]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: give credit to more of Bison's developers.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
575619af
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
106* Invocation:: How to run Bison (to produce the parser source file).
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
112* Index:: Cross-references to the text.
bfa74976 113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
f5f419de
DJ
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
126* GLR Parsers:: Writing parsers for general context-free languages.
127* Locations Overview:: Tracking Locations.
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 132
8a4281b9 133Writing GLR Parsers
fa7e68c3 134
8a4281b9
JD
135* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
136* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 137* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 138* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f5f419de
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f5f419de
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f5f419de
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f5f419de
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f5f419de 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
d013372c 209* Named References:: Using named references in actions.
bfa74976 210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976
RS
230* Decl Summary:: Table of all Bison declarations.
231
232Parser C-Language Interface
233
f5f419de
DJ
234* Parser Function:: How to call @code{yyparse} and what it returns.
235* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
236* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
237* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
238* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
239* Lexical:: You must supply a function @code{yylex}
240 which reads tokens.
241* Error Reporting:: You must supply a function @code{yyerror}.
242* Action Features:: Special features for use in actions.
243* Internationalization:: How to let the parser speak in the user's
244 native language.
bfa74976
RS
245
246The Lexical Analyzer Function @code{yylex}
247
248* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
249* Token Values:: How @code{yylex} must return the semantic value
250 of the token it has read.
251* Token Locations:: How @code{yylex} must return the text location
252 (line number, etc.) of the token, if the
253 actions want that.
254* Pure Calling:: How the calling convention differs in a pure parser
255 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 256
13863333 257The Bison Parser Algorithm
bfa74976 258
742e4900 259* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
260* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
261* Precedence:: Operator precedence works by resolving conflicts.
262* Contextual Precedence:: When an operator's precedence depends on context.
263* Parser States:: The parser is a finite-state-machine with stack.
264* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 265* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 266* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 267* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
268
269Operator Precedence
270
271* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
272* Using Precedence:: How to specify precedence and associativity.
273* Precedence Only:: How to specify precedence only.
bfa74976
RS
274* Precedence Examples:: How these features are used in the previous example.
275* How Precedence:: How they work.
276
277Handling Context Dependencies
278
279* Semantic Tokens:: Token parsing can depend on the semantic context.
280* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
281* Tie-in Recovery:: Lexical tie-ins have implications for how
282 error recovery rules must be written.
283
93dd49ab 284Debugging Your Parser
ec3bc396
AD
285
286* Understanding:: Understanding the structure of your parser.
287* Tracing:: Tracing the execution of your parser.
288
bfa74976
RS
289Invoking Bison
290
13863333 291* Bison Options:: All the options described in detail,
c827f760 292 in alphabetical order by short options.
bfa74976 293* Option Cross Key:: Alphabetical list of long options.
93dd49ab 294* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 295
8405b70c 296Parsers Written In Other Languages
12545799
AD
297
298* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 299* Java Parsers:: The interface to generate Java parser classes
12545799
AD
300
301C++ Parsers
302
303* C++ Bison Interface:: Asking for C++ parser generation
304* C++ Semantic Values:: %union vs. C++
305* C++ Location Values:: The position and location classes
306* C++ Parser Interface:: Instantiating and running the parser
307* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 308* A Complete C++ Example:: Demonstrating their use
12545799
AD
309
310A Complete C++ Example
311
312* Calc++ --- C++ Calculator:: The specifications
313* Calc++ Parsing Driver:: An active parsing context
314* Calc++ Parser:: A parser class
315* Calc++ Scanner:: A pure C++ Flex scanner
316* Calc++ Top Level:: Conducting the band
317
8405b70c
PB
318Java Parsers
319
f5f419de
DJ
320* Java Bison Interface:: Asking for Java parser generation
321* Java Semantic Values:: %type and %token vs. Java
322* Java Location Values:: The position and location classes
323* Java Parser Interface:: Instantiating and running the parser
324* Java Scanner Interface:: Specifying the scanner for the parser
325* Java Action Features:: Special features for use in actions
326* Java Differences:: Differences between C/C++ and Java Grammars
327* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 328
d1a1114f
AD
329Frequently Asked Questions
330
f5f419de
DJ
331* Memory Exhausted:: Breaking the Stack Limits
332* How Can I Reset the Parser:: @code{yyparse} Keeps some State
333* Strings are Destroyed:: @code{yylval} Loses Track of Strings
334* Implementing Gotos/Loops:: Control Flow in the Calculator
335* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 336* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
337* I can't build Bison:: Troubleshooting
338* Where can I find help?:: Troubleshouting
339* Bug Reports:: Troublereporting
340* More Languages:: Parsers in C++, Java, and so on
341* Beta Testing:: Experimenting development versions
342* Mailing Lists:: Meeting other Bison users
d1a1114f 343
f2b5126e
PB
344Copying This Manual
345
f5f419de 346* Copying This Manual:: License for copying this manual.
f2b5126e 347
342b8b6e 348@end detailmenu
bfa74976
RS
349@end menu
350
342b8b6e 351@node Introduction
bfa74976
RS
352@unnumbered Introduction
353@cindex introduction
354
6077da58 355@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
356annotated context-free grammar into a deterministic LR or generalized
357LR (GLR) parser employing LALR(1) parser tables. As an experimental
358feature, Bison can also generate IELR(1) or canonical LR(1) parser
359tables. Once you are proficient with Bison, you can use it to develop
360a wide range of language parsers, from those used in simple desk
361calculators to complex programming languages.
362
363Bison is upward compatible with Yacc: all properly-written Yacc
364grammars ought to work with Bison with no change. Anyone familiar
365with Yacc should be able to use Bison with little trouble. You need
366to be fluent in C or C++ programming in order to use Bison or to
367understand this manual. Java is also supported as an experimental
368feature.
369
370We begin with tutorial chapters that explain the basic concepts of
371using Bison and show three explained examples, each building on the
372last. If you don't know Bison or Yacc, start by reading these
373chapters. Reference chapters follow, which describe specific aspects
374of Bison in detail.
bfa74976 375
679e9935
JD
376Bison was written originally by Robert Corbett. Richard Stallman made
377it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
378added multi-character string literals and other features. Since then,
379Bison has grown more robust and evolved many other new features thanks
380to the hard work of a long list of volunteers. For details, see the
381@file{THANKS} and @file{ChangeLog} files included in the Bison
382distribution.
931c7513 383
df1af54c 384This edition corresponds to version @value{VERSION} of Bison.
bfa74976 385
342b8b6e 386@node Conditions
bfa74976
RS
387@unnumbered Conditions for Using Bison
388
193d7c70
PE
389The distribution terms for Bison-generated parsers permit using the
390parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 391permissions applied only when Bison was generating LALR(1)
193d7c70 392parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 393parsers could be used only in programs that were free software.
a31239f1 394
8a4281b9 395The other GNU programming tools, such as the GNU C
c827f760 396compiler, have never
9ecbd125 397had such a requirement. They could always be used for nonfree
a31239f1
RS
398software. The reason Bison was different was not due to a special
399policy decision; it resulted from applying the usual General Public
400License to all of the Bison source code.
401
402The output of the Bison utility---the Bison parser file---contains a
403verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
404parser's implementation. (The actions from your grammar are inserted
405into this implementation at one point, but most of the rest of the
8a4281b9 406implementation is not changed.) When we applied the GPL
193d7c70 407terms to the skeleton code for the parser's implementation,
a31239f1
RS
408the effect was to restrict the use of Bison output to free software.
409
410We didn't change the terms because of sympathy for people who want to
411make software proprietary. @strong{Software should be free.} But we
412concluded that limiting Bison's use to free software was doing little to
413encourage people to make other software free. So we decided to make the
414practical conditions for using Bison match the practical conditions for
8a4281b9 415using the other GNU tools.
bfa74976 416
193d7c70
PE
417This exception applies when Bison is generating code for a parser.
418You can tell whether the exception applies to a Bison output file by
419inspecting the file for text beginning with ``As a special
420exception@dots{}''. The text spells out the exact terms of the
421exception.
262aa8dd 422
f16b0819
PE
423@node Copying
424@unnumbered GNU GENERAL PUBLIC LICENSE
425@include gpl-3.0.texi
bfa74976 426
342b8b6e 427@node Concepts
bfa74976
RS
428@chapter The Concepts of Bison
429
430This chapter introduces many of the basic concepts without which the
431details of Bison will not make sense. If you do not already know how to
432use Bison or Yacc, we suggest you start by reading this chapter carefully.
433
434@menu
f5f419de
DJ
435* Language and Grammar:: Languages and context-free grammars,
436 as mathematical ideas.
437* Grammar in Bison:: How we represent grammars for Bison's sake.
438* Semantic Values:: Each token or syntactic grouping can have
439 a semantic value (the value of an integer,
440 the name of an identifier, etc.).
441* Semantic Actions:: Each rule can have an action containing C code.
442* GLR Parsers:: Writing parsers for general context-free languages.
443* Locations Overview:: Tracking Locations.
444* Bison Parser:: What are Bison's input and output,
445 how is the output used?
446* Stages:: Stages in writing and running Bison grammars.
447* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
448@end menu
449
342b8b6e 450@node Language and Grammar
bfa74976
RS
451@section Languages and Context-Free Grammars
452
bfa74976
RS
453@cindex context-free grammar
454@cindex grammar, context-free
455In order for Bison to parse a language, it must be described by a
456@dfn{context-free grammar}. This means that you specify one or more
457@dfn{syntactic groupings} and give rules for constructing them from their
458parts. For example, in the C language, one kind of grouping is called an
459`expression'. One rule for making an expression might be, ``An expression
460can be made of a minus sign and another expression''. Another would be,
461``An expression can be an integer''. As you can see, rules are often
462recursive, but there must be at least one rule which leads out of the
463recursion.
464
8a4281b9 465@cindex BNF
bfa74976
RS
466@cindex Backus-Naur form
467The most common formal system for presenting such rules for humans to read
8a4281b9 468is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 469order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
470BNF is a context-free grammar. The input to Bison is
471essentially machine-readable BNF.
bfa74976 472
8a4281b9
JD
473@cindex LALR(1) grammars
474@cindex IELR(1) grammars
475@cindex LR(1) grammars
eb45ef3b
JD
476There are various important subclasses of context-free grammars.
477Although it can handle almost all context-free grammars, Bison is
8a4281b9 478optimized for what are called LR(1) grammars.
eb45ef3b
JD
479In brief, in these grammars, it must be possible to tell how to parse
480any portion of an input string with just a single token of lookahead.
481For historical reasons, Bison by default is limited by the additional
8a4281b9 482restrictions of LALR(1), which is hard to explain simply.
c827f760
PE
483@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
484more information on this.
f1b238df 485As an experimental feature, you can escape these additional restrictions by
8a4281b9 486requesting IELR(1) or canonical LR(1) parser tables.
eb45ef3b 487@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 488
8a4281b9
JD
489@cindex GLR parsing
490@cindex generalized LR (GLR) parsing
676385e2 491@cindex ambiguous grammars
9d9b8b70 492@cindex nondeterministic parsing
9501dc6e 493
8a4281b9 494Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
495roughly that the next grammar rule to apply at any point in the input is
496uniquely determined by the preceding input and a fixed, finite portion
742e4900 497(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 498grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 499apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 500grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 501lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 502With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
503general context-free grammars, using a technique known as GLR
504parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
505are able to handle any context-free grammar for which the number of
506possible parses of any given string is finite.
676385e2 507
bfa74976
RS
508@cindex symbols (abstract)
509@cindex token
510@cindex syntactic grouping
511@cindex grouping, syntactic
9501dc6e
AD
512In the formal grammatical rules for a language, each kind of syntactic
513unit or grouping is named by a @dfn{symbol}. Those which are built by
514grouping smaller constructs according to grammatical rules are called
bfa74976
RS
515@dfn{nonterminal symbols}; those which can't be subdivided are called
516@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
517corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 518corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
519
520We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
521nonterminal, mean. The tokens of C are identifiers, constants (numeric
522and string), and the various keywords, arithmetic operators and
523punctuation marks. So the terminal symbols of a grammar for C include
524`identifier', `number', `string', plus one symbol for each keyword,
525operator or punctuation mark: `if', `return', `const', `static', `int',
526`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
527(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
528lexicography, not grammar.)
529
530Here is a simple C function subdivided into tokens:
531
9edcd895
AD
532@ifinfo
533@example
534int /* @r{keyword `int'} */
14d4662b 535square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
536 @r{identifier, close-paren} */
537@{ /* @r{open-brace} */
aa08666d
AD
538 return x * x; /* @r{keyword `return', identifier, asterisk,}
539 @r{identifier, semicolon} */
9edcd895
AD
540@} /* @r{close-brace} */
541@end example
542@end ifinfo
543@ifnotinfo
bfa74976
RS
544@example
545int /* @r{keyword `int'} */
14d4662b 546square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 547@{ /* @r{open-brace} */
9edcd895 548 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
549@} /* @r{close-brace} */
550@end example
9edcd895 551@end ifnotinfo
bfa74976
RS
552
553The syntactic groupings of C include the expression, the statement, the
554declaration, and the function definition. These are represented in the
555grammar of C by nonterminal symbols `expression', `statement',
556`declaration' and `function definition'. The full grammar uses dozens of
557additional language constructs, each with its own nonterminal symbol, in
558order to express the meanings of these four. The example above is a
559function definition; it contains one declaration, and one statement. In
560the statement, each @samp{x} is an expression and so is @samp{x * x}.
561
562Each nonterminal symbol must have grammatical rules showing how it is made
563out of simpler constructs. For example, one kind of C statement is the
564@code{return} statement; this would be described with a grammar rule which
565reads informally as follows:
566
567@quotation
568A `statement' can be made of a `return' keyword, an `expression' and a
569`semicolon'.
570@end quotation
571
572@noindent
573There would be many other rules for `statement', one for each kind of
574statement in C.
575
576@cindex start symbol
577One nonterminal symbol must be distinguished as the special one which
578defines a complete utterance in the language. It is called the @dfn{start
579symbol}. In a compiler, this means a complete input program. In the C
580language, the nonterminal symbol `sequence of definitions and declarations'
581plays this role.
582
583For example, @samp{1 + 2} is a valid C expression---a valid part of a C
584program---but it is not valid as an @emph{entire} C program. In the
585context-free grammar of C, this follows from the fact that `expression' is
586not the start symbol.
587
588The Bison parser reads a sequence of tokens as its input, and groups the
589tokens using the grammar rules. If the input is valid, the end result is
590that the entire token sequence reduces to a single grouping whose symbol is
591the grammar's start symbol. If we use a grammar for C, the entire input
592must be a `sequence of definitions and declarations'. If not, the parser
593reports a syntax error.
594
342b8b6e 595@node Grammar in Bison
bfa74976
RS
596@section From Formal Rules to Bison Input
597@cindex Bison grammar
598@cindex grammar, Bison
599@cindex formal grammar
600
601A formal grammar is a mathematical construct. To define the language
602for Bison, you must write a file expressing the grammar in Bison syntax:
603a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
604
605A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 606as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
607in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
608
609The Bison representation for a terminal symbol is also called a @dfn{token
610type}. Token types as well can be represented as C-like identifiers. By
611convention, these identifiers should be upper case to distinguish them from
612nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
613@code{RETURN}. A terminal symbol that stands for a particular keyword in
614the language should be named after that keyword converted to upper case.
615The terminal symbol @code{error} is reserved for error recovery.
931c7513 616@xref{Symbols}.
bfa74976
RS
617
618A terminal symbol can also be represented as a character literal, just like
619a C character constant. You should do this whenever a token is just a
620single character (parenthesis, plus-sign, etc.): use that same character in
621a literal as the terminal symbol for that token.
622
931c7513
RS
623A third way to represent a terminal symbol is with a C string constant
624containing several characters. @xref{Symbols}, for more information.
625
bfa74976
RS
626The grammar rules also have an expression in Bison syntax. For example,
627here is the Bison rule for a C @code{return} statement. The semicolon in
628quotes is a literal character token, representing part of the C syntax for
629the statement; the naked semicolon, and the colon, are Bison punctuation
630used in every rule.
631
632@example
633stmt: RETURN expr ';'
634 ;
635@end example
636
637@noindent
638@xref{Rules, ,Syntax of Grammar Rules}.
639
342b8b6e 640@node Semantic Values
bfa74976
RS
641@section Semantic Values
642@cindex semantic value
643@cindex value, semantic
644
645A formal grammar selects tokens only by their classifications: for example,
646if a rule mentions the terminal symbol `integer constant', it means that
647@emph{any} integer constant is grammatically valid in that position. The
648precise value of the constant is irrelevant to how to parse the input: if
649@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 650grammatical.
bfa74976
RS
651
652But the precise value is very important for what the input means once it is
653parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6543989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
655has both a token type and a @dfn{semantic value}. @xref{Semantics,
656,Defining Language Semantics},
bfa74976
RS
657for details.
658
659The token type is a terminal symbol defined in the grammar, such as
660@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
661you need to know to decide where the token may validly appear and how to
662group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 663except their types.
bfa74976
RS
664
665The semantic value has all the rest of the information about the
666meaning of the token, such as the value of an integer, or the name of an
667identifier. (A token such as @code{','} which is just punctuation doesn't
668need to have any semantic value.)
669
670For example, an input token might be classified as token type
671@code{INTEGER} and have the semantic value 4. Another input token might
672have the same token type @code{INTEGER} but value 3989. When a grammar
673rule says that @code{INTEGER} is allowed, either of these tokens is
674acceptable because each is an @code{INTEGER}. When the parser accepts the
675token, it keeps track of the token's semantic value.
676
677Each grouping can also have a semantic value as well as its nonterminal
678symbol. For example, in a calculator, an expression typically has a
679semantic value that is a number. In a compiler for a programming
680language, an expression typically has a semantic value that is a tree
681structure describing the meaning of the expression.
682
342b8b6e 683@node Semantic Actions
bfa74976
RS
684@section Semantic Actions
685@cindex semantic actions
686@cindex actions, semantic
687
688In order to be useful, a program must do more than parse input; it must
689also produce some output based on the input. In a Bison grammar, a grammar
690rule can have an @dfn{action} made up of C statements. Each time the
691parser recognizes a match for that rule, the action is executed.
692@xref{Actions}.
13863333 693
bfa74976
RS
694Most of the time, the purpose of an action is to compute the semantic value
695of the whole construct from the semantic values of its parts. For example,
696suppose we have a rule which says an expression can be the sum of two
697expressions. When the parser recognizes such a sum, each of the
698subexpressions has a semantic value which describes how it was built up.
699The action for this rule should create a similar sort of value for the
700newly recognized larger expression.
701
702For example, here is a rule that says an expression can be the sum of
703two subexpressions:
704
705@example
706expr: expr '+' expr @{ $$ = $1 + $3; @}
707 ;
708@end example
709
710@noindent
711The action says how to produce the semantic value of the sum expression
712from the values of the two subexpressions.
713
676385e2 714@node GLR Parsers
8a4281b9
JD
715@section Writing GLR Parsers
716@cindex GLR parsing
717@cindex generalized LR (GLR) parsing
676385e2
PH
718@findex %glr-parser
719@cindex conflicts
720@cindex shift/reduce conflicts
fa7e68c3 721@cindex reduce/reduce conflicts
676385e2 722
eb45ef3b 723In some grammars, Bison's deterministic
8a4281b9 724LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
725certain grammar rule at a given point. That is, it may not be able to
726decide (on the basis of the input read so far) which of two possible
727reductions (applications of a grammar rule) applies, or whether to apply
728a reduction or read more of the input and apply a reduction later in the
729input. These are known respectively as @dfn{reduce/reduce} conflicts
730(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
731(@pxref{Shift/Reduce}).
732
8a4281b9 733To use a grammar that is not easily modified to be LR(1), a
9501dc6e 734more general parsing algorithm is sometimes necessary. If you include
676385e2 735@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
736(@pxref{Grammar Outline}), the result is a Generalized LR
737(GLR) parser. These parsers handle Bison grammars that
9501dc6e 738contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 739declarations) identically to deterministic parsers. However, when
9501dc6e 740faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 741GLR parsers use the simple expedient of doing both,
9501dc6e
AD
742effectively cloning the parser to follow both possibilities. Each of
743the resulting parsers can again split, so that at any given time, there
744can be any number of possible parses being explored. The parsers
676385e2
PH
745proceed in lockstep; that is, all of them consume (shift) a given input
746symbol before any of them proceed to the next. Each of the cloned
747parsers eventually meets one of two possible fates: either it runs into
748a parsing error, in which case it simply vanishes, or it merges with
749another parser, because the two of them have reduced the input to an
750identical set of symbols.
751
752During the time that there are multiple parsers, semantic actions are
753recorded, but not performed. When a parser disappears, its recorded
754semantic actions disappear as well, and are never performed. When a
755reduction makes two parsers identical, causing them to merge, Bison
756records both sets of semantic actions. Whenever the last two parsers
757merge, reverting to the single-parser case, Bison resolves all the
758outstanding actions either by precedences given to the grammar rules
759involved, or by performing both actions, and then calling a designated
760user-defined function on the resulting values to produce an arbitrary
761merged result.
762
fa7e68c3 763@menu
8a4281b9
JD
764* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
765* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 766* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 767* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 768* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
769@end menu
770
771@node Simple GLR Parsers
8a4281b9
JD
772@subsection Using GLR on Unambiguous Grammars
773@cindex GLR parsing, unambiguous grammars
774@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
775@findex %glr-parser
776@findex %expect-rr
777@cindex conflicts
778@cindex reduce/reduce conflicts
779@cindex shift/reduce conflicts
780
8a4281b9
JD
781In the simplest cases, you can use the GLR algorithm
782to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 783Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
784
785Consider a problem that
786arises in the declaration of enumerated and subrange types in the
787programming language Pascal. Here are some examples:
788
789@example
790type subrange = lo .. hi;
791type enum = (a, b, c);
792@end example
793
794@noindent
795The original language standard allows only numeric
796literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 797and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
79810206) and many other
799Pascal implementations allow arbitrary expressions there. This gives
800rise to the following situation, containing a superfluous pair of
801parentheses:
802
803@example
804type subrange = (a) .. b;
805@end example
806
807@noindent
808Compare this to the following declaration of an enumerated
809type with only one value:
810
811@example
812type enum = (a);
813@end example
814
815@noindent
816(These declarations are contrived, but they are syntactically
817valid, and more-complicated cases can come up in practical programs.)
818
819These two declarations look identical until the @samp{..} token.
8a4281b9 820With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
821possible to decide between the two forms when the identifier
822@samp{a} is parsed. It is, however, desirable
823for a parser to decide this, since in the latter case
824@samp{a} must become a new identifier to represent the enumeration
825value, while in the former case @samp{a} must be evaluated with its
826current meaning, which may be a constant or even a function call.
827
828You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
829to be resolved later, but this typically requires substantial
830contortions in both semantic actions and large parts of the
831grammar, where the parentheses are nested in the recursive rules for
832expressions.
833
834You might think of using the lexer to distinguish between the two
835forms by returning different tokens for currently defined and
836undefined identifiers. But if these declarations occur in a local
837scope, and @samp{a} is defined in an outer scope, then both forms
838are possible---either locally redefining @samp{a}, or using the
839value of @samp{a} from the outer scope. So this approach cannot
840work.
841
e757bb10 842A simple solution to this problem is to declare the parser to
8a4281b9
JD
843use the GLR algorithm.
844When the GLR parser reaches the critical state, it
fa7e68c3
PE
845merely splits into two branches and pursues both syntax rules
846simultaneously. Sooner or later, one of them runs into a parsing
847error. If there is a @samp{..} token before the next
848@samp{;}, the rule for enumerated types fails since it cannot
849accept @samp{..} anywhere; otherwise, the subrange type rule
850fails since it requires a @samp{..} token. So one of the branches
851fails silently, and the other one continues normally, performing
852all the intermediate actions that were postponed during the split.
853
854If the input is syntactically incorrect, both branches fail and the parser
855reports a syntax error as usual.
856
857The effect of all this is that the parser seems to ``guess'' the
858correct branch to take, or in other words, it seems to use more
8a4281b9
JD
859lookahead than the underlying LR(1) algorithm actually allows
860for. In this example, LR(2) would suffice, but also some cases
861that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 862
8a4281b9 863In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
864and the current Bison parser even takes exponential time and space
865for some grammars. In practice, this rarely happens, and for many
866grammars it is possible to prove that it cannot happen.
867The present example contains only one conflict between two
868rules, and the type-declaration context containing the conflict
869cannot be nested. So the number of
870branches that can exist at any time is limited by the constant 2,
871and the parsing time is still linear.
872
873Here is a Bison grammar corresponding to the example above. It
874parses a vastly simplified form of Pascal type declarations.
875
876@example
877%token TYPE DOTDOT ID
878
879@group
880%left '+' '-'
881%left '*' '/'
882@end group
883
884%%
885
886@group
887type_decl : TYPE ID '=' type ';'
888 ;
889@end group
890
891@group
892type : '(' id_list ')'
893 | expr DOTDOT expr
894 ;
895@end group
896
897@group
898id_list : ID
899 | id_list ',' ID
900 ;
901@end group
902
903@group
904expr : '(' expr ')'
905 | expr '+' expr
906 | expr '-' expr
907 | expr '*' expr
908 | expr '/' expr
909 | ID
910 ;
911@end group
912@end example
913
8a4281b9 914When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
915about one reduce/reduce conflict. In the conflicting situation the
916parser chooses one of the alternatives, arbitrarily the one
917declared first. Therefore the following correct input is not
918recognized:
919
920@example
921type t = (a) .. b;
922@end example
923
8a4281b9 924The parser can be turned into a GLR parser, while also telling Bison
fa7e68c3 925to be silent about the one known reduce/reduce conflict, by
e757bb10 926adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
927@samp{%%}):
928
929@example
930%glr-parser
931%expect-rr 1
932@end example
933
934@noindent
935No change in the grammar itself is required. Now the
936parser recognizes all valid declarations, according to the
937limited syntax above, transparently. In fact, the user does not even
938notice when the parser splits.
939
8a4281b9 940So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
941almost without disadvantages. Even in simple cases like this, however,
942there are at least two potential problems to beware. First, always
8a4281b9
JD
943analyze the conflicts reported by Bison to make sure that GLR
944splitting is only done where it is intended. A GLR parser
f8e1c9e5 945splitting inadvertently may cause problems less obvious than an
8a4281b9 946LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
947conflict. Second, consider interactions with the lexer (@pxref{Semantic
948Tokens}) with great care. Since a split parser consumes tokens without
949performing any actions during the split, the lexer cannot obtain
950information via parser actions. Some cases of lexer interactions can be
8a4281b9 951eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
952lexer to the parser. You must check the remaining cases for
953correctness.
954
955In our example, it would be safe for the lexer to return tokens based on
956their current meanings in some symbol table, because no new symbols are
957defined in the middle of a type declaration. Though it is possible for
958a parser to define the enumeration constants as they are parsed, before
959the type declaration is completed, it actually makes no difference since
960they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
961
962@node Merging GLR Parses
8a4281b9
JD
963@subsection Using GLR to Resolve Ambiguities
964@cindex GLR parsing, ambiguous grammars
965@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
966@findex %dprec
967@findex %merge
968@cindex conflicts
969@cindex reduce/reduce conflicts
970
2a8d363a 971Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
972
973@example
974%@{
38a92d50
PE
975 #include <stdio.h>
976 #define YYSTYPE char const *
977 int yylex (void);
978 void yyerror (char const *);
676385e2
PH
979%@}
980
981%token TYPENAME ID
982
983%right '='
984%left '+'
985
986%glr-parser
987
988%%
989
fae437e8 990prog :
676385e2
PH
991 | prog stmt @{ printf ("\n"); @}
992 ;
993
994stmt : expr ';' %dprec 1
995 | decl %dprec 2
996 ;
997
2a8d363a 998expr : ID @{ printf ("%s ", $$); @}
fae437e8 999 | TYPENAME '(' expr ')'
2a8d363a
AD
1000 @{ printf ("%s <cast> ", $1); @}
1001 | expr '+' expr @{ printf ("+ "); @}
1002 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1003 ;
1004
fae437e8 1005decl : TYPENAME declarator ';'
2a8d363a 1006 @{ printf ("%s <declare> ", $1); @}
676385e2 1007 | TYPENAME declarator '=' expr ';'
2a8d363a 1008 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1009 ;
1010
2a8d363a 1011declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1012 | '(' declarator ')'
1013 ;
1014@end example
1015
1016@noindent
1017This models a problematic part of the C++ grammar---the ambiguity between
1018certain declarations and statements. For example,
1019
1020@example
1021T (x) = y+z;
1022@end example
1023
1024@noindent
1025parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1026(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1027@samp{x} as an @code{ID}).
676385e2 1028Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1029@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1030time it encounters @code{x} in the example above. Since this is a
8a4281b9 1031GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1032each choice of resolving the reduce/reduce conflict.
1033Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1034however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1035ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1036the other reduces @code{stmt : decl}, after which both parsers are in an
1037identical state: they've seen @samp{prog stmt} and have the same unprocessed
1038input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1039
8a4281b9 1040At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1041grammar of how to choose between the competing parses.
1042In the example above, the two @code{%dprec}
e757bb10 1043declarations specify that Bison is to give precedence
fa7e68c3 1044to the parse that interprets the example as a
676385e2
PH
1045@code{decl}, which implies that @code{x} is a declarator.
1046The parser therefore prints
1047
1048@example
fae437e8 1049"x" y z + T <init-declare>
676385e2
PH
1050@end example
1051
fa7e68c3
PE
1052The @code{%dprec} declarations only come into play when more than one
1053parse survives. Consider a different input string for this parser:
676385e2
PH
1054
1055@example
1056T (x) + y;
1057@end example
1058
1059@noindent
8a4281b9 1060This is another example of using GLR to parse an unambiguous
fa7e68c3 1061construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1062Here, there is no ambiguity (this cannot be parsed as a declaration).
1063However, at the time the Bison parser encounters @code{x}, it does not
1064have enough information to resolve the reduce/reduce conflict (again,
1065between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1066case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1067into two, one assuming that @code{x} is an @code{expr}, and the other
1068assuming @code{x} is a @code{declarator}. The second of these parsers
1069then vanishes when it sees @code{+}, and the parser prints
1070
1071@example
fae437e8 1072x T <cast> y +
676385e2
PH
1073@end example
1074
1075Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1076the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1077actions of the two possible parsers, rather than choosing one over the
1078other. To do so, you could change the declaration of @code{stmt} as
1079follows:
1080
1081@example
1082stmt : expr ';' %merge <stmtMerge>
1083 | decl %merge <stmtMerge>
1084 ;
1085@end example
1086
1087@noindent
676385e2
PH
1088and define the @code{stmtMerge} function as:
1089
1090@example
38a92d50
PE
1091static YYSTYPE
1092stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1093@{
1094 printf ("<OR> ");
1095 return "";
1096@}
1097@end example
1098
1099@noindent
1100with an accompanying forward declaration
1101in the C declarations at the beginning of the file:
1102
1103@example
1104%@{
38a92d50 1105 #define YYSTYPE char const *
676385e2
PH
1106 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1107%@}
1108@end example
1109
1110@noindent
fa7e68c3
PE
1111With these declarations, the resulting parser parses the first example
1112as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1113
1114@example
fae437e8 1115"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1116@end example
1117
fa7e68c3 1118Bison requires that all of the
e757bb10 1119productions that participate in any particular merge have identical
fa7e68c3
PE
1120@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1121and the parser will report an error during any parse that results in
1122the offending merge.
9501dc6e 1123
32c29292
JD
1124@node GLR Semantic Actions
1125@subsection GLR Semantic Actions
1126
8a4281b9 1127The nature of GLR parsing and the structure of the generated
20be2f92
PH
1128parsers give rise to certain restrictions on semantic values and actions.
1129
1130@subsubsection Deferred semantic actions
32c29292
JD
1131@cindex deferred semantic actions
1132By definition, a deferred semantic action is not performed at the same time as
1133the associated reduction.
1134This raises caveats for several Bison features you might use in a semantic
8a4281b9 1135action in a GLR parser.
32c29292
JD
1136
1137@vindex yychar
8a4281b9 1138@cindex GLR parsers and @code{yychar}
32c29292 1139@vindex yylval
8a4281b9 1140@cindex GLR parsers and @code{yylval}
32c29292 1141@vindex yylloc
8a4281b9 1142@cindex GLR parsers and @code{yylloc}
32c29292 1143In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1144the lookahead token present at the time of the associated reduction.
32c29292
JD
1145After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1146you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1147lookahead token's semantic value and location, if any.
32c29292
JD
1148In a nondeferred semantic action, you can also modify any of these variables to
1149influence syntax analysis.
742e4900 1150@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1151
1152@findex yyclearin
8a4281b9 1153@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1154In a deferred semantic action, it's too late to influence syntax analysis.
1155In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1156shallow copies of the values they had at the time of the associated reduction.
1157For this reason alone, modifying them is dangerous.
1158Moreover, the result of modifying them is undefined and subject to change with
1159future versions of Bison.
1160For example, if a semantic action might be deferred, you should never write it
1161to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1162memory referenced by @code{yylval}.
1163
20be2f92 1164@subsubsection YYERROR
32c29292 1165@findex YYERROR
8a4281b9 1166@cindex GLR parsers and @code{YYERROR}
32c29292 1167Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1168(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1169initiate error recovery.
8a4281b9 1170During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1171the same as its effect in a deterministic parser.
20be2f92
PH
1172The effect in a deferred action is similar, but the precise point of the
1173error is undefined; instead, the parser reverts to deterministic operation,
1174selecting an unspecified stack on which to continue with a syntax error.
1175In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1176parsing, @code{YYERROR} silently prunes
1177the parse that invoked the test.
1178
1179@subsubsection Restrictions on semantic values and locations
8a4281b9 1180GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1181semantic values and location types when using the generated parsers as
1182C++ code.
8710fc41 1183
ca2a6d15
PH
1184@node Semantic Predicates
1185@subsection Controlling a Parse with Arbitrary Predicates
1186@findex %?
8a4281b9 1187@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1188
1189In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1190GLR parsers
ca2a6d15
PH
1191allow you to reject parses on the basis of arbitrary computations executed
1192in user code, without having Bison treat this rejection as an error
1193if there are alternative parses. (This feature is experimental and may
1194evolve. We welcome user feedback.) For example,
1195
1196@smallexample
1197widget :
1198 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1199 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1200 ;
1201@end smallexample
1202
1203@noindent
1204is one way to allow the same parser to handle two different syntaxes for
1205widgets. The clause preceded by @code{%?} is treated like an ordinary
1206action, except that its text is treated as an expression and is always
1207evaluated immediately (even when in nondeterministic mode). If the
1208expression yields 0 (false), the clause is treated as a syntax error,
1209which, in a nondeterministic parser, causes the stack in which it is reduced
1210to die. In a deterministic parser, it acts like YYERROR.
1211
1212As the example shows, predicates otherwise look like semantic actions, and
1213therefore you must be take them into account when determining the numbers
1214to use for denoting the semantic values of right-hand side symbols.
1215Predicate actions, however, have no defined value, and may not be given
1216labels.
1217
1218There is a subtle difference between semantic predicates and ordinary
1219actions in nondeterministic mode, since the latter are deferred.
1220For example, we could try to rewrite the previous example as
1221
1222@smallexample
1223widget :
1224 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1225 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1226 ;
1227@end smallexample
1228
1229@noindent
1230(reversing the sense of the predicate tests to cause an error when they are
1231false). However, this
1232does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1233have overlapping syntax.
1234Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1235a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1236for cases where @code{new_args} and @code{old_args} recognize the same string
1237@emph{before} performing the tests of @code{new_syntax}. It therefore
1238reports an error.
1239
1240Finally, be careful in writing predicates: deferred actions have not been
1241evaluated, so that using them in a predicate will have undefined effects.
1242
fa7e68c3 1243@node Compiler Requirements
8a4281b9 1244@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1245@cindex @code{inline}
8a4281b9 1246@cindex GLR parsers and @code{inline}
fa7e68c3 1247
8a4281b9 1248The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1249later. In addition, they use the @code{inline} keyword, which is not
1250C89, but is C99 and is a common extension in pre-C99 compilers. It is
1251up to the user of these parsers to handle
9501dc6e
AD
1252portability issues. For instance, if using Autoconf and the Autoconf
1253macro @code{AC_C_INLINE}, a mere
1254
1255@example
1256%@{
38a92d50 1257 #include <config.h>
9501dc6e
AD
1258%@}
1259@end example
1260
1261@noindent
1262will suffice. Otherwise, we suggest
1263
1264@example
1265%@{
38a92d50
PE
1266 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1267 #define inline
1268 #endif
9501dc6e
AD
1269%@}
1270@end example
676385e2 1271
342b8b6e 1272@node Locations Overview
847bf1f5
AD
1273@section Locations
1274@cindex location
95923bd6
AD
1275@cindex textual location
1276@cindex location, textual
847bf1f5
AD
1277
1278Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1279and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1280the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1281Bison provides a mechanism for handling these locations.
1282
72d2299c 1283Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1284associated location, but the type of locations is the same for all tokens and
72d2299c 1285groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1286structure for storing locations (@pxref{Locations}, for more details).
1287
1288Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1289set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1290is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1291@code{@@3}.
1292
1293When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1294of its left hand side (@pxref{Actions}). In the same way, another default
1295action is used for locations. However, the action for locations is general
847bf1f5 1296enough for most cases, meaning there is usually no need to describe for each
72d2299c 1297rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1298grouping, the default behavior of the output parser is to take the beginning
1299of the first symbol, and the end of the last symbol.
1300
342b8b6e 1301@node Bison Parser
bfa74976
RS
1302@section Bison Output: the Parser File
1303@cindex Bison parser
1304@cindex Bison utility
1305@cindex lexical analyzer, purpose
1306@cindex parser
1307
1308When you run Bison, you give it a Bison grammar file as input. The output
1309is a C source file that parses the language described by the grammar.
1310This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1311utility and the Bison parser are two distinct programs: the Bison utility
1312is a program whose output is the Bison parser that becomes part of your
1313program.
1314
1315The job of the Bison parser is to group tokens into groupings according to
1316the grammar rules---for example, to build identifiers and operators into
1317expressions. As it does this, it runs the actions for the grammar rules it
1318uses.
1319
704a47c4
AD
1320The tokens come from a function called the @dfn{lexical analyzer} that
1321you must supply in some fashion (such as by writing it in C). The Bison
1322parser calls the lexical analyzer each time it wants a new token. It
1323doesn't know what is ``inside'' the tokens (though their semantic values
1324may reflect this). Typically the lexical analyzer makes the tokens by
1325parsing characters of text, but Bison does not depend on this.
1326@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1327
1328The Bison parser file is C code which defines a function named
1329@code{yyparse} which implements that grammar. This function does not make
1330a complete C program: you must supply some additional functions. One is
1331the lexical analyzer. Another is an error-reporting function which the
1332parser calls to report an error. In addition, a complete C program must
1333start with a function called @code{main}; you have to provide this, and
1334arrange for it to call @code{yyparse} or the parser will never run.
1335@xref{Interface, ,Parser C-Language Interface}.
1336
f7ab6a50 1337Aside from the token type names and the symbols in the actions you
7093d0f5 1338write, all symbols defined in the Bison parser file itself
bfa74976
RS
1339begin with @samp{yy} or @samp{YY}. This includes interface functions
1340such as the lexical analyzer function @code{yylex}, the error reporting
1341function @code{yyerror} and the parser function @code{yyparse} itself.
1342This also includes numerous identifiers used for internal purposes.
1343Therefore, you should avoid using C identifiers starting with @samp{yy}
1344or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1345this manual. Also, you should avoid using the C identifiers
1346@samp{malloc} and @samp{free} for anything other than their usual
1347meanings.
bfa74976 1348
7093d0f5
AD
1349In some cases the Bison parser file includes system headers, and in
1350those cases your code should respect the identifiers reserved by those
8a4281b9 1351headers. On some non-GNU hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1352@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1353declare memory allocators and related types. @code{<libintl.h>} is
1354included if message translation is in use
1355(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1356be included if you define @code{YYDEBUG} to a nonzero value
1357(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1358
342b8b6e 1359@node Stages
bfa74976
RS
1360@section Stages in Using Bison
1361@cindex stages in using Bison
1362@cindex using Bison
1363
1364The actual language-design process using Bison, from grammar specification
1365to a working compiler or interpreter, has these parts:
1366
1367@enumerate
1368@item
1369Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1370(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1371in the language, describe the action that is to be taken when an
1372instance of that rule is recognized. The action is described by a
1373sequence of C statements.
bfa74976
RS
1374
1375@item
704a47c4
AD
1376Write a lexical analyzer to process input and pass tokens to the parser.
1377The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1378Lexical Analyzer Function @code{yylex}}). It could also be produced
1379using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1380
1381@item
1382Write a controlling function that calls the Bison-produced parser.
1383
1384@item
1385Write error-reporting routines.
1386@end enumerate
1387
1388To turn this source code as written into a runnable program, you
1389must follow these steps:
1390
1391@enumerate
1392@item
1393Run Bison on the grammar to produce the parser.
1394
1395@item
1396Compile the code output by Bison, as well as any other source files.
1397
1398@item
1399Link the object files to produce the finished product.
1400@end enumerate
1401
342b8b6e 1402@node Grammar Layout
bfa74976
RS
1403@section The Overall Layout of a Bison Grammar
1404@cindex grammar file
1405@cindex file format
1406@cindex format of grammar file
1407@cindex layout of Bison grammar
1408
1409The input file for the Bison utility is a @dfn{Bison grammar file}. The
1410general form of a Bison grammar file is as follows:
1411
1412@example
1413%@{
08e49d20 1414@var{Prologue}
bfa74976
RS
1415%@}
1416
1417@var{Bison declarations}
1418
1419%%
1420@var{Grammar rules}
1421%%
08e49d20 1422@var{Epilogue}
bfa74976
RS
1423@end example
1424
1425@noindent
1426The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1427in every Bison grammar file to separate the sections.
1428
72d2299c 1429The prologue may define types and variables used in the actions. You can
342b8b6e 1430also use preprocessor commands to define macros used there, and use
bfa74976 1431@code{#include} to include header files that do any of these things.
38a92d50
PE
1432You need to declare the lexical analyzer @code{yylex} and the error
1433printer @code{yyerror} here, along with any other global identifiers
1434used by the actions in the grammar rules.
bfa74976
RS
1435
1436The Bison declarations declare the names of the terminal and nonterminal
1437symbols, and may also describe operator precedence and the data types of
1438semantic values of various symbols.
1439
1440The grammar rules define how to construct each nonterminal symbol from its
1441parts.
1442
38a92d50
PE
1443The epilogue can contain any code you want to use. Often the
1444definitions of functions declared in the prologue go here. In a
1445simple program, all the rest of the program can go here.
bfa74976 1446
342b8b6e 1447@node Examples
bfa74976
RS
1448@chapter Examples
1449@cindex simple examples
1450@cindex examples, simple
1451
1452Now we show and explain three sample programs written using Bison: a
1453reverse polish notation calculator, an algebraic (infix) notation
1454calculator, and a multi-function calculator. All three have been tested
1455under BSD Unix 4.3; each produces a usable, though limited, interactive
1456desk-top calculator.
1457
1458These examples are simple, but Bison grammars for real programming
aa08666d
AD
1459languages are written the same way. You can copy these examples into a
1460source file to try them.
bfa74976
RS
1461
1462@menu
f5f419de
DJ
1463* RPN Calc:: Reverse polish notation calculator;
1464 a first example with no operator precedence.
1465* Infix Calc:: Infix (algebraic) notation calculator.
1466 Operator precedence is introduced.
bfa74976 1467* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1468* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1469* Multi-function Calc:: Calculator with memory and trig functions.
1470 It uses multiple data-types for semantic values.
1471* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1472@end menu
1473
342b8b6e 1474@node RPN Calc
bfa74976
RS
1475@section Reverse Polish Notation Calculator
1476@cindex reverse polish notation
1477@cindex polish notation calculator
1478@cindex @code{rpcalc}
1479@cindex calculator, simple
1480
1481The first example is that of a simple double-precision @dfn{reverse polish
1482notation} calculator (a calculator using postfix operators). This example
1483provides a good starting point, since operator precedence is not an issue.
1484The second example will illustrate how operator precedence is handled.
1485
1486The source code for this calculator is named @file{rpcalc.y}. The
1487@samp{.y} extension is a convention used for Bison input files.
1488
1489@menu
f5f419de
DJ
1490* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1491* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1492* Rpcalc Lexer:: The lexical analyzer.
1493* Rpcalc Main:: The controlling function.
1494* Rpcalc Error:: The error reporting function.
1495* Rpcalc Generate:: Running Bison on the grammar file.
1496* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1497@end menu
1498
f5f419de 1499@node Rpcalc Declarations
bfa74976
RS
1500@subsection Declarations for @code{rpcalc}
1501
1502Here are the C and Bison declarations for the reverse polish notation
1503calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1504
1505@example
72d2299c 1506/* Reverse polish notation calculator. */
bfa74976
RS
1507
1508%@{
38a92d50
PE
1509 #define YYSTYPE double
1510 #include <math.h>
1511 int yylex (void);
1512 void yyerror (char const *);
bfa74976
RS
1513%@}
1514
1515%token NUM
1516
72d2299c 1517%% /* Grammar rules and actions follow. */
bfa74976
RS
1518@end example
1519
75f5aaea 1520The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1521preprocessor directives and two forward declarations.
bfa74976
RS
1522
1523The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1524specifying the C data type for semantic values of both tokens and
1525groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1526Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1527don't define it, @code{int} is the default. Because we specify
1528@code{double}, each token and each expression has an associated value,
1529which is a floating point number.
bfa74976
RS
1530
1531The @code{#include} directive is used to declare the exponentiation
1532function @code{pow}.
1533
38a92d50
PE
1534The forward declarations for @code{yylex} and @code{yyerror} are
1535needed because the C language requires that functions be declared
1536before they are used. These functions will be defined in the
1537epilogue, but the parser calls them so they must be declared in the
1538prologue.
1539
704a47c4
AD
1540The second section, Bison declarations, provides information to Bison
1541about the token types (@pxref{Bison Declarations, ,The Bison
1542Declarations Section}). Each terminal symbol that is not a
1543single-character literal must be declared here. (Single-character
bfa74976
RS
1544literals normally don't need to be declared.) In this example, all the
1545arithmetic operators are designated by single-character literals, so the
1546only terminal symbol that needs to be declared is @code{NUM}, the token
1547type for numeric constants.
1548
342b8b6e 1549@node Rpcalc Rules
bfa74976
RS
1550@subsection Grammar Rules for @code{rpcalc}
1551
1552Here are the grammar rules for the reverse polish notation calculator.
1553
1554@example
1555input: /* empty */
1556 | input line
1557;
1558
1559line: '\n'
18b519c0 1560 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1561;
1562
18b519c0
AD
1563exp: NUM @{ $$ = $1; @}
1564 | exp exp '+' @{ $$ = $1 + $2; @}
1565 | exp exp '-' @{ $$ = $1 - $2; @}
1566 | exp exp '*' @{ $$ = $1 * $2; @}
1567 | exp exp '/' @{ $$ = $1 / $2; @}
1568 /* Exponentiation */
1569 | exp exp '^' @{ $$ = pow ($1, $2); @}
1570 /* Unary minus */
1571 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1572;
1573%%
1574@end example
1575
1576The groupings of the rpcalc ``language'' defined here are the expression
1577(given the name @code{exp}), the line of input (@code{line}), and the
1578complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1579symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1580which is read as ``or''. The following sections explain what these rules
1581mean.
1582
1583The semantics of the language is determined by the actions taken when a
1584grouping is recognized. The actions are the C code that appears inside
1585braces. @xref{Actions}.
1586
1587You must specify these actions in C, but Bison provides the means for
1588passing semantic values between the rules. In each action, the
1589pseudo-variable @code{$$} stands for the semantic value for the grouping
1590that the rule is going to construct. Assigning a value to @code{$$} is the
1591main job of most actions. The semantic values of the components of the
1592rule are referred to as @code{$1}, @code{$2}, and so on.
1593
1594@menu
13863333
AD
1595* Rpcalc Input::
1596* Rpcalc Line::
1597* Rpcalc Expr::
bfa74976
RS
1598@end menu
1599
342b8b6e 1600@node Rpcalc Input
bfa74976
RS
1601@subsubsection Explanation of @code{input}
1602
1603Consider the definition of @code{input}:
1604
1605@example
1606input: /* empty */
1607 | input line
1608;
1609@end example
1610
1611This definition reads as follows: ``A complete input is either an empty
1612string, or a complete input followed by an input line''. Notice that
1613``complete input'' is defined in terms of itself. This definition is said
1614to be @dfn{left recursive} since @code{input} appears always as the
1615leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1616
1617The first alternative is empty because there are no symbols between the
1618colon and the first @samp{|}; this means that @code{input} can match an
1619empty string of input (no tokens). We write the rules this way because it
1620is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1621It's conventional to put an empty alternative first and write the comment
1622@samp{/* empty */} in it.
1623
1624The second alternate rule (@code{input line}) handles all nontrivial input.
1625It means, ``After reading any number of lines, read one more line if
1626possible.'' The left recursion makes this rule into a loop. Since the
1627first alternative matches empty input, the loop can be executed zero or
1628more times.
1629
1630The parser function @code{yyparse} continues to process input until a
1631grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1632input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1633
342b8b6e 1634@node Rpcalc Line
bfa74976
RS
1635@subsubsection Explanation of @code{line}
1636
1637Now consider the definition of @code{line}:
1638
1639@example
1640line: '\n'
1641 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1642;
1643@end example
1644
1645The first alternative is a token which is a newline character; this means
1646that rpcalc accepts a blank line (and ignores it, since there is no
1647action). The second alternative is an expression followed by a newline.
1648This is the alternative that makes rpcalc useful. The semantic value of
1649the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1650question is the first symbol in the alternative. The action prints this
1651value, which is the result of the computation the user asked for.
1652
1653This action is unusual because it does not assign a value to @code{$$}. As
1654a consequence, the semantic value associated with the @code{line} is
1655uninitialized (its value will be unpredictable). This would be a bug if
1656that value were ever used, but we don't use it: once rpcalc has printed the
1657value of the user's input line, that value is no longer needed.
1658
342b8b6e 1659@node Rpcalc Expr
bfa74976
RS
1660@subsubsection Explanation of @code{expr}
1661
1662The @code{exp} grouping has several rules, one for each kind of expression.
1663The first rule handles the simplest expressions: those that are just numbers.
1664The second handles an addition-expression, which looks like two expressions
1665followed by a plus-sign. The third handles subtraction, and so on.
1666
1667@example
1668exp: NUM
1669 | exp exp '+' @{ $$ = $1 + $2; @}
1670 | exp exp '-' @{ $$ = $1 - $2; @}
1671 @dots{}
1672 ;
1673@end example
1674
1675We have used @samp{|} to join all the rules for @code{exp}, but we could
1676equally well have written them separately:
1677
1678@example
1679exp: NUM ;
1680exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1681exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1682 @dots{}
1683@end example
1684
1685Most of the rules have actions that compute the value of the expression in
1686terms of the value of its parts. For example, in the rule for addition,
1687@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1688the second one. The third component, @code{'+'}, has no meaningful
1689associated semantic value, but if it had one you could refer to it as
1690@code{$3}. When @code{yyparse} recognizes a sum expression using this
1691rule, the sum of the two subexpressions' values is produced as the value of
1692the entire expression. @xref{Actions}.
1693
1694You don't have to give an action for every rule. When a rule has no
1695action, Bison by default copies the value of @code{$1} into @code{$$}.
1696This is what happens in the first rule (the one that uses @code{NUM}).
1697
1698The formatting shown here is the recommended convention, but Bison does
72d2299c 1699not require it. You can add or change white space as much as you wish.
bfa74976
RS
1700For example, this:
1701
1702@example
99a9344e 1703exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1704@end example
1705
1706@noindent
1707means the same thing as this:
1708
1709@example
1710exp: NUM
1711 | exp exp '+' @{ $$ = $1 + $2; @}
1712 | @dots{}
99a9344e 1713;
bfa74976
RS
1714@end example
1715
1716@noindent
1717The latter, however, is much more readable.
1718
342b8b6e 1719@node Rpcalc Lexer
bfa74976
RS
1720@subsection The @code{rpcalc} Lexical Analyzer
1721@cindex writing a lexical analyzer
1722@cindex lexical analyzer, writing
1723
704a47c4
AD
1724The lexical analyzer's job is low-level parsing: converting characters
1725or sequences of characters into tokens. The Bison parser gets its
1726tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1727Analyzer Function @code{yylex}}.
bfa74976 1728
8a4281b9 1729Only a simple lexical analyzer is needed for the RPN
c827f760 1730calculator. This
bfa74976
RS
1731lexical analyzer skips blanks and tabs, then reads in numbers as
1732@code{double} and returns them as @code{NUM} tokens. Any other character
1733that isn't part of a number is a separate token. Note that the token-code
1734for such a single-character token is the character itself.
1735
1736The return value of the lexical analyzer function is a numeric code which
1737represents a token type. The same text used in Bison rules to stand for
1738this token type is also a C expression for the numeric code for the type.
1739This works in two ways. If the token type is a character literal, then its
e966383b 1740numeric code is that of the character; you can use the same
bfa74976
RS
1741character literal in the lexical analyzer to express the number. If the
1742token type is an identifier, that identifier is defined by Bison as a C
1743macro whose definition is the appropriate number. In this example,
1744therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1745
1964ad8c
AD
1746The semantic value of the token (if it has one) is stored into the
1747global variable @code{yylval}, which is where the Bison parser will look
1748for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1749defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1750,Declarations for @code{rpcalc}}.)
bfa74976 1751
72d2299c
PE
1752A token type code of zero is returned if the end-of-input is encountered.
1753(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1754
1755Here is the code for the lexical analyzer:
1756
1757@example
1758@group
72d2299c 1759/* The lexical analyzer returns a double floating point
e966383b 1760 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1761 of the character read if not a number. It skips all blanks
1762 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1763
1764#include <ctype.h>
1765@end group
1766
1767@group
13863333
AD
1768int
1769yylex (void)
bfa74976
RS
1770@{
1771 int c;
1772
72d2299c 1773 /* Skip white space. */
13863333 1774 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1775 ;
1776@end group
1777@group
72d2299c 1778 /* Process numbers. */
13863333 1779 if (c == '.' || isdigit (c))
bfa74976
RS
1780 @{
1781 ungetc (c, stdin);
1782 scanf ("%lf", &yylval);
1783 return NUM;
1784 @}
1785@end group
1786@group
72d2299c 1787 /* Return end-of-input. */
13863333 1788 if (c == EOF)
bfa74976 1789 return 0;
72d2299c 1790 /* Return a single char. */
13863333 1791 return c;
bfa74976
RS
1792@}
1793@end group
1794@end example
1795
342b8b6e 1796@node Rpcalc Main
bfa74976
RS
1797@subsection The Controlling Function
1798@cindex controlling function
1799@cindex main function in simple example
1800
1801In keeping with the spirit of this example, the controlling function is
1802kept to the bare minimum. The only requirement is that it call
1803@code{yyparse} to start the process of parsing.
1804
1805@example
1806@group
13863333
AD
1807int
1808main (void)
bfa74976 1809@{
13863333 1810 return yyparse ();
bfa74976
RS
1811@}
1812@end group
1813@end example
1814
342b8b6e 1815@node Rpcalc Error
bfa74976
RS
1816@subsection The Error Reporting Routine
1817@cindex error reporting routine
1818
1819When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1820function @code{yyerror} to print an error message (usually but not
6e649e65 1821always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1822@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1823here is the definition we will use:
bfa74976
RS
1824
1825@example
1826@group
1827#include <stdio.h>
1828
38a92d50 1829/* Called by yyparse on error. */
13863333 1830void
38a92d50 1831yyerror (char const *s)
bfa74976 1832@{
4e03e201 1833 fprintf (stderr, "%s\n", s);
bfa74976
RS
1834@}
1835@end group
1836@end example
1837
1838After @code{yyerror} returns, the Bison parser may recover from the error
1839and continue parsing if the grammar contains a suitable error rule
1840(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1841have not written any error rules in this example, so any invalid input will
1842cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1843real calculator, but it is adequate for the first example.
bfa74976 1844
f5f419de 1845@node Rpcalc Generate
bfa74976
RS
1846@subsection Running Bison to Make the Parser
1847@cindex running Bison (introduction)
1848
ceed8467
AD
1849Before running Bison to produce a parser, we need to decide how to
1850arrange all the source code in one or more source files. For such a
1851simple example, the easiest thing is to put everything in one file. The
1852definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1853end, in the epilogue of the file
75f5aaea 1854(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1855
1856For a large project, you would probably have several source files, and use
1857@code{make} to arrange to recompile them.
1858
1859With all the source in a single file, you use the following command to
1860convert it into a parser file:
1861
1862@example
fa4d969f 1863bison @var{file}.y
bfa74976
RS
1864@end example
1865
1866@noindent
1867In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1868@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1869removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1870Bison contains the source code for @code{yyparse}. The additional
1871functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1872are copied verbatim to the output.
1873
342b8b6e 1874@node Rpcalc Compile
bfa74976
RS
1875@subsection Compiling the Parser File
1876@cindex compiling the parser
1877
1878Here is how to compile and run the parser file:
1879
1880@example
1881@group
1882# @r{List files in current directory.}
9edcd895 1883$ @kbd{ls}
bfa74976
RS
1884rpcalc.tab.c rpcalc.y
1885@end group
1886
1887@group
1888# @r{Compile the Bison parser.}
1889# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1890$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1891@end group
1892
1893@group
1894# @r{List files again.}
9edcd895 1895$ @kbd{ls}
bfa74976
RS
1896rpcalc rpcalc.tab.c rpcalc.y
1897@end group
1898@end example
1899
1900The file @file{rpcalc} now contains the executable code. Here is an
1901example session using @code{rpcalc}.
1902
1903@example
9edcd895
AD
1904$ @kbd{rpcalc}
1905@kbd{4 9 +}
bfa74976 190613
9edcd895 1907@kbd{3 7 + 3 4 5 *+-}
bfa74976 1908-13
9edcd895 1909@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 191013
9edcd895 1911@kbd{5 6 / 4 n +}
bfa74976 1912-3.166666667
9edcd895 1913@kbd{3 4 ^} @r{Exponentiation}
bfa74976 191481
9edcd895
AD
1915@kbd{^D} @r{End-of-file indicator}
1916$
bfa74976
RS
1917@end example
1918
342b8b6e 1919@node Infix Calc
bfa74976
RS
1920@section Infix Notation Calculator: @code{calc}
1921@cindex infix notation calculator
1922@cindex @code{calc}
1923@cindex calculator, infix notation
1924
1925We now modify rpcalc to handle infix operators instead of postfix. Infix
1926notation involves the concept of operator precedence and the need for
1927parentheses nested to arbitrary depth. Here is the Bison code for
1928@file{calc.y}, an infix desk-top calculator.
1929
1930@example
38a92d50 1931/* Infix notation calculator. */
bfa74976
RS
1932
1933%@{
38a92d50
PE
1934 #define YYSTYPE double
1935 #include <math.h>
1936 #include <stdio.h>
1937 int yylex (void);
1938 void yyerror (char const *);
bfa74976
RS
1939%@}
1940
38a92d50 1941/* Bison declarations. */
bfa74976
RS
1942%token NUM
1943%left '-' '+'
1944%left '*' '/'
d78f0ac9
AD
1945%precedence NEG /* negation--unary minus */
1946%right '^' /* exponentiation */
bfa74976 1947
38a92d50
PE
1948%% /* The grammar follows. */
1949input: /* empty */
bfa74976
RS
1950 | input line
1951;
1952
1953line: '\n'
1954 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1955;
1956
1957exp: NUM @{ $$ = $1; @}
1958 | exp '+' exp @{ $$ = $1 + $3; @}
1959 | exp '-' exp @{ $$ = $1 - $3; @}
1960 | exp '*' exp @{ $$ = $1 * $3; @}
1961 | exp '/' exp @{ $$ = $1 / $3; @}
1962 | '-' exp %prec NEG @{ $$ = -$2; @}
1963 | exp '^' exp @{ $$ = pow ($1, $3); @}
1964 | '(' exp ')' @{ $$ = $2; @}
1965;
1966%%
1967@end example
1968
1969@noindent
ceed8467
AD
1970The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1971same as before.
bfa74976
RS
1972
1973There are two important new features shown in this code.
1974
1975In the second section (Bison declarations), @code{%left} declares token
1976types and says they are left-associative operators. The declarations
1977@code{%left} and @code{%right} (right associativity) take the place of
1978@code{%token} which is used to declare a token type name without
d78f0ac9 1979associativity/precedence. (These tokens are single-character literals, which
bfa74976 1980ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1981the associativity/precedence.)
bfa74976
RS
1982
1983Operator precedence is determined by the line ordering of the
1984declarations; the higher the line number of the declaration (lower on
1985the page or screen), the higher the precedence. Hence, exponentiation
1986has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
1987by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
1988only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 1989Precedence}.
bfa74976 1990
704a47c4
AD
1991The other important new feature is the @code{%prec} in the grammar
1992section for the unary minus operator. The @code{%prec} simply instructs
1993Bison that the rule @samp{| '-' exp} has the same precedence as
1994@code{NEG}---in this case the next-to-highest. @xref{Contextual
1995Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1996
1997Here is a sample run of @file{calc.y}:
1998
1999@need 500
2000@example
9edcd895
AD
2001$ @kbd{calc}
2002@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20036.880952381
9edcd895 2004@kbd{-56 + 2}
bfa74976 2005-54
9edcd895 2006@kbd{3 ^ 2}
bfa74976
RS
20079
2008@end example
2009
342b8b6e 2010@node Simple Error Recovery
bfa74976
RS
2011@section Simple Error Recovery
2012@cindex error recovery, simple
2013
2014Up to this point, this manual has not addressed the issue of @dfn{error
2015recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2016error. All we have handled is error reporting with @code{yyerror}.
2017Recall that by default @code{yyparse} returns after calling
2018@code{yyerror}. This means that an erroneous input line causes the
2019calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2020
2021The Bison language itself includes the reserved word @code{error}, which
2022may be included in the grammar rules. In the example below it has
2023been added to one of the alternatives for @code{line}:
2024
2025@example
2026@group
2027line: '\n'
2028 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2029 | error '\n' @{ yyerrok; @}
2030;
2031@end group
2032@end example
2033
ceed8467 2034This addition to the grammar allows for simple error recovery in the
6e649e65 2035event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2036read, the error will be recognized by the third rule for @code{line},
2037and parsing will continue. (The @code{yyerror} function is still called
2038upon to print its message as well.) The action executes the statement
2039@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2040that error recovery is complete (@pxref{Error Recovery}). Note the
2041difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2042misprint.
bfa74976
RS
2043
2044This form of error recovery deals with syntax errors. There are other
2045kinds of errors; for example, division by zero, which raises an exception
2046signal that is normally fatal. A real calculator program must handle this
2047signal and use @code{longjmp} to return to @code{main} and resume parsing
2048input lines; it would also have to discard the rest of the current line of
2049input. We won't discuss this issue further because it is not specific to
2050Bison programs.
2051
342b8b6e
AD
2052@node Location Tracking Calc
2053@section Location Tracking Calculator: @code{ltcalc}
2054@cindex location tracking calculator
2055@cindex @code{ltcalc}
2056@cindex calculator, location tracking
2057
9edcd895
AD
2058This example extends the infix notation calculator with location
2059tracking. This feature will be used to improve the error messages. For
2060the sake of clarity, this example is a simple integer calculator, since
2061most of the work needed to use locations will be done in the lexical
72d2299c 2062analyzer.
342b8b6e
AD
2063
2064@menu
f5f419de
DJ
2065* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2066* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2067* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2068@end menu
2069
f5f419de 2070@node Ltcalc Declarations
342b8b6e
AD
2071@subsection Declarations for @code{ltcalc}
2072
9edcd895
AD
2073The C and Bison declarations for the location tracking calculator are
2074the same as the declarations for the infix notation calculator.
342b8b6e
AD
2075
2076@example
2077/* Location tracking calculator. */
2078
2079%@{
38a92d50
PE
2080 #define YYSTYPE int
2081 #include <math.h>
2082 int yylex (void);
2083 void yyerror (char const *);
342b8b6e
AD
2084%@}
2085
2086/* Bison declarations. */
2087%token NUM
2088
2089%left '-' '+'
2090%left '*' '/'
d78f0ac9 2091%precedence NEG
342b8b6e
AD
2092%right '^'
2093
38a92d50 2094%% /* The grammar follows. */
342b8b6e
AD
2095@end example
2096
9edcd895
AD
2097@noindent
2098Note there are no declarations specific to locations. Defining a data
2099type for storing locations is not needed: we will use the type provided
2100by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2101four member structure with the following integer fields:
2102@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2103@code{last_column}. By conventions, and in accordance with the GNU
2104Coding Standards and common practice, the line and column count both
2105start at 1.
342b8b6e
AD
2106
2107@node Ltcalc Rules
2108@subsection Grammar Rules for @code{ltcalc}
2109
9edcd895
AD
2110Whether handling locations or not has no effect on the syntax of your
2111language. Therefore, grammar rules for this example will be very close
2112to those of the previous example: we will only modify them to benefit
2113from the new information.
342b8b6e 2114
9edcd895
AD
2115Here, we will use locations to report divisions by zero, and locate the
2116wrong expressions or subexpressions.
342b8b6e
AD
2117
2118@example
2119@group
2120input : /* empty */
2121 | input line
2122;
2123@end group
2124
2125@group
2126line : '\n'
2127 | exp '\n' @{ printf ("%d\n", $1); @}
2128;
2129@end group
2130
2131@group
2132exp : NUM @{ $$ = $1; @}
2133 | exp '+' exp @{ $$ = $1 + $3; @}
2134 | exp '-' exp @{ $$ = $1 - $3; @}
2135 | exp '*' exp @{ $$ = $1 * $3; @}
2136@end group
342b8b6e 2137@group
9edcd895 2138 | exp '/' exp
342b8b6e
AD
2139 @{
2140 if ($3)
2141 $$ = $1 / $3;
2142 else
2143 @{
2144 $$ = 1;
9edcd895
AD
2145 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2146 @@3.first_line, @@3.first_column,
2147 @@3.last_line, @@3.last_column);
342b8b6e
AD
2148 @}
2149 @}
2150@end group
2151@group
178e123e 2152 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2153 | exp '^' exp @{ $$ = pow ($1, $3); @}
2154 | '(' exp ')' @{ $$ = $2; @}
2155@end group
2156@end example
2157
2158This code shows how to reach locations inside of semantic actions, by
2159using the pseudo-variables @code{@@@var{n}} for rule components, and the
2160pseudo-variable @code{@@$} for groupings.
2161
9edcd895
AD
2162We don't need to assign a value to @code{@@$}: the output parser does it
2163automatically. By default, before executing the C code of each action,
2164@code{@@$} is set to range from the beginning of @code{@@1} to the end
2165of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2166can be redefined (@pxref{Location Default Action, , Default Action for
2167Locations}), and for very specific rules, @code{@@$} can be computed by
2168hand.
342b8b6e
AD
2169
2170@node Ltcalc Lexer
2171@subsection The @code{ltcalc} Lexical Analyzer.
2172
9edcd895 2173Until now, we relied on Bison's defaults to enable location
72d2299c 2174tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2175able to feed the parser with the token locations, as it already does for
2176semantic values.
342b8b6e 2177
9edcd895
AD
2178To this end, we must take into account every single character of the
2179input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2180
2181@example
2182@group
2183int
2184yylex (void)
2185@{
2186 int c;
18b519c0 2187@end group
342b8b6e 2188
18b519c0 2189@group
72d2299c 2190 /* Skip white space. */
342b8b6e
AD
2191 while ((c = getchar ()) == ' ' || c == '\t')
2192 ++yylloc.last_column;
18b519c0 2193@end group
342b8b6e 2194
18b519c0 2195@group
72d2299c 2196 /* Step. */
342b8b6e
AD
2197 yylloc.first_line = yylloc.last_line;
2198 yylloc.first_column = yylloc.last_column;
2199@end group
2200
2201@group
72d2299c 2202 /* Process numbers. */
342b8b6e
AD
2203 if (isdigit (c))
2204 @{
2205 yylval = c - '0';
2206 ++yylloc.last_column;
2207 while (isdigit (c = getchar ()))
2208 @{
2209 ++yylloc.last_column;
2210 yylval = yylval * 10 + c - '0';
2211 @}
2212 ungetc (c, stdin);
2213 return NUM;
2214 @}
2215@end group
2216
72d2299c 2217 /* Return end-of-input. */
342b8b6e
AD
2218 if (c == EOF)
2219 return 0;
2220
72d2299c 2221 /* Return a single char, and update location. */
342b8b6e
AD
2222 if (c == '\n')
2223 @{
2224 ++yylloc.last_line;
2225 yylloc.last_column = 0;
2226 @}
2227 else
2228 ++yylloc.last_column;
2229 return c;
2230@}
2231@end example
2232
9edcd895
AD
2233Basically, the lexical analyzer performs the same processing as before:
2234it skips blanks and tabs, and reads numbers or single-character tokens.
2235In addition, it updates @code{yylloc}, the global variable (of type
2236@code{YYLTYPE}) containing the token's location.
342b8b6e 2237
9edcd895 2238Now, each time this function returns a token, the parser has its number
72d2299c 2239as well as its semantic value, and its location in the text. The last
9edcd895
AD
2240needed change is to initialize @code{yylloc}, for example in the
2241controlling function:
342b8b6e
AD
2242
2243@example
9edcd895 2244@group
342b8b6e
AD
2245int
2246main (void)
2247@{
2248 yylloc.first_line = yylloc.last_line = 1;
2249 yylloc.first_column = yylloc.last_column = 0;
2250 return yyparse ();
2251@}
9edcd895 2252@end group
342b8b6e
AD
2253@end example
2254
9edcd895
AD
2255Remember that computing locations is not a matter of syntax. Every
2256character must be associated to a location update, whether it is in
2257valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2258
2259@node Multi-function Calc
bfa74976
RS
2260@section Multi-Function Calculator: @code{mfcalc}
2261@cindex multi-function calculator
2262@cindex @code{mfcalc}
2263@cindex calculator, multi-function
2264
2265Now that the basics of Bison have been discussed, it is time to move on to
2266a more advanced problem. The above calculators provided only five
2267functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2268be nice to have a calculator that provides other mathematical functions such
2269as @code{sin}, @code{cos}, etc.
2270
2271It is easy to add new operators to the infix calculator as long as they are
2272only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2273back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2274adding a new operator. But we want something more flexible: built-in
2275functions whose syntax has this form:
2276
2277@example
2278@var{function_name} (@var{argument})
2279@end example
2280
2281@noindent
2282At the same time, we will add memory to the calculator, by allowing you
2283to create named variables, store values in them, and use them later.
2284Here is a sample session with the multi-function calculator:
2285
2286@example
9edcd895
AD
2287$ @kbd{mfcalc}
2288@kbd{pi = 3.141592653589}
bfa74976 22893.1415926536
9edcd895 2290@kbd{sin(pi)}
bfa74976 22910.0000000000
9edcd895 2292@kbd{alpha = beta1 = 2.3}
bfa74976 22932.3000000000
9edcd895 2294@kbd{alpha}
bfa74976 22952.3000000000
9edcd895 2296@kbd{ln(alpha)}
bfa74976 22970.8329091229
9edcd895 2298@kbd{exp(ln(beta1))}
bfa74976 22992.3000000000
9edcd895 2300$
bfa74976
RS
2301@end example
2302
2303Note that multiple assignment and nested function calls are permitted.
2304
2305@menu
f5f419de
DJ
2306* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2307* Mfcalc Rules:: Grammar rules for the calculator.
2308* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2309@end menu
2310
f5f419de 2311@node Mfcalc Declarations
bfa74976
RS
2312@subsection Declarations for @code{mfcalc}
2313
2314Here are the C and Bison declarations for the multi-function calculator.
2315
2316@smallexample
18b519c0 2317@group
bfa74976 2318%@{
38a92d50
PE
2319 #include <math.h> /* For math functions, cos(), sin(), etc. */
2320 #include "calc.h" /* Contains definition of `symrec'. */
2321 int yylex (void);
2322 void yyerror (char const *);
bfa74976 2323%@}
18b519c0
AD
2324@end group
2325@group
bfa74976 2326%union @{
38a92d50
PE
2327 double val; /* For returning numbers. */
2328 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2329@}
18b519c0 2330@end group
38a92d50
PE
2331%token <val> NUM /* Simple double precision number. */
2332%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2333%type <val> exp
2334
18b519c0 2335@group
bfa74976
RS
2336%right '='
2337%left '-' '+'
2338%left '*' '/'
d78f0ac9
AD
2339%precedence NEG /* negation--unary minus */
2340%right '^' /* exponentiation */
18b519c0 2341@end group
38a92d50 2342%% /* The grammar follows. */
bfa74976
RS
2343@end smallexample
2344
2345The above grammar introduces only two new features of the Bison language.
2346These features allow semantic values to have various data types
2347(@pxref{Multiple Types, ,More Than One Value Type}).
2348
2349The @code{%union} declaration specifies the entire list of possible types;
2350this is instead of defining @code{YYSTYPE}. The allowable types are now
2351double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2352the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2353
2354Since values can now have various types, it is necessary to associate a
2355type with each grammar symbol whose semantic value is used. These symbols
2356are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2357declarations are augmented with information about their data type (placed
2358between angle brackets).
2359
704a47c4
AD
2360The Bison construct @code{%type} is used for declaring nonterminal
2361symbols, just as @code{%token} is used for declaring token types. We
2362have not used @code{%type} before because nonterminal symbols are
2363normally declared implicitly by the rules that define them. But
2364@code{exp} must be declared explicitly so we can specify its value type.
2365@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2366
342b8b6e 2367@node Mfcalc Rules
bfa74976
RS
2368@subsection Grammar Rules for @code{mfcalc}
2369
2370Here are the grammar rules for the multi-function calculator.
2371Most of them are copied directly from @code{calc}; three rules,
2372those which mention @code{VAR} or @code{FNCT}, are new.
2373
2374@smallexample
18b519c0 2375@group
bfa74976
RS
2376input: /* empty */
2377 | input line
2378;
18b519c0 2379@end group
bfa74976 2380
18b519c0 2381@group
bfa74976
RS
2382line:
2383 '\n'
2384 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2385 | error '\n' @{ yyerrok; @}
2386;
18b519c0 2387@end group
bfa74976 2388
18b519c0 2389@group
bfa74976
RS
2390exp: NUM @{ $$ = $1; @}
2391 | VAR @{ $$ = $1->value.var; @}
2392 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2393 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2394 | exp '+' exp @{ $$ = $1 + $3; @}
2395 | exp '-' exp @{ $$ = $1 - $3; @}
2396 | exp '*' exp @{ $$ = $1 * $3; @}
2397 | exp '/' exp @{ $$ = $1 / $3; @}
2398 | '-' exp %prec NEG @{ $$ = -$2; @}
2399 | exp '^' exp @{ $$ = pow ($1, $3); @}
2400 | '(' exp ')' @{ $$ = $2; @}
2401;
18b519c0 2402@end group
38a92d50 2403/* End of grammar. */
bfa74976
RS
2404%%
2405@end smallexample
2406
f5f419de 2407@node Mfcalc Symbol Table
bfa74976
RS
2408@subsection The @code{mfcalc} Symbol Table
2409@cindex symbol table example
2410
2411The multi-function calculator requires a symbol table to keep track of the
2412names and meanings of variables and functions. This doesn't affect the
2413grammar rules (except for the actions) or the Bison declarations, but it
2414requires some additional C functions for support.
2415
2416The symbol table itself consists of a linked list of records. Its
2417definition, which is kept in the header @file{calc.h}, is as follows. It
2418provides for either functions or variables to be placed in the table.
2419
2420@smallexample
2421@group
38a92d50 2422/* Function type. */
32dfccf8 2423typedef double (*func_t) (double);
72f889cc 2424@end group
32dfccf8 2425
72f889cc 2426@group
38a92d50 2427/* Data type for links in the chain of symbols. */
bfa74976
RS
2428struct symrec
2429@{
38a92d50 2430 char *name; /* name of symbol */
bfa74976 2431 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2432 union
2433 @{
38a92d50
PE
2434 double var; /* value of a VAR */
2435 func_t fnctptr; /* value of a FNCT */
bfa74976 2436 @} value;
38a92d50 2437 struct symrec *next; /* link field */
bfa74976
RS
2438@};
2439@end group
2440
2441@group
2442typedef struct symrec symrec;
2443
38a92d50 2444/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2445extern symrec *sym_table;
2446
a730d142 2447symrec *putsym (char const *, int);
38a92d50 2448symrec *getsym (char const *);
bfa74976
RS
2449@end group
2450@end smallexample
2451
2452The new version of @code{main} includes a call to @code{init_table}, a
2453function that initializes the symbol table. Here it is, and
2454@code{init_table} as well:
2455
2456@smallexample
bfa74976
RS
2457#include <stdio.h>
2458
18b519c0 2459@group
38a92d50 2460/* Called by yyparse on error. */
13863333 2461void
38a92d50 2462yyerror (char const *s)
bfa74976
RS
2463@{
2464 printf ("%s\n", s);
2465@}
18b519c0 2466@end group
bfa74976 2467
18b519c0 2468@group
bfa74976
RS
2469struct init
2470@{
38a92d50
PE
2471 char const *fname;
2472 double (*fnct) (double);
bfa74976
RS
2473@};
2474@end group
2475
2476@group
38a92d50 2477struct init const arith_fncts[] =
13863333 2478@{
32dfccf8
AD
2479 "sin", sin,
2480 "cos", cos,
13863333 2481 "atan", atan,
32dfccf8
AD
2482 "ln", log,
2483 "exp", exp,
13863333
AD
2484 "sqrt", sqrt,
2485 0, 0
2486@};
18b519c0 2487@end group
bfa74976 2488
18b519c0 2489@group
bfa74976 2490/* The symbol table: a chain of `struct symrec'. */
38a92d50 2491symrec *sym_table;
bfa74976
RS
2492@end group
2493
2494@group
72d2299c 2495/* Put arithmetic functions in table. */
13863333
AD
2496void
2497init_table (void)
bfa74976
RS
2498@{
2499 int i;
2500 symrec *ptr;
2501 for (i = 0; arith_fncts[i].fname != 0; i++)
2502 @{
2503 ptr = putsym (arith_fncts[i].fname, FNCT);
2504 ptr->value.fnctptr = arith_fncts[i].fnct;
2505 @}
2506@}
2507@end group
38a92d50
PE
2508
2509@group
2510int
2511main (void)
2512@{
2513 init_table ();
2514 return yyparse ();
2515@}
2516@end group
bfa74976
RS
2517@end smallexample
2518
2519By simply editing the initialization list and adding the necessary include
2520files, you can add additional functions to the calculator.
2521
2522Two important functions allow look-up and installation of symbols in the
2523symbol table. The function @code{putsym} is passed a name and the type
2524(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2525linked to the front of the list, and a pointer to the object is returned.
2526The function @code{getsym} is passed the name of the symbol to look up. If
2527found, a pointer to that symbol is returned; otherwise zero is returned.
2528
2529@smallexample
2530symrec *
38a92d50 2531putsym (char const *sym_name, int sym_type)
bfa74976
RS
2532@{
2533 symrec *ptr;
2534 ptr = (symrec *) malloc (sizeof (symrec));
2535 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2536 strcpy (ptr->name,sym_name);
2537 ptr->type = sym_type;
72d2299c 2538 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2539 ptr->next = (struct symrec *)sym_table;
2540 sym_table = ptr;
2541 return ptr;
2542@}
2543
2544symrec *
38a92d50 2545getsym (char const *sym_name)
bfa74976
RS
2546@{
2547 symrec *ptr;
2548 for (ptr = sym_table; ptr != (symrec *) 0;
2549 ptr = (symrec *)ptr->next)
2550 if (strcmp (ptr->name,sym_name) == 0)
2551 return ptr;
2552 return 0;
2553@}
2554@end smallexample
2555
2556The function @code{yylex} must now recognize variables, numeric values, and
2557the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2558characters with a leading letter are recognized as either variables or
bfa74976
RS
2559functions depending on what the symbol table says about them.
2560
2561The string is passed to @code{getsym} for look up in the symbol table. If
2562the name appears in the table, a pointer to its location and its type
2563(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2564already in the table, then it is installed as a @code{VAR} using
2565@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2566returned to @code{yyparse}.
bfa74976
RS
2567
2568No change is needed in the handling of numeric values and arithmetic
2569operators in @code{yylex}.
2570
2571@smallexample
2572@group
2573#include <ctype.h>
18b519c0 2574@end group
13863333 2575
18b519c0 2576@group
13863333
AD
2577int
2578yylex (void)
bfa74976
RS
2579@{
2580 int c;
2581
72d2299c 2582 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2583 while ((c = getchar ()) == ' ' || c == '\t');
2584
2585 if (c == EOF)
2586 return 0;
2587@end group
2588
2589@group
2590 /* Char starts a number => parse the number. */
2591 if (c == '.' || isdigit (c))
2592 @{
2593 ungetc (c, stdin);
2594 scanf ("%lf", &yylval.val);
2595 return NUM;
2596 @}
2597@end group
2598
2599@group
2600 /* Char starts an identifier => read the name. */
2601 if (isalpha (c))
2602 @{
2603 symrec *s;
2604 static char *symbuf = 0;
2605 static int length = 0;
2606 int i;
2607@end group
2608
2609@group
2610 /* Initially make the buffer long enough
2611 for a 40-character symbol name. */
2612 if (length == 0)
2613 length = 40, symbuf = (char *)malloc (length + 1);
2614
2615 i = 0;
2616 do
2617@end group
2618@group
2619 @{
2620 /* If buffer is full, make it bigger. */
2621 if (i == length)
2622 @{
2623 length *= 2;
18b519c0 2624 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2625 @}
2626 /* Add this character to the buffer. */
2627 symbuf[i++] = c;
2628 /* Get another character. */
2629 c = getchar ();
2630 @}
2631@end group
2632@group
72d2299c 2633 while (isalnum (c));
bfa74976
RS
2634
2635 ungetc (c, stdin);
2636 symbuf[i] = '\0';
2637@end group
2638
2639@group
2640 s = getsym (symbuf);
2641 if (s == 0)
2642 s = putsym (symbuf, VAR);
2643 yylval.tptr = s;
2644 return s->type;
2645 @}
2646
2647 /* Any other character is a token by itself. */
2648 return c;
2649@}
2650@end group
2651@end smallexample
2652
72d2299c 2653This program is both powerful and flexible. You may easily add new
704a47c4
AD
2654functions, and it is a simple job to modify this code to install
2655predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2656
342b8b6e 2657@node Exercises
bfa74976
RS
2658@section Exercises
2659@cindex exercises
2660
2661@enumerate
2662@item
2663Add some new functions from @file{math.h} to the initialization list.
2664
2665@item
2666Add another array that contains constants and their values. Then
2667modify @code{init_table} to add these constants to the symbol table.
2668It will be easiest to give the constants type @code{VAR}.
2669
2670@item
2671Make the program report an error if the user refers to an
2672uninitialized variable in any way except to store a value in it.
2673@end enumerate
2674
342b8b6e 2675@node Grammar File
bfa74976
RS
2676@chapter Bison Grammar Files
2677
2678Bison takes as input a context-free grammar specification and produces a
2679C-language function that recognizes correct instances of the grammar.
2680
2681The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2682@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2683
2684@menu
2685* Grammar Outline:: Overall layout of the grammar file.
2686* Symbols:: Terminal and nonterminal symbols.
2687* Rules:: How to write grammar rules.
2688* Recursion:: Writing recursive rules.
2689* Semantics:: Semantic values and actions.
847bf1f5 2690* Locations:: Locations and actions.
bfa74976
RS
2691* Declarations:: All kinds of Bison declarations are described here.
2692* Multiple Parsers:: Putting more than one Bison parser in one program.
2693@end menu
2694
342b8b6e 2695@node Grammar Outline
bfa74976
RS
2696@section Outline of a Bison Grammar
2697
2698A Bison grammar file has four main sections, shown here with the
2699appropriate delimiters:
2700
2701@example
2702%@{
38a92d50 2703 @var{Prologue}
bfa74976
RS
2704%@}
2705
2706@var{Bison declarations}
2707
2708%%
2709@var{Grammar rules}
2710%%
2711
75f5aaea 2712@var{Epilogue}
bfa74976
RS
2713@end example
2714
2715Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2716As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2717continues until end of line.
bfa74976
RS
2718
2719@menu
f5f419de 2720* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2721* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2722* Bison Declarations:: Syntax and usage of the Bison declarations section.
2723* Grammar Rules:: Syntax and usage of the grammar rules section.
2724* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2725@end menu
2726
38a92d50 2727@node Prologue
75f5aaea
MA
2728@subsection The prologue
2729@cindex declarations section
2730@cindex Prologue
2731@cindex declarations
bfa74976 2732
f8e1c9e5
AD
2733The @var{Prologue} section contains macro definitions and declarations
2734of functions and variables that are used in the actions in the grammar
2735rules. These are copied to the beginning of the parser file so that
2736they precede the definition of @code{yyparse}. You can use
2737@samp{#include} to get the declarations from a header file. If you
2738don't need any C declarations, you may omit the @samp{%@{} and
2739@samp{%@}} delimiters that bracket this section.
bfa74976 2740
9c437126 2741The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2742of @samp{%@}} that is outside a comment, a string literal, or a
2743character constant.
2744
c732d2c6
AD
2745You may have more than one @var{Prologue} section, intermixed with the
2746@var{Bison declarations}. This allows you to have C and Bison
2747declarations that refer to each other. For example, the @code{%union}
2748declaration may use types defined in a header file, and you may wish to
2749prototype functions that take arguments of type @code{YYSTYPE}. This
2750can be done with two @var{Prologue} blocks, one before and one after the
2751@code{%union} declaration.
2752
2753@smallexample
2754%@{
aef3da86 2755 #define _GNU_SOURCE
38a92d50
PE
2756 #include <stdio.h>
2757 #include "ptypes.h"
c732d2c6
AD
2758%@}
2759
2760%union @{
779e7ceb 2761 long int n;
c732d2c6
AD
2762 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2763@}
2764
2765%@{
38a92d50
PE
2766 static void print_token_value (FILE *, int, YYSTYPE);
2767 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2768%@}
2769
2770@dots{}
2771@end smallexample
2772
aef3da86
PE
2773When in doubt, it is usually safer to put prologue code before all
2774Bison declarations, rather than after. For example, any definitions
2775of feature test macros like @code{_GNU_SOURCE} or
2776@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2777feature test macros can affect the behavior of Bison-generated
2778@code{#include} directives.
2779
2cbe6b7f
JD
2780@node Prologue Alternatives
2781@subsection Prologue Alternatives
2782@cindex Prologue Alternatives
2783
136a0f76 2784@findex %code
16dc6a9e
JD
2785@findex %code requires
2786@findex %code provides
2787@findex %code top
85894313 2788
2cbe6b7f
JD
2789The functionality of @var{Prologue} sections can often be subtle and
2790inflexible.
8e0a5e9e
JD
2791As an alternative, Bison provides a %code directive with an explicit qualifier
2792field, which identifies the purpose of the code and thus the location(s) where
2793Bison should generate it.
2794For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2795one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2796@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2797
2798Look again at the example of the previous section:
2799
2800@smallexample
2801%@{
2802 #define _GNU_SOURCE
2803 #include <stdio.h>
2804 #include "ptypes.h"
2805%@}
2806
2807%union @{
2808 long int n;
2809 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2810@}
2811
2812%@{
2813 static void print_token_value (FILE *, int, YYSTYPE);
2814 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2815%@}
2816
2817@dots{}
2818@end smallexample
2819
2820@noindent
2821Notice that there are two @var{Prologue} sections here, but there's a subtle
2822distinction between their functionality.
2823For example, if you decide to override Bison's default definition for
2824@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2825definition?
2826You should write it in the first since Bison will insert that code into the
8e0a5e9e 2827parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2828In which @var{Prologue} section should you prototype an internal function,
2829@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2830arguments?
2831You should prototype it in the second since Bison will insert that code
2832@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2833
2834This distinction in functionality between the two @var{Prologue} sections is
2835established by the appearance of the @code{%union} between them.
a501eca9 2836This behavior raises a few questions.
2cbe6b7f
JD
2837First, why should the position of a @code{%union} affect definitions related to
2838@code{YYLTYPE} and @code{yytokentype}?
2839Second, what if there is no @code{%union}?
2840In that case, the second kind of @var{Prologue} section is not available.
2841This behavior is not intuitive.
2842
8e0a5e9e 2843To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2844@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2845Let's go ahead and add the new @code{YYLTYPE} definition and the
2846@code{trace_token} prototype at the same time:
2847
2848@smallexample
16dc6a9e 2849%code top @{
2cbe6b7f
JD
2850 #define _GNU_SOURCE
2851 #include <stdio.h>
8e0a5e9e
JD
2852
2853 /* WARNING: The following code really belongs
16dc6a9e 2854 * in a `%code requires'; see below. */
8e0a5e9e 2855
2cbe6b7f
JD
2856 #include "ptypes.h"
2857 #define YYLTYPE YYLTYPE
2858 typedef struct YYLTYPE
2859 @{
2860 int first_line;
2861 int first_column;
2862 int last_line;
2863 int last_column;
2864 char *filename;
2865 @} YYLTYPE;
2866@}
2867
2868%union @{
2869 long int n;
2870 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2871@}
2872
2873%code @{
2874 static void print_token_value (FILE *, int, YYSTYPE);
2875 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2876 static void trace_token (enum yytokentype token, YYLTYPE loc);
2877@}
2878
2879@dots{}
2880@end smallexample
2881
2882@noindent
16dc6a9e
JD
2883In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2884functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2885explicit which kind you intend.
2cbe6b7f
JD
2886Moreover, both kinds are always available even in the absence of @code{%union}.
2887
16dc6a9e 2888The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2889The first two lines before the warning need to appear near the top of the
2890parser source code file.
2891The first line after the warning is required by @code{YYSTYPE} and thus also
2892needs to appear in the parser source code file.
2cbe6b7f 2893However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2894(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2895the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2896The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2897override the default @code{YYLTYPE} definition there.
2898
16dc6a9e 2899In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2900lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2901definitions.
16dc6a9e 2902Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2903
2904@smallexample
16dc6a9e 2905%code top @{
2cbe6b7f
JD
2906 #define _GNU_SOURCE
2907 #include <stdio.h>
2908@}
2909
16dc6a9e 2910%code requires @{
9bc0dd67
JD
2911 #include "ptypes.h"
2912@}
2913%union @{
2914 long int n;
2915 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2916@}
2917
16dc6a9e 2918%code requires @{
2cbe6b7f
JD
2919 #define YYLTYPE YYLTYPE
2920 typedef struct YYLTYPE
2921 @{
2922 int first_line;
2923 int first_column;
2924 int last_line;
2925 int last_column;
2926 char *filename;
2927 @} YYLTYPE;
2928@}
2929
136a0f76 2930%code @{
2cbe6b7f
JD
2931 static void print_token_value (FILE *, int, YYSTYPE);
2932 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2933 static void trace_token (enum yytokentype token, YYLTYPE loc);
2934@}
2935
2936@dots{}
2937@end smallexample
2938
2939@noindent
2940Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2941definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2942definitions in both the parser source code file and the parser header file.
16dc6a9e 2943(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2944place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2945
a501eca9 2946When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2947should prefer @code{%code requires} over @code{%code top} regardless of whether
2948you instruct Bison to generate a parser header file.
a501eca9 2949When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2950source code file and that has no special need to appear at the top of that
16dc6a9e 2951file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2952These practices will make the purpose of each block of your code explicit to
2953Bison and to other developers reading your grammar file.
8e0a5e9e 2954Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2955@code{%code requires} to be the most important of the four @var{Prologue}
2956alternatives.
a501eca9 2957
2cbe6b7f
JD
2958At some point while developing your parser, you might decide to provide
2959@code{trace_token} to modules that are external to your parser.
2960Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2961header file and the parser source code file.
2962Since this function is not a dependency required by @code{YYSTYPE} or
2963@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2964@code{%code requires}.
2cbe6b7f 2965More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2966@code{%code requires} is not sufficient.
8e0a5e9e 2967Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2968@code{%code provides}:
2cbe6b7f
JD
2969
2970@smallexample
16dc6a9e 2971%code top @{
2cbe6b7f 2972 #define _GNU_SOURCE
136a0f76 2973 #include <stdio.h>
2cbe6b7f 2974@}
136a0f76 2975
16dc6a9e 2976%code requires @{
2cbe6b7f
JD
2977 #include "ptypes.h"
2978@}
2979%union @{
2980 long int n;
2981 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2982@}
2983
16dc6a9e 2984%code requires @{
2cbe6b7f
JD
2985 #define YYLTYPE YYLTYPE
2986 typedef struct YYLTYPE
2987 @{
2988 int first_line;
2989 int first_column;
2990 int last_line;
2991 int last_column;
2992 char *filename;
2993 @} YYLTYPE;
2994@}
2995
16dc6a9e 2996%code provides @{
2cbe6b7f
JD
2997 void trace_token (enum yytokentype token, YYLTYPE loc);
2998@}
2999
3000%code @{
9bc0dd67
JD
3001 static void print_token_value (FILE *, int, YYSTYPE);
3002 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3003@}
9bc0dd67
JD
3004
3005@dots{}
3006@end smallexample
3007
2cbe6b7f
JD
3008@noindent
3009Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
3010file and the parser source code file after the definitions for
3011@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
3012
3013The above examples are careful to write directives in an order that reflects
8e0a5e9e 3014the layout of the generated parser source code and header files:
16dc6a9e 3015@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 3016@code{%code}.
a501eca9 3017While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
3018this order, Bison does not require it.
3019Instead, Bison lets you choose an organization that makes sense to you.
3020
a501eca9 3021You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3022In that case, Bison concatenates the contained code in declaration order.
3023This is the only way in which the position of one of these directives within
3024the grammar file affects its functionality.
3025
3026The result of the previous two properties is greater flexibility in how you may
3027organize your grammar file.
3028For example, you may organize semantic-type-related directives by semantic
3029type:
3030
3031@smallexample
16dc6a9e 3032%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3033%union @{ type1 field1; @}
3034%destructor @{ type1_free ($$); @} <field1>
3035%printer @{ type1_print ($$); @} <field1>
3036
16dc6a9e 3037%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3038%union @{ type2 field2; @}
3039%destructor @{ type2_free ($$); @} <field2>
3040%printer @{ type2_print ($$); @} <field2>
3041@end smallexample
3042
3043@noindent
3044You could even place each of the above directive groups in the rules section of
3045the grammar file next to the set of rules that uses the associated semantic
3046type.
61fee93e
JD
3047(In the rules section, you must terminate each of those directives with a
3048semicolon.)
2cbe6b7f
JD
3049And you don't have to worry that some directive (like a @code{%union}) in the
3050definitions section is going to adversely affect their functionality in some
3051counter-intuitive manner just because it comes first.
3052Such an organization is not possible using @var{Prologue} sections.
3053
a501eca9 3054This section has been concerned with explaining the advantages of the four
8e0a5e9e 3055@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3056However, in most cases when using these directives, you shouldn't need to
3057think about all the low-level ordering issues discussed here.
3058Instead, you should simply use these directives to label each block of your
3059code according to its purpose and let Bison handle the ordering.
3060@code{%code} is the most generic label.
16dc6a9e
JD
3061Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3062as needed.
a501eca9 3063
342b8b6e 3064@node Bison Declarations
bfa74976
RS
3065@subsection The Bison Declarations Section
3066@cindex Bison declarations (introduction)
3067@cindex declarations, Bison (introduction)
3068
3069The @var{Bison declarations} section contains declarations that define
3070terminal and nonterminal symbols, specify precedence, and so on.
3071In some simple grammars you may not need any declarations.
3072@xref{Declarations, ,Bison Declarations}.
3073
342b8b6e 3074@node Grammar Rules
bfa74976
RS
3075@subsection The Grammar Rules Section
3076@cindex grammar rules section
3077@cindex rules section for grammar
3078
3079The @dfn{grammar rules} section contains one or more Bison grammar
3080rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3081
3082There must always be at least one grammar rule, and the first
3083@samp{%%} (which precedes the grammar rules) may never be omitted even
3084if it is the first thing in the file.
3085
38a92d50 3086@node Epilogue
75f5aaea 3087@subsection The epilogue
bfa74976 3088@cindex additional C code section
75f5aaea 3089@cindex epilogue
bfa74976
RS
3090@cindex C code, section for additional
3091
08e49d20
PE
3092The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3093the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3094place to put anything that you want to have in the parser file but which need
3095not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3096definitions of @code{yylex} and @code{yyerror} often go here. Because
3097C requires functions to be declared before being used, you often need
3098to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3099even if you define them in the Epilogue.
75f5aaea 3100@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3101
3102If the last section is empty, you may omit the @samp{%%} that separates it
3103from the grammar rules.
3104
f8e1c9e5
AD
3105The Bison parser itself contains many macros and identifiers whose names
3106start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3107any such names (except those documented in this manual) in the epilogue
3108of the grammar file.
bfa74976 3109
342b8b6e 3110@node Symbols
bfa74976
RS
3111@section Symbols, Terminal and Nonterminal
3112@cindex nonterminal symbol
3113@cindex terminal symbol
3114@cindex token type
3115@cindex symbol
3116
3117@dfn{Symbols} in Bison grammars represent the grammatical classifications
3118of the language.
3119
3120A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3121class of syntactically equivalent tokens. You use the symbol in grammar
3122rules to mean that a token in that class is allowed. The symbol is
3123represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3124function returns a token type code to indicate what kind of token has
3125been read. You don't need to know what the code value is; you can use
3126the symbol to stand for it.
bfa74976 3127
f8e1c9e5
AD
3128A @dfn{nonterminal symbol} stands for a class of syntactically
3129equivalent groupings. The symbol name is used in writing grammar rules.
3130By convention, it should be all lower case.
bfa74976 3131
82f3355e
JD
3132Symbol names can contain letters, underscores, periods, and non-initial
3133digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3134with POSIX Yacc. Periods and dashes make symbol names less convenient to
3135use with named references, which require brackets around such names
3136(@pxref{Named References}). Terminal symbols that contain periods or dashes
3137make little sense: since they are not valid symbols (in most programming
3138languages) they are not exported as token names.
bfa74976 3139
931c7513 3140There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3141
3142@itemize @bullet
3143@item
3144A @dfn{named token type} is written with an identifier, like an
c827f760 3145identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3146such name must be defined with a Bison declaration such as
3147@code{%token}. @xref{Token Decl, ,Token Type Names}.
3148
3149@item
3150@cindex character token
3151@cindex literal token
3152@cindex single-character literal
931c7513
RS
3153A @dfn{character token type} (or @dfn{literal character token}) is
3154written in the grammar using the same syntax used in C for character
3155constants; for example, @code{'+'} is a character token type. A
3156character token type doesn't need to be declared unless you need to
3157specify its semantic value data type (@pxref{Value Type, ,Data Types of
3158Semantic Values}), associativity, or precedence (@pxref{Precedence,
3159,Operator Precedence}).
bfa74976
RS
3160
3161By convention, a character token type is used only to represent a
3162token that consists of that particular character. Thus, the token
3163type @code{'+'} is used to represent the character @samp{+} as a
3164token. Nothing enforces this convention, but if you depart from it,
3165your program will confuse other readers.
3166
3167All the usual escape sequences used in character literals in C can be
3168used in Bison as well, but you must not use the null character as a
72d2299c
PE
3169character literal because its numeric code, zero, signifies
3170end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3171for @code{yylex}}). Also, unlike standard C, trigraphs have no
3172special meaning in Bison character literals, nor is backslash-newline
3173allowed.
931c7513
RS
3174
3175@item
3176@cindex string token
3177@cindex literal string token
9ecbd125 3178@cindex multicharacter literal
931c7513
RS
3179A @dfn{literal string token} is written like a C string constant; for
3180example, @code{"<="} is a literal string token. A literal string token
3181doesn't need to be declared unless you need to specify its semantic
14ded682 3182value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3183(@pxref{Precedence}).
3184
3185You can associate the literal string token with a symbolic name as an
3186alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3187Declarations}). If you don't do that, the lexical analyzer has to
3188retrieve the token number for the literal string token from the
3189@code{yytname} table (@pxref{Calling Convention}).
3190
c827f760 3191@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3192
3193By convention, a literal string token is used only to represent a token
3194that consists of that particular string. Thus, you should use the token
3195type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3196does not enforce this convention, but if you depart from it, people who
931c7513
RS
3197read your program will be confused.
3198
3199All the escape sequences used in string literals in C can be used in
92ac3705
PE
3200Bison as well, except that you must not use a null character within a
3201string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3202meaning in Bison string literals, nor is backslash-newline allowed. A
3203literal string token must contain two or more characters; for a token
3204containing just one character, use a character token (see above).
bfa74976
RS
3205@end itemize
3206
3207How you choose to write a terminal symbol has no effect on its
3208grammatical meaning. That depends only on where it appears in rules and
3209on when the parser function returns that symbol.
3210
72d2299c
PE
3211The value returned by @code{yylex} is always one of the terminal
3212symbols, except that a zero or negative value signifies end-of-input.
3213Whichever way you write the token type in the grammar rules, you write
3214it the same way in the definition of @code{yylex}. The numeric code
3215for a character token type is simply the positive numeric code of the
3216character, so @code{yylex} can use the identical value to generate the
3217requisite code, though you may need to convert it to @code{unsigned
3218char} to avoid sign-extension on hosts where @code{char} is signed.
3219Each named token type becomes a C macro in
bfa74976 3220the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3221(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3222@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3223
3224If @code{yylex} is defined in a separate file, you need to arrange for the
3225token-type macro definitions to be available there. Use the @samp{-d}
3226option when you run Bison, so that it will write these macro definitions
3227into a separate header file @file{@var{name}.tab.h} which you can include
3228in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3229
72d2299c 3230If you want to write a grammar that is portable to any Standard C
9d9b8b70 3231host, you must use only nonnull character tokens taken from the basic
c827f760 3232execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3233digits, the 52 lower- and upper-case English letters, and the
3234characters in the following C-language string:
3235
3236@example
3237"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3238@end example
3239
f8e1c9e5
AD
3240The @code{yylex} function and Bison must use a consistent character set
3241and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3242ASCII environment, but then compile and run the resulting
f8e1c9e5 3243program in an environment that uses an incompatible character set like
8a4281b9
JD
3244EBCDIC, the resulting program may not work because the tables
3245generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3246character tokens. It is standard practice for software distributions to
3247contain C source files that were generated by Bison in an
8a4281b9
JD
3248ASCII environment, so installers on platforms that are
3249incompatible with ASCII must rebuild those files before
f8e1c9e5 3250compiling them.
e966383b 3251
bfa74976
RS
3252The symbol @code{error} is a terminal symbol reserved for error recovery
3253(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3254In particular, @code{yylex} should never return this value. The default
3255value of the error token is 256, unless you explicitly assigned 256 to
3256one of your tokens with a @code{%token} declaration.
bfa74976 3257
342b8b6e 3258@node Rules
bfa74976
RS
3259@section Syntax of Grammar Rules
3260@cindex rule syntax
3261@cindex grammar rule syntax
3262@cindex syntax of grammar rules
3263
3264A Bison grammar rule has the following general form:
3265
3266@example
e425e872 3267@group
bfa74976
RS
3268@var{result}: @var{components}@dots{}
3269 ;
e425e872 3270@end group
bfa74976
RS
3271@end example
3272
3273@noindent
9ecbd125 3274where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3275and @var{components} are various terminal and nonterminal symbols that
13863333 3276are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3277
3278For example,
3279
3280@example
3281@group
3282exp: exp '+' exp
3283 ;
3284@end group
3285@end example
3286
3287@noindent
3288says that two groupings of type @code{exp}, with a @samp{+} token in between,
3289can be combined into a larger grouping of type @code{exp}.
3290
72d2299c
PE
3291White space in rules is significant only to separate symbols. You can add
3292extra white space as you wish.
bfa74976
RS
3293
3294Scattered among the components can be @var{actions} that determine
3295the semantics of the rule. An action looks like this:
3296
3297@example
3298@{@var{C statements}@}
3299@end example
3300
3301@noindent
287c78f6
PE
3302@cindex braced code
3303This is an example of @dfn{braced code}, that is, C code surrounded by
3304braces, much like a compound statement in C@. Braced code can contain
3305any sequence of C tokens, so long as its braces are balanced. Bison
3306does not check the braced code for correctness directly; it merely
3307copies the code to the output file, where the C compiler can check it.
3308
3309Within braced code, the balanced-brace count is not affected by braces
3310within comments, string literals, or character constants, but it is
3311affected by the C digraphs @samp{<%} and @samp{%>} that represent
3312braces. At the top level braced code must be terminated by @samp{@}}
3313and not by a digraph. Bison does not look for trigraphs, so if braced
3314code uses trigraphs you should ensure that they do not affect the
3315nesting of braces or the boundaries of comments, string literals, or
3316character constants.
3317
bfa74976
RS
3318Usually there is only one action and it follows the components.
3319@xref{Actions}.
3320
3321@findex |
3322Multiple rules for the same @var{result} can be written separately or can
3323be joined with the vertical-bar character @samp{|} as follows:
3324
bfa74976
RS
3325@example
3326@group
3327@var{result}: @var{rule1-components}@dots{}
3328 | @var{rule2-components}@dots{}
3329 @dots{}
3330 ;
3331@end group
3332@end example
bfa74976
RS
3333
3334@noindent
3335They are still considered distinct rules even when joined in this way.
3336
3337If @var{components} in a rule is empty, it means that @var{result} can
3338match the empty string. For example, here is how to define a
3339comma-separated sequence of zero or more @code{exp} groupings:
3340
3341@example
3342@group
3343expseq: /* empty */
3344 | expseq1
3345 ;
3346@end group
3347
3348@group
3349expseq1: exp
3350 | expseq1 ',' exp
3351 ;
3352@end group
3353@end example
3354
3355@noindent
3356It is customary to write a comment @samp{/* empty */} in each rule
3357with no components.
3358
342b8b6e 3359@node Recursion
bfa74976
RS
3360@section Recursive Rules
3361@cindex recursive rule
3362
f8e1c9e5
AD
3363A rule is called @dfn{recursive} when its @var{result} nonterminal
3364appears also on its right hand side. Nearly all Bison grammars need to
3365use recursion, because that is the only way to define a sequence of any
3366number of a particular thing. Consider this recursive definition of a
9ecbd125 3367comma-separated sequence of one or more expressions:
bfa74976
RS
3368
3369@example
3370@group
3371expseq1: exp
3372 | expseq1 ',' exp
3373 ;
3374@end group
3375@end example
3376
3377@cindex left recursion
3378@cindex right recursion
3379@noindent
3380Since the recursive use of @code{expseq1} is the leftmost symbol in the
3381right hand side, we call this @dfn{left recursion}. By contrast, here
3382the same construct is defined using @dfn{right recursion}:
3383
3384@example
3385@group
3386expseq1: exp
3387 | exp ',' expseq1
3388 ;
3389@end group
3390@end example
3391
3392@noindent
ec3bc396
AD
3393Any kind of sequence can be defined using either left recursion or right
3394recursion, but you should always use left recursion, because it can
3395parse a sequence of any number of elements with bounded stack space.
3396Right recursion uses up space on the Bison stack in proportion to the
3397number of elements in the sequence, because all the elements must be
3398shifted onto the stack before the rule can be applied even once.
3399@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3400of this.
bfa74976
RS
3401
3402@cindex mutual recursion
3403@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3404rule does not appear directly on its right hand side, but does appear
3405in rules for other nonterminals which do appear on its right hand
13863333 3406side.
bfa74976
RS
3407
3408For example:
3409
3410@example
3411@group
3412expr: primary
3413 | primary '+' primary
3414 ;
3415@end group
3416
3417@group
3418primary: constant
3419 | '(' expr ')'
3420 ;
3421@end group
3422@end example
3423
3424@noindent
3425defines two mutually-recursive nonterminals, since each refers to the
3426other.
3427
342b8b6e 3428@node Semantics
bfa74976
RS
3429@section Defining Language Semantics
3430@cindex defining language semantics
13863333 3431@cindex language semantics, defining
bfa74976
RS
3432
3433The grammar rules for a language determine only the syntax. The semantics
3434are determined by the semantic values associated with various tokens and
3435groupings, and by the actions taken when various groupings are recognized.
3436
3437For example, the calculator calculates properly because the value
3438associated with each expression is the proper number; it adds properly
3439because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3440the numbers associated with @var{x} and @var{y}.
3441
3442@menu
3443* Value Type:: Specifying one data type for all semantic values.
3444* Multiple Types:: Specifying several alternative data types.
3445* Actions:: An action is the semantic definition of a grammar rule.
3446* Action Types:: Specifying data types for actions to operate on.
3447* Mid-Rule Actions:: Most actions go at the end of a rule.
3448 This says when, why and how to use the exceptional
3449 action in the middle of a rule.
d013372c 3450* Named References:: Using named references in actions.
bfa74976
RS
3451@end menu
3452
342b8b6e 3453@node Value Type
bfa74976
RS
3454@subsection Data Types of Semantic Values
3455@cindex semantic value type
3456@cindex value type, semantic
3457@cindex data types of semantic values
3458@cindex default data type
3459
3460In a simple program it may be sufficient to use the same data type for
3461the semantic values of all language constructs. This was true in the
8a4281b9 3462RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3463Notation Calculator}).
bfa74976 3464
ddc8ede1
PE
3465Bison normally uses the type @code{int} for semantic values if your
3466program uses the same data type for all language constructs. To
bfa74976
RS
3467specify some other type, define @code{YYSTYPE} as a macro, like this:
3468
3469@example
3470#define YYSTYPE double
3471@end example
3472
3473@noindent
50cce58e
PE
3474@code{YYSTYPE}'s replacement list should be a type name
3475that does not contain parentheses or square brackets.
342b8b6e 3476This macro definition must go in the prologue of the grammar file
75f5aaea 3477(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3478
342b8b6e 3479@node Multiple Types
bfa74976
RS
3480@subsection More Than One Value Type
3481
3482In most programs, you will need different data types for different kinds
3483of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3484@code{int} or @code{long int}, while a string constant needs type
3485@code{char *}, and an identifier might need a pointer to an entry in the
3486symbol table.
bfa74976
RS
3487
3488To use more than one data type for semantic values in one parser, Bison
3489requires you to do two things:
3490
3491@itemize @bullet
3492@item
ddc8ede1 3493Specify the entire collection of possible data types, either by using the
704a47c4 3494@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3495Value Types}), or by using a @code{typedef} or a @code{#define} to
3496define @code{YYSTYPE} to be a union type whose member names are
3497the type tags.
bfa74976
RS
3498
3499@item
14ded682
AD
3500Choose one of those types for each symbol (terminal or nonterminal) for
3501which semantic values are used. This is done for tokens with the
3502@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3503and for groupings with the @code{%type} Bison declaration (@pxref{Type
3504Decl, ,Nonterminal Symbols}).
bfa74976
RS
3505@end itemize
3506
342b8b6e 3507@node Actions
bfa74976
RS
3508@subsection Actions
3509@cindex action
3510@vindex $$
3511@vindex $@var{n}
d013372c
AR
3512@vindex $@var{name}
3513@vindex $[@var{name}]
bfa74976
RS
3514
3515An action accompanies a syntactic rule and contains C code to be executed
3516each time an instance of that rule is recognized. The task of most actions
3517is to compute a semantic value for the grouping built by the rule from the
3518semantic values associated with tokens or smaller groupings.
3519
287c78f6
PE
3520An action consists of braced code containing C statements, and can be
3521placed at any position in the rule;
704a47c4
AD
3522it is executed at that position. Most rules have just one action at the
3523end of the rule, following all the components. Actions in the middle of
3524a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3525Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3526
3527The C code in an action can refer to the semantic values of the components
3528matched by the rule with the construct @code{$@var{n}}, which stands for
3529the value of the @var{n}th component. The semantic value for the grouping
d013372c
AR
3530being constructed is @code{$$}. In addition, the semantic values of
3531symbols can be accessed with the named references construct
3532@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
0cc3da3a 3533constructs into expressions of the appropriate type when it copies the
d013372c
AR
3534actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
3535stands for the current grouping) is translated to a modifiable
0cc3da3a 3536lvalue, so it can be assigned to.
bfa74976
RS
3537
3538Here is a typical example:
3539
3540@example
3541@group
3542exp: @dots{}
3543 | exp '+' exp
3544 @{ $$ = $1 + $3; @}
3545@end group
3546@end example
3547
d013372c
AR
3548Or, in terms of named references:
3549
3550@example
3551@group
3552exp[result]: @dots{}
3553 | exp[left] '+' exp[right]
3554 @{ $result = $left + $right; @}
3555@end group
3556@end example
3557
bfa74976
RS
3558@noindent
3559This rule constructs an @code{exp} from two smaller @code{exp} groupings
3560connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3561(@code{$left} and @code{$right})
bfa74976
RS
3562refer to the semantic values of the two component @code{exp} groupings,
3563which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3564The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3565semantic value of
bfa74976
RS
3566the addition-expression just recognized by the rule. If there were a
3567useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3568referred to as @code{$2}.
bfa74976 3569
d013372c
AR
3570@xref{Named References,,Using Named References}, for more information
3571about using the named references construct.
3572
3ded9a63
AD
3573Note that the vertical-bar character @samp{|} is really a rule
3574separator, and actions are attached to a single rule. This is a
3575difference with tools like Flex, for which @samp{|} stands for either
3576``or'', or ``the same action as that of the next rule''. In the
3577following example, the action is triggered only when @samp{b} is found:
3578
3579@example
3580@group
3581a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3582@end group
3583@end example
3584
bfa74976
RS
3585@cindex default action
3586If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3587@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3588becomes the value of the whole rule. Of course, the default action is
3589valid only if the two data types match. There is no meaningful default
3590action for an empty rule; every empty rule must have an explicit action
3591unless the rule's value does not matter.
bfa74976
RS
3592
3593@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3594to tokens and groupings on the stack @emph{before} those that match the
3595current rule. This is a very risky practice, and to use it reliably
3596you must be certain of the context in which the rule is applied. Here
3597is a case in which you can use this reliably:
3598
3599@example
3600@group
3601foo: expr bar '+' expr @{ @dots{} @}
3602 | expr bar '-' expr @{ @dots{} @}
3603 ;
3604@end group
3605
3606@group
3607bar: /* empty */
3608 @{ previous_expr = $0; @}
3609 ;
3610@end group
3611@end example
3612
3613As long as @code{bar} is used only in the fashion shown here, @code{$0}
3614always refers to the @code{expr} which precedes @code{bar} in the
3615definition of @code{foo}.
3616
32c29292 3617@vindex yylval
742e4900 3618It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3619any, from a semantic action.
3620This semantic value is stored in @code{yylval}.
3621@xref{Action Features, ,Special Features for Use in Actions}.
3622
342b8b6e 3623@node Action Types
bfa74976
RS
3624@subsection Data Types of Values in Actions
3625@cindex action data types
3626@cindex data types in actions
3627
3628If you have chosen a single data type for semantic values, the @code{$$}
3629and @code{$@var{n}} constructs always have that data type.
3630
3631If you have used @code{%union} to specify a variety of data types, then you
3632must declare a choice among these types for each terminal or nonterminal
3633symbol that can have a semantic value. Then each time you use @code{$$} or
3634@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3635in the rule. In this example,
bfa74976
RS
3636
3637@example
3638@group
3639exp: @dots{}
3640 | exp '+' exp
3641 @{ $$ = $1 + $3; @}
3642@end group
3643@end example
3644
3645@noindent
3646@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3647have the data type declared for the nonterminal symbol @code{exp}. If
3648@code{$2} were used, it would have the data type declared for the
e0c471a9 3649terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3650
3651Alternatively, you can specify the data type when you refer to the value,
3652by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3653reference. For example, if you have defined types as shown here:
3654
3655@example
3656@group
3657%union @{
3658 int itype;
3659 double dtype;
3660@}
3661@end group
3662@end example
3663
3664@noindent
3665then you can write @code{$<itype>1} to refer to the first subunit of the
3666rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3667
342b8b6e 3668@node Mid-Rule Actions
bfa74976
RS
3669@subsection Actions in Mid-Rule
3670@cindex actions in mid-rule
3671@cindex mid-rule actions
3672
3673Occasionally it is useful to put an action in the middle of a rule.
3674These actions are written just like usual end-of-rule actions, but they
3675are executed before the parser even recognizes the following components.
3676
3677A mid-rule action may refer to the components preceding it using
3678@code{$@var{n}}, but it may not refer to subsequent components because
3679it is run before they are parsed.
3680
3681The mid-rule action itself counts as one of the components of the rule.
3682This makes a difference when there is another action later in the same rule
3683(and usually there is another at the end): you have to count the actions
3684along with the symbols when working out which number @var{n} to use in
3685@code{$@var{n}}.
3686
3687The mid-rule action can also have a semantic value. The action can set
3688its value with an assignment to @code{$$}, and actions later in the rule
3689can refer to the value using @code{$@var{n}}. Since there is no symbol
3690to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3691in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3692specify a data type each time you refer to this value.
bfa74976
RS
3693
3694There is no way to set the value of the entire rule with a mid-rule
3695action, because assignments to @code{$$} do not have that effect. The
3696only way to set the value for the entire rule is with an ordinary action
3697at the end of the rule.
3698
3699Here is an example from a hypothetical compiler, handling a @code{let}
3700statement that looks like @samp{let (@var{variable}) @var{statement}} and
3701serves to create a variable named @var{variable} temporarily for the
3702duration of @var{statement}. To parse this construct, we must put
3703@var{variable} into the symbol table while @var{statement} is parsed, then
3704remove it afterward. Here is how it is done:
3705
3706@example
3707@group
3708stmt: LET '(' var ')'
3709 @{ $<context>$ = push_context ();
3710 declare_variable ($3); @}
3711 stmt @{ $$ = $6;
3712 pop_context ($<context>5); @}
3713@end group
3714@end example
3715
3716@noindent
3717As soon as @samp{let (@var{variable})} has been recognized, the first
3718action is run. It saves a copy of the current semantic context (the
3719list of accessible variables) as its semantic value, using alternative
3720@code{context} in the data-type union. Then it calls
3721@code{declare_variable} to add the new variable to that list. Once the
3722first action is finished, the embedded statement @code{stmt} can be
3723parsed. Note that the mid-rule action is component number 5, so the
3724@samp{stmt} is component number 6.
3725
3726After the embedded statement is parsed, its semantic value becomes the
3727value of the entire @code{let}-statement. Then the semantic value from the
3728earlier action is used to restore the prior list of variables. This
3729removes the temporary @code{let}-variable from the list so that it won't
3730appear to exist while the rest of the program is parsed.
3731
841a7737
JD
3732@findex %destructor
3733@cindex discarded symbols, mid-rule actions
3734@cindex error recovery, mid-rule actions
3735In the above example, if the parser initiates error recovery (@pxref{Error
3736Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3737it might discard the previous semantic context @code{$<context>5} without
3738restoring it.
3739Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3740Discarded Symbols}).
ec5479ce
JD
3741However, Bison currently provides no means to declare a destructor specific to
3742a particular mid-rule action's semantic value.
841a7737
JD
3743
3744One solution is to bury the mid-rule action inside a nonterminal symbol and to
3745declare a destructor for that symbol:
3746
3747@example
3748@group
3749%type <context> let
3750%destructor @{ pop_context ($$); @} let
3751
3752%%
3753
3754stmt: let stmt
3755 @{ $$ = $2;
3756 pop_context ($1); @}
3757 ;
3758
3759let: LET '(' var ')'
3760 @{ $$ = push_context ();
3761 declare_variable ($3); @}
3762 ;
3763
3764@end group
3765@end example
3766
3767@noindent
3768Note that the action is now at the end of its rule.
3769Any mid-rule action can be converted to an end-of-rule action in this way, and
3770this is what Bison actually does to implement mid-rule actions.
3771
bfa74976
RS
3772Taking action before a rule is completely recognized often leads to
3773conflicts since the parser must commit to a parse in order to execute the
3774action. For example, the following two rules, without mid-rule actions,
3775can coexist in a working parser because the parser can shift the open-brace
3776token and look at what follows before deciding whether there is a
3777declaration or not:
3778
3779@example
3780@group
3781compound: '@{' declarations statements '@}'
3782 | '@{' statements '@}'
3783 ;
3784@end group
3785@end example
3786
3787@noindent
3788But when we add a mid-rule action as follows, the rules become nonfunctional:
3789
3790@example
3791@group
3792compound: @{ prepare_for_local_variables (); @}
3793 '@{' declarations statements '@}'
3794@end group
3795@group
3796 | '@{' statements '@}'
3797 ;
3798@end group
3799@end example
3800
3801@noindent
3802Now the parser is forced to decide whether to run the mid-rule action
3803when it has read no farther than the open-brace. In other words, it
3804must commit to using one rule or the other, without sufficient
3805information to do it correctly. (The open-brace token is what is called
742e4900
JD
3806the @dfn{lookahead} token at this time, since the parser is still
3807deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3808
3809You might think that you could correct the problem by putting identical
3810actions into the two rules, like this:
3811
3812@example
3813@group
3814compound: @{ prepare_for_local_variables (); @}
3815 '@{' declarations statements '@}'
3816 | @{ prepare_for_local_variables (); @}
3817 '@{' statements '@}'
3818 ;
3819@end group
3820@end example
3821
3822@noindent
3823But this does not help, because Bison does not realize that the two actions
3824are identical. (Bison never tries to understand the C code in an action.)
3825
3826If the grammar is such that a declaration can be distinguished from a
3827statement by the first token (which is true in C), then one solution which
3828does work is to put the action after the open-brace, like this:
3829
3830@example
3831@group
3832compound: '@{' @{ prepare_for_local_variables (); @}
3833 declarations statements '@}'
3834 | '@{' statements '@}'
3835 ;
3836@end group
3837@end example
3838
3839@noindent
3840Now the first token of the following declaration or statement,
3841which would in any case tell Bison which rule to use, can still do so.
3842
3843Another solution is to bury the action inside a nonterminal symbol which
3844serves as a subroutine:
3845
3846@example
3847@group
3848subroutine: /* empty */
3849 @{ prepare_for_local_variables (); @}
3850 ;
3851
3852@end group
3853
3854@group
3855compound: subroutine
3856 '@{' declarations statements '@}'
3857 | subroutine
3858 '@{' statements '@}'
3859 ;
3860@end group
3861@end example
3862
3863@noindent
3864Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3865deciding which rule for @code{compound} it will eventually use.
bfa74976 3866
d013372c
AR
3867@node Named References
3868@subsection Using Named References
3869@cindex named references
3870
3871While every semantic value can be accessed with positional references
3872@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3873them by name. First of all, original symbol names may be used as named
3874references. For example:
3875
3876@example
3877@group
3878invocation: op '(' args ')'
3879 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3880@end group
3881@end example
3882
3883@noindent
3884The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3885mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3886
3887@example
3888@group
3889invocation: op '(' args ')'
3890 @{ $$ = new_invocation ($op, $args, @@$); @}
3891@end group
3892@end example
3893
3894@noindent
3895However, sometimes regular symbol names are not sufficient due to
3896ambiguities:
3897
3898@example
3899@group
3900exp: exp '/' exp
3901 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3902
3903exp: exp '/' exp
3904 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3905
3906exp: exp '/' exp
3907 @{ $$ = $1 / $3; @} // No error.
3908@end group
3909@end example
3910
3911@noindent
3912When ambiguity occurs, explicitly declared names may be used for values and
3913locations. Explicit names are declared as a bracketed name after a symbol
3914appearance in rule definitions. For example:
3915@example
3916@group
3917exp[result]: exp[left] '/' exp[right]
3918 @{ $result = $left / $right; @}
3919@end group
3920@end example
3921
3922@noindent
3923Explicit names may be declared for RHS and for LHS symbols as well. In order
3924to access a semantic value generated by a mid-rule action, an explicit name
3925may also be declared by putting a bracketed name after the closing brace of
3926the mid-rule action code:
3927@example
3928@group
3929exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3930 @{ $res = $left + $right; @}
3931@end group
3932@end example
3933
3934@noindent
3935
3936In references, in order to specify names containing dots and dashes, an explicit
3937bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3938@example
3939@group
3940if-stmt: IF '(' expr ')' THEN then.stmt ';'
3941 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3942@end group
3943@end example
3944
3945It often happens that named references are followed by a dot, dash or other
3946C punctuation marks and operators. By default, Bison will read
3947@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3948@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3949value. In order to force Bison to recognize @code{name.suffix} in its entirety
3950as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3951must be used.
3952
3953
342b8b6e 3954@node Locations
847bf1f5
AD
3955@section Tracking Locations
3956@cindex location
95923bd6
AD
3957@cindex textual location
3958@cindex location, textual
847bf1f5
AD
3959
3960Though grammar rules and semantic actions are enough to write a fully
72d2299c 3961functional parser, it can be useful to process some additional information,
3e259915
MA
3962especially symbol locations.
3963
704a47c4
AD
3964The way locations are handled is defined by providing a data type, and
3965actions to take when rules are matched.
847bf1f5
AD
3966
3967@menu
3968* Location Type:: Specifying a data type for locations.
3969* Actions and Locations:: Using locations in actions.
3970* Location Default Action:: Defining a general way to compute locations.
3971@end menu
3972
342b8b6e 3973@node Location Type
847bf1f5
AD
3974@subsection Data Type of Locations
3975@cindex data type of locations
3976@cindex default location type
3977
3978Defining a data type for locations is much simpler than for semantic values,
3979since all tokens and groupings always use the same type.
3980
50cce58e
PE
3981You can specify the type of locations by defining a macro called
3982@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3983defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3984When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3985four members:
3986
3987@example
6273355b 3988typedef struct YYLTYPE
847bf1f5
AD
3989@{
3990 int first_line;
3991 int first_column;
3992 int last_line;
3993 int last_column;
6273355b 3994@} YYLTYPE;
847bf1f5
AD
3995@end example
3996
d59e456d
AD
3997When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3998initializes all these fields to 1 for @code{yylloc}. To initialize
3999@code{yylloc} with a custom location type (or to chose a different
4000initialization), use the @code{%initial-action} directive. @xref{Initial
4001Action Decl, , Performing Actions before Parsing}.
cd48d21d 4002
342b8b6e 4003@node Actions and Locations
847bf1f5
AD
4004@subsection Actions and Locations
4005@cindex location actions
4006@cindex actions, location
4007@vindex @@$
4008@vindex @@@var{n}
d013372c
AR
4009@vindex @@@var{name}
4010@vindex @@[@var{name}]
847bf1f5
AD
4011
4012Actions are not only useful for defining language semantics, but also for
4013describing the behavior of the output parser with locations.
4014
4015The most obvious way for building locations of syntactic groupings is very
72d2299c 4016similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4017constructs can be used to access the locations of the elements being matched.
4018The location of the @var{n}th component of the right hand side is
4019@code{@@@var{n}}, while the location of the left hand side grouping is
4020@code{@@$}.
4021
d013372c
AR
4022In addition, the named references construct @code{@@@var{name}} and
4023@code{@@[@var{name}]} may also be used to address the symbol locations.
4024@xref{Named References,,Using Named References}, for more information
4025about using the named references construct.
4026
3e259915 4027Here is a basic example using the default data type for locations:
847bf1f5
AD
4028
4029@example
4030@group
4031exp: @dots{}
3e259915 4032 | exp '/' exp
847bf1f5 4033 @{
3e259915
MA
4034 @@$.first_column = @@1.first_column;
4035 @@$.first_line = @@1.first_line;
847bf1f5
AD
4036 @@$.last_column = @@3.last_column;
4037 @@$.last_line = @@3.last_line;
3e259915
MA
4038 if ($3)
4039 $$ = $1 / $3;
4040 else
4041 @{
4042 $$ = 1;
4e03e201
AD
4043 fprintf (stderr,
4044 "Division by zero, l%d,c%d-l%d,c%d",
4045 @@3.first_line, @@3.first_column,
4046 @@3.last_line, @@3.last_column);
3e259915 4047 @}
847bf1f5
AD
4048 @}
4049@end group
4050@end example
4051
3e259915 4052As for semantic values, there is a default action for locations that is
72d2299c 4053run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4054beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4055last symbol.
3e259915 4056
72d2299c 4057With this default action, the location tracking can be fully automatic. The
3e259915
MA
4058example above simply rewrites this way:
4059
4060@example
4061@group
4062exp: @dots{}
4063 | exp '/' exp
4064 @{
4065 if ($3)
4066 $$ = $1 / $3;
4067 else
4068 @{
4069 $$ = 1;
4e03e201
AD
4070 fprintf (stderr,
4071 "Division by zero, l%d,c%d-l%d,c%d",
4072 @@3.first_line, @@3.first_column,
4073 @@3.last_line, @@3.last_column);
3e259915
MA
4074 @}
4075 @}
4076@end group
4077@end example
847bf1f5 4078
32c29292 4079@vindex yylloc
742e4900 4080It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4081from a semantic action.
4082This location is stored in @code{yylloc}.
4083@xref{Action Features, ,Special Features for Use in Actions}.
4084
342b8b6e 4085@node Location Default Action
847bf1f5
AD
4086@subsection Default Action for Locations
4087@vindex YYLLOC_DEFAULT
8a4281b9 4088@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4089
72d2299c 4090Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4091locations are much more general than semantic values, there is room in
4092the output parser to redefine the default action to take for each
72d2299c 4093rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4094matched, before the associated action is run. It is also invoked
4095while processing a syntax error, to compute the error's location.
8a4281b9 4096Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4097parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4098of that ambiguity.
847bf1f5 4099
3e259915 4100Most of the time, this macro is general enough to suppress location
79282c6c 4101dedicated code from semantic actions.
847bf1f5 4102
72d2299c 4103The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4104the location of the grouping (the result of the computation). When a
766de5eb 4105rule is matched, the second parameter identifies locations of
96b93a3d 4106all right hand side elements of the rule being matched, and the third
8710fc41 4107parameter is the size of the rule's right hand side.
8a4281b9 4108When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4109right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4110When processing a syntax error, the second parameter identifies locations
4111of the symbols that were discarded during error processing, and the third
96b93a3d 4112parameter is the number of discarded symbols.
847bf1f5 4113
766de5eb 4114By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4115
766de5eb 4116@smallexample
847bf1f5 4117@group
766de5eb
PE
4118# define YYLLOC_DEFAULT(Current, Rhs, N) \
4119 do \
4120 if (N) \
4121 @{ \
4122 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4123 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4124 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4125 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4126 @} \
4127 else \
4128 @{ \
4129 (Current).first_line = (Current).last_line = \
4130 YYRHSLOC(Rhs, 0).last_line; \
4131 (Current).first_column = (Current).last_column = \
4132 YYRHSLOC(Rhs, 0).last_column; \
4133 @} \
4134 while (0)
847bf1f5 4135@end group
766de5eb 4136@end smallexample
676385e2 4137
766de5eb
PE
4138where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4139in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4140just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4141
3e259915 4142When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4143
3e259915 4144@itemize @bullet
79282c6c 4145@item
72d2299c 4146All arguments are free of side-effects. However, only the first one (the
3e259915 4147result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4148
3e259915 4149@item
766de5eb
PE
4150For consistency with semantic actions, valid indexes within the
4151right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4152valid index, and it refers to the symbol just before the reduction.
4153During error processing @var{n} is always positive.
0ae99356
PE
4154
4155@item
4156Your macro should parenthesize its arguments, if need be, since the
4157actual arguments may not be surrounded by parentheses. Also, your
4158macro should expand to something that can be used as a single
4159statement when it is followed by a semicolon.
3e259915 4160@end itemize
847bf1f5 4161
342b8b6e 4162@node Declarations
bfa74976
RS
4163@section Bison Declarations
4164@cindex declarations, Bison
4165@cindex Bison declarations
4166
4167The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4168used in formulating the grammar and the data types of semantic values.
4169@xref{Symbols}.
4170
4171All token type names (but not single-character literal tokens such as
4172@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4173declared if you need to specify which data type to use for the semantic
4174value (@pxref{Multiple Types, ,More Than One Value Type}).
4175
4176The first rule in the file also specifies the start symbol, by default.
4177If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
4178it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
4179Grammars}).
bfa74976
RS
4180
4181@menu
b50d2359 4182* Require Decl:: Requiring a Bison version.
bfa74976
RS
4183* Token Decl:: Declaring terminal symbols.
4184* Precedence Decl:: Declaring terminals with precedence and associativity.
4185* Union Decl:: Declaring the set of all semantic value types.
4186* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4187* Initial Action Decl:: Code run before parsing starts.
72f889cc 4188* Destructor Decl:: Declaring how symbols are freed.
d6328241 4189* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4190* Start Decl:: Specifying the start symbol.
4191* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4192* Push Decl:: Requesting a push parser.
bfa74976
RS
4193* Decl Summary:: Table of all Bison declarations.
4194@end menu
4195
b50d2359
AD
4196@node Require Decl
4197@subsection Require a Version of Bison
4198@cindex version requirement
4199@cindex requiring a version of Bison
4200@findex %require
4201
4202You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4203the requirement is not met, @command{bison} exits with an error (exit
4204status 63).
b50d2359
AD
4205
4206@example
4207%require "@var{version}"
4208@end example
4209
342b8b6e 4210@node Token Decl
bfa74976
RS
4211@subsection Token Type Names
4212@cindex declaring token type names
4213@cindex token type names, declaring
931c7513 4214@cindex declaring literal string tokens
bfa74976
RS
4215@findex %token
4216
4217The basic way to declare a token type name (terminal symbol) is as follows:
4218
4219@example
4220%token @var{name}
4221@end example
4222
4223Bison will convert this into a @code{#define} directive in
4224the parser, so that the function @code{yylex} (if it is in this file)
4225can use the name @var{name} to stand for this token type's code.
4226
d78f0ac9
AD
4227Alternatively, you can use @code{%left}, @code{%right},
4228@code{%precedence}, or
14ded682
AD
4229@code{%nonassoc} instead of @code{%token}, if you wish to specify
4230associativity and precedence. @xref{Precedence Decl, ,Operator
4231Precedence}.
bfa74976
RS
4232
4233You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4234a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4235following the token name:
bfa74976
RS
4236
4237@example
4238%token NUM 300
1452af69 4239%token XNUM 0x12d // a GNU extension
bfa74976
RS
4240@end example
4241
4242@noindent
4243It is generally best, however, to let Bison choose the numeric codes for
4244all token types. Bison will automatically select codes that don't conflict
e966383b 4245with each other or with normal characters.
bfa74976
RS
4246
4247In the event that the stack type is a union, you must augment the
4248@code{%token} or other token declaration to include the data type
704a47c4
AD
4249alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4250Than One Value Type}).
bfa74976
RS
4251
4252For example:
4253
4254@example
4255@group
4256%union @{ /* define stack type */
4257 double val;
4258 symrec *tptr;
4259@}
4260%token <val> NUM /* define token NUM and its type */
4261@end group
4262@end example
4263
931c7513
RS
4264You can associate a literal string token with a token type name by
4265writing the literal string at the end of a @code{%token}
4266declaration which declares the name. For example:
4267
4268@example
4269%token arrow "=>"
4270@end example
4271
4272@noindent
4273For example, a grammar for the C language might specify these names with
4274equivalent literal string tokens:
4275
4276@example
4277%token <operator> OR "||"
4278%token <operator> LE 134 "<="
4279%left OR "<="
4280@end example
4281
4282@noindent
4283Once you equate the literal string and the token name, you can use them
4284interchangeably in further declarations or the grammar rules. The
4285@code{yylex} function can use the token name or the literal string to
4286obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4287Syntax error messages passed to @code{yyerror} from the parser will reference
4288the literal string instead of the token name.
4289
4290The token numbered as 0 corresponds to end of file; the following line
4291allows for nicer error messages referring to ``end of file'' instead
4292of ``$end'':
4293
4294@example
4295%token END 0 "end of file"
4296@end example
931c7513 4297
342b8b6e 4298@node Precedence Decl
bfa74976
RS
4299@subsection Operator Precedence
4300@cindex precedence declarations
4301@cindex declaring operator precedence
4302@cindex operator precedence, declaring
4303
d78f0ac9
AD
4304Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4305@code{%precedence} declaration to
bfa74976
RS
4306declare a token and specify its precedence and associativity, all at
4307once. These are called @dfn{precedence declarations}.
704a47c4
AD
4308@xref{Precedence, ,Operator Precedence}, for general information on
4309operator precedence.
bfa74976 4310
ab7f29f8 4311The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4312@code{%token}: either
4313
4314@example
4315%left @var{symbols}@dots{}
4316@end example
4317
4318@noindent
4319or
4320
4321@example
4322%left <@var{type}> @var{symbols}@dots{}
4323@end example
4324
4325And indeed any of these declarations serves the purposes of @code{%token}.
4326But in addition, they specify the associativity and relative precedence for
4327all the @var{symbols}:
4328
4329@itemize @bullet
4330@item
4331The associativity of an operator @var{op} determines how repeated uses
4332of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4333@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4334grouping @var{y} with @var{z} first. @code{%left} specifies
4335left-associativity (grouping @var{x} with @var{y} first) and
4336@code{%right} specifies right-associativity (grouping @var{y} with
4337@var{z} first). @code{%nonassoc} specifies no associativity, which
4338means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4339considered a syntax error.
4340
d78f0ac9
AD
4341@code{%precedence} gives only precedence to the @var{symbols}, and
4342defines no associativity at all. Use this to define precedence only,
4343and leave any potential conflict due to associativity enabled.
4344
bfa74976
RS
4345@item
4346The precedence of an operator determines how it nests with other operators.
4347All the tokens declared in a single precedence declaration have equal
4348precedence and nest together according to their associativity.
4349When two tokens declared in different precedence declarations associate,
4350the one declared later has the higher precedence and is grouped first.
4351@end itemize
4352
ab7f29f8
JD
4353For backward compatibility, there is a confusing difference between the
4354argument lists of @code{%token} and precedence declarations.
4355Only a @code{%token} can associate a literal string with a token type name.
4356A precedence declaration always interprets a literal string as a reference to a
4357separate token.
4358For example:
4359
4360@example
4361%left OR "<=" // Does not declare an alias.
4362%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4363@end example
4364
342b8b6e 4365@node Union Decl
bfa74976
RS
4366@subsection The Collection of Value Types
4367@cindex declaring value types
4368@cindex value types, declaring
4369@findex %union
4370
287c78f6
PE
4371The @code{%union} declaration specifies the entire collection of
4372possible data types for semantic values. The keyword @code{%union} is
4373followed by braced code containing the same thing that goes inside a
4374@code{union} in C@.
bfa74976
RS
4375
4376For example:
4377
4378@example
4379@group
4380%union @{
4381 double val;
4382 symrec *tptr;
4383@}
4384@end group
4385@end example
4386
4387@noindent
4388This says that the two alternative types are @code{double} and @code{symrec
4389*}. They are given names @code{val} and @code{tptr}; these names are used
4390in the @code{%token} and @code{%type} declarations to pick one of the types
4391for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4392
8a4281b9 4393As an extension to POSIX, a tag is allowed after the
6273355b
PE
4394@code{union}. For example:
4395
4396@example
4397@group
4398%union value @{
4399 double val;
4400 symrec *tptr;
4401@}
4402@end group
4403@end example
4404
d6ca7905 4405@noindent
6273355b
PE
4406specifies the union tag @code{value}, so the corresponding C type is
4407@code{union value}. If you do not specify a tag, it defaults to
4408@code{YYSTYPE}.
4409
8a4281b9 4410As another extension to POSIX, you may specify multiple
d6ca7905
PE
4411@code{%union} declarations; their contents are concatenated. However,
4412only the first @code{%union} declaration can specify a tag.
4413
6273355b 4414Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4415a semicolon after the closing brace.
4416
ddc8ede1
PE
4417Instead of @code{%union}, you can define and use your own union type
4418@code{YYSTYPE} if your grammar contains at least one
4419@samp{<@var{type}>} tag. For example, you can put the following into
4420a header file @file{parser.h}:
4421
4422@example
4423@group
4424union YYSTYPE @{
4425 double val;
4426 symrec *tptr;
4427@};
4428typedef union YYSTYPE YYSTYPE;
4429@end group
4430@end example
4431
4432@noindent
4433and then your grammar can use the following
4434instead of @code{%union}:
4435
4436@example
4437@group
4438%@{
4439#include "parser.h"
4440%@}
4441%type <val> expr
4442%token <tptr> ID
4443@end group
4444@end example
4445
342b8b6e 4446@node Type Decl
bfa74976
RS
4447@subsection Nonterminal Symbols
4448@cindex declaring value types, nonterminals
4449@cindex value types, nonterminals, declaring
4450@findex %type
4451
4452@noindent
4453When you use @code{%union} to specify multiple value types, you must
4454declare the value type of each nonterminal symbol for which values are
4455used. This is done with a @code{%type} declaration, like this:
4456
4457@example
4458%type <@var{type}> @var{nonterminal}@dots{}
4459@end example
4460
4461@noindent
704a47c4
AD
4462Here @var{nonterminal} is the name of a nonterminal symbol, and
4463@var{type} is the name given in the @code{%union} to the alternative
4464that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4465can give any number of nonterminal symbols in the same @code{%type}
4466declaration, if they have the same value type. Use spaces to separate
4467the symbol names.
bfa74976 4468
931c7513
RS
4469You can also declare the value type of a terminal symbol. To do this,
4470use the same @code{<@var{type}>} construction in a declaration for the
4471terminal symbol. All kinds of token declarations allow
4472@code{<@var{type}>}.
4473
18d192f0
AD
4474@node Initial Action Decl
4475@subsection Performing Actions before Parsing
4476@findex %initial-action
4477
4478Sometimes your parser needs to perform some initializations before
4479parsing. The @code{%initial-action} directive allows for such arbitrary
4480code.
4481
4482@deffn {Directive} %initial-action @{ @var{code} @}
4483@findex %initial-action
287c78f6 4484Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4485@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4486@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4487@code{%parse-param}.
18d192f0
AD
4488@end deffn
4489
451364ed
AD
4490For instance, if your locations use a file name, you may use
4491
4492@example
48b16bbc 4493%parse-param @{ char const *file_name @};
451364ed
AD
4494%initial-action
4495@{
4626a15d 4496 @@$.initialize (file_name);
451364ed
AD
4497@};
4498@end example
4499
18d192f0 4500
72f889cc
AD
4501@node Destructor Decl
4502@subsection Freeing Discarded Symbols
4503@cindex freeing discarded symbols
4504@findex %destructor
12e35840 4505@findex <*>
3ebecc24 4506@findex <>
a85284cf
AD
4507During error recovery (@pxref{Error Recovery}), symbols already pushed
4508on the stack and tokens coming from the rest of the file are discarded
4509until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4510or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4511symbols on the stack must be discarded. Even if the parser succeeds, it
4512must discard the start symbol.
258b75ca
PE
4513
4514When discarded symbols convey heap based information, this memory is
4515lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4516in traditional compilers, it is unacceptable for programs like shells or
4517protocol implementations that may parse and execute indefinitely.
258b75ca 4518
a85284cf
AD
4519The @code{%destructor} directive defines code that is called when a
4520symbol is automatically discarded.
72f889cc
AD
4521
4522@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4523@findex %destructor
287c78f6
PE
4524Invoke the braced @var{code} whenever the parser discards one of the
4525@var{symbols}.
4b367315 4526Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4527with the discarded symbol, and @code{@@$} designates its location.
4528The additional parser parameters are also available (@pxref{Parser Function, ,
4529The Parser Function @code{yyparse}}).
ec5479ce 4530
b2a0b7ca
JD
4531When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4532per-symbol @code{%destructor}.
4533You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4534tag among @var{symbols}.
b2a0b7ca 4535In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4536grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4537per-symbol @code{%destructor}.
4538
12e35840 4539Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4540(These default forms are experimental.
4541More user feedback will help to determine whether they should become permanent
4542features.)
3ebecc24 4543You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4544exactly one @code{%destructor} declaration in your grammar file.
4545The parser will invoke the @var{code} associated with one of these whenever it
4546discards any user-defined grammar symbol that has no per-symbol and no per-type
4547@code{%destructor}.
4548The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4549symbol for which you have formally declared a semantic type tag (@code{%type}
4550counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4551The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4552symbol that has no declared semantic type tag.
72f889cc
AD
4553@end deffn
4554
b2a0b7ca 4555@noindent
12e35840 4556For example:
72f889cc
AD
4557
4558@smallexample
ec5479ce
JD
4559%union @{ char *string; @}
4560%token <string> STRING1
4561%token <string> STRING2
4562%type <string> string1
4563%type <string> string2
b2a0b7ca
JD
4564%union @{ char character; @}
4565%token <character> CHR
4566%type <character> chr
12e35840
JD
4567%token TAGLESS
4568
b2a0b7ca 4569%destructor @{ @} <character>
12e35840
JD
4570%destructor @{ free ($$); @} <*>
4571%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4572%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4573@end smallexample
4574
4575@noindent
b2a0b7ca
JD
4576guarantees that, when the parser discards any user-defined symbol that has a
4577semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4578to @code{free} by default.
ec5479ce
JD
4579However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4580prints its line number to @code{stdout}.
4581It performs only the second @code{%destructor} in this case, so it invokes
4582@code{free} only once.
12e35840
JD
4583Finally, the parser merely prints a message whenever it discards any symbol,
4584such as @code{TAGLESS}, that has no semantic type tag.
4585
4586A Bison-generated parser invokes the default @code{%destructor}s only for
4587user-defined as opposed to Bison-defined symbols.
4588For example, the parser will not invoke either kind of default
4589@code{%destructor} for the special Bison-defined symbols @code{$accept},
4590@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4591none of which you can reference in your grammar.
4592It also will not invoke either for the @code{error} token (@pxref{Table of
4593Symbols, ,error}), which is always defined by Bison regardless of whether you
4594reference it in your grammar.
4595However, it may invoke one of them for the end token (token 0) if you
4596redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4597
4598@smallexample
4599%token END 0
4600@end smallexample
4601
12e35840
JD
4602@cindex actions in mid-rule
4603@cindex mid-rule actions
4604Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4605mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4606That is, Bison does not consider a mid-rule to have a semantic value if you do
4607not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4608@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4609rule.
4610However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4611@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4612
3508ce36
JD
4613@ignore
4614@noindent
4615In the future, it may be possible to redefine the @code{error} token as a
4616nonterminal that captures the discarded symbols.
4617In that case, the parser will invoke the default destructor for it as well.
4618@end ignore
4619
e757bb10
AD
4620@sp 1
4621
4622@cindex discarded symbols
4623@dfn{Discarded symbols} are the following:
4624
4625@itemize
4626@item
4627stacked symbols popped during the first phase of error recovery,
4628@item
4629incoming terminals during the second phase of error recovery,
4630@item
742e4900 4631the current lookahead and the entire stack (except the current
9d9b8b70 4632right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4633@item
4634the start symbol, when the parser succeeds.
e757bb10
AD
4635@end itemize
4636
9d9b8b70
PE
4637The parser can @dfn{return immediately} because of an explicit call to
4638@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4639exhaustion.
4640
29553547 4641Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4642error via @code{YYERROR} are not discarded automatically. As a rule
4643of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4644the memory.
e757bb10 4645
342b8b6e 4646@node Expect Decl
bfa74976
RS
4647@subsection Suppressing Conflict Warnings
4648@cindex suppressing conflict warnings
4649@cindex preventing warnings about conflicts
4650@cindex warnings, preventing
4651@cindex conflicts, suppressing warnings of
4652@findex %expect
d6328241 4653@findex %expect-rr
bfa74976
RS
4654
4655Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4656(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4657have harmless shift/reduce conflicts which are resolved in a predictable
4658way and would be difficult to eliminate. It is desirable to suppress
4659the warning about these conflicts unless the number of conflicts
4660changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4661
4662The declaration looks like this:
4663
4664@example
4665%expect @var{n}
4666@end example
4667
035aa4a0
PE
4668Here @var{n} is a decimal integer. The declaration says there should
4669be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4670Bison reports an error if the number of shift/reduce conflicts differs
4671from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4672
eb45ef3b 4673For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4674serious, and should be eliminated entirely. Bison will always report
8a4281b9 4675reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4676parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4677there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4678also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4679in GLR parsers, using the declaration:
d6328241
PH
4680
4681@example
4682%expect-rr @var{n}
4683@end example
4684
bfa74976
RS
4685In general, using @code{%expect} involves these steps:
4686
4687@itemize @bullet
4688@item
4689Compile your grammar without @code{%expect}. Use the @samp{-v} option
4690to get a verbose list of where the conflicts occur. Bison will also
4691print the number of conflicts.
4692
4693@item
4694Check each of the conflicts to make sure that Bison's default
4695resolution is what you really want. If not, rewrite the grammar and
4696go back to the beginning.
4697
4698@item
4699Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4700number which Bison printed. With GLR parsers, add an
035aa4a0 4701@code{%expect-rr} declaration as well.
bfa74976
RS
4702@end itemize
4703
93d7dde9
JD
4704Now Bison will report an error if you introduce an unexpected conflict,
4705but will keep silent otherwise.
bfa74976 4706
342b8b6e 4707@node Start Decl
bfa74976
RS
4708@subsection The Start-Symbol
4709@cindex declaring the start symbol
4710@cindex start symbol, declaring
4711@cindex default start symbol
4712@findex %start
4713
4714Bison assumes by default that the start symbol for the grammar is the first
4715nonterminal specified in the grammar specification section. The programmer
4716may override this restriction with the @code{%start} declaration as follows:
4717
4718@example
4719%start @var{symbol}
4720@end example
4721
342b8b6e 4722@node Pure Decl
bfa74976
RS
4723@subsection A Pure (Reentrant) Parser
4724@cindex reentrant parser
4725@cindex pure parser
d9df47b6 4726@findex %define api.pure
bfa74976
RS
4727
4728A @dfn{reentrant} program is one which does not alter in the course of
4729execution; in other words, it consists entirely of @dfn{pure} (read-only)
4730code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4731for example, a nonreentrant program may not be safe to call from a signal
4732handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4733program must be called only within interlocks.
4734
70811b85 4735Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4736suitable for most uses, and it permits compatibility with Yacc. (The
4737standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4738statically allocated variables for communication with @code{yylex},
4739including @code{yylval} and @code{yylloc}.)
bfa74976 4740
70811b85 4741Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4742declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4743reentrant. It looks like this:
bfa74976
RS
4744
4745@example
d9df47b6 4746%define api.pure
bfa74976
RS
4747@end example
4748
70811b85
RS
4749The result is that the communication variables @code{yylval} and
4750@code{yylloc} become local variables in @code{yyparse}, and a different
4751calling convention is used for the lexical analyzer function
4752@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4753Parsers}, for the details of this. The variable @code{yynerrs}
4754becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4755of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4756Reporting Function @code{yyerror}}). The convention for calling
4757@code{yyparse} itself is unchanged.
4758
4759Whether the parser is pure has nothing to do with the grammar rules.
4760You can generate either a pure parser or a nonreentrant parser from any
4761valid grammar.
bfa74976 4762
9987d1b3
JD
4763@node Push Decl
4764@subsection A Push Parser
4765@cindex push parser
4766@cindex push parser
67212941 4767@findex %define api.push-pull
9987d1b3 4768
59da312b
JD
4769(The current push parsing interface is experimental and may evolve.
4770More user feedback will help to stabilize it.)
4771
f4101aa6
AD
4772A pull parser is called once and it takes control until all its input
4773is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4774each time a new token is made available.
4775
f4101aa6 4776A push parser is typically useful when the parser is part of a
9987d1b3 4777main event loop in the client's application. This is typically
f4101aa6
AD
4778a requirement of a GUI, when the main event loop needs to be triggered
4779within a certain time period.
9987d1b3 4780
d782395d
JD
4781Normally, Bison generates a pull parser.
4782The following Bison declaration says that you want the parser to be a push
67212941 4783parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4784
4785@example
cf499cff 4786%define api.push-pull push
9987d1b3
JD
4787@end example
4788
4789In almost all cases, you want to ensure that your push parser is also
4790a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4791time you should create an impure push parser is to have backwards
9987d1b3
JD
4792compatibility with the impure Yacc pull mode interface. Unless you know
4793what you are doing, your declarations should look like this:
4794
4795@example
d9df47b6 4796%define api.pure
cf499cff 4797%define api.push-pull push
9987d1b3
JD
4798@end example
4799
f4101aa6
AD
4800There is a major notable functional difference between the pure push parser
4801and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4802many parser instances, of the same type of parser, in memory at the same time.
4803An impure push parser should only use one parser at a time.
4804
4805When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4806the generated parser. @code{yypstate} is a structure that the generated
4807parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4808function that will create a new parser instance. @code{yypstate_delete}
4809will free the resources associated with the corresponding parser instance.
f4101aa6 4810Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4811token is available to provide the parser. A trivial example
4812of using a pure push parser would look like this:
4813
4814@example
4815int status;
4816yypstate *ps = yypstate_new ();
4817do @{
4818 status = yypush_parse (ps, yylex (), NULL);
4819@} while (status == YYPUSH_MORE);
4820yypstate_delete (ps);
4821@end example
4822
4823If the user decided to use an impure push parser, a few things about
f4101aa6 4824the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4825a global variable instead of a variable in the @code{yypush_parse} function.
4826For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4827changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4828example would thus look like this:
4829
4830@example
4831extern int yychar;
4832int status;
4833yypstate *ps = yypstate_new ();
4834do @{
4835 yychar = yylex ();
4836 status = yypush_parse (ps);
4837@} while (status == YYPUSH_MORE);
4838yypstate_delete (ps);
4839@end example
4840
f4101aa6 4841That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4842for use by the next invocation of the @code{yypush_parse} function.
4843
f4101aa6 4844Bison also supports both the push parser interface along with the pull parser
9987d1b3 4845interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4846you should replace the @samp{%define api.push-pull push} declaration with the
4847@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4848the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4849and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4850would be used. However, the user should note that it is implemented in the
d782395d
JD
4851generated parser by calling @code{yypull_parse}.
4852This makes the @code{yyparse} function that is generated with the
cf499cff 4853@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4854@code{yyparse} function. If the user
4855calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4856stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4857and then @code{yypull_parse} the rest of the input stream. If you would like
4858to switch back and forth between between parsing styles, you would have to
4859write your own @code{yypull_parse} function that knows when to quit looking
4860for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4861like this:
4862
4863@example
4864yypstate *ps = yypstate_new ();
4865yypull_parse (ps); /* Will call the lexer */
4866yypstate_delete (ps);
4867@end example
4868
67501061 4869Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4870the generated parser with @samp{%define api.push-pull both} as it did for
4871@samp{%define api.push-pull push}.
9987d1b3 4872
342b8b6e 4873@node Decl Summary
bfa74976
RS
4874@subsection Bison Declaration Summary
4875@cindex Bison declaration summary
4876@cindex declaration summary
4877@cindex summary, Bison declaration
4878
d8988b2f 4879Here is a summary of the declarations used to define a grammar:
bfa74976 4880
18b519c0 4881@deffn {Directive} %union
bfa74976
RS
4882Declare the collection of data types that semantic values may have
4883(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4884@end deffn
bfa74976 4885
18b519c0 4886@deffn {Directive} %token
bfa74976
RS
4887Declare a terminal symbol (token type name) with no precedence
4888or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4889@end deffn
bfa74976 4890
18b519c0 4891@deffn {Directive} %right
bfa74976
RS
4892Declare a terminal symbol (token type name) that is right-associative
4893(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4894@end deffn
bfa74976 4895
18b519c0 4896@deffn {Directive} %left
bfa74976
RS
4897Declare a terminal symbol (token type name) that is left-associative
4898(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4899@end deffn
bfa74976 4900
18b519c0 4901@deffn {Directive} %nonassoc
bfa74976 4902Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4903(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4904Using it in a way that would be associative is a syntax error.
4905@end deffn
4906
91d2c560 4907@ifset defaultprec
39a06c25 4908@deffn {Directive} %default-prec
22fccf95 4909Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4910(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4911@end deffn
91d2c560 4912@end ifset
bfa74976 4913
18b519c0 4914@deffn {Directive} %type
bfa74976
RS
4915Declare the type of semantic values for a nonterminal symbol
4916(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4917@end deffn
bfa74976 4918
18b519c0 4919@deffn {Directive} %start
89cab50d
AD
4920Specify the grammar's start symbol (@pxref{Start Decl, ,The
4921Start-Symbol}).
18b519c0 4922@end deffn
bfa74976 4923
18b519c0 4924@deffn {Directive} %expect
bfa74976
RS
4925Declare the expected number of shift-reduce conflicts
4926(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4927@end deffn
4928
bfa74976 4929
d8988b2f
AD
4930@sp 1
4931@noindent
4932In order to change the behavior of @command{bison}, use the following
4933directives:
4934
148d66d8
JD
4935@deffn {Directive} %code @{@var{code}@}
4936@findex %code
4937This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4938It inserts @var{code} verbatim at a language-dependent default location in the
4939output@footnote{The default location is actually skeleton-dependent;
4940 writers of non-standard skeletons however should choose the default location
4941 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4942
4943@cindex Prologue
8405b70c 4944For C/C++, the default location is the parser source code
148d66d8
JD
4945file after the usual contents of the parser header file.
4946Thus, @code{%code} replaces the traditional Yacc prologue,
4947@code{%@{@var{code}%@}}, for most purposes.
4948For a detailed discussion, see @ref{Prologue Alternatives}.
4949
8405b70c 4950For Java, the default location is inside the parser class.
148d66d8
JD
4951@end deffn
4952
4953@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4954This is the qualified form of the @code{%code} directive.
4955If you need to specify location-sensitive verbatim @var{code} that does not
4956belong at the default location selected by the unqualified @code{%code} form,
4957use this form instead.
4958
4959@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4960where Bison should generate it.
c6abeab1
JD
4961Not all @var{qualifier}s are accepted for all target languages.
4962Unaccepted @var{qualifier}s produce an error.
4963Some of the accepted @var{qualifier}s are:
148d66d8
JD
4964
4965@itemize @bullet
148d66d8 4966@item requires
793fbca5 4967@findex %code requires
148d66d8
JD
4968
4969@itemize @bullet
4970@item Language(s): C, C++
4971
4972@item Purpose: This is the best place to write dependency code required for
4973@code{YYSTYPE} and @code{YYLTYPE}.
4974In other words, it's the best place to define types referenced in @code{%union}
4975directives, and it's the best place to override Bison's default @code{YYSTYPE}
4976and @code{YYLTYPE} definitions.
4977
4978@item Location(s): The parser header file and the parser source code file
4979before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4980@end itemize
4981
4982@item provides
4983@findex %code provides
4984
4985@itemize @bullet
4986@item Language(s): C, C++
4987
4988@item Purpose: This is the best place to write additional definitions and
4989declarations that should be provided to other modules.
4990
4991@item Location(s): The parser header file and the parser source code file after
4992the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4993@end itemize
4994
4995@item top
4996@findex %code top
4997
4998@itemize @bullet
4999@item Language(s): C, C++
5000
5001@item Purpose: The unqualified @code{%code} or @code{%code requires} should
5002usually be more appropriate than @code{%code top}.
5003However, occasionally it is necessary to insert code much nearer the top of the
5004parser source code file.
5005For example:
5006
5007@smallexample
5008%code top @{
5009 #define _GNU_SOURCE
5010 #include <stdio.h>
5011@}
5012@end smallexample
5013
5014@item Location(s): Near the top of the parser source code file.
5015@end itemize
8405b70c 5016
148d66d8
JD
5017@item imports
5018@findex %code imports
5019
5020@itemize @bullet
5021@item Language(s): Java
5022
5023@item Purpose: This is the best place to write Java import directives.
5024
5025@item Location(s): The parser Java file after any Java package directive and
5026before any class definitions.
5027@end itemize
148d66d8
JD
5028@end itemize
5029
148d66d8
JD
5030@cindex Prologue
5031For a detailed discussion of how to use @code{%code} in place of the
5032traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
5033@end deffn
5034
18b519c0 5035@deffn {Directive} %debug
fa819509
AD
5036Instrument the output parser for traces. Obsoleted by @samp{%define
5037parse.trace}.
ec3bc396 5038@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5039@end deffn
d8988b2f 5040
c1d19e10 5041@deffn {Directive} %define @var{variable}
cf499cff 5042@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5043@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 5044Define a variable to adjust Bison's behavior.
9611cfa2 5045
0b6d43c5 5046It is an error if a @var{variable} is defined by @code{%define} multiple
17aed602 5047times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 5048
82f3355e
JD
5049@var{value} must be placed in quotation marks if it contains any character
5050other than a letter, underscore, period, or non-initial dash or digit.
cf499cff
JD
5051
5052Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
5053@code{""}.
5054
c6abeab1 5055Some @var{variable}s take Boolean values.
9611cfa2
JD
5056In this case, Bison will complain if the variable definition does not meet one
5057of the following four conditions:
5058
5059@enumerate
cf499cff 5060@item @code{@var{value}} is @code{true}
9611cfa2 5061
cf499cff
JD
5062@item @code{@var{value}} is omitted (or @code{""} is specified).
5063This is equivalent to @code{true}.
9611cfa2 5064
cf499cff 5065@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5066
5067@item @var{variable} is never defined.
c6abeab1 5068In this case, Bison selects a default value.
9611cfa2 5069@end enumerate
148d66d8 5070
c6abeab1
JD
5071What @var{variable}s are accepted, as well as their meanings and default
5072values, depend on the selected target language and/or the parser
5073skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5074Summary,,%skeleton}).
5075Unaccepted @var{variable}s produce an error.
793fbca5
JD
5076Some of the accepted @var{variable}s are:
5077
fa819509 5078@table @code
6b5a0de9 5079@c ================================================== api.namespace
67501061
AD
5080@item api.namespace
5081@findex %define api.namespace
5082@itemize
5083@item Languages(s): C++
5084
f1b238df 5085@item Purpose: Specify the namespace for the parser class.
67501061
AD
5086For example, if you specify:
5087
5088@smallexample
5089%define api.namespace "foo::bar"
5090@end smallexample
5091
5092Bison uses @code{foo::bar} verbatim in references such as:
5093
5094@smallexample
5095foo::bar::parser::semantic_type
5096@end smallexample
5097
5098However, to open a namespace, Bison removes any leading @code{::} and then
5099splits on any remaining occurrences:
5100
5101@smallexample
5102namespace foo @{ namespace bar @{
5103 class position;
5104 class location;
5105@} @}
5106@end smallexample
5107
5108@item Accepted Values:
5109Any absolute or relative C++ namespace reference without a trailing
5110@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5111
5112@item Default Value:
5113The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5114This usage of @code{%name-prefix} is for backward compatibility and can
5115be confusing since @code{%name-prefix} also specifies the textual prefix
5116for the lexical analyzer function. Thus, if you specify
5117@code{%name-prefix}, it is best to also specify @samp{%define
5118api.namespace} so that @code{%name-prefix} @emph{only} affects the
5119lexical analyzer function. For example, if you specify:
5120
5121@smallexample
5122%define api.namespace "foo"
5123%name-prefix "bar::"
5124@end smallexample
5125
5126The parser namespace is @code{foo} and @code{yylex} is referenced as
5127@code{bar::lex}.
5128@end itemize
5129@c namespace
5130
5131
5132
5133@c ================================================== api.pure
d9df47b6
JD
5134@item api.pure
5135@findex %define api.pure
5136
5137@itemize @bullet
5138@item Language(s): C
5139
5140@item Purpose: Request a pure (reentrant) parser program.
5141@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5142
5143@item Accepted Values: Boolean
5144
cf499cff 5145@item Default Value: @code{false}
d9df47b6 5146@end itemize
71b00ed8 5147@c api.pure
d9df47b6 5148
67501061
AD
5149
5150
5151@c ================================================== api.push-pull
67212941
JD
5152@item api.push-pull
5153@findex %define api.push-pull
793fbca5
JD
5154
5155@itemize @bullet
eb45ef3b 5156@item Language(s): C (deterministic parsers only)
793fbca5 5157
f1b238df 5158@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5159@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5160(The current push parsing interface is experimental and may evolve.
5161More user feedback will help to stabilize it.)
793fbca5 5162
cf499cff 5163@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5164
cf499cff 5165@item Default Value: @code{pull}
793fbca5 5166@end itemize
67212941 5167@c api.push-pull
71b00ed8 5168
6b5a0de9
AD
5169
5170
5171@c ================================================== api.tokens.prefix
4c6622c2
AD
5172@item api.tokens.prefix
5173@findex %define api.tokens.prefix
5174
5175@itemize
5176@item Languages(s): all
5177
5178@item Purpose:
5179Add a prefix to the token names when generating their definition in the
5180target language. For instance
5181
5182@example
5183%token FILE for ERROR
5184%define api.tokens.prefix "TOK_"
5185%%
5186start: FILE for ERROR;
5187@end example
5188
5189@noindent
5190generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5191and @code{TOK_ERROR} in the generated source files. In particular, the
5192scanner must use these prefixed token names, while the grammar itself
5193may still use the short names (as in the sample rule given above). The
5194generated informational files (@file{*.output}, @file{*.xml},
5195@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5196and @ref{Calc++ Scanner}, for a complete example.
5197
5198@item Accepted Values:
5199Any string. Should be a valid identifier prefix in the target language,
5200in other words, it should typically be an identifier itself (sequence of
5201letters, underscores, and ---not at the beginning--- digits).
5202
5203@item Default Value:
5204empty
5205@end itemize
5206@c api.tokens.prefix
5207
5208
3cdc21cf
AD
5209@c ================================================== lex_symbol
5210@item variant
5211@findex %define lex_symbol
5212
5213@itemize @bullet
5214@item Language(s):
5215C++
5216
5217@item Purpose:
5218When variant-based semantic values are enabled (@pxref{C++ Variants}),
5219request that symbols be handled as a whole (type, value, and possibly
5220location) in the scanner. @xref{Complete Symbols}, for details.
5221
5222@item Accepted Values:
5223Boolean.
5224
5225@item Default Value:
5226@code{false}
5227@end itemize
5228@c lex_symbol
5229
5230
6b5a0de9
AD
5231@c ================================================== lr.default-reductions
5232
5bab9d08 5233@item lr.default-reductions
110ef36a 5234@cindex default reductions
5bab9d08 5235@findex %define lr.default-reductions
eb45ef3b
JD
5236@cindex delayed syntax errors
5237@cindex syntax errors delayed
8a4281b9 5238@cindex LAC
fcf834f9 5239@findex %nonassoc
eb45ef3b
JD
5240
5241@itemize @bullet
5242@item Language(s): all
5243
fcf834f9 5244@item Purpose: Specify the kind of states that are permitted to
110ef36a 5245contain default reductions.
fcf834f9
JD
5246That is, in such a state, Bison selects the reduction with the largest
5247lookahead set to be the default parser action and then removes that
110ef36a 5248lookahead set.
fcf834f9
JD
5249(The ability to specify where default reductions should be used is
5250experimental.
eb45ef3b
JD
5251More user feedback will help to stabilize it.)
5252
5253@item Accepted Values:
5254@itemize
cf499cff 5255@item @code{all}.
fcf834f9
JD
5256This is the traditional Bison behavior.
5257The main advantage is a significant decrease in the size of the parser
5258tables.
5259The disadvantage is that, when the generated parser encounters a
5260syntactically unacceptable token, the parser might then perform
5261unnecessary default reductions before it can detect the syntax error.
5262Such delayed syntax error detection is usually inherent in
8a4281b9
JD
5263LALR and IELR parser tables anyway due to
5264LR state merging (@pxref{Decl Summary,,lr.type}).
fcf834f9 5265Furthermore, the use of @code{%nonassoc} can contribute to delayed
8a4281b9 5266syntax error detection even in the case of canonical LR.
fcf834f9 5267As an experimental feature, delayed syntax error detection can be
8a4281b9 5268overcome in all cases by enabling LAC (@pxref{Decl
fcf834f9
JD
5269Summary,,parse.lac}, for details, including a discussion of the effects
5270of delayed syntax error detection).
eb45ef3b 5271
cf499cff 5272@item @code{consistent}.
eb45ef3b
JD
5273@cindex consistent states
5274A consistent state is a state that has only one possible action.
5275If that action is a reduction, then the parser does not need to request
5276a lookahead token from the scanner before performing that action.
fcf834f9
JD
5277However, the parser recognizes the ability to ignore the lookahead token
5278in this way only when such a reduction is encoded as a default
5279reduction.
5280Thus, if default reductions are permitted only in consistent states,
8a4281b9 5281then a canonical LR parser that does not employ
fcf834f9
JD
5282@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
5283syntactically unacceptable token from the scanner.
eb45ef3b 5284
cf499cff 5285@item @code{accepting}.
eb45ef3b 5286@cindex accepting state
fcf834f9
JD
5287In the accepting state, the default reduction is actually the accept
5288action.
8a4281b9 5289In this case, a canonical LR parser that does not employ
fcf834f9
JD
5290@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5291syntactically unacceptable token in the input.
5292That is, it does not perform any extra reductions.
eb45ef3b
JD
5293@end itemize
5294
5295@item Default Value:
5296@itemize
cf499cff
JD
5297@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5298@item @code{all} otherwise.
eb45ef3b
JD
5299@end itemize
5300@end itemize
5301
6b5a0de9
AD
5302@c ============================================ lr.keep-unreachable-states
5303
67212941
JD
5304@item lr.keep-unreachable-states
5305@findex %define lr.keep-unreachable-states
31984206
JD
5306
5307@itemize @bullet
5308@item Language(s): all
5309
f1b238df
JD
5310@item Purpose: Request that Bison allow unreachable parser states to
5311remain in the parser tables.
31984206
JD
5312Bison considers a state to be unreachable if there exists no sequence of
5313transitions from the start state to that state.
5314A state can become unreachable during conflict resolution if Bison disables a
5315shift action leading to it from a predecessor state.
5316Keeping unreachable states is sometimes useful for analysis purposes, but they
5317are useless in the generated parser.
5318
5319@item Accepted Values: Boolean
5320
cf499cff 5321@item Default Value: @code{false}
31984206
JD
5322
5323@item Caveats:
5324
5325@itemize @bullet
cff03fb2
JD
5326
5327@item Unreachable states may contain conflicts and may use rules not used in
5328any other state.
31984206
JD
5329Thus, keeping unreachable states may induce warnings that are irrelevant to
5330your parser's behavior, and it may eliminate warnings that are relevant.
5331Of course, the change in warnings may actually be relevant to a parser table
5332analysis that wants to keep unreachable states, so this behavior will likely
5333remain in future Bison releases.
5334
5335@item While Bison is able to remove unreachable states, it is not guaranteed to
5336remove other kinds of useless states.
5337Specifically, when Bison disables reduce actions during conflict resolution,
5338some goto actions may become useless, and thus some additional states may
5339become useless.
5340If Bison were to compute which goto actions were useless and then disable those
5341actions, it could identify such states as unreachable and then remove those
5342states.
5343However, Bison does not compute which goto actions are useless.
5344@end itemize
5345@end itemize
67212941 5346@c lr.keep-unreachable-states
31984206 5347
6b5a0de9
AD
5348@c ================================================== lr.type
5349
eb45ef3b
JD
5350@item lr.type
5351@findex %define lr.type
8a4281b9
JD
5352@cindex LALR
5353@cindex IELR
5354@cindex LR
eb45ef3b
JD
5355
5356@itemize @bullet
5357@item Language(s): all
5358
f1b238df 5359@item Purpose: Specify the type of parser tables within the
8a4281b9 5360LR(1) family.
eb45ef3b
JD
5361(This feature is experimental.
5362More user feedback will help to stabilize it.)
5363
5364@item Accepted Values:
5365@itemize
cf499cff 5366@item @code{lalr}.
8a4281b9
JD
5367While Bison generates LALR parser tables by default for
5368historical reasons, IELR or canonical LR is almost
eb45ef3b 5369always preferable for deterministic parsers.
8a4281b9 5370The trouble is that LALR parser tables can suffer from
110ef36a 5371mysterious conflicts and thus may not accept the full set of sentences
8a4281b9 5372that IELR and canonical LR accept.
eb45ef3b 5373@xref{Mystery Conflicts}, for details.
8a4281b9 5374However, there are at least two scenarios where LALR may be
eb45ef3b
JD
5375worthwhile:
5376@itemize
8a4281b9
JD
5377@cindex GLR with LALR
5378@item When employing GLR parsers (@pxref{GLR Parsers}), if you
eb45ef3b
JD
5379do not resolve any conflicts statically (for example, with @code{%left}
5380or @code{%prec}), then the parser explores all potential parses of any
5381given input.
8a4281b9 5382In this case, the use of LALR parser tables is guaranteed not
110ef36a 5383to alter the language accepted by the parser.
8a4281b9 5384LALR parser tables are the smallest parser tables Bison can
eb45ef3b 5385currently generate, so they may be preferable.
f1b238df 5386Nevertheless, once you begin to resolve conflicts statically,
8a4281b9
JD
5387GLR begins to behave more like a deterministic parser, and so
5388IELR and canonical LR can be helpful to avoid
5389LALR's mysterious behavior.
eb45ef3b
JD
5390
5391@item Occasionally during development, an especially malformed grammar
8a4281b9
JD
5392with a major recurring flaw may severely impede the IELR or
5393canonical LR parser table generation algorithm.
5394LALR can be a quick way to generate parser tables in order to
eb45ef3b 5395investigate such problems while ignoring the more subtle differences
8a4281b9 5396from IELR and canonical LR.
eb45ef3b
JD
5397@end itemize
5398
cf499cff 5399@item @code{ielr}.
8a4281b9
JD
5400IELR is a minimal LR algorithm.
5401That is, given any grammar (LR or non-LR),
5402IELR and canonical LR always accept exactly the same
eb45ef3b 5403set of sentences.
8a4281b9
JD
5404However, as for LALR, the number of parser states is often an
5405order of magnitude less for IELR than for canonical
5406LR.
5407More importantly, because canonical LR's extra parser states
5408may contain duplicate conflicts in the case of non-LR
5409grammars, the number of conflicts for IELR is often an order
eb45ef3b
JD
5410of magnitude less as well.
5411This can significantly reduce the complexity of developing of a grammar.
5412
cf499cff 5413@item @code{canonical-lr}.
eb45ef3b
JD
5414@cindex delayed syntax errors
5415@cindex syntax errors delayed
8a4281b9 5416@cindex LAC
fcf834f9 5417@findex %nonassoc
8a4281b9 5418While inefficient, canonical LR parser tables can be an
fcf834f9 5419interesting means to explore a grammar because they have a property that
8a4281b9 5420IELR and LALR tables do not.
fcf834f9
JD
5421That is, if @code{%nonassoc} is not used and default reductions are left
5422disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
8a4281b9 5423left context of every canonical LR state, the set of tokens
fcf834f9
JD
5424accepted by that state is guaranteed to be the exact set of tokens that
5425is syntactically acceptable in that left context.
8a4281b9 5426It might then seem that an advantage of canonical LR parsers
fcf834f9
JD
5427in production is that, under the above constraints, they are guaranteed
5428to detect a syntax error as soon as possible without performing any
5429unnecessary reductions.
8a4281b9 5430However, IELR parsers using LAC (@pxref{Decl
fcf834f9
JD
5431Summary,,parse.lac}) are also able to achieve this behavior without
5432sacrificing @code{%nonassoc} or default reductions.
eb45ef3b
JD
5433@end itemize
5434
cf499cff 5435@item Default Value: @code{lalr}
eb45ef3b
JD
5436@end itemize
5437
67501061
AD
5438
5439@c ================================================== namespace
793fbca5
JD
5440@item namespace
5441@findex %define namespace
67501061 5442Obsoleted by @code{api.namespace}
fa819509
AD
5443@c namespace
5444
31b850d2
AD
5445
5446@c ================================================== parse.assert
0c90a1f5
AD
5447@item parse.assert
5448@findex %define parse.assert
5449
5450@itemize
5451@item Languages(s): C++
5452
5453@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5454In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5455constructed and
0c90a1f5
AD
5456destroyed properly. This option checks these constraints.
5457
5458@item Accepted Values: Boolean
5459
5460@item Default Value: @code{false}
5461@end itemize
5462@c parse.assert
5463
31b850d2
AD
5464
5465@c ================================================== parse.error
5466@item parse.error
5467@findex %define parse.error
5468@itemize
5469@item Languages(s):
fcf834f9 5470all
31b850d2
AD
5471@item Purpose:
5472Control the kind of error messages passed to the error reporting
5473function. @xref{Error Reporting, ,The Error Reporting Function
5474@code{yyerror}}.
5475@item Accepted Values:
5476@itemize
cf499cff 5477@item @code{simple}
31b850d2
AD
5478Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5479error"}}.
cf499cff 5480@item @code{verbose}
31b850d2
AD
5481Error messages report the unexpected token, and possibly the expected
5482ones.
5483@end itemize
5484
5485@item Default Value:
5486@code{simple}
5487@end itemize
5488@c parse.error
5489
5490
fcf834f9
JD
5491@c ================================================== parse.lac
5492@item parse.lac
5493@findex %define parse.lac
8a4281b9 5494@cindex LAC
fcf834f9
JD
5495@cindex lookahead correction
5496
5497@itemize
5498@item Languages(s): C
5499
8a4281b9 5500@item Purpose: Enable LAC (lookahead correction) to improve
fcf834f9
JD
5501syntax error handling.
5502
8a4281b9 5503Canonical LR, IELR, and LALR can suffer
fcf834f9
JD
5504from a couple of problems upon encountering a syntax error. First, the
5505parser might perform additional parser stack reductions before
5506discovering the syntax error. Such reductions perform user semantic
5507actions that are unexpected because they are based on an invalid token,
5508and they cause error recovery to begin in a different syntactic context
5509than the one in which the invalid token was encountered. Second, when
5510verbose error messages are enabled (with @code{%error-verbose} or
5511@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5512error message can both contain invalid tokens and omit valid tokens.
5513
5514The culprits for the above problems are @code{%nonassoc}, default
5515reductions in inconsistent states, and parser state merging. Thus,
8a4281b9
JD
5516IELR and LALR suffer the most. Canonical
5517LR can suffer only if @code{%nonassoc} is used or if default
fcf834f9
JD
5518reductions are enabled for inconsistent states.
5519
8a4281b9
JD
5520LAC is a new mechanism within the parsing algorithm that
5521completely solves these problems for canonical LR,
5522IELR, and LALR without sacrificing @code{%nonassoc},
fcf834f9
JD
5523default reductions, or state mering. Conceptually, the mechanism is
5524straight-forward. Whenever the parser fetches a new token from the
5525scanner so that it can determine the next parser action, it immediately
5526suspends normal parsing and performs an exploratory parse using a
5527temporary copy of the normal parser state stack. During this
5528exploratory parse, the parser does not perform user semantic actions.
5529If the exploratory parse reaches a shift action, normal parsing then
5530resumes on the normal parser stacks. If the exploratory parse reaches
5531an error instead, the parser reports a syntax error. If verbose syntax
5532error messages are enabled, the parser must then discover the list of
5533expected tokens, so it performs a separate exploratory parse for each
5534token in the grammar.
5535
8a4281b9 5536There is one subtlety about the use of LAC. That is, when in
fcf834f9
JD
5537a consistent parser state with a default reduction, the parser will not
5538attempt to fetch a token from the scanner because no lookahead is needed
5539to determine the next parser action. Thus, whether default reductions
5540are enabled in consistent states (@pxref{Decl
5541Summary,,lr.default-reductions}) affects how soon the parser detects a
5542syntax error: when it @emph{reaches} an erroneous token or when it
5543eventually @emph{needs} that token as a lookahead. The latter behavior
5544is probably more intuitive, so Bison currently provides no way to
5545achieve the former behavior while default reductions are fully enabled.
5546
8a4281b9 5547Thus, when LAC is in use, for some fixed decision of whether
fcf834f9 5548to enable default reductions in consistent states, canonical
8a4281b9 5549LR and IELR behave exactly the same for both
fcf834f9 5550syntactically acceptable and syntactically unacceptable input. While
8a4281b9
JD
5551LALR still does not support the full language-recognition
5552power of canonical LR and IELR, LAC at
5553least enables LALR's syntax error handling to correctly
5554reflect LALR's language-recognition power.
fcf834f9 5555
8a4281b9 5556Because LAC requires many parse actions to be performed twice,
fcf834f9
JD
5557it can have a performance penalty. However, not all parse actions must
5558be performed twice. Specifically, during a series of default reductions
5559in consistent states and shift actions, the parser never has to initiate
5560an exploratory parse. Moreover, the most time-consuming tasks in a
5561parse are often the file I/O, the lexical analysis performed by the
5562scanner, and the user's semantic actions, but none of these are
5563performed during the exploratory parse. Finally, the base of the
5564temporary stack used during an exploratory parse is a pointer into the
5565normal parser state stack so that the stack is never physically copied.
8a4281b9 5566In our experience, the performance penalty of LAC has proven
fcf834f9
JD
5567insignificant for practical grammars.
5568
5569@item Accepted Values: @code{none}, @code{full}
5570
5571@item Default Value: @code{none}
5572@end itemize
5573@c parse.lac
5574
31b850d2 5575@c ================================================== parse.trace
fa819509
AD
5576@item parse.trace
5577@findex %define parse.trace
5578
5579@itemize
5580@item Languages(s): C, C++
5581
5582@item Purpose: Require parser instrumentation for tracing.
5583In C/C++, define the macro @code{YYDEBUG} to 1 in the parser file if it
5584is not already defined, so that the debugging facilities are compiled.
5585@xref{Tracing, ,Tracing Your Parser}.
793fbca5 5586
fa819509
AD
5587@item Accepted Values: Boolean
5588
5589@item Default Value: @code{false}
5590@end itemize
fa819509 5591@c parse.trace
99c08fb6 5592
3cdc21cf
AD
5593@c ================================================== variant
5594@item variant
5595@findex %define variant
5596
5597@itemize @bullet
5598@item Language(s):
5599C++
5600
5601@item Purpose:
f1b238df 5602Request variant-based semantic values.
3cdc21cf
AD
5603@xref{C++ Variants}.
5604
5605@item Accepted Values:
5606Boolean.
5607
5608@item Default Value:
5609@code{false}
5610@end itemize
5611@c variant
5612
5613
99c08fb6 5614@end table
d782395d 5615@end deffn
99c08fb6 5616@c ---------------------------------------------------------- %define
d782395d 5617
18b519c0 5618@deffn {Directive} %defines
4bfd5e4e
PE
5619Write a header file containing macro definitions for the token type
5620names defined in the grammar as well as a few other declarations.
d8988b2f 5621If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5622is named @file{@var{name}.h}.
d8988b2f 5623
b321737f 5624For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5625@code{YYSTYPE} is already defined as a macro or you have used a
5626@code{<@var{type}>} tag without using @code{%union}.
5627Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5628(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5629require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5630or type definition
f8e1c9e5
AD
5631(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5632arrange for these definitions to be propagated to all modules, e.g., by
5633putting them in a prerequisite header that is included both by your
5634parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5635
5636Unless your parser is pure, the output header declares @code{yylval}
5637as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5638Parser}.
5639
5640If you have also used locations, the output header declares
5641@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5642the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5643Locations}.
5644
f8e1c9e5
AD
5645This output file is normally essential if you wish to put the definition
5646of @code{yylex} in a separate source file, because @code{yylex}
5647typically needs to be able to refer to the above-mentioned declarations
5648and to the token type codes. @xref{Token Values, ,Semantic Values of
5649Tokens}.
9bc0dd67 5650
16dc6a9e
JD
5651@findex %code requires
5652@findex %code provides
5653If you have declared @code{%code requires} or @code{%code provides}, the output
5654header also contains their code.
148d66d8 5655@xref{Decl Summary, ,%code}.
592d0b1e
PB
5656@end deffn
5657
02975b9a
JD
5658@deffn {Directive} %defines @var{defines-file}
5659Same as above, but save in the file @var{defines-file}.
5660@end deffn
5661
18b519c0 5662@deffn {Directive} %destructor
258b75ca 5663Specify how the parser should reclaim the memory associated to
fa7e68c3 5664discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5665@end deffn
72f889cc 5666
02975b9a 5667@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5668Specify a prefix to use for all Bison output file names. The names are
5669chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5670@end deffn
d8988b2f 5671
e6e704dc 5672@deffn {Directive} %language "@var{language}"
0e021770 5673Specify the programming language for the generated parser. Currently
59da312b 5674supported languages include C, C++, and Java.
e6e704dc 5675@var{language} is case-insensitive.
ed4d67dc
JD
5676
5677This directive is experimental and its effect may be modified in future
5678releases.
0e021770
PE
5679@end deffn
5680
18b519c0 5681@deffn {Directive} %locations
89cab50d
AD
5682Generate the code processing the locations (@pxref{Action Features,
5683,Special Features for Use in Actions}). This mode is enabled as soon as
5684the grammar uses the special @samp{@@@var{n}} tokens, but if your
5685grammar does not use it, using @samp{%locations} allows for more
6e649e65 5686accurate syntax error messages.
18b519c0 5687@end deffn
89cab50d 5688
02975b9a 5689@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5690Rename the external symbols used in the parser so that they start with
5691@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5692in C parsers
d8988b2f 5693is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5694@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5695(if locations are used) @code{yylloc}. If you use a push parser,
5696@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5697@code{yypstate_new} and @code{yypstate_delete} will
5698also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5 5699names become @code{c_parse}, @code{c_lex}, and so on.
67501061 5700For C++ parsers, see the @samp{%define api.namespace} documentation in this
793fbca5 5701section.
aa08666d 5702@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5703@end deffn
931c7513 5704
91d2c560 5705@ifset defaultprec
22fccf95
PE
5706@deffn {Directive} %no-default-prec
5707Do not assign a precedence to rules lacking an explicit @code{%prec}
5708modifier (@pxref{Contextual Precedence, ,Context-Dependent
5709Precedence}).
5710@end deffn
91d2c560 5711@end ifset
22fccf95 5712
18b519c0 5713@deffn {Directive} %no-lines
931c7513
RS
5714Don't generate any @code{#line} preprocessor commands in the parser
5715file. Ordinarily Bison writes these commands in the parser file so that
5716the C compiler and debuggers will associate errors and object code with
5717your source file (the grammar file). This directive causes them to
5718associate errors with the parser file, treating it an independent source
5719file in its own right.
18b519c0 5720@end deffn
931c7513 5721
02975b9a 5722@deffn {Directive} %output "@var{file}"
fa4d969f 5723Specify @var{file} for the parser file.
18b519c0 5724@end deffn
6deb4447 5725
18b519c0 5726@deffn {Directive} %pure-parser
67501061 5727Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 5728for which Bison is more careful to warn about unreasonable usage.
18b519c0 5729@end deffn
6deb4447 5730
b50d2359 5731@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5732Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5733Require a Version of Bison}.
b50d2359
AD
5734@end deffn
5735
0e021770 5736@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5737Specify the skeleton to use.
5738
ed4d67dc
JD
5739@c You probably don't need this option unless you are developing Bison.
5740@c You should use @code{%language} if you want to specify the skeleton for a
5741@c different language, because it is clearer and because it will always choose the
5742@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5743
5744If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5745file in the Bison installation directory.
5746If it does, @var{file} is an absolute file name or a file name relative to the
5747directory of the grammar file.
5748This is similar to how most shells resolve commands.
0e021770
PE
5749@end deffn
5750
18b519c0 5751@deffn {Directive} %token-table
931c7513
RS
5752Generate an array of token names in the parser file. The name of the
5753array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5754token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5755three elements of @code{yytname} correspond to the predefined tokens
5756@code{"$end"},
88bce5a2
AD
5757@code{"error"}, and @code{"$undefined"}; after these come the symbols
5758defined in the grammar file.
931c7513 5759
9e0876fb
PE
5760The name in the table includes all the characters needed to represent
5761the token in Bison. For single-character literals and literal
5762strings, this includes the surrounding quoting characters and any
5763escape sequences. For example, the Bison single-character literal
5764@code{'+'} corresponds to a three-character name, represented in C as
5765@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5766corresponds to a five-character name, represented in C as
5767@code{"\"\\\\/\""}.
931c7513 5768
8c9a50be 5769When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5770definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5771@code{YYNRULES}, and @code{YYNSTATES}:
5772
5773@table @code
5774@item YYNTOKENS
5775The highest token number, plus one.
5776@item YYNNTS
9ecbd125 5777The number of nonterminal symbols.
931c7513
RS
5778@item YYNRULES
5779The number of grammar rules,
5780@item YYNSTATES
5781The number of parser states (@pxref{Parser States}).
5782@end table
18b519c0 5783@end deffn
d8988b2f 5784
18b519c0 5785@deffn {Directive} %verbose
d8988b2f 5786Write an extra output file containing verbose descriptions of the
742e4900 5787parser states and what is done for each type of lookahead token in
72d2299c 5788that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5789information.
18b519c0 5790@end deffn
d8988b2f 5791
18b519c0 5792@deffn {Directive} %yacc
d8988b2f
AD
5793Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5794including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5795@end deffn
d8988b2f
AD
5796
5797
342b8b6e 5798@node Multiple Parsers
bfa74976
RS
5799@section Multiple Parsers in the Same Program
5800
5801Most programs that use Bison parse only one language and therefore contain
5802only one Bison parser. But what if you want to parse more than one
5803language with the same program? Then you need to avoid a name conflict
5804between different definitions of @code{yyparse}, @code{yylval}, and so on.
5805
5806The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5807(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5808functions and variables of the Bison parser to start with @var{prefix}
5809instead of @samp{yy}. You can use this to give each parser distinct
5810names that do not conflict.
bfa74976
RS
5811
5812The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5813@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5814@code{yychar} and @code{yydebug}. If you use a push parser,
5815@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5816@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5817For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5818@code{clex}, and so on.
bfa74976
RS
5819
5820@strong{All the other variables and macros associated with Bison are not
5821renamed.} These others are not global; there is no conflict if the same
5822name is used in different parsers. For example, @code{YYSTYPE} is not
5823renamed, but defining this in different ways in different parsers causes
5824no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5825
5826The @samp{-p} option works by adding macro definitions to the beginning
5827of the parser source file, defining @code{yyparse} as
5828@code{@var{prefix}parse}, and so on. This effectively substitutes one
5829name for the other in the entire parser file.
5830
342b8b6e 5831@node Interface
bfa74976
RS
5832@chapter Parser C-Language Interface
5833@cindex C-language interface
5834@cindex interface
5835
5836The Bison parser is actually a C function named @code{yyparse}. Here we
5837describe the interface conventions of @code{yyparse} and the other
5838functions that it needs to use.
5839
5840Keep in mind that the parser uses many C identifiers starting with
5841@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5842identifier (aside from those in this manual) in an action or in epilogue
5843in the grammar file, you are likely to run into trouble.
bfa74976
RS
5844
5845@menu
f5f419de
DJ
5846* Parser Function:: How to call @code{yyparse} and what it returns.
5847* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5848* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5849* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5850* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5851* Lexical:: You must supply a function @code{yylex}
5852 which reads tokens.
5853* Error Reporting:: You must supply a function @code{yyerror}.
5854* Action Features:: Special features for use in actions.
5855* Internationalization:: How to let the parser speak in the user's
5856 native language.
bfa74976
RS
5857@end menu
5858
342b8b6e 5859@node Parser Function
bfa74976
RS
5860@section The Parser Function @code{yyparse}
5861@findex yyparse
5862
5863You call the function @code{yyparse} to cause parsing to occur. This
5864function reads tokens, executes actions, and ultimately returns when it
5865encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5866write an action which directs @code{yyparse} to return immediately
5867without reading further.
bfa74976 5868
2a8d363a
AD
5869
5870@deftypefun int yyparse (void)
bfa74976
RS
5871The value returned by @code{yyparse} is 0 if parsing was successful (return
5872is due to end-of-input).
5873
b47dbebe
PE
5874The value is 1 if parsing failed because of invalid input, i.e., input
5875that contains a syntax error or that causes @code{YYABORT} to be
5876invoked.
5877
5878The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5879@end deftypefun
bfa74976
RS
5880
5881In an action, you can cause immediate return from @code{yyparse} by using
5882these macros:
5883
2a8d363a 5884@defmac YYACCEPT
bfa74976
RS
5885@findex YYACCEPT
5886Return immediately with value 0 (to report success).
2a8d363a 5887@end defmac
bfa74976 5888
2a8d363a 5889@defmac YYABORT
bfa74976
RS
5890@findex YYABORT
5891Return immediately with value 1 (to report failure).
2a8d363a
AD
5892@end defmac
5893
5894If you use a reentrant parser, you can optionally pass additional
5895parameter information to it in a reentrant way. To do so, use the
5896declaration @code{%parse-param}:
5897
2055a44e 5898@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5899@findex %parse-param
2055a44e
AD
5900Declare that one or more
5901@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5902The @var{argument-declaration} is used when declaring
feeb0eda
PE
5903functions or prototypes. The last identifier in
5904@var{argument-declaration} must be the argument name.
2a8d363a
AD
5905@end deffn
5906
5907Here's an example. Write this in the parser:
5908
5909@example
2055a44e 5910%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5911@end example
5912
5913@noindent
5914Then call the parser like this:
5915
5916@example
5917@{
5918 int nastiness, randomness;
5919 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5920 value = yyparse (&nastiness, &randomness);
5921 @dots{}
5922@}
5923@end example
5924
5925@noindent
5926In the grammar actions, use expressions like this to refer to the data:
5927
5928@example
5929exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5930@end example
5931
9987d1b3
JD
5932@node Push Parser Function
5933@section The Push Parser Function @code{yypush_parse}
5934@findex yypush_parse
5935
59da312b
JD
5936(The current push parsing interface is experimental and may evolve.
5937More user feedback will help to stabilize it.)
5938
f4101aa6 5939You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5940function is available if either the @samp{%define api.push-pull push} or
5941@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5942@xref{Push Decl, ,A Push Parser}.
5943
5944@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5945The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5946following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5947is required to finish parsing the grammar.
5948@end deftypefun
5949
5950@node Pull Parser Function
5951@section The Pull Parser Function @code{yypull_parse}
5952@findex yypull_parse
5953
59da312b
JD
5954(The current push parsing interface is experimental and may evolve.
5955More user feedback will help to stabilize it.)
5956
f4101aa6 5957You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5958stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5959declaration is used.
9987d1b3
JD
5960@xref{Push Decl, ,A Push Parser}.
5961
5962@deftypefun int yypull_parse (yypstate *yyps)
5963The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5964@end deftypefun
5965
5966@node Parser Create Function
5967@section The Parser Create Function @code{yystate_new}
5968@findex yypstate_new
5969
59da312b
JD
5970(The current push parsing interface is experimental and may evolve.
5971More user feedback will help to stabilize it.)
5972
f4101aa6 5973You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5974This function is available if either the @samp{%define api.push-pull push} or
5975@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5976@xref{Push Decl, ,A Push Parser}.
5977
5978@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5979The function will return a valid parser instance if there was memory available
333e670c
JD
5980or 0 if no memory was available.
5981In impure mode, it will also return 0 if a parser instance is currently
5982allocated.
9987d1b3
JD
5983@end deftypefun
5984
5985@node Parser Delete Function
5986@section The Parser Delete Function @code{yystate_delete}
5987@findex yypstate_delete
5988
59da312b
JD
5989(The current push parsing interface is experimental and may evolve.
5990More user feedback will help to stabilize it.)
5991
9987d1b3 5992You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5993function is available if either the @samp{%define api.push-pull push} or
5994@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5995@xref{Push Decl, ,A Push Parser}.
5996
5997@deftypefun void yypstate_delete (yypstate *yyps)
5998This function will reclaim the memory associated with a parser instance.
5999After this call, you should no longer attempt to use the parser instance.
6000@end deftypefun
bfa74976 6001
342b8b6e 6002@node Lexical
bfa74976
RS
6003@section The Lexical Analyzer Function @code{yylex}
6004@findex yylex
6005@cindex lexical analyzer
6006
6007The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6008the input stream and returns them to the parser. Bison does not create
6009this function automatically; you must write it so that @code{yyparse} can
6010call it. The function is sometimes referred to as a lexical scanner.
6011
6012In simple programs, @code{yylex} is often defined at the end of the Bison
6013grammar file. If @code{yylex} is defined in a separate source file, you
6014need to arrange for the token-type macro definitions to be available there.
6015To do this, use the @samp{-d} option when you run Bison, so that it will
6016write these macro definitions into a separate header file
6017@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 6018that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
6019
6020@menu
6021* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6022* Token Values:: How @code{yylex} must return the semantic value
6023 of the token it has read.
6024* Token Locations:: How @code{yylex} must return the text location
6025 (line number, etc.) of the token, if the
6026 actions want that.
6027* Pure Calling:: How the calling convention differs in a pure parser
6028 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6029@end menu
6030
342b8b6e 6031@node Calling Convention
bfa74976
RS
6032@subsection Calling Convention for @code{yylex}
6033
72d2299c
PE
6034The value that @code{yylex} returns must be the positive numeric code
6035for the type of token it has just found; a zero or negative value
6036signifies end-of-input.
bfa74976
RS
6037
6038When a token is referred to in the grammar rules by a name, that name
6039in the parser file becomes a C macro whose definition is the proper
6040numeric code for that token type. So @code{yylex} can use the name
6041to indicate that type. @xref{Symbols}.
6042
6043When a token is referred to in the grammar rules by a character literal,
6044the numeric code for that character is also the code for the token type.
72d2299c
PE
6045So @code{yylex} can simply return that character code, possibly converted
6046to @code{unsigned char} to avoid sign-extension. The null character
6047must not be used this way, because its code is zero and that
bfa74976
RS
6048signifies end-of-input.
6049
6050Here is an example showing these things:
6051
6052@example
13863333
AD
6053int
6054yylex (void)
bfa74976
RS
6055@{
6056 @dots{}
72d2299c 6057 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6058 return 0;
6059 @dots{}
6060 if (c == '+' || c == '-')
72d2299c 6061 return c; /* Assume token type for `+' is '+'. */
bfa74976 6062 @dots{}
72d2299c 6063 return INT; /* Return the type of the token. */
bfa74976
RS
6064 @dots{}
6065@}
6066@end example
6067
6068@noindent
6069This interface has been designed so that the output from the @code{lex}
6070utility can be used without change as the definition of @code{yylex}.
6071
931c7513
RS
6072If the grammar uses literal string tokens, there are two ways that
6073@code{yylex} can determine the token type codes for them:
6074
6075@itemize @bullet
6076@item
6077If the grammar defines symbolic token names as aliases for the
6078literal string tokens, @code{yylex} can use these symbolic names like
6079all others. In this case, the use of the literal string tokens in
6080the grammar file has no effect on @code{yylex}.
6081
6082@item
9ecbd125 6083@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6084table. The index of the token in the table is the token type's code.
9ecbd125 6085The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6086double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6087token's characters are escaped as necessary to be suitable as input
6088to Bison.
931c7513 6089
9e0876fb
PE
6090Here's code for looking up a multicharacter token in @code{yytname},
6091assuming that the characters of the token are stored in
6092@code{token_buffer}, and assuming that the token does not contain any
6093characters like @samp{"} that require escaping.
931c7513
RS
6094
6095@smallexample
6096for (i = 0; i < YYNTOKENS; i++)
6097 @{
6098 if (yytname[i] != 0
6099 && yytname[i][0] == '"'
68449b3a
PE
6100 && ! strncmp (yytname[i] + 1, token_buffer,
6101 strlen (token_buffer))
931c7513
RS
6102 && yytname[i][strlen (token_buffer) + 1] == '"'
6103 && yytname[i][strlen (token_buffer) + 2] == 0)
6104 break;
6105 @}
6106@end smallexample
6107
6108The @code{yytname} table is generated only if you use the
8c9a50be 6109@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6110@end itemize
6111
342b8b6e 6112@node Token Values
bfa74976
RS
6113@subsection Semantic Values of Tokens
6114
6115@vindex yylval
9d9b8b70 6116In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6117be stored into the global variable @code{yylval}. When you are using
6118just one data type for semantic values, @code{yylval} has that type.
6119Thus, if the type is @code{int} (the default), you might write this in
6120@code{yylex}:
6121
6122@example
6123@group
6124 @dots{}
72d2299c
PE
6125 yylval = value; /* Put value onto Bison stack. */
6126 return INT; /* Return the type of the token. */
bfa74976
RS
6127 @dots{}
6128@end group
6129@end example
6130
6131When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6132made from the @code{%union} declaration (@pxref{Union Decl, ,The
6133Collection of Value Types}). So when you store a token's value, you
6134must use the proper member of the union. If the @code{%union}
6135declaration looks like this:
bfa74976
RS
6136
6137@example
6138@group
6139%union @{
6140 int intval;
6141 double val;
6142 symrec *tptr;
6143@}
6144@end group
6145@end example
6146
6147@noindent
6148then the code in @code{yylex} might look like this:
6149
6150@example
6151@group
6152 @dots{}
72d2299c
PE
6153 yylval.intval = value; /* Put value onto Bison stack. */
6154 return INT; /* Return the type of the token. */
bfa74976
RS
6155 @dots{}
6156@end group
6157@end example
6158
95923bd6
AD
6159@node Token Locations
6160@subsection Textual Locations of Tokens
bfa74976
RS
6161
6162@vindex yylloc
847bf1f5 6163If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
6164Tracking Locations}) in actions to keep track of the textual locations
6165of tokens and groupings, then you must provide this information in
6166@code{yylex}. The function @code{yyparse} expects to find the textual
6167location of a token just parsed in the global variable @code{yylloc}.
6168So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
6169
6170By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6171initialize the members that are going to be used by the actions. The
6172four members are called @code{first_line}, @code{first_column},
6173@code{last_line} and @code{last_column}. Note that the use of this
6174feature makes the parser noticeably slower.
bfa74976
RS
6175
6176@tindex YYLTYPE
6177The data type of @code{yylloc} has the name @code{YYLTYPE}.
6178
342b8b6e 6179@node Pure Calling
c656404a 6180@subsection Calling Conventions for Pure Parsers
bfa74976 6181
67501061 6182When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6183pure, reentrant parser, the global communication variables @code{yylval}
6184and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6185Parser}.) In such parsers the two global variables are replaced by
6186pointers passed as arguments to @code{yylex}. You must declare them as
6187shown here, and pass the information back by storing it through those
6188pointers.
bfa74976
RS
6189
6190@example
13863333
AD
6191int
6192yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6193@{
6194 @dots{}
6195 *lvalp = value; /* Put value onto Bison stack. */
6196 return INT; /* Return the type of the token. */
6197 @dots{}
6198@}
6199@end example
6200
6201If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6202textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6203this case, omit the second argument; @code{yylex} will be called with
6204only one argument.
6205
2055a44e 6206If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6207@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6208Function}). To pass additional arguments to both @code{yylex} and
6209@code{yyparse}, use @code{%param}.
e425e872 6210
2055a44e 6211@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6212@findex %lex-param
2055a44e
AD
6213Specify that @var{argument-declaration} are additional @code{yylex} argument
6214declarations. You may pass one or more such declarations, which is
6215equivalent to repeating @code{%lex-param}.
6216@end deffn
6217
6218@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6219@findex %param
6220Specify that @var{argument-declaration} are additional
6221@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6222@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6223@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6224declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6225@end deffn
e425e872 6226
2a8d363a 6227For instance:
e425e872
RS
6228
6229@example
2055a44e
AD
6230%lex-param @{scanner_mode *mode@}
6231%parse-param @{parser_mode *mode@}
6232%param @{environment_type *env@}
e425e872
RS
6233@end example
6234
6235@noindent
2a8d363a 6236results in the following signature:
e425e872
RS
6237
6238@example
2055a44e
AD
6239int yylex (scanner_mode *mode, environment_type *env);
6240int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6241@end example
6242
67501061 6243If @samp{%define api.pure} is added:
c656404a
RS
6244
6245@example
2055a44e
AD
6246int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6247int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6248@end example
6249
2a8d363a 6250@noindent
67501061 6251and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6252
2a8d363a 6253@example
2055a44e
AD
6254int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6255 scanner_mode *mode, environment_type *env);
6256int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6257@end example
931c7513 6258
342b8b6e 6259@node Error Reporting
bfa74976
RS
6260@section The Error Reporting Function @code{yyerror}
6261@cindex error reporting function
6262@findex yyerror
6263@cindex parse error
6264@cindex syntax error
6265
31b850d2 6266The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6267whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6268action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6269macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6270in Actions}).
bfa74976
RS
6271
6272The Bison parser expects to report the error by calling an error
6273reporting function named @code{yyerror}, which you must supply. It is
6274called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6275receives one argument. For a syntax error, the string is normally
6276@w{@code{"syntax error"}}.
bfa74976 6277
31b850d2 6278@findex %define parse.error
cf499cff 6279If you invoke @samp{%define parse.error verbose} in the Bison
2a8d363a
AD
6280declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6281Section}), then Bison provides a more verbose and specific error message
6e649e65 6282string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6283
1a059451
PE
6284The parser can detect one other kind of error: memory exhaustion. This
6285can happen when the input contains constructions that are very deeply
bfa74976 6286nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6287parser normally extends its stack automatically up to a very large limit. But
6288if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6289fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6290
6291In some cases diagnostics like @w{@code{"syntax error"}} are
6292translated automatically from English to some other language before
6293they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6294
6295The following definition suffices in simple programs:
6296
6297@example
6298@group
13863333 6299void
38a92d50 6300yyerror (char const *s)
bfa74976
RS
6301@{
6302@end group
6303@group
6304 fprintf (stderr, "%s\n", s);
6305@}
6306@end group
6307@end example
6308
6309After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6310error recovery if you have written suitable error recovery grammar rules
6311(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6312immediately return 1.
6313
93724f13 6314Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6315an access to the current location.
8a4281b9 6316This is indeed the case for the GLR
2a8d363a 6317parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6318@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6319@code{yyerror} are:
6320
6321@example
38a92d50
PE
6322void yyerror (char const *msg); /* Yacc parsers. */
6323void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6324@end example
6325
feeb0eda 6326If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6327
6328@example
b317297e
PE
6329void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6330void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6331@end example
6332
8a4281b9 6333Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6334convention for absolutely pure parsers, i.e., when the calling
6335convention of @code{yylex} @emph{and} the calling convention of
67501061 6336@samp{%define api.pure} are pure.
d9df47b6 6337I.e.:
2a8d363a
AD
6338
6339@example
6340/* Location tracking. */
6341%locations
6342/* Pure yylex. */
d9df47b6 6343%define api.pure
feeb0eda 6344%lex-param @{int *nastiness@}
2a8d363a 6345/* Pure yyparse. */
feeb0eda
PE
6346%parse-param @{int *nastiness@}
6347%parse-param @{int *randomness@}
2a8d363a
AD
6348@end example
6349
6350@noindent
6351results in the following signatures for all the parser kinds:
6352
6353@example
6354int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6355int yyparse (int *nastiness, int *randomness);
93724f13
AD
6356void yyerror (YYLTYPE *locp,
6357 int *nastiness, int *randomness,
38a92d50 6358 char const *msg);
2a8d363a
AD
6359@end example
6360
1c0c3e95 6361@noindent
38a92d50
PE
6362The prototypes are only indications of how the code produced by Bison
6363uses @code{yyerror}. Bison-generated code always ignores the returned
6364value, so @code{yyerror} can return any type, including @code{void}.
6365Also, @code{yyerror} can be a variadic function; that is why the
6366message is always passed last.
6367
6368Traditionally @code{yyerror} returns an @code{int} that is always
6369ignored, but this is purely for historical reasons, and @code{void} is
6370preferable since it more accurately describes the return type for
6371@code{yyerror}.
93724f13 6372
bfa74976
RS
6373@vindex yynerrs
6374The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6375reported so far. Normally this variable is global; but if you
704a47c4
AD
6376request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6377then it is a local variable which only the actions can access.
bfa74976 6378
342b8b6e 6379@node Action Features
bfa74976
RS
6380@section Special Features for Use in Actions
6381@cindex summary, action features
6382@cindex action features summary
6383
6384Here is a table of Bison constructs, variables and macros that
6385are useful in actions.
6386
18b519c0 6387@deffn {Variable} $$
bfa74976
RS
6388Acts like a variable that contains the semantic value for the
6389grouping made by the current rule. @xref{Actions}.
18b519c0 6390@end deffn
bfa74976 6391
18b519c0 6392@deffn {Variable} $@var{n}
bfa74976
RS
6393Acts like a variable that contains the semantic value for the
6394@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6395@end deffn
bfa74976 6396
18b519c0 6397@deffn {Variable} $<@var{typealt}>$
bfa74976 6398Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6399specified by the @code{%union} declaration. @xref{Action Types, ,Data
6400Types of Values in Actions}.
18b519c0 6401@end deffn
bfa74976 6402
18b519c0 6403@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6404Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6405union specified by the @code{%union} declaration.
e0c471a9 6406@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6407@end deffn
bfa74976 6408
18b519c0 6409@deffn {Macro} YYABORT;
bfa74976
RS
6410Return immediately from @code{yyparse}, indicating failure.
6411@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6412@end deffn
bfa74976 6413
18b519c0 6414@deffn {Macro} YYACCEPT;
bfa74976
RS
6415Return immediately from @code{yyparse}, indicating success.
6416@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6417@end deffn
bfa74976 6418
18b519c0 6419@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6420@findex YYBACKUP
6421Unshift a token. This macro is allowed only for rules that reduce
742e4900 6422a single value, and only when there is no lookahead token.
8a4281b9 6423It is also disallowed in GLR parsers.
742e4900 6424It installs a lookahead token with token type @var{token} and
bfa74976
RS
6425semantic value @var{value}; then it discards the value that was
6426going to be reduced by this rule.
6427
6428If the macro is used when it is not valid, such as when there is
742e4900 6429a lookahead token already, then it reports a syntax error with
bfa74976
RS
6430a message @samp{cannot back up} and performs ordinary error
6431recovery.
6432
6433In either case, the rest of the action is not executed.
18b519c0 6434@end deffn
bfa74976 6435
18b519c0 6436@deffn {Macro} YYEMPTY
bfa74976 6437@vindex YYEMPTY
742e4900 6438Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6439@end deffn
bfa74976 6440
32c29292
JD
6441@deffn {Macro} YYEOF
6442@vindex YYEOF
742e4900 6443Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6444stream.
6445@end deffn
6446
18b519c0 6447@deffn {Macro} YYERROR;
bfa74976
RS
6448@findex YYERROR
6449Cause an immediate syntax error. This statement initiates error
6450recovery just as if the parser itself had detected an error; however, it
6451does not call @code{yyerror}, and does not print any message. If you
6452want to print an error message, call @code{yyerror} explicitly before
6453the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6454@end deffn
bfa74976 6455
18b519c0 6456@deffn {Macro} YYRECOVERING
02103984
PE
6457@findex YYRECOVERING
6458The expression @code{YYRECOVERING ()} yields 1 when the parser
6459is recovering from a syntax error, and 0 otherwise.
bfa74976 6460@xref{Error Recovery}.
18b519c0 6461@end deffn
bfa74976 6462
18b519c0 6463@deffn {Variable} yychar
742e4900
JD
6464Variable containing either the lookahead token, or @code{YYEOF} when the
6465lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6466has been performed so the next token is not yet known.
6467Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6468Actions}).
742e4900 6469@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6470@end deffn
bfa74976 6471
18b519c0 6472@deffn {Macro} yyclearin;
742e4900 6473Discard the current lookahead token. This is useful primarily in
32c29292
JD
6474error rules.
6475Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6476Semantic Actions}).
6477@xref{Error Recovery}.
18b519c0 6478@end deffn
bfa74976 6479
18b519c0 6480@deffn {Macro} yyerrok;
bfa74976 6481Resume generating error messages immediately for subsequent syntax
13863333 6482errors. This is useful primarily in error rules.
bfa74976 6483@xref{Error Recovery}.
18b519c0 6484@end deffn
bfa74976 6485
32c29292 6486@deffn {Variable} yylloc
742e4900 6487Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6488to @code{YYEMPTY} or @code{YYEOF}.
6489Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6490Actions}).
6491@xref{Actions and Locations, ,Actions and Locations}.
6492@end deffn
6493
6494@deffn {Variable} yylval
742e4900 6495Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6496not set to @code{YYEMPTY} or @code{YYEOF}.
6497Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6498Actions}).
6499@xref{Actions, ,Actions}.
6500@end deffn
6501
18b519c0 6502@deffn {Value} @@$
847bf1f5 6503@findex @@$
95923bd6 6504Acts like a structure variable containing information on the textual location
847bf1f5
AD
6505of the grouping made by the current rule. @xref{Locations, ,
6506Tracking Locations}.
bfa74976 6507
847bf1f5
AD
6508@c Check if those paragraphs are still useful or not.
6509
6510@c @example
6511@c struct @{
6512@c int first_line, last_line;
6513@c int first_column, last_column;
6514@c @};
6515@c @end example
6516
6517@c Thus, to get the starting line number of the third component, you would
6518@c use @samp{@@3.first_line}.
bfa74976 6519
847bf1f5
AD
6520@c In order for the members of this structure to contain valid information,
6521@c you must make @code{yylex} supply this information about each token.
6522@c If you need only certain members, then @code{yylex} need only fill in
6523@c those members.
bfa74976 6524
847bf1f5 6525@c The use of this feature makes the parser noticeably slower.
18b519c0 6526@end deffn
847bf1f5 6527
18b519c0 6528@deffn {Value} @@@var{n}
847bf1f5 6529@findex @@@var{n}
95923bd6 6530Acts like a structure variable containing information on the textual location
847bf1f5
AD
6531of the @var{n}th component of the current rule. @xref{Locations, ,
6532Tracking Locations}.
18b519c0 6533@end deffn
bfa74976 6534
f7ab6a50
PE
6535@node Internationalization
6536@section Parser Internationalization
6537@cindex internationalization
6538@cindex i18n
6539@cindex NLS
6540@cindex gettext
6541@cindex bison-po
6542
6543A Bison-generated parser can print diagnostics, including error and
6544tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6545also supports outputting diagnostics in the user's native language. To
6546make this work, the user should set the usual environment variables.
6547@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6548For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6549set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6550encoding. The exact set of available locales depends on the user's
6551installation.
6552
6553The maintainer of a package that uses a Bison-generated parser enables
6554the internationalization of the parser's output through the following
8a4281b9
JD
6555steps. Here we assume a package that uses GNU Autoconf and
6556GNU Automake.
f7ab6a50
PE
6557
6558@enumerate
6559@item
30757c8c 6560@cindex bison-i18n.m4
8a4281b9 6561Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6562by the package---often called @file{m4}---copy the
6563@file{bison-i18n.m4} file installed by Bison under
6564@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6565For example:
6566
6567@example
6568cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6569@end example
6570
6571@item
30757c8c
PE
6572@findex BISON_I18N
6573@vindex BISON_LOCALEDIR
6574@vindex YYENABLE_NLS
f7ab6a50
PE
6575In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6576invocation, add an invocation of @code{BISON_I18N}. This macro is
6577defined in the file @file{bison-i18n.m4} that you copied earlier. It
6578causes @samp{configure} to find the value of the
30757c8c
PE
6579@code{BISON_LOCALEDIR} variable, and it defines the source-language
6580symbol @code{YYENABLE_NLS} to enable translations in the
6581Bison-generated parser.
f7ab6a50
PE
6582
6583@item
6584In the @code{main} function of your program, designate the directory
6585containing Bison's runtime message catalog, through a call to
6586@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6587For example:
6588
6589@example
6590bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6591@end example
6592
6593Typically this appears after any other call @code{bindtextdomain
6594(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6595@samp{BISON_LOCALEDIR} to be defined as a string through the
6596@file{Makefile}.
6597
6598@item
6599In the @file{Makefile.am} that controls the compilation of the @code{main}
6600function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6601either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6602
6603@example
6604DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6605@end example
6606
6607or:
6608
6609@example
6610AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6611@end example
6612
6613@item
6614Finally, invoke the command @command{autoreconf} to generate the build
6615infrastructure.
6616@end enumerate
6617
bfa74976 6618
342b8b6e 6619@node Algorithm
13863333
AD
6620@chapter The Bison Parser Algorithm
6621@cindex Bison parser algorithm
bfa74976
RS
6622@cindex algorithm of parser
6623@cindex shifting
6624@cindex reduction
6625@cindex parser stack
6626@cindex stack, parser
6627
6628As Bison reads tokens, it pushes them onto a stack along with their
6629semantic values. The stack is called the @dfn{parser stack}. Pushing a
6630token is traditionally called @dfn{shifting}.
6631
6632For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6633@samp{3} to come. The stack will have four elements, one for each token
6634that was shifted.
6635
6636But the stack does not always have an element for each token read. When
6637the last @var{n} tokens and groupings shifted match the components of a
6638grammar rule, they can be combined according to that rule. This is called
6639@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6640single grouping whose symbol is the result (left hand side) of that rule.
6641Running the rule's action is part of the process of reduction, because this
6642is what computes the semantic value of the resulting grouping.
6643
6644For example, if the infix calculator's parser stack contains this:
6645
6646@example
66471 + 5 * 3
6648@end example
6649
6650@noindent
6651and the next input token is a newline character, then the last three
6652elements can be reduced to 15 via the rule:
6653
6654@example
6655expr: expr '*' expr;
6656@end example
6657
6658@noindent
6659Then the stack contains just these three elements:
6660
6661@example
66621 + 15
6663@end example
6664
6665@noindent
6666At this point, another reduction can be made, resulting in the single value
666716. Then the newline token can be shifted.
6668
6669The parser tries, by shifts and reductions, to reduce the entire input down
6670to a single grouping whose symbol is the grammar's start-symbol
6671(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6672
6673This kind of parser is known in the literature as a bottom-up parser.
6674
6675@menu
742e4900 6676* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6677* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6678* Precedence:: Operator precedence works by resolving conflicts.
6679* Contextual Precedence:: When an operator's precedence depends on context.
6680* Parser States:: The parser is a finite-state-machine with stack.
6681* Reduce/Reduce:: When two rules are applicable in the same situation.
f5f419de 6682* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6683* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6684* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6685@end menu
6686
742e4900
JD
6687@node Lookahead
6688@section Lookahead Tokens
6689@cindex lookahead token
bfa74976
RS
6690
6691The Bison parser does @emph{not} always reduce immediately as soon as the
6692last @var{n} tokens and groupings match a rule. This is because such a
6693simple strategy is inadequate to handle most languages. Instead, when a
6694reduction is possible, the parser sometimes ``looks ahead'' at the next
6695token in order to decide what to do.
6696
6697When a token is read, it is not immediately shifted; first it becomes the
742e4900 6698@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6699perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6700the lookahead token remains off to the side. When no more reductions
6701should take place, the lookahead token is shifted onto the stack. This
bfa74976 6702does not mean that all possible reductions have been done; depending on the
742e4900 6703token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6704application.
6705
742e4900 6706Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6707expressions which contain binary addition operators and postfix unary
6708factorial operators (@samp{!}), and allow parentheses for grouping.
6709
6710@example
6711@group
6712expr: term '+' expr
6713 | term
6714 ;
6715@end group
6716
6717@group
6718term: '(' expr ')'
6719 | term '!'
6720 | NUMBER
6721 ;
6722@end group
6723@end example
6724
6725Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6726should be done? If the following token is @samp{)}, then the first three
6727tokens must be reduced to form an @code{expr}. This is the only valid
6728course, because shifting the @samp{)} would produce a sequence of symbols
6729@w{@code{term ')'}}, and no rule allows this.
6730
6731If the following token is @samp{!}, then it must be shifted immediately so
6732that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6733parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6734@code{expr}. It would then be impossible to shift the @samp{!} because
6735doing so would produce on the stack the sequence of symbols @code{expr
6736'!'}. No rule allows that sequence.
6737
6738@vindex yychar
32c29292
JD
6739@vindex yylval
6740@vindex yylloc
742e4900 6741The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6742Its semantic value and location, if any, are stored in the variables
6743@code{yylval} and @code{yylloc}.
bfa74976
RS
6744@xref{Action Features, ,Special Features for Use in Actions}.
6745
342b8b6e 6746@node Shift/Reduce
bfa74976
RS
6747@section Shift/Reduce Conflicts
6748@cindex conflicts
6749@cindex shift/reduce conflicts
6750@cindex dangling @code{else}
6751@cindex @code{else}, dangling
6752
6753Suppose we are parsing a language which has if-then and if-then-else
6754statements, with a pair of rules like this:
6755
6756@example
6757@group
6758if_stmt:
6759 IF expr THEN stmt
6760 | IF expr THEN stmt ELSE stmt
6761 ;
6762@end group
6763@end example
6764
6765@noindent
6766Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6767terminal symbols for specific keyword tokens.
6768
742e4900 6769When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6770contents of the stack (assuming the input is valid) are just right for
6771reduction by the first rule. But it is also legitimate to shift the
6772@code{ELSE}, because that would lead to eventual reduction by the second
6773rule.
6774
6775This situation, where either a shift or a reduction would be valid, is
6776called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6777these conflicts by choosing to shift, unless otherwise directed by
6778operator precedence declarations. To see the reason for this, let's
6779contrast it with the other alternative.
6780
6781Since the parser prefers to shift the @code{ELSE}, the result is to attach
6782the else-clause to the innermost if-statement, making these two inputs
6783equivalent:
6784
6785@example
6786if x then if y then win (); else lose;
6787
6788if x then do; if y then win (); else lose; end;
6789@end example
6790
6791But if the parser chose to reduce when possible rather than shift, the
6792result would be to attach the else-clause to the outermost if-statement,
6793making these two inputs equivalent:
6794
6795@example
6796if x then if y then win (); else lose;
6797
6798if x then do; if y then win (); end; else lose;
6799@end example
6800
6801The conflict exists because the grammar as written is ambiguous: either
6802parsing of the simple nested if-statement is legitimate. The established
6803convention is that these ambiguities are resolved by attaching the
6804else-clause to the innermost if-statement; this is what Bison accomplishes
6805by choosing to shift rather than reduce. (It would ideally be cleaner to
6806write an unambiguous grammar, but that is very hard to do in this case.)
6807This particular ambiguity was first encountered in the specifications of
6808Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6809
6810To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6811conflicts, use the @code{%expect @var{n}} declaration.
6812There will be no warning as long as the number of shift/reduce conflicts
6813is exactly @var{n}, and Bison will report an error if there is a
6814different number.
bfa74976
RS
6815@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6816
6817The definition of @code{if_stmt} above is solely to blame for the
6818conflict, but the conflict does not actually appear without additional
6819rules. Here is a complete Bison input file that actually manifests the
6820conflict:
6821
6822@example
6823@group
6824%token IF THEN ELSE variable
6825%%
6826@end group
6827@group
6828stmt: expr
6829 | if_stmt
6830 ;
6831@end group
6832
6833@group
6834if_stmt:
6835 IF expr THEN stmt
6836 | IF expr THEN stmt ELSE stmt
6837 ;
6838@end group
6839
6840expr: variable
6841 ;
6842@end example
6843
342b8b6e 6844@node Precedence
bfa74976
RS
6845@section Operator Precedence
6846@cindex operator precedence
6847@cindex precedence of operators
6848
6849Another situation where shift/reduce conflicts appear is in arithmetic
6850expressions. Here shifting is not always the preferred resolution; the
6851Bison declarations for operator precedence allow you to specify when to
6852shift and when to reduce.
6853
6854@menu
6855* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6856* Using Precedence:: How to specify precedence and associativity.
6857* Precedence Only:: How to specify precedence only.
bfa74976
RS
6858* Precedence Examples:: How these features are used in the previous example.
6859* How Precedence:: How they work.
6860@end menu
6861
342b8b6e 6862@node Why Precedence
bfa74976
RS
6863@subsection When Precedence is Needed
6864
6865Consider the following ambiguous grammar fragment (ambiguous because the
6866input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6867
6868@example
6869@group
6870expr: expr '-' expr
6871 | expr '*' expr
6872 | expr '<' expr
6873 | '(' expr ')'
6874 @dots{}
6875 ;
6876@end group
6877@end example
6878
6879@noindent
6880Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6881should it reduce them via the rule for the subtraction operator? It
6882depends on the next token. Of course, if the next token is @samp{)}, we
6883must reduce; shifting is invalid because no single rule can reduce the
6884token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6885the next token is @samp{*} or @samp{<}, we have a choice: either
6886shifting or reduction would allow the parse to complete, but with
6887different results.
6888
6889To decide which one Bison should do, we must consider the results. If
6890the next operator token @var{op} is shifted, then it must be reduced
6891first in order to permit another opportunity to reduce the difference.
6892The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6893hand, if the subtraction is reduced before shifting @var{op}, the result
6894is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6895reduce should depend on the relative precedence of the operators
6896@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6897@samp{<}.
bfa74976
RS
6898
6899@cindex associativity
6900What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6901@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6902operators we prefer the former, which is called @dfn{left association}.
6903The latter alternative, @dfn{right association}, is desirable for
6904assignment operators. The choice of left or right association is a
6905matter of whether the parser chooses to shift or reduce when the stack
742e4900 6906contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6907makes right-associativity.
bfa74976 6908
342b8b6e 6909@node Using Precedence
bfa74976
RS
6910@subsection Specifying Operator Precedence
6911@findex %left
bfa74976 6912@findex %nonassoc
d78f0ac9
AD
6913@findex %precedence
6914@findex %right
bfa74976
RS
6915
6916Bison allows you to specify these choices with the operator precedence
6917declarations @code{%left} and @code{%right}. Each such declaration
6918contains a list of tokens, which are operators whose precedence and
6919associativity is being declared. The @code{%left} declaration makes all
6920those operators left-associative and the @code{%right} declaration makes
6921them right-associative. A third alternative is @code{%nonassoc}, which
6922declares that it is a syntax error to find the same operator twice ``in a
6923row''.
d78f0ac9
AD
6924The last alternative, @code{%precedence}, allows to define only
6925precedence and no associativity at all. As a result, any
6926associativity-related conflict that remains will be reported as an
6927compile-time error. The directive @code{%nonassoc} creates run-time
6928error: using the operator in a associative way is a syntax error. The
6929directive @code{%precedence} creates compile-time errors: an operator
6930@emph{can} be involved in an associativity-related conflict, contrary to
6931what expected the grammar author.
bfa74976
RS
6932
6933The relative precedence of different operators is controlled by the
d78f0ac9
AD
6934order in which they are declared. The first precedence/associativity
6935declaration in the file declares the operators whose
bfa74976
RS
6936precedence is lowest, the next such declaration declares the operators
6937whose precedence is a little higher, and so on.
6938
d78f0ac9
AD
6939@node Precedence Only
6940@subsection Specifying Precedence Only
6941@findex %precedence
6942
8a4281b9 6943Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6944@code{%nonassoc}, which all defines precedence and associativity, little
6945attention is paid to the fact that precedence cannot be defined without
6946defining associativity. Yet, sometimes, when trying to solve a
6947conflict, precedence suffices. In such a case, using @code{%left},
6948@code{%right}, or @code{%nonassoc} might hide future (associativity
6949related) conflicts that would remain hidden.
6950
6951The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6952Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6953in the following situation, where the period denotes the current parsing
6954state:
6955
6956@example
6957if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6958@end example
6959
6960The conflict involves the reduction of the rule @samp{IF expr THEN
6961stmt}, which precedence is by default that of its last token
6962(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6963disambiguation (attach the @code{else} to the closest @code{if}),
6964shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6965higher than that of @code{THEN}. But neither is expected to be involved
6966in an associativity related conflict, which can be specified as follows.
6967
6968@example
6969%precedence THEN
6970%precedence ELSE
6971@end example
6972
6973The unary-minus is another typical example where associativity is
6974usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6975Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6976used to declare the precedence of @code{NEG}, which is more than needed
6977since it also defines its associativity. While this is harmless in the
6978traditional example, who knows how @code{NEG} might be used in future
6979evolutions of the grammar@dots{}
6980
342b8b6e 6981@node Precedence Examples
bfa74976
RS
6982@subsection Precedence Examples
6983
6984In our example, we would want the following declarations:
6985
6986@example
6987%left '<'
6988%left '-'
6989%left '*'
6990@end example
6991
6992In a more complete example, which supports other operators as well, we
6993would declare them in groups of equal precedence. For example, @code{'+'} is
6994declared with @code{'-'}:
6995
6996@example
6997%left '<' '>' '=' NE LE GE
6998%left '+' '-'
6999%left '*' '/'
7000@end example
7001
7002@noindent
7003(Here @code{NE} and so on stand for the operators for ``not equal''
7004and so on. We assume that these tokens are more than one character long
7005and therefore are represented by names, not character literals.)
7006
342b8b6e 7007@node How Precedence
bfa74976
RS
7008@subsection How Precedence Works
7009
7010The first effect of the precedence declarations is to assign precedence
7011levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7012precedence levels to certain rules: each rule gets its precedence from
7013the last terminal symbol mentioned in the components. (You can also
7014specify explicitly the precedence of a rule. @xref{Contextual
7015Precedence, ,Context-Dependent Precedence}.)
7016
7017Finally, the resolution of conflicts works by comparing the precedence
742e4900 7018of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7019token's precedence is higher, the choice is to shift. If the rule's
7020precedence is higher, the choice is to reduce. If they have equal
7021precedence, the choice is made based on the associativity of that
7022precedence level. The verbose output file made by @samp{-v}
7023(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7024resolved.
bfa74976
RS
7025
7026Not all rules and not all tokens have precedence. If either the rule or
742e4900 7027the lookahead token has no precedence, then the default is to shift.
bfa74976 7028
342b8b6e 7029@node Contextual Precedence
bfa74976
RS
7030@section Context-Dependent Precedence
7031@cindex context-dependent precedence
7032@cindex unary operator precedence
7033@cindex precedence, context-dependent
7034@cindex precedence, unary operator
7035@findex %prec
7036
7037Often the precedence of an operator depends on the context. This sounds
7038outlandish at first, but it is really very common. For example, a minus
7039sign typically has a very high precedence as a unary operator, and a
7040somewhat lower precedence (lower than multiplication) as a binary operator.
7041
d78f0ac9
AD
7042The Bison precedence declarations
7043can only be used once for a given token; so a token has
bfa74976
RS
7044only one precedence declared in this way. For context-dependent
7045precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7046modifier for rules.
bfa74976
RS
7047
7048The @code{%prec} modifier declares the precedence of a particular rule by
7049specifying a terminal symbol whose precedence should be used for that rule.
7050It's not necessary for that symbol to appear otherwise in the rule. The
7051modifier's syntax is:
7052
7053@example
7054%prec @var{terminal-symbol}
7055@end example
7056
7057@noindent
7058and it is written after the components of the rule. Its effect is to
7059assign the rule the precedence of @var{terminal-symbol}, overriding
7060the precedence that would be deduced for it in the ordinary way. The
7061altered rule precedence then affects how conflicts involving that rule
7062are resolved (@pxref{Precedence, ,Operator Precedence}).
7063
7064Here is how @code{%prec} solves the problem of unary minus. First, declare
7065a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7066are no tokens of this type, but the symbol serves to stand for its
7067precedence:
7068
7069@example
7070@dots{}
7071%left '+' '-'
7072%left '*'
7073%left UMINUS
7074@end example
7075
7076Now the precedence of @code{UMINUS} can be used in specific rules:
7077
7078@example
7079@group
7080exp: @dots{}
7081 | exp '-' exp
7082 @dots{}
7083 | '-' exp %prec UMINUS
7084@end group
7085@end example
7086
91d2c560 7087@ifset defaultprec
39a06c25
PE
7088If you forget to append @code{%prec UMINUS} to the rule for unary
7089minus, Bison silently assumes that minus has its usual precedence.
7090This kind of problem can be tricky to debug, since one typically
7091discovers the mistake only by testing the code.
7092
22fccf95 7093The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7094this kind of problem systematically. It causes rules that lack a
7095@code{%prec} modifier to have no precedence, even if the last terminal
7096symbol mentioned in their components has a declared precedence.
7097
22fccf95 7098If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7099for all rules that participate in precedence conflict resolution.
7100Then you will see any shift/reduce conflict until you tell Bison how
7101to resolve it, either by changing your grammar or by adding an
7102explicit precedence. This will probably add declarations to the
7103grammar, but it helps to protect against incorrect rule precedences.
7104
22fccf95
PE
7105The effect of @code{%no-default-prec;} can be reversed by giving
7106@code{%default-prec;}, which is the default.
91d2c560 7107@end ifset
39a06c25 7108
342b8b6e 7109@node Parser States
bfa74976
RS
7110@section Parser States
7111@cindex finite-state machine
7112@cindex parser state
7113@cindex state (of parser)
7114
7115The function @code{yyparse} is implemented using a finite-state machine.
7116The values pushed on the parser stack are not simply token type codes; they
7117represent the entire sequence of terminal and nonterminal symbols at or
7118near the top of the stack. The current state collects all the information
7119about previous input which is relevant to deciding what to do next.
7120
742e4900
JD
7121Each time a lookahead token is read, the current parser state together
7122with the type of lookahead token are looked up in a table. This table
7123entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7124specifies the new parser state, which is pushed onto the top of the
7125parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7126This means that a certain number of tokens or groupings are taken off
7127the top of the stack, and replaced by one grouping. In other words,
7128that number of states are popped from the stack, and one new state is
7129pushed.
7130
742e4900 7131There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7132is erroneous in the current state. This causes error processing to begin
7133(@pxref{Error Recovery}).
7134
342b8b6e 7135@node Reduce/Reduce
bfa74976
RS
7136@section Reduce/Reduce Conflicts
7137@cindex reduce/reduce conflict
7138@cindex conflicts, reduce/reduce
7139
7140A reduce/reduce conflict occurs if there are two or more rules that apply
7141to the same sequence of input. This usually indicates a serious error
7142in the grammar.
7143
7144For example, here is an erroneous attempt to define a sequence
7145of zero or more @code{word} groupings.
7146
7147@example
7148sequence: /* empty */
7149 @{ printf ("empty sequence\n"); @}
7150 | maybeword
7151 | sequence word
7152 @{ printf ("added word %s\n", $2); @}
7153 ;
7154
7155maybeword: /* empty */
7156 @{ printf ("empty maybeword\n"); @}
7157 | word
7158 @{ printf ("single word %s\n", $1); @}
7159 ;
7160@end example
7161
7162@noindent
7163The error is an ambiguity: there is more than one way to parse a single
7164@code{word} into a @code{sequence}. It could be reduced to a
7165@code{maybeword} and then into a @code{sequence} via the second rule.
7166Alternatively, nothing-at-all could be reduced into a @code{sequence}
7167via the first rule, and this could be combined with the @code{word}
7168using the third rule for @code{sequence}.
7169
7170There is also more than one way to reduce nothing-at-all into a
7171@code{sequence}. This can be done directly via the first rule,
7172or indirectly via @code{maybeword} and then the second rule.
7173
7174You might think that this is a distinction without a difference, because it
7175does not change whether any particular input is valid or not. But it does
7176affect which actions are run. One parsing order runs the second rule's
7177action; the other runs the first rule's action and the third rule's action.
7178In this example, the output of the program changes.
7179
7180Bison resolves a reduce/reduce conflict by choosing to use the rule that
7181appears first in the grammar, but it is very risky to rely on this. Every
7182reduce/reduce conflict must be studied and usually eliminated. Here is the
7183proper way to define @code{sequence}:
7184
7185@example
7186sequence: /* empty */
7187 @{ printf ("empty sequence\n"); @}
7188 | sequence word
7189 @{ printf ("added word %s\n", $2); @}
7190 ;
7191@end example
7192
7193Here is another common error that yields a reduce/reduce conflict:
7194
7195@example
7196sequence: /* empty */
7197 | sequence words
7198 | sequence redirects
7199 ;
7200
7201words: /* empty */
7202 | words word
7203 ;
7204
7205redirects:/* empty */
7206 | redirects redirect
7207 ;
7208@end example
7209
7210@noindent
7211The intention here is to define a sequence which can contain either
7212@code{word} or @code{redirect} groupings. The individual definitions of
7213@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7214three together make a subtle ambiguity: even an empty input can be parsed
7215in infinitely many ways!
7216
7217Consider: nothing-at-all could be a @code{words}. Or it could be two
7218@code{words} in a row, or three, or any number. It could equally well be a
7219@code{redirects}, or two, or any number. Or it could be a @code{words}
7220followed by three @code{redirects} and another @code{words}. And so on.
7221
7222Here are two ways to correct these rules. First, to make it a single level
7223of sequence:
7224
7225@example
7226sequence: /* empty */
7227 | sequence word
7228 | sequence redirect
7229 ;
7230@end example
7231
7232Second, to prevent either a @code{words} or a @code{redirects}
7233from being empty:
7234
7235@example
7236sequence: /* empty */
7237 | sequence words
7238 | sequence redirects
7239 ;
7240
7241words: word
7242 | words word
7243 ;
7244
7245redirects:redirect
7246 | redirects redirect
7247 ;
7248@end example
7249
342b8b6e 7250@node Mystery Conflicts
bfa74976
RS
7251@section Mysterious Reduce/Reduce Conflicts
7252
7253Sometimes reduce/reduce conflicts can occur that don't look warranted.
7254Here is an example:
7255
7256@example
7257@group
7258%token ID
7259
7260%%
7261def: param_spec return_spec ','
7262 ;
7263param_spec:
7264 type
7265 | name_list ':' type
7266 ;
7267@end group
7268@group
7269return_spec:
7270 type
7271 | name ':' type
7272 ;
7273@end group
7274@group
7275type: ID
7276 ;
7277@end group
7278@group
7279name: ID
7280 ;
7281name_list:
7282 name
7283 | name ',' name_list
7284 ;
7285@end group
7286@end example
7287
7288It would seem that this grammar can be parsed with only a single token
742e4900 7289of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7290a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7291@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7292
8a4281b9
JD
7293@cindex LR(1)
7294@cindex LALR(1)
eb45ef3b 7295However, for historical reasons, Bison cannot by default handle all
8a4281b9 7296LR(1) grammars.
eb45ef3b
JD
7297In this grammar, two contexts, that after an @code{ID} at the beginning
7298of a @code{param_spec} and likewise at the beginning of a
7299@code{return_spec}, are similar enough that Bison assumes they are the
7300same.
7301They appear similar because the same set of rules would be
bfa74976
RS
7302active---the rule for reducing to a @code{name} and that for reducing to
7303a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7304that the rules would require different lookahead tokens in the two
bfa74976
RS
7305contexts, so it makes a single parser state for them both. Combining
7306the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7307occurrence means that the grammar is not LALR(1).
bfa74976 7308
eb45ef3b 7309For many practical grammars (specifically those that fall into the
8a4281b9 7310non-LR(1) class), the limitations of LALR(1) result in
eb45ef3b
JD
7311difficulties beyond just mysterious reduce/reduce conflicts.
7312The best way to fix all these problems is to select a different parser
7313table generation algorithm.
8a4281b9 7314Either IELR(1) or canonical LR(1) would suffice, but
eb45ef3b
JD
7315the former is more efficient and easier to debug during development.
7316@xref{Decl Summary,,lr.type}, for details.
8a4281b9 7317(Bison's IELR(1) and canonical LR(1) implementations
eb45ef3b
JD
7318are experimental.
7319More user feedback will help to stabilize them.)
7320
8a4281b9 7321If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7322can often fix a mysterious conflict by identifying the two parser states
7323that are being confused, and adding something to make them look
7324distinct. In the above example, adding one rule to
bfa74976
RS
7325@code{return_spec} as follows makes the problem go away:
7326
7327@example
7328@group
7329%token BOGUS
7330@dots{}
7331%%
7332@dots{}
7333return_spec:
7334 type
7335 | name ':' type
7336 /* This rule is never used. */
7337 | ID BOGUS
7338 ;
7339@end group
7340@end example
7341
7342This corrects the problem because it introduces the possibility of an
7343additional active rule in the context after the @code{ID} at the beginning of
7344@code{return_spec}. This rule is not active in the corresponding context
7345in a @code{param_spec}, so the two contexts receive distinct parser states.
7346As long as the token @code{BOGUS} is never generated by @code{yylex},
7347the added rule cannot alter the way actual input is parsed.
7348
7349In this particular example, there is another way to solve the problem:
7350rewrite the rule for @code{return_spec} to use @code{ID} directly
7351instead of via @code{name}. This also causes the two confusing
7352contexts to have different sets of active rules, because the one for
7353@code{return_spec} activates the altered rule for @code{return_spec}
7354rather than the one for @code{name}.
7355
7356@example
7357param_spec:
7358 type
7359 | name_list ':' type
7360 ;
7361return_spec:
7362 type
7363 | ID ':' type
7364 ;
7365@end example
7366
8a4281b9 7367For a more detailed exposition of LALR(1) parsers and parser
e054b190
PE
7368generators, please see:
7369Frank DeRemer and Thomas Pennello, Efficient Computation of
8a4281b9 7370LALR(1) Look-Ahead Sets, @cite{ACM Transactions on
e054b190
PE
7371Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7372pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7373
fae437e8 7374@node Generalized LR Parsing
8a4281b9
JD
7375@section Generalized LR (GLR) Parsing
7376@cindex GLR parsing
7377@cindex generalized LR (GLR) parsing
676385e2 7378@cindex ambiguous grammars
9d9b8b70 7379@cindex nondeterministic parsing
676385e2 7380
fae437e8
AD
7381Bison produces @emph{deterministic} parsers that choose uniquely
7382when to reduce and which reduction to apply
742e4900 7383based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7384As a result, normal Bison handles a proper subset of the family of
7385context-free languages.
fae437e8 7386Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7387sequence of reductions cannot have deterministic parsers in this sense.
7388The same is true of languages that require more than one symbol of
742e4900 7389lookahead, since the parser lacks the information necessary to make a
676385e2 7390decision at the point it must be made in a shift-reduce parser.
fae437e8 7391Finally, as previously mentioned (@pxref{Mystery Conflicts}),
eb45ef3b 7392there are languages where Bison's default choice of how to
676385e2
PH
7393summarize the input seen so far loses necessary information.
7394
7395When you use the @samp{%glr-parser} declaration in your grammar file,
7396Bison generates a parser that uses a different algorithm, called
8a4281b9 7397Generalized LR (or GLR). A Bison GLR
c827f760 7398parser uses the same basic
676385e2
PH
7399algorithm for parsing as an ordinary Bison parser, but behaves
7400differently in cases where there is a shift-reduce conflict that has not
fae437e8 7401been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7402reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7403situation, it
fae437e8 7404effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7405shift or reduction. These parsers then proceed as usual, consuming
7406tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7407and split further, with the result that instead of a sequence of states,
8a4281b9 7408a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7409
7410In effect, each stack represents a guess as to what the proper parse
7411is. Additional input may indicate that a guess was wrong, in which case
7412the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7413actions generated in each stack are saved, rather than being executed
676385e2 7414immediately. When a stack disappears, its saved semantic actions never
fae437e8 7415get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7416their sets of semantic actions are both saved with the state that
7417results from the reduction. We say that two stacks are equivalent
fae437e8 7418when they both represent the same sequence of states,
676385e2
PH
7419and each pair of corresponding states represents a
7420grammar symbol that produces the same segment of the input token
7421stream.
7422
7423Whenever the parser makes a transition from having multiple
eb45ef3b 7424states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7425algorithm, after resolving and executing the saved-up actions.
7426At this transition, some of the states on the stack will have semantic
7427values that are sets (actually multisets) of possible actions. The
7428parser tries to pick one of the actions by first finding one whose rule
7429has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7430declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7431precedence, but there the same merging function is declared for both
fae437e8 7432rules by the @samp{%merge} declaration,
676385e2
PH
7433Bison resolves and evaluates both and then calls the merge function on
7434the result. Otherwise, it reports an ambiguity.
7435
8a4281b9
JD
7436It is possible to use a data structure for the GLR parsing tree that
7437permits the processing of any LR(1) grammar in linear time (in the
c827f760 7438size of the input), any unambiguous (not necessarily
8a4281b9 7439LR(1)) grammar in
fae437e8 7440quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7441context-free grammar in cubic worst-case time. However, Bison currently
7442uses a simpler data structure that requires time proportional to the
7443length of the input times the maximum number of stacks required for any
9d9b8b70 7444prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7445grammars can require exponential time and space to process. Such badly
7446behaving examples, however, are not generally of practical interest.
9d9b8b70 7447Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7448doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7449structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7450grammar, in particular, it is only slightly slower than with the
8a4281b9 7451deterministic LR(1) Bison parser.
676385e2 7452
8a4281b9 7453For a more detailed exposition of GLR parsers, please see: Elizabeth
f6481e2f 7454Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
8a4281b9 7455Generalised LR Parsers, Royal Holloway, University of
f6481e2f
PE
7456London, Department of Computer Science, TR-00-12,
7457@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7458(2000-12-24).
7459
1a059451
PE
7460@node Memory Management
7461@section Memory Management, and How to Avoid Memory Exhaustion
7462@cindex memory exhaustion
7463@cindex memory management
bfa74976
RS
7464@cindex stack overflow
7465@cindex parser stack overflow
7466@cindex overflow of parser stack
7467
1a059451 7468The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7469not reduced. When this happens, the parser function @code{yyparse}
1a059451 7470calls @code{yyerror} and then returns 2.
bfa74976 7471
c827f760 7472Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7473usually results from using a right recursion instead of a left
7474recursion, @xref{Recursion, ,Recursive Rules}.
7475
bfa74976
RS
7476@vindex YYMAXDEPTH
7477By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7478parser stack can become before memory is exhausted. Define the
bfa74976
RS
7479macro with a value that is an integer. This value is the maximum number
7480of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7481
7482The stack space allowed is not necessarily allocated. If you specify a
1a059451 7483large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7484stack at first, and then makes it bigger by stages as needed. This
7485increasing allocation happens automatically and silently. Therefore,
7486you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7487space for ordinary inputs that do not need much stack.
7488
d7e14fc0
PE
7489However, do not allow @code{YYMAXDEPTH} to be a value so large that
7490arithmetic overflow could occur when calculating the size of the stack
7491space. Also, do not allow @code{YYMAXDEPTH} to be less than
7492@code{YYINITDEPTH}.
7493
bfa74976
RS
7494@cindex default stack limit
7495The default value of @code{YYMAXDEPTH}, if you do not define it, is
749610000.
7497
7498@vindex YYINITDEPTH
7499You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7500macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7501parser in C, this value must be a compile-time constant
d7e14fc0
PE
7502unless you are assuming C99 or some other target language or compiler
7503that allows variable-length arrays. The default is 200.
7504
1a059451 7505Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7506
20be2f92
PH
7507You can generate a deterministic parser containing C++ user code from
7508the default (C) skeleton, as well as from the C++ skeleton
7509(@pxref{C++ Parsers}). However, if you do use the default skeleton
7510and want to allow the parsing stack to grow,
7511be careful not to use semantic types or location types that require
7512non-trivial copy constructors.
7513The C skeleton bypasses these constructors when copying data to
7514new, larger stacks.
d1a1114f 7515
342b8b6e 7516@node Error Recovery
bfa74976
RS
7517@chapter Error Recovery
7518@cindex error recovery
7519@cindex recovery from errors
7520
6e649e65 7521It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7522error. For example, a compiler should recover sufficiently to parse the
7523rest of the input file and check it for errors; a calculator should accept
7524another expression.
7525
7526In a simple interactive command parser where each input is one line, it may
7527be sufficient to allow @code{yyparse} to return 1 on error and have the
7528caller ignore the rest of the input line when that happens (and then call
7529@code{yyparse} again). But this is inadequate for a compiler, because it
7530forgets all the syntactic context leading up to the error. A syntax error
7531deep within a function in the compiler input should not cause the compiler
7532to treat the following line like the beginning of a source file.
7533
7534@findex error
7535You can define how to recover from a syntax error by writing rules to
7536recognize the special token @code{error}. This is a terminal symbol that
7537is always defined (you need not declare it) and reserved for error
7538handling. The Bison parser generates an @code{error} token whenever a
7539syntax error happens; if you have provided a rule to recognize this token
13863333 7540in the current context, the parse can continue.
bfa74976
RS
7541
7542For example:
7543
7544@example
7545stmnts: /* empty string */
7546 | stmnts '\n'
7547 | stmnts exp '\n'
7548 | stmnts error '\n'
7549@end example
7550
7551The fourth rule in this example says that an error followed by a newline
7552makes a valid addition to any @code{stmnts}.
7553
7554What happens if a syntax error occurs in the middle of an @code{exp}? The
7555error recovery rule, interpreted strictly, applies to the precise sequence
7556of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7557the middle of an @code{exp}, there will probably be some additional tokens
7558and subexpressions on the stack after the last @code{stmnts}, and there
7559will be tokens to read before the next newline. So the rule is not
7560applicable in the ordinary way.
7561
7562But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7563the semantic context and part of the input. First it discards states
7564and objects from the stack until it gets back to a state in which the
bfa74976 7565@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7566already parsed are discarded, back to the last complete @code{stmnts}.)
7567At this point the @code{error} token can be shifted. Then, if the old
742e4900 7568lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7569tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7570this example, Bison reads and discards input until the next newline so
7571that the fourth rule can apply. Note that discarded symbols are
7572possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7573Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7574
7575The choice of error rules in the grammar is a choice of strategies for
7576error recovery. A simple and useful strategy is simply to skip the rest of
7577the current input line or current statement if an error is detected:
7578
7579@example
72d2299c 7580stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7581@end example
7582
7583It is also useful to recover to the matching close-delimiter of an
7584opening-delimiter that has already been parsed. Otherwise the
7585close-delimiter will probably appear to be unmatched, and generate another,
7586spurious error message:
7587
7588@example
7589primary: '(' expr ')'
7590 | '(' error ')'
7591 @dots{}
7592 ;
7593@end example
7594
7595Error recovery strategies are necessarily guesses. When they guess wrong,
7596one syntax error often leads to another. In the above example, the error
7597recovery rule guesses that an error is due to bad input within one
7598@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7599middle of a valid @code{stmnt}. After the error recovery rule recovers
7600from the first error, another syntax error will be found straightaway,
7601since the text following the spurious semicolon is also an invalid
7602@code{stmnt}.
7603
7604To prevent an outpouring of error messages, the parser will output no error
7605message for another syntax error that happens shortly after the first; only
7606after three consecutive input tokens have been successfully shifted will
7607error messages resume.
7608
7609Note that rules which accept the @code{error} token may have actions, just
7610as any other rules can.
7611
7612@findex yyerrok
7613You can make error messages resume immediately by using the macro
7614@code{yyerrok} in an action. If you do this in the error rule's action, no
7615error messages will be suppressed. This macro requires no arguments;
7616@samp{yyerrok;} is a valid C statement.
7617
7618@findex yyclearin
742e4900 7619The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7620this is unacceptable, then the macro @code{yyclearin} may be used to clear
7621this token. Write the statement @samp{yyclearin;} in the error rule's
7622action.
32c29292 7623@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7624
6e649e65 7625For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7626called that advances the input stream to some point where parsing should
7627once again commence. The next symbol returned by the lexical scanner is
742e4900 7628probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7629with @samp{yyclearin;}.
7630
7631@vindex YYRECOVERING
02103984
PE
7632The expression @code{YYRECOVERING ()} yields 1 when the parser
7633is recovering from a syntax error, and 0 otherwise.
7634Syntax error diagnostics are suppressed while recovering from a syntax
7635error.
bfa74976 7636
342b8b6e 7637@node Context Dependency
bfa74976
RS
7638@chapter Handling Context Dependencies
7639
7640The Bison paradigm is to parse tokens first, then group them into larger
7641syntactic units. In many languages, the meaning of a token is affected by
7642its context. Although this violates the Bison paradigm, certain techniques
7643(known as @dfn{kludges}) may enable you to write Bison parsers for such
7644languages.
7645
7646@menu
7647* Semantic Tokens:: Token parsing can depend on the semantic context.
7648* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7649* Tie-in Recovery:: Lexical tie-ins have implications for how
7650 error recovery rules must be written.
7651@end menu
7652
7653(Actually, ``kludge'' means any technique that gets its job done but is
7654neither clean nor robust.)
7655
342b8b6e 7656@node Semantic Tokens
bfa74976
RS
7657@section Semantic Info in Token Types
7658
7659The C language has a context dependency: the way an identifier is used
7660depends on what its current meaning is. For example, consider this:
7661
7662@example
7663foo (x);
7664@end example
7665
7666This looks like a function call statement, but if @code{foo} is a typedef
7667name, then this is actually a declaration of @code{x}. How can a Bison
7668parser for C decide how to parse this input?
7669
8a4281b9 7670The method used in GNU C is to have two different token types,
bfa74976
RS
7671@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7672identifier, it looks up the current declaration of the identifier in order
7673to decide which token type to return: @code{TYPENAME} if the identifier is
7674declared as a typedef, @code{IDENTIFIER} otherwise.
7675
7676The grammar rules can then express the context dependency by the choice of
7677token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7678but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7679@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7680is @emph{not} significant, such as in declarations that can shadow a
7681typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7682accepted---there is one rule for each of the two token types.
7683
7684This technique is simple to use if the decision of which kinds of
7685identifiers to allow is made at a place close to where the identifier is
7686parsed. But in C this is not always so: C allows a declaration to
7687redeclare a typedef name provided an explicit type has been specified
7688earlier:
7689
7690@example
3a4f411f
PE
7691typedef int foo, bar;
7692int baz (void)
7693@{
7694 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7695 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7696 return foo (bar);
7697@}
bfa74976
RS
7698@end example
7699
7700Unfortunately, the name being declared is separated from the declaration
7701construct itself by a complicated syntactic structure---the ``declarator''.
7702
9ecbd125 7703As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7704all the nonterminal names changed: once for parsing a declaration in
7705which a typedef name can be redefined, and once for parsing a
7706declaration in which that can't be done. Here is a part of the
7707duplication, with actions omitted for brevity:
bfa74976
RS
7708
7709@example
7710initdcl:
7711 declarator maybeasm '='
7712 init
7713 | declarator maybeasm
7714 ;
7715
7716notype_initdcl:
7717 notype_declarator maybeasm '='
7718 init
7719 | notype_declarator maybeasm
7720 ;
7721@end example
7722
7723@noindent
7724Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7725cannot. The distinction between @code{declarator} and
7726@code{notype_declarator} is the same sort of thing.
7727
7728There is some similarity between this technique and a lexical tie-in
7729(described next), in that information which alters the lexical analysis is
7730changed during parsing by other parts of the program. The difference is
7731here the information is global, and is used for other purposes in the
7732program. A true lexical tie-in has a special-purpose flag controlled by
7733the syntactic context.
7734
342b8b6e 7735@node Lexical Tie-ins
bfa74976
RS
7736@section Lexical Tie-ins
7737@cindex lexical tie-in
7738
7739One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7740which is set by Bison actions, whose purpose is to alter the way tokens are
7741parsed.
7742
7743For example, suppose we have a language vaguely like C, but with a special
7744construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7745an expression in parentheses in which all integers are hexadecimal. In
7746particular, the token @samp{a1b} must be treated as an integer rather than
7747as an identifier if it appears in that context. Here is how you can do it:
7748
7749@example
7750@group
7751%@{
38a92d50
PE
7752 int hexflag;
7753 int yylex (void);
7754 void yyerror (char const *);
bfa74976
RS
7755%@}
7756%%
7757@dots{}
7758@end group
7759@group
7760expr: IDENTIFIER
7761 | constant
7762 | HEX '('
7763 @{ hexflag = 1; @}
7764 expr ')'
7765 @{ hexflag = 0;
7766 $$ = $4; @}
7767 | expr '+' expr
7768 @{ $$ = make_sum ($1, $3); @}
7769 @dots{}
7770 ;
7771@end group
7772
7773@group
7774constant:
7775 INTEGER
7776 | STRING
7777 ;
7778@end group
7779@end example
7780
7781@noindent
7782Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7783it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7784with letters are parsed as integers if possible.
7785
342b8b6e
AD
7786The declaration of @code{hexflag} shown in the prologue of the parser file
7787is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7788You must also write the code in @code{yylex} to obey the flag.
bfa74976 7789
342b8b6e 7790@node Tie-in Recovery
bfa74976
RS
7791@section Lexical Tie-ins and Error Recovery
7792
7793Lexical tie-ins make strict demands on any error recovery rules you have.
7794@xref{Error Recovery}.
7795
7796The reason for this is that the purpose of an error recovery rule is to
7797abort the parsing of one construct and resume in some larger construct.
7798For example, in C-like languages, a typical error recovery rule is to skip
7799tokens until the next semicolon, and then start a new statement, like this:
7800
7801@example
7802stmt: expr ';'
7803 | IF '(' expr ')' stmt @{ @dots{} @}
7804 @dots{}
7805 error ';'
7806 @{ hexflag = 0; @}
7807 ;
7808@end example
7809
7810If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7811construct, this error rule will apply, and then the action for the
7812completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7813remain set for the entire rest of the input, or until the next @code{hex}
7814keyword, causing identifiers to be misinterpreted as integers.
7815
7816To avoid this problem the error recovery rule itself clears @code{hexflag}.
7817
7818There may also be an error recovery rule that works within expressions.
7819For example, there could be a rule which applies within parentheses
7820and skips to the close-parenthesis:
7821
7822@example
7823@group
7824expr: @dots{}
7825 | '(' expr ')'
7826 @{ $$ = $2; @}
7827 | '(' error ')'
7828 @dots{}
7829@end group
7830@end example
7831
7832If this rule acts within the @code{hex} construct, it is not going to abort
7833that construct (since it applies to an inner level of parentheses within
7834the construct). Therefore, it should not clear the flag: the rest of
7835the @code{hex} construct should be parsed with the flag still in effect.
7836
7837What if there is an error recovery rule which might abort out of the
7838@code{hex} construct or might not, depending on circumstances? There is no
7839way you can write the action to determine whether a @code{hex} construct is
7840being aborted or not. So if you are using a lexical tie-in, you had better
7841make sure your error recovery rules are not of this kind. Each rule must
7842be such that you can be sure that it always will, or always won't, have to
7843clear the flag.
7844
ec3bc396
AD
7845@c ================================================== Debugging Your Parser
7846
342b8b6e 7847@node Debugging
bfa74976 7848@chapter Debugging Your Parser
ec3bc396
AD
7849
7850Developing a parser can be a challenge, especially if you don't
7851understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7852Algorithm}). Even so, sometimes a detailed description of the automaton
7853can help (@pxref{Understanding, , Understanding Your Parser}), or
7854tracing the execution of the parser can give some insight on why it
7855behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7856
7857@menu
7858* Understanding:: Understanding the structure of your parser.
7859* Tracing:: Tracing the execution of your parser.
7860@end menu
7861
7862@node Understanding
7863@section Understanding Your Parser
7864
7865As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7866Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7867frequent than one would hope), looking at this automaton is required to
7868tune or simply fix a parser. Bison provides two different
35fe0834 7869representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7870
7871The textual file is generated when the options @option{--report} or
7872@option{--verbose} are specified, see @xref{Invocation, , Invoking
7873Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7874the parser output file name, and adding @samp{.output} instead.
7875Therefore, if the input file is @file{foo.y}, then the parser file is
7876called @file{foo.tab.c} by default. As a consequence, the verbose
7877output file is called @file{foo.output}.
7878
7879The following grammar file, @file{calc.y}, will be used in the sequel:
7880
7881@example
7882%token NUM STR
7883%left '+' '-'
7884%left '*'
7885%%
7886exp: exp '+' exp
7887 | exp '-' exp
7888 | exp '*' exp
7889 | exp '/' exp
7890 | NUM
7891 ;
7892useless: STR;
7893%%
7894@end example
7895
88bce5a2
AD
7896@command{bison} reports:
7897
7898@example
8f0d265e
JD
7899calc.y: warning: 1 nonterminal useless in grammar
7900calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7901calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7902calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7903calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7904@end example
7905
7906When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7907creates a file @file{calc.output} with contents detailed below. The
7908order of the output and the exact presentation might vary, but the
7909interpretation is the same.
ec3bc396
AD
7910
7911The first section includes details on conflicts that were solved thanks
7912to precedence and/or associativity:
7913
7914@example
7915Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7916Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7917Conflict in state 8 between rule 2 and token '*' resolved as shift.
7918@exdent @dots{}
7919@end example
7920
7921@noindent
7922The next section lists states that still have conflicts.
7923
7924@example
5a99098d
PE
7925State 8 conflicts: 1 shift/reduce
7926State 9 conflicts: 1 shift/reduce
7927State 10 conflicts: 1 shift/reduce
7928State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7929@end example
7930
7931@noindent
7932@cindex token, useless
7933@cindex useless token
7934@cindex nonterminal, useless
7935@cindex useless nonterminal
7936@cindex rule, useless
7937@cindex useless rule
7938The next section reports useless tokens, nonterminal and rules. Useless
7939nonterminals and rules are removed in order to produce a smaller parser,
7940but useless tokens are preserved, since they might be used by the
d80fb37a 7941scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7942below):
7943
7944@example
d80fb37a 7945Nonterminals useless in grammar:
ec3bc396
AD
7946 useless
7947
d80fb37a 7948Terminals unused in grammar:
ec3bc396
AD
7949 STR
7950
cff03fb2 7951Rules useless in grammar:
ec3bc396
AD
7952#6 useless: STR;
7953@end example
7954
7955@noindent
7956The next section reproduces the exact grammar that Bison used:
7957
7958@example
7959Grammar
7960
7961 Number, Line, Rule
88bce5a2 7962 0 5 $accept -> exp $end
ec3bc396
AD
7963 1 5 exp -> exp '+' exp
7964 2 6 exp -> exp '-' exp
7965 3 7 exp -> exp '*' exp
7966 4 8 exp -> exp '/' exp
7967 5 9 exp -> NUM
7968@end example
7969
7970@noindent
7971and reports the uses of the symbols:
7972
7973@example
7974Terminals, with rules where they appear
7975
88bce5a2 7976$end (0) 0
ec3bc396
AD
7977'*' (42) 3
7978'+' (43) 1
7979'-' (45) 2
7980'/' (47) 4
7981error (256)
7982NUM (258) 5
7983
7984Nonterminals, with rules where they appear
7985
88bce5a2 7986$accept (8)
ec3bc396
AD
7987 on left: 0
7988exp (9)
7989 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7990@end example
7991
7992@noindent
7993@cindex item
7994@cindex pointed rule
7995@cindex rule, pointed
7996Bison then proceeds onto the automaton itself, describing each state
7997with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7998item is a production rule together with a point (marked by @samp{.})
7999that the input cursor.
8000
8001@example
8002state 0
8003
88bce5a2 8004 $accept -> . exp $ (rule 0)
ec3bc396 8005
2a8d363a 8006 NUM shift, and go to state 1
ec3bc396 8007
2a8d363a 8008 exp go to state 2
ec3bc396
AD
8009@end example
8010
8011This reads as follows: ``state 0 corresponds to being at the very
8012beginning of the parsing, in the initial rule, right before the start
8013symbol (here, @code{exp}). When the parser returns to this state right
8014after having reduced a rule that produced an @code{exp}, the control
8015flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 8016symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 8017the parse stack, and the control flow jumps to state 1. Any other
742e4900 8018lookahead triggers a syntax error.''
ec3bc396
AD
8019
8020@cindex core, item set
8021@cindex item set core
8022@cindex kernel, item set
8023@cindex item set core
8024Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8025report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8026at the beginning of any rule deriving an @code{exp}. By default Bison
8027reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8028you want to see more detail you can invoke @command{bison} with
8029@option{--report=itemset} to list all the items, include those that can
8030be derived:
8031
8032@example
8033state 0
8034
88bce5a2 8035 $accept -> . exp $ (rule 0)
ec3bc396
AD
8036 exp -> . exp '+' exp (rule 1)
8037 exp -> . exp '-' exp (rule 2)
8038 exp -> . exp '*' exp (rule 3)
8039 exp -> . exp '/' exp (rule 4)
8040 exp -> . NUM (rule 5)
8041
8042 NUM shift, and go to state 1
8043
8044 exp go to state 2
8045@end example
8046
8047@noindent
8048In the state 1...
8049
8050@example
8051state 1
8052
8053 exp -> NUM . (rule 5)
8054
2a8d363a 8055 $default reduce using rule 5 (exp)
ec3bc396
AD
8056@end example
8057
8058@noindent
742e4900 8059the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8060(@samp{$default}), the parser will reduce it. If it was coming from
8061state 0, then, after this reduction it will return to state 0, and will
8062jump to state 2 (@samp{exp: go to state 2}).
8063
8064@example
8065state 2
8066
88bce5a2 8067 $accept -> exp . $ (rule 0)
ec3bc396
AD
8068 exp -> exp . '+' exp (rule 1)
8069 exp -> exp . '-' exp (rule 2)
8070 exp -> exp . '*' exp (rule 3)
8071 exp -> exp . '/' exp (rule 4)
8072
2a8d363a
AD
8073 $ shift, and go to state 3
8074 '+' shift, and go to state 4
8075 '-' shift, and go to state 5
8076 '*' shift, and go to state 6
8077 '/' shift, and go to state 7
ec3bc396
AD
8078@end example
8079
8080@noindent
8081In state 2, the automaton can only shift a symbol. For instance,
742e4900 8082because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8083@samp{+}, it will be shifted on the parse stack, and the automaton
8084control will jump to state 4, corresponding to the item @samp{exp -> exp
8085'+' . exp}. Since there is no default action, any other token than
6e649e65 8086those listed above will trigger a syntax error.
ec3bc396 8087
eb45ef3b 8088@cindex accepting state
ec3bc396
AD
8089The state 3 is named the @dfn{final state}, or the @dfn{accepting
8090state}:
8091
8092@example
8093state 3
8094
88bce5a2 8095 $accept -> exp $ . (rule 0)
ec3bc396 8096
2a8d363a 8097 $default accept
ec3bc396
AD
8098@end example
8099
8100@noindent
8101the initial rule is completed (the start symbol and the end
8102of input were read), the parsing exits successfully.
8103
8104The interpretation of states 4 to 7 is straightforward, and is left to
8105the reader.
8106
8107@example
8108state 4
8109
8110 exp -> exp '+' . exp (rule 1)
8111
2a8d363a 8112 NUM shift, and go to state 1
ec3bc396 8113
2a8d363a 8114 exp go to state 8
ec3bc396
AD
8115
8116state 5
8117
8118 exp -> exp '-' . exp (rule 2)
8119
2a8d363a 8120 NUM shift, and go to state 1
ec3bc396 8121
2a8d363a 8122 exp go to state 9
ec3bc396
AD
8123
8124state 6
8125
8126 exp -> exp '*' . exp (rule 3)
8127
2a8d363a 8128 NUM shift, and go to state 1
ec3bc396 8129
2a8d363a 8130 exp go to state 10
ec3bc396
AD
8131
8132state 7
8133
8134 exp -> exp '/' . exp (rule 4)
8135
2a8d363a 8136 NUM shift, and go to state 1
ec3bc396 8137
2a8d363a 8138 exp go to state 11
ec3bc396
AD
8139@end example
8140
5a99098d
PE
8141As was announced in beginning of the report, @samp{State 8 conflicts:
81421 shift/reduce}:
ec3bc396
AD
8143
8144@example
8145state 8
8146
8147 exp -> exp . '+' exp (rule 1)
8148 exp -> exp '+' exp . (rule 1)
8149 exp -> exp . '-' exp (rule 2)
8150 exp -> exp . '*' exp (rule 3)
8151 exp -> exp . '/' exp (rule 4)
8152
2a8d363a
AD
8153 '*' shift, and go to state 6
8154 '/' shift, and go to state 7
ec3bc396 8155
2a8d363a
AD
8156 '/' [reduce using rule 1 (exp)]
8157 $default reduce using rule 1 (exp)
ec3bc396
AD
8158@end example
8159
742e4900 8160Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8161either shifting (and going to state 7), or reducing rule 1. The
8162conflict means that either the grammar is ambiguous, or the parser lacks
8163information to make the right decision. Indeed the grammar is
8164ambiguous, as, since we did not specify the precedence of @samp{/}, the
8165sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8166NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8167NUM}, which corresponds to reducing rule 1.
8168
eb45ef3b 8169Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8170arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8171Shift/Reduce Conflicts}. Discarded actions are reported in between
8172square brackets.
8173
8174Note that all the previous states had a single possible action: either
8175shifting the next token and going to the corresponding state, or
8176reducing a single rule. In the other cases, i.e., when shifting
8177@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8178possible, the lookahead is required to select the action. State 8 is
8179one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8180is shifting, otherwise the action is reducing rule 1. In other words,
8181the first two items, corresponding to rule 1, are not eligible when the
742e4900 8182lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8183precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8184with some set of possible lookahead tokens. When run with
8185@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8186
8187@example
8188state 8
8189
88c78747 8190 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8191 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8192 exp -> exp . '-' exp (rule 2)
8193 exp -> exp . '*' exp (rule 3)
8194 exp -> exp . '/' exp (rule 4)
8195
8196 '*' shift, and go to state 6
8197 '/' shift, and go to state 7
8198
8199 '/' [reduce using rule 1 (exp)]
8200 $default reduce using rule 1 (exp)
8201@end example
8202
8203The remaining states are similar:
8204
8205@example
8206state 9
8207
8208 exp -> exp . '+' exp (rule 1)
8209 exp -> exp . '-' exp (rule 2)
8210 exp -> exp '-' exp . (rule 2)
8211 exp -> exp . '*' exp (rule 3)
8212 exp -> exp . '/' exp (rule 4)
8213
2a8d363a
AD
8214 '*' shift, and go to state 6
8215 '/' shift, and go to state 7
ec3bc396 8216
2a8d363a
AD
8217 '/' [reduce using rule 2 (exp)]
8218 $default reduce using rule 2 (exp)
ec3bc396
AD
8219
8220state 10
8221
8222 exp -> exp . '+' exp (rule 1)
8223 exp -> exp . '-' exp (rule 2)
8224 exp -> exp . '*' exp (rule 3)
8225 exp -> exp '*' exp . (rule 3)
8226 exp -> exp . '/' exp (rule 4)
8227
2a8d363a 8228 '/' shift, and go to state 7
ec3bc396 8229
2a8d363a
AD
8230 '/' [reduce using rule 3 (exp)]
8231 $default reduce using rule 3 (exp)
ec3bc396
AD
8232
8233state 11
8234
8235 exp -> exp . '+' exp (rule 1)
8236 exp -> exp . '-' exp (rule 2)
8237 exp -> exp . '*' exp (rule 3)
8238 exp -> exp . '/' exp (rule 4)
8239 exp -> exp '/' exp . (rule 4)
8240
2a8d363a
AD
8241 '+' shift, and go to state 4
8242 '-' shift, and go to state 5
8243 '*' shift, and go to state 6
8244 '/' shift, and go to state 7
ec3bc396 8245
2a8d363a
AD
8246 '+' [reduce using rule 4 (exp)]
8247 '-' [reduce using rule 4 (exp)]
8248 '*' [reduce using rule 4 (exp)]
8249 '/' [reduce using rule 4 (exp)]
8250 $default reduce using rule 4 (exp)
ec3bc396
AD
8251@end example
8252
8253@noindent
fa7e68c3
PE
8254Observe that state 11 contains conflicts not only due to the lack of
8255precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8256@samp{*}, but also because the
ec3bc396
AD
8257associativity of @samp{/} is not specified.
8258
8259
8260@node Tracing
8261@section Tracing Your Parser
bfa74976
RS
8262@findex yydebug
8263@cindex debugging
8264@cindex tracing the parser
8265
8266If a Bison grammar compiles properly but doesn't do what you want when it
8267runs, the @code{yydebug} parser-trace feature can help you figure out why.
8268
3ded9a63
AD
8269There are several means to enable compilation of trace facilities:
8270
8271@table @asis
8272@item the macro @code{YYDEBUG}
8273@findex YYDEBUG
8274Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8275parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8276@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8277YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8278Prologue}).
8279
8280@item the option @option{-t}, @option{--debug}
8281Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8282,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8283
8284@item the directive @samp{%debug}
8285@findex %debug
fa819509
AD
8286Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8287Summary}). This Bison extension is maintained for backward
8288compatibility with previous versions of Bison.
8289
8290@item the variable @samp{parse.trace}
8291@findex %define parse.trace
8292Add the @samp{%define parse.trace} directive (@pxref{Decl Summary,
8293,Bison Declaration Summary}), or pass the @option{-Dparse.trace} option
8294(@pxref{Bison Options}). This is a Bison extension, which is especially
8295useful for languages that don't use a preprocessor. Unless
8a4281b9 8296POSIX and Yacc portability matter to you, this is the
fa819509 8297preferred solution.
3ded9a63
AD
8298@end table
8299
fa819509 8300We suggest that you always enable the trace option so that debugging is
3ded9a63 8301always possible.
bfa74976 8302
02a81e05 8303The trace facility outputs messages with macro calls of the form
e2742e46 8304@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8305@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8306arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8307define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8308and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8309
8310Once you have compiled the program with trace facilities, the way to
8311request a trace is to store a nonzero value in the variable @code{yydebug}.
8312You can do this by making the C code do it (in @code{main}, perhaps), or
8313you can alter the value with a C debugger.
8314
8315Each step taken by the parser when @code{yydebug} is nonzero produces a
8316line or two of trace information, written on @code{stderr}. The trace
8317messages tell you these things:
8318
8319@itemize @bullet
8320@item
8321Each time the parser calls @code{yylex}, what kind of token was read.
8322
8323@item
8324Each time a token is shifted, the depth and complete contents of the
8325state stack (@pxref{Parser States}).
8326
8327@item
8328Each time a rule is reduced, which rule it is, and the complete contents
8329of the state stack afterward.
8330@end itemize
8331
8332To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8333produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8334Bison}). This file shows the meaning of each state in terms of
8335positions in various rules, and also what each state will do with each
8336possible input token. As you read the successive trace messages, you
8337can see that the parser is functioning according to its specification in
8338the listing file. Eventually you will arrive at the place where
8339something undesirable happens, and you will see which parts of the
8340grammar are to blame.
bfa74976
RS
8341
8342The parser file is a C program and you can use C debuggers on it, but it's
8343not easy to interpret what it is doing. The parser function is a
8344finite-state machine interpreter, and aside from the actions it executes
8345the same code over and over. Only the values of variables show where in
8346the grammar it is working.
8347
8348@findex YYPRINT
8349The debugging information normally gives the token type of each token
8350read, but not its semantic value. You can optionally define a macro
8351named @code{YYPRINT} to provide a way to print the value. If you define
8352@code{YYPRINT}, it should take three arguments. The parser will pass a
8353standard I/O stream, the numeric code for the token type, and the token
8354value (from @code{yylval}).
8355
8356Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8357calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8358
8359@smallexample
38a92d50
PE
8360%@{
8361 static void print_token_value (FILE *, int, YYSTYPE);
8362 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8363%@}
8364
8365@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8366
8367static void
831d3c99 8368print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8369@{
8370 if (type == VAR)
d3c4e709 8371 fprintf (file, "%s", value.tptr->name);
bfa74976 8372 else if (type == NUM)
d3c4e709 8373 fprintf (file, "%d", value.val);
bfa74976
RS
8374@}
8375@end smallexample
8376
ec3bc396
AD
8377@c ================================================= Invoking Bison
8378
342b8b6e 8379@node Invocation
bfa74976
RS
8380@chapter Invoking Bison
8381@cindex invoking Bison
8382@cindex Bison invocation
8383@cindex options for invoking Bison
8384
8385The usual way to invoke Bison is as follows:
8386
8387@example
8388bison @var{infile}
8389@end example
8390
8391Here @var{infile} is the grammar file name, which usually ends in
8392@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8393with @samp{.tab.c} and removing any leading directory. Thus, the
8394@samp{bison foo.y} file name yields
8395@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8396@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8397C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8398or @file{foo.y++}. Then, the output files will take an extension like
8399the given one as input (respectively @file{foo.tab.cpp} and
8400@file{foo.tab.c++}).
fa4d969f 8401This feature takes effect with all options that manipulate file names like
234a3be3
AD
8402@samp{-o} or @samp{-d}.
8403
8404For example :
8405
8406@example
8407bison -d @var{infile.yxx}
8408@end example
84163231 8409@noindent
72d2299c 8410will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8411
8412@example
b56471a6 8413bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8414@end example
84163231 8415@noindent
234a3be3
AD
8416will produce @file{output.c++} and @file{outfile.h++}.
8417
8a4281b9 8418For compatibility with POSIX, the standard Bison
397ec073
PE
8419distribution also contains a shell script called @command{yacc} that
8420invokes Bison with the @option{-y} option.
8421
bfa74976 8422@menu
13863333 8423* Bison Options:: All the options described in detail,
c827f760 8424 in alphabetical order by short options.
bfa74976 8425* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8426* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8427@end menu
8428
342b8b6e 8429@node Bison Options
bfa74976
RS
8430@section Bison Options
8431
8432Bison supports both traditional single-letter options and mnemonic long
8433option names. Long option names are indicated with @samp{--} instead of
8434@samp{-}. Abbreviations for option names are allowed as long as they
8435are unique. When a long option takes an argument, like
8436@samp{--file-prefix}, connect the option name and the argument with
8437@samp{=}.
8438
8439Here is a list of options that can be used with Bison, alphabetized by
8440short option. It is followed by a cross key alphabetized by long
8441option.
8442
89cab50d
AD
8443@c Please, keep this ordered as in `bison --help'.
8444@noindent
8445Operations modes:
8446@table @option
8447@item -h
8448@itemx --help
8449Print a summary of the command-line options to Bison and exit.
bfa74976 8450
89cab50d
AD
8451@item -V
8452@itemx --version
8453Print the version number of Bison and exit.
bfa74976 8454
f7ab6a50
PE
8455@item --print-localedir
8456Print the name of the directory containing locale-dependent data.
8457
a0de5091
JD
8458@item --print-datadir
8459Print the name of the directory containing skeletons and XSLT.
8460
89cab50d
AD
8461@item -y
8462@itemx --yacc
54662697
PE
8463Act more like the traditional Yacc command. This can cause
8464different diagnostics to be generated, and may change behavior in
8465other minor ways. Most importantly, imitate Yacc's output
8466file name conventions, so that the parser output file is called
89cab50d 8467@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8468@file{y.tab.h}.
eb45ef3b 8469Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8470statements in addition to an @code{enum} to associate token numbers with token
8471names.
8472Thus, the following shell script can substitute for Yacc, and the Bison
8a4281b9 8473distribution contains such a script for compatibility with POSIX:
bfa74976 8474
89cab50d 8475@example
397ec073 8476#! /bin/sh
26e06a21 8477bison -y "$@@"
89cab50d 8478@end example
54662697
PE
8479
8480The @option{-y}/@option{--yacc} option is intended for use with
8481traditional Yacc grammars. If your grammar uses a Bison extension
8482like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8483this option is specified.
8484
1d5b3c08
JD
8485@item -W [@var{category}]
8486@itemx --warnings[=@var{category}]
118d4978
AD
8487Output warnings falling in @var{category}. @var{category} can be one
8488of:
8489@table @code
8490@item midrule-values
8e55b3aa
JD
8491Warn about mid-rule values that are set but not used within any of the actions
8492of the parent rule.
8493For example, warn about unused @code{$2} in:
118d4978
AD
8494
8495@example
8496exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8497@end example
8498
8e55b3aa
JD
8499Also warn about mid-rule values that are used but not set.
8500For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8501
8502@example
8503 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8504@end example
8505
8506These warnings are not enabled by default since they sometimes prove to
8507be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8508@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8509
8510
8511@item yacc
8a4281b9 8512Incompatibilities with POSIX Yacc.
118d4978
AD
8513
8514@item all
8e55b3aa 8515All the warnings.
118d4978 8516@item none
8e55b3aa 8517Turn off all the warnings.
118d4978 8518@item error
8e55b3aa 8519Treat warnings as errors.
118d4978
AD
8520@end table
8521
8522A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8523instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8524POSIX Yacc incompatibilities.
89cab50d
AD
8525@end table
8526
8527@noindent
8528Tuning the parser:
8529
8530@table @option
8531@item -t
8532@itemx --debug
4947ebdb
PE
8533In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8534already defined, so that the debugging facilities are compiled.
ec3bc396 8535@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8536
58697c6d
AD
8537@item -D @var{name}[=@var{value}]
8538@itemx --define=@var{name}[=@var{value}]
17aed602 8539@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8540@itemx --force-define=@var{name}[=@var{value}]
8541Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8542(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8543definitions for the same @var{name} as follows:
8544
8545@itemize
8546@item
0b6d43c5
JD
8547Bison quietly ignores all command-line definitions for @var{name} except
8548the last.
de5ab940 8549@item
0b6d43c5
JD
8550If that command-line definition is specified by a @code{-D} or
8551@code{--define}, Bison reports an error for any @code{%define}
8552definition for @var{name}.
de5ab940 8553@item
0b6d43c5
JD
8554If that command-line definition is specified by a @code{-F} or
8555@code{--force-define} instead, Bison quietly ignores all @code{%define}
8556definitions for @var{name}.
8557@item
8558Otherwise, Bison reports an error if there are multiple @code{%define}
8559definitions for @var{name}.
de5ab940
JD
8560@end itemize
8561
8562You should avoid using @code{-F} and @code{--force-define} in your
8563makefiles unless you are confident that it is safe to quietly ignore any
8564conflicting @code{%define} that may be added to the grammar file.
58697c6d 8565
0e021770
PE
8566@item -L @var{language}
8567@itemx --language=@var{language}
8568Specify the programming language for the generated parser, as if
8569@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8570Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8571@var{language} is case-insensitive.
0e021770 8572
ed4d67dc
JD
8573This option is experimental and its effect may be modified in future
8574releases.
8575
89cab50d 8576@item --locations
d8988b2f 8577Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8578
8579@item -p @var{prefix}
8580@itemx --name-prefix=@var{prefix}
02975b9a 8581Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8582@xref{Decl Summary}.
bfa74976
RS
8583
8584@item -l
8585@itemx --no-lines
8586Don't put any @code{#line} preprocessor commands in the parser file.
8587Ordinarily Bison puts them in the parser file so that the C compiler
8588and debuggers will associate errors with your source file, the
8589grammar file. This option causes them to associate errors with the
95e742f7 8590parser file, treating it as an independent source file in its own right.
bfa74976 8591
e6e704dc
JD
8592@item -S @var{file}
8593@itemx --skeleton=@var{file}
a7867f53 8594Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8595(@pxref{Decl Summary, , Bison Declaration Summary}).
8596
ed4d67dc
JD
8597@c You probably don't need this option unless you are developing Bison.
8598@c You should use @option{--language} if you want to specify the skeleton for a
8599@c different language, because it is clearer and because it will always
8600@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8601
a7867f53
JD
8602If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8603file in the Bison installation directory.
8604If it does, @var{file} is an absolute file name or a file name relative to the
8605current working directory.
8606This is similar to how most shells resolve commands.
8607
89cab50d
AD
8608@item -k
8609@itemx --token-table
d8988b2f 8610Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8611@end table
bfa74976 8612
89cab50d
AD
8613@noindent
8614Adjust the output:
bfa74976 8615
89cab50d 8616@table @option
8e55b3aa 8617@item --defines[=@var{file}]
d8988b2f 8618Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8619file containing macro definitions for the token type names defined in
4bfd5e4e 8620the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8621
8e55b3aa
JD
8622@item -d
8623This is the same as @code{--defines} except @code{-d} does not accept a
8624@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8625with other short options.
342b8b6e 8626
89cab50d
AD
8627@item -b @var{file-prefix}
8628@itemx --file-prefix=@var{prefix}
9c437126 8629Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8630for all Bison output file names. @xref{Decl Summary}.
bfa74976 8631
ec3bc396
AD
8632@item -r @var{things}
8633@itemx --report=@var{things}
8634Write an extra output file containing verbose description of the comma
8635separated list of @var{things} among:
8636
8637@table @code
8638@item state
8639Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8640parser's automaton.
ec3bc396 8641
742e4900 8642@item lookahead
ec3bc396 8643Implies @code{state} and augments the description of the automaton with
742e4900 8644each rule's lookahead set.
ec3bc396
AD
8645
8646@item itemset
8647Implies @code{state} and augments the description of the automaton with
8648the full set of items for each state, instead of its core only.
8649@end table
8650
1bb2bd75
JD
8651@item --report-file=@var{file}
8652Specify the @var{file} for the verbose description.
8653
bfa74976
RS
8654@item -v
8655@itemx --verbose
9c437126 8656Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8657file containing verbose descriptions of the grammar and
72d2299c 8658parser. @xref{Decl Summary}.
bfa74976 8659
fa4d969f
PE
8660@item -o @var{file}
8661@itemx --output=@var{file}
8662Specify the @var{file} for the parser file.
bfa74976 8663
fa4d969f 8664The other output files' names are constructed from @var{file} as
d8988b2f 8665described under the @samp{-v} and @samp{-d} options.
342b8b6e 8666
a7c09cba 8667@item -g [@var{file}]
8e55b3aa 8668@itemx --graph[=@var{file}]
eb45ef3b 8669Output a graphical representation of the parser's
35fe0834 8670automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 8671@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8672@code{@var{file}} is optional.
8673If omitted and the grammar file is @file{foo.y}, the output file will be
8674@file{foo.dot}.
59da312b 8675
a7c09cba 8676@item -x [@var{file}]
8e55b3aa 8677@itemx --xml[=@var{file}]
eb45ef3b 8678Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8679@code{@var{file}} is optional.
59da312b
JD
8680If omitted and the grammar file is @file{foo.y}, the output file will be
8681@file{foo.xml}.
8682(The current XML schema is experimental and may evolve.
8683More user feedback will help to stabilize it.)
bfa74976
RS
8684@end table
8685
342b8b6e 8686@node Option Cross Key
bfa74976
RS
8687@section Option Cross Key
8688
8689Here is a list of options, alphabetized by long option, to help you find
de5ab940 8690the corresponding short option and directive.
bfa74976 8691
de5ab940 8692@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8693@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8694@include cross-options.texi
aa08666d 8695@end multitable
bfa74976 8696
93dd49ab
PE
8697@node Yacc Library
8698@section Yacc Library
8699
8700The Yacc library contains default implementations of the
8701@code{yyerror} and @code{main} functions. These default
8a4281b9 8702implementations are normally not useful, but POSIX requires
93dd49ab
PE
8703them. To use the Yacc library, link your program with the
8704@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 8705library is distributed under the terms of the GNU General
93dd49ab
PE
8706Public License (@pxref{Copying}).
8707
8708If you use the Yacc library's @code{yyerror} function, you should
8709declare @code{yyerror} as follows:
8710
8711@example
8712int yyerror (char const *);
8713@end example
8714
8715Bison ignores the @code{int} value returned by this @code{yyerror}.
8716If you use the Yacc library's @code{main} function, your
8717@code{yyparse} function should have the following type signature:
8718
8719@example
8720int yyparse (void);
8721@end example
8722
12545799
AD
8723@c ================================================= C++ Bison
8724
8405b70c
PB
8725@node Other Languages
8726@chapter Parsers Written In Other Languages
12545799
AD
8727
8728@menu
8729* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8730* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8731@end menu
8732
8733@node C++ Parsers
8734@section C++ Parsers
8735
8736@menu
8737* C++ Bison Interface:: Asking for C++ parser generation
8738* C++ Semantic Values:: %union vs. C++
8739* C++ Location Values:: The position and location classes
8740* C++ Parser Interface:: Instantiating and running the parser
8741* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8742* A Complete C++ Example:: Demonstrating their use
12545799
AD
8743@end menu
8744
8745@node C++ Bison Interface
8746@subsection C++ Bison Interface
ed4d67dc 8747@c - %skeleton "lalr1.cc"
12545799
AD
8748@c - Always pure
8749@c - initial action
8750
eb45ef3b 8751The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
8752@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8753@option{--skeleton=lalr1.cc}.
e6e704dc 8754@xref{Decl Summary}.
0e021770 8755
793fbca5
JD
8756When run, @command{bison} will create several entities in the @samp{yy}
8757namespace.
67501061
AD
8758@findex %define api.namespace
8759Use the @samp{%define api.namespace} directive to change the namespace
8760name, see
793fbca5
JD
8761@ref{Decl Summary}.
8762The various classes are generated in the following files:
aa08666d 8763
12545799
AD
8764@table @file
8765@item position.hh
8766@itemx location.hh
8767The definition of the classes @code{position} and @code{location},
3cdc21cf 8768used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
8769
8770@item stack.hh
8771An auxiliary class @code{stack} used by the parser.
8772
fa4d969f
PE
8773@item @var{file}.hh
8774@itemx @var{file}.cc
cd8b5791
AD
8775(Assuming the extension of the input file was @samp{.yy}.) The
8776declaration and implementation of the C++ parser class. The basename
8777and extension of these two files follow the same rules as with regular C
8778parsers (@pxref{Invocation}).
12545799 8779
cd8b5791
AD
8780The header is @emph{mandatory}; you must either pass
8781@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8782@samp{%defines} directive.
8783@end table
8784
8785All these files are documented using Doxygen; run @command{doxygen}
8786for a complete and accurate documentation.
8787
8788@node C++ Semantic Values
8789@subsection C++ Semantic Values
8790@c - No objects in unions
178e123e 8791@c - YYSTYPE
12545799
AD
8792@c - Printer and destructor
8793
3cdc21cf
AD
8794Bison supports two different means to handle semantic values in C++. One is
8795alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
8796practitioners know, unions are inconvenient in C++, therefore another
8797approach is provided, based on variants (@pxref{C++ Variants}).
8798
8799@menu
8800* C++ Unions:: Semantic values cannot be objects
8801* C++ Variants:: Using objects as semantic values
8802@end menu
8803
8804@node C++ Unions
8805@subsubsection C++ Unions
8806
12545799
AD
8807The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8808Collection of Value Types}. In particular it produces a genuine
3cdc21cf 8809@code{union}, which have a few specific features in C++.
12545799
AD
8810@itemize @minus
8811@item
fb9712a9
AD
8812The type @code{YYSTYPE} is defined but its use is discouraged: rather
8813you should refer to the parser's encapsulated type
8814@code{yy::parser::semantic_type}.
12545799
AD
8815@item
8816Non POD (Plain Old Data) types cannot be used. C++ forbids any
8817instance of classes with constructors in unions: only @emph{pointers}
8818to such objects are allowed.
8819@end itemize
8820
8821Because objects have to be stored via pointers, memory is not
8822reclaimed automatically: using the @code{%destructor} directive is the
8823only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8824Symbols}.
8825
3cdc21cf
AD
8826@node C++ Variants
8827@subsubsection C++ Variants
8828
8829Starting with version 2.6, Bison provides a @emph{variant} based
8830implementation of semantic values for C++. This alleviates all the
8831limitations reported in the previous section, and in particular, object
8832types can be used without pointers.
8833
8834To enable variant-based semantic values, set @code{%define} variable
8835@code{variant} (@pxref{Decl Summary, , variant}). Once this defined,
8836@code{%union} is ignored, and instead of using the name of the fields of the
8837@code{%union} to ``type'' the symbols, use genuine types.
8838
8839For instance, instead of
8840
8841@example
8842%union
8843@{
8844 int ival;
8845 std::string* sval;
8846@}
8847%token <ival> NUMBER;
8848%token <sval> STRING;
8849@end example
8850
8851@noindent
8852write
8853
8854@example
8855%token <int> NUMBER;
8856%token <std::string> STRING;
8857@end example
8858
8859@code{STRING} is no longer a pointer, which should fairly simplify the user
8860actions in the grammar and in the scanner (in particular the memory
8861management).
8862
8863Since C++ features destructors, and since it is customary to specialize
8864@code{operator<<} to support uniform printing of values, variants also
8865typically simplify Bison printers and destructors.
8866
8867Variants are stricter than unions. When based on unions, you may play any
8868dirty game with @code{yylval}, say storing an @code{int}, reading a
8869@code{char*}, and then storing a @code{double} in it. This is no longer
8870possible with variants: they must be initialized, then assigned to, and
8871eventually, destroyed.
8872
8873@deftypemethod {semantic_type} {T&} build<T> ()
8874Initialize, but leave empty. Returns the address where the actual value may
8875be stored. Requires that the variant was not initialized yet.
8876@end deftypemethod
8877
8878@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
8879Initialize, and copy-construct from @var{t}.
8880@end deftypemethod
8881
8882
8883@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
8884appeared unacceptable to require Boost on the user's machine (i.e., the
8885machine on which the generated parser will be compiled, not the machine on
8886which @command{bison} was run). Second, for each possible semantic value,
8887Boost.Variant not only stores the value, but also a tag specifying its
8888type. But the parser already ``knows'' the type of the semantic value, so
8889that would be duplicating the information.
8890
8891Therefore we developed light-weight variants whose type tag is external (so
8892they are really like @code{unions} for C++ actually). But our code is much
8893less mature that Boost.Variant. So there is a number of limitations in
8894(the current implementation of) variants:
8895@itemize
8896@item
8897Alignment must be enforced: values should be aligned in memory according to
8898the most demanding type. Computing the smallest alignment possible requires
8899meta-programming techniques that are not currently implemented in Bison, and
8900therefore, since, as far as we know, @code{double} is the most demanding
8901type on all platforms, alignments are enforced for @code{double} whatever
8902types are actually used. This may waste space in some cases.
8903
8904@item
8905Our implementation is not conforming with strict aliasing rules. Alias
8906analysis is a technique used in optimizing compilers to detect when two
8907pointers are disjoint (they cannot ``meet''). Our implementation breaks
8908some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
8909alias analysis must be disabled}. Use the option
8910@option{-fno-strict-aliasing} to compile the generated parser.
8911
8912@item
8913There might be portability issues we are not aware of.
8914@end itemize
8915
a6ca4ce2 8916As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 8917is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
8918
8919@node C++ Location Values
8920@subsection C++ Location Values
8921@c - %locations
8922@c - class Position
8923@c - class Location
16dc6a9e 8924@c - %define filename_type "const symbol::Symbol"
12545799
AD
8925
8926When the directive @code{%locations} is used, the C++ parser supports
8927location tracking, see @ref{Locations, , Locations Overview}. Two
8928auxiliary classes define a @code{position}, a single point in a file,
8929and a @code{location}, a range composed of a pair of
8930@code{position}s (possibly spanning several files).
8931
fa4d969f 8932@deftypemethod {position} {std::string*} file
12545799
AD
8933The name of the file. It will always be handled as a pointer, the
8934parser will never duplicate nor deallocate it. As an experimental
8935feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8936filename_type "@var{type}"}.
12545799
AD
8937@end deftypemethod
8938
8939@deftypemethod {position} {unsigned int} line
8940The line, starting at 1.
8941@end deftypemethod
8942
8943@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8944Advance by @var{height} lines, resetting the column number.
8945@end deftypemethod
8946
8947@deftypemethod {position} {unsigned int} column
8948The column, starting at 0.
8949@end deftypemethod
8950
8951@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8952Advance by @var{width} columns, without changing the line number.
8953@end deftypemethod
8954
8955@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8956@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8957@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8958@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8959Various forms of syntactic sugar for @code{columns}.
8960@end deftypemethod
8961
8962@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8963Report @var{p} on @var{o} like this:
fa4d969f
PE
8964@samp{@var{file}:@var{line}.@var{column}}, or
8965@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8966@end deftypemethod
8967
8968@deftypemethod {location} {position} begin
8969@deftypemethodx {location} {position} end
8970The first, inclusive, position of the range, and the first beyond.
8971@end deftypemethod
8972
8973@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8974@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8975Advance the @code{end} position.
8976@end deftypemethod
8977
8978@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8979@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8980@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8981Various forms of syntactic sugar.
8982@end deftypemethod
8983
8984@deftypemethod {location} {void} step ()
8985Move @code{begin} onto @code{end}.
8986@end deftypemethod
8987
8988
8989@node C++ Parser Interface
8990@subsection C++ Parser Interface
8991@c - define parser_class_name
8992@c - Ctor
8993@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8994@c debug_stream.
8995@c - Reporting errors
8996
8997The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8998declare and define the parser class in the namespace @code{yy}. The
8999class name defaults to @code{parser}, but may be changed using
16dc6a9e 9000@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9001this class is detailed below. It can be extended using the
12545799
AD
9002@code{%parse-param} feature: its semantics is slightly changed since
9003it describes an additional member of the parser class, and an
9004additional argument for its constructor.
9005
3cdc21cf
AD
9006@defcv {Type} {parser} {semantic_type}
9007@defcvx {Type} {parser} {location_type}
9008The types for semantic values and locations (if enabled).
9009@end defcv
9010
86e5b440
AD
9011@defcv {Type} {parser} {token}
9012A structure that contains (only) the definition of the tokens as the
9013@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
9014scanner should use @code{yy::parser::token::FOO}. The scanner can use
9015@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9016(@pxref{Calc++ Scanner}).
9017@end defcv
9018
3cdc21cf
AD
9019@defcv {Type} {parser} {syntax_error}
9020This class derives from @code{std::runtime_error}. Throw instances of it
9021from user actions to raise parse errors. This is equivalent with first
9022invoking @code{error} to report the location and message of the syntax
9023error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9024But contrary to @code{YYERROR} which can only be invoked from user actions
9025(i.e., written in the action itself), the exception can be thrown from
9026function invoked from the user action.
8a0adb01 9027@end defcv
12545799
AD
9028
9029@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9030Build a new parser object. There are no arguments by default, unless
9031@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9032@end deftypemethod
9033
3cdc21cf
AD
9034@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9035@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9036Instantiate a syntax-error exception.
9037@end deftypemethod
9038
12545799
AD
9039@deftypemethod {parser} {int} parse ()
9040Run the syntactic analysis, and return 0 on success, 1 otherwise.
9041@end deftypemethod
9042
9043@deftypemethod {parser} {std::ostream&} debug_stream ()
9044@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9045Get or set the stream used for tracing the parsing. It defaults to
9046@code{std::cerr}.
9047@end deftypemethod
9048
9049@deftypemethod {parser} {debug_level_type} debug_level ()
9050@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9051Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9052or nonzero, full tracing.
12545799
AD
9053@end deftypemethod
9054
9055@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9056@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9057The definition for this member function must be supplied by the user:
9058the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9059described by @var{m}. If location tracking is not enabled, the second
9060signature is used.
12545799
AD
9061@end deftypemethod
9062
9063
9064@node C++ Scanner Interface
9065@subsection C++ Scanner Interface
9066@c - prefix for yylex.
9067@c - Pure interface to yylex
9068@c - %lex-param
9069
9070The parser invokes the scanner by calling @code{yylex}. Contrary to C
9071parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9072@samp{%define api.pure} directive. The actual interface with @code{yylex}
9073depends whether you use unions, or variants.
12545799 9074
3cdc21cf
AD
9075@menu
9076* Split Symbols:: Passing symbols as two/three components
9077* Complete Symbols:: Making symbols a whole
9078@end menu
9079
9080@node Split Symbols
9081@subsubsection Split Symbols
9082
9083Therefore the interface is as follows.
9084
86e5b440
AD
9085@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9086@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9087Return the next token. Its type is the return value, its semantic value and
9088location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9089@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9090@end deftypemethod
9091
3cdc21cf
AD
9092Note that when using variants, the interface for @code{yylex} is the same,
9093but @code{yylval} is handled differently.
9094
9095Regular union-based code in Lex scanner typically look like:
9096
9097@example
9098[0-9]+ @{
9099 yylval.ival = text_to_int (yytext);
9100 return yy::parser::INTEGER;
9101 @}
9102[a-z]+ @{
9103 yylval.sval = new std::string (yytext);
9104 return yy::parser::IDENTIFIER;
9105 @}
9106@end example
9107
9108Using variants, @code{yylval} is already constructed, but it is not
9109initialized. So the code would look like:
9110
9111@example
9112[0-9]+ @{
9113 yylval.build<int>() = text_to_int (yytext);
9114 return yy::parser::INTEGER;
9115 @}
9116[a-z]+ @{
9117 yylval.build<std::string> = yytext;
9118 return yy::parser::IDENTIFIER;
9119 @}
9120@end example
9121
9122@noindent
9123or
9124
9125@example
9126[0-9]+ @{
9127 yylval.build(text_to_int (yytext));
9128 return yy::parser::INTEGER;
9129 @}
9130[a-z]+ @{
9131 yylval.build(yytext);
9132 return yy::parser::IDENTIFIER;
9133 @}
9134@end example
9135
9136
9137@node Complete Symbols
9138@subsubsection Complete Symbols
9139
9140If you specified both @code{%define variant} and @code{%define lex_symbol},
9141the @code{parser} class also defines the class @code{parser::symbol_type}
9142which defines a @emph{complete} symbol, aggregating its type (i.e., the
9143traditional value returned by @code{yylex}), its semantic value (i.e., the
9144value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9145
9146@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9147Build a complete terminal symbol which token type is @var{type}, and which
9148semantic value is @var{value}. If location tracking is enabled, also pass
9149the @var{location}.
9150@end deftypemethod
9151
9152This interface is low-level and should not be used for two reasons. First,
9153it is inconvenient, as you still have to build the semantic value, which is
9154a variant, and second, because consistency is not enforced: as with unions,
9155it is still possible to give an integer as semantic value for a string.
9156
9157So for each token type, Bison generates named constructors as follows.
9158
9159@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9160@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9161Build a complete terminal symbol for the token type @var{token} (not
9162including the @code{api.tokens.prefix}) whose possible semantic value is
9163@var{value} of adequate @var{value_type}. If location tracking is enabled,
9164also pass the @var{location}.
9165@end deftypemethod
9166
9167For instance, given the following declarations:
9168
9169@example
9170%define api.tokens.prefix "TOK_"
9171%token <std::string> IDENTIFIER;
9172%token <int> INTEGER;
9173%token COLON;
9174@end example
9175
9176@noindent
9177Bison generates the following functions:
9178
9179@example
9180symbol_type make_IDENTIFIER(const std::string& v,
9181 const location_type& l);
9182symbol_type make_INTEGER(const int& v,
9183 const location_type& loc);
9184symbol_type make_COLON(const location_type& loc);
9185@end example
9186
9187@noindent
9188which should be used in a Lex-scanner as follows.
9189
9190@example
9191[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9192[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9193":" return yy::parser::make_COLON(loc);
9194@end example
9195
9196Tokens that do not have an identifier are not accessible: you cannot simply
9197use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9198
9199@node A Complete C++ Example
8405b70c 9200@subsection A Complete C++ Example
12545799
AD
9201
9202This section demonstrates the use of a C++ parser with a simple but
9203complete example. This example should be available on your system,
3cdc21cf 9204ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9205focuses on the use of Bison, therefore the design of the various C++
9206classes is very naive: no accessors, no encapsulation of members etc.
9207We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9208demonstrate the various interactions. A hand-written scanner is
12545799
AD
9209actually easier to interface with.
9210
9211@menu
9212* Calc++ --- C++ Calculator:: The specifications
9213* Calc++ Parsing Driver:: An active parsing context
9214* Calc++ Parser:: A parser class
9215* Calc++ Scanner:: A pure C++ Flex scanner
9216* Calc++ Top Level:: Conducting the band
9217@end menu
9218
9219@node Calc++ --- C++ Calculator
8405b70c 9220@subsubsection Calc++ --- C++ Calculator
12545799
AD
9221
9222Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9223expression, possibly preceded by variable assignments. An
12545799
AD
9224environment containing possibly predefined variables such as
9225@code{one} and @code{two}, is exchanged with the parser. An example
9226of valid input follows.
9227
9228@example
9229three := 3
9230seven := one + two * three
9231seven * seven
9232@end example
9233
9234@node Calc++ Parsing Driver
8405b70c 9235@subsubsection Calc++ Parsing Driver
12545799
AD
9236@c - An env
9237@c - A place to store error messages
9238@c - A place for the result
9239
9240To support a pure interface with the parser (and the scanner) the
9241technique of the ``parsing context'' is convenient: a structure
9242containing all the data to exchange. Since, in addition to simply
9243launch the parsing, there are several auxiliary tasks to execute (open
9244the file for parsing, instantiate the parser etc.), we recommend
9245transforming the simple parsing context structure into a fully blown
9246@dfn{parsing driver} class.
9247
9248The declaration of this driver class, @file{calc++-driver.hh}, is as
9249follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9250required standard library components, and the declaration of the parser
9251class.
12545799 9252
1c59e0a1 9253@comment file: calc++-driver.hh
12545799
AD
9254@example
9255#ifndef CALCXX_DRIVER_HH
9256# define CALCXX_DRIVER_HH
9257# include <string>
9258# include <map>
fb9712a9 9259# include "calc++-parser.hh"
12545799
AD
9260@end example
9261
12545799
AD
9262
9263@noindent
9264Then comes the declaration of the scanning function. Flex expects
9265the signature of @code{yylex} to be defined in the macro
9266@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9267factor both as follows.
1c59e0a1
AD
9268
9269@comment file: calc++-driver.hh
12545799 9270@example
3dc5e96b 9271// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9272# define YY_DECL \
9273 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9274// ... and declare it for the parser's sake.
9275YY_DECL;
9276@end example
9277
9278@noindent
9279The @code{calcxx_driver} class is then declared with its most obvious
9280members.
9281
1c59e0a1 9282@comment file: calc++-driver.hh
12545799
AD
9283@example
9284// Conducting the whole scanning and parsing of Calc++.
9285class calcxx_driver
9286@{
9287public:
9288 calcxx_driver ();
9289 virtual ~calcxx_driver ();
9290
9291 std::map<std::string, int> variables;
9292
9293 int result;
9294@end example
9295
9296@noindent
3cdc21cf
AD
9297To encapsulate the coordination with the Flex scanner, it is useful to have
9298member functions to open and close the scanning phase.
12545799 9299
1c59e0a1 9300@comment file: calc++-driver.hh
12545799
AD
9301@example
9302 // Handling the scanner.
9303 void scan_begin ();
9304 void scan_end ();
9305 bool trace_scanning;
9306@end example
9307
9308@noindent
9309Similarly for the parser itself.
9310
1c59e0a1 9311@comment file: calc++-driver.hh
12545799 9312@example
3cdc21cf
AD
9313 // Run the parser on file F.
9314 // Return 0 on success.
bb32f4f2 9315 int parse (const std::string& f);
3cdc21cf
AD
9316 // The name of the file being parsed.
9317 // Used later to pass the file name to the location tracker.
12545799 9318 std::string file;
3cdc21cf 9319 // Whether parser traces should be generated.
12545799
AD
9320 bool trace_parsing;
9321@end example
9322
9323@noindent
9324To demonstrate pure handling of parse errors, instead of simply
9325dumping them on the standard error output, we will pass them to the
9326compiler driver using the following two member functions. Finally, we
9327close the class declaration and CPP guard.
9328
1c59e0a1 9329@comment file: calc++-driver.hh
12545799
AD
9330@example
9331 // Error handling.
9332 void error (const yy::location& l, const std::string& m);
9333 void error (const std::string& m);
9334@};
9335#endif // ! CALCXX_DRIVER_HH
9336@end example
9337
9338The implementation of the driver is straightforward. The @code{parse}
9339member function deserves some attention. The @code{error} functions
9340are simple stubs, they should actually register the located error
9341messages and set error state.
9342
1c59e0a1 9343@comment file: calc++-driver.cc
12545799
AD
9344@example
9345#include "calc++-driver.hh"
9346#include "calc++-parser.hh"
9347
9348calcxx_driver::calcxx_driver ()
9349 : trace_scanning (false), trace_parsing (false)
9350@{
9351 variables["one"] = 1;
9352 variables["two"] = 2;
9353@}
9354
9355calcxx_driver::~calcxx_driver ()
9356@{
9357@}
9358
bb32f4f2 9359int
12545799
AD
9360calcxx_driver::parse (const std::string &f)
9361@{
9362 file = f;
9363 scan_begin ();
9364 yy::calcxx_parser parser (*this);
9365 parser.set_debug_level (trace_parsing);
bb32f4f2 9366 int res = parser.parse ();
12545799 9367 scan_end ();
bb32f4f2 9368 return res;
12545799
AD
9369@}
9370
9371void
9372calcxx_driver::error (const yy::location& l, const std::string& m)
9373@{
9374 std::cerr << l << ": " << m << std::endl;
9375@}
9376
9377void
9378calcxx_driver::error (const std::string& m)
9379@{
9380 std::cerr << m << std::endl;
9381@}
9382@end example
9383
9384@node Calc++ Parser
8405b70c 9385@subsubsection Calc++ Parser
12545799 9386
b50d2359 9387The parser definition file @file{calc++-parser.yy} starts by asking for
eb45ef3b
JD
9388the C++ deterministic parser skeleton, the creation of the parser header
9389file, and specifies the name of the parser class.
9390Because the C++ skeleton changed several times, it is safer to require
9391the version you designed the grammar for.
1c59e0a1
AD
9392
9393@comment file: calc++-parser.yy
12545799 9394@example
ed4d67dc 9395%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9396%require "@value{VERSION}"
12545799 9397%defines
16dc6a9e 9398%define parser_class_name "calcxx_parser"
fb9712a9
AD
9399@end example
9400
3cdc21cf
AD
9401@noindent
9402@findex %define variant
9403@findex %define lex_symbol
9404This example will use genuine C++ objects as semantic values, therefore, we
9405require the variant-based interface. To make sure we properly use it, we
9406enable assertions. To fully benefit from type-safety and more natural
9407definition of ``symbol'', we enable @code{lex_symbol}.
9408
9409@comment file: calc++-parser.yy
9410@example
9411%define variant
9412%define parse.assert
9413%define lex_symbol
9414@end example
9415
fb9712a9 9416@noindent
16dc6a9e 9417@findex %code requires
3cdc21cf
AD
9418Then come the declarations/inclusions needed by the semantic values.
9419Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9420to include the header of the other, which is, of course, insane. This
3cdc21cf 9421mutual dependency will be broken using forward declarations. Because the
fb9712a9 9422driver's header needs detailed knowledge about the parser class (in
3cdc21cf
AD
9423particular its inner types), it is the parser's header which will use a
9424forward declaration of the driver. @xref{Decl Summary, ,%code}.
fb9712a9
AD
9425
9426@comment file: calc++-parser.yy
9427@example
3cdc21cf
AD
9428%code requires
9429@{
12545799 9430# include <string>
fb9712a9 9431class calcxx_driver;
9bc0dd67 9432@}
12545799
AD
9433@end example
9434
9435@noindent
9436The driver is passed by reference to the parser and to the scanner.
9437This provides a simple but effective pure interface, not relying on
9438global variables.
9439
1c59e0a1 9440@comment file: calc++-parser.yy
12545799
AD
9441@example
9442// The parsing context.
2055a44e 9443%param @{ calcxx_driver& driver @}
12545799
AD
9444@end example
9445
9446@noindent
2055a44e 9447Then we request location tracking, and initialize the
f50bfcd6 9448first location's file name. Afterward new locations are computed
12545799 9449relatively to the previous locations: the file name will be
2055a44e 9450propagated.
12545799 9451
1c59e0a1 9452@comment file: calc++-parser.yy
12545799
AD
9453@example
9454%locations
9455%initial-action
9456@{
9457 // Initialize the initial location.
b47dbebe 9458 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9459@};
9460@end example
9461
9462@noindent
2055a44e 9463Use the following two directives to enable parser tracing and verbose
12545799
AD
9464error messages.
9465
1c59e0a1 9466@comment file: calc++-parser.yy
12545799 9467@example
fa819509 9468%define parse.trace
cf499cff 9469%define parse.error verbose
12545799
AD
9470@end example
9471
fb9712a9 9472@noindent
136a0f76
PB
9473@findex %code
9474The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9475@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9476
9477@comment file: calc++-parser.yy
9478@example
3cdc21cf
AD
9479%code
9480@{
fb9712a9 9481# include "calc++-driver.hh"
34f98f46 9482@}
fb9712a9
AD
9483@end example
9484
9485
12545799
AD
9486@noindent
9487The token numbered as 0 corresponds to end of file; the following line
99c08fb6
AD
9488allows for nicer error messages referring to ``end of file'' instead of
9489``$end''. Similarly user friendly names are provided for each symbol.
9490To avoid name clashes in the generated files (@pxref{Calc++ Scanner}),
4c6622c2 9491prefix tokens with @code{TOK_} (@pxref{Decl Summary,, api.tokens.prefix}).
12545799 9492
1c59e0a1 9493@comment file: calc++-parser.yy
12545799 9494@example
4c6622c2 9495%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9496%token
9497 END 0 "end of file"
9498 ASSIGN ":="
9499 MINUS "-"
9500 PLUS "+"
9501 STAR "*"
9502 SLASH "/"
9503 LPAREN "("
9504 RPAREN ")"
9505;
12545799
AD
9506@end example
9507
9508@noindent
3cdc21cf
AD
9509Since we use variant-based semantic values, @code{%union} is not used, and
9510both @code{%type} and @code{%token} expect genuine types, as opposed to type
9511tags.
12545799 9512
1c59e0a1 9513@comment file: calc++-parser.yy
12545799 9514@example
3cdc21cf
AD
9515%token <std::string> IDENTIFIER "identifier"
9516%token <int> NUMBER "number"
9517%type <int> exp
9518@end example
9519
9520@noindent
9521No @code{%destructor} is needed to enable memory deallocation during error
9522recovery; the memory, for strings for instance, will be reclaimed by the
9523regular destructors. All the values are printed using their
9524@code{operator<<}.
12545799 9525
3cdc21cf
AD
9526@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9527@comment file: calc++-parser.yy
9528@example
9529%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9530@end example
9531
9532@noindent
3cdc21cf
AD
9533The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9534Location Tracking Calculator: @code{ltcalc}}).
12545799 9535
1c59e0a1 9536@comment file: calc++-parser.yy
12545799
AD
9537@example
9538%%
9539%start unit;
9540unit: assignments exp @{ driver.result = $2; @};
9541
99c08fb6
AD
9542assignments:
9543 assignments assignment @{@}
9544| /* Nothing. */ @{@};
12545799 9545
3dc5e96b 9546assignment:
3cdc21cf 9547 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9548
3cdc21cf
AD
9549%left "+" "-";
9550%left "*" "/";
99c08fb6 9551exp:
3cdc21cf
AD
9552 exp "+" exp @{ $$ = $1 + $3; @}
9553| exp "-" exp @{ $$ = $1 - $3; @}
9554| exp "*" exp @{ $$ = $1 * $3; @}
9555| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9556| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9557| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9558| "number" @{ std::swap ($$, $1); @};
12545799
AD
9559%%
9560@end example
9561
9562@noindent
9563Finally the @code{error} member function registers the errors to the
9564driver.
9565
1c59e0a1 9566@comment file: calc++-parser.yy
12545799
AD
9567@example
9568void
3cdc21cf 9569yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9570 const std::string& m)
12545799
AD
9571@{
9572 driver.error (l, m);
9573@}
9574@end example
9575
9576@node Calc++ Scanner
8405b70c 9577@subsubsection Calc++ Scanner
12545799
AD
9578
9579The Flex scanner first includes the driver declaration, then the
9580parser's to get the set of defined tokens.
9581
1c59e0a1 9582@comment file: calc++-scanner.ll
12545799
AD
9583@example
9584%@{ /* -*- C++ -*- */
3c248d70
AD
9585# include <cerrno>
9586# include <climits>
3cdc21cf 9587# include <cstdlib>
12545799
AD
9588# include <string>
9589# include "calc++-driver.hh"
9590# include "calc++-parser.hh"
eaea13f5 9591
3cdc21cf
AD
9592// Work around an incompatibility in flex (at least versions
9593// 2.5.31 through 2.5.33): it generates code that does
9594// not conform to C89. See Debian bug 333231
9595// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9596# undef yywrap
9597# define yywrap() 1
eaea13f5 9598
3cdc21cf
AD
9599// The location of the current token.
9600static yy::location loc;
12545799
AD
9601%@}
9602@end example
9603
9604@noindent
9605Because there is no @code{#include}-like feature we don't need
9606@code{yywrap}, we don't need @code{unput} either, and we parse an
9607actual file, this is not an interactive session with the user.
3cdc21cf 9608Finally, we enable scanner tracing.
12545799 9609
1c59e0a1 9610@comment file: calc++-scanner.ll
12545799
AD
9611@example
9612%option noyywrap nounput batch debug
9613@end example
9614
9615@noindent
9616Abbreviations allow for more readable rules.
9617
1c59e0a1 9618@comment file: calc++-scanner.ll
12545799
AD
9619@example
9620id [a-zA-Z][a-zA-Z_0-9]*
9621int [0-9]+
9622blank [ \t]
9623@end example
9624
9625@noindent
9d9b8b70 9626The following paragraph suffices to track locations accurately. Each
12545799 9627time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9628position. Then when a pattern is matched, its width is added to the end
9629column. When matching ends of lines, the end
12545799
AD
9630cursor is adjusted, and each time blanks are matched, the begin cursor
9631is moved onto the end cursor to effectively ignore the blanks
9632preceding tokens. Comments would be treated equally.
9633
1c59e0a1 9634@comment file: calc++-scanner.ll
12545799 9635@example
828c373b 9636%@{
3cdc21cf
AD
9637 // Code run each time a pattern is matched.
9638 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9639%@}
12545799
AD
9640%%
9641%@{
3cdc21cf
AD
9642 // Code run each time yylex is called.
9643 loc.step ();
12545799 9644%@}
3cdc21cf
AD
9645@{blank@}+ loc.step ();
9646[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9647@end example
9648
9649@noindent
3cdc21cf 9650The rules are simple. The driver is used to report errors.
12545799 9651
1c59e0a1 9652@comment file: calc++-scanner.ll
12545799 9653@example
3cdc21cf
AD
9654"-" return yy::calcxx_parser::make_MINUS(loc);
9655"+" return yy::calcxx_parser::make_PLUS(loc);
9656"*" return yy::calcxx_parser::make_STAR(loc);
9657"/" return yy::calcxx_parser::make_SLASH(loc);
9658"(" return yy::calcxx_parser::make_LPAREN(loc);
9659")" return yy::calcxx_parser::make_RPAREN(loc);
9660":=" return yy::calcxx_parser::make_ASSIGN(loc);
9661
04098407
PE
9662@{int@} @{
9663 errno = 0;
9664 long n = strtol (yytext, NULL, 10);
9665 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9666 driver.error (loc, "integer is out of range");
9667 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9668@}
3cdc21cf
AD
9669@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9670. driver.error (loc, "invalid character");
9671<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9672%%
9673@end example
9674
9675@noindent
3cdc21cf 9676Finally, because the scanner-related driver's member-functions depend
12545799
AD
9677on the scanner's data, it is simpler to implement them in this file.
9678
1c59e0a1 9679@comment file: calc++-scanner.ll
12545799
AD
9680@example
9681void
9682calcxx_driver::scan_begin ()
9683@{
9684 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9685 if (file == "-")
9686 yyin = stdin;
9687 else if (!(yyin = fopen (file.c_str (), "r")))
9688 @{
3cdc21cf 9689 error (std::string ("cannot open ") + file + ": " + strerror(errno));
bb32f4f2
AD
9690 exit (1);
9691 @}
12545799
AD
9692@}
9693
9694void
9695calcxx_driver::scan_end ()
9696@{
9697 fclose (yyin);
9698@}
9699@end example
9700
9701@node Calc++ Top Level
8405b70c 9702@subsubsection Calc++ Top Level
12545799
AD
9703
9704The top level file, @file{calc++.cc}, poses no problem.
9705
1c59e0a1 9706@comment file: calc++.cc
12545799
AD
9707@example
9708#include <iostream>
9709#include "calc++-driver.hh"
9710
9711int
fa4d969f 9712main (int argc, char *argv[])
12545799 9713@{
414c76a4 9714 int res = 0;
12545799
AD
9715 calcxx_driver driver;
9716 for (++argv; argv[0]; ++argv)
9717 if (*argv == std::string ("-p"))
9718 driver.trace_parsing = true;
9719 else if (*argv == std::string ("-s"))
9720 driver.trace_scanning = true;
bb32f4f2
AD
9721 else if (!driver.parse (*argv))
9722 std::cout << driver.result << std::endl;
414c76a4
AD
9723 else
9724 res = 1;
9725 return res;
12545799
AD
9726@}
9727@end example
9728
8405b70c
PB
9729@node Java Parsers
9730@section Java Parsers
9731
9732@menu
f5f419de
DJ
9733* Java Bison Interface:: Asking for Java parser generation
9734* Java Semantic Values:: %type and %token vs. Java
9735* Java Location Values:: The position and location classes
9736* Java Parser Interface:: Instantiating and running the parser
9737* Java Scanner Interface:: Specifying the scanner for the parser
9738* Java Action Features:: Special features for use in actions
9739* Java Differences:: Differences between C/C++ and Java Grammars
9740* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9741@end menu
9742
9743@node Java Bison Interface
9744@subsection Java Bison Interface
9745@c - %language "Java"
8405b70c 9746
59da312b
JD
9747(The current Java interface is experimental and may evolve.
9748More user feedback will help to stabilize it.)
9749
e254a580
DJ
9750The Java parser skeletons are selected using the @code{%language "Java"}
9751directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9752
e254a580
DJ
9753@c FIXME: Documented bug.
9754When generating a Java parser, @code{bison @var{basename}.y} will create
9755a single Java source file named @file{@var{basename}.java}. Using an
9756input file without a @file{.y} suffix is currently broken. The basename
9757of the output file can be changed by the @code{%file-prefix} directive
9758or the @option{-p}/@option{--name-prefix} option. The entire output file
9759name can be changed by the @code{%output} directive or the
9760@option{-o}/@option{--output} option. The output file contains a single
9761class for the parser.
8405b70c 9762
e254a580 9763You can create documentation for generated parsers using Javadoc.
8405b70c 9764
e254a580
DJ
9765Contrary to C parsers, Java parsers do not use global variables; the
9766state of the parser is always local to an instance of the parser class.
9767Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 9768and @samp{%define api.pure} directives does not do anything when used in
e254a580 9769Java.
8405b70c 9770
e254a580 9771Push parsers are currently unsupported in Java and @code{%define
67212941 9772api.push-pull} have no effect.
01b477c6 9773
8a4281b9 9774GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9775@code{glr-parser} directive.
9776
9777No header file can be generated for Java parsers. Do not use the
9778@code{%defines} directive or the @option{-d}/@option{--defines} options.
9779
9780@c FIXME: Possible code change.
fa819509
AD
9781Currently, support for tracing is always compiled
9782in. Thus the @samp{%define parse.trace} and @samp{%token-table}
9783directives and the
e254a580
DJ
9784@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9785options have no effect. This may change in the future to eliminate
fa819509
AD
9786unused code in the generated parser, so use @samp{%define parse.trace}
9787explicitly
1979121c 9788if needed. Also, in the future the
e254a580
DJ
9789@code{%token-table} directive might enable a public interface to
9790access the token names and codes.
8405b70c 9791
09ccae9b 9792Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 9793hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
9794Try reducing the amount of code in actions and static initializers;
9795otherwise, report a bug so that the parser skeleton will be improved.
9796
9797
8405b70c
PB
9798@node Java Semantic Values
9799@subsection Java Semantic Values
9800@c - No %union, specify type in %type/%token.
9801@c - YYSTYPE
9802@c - Printer and destructor
9803
9804There is no @code{%union} directive in Java parsers. Instead, the
9805semantic values' types (class names) should be specified in the
9806@code{%type} or @code{%token} directive:
9807
9808@example
9809%type <Expression> expr assignment_expr term factor
9810%type <Integer> number
9811@end example
9812
9813By default, the semantic stack is declared to have @code{Object} members,
9814which means that the class types you specify can be of any class.
9815To improve the type safety of the parser, you can declare the common
67501061 9816superclass of all the semantic values using the @samp{%define stype}
e254a580 9817directive. For example, after the following declaration:
8405b70c
PB
9818
9819@example
e254a580 9820%define stype "ASTNode"
8405b70c
PB
9821@end example
9822
9823@noindent
9824any @code{%type} or @code{%token} specifying a semantic type which
9825is not a subclass of ASTNode, will cause a compile-time error.
9826
e254a580 9827@c FIXME: Documented bug.
8405b70c
PB
9828Types used in the directives may be qualified with a package name.
9829Primitive data types are accepted for Java version 1.5 or later. Note
9830that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9831Generic types may not be used; this is due to a limitation in the
9832implementation of Bison, and may change in future releases.
8405b70c
PB
9833
9834Java parsers do not support @code{%destructor}, since the language
9835adopts garbage collection. The parser will try to hold references
9836to semantic values for as little time as needed.
9837
9838Java parsers do not support @code{%printer}, as @code{toString()}
9839can be used to print the semantic values. This however may change
9840(in a backwards-compatible way) in future versions of Bison.
9841
9842
9843@node Java Location Values
9844@subsection Java Location Values
9845@c - %locations
9846@c - class Position
9847@c - class Location
9848
9849When the directive @code{%locations} is used, the Java parser
9850supports location tracking, see @ref{Locations, , Locations Overview}.
9851An auxiliary user-defined class defines a @dfn{position}, a single point
9852in a file; Bison itself defines a class representing a @dfn{location},
9853a range composed of a pair of positions (possibly spanning several
9854files). The location class is an inner class of the parser; the name
e254a580 9855is @code{Location} by default, and may also be renamed using
cf499cff 9856@samp{%define location_type "@var{class-name}"}.
8405b70c
PB
9857
9858The location class treats the position as a completely opaque value.
9859By default, the class name is @code{Position}, but this can be changed
67501061 9860with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 9861be supplied by the user.
8405b70c
PB
9862
9863
e254a580
DJ
9864@deftypeivar {Location} {Position} begin
9865@deftypeivarx {Location} {Position} end
8405b70c 9866The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9867@end deftypeivar
9868
9869@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 9870Create a @code{Location} denoting an empty range located at a given point.
e254a580 9871@end deftypeop
8405b70c 9872
e254a580
DJ
9873@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9874Create a @code{Location} from the endpoints of the range.
9875@end deftypeop
9876
9877@deftypemethod {Location} {String} toString ()
8405b70c
PB
9878Prints the range represented by the location. For this to work
9879properly, the position class should override the @code{equals} and
9880@code{toString} methods appropriately.
9881@end deftypemethod
9882
9883
9884@node Java Parser Interface
9885@subsection Java Parser Interface
9886@c - define parser_class_name
9887@c - Ctor
9888@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9889@c debug_stream.
9890@c - Reporting errors
9891
e254a580
DJ
9892The name of the generated parser class defaults to @code{YYParser}. The
9893@code{YY} prefix may be changed using the @code{%name-prefix} directive
9894or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 9895@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 9896the class. The interface of this class is detailed below.
8405b70c 9897
e254a580 9898By default, the parser class has package visibility. A declaration
67501061 9899@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
9900according to the Java language specification, the name of the @file{.java}
9901file should match the name of the class in this case. Similarly, you can
9902use @code{abstract}, @code{final} and @code{strictfp} with the
9903@code{%define} declaration to add other modifiers to the parser class.
67501061 9904A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 9905be used to add any number of annotations to the parser class.
e254a580
DJ
9906
9907The Java package name of the parser class can be specified using the
67501061 9908@samp{%define package} directive. The superclass and the implemented
e254a580 9909interfaces of the parser class can be specified with the @code{%define
67501061 9910extends} and @samp{%define implements} directives.
e254a580
DJ
9911
9912The parser class defines an inner class, @code{Location}, that is used
9913for location tracking (see @ref{Java Location Values}), and a inner
9914interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9915these inner class/interface, and the members described in the interface
9916below, all the other members and fields are preceded with a @code{yy} or
9917@code{YY} prefix to avoid clashes with user code.
9918
e254a580
DJ
9919The parser class can be extended using the @code{%parse-param}
9920directive. Each occurrence of the directive will add a @code{protected
9921final} field to the parser class, and an argument to its constructor,
9922which initialize them automatically.
9923
e254a580
DJ
9924@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9925Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
9926no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
9927@code{%lex-param}s are used.
1979121c
DJ
9928
9929Use @code{%code init} for code added to the start of the constructor
9930body. This is especially useful to initialize superclasses. Use
f50bfcd6 9931@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
9932@end deftypeop
9933
9934@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9935Build a new parser object using the specified scanner. There are no
2055a44e
AD
9936additional parameters unless @code{%param}s and/or @code{%parse-param}s are
9937used.
e254a580
DJ
9938
9939If the scanner is defined by @code{%code lexer}, this constructor is
9940declared @code{protected} and is called automatically with a scanner
2055a44e 9941created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
9942
9943Use @code{%code init} for code added to the start of the constructor
9944body. This is especially useful to initialize superclasses. Use
67501061 9945@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 9946@end deftypeop
8405b70c
PB
9947
9948@deftypemethod {YYParser} {boolean} parse ()
9949Run the syntactic analysis, and return @code{true} on success,
9950@code{false} otherwise.
9951@end deftypemethod
9952
1979121c
DJ
9953@deftypemethod {YYParser} {boolean} getErrorVerbose ()
9954@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
9955Get or set the option to produce verbose error messages. These are only
cf499cff 9956available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
9957verbose error messages.
9958@end deftypemethod
9959
9960@deftypemethod {YYParser} {void} yyerror (String @var{msg})
9961@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
9962@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
9963Print an error message using the @code{yyerror} method of the scanner
9964instance in use. The @code{Location} and @code{Position} parameters are
9965available only if location tracking is active.
9966@end deftypemethod
9967
01b477c6 9968@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9969During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9970from a syntax error.
9971@xref{Error Recovery}.
8405b70c
PB
9972@end deftypemethod
9973
9974@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9975@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9976Get or set the stream used for tracing the parsing. It defaults to
9977@code{System.err}.
9978@end deftypemethod
9979
9980@deftypemethod {YYParser} {int} getDebugLevel ()
9981@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9982Get or set the tracing level. Currently its value is either 0, no trace,
9983or nonzero, full tracing.
9984@end deftypemethod
9985
1979121c
DJ
9986@deftypecv {Constant} {YYParser} {String} {bisonVersion}
9987@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
9988Identify the Bison version and skeleton used to generate this parser.
9989@end deftypecv
9990
8405b70c
PB
9991
9992@node Java Scanner Interface
9993@subsection Java Scanner Interface
01b477c6 9994@c - %code lexer
8405b70c 9995@c - %lex-param
01b477c6 9996@c - Lexer interface
8405b70c 9997
e254a580
DJ
9998There are two possible ways to interface a Bison-generated Java parser
9999with a scanner: the scanner may be defined by @code{%code lexer}, or
10000defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10001@code{Lexer} inner interface of the parser class. This interface also
10002contain constants for all user-defined token names and the predefined
10003@code{EOF} token.
e254a580
DJ
10004
10005In the first case, the body of the scanner class is placed in
10006@code{%code lexer} blocks. If you want to pass parameters from the
10007parser constructor to the scanner constructor, specify them with
10008@code{%lex-param}; they are passed before @code{%parse-param}s to the
10009constructor.
01b477c6 10010
59c5ac72 10011In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10012which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10013The constructor of the parser object will then accept an object
10014implementing the interface; @code{%lex-param} is not used in this
10015case.
10016
10017In both cases, the scanner has to implement the following methods.
10018
e254a580
DJ
10019@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10020This method is defined by the user to emit an error message. The first
10021parameter is omitted if location tracking is not active. Its type can be
67501061 10022changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10023@end deftypemethod
10024
e254a580 10025@deftypemethod {Lexer} {int} yylex ()
8405b70c 10026Return the next token. Its type is the return value, its semantic
f50bfcd6 10027value and location are saved and returned by the their methods in the
e254a580
DJ
10028interface.
10029
67501061 10030Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10031Default is @code{java.io.IOException}.
8405b70c
PB
10032@end deftypemethod
10033
10034@deftypemethod {Lexer} {Position} getStartPos ()
10035@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10036Return respectively the first position of the last token that
10037@code{yylex} returned, and the first position beyond it. These
10038methods are not needed unless location tracking is active.
8405b70c 10039
67501061 10040The return type can be changed using @samp{%define position_type
8405b70c
PB
10041"@var{class-name}".}
10042@end deftypemethod
10043
10044@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10045Return the semantic value of the last token that yylex returned.
8405b70c 10046
67501061 10047The return type can be changed using @samp{%define stype
8405b70c
PB
10048"@var{class-name}".}
10049@end deftypemethod
10050
10051
e254a580
DJ
10052@node Java Action Features
10053@subsection Special Features for Use in Java Actions
10054
10055The following special constructs can be uses in Java actions.
10056Other analogous C action features are currently unavailable for Java.
10057
67501061 10058Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10059actions, and initial actions specified by @code{%initial-action}.
10060
10061@defvar $@var{n}
10062The semantic value for the @var{n}th component of the current rule.
10063This may not be assigned to.
10064@xref{Java Semantic Values}.
10065@end defvar
10066
10067@defvar $<@var{typealt}>@var{n}
10068Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10069@xref{Java Semantic Values}.
10070@end defvar
10071
10072@defvar $$
10073The semantic value for the grouping made by the current rule. As a
10074value, this is in the base type (@code{Object} or as specified by
67501061 10075@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10076casts are not allowed on the left-hand side of Java assignments.
10077Use an explicit Java cast if the correct subtype is needed.
10078@xref{Java Semantic Values}.
10079@end defvar
10080
10081@defvar $<@var{typealt}>$
10082Same as @code{$$} since Java always allow assigning to the base type.
10083Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10084for setting the value but there is currently no easy way to distinguish
10085these constructs.
10086@xref{Java Semantic Values}.
10087@end defvar
10088
10089@defvar @@@var{n}
10090The location information of the @var{n}th component of the current rule.
10091This may not be assigned to.
10092@xref{Java Location Values}.
10093@end defvar
10094
10095@defvar @@$
10096The location information of the grouping made by the current rule.
10097@xref{Java Location Values}.
10098@end defvar
10099
10100@deffn {Statement} {return YYABORT;}
10101Return immediately from the parser, indicating failure.
10102@xref{Java Parser Interface}.
10103@end deffn
8405b70c 10104
e254a580
DJ
10105@deffn {Statement} {return YYACCEPT;}
10106Return immediately from the parser, indicating success.
10107@xref{Java Parser Interface}.
10108@end deffn
8405b70c 10109
e254a580 10110@deffn {Statement} {return YYERROR;}
c265fd6b 10111Start error recovery without printing an error message.
e254a580
DJ
10112@xref{Error Recovery}.
10113@end deffn
8405b70c 10114
e254a580
DJ
10115@deftypefn {Function} {boolean} recovering ()
10116Return whether error recovery is being done. In this state, the parser
10117reads token until it reaches a known state, and then restarts normal
10118operation.
10119@xref{Error Recovery}.
10120@end deftypefn
8405b70c 10121
1979121c
DJ
10122@deftypefn {Function} {void} yyerror (String @var{msg})
10123@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10124@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10125Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10126instance in use. The @code{Location} and @code{Position} parameters are
10127available only if location tracking is active.
e254a580 10128@end deftypefn
8405b70c 10129
8405b70c 10130
8405b70c
PB
10131@node Java Differences
10132@subsection Differences between C/C++ and Java Grammars
10133
10134The different structure of the Java language forces several differences
10135between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10136section summarizes these differences.
8405b70c
PB
10137
10138@itemize
10139@item
01b477c6 10140Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10141@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10142macros. Instead, they should be preceded by @code{return} when they
10143appear in an action. The actual definition of these symbols is
8405b70c
PB
10144opaque to the Bison grammar, and it might change in the future. The
10145only meaningful operation that you can do, is to return them.
e254a580 10146See @pxref{Java Action Features}.
8405b70c
PB
10147
10148Note that of these three symbols, only @code{YYACCEPT} and
10149@code{YYABORT} will cause a return from the @code{yyparse}
10150method@footnote{Java parsers include the actions in a separate
10151method than @code{yyparse} in order to have an intuitive syntax that
10152corresponds to these C macros.}.
10153
e254a580
DJ
10154@item
10155Java lacks unions, so @code{%union} has no effect. Instead, semantic
10156values have a common base type: @code{Object} or as specified by
f50bfcd6 10157@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10158@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10159an union. The type of @code{$$}, even with angle brackets, is the base
10160type since Java casts are not allow on the left-hand side of assignments.
10161Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10162left-hand side of assignments. See @pxref{Java Semantic Values} and
10163@pxref{Java Action Features}.
10164
8405b70c 10165@item
f50bfcd6 10166The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10167@table @asis
10168@item @code{%code imports}
10169blocks are placed at the beginning of the Java source code. They may
10170include copyright notices. For a @code{package} declarations, it is
67501061 10171suggested to use @samp{%define package} instead.
8405b70c 10172
01b477c6
PB
10173@item unqualified @code{%code}
10174blocks are placed inside the parser class.
10175
10176@item @code{%code lexer}
10177blocks, if specified, should include the implementation of the
10178scanner. If there is no such block, the scanner can be any class
10179that implements the appropriate interface (see @pxref{Java Scanner
10180Interface}).
29553547 10181@end table
8405b70c
PB
10182
10183Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10184In particular, @code{%@{ @dots{} %@}} blocks should not be used
10185and may give an error in future versions of Bison.
10186
01b477c6 10187The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10188be used to define other classes used by the parser @emph{outside}
10189the parser class.
8405b70c
PB
10190@end itemize
10191
e254a580
DJ
10192
10193@node Java Declarations Summary
10194@subsection Java Declarations Summary
10195
10196This summary only include declarations specific to Java or have special
10197meaning when used in a Java parser.
10198
10199@deffn {Directive} {%language "Java"}
10200Generate a Java class for the parser.
10201@end deffn
10202
10203@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10204A parameter for the lexer class defined by @code{%code lexer}
10205@emph{only}, added as parameters to the lexer constructor and the parser
10206constructor that @emph{creates} a lexer. Default is none.
10207@xref{Java Scanner Interface}.
10208@end deffn
10209
10210@deffn {Directive} %name-prefix "@var{prefix}"
10211The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10212@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10213@xref{Java Bison Interface}.
10214@end deffn
10215
10216@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10217A parameter for the parser class added as parameters to constructor(s)
10218and as fields initialized by the constructor(s). Default is none.
10219@xref{Java Parser Interface}.
10220@end deffn
10221
10222@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10223Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10224@xref{Java Semantic Values}.
10225@end deffn
10226
10227@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10228Declare the type of nonterminals. Note that the angle brackets enclose
10229a Java @emph{type}.
10230@xref{Java Semantic Values}.
10231@end deffn
10232
10233@deffn {Directive} %code @{ @var{code} @dots{} @}
10234Code appended to the inside of the parser class.
10235@xref{Java Differences}.
10236@end deffn
10237
10238@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10239Code inserted just after the @code{package} declaration.
10240@xref{Java Differences}.
10241@end deffn
10242
1979121c
DJ
10243@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10244Code inserted at the beginning of the parser constructor body.
10245@xref{Java Parser Interface}.
10246@end deffn
10247
e254a580
DJ
10248@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10249Code added to the body of a inner lexer class within the parser class.
10250@xref{Java Scanner Interface}.
10251@end deffn
10252
10253@deffn {Directive} %% @var{code} @dots{}
10254Code (after the second @code{%%}) appended to the end of the file,
10255@emph{outside} the parser class.
10256@xref{Java Differences}.
10257@end deffn
10258
10259@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10260Not supported. Use @code{%code imports} instead.
e254a580
DJ
10261@xref{Java Differences}.
10262@end deffn
10263
10264@deffn {Directive} {%define abstract}
10265Whether the parser class is declared @code{abstract}. Default is false.
10266@xref{Java Bison Interface}.
10267@end deffn
10268
1979121c
DJ
10269@deffn {Directive} {%define annotations} "@var{annotations}"
10270The Java annotations for the parser class. Default is none.
10271@xref{Java Bison Interface}.
10272@end deffn
10273
e254a580
DJ
10274@deffn {Directive} {%define extends} "@var{superclass}"
10275The superclass of the parser class. Default is none.
10276@xref{Java Bison Interface}.
10277@end deffn
10278
10279@deffn {Directive} {%define final}
10280Whether the parser class is declared @code{final}. Default is false.
10281@xref{Java Bison Interface}.
10282@end deffn
10283
10284@deffn {Directive} {%define implements} "@var{interfaces}"
10285The implemented interfaces of the parser class, a comma-separated list.
10286Default is none.
10287@xref{Java Bison Interface}.
10288@end deffn
10289
1979121c
DJ
10290@deffn {Directive} {%define init_throws} "@var{exceptions}"
10291The exceptions thrown by @code{%code init} from the parser class
10292constructor. Default is none.
10293@xref{Java Parser Interface}.
10294@end deffn
10295
e254a580
DJ
10296@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10297The exceptions thrown by the @code{yylex} method of the lexer, a
10298comma-separated list. Default is @code{java.io.IOException}.
10299@xref{Java Scanner Interface}.
10300@end deffn
10301
10302@deffn {Directive} {%define location_type} "@var{class}"
10303The name of the class used for locations (a range between two
10304positions). This class is generated as an inner class of the parser
10305class by @command{bison}. Default is @code{Location}.
10306@xref{Java Location Values}.
10307@end deffn
10308
10309@deffn {Directive} {%define package} "@var{package}"
10310The package to put the parser class in. Default is none.
10311@xref{Java Bison Interface}.
10312@end deffn
10313
10314@deffn {Directive} {%define parser_class_name} "@var{name}"
10315The name of the parser class. Default is @code{YYParser} or
10316@code{@var{name-prefix}Parser}.
10317@xref{Java Bison Interface}.
10318@end deffn
10319
10320@deffn {Directive} {%define position_type} "@var{class}"
10321The name of the class used for positions. This class must be supplied by
10322the user. Default is @code{Position}.
10323@xref{Java Location Values}.
10324@end deffn
10325
10326@deffn {Directive} {%define public}
10327Whether the parser class is declared @code{public}. Default is false.
10328@xref{Java Bison Interface}.
10329@end deffn
10330
10331@deffn {Directive} {%define stype} "@var{class}"
10332The base type of semantic values. Default is @code{Object}.
10333@xref{Java Semantic Values}.
10334@end deffn
10335
10336@deffn {Directive} {%define strictfp}
10337Whether the parser class is declared @code{strictfp}. Default is false.
10338@xref{Java Bison Interface}.
10339@end deffn
10340
10341@deffn {Directive} {%define throws} "@var{exceptions}"
10342The exceptions thrown by user-supplied parser actions and
10343@code{%initial-action}, a comma-separated list. Default is none.
10344@xref{Java Parser Interface}.
10345@end deffn
10346
10347
12545799 10348@c ================================================= FAQ
d1a1114f
AD
10349
10350@node FAQ
10351@chapter Frequently Asked Questions
10352@cindex frequently asked questions
10353@cindex questions
10354
10355Several questions about Bison come up occasionally. Here some of them
10356are addressed.
10357
10358@menu
55ba27be
AD
10359* Memory Exhausted:: Breaking the Stack Limits
10360* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10361* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10362* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10363* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10364* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10365* I can't build Bison:: Troubleshooting
10366* Where can I find help?:: Troubleshouting
10367* Bug Reports:: Troublereporting
8405b70c 10368* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10369* Beta Testing:: Experimenting development versions
10370* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10371@end menu
10372
1a059451
PE
10373@node Memory Exhausted
10374@section Memory Exhausted
d1a1114f
AD
10375
10376@display
1a059451 10377My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10378message. What can I do?
10379@end display
10380
10381This question is already addressed elsewhere, @xref{Recursion,
10382,Recursive Rules}.
10383
e64fec0a
PE
10384@node How Can I Reset the Parser
10385@section How Can I Reset the Parser
5b066063 10386
0e14ad77
PE
10387The following phenomenon has several symptoms, resulting in the
10388following typical questions:
5b066063
AD
10389
10390@display
10391I invoke @code{yyparse} several times, and on correct input it works
10392properly; but when a parse error is found, all the other calls fail
0e14ad77 10393too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10394@end display
10395
10396@noindent
10397or
10398
10399@display
0e14ad77 10400My parser includes support for an @samp{#include}-like feature, in
5b066063 10401which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10402although I did specify @samp{%define api.pure}.
5b066063
AD
10403@end display
10404
0e14ad77
PE
10405These problems typically come not from Bison itself, but from
10406Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10407speed, they might not notice a change of input file. As a
10408demonstration, consider the following source file,
10409@file{first-line.l}:
10410
10411@verbatim
10412%{
10413#include <stdio.h>
10414#include <stdlib.h>
10415%}
10416%%
10417.*\n ECHO; return 1;
10418%%
10419int
0e14ad77 10420yyparse (char const *file)
5b066063
AD
10421{
10422 yyin = fopen (file, "r");
10423 if (!yyin)
10424 exit (2);
fa7e68c3 10425 /* One token only. */
5b066063 10426 yylex ();
0e14ad77 10427 if (fclose (yyin) != 0)
5b066063
AD
10428 exit (3);
10429 return 0;
10430}
10431
10432int
0e14ad77 10433main (void)
5b066063
AD
10434{
10435 yyparse ("input");
10436 yyparse ("input");
10437 return 0;
10438}
10439@end verbatim
10440
10441@noindent
10442If the file @file{input} contains
10443
10444@verbatim
10445input:1: Hello,
10446input:2: World!
10447@end verbatim
10448
10449@noindent
0e14ad77 10450then instead of getting the first line twice, you get:
5b066063
AD
10451
10452@example
10453$ @kbd{flex -ofirst-line.c first-line.l}
10454$ @kbd{gcc -ofirst-line first-line.c -ll}
10455$ @kbd{./first-line}
10456input:1: Hello,
10457input:2: World!
10458@end example
10459
0e14ad77
PE
10460Therefore, whenever you change @code{yyin}, you must tell the
10461Lex-generated scanner to discard its current buffer and switch to the
10462new one. This depends upon your implementation of Lex; see its
10463documentation for more. For Flex, it suffices to call
10464@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10465Flex-generated scanner needs to read from several input streams to
10466handle features like include files, you might consider using Flex
10467functions like @samp{yy_switch_to_buffer} that manipulate multiple
10468input buffers.
5b066063 10469
b165c324
AD
10470If your Flex-generated scanner uses start conditions (@pxref{Start
10471conditions, , Start conditions, flex, The Flex Manual}), you might
10472also want to reset the scanner's state, i.e., go back to the initial
10473start condition, through a call to @samp{BEGIN (0)}.
10474
fef4cb51
AD
10475@node Strings are Destroyed
10476@section Strings are Destroyed
10477
10478@display
c7e441b4 10479My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10480them. Instead of reporting @samp{"foo", "bar"}, it reports
10481@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10482@end display
10483
10484This error is probably the single most frequent ``bug report'' sent to
10485Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10486of the scanner. Consider the following Lex code:
fef4cb51
AD
10487
10488@verbatim
10489%{
10490#include <stdio.h>
10491char *yylval = NULL;
10492%}
10493%%
10494.* yylval = yytext; return 1;
10495\n /* IGNORE */
10496%%
10497int
10498main ()
10499{
fa7e68c3 10500 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10501 char *fst = (yylex (), yylval);
10502 char *snd = (yylex (), yylval);
10503 printf ("\"%s\", \"%s\"\n", fst, snd);
10504 return 0;
10505}
10506@end verbatim
10507
10508If you compile and run this code, you get:
10509
10510@example
10511$ @kbd{flex -osplit-lines.c split-lines.l}
10512$ @kbd{gcc -osplit-lines split-lines.c -ll}
10513$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10514"one
10515two", "two"
10516@end example
10517
10518@noindent
10519this is because @code{yytext} is a buffer provided for @emph{reading}
10520in the action, but if you want to keep it, you have to duplicate it
10521(e.g., using @code{strdup}). Note that the output may depend on how
10522your implementation of Lex handles @code{yytext}. For instance, when
10523given the Lex compatibility option @option{-l} (which triggers the
10524option @samp{%array}) Flex generates a different behavior:
10525
10526@example
10527$ @kbd{flex -l -osplit-lines.c split-lines.l}
10528$ @kbd{gcc -osplit-lines split-lines.c -ll}
10529$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10530"two", "two"
10531@end example
10532
10533
2fa09258
AD
10534@node Implementing Gotos/Loops
10535@section Implementing Gotos/Loops
a06ea4aa
AD
10536
10537@display
10538My simple calculator supports variables, assignments, and functions,
2fa09258 10539but how can I implement gotos, or loops?
a06ea4aa
AD
10540@end display
10541
10542Although very pedagogical, the examples included in the document blur
a1c84f45 10543the distinction to make between the parser---whose job is to recover
a06ea4aa 10544the structure of a text and to transmit it to subsequent modules of
a1c84f45 10545the program---and the processing (such as the execution) of this
a06ea4aa
AD
10546structure. This works well with so called straight line programs,
10547i.e., precisely those that have a straightforward execution model:
10548execute simple instructions one after the others.
10549
10550@cindex abstract syntax tree
8a4281b9 10551@cindex AST
a06ea4aa
AD
10552If you want a richer model, you will probably need to use the parser
10553to construct a tree that does represent the structure it has
10554recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10555or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10556traversing it in various ways, will enable treatments such as its
10557execution or its translation, which will result in an interpreter or a
10558compiler.
10559
10560This topic is way beyond the scope of this manual, and the reader is
10561invited to consult the dedicated literature.
10562
10563
ed2e6384
AD
10564@node Multiple start-symbols
10565@section Multiple start-symbols
10566
10567@display
10568I have several closely related grammars, and I would like to share their
10569implementations. In fact, I could use a single grammar but with
10570multiple entry points.
10571@end display
10572
10573Bison does not support multiple start-symbols, but there is a very
10574simple means to simulate them. If @code{foo} and @code{bar} are the two
10575pseudo start-symbols, then introduce two new tokens, say
10576@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10577real start-symbol:
10578
10579@example
10580%token START_FOO START_BAR;
10581%start start;
10582start: START_FOO foo
10583 | START_BAR bar;
10584@end example
10585
10586These tokens prevents the introduction of new conflicts. As far as the
10587parser goes, that is all that is needed.
10588
10589Now the difficult part is ensuring that the scanner will send these
10590tokens first. If your scanner is hand-written, that should be
10591straightforward. If your scanner is generated by Lex, them there is
10592simple means to do it: recall that anything between @samp{%@{ ... %@}}
10593after the first @code{%%} is copied verbatim in the top of the generated
10594@code{yylex} function. Make sure a variable @code{start_token} is
10595available in the scanner (e.g., a global variable or using
10596@code{%lex-param} etc.), and use the following:
10597
10598@example
10599 /* @r{Prologue.} */
10600%%
10601%@{
10602 if (start_token)
10603 @{
10604 int t = start_token;
10605 start_token = 0;
10606 return t;
10607 @}
10608%@}
10609 /* @r{The rules.} */
10610@end example
10611
10612
55ba27be
AD
10613@node Secure? Conform?
10614@section Secure? Conform?
10615
10616@display
10617Is Bison secure? Does it conform to POSIX?
10618@end display
10619
10620If you're looking for a guarantee or certification, we don't provide it.
10621However, Bison is intended to be a reliable program that conforms to the
8a4281b9 10622POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10623please send us a bug report.
10624
10625@node I can't build Bison
10626@section I can't build Bison
10627
10628@display
8c5b881d
PE
10629I can't build Bison because @command{make} complains that
10630@code{msgfmt} is not found.
55ba27be
AD
10631What should I do?
10632@end display
10633
10634Like most GNU packages with internationalization support, that feature
10635is turned on by default. If you have problems building in the @file{po}
10636subdirectory, it indicates that your system's internationalization
10637support is lacking. You can re-configure Bison with
10638@option{--disable-nls} to turn off this support, or you can install GNU
10639gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10640Bison. See the file @file{ABOUT-NLS} for more information.
10641
10642
10643@node Where can I find help?
10644@section Where can I find help?
10645
10646@display
10647I'm having trouble using Bison. Where can I find help?
10648@end display
10649
10650First, read this fine manual. Beyond that, you can send mail to
10651@email{help-bison@@gnu.org}. This mailing list is intended to be
10652populated with people who are willing to answer questions about using
10653and installing Bison. Please keep in mind that (most of) the people on
10654the list have aspects of their lives which are not related to Bison (!),
10655so you may not receive an answer to your question right away. This can
10656be frustrating, but please try not to honk them off; remember that any
10657help they provide is purely voluntary and out of the kindness of their
10658hearts.
10659
10660@node Bug Reports
10661@section Bug Reports
10662
10663@display
10664I found a bug. What should I include in the bug report?
10665@end display
10666
10667Before you send a bug report, make sure you are using the latest
10668version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10669mirrors. Be sure to include the version number in your bug report. If
10670the bug is present in the latest version but not in a previous version,
10671try to determine the most recent version which did not contain the bug.
10672
10673If the bug is parser-related, you should include the smallest grammar
10674you can which demonstrates the bug. The grammar file should also be
10675complete (i.e., I should be able to run it through Bison without having
10676to edit or add anything). The smaller and simpler the grammar, the
10677easier it will be to fix the bug.
10678
10679Include information about your compilation environment, including your
10680operating system's name and version and your compiler's name and
10681version. If you have trouble compiling, you should also include a
10682transcript of the build session, starting with the invocation of
10683`configure'. Depending on the nature of the bug, you may be asked to
10684send additional files as well (such as `config.h' or `config.cache').
10685
10686Patches are most welcome, but not required. That is, do not hesitate to
10687send a bug report just because you can not provide a fix.
10688
10689Send bug reports to @email{bug-bison@@gnu.org}.
10690
8405b70c
PB
10691@node More Languages
10692@section More Languages
55ba27be
AD
10693
10694@display
8405b70c 10695Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10696favorite language here}?
10697@end display
10698
8405b70c 10699C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10700languages; contributions are welcome.
10701
10702@node Beta Testing
10703@section Beta Testing
10704
10705@display
10706What is involved in being a beta tester?
10707@end display
10708
10709It's not terribly involved. Basically, you would download a test
10710release, compile it, and use it to build and run a parser or two. After
10711that, you would submit either a bug report or a message saying that
10712everything is okay. It is important to report successes as well as
10713failures because test releases eventually become mainstream releases,
10714but only if they are adequately tested. If no one tests, development is
10715essentially halted.
10716
10717Beta testers are particularly needed for operating systems to which the
10718developers do not have easy access. They currently have easy access to
10719recent GNU/Linux and Solaris versions. Reports about other operating
10720systems are especially welcome.
10721
10722@node Mailing Lists
10723@section Mailing Lists
10724
10725@display
10726How do I join the help-bison and bug-bison mailing lists?
10727@end display
10728
10729See @url{http://lists.gnu.org/}.
a06ea4aa 10730
d1a1114f
AD
10731@c ================================================= Table of Symbols
10732
342b8b6e 10733@node Table of Symbols
bfa74976
RS
10734@appendix Bison Symbols
10735@cindex Bison symbols, table of
10736@cindex symbols in Bison, table of
10737
18b519c0 10738@deffn {Variable} @@$
3ded9a63 10739In an action, the location of the left-hand side of the rule.
88bce5a2 10740@xref{Locations, , Locations Overview}.
18b519c0 10741@end deffn
3ded9a63 10742
18b519c0 10743@deffn {Variable} @@@var{n}
3ded9a63
AD
10744In an action, the location of the @var{n}-th symbol of the right-hand
10745side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10746@end deffn
3ded9a63 10747
d013372c
AR
10748@deffn {Variable} @@@var{name}
10749In an action, the location of a symbol addressed by name.
10750@xref{Locations, , Locations Overview}.
10751@end deffn
10752
10753@deffn {Variable} @@[@var{name}]
10754In an action, the location of a symbol addressed by name.
10755@xref{Locations, , Locations Overview}.
10756@end deffn
10757
18b519c0 10758@deffn {Variable} $$
3ded9a63
AD
10759In an action, the semantic value of the left-hand side of the rule.
10760@xref{Actions}.
18b519c0 10761@end deffn
3ded9a63 10762
18b519c0 10763@deffn {Variable} $@var{n}
3ded9a63
AD
10764In an action, the semantic value of the @var{n}-th symbol of the
10765right-hand side of the rule. @xref{Actions}.
18b519c0 10766@end deffn
3ded9a63 10767
d013372c
AR
10768@deffn {Variable} $@var{name}
10769In an action, the semantic value of a symbol addressed by name.
10770@xref{Actions}.
10771@end deffn
10772
10773@deffn {Variable} $[@var{name}]
10774In an action, the semantic value of a symbol addressed by name.
10775@xref{Actions}.
10776@end deffn
10777
dd8d9022
AD
10778@deffn {Delimiter} %%
10779Delimiter used to separate the grammar rule section from the
10780Bison declarations section or the epilogue.
10781@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10782@end deffn
bfa74976 10783
dd8d9022
AD
10784@c Don't insert spaces, or check the DVI output.
10785@deffn {Delimiter} %@{@var{code}%@}
10786All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10787the output file uninterpreted. Such code forms the prologue of the input
10788file. @xref{Grammar Outline, ,Outline of a Bison
10789Grammar}.
18b519c0 10790@end deffn
bfa74976 10791
ca2a6d15
PH
10792@deffn {Directive} %?@{@var{expression}@}
10793Predicate actions. This is a type of action clause that may appear in
10794rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 10795GLR parsers during nondeterministic operation,
ca2a6d15
PH
10796this silently causes an alternative parse to die. During deterministic
10797operation, it is the same as the effect of YYERROR.
10798@xref{Semantic Predicates}.
10799
10800This feature is experimental.
10801More user feedback will help to determine whether it should become a permanent
10802feature.
10803@end deffn
10804
dd8d9022
AD
10805@deffn {Construct} /*@dots{}*/
10806Comment delimiters, as in C.
18b519c0 10807@end deffn
bfa74976 10808
dd8d9022
AD
10809@deffn {Delimiter} :
10810Separates a rule's result from its components. @xref{Rules, ,Syntax of
10811Grammar Rules}.
18b519c0 10812@end deffn
bfa74976 10813
dd8d9022
AD
10814@deffn {Delimiter} ;
10815Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10816@end deffn
bfa74976 10817
dd8d9022
AD
10818@deffn {Delimiter} |
10819Separates alternate rules for the same result nonterminal.
10820@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10821@end deffn
bfa74976 10822
12e35840
JD
10823@deffn {Directive} <*>
10824Used to define a default tagged @code{%destructor} or default tagged
10825@code{%printer}.
85894313
JD
10826
10827This feature is experimental.
10828More user feedback will help to determine whether it should become a permanent
10829feature.
10830
12e35840
JD
10831@xref{Destructor Decl, , Freeing Discarded Symbols}.
10832@end deffn
10833
3ebecc24 10834@deffn {Directive} <>
12e35840
JD
10835Used to define a default tagless @code{%destructor} or default tagless
10836@code{%printer}.
85894313
JD
10837
10838This feature is experimental.
10839More user feedback will help to determine whether it should become a permanent
10840feature.
10841
12e35840
JD
10842@xref{Destructor Decl, , Freeing Discarded Symbols}.
10843@end deffn
10844
dd8d9022
AD
10845@deffn {Symbol} $accept
10846The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10847$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10848Start-Symbol}. It cannot be used in the grammar.
18b519c0 10849@end deffn
bfa74976 10850
136a0f76 10851@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10852@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10853Insert @var{code} verbatim into output parser source.
10854@xref{Decl Summary,,%code}.
9bc0dd67
JD
10855@end deffn
10856
10857@deffn {Directive} %debug
10858Equip the parser for debugging. @xref{Decl Summary}.
10859@end deffn
10860
91d2c560 10861@ifset defaultprec
22fccf95
PE
10862@deffn {Directive} %default-prec
10863Assign a precedence to rules that lack an explicit @samp{%prec}
10864modifier. @xref{Contextual Precedence, ,Context-Dependent
10865Precedence}.
39a06c25 10866@end deffn
91d2c560 10867@end ifset
39a06c25 10868
148d66d8
JD
10869@deffn {Directive} %define @var{define-variable}
10870@deffnx {Directive} %define @var{define-variable} @var{value}
cf499cff 10871@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10872Define a variable to adjust Bison's behavior.
10873@xref{Decl Summary,,%define}.
10874@end deffn
10875
18b519c0 10876@deffn {Directive} %defines
6deb4447
AD
10877Bison declaration to create a header file meant for the scanner.
10878@xref{Decl Summary}.
18b519c0 10879@end deffn
6deb4447 10880
02975b9a
JD
10881@deffn {Directive} %defines @var{defines-file}
10882Same as above, but save in the file @var{defines-file}.
10883@xref{Decl Summary}.
10884@end deffn
10885
18b519c0 10886@deffn {Directive} %destructor
258b75ca 10887Specify how the parser should reclaim the memory associated to
fa7e68c3 10888discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10889@end deffn
72f889cc 10890
18b519c0 10891@deffn {Directive} %dprec
676385e2 10892Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10893time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 10894GLR Parsers}.
18b519c0 10895@end deffn
676385e2 10896
dd8d9022
AD
10897@deffn {Symbol} $end
10898The predefined token marking the end of the token stream. It cannot be
10899used in the grammar.
10900@end deffn
10901
10902@deffn {Symbol} error
10903A token name reserved for error recovery. This token may be used in
10904grammar rules so as to allow the Bison parser to recognize an error in
10905the grammar without halting the process. In effect, a sentence
10906containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10907token @code{error} becomes the current lookahead token. Actions
10908corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10909token is reset to the token that originally caused the violation.
10910@xref{Error Recovery}.
18d192f0
AD
10911@end deffn
10912
18b519c0 10913@deffn {Directive} %error-verbose
cf499cff 10914An obsolete directive standing for @samp{%define parse.error verbose}.
18b519c0 10915@end deffn
2a8d363a 10916
02975b9a 10917@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10918Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10919Summary}.
18b519c0 10920@end deffn
d8988b2f 10921
18b519c0 10922@deffn {Directive} %glr-parser
8a4281b9
JD
10923Bison declaration to produce a GLR parser. @xref{GLR
10924Parsers, ,Writing GLR Parsers}.
18b519c0 10925@end deffn
676385e2 10926
dd8d9022
AD
10927@deffn {Directive} %initial-action
10928Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10929@end deffn
10930
e6e704dc
JD
10931@deffn {Directive} %language
10932Specify the programming language for the generated parser.
10933@xref{Decl Summary}.
10934@end deffn
10935
18b519c0 10936@deffn {Directive} %left
d78f0ac9 10937Bison declaration to assign precedence and left associativity to token(s).
bfa74976 10938@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10939@end deffn
bfa74976 10940
2055a44e
AD
10941@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
10942Bison declaration to specifying additional arguments that
2a8d363a
AD
10943@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10944for Pure Parsers}.
18b519c0 10945@end deffn
2a8d363a 10946
18b519c0 10947@deffn {Directive} %merge
676385e2 10948Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10949reduce/reduce conflict with a rule having the same merging function, the
676385e2 10950function is applied to the two semantic values to get a single result.
8a4281b9 10951@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10952@end deffn
676385e2 10953
02975b9a 10954@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10955Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10956@end deffn
d8988b2f 10957
91d2c560 10958@ifset defaultprec
22fccf95
PE
10959@deffn {Directive} %no-default-prec
10960Do not assign a precedence to rules that lack an explicit @samp{%prec}
10961modifier. @xref{Contextual Precedence, ,Context-Dependent
10962Precedence}.
10963@end deffn
91d2c560 10964@end ifset
22fccf95 10965
18b519c0 10966@deffn {Directive} %no-lines
931c7513
RS
10967Bison declaration to avoid generating @code{#line} directives in the
10968parser file. @xref{Decl Summary}.
18b519c0 10969@end deffn
931c7513 10970
18b519c0 10971@deffn {Directive} %nonassoc
d78f0ac9 10972Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 10973@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10974@end deffn
bfa74976 10975
02975b9a 10976@deffn {Directive} %output "@var{file}"
72d2299c 10977Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10978Summary}.
18b519c0 10979@end deffn
d8988b2f 10980
2055a44e
AD
10981@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
10982Bison declaration to specify additional arguments that both
10983@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
10984Parser Function @code{yyparse}}.
10985@end deffn
10986
10987@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
10988Bison declaration to specify additional arguments that @code{yyparse}
10989should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 10990@end deffn
2a8d363a 10991
18b519c0 10992@deffn {Directive} %prec
bfa74976
RS
10993Bison declaration to assign a precedence to a specific rule.
10994@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10995@end deffn
bfa74976 10996
d78f0ac9
AD
10997@deffn {Directive} %precedence
10998Bison declaration to assign precedence to token(s), but no associativity
10999@xref{Precedence Decl, ,Operator Precedence}.
11000@end deffn
11001
18b519c0 11002@deffn {Directive} %pure-parser
67501061 11003Deprecated version of @samp{%define api.pure} (@pxref{Decl Summary, ,%define}),
d9df47b6 11004for which Bison is more careful to warn about unreasonable usage.
18b519c0 11005@end deffn
bfa74976 11006
b50d2359 11007@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11008Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11009Require a Version of Bison}.
b50d2359
AD
11010@end deffn
11011
18b519c0 11012@deffn {Directive} %right
d78f0ac9 11013Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11014@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11015@end deffn
bfa74976 11016
e6e704dc
JD
11017@deffn {Directive} %skeleton
11018Specify the skeleton to use; usually for development.
11019@xref{Decl Summary}.
11020@end deffn
11021
18b519c0 11022@deffn {Directive} %start
704a47c4
AD
11023Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11024Start-Symbol}.
18b519c0 11025@end deffn
bfa74976 11026
18b519c0 11027@deffn {Directive} %token
bfa74976
RS
11028Bison declaration to declare token(s) without specifying precedence.
11029@xref{Token Decl, ,Token Type Names}.
18b519c0 11030@end deffn
bfa74976 11031
18b519c0 11032@deffn {Directive} %token-table
931c7513
RS
11033Bison declaration to include a token name table in the parser file.
11034@xref{Decl Summary}.
18b519c0 11035@end deffn
931c7513 11036
18b519c0 11037@deffn {Directive} %type
704a47c4
AD
11038Bison declaration to declare nonterminals. @xref{Type Decl,
11039,Nonterminal Symbols}.
18b519c0 11040@end deffn
bfa74976 11041
dd8d9022
AD
11042@deffn {Symbol} $undefined
11043The predefined token onto which all undefined values returned by
11044@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11045@code{error}.
11046@end deffn
11047
18b519c0 11048@deffn {Directive} %union
bfa74976
RS
11049Bison declaration to specify several possible data types for semantic
11050values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11051@end deffn
bfa74976 11052
dd8d9022
AD
11053@deffn {Macro} YYABORT
11054Macro to pretend that an unrecoverable syntax error has occurred, by
11055making @code{yyparse} return 1 immediately. The error reporting
11056function @code{yyerror} is not called. @xref{Parser Function, ,The
11057Parser Function @code{yyparse}}.
8405b70c
PB
11058
11059For Java parsers, this functionality is invoked using @code{return YYABORT;}
11060instead.
dd8d9022 11061@end deffn
3ded9a63 11062
dd8d9022
AD
11063@deffn {Macro} YYACCEPT
11064Macro to pretend that a complete utterance of the language has been
11065read, by making @code{yyparse} return 0 immediately.
11066@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11067
11068For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11069instead.
dd8d9022 11070@end deffn
bfa74976 11071
dd8d9022 11072@deffn {Macro} YYBACKUP
742e4900 11073Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11074token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11075@end deffn
bfa74976 11076
dd8d9022 11077@deffn {Variable} yychar
32c29292 11078External integer variable that contains the integer value of the
742e4900 11079lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11080@code{yyparse}.) Error-recovery rule actions may examine this variable.
11081@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11082@end deffn
bfa74976 11083
dd8d9022
AD
11084@deffn {Variable} yyclearin
11085Macro used in error-recovery rule actions. It clears the previous
742e4900 11086lookahead token. @xref{Error Recovery}.
18b519c0 11087@end deffn
bfa74976 11088
dd8d9022
AD
11089@deffn {Macro} YYDEBUG
11090Macro to define to equip the parser with tracing code. @xref{Tracing,
11091,Tracing Your Parser}.
18b519c0 11092@end deffn
bfa74976 11093
dd8d9022
AD
11094@deffn {Variable} yydebug
11095External integer variable set to zero by default. If @code{yydebug}
11096is given a nonzero value, the parser will output information on input
11097symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11098@end deffn
bfa74976 11099
dd8d9022
AD
11100@deffn {Macro} yyerrok
11101Macro to cause parser to recover immediately to its normal mode
11102after a syntax error. @xref{Error Recovery}.
11103@end deffn
11104
11105@deffn {Macro} YYERROR
11106Macro to pretend that a syntax error has just been detected: call
11107@code{yyerror} and then perform normal error recovery if possible
11108(@pxref{Error Recovery}), or (if recovery is impossible) make
11109@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11110
11111For Java parsers, this functionality is invoked using @code{return YYERROR;}
11112instead.
dd8d9022
AD
11113@end deffn
11114
11115@deffn {Function} yyerror
11116User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11117@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11118@end deffn
11119
11120@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11121An obsolete macro used in the @file{yacc.c} skeleton, that you define
11122with @code{#define} in the prologue to request verbose, specific error
11123message strings when @code{yyerror} is called. It doesn't matter what
11124definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11125it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11126(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11127@end deffn
11128
11129@deffn {Macro} YYINITDEPTH
11130Macro for specifying the initial size of the parser stack.
1a059451 11131@xref{Memory Management}.
dd8d9022
AD
11132@end deffn
11133
11134@deffn {Function} yylex
11135User-supplied lexical analyzer function, called with no arguments to get
11136the next token. @xref{Lexical, ,The Lexical Analyzer Function
11137@code{yylex}}.
11138@end deffn
11139
11140@deffn {Macro} YYLEX_PARAM
11141An obsolete macro for specifying an extra argument (or list of extra
32c29292 11142arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11143macro is deprecated, and is supported only for Yacc like parsers.
11144@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11145@end deffn
11146
11147@deffn {Variable} yylloc
11148External variable in which @code{yylex} should place the line and column
11149numbers associated with a token. (In a pure parser, it is a local
11150variable within @code{yyparse}, and its address is passed to
32c29292
JD
11151@code{yylex}.)
11152You can ignore this variable if you don't use the @samp{@@} feature in the
11153grammar actions.
11154@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11155In semantic actions, it stores the location of the lookahead token.
32c29292 11156@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11157@end deffn
11158
11159@deffn {Type} YYLTYPE
11160Data type of @code{yylloc}; by default, a structure with four
11161members. @xref{Location Type, , Data Types of Locations}.
11162@end deffn
11163
11164@deffn {Variable} yylval
11165External variable in which @code{yylex} should place the semantic
11166value associated with a token. (In a pure parser, it is a local
11167variable within @code{yyparse}, and its address is passed to
32c29292
JD
11168@code{yylex}.)
11169@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11170In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11171@xref{Actions, ,Actions}.
dd8d9022
AD
11172@end deffn
11173
11174@deffn {Macro} YYMAXDEPTH
1a059451
PE
11175Macro for specifying the maximum size of the parser stack. @xref{Memory
11176Management}.
dd8d9022
AD
11177@end deffn
11178
11179@deffn {Variable} yynerrs
8a2800e7 11180Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11181(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11182pure push parser, it is a member of yypstate.)
dd8d9022
AD
11183@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11184@end deffn
11185
11186@deffn {Function} yyparse
11187The parser function produced by Bison; call this function to start
11188parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11189@end deffn
11190
9987d1b3 11191@deffn {Function} yypstate_delete
f4101aa6 11192The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11193call this function to delete the memory associated with a parser.
f4101aa6 11194@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11195@code{yypstate_delete}}.
59da312b
JD
11196(The current push parsing interface is experimental and may evolve.
11197More user feedback will help to stabilize it.)
9987d1b3
JD
11198@end deffn
11199
11200@deffn {Function} yypstate_new
f4101aa6 11201The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11202call this function to create a new parser.
f4101aa6 11203@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11204@code{yypstate_new}}.
59da312b
JD
11205(The current push parsing interface is experimental and may evolve.
11206More user feedback will help to stabilize it.)
9987d1b3
JD
11207@end deffn
11208
11209@deffn {Function} yypull_parse
f4101aa6
AD
11210The parser function produced by Bison in push mode; call this function to
11211parse the rest of the input stream.
11212@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11213@code{yypull_parse}}.
59da312b
JD
11214(The current push parsing interface is experimental and may evolve.
11215More user feedback will help to stabilize it.)
9987d1b3
JD
11216@end deffn
11217
11218@deffn {Function} yypush_parse
f4101aa6
AD
11219The parser function produced by Bison in push mode; call this function to
11220parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11221@code{yypush_parse}}.
59da312b
JD
11222(The current push parsing interface is experimental and may evolve.
11223More user feedback will help to stabilize it.)
9987d1b3
JD
11224@end deffn
11225
dd8d9022
AD
11226@deffn {Macro} YYPARSE_PARAM
11227An obsolete macro for specifying the name of a parameter that
11228@code{yyparse} should accept. The use of this macro is deprecated, and
11229is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11230Conventions for Pure Parsers}.
11231@end deffn
11232
11233@deffn {Macro} YYRECOVERING
02103984
PE
11234The expression @code{YYRECOVERING ()} yields 1 when the parser
11235is recovering from a syntax error, and 0 otherwise.
11236@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11237@end deffn
11238
11239@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11240Macro used to control the use of @code{alloca} when the
11241deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11242the parser will use @code{malloc} to extend its stacks. If defined to
112431, the parser will use @code{alloca}. Values other than 0 and 1 are
11244reserved for future Bison extensions. If not defined,
11245@code{YYSTACK_USE_ALLOCA} defaults to 0.
11246
55289366 11247In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11248limited stack and with unreliable stack-overflow checking, you should
11249set @code{YYMAXDEPTH} to a value that cannot possibly result in
11250unchecked stack overflow on any of your target hosts when
11251@code{alloca} is called. You can inspect the code that Bison
11252generates in order to determine the proper numeric values. This will
11253require some expertise in low-level implementation details.
dd8d9022
AD
11254@end deffn
11255
11256@deffn {Type} YYSTYPE
11257Data type of semantic values; @code{int} by default.
11258@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11259@end deffn
bfa74976 11260
342b8b6e 11261@node Glossary
bfa74976
RS
11262@appendix Glossary
11263@cindex glossary
11264
11265@table @asis
eb45ef3b
JD
11266@item Accepting State
11267A state whose only action is the accept action.
11268The accepting state is thus a consistent state.
11269@xref{Understanding,,}.
11270
8a4281b9 11271@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11272Formal method of specifying context-free grammars originally proposed
11273by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11274committee document contributing to what became the Algol 60 report.
11275@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11276
eb45ef3b
JD
11277@item Consistent State
11278A state containing only one possible action.
5bab9d08 11279@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11280
bfa74976
RS
11281@item Context-free grammars
11282Grammars specified as rules that can be applied regardless of context.
11283Thus, if there is a rule which says that an integer can be used as an
11284expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11285permitted. @xref{Language and Grammar, ,Languages and Context-Free
11286Grammars}.
bfa74976 11287
110ef36a
JD
11288@item Default Reduction
11289The reduction that a parser should perform if the current parser state
eb45ef3b 11290contains no other action for the lookahead token.
110ef36a
JD
11291In permitted parser states, Bison declares the reduction with the
11292largest lookahead set to be the default reduction and removes that
11293lookahead set.
5bab9d08 11294@xref{Decl Summary,,lr.default-reductions}.
eb45ef3b 11295
bfa74976
RS
11296@item Dynamic allocation
11297Allocation of memory that occurs during execution, rather than at
11298compile time or on entry to a function.
11299
11300@item Empty string
11301Analogous to the empty set in set theory, the empty string is a
11302character string of length zero.
11303
11304@item Finite-state stack machine
11305A ``machine'' that has discrete states in which it is said to exist at
11306each instant in time. As input to the machine is processed, the
11307machine moves from state to state as specified by the logic of the
11308machine. In the case of the parser, the input is the language being
11309parsed, and the states correspond to various stages in the grammar
c827f760 11310rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11311
8a4281b9 11312@item Generalized LR (GLR)
676385e2 11313A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11314that are not LR(1). It resolves situations that Bison's
eb45ef3b 11315deterministic parsing
676385e2
PH
11316algorithm cannot by effectively splitting off multiple parsers, trying all
11317possible parsers, and discarding those that fail in the light of additional
c827f760 11318right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11319LR Parsing}.
676385e2 11320
bfa74976
RS
11321@item Grouping
11322A language construct that is (in general) grammatically divisible;
c827f760 11323for example, `expression' or `declaration' in C@.
bfa74976
RS
11324@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11325
8a4281b9
JD
11326@item IELR(1)
11327A minimal LR(1) parser table generation algorithm.
11328That is, given any context-free grammar, IELR(1) generates
eb45ef3b 11329parser tables with the full language recognition power of canonical
8a4281b9
JD
11330LR(1) but with nearly the same number of parser states as
11331LALR(1).
eb45ef3b 11332This reduction in parser states is often an order of magnitude.
8a4281b9 11333More importantly, because canonical LR(1)'s extra parser
eb45ef3b 11334states may contain duplicate conflicts in the case of
8a4281b9
JD
11335non-LR(1) grammars, the number of conflicts for
11336IELR(1) is often an order of magnitude less as well.
eb45ef3b
JD
11337This can significantly reduce the complexity of developing of a grammar.
11338@xref{Decl Summary,,lr.type}.
11339
bfa74976
RS
11340@item Infix operator
11341An arithmetic operator that is placed between the operands on which it
11342performs some operation.
11343
11344@item Input stream
11345A continuous flow of data between devices or programs.
11346
8a4281b9 11347@item LAC (Lookahead Correction)
fcf834f9
JD
11348A parsing mechanism that fixes the problem of delayed syntax error
11349detection, which is caused by LR state merging, default reductions, and
11350the use of @code{%nonassoc}. Delayed syntax error detection results in
11351unexpected semantic actions, initiation of error recovery in the wrong
11352syntactic context, and an incorrect list of expected tokens in a verbose
11353syntax error message. @xref{Decl Summary,,parse.lac}.
11354
bfa74976
RS
11355@item Language construct
11356One of the typical usage schemas of the language. For example, one of
11357the constructs of the C language is the @code{if} statement.
11358@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11359
11360@item Left associativity
11361Operators having left associativity are analyzed from left to right:
11362@samp{a+b+c} first computes @samp{a+b} and then combines with
11363@samp{c}. @xref{Precedence, ,Operator Precedence}.
11364
11365@item Left recursion
89cab50d
AD
11366A rule whose result symbol is also its first component symbol; for
11367example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11368Rules}.
bfa74976
RS
11369
11370@item Left-to-right parsing
11371Parsing a sentence of a language by analyzing it token by token from
c827f760 11372left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11373
11374@item Lexical analyzer (scanner)
11375A function that reads an input stream and returns tokens one by one.
11376@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11377
11378@item Lexical tie-in
11379A flag, set by actions in the grammar rules, which alters the way
11380tokens are parsed. @xref{Lexical Tie-ins}.
11381
931c7513 11382@item Literal string token
14ded682 11383A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11384
742e4900
JD
11385@item Lookahead token
11386A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11387Tokens}.
bfa74976 11388
8a4281b9 11389@item LALR(1)
bfa74976 11390The class of context-free grammars that Bison (like most other parser
8a4281b9 11391generators) can handle by default; a subset of LR(1).
eb45ef3b 11392@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 11393
8a4281b9 11394@item LR(1)
bfa74976 11395The class of context-free grammars in which at most one token of
742e4900 11396lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11397
11398@item Nonterminal symbol
11399A grammar symbol standing for a grammatical construct that can
11400be expressed through rules in terms of smaller constructs; in other
11401words, a construct that is not a token. @xref{Symbols}.
11402
bfa74976
RS
11403@item Parser
11404A function that recognizes valid sentences of a language by analyzing
11405the syntax structure of a set of tokens passed to it from a lexical
11406analyzer.
11407
11408@item Postfix operator
11409An arithmetic operator that is placed after the operands upon which it
11410performs some operation.
11411
11412@item Reduction
11413Replacing a string of nonterminals and/or terminals with a single
89cab50d 11414nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11415Parser Algorithm}.
bfa74976
RS
11416
11417@item Reentrant
11418A reentrant subprogram is a subprogram which can be in invoked any
11419number of times in parallel, without interference between the various
11420invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11421
11422@item Reverse polish notation
11423A language in which all operators are postfix operators.
11424
11425@item Right recursion
89cab50d
AD
11426A rule whose result symbol is also its last component symbol; for
11427example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11428Rules}.
bfa74976
RS
11429
11430@item Semantics
11431In computer languages, the semantics are specified by the actions
11432taken for each instance of the language, i.e., the meaning of
11433each statement. @xref{Semantics, ,Defining Language Semantics}.
11434
11435@item Shift
11436A parser is said to shift when it makes the choice of analyzing
11437further input from the stream rather than reducing immediately some
c827f760 11438already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11439
11440@item Single-character literal
11441A single character that is recognized and interpreted as is.
11442@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11443
11444@item Start symbol
11445The nonterminal symbol that stands for a complete valid utterance in
11446the language being parsed. The start symbol is usually listed as the
13863333 11447first nonterminal symbol in a language specification.
bfa74976
RS
11448@xref{Start Decl, ,The Start-Symbol}.
11449
11450@item Symbol table
11451A data structure where symbol names and associated data are stored
11452during parsing to allow for recognition and use of existing
11453information in repeated uses of a symbol. @xref{Multi-function Calc}.
11454
6e649e65
PE
11455@item Syntax error
11456An error encountered during parsing of an input stream due to invalid
11457syntax. @xref{Error Recovery}.
11458
bfa74976
RS
11459@item Token
11460A basic, grammatically indivisible unit of a language. The symbol
11461that describes a token in the grammar is a terminal symbol.
11462The input of the Bison parser is a stream of tokens which comes from
11463the lexical analyzer. @xref{Symbols}.
11464
11465@item Terminal symbol
89cab50d
AD
11466A grammar symbol that has no rules in the grammar and therefore is
11467grammatically indivisible. The piece of text it represents is a token.
11468@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
11469@end table
11470
342b8b6e 11471@node Copying This Manual
f2b5126e 11472@appendix Copying This Manual
f2b5126e
PB
11473@include fdl.texi
11474
342b8b6e 11475@node Index
bfa74976
RS
11476@unnumbered Index
11477
11478@printindex cp
11479
bfa74976 11480@bye
a06ea4aa 11481
6b5a0de9
AD
11482@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11483@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11484@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11485@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11486@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11487@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11488@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11489@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11490@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11491@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11492@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11493@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11494@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11495@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11496@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11497@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11498@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11499@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11500@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11501@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11502@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11503@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11504@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11505@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11506@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11507@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11508@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11509@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11510@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11511@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9
AD
11512@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
11513@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
11514@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11515@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11516@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11517@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11518@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11519@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11520@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
11521@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
11522@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11523@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11524@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11525@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11526@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11527@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11528@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11529@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11530@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11531@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
679e9935 11532@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
6b5a0de9 11533@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11534
11535@c Local Variables:
11536@c ispell-dictionary: "american"
11537@c fill-column: 76
11538@c End: