductions
eb45ef3b
JD
5448
5449@itemize @bullet
5450@item Language(s): all
5451
fcf834f9 5452@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5453contain default reductions. @xref{Default Reductions}. (The ability to
5454specify where default reductions should be used is experimental. More user
5455feedback will help to stabilize it.)
eb45ef3b 5456
f0ad1b2f 5457@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5458@item Default Value:
5459@itemize
cf499cff 5460@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5461@item @code{most} otherwise.
eb45ef3b
JD
5462@end itemize
5463@end itemize
5464
6b5a0de9
AD
5465@c ============================================ lr.keep-unreachable-states
5466
67212941
JD
5467@item lr.keep-unreachable-states
5468@findex %define lr.keep-unreachable-states
31984206
JD
5469
5470@itemize @bullet
5471@item Language(s): all
f1b238df 5472@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5473remain in the parser tables. @xref{Unreachable States}.
31984206 5474@item Accepted Values: Boolean
cf499cff 5475@item Default Value: @code{false}
31984206 5476@end itemize
67212941 5477@c lr.keep-unreachable-states
31984206 5478
6b5a0de9
AD
5479@c ================================================== lr.type
5480
eb45ef3b
JD
5481@item lr.type
5482@findex %define lr.type
eb45ef3b
JD
5483
5484@itemize @bullet
5485@item Language(s): all
5486
f1b238df 5487@item Purpose: Specify the type of parser tables within the
7fceb615 5488LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5489More user feedback will help to stabilize it.)
5490
7fceb615 5491@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5492
cf499cff 5493@item Default Value: @code{lalr}
eb45ef3b
JD
5494@end itemize
5495
67501061
AD
5496
5497@c ================================================== namespace
793fbca5
JD
5498@item namespace
5499@findex %define namespace
67501061 5500Obsoleted by @code{api.namespace}
fa819509
AD
5501@c namespace
5502
31b850d2
AD
5503
5504@c ================================================== parse.assert
0c90a1f5
AD
5505@item parse.assert
5506@findex %define parse.assert
5507
5508@itemize
5509@item Languages(s): C++
5510
5511@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5512In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5513constructed and
0c90a1f5
AD
5514destroyed properly. This option checks these constraints.
5515
5516@item Accepted Values: Boolean
5517
5518@item Default Value: @code{false}
5519@end itemize
5520@c parse.assert
5521
31b850d2
AD
5522
5523@c ================================================== parse.error
5524@item parse.error
5525@findex %define parse.error
5526@itemize
5527@item Languages(s):
fcf834f9 5528all
31b850d2
AD
5529@item Purpose:
5530Control the kind of error messages passed to the error reporting
5531function. @xref{Error Reporting, ,The Error Reporting Function
5532@code{yyerror}}.
5533@item Accepted Values:
5534@itemize
cf499cff 5535@item @code{simple}
31b850d2
AD
5536Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5537error"}}.
cf499cff 5538@item @code{verbose}
7fceb615
JD
5539Error messages report the unexpected token, and possibly the expected ones.
5540However, this report can often be incorrect when LAC is not enabled
5541(@pxref{LAC}).
31b850d2
AD
5542@end itemize
5543
5544@item Default Value:
5545@code{simple}
5546@end itemize
5547@c parse.error
5548
5549
fcf834f9
JD
5550@c ================================================== parse.lac
5551@item parse.lac
5552@findex %define parse.lac
fcf834f9
JD
5553
5554@itemize
7fceb615 5555@item Languages(s): C (deterministic parsers only)
fcf834f9 5556
8a4281b9 5557@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5558syntax error handling. @xref{LAC}.
fcf834f9 5559@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5560@item Default Value: @code{none}
5561@end itemize
5562@c parse.lac
5563
31b850d2 5564@c ================================================== parse.trace
fa819509
AD
5565@item parse.trace
5566@findex %define parse.trace
5567
5568@itemize
5569@item Languages(s): C, C++
5570
5571@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5572In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5573file if it is not already defined, so that the debugging facilities are
5574compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5575
fa819509
AD
5576@item Accepted Values: Boolean
5577
5578@item Default Value: @code{false}
5579@end itemize
fa819509 5580@c parse.trace
99c08fb6 5581
3cdc21cf
AD
5582@c ================================================== variant
5583@item variant
5584@findex %define variant
5585
5586@itemize @bullet
5587@item Language(s):
5588C++
5589
5590@item Purpose:
f1b238df 5591Request variant-based semantic values.
3cdc21cf
AD
5592@xref{C++ Variants}.
5593
5594@item Accepted Values:
5595Boolean.
5596
5597@item Default Value:
5598@code{false}
5599@end itemize
5600@c variant
99c08fb6 5601@end table
592d0b1e 5602
d8988b2f 5603
e0c07222
JD
5604@node %code Summary
5605@subsection %code Summary
e0c07222 5606@findex %code
e0c07222 5607@cindex Prologue
51151d91
JD
5608
5609The @code{%code} directive inserts code verbatim into the output
5610parser source at any of a predefined set of locations. It thus serves
5611as a flexible and user-friendly alternative to the traditional Yacc
5612prologue, @code{%@{@var{code}%@}}. This section summarizes the
5613functionality of @code{%code} for the various target languages
5614supported by Bison. For a detailed discussion of how to use
5615@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5616is advantageous to do so, @pxref{Prologue Alternatives}.
5617
5618@deffn {Directive} %code @{@var{code}@}
5619This is the unqualified form of the @code{%code} directive. It
5620inserts @var{code} verbatim at a language-dependent default location
5621in the parser implementation.
5622
e0c07222 5623For C/C++, the default location is the parser implementation file
51151d91
JD
5624after the usual contents of the parser header file. Thus, the
5625unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5626
5627For Java, the default location is inside the parser class.
5628@end deffn
5629
5630@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5631This is the qualified form of the @code{%code} directive.
51151d91
JD
5632@var{qualifier} identifies the purpose of @var{code} and thus the
5633location(s) where Bison should insert it. That is, if you need to
5634specify location-sensitive @var{code} that does not belong at the
5635default location selected by the unqualified @code{%code} form, use
5636this form instead.
5637@end deffn
5638
5639For any particular qualifier or for the unqualified form, if there are
5640multiple occurrences of the @code{%code} directive, Bison concatenates
5641the specified code in the order in which it appears in the grammar
5642file.
e0c07222 5643
51151d91
JD
5644Not all qualifiers are accepted for all target languages. Unaccepted
5645qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5646
84072495 5647@table @code
e0c07222
JD
5648@item requires
5649@findex %code requires
5650
5651@itemize @bullet
5652@item Language(s): C, C++
5653
5654@item Purpose: This is the best place to write dependency code required for
5655@code{YYSTYPE} and @code{YYLTYPE}.
5656In other words, it's the best place to define types referenced in @code{%union}
5657directives, and it's the best place to override Bison's default @code{YYSTYPE}
5658and @code{YYLTYPE} definitions.
5659
5660@item Location(s): The parser header file and the parser implementation file
5661before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5662definitions.
5663@end itemize
5664
5665@item provides
5666@findex %code provides
5667
5668@itemize @bullet
5669@item Language(s): C, C++
5670
5671@item Purpose: This is the best place to write additional definitions and
5672declarations that should be provided to other modules.
5673
5674@item Location(s): The parser header file and the parser implementation
5675file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5676token definitions.
5677@end itemize
5678
5679@item top
5680@findex %code top
5681
5682@itemize @bullet
5683@item Language(s): C, C++
5684
5685@item Purpose: The unqualified @code{%code} or @code{%code requires}
5686should usually be more appropriate than @code{%code top}. However,
5687occasionally it is necessary to insert code much nearer the top of the
5688parser implementation file. For example:
5689
5690@smallexample
5691%code top @{
5692 #define _GNU_SOURCE
5693 #include <stdio.h>
5694@}
5695@end smallexample
5696
5697@item Location(s): Near the top of the parser implementation file.
5698@end itemize
5699
5700@item imports
5701@findex %code imports
5702
5703@itemize @bullet
5704@item Language(s): Java
5705
5706@item Purpose: This is the best place to write Java import directives.
5707
5708@item Location(s): The parser Java file after any Java package directive and
5709before any class definitions.
5710@end itemize
84072495 5711@end table
e0c07222 5712
51151d91
JD
5713Though we say the insertion locations are language-dependent, they are
5714technically skeleton-dependent. Writers of non-standard skeletons
5715however should choose their locations consistently with the behavior
5716of the standard Bison skeletons.
e0c07222 5717
d8988b2f 5718
342b8b6e 5719@node Multiple Parsers
bfa74976
RS
5720@section Multiple Parsers in the Same Program
5721
5722Most programs that use Bison parse only one language and therefore contain
5723only one Bison parser. But what if you want to parse more than one
5724language with the same program? Then you need to avoid a name conflict
5725between different definitions of @code{yyparse}, @code{yylval}, and so on.
5726
5727The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5728(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5729functions and variables of the Bison parser to start with @var{prefix}
5730instead of @samp{yy}. You can use this to give each parser distinct
5731names that do not conflict.
bfa74976
RS
5732
5733The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5734@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5735@code{yychar} and @code{yydebug}. If you use a push parser,
5736@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5737@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5738For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5739@code{clex}, and so on.
bfa74976
RS
5740
5741@strong{All the other variables and macros associated with Bison are not
5742renamed.} These others are not global; there is no conflict if the same
5743name is used in different parsers. For example, @code{YYSTYPE} is not
5744renamed, but defining this in different ways in different parsers causes
5745no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5746
ff7571c0
JD
5747The @samp{-p} option works by adding macro definitions to the
5748beginning of the parser implementation file, defining @code{yyparse}
5749as @code{@var{prefix}parse}, and so on. This effectively substitutes
5750one name for the other in the entire parser implementation file.
bfa74976 5751
342b8b6e 5752@node Interface
bfa74976
RS
5753@chapter Parser C-Language Interface
5754@cindex C-language interface
5755@cindex interface
5756
5757The Bison parser is actually a C function named @code{yyparse}. Here we
5758describe the interface conventions of @code{yyparse} and the other
5759functions that it needs to use.
5760
5761Keep in mind that the parser uses many C identifiers starting with
5762@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5763identifier (aside from those in this manual) in an action or in epilogue
5764in the grammar file, you are likely to run into trouble.
bfa74976
RS
5765
5766@menu
f5f419de
DJ
5767* Parser Function:: How to call @code{yyparse} and what it returns.
5768* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5769* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5770* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5771* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5772* Lexical:: You must supply a function @code{yylex}
5773 which reads tokens.
5774* Error Reporting:: You must supply a function @code{yyerror}.
5775* Action Features:: Special features for use in actions.
5776* Internationalization:: How to let the parser speak in the user's
5777 native language.
bfa74976
RS
5778@end menu
5779
342b8b6e 5780@node Parser Function
bfa74976
RS
5781@section The Parser Function @code{yyparse}
5782@findex yyparse
5783
5784You call the function @code{yyparse} to cause parsing to occur. This
5785function reads tokens, executes actions, and ultimately returns when it
5786encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5787write an action which directs @code{yyparse} to return immediately
5788without reading further.
bfa74976 5789
2a8d363a
AD
5790
5791@deftypefun int yyparse (void)
bfa74976
RS
5792The value returned by @code{yyparse} is 0 if parsing was successful (return
5793is due to end-of-input).
5794
b47dbebe
PE
5795The value is 1 if parsing failed because of invalid input, i.e., input
5796that contains a syntax error or that causes @code{YYABORT} to be
5797invoked.
5798
5799The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5800@end deftypefun
bfa74976
RS
5801
5802In an action, you can cause immediate return from @code{yyparse} by using
5803these macros:
5804
2a8d363a 5805@defmac YYACCEPT
bfa74976
RS
5806@findex YYACCEPT
5807Return immediately with value 0 (to report success).
2a8d363a 5808@end defmac
bfa74976 5809
2a8d363a 5810@defmac YYABORT
bfa74976
RS
5811@findex YYABORT
5812Return immediately with value 1 (to report failure).
2a8d363a
AD
5813@end defmac
5814
5815If you use a reentrant parser, you can optionally pass additional
5816parameter information to it in a reentrant way. To do so, use the
5817declaration @code{%parse-param}:
5818
2055a44e 5819@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5820@findex %parse-param
2055a44e
AD
5821Declare that one or more
5822@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5823The @var{argument-declaration} is used when declaring
feeb0eda
PE
5824functions or prototypes. The last identifier in
5825@var{argument-declaration} must be the argument name.
2a8d363a
AD
5826@end deffn
5827
5828Here's an example. Write this in the parser:
5829
5830@example
2055a44e 5831%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5832@end example
5833
5834@noindent
5835Then call the parser like this:
5836
5837@example
5838@{
5839 int nastiness, randomness;
5840 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5841 value = yyparse (&nastiness, &randomness);
5842 @dots{}
5843@}
5844@end example
5845
5846@noindent
5847In the grammar actions, use expressions like this to refer to the data:
5848
5849@example
5850exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5851@end example
5852
9987d1b3
JD
5853@node Push Parser Function
5854@section The Push Parser Function @code{yypush_parse}
5855@findex yypush_parse
5856
59da312b
JD
5857(The current push parsing interface is experimental and may evolve.
5858More user feedback will help to stabilize it.)
5859
f4101aa6 5860You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5861function is available if either the @samp{%define api.push-pull push} or
5862@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5863@xref{Push Decl, ,A Push Parser}.
5864
5865@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5866The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5867following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5868is required to finish parsing the grammar.
5869@end deftypefun
5870
5871@node Pull Parser Function
5872@section The Pull Parser Function @code{yypull_parse}
5873@findex yypull_parse
5874
59da312b
JD
5875(The current push parsing interface is experimental and may evolve.
5876More user feedback will help to stabilize it.)
5877
f4101aa6 5878You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5879stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5880declaration is used.
9987d1b3
JD
5881@xref{Push Decl, ,A Push Parser}.
5882
5883@deftypefun int yypull_parse (yypstate *yyps)
5884The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5885@end deftypefun
5886
5887@node Parser Create Function
5888@section The Parser Create Function @code{yystate_new}
5889@findex yypstate_new
5890
59da312b
JD
5891(The current push parsing interface is experimental and may evolve.
5892More user feedback will help to stabilize it.)
5893
f4101aa6 5894You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5895This function is available if either the @samp{%define api.push-pull push} or
5896@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5897@xref{Push Decl, ,A Push Parser}.
5898
5899@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5900The function will return a valid parser instance if there was memory available
333e670c
JD
5901or 0 if no memory was available.
5902In impure mode, it will also return 0 if a parser instance is currently
5903allocated.
9987d1b3
JD
5904@end deftypefun
5905
5906@node Parser Delete Function
5907@section The Parser Delete Function @code{yystate_delete}
5908@findex yypstate_delete
5909
59da312b
JD
5910(The current push parsing interface is experimental and may evolve.
5911More user feedback will help to stabilize it.)
5912
9987d1b3 5913You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5914function is available if either the @samp{%define api.push-pull push} or
5915@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5916@xref{Push Decl, ,A Push Parser}.
5917
5918@deftypefun void yypstate_delete (yypstate *yyps)
5919This function will reclaim the memory associated with a parser instance.
5920After this call, you should no longer attempt to use the parser instance.
5921@end deftypefun
bfa74976 5922
342b8b6e 5923@node Lexical
bfa74976
RS
5924@section The Lexical Analyzer Function @code{yylex}
5925@findex yylex
5926@cindex lexical analyzer
5927
5928The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5929the input stream and returns them to the parser. Bison does not create
5930this function automatically; you must write it so that @code{yyparse} can
5931call it. The function is sometimes referred to as a lexical scanner.
5932
ff7571c0
JD
5933In simple programs, @code{yylex} is often defined at the end of the
5934Bison grammar file. If @code{yylex} is defined in a separate source
5935file, you need to arrange for the token-type macro definitions to be
5936available there. To do this, use the @samp{-d} option when you run
5937Bison, so that it will write these macro definitions into the separate
5938parser header file, @file{@var{name}.tab.h}, which you can include in
5939the other source files that need it. @xref{Invocation, ,Invoking
5940Bison}.
bfa74976
RS
5941
5942@menu
5943* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5944* Token Values:: How @code{yylex} must return the semantic value
5945 of the token it has read.
5946* Token Locations:: How @code{yylex} must return the text location
5947 (line number, etc.) of the token, if the
5948 actions want that.
5949* Pure Calling:: How the calling convention differs in a pure parser
5950 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5951@end menu
5952
342b8b6e 5953@node Calling Convention
bfa74976
RS
5954@subsection Calling Convention for @code{yylex}
5955
72d2299c
PE
5956The value that @code{yylex} returns must be the positive numeric code
5957for the type of token it has just found; a zero or negative value
5958signifies end-of-input.
bfa74976
RS
5959
5960When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
5961in the parser implementation file becomes a C macro whose definition
5962is the proper numeric code for that token type. So @code{yylex} can
5963use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5964
5965When a token is referred to in the grammar rules by a character literal,
5966the numeric code for that character is also the code for the token type.
72d2299c
PE
5967So @code{yylex} can simply return that character code, possibly converted
5968to @code{unsigned char} to avoid sign-extension. The null character
5969must not be used this way, because its code is zero and that
bfa74976
RS
5970signifies end-of-input.
5971
5972Here is an example showing these things:
5973
5974@example
13863333
AD
5975int
5976yylex (void)
bfa74976
RS
5977@{
5978 @dots{}
72d2299c 5979 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5980 return 0;
5981 @dots{}
5982 if (c == '+' || c == '-')
72d2299c 5983 return c; /* Assume token type for `+' is '+'. */
bfa74976 5984 @dots{}
72d2299c 5985 return INT; /* Return the type of the token. */
bfa74976
RS
5986 @dots{}
5987@}
5988@end example
5989
5990@noindent
5991This interface has been designed so that the output from the @code{lex}
5992utility can be used without change as the definition of @code{yylex}.
5993
931c7513
RS
5994If the grammar uses literal string tokens, there are two ways that
5995@code{yylex} can determine the token type codes for them:
5996
5997@itemize @bullet
5998@item
5999If the grammar defines symbolic token names as aliases for the
6000literal string tokens, @code{yylex} can use these symbolic names like
6001all others. In this case, the use of the literal string tokens in
6002the grammar file has no effect on @code{yylex}.
6003
6004@item
9ecbd125 6005@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6006table. The index of the token in the table is the token type's code.
9ecbd125 6007The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6008double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6009token's characters are escaped as necessary to be suitable as input
6010to Bison.
931c7513 6011
9e0876fb
PE
6012Here's code for looking up a multicharacter token in @code{yytname},
6013assuming that the characters of the token are stored in
6014@code{token_buffer}, and assuming that the token does not contain any
6015characters like @samp{"} that require escaping.
931c7513
RS
6016
6017@smallexample
6018for (i = 0; i < YYNTOKENS; i++)
6019 @{
6020 if (yytname[i] != 0
6021 && yytname[i][0] == '"'
68449b3a
PE
6022 && ! strncmp (yytname[i] + 1, token_buffer,
6023 strlen (token_buffer))
931c7513
RS
6024 && yytname[i][strlen (token_buffer) + 1] == '"'
6025 && yytname[i][strlen (token_buffer) + 2] == 0)
6026 break;
6027 @}
6028@end smallexample
6029
6030The @code{yytname} table is generated only if you use the
8c9a50be 6031@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6032@end itemize
6033
342b8b6e 6034@node Token Values
bfa74976
RS
6035@subsection Semantic Values of Tokens
6036
6037@vindex yylval
9d9b8b70 6038In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6039be stored into the global variable @code{yylval}. When you are using
6040just one data type for semantic values, @code{yylval} has that type.
6041Thus, if the type is @code{int} (the default), you might write this in
6042@code{yylex}:
6043
6044@example
6045@group
6046 @dots{}
72d2299c
PE
6047 yylval = value; /* Put value onto Bison stack. */
6048 return INT; /* Return the type of the token. */
bfa74976
RS
6049 @dots{}
6050@end group
6051@end example
6052
6053When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6054made from the @code{%union} declaration (@pxref{Union Decl, ,The
6055Collection of Value Types}). So when you store a token's value, you
6056must use the proper member of the union. If the @code{%union}
6057declaration looks like this:
bfa74976
RS
6058
6059@example
6060@group
6061%union @{
6062 int intval;
6063 double val;
6064 symrec *tptr;
6065@}
6066@end group
6067@end example
6068
6069@noindent
6070then the code in @code{yylex} might look like this:
6071
6072@example
6073@group
6074 @dots{}
72d2299c
PE
6075 yylval.intval = value; /* Put value onto Bison stack. */
6076 return INT; /* Return the type of the token. */
bfa74976
RS
6077 @dots{}
6078@end group
6079@end example
6080
95923bd6
AD
6081@node Token Locations
6082@subsection Textual Locations of Tokens
bfa74976
RS
6083
6084@vindex yylloc
303834cc
JD
6085If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6086in actions to keep track of the textual locations of tokens and groupings,
6087then you must provide this information in @code{yylex}. The function
6088@code{yyparse} expects to find the textual location of a token just parsed
6089in the global variable @code{yylloc}. So @code{yylex} must store the proper
6090data in that variable.
847bf1f5
AD
6091
6092By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6093initialize the members that are going to be used by the actions. The
6094four members are called @code{first_line}, @code{first_column},
6095@code{last_line} and @code{last_column}. Note that the use of this
6096feature makes the parser noticeably slower.
bfa74976
RS
6097
6098@tindex YYLTYPE
6099The data type of @code{yylloc} has the name @code{YYLTYPE}.
6100
342b8b6e 6101@node Pure Calling
c656404a 6102@subsection Calling Conventions for Pure Parsers
bfa74976 6103
67501061 6104When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6105pure, reentrant parser, the global communication variables @code{yylval}
6106and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6107Parser}.) In such parsers the two global variables are replaced by
6108pointers passed as arguments to @code{yylex}. You must declare them as
6109shown here, and pass the information back by storing it through those
6110pointers.
bfa74976
RS
6111
6112@example
13863333
AD
6113int
6114yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6115@{
6116 @dots{}
6117 *lvalp = value; /* Put value onto Bison stack. */
6118 return INT; /* Return the type of the token. */
6119 @dots{}
6120@}
6121@end example
6122
6123If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6124textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6125this case, omit the second argument; @code{yylex} will be called with
6126only one argument.
6127
2055a44e 6128If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6129@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6130Function}). To pass additional arguments to both @code{yylex} and
6131@code{yyparse}, use @code{%param}.
e425e872 6132
2055a44e 6133@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6134@findex %lex-param
2055a44e
AD
6135Specify that @var{argument-declaration} are additional @code{yylex} argument
6136declarations. You may pass one or more such declarations, which is
6137equivalent to repeating @code{%lex-param}.
6138@end deffn
6139
6140@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6141@findex %param
6142Specify that @var{argument-declaration} are additional
6143@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6144@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6145@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6146declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6147@end deffn
e425e872 6148
2a8d363a 6149For instance:
e425e872
RS
6150
6151@example
2055a44e
AD
6152%lex-param @{scanner_mode *mode@}
6153%parse-param @{parser_mode *mode@}
6154%param @{environment_type *env@}
e425e872
RS
6155@end example
6156
6157@noindent
2a8d363a 6158results in the following signature:
e425e872
RS
6159
6160@example
2055a44e
AD
6161int yylex (scanner_mode *mode, environment_type *env);
6162int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6163@end example
6164
67501061 6165If @samp{%define api.pure} is added:
c656404a
RS
6166
6167@example
2055a44e
AD
6168int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6169int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6170@end example
6171
2a8d363a 6172@noindent
67501061 6173and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6174
2a8d363a 6175@example
2055a44e
AD
6176int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6177 scanner_mode *mode, environment_type *env);
6178int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6179@end example
931c7513 6180
342b8b6e 6181@node Error Reporting
bfa74976
RS
6182@section The Error Reporting Function @code{yyerror}
6183@cindex error reporting function
6184@findex yyerror
6185@cindex parse error
6186@cindex syntax error
6187
31b850d2 6188The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6189whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6190action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6191macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6192in Actions}).
bfa74976
RS
6193
6194The Bison parser expects to report the error by calling an error
6195reporting function named @code{yyerror}, which you must supply. It is
6196called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6197receives one argument. For a syntax error, the string is normally
6198@w{@code{"syntax error"}}.
bfa74976 6199
31b850d2 6200@findex %define parse.error
7fceb615
JD
6201If you invoke @samp{%define parse.error verbose} in the Bison declarations
6202section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6203Bison provides a more verbose and specific error message string instead of
6204just plain @w{@code{"syntax error"}}. However, that message sometimes
6205contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6206
1a059451
PE
6207The parser can detect one other kind of error: memory exhaustion. This
6208can happen when the input contains constructions that are very deeply
bfa74976 6209nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6210parser normally extends its stack automatically up to a very large limit. But
6211if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6212fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6213
6214In some cases diagnostics like @w{@code{"syntax error"}} are
6215translated automatically from English to some other language before
6216they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6217
6218The following definition suffices in simple programs:
6219
6220@example
6221@group
13863333 6222void
38a92d50 6223yyerror (char const *s)
bfa74976
RS
6224@{
6225@end group
6226@group
6227 fprintf (stderr, "%s\n", s);
6228@}
6229@end group
6230@end example
6231
6232After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6233error recovery if you have written suitable error recovery grammar rules
6234(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6235immediately return 1.
6236
93724f13 6237Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6238an access to the current location.
8a4281b9 6239This is indeed the case for the GLR
2a8d363a 6240parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6241@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6242@code{yyerror} are:
6243
6244@example
38a92d50
PE
6245void yyerror (char const *msg); /* Yacc parsers. */
6246void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6247@end example
6248
feeb0eda 6249If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6250
6251@example
b317297e
PE
6252void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6253void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6254@end example
6255
8a4281b9 6256Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6257convention for absolutely pure parsers, i.e., when the calling
6258convention of @code{yylex} @emph{and} the calling convention of
67501061 6259@samp{%define api.pure} are pure.
d9df47b6 6260I.e.:
2a8d363a
AD
6261
6262@example
6263/* Location tracking. */
6264%locations
6265/* Pure yylex. */
d9df47b6 6266%define api.pure
feeb0eda 6267%lex-param @{int *nastiness@}
2a8d363a 6268/* Pure yyparse. */
feeb0eda
PE
6269%parse-param @{int *nastiness@}
6270%parse-param @{int *randomness@}
2a8d363a
AD
6271@end example
6272
6273@noindent
6274results in the following signatures for all the parser kinds:
6275
6276@example
6277int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6278int yyparse (int *nastiness, int *randomness);
93724f13
AD
6279void yyerror (YYLTYPE *locp,
6280 int *nastiness, int *randomness,
38a92d50 6281 char const *msg);
2a8d363a
AD
6282@end example
6283
1c0c3e95 6284@noindent
38a92d50
PE
6285The prototypes are only indications of how the code produced by Bison
6286uses @code{yyerror}. Bison-generated code always ignores the returned
6287value, so @code{yyerror} can return any type, including @code{void}.
6288Also, @code{yyerror} can be a variadic function; that is why the
6289message is always passed last.
6290
6291Traditionally @code{yyerror} returns an @code{int} that is always
6292ignored, but this is purely for historical reasons, and @code{void} is
6293preferable since it more accurately describes the return type for
6294@code{yyerror}.
93724f13 6295
bfa74976
RS
6296@vindex yynerrs
6297The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6298reported so far. Normally this variable is global; but if you
704a47c4
AD
6299request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6300then it is a local variable which only the actions can access.
bfa74976 6301
342b8b6e 6302@node Action Features
bfa74976
RS
6303@section Special Features for Use in Actions
6304@cindex summary, action features
6305@cindex action features summary
6306
6307Here is a table of Bison constructs, variables and macros that
6308are useful in actions.
6309
18b519c0 6310@deffn {Variable} $$
bfa74976
RS
6311Acts like a variable that contains the semantic value for the
6312grouping made by the current rule. @xref{Actions}.
18b519c0 6313@end deffn
bfa74976 6314
18b519c0 6315@deffn {Variable} $@var{n}
bfa74976
RS
6316Acts like a variable that contains the semantic value for the
6317@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6318@end deffn
bfa74976 6319
18b519c0 6320@deffn {Variable} $<@var{typealt}>$
bfa74976 6321Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6322specified by the @code{%union} declaration. @xref{Action Types, ,Data
6323Types of Values in Actions}.
18b519c0 6324@end deffn
bfa74976 6325
18b519c0 6326@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6327Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6328union specified by the @code{%union} declaration.
e0c471a9 6329@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6330@end deffn
bfa74976 6331
18b519c0 6332@deffn {Macro} YYABORT;
bfa74976
RS
6333Return immediately from @code{yyparse}, indicating failure.
6334@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6335@end deffn
bfa74976 6336
18b519c0 6337@deffn {Macro} YYACCEPT;
bfa74976
RS
6338Return immediately from @code{yyparse}, indicating success.
6339@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6340@end deffn
bfa74976 6341
18b519c0 6342@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6343@findex YYBACKUP
6344Unshift a token. This macro is allowed only for rules that reduce
742e4900 6345a single value, and only when there is no lookahead token.
8a4281b9 6346It is also disallowed in GLR parsers.
742e4900 6347It installs a lookahead token with token type @var{token} and
bfa74976
RS
6348semantic value @var{value}; then it discards the value that was
6349going to be reduced by this rule.
6350
6351If the macro is used when it is not valid, such as when there is
742e4900 6352a lookahead token already, then it reports a syntax error with
bfa74976
RS
6353a message @samp{cannot back up} and performs ordinary error
6354recovery.
6355
6356In either case, the rest of the action is not executed.
18b519c0 6357@end deffn
bfa74976 6358
18b519c0 6359@deffn {Macro} YYEMPTY
bfa74976 6360@vindex YYEMPTY
742e4900 6361Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6362@end deffn
bfa74976 6363
32c29292
JD
6364@deffn {Macro} YYEOF
6365@vindex YYEOF
742e4900 6366Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6367stream.
6368@end deffn
6369
18b519c0 6370@deffn {Macro} YYERROR;
bfa74976
RS
6371@findex YYERROR
6372Cause an immediate syntax error. This statement initiates error
6373recovery just as if the parser itself had detected an error; however, it
6374does not call @code{yyerror}, and does not print any message. If you
6375want to print an error message, call @code{yyerror} explicitly before
6376the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6377@end deffn
bfa74976 6378
18b519c0 6379@deffn {Macro} YYRECOVERING
02103984
PE
6380@findex YYRECOVERING
6381The expression @code{YYRECOVERING ()} yields 1 when the parser
6382is recovering from a syntax error, and 0 otherwise.
bfa74976 6383@xref{Error Recovery}.
18b519c0 6384@end deffn
bfa74976 6385
18b519c0 6386@deffn {Variable} yychar
742e4900
JD
6387Variable containing either the lookahead token, or @code{YYEOF} when the
6388lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6389has been performed so the next token is not yet known.
6390Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6391Actions}).
742e4900 6392@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6393@end deffn
bfa74976 6394
18b519c0 6395@deffn {Macro} yyclearin;
742e4900 6396Discard the current lookahead token. This is useful primarily in
32c29292
JD
6397error rules.
6398Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6399Semantic Actions}).
6400@xref{Error Recovery}.
18b519c0 6401@end deffn
bfa74976 6402
18b519c0 6403@deffn {Macro} yyerrok;
bfa74976 6404Resume generating error messages immediately for subsequent syntax
13863333 6405errors. This is useful primarily in error rules.
bfa74976 6406@xref{Error Recovery}.
18b519c0 6407@end deffn
bfa74976 6408
32c29292 6409@deffn {Variable} yylloc
742e4900 6410Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6411to @code{YYEMPTY} or @code{YYEOF}.
6412Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6413Actions}).
6414@xref{Actions and Locations, ,Actions and Locations}.
6415@end deffn
6416
6417@deffn {Variable} yylval
742e4900 6418Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6419not set to @code{YYEMPTY} or @code{YYEOF}.
6420Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6421Actions}).
6422@xref{Actions, ,Actions}.
6423@end deffn
6424
18b519c0 6425@deffn {Value} @@$
847bf1f5 6426@findex @@$
303834cc
JD
6427Acts like a structure variable containing information on the textual
6428location of the grouping made by the current rule. @xref{Tracking
6429Locations}.
bfa74976 6430
847bf1f5
AD
6431@c Check if those paragraphs are still useful or not.
6432
6433@c @example
6434@c struct @{
6435@c int first_line, last_line;
6436@c int first_column, last_column;
6437@c @};
6438@c @end example
6439
6440@c Thus, to get the starting line number of the third component, you would
6441@c use @samp{@@3.first_line}.
bfa74976 6442
847bf1f5
AD
6443@c In order for the members of this structure to contain valid information,
6444@c you must make @code{yylex} supply this information about each token.
6445@c If you need only certain members, then @code{yylex} need only fill in
6446@c those members.
bfa74976 6447
847bf1f5 6448@c The use of this feature makes the parser noticeably slower.
18b519c0 6449@end deffn
847bf1f5 6450
18b519c0 6451@deffn {Value} @@@var{n}
847bf1f5 6452@findex @@@var{n}
303834cc
JD
6453Acts like a structure variable containing information on the textual
6454location of the @var{n}th component of the current rule. @xref{Tracking
6455Locations}.
18b519c0 6456@end deffn
bfa74976 6457
f7ab6a50
PE
6458@node Internationalization
6459@section Parser Internationalization
6460@cindex internationalization
6461@cindex i18n
6462@cindex NLS
6463@cindex gettext
6464@cindex bison-po
6465
6466A Bison-generated parser can print diagnostics, including error and
6467tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6468also supports outputting diagnostics in the user's native language. To
6469make this work, the user should set the usual environment variables.
6470@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6471For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6472set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6473encoding. The exact set of available locales depends on the user's
6474installation.
6475
6476The maintainer of a package that uses a Bison-generated parser enables
6477the internationalization of the parser's output through the following
8a4281b9
JD
6478steps. Here we assume a package that uses GNU Autoconf and
6479GNU Automake.
f7ab6a50
PE
6480
6481@enumerate
6482@item
30757c8c 6483@cindex bison-i18n.m4
8a4281b9 6484Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6485by the package---often called @file{m4}---copy the
6486@file{bison-i18n.m4} file installed by Bison under
6487@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6488For example:
6489
6490@example
6491cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6492@end example
6493
6494@item
30757c8c
PE
6495@findex BISON_I18N
6496@vindex BISON_LOCALEDIR
6497@vindex YYENABLE_NLS
f7ab6a50
PE
6498In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6499invocation, add an invocation of @code{BISON_I18N}. This macro is
6500defined in the file @file{bison-i18n.m4} that you copied earlier. It
6501causes @samp{configure} to find the value of the
30757c8c
PE
6502@code{BISON_LOCALEDIR} variable, and it defines the source-language
6503symbol @code{YYENABLE_NLS} to enable translations in the
6504Bison-generated parser.
f7ab6a50
PE
6505
6506@item
6507In the @code{main} function of your program, designate the directory
6508containing Bison's runtime message catalog, through a call to
6509@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6510For example:
6511
6512@example
6513bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6514@end example
6515
6516Typically this appears after any other call @code{bindtextdomain
6517(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6518@samp{BISON_LOCALEDIR} to be defined as a string through the
6519@file{Makefile}.
6520
6521@item
6522In the @file{Makefile.am} that controls the compilation of the @code{main}
6523function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6524either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6525
6526@example
6527DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6528@end example
6529
6530or:
6531
6532@example
6533AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6534@end example
6535
6536@item
6537Finally, invoke the command @command{autoreconf} to generate the build
6538infrastructure.
6539@end enumerate
6540
bfa74976 6541
342b8b6e 6542@node Algorithm
13863333
AD
6543@chapter The Bison Parser Algorithm
6544@cindex Bison parser algorithm
bfa74976
RS
6545@cindex algorithm of parser
6546@cindex shifting
6547@cindex reduction
6548@cindex parser stack
6549@cindex stack, parser
6550
6551As Bison reads tokens, it pushes them onto a stack along with their
6552semantic values. The stack is called the @dfn{parser stack}. Pushing a
6553token is traditionally called @dfn{shifting}.
6554
6555For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6556@samp{3} to come. The stack will have four elements, one for each token
6557that was shifted.
6558
6559But the stack does not always have an element for each token read. When
6560the last @var{n} tokens and groupings shifted match the components of a
6561grammar rule, they can be combined according to that rule. This is called
6562@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6563single grouping whose symbol is the result (left hand side) of that rule.
6564Running the rule's action is part of the process of reduction, because this
6565is what computes the semantic value of the resulting grouping.
6566
6567For example, if the infix calculator's parser stack contains this:
6568
6569@example
65701 + 5 * 3
6571@end example
6572
6573@noindent
6574and the next input token is a newline character, then the last three
6575elements can be reduced to 15 via the rule:
6576
6577@example
6578expr: expr '*' expr;
6579@end example
6580
6581@noindent
6582Then the stack contains just these three elements:
6583
6584@example
65851 + 15
6586@end example
6587
6588@noindent
6589At this point, another reduction can be made, resulting in the single value
659016. Then the newline token can be shifted.
6591
6592The parser tries, by shifts and reductions, to reduce the entire input down
6593to a single grouping whose symbol is the grammar's start-symbol
6594(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6595
6596This kind of parser is known in the literature as a bottom-up parser.
6597
6598@menu
742e4900 6599* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6600* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6601* Precedence:: Operator precedence works by resolving conflicts.
6602* Contextual Precedence:: When an operator's precedence depends on context.
6603* Parser States:: The parser is a finite-state-machine with stack.
6604* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6605* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6606* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6607* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6608* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6609@end menu
6610
742e4900
JD
6611@node Lookahead
6612@section Lookahead Tokens
6613@cindex lookahead token
bfa74976
RS
6614
6615The Bison parser does @emph{not} always reduce immediately as soon as the
6616last @var{n} tokens and groupings match a rule. This is because such a
6617simple strategy is inadequate to handle most languages. Instead, when a
6618reduction is possible, the parser sometimes ``looks ahead'' at the next
6619token in order to decide what to do.
6620
6621When a token is read, it is not immediately shifted; first it becomes the
742e4900 6622@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6623perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6624the lookahead token remains off to the side. When no more reductions
6625should take place, the lookahead token is shifted onto the stack. This
bfa74976 6626does not mean that all possible reductions have been done; depending on the
742e4900 6627token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6628application.
6629
742e4900 6630Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6631expressions which contain binary addition operators and postfix unary
6632factorial operators (@samp{!}), and allow parentheses for grouping.
6633
6634@example
6635@group
6636expr: term '+' expr
6637 | term
6638 ;
6639@end group
6640
6641@group
6642term: '(' expr ')'
6643 | term '!'
6644 | NUMBER
6645 ;
6646@end group
6647@end example
6648
6649Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6650should be done? If the following token is @samp{)}, then the first three
6651tokens must be reduced to form an @code{expr}. This is the only valid
6652course, because shifting the @samp{)} would produce a sequence of symbols
6653@w{@code{term ')'}}, and no rule allows this.
6654
6655If the following token is @samp{!}, then it must be shifted immediately so
6656that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6657parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6658@code{expr}. It would then be impossible to shift the @samp{!} because
6659doing so would produce on the stack the sequence of symbols @code{expr
6660'!'}. No rule allows that sequence.
6661
6662@vindex yychar
32c29292
JD
6663@vindex yylval
6664@vindex yylloc
742e4900 6665The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6666Its semantic value and location, if any, are stored in the variables
6667@code{yylval} and @code{yylloc}.
bfa74976
RS
6668@xref{Action Features, ,Special Features for Use in Actions}.
6669
342b8b6e 6670@node Shift/Reduce
bfa74976
RS
6671@section Shift/Reduce Conflicts
6672@cindex conflicts
6673@cindex shift/reduce conflicts
6674@cindex dangling @code{else}
6675@cindex @code{else}, dangling
6676
6677Suppose we are parsing a language which has if-then and if-then-else
6678statements, with a pair of rules like this:
6679
6680@example
6681@group
6682if_stmt:
6683 IF expr THEN stmt
6684 | IF expr THEN stmt ELSE stmt
6685 ;
6686@end group
6687@end example
6688
6689@noindent
6690Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6691terminal symbols for specific keyword tokens.
6692
742e4900 6693When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6694contents of the stack (assuming the input is valid) are just right for
6695reduction by the first rule. But it is also legitimate to shift the
6696@code{ELSE}, because that would lead to eventual reduction by the second
6697rule.
6698
6699This situation, where either a shift or a reduction would be valid, is
6700called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6701these conflicts by choosing to shift, unless otherwise directed by
6702operator precedence declarations. To see the reason for this, let's
6703contrast it with the other alternative.
6704
6705Since the parser prefers to shift the @code{ELSE}, the result is to attach
6706the else-clause to the innermost if-statement, making these two inputs
6707equivalent:
6708
6709@example
6710if x then if y then win (); else lose;
6711
6712if x then do; if y then win (); else lose; end;
6713@end example
6714
6715But if the parser chose to reduce when possible rather than shift, the
6716result would be to attach the else-clause to the outermost if-statement,
6717making these two inputs equivalent:
6718
6719@example
6720if x then if y then win (); else lose;
6721
6722if x then do; if y then win (); end; else lose;
6723@end example
6724
6725The conflict exists because the grammar as written is ambiguous: either
6726parsing of the simple nested if-statement is legitimate. The established
6727convention is that these ambiguities are resolved by attaching the
6728else-clause to the innermost if-statement; this is what Bison accomplishes
6729by choosing to shift rather than reduce. (It would ideally be cleaner to
6730write an unambiguous grammar, but that is very hard to do in this case.)
6731This particular ambiguity was first encountered in the specifications of
6732Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6733
6734To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6735conflicts, use the @code{%expect @var{n}} declaration.
6736There will be no warning as long as the number of shift/reduce conflicts
6737is exactly @var{n}, and Bison will report an error if there is a
6738different number.
bfa74976
RS
6739@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6740
6741The definition of @code{if_stmt} above is solely to blame for the
6742conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6743rules. Here is a complete Bison grammar file that actually manifests
6744the conflict:
bfa74976
RS
6745
6746@example
6747@group
6748%token IF THEN ELSE variable
6749%%
6750@end group
6751@group
6752stmt: expr
6753 | if_stmt
6754 ;
6755@end group
6756
6757@group
6758if_stmt:
6759 IF expr THEN stmt
6760 | IF expr THEN stmt ELSE stmt
6761 ;
6762@end group
6763
6764expr: variable
6765 ;
6766@end example
6767
342b8b6e 6768@node Precedence
bfa74976
RS
6769@section Operator Precedence
6770@cindex operator precedence
6771@cindex precedence of operators
6772
6773Another situation where shift/reduce conflicts appear is in arithmetic
6774expressions. Here shifting is not always the preferred resolution; the
6775Bison declarations for operator precedence allow you to specify when to
6776shift and when to reduce.
6777
6778@menu
6779* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6780* Using Precedence:: How to specify precedence and associativity.
6781* Precedence Only:: How to specify precedence only.
bfa74976
RS
6782* Precedence Examples:: How these features are used in the previous example.
6783* How Precedence:: How they work.
6784@end menu
6785
342b8b6e 6786@node Why Precedence
bfa74976
RS
6787@subsection When Precedence is Needed
6788
6789Consider the following ambiguous grammar fragment (ambiguous because the
6790input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6791
6792@example
6793@group
6794expr: expr '-' expr
6795 | expr '*' expr
6796 | expr '<' expr
6797 | '(' expr ')'
6798 @dots{}
6799 ;
6800@end group
6801@end example
6802
6803@noindent
6804Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6805should it reduce them via the rule for the subtraction operator? It
6806depends on the next token. Of course, if the next token is @samp{)}, we
6807must reduce; shifting is invalid because no single rule can reduce the
6808token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6809the next token is @samp{*} or @samp{<}, we have a choice: either
6810shifting or reduction would allow the parse to complete, but with
6811different results.
6812
6813To decide which one Bison should do, we must consider the results. If
6814the next operator token @var{op} is shifted, then it must be reduced
6815first in order to permit another opportunity to reduce the difference.
6816The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6817hand, if the subtraction is reduced before shifting @var{op}, the result
6818is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6819reduce should depend on the relative precedence of the operators
6820@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6821@samp{<}.
bfa74976
RS
6822
6823@cindex associativity
6824What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6825@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6826operators we prefer the former, which is called @dfn{left association}.
6827The latter alternative, @dfn{right association}, is desirable for
6828assignment operators. The choice of left or right association is a
6829matter of whether the parser chooses to shift or reduce when the stack
742e4900 6830contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6831makes right-associativity.
bfa74976 6832
342b8b6e 6833@node Using Precedence
bfa74976
RS
6834@subsection Specifying Operator Precedence
6835@findex %left
bfa74976 6836@findex %nonassoc
d78f0ac9
AD
6837@findex %precedence
6838@findex %right
bfa74976
RS
6839
6840Bison allows you to specify these choices with the operator precedence
6841declarations @code{%left} and @code{%right}. Each such declaration
6842contains a list of tokens, which are operators whose precedence and
6843associativity is being declared. The @code{%left} declaration makes all
6844those operators left-associative and the @code{%right} declaration makes
6845them right-associative. A third alternative is @code{%nonassoc}, which
6846declares that it is a syntax error to find the same operator twice ``in a
6847row''.
d78f0ac9
AD
6848The last alternative, @code{%precedence}, allows to define only
6849precedence and no associativity at all. As a result, any
6850associativity-related conflict that remains will be reported as an
6851compile-time error. The directive @code{%nonassoc} creates run-time
6852error: using the operator in a associative way is a syntax error. The
6853directive @code{%precedence} creates compile-time errors: an operator
6854@emph{can} be involved in an associativity-related conflict, contrary to
6855what expected the grammar author.
bfa74976
RS
6856
6857The relative precedence of different operators is controlled by the
d78f0ac9
AD
6858order in which they are declared. The first precedence/associativity
6859declaration in the file declares the operators whose
bfa74976
RS
6860precedence is lowest, the next such declaration declares the operators
6861whose precedence is a little higher, and so on.
6862
d78f0ac9
AD
6863@node Precedence Only
6864@subsection Specifying Precedence Only
6865@findex %precedence
6866
8a4281b9 6867Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6868@code{%nonassoc}, which all defines precedence and associativity, little
6869attention is paid to the fact that precedence cannot be defined without
6870defining associativity. Yet, sometimes, when trying to solve a
6871conflict, precedence suffices. In such a case, using @code{%left},
6872@code{%right}, or @code{%nonassoc} might hide future (associativity
6873related) conflicts that would remain hidden.
6874
6875The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6876Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6877in the following situation, where the period denotes the current parsing
6878state:
6879
6880@example
6881if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6882@end example
6883
6884The conflict involves the reduction of the rule @samp{IF expr THEN
6885stmt}, which precedence is by default that of its last token
6886(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6887disambiguation (attach the @code{else} to the closest @code{if}),
6888shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6889higher than that of @code{THEN}. But neither is expected to be involved
6890in an associativity related conflict, which can be specified as follows.
6891
6892@example
6893%precedence THEN
6894%precedence ELSE
6895@end example
6896
6897The unary-minus is another typical example where associativity is
6898usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6899Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6900used to declare the precedence of @code{NEG}, which is more than needed
6901since it also defines its associativity. While this is harmless in the
6902traditional example, who knows how @code{NEG} might be used in future
6903evolutions of the grammar@dots{}
6904
342b8b6e 6905@node Precedence Examples
bfa74976
RS
6906@subsection Precedence Examples
6907
6908In our example, we would want the following declarations:
6909
6910@example
6911%left '<'
6912%left '-'
6913%left '*'
6914@end example
6915
6916In a more complete example, which supports other operators as well, we
6917would declare them in groups of equal precedence. For example, @code{'+'} is
6918declared with @code{'-'}:
6919
6920@example
6921%left '<' '>' '=' NE LE GE
6922%left '+' '-'
6923%left '*' '/'
6924@end example
6925
6926@noindent
6927(Here @code{NE} and so on stand for the operators for ``not equal''
6928and so on. We assume that these tokens are more than one character long
6929and therefore are represented by names, not character literals.)
6930
342b8b6e 6931@node How Precedence
bfa74976
RS
6932@subsection How Precedence Works
6933
6934The first effect of the precedence declarations is to assign precedence
6935levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6936precedence levels to certain rules: each rule gets its precedence from
6937the last terminal symbol mentioned in the components. (You can also
6938specify explicitly the precedence of a rule. @xref{Contextual
6939Precedence, ,Context-Dependent Precedence}.)
6940
6941Finally, the resolution of conflicts works by comparing the precedence
742e4900 6942of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6943token's precedence is higher, the choice is to shift. If the rule's
6944precedence is higher, the choice is to reduce. If they have equal
6945precedence, the choice is made based on the associativity of that
6946precedence level. The verbose output file made by @samp{-v}
6947(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6948resolved.
bfa74976
RS
6949
6950Not all rules and not all tokens have precedence. If either the rule or
742e4900 6951the lookahead token has no precedence, then the default is to shift.
bfa74976 6952
342b8b6e 6953@node Contextual Precedence
bfa74976
RS
6954@section Context-Dependent Precedence
6955@cindex context-dependent precedence
6956@cindex unary operator precedence
6957@cindex precedence, context-dependent
6958@cindex precedence, unary operator
6959@findex %prec
6960
6961Often the precedence of an operator depends on the context. This sounds
6962outlandish at first, but it is really very common. For example, a minus
6963sign typically has a very high precedence as a unary operator, and a
6964somewhat lower precedence (lower than multiplication) as a binary operator.
6965
d78f0ac9
AD
6966The Bison precedence declarations
6967can only be used once for a given token; so a token has
bfa74976
RS
6968only one precedence declared in this way. For context-dependent
6969precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6970modifier for rules.
bfa74976
RS
6971
6972The @code{%prec} modifier declares the precedence of a particular rule by
6973specifying a terminal symbol whose precedence should be used for that rule.
6974It's not necessary for that symbol to appear otherwise in the rule. The
6975modifier's syntax is:
6976
6977@example
6978%prec @var{terminal-symbol}
6979@end example
6980
6981@noindent
6982and it is written after the components of the rule. Its effect is to
6983assign the rule the precedence of @var{terminal-symbol}, overriding
6984the precedence that would be deduced for it in the ordinary way. The
6985altered rule precedence then affects how conflicts involving that rule
6986are resolved (@pxref{Precedence, ,Operator Precedence}).
6987
6988Here is how @code{%prec} solves the problem of unary minus. First, declare
6989a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6990are no tokens of this type, but the symbol serves to stand for its
6991precedence:
6992
6993@example
6994@dots{}
6995%left '+' '-'
6996%left '*'
6997%left UMINUS
6998@end example
6999
7000Now the precedence of @code{UMINUS} can be used in specific rules:
7001
7002@example
7003@group
7004exp: @dots{}
7005 | exp '-' exp
7006 @dots{}
7007 | '-' exp %prec UMINUS
7008@end group
7009@end example
7010
91d2c560 7011@ifset defaultprec
39a06c25
PE
7012If you forget to append @code{%prec UMINUS} to the rule for unary
7013minus, Bison silently assumes that minus has its usual precedence.
7014This kind of problem can be tricky to debug, since one typically
7015discovers the mistake only by testing the code.
7016
22fccf95 7017The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7018this kind of problem systematically. It causes rules that lack a
7019@code{%prec} modifier to have no precedence, even if the last terminal
7020symbol mentioned in their components has a declared precedence.
7021
22fccf95 7022If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7023for all rules that participate in precedence conflict resolution.
7024Then you will see any shift/reduce conflict until you tell Bison how
7025to resolve it, either by changing your grammar or by adding an
7026explicit precedence. This will probably add declarations to the
7027grammar, but it helps to protect against incorrect rule precedences.
7028
22fccf95
PE
7029The effect of @code{%no-default-prec;} can be reversed by giving
7030@code{%default-prec;}, which is the default.
91d2c560 7031@end ifset
39a06c25 7032
342b8b6e 7033@node Parser States
bfa74976
RS
7034@section Parser States
7035@cindex finite-state machine
7036@cindex parser state
7037@cindex state (of parser)
7038
7039The function @code{yyparse} is implemented using a finite-state machine.
7040The values pushed on the parser stack are not simply token type codes; they
7041represent the entire sequence of terminal and nonterminal symbols at or
7042near the top of the stack. The current state collects all the information
7043about previous input which is relevant to deciding what to do next.
7044
742e4900
JD
7045Each time a lookahead token is read, the current parser state together
7046with the type of lookahead token are looked up in a table. This table
7047entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7048specifies the new parser state, which is pushed onto the top of the
7049parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7050This means that a certain number of tokens or groupings are taken off
7051the top of the stack, and replaced by one grouping. In other words,
7052that number of states are popped from the stack, and one new state is
7053pushed.
7054
742e4900 7055There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7056is erroneous in the current state. This causes error processing to begin
7057(@pxref{Error Recovery}).
7058
342b8b6e 7059@node Reduce/Reduce
bfa74976
RS
7060@section Reduce/Reduce Conflicts
7061@cindex reduce/reduce conflict
7062@cindex conflicts, reduce/reduce
7063
7064A reduce/reduce conflict occurs if there are two or more rules that apply
7065to the same sequence of input. This usually indicates a serious error
7066in the grammar.
7067
7068For example, here is an erroneous attempt to define a sequence
7069of zero or more @code{word} groupings.
7070
7071@example
d4fca427 7072@group
bfa74976
RS
7073sequence: /* empty */
7074 @{ printf ("empty sequence\n"); @}
7075 | maybeword
7076 | sequence word
7077 @{ printf ("added word %s\n", $2); @}
7078 ;
d4fca427 7079@end group
bfa74976 7080
d4fca427 7081@group
bfa74976
RS
7082maybeword: /* empty */
7083 @{ printf ("empty maybeword\n"); @}
7084 | word
7085 @{ printf ("single word %s\n", $1); @}
7086 ;
d4fca427 7087@end group
bfa74976
RS
7088@end example
7089
7090@noindent
7091The error is an ambiguity: there is more than one way to parse a single
7092@code{word} into a @code{sequence}. It could be reduced to a
7093@code{maybeword} and then into a @code{sequence} via the second rule.
7094Alternatively, nothing-at-all could be reduced into a @code{sequence}
7095via the first rule, and this could be combined with the @code{word}
7096using the third rule for @code{sequence}.
7097
7098There is also more than one way to reduce nothing-at-all into a
7099@code{sequence}. This can be done directly via the first rule,
7100or indirectly via @code{maybeword} and then the second rule.
7101
7102You might think that this is a distinction without a difference, because it
7103does not change whether any particular input is valid or not. But it does
7104affect which actions are run. One parsing order runs the second rule's
7105action; the other runs the first rule's action and the third rule's action.
7106In this example, the output of the program changes.
7107
7108Bison resolves a reduce/reduce conflict by choosing to use the rule that
7109appears first in the grammar, but it is very risky to rely on this. Every
7110reduce/reduce conflict must be studied and usually eliminated. Here is the
7111proper way to define @code{sequence}:
7112
7113@example
7114sequence: /* empty */
7115 @{ printf ("empty sequence\n"); @}
7116 | sequence word
7117 @{ printf ("added word %s\n", $2); @}
7118 ;
7119@end example
7120
7121Here is another common error that yields a reduce/reduce conflict:
7122
7123@example
7124sequence: /* empty */
7125 | sequence words
7126 | sequence redirects
7127 ;
7128
7129words: /* empty */
7130 | words word
7131 ;
7132
7133redirects:/* empty */
7134 | redirects redirect
7135 ;
7136@end example
7137
7138@noindent
7139The intention here is to define a sequence which can contain either
7140@code{word} or @code{redirect} groupings. The individual definitions of
7141@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7142three together make a subtle ambiguity: even an empty input can be parsed
7143in infinitely many ways!
7144
7145Consider: nothing-at-all could be a @code{words}. Or it could be two
7146@code{words} in a row, or three, or any number. It could equally well be a
7147@code{redirects}, or two, or any number. Or it could be a @code{words}
7148followed by three @code{redirects} and another @code{words}. And so on.
7149
7150Here are two ways to correct these rules. First, to make it a single level
7151of sequence:
7152
7153@example
7154sequence: /* empty */
7155 | sequence word
7156 | sequence redirect
7157 ;
7158@end example
7159
7160Second, to prevent either a @code{words} or a @code{redirects}
7161from being empty:
7162
7163@example
d4fca427 7164@group
bfa74976
RS
7165sequence: /* empty */
7166 | sequence words
7167 | sequence redirects
7168 ;
d4fca427 7169@end group
bfa74976 7170
d4fca427 7171@group
bfa74976
RS
7172words: word
7173 | words word
7174 ;
d4fca427 7175@end group
bfa74976 7176
d4fca427 7177@group
bfa74976
RS
7178redirects:redirect
7179 | redirects redirect
7180 ;
d4fca427 7181@end group
bfa74976
RS
7182@end example
7183
cc09e5be
JD
7184@node Mysterious Conflicts
7185@section Mysterious Conflicts
7fceb615 7186@cindex Mysterious Conflicts
bfa74976
RS
7187
7188Sometimes reduce/reduce conflicts can occur that don't look warranted.
7189Here is an example:
7190
7191@example
7192@group
7193%token ID
7194
7195%%
7196def: param_spec return_spec ','
7197 ;
7198param_spec:
7199 type
7200 | name_list ':' type
7201 ;
7202@end group
7203@group
7204return_spec:
7205 type
7206 | name ':' type
7207 ;
7208@end group
7209@group
7210type: ID
7211 ;
7212@end group
7213@group
7214name: ID
7215 ;
7216name_list:
7217 name
7218 | name ',' name_list
7219 ;
7220@end group
7221@end example
7222
7223It would seem that this grammar can be parsed with only a single token
742e4900 7224of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7225a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7226@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7227
7fceb615
JD
7228@cindex LR
7229@cindex LALR
eb45ef3b 7230However, for historical reasons, Bison cannot by default handle all
8a4281b9 7231LR(1) grammars.
eb45ef3b
JD
7232In this grammar, two contexts, that after an @code{ID} at the beginning
7233of a @code{param_spec} and likewise at the beginning of a
7234@code{return_spec}, are similar enough that Bison assumes they are the
7235same.
7236They appear similar because the same set of rules would be
bfa74976
RS
7237active---the rule for reducing to a @code{name} and that for reducing to
7238a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7239that the rules would require different lookahead tokens in the two
bfa74976
RS
7240contexts, so it makes a single parser state for them both. Combining
7241the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7242occurrence means that the grammar is not LALR(1).
bfa74976 7243
7fceb615
JD
7244@cindex IELR
7245@cindex canonical LR
7246For many practical grammars (specifically those that fall into the non-LR(1)
7247class), the limitations of LALR(1) result in difficulties beyond just
7248mysterious reduce/reduce conflicts. The best way to fix all these problems
7249is to select a different parser table construction algorithm. Either
7250IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7251and easier to debug during development. @xref{LR Table Construction}, for
7252details. (Bison's IELR(1) and canonical LR(1) implementations are
7253experimental. More user feedback will help to stabilize them.)
eb45ef3b 7254
8a4281b9 7255If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7256can often fix a mysterious conflict by identifying the two parser states
7257that are being confused, and adding something to make them look
7258distinct. In the above example, adding one rule to
bfa74976
RS
7259@code{return_spec} as follows makes the problem go away:
7260
7261@example
7262@group
7263%token BOGUS
7264@dots{}
7265%%
7266@dots{}
7267return_spec:
7268 type
7269 | name ':' type
7270 /* This rule is never used. */
7271 | ID BOGUS
7272 ;
7273@end group
7274@end example
7275
7276This corrects the problem because it introduces the possibility of an
7277additional active rule in the context after the @code{ID} at the beginning of
7278@code{return_spec}. This rule is not active in the corresponding context
7279in a @code{param_spec}, so the two contexts receive distinct parser states.
7280As long as the token @code{BOGUS} is never generated by @code{yylex},
7281the added rule cannot alter the way actual input is parsed.
7282
7283In this particular example, there is another way to solve the problem:
7284rewrite the rule for @code{return_spec} to use @code{ID} directly
7285instead of via @code{name}. This also causes the two confusing
7286contexts to have different sets of active rules, because the one for
7287@code{return_spec} activates the altered rule for @code{return_spec}
7288rather than the one for @code{name}.
7289
7290@example
7291param_spec:
7292 type
7293 | name_list ':' type
7294 ;
7295return_spec:
7296 type
7297 | ID ':' type
7298 ;
7299@end example
7300
8a4281b9 7301For a more detailed exposition of LALR(1) parsers and parser
5e528941 7302generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7303
7fceb615
JD
7304@node Tuning LR
7305@section Tuning LR
7306
7307The default behavior of Bison's LR-based parsers is chosen mostly for
7308historical reasons, but that behavior is often not robust. For example, in
7309the previous section, we discussed the mysterious conflicts that can be
7310produced by LALR(1), Bison's default parser table construction algorithm.
7311Another example is Bison's @code{%define parse.error verbose} directive,
7312which instructs the generated parser to produce verbose syntax error
7313messages, which can sometimes contain incorrect information.
7314
7315In this section, we explore several modern features of Bison that allow you
7316to tune fundamental aspects of the generated LR-based parsers. Some of
7317these features easily eliminate shortcomings like those mentioned above.
7318Others can be helpful purely for understanding your parser.
7319
7320Most of the features discussed in this section are still experimental. More
7321user feedback will help to stabilize them.
7322
7323@menu
7324* LR Table Construction:: Choose a different construction algorithm.
7325* Default Reductions:: Disable default reductions.
7326* LAC:: Correct lookahead sets in the parser states.
7327* Unreachable States:: Keep unreachable parser states for debugging.
7328@end menu
7329
7330@node LR Table Construction
7331@subsection LR Table Construction
7332@cindex Mysterious Conflict
7333@cindex LALR
7334@cindex IELR
7335@cindex canonical LR
7336@findex %define lr.type
7337
7338For historical reasons, Bison constructs LALR(1) parser tables by default.
7339However, LALR does not possess the full language-recognition power of LR.
7340As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7341mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7342Conflicts}.
7343
7344As we also demonstrated in that example, the traditional approach to
7345eliminating such mysterious behavior is to restructure the grammar.
7346Unfortunately, doing so correctly is often difficult. Moreover, merely
7347discovering that LALR causes mysterious behavior in your parser can be
7348difficult as well.
7349
7350Fortunately, Bison provides an easy way to eliminate the possibility of such
7351mysterious behavior altogether. You simply need to activate a more powerful
7352parser table construction algorithm by using the @code{%define lr.type}
7353directive.
7354
7355@deffn {Directive} {%define lr.type @var{TYPE}}
7356Specify the type of parser tables within the LR(1) family. The accepted
7357values for @var{TYPE} are:
7358
7359@itemize
7360@item @code{lalr} (default)
7361@item @code{ielr}
7362@item @code{canonical-lr}
7363@end itemize
7364
7365(This feature is experimental. More user feedback will help to stabilize
7366it.)
7367@end deffn
7368
7369For example, to activate IELR, you might add the following directive to you
7370grammar file:
7371
7372@example
7373%define lr.type ielr
7374@end example
7375
cc09e5be 7376@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7377conflict is then eliminated, so there is no need to invest time in
7378comprehending the conflict or restructuring the grammar to fix it. If,
7379during future development, the grammar evolves such that all mysterious
7380behavior would have disappeared using just LALR, you need not fear that
7381continuing to use IELR will result in unnecessarily large parser tables.
7382That is, IELR generates LALR tables when LALR (using a deterministic parsing
7383algorithm) is sufficient to support the full language-recognition power of
7384LR. Thus, by enabling IELR at the start of grammar development, you can
7385safely and completely eliminate the need to consider LALR's shortcomings.
7386
7387While IELR is almost always preferable, there are circumstances where LALR
7388or the canonical LR parser tables described by Knuth
7389(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7390relative advantages of each parser table construction algorithm within
7391Bison:
7392
7393@itemize
7394@item LALR
7395
7396There are at least two scenarios where LALR can be worthwhile:
7397
7398@itemize
7399@item GLR without static conflict resolution.
7400
7401@cindex GLR with LALR
7402When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7403conflicts statically (for example, with @code{%left} or @code{%prec}), then
7404the parser explores all potential parses of any given input. In this case,
7405the choice of parser table construction algorithm is guaranteed not to alter
7406the language accepted by the parser. LALR parser tables are the smallest
7407parser tables Bison can currently construct, so they may then be preferable.
7408Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7409more like a deterministic parser in the syntactic contexts where those
7410conflicts appear, and so either IELR or canonical LR can then be helpful to
7411avoid LALR's mysterious behavior.
7412
7413@item Malformed grammars.
7414
7415Occasionally during development, an especially malformed grammar with a
7416major recurring flaw may severely impede the IELR or canonical LR parser
7417table construction algorithm. LALR can be a quick way to construct parser
7418tables in order to investigate such problems while ignoring the more subtle
7419differences from IELR and canonical LR.
7420@end itemize
7421
7422@item IELR
7423
7424IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7425any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7426always accept exactly the same set of sentences. However, like LALR, IELR
7427merges parser states during parser table construction so that the number of
7428parser states is often an order of magnitude less than for canonical LR.
7429More importantly, because canonical LR's extra parser states may contain
7430duplicate conflicts in the case of non-LR grammars, the number of conflicts
7431for IELR is often an order of magnitude less as well. This effect can
7432significantly reduce the complexity of developing a grammar.
7433
7434@item Canonical LR
7435
7436@cindex delayed syntax error detection
7437@cindex LAC
7438@findex %nonassoc
7439While inefficient, canonical LR parser tables can be an interesting means to
7440explore a grammar because they possess a property that IELR and LALR tables
7441do not. That is, if @code{%nonassoc} is not used and default reductions are
7442left disabled (@pxref{Default Reductions}), then, for every left context of
7443every canonical LR state, the set of tokens accepted by that state is
7444guaranteed to be the exact set of tokens that is syntactically acceptable in
7445that left context. It might then seem that an advantage of canonical LR
7446parsers in production is that, under the above constraints, they are
7447guaranteed to detect a syntax error as soon as possible without performing
7448any unnecessary reductions. However, IELR parsers that use LAC are also
7449able to achieve this behavior without sacrificing @code{%nonassoc} or
7450default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7451@end itemize
7452
7453For a more detailed exposition of the mysterious behavior in LALR parsers
7454and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7455@ref{Bibliography,,Denny 2010 November}.
7456
7457@node Default Reductions
7458@subsection Default Reductions
7459@cindex default reductions
7460@findex %define lr.default-reductions
7461@findex %nonassoc
7462
7463After parser table construction, Bison identifies the reduction with the
7464largest lookahead set in each parser state. To reduce the size of the
7465parser state, traditional Bison behavior is to remove that lookahead set and
7466to assign that reduction to be the default parser action. Such a reduction
7467is known as a @dfn{default reduction}.
7468
7469Default reductions affect more than the size of the parser tables. They
7470also affect the behavior of the parser:
7471
7472@itemize
7473@item Delayed @code{yylex} invocations.
7474
7475@cindex delayed yylex invocations
7476@cindex consistent states
7477@cindex defaulted states
7478A @dfn{consistent state} is a state that has only one possible parser
7479action. If that action is a reduction and is encoded as a default
7480reduction, then that consistent state is called a @dfn{defaulted state}.
7481Upon reaching a defaulted state, a Bison-generated parser does not bother to
7482invoke @code{yylex} to fetch the next token before performing the reduction.
7483In other words, whether default reductions are enabled in consistent states
7484determines how soon a Bison-generated parser invokes @code{yylex} for a
7485token: immediately when it @emph{reaches} that token in the input or when it
7486eventually @emph{needs} that token as a lookahead to determine the next
7487parser action. Traditionally, default reductions are enabled, and so the
7488parser exhibits the latter behavior.
7489
7490The presence of defaulted states is an important consideration when
7491designing @code{yylex} and the grammar file. That is, if the behavior of
7492@code{yylex} can influence or be influenced by the semantic actions
7493associated with the reductions in defaulted states, then the delay of the
7494next @code{yylex} invocation until after those reductions is significant.
7495For example, the semantic actions might pop a scope stack that @code{yylex}
7496uses to determine what token to return. Thus, the delay might be necessary
7497to ensure that @code{yylex} does not look up the next token in a scope that
7498should already be considered closed.
7499
7500@item Delayed syntax error detection.
7501
7502@cindex delayed syntax error detection
7503When the parser fetches a new token by invoking @code{yylex}, it checks
7504whether there is an action for that token in the current parser state. The
7505parser detects a syntax error if and only if either (1) there is no action
7506for that token or (2) the action for that token is the error action (due to
7507the use of @code{%nonassoc}). However, if there is a default reduction in
7508that state (which might or might not be a defaulted state), then it is
7509impossible for condition 1 to exist. That is, all tokens have an action.
7510Thus, the parser sometimes fails to detect the syntax error until it reaches
7511a later state.
7512
7513@cindex LAC
7514@c If there's an infinite loop, default reductions can prevent an incorrect
7515@c sentence from being rejected.
7516While default reductions never cause the parser to accept syntactically
7517incorrect sentences, the delay of syntax error detection can have unexpected
7518effects on the behavior of the parser. However, the delay can be caused
7519anyway by parser state merging and the use of @code{%nonassoc}, and it can
7520be fixed by another Bison feature, LAC. We discuss the effects of delayed
7521syntax error detection and LAC more in the next section (@pxref{LAC}).
7522@end itemize
7523
7524For canonical LR, the only default reduction that Bison enables by default
7525is the accept action, which appears only in the accepting state, which has
7526no other action and is thus a defaulted state. However, the default accept
7527action does not delay any @code{yylex} invocation or syntax error detection
7528because the accept action ends the parse.
7529
7530For LALR and IELR, Bison enables default reductions in nearly all states by
7531default. There are only two exceptions. First, states that have a shift
7532action on the @code{error} token do not have default reductions because
7533delayed syntax error detection could then prevent the @code{error} token
7534from ever being shifted in that state. However, parser state merging can
7535cause the same effect anyway, and LAC fixes it in both cases, so future
7536versions of Bison might drop this exception when LAC is activated. Second,
7537GLR parsers do not record the default reduction as the action on a lookahead
7538token for which there is a conflict. The correct action in this case is to
7539split the parse instead.
7540
7541To adjust which states have default reductions enabled, use the
7542@code{%define lr.default-reductions} directive.
7543
7544@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7545Specify the kind of states that are permitted to contain default reductions.
7546The accepted values of @var{WHERE} are:
7547@itemize
f0ad1b2f 7548@item @code{most} (default for LALR and IELR)
7fceb615
JD
7549@item @code{consistent}
7550@item @code{accepting} (default for canonical LR)
7551@end itemize
7552
7553(The ability to specify where default reductions are permitted is
7554experimental. More user feedback will help to stabilize it.)
7555@end deffn
7556
7fceb615
JD
7557@node LAC
7558@subsection LAC
7559@findex %define parse.lac
7560@cindex LAC
7561@cindex lookahead correction
7562
7563Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7564encountering a syntax error. First, the parser might perform additional
7565parser stack reductions before discovering the syntax error. Such
7566reductions can perform user semantic actions that are unexpected because
7567they are based on an invalid token, and they cause error recovery to begin
7568in a different syntactic context than the one in which the invalid token was
7569encountered. Second, when verbose error messages are enabled (@pxref{Error
7570Reporting}), the expected token list in the syntax error message can both
7571contain invalid tokens and omit valid tokens.
7572
7573The culprits for the above problems are @code{%nonassoc}, default reductions
7574in inconsistent states (@pxref{Default Reductions}), and parser state
7575merging. Because IELR and LALR merge parser states, they suffer the most.
7576Canonical LR can suffer only if @code{%nonassoc} is used or if default
7577reductions are enabled for inconsistent states.
7578
7579LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7580that solves these problems for canonical LR, IELR, and LALR without
7581sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7582enable LAC with the @code{%define parse.lac} directive.
7583
7584@deffn {Directive} {%define parse.lac @var{VALUE}}
7585Enable LAC to improve syntax error handling.
7586@itemize
7587@item @code{none} (default)
7588@item @code{full}
7589@end itemize
7590(This feature is experimental. More user feedback will help to stabilize
7591it. Moreover, it is currently only available for deterministic parsers in
7592C.)
7593@end deffn
7594
7595Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7596fetches a new token from the scanner so that it can determine the next
7597parser action, it immediately suspends normal parsing and performs an
7598exploratory parse using a temporary copy of the normal parser state stack.
7599During this exploratory parse, the parser does not perform user semantic
7600actions. If the exploratory parse reaches a shift action, normal parsing
7601then resumes on the normal parser stacks. If the exploratory parse reaches
7602an error instead, the parser reports a syntax error. If verbose syntax
7603error messages are enabled, the parser must then discover the list of
7604expected tokens, so it performs a separate exploratory parse for each token
7605in the grammar.
7606
7607There is one subtlety about the use of LAC. That is, when in a consistent
7608parser state with a default reduction, the parser will not attempt to fetch
7609a token from the scanner because no lookahead is needed to determine the
7610next parser action. Thus, whether default reductions are enabled in
7611consistent states (@pxref{Default Reductions}) affects how soon the parser
7612detects a syntax error: immediately when it @emph{reaches} an erroneous
7613token or when it eventually @emph{needs} that token as a lookahead to
7614determine the next parser action. The latter behavior is probably more
7615intuitive, so Bison currently provides no way to achieve the former behavior
7616while default reductions are enabled in consistent states.
7617
7618Thus, when LAC is in use, for some fixed decision of whether to enable
7619default reductions in consistent states, canonical LR and IELR behave almost
7620exactly the same for both syntactically acceptable and syntactically
7621unacceptable input. While LALR still does not support the full
7622language-recognition power of canonical LR and IELR, LAC at least enables
7623LALR's syntax error handling to correctly reflect LALR's
7624language-recognition power.
7625
7626There are a few caveats to consider when using LAC:
7627
7628@itemize
7629@item Infinite parsing loops.
7630
7631IELR plus LAC does have one shortcoming relative to canonical LR. Some
7632parsers generated by Bison can loop infinitely. LAC does not fix infinite
7633parsing loops that occur between encountering a syntax error and detecting
7634it, but enabling canonical LR or disabling default reductions sometimes
7635does.
7636
7637@item Verbose error message limitations.
7638
7639Because of internationalization considerations, Bison-generated parsers
7640limit the size of the expected token list they are willing to report in a
7641verbose syntax error message. If the number of expected tokens exceeds that
7642limit, the list is simply dropped from the message. Enabling LAC can
7643increase the size of the list and thus cause the parser to drop it. Of
7644course, dropping the list is better than reporting an incorrect list.
7645
7646@item Performance.
7647
7648Because LAC requires many parse actions to be performed twice, it can have a
7649performance penalty. However, not all parse actions must be performed
7650twice. Specifically, during a series of default reductions in consistent
7651states and shift actions, the parser never has to initiate an exploratory
7652parse. Moreover, the most time-consuming tasks in a parse are often the
7653file I/O, the lexical analysis performed by the scanner, and the user's
7654semantic actions, but none of these are performed during the exploratory
7655parse. Finally, the base of the temporary stack used during an exploratory
7656parse is a pointer into the normal parser state stack so that the stack is
7657never physically copied. In our experience, the performance penalty of LAC
7658has proven insignificant for practical grammars.
7659@end itemize
7660
709c7d11
JD
7661While the LAC algorithm shares techniques that have been recognized in the
7662parser community for years, for the publication that introduces LAC,
7663@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7664
7fceb615
JD
7665@node Unreachable States
7666@subsection Unreachable States
7667@findex %define lr.keep-unreachable-states
7668@cindex unreachable states
7669
7670If there exists no sequence of transitions from the parser's start state to
7671some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7672state}. A state can become unreachable during conflict resolution if Bison
7673disables a shift action leading to it from a predecessor state.
7674
7675By default, Bison removes unreachable states from the parser after conflict
7676resolution because they are useless in the generated parser. However,
7677keeping unreachable states is sometimes useful when trying to understand the
7678relationship between the parser and the grammar.
7679
7680@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7681Request that Bison allow unreachable states to remain in the parser tables.
7682@var{VALUE} must be a Boolean. The default is @code{false}.
7683@end deffn
7684
7685There are a few caveats to consider:
7686
7687@itemize @bullet
7688@item Missing or extraneous warnings.
7689
7690Unreachable states may contain conflicts and may use rules not used in any
7691other state. Thus, keeping unreachable states may induce warnings that are
7692irrelevant to your parser's behavior, and it may eliminate warnings that are
7693relevant. Of course, the change in warnings may actually be relevant to a
7694parser table analysis that wants to keep unreachable states, so this
7695behavior will likely remain in future Bison releases.
7696
7697@item Other useless states.
7698
7699While Bison is able to remove unreachable states, it is not guaranteed to
7700remove other kinds of useless states. Specifically, when Bison disables
7701reduce actions during conflict resolution, some goto actions may become
7702useless, and thus some additional states may become useless. If Bison were
7703to compute which goto actions were useless and then disable those actions,
7704it could identify such states as unreachable and then remove those states.
7705However, Bison does not compute which goto actions are useless.
7706@end itemize
7707
fae437e8 7708@node Generalized LR Parsing
8a4281b9
JD
7709@section Generalized LR (GLR) Parsing
7710@cindex GLR parsing
7711@cindex generalized LR (GLR) parsing
676385e2 7712@cindex ambiguous grammars
9d9b8b70 7713@cindex nondeterministic parsing
676385e2 7714
fae437e8
AD
7715Bison produces @emph{deterministic} parsers that choose uniquely
7716when to reduce and which reduction to apply
742e4900 7717based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7718As a result, normal Bison handles a proper subset of the family of
7719context-free languages.
fae437e8 7720Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7721sequence of reductions cannot have deterministic parsers in this sense.
7722The same is true of languages that require more than one symbol of
742e4900 7723lookahead, since the parser lacks the information necessary to make a
676385e2 7724decision at the point it must be made in a shift-reduce parser.
cc09e5be 7725Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7726there are languages where Bison's default choice of how to
676385e2
PH
7727summarize the input seen so far loses necessary information.
7728
7729When you use the @samp{%glr-parser} declaration in your grammar file,
7730Bison generates a parser that uses a different algorithm, called
8a4281b9 7731Generalized LR (or GLR). A Bison GLR
c827f760 7732parser uses the same basic
676385e2
PH
7733algorithm for parsing as an ordinary Bison parser, but behaves
7734differently in cases where there is a shift-reduce conflict that has not
fae437e8 7735been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7736reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7737situation, it
fae437e8 7738effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7739shift or reduction. These parsers then proceed as usual, consuming
7740tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7741and split further, with the result that instead of a sequence of states,
8a4281b9 7742a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7743
7744In effect, each stack represents a guess as to what the proper parse
7745is. Additional input may indicate that a guess was wrong, in which case
7746the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7747actions generated in each stack are saved, rather than being executed
676385e2 7748immediately. When a stack disappears, its saved semantic actions never
fae437e8 7749get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7750their sets of semantic actions are both saved with the state that
7751results from the reduction. We say that two stacks are equivalent
fae437e8 7752when they both represent the same sequence of states,
676385e2
PH
7753and each pair of corresponding states represents a
7754grammar symbol that produces the same segment of the input token
7755stream.
7756
7757Whenever the parser makes a transition from having multiple
eb45ef3b 7758states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7759algorithm, after resolving and executing the saved-up actions.
7760At this transition, some of the states on the stack will have semantic
7761values that are sets (actually multisets) of possible actions. The
7762parser tries to pick one of the actions by first finding one whose rule
7763has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7764declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7765precedence, but there the same merging function is declared for both
fae437e8 7766rules by the @samp{%merge} declaration,
676385e2
PH
7767Bison resolves and evaluates both and then calls the merge function on
7768the result. Otherwise, it reports an ambiguity.
7769
8a4281b9
JD
7770It is possible to use a data structure for the GLR parsing tree that
7771permits the processing of any LR(1) grammar in linear time (in the
c827f760 7772size of the input), any unambiguous (not necessarily
8a4281b9 7773LR(1)) grammar in
fae437e8 7774quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7775context-free grammar in cubic worst-case time. However, Bison currently
7776uses a simpler data structure that requires time proportional to the
7777length of the input times the maximum number of stacks required for any
9d9b8b70 7778prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7779grammars can require exponential time and space to process. Such badly
7780behaving examples, however, are not generally of practical interest.
9d9b8b70 7781Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7782doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7783structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7784grammar, in particular, it is only slightly slower than with the
8a4281b9 7785deterministic LR(1) Bison parser.
676385e2 7786
5e528941
JD
7787For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
77882000}.
f6481e2f 7789
1a059451
PE
7790@node Memory Management
7791@section Memory Management, and How to Avoid Memory Exhaustion
7792@cindex memory exhaustion
7793@cindex memory management
bfa74976
RS
7794@cindex stack overflow
7795@cindex parser stack overflow
7796@cindex overflow of parser stack
7797
1a059451 7798The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7799not reduced. When this happens, the parser function @code{yyparse}
1a059451 7800calls @code{yyerror} and then returns 2.
bfa74976 7801
c827f760 7802Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7803usually results from using a right recursion instead of a left
7804recursion, @xref{Recursion, ,Recursive Rules}.
7805
bfa74976
RS
7806@vindex YYMAXDEPTH
7807By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7808parser stack can become before memory is exhausted. Define the
bfa74976
RS
7809macro with a value that is an integer. This value is the maximum number
7810of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7811
7812The stack space allowed is not necessarily allocated. If you specify a
1a059451 7813large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7814stack at first, and then makes it bigger by stages as needed. This
7815increasing allocation happens automatically and silently. Therefore,
7816you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7817space for ordinary inputs that do not need much stack.
7818
d7e14fc0
PE
7819However, do not allow @code{YYMAXDEPTH} to be a value so large that
7820arithmetic overflow could occur when calculating the size of the stack
7821space. Also, do not allow @code{YYMAXDEPTH} to be less than
7822@code{YYINITDEPTH}.
7823
bfa74976
RS
7824@cindex default stack limit
7825The default value of @code{YYMAXDEPTH}, if you do not define it, is
782610000.
7827
7828@vindex YYINITDEPTH
7829You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7830macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7831parser in C, this value must be a compile-time constant
d7e14fc0
PE
7832unless you are assuming C99 or some other target language or compiler
7833that allows variable-length arrays. The default is 200.
7834
1a059451 7835Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7836
20be2f92 7837You can generate a deterministic parser containing C++ user code from
411614fa 7838the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
7839(@pxref{C++ Parsers}). However, if you do use the default skeleton
7840and want to allow the parsing stack to grow,
7841be careful not to use semantic types or location types that require
7842non-trivial copy constructors.
7843The C skeleton bypasses these constructors when copying data to
7844new, larger stacks.
d1a1114f 7845
342b8b6e 7846@node Error Recovery
bfa74976
RS
7847@chapter Error Recovery
7848@cindex error recovery
7849@cindex recovery from errors
7850
6e649e65 7851It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7852error. For example, a compiler should recover sufficiently to parse the
7853rest of the input file and check it for errors; a calculator should accept
7854another expression.
7855
7856In a simple interactive command parser where each input is one line, it may
7857be sufficient to allow @code{yyparse} to return 1 on error and have the
7858caller ignore the rest of the input line when that happens (and then call
7859@code{yyparse} again). But this is inadequate for a compiler, because it
7860forgets all the syntactic context leading up to the error. A syntax error
7861deep within a function in the compiler input should not cause the compiler
7862to treat the following line like the beginning of a source file.
7863
7864@findex error
7865You can define how to recover from a syntax error by writing rules to
7866recognize the special token @code{error}. This is a terminal symbol that
7867is always defined (you need not declare it) and reserved for error
7868handling. The Bison parser generates an @code{error} token whenever a
7869syntax error happens; if you have provided a rule to recognize this token
13863333 7870in the current context, the parse can continue.
bfa74976
RS
7871
7872For example:
7873
7874@example
7875stmnts: /* empty string */
7876 | stmnts '\n'
7877 | stmnts exp '\n'
7878 | stmnts error '\n'
7879@end example
7880
7881The fourth rule in this example says that an error followed by a newline
7882makes a valid addition to any @code{stmnts}.
7883
7884What happens if a syntax error occurs in the middle of an @code{exp}? The
7885error recovery rule, interpreted strictly, applies to the precise sequence
7886of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7887the middle of an @code{exp}, there will probably be some additional tokens
7888and subexpressions on the stack after the last @code{stmnts}, and there
7889will be tokens to read before the next newline. So the rule is not
7890applicable in the ordinary way.
7891
7892But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7893the semantic context and part of the input. First it discards states
7894and objects from the stack until it gets back to a state in which the
bfa74976 7895@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7896already parsed are discarded, back to the last complete @code{stmnts}.)
7897At this point the @code{error} token can be shifted. Then, if the old
742e4900 7898lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7899tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7900this example, Bison reads and discards input until the next newline so
7901that the fourth rule can apply. Note that discarded symbols are
7902possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7903Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7904
7905The choice of error rules in the grammar is a choice of strategies for
7906error recovery. A simple and useful strategy is simply to skip the rest of
7907the current input line or current statement if an error is detected:
7908
7909@example
72d2299c 7910stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7911@end example
7912
7913It is also useful to recover to the matching close-delimiter of an
7914opening-delimiter that has already been parsed. Otherwise the
7915close-delimiter will probably appear to be unmatched, and generate another,
7916spurious error message:
7917
7918@example
7919primary: '(' expr ')'
7920 | '(' error ')'
7921 @dots{}
7922 ;
7923@end example
7924
7925Error recovery strategies are necessarily guesses. When they guess wrong,
7926one syntax error often leads to another. In the above example, the error
7927recovery rule guesses that an error is due to bad input within one
7928@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7929middle of a valid @code{stmnt}. After the error recovery rule recovers
7930from the first error, another syntax error will be found straightaway,
7931since the text following the spurious semicolon is also an invalid
7932@code{stmnt}.
7933
7934To prevent an outpouring of error messages, the parser will output no error
7935message for another syntax error that happens shortly after the first; only
7936after three consecutive input tokens have been successfully shifted will
7937error messages resume.
7938
7939Note that rules which accept the @code{error} token may have actions, just
7940as any other rules can.
7941
7942@findex yyerrok
7943You can make error messages resume immediately by using the macro
7944@code{yyerrok} in an action. If you do this in the error rule's action, no
7945error messages will be suppressed. This macro requires no arguments;
7946@samp{yyerrok;} is a valid C statement.
7947
7948@findex yyclearin
742e4900 7949The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7950this is unacceptable, then the macro @code{yyclearin} may be used to clear
7951this token. Write the statement @samp{yyclearin;} in the error rule's
7952action.
32c29292 7953@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7954
6e649e65 7955For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7956called that advances the input stream to some point where parsing should
7957once again commence. The next symbol returned by the lexical scanner is
742e4900 7958probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7959with @samp{yyclearin;}.
7960
7961@vindex YYRECOVERING
02103984
PE
7962The expression @code{YYRECOVERING ()} yields 1 when the parser
7963is recovering from a syntax error, and 0 otherwise.
7964Syntax error diagnostics are suppressed while recovering from a syntax
7965error.
bfa74976 7966
342b8b6e 7967@node Context Dependency
bfa74976
RS
7968@chapter Handling Context Dependencies
7969
7970The Bison paradigm is to parse tokens first, then group them into larger
7971syntactic units. In many languages, the meaning of a token is affected by
7972its context. Although this violates the Bison paradigm, certain techniques
7973(known as @dfn{kludges}) may enable you to write Bison parsers for such
7974languages.
7975
7976@menu
7977* Semantic Tokens:: Token parsing can depend on the semantic context.
7978* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7979* Tie-in Recovery:: Lexical tie-ins have implications for how
7980 error recovery rules must be written.
7981@end menu
7982
7983(Actually, ``kludge'' means any technique that gets its job done but is
7984neither clean nor robust.)
7985
342b8b6e 7986@node Semantic Tokens
bfa74976
RS
7987@section Semantic Info in Token Types
7988
7989The C language has a context dependency: the way an identifier is used
7990depends on what its current meaning is. For example, consider this:
7991
7992@example
7993foo (x);
7994@end example
7995
7996This looks like a function call statement, but if @code{foo} is a typedef
7997name, then this is actually a declaration of @code{x}. How can a Bison
7998parser for C decide how to parse this input?
7999
8a4281b9 8000The method used in GNU C is to have two different token types,
bfa74976
RS
8001@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8002identifier, it looks up the current declaration of the identifier in order
8003to decide which token type to return: @code{TYPENAME} if the identifier is
8004declared as a typedef, @code{IDENTIFIER} otherwise.
8005
8006The grammar rules can then express the context dependency by the choice of
8007token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8008but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8009@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8010is @emph{not} significant, such as in declarations that can shadow a
8011typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8012accepted---there is one rule for each of the two token types.
8013
8014This technique is simple to use if the decision of which kinds of
8015identifiers to allow is made at a place close to where the identifier is
8016parsed. But in C this is not always so: C allows a declaration to
8017redeclare a typedef name provided an explicit type has been specified
8018earlier:
8019
8020@example
3a4f411f
PE
8021typedef int foo, bar;
8022int baz (void)
d4fca427 8023@group
3a4f411f
PE
8024@{
8025 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8026 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8027 return foo (bar);
8028@}
d4fca427 8029@end group
bfa74976
RS
8030@end example
8031
8032Unfortunately, the name being declared is separated from the declaration
8033construct itself by a complicated syntactic structure---the ``declarator''.
8034
9ecbd125 8035As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8036all the nonterminal names changed: once for parsing a declaration in
8037which a typedef name can be redefined, and once for parsing a
8038declaration in which that can't be done. Here is a part of the
8039duplication, with actions omitted for brevity:
bfa74976
RS
8040
8041@example
d4fca427 8042@group
bfa74976
RS
8043initdcl:
8044 declarator maybeasm '='
8045 init
8046 | declarator maybeasm
8047 ;
d4fca427 8048@end group
bfa74976 8049
d4fca427 8050@group
bfa74976
RS
8051notype_initdcl:
8052 notype_declarator maybeasm '='
8053 init
8054 | notype_declarator maybeasm
8055 ;
d4fca427 8056@end group
bfa74976
RS
8057@end example
8058
8059@noindent
8060Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8061cannot. The distinction between @code{declarator} and
8062@code{notype_declarator} is the same sort of thing.
8063
8064There is some similarity between this technique and a lexical tie-in
8065(described next), in that information which alters the lexical analysis is
8066changed during parsing by other parts of the program. The difference is
8067here the information is global, and is used for other purposes in the
8068program. A true lexical tie-in has a special-purpose flag controlled by
8069the syntactic context.
8070
342b8b6e 8071@node Lexical Tie-ins
bfa74976
RS
8072@section Lexical Tie-ins
8073@cindex lexical tie-in
8074
8075One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8076which is set by Bison actions, whose purpose is to alter the way tokens are
8077parsed.
8078
8079For example, suppose we have a language vaguely like C, but with a special
8080construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8081an expression in parentheses in which all integers are hexadecimal. In
8082particular, the token @samp{a1b} must be treated as an integer rather than
8083as an identifier if it appears in that context. Here is how you can do it:
8084
8085@example
8086@group
8087%@{
38a92d50
PE
8088 int hexflag;
8089 int yylex (void);
8090 void yyerror (char const *);
bfa74976
RS
8091%@}
8092%%
8093@dots{}
8094@end group
8095@group
8096expr: IDENTIFIER
8097 | constant
8098 | HEX '('
8099 @{ hexflag = 1; @}
8100 expr ')'
8101 @{ hexflag = 0;
8102 $$ = $4; @}
8103 | expr '+' expr
8104 @{ $$ = make_sum ($1, $3); @}
8105 @dots{}
8106 ;
8107@end group
8108
8109@group
8110constant:
8111 INTEGER
8112 | STRING
8113 ;
8114@end group
8115@end example
8116
8117@noindent
8118Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8119it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8120with letters are parsed as integers if possible.
8121
ff7571c0
JD
8122The declaration of @code{hexflag} shown in the prologue of the grammar
8123file is needed to make it accessible to the actions (@pxref{Prologue,
8124,The Prologue}). You must also write the code in @code{yylex} to obey
8125the flag.
bfa74976 8126
342b8b6e 8127@node Tie-in Recovery
bfa74976
RS
8128@section Lexical Tie-ins and Error Recovery
8129
8130Lexical tie-ins make strict demands on any error recovery rules you have.
8131@xref{Error Recovery}.
8132
8133The reason for this is that the purpose of an error recovery rule is to
8134abort the parsing of one construct and resume in some larger construct.
8135For example, in C-like languages, a typical error recovery rule is to skip
8136tokens until the next semicolon, and then start a new statement, like this:
8137
8138@example
8139stmt: expr ';'
8140 | IF '(' expr ')' stmt @{ @dots{} @}
8141 @dots{}
8142 error ';'
8143 @{ hexflag = 0; @}
8144 ;
8145@end example
8146
8147If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8148construct, this error rule will apply, and then the action for the
8149completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8150remain set for the entire rest of the input, or until the next @code{hex}
8151keyword, causing identifiers to be misinterpreted as integers.
8152
8153To avoid this problem the error recovery rule itself clears @code{hexflag}.
8154
8155There may also be an error recovery rule that works within expressions.
8156For example, there could be a rule which applies within parentheses
8157and skips to the close-parenthesis:
8158
8159@example
8160@group
8161expr: @dots{}
8162 | '(' expr ')'
8163 @{ $$ = $2; @}
8164 | '(' error ')'
8165 @dots{}
8166@end group
8167@end example
8168
8169If this rule acts within the @code{hex} construct, it is not going to abort
8170that construct (since it applies to an inner level of parentheses within
8171the construct). Therefore, it should not clear the flag: the rest of
8172the @code{hex} construct should be parsed with the flag still in effect.
8173
8174What if there is an error recovery rule which might abort out of the
8175@code{hex} construct or might not, depending on circumstances? There is no
8176way you can write the action to determine whether a @code{hex} construct is
8177being aborted or not. So if you are using a lexical tie-in, you had better
8178make sure your error recovery rules are not of this kind. Each rule must
8179be such that you can be sure that it always will, or always won't, have to
8180clear the flag.
8181
ec3bc396
AD
8182@c ================================================== Debugging Your Parser
8183
342b8b6e 8184@node Debugging
bfa74976 8185@chapter Debugging Your Parser
ec3bc396
AD
8186
8187Developing a parser can be a challenge, especially if you don't
8188understand the algorithm (@pxref{Algorithm, ,The Bison Parser
8189Algorithm}). Even so, sometimes a detailed description of the automaton
8190can help (@pxref{Understanding, , Understanding Your Parser}), or
8191tracing the execution of the parser can give some insight on why it
8192behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
8193
8194@menu
8195* Understanding:: Understanding the structure of your parser.
8196* Tracing:: Tracing the execution of your parser.
8197@end menu
8198
8199@node Understanding
8200@section Understanding Your Parser
8201
8202As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8203Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8204frequent than one would hope), looking at this automaton is required to
8205tune or simply fix a parser. Bison provides two different
35fe0834 8206representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8207
8208The textual file is generated when the options @option{--report} or
8209@option{--verbose} are specified, see @xref{Invocation, , Invoking
8210Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8211the parser implementation file name, and adding @samp{.output}
8212instead. Therefore, if the grammar file is @file{foo.y}, then the
8213parser implementation file is called @file{foo.tab.c} by default. As
8214a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8215
8216The following grammar file, @file{calc.y}, will be used in the sequel:
8217
8218@example
8219%token NUM STR
8220%left '+' '-'
8221%left '*'
8222%%
8223exp: exp '+' exp
8224 | exp '-' exp
8225 | exp '*' exp
8226 | exp '/' exp
8227 | NUM
8228 ;
8229useless: STR;
8230%%
8231@end example
8232
88bce5a2
AD
8233@command{bison} reports:
8234
8235@example
8f0d265e
JD
8236calc.y: warning: 1 nonterminal useless in grammar
8237calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8238calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8239calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8240calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8241@end example
8242
8243When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8244creates a file @file{calc.output} with contents detailed below. The
8245order of the output and the exact presentation might vary, but the
8246interpretation is the same.
ec3bc396
AD
8247
8248The first section includes details on conflicts that were solved thanks
8249to precedence and/or associativity:
8250
8251@example
8252Conflict in state 8 between rule 2 and token '+' resolved as reduce.
8253Conflict in state 8 between rule 2 and token '-' resolved as reduce.
8254Conflict in state 8 between rule 2 and token '*' resolved as shift.
8255@exdent @dots{}
8256@end example
8257
8258@noindent
8259The next section lists states that still have conflicts.
8260
8261@example
5a99098d
PE
8262State 8 conflicts: 1 shift/reduce
8263State 9 conflicts: 1 shift/reduce
8264State 10 conflicts: 1 shift/reduce
8265State 11 conflicts: 4 shift/reduce
ec3bc396
AD
8266@end example
8267
8268@noindent
8269@cindex token, useless
8270@cindex useless token
8271@cindex nonterminal, useless
8272@cindex useless nonterminal
8273@cindex rule, useless
8274@cindex useless rule
8275The next section reports useless tokens, nonterminal and rules. Useless
8276nonterminals and rules are removed in order to produce a smaller parser,
8277but useless tokens are preserved, since they might be used by the
d80fb37a 8278scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
8279below):
8280
8281@example
d80fb37a 8282Nonterminals useless in grammar:
ec3bc396
AD
8283 useless
8284
d80fb37a 8285Terminals unused in grammar:
ec3bc396
AD
8286 STR
8287
cff03fb2 8288Rules useless in grammar:
ec3bc396
AD
8289#6 useless: STR;
8290@end example
8291
8292@noindent
8293The next section reproduces the exact grammar that Bison used:
8294
8295@example
8296Grammar
8297
8298 Number, Line, Rule
88bce5a2 8299 0 5 $accept -> exp $end
ec3bc396
AD
8300 1 5 exp -> exp '+' exp
8301 2 6 exp -> exp '-' exp
8302 3 7 exp -> exp '*' exp
8303 4 8 exp -> exp '/' exp
8304 5 9 exp -> NUM
8305@end example
8306
8307@noindent
8308and reports the uses of the symbols:
8309
8310@example
d4fca427 8311@group
ec3bc396
AD
8312Terminals, with rules where they appear
8313
88bce5a2 8314$end (0) 0
ec3bc396
AD
8315'*' (42) 3
8316'+' (43) 1
8317'-' (45) 2
8318'/' (47) 4
8319error (256)
8320NUM (258) 5
d4fca427 8321@end group
ec3bc396 8322
d4fca427 8323@group
ec3bc396
AD
8324Nonterminals, with rules where they appear
8325
88bce5a2 8326$accept (8)
ec3bc396
AD
8327 on left: 0
8328exp (9)
8329 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8330@end group
ec3bc396
AD
8331@end example
8332
8333@noindent
8334@cindex item
8335@cindex pointed rule
8336@cindex rule, pointed
8337Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8338with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8339item is a production rule together with a point (@samp{.}) marking
8340the location of the input cursor.
ec3bc396
AD
8341
8342@example
8343state 0
8344
88bce5a2 8345 $accept -> . exp $ (rule 0)
ec3bc396 8346
2a8d363a 8347 NUM shift, and go to state 1
ec3bc396 8348
2a8d363a 8349 exp go to state 2
ec3bc396
AD
8350@end example
8351
8352This reads as follows: ``state 0 corresponds to being at the very
8353beginning of the parsing, in the initial rule, right before the start
8354symbol (here, @code{exp}). When the parser returns to this state right
8355after having reduced a rule that produced an @code{exp}, the control
8356flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8357symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8358the parse stack, and the control flow jumps to state 1. Any other
742e4900 8359lookahead triggers a syntax error.''
ec3bc396
AD
8360
8361@cindex core, item set
8362@cindex item set core
8363@cindex kernel, item set
8364@cindex item set core
8365Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8366report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8367at the beginning of any rule deriving an @code{exp}. By default Bison
8368reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8369you want to see more detail you can invoke @command{bison} with
35880c82 8370@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8371
8372@example
8373state 0
8374
88bce5a2 8375 $accept -> . exp $ (rule 0)
ec3bc396
AD
8376 exp -> . exp '+' exp (rule 1)
8377 exp -> . exp '-' exp (rule 2)
8378 exp -> . exp '*' exp (rule 3)
8379 exp -> . exp '/' exp (rule 4)
8380 exp -> . NUM (rule 5)
8381
8382 NUM shift, and go to state 1
8383
8384 exp go to state 2
8385@end example
8386
8387@noindent
8388In the state 1...
8389
8390@example
8391state 1
8392
8393 exp -> NUM . (rule 5)
8394
2a8d363a 8395 $default reduce using rule 5 (exp)
ec3bc396
AD
8396@end example
8397
8398@noindent
742e4900 8399the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8400(@samp{$default}), the parser will reduce it. If it was coming from
8401state 0, then, after this reduction it will return to state 0, and will
8402jump to state 2 (@samp{exp: go to state 2}).
8403
8404@example
8405state 2
8406
88bce5a2 8407 $accept -> exp . $ (rule 0)
ec3bc396
AD
8408 exp -> exp . '+' exp (rule 1)
8409 exp -> exp . '-' exp (rule 2)
8410 exp -> exp . '*' exp (rule 3)
8411 exp -> exp . '/' exp (rule 4)
8412
2a8d363a
AD
8413 $ shift, and go to state 3
8414 '+' shift, and go to state 4
8415 '-' shift, and go to state 5
8416 '*' shift, and go to state 6
8417 '/' shift, and go to state 7
ec3bc396
AD
8418@end example
8419
8420@noindent
8421In state 2, the automaton can only shift a symbol. For instance,
35880c82
PE
8422because of the item @samp{exp -> exp . '+' exp}, if the lookahead is
8423@samp{+} it is shifted onto the parse stack, and the automaton
8424jumps to state 4, corresponding to the item @samp{exp -> exp '+' . exp}.
8425Since there is no default action, any lookahead not listed triggers a syntax
8426error.
ec3bc396 8427
eb45ef3b 8428@cindex accepting state
ec3bc396
AD
8429The state 3 is named the @dfn{final state}, or the @dfn{accepting
8430state}:
8431
8432@example
8433state 3
8434
88bce5a2 8435 $accept -> exp $ . (rule 0)
ec3bc396 8436
2a8d363a 8437 $default accept
ec3bc396
AD
8438@end example
8439
8440@noindent
8441the initial rule is completed (the start symbol and the end
8442of input were read), the parsing exits successfully.
8443
8444The interpretation of states 4 to 7 is straightforward, and is left to
8445the reader.
8446
8447@example
8448state 4
8449
8450 exp -> exp '+' . exp (rule 1)
8451
2a8d363a 8452 NUM shift, and go to state 1
ec3bc396 8453
2a8d363a 8454 exp go to state 8
ec3bc396
AD
8455
8456state 5
8457
8458 exp -> exp '-' . exp (rule 2)
8459
2a8d363a 8460 NUM shift, and go to state 1
ec3bc396 8461
2a8d363a 8462 exp go to state 9
ec3bc396
AD
8463
8464state 6
8465
8466 exp -> exp '*' . exp (rule 3)
8467
2a8d363a 8468 NUM shift, and go to state 1
ec3bc396 8469
2a8d363a 8470 exp go to state 10
ec3bc396
AD
8471
8472state 7
8473
8474 exp -> exp '/' . exp (rule 4)
8475
2a8d363a 8476 NUM shift, and go to state 1
ec3bc396 8477
2a8d363a 8478 exp go to state 11
ec3bc396
AD
8479@end example
8480
5a99098d
PE
8481As was announced in beginning of the report, @samp{State 8 conflicts:
84821 shift/reduce}:
ec3bc396
AD
8483
8484@example
8485state 8
8486
8487 exp -> exp . '+' exp (rule 1)
8488 exp -> exp '+' exp . (rule 1)
8489 exp -> exp . '-' exp (rule 2)
8490 exp -> exp . '*' exp (rule 3)
8491 exp -> exp . '/' exp (rule 4)
8492
2a8d363a
AD
8493 '*' shift, and go to state 6
8494 '/' shift, and go to state 7
ec3bc396 8495
2a8d363a
AD
8496 '/' [reduce using rule 1 (exp)]
8497 $default reduce using rule 1 (exp)
ec3bc396
AD
8498@end example
8499
742e4900 8500Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8501either shifting (and going to state 7), or reducing rule 1. The
8502conflict means that either the grammar is ambiguous, or the parser lacks
8503information to make the right decision. Indeed the grammar is
8504ambiguous, as, since we did not specify the precedence of @samp{/}, the
8505sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8506NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8507NUM}, which corresponds to reducing rule 1.
8508
eb45ef3b 8509Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8510arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8511Shift/Reduce Conflicts}. Discarded actions are reported in between
8512square brackets.
8513
8514Note that all the previous states had a single possible action: either
8515shifting the next token and going to the corresponding state, or
8516reducing a single rule. In the other cases, i.e., when shifting
8517@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8518possible, the lookahead is required to select the action. State 8 is
8519one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8520is shifting, otherwise the action is reducing rule 1. In other words,
8521the first two items, corresponding to rule 1, are not eligible when the
742e4900 8522lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8523precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8524with some set of possible lookahead tokens. When run with
8525@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8526
8527@example
8528state 8
8529
88c78747 8530 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8531 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8532 exp -> exp . '-' exp (rule 2)
8533 exp -> exp . '*' exp (rule 3)
8534 exp -> exp . '/' exp (rule 4)
8535
8536 '*' shift, and go to state 6
8537 '/' shift, and go to state 7
8538
8539 '/' [reduce using rule 1 (exp)]
8540 $default reduce using rule 1 (exp)
8541@end example
8542
8543The remaining states are similar:
8544
8545@example
d4fca427 8546@group
ec3bc396
AD
8547state 9
8548
8549 exp -> exp . '+' exp (rule 1)
8550 exp -> exp . '-' exp (rule 2)
8551 exp -> exp '-' exp . (rule 2)
8552 exp -> exp . '*' exp (rule 3)
8553 exp -> exp . '/' exp (rule 4)
8554
2a8d363a
AD
8555 '*' shift, and go to state 6
8556 '/' shift, and go to state 7
ec3bc396 8557
2a8d363a
AD
8558 '/' [reduce using rule 2 (exp)]
8559 $default reduce using rule 2 (exp)
d4fca427 8560@end group
ec3bc396 8561
d4fca427 8562@group
ec3bc396
AD
8563state 10
8564
8565 exp -> exp . '+' exp (rule 1)
8566 exp -> exp . '-' exp (rule 2)
8567 exp -> exp . '*' exp (rule 3)
8568 exp -> exp '*' exp . (rule 3)
8569 exp -> exp . '/' exp (rule 4)
8570
2a8d363a 8571 '/' shift, and go to state 7
ec3bc396 8572
2a8d363a
AD
8573 '/' [reduce using rule 3 (exp)]
8574 $default reduce using rule 3 (exp)
d4fca427 8575@end group
ec3bc396 8576
d4fca427 8577@group
ec3bc396
AD
8578state 11
8579
8580 exp -> exp . '+' exp (rule 1)
8581 exp -> exp . '-' exp (rule 2)
8582 exp -> exp . '*' exp (rule 3)
8583 exp -> exp . '/' exp (rule 4)
8584 exp -> exp '/' exp . (rule 4)
8585
2a8d363a
AD
8586 '+' shift, and go to state 4
8587 '-' shift, and go to state 5
8588 '*' shift, and go to state 6
8589 '/' shift, and go to state 7
ec3bc396 8590
2a8d363a
AD
8591 '+' [reduce using rule 4 (exp)]
8592 '-' [reduce using rule 4 (exp)]
8593 '*' [reduce using rule 4 (exp)]
8594 '/' [reduce using rule 4 (exp)]
8595 $default reduce using rule 4 (exp)
d4fca427 8596@end group
ec3bc396
AD
8597@end example
8598
8599@noindent
fa7e68c3
PE
8600Observe that state 11 contains conflicts not only due to the lack of
8601precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8602@samp{*}, but also because the
ec3bc396
AD
8603associativity of @samp{/} is not specified.
8604
8605
8606@node Tracing
8607@section Tracing Your Parser
bfa74976
RS
8608@findex yydebug
8609@cindex debugging
8610@cindex tracing the parser
8611
8612If a Bison grammar compiles properly but doesn't do what you want when it
8613runs, the @code{yydebug} parser-trace feature can help you figure out why.
8614
3ded9a63
AD
8615There are several means to enable compilation of trace facilities:
8616
8617@table @asis
8618@item the macro @code{YYDEBUG}
8619@findex YYDEBUG
8620Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8621parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8622@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8623YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8624Prologue}).
8625
8626@item the option @option{-t}, @option{--debug}
8627Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8628,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8629
8630@item the directive @samp{%debug}
8631@findex %debug
fa819509
AD
8632Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8633Summary}). This Bison extension is maintained for backward
8634compatibility with previous versions of Bison.
8635
8636@item the variable @samp{parse.trace}
8637@findex %define parse.trace
35c1e5f0
JD
8638Add the @samp{%define parse.trace} directive (@pxref{%define
8639Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8640(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8641useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8642portability matter to you, this is the preferred solution.
3ded9a63
AD
8643@end table
8644
fa819509 8645We suggest that you always enable the trace option so that debugging is
3ded9a63 8646always possible.
bfa74976 8647
02a81e05 8648The trace facility outputs messages with macro calls of the form
e2742e46 8649@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8650@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8651arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8652define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8653and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8654
8655Once you have compiled the program with trace facilities, the way to
8656request a trace is to store a nonzero value in the variable @code{yydebug}.
8657You can do this by making the C code do it (in @code{main}, perhaps), or
8658you can alter the value with a C debugger.
8659
8660Each step taken by the parser when @code{yydebug} is nonzero produces a
8661line or two of trace information, written on @code{stderr}. The trace
8662messages tell you these things:
8663
8664@itemize @bullet
8665@item
8666Each time the parser calls @code{yylex}, what kind of token was read.
8667
8668@item
8669Each time a token is shifted, the depth and complete contents of the
8670state stack (@pxref{Parser States}).
8671
8672@item
8673Each time a rule is reduced, which rule it is, and the complete contents
8674of the state stack afterward.
8675@end itemize
8676
8677To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8678produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8679Bison}). This file shows the meaning of each state in terms of
8680positions in various rules, and also what each state will do with each
8681possible input token. As you read the successive trace messages, you
8682can see that the parser is functioning according to its specification in
8683the listing file. Eventually you will arrive at the place where
8684something undesirable happens, and you will see which parts of the
8685grammar are to blame.
bfa74976 8686
ff7571c0
JD
8687The parser implementation file is a C program and you can use C
8688debuggers on it, but it's not easy to interpret what it is doing. The
8689parser function is a finite-state machine interpreter, and aside from
8690the actions it executes the same code over and over. Only the values
8691of variables show where in the grammar it is working.
bfa74976
RS
8692
8693@findex YYPRINT
8694The debugging information normally gives the token type of each token
8695read, but not its semantic value. You can optionally define a macro
8696named @code{YYPRINT} to provide a way to print the value. If you define
8697@code{YYPRINT}, it should take three arguments. The parser will pass a
8698standard I/O stream, the numeric code for the token type, and the token
8699value (from @code{yylval}).
8700
8701Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8702calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8703
8704@smallexample
38a92d50
PE
8705%@{
8706 static void print_token_value (FILE *, int, YYSTYPE);
8707 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8708%@}
8709
8710@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8711
8712static void
831d3c99 8713print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8714@{
8715 if (type == VAR)
d3c4e709 8716 fprintf (file, "%s", value.tptr->name);
bfa74976 8717 else if (type == NUM)
d3c4e709 8718 fprintf (file, "%d", value.val);
bfa74976
RS
8719@}
8720@end smallexample
8721
ec3bc396
AD
8722@c ================================================= Invoking Bison
8723
342b8b6e 8724@node Invocation
bfa74976
RS
8725@chapter Invoking Bison
8726@cindex invoking Bison
8727@cindex Bison invocation
8728@cindex options for invoking Bison
8729
8730The usual way to invoke Bison is as follows:
8731
8732@example
8733bison @var{infile}
8734@end example
8735
8736Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8737@samp{.y}. The parser implementation file's name is made by replacing
8738the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8739Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8740the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8741also possible, in case you are writing C++ code instead of C in your
8742grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8743output files will take an extension like the given one as input
8744(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8745feature takes effect with all options that manipulate file names like
234a3be3
AD
8746@samp{-o} or @samp{-d}.
8747
8748For example :
8749
8750@example
8751bison -d @var{infile.yxx}
8752@end example
84163231 8753@noindent
72d2299c 8754will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8755
8756@example
b56471a6 8757bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8758@end example
84163231 8759@noindent
234a3be3
AD
8760will produce @file{output.c++} and @file{outfile.h++}.
8761
8a4281b9 8762For compatibility with POSIX, the standard Bison
397ec073
PE
8763distribution also contains a shell script called @command{yacc} that
8764invokes Bison with the @option{-y} option.
8765
bfa74976 8766@menu
13863333 8767* Bison Options:: All the options described in detail,
c827f760 8768 in alphabetical order by short options.
bfa74976 8769* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8770* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8771@end menu
8772
342b8b6e 8773@node Bison Options
bfa74976
RS
8774@section Bison Options
8775
8776Bison supports both traditional single-letter options and mnemonic long
8777option names. Long option names are indicated with @samp{--} instead of
8778@samp{-}. Abbreviations for option names are allowed as long as they
8779are unique. When a long option takes an argument, like
8780@samp{--file-prefix}, connect the option name and the argument with
8781@samp{=}.
8782
8783Here is a list of options that can be used with Bison, alphabetized by
8784short option. It is followed by a cross key alphabetized by long
8785option.
8786
89cab50d
AD
8787@c Please, keep this ordered as in `bison --help'.
8788@noindent
8789Operations modes:
8790@table @option
8791@item -h
8792@itemx --help
8793Print a summary of the command-line options to Bison and exit.
bfa74976 8794
89cab50d
AD
8795@item -V
8796@itemx --version
8797Print the version number of Bison and exit.
bfa74976 8798
f7ab6a50
PE
8799@item --print-localedir
8800Print the name of the directory containing locale-dependent data.
8801
a0de5091
JD
8802@item --print-datadir
8803Print the name of the directory containing skeletons and XSLT.
8804
89cab50d
AD
8805@item -y
8806@itemx --yacc
ff7571c0
JD
8807Act more like the traditional Yacc command. This can cause different
8808diagnostics to be generated, and may change behavior in other minor
8809ways. Most importantly, imitate Yacc's output file name conventions,
8810so that the parser implementation file is called @file{y.tab.c}, and
8811the other outputs are called @file{y.output} and @file{y.tab.h}.
8812Also, if generating a deterministic parser in C, generate
8813@code{#define} statements in addition to an @code{enum} to associate
8814token numbers with token names. Thus, the following shell script can
8815substitute for Yacc, and the Bison distribution contains such a script
8816for compatibility with POSIX:
bfa74976 8817
89cab50d 8818@example
397ec073 8819#! /bin/sh
26e06a21 8820bison -y "$@@"
89cab50d 8821@end example
54662697
PE
8822
8823The @option{-y}/@option{--yacc} option is intended for use with
8824traditional Yacc grammars. If your grammar uses a Bison extension
8825like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8826this option is specified.
8827
1d5b3c08
JD
8828@item -W [@var{category}]
8829@itemx --warnings[=@var{category}]
118d4978
AD
8830Output warnings falling in @var{category}. @var{category} can be one
8831of:
8832@table @code
8833@item midrule-values
8e55b3aa
JD
8834Warn about mid-rule values that are set but not used within any of the actions
8835of the parent rule.
8836For example, warn about unused @code{$2} in:
118d4978
AD
8837
8838@example
8839exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8840@end example
8841
8e55b3aa
JD
8842Also warn about mid-rule values that are used but not set.
8843For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8844
8845@example
8846 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8847@end example
8848
8849These warnings are not enabled by default since they sometimes prove to
8850be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8851@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8852
118d4978 8853@item yacc
8a4281b9 8854Incompatibilities with POSIX Yacc.
118d4978 8855
786743d5
JD
8856@item conflicts-sr
8857@itemx conflicts-rr
8858S/R and R/R conflicts. These warnings are enabled by default. However, if
8859the @code{%expect} or @code{%expect-rr} directive is specified, an
8860unexpected number of conflicts is an error, and an expected number of
8861conflicts is not reported, so @option{-W} and @option{--warning} then have
8862no effect on the conflict report.
8863
c39014ae
JD
8864@item other
8865All warnings not categorized above. These warnings are enabled by default.
8866
8867This category is provided merely for the sake of completeness. Future
8868releases of Bison may move warnings from this category to new, more specific
8869categories.
8870
118d4978 8871@item all
8e55b3aa 8872All the warnings.
118d4978 8873@item none
8e55b3aa 8874Turn off all the warnings.
118d4978 8875@item error
8e55b3aa 8876Treat warnings as errors.
118d4978
AD
8877@end table
8878
8879A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8880instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8881POSIX Yacc incompatibilities.
89cab50d
AD
8882@end table
8883
8884@noindent
8885Tuning the parser:
8886
8887@table @option
8888@item -t
8889@itemx --debug
ff7571c0
JD
8890In the parser implementation file, define the macro @code{YYDEBUG} to
88911 if it is not already defined, so that the debugging facilities are
8892compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8893
58697c6d
AD
8894@item -D @var{name}[=@var{value}]
8895@itemx --define=@var{name}[=@var{value}]
17aed602 8896@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8897@itemx --force-define=@var{name}[=@var{value}]
8898Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 8899(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
8900definitions for the same @var{name} as follows:
8901
8902@itemize
8903@item
0b6d43c5
JD
8904Bison quietly ignores all command-line definitions for @var{name} except
8905the last.
de5ab940 8906@item
0b6d43c5
JD
8907If that command-line definition is specified by a @code{-D} or
8908@code{--define}, Bison reports an error for any @code{%define}
8909definition for @var{name}.
de5ab940 8910@item
0b6d43c5
JD
8911If that command-line definition is specified by a @code{-F} or
8912@code{--force-define} instead, Bison quietly ignores all @code{%define}
8913definitions for @var{name}.
8914@item
8915Otherwise, Bison reports an error if there are multiple @code{%define}
8916definitions for @var{name}.
de5ab940
JD
8917@end itemize
8918
8919You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8920make files unless you are confident that it is safe to quietly ignore
8921any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8922
0e021770
PE
8923@item -L @var{language}
8924@itemx --language=@var{language}
8925Specify the programming language for the generated parser, as if
8926@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8927Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8928@var{language} is case-insensitive.
0e021770 8929
ed4d67dc
JD
8930This option is experimental and its effect may be modified in future
8931releases.
8932
89cab50d 8933@item --locations
d8988b2f 8934Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8935
8936@item -p @var{prefix}
8937@itemx --name-prefix=@var{prefix}
02975b9a 8938Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8939@xref{Decl Summary}.
bfa74976
RS
8940
8941@item -l
8942@itemx --no-lines
ff7571c0
JD
8943Don't put any @code{#line} preprocessor commands in the parser
8944implementation file. Ordinarily Bison puts them in the parser
8945implementation file so that the C compiler and debuggers will
8946associate errors with your source file, the grammar file. This option
8947causes them to associate errors with the parser implementation file,
8948treating it as an independent source file in its own right.
bfa74976 8949
e6e704dc
JD
8950@item -S @var{file}
8951@itemx --skeleton=@var{file}
a7867f53 8952Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8953(@pxref{Decl Summary, , Bison Declaration Summary}).
8954
ed4d67dc
JD
8955@c You probably don't need this option unless you are developing Bison.
8956@c You should use @option{--language} if you want to specify the skeleton for a
8957@c different language, because it is clearer and because it will always
8958@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8959
a7867f53
JD
8960If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8961file in the Bison installation directory.
8962If it does, @var{file} is an absolute file name or a file name relative to the
8963current working directory.
8964This is similar to how most shells resolve commands.
8965
89cab50d
AD
8966@item -k
8967@itemx --token-table
d8988b2f 8968Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8969@end table
bfa74976 8970
89cab50d
AD
8971@noindent
8972Adjust the output:
bfa74976 8973
89cab50d 8974@table @option
8e55b3aa 8975@item --defines[=@var{file}]
d8988b2f 8976Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8977file containing macro definitions for the token type names defined in
4bfd5e4e 8978the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8979
8e55b3aa
JD
8980@item -d
8981This is the same as @code{--defines} except @code{-d} does not accept a
8982@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8983with other short options.
342b8b6e 8984
89cab50d
AD
8985@item -b @var{file-prefix}
8986@itemx --file-prefix=@var{prefix}
9c437126 8987Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8988for all Bison output file names. @xref{Decl Summary}.
bfa74976 8989
ec3bc396
AD
8990@item -r @var{things}
8991@itemx --report=@var{things}
8992Write an extra output file containing verbose description of the comma
8993separated list of @var{things} among:
8994
8995@table @code
8996@item state
8997Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8998parser's automaton.
ec3bc396 8999
742e4900 9000@item lookahead
ec3bc396 9001Implies @code{state} and augments the description of the automaton with
742e4900 9002each rule's lookahead set.
ec3bc396
AD
9003
9004@item itemset
9005Implies @code{state} and augments the description of the automaton with
9006the full set of items for each state, instead of its core only.
9007@end table
9008
1bb2bd75
JD
9009@item --report-file=@var{file}
9010Specify the @var{file} for the verbose description.
9011
bfa74976
RS
9012@item -v
9013@itemx --verbose
9c437126 9014Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9015file containing verbose descriptions of the grammar and
72d2299c 9016parser. @xref{Decl Summary}.
bfa74976 9017
fa4d969f
PE
9018@item -o @var{file}
9019@itemx --output=@var{file}
ff7571c0 9020Specify the @var{file} for the parser implementation file.
bfa74976 9021
fa4d969f 9022The other output files' names are constructed from @var{file} as
d8988b2f 9023described under the @samp{-v} and @samp{-d} options.
342b8b6e 9024
a7c09cba 9025@item -g [@var{file}]
8e55b3aa 9026@itemx --graph[=@var{file}]
eb45ef3b 9027Output a graphical representation of the parser's
35fe0834 9028automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9029@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9030@code{@var{file}} is optional.
9031If omitted and the grammar file is @file{foo.y}, the output file will be
9032@file{foo.dot}.
59da312b 9033
a7c09cba 9034@item -x [@var{file}]
8e55b3aa 9035@itemx --xml[=@var{file}]
eb45ef3b 9036Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9037@code{@var{file}} is optional.
59da312b
JD
9038If omitted and the grammar file is @file{foo.y}, the output file will be
9039@file{foo.xml}.
9040(The current XML schema is experimental and may evolve.
9041More user feedback will help to stabilize it.)
bfa74976
RS
9042@end table
9043
342b8b6e 9044@node Option Cross Key
bfa74976
RS
9045@section Option Cross Key
9046
9047Here is a list of options, alphabetized by long option, to help you find
de5ab940 9048the corresponding short option and directive.
bfa74976 9049
de5ab940 9050@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9051@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9052@include cross-options.texi
aa08666d 9053@end multitable
bfa74976 9054
93dd49ab
PE
9055@node Yacc Library
9056@section Yacc Library
9057
9058The Yacc library contains default implementations of the
9059@code{yyerror} and @code{main} functions. These default
8a4281b9 9060implementations are normally not useful, but POSIX requires
93dd49ab
PE
9061them. To use the Yacc library, link your program with the
9062@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9063library is distributed under the terms of the GNU General
93dd49ab
PE
9064Public License (@pxref{Copying}).
9065
9066If you use the Yacc library's @code{yyerror} function, you should
9067declare @code{yyerror} as follows:
9068
9069@example
9070int yyerror (char const *);
9071@end example
9072
9073Bison ignores the @code{int} value returned by this @code{yyerror}.
9074If you use the Yacc library's @code{main} function, your
9075@code{yyparse} function should have the following type signature:
9076
9077@example
9078int yyparse (void);
9079@end example
9080
12545799
AD
9081@c ================================================= C++ Bison
9082
8405b70c
PB
9083@node Other Languages
9084@chapter Parsers Written In Other Languages
12545799
AD
9085
9086@menu
9087* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9088* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9089@end menu
9090
9091@node C++ Parsers
9092@section C++ Parsers
9093
9094@menu
9095* C++ Bison Interface:: Asking for C++ parser generation
9096* C++ Semantic Values:: %union vs. C++
9097* C++ Location Values:: The position and location classes
9098* C++ Parser Interface:: Instantiating and running the parser
9099* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9100* A Complete C++ Example:: Demonstrating their use
12545799
AD
9101@end menu
9102
9103@node C++ Bison Interface
9104@subsection C++ Bison Interface
ed4d67dc 9105@c - %skeleton "lalr1.cc"
12545799
AD
9106@c - Always pure
9107@c - initial action
9108
eb45ef3b 9109The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9110@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9111@option{--skeleton=lalr1.cc}.
e6e704dc 9112@xref{Decl Summary}.
0e021770 9113
793fbca5
JD
9114When run, @command{bison} will create several entities in the @samp{yy}
9115namespace.
67501061 9116@findex %define api.namespace
35c1e5f0
JD
9117Use the @samp{%define api.namespace} directive to change the namespace name,
9118see @ref{%define Summary,,api.namespace}. The various classes are generated
9119in the following files:
aa08666d 9120
12545799
AD
9121@table @file
9122@item position.hh
9123@itemx location.hh
9124The definition of the classes @code{position} and @code{location},
3cdc21cf 9125used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9126
9127@item stack.hh
9128An auxiliary class @code{stack} used by the parser.
9129
fa4d969f
PE
9130@item @var{file}.hh
9131@itemx @var{file}.cc
ff7571c0 9132(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9133declaration and implementation of the C++ parser class. The basename
9134and extension of these two files follow the same rules as with regular C
9135parsers (@pxref{Invocation}).
12545799 9136
cd8b5791
AD
9137The header is @emph{mandatory}; you must either pass
9138@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9139@samp{%defines} directive.
9140@end table
9141
9142All these files are documented using Doxygen; run @command{doxygen}
9143for a complete and accurate documentation.
9144
9145@node C++ Semantic Values
9146@subsection C++ Semantic Values
9147@c - No objects in unions
178e123e 9148@c - YYSTYPE
12545799
AD
9149@c - Printer and destructor
9150
3cdc21cf
AD
9151Bison supports two different means to handle semantic values in C++. One is
9152alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9153practitioners know, unions are inconvenient in C++, therefore another
9154approach is provided, based on variants (@pxref{C++ Variants}).
9155
9156@menu
9157* C++ Unions:: Semantic values cannot be objects
9158* C++ Variants:: Using objects as semantic values
9159@end menu
9160
9161@node C++ Unions
9162@subsubsection C++ Unions
9163
12545799
AD
9164The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9165Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9166@code{union}, which have a few specific features in C++.
12545799
AD
9167@itemize @minus
9168@item
fb9712a9
AD
9169The type @code{YYSTYPE} is defined but its use is discouraged: rather
9170you should refer to the parser's encapsulated type
9171@code{yy::parser::semantic_type}.
12545799
AD
9172@item
9173Non POD (Plain Old Data) types cannot be used. C++ forbids any
9174instance of classes with constructors in unions: only @emph{pointers}
9175to such objects are allowed.
9176@end itemize
9177
9178Because objects have to be stored via pointers, memory is not
9179reclaimed automatically: using the @code{%destructor} directive is the
9180only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9181Symbols}.
9182
3cdc21cf
AD
9183@node C++ Variants
9184@subsubsection C++ Variants
9185
9186Starting with version 2.6, Bison provides a @emph{variant} based
9187implementation of semantic values for C++. This alleviates all the
9188limitations reported in the previous section, and in particular, object
9189types can be used without pointers.
9190
9191To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9192@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9193@code{%union} is ignored, and instead of using the name of the fields of the
9194@code{%union} to ``type'' the symbols, use genuine types.
9195
9196For instance, instead of
9197
9198@example
9199%union
9200@{
9201 int ival;
9202 std::string* sval;
9203@}
9204%token <ival> NUMBER;
9205%token <sval> STRING;
9206@end example
9207
9208@noindent
9209write
9210
9211@example
9212%token <int> NUMBER;
9213%token <std::string> STRING;
9214@end example
9215
9216@code{STRING} is no longer a pointer, which should fairly simplify the user
9217actions in the grammar and in the scanner (in particular the memory
9218management).
9219
9220Since C++ features destructors, and since it is customary to specialize
9221@code{operator<<} to support uniform printing of values, variants also
9222typically simplify Bison printers and destructors.
9223
9224Variants are stricter than unions. When based on unions, you may play any
9225dirty game with @code{yylval}, say storing an @code{int}, reading a
9226@code{char*}, and then storing a @code{double} in it. This is no longer
9227possible with variants: they must be initialized, then assigned to, and
9228eventually, destroyed.
9229
9230@deftypemethod {semantic_type} {T&} build<T> ()
9231Initialize, but leave empty. Returns the address where the actual value may
9232be stored. Requires that the variant was not initialized yet.
9233@end deftypemethod
9234
9235@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9236Initialize, and copy-construct from @var{t}.
9237@end deftypemethod
9238
9239
9240@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9241appeared unacceptable to require Boost on the user's machine (i.e., the
9242machine on which the generated parser will be compiled, not the machine on
9243which @command{bison} was run). Second, for each possible semantic value,
9244Boost.Variant not only stores the value, but also a tag specifying its
9245type. But the parser already ``knows'' the type of the semantic value, so
9246that would be duplicating the information.
9247
9248Therefore we developed light-weight variants whose type tag is external (so
9249they are really like @code{unions} for C++ actually). But our code is much
9250less mature that Boost.Variant. So there is a number of limitations in
9251(the current implementation of) variants:
9252@itemize
9253@item
9254Alignment must be enforced: values should be aligned in memory according to
9255the most demanding type. Computing the smallest alignment possible requires
9256meta-programming techniques that are not currently implemented in Bison, and
9257therefore, since, as far as we know, @code{double} is the most demanding
9258type on all platforms, alignments are enforced for @code{double} whatever
9259types are actually used. This may waste space in some cases.
9260
9261@item
9262Our implementation is not conforming with strict aliasing rules. Alias
9263analysis is a technique used in optimizing compilers to detect when two
9264pointers are disjoint (they cannot ``meet''). Our implementation breaks
9265some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9266alias analysis must be disabled}. Use the option
9267@option{-fno-strict-aliasing} to compile the generated parser.
9268
9269@item
9270There might be portability issues we are not aware of.
9271@end itemize
9272
a6ca4ce2 9273As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9274is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9275
9276@node C++ Location Values
9277@subsection C++ Location Values
9278@c - %locations
9279@c - class Position
9280@c - class Location
16dc6a9e 9281@c - %define filename_type "const symbol::Symbol"
12545799
AD
9282
9283When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9284location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9285define a @code{position}, a single point in a file, and a @code{location}, a
9286range composed of a pair of @code{position}s (possibly spanning several
9287files).
12545799 9288
fa4d969f 9289@deftypemethod {position} {std::string*} file
12545799
AD
9290The name of the file. It will always be handled as a pointer, the
9291parser will never duplicate nor deallocate it. As an experimental
9292feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9293filename_type "@var{type}"}.
12545799
AD
9294@end deftypemethod
9295
9296@deftypemethod {position} {unsigned int} line
9297The line, starting at 1.
9298@end deftypemethod
9299
9300@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
9301Advance by @var{height} lines, resetting the column number.
9302@end deftypemethod
9303
9304@deftypemethod {position} {unsigned int} column
9305The column, starting at 0.
9306@end deftypemethod
9307
9308@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
9309Advance by @var{width} columns, without changing the line number.
9310@end deftypemethod
9311
9312@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
9313@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
9314@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
9315@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
9316Various forms of syntactic sugar for @code{columns}.
9317@end deftypemethod
9318
9319@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
9320Report @var{p} on @var{o} like this:
fa4d969f
PE
9321@samp{@var{file}:@var{line}.@var{column}}, or
9322@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
9323@end deftypemethod
9324
9325@deftypemethod {location} {position} begin
9326@deftypemethodx {location} {position} end
9327The first, inclusive, position of the range, and the first beyond.
9328@end deftypemethod
9329
9330@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
9331@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
9332Advance the @code{end} position.
9333@end deftypemethod
9334
9335@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
9336@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
9337@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
9338Various forms of syntactic sugar.
9339@end deftypemethod
9340
9341@deftypemethod {location} {void} step ()
9342Move @code{begin} onto @code{end}.
9343@end deftypemethod
9344
9345
9346@node C++ Parser Interface
9347@subsection C++ Parser Interface
9348@c - define parser_class_name
9349@c - Ctor
9350@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9351@c debug_stream.
9352@c - Reporting errors
9353
9354The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9355declare and define the parser class in the namespace @code{yy}. The
9356class name defaults to @code{parser}, but may be changed using
16dc6a9e 9357@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9358this class is detailed below. It can be extended using the
12545799
AD
9359@code{%parse-param} feature: its semantics is slightly changed since
9360it describes an additional member of the parser class, and an
9361additional argument for its constructor.
9362
3cdc21cf
AD
9363@defcv {Type} {parser} {semantic_type}
9364@defcvx {Type} {parser} {location_type}
9365The types for semantic values and locations (if enabled).
9366@end defcv
9367
86e5b440 9368@defcv {Type} {parser} {token}
aaaa2aae
AD
9369A structure that contains (only) the @code{yytokentype} enumeration, which
9370defines the tokens. To refer to the token @code{FOO},
9371use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
9372@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9373(@pxref{Calc++ Scanner}).
9374@end defcv
9375
3cdc21cf
AD
9376@defcv {Type} {parser} {syntax_error}
9377This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9378from the scanner or from the user actions to raise parse errors. This is
9379equivalent with first
3cdc21cf
AD
9380invoking @code{error} to report the location and message of the syntax
9381error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9382But contrary to @code{YYERROR} which can only be invoked from user actions
9383(i.e., written in the action itself), the exception can be thrown from
9384function invoked from the user action.
8a0adb01 9385@end defcv
12545799
AD
9386
9387@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9388Build a new parser object. There are no arguments by default, unless
9389@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9390@end deftypemethod
9391
3cdc21cf
AD
9392@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9393@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9394Instantiate a syntax-error exception.
9395@end deftypemethod
9396
12545799
AD
9397@deftypemethod {parser} {int} parse ()
9398Run the syntactic analysis, and return 0 on success, 1 otherwise.
9399@end deftypemethod
9400
9401@deftypemethod {parser} {std::ostream&} debug_stream ()
9402@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9403Get or set the stream used for tracing the parsing. It defaults to
9404@code{std::cerr}.
9405@end deftypemethod
9406
9407@deftypemethod {parser} {debug_level_type} debug_level ()
9408@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9409Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9410or nonzero, full tracing.
12545799
AD
9411@end deftypemethod
9412
9413@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9414@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9415The definition for this member function must be supplied by the user:
9416the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9417described by @var{m}. If location tracking is not enabled, the second
9418signature is used.
12545799
AD
9419@end deftypemethod
9420
9421
9422@node C++ Scanner Interface
9423@subsection C++ Scanner Interface
9424@c - prefix for yylex.
9425@c - Pure interface to yylex
9426@c - %lex-param
9427
9428The parser invokes the scanner by calling @code{yylex}. Contrary to C
9429parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9430@samp{%define api.pure} directive. The actual interface with @code{yylex}
9431depends whether you use unions, or variants.
12545799 9432
3cdc21cf
AD
9433@menu
9434* Split Symbols:: Passing symbols as two/three components
9435* Complete Symbols:: Making symbols a whole
9436@end menu
9437
9438@node Split Symbols
9439@subsubsection Split Symbols
9440
9441Therefore the interface is as follows.
9442
86e5b440
AD
9443@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9444@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9445Return the next token. Its type is the return value, its semantic value and
9446location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9447@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9448@end deftypemethod
9449
3cdc21cf
AD
9450Note that when using variants, the interface for @code{yylex} is the same,
9451but @code{yylval} is handled differently.
9452
9453Regular union-based code in Lex scanner typically look like:
9454
9455@example
9456[0-9]+ @{
9457 yylval.ival = text_to_int (yytext);
9458 return yy::parser::INTEGER;
9459 @}
9460[a-z]+ @{
9461 yylval.sval = new std::string (yytext);
9462 return yy::parser::IDENTIFIER;
9463 @}
9464@end example
9465
9466Using variants, @code{yylval} is already constructed, but it is not
9467initialized. So the code would look like:
9468
9469@example
9470[0-9]+ @{
9471 yylval.build<int>() = text_to_int (yytext);
9472 return yy::parser::INTEGER;
9473 @}
9474[a-z]+ @{
9475 yylval.build<std::string> = yytext;
9476 return yy::parser::IDENTIFIER;
9477 @}
9478@end example
9479
9480@noindent
9481or
9482
9483@example
9484[0-9]+ @{
9485 yylval.build(text_to_int (yytext));
9486 return yy::parser::INTEGER;
9487 @}
9488[a-z]+ @{
9489 yylval.build(yytext);
9490 return yy::parser::IDENTIFIER;
9491 @}
9492@end example
9493
9494
9495@node Complete Symbols
9496@subsubsection Complete Symbols
9497
9498If you specified both @code{%define variant} and @code{%define lex_symbol},
9499the @code{parser} class also defines the class @code{parser::symbol_type}
9500which defines a @emph{complete} symbol, aggregating its type (i.e., the
9501traditional value returned by @code{yylex}), its semantic value (i.e., the
9502value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9503
9504@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9505Build a complete terminal symbol which token type is @var{type}, and which
9506semantic value is @var{value}. If location tracking is enabled, also pass
9507the @var{location}.
9508@end deftypemethod
9509
9510This interface is low-level and should not be used for two reasons. First,
9511it is inconvenient, as you still have to build the semantic value, which is
9512a variant, and second, because consistency is not enforced: as with unions,
9513it is still possible to give an integer as semantic value for a string.
9514
9515So for each token type, Bison generates named constructors as follows.
9516
9517@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9518@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9519Build a complete terminal symbol for the token type @var{token} (not
9520including the @code{api.tokens.prefix}) whose possible semantic value is
9521@var{value} of adequate @var{value_type}. If location tracking is enabled,
9522also pass the @var{location}.
9523@end deftypemethod
9524
9525For instance, given the following declarations:
9526
9527@example
9528%define api.tokens.prefix "TOK_"
9529%token <std::string> IDENTIFIER;
9530%token <int> INTEGER;
9531%token COLON;
9532@end example
9533
9534@noindent
9535Bison generates the following functions:
9536
9537@example
9538symbol_type make_IDENTIFIER(const std::string& v,
9539 const location_type& l);
9540symbol_type make_INTEGER(const int& v,
9541 const location_type& loc);
9542symbol_type make_COLON(const location_type& loc);
9543@end example
9544
9545@noindent
9546which should be used in a Lex-scanner as follows.
9547
9548@example
9549[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9550[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9551":" return yy::parser::make_COLON(loc);
9552@end example
9553
9554Tokens that do not have an identifier are not accessible: you cannot simply
9555use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9556
9557@node A Complete C++ Example
8405b70c 9558@subsection A Complete C++ Example
12545799
AD
9559
9560This section demonstrates the use of a C++ parser with a simple but
9561complete example. This example should be available on your system,
3cdc21cf 9562ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9563focuses on the use of Bison, therefore the design of the various C++
9564classes is very naive: no accessors, no encapsulation of members etc.
9565We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9566demonstrate the various interactions. A hand-written scanner is
12545799
AD
9567actually easier to interface with.
9568
9569@menu
9570* Calc++ --- C++ Calculator:: The specifications
9571* Calc++ Parsing Driver:: An active parsing context
9572* Calc++ Parser:: A parser class
9573* Calc++ Scanner:: A pure C++ Flex scanner
9574* Calc++ Top Level:: Conducting the band
9575@end menu
9576
9577@node Calc++ --- C++ Calculator
8405b70c 9578@subsubsection Calc++ --- C++ Calculator
12545799
AD
9579
9580Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9581expression, possibly preceded by variable assignments. An
12545799
AD
9582environment containing possibly predefined variables such as
9583@code{one} and @code{two}, is exchanged with the parser. An example
9584of valid input follows.
9585
9586@example
9587three := 3
9588seven := one + two * three
9589seven * seven
9590@end example
9591
9592@node Calc++ Parsing Driver
8405b70c 9593@subsubsection Calc++ Parsing Driver
12545799
AD
9594@c - An env
9595@c - A place to store error messages
9596@c - A place for the result
9597
9598To support a pure interface with the parser (and the scanner) the
9599technique of the ``parsing context'' is convenient: a structure
9600containing all the data to exchange. Since, in addition to simply
9601launch the parsing, there are several auxiliary tasks to execute (open
9602the file for parsing, instantiate the parser etc.), we recommend
9603transforming the simple parsing context structure into a fully blown
9604@dfn{parsing driver} class.
9605
9606The declaration of this driver class, @file{calc++-driver.hh}, is as
9607follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9608required standard library components, and the declaration of the parser
9609class.
12545799 9610
1c59e0a1 9611@comment file: calc++-driver.hh
12545799
AD
9612@example
9613#ifndef CALCXX_DRIVER_HH
9614# define CALCXX_DRIVER_HH
9615# include <string>
9616# include <map>
fb9712a9 9617# include "calc++-parser.hh"
12545799
AD
9618@end example
9619
12545799
AD
9620
9621@noindent
9622Then comes the declaration of the scanning function. Flex expects
9623the signature of @code{yylex} to be defined in the macro
9624@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9625factor both as follows.
1c59e0a1
AD
9626
9627@comment file: calc++-driver.hh
12545799 9628@example
3dc5e96b 9629// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9630# define YY_DECL \
9631 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9632// ... and declare it for the parser's sake.
9633YY_DECL;
9634@end example
9635
9636@noindent
9637The @code{calcxx_driver} class is then declared with its most obvious
9638members.
9639
1c59e0a1 9640@comment file: calc++-driver.hh
12545799
AD
9641@example
9642// Conducting the whole scanning and parsing of Calc++.
9643class calcxx_driver
9644@{
9645public:
9646 calcxx_driver ();
9647 virtual ~calcxx_driver ();
9648
9649 std::map<std::string, int> variables;
9650
9651 int result;
9652@end example
9653
9654@noindent
3cdc21cf
AD
9655To encapsulate the coordination with the Flex scanner, it is useful to have
9656member functions to open and close the scanning phase.
12545799 9657
1c59e0a1 9658@comment file: calc++-driver.hh
12545799
AD
9659@example
9660 // Handling the scanner.
9661 void scan_begin ();
9662 void scan_end ();
9663 bool trace_scanning;
9664@end example
9665
9666@noindent
9667Similarly for the parser itself.
9668
1c59e0a1 9669@comment file: calc++-driver.hh
12545799 9670@example
3cdc21cf
AD
9671 // Run the parser on file F.
9672 // Return 0 on success.
bb32f4f2 9673 int parse (const std::string& f);
3cdc21cf
AD
9674 // The name of the file being parsed.
9675 // Used later to pass the file name to the location tracker.
12545799 9676 std::string file;
3cdc21cf 9677 // Whether parser traces should be generated.
12545799
AD
9678 bool trace_parsing;
9679@end example
9680
9681@noindent
9682To demonstrate pure handling of parse errors, instead of simply
9683dumping them on the standard error output, we will pass them to the
9684compiler driver using the following two member functions. Finally, we
9685close the class declaration and CPP guard.
9686
1c59e0a1 9687@comment file: calc++-driver.hh
12545799
AD
9688@example
9689 // Error handling.
9690 void error (const yy::location& l, const std::string& m);
9691 void error (const std::string& m);
9692@};
9693#endif // ! CALCXX_DRIVER_HH
9694@end example
9695
9696The implementation of the driver is straightforward. The @code{parse}
9697member function deserves some attention. The @code{error} functions
9698are simple stubs, they should actually register the located error
9699messages and set error state.
9700
1c59e0a1 9701@comment file: calc++-driver.cc
12545799
AD
9702@example
9703#include "calc++-driver.hh"
9704#include "calc++-parser.hh"
9705
9706calcxx_driver::calcxx_driver ()
9707 : trace_scanning (false), trace_parsing (false)
9708@{
9709 variables["one"] = 1;
9710 variables["two"] = 2;
9711@}
9712
9713calcxx_driver::~calcxx_driver ()
9714@{
9715@}
9716
bb32f4f2 9717int
12545799
AD
9718calcxx_driver::parse (const std::string &f)
9719@{
9720 file = f;
9721 scan_begin ();
9722 yy::calcxx_parser parser (*this);
9723 parser.set_debug_level (trace_parsing);
bb32f4f2 9724 int res = parser.parse ();
12545799 9725 scan_end ();
bb32f4f2 9726 return res;
12545799
AD
9727@}
9728
9729void
9730calcxx_driver::error (const yy::location& l, const std::string& m)
9731@{
9732 std::cerr << l << ": " << m << std::endl;
9733@}
9734
9735void
9736calcxx_driver::error (const std::string& m)
9737@{
9738 std::cerr << m << std::endl;
9739@}
9740@end example
9741
9742@node Calc++ Parser
8405b70c 9743@subsubsection Calc++ Parser
12545799 9744
ff7571c0
JD
9745The grammar file @file{calc++-parser.yy} starts by asking for the C++
9746deterministic parser skeleton, the creation of the parser header file,
9747and specifies the name of the parser class. Because the C++ skeleton
9748changed several times, it is safer to require the version you designed
9749the grammar for.
1c59e0a1
AD
9750
9751@comment file: calc++-parser.yy
12545799 9752@example
ed4d67dc 9753%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9754%require "@value{VERSION}"
12545799 9755%defines
16dc6a9e 9756%define parser_class_name "calcxx_parser"
fb9712a9
AD
9757@end example
9758
3cdc21cf
AD
9759@noindent
9760@findex %define variant
9761@findex %define lex_symbol
9762This example will use genuine C++ objects as semantic values, therefore, we
9763require the variant-based interface. To make sure we properly use it, we
9764enable assertions. To fully benefit from type-safety and more natural
9765definition of ``symbol'', we enable @code{lex_symbol}.
9766
9767@comment file: calc++-parser.yy
9768@example
9769%define variant
9770%define parse.assert
9771%define lex_symbol
9772@end example
9773
fb9712a9 9774@noindent
16dc6a9e 9775@findex %code requires
3cdc21cf
AD
9776Then come the declarations/inclusions needed by the semantic values.
9777Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9778to include the header of the other, which is, of course, insane. This
3cdc21cf 9779mutual dependency will be broken using forward declarations. Because the
fb9712a9 9780driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9781particular its inner types), it is the parser's header which will use a
e0c07222 9782forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9783
9784@comment file: calc++-parser.yy
9785@example
3cdc21cf
AD
9786%code requires
9787@{
12545799 9788# include <string>
fb9712a9 9789class calcxx_driver;
9bc0dd67 9790@}
12545799
AD
9791@end example
9792
9793@noindent
9794The driver is passed by reference to the parser and to the scanner.
9795This provides a simple but effective pure interface, not relying on
9796global variables.
9797
1c59e0a1 9798@comment file: calc++-parser.yy
12545799
AD
9799@example
9800// The parsing context.
2055a44e 9801%param @{ calcxx_driver& driver @}
12545799
AD
9802@end example
9803
9804@noindent
2055a44e 9805Then we request location tracking, and initialize the
f50bfcd6 9806first location's file name. Afterward new locations are computed
12545799 9807relatively to the previous locations: the file name will be
2055a44e 9808propagated.
12545799 9809
1c59e0a1 9810@comment file: calc++-parser.yy
12545799
AD
9811@example
9812%locations
9813%initial-action
9814@{
9815 // Initialize the initial location.
b47dbebe 9816 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9817@};
9818@end example
9819
9820@noindent
7fceb615
JD
9821Use the following two directives to enable parser tracing and verbose error
9822messages. However, verbose error messages can contain incorrect information
9823(@pxref{LAC}).
12545799 9824
1c59e0a1 9825@comment file: calc++-parser.yy
12545799 9826@example
fa819509 9827%define parse.trace
cf499cff 9828%define parse.error verbose
12545799
AD
9829@end example
9830
fb9712a9 9831@noindent
136a0f76
PB
9832@findex %code
9833The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9834@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9835
9836@comment file: calc++-parser.yy
9837@example
3cdc21cf
AD
9838%code
9839@{
fb9712a9 9840# include "calc++-driver.hh"
34f98f46 9841@}
fb9712a9
AD
9842@end example
9843
9844
12545799
AD
9845@noindent
9846The token numbered as 0 corresponds to end of file; the following line
99c08fb6 9847allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
9848``$end''. Similarly user friendly names are provided for each symbol. To
9849avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
9850tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 9851
1c59e0a1 9852@comment file: calc++-parser.yy
12545799 9853@example
4c6622c2 9854%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9855%token
9856 END 0 "end of file"
9857 ASSIGN ":="
9858 MINUS "-"
9859 PLUS "+"
9860 STAR "*"
9861 SLASH "/"
9862 LPAREN "("
9863 RPAREN ")"
9864;
12545799
AD
9865@end example
9866
9867@noindent
3cdc21cf
AD
9868Since we use variant-based semantic values, @code{%union} is not used, and
9869both @code{%type} and @code{%token} expect genuine types, as opposed to type
9870tags.
12545799 9871
1c59e0a1 9872@comment file: calc++-parser.yy
12545799 9873@example
3cdc21cf
AD
9874%token <std::string> IDENTIFIER "identifier"
9875%token <int> NUMBER "number"
9876%type <int> exp
9877@end example
9878
9879@noindent
9880No @code{%destructor} is needed to enable memory deallocation during error
9881recovery; the memory, for strings for instance, will be reclaimed by the
9882regular destructors. All the values are printed using their
9883@code{operator<<}.
12545799 9884
3cdc21cf
AD
9885@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9886@comment file: calc++-parser.yy
9887@example
9888%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9889@end example
9890
9891@noindent
3cdc21cf
AD
9892The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9893Location Tracking Calculator: @code{ltcalc}}).
12545799 9894
1c59e0a1 9895@comment file: calc++-parser.yy
12545799
AD
9896@example
9897%%
9898%start unit;
9899unit: assignments exp @{ driver.result = $2; @};
9900
99c08fb6
AD
9901assignments:
9902 assignments assignment @{@}
9903| /* Nothing. */ @{@};
12545799 9904
3dc5e96b 9905assignment:
3cdc21cf 9906 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9907
3cdc21cf
AD
9908%left "+" "-";
9909%left "*" "/";
99c08fb6 9910exp:
3cdc21cf
AD
9911 exp "+" exp @{ $$ = $1 + $3; @}
9912| exp "-" exp @{ $$ = $1 - $3; @}
9913| exp "*" exp @{ $$ = $1 * $3; @}
9914| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9915| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9916| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9917| "number" @{ std::swap ($$, $1); @};
12545799
AD
9918%%
9919@end example
9920
9921@noindent
9922Finally the @code{error} member function registers the errors to the
9923driver.
9924
1c59e0a1 9925@comment file: calc++-parser.yy
12545799
AD
9926@example
9927void
3cdc21cf 9928yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9929 const std::string& m)
12545799
AD
9930@{
9931 driver.error (l, m);
9932@}
9933@end example
9934
9935@node Calc++ Scanner
8405b70c 9936@subsubsection Calc++ Scanner
12545799
AD
9937
9938The Flex scanner first includes the driver declaration, then the
9939parser's to get the set of defined tokens.
9940
1c59e0a1 9941@comment file: calc++-scanner.ll
12545799
AD
9942@example
9943%@{ /* -*- C++ -*- */
3c248d70
AD
9944# include <cerrno>
9945# include <climits>
3cdc21cf 9946# include <cstdlib>
12545799
AD
9947# include <string>
9948# include "calc++-driver.hh"
9949# include "calc++-parser.hh"
eaea13f5 9950
3cdc21cf
AD
9951// Work around an incompatibility in flex (at least versions
9952// 2.5.31 through 2.5.33): it generates code that does
9953// not conform to C89. See Debian bug 333231
9954// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9955# undef yywrap
9956# define yywrap() 1
eaea13f5 9957
3cdc21cf
AD
9958// The location of the current token.
9959static yy::location loc;
12545799
AD
9960%@}
9961@end example
9962
9963@noindent
9964Because there is no @code{#include}-like feature we don't need
9965@code{yywrap}, we don't need @code{unput} either, and we parse an
9966actual file, this is not an interactive session with the user.
3cdc21cf 9967Finally, we enable scanner tracing.
12545799 9968
1c59e0a1 9969@comment file: calc++-scanner.ll
12545799
AD
9970@example
9971%option noyywrap nounput batch debug
9972@end example
9973
9974@noindent
9975Abbreviations allow for more readable rules.
9976
1c59e0a1 9977@comment file: calc++-scanner.ll
12545799
AD
9978@example
9979id [a-zA-Z][a-zA-Z_0-9]*
9980int [0-9]+
9981blank [ \t]
9982@end example
9983
9984@noindent
9d9b8b70 9985The following paragraph suffices to track locations accurately. Each
12545799 9986time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9987position. Then when a pattern is matched, its width is added to the end
9988column. When matching ends of lines, the end
12545799
AD
9989cursor is adjusted, and each time blanks are matched, the begin cursor
9990is moved onto the end cursor to effectively ignore the blanks
9991preceding tokens. Comments would be treated equally.
9992
1c59e0a1 9993@comment file: calc++-scanner.ll
12545799 9994@example
d4fca427 9995@group
828c373b 9996%@{
3cdc21cf
AD
9997 // Code run each time a pattern is matched.
9998 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9999%@}
d4fca427 10000@end group
12545799 10001%%
d4fca427 10002@group
12545799 10003%@{
3cdc21cf
AD
10004 // Code run each time yylex is called.
10005 loc.step ();
12545799 10006%@}
d4fca427 10007@end group
3cdc21cf
AD
10008@{blank@}+ loc.step ();
10009[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10010@end example
10011
10012@noindent
3cdc21cf 10013The rules are simple. The driver is used to report errors.
12545799 10014
1c59e0a1 10015@comment file: calc++-scanner.ll
12545799 10016@example
3cdc21cf
AD
10017"-" return yy::calcxx_parser::make_MINUS(loc);
10018"+" return yy::calcxx_parser::make_PLUS(loc);
10019"*" return yy::calcxx_parser::make_STAR(loc);
10020"/" return yy::calcxx_parser::make_SLASH(loc);
10021"(" return yy::calcxx_parser::make_LPAREN(loc);
10022")" return yy::calcxx_parser::make_RPAREN(loc);
10023":=" return yy::calcxx_parser::make_ASSIGN(loc);
10024
d4fca427 10025@group
04098407
PE
10026@{int@} @{
10027 errno = 0;
10028 long n = strtol (yytext, NULL, 10);
10029 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10030 driver.error (loc, "integer is out of range");
10031 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10032@}
d4fca427 10033@end group
3cdc21cf
AD
10034@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10035. driver.error (loc, "invalid character");
10036<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10037%%
10038@end example
10039
10040@noindent
3cdc21cf 10041Finally, because the scanner-related driver's member-functions depend
12545799
AD
10042on the scanner's data, it is simpler to implement them in this file.
10043
1c59e0a1 10044@comment file: calc++-scanner.ll
12545799 10045@example
d4fca427 10046@group
12545799
AD
10047void
10048calcxx_driver::scan_begin ()
10049@{
10050 yy_flex_debug = trace_scanning;
bb32f4f2
AD
10051 if (file == "-")
10052 yyin = stdin;
10053 else if (!(yyin = fopen (file.c_str (), "r")))
10054 @{
aaaa2aae 10055 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10056 exit (EXIT_FAILURE);
bb32f4f2 10057 @}
12545799 10058@}
d4fca427 10059@end group
12545799 10060
d4fca427 10061@group
12545799
AD
10062void
10063calcxx_driver::scan_end ()
10064@{
10065 fclose (yyin);
10066@}
d4fca427 10067@end group
12545799
AD
10068@end example
10069
10070@node Calc++ Top Level
8405b70c 10071@subsubsection Calc++ Top Level
12545799
AD
10072
10073The top level file, @file{calc++.cc}, poses no problem.
10074
1c59e0a1 10075@comment file: calc++.cc
12545799
AD
10076@example
10077#include <iostream>
10078#include "calc++-driver.hh"
10079
d4fca427 10080@group
12545799 10081int
fa4d969f 10082main (int argc, char *argv[])
12545799 10083@{
414c76a4 10084 int res = 0;
12545799
AD
10085 calcxx_driver driver;
10086 for (++argv; argv[0]; ++argv)
10087 if (*argv == std::string ("-p"))
10088 driver.trace_parsing = true;
10089 else if (*argv == std::string ("-s"))
10090 driver.trace_scanning = true;
bb32f4f2
AD
10091 else if (!driver.parse (*argv))
10092 std::cout << driver.result << std::endl;
414c76a4
AD
10093 else
10094 res = 1;
10095 return res;
12545799 10096@}
d4fca427 10097@end group
12545799
AD
10098@end example
10099
8405b70c
PB
10100@node Java Parsers
10101@section Java Parsers
10102
10103@menu
f5f419de
DJ
10104* Java Bison Interface:: Asking for Java parser generation
10105* Java Semantic Values:: %type and %token vs. Java
10106* Java Location Values:: The position and location classes
10107* Java Parser Interface:: Instantiating and running the parser
10108* Java Scanner Interface:: Specifying the scanner for the parser
10109* Java Action Features:: Special features for use in actions
10110* Java Differences:: Differences between C/C++ and Java Grammars
10111* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10112@end menu
10113
10114@node Java Bison Interface
10115@subsection Java Bison Interface
10116@c - %language "Java"
8405b70c 10117
59da312b
JD
10118(The current Java interface is experimental and may evolve.
10119More user feedback will help to stabilize it.)
10120
e254a580
DJ
10121The Java parser skeletons are selected using the @code{%language "Java"}
10122directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10123
e254a580 10124@c FIXME: Documented bug.
ff7571c0
JD
10125When generating a Java parser, @code{bison @var{basename}.y} will
10126create a single Java source file named @file{@var{basename}.java}
10127containing the parser implementation. Using a grammar file without a
10128@file{.y} suffix is currently broken. The basename of the parser
10129implementation file can be changed by the @code{%file-prefix}
10130directive or the @option{-p}/@option{--name-prefix} option. The
10131entire parser implementation file name can be changed by the
10132@code{%output} directive or the @option{-o}/@option{--output} option.
10133The parser implementation file contains a single class for the parser.
8405b70c 10134
e254a580 10135You can create documentation for generated parsers using Javadoc.
8405b70c 10136
e254a580
DJ
10137Contrary to C parsers, Java parsers do not use global variables; the
10138state of the parser is always local to an instance of the parser class.
10139Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10140and @samp{%define api.pure} directives does not do anything when used in
e254a580 10141Java.
8405b70c 10142
e254a580 10143Push parsers are currently unsupported in Java and @code{%define
67212941 10144api.push-pull} have no effect.
01b477c6 10145
8a4281b9 10146GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10147@code{glr-parser} directive.
10148
10149No header file can be generated for Java parsers. Do not use the
10150@code{%defines} directive or the @option{-d}/@option{--defines} options.
10151
10152@c FIXME: Possible code change.
fa819509
AD
10153Currently, support for tracing is always compiled
10154in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10155directives and the
e254a580
DJ
10156@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10157options have no effect. This may change in the future to eliminate
fa819509
AD
10158unused code in the generated parser, so use @samp{%define parse.trace}
10159explicitly
1979121c 10160if needed. Also, in the future the
e254a580
DJ
10161@code{%token-table} directive might enable a public interface to
10162access the token names and codes.
8405b70c 10163
09ccae9b 10164Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10165hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10166Try reducing the amount of code in actions and static initializers;
10167otherwise, report a bug so that the parser skeleton will be improved.
10168
10169
8405b70c
PB
10170@node Java Semantic Values
10171@subsection Java Semantic Values
10172@c - No %union, specify type in %type/%token.
10173@c - YYSTYPE
10174@c - Printer and destructor
10175
10176There is no @code{%union} directive in Java parsers. Instead, the
10177semantic values' types (class names) should be specified in the
10178@code{%type} or @code{%token} directive:
10179
10180@example
10181%type <Expression> expr assignment_expr term factor
10182%type <Integer> number
10183@end example
10184
10185By default, the semantic stack is declared to have @code{Object} members,
10186which means that the class types you specify can be of any class.
10187To improve the type safety of the parser, you can declare the common
67501061 10188superclass of all the semantic values using the @samp{%define stype}
e254a580 10189directive. For example, after the following declaration:
8405b70c
PB
10190
10191@example
e254a580 10192%define stype "ASTNode"
8405b70c
PB
10193@end example
10194
10195@noindent
10196any @code{%type} or @code{%token} specifying a semantic type which
10197is not a subclass of ASTNode, will cause a compile-time error.
10198
e254a580 10199@c FIXME: Documented bug.
8405b70c
PB
10200Types used in the directives may be qualified with a package name.
10201Primitive data types are accepted for Java version 1.5 or later. Note
10202that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10203Generic types may not be used; this is due to a limitation in the
10204implementation of Bison, and may change in future releases.
8405b70c
PB
10205
10206Java parsers do not support @code{%destructor}, since the language
10207adopts garbage collection. The parser will try to hold references
10208to semantic values for as little time as needed.
10209
10210Java parsers do not support @code{%printer}, as @code{toString()}
10211can be used to print the semantic values. This however may change
10212(in a backwards-compatible way) in future versions of Bison.
10213
10214
10215@node Java Location Values
10216@subsection Java Location Values
10217@c - %locations
10218@c - class Position
10219@c - class Location
10220
303834cc
JD
10221When the directive @code{%locations} is used, the Java parser supports
10222location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10223class defines a @dfn{position}, a single point in a file; Bison itself
10224defines a class representing a @dfn{location}, a range composed of a pair of
10225positions (possibly spanning several files). The location class is an inner
10226class of the parser; the name is @code{Location} by default, and may also be
10227renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10228
10229The location class treats the position as a completely opaque value.
10230By default, the class name is @code{Position}, but this can be changed
67501061 10231with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10232be supplied by the user.
8405b70c
PB
10233
10234
e254a580
DJ
10235@deftypeivar {Location} {Position} begin
10236@deftypeivarx {Location} {Position} end
8405b70c 10237The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10238@end deftypeivar
10239
10240@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10241Create a @code{Location} denoting an empty range located at a given point.
e254a580 10242@end deftypeop
8405b70c 10243
e254a580
DJ
10244@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10245Create a @code{Location} from the endpoints of the range.
10246@end deftypeop
10247
10248@deftypemethod {Location} {String} toString ()
8405b70c
PB
10249Prints the range represented by the location. For this to work
10250properly, the position class should override the @code{equals} and
10251@code{toString} methods appropriately.
10252@end deftypemethod
10253
10254
10255@node Java Parser Interface
10256@subsection Java Parser Interface
10257@c - define parser_class_name
10258@c - Ctor
10259@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10260@c debug_stream.
10261@c - Reporting errors
10262
e254a580
DJ
10263The name of the generated parser class defaults to @code{YYParser}. The
10264@code{YY} prefix may be changed using the @code{%name-prefix} directive
10265or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10266@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10267the class. The interface of this class is detailed below.
8405b70c 10268
e254a580 10269By default, the parser class has package visibility. A declaration
67501061 10270@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10271according to the Java language specification, the name of the @file{.java}
10272file should match the name of the class in this case. Similarly, you can
10273use @code{abstract}, @code{final} and @code{strictfp} with the
10274@code{%define} declaration to add other modifiers to the parser class.
67501061 10275A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10276be used to add any number of annotations to the parser class.
e254a580
DJ
10277
10278The Java package name of the parser class can be specified using the
67501061 10279@samp{%define package} directive. The superclass and the implemented
e254a580 10280interfaces of the parser class can be specified with the @code{%define
67501061 10281extends} and @samp{%define implements} directives.
e254a580
DJ
10282
10283The parser class defines an inner class, @code{Location}, that is used
10284for location tracking (see @ref{Java Location Values}), and a inner
10285interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10286these inner class/interface, and the members described in the interface
10287below, all the other members and fields are preceded with a @code{yy} or
10288@code{YY} prefix to avoid clashes with user code.
10289
e254a580
DJ
10290The parser class can be extended using the @code{%parse-param}
10291directive. Each occurrence of the directive will add a @code{protected
10292final} field to the parser class, and an argument to its constructor,
10293which initialize them automatically.
10294
e254a580
DJ
10295@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10296Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10297no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10298@code{%lex-param}s are used.
1979121c
DJ
10299
10300Use @code{%code init} for code added to the start of the constructor
10301body. This is especially useful to initialize superclasses. Use
f50bfcd6 10302@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10303@end deftypeop
10304
10305@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10306Build a new parser object using the specified scanner. There are no
2055a44e
AD
10307additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10308used.
e254a580
DJ
10309
10310If the scanner is defined by @code{%code lexer}, this constructor is
10311declared @code{protected} and is called automatically with a scanner
2055a44e 10312created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10313
10314Use @code{%code init} for code added to the start of the constructor
10315body. This is especially useful to initialize superclasses. Use
67501061 10316@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 10317@end deftypeop
8405b70c
PB
10318
10319@deftypemethod {YYParser} {boolean} parse ()
10320Run the syntactic analysis, and return @code{true} on success,
10321@code{false} otherwise.
10322@end deftypemethod
10323
1979121c
DJ
10324@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10325@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10326Get or set the option to produce verbose error messages. These are only
cf499cff 10327available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10328verbose error messages.
10329@end deftypemethod
10330
10331@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10332@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10333@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10334Print an error message using the @code{yyerror} method of the scanner
10335instance in use. The @code{Location} and @code{Position} parameters are
10336available only if location tracking is active.
10337@end deftypemethod
10338
01b477c6 10339@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10340During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10341from a syntax error.
10342@xref{Error Recovery}.
8405b70c
PB
10343@end deftypemethod
10344
10345@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10346@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10347Get or set the stream used for tracing the parsing. It defaults to
10348@code{System.err}.
10349@end deftypemethod
10350
10351@deftypemethod {YYParser} {int} getDebugLevel ()
10352@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10353Get or set the tracing level. Currently its value is either 0, no trace,
10354or nonzero, full tracing.
10355@end deftypemethod
10356
1979121c
DJ
10357@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10358@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10359Identify the Bison version and skeleton used to generate this parser.
10360@end deftypecv
10361
8405b70c
PB
10362
10363@node Java Scanner Interface
10364@subsection Java Scanner Interface
01b477c6 10365@c - %code lexer
8405b70c 10366@c - %lex-param
01b477c6 10367@c - Lexer interface
8405b70c 10368
e254a580
DJ
10369There are two possible ways to interface a Bison-generated Java parser
10370with a scanner: the scanner may be defined by @code{%code lexer}, or
10371defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10372@code{Lexer} inner interface of the parser class. This interface also
10373contain constants for all user-defined token names and the predefined
10374@code{EOF} token.
e254a580
DJ
10375
10376In the first case, the body of the scanner class is placed in
10377@code{%code lexer} blocks. If you want to pass parameters from the
10378parser constructor to the scanner constructor, specify them with
10379@code{%lex-param}; they are passed before @code{%parse-param}s to the
10380constructor.
01b477c6 10381
59c5ac72 10382In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10383which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10384The constructor of the parser object will then accept an object
10385implementing the interface; @code{%lex-param} is not used in this
10386case.
10387
10388In both cases, the scanner has to implement the following methods.
10389
e254a580
DJ
10390@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10391This method is defined by the user to emit an error message. The first
10392parameter is omitted if location tracking is not active. Its type can be
67501061 10393changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10394@end deftypemethod
10395
e254a580 10396@deftypemethod {Lexer} {int} yylex ()
8405b70c 10397Return the next token. Its type is the return value, its semantic
f50bfcd6 10398value and location are saved and returned by the their methods in the
e254a580
DJ
10399interface.
10400
67501061 10401Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10402Default is @code{java.io.IOException}.
8405b70c
PB
10403@end deftypemethod
10404
10405@deftypemethod {Lexer} {Position} getStartPos ()
10406@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10407Return respectively the first position of the last token that
10408@code{yylex} returned, and the first position beyond it. These
10409methods are not needed unless location tracking is active.
8405b70c 10410
67501061 10411The return type can be changed using @samp{%define position_type
8405b70c
PB
10412"@var{class-name}".}
10413@end deftypemethod
10414
10415@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10416Return the semantic value of the last token that yylex returned.
8405b70c 10417
67501061 10418The return type can be changed using @samp{%define stype
8405b70c
PB
10419"@var{class-name}".}
10420@end deftypemethod
10421
10422
e254a580
DJ
10423@node Java Action Features
10424@subsection Special Features for Use in Java Actions
10425
10426The following special constructs can be uses in Java actions.
10427Other analogous C action features are currently unavailable for Java.
10428
67501061 10429Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10430actions, and initial actions specified by @code{%initial-action}.
10431
10432@defvar $@var{n}
10433The semantic value for the @var{n}th component of the current rule.
10434This may not be assigned to.
10435@xref{Java Semantic Values}.
10436@end defvar
10437
10438@defvar $<@var{typealt}>@var{n}
10439Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10440@xref{Java Semantic Values}.
10441@end defvar
10442
10443@defvar $$
10444The semantic value for the grouping made by the current rule. As a
10445value, this is in the base type (@code{Object} or as specified by
67501061 10446@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10447casts are not allowed on the left-hand side of Java assignments.
10448Use an explicit Java cast if the correct subtype is needed.
10449@xref{Java Semantic Values}.
10450@end defvar
10451
10452@defvar $<@var{typealt}>$
10453Same as @code{$$} since Java always allow assigning to the base type.
10454Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10455for setting the value but there is currently no easy way to distinguish
10456these constructs.
10457@xref{Java Semantic Values}.
10458@end defvar
10459
10460@defvar @@@var{n}
10461The location information of the @var{n}th component of the current rule.
10462This may not be assigned to.
10463@xref{Java Location Values}.
10464@end defvar
10465
10466@defvar @@$
10467The location information of the grouping made by the current rule.
10468@xref{Java Location Values}.
10469@end defvar
10470
10471@deffn {Statement} {return YYABORT;}
10472Return immediately from the parser, indicating failure.
10473@xref{Java Parser Interface}.
10474@end deffn
8405b70c 10475
e254a580
DJ
10476@deffn {Statement} {return YYACCEPT;}
10477Return immediately from the parser, indicating success.
10478@xref{Java Parser Interface}.
10479@end deffn
8405b70c 10480
e254a580 10481@deffn {Statement} {return YYERROR;}
c265fd6b 10482Start error recovery without printing an error message.
e254a580
DJ
10483@xref{Error Recovery}.
10484@end deffn
8405b70c 10485
e254a580
DJ
10486@deftypefn {Function} {boolean} recovering ()
10487Return whether error recovery is being done. In this state, the parser
10488reads token until it reaches a known state, and then restarts normal
10489operation.
10490@xref{Error Recovery}.
10491@end deftypefn
8405b70c 10492
1979121c
DJ
10493@deftypefn {Function} {void} yyerror (String @var{msg})
10494@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10495@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10496Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10497instance in use. The @code{Location} and @code{Position} parameters are
10498available only if location tracking is active.
e254a580 10499@end deftypefn
8405b70c 10500
8405b70c 10501
8405b70c
PB
10502@node Java Differences
10503@subsection Differences between C/C++ and Java Grammars
10504
10505The different structure of the Java language forces several differences
10506between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10507section summarizes these differences.
8405b70c
PB
10508
10509@itemize
10510@item
01b477c6 10511Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10512@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10513macros. Instead, they should be preceded by @code{return} when they
10514appear in an action. The actual definition of these symbols is
8405b70c
PB
10515opaque to the Bison grammar, and it might change in the future. The
10516only meaningful operation that you can do, is to return them.
e254a580 10517See @pxref{Java Action Features}.
8405b70c
PB
10518
10519Note that of these three symbols, only @code{YYACCEPT} and
10520@code{YYABORT} will cause a return from the @code{yyparse}
10521method@footnote{Java parsers include the actions in a separate
10522method than @code{yyparse} in order to have an intuitive syntax that
10523corresponds to these C macros.}.
10524
e254a580
DJ
10525@item
10526Java lacks unions, so @code{%union} has no effect. Instead, semantic
10527values have a common base type: @code{Object} or as specified by
f50bfcd6 10528@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10529@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10530an union. The type of @code{$$}, even with angle brackets, is the base
10531type since Java casts are not allow on the left-hand side of assignments.
10532Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10533left-hand side of assignments. See @pxref{Java Semantic Values} and
10534@pxref{Java Action Features}.
10535
8405b70c 10536@item
f50bfcd6 10537The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10538@table @asis
10539@item @code{%code imports}
10540blocks are placed at the beginning of the Java source code. They may
10541include copyright notices. For a @code{package} declarations, it is
67501061 10542suggested to use @samp{%define package} instead.
8405b70c 10543
01b477c6
PB
10544@item unqualified @code{%code}
10545blocks are placed inside the parser class.
10546
10547@item @code{%code lexer}
10548blocks, if specified, should include the implementation of the
10549scanner. If there is no such block, the scanner can be any class
10550that implements the appropriate interface (see @pxref{Java Scanner
10551Interface}).
29553547 10552@end table
8405b70c
PB
10553
10554Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10555In particular, @code{%@{ @dots{} %@}} blocks should not be used
10556and may give an error in future versions of Bison.
10557
01b477c6 10558The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10559be used to define other classes used by the parser @emph{outside}
10560the parser class.
8405b70c
PB
10561@end itemize
10562
e254a580
DJ
10563
10564@node Java Declarations Summary
10565@subsection Java Declarations Summary
10566
10567This summary only include declarations specific to Java or have special
10568meaning when used in a Java parser.
10569
10570@deffn {Directive} {%language "Java"}
10571Generate a Java class for the parser.
10572@end deffn
10573
10574@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10575A parameter for the lexer class defined by @code{%code lexer}
10576@emph{only}, added as parameters to the lexer constructor and the parser
10577constructor that @emph{creates} a lexer. Default is none.
10578@xref{Java Scanner Interface}.
10579@end deffn
10580
10581@deffn {Directive} %name-prefix "@var{prefix}"
10582The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10583@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10584@xref{Java Bison Interface}.
10585@end deffn
10586
10587@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10588A parameter for the parser class added as parameters to constructor(s)
10589and as fields initialized by the constructor(s). Default is none.
10590@xref{Java Parser Interface}.
10591@end deffn
10592
10593@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10594Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10595@xref{Java Semantic Values}.
10596@end deffn
10597
10598@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10599Declare the type of nonterminals. Note that the angle brackets enclose
10600a Java @emph{type}.
10601@xref{Java Semantic Values}.
10602@end deffn
10603
10604@deffn {Directive} %code @{ @var{code} @dots{} @}
10605Code appended to the inside of the parser class.
10606@xref{Java Differences}.
10607@end deffn
10608
10609@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10610Code inserted just after the @code{package} declaration.
10611@xref{Java Differences}.
10612@end deffn
10613
1979121c
DJ
10614@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10615Code inserted at the beginning of the parser constructor body.
10616@xref{Java Parser Interface}.
10617@end deffn
10618
e254a580
DJ
10619@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10620Code added to the body of a inner lexer class within the parser class.
10621@xref{Java Scanner Interface}.
10622@end deffn
10623
10624@deffn {Directive} %% @var{code} @dots{}
10625Code (after the second @code{%%}) appended to the end of the file,
10626@emph{outside} the parser class.
10627@xref{Java Differences}.
10628@end deffn
10629
10630@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10631Not supported. Use @code{%code imports} instead.
e254a580
DJ
10632@xref{Java Differences}.
10633@end deffn
10634
10635@deffn {Directive} {%define abstract}
10636Whether the parser class is declared @code{abstract}. Default is false.
10637@xref{Java Bison Interface}.
10638@end deffn
10639
1979121c
DJ
10640@deffn {Directive} {%define annotations} "@var{annotations}"
10641The Java annotations for the parser class. Default is none.
10642@xref{Java Bison Interface}.
10643@end deffn
10644
e254a580
DJ
10645@deffn {Directive} {%define extends} "@var{superclass}"
10646The superclass of the parser class. Default is none.
10647@xref{Java Bison Interface}.
10648@end deffn
10649
10650@deffn {Directive} {%define final}
10651Whether the parser class is declared @code{final}. Default is false.
10652@xref{Java Bison Interface}.
10653@end deffn
10654
10655@deffn {Directive} {%define implements} "@var{interfaces}"
10656The implemented interfaces of the parser class, a comma-separated list.
10657Default is none.
10658@xref{Java Bison Interface}.
10659@end deffn
10660
1979121c
DJ
10661@deffn {Directive} {%define init_throws} "@var{exceptions}"
10662The exceptions thrown by @code{%code init} from the parser class
10663constructor. Default is none.
10664@xref{Java Parser Interface}.
10665@end deffn
10666
e254a580
DJ
10667@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10668The exceptions thrown by the @code{yylex} method of the lexer, a
10669comma-separated list. Default is @code{java.io.IOException}.
10670@xref{Java Scanner Interface}.
10671@end deffn
10672
10673@deffn {Directive} {%define location_type} "@var{class}"
10674The name of the class used for locations (a range between two
10675positions). This class is generated as an inner class of the parser
10676class by @command{bison}. Default is @code{Location}.
10677@xref{Java Location Values}.
10678@end deffn
10679
10680@deffn {Directive} {%define package} "@var{package}"
10681The package to put the parser class in. Default is none.
10682@xref{Java Bison Interface}.
10683@end deffn
10684
10685@deffn {Directive} {%define parser_class_name} "@var{name}"
10686The name of the parser class. Default is @code{YYParser} or
10687@code{@var{name-prefix}Parser}.
10688@xref{Java Bison Interface}.
10689@end deffn
10690
10691@deffn {Directive} {%define position_type} "@var{class}"
10692The name of the class used for positions. This class must be supplied by
10693the user. Default is @code{Position}.
10694@xref{Java Location Values}.
10695@end deffn
10696
10697@deffn {Directive} {%define public}
10698Whether the parser class is declared @code{public}. Default is false.
10699@xref{Java Bison Interface}.
10700@end deffn
10701
10702@deffn {Directive} {%define stype} "@var{class}"
10703The base type of semantic values. Default is @code{Object}.
10704@xref{Java Semantic Values}.
10705@end deffn
10706
10707@deffn {Directive} {%define strictfp}
10708Whether the parser class is declared @code{strictfp}. Default is false.
10709@xref{Java Bison Interface}.
10710@end deffn
10711
10712@deffn {Directive} {%define throws} "@var{exceptions}"
10713The exceptions thrown by user-supplied parser actions and
10714@code{%initial-action}, a comma-separated list. Default is none.
10715@xref{Java Parser Interface}.
10716@end deffn
10717
10718
12545799 10719@c ================================================= FAQ
d1a1114f
AD
10720
10721@node FAQ
10722@chapter Frequently Asked Questions
10723@cindex frequently asked questions
10724@cindex questions
10725
10726Several questions about Bison come up occasionally. Here some of them
10727are addressed.
10728
10729@menu
55ba27be
AD
10730* Memory Exhausted:: Breaking the Stack Limits
10731* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10732* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10733* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10734* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10735* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10736* I can't build Bison:: Troubleshooting
10737* Where can I find help?:: Troubleshouting
10738* Bug Reports:: Troublereporting
8405b70c 10739* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10740* Beta Testing:: Experimenting development versions
10741* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10742@end menu
10743
1a059451
PE
10744@node Memory Exhausted
10745@section Memory Exhausted
d1a1114f 10746
71b52b13 10747@quotation
1a059451 10748My parser returns with error with a @samp{memory exhausted}
d1a1114f 10749message. What can I do?
71b52b13 10750@end quotation
d1a1114f
AD
10751
10752This question is already addressed elsewhere, @xref{Recursion,
10753,Recursive Rules}.
10754
e64fec0a
PE
10755@node How Can I Reset the Parser
10756@section How Can I Reset the Parser
5b066063 10757
0e14ad77
PE
10758The following phenomenon has several symptoms, resulting in the
10759following typical questions:
5b066063 10760
71b52b13 10761@quotation
5b066063
AD
10762I invoke @code{yyparse} several times, and on correct input it works
10763properly; but when a parse error is found, all the other calls fail
0e14ad77 10764too. How can I reset the error flag of @code{yyparse}?
71b52b13 10765@end quotation
5b066063
AD
10766
10767@noindent
10768or
10769
71b52b13 10770@quotation
0e14ad77 10771My parser includes support for an @samp{#include}-like feature, in
5b066063 10772which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10773although I did specify @samp{%define api.pure}.
71b52b13 10774@end quotation
5b066063 10775
0e14ad77
PE
10776These problems typically come not from Bison itself, but from
10777Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10778speed, they might not notice a change of input file. As a
10779demonstration, consider the following source file,
10780@file{first-line.l}:
10781
d4fca427
AD
10782@example
10783@group
10784%@{
5b066063
AD
10785#include <stdio.h>
10786#include <stdlib.h>
d4fca427
AD
10787%@}
10788@end group
5b066063
AD
10789%%
10790.*\n ECHO; return 1;
10791%%
d4fca427 10792@group
5b066063 10793int
0e14ad77 10794yyparse (char const *file)
d4fca427 10795@{
5b066063
AD
10796 yyin = fopen (file, "r");
10797 if (!yyin)
d4fca427
AD
10798 @{
10799 perror ("fopen");
10800 exit (EXIT_FAILURE);
10801 @}
10802@end group
10803@group
fa7e68c3 10804 /* One token only. */
5b066063 10805 yylex ();
0e14ad77 10806 if (fclose (yyin) != 0)
d4fca427
AD
10807 @{
10808 perror ("fclose");
10809 exit (EXIT_FAILURE);
10810 @}
5b066063 10811 return 0;
d4fca427
AD
10812@}
10813@end group
5b066063 10814
d4fca427 10815@group
5b066063 10816int
0e14ad77 10817main (void)
d4fca427 10818@{
5b066063
AD
10819 yyparse ("input");
10820 yyparse ("input");
10821 return 0;
d4fca427
AD
10822@}
10823@end group
10824@end example
5b066063
AD
10825
10826@noindent
10827If the file @file{input} contains
10828
71b52b13 10829@example
5b066063
AD
10830input:1: Hello,
10831input:2: World!
71b52b13 10832@end example
5b066063
AD
10833
10834@noindent
0e14ad77 10835then instead of getting the first line twice, you get:
5b066063
AD
10836
10837@example
10838$ @kbd{flex -ofirst-line.c first-line.l}
10839$ @kbd{gcc -ofirst-line first-line.c -ll}
10840$ @kbd{./first-line}
10841input:1: Hello,
10842input:2: World!
10843@end example
10844
0e14ad77
PE
10845Therefore, whenever you change @code{yyin}, you must tell the
10846Lex-generated scanner to discard its current buffer and switch to the
10847new one. This depends upon your implementation of Lex; see its
10848documentation for more. For Flex, it suffices to call
10849@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10850Flex-generated scanner needs to read from several input streams to
10851handle features like include files, you might consider using Flex
10852functions like @samp{yy_switch_to_buffer} that manipulate multiple
10853input buffers.
5b066063 10854
b165c324
AD
10855If your Flex-generated scanner uses start conditions (@pxref{Start
10856conditions, , Start conditions, flex, The Flex Manual}), you might
10857also want to reset the scanner's state, i.e., go back to the initial
10858start condition, through a call to @samp{BEGIN (0)}.
10859
fef4cb51
AD
10860@node Strings are Destroyed
10861@section Strings are Destroyed
10862
71b52b13 10863@quotation
c7e441b4 10864My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10865them. Instead of reporting @samp{"foo", "bar"}, it reports
10866@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 10867@end quotation
fef4cb51
AD
10868
10869This error is probably the single most frequent ``bug report'' sent to
10870Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10871of the scanner. Consider the following Lex code:
fef4cb51 10872
71b52b13 10873@example
d4fca427 10874@group
71b52b13 10875%@{
fef4cb51
AD
10876#include <stdio.h>
10877char *yylval = NULL;
71b52b13 10878%@}
d4fca427
AD
10879@end group
10880@group
fef4cb51
AD
10881%%
10882.* yylval = yytext; return 1;
10883\n /* IGNORE */
10884%%
d4fca427
AD
10885@end group
10886@group
fef4cb51
AD
10887int
10888main ()
71b52b13 10889@{
fa7e68c3 10890 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10891 char *fst = (yylex (), yylval);
10892 char *snd = (yylex (), yylval);
10893 printf ("\"%s\", \"%s\"\n", fst, snd);
10894 return 0;
71b52b13 10895@}
d4fca427 10896@end group
71b52b13 10897@end example
fef4cb51
AD
10898
10899If you compile and run this code, you get:
10900
10901@example
10902$ @kbd{flex -osplit-lines.c split-lines.l}
10903$ @kbd{gcc -osplit-lines split-lines.c -ll}
10904$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10905"one
10906two", "two"
10907@end example
10908
10909@noindent
10910this is because @code{yytext} is a buffer provided for @emph{reading}
10911in the action, but if you want to keep it, you have to duplicate it
10912(e.g., using @code{strdup}). Note that the output may depend on how
10913your implementation of Lex handles @code{yytext}. For instance, when
10914given the Lex compatibility option @option{-l} (which triggers the
10915option @samp{%array}) Flex generates a different behavior:
10916
10917@example
10918$ @kbd{flex -l -osplit-lines.c split-lines.l}
10919$ @kbd{gcc -osplit-lines split-lines.c -ll}
10920$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10921"two", "two"
10922@end example
10923
10924
2fa09258
AD
10925@node Implementing Gotos/Loops
10926@section Implementing Gotos/Loops
a06ea4aa 10927
71b52b13 10928@quotation
a06ea4aa 10929My simple calculator supports variables, assignments, and functions,
2fa09258 10930but how can I implement gotos, or loops?
71b52b13 10931@end quotation
a06ea4aa
AD
10932
10933Although very pedagogical, the examples included in the document blur
a1c84f45 10934the distinction to make between the parser---whose job is to recover
a06ea4aa 10935the structure of a text and to transmit it to subsequent modules of
a1c84f45 10936the program---and the processing (such as the execution) of this
a06ea4aa
AD
10937structure. This works well with so called straight line programs,
10938i.e., precisely those that have a straightforward execution model:
10939execute simple instructions one after the others.
10940
10941@cindex abstract syntax tree
8a4281b9 10942@cindex AST
a06ea4aa
AD
10943If you want a richer model, you will probably need to use the parser
10944to construct a tree that does represent the structure it has
10945recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10946or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10947traversing it in various ways, will enable treatments such as its
10948execution or its translation, which will result in an interpreter or a
10949compiler.
10950
10951This topic is way beyond the scope of this manual, and the reader is
10952invited to consult the dedicated literature.
10953
10954
ed2e6384
AD
10955@node Multiple start-symbols
10956@section Multiple start-symbols
10957
71b52b13 10958@quotation
ed2e6384
AD
10959I have several closely related grammars, and I would like to share their
10960implementations. In fact, I could use a single grammar but with
10961multiple entry points.
71b52b13 10962@end quotation
ed2e6384
AD
10963
10964Bison does not support multiple start-symbols, but there is a very
10965simple means to simulate them. If @code{foo} and @code{bar} are the two
10966pseudo start-symbols, then introduce two new tokens, say
10967@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10968real start-symbol:
10969
10970@example
10971%token START_FOO START_BAR;
10972%start start;
10973start: START_FOO foo
10974 | START_BAR bar;
10975@end example
10976
10977These tokens prevents the introduction of new conflicts. As far as the
10978parser goes, that is all that is needed.
10979
10980Now the difficult part is ensuring that the scanner will send these
10981tokens first. If your scanner is hand-written, that should be
10982straightforward. If your scanner is generated by Lex, them there is
10983simple means to do it: recall that anything between @samp{%@{ ... %@}}
10984after the first @code{%%} is copied verbatim in the top of the generated
10985@code{yylex} function. Make sure a variable @code{start_token} is
10986available in the scanner (e.g., a global variable or using
10987@code{%lex-param} etc.), and use the following:
10988
10989@example
10990 /* @r{Prologue.} */
10991%%
10992%@{
10993 if (start_token)
10994 @{
10995 int t = start_token;
10996 start_token = 0;
10997 return t;
10998 @}
10999%@}
11000 /* @r{The rules.} */
11001@end example
11002
11003
55ba27be
AD
11004@node Secure? Conform?
11005@section Secure? Conform?
11006
71b52b13 11007@quotation
55ba27be 11008Is Bison secure? Does it conform to POSIX?
71b52b13 11009@end quotation
55ba27be
AD
11010
11011If you're looking for a guarantee or certification, we don't provide it.
11012However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11013POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11014please send us a bug report.
11015
11016@node I can't build Bison
11017@section I can't build Bison
11018
71b52b13 11019@quotation
8c5b881d
PE
11020I can't build Bison because @command{make} complains that
11021@code{msgfmt} is not found.
55ba27be 11022What should I do?
71b52b13 11023@end quotation
55ba27be
AD
11024
11025Like most GNU packages with internationalization support, that feature
11026is turned on by default. If you have problems building in the @file{po}
11027subdirectory, it indicates that your system's internationalization
11028support is lacking. You can re-configure Bison with
11029@option{--disable-nls} to turn off this support, or you can install GNU
11030gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11031Bison. See the file @file{ABOUT-NLS} for more information.
11032
11033
11034@node Where can I find help?
11035@section Where can I find help?
11036
71b52b13 11037@quotation
55ba27be 11038I'm having trouble using Bison. Where can I find help?
71b52b13 11039@end quotation
55ba27be
AD
11040
11041First, read this fine manual. Beyond that, you can send mail to
11042@email{help-bison@@gnu.org}. This mailing list is intended to be
11043populated with people who are willing to answer questions about using
11044and installing Bison. Please keep in mind that (most of) the people on
11045the list have aspects of their lives which are not related to Bison (!),
11046so you may not receive an answer to your question right away. This can
11047be frustrating, but please try not to honk them off; remember that any
11048help they provide is purely voluntary and out of the kindness of their
11049hearts.
11050
11051@node Bug Reports
11052@section Bug Reports
11053
71b52b13 11054@quotation
55ba27be 11055I found a bug. What should I include in the bug report?
71b52b13 11056@end quotation
55ba27be
AD
11057
11058Before you send a bug report, make sure you are using the latest
11059version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11060mirrors. Be sure to include the version number in your bug report. If
11061the bug is present in the latest version but not in a previous version,
11062try to determine the most recent version which did not contain the bug.
11063
11064If the bug is parser-related, you should include the smallest grammar
11065you can which demonstrates the bug. The grammar file should also be
11066complete (i.e., I should be able to run it through Bison without having
11067to edit or add anything). The smaller and simpler the grammar, the
11068easier it will be to fix the bug.
11069
11070Include information about your compilation environment, including your
11071operating system's name and version and your compiler's name and
11072version. If you have trouble compiling, you should also include a
11073transcript of the build session, starting with the invocation of
11074`configure'. Depending on the nature of the bug, you may be asked to
11075send additional files as well (such as `config.h' or `config.cache').
11076
11077Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11078send a bug report just because you cannot provide a fix.
55ba27be
AD
11079
11080Send bug reports to @email{bug-bison@@gnu.org}.
11081
8405b70c
PB
11082@node More Languages
11083@section More Languages
55ba27be 11084
71b52b13 11085@quotation
8405b70c 11086Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11087favorite language here}?
71b52b13 11088@end quotation
55ba27be 11089
8405b70c 11090C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11091languages; contributions are welcome.
11092
11093@node Beta Testing
11094@section Beta Testing
11095
71b52b13 11096@quotation
55ba27be 11097What is involved in being a beta tester?
71b52b13 11098@end quotation
55ba27be
AD
11099
11100It's not terribly involved. Basically, you would download a test
11101release, compile it, and use it to build and run a parser or two. After
11102that, you would submit either a bug report or a message saying that
11103everything is okay. It is important to report successes as well as
11104failures because test releases eventually become mainstream releases,
11105but only if they are adequately tested. If no one tests, development is
11106essentially halted.
11107
11108Beta testers are particularly needed for operating systems to which the
11109developers do not have easy access. They currently have easy access to
11110recent GNU/Linux and Solaris versions. Reports about other operating
11111systems are especially welcome.
11112
11113@node Mailing Lists
11114@section Mailing Lists
11115
71b52b13 11116@quotation
55ba27be 11117How do I join the help-bison and bug-bison mailing lists?
71b52b13 11118@end quotation
55ba27be
AD
11119
11120See @url{http://lists.gnu.org/}.
a06ea4aa 11121
d1a1114f
AD
11122@c ================================================= Table of Symbols
11123
342b8b6e 11124@node Table of Symbols
bfa74976
RS
11125@appendix Bison Symbols
11126@cindex Bison symbols, table of
11127@cindex symbols in Bison, table of
11128
18b519c0 11129@deffn {Variable} @@$
3ded9a63 11130In an action, the location of the left-hand side of the rule.
303834cc 11131@xref{Tracking Locations}.
18b519c0 11132@end deffn
3ded9a63 11133
18b519c0 11134@deffn {Variable} @@@var{n}
303834cc
JD
11135In an action, the location of the @var{n}-th symbol of the right-hand side
11136of the rule. @xref{Tracking Locations}.
18b519c0 11137@end deffn
3ded9a63 11138
d013372c 11139@deffn {Variable} @@@var{name}
303834cc
JD
11140In an action, the location of a symbol addressed by name. @xref{Tracking
11141Locations}.
d013372c
AR
11142@end deffn
11143
11144@deffn {Variable} @@[@var{name}]
303834cc
JD
11145In an action, the location of a symbol addressed by name. @xref{Tracking
11146Locations}.
d013372c
AR
11147@end deffn
11148
18b519c0 11149@deffn {Variable} $$
3ded9a63
AD
11150In an action, the semantic value of the left-hand side of the rule.
11151@xref{Actions}.
18b519c0 11152@end deffn
3ded9a63 11153
18b519c0 11154@deffn {Variable} $@var{n}
3ded9a63
AD
11155In an action, the semantic value of the @var{n}-th symbol of the
11156right-hand side of the rule. @xref{Actions}.
18b519c0 11157@end deffn
3ded9a63 11158
d013372c
AR
11159@deffn {Variable} $@var{name}
11160In an action, the semantic value of a symbol addressed by name.
11161@xref{Actions}.
11162@end deffn
11163
11164@deffn {Variable} $[@var{name}]
11165In an action, the semantic value of a symbol addressed by name.
11166@xref{Actions}.
11167@end deffn
11168
dd8d9022
AD
11169@deffn {Delimiter} %%
11170Delimiter used to separate the grammar rule section from the
11171Bison declarations section or the epilogue.
11172@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11173@end deffn
bfa74976 11174
dd8d9022
AD
11175@c Don't insert spaces, or check the DVI output.
11176@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11177All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11178to the parser implementation file. Such code forms the prologue of
11179the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11180Grammar}.
18b519c0 11181@end deffn
bfa74976 11182
ca2a6d15
PH
11183@deffn {Directive} %?@{@var{expression}@}
11184Predicate actions. This is a type of action clause that may appear in
11185rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11186GLR parsers during nondeterministic operation,
ca2a6d15
PH
11187this silently causes an alternative parse to die. During deterministic
11188operation, it is the same as the effect of YYERROR.
11189@xref{Semantic Predicates}.
11190
11191This feature is experimental.
11192More user feedback will help to determine whether it should become a permanent
11193feature.
11194@end deffn
11195
dd8d9022
AD
11196@deffn {Construct} /*@dots{}*/
11197Comment delimiters, as in C.
18b519c0 11198@end deffn
bfa74976 11199
dd8d9022
AD
11200@deffn {Delimiter} :
11201Separates a rule's result from its components. @xref{Rules, ,Syntax of
11202Grammar Rules}.
18b519c0 11203@end deffn
bfa74976 11204
dd8d9022
AD
11205@deffn {Delimiter} ;
11206Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11207@end deffn
bfa74976 11208
dd8d9022
AD
11209@deffn {Delimiter} |
11210Separates alternate rules for the same result nonterminal.
11211@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11212@end deffn
bfa74976 11213
12e35840
JD
11214@deffn {Directive} <*>
11215Used to define a default tagged @code{%destructor} or default tagged
11216@code{%printer}.
85894313
JD
11217
11218This feature is experimental.
11219More user feedback will help to determine whether it should become a permanent
11220feature.
11221
12e35840
JD
11222@xref{Destructor Decl, , Freeing Discarded Symbols}.
11223@end deffn
11224
3ebecc24 11225@deffn {Directive} <>
12e35840
JD
11226Used to define a default tagless @code{%destructor} or default tagless
11227@code{%printer}.
85894313
JD
11228
11229This feature is experimental.
11230More user feedback will help to determine whether it should become a permanent
11231feature.
11232
12e35840
JD
11233@xref{Destructor Decl, , Freeing Discarded Symbols}.
11234@end deffn
11235
dd8d9022
AD
11236@deffn {Symbol} $accept
11237The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11238$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11239Start-Symbol}. It cannot be used in the grammar.
18b519c0 11240@end deffn
bfa74976 11241
136a0f76 11242@deffn {Directive} %code @{@var{code}@}
148d66d8 11243@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11244Insert @var{code} verbatim into the output parser source at the
11245default location or at the location specified by @var{qualifier}.
e0c07222 11246@xref{%code Summary}.
9bc0dd67
JD
11247@end deffn
11248
11249@deffn {Directive} %debug
11250Equip the parser for debugging. @xref{Decl Summary}.
11251@end deffn
11252
91d2c560 11253@ifset defaultprec
22fccf95
PE
11254@deffn {Directive} %default-prec
11255Assign a precedence to rules that lack an explicit @samp{%prec}
11256modifier. @xref{Contextual Precedence, ,Context-Dependent
11257Precedence}.
39a06c25 11258@end deffn
91d2c560 11259@end ifset
39a06c25 11260
7fceb615
JD
11261@deffn {Directive} %define @var{variable}
11262@deffnx {Directive} %define @var{variable} @var{value}
11263@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11264Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11265@end deffn
11266
18b519c0 11267@deffn {Directive} %defines
ff7571c0
JD
11268Bison declaration to create a parser header file, which is usually
11269meant for the scanner. @xref{Decl Summary}.
18b519c0 11270@end deffn
6deb4447 11271
02975b9a
JD
11272@deffn {Directive} %defines @var{defines-file}
11273Same as above, but save in the file @var{defines-file}.
11274@xref{Decl Summary}.
11275@end deffn
11276
18b519c0 11277@deffn {Directive} %destructor
258b75ca 11278Specify how the parser should reclaim the memory associated to
fa7e68c3 11279discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11280@end deffn
72f889cc 11281
18b519c0 11282@deffn {Directive} %dprec
676385e2 11283Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11284time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11285GLR Parsers}.
18b519c0 11286@end deffn
676385e2 11287
dd8d9022
AD
11288@deffn {Symbol} $end
11289The predefined token marking the end of the token stream. It cannot be
11290used in the grammar.
11291@end deffn
11292
11293@deffn {Symbol} error
11294A token name reserved for error recovery. This token may be used in
11295grammar rules so as to allow the Bison parser to recognize an error in
11296the grammar without halting the process. In effect, a sentence
11297containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11298token @code{error} becomes the current lookahead token. Actions
11299corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11300token is reset to the token that originally caused the violation.
11301@xref{Error Recovery}.
18d192f0
AD
11302@end deffn
11303
18b519c0 11304@deffn {Directive} %error-verbose
7fceb615
JD
11305An obsolete directive standing for @samp{%define parse.error verbose}
11306(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11307@end deffn
2a8d363a 11308
02975b9a 11309@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11310Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11311Summary}.
18b519c0 11312@end deffn
d8988b2f 11313
18b519c0 11314@deffn {Directive} %glr-parser
8a4281b9
JD
11315Bison declaration to produce a GLR parser. @xref{GLR
11316Parsers, ,Writing GLR Parsers}.
18b519c0 11317@end deffn
676385e2 11318
dd8d9022
AD
11319@deffn {Directive} %initial-action
11320Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11321@end deffn
11322
e6e704dc
JD
11323@deffn {Directive} %language
11324Specify the programming language for the generated parser.
11325@xref{Decl Summary}.
11326@end deffn
11327
18b519c0 11328@deffn {Directive} %left
d78f0ac9 11329Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11330@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11331@end deffn
bfa74976 11332
2055a44e
AD
11333@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11334Bison declaration to specifying additional arguments that
2a8d363a
AD
11335@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11336for Pure Parsers}.
18b519c0 11337@end deffn
2a8d363a 11338
18b519c0 11339@deffn {Directive} %merge
676385e2 11340Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11341reduce/reduce conflict with a rule having the same merging function, the
676385e2 11342function is applied to the two semantic values to get a single result.
8a4281b9 11343@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11344@end deffn
676385e2 11345
02975b9a 11346@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11347Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11348@end deffn
d8988b2f 11349
91d2c560 11350@ifset defaultprec
22fccf95
PE
11351@deffn {Directive} %no-default-prec
11352Do not assign a precedence to rules that lack an explicit @samp{%prec}
11353modifier. @xref{Contextual Precedence, ,Context-Dependent
11354Precedence}.
11355@end deffn
91d2c560 11356@end ifset
22fccf95 11357
18b519c0 11358@deffn {Directive} %no-lines
931c7513 11359Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11360parser implementation file. @xref{Decl Summary}.
18b519c0 11361@end deffn
931c7513 11362
18b519c0 11363@deffn {Directive} %nonassoc
d78f0ac9 11364Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11365@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11366@end deffn
bfa74976 11367
02975b9a 11368@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11369Bison declaration to set the name of the parser implementation file.
11370@xref{Decl Summary}.
18b519c0 11371@end deffn
d8988b2f 11372
2055a44e
AD
11373@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11374Bison declaration to specify additional arguments that both
11375@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11376Parser Function @code{yyparse}}.
11377@end deffn
11378
11379@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11380Bison declaration to specify additional arguments that @code{yyparse}
11381should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11382@end deffn
2a8d363a 11383
18b519c0 11384@deffn {Directive} %prec
bfa74976
RS
11385Bison declaration to assign a precedence to a specific rule.
11386@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11387@end deffn
bfa74976 11388
d78f0ac9
AD
11389@deffn {Directive} %precedence
11390Bison declaration to assign precedence to token(s), but no associativity
11391@xref{Precedence Decl, ,Operator Precedence}.
11392@end deffn
11393
18b519c0 11394@deffn {Directive} %pure-parser
35c1e5f0
JD
11395Deprecated version of @samp{%define api.pure} (@pxref{%define
11396Summary,,api.pure}), for which Bison is more careful to warn about
11397unreasonable usage.
18b519c0 11398@end deffn
bfa74976 11399
b50d2359 11400@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11401Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11402Require a Version of Bison}.
b50d2359
AD
11403@end deffn
11404
18b519c0 11405@deffn {Directive} %right
d78f0ac9 11406Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11407@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11408@end deffn
bfa74976 11409
e6e704dc
JD
11410@deffn {Directive} %skeleton
11411Specify the skeleton to use; usually for development.
11412@xref{Decl Summary}.
11413@end deffn
11414
18b519c0 11415@deffn {Directive} %start
704a47c4
AD
11416Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11417Start-Symbol}.
18b519c0 11418@end deffn
bfa74976 11419
18b519c0 11420@deffn {Directive} %token
bfa74976
RS
11421Bison declaration to declare token(s) without specifying precedence.
11422@xref{Token Decl, ,Token Type Names}.
18b519c0 11423@end deffn
bfa74976 11424
18b519c0 11425@deffn {Directive} %token-table
ff7571c0
JD
11426Bison declaration to include a token name table in the parser
11427implementation file. @xref{Decl Summary}.
18b519c0 11428@end deffn
931c7513 11429
18b519c0 11430@deffn {Directive} %type
704a47c4
AD
11431Bison declaration to declare nonterminals. @xref{Type Decl,
11432,Nonterminal Symbols}.
18b519c0 11433@end deffn
bfa74976 11434
dd8d9022
AD
11435@deffn {Symbol} $undefined
11436The predefined token onto which all undefined values returned by
11437@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11438@code{error}.
11439@end deffn
11440
18b519c0 11441@deffn {Directive} %union
bfa74976
RS
11442Bison declaration to specify several possible data types for semantic
11443values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11444@end deffn
bfa74976 11445
dd8d9022
AD
11446@deffn {Macro} YYABORT
11447Macro to pretend that an unrecoverable syntax error has occurred, by
11448making @code{yyparse} return 1 immediately. The error reporting
11449function @code{yyerror} is not called. @xref{Parser Function, ,The
11450Parser Function @code{yyparse}}.
8405b70c
PB
11451
11452For Java parsers, this functionality is invoked using @code{return YYABORT;}
11453instead.
dd8d9022 11454@end deffn
3ded9a63 11455
dd8d9022
AD
11456@deffn {Macro} YYACCEPT
11457Macro to pretend that a complete utterance of the language has been
11458read, by making @code{yyparse} return 0 immediately.
11459@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11460
11461For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11462instead.
dd8d9022 11463@end deffn
bfa74976 11464
dd8d9022 11465@deffn {Macro} YYBACKUP
742e4900 11466Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11467token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11468@end deffn
bfa74976 11469
dd8d9022 11470@deffn {Variable} yychar
32c29292 11471External integer variable that contains the integer value of the
742e4900 11472lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11473@code{yyparse}.) Error-recovery rule actions may examine this variable.
11474@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11475@end deffn
bfa74976 11476
dd8d9022
AD
11477@deffn {Variable} yyclearin
11478Macro used in error-recovery rule actions. It clears the previous
742e4900 11479lookahead token. @xref{Error Recovery}.
18b519c0 11480@end deffn
bfa74976 11481
dd8d9022
AD
11482@deffn {Macro} YYDEBUG
11483Macro to define to equip the parser with tracing code. @xref{Tracing,
11484,Tracing Your Parser}.
18b519c0 11485@end deffn
bfa74976 11486
dd8d9022
AD
11487@deffn {Variable} yydebug
11488External integer variable set to zero by default. If @code{yydebug}
11489is given a nonzero value, the parser will output information on input
11490symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11491@end deffn
bfa74976 11492
dd8d9022
AD
11493@deffn {Macro} yyerrok
11494Macro to cause parser to recover immediately to its normal mode
11495after a syntax error. @xref{Error Recovery}.
11496@end deffn
11497
11498@deffn {Macro} YYERROR
11499Macro to pretend that a syntax error has just been detected: call
11500@code{yyerror} and then perform normal error recovery if possible
11501(@pxref{Error Recovery}), or (if recovery is impossible) make
11502@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11503
11504For Java parsers, this functionality is invoked using @code{return YYERROR;}
11505instead.
dd8d9022
AD
11506@end deffn
11507
11508@deffn {Function} yyerror
11509User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11510@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11511@end deffn
11512
11513@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11514An obsolete macro used in the @file{yacc.c} skeleton, that you define
11515with @code{#define} in the prologue to request verbose, specific error
11516message strings when @code{yyerror} is called. It doesn't matter what
11517definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11518it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11519(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11520@end deffn
11521
11522@deffn {Macro} YYINITDEPTH
11523Macro for specifying the initial size of the parser stack.
1a059451 11524@xref{Memory Management}.
dd8d9022
AD
11525@end deffn
11526
11527@deffn {Function} yylex
11528User-supplied lexical analyzer function, called with no arguments to get
11529the next token. @xref{Lexical, ,The Lexical Analyzer Function
11530@code{yylex}}.
11531@end deffn
11532
11533@deffn {Macro} YYLEX_PARAM
11534An obsolete macro for specifying an extra argument (or list of extra
32c29292 11535arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11536macro is deprecated, and is supported only for Yacc like parsers.
11537@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11538@end deffn
11539
11540@deffn {Variable} yylloc
11541External variable in which @code{yylex} should place the line and column
11542numbers associated with a token. (In a pure parser, it is a local
11543variable within @code{yyparse}, and its address is passed to
32c29292
JD
11544@code{yylex}.)
11545You can ignore this variable if you don't use the @samp{@@} feature in the
11546grammar actions.
11547@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11548In semantic actions, it stores the location of the lookahead token.
32c29292 11549@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11550@end deffn
11551
11552@deffn {Type} YYLTYPE
11553Data type of @code{yylloc}; by default, a structure with four
11554members. @xref{Location Type, , Data Types of Locations}.
11555@end deffn
11556
11557@deffn {Variable} yylval
11558External variable in which @code{yylex} should place the semantic
11559value associated with a token. (In a pure parser, it is a local
11560variable within @code{yyparse}, and its address is passed to
32c29292
JD
11561@code{yylex}.)
11562@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11563In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11564@xref{Actions, ,Actions}.
dd8d9022
AD
11565@end deffn
11566
11567@deffn {Macro} YYMAXDEPTH
1a059451
PE
11568Macro for specifying the maximum size of the parser stack. @xref{Memory
11569Management}.
dd8d9022
AD
11570@end deffn
11571
11572@deffn {Variable} yynerrs
8a2800e7 11573Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11574(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11575pure push parser, it is a member of yypstate.)
dd8d9022
AD
11576@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11577@end deffn
11578
11579@deffn {Function} yyparse
11580The parser function produced by Bison; call this function to start
11581parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11582@end deffn
11583
9987d1b3 11584@deffn {Function} yypstate_delete
f4101aa6 11585The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11586call this function to delete the memory associated with a parser.
f4101aa6 11587@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11588@code{yypstate_delete}}.
59da312b
JD
11589(The current push parsing interface is experimental and may evolve.
11590More user feedback will help to stabilize it.)
9987d1b3
JD
11591@end deffn
11592
11593@deffn {Function} yypstate_new
f4101aa6 11594The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11595call this function to create a new parser.
f4101aa6 11596@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11597@code{yypstate_new}}.
59da312b
JD
11598(The current push parsing interface is experimental and may evolve.
11599More user feedback will help to stabilize it.)
9987d1b3
JD
11600@end deffn
11601
11602@deffn {Function} yypull_parse
f4101aa6
AD
11603The parser function produced by Bison in push mode; call this function to
11604parse the rest of the input stream.
11605@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11606@code{yypull_parse}}.
59da312b
JD
11607(The current push parsing interface is experimental and may evolve.
11608More user feedback will help to stabilize it.)
9987d1b3
JD
11609@end deffn
11610
11611@deffn {Function} yypush_parse
f4101aa6
AD
11612The parser function produced by Bison in push mode; call this function to
11613parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11614@code{yypush_parse}}.
59da312b
JD
11615(The current push parsing interface is experimental and may evolve.
11616More user feedback will help to stabilize it.)
9987d1b3
JD
11617@end deffn
11618
dd8d9022
AD
11619@deffn {Macro} YYPARSE_PARAM
11620An obsolete macro for specifying the name of a parameter that
11621@code{yyparse} should accept. The use of this macro is deprecated, and
11622is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11623Conventions for Pure Parsers}.
11624@end deffn
11625
11626@deffn {Macro} YYRECOVERING
02103984
PE
11627The expression @code{YYRECOVERING ()} yields 1 when the parser
11628is recovering from a syntax error, and 0 otherwise.
11629@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11630@end deffn
11631
11632@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11633Macro used to control the use of @code{alloca} when the
11634deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11635the parser will use @code{malloc} to extend its stacks. If defined to
116361, the parser will use @code{alloca}. Values other than 0 and 1 are
11637reserved for future Bison extensions. If not defined,
11638@code{YYSTACK_USE_ALLOCA} defaults to 0.
11639
55289366 11640In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11641limited stack and with unreliable stack-overflow checking, you should
11642set @code{YYMAXDEPTH} to a value that cannot possibly result in
11643unchecked stack overflow on any of your target hosts when
11644@code{alloca} is called. You can inspect the code that Bison
11645generates in order to determine the proper numeric values. This will
11646require some expertise in low-level implementation details.
dd8d9022
AD
11647@end deffn
11648
11649@deffn {Type} YYSTYPE
11650Data type of semantic values; @code{int} by default.
11651@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11652@end deffn
bfa74976 11653
342b8b6e 11654@node Glossary
bfa74976
RS
11655@appendix Glossary
11656@cindex glossary
11657
11658@table @asis
7fceb615 11659@item Accepting state
eb45ef3b
JD
11660A state whose only action is the accept action.
11661The accepting state is thus a consistent state.
11662@xref{Understanding,,}.
11663
8a4281b9 11664@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11665Formal method of specifying context-free grammars originally proposed
11666by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11667committee document contributing to what became the Algol 60 report.
11668@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11669
7fceb615
JD
11670@item Consistent state
11671A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 11672
bfa74976
RS
11673@item Context-free grammars
11674Grammars specified as rules that can be applied regardless of context.
11675Thus, if there is a rule which says that an integer can be used as an
11676expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11677permitted. @xref{Language and Grammar, ,Languages and Context-Free
11678Grammars}.
bfa74976 11679
7fceb615 11680@item Default reduction
110ef36a 11681The reduction that a parser should perform if the current parser state
35c1e5f0 11682contains no other action for the lookahead token. In permitted parser
7fceb615
JD
11683states, Bison declares the reduction with the largest lookahead set to be
11684the default reduction and removes that lookahead set. @xref{Default
11685Reductions}.
11686
11687@item Defaulted state
11688A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 11689
bfa74976
RS
11690@item Dynamic allocation
11691Allocation of memory that occurs during execution, rather than at
11692compile time or on entry to a function.
11693
11694@item Empty string
11695Analogous to the empty set in set theory, the empty string is a
11696character string of length zero.
11697
11698@item Finite-state stack machine
11699A ``machine'' that has discrete states in which it is said to exist at
11700each instant in time. As input to the machine is processed, the
11701machine moves from state to state as specified by the logic of the
11702machine. In the case of the parser, the input is the language being
11703parsed, and the states correspond to various stages in the grammar
c827f760 11704rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11705
8a4281b9 11706@item Generalized LR (GLR)
676385e2 11707A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11708that are not LR(1). It resolves situations that Bison's
eb45ef3b 11709deterministic parsing
676385e2
PH
11710algorithm cannot by effectively splitting off multiple parsers, trying all
11711possible parsers, and discarding those that fail in the light of additional
c827f760 11712right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11713LR Parsing}.
676385e2 11714
bfa74976
RS
11715@item Grouping
11716A language construct that is (in general) grammatically divisible;
c827f760 11717for example, `expression' or `declaration' in C@.
bfa74976
RS
11718@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11719
7fceb615
JD
11720@item IELR(1) (Inadequacy Elimination LR(1))
11721A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 11722context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
11723language-recognition power of canonical LR(1) but with nearly the same
11724number of parser states as LALR(1). This reduction in parser states is
11725often an order of magnitude. More importantly, because canonical LR(1)'s
11726extra parser states may contain duplicate conflicts in the case of non-LR(1)
11727grammars, the number of conflicts for IELR(1) is often an order of magnitude
11728less as well. This can significantly reduce the complexity of developing a
11729grammar. @xref{LR Table Construction}.
eb45ef3b 11730
bfa74976
RS
11731@item Infix operator
11732An arithmetic operator that is placed between the operands on which it
11733performs some operation.
11734
11735@item Input stream
11736A continuous flow of data between devices or programs.
11737
8a4281b9 11738@item LAC (Lookahead Correction)
fcf834f9 11739A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
11740detection, which is caused by LR state merging, default reductions, and the
11741use of @code{%nonassoc}. Delayed syntax error detection results in
11742unexpected semantic actions, initiation of error recovery in the wrong
11743syntactic context, and an incorrect list of expected tokens in a verbose
11744syntax error message. @xref{LAC}.
fcf834f9 11745
bfa74976
RS
11746@item Language construct
11747One of the typical usage schemas of the language. For example, one of
11748the constructs of the C language is the @code{if} statement.
11749@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11750
11751@item Left associativity
11752Operators having left associativity are analyzed from left to right:
11753@samp{a+b+c} first computes @samp{a+b} and then combines with
11754@samp{c}. @xref{Precedence, ,Operator Precedence}.
11755
11756@item Left recursion
89cab50d
AD
11757A rule whose result symbol is also its first component symbol; for
11758example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11759Rules}.
bfa74976
RS
11760
11761@item Left-to-right parsing
11762Parsing a sentence of a language by analyzing it token by token from
c827f760 11763left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11764
11765@item Lexical analyzer (scanner)
11766A function that reads an input stream and returns tokens one by one.
11767@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11768
11769@item Lexical tie-in
11770A flag, set by actions in the grammar rules, which alters the way
11771tokens are parsed. @xref{Lexical Tie-ins}.
11772
931c7513 11773@item Literal string token
14ded682 11774A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11775
742e4900
JD
11776@item Lookahead token
11777A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11778Tokens}.
bfa74976 11779
8a4281b9 11780@item LALR(1)
bfa74976 11781The class of context-free grammars that Bison (like most other parser
8a4281b9 11782generators) can handle by default; a subset of LR(1).
cc09e5be 11783@xref{Mysterious Conflicts}.
bfa74976 11784
8a4281b9 11785@item LR(1)
bfa74976 11786The class of context-free grammars in which at most one token of
742e4900 11787lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11788
11789@item Nonterminal symbol
11790A grammar symbol standing for a grammatical construct that can
11791be expressed through rules in terms of smaller constructs; in other
11792words, a construct that is not a token. @xref{Symbols}.
11793
bfa74976
RS
11794@item Parser
11795A function that recognizes valid sentences of a language by analyzing
11796the syntax structure of a set of tokens passed to it from a lexical
11797analyzer.
11798
11799@item Postfix operator
11800An arithmetic operator that is placed after the operands upon which it
11801performs some operation.
11802
11803@item Reduction
11804Replacing a string of nonterminals and/or terminals with a single
89cab50d 11805nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11806Parser Algorithm}.
bfa74976
RS
11807
11808@item Reentrant
11809A reentrant subprogram is a subprogram which can be in invoked any
11810number of times in parallel, without interference between the various
11811invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11812
11813@item Reverse polish notation
11814A language in which all operators are postfix operators.
11815
11816@item Right recursion
89cab50d
AD
11817A rule whose result symbol is also its last component symbol; for
11818example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11819Rules}.
bfa74976
RS
11820
11821@item Semantics
11822In computer languages, the semantics are specified by the actions
11823taken for each instance of the language, i.e., the meaning of
11824each statement. @xref{Semantics, ,Defining Language Semantics}.
11825
11826@item Shift
11827A parser is said to shift when it makes the choice of analyzing
11828further input from the stream rather than reducing immediately some
c827f760 11829already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11830
11831@item Single-character literal
11832A single character that is recognized and interpreted as is.
11833@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11834
11835@item Start symbol
11836The nonterminal symbol that stands for a complete valid utterance in
11837the language being parsed. The start symbol is usually listed as the
13863333 11838first nonterminal symbol in a language specification.
bfa74976
RS
11839@xref{Start Decl, ,The Start-Symbol}.
11840
11841@item Symbol table
11842A data structure where symbol names and associated data are stored
11843during parsing to allow for recognition and use of existing
11844information in repeated uses of a symbol. @xref{Multi-function Calc}.
11845
6e649e65
PE
11846@item Syntax error
11847An error encountered during parsing of an input stream due to invalid
11848syntax. @xref{Error Recovery}.
11849
bfa74976
RS
11850@item Token
11851A basic, grammatically indivisible unit of a language. The symbol
11852that describes a token in the grammar is a terminal symbol.
11853The input of the Bison parser is a stream of tokens which comes from
11854the lexical analyzer. @xref{Symbols}.
11855
11856@item Terminal symbol
89cab50d
AD
11857A grammar symbol that has no rules in the grammar and therefore is
11858grammatically indivisible. The piece of text it represents is a token.
11859@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
11860
11861@item Unreachable state
11862A parser state to which there does not exist a sequence of transitions from
11863the parser's start state. A state can become unreachable during conflict
11864resolution. @xref{Unreachable States}.
bfa74976
RS
11865@end table
11866
342b8b6e 11867@node Copying This Manual
f2b5126e 11868@appendix Copying This Manual
f2b5126e
PB
11869@include fdl.texi
11870
5e528941
JD
11871@node Bibliography
11872@unnumbered Bibliography
11873
11874@table @asis
11875@item [Denny 2008]
11876Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11877for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
118782008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11879pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11880
11881@item [Denny 2010 May]
11882Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11883Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11884University, Clemson, SC, USA (May 2010).
11885@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11886
11887@item [Denny 2010 November]
11888Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11889Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11890in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
118912010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11892
11893@item [DeRemer 1982]
11894Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11895Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11896Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11897615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11898
11899@item [Knuth 1965]
11900Donald E. Knuth, On the Translation of Languages from Left to Right, in
11901@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11902607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11903
11904@item [Scott 2000]
11905Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11906@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11907London, Department of Computer Science, TR-00-12 (December 2000).
11908@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11909@end table
11910
342b8b6e 11911@node Index
bfa74976
RS
11912@unnumbered Index
11913
11914@printindex cp
11915
bfa74976 11916@bye
a06ea4aa 11917
6b5a0de9
AD
11918@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11919@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11920@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11921@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11922@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11923@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11924@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11925@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11926@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11927@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11928@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11929@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11930@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11931@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11932@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11933@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11934@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11935@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11936@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11937@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11938@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11939@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11940@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11941@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11942@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11943@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11944@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11945@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11946@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11947@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9 11948@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
ff7571c0 11949@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
6b5a0de9
AD
11950@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11951@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11952@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11953@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11954@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11955@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11956@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
ff7571c0 11957@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
6b5a0de9
AD
11958@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11959@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11960@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11961@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11962@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11963@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11964@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11965@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11966@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11967@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
679e9935 11968@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
6b5a0de9 11969@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11970
11971@c Local Variables:
11972@c ispell-dictionary: "american"
11973@c fill-column: 76
11974@c End: