]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
maint: address sc_prohibit_always-defined_macros.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
13863333
AD
166* Rpcalc Input::
167* Rpcalc Line::
168* Rpcalc Expr::
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
d6328241 229* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
230* Start Decl:: Specifying the start symbol.
231* Pure Decl:: Requesting a reentrant parser.
9987d1b3 232* Push Decl:: Requesting a push parser.
bfa74976 233* Decl Summary:: Table of all Bison declarations.
35c1e5f0 234* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 235* %code Summary:: Inserting code into the parser source.
bfa74976
RS
236
237Parser C-Language Interface
238
f5f419de
DJ
239* Parser Function:: How to call @code{yyparse} and what it returns.
240* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
241* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
242* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
243* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
244* Lexical:: You must supply a function @code{yylex}
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
256* Token Locations:: How @code{yylex} must return the text location
257 (line number, etc.) of the token, if the
258 actions want that.
259* Pure Calling:: How the calling convention differs in a pure parser
260 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 261
13863333 262The Bison Parser Algorithm
bfa74976 263
742e4900 264* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 270* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 271* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 272* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 273* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
274
275Operator Precedence
276
277* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
278* Using Precedence:: How to specify precedence and associativity.
279* Precedence Only:: How to specify precedence only.
bfa74976
RS
280* Precedence Examples:: How these features are used in the previous example.
281* How Precedence:: How they work.
282
7fceb615
JD
283Tuning LR
284
285* LR Table Construction:: Choose a different construction algorithm.
286* Default Reductions:: Disable default reductions.
287* LAC:: Correct lookahead sets in the parser states.
288* Unreachable States:: Keep unreachable parser states for debugging.
289
bfa74976
RS
290Handling Context Dependencies
291
292* Semantic Tokens:: Token parsing can depend on the semantic context.
293* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
294* Tie-in Recovery:: Lexical tie-ins have implications for how
295 error recovery rules must be written.
296
93dd49ab 297Debugging Your Parser
ec3bc396
AD
298
299* Understanding:: Understanding the structure of your parser.
300* Tracing:: Tracing the execution of your parser.
301
bfa74976
RS
302Invoking Bison
303
13863333 304* Bison Options:: All the options described in detail,
c827f760 305 in alphabetical order by short options.
bfa74976 306* Option Cross Key:: Alphabetical list of long options.
93dd49ab 307* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 308
8405b70c 309Parsers Written In Other Languages
12545799
AD
310
311* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 312* Java Parsers:: The interface to generate Java parser classes
12545799
AD
313
314C++ Parsers
315
316* C++ Bison Interface:: Asking for C++ parser generation
317* C++ Semantic Values:: %union vs. C++
318* C++ Location Values:: The position and location classes
319* C++ Parser Interface:: Instantiating and running the parser
320* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 321* A Complete C++ Example:: Demonstrating their use
12545799
AD
322
323A Complete C++ Example
324
325* Calc++ --- C++ Calculator:: The specifications
326* Calc++ Parsing Driver:: An active parsing context
327* Calc++ Parser:: A parser class
328* Calc++ Scanner:: A pure C++ Flex scanner
329* Calc++ Top Level:: Conducting the band
330
8405b70c
PB
331Java Parsers
332
f5f419de
DJ
333* Java Bison Interface:: Asking for Java parser generation
334* Java Semantic Values:: %type and %token vs. Java
335* Java Location Values:: The position and location classes
336* Java Parser Interface:: Instantiating and running the parser
337* Java Scanner Interface:: Specifying the scanner for the parser
338* Java Action Features:: Special features for use in actions
339* Java Differences:: Differences between C/C++ and Java Grammars
340* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 341
d1a1114f
AD
342Frequently Asked Questions
343
f5f419de
DJ
344* Memory Exhausted:: Breaking the Stack Limits
345* How Can I Reset the Parser:: @code{yyparse} Keeps some State
346* Strings are Destroyed:: @code{yylval} Loses Track of Strings
347* Implementing Gotos/Loops:: Control Flow in the Calculator
348* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 349* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
350* I can't build Bison:: Troubleshooting
351* Where can I find help?:: Troubleshouting
352* Bug Reports:: Troublereporting
353* More Languages:: Parsers in C++, Java, and so on
354* Beta Testing:: Experimenting development versions
355* Mailing Lists:: Meeting other Bison users
d1a1114f 356
f2b5126e
PB
357Copying This Manual
358
f5f419de 359* Copying This Manual:: License for copying this manual.
f2b5126e 360
342b8b6e 361@end detailmenu
bfa74976
RS
362@end menu
363
342b8b6e 364@node Introduction
bfa74976
RS
365@unnumbered Introduction
366@cindex introduction
367
6077da58 368@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
369annotated context-free grammar into a deterministic LR or generalized
370LR (GLR) parser employing LALR(1) parser tables. As an experimental
371feature, Bison can also generate IELR(1) or canonical LR(1) parser
372tables. Once you are proficient with Bison, you can use it to develop
373a wide range of language parsers, from those used in simple desk
374calculators to complex programming languages.
375
376Bison is upward compatible with Yacc: all properly-written Yacc
377grammars ought to work with Bison with no change. Anyone familiar
378with Yacc should be able to use Bison with little trouble. You need
379to be fluent in C or C++ programming in order to use Bison or to
380understand this manual. Java is also supported as an experimental
381feature.
382
383We begin with tutorial chapters that explain the basic concepts of
384using Bison and show three explained examples, each building on the
385last. If you don't know Bison or Yacc, start by reading these
386chapters. Reference chapters follow, which describe specific aspects
387of Bison in detail.
bfa74976 388
679e9935
JD
389Bison was written originally by Robert Corbett. Richard Stallman made
390it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
391added multi-character string literals and other features. Since then,
392Bison has grown more robust and evolved many other new features thanks
393to the hard work of a long list of volunteers. For details, see the
394@file{THANKS} and @file{ChangeLog} files included in the Bison
395distribution.
931c7513 396
df1af54c 397This edition corresponds to version @value{VERSION} of Bison.
bfa74976 398
342b8b6e 399@node Conditions
bfa74976
RS
400@unnumbered Conditions for Using Bison
401
193d7c70
PE
402The distribution terms for Bison-generated parsers permit using the
403parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 404permissions applied only when Bison was generating LALR(1)
193d7c70 405parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 406parsers could be used only in programs that were free software.
a31239f1 407
8a4281b9 408The other GNU programming tools, such as the GNU C
c827f760 409compiler, have never
9ecbd125 410had such a requirement. They could always be used for nonfree
a31239f1
RS
411software. The reason Bison was different was not due to a special
412policy decision; it resulted from applying the usual General Public
413License to all of the Bison source code.
414
ff7571c0
JD
415The main output of the Bison utility---the Bison parser implementation
416file---contains a verbatim copy of a sizable piece of Bison, which is
417the code for the parser's implementation. (The actions from your
418grammar are inserted into this implementation at one point, but most
419of the rest of the implementation is not changed.) When we applied
420the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
421the effect was to restrict the use of Bison output to free software.
422
423We didn't change the terms because of sympathy for people who want to
424make software proprietary. @strong{Software should be free.} But we
425concluded that limiting Bison's use to free software was doing little to
426encourage people to make other software free. So we decided to make the
427practical conditions for using Bison match the practical conditions for
8a4281b9 428using the other GNU tools.
bfa74976 429
193d7c70
PE
430This exception applies when Bison is generating code for a parser.
431You can tell whether the exception applies to a Bison output file by
432inspecting the file for text beginning with ``As a special
433exception@dots{}''. The text spells out the exact terms of the
434exception.
262aa8dd 435
f16b0819
PE
436@node Copying
437@unnumbered GNU GENERAL PUBLIC LICENSE
438@include gpl-3.0.texi
bfa74976 439
342b8b6e 440@node Concepts
bfa74976
RS
441@chapter The Concepts of Bison
442
443This chapter introduces many of the basic concepts without which the
444details of Bison will not make sense. If you do not already know how to
445use Bison or Yacc, we suggest you start by reading this chapter carefully.
446
447@menu
f5f419de
DJ
448* Language and Grammar:: Languages and context-free grammars,
449 as mathematical ideas.
450* Grammar in Bison:: How we represent grammars for Bison's sake.
451* Semantic Values:: Each token or syntactic grouping can have
452 a semantic value (the value of an integer,
453 the name of an identifier, etc.).
454* Semantic Actions:: Each rule can have an action containing C code.
455* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 456* Locations:: Overview of location tracking.
f5f419de
DJ
457* Bison Parser:: What are Bison's input and output,
458 how is the output used?
459* Stages:: Stages in writing and running Bison grammars.
460* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
461@end menu
462
342b8b6e 463@node Language and Grammar
bfa74976
RS
464@section Languages and Context-Free Grammars
465
bfa74976
RS
466@cindex context-free grammar
467@cindex grammar, context-free
468In order for Bison to parse a language, it must be described by a
469@dfn{context-free grammar}. This means that you specify one or more
470@dfn{syntactic groupings} and give rules for constructing them from their
471parts. For example, in the C language, one kind of grouping is called an
472`expression'. One rule for making an expression might be, ``An expression
473can be made of a minus sign and another expression''. Another would be,
474``An expression can be an integer''. As you can see, rules are often
475recursive, but there must be at least one rule which leads out of the
476recursion.
477
8a4281b9 478@cindex BNF
bfa74976
RS
479@cindex Backus-Naur form
480The most common formal system for presenting such rules for humans to read
8a4281b9 481is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 482order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
483BNF is a context-free grammar. The input to Bison is
484essentially machine-readable BNF.
bfa74976 485
7fceb615
JD
486@cindex LALR grammars
487@cindex IELR grammars
488@cindex LR grammars
489There are various important subclasses of context-free grammars. Although
490it can handle almost all context-free grammars, Bison is optimized for what
491are called LR(1) grammars. In brief, in these grammars, it must be possible
492to tell how to parse any portion of an input string with just a single token
493of lookahead. For historical reasons, Bison by default is limited by the
494additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
495@xref{Mysterious Conflicts}, for more information on this. As an
496experimental feature, you can escape these additional restrictions by
497requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
498Construction}, to learn how.
bfa74976 499
8a4281b9
JD
500@cindex GLR parsing
501@cindex generalized LR (GLR) parsing
676385e2 502@cindex ambiguous grammars
9d9b8b70 503@cindex nondeterministic parsing
9501dc6e 504
8a4281b9 505Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
506roughly that the next grammar rule to apply at any point in the input is
507uniquely determined by the preceding input and a fixed, finite portion
742e4900 508(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 509grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 510apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 511grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 512lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 513With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
514general context-free grammars, using a technique known as GLR
515parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
516are able to handle any context-free grammar for which the number of
517possible parses of any given string is finite.
676385e2 518
bfa74976
RS
519@cindex symbols (abstract)
520@cindex token
521@cindex syntactic grouping
522@cindex grouping, syntactic
9501dc6e
AD
523In the formal grammatical rules for a language, each kind of syntactic
524unit or grouping is named by a @dfn{symbol}. Those which are built by
525grouping smaller constructs according to grammatical rules are called
bfa74976
RS
526@dfn{nonterminal symbols}; those which can't be subdivided are called
527@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
528corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 529corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
530
531We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
532nonterminal, mean. The tokens of C are identifiers, constants (numeric
533and string), and the various keywords, arithmetic operators and
534punctuation marks. So the terminal symbols of a grammar for C include
535`identifier', `number', `string', plus one symbol for each keyword,
536operator or punctuation mark: `if', `return', `const', `static', `int',
537`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
538(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
539lexicography, not grammar.)
540
541Here is a simple C function subdivided into tokens:
542
9edcd895
AD
543@ifinfo
544@example
545int /* @r{keyword `int'} */
14d4662b 546square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
547 @r{identifier, close-paren} */
548@{ /* @r{open-brace} */
aa08666d
AD
549 return x * x; /* @r{keyword `return', identifier, asterisk,}
550 @r{identifier, semicolon} */
9edcd895
AD
551@} /* @r{close-brace} */
552@end example
553@end ifinfo
554@ifnotinfo
bfa74976
RS
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 558@{ /* @r{open-brace} */
9edcd895 559 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
560@} /* @r{close-brace} */
561@end example
9edcd895 562@end ifnotinfo
bfa74976
RS
563
564The syntactic groupings of C include the expression, the statement, the
565declaration, and the function definition. These are represented in the
566grammar of C by nonterminal symbols `expression', `statement',
567`declaration' and `function definition'. The full grammar uses dozens of
568additional language constructs, each with its own nonterminal symbol, in
569order to express the meanings of these four. The example above is a
570function definition; it contains one declaration, and one statement. In
571the statement, each @samp{x} is an expression and so is @samp{x * x}.
572
573Each nonterminal symbol must have grammatical rules showing how it is made
574out of simpler constructs. For example, one kind of C statement is the
575@code{return} statement; this would be described with a grammar rule which
576reads informally as follows:
577
578@quotation
579A `statement' can be made of a `return' keyword, an `expression' and a
580`semicolon'.
581@end quotation
582
583@noindent
584There would be many other rules for `statement', one for each kind of
585statement in C.
586
587@cindex start symbol
588One nonterminal symbol must be distinguished as the special one which
589defines a complete utterance in the language. It is called the @dfn{start
590symbol}. In a compiler, this means a complete input program. In the C
591language, the nonterminal symbol `sequence of definitions and declarations'
592plays this role.
593
594For example, @samp{1 + 2} is a valid C expression---a valid part of a C
595program---but it is not valid as an @emph{entire} C program. In the
596context-free grammar of C, this follows from the fact that `expression' is
597not the start symbol.
598
599The Bison parser reads a sequence of tokens as its input, and groups the
600tokens using the grammar rules. If the input is valid, the end result is
601that the entire token sequence reduces to a single grouping whose symbol is
602the grammar's start symbol. If we use a grammar for C, the entire input
603must be a `sequence of definitions and declarations'. If not, the parser
604reports a syntax error.
605
342b8b6e 606@node Grammar in Bison
bfa74976
RS
607@section From Formal Rules to Bison Input
608@cindex Bison grammar
609@cindex grammar, Bison
610@cindex formal grammar
611
612A formal grammar is a mathematical construct. To define the language
613for Bison, you must write a file expressing the grammar in Bison syntax:
614a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
615
616A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 617as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
618in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
619
620The Bison representation for a terminal symbol is also called a @dfn{token
621type}. Token types as well can be represented as C-like identifiers. By
622convention, these identifiers should be upper case to distinguish them from
623nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
624@code{RETURN}. A terminal symbol that stands for a particular keyword in
625the language should be named after that keyword converted to upper case.
626The terminal symbol @code{error} is reserved for error recovery.
931c7513 627@xref{Symbols}.
bfa74976
RS
628
629A terminal symbol can also be represented as a character literal, just like
630a C character constant. You should do this whenever a token is just a
631single character (parenthesis, plus-sign, etc.): use that same character in
632a literal as the terminal symbol for that token.
633
931c7513
RS
634A third way to represent a terminal symbol is with a C string constant
635containing several characters. @xref{Symbols}, for more information.
636
bfa74976
RS
637The grammar rules also have an expression in Bison syntax. For example,
638here is the Bison rule for a C @code{return} statement. The semicolon in
639quotes is a literal character token, representing part of the C syntax for
640the statement; the naked semicolon, and the colon, are Bison punctuation
641used in every rule.
642
643@example
644stmt: RETURN expr ';'
645 ;
646@end example
647
648@noindent
649@xref{Rules, ,Syntax of Grammar Rules}.
650
342b8b6e 651@node Semantic Values
bfa74976
RS
652@section Semantic Values
653@cindex semantic value
654@cindex value, semantic
655
656A formal grammar selects tokens only by their classifications: for example,
657if a rule mentions the terminal symbol `integer constant', it means that
658@emph{any} integer constant is grammatically valid in that position. The
659precise value of the constant is irrelevant to how to parse the input: if
660@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 661grammatical.
bfa74976
RS
662
663But the precise value is very important for what the input means once it is
664parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6653989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
666has both a token type and a @dfn{semantic value}. @xref{Semantics,
667,Defining Language Semantics},
bfa74976
RS
668for details.
669
670The token type is a terminal symbol defined in the grammar, such as
671@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
672you need to know to decide where the token may validly appear and how to
673group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 674except their types.
bfa74976
RS
675
676The semantic value has all the rest of the information about the
677meaning of the token, such as the value of an integer, or the name of an
678identifier. (A token such as @code{','} which is just punctuation doesn't
679need to have any semantic value.)
680
681For example, an input token might be classified as token type
682@code{INTEGER} and have the semantic value 4. Another input token might
683have the same token type @code{INTEGER} but value 3989. When a grammar
684rule says that @code{INTEGER} is allowed, either of these tokens is
685acceptable because each is an @code{INTEGER}. When the parser accepts the
686token, it keeps track of the token's semantic value.
687
688Each grouping can also have a semantic value as well as its nonterminal
689symbol. For example, in a calculator, an expression typically has a
690semantic value that is a number. In a compiler for a programming
691language, an expression typically has a semantic value that is a tree
692structure describing the meaning of the expression.
693
342b8b6e 694@node Semantic Actions
bfa74976
RS
695@section Semantic Actions
696@cindex semantic actions
697@cindex actions, semantic
698
699In order to be useful, a program must do more than parse input; it must
700also produce some output based on the input. In a Bison grammar, a grammar
701rule can have an @dfn{action} made up of C statements. Each time the
702parser recognizes a match for that rule, the action is executed.
703@xref{Actions}.
13863333 704
bfa74976
RS
705Most of the time, the purpose of an action is to compute the semantic value
706of the whole construct from the semantic values of its parts. For example,
707suppose we have a rule which says an expression can be the sum of two
708expressions. When the parser recognizes such a sum, each of the
709subexpressions has a semantic value which describes how it was built up.
710The action for this rule should create a similar sort of value for the
711newly recognized larger expression.
712
713For example, here is a rule that says an expression can be the sum of
714two subexpressions:
715
716@example
717expr: expr '+' expr @{ $$ = $1 + $3; @}
718 ;
719@end example
720
721@noindent
722The action says how to produce the semantic value of the sum expression
723from the values of the two subexpressions.
724
676385e2 725@node GLR Parsers
8a4281b9
JD
726@section Writing GLR Parsers
727@cindex GLR parsing
728@cindex generalized LR (GLR) parsing
676385e2
PH
729@findex %glr-parser
730@cindex conflicts
731@cindex shift/reduce conflicts
fa7e68c3 732@cindex reduce/reduce conflicts
676385e2 733
eb45ef3b 734In some grammars, Bison's deterministic
8a4281b9 735LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
736certain grammar rule at a given point. That is, it may not be able to
737decide (on the basis of the input read so far) which of two possible
738reductions (applications of a grammar rule) applies, or whether to apply
739a reduction or read more of the input and apply a reduction later in the
740input. These are known respectively as @dfn{reduce/reduce} conflicts
741(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
742(@pxref{Shift/Reduce}).
743
8a4281b9 744To use a grammar that is not easily modified to be LR(1), a
9501dc6e 745more general parsing algorithm is sometimes necessary. If you include
676385e2 746@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
747(@pxref{Grammar Outline}), the result is a Generalized LR
748(GLR) parser. These parsers handle Bison grammars that
9501dc6e 749contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 750declarations) identically to deterministic parsers. However, when
9501dc6e 751faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 752GLR parsers use the simple expedient of doing both,
9501dc6e
AD
753effectively cloning the parser to follow both possibilities. Each of
754the resulting parsers can again split, so that at any given time, there
755can be any number of possible parses being explored. The parsers
676385e2
PH
756proceed in lockstep; that is, all of them consume (shift) a given input
757symbol before any of them proceed to the next. Each of the cloned
758parsers eventually meets one of two possible fates: either it runs into
759a parsing error, in which case it simply vanishes, or it merges with
760another parser, because the two of them have reduced the input to an
761identical set of symbols.
762
763During the time that there are multiple parsers, semantic actions are
764recorded, but not performed. When a parser disappears, its recorded
765semantic actions disappear as well, and are never performed. When a
766reduction makes two parsers identical, causing them to merge, Bison
767records both sets of semantic actions. Whenever the last two parsers
768merge, reverting to the single-parser case, Bison resolves all the
769outstanding actions either by precedences given to the grammar rules
770involved, or by performing both actions, and then calling a designated
771user-defined function on the resulting values to produce an arbitrary
772merged result.
773
fa7e68c3 774@menu
8a4281b9
JD
775* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
776* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 777* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 778* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 779* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
780@end menu
781
782@node Simple GLR Parsers
8a4281b9
JD
783@subsection Using GLR on Unambiguous Grammars
784@cindex GLR parsing, unambiguous grammars
785@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
786@findex %glr-parser
787@findex %expect-rr
788@cindex conflicts
789@cindex reduce/reduce conflicts
790@cindex shift/reduce conflicts
791
8a4281b9
JD
792In the simplest cases, you can use the GLR algorithm
793to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 794Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
795
796Consider a problem that
797arises in the declaration of enumerated and subrange types in the
798programming language Pascal. Here are some examples:
799
800@example
801type subrange = lo .. hi;
802type enum = (a, b, c);
803@end example
804
805@noindent
806The original language standard allows only numeric
807literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 808and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80910206) and many other
810Pascal implementations allow arbitrary expressions there. This gives
811rise to the following situation, containing a superfluous pair of
812parentheses:
813
814@example
815type subrange = (a) .. b;
816@end example
817
818@noindent
819Compare this to the following declaration of an enumerated
820type with only one value:
821
822@example
823type enum = (a);
824@end example
825
826@noindent
827(These declarations are contrived, but they are syntactically
828valid, and more-complicated cases can come up in practical programs.)
829
830These two declarations look identical until the @samp{..} token.
8a4281b9 831With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
832possible to decide between the two forms when the identifier
833@samp{a} is parsed. It is, however, desirable
834for a parser to decide this, since in the latter case
835@samp{a} must become a new identifier to represent the enumeration
836value, while in the former case @samp{a} must be evaluated with its
837current meaning, which may be a constant or even a function call.
838
839You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
840to be resolved later, but this typically requires substantial
841contortions in both semantic actions and large parts of the
842grammar, where the parentheses are nested in the recursive rules for
843expressions.
844
845You might think of using the lexer to distinguish between the two
846forms by returning different tokens for currently defined and
847undefined identifiers. But if these declarations occur in a local
848scope, and @samp{a} is defined in an outer scope, then both forms
849are possible---either locally redefining @samp{a}, or using the
850value of @samp{a} from the outer scope. So this approach cannot
851work.
852
e757bb10 853A simple solution to this problem is to declare the parser to
8a4281b9
JD
854use the GLR algorithm.
855When the GLR parser reaches the critical state, it
fa7e68c3
PE
856merely splits into two branches and pursues both syntax rules
857simultaneously. Sooner or later, one of them runs into a parsing
858error. If there is a @samp{..} token before the next
859@samp{;}, the rule for enumerated types fails since it cannot
860accept @samp{..} anywhere; otherwise, the subrange type rule
861fails since it requires a @samp{..} token. So one of the branches
862fails silently, and the other one continues normally, performing
863all the intermediate actions that were postponed during the split.
864
865If the input is syntactically incorrect, both branches fail and the parser
866reports a syntax error as usual.
867
868The effect of all this is that the parser seems to ``guess'' the
869correct branch to take, or in other words, it seems to use more
8a4281b9
JD
870lookahead than the underlying LR(1) algorithm actually allows
871for. In this example, LR(2) would suffice, but also some cases
872that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 873
8a4281b9 874In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
875and the current Bison parser even takes exponential time and space
876for some grammars. In practice, this rarely happens, and for many
877grammars it is possible to prove that it cannot happen.
878The present example contains only one conflict between two
879rules, and the type-declaration context containing the conflict
880cannot be nested. So the number of
881branches that can exist at any time is limited by the constant 2,
882and the parsing time is still linear.
883
884Here is a Bison grammar corresponding to the example above. It
885parses a vastly simplified form of Pascal type declarations.
886
887@example
888%token TYPE DOTDOT ID
889
890@group
891%left '+' '-'
892%left '*' '/'
893@end group
894
895%%
896
897@group
898type_decl : TYPE ID '=' type ';'
899 ;
900@end group
901
902@group
903type : '(' id_list ')'
904 | expr DOTDOT expr
905 ;
906@end group
907
908@group
909id_list : ID
910 | id_list ',' ID
911 ;
912@end group
913
914@group
915expr : '(' expr ')'
916 | expr '+' expr
917 | expr '-' expr
918 | expr '*' expr
919 | expr '/' expr
920 | ID
921 ;
922@end group
923@end example
924
8a4281b9 925When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
926about one reduce/reduce conflict. In the conflicting situation the
927parser chooses one of the alternatives, arbitrarily the one
928declared first. Therefore the following correct input is not
929recognized:
930
931@example
932type t = (a) .. b;
933@end example
934
8a4281b9 935The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
936to be silent about the one known reduce/reduce conflict, by adding
937these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
938@samp{%%}):
939
940@example
941%glr-parser
942%expect-rr 1
943@end example
944
945@noindent
946No change in the grammar itself is required. Now the
947parser recognizes all valid declarations, according to the
948limited syntax above, transparently. In fact, the user does not even
949notice when the parser splits.
950
8a4281b9 951So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
952almost without disadvantages. Even in simple cases like this, however,
953there are at least two potential problems to beware. First, always
8a4281b9
JD
954analyze the conflicts reported by Bison to make sure that GLR
955splitting is only done where it is intended. A GLR parser
f8e1c9e5 956splitting inadvertently may cause problems less obvious than an
8a4281b9 957LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
958conflict. Second, consider interactions with the lexer (@pxref{Semantic
959Tokens}) with great care. Since a split parser consumes tokens without
960performing any actions during the split, the lexer cannot obtain
961information via parser actions. Some cases of lexer interactions can be
8a4281b9 962eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
963lexer to the parser. You must check the remaining cases for
964correctness.
965
966In our example, it would be safe for the lexer to return tokens based on
967their current meanings in some symbol table, because no new symbols are
968defined in the middle of a type declaration. Though it is possible for
969a parser to define the enumeration constants as they are parsed, before
970the type declaration is completed, it actually makes no difference since
971they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
972
973@node Merging GLR Parses
8a4281b9
JD
974@subsection Using GLR to Resolve Ambiguities
975@cindex GLR parsing, ambiguous grammars
976@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
977@findex %dprec
978@findex %merge
979@cindex conflicts
980@cindex reduce/reduce conflicts
981
2a8d363a 982Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
983
984@example
985%@{
38a92d50
PE
986 #include <stdio.h>
987 #define YYSTYPE char const *
988 int yylex (void);
989 void yyerror (char const *);
676385e2
PH
990%@}
991
992%token TYPENAME ID
993
994%right '='
995%left '+'
996
997%glr-parser
998
999%%
1000
fae437e8 1001prog :
676385e2
PH
1002 | prog stmt @{ printf ("\n"); @}
1003 ;
1004
1005stmt : expr ';' %dprec 1
1006 | decl %dprec 2
1007 ;
1008
2a8d363a 1009expr : ID @{ printf ("%s ", $$); @}
fae437e8 1010 | TYPENAME '(' expr ')'
2a8d363a
AD
1011 @{ printf ("%s <cast> ", $1); @}
1012 | expr '+' expr @{ printf ("+ "); @}
1013 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1014 ;
1015
fae437e8 1016decl : TYPENAME declarator ';'
2a8d363a 1017 @{ printf ("%s <declare> ", $1); @}
676385e2 1018 | TYPENAME declarator '=' expr ';'
2a8d363a 1019 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1020 ;
1021
2a8d363a 1022declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1023 | '(' declarator ')'
1024 ;
1025@end example
1026
1027@noindent
1028This models a problematic part of the C++ grammar---the ambiguity between
1029certain declarations and statements. For example,
1030
1031@example
1032T (x) = y+z;
1033@end example
1034
1035@noindent
1036parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1037(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1038@samp{x} as an @code{ID}).
676385e2 1039Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1040@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1041time it encounters @code{x} in the example above. Since this is a
8a4281b9 1042GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1043each choice of resolving the reduce/reduce conflict.
1044Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1045however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1046ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1047the other reduces @code{stmt : decl}, after which both parsers are in an
1048identical state: they've seen @samp{prog stmt} and have the same unprocessed
1049input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1050
8a4281b9 1051At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1052grammar of how to choose between the competing parses.
1053In the example above, the two @code{%dprec}
e757bb10 1054declarations specify that Bison is to give precedence
fa7e68c3 1055to the parse that interprets the example as a
676385e2
PH
1056@code{decl}, which implies that @code{x} is a declarator.
1057The parser therefore prints
1058
1059@example
fae437e8 1060"x" y z + T <init-declare>
676385e2
PH
1061@end example
1062
fa7e68c3
PE
1063The @code{%dprec} declarations only come into play when more than one
1064parse survives. Consider a different input string for this parser:
676385e2
PH
1065
1066@example
1067T (x) + y;
1068@end example
1069
1070@noindent
8a4281b9 1071This is another example of using GLR to parse an unambiguous
fa7e68c3 1072construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1073Here, there is no ambiguity (this cannot be parsed as a declaration).
1074However, at the time the Bison parser encounters @code{x}, it does not
1075have enough information to resolve the reduce/reduce conflict (again,
1076between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1077case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1078into two, one assuming that @code{x} is an @code{expr}, and the other
1079assuming @code{x} is a @code{declarator}. The second of these parsers
1080then vanishes when it sees @code{+}, and the parser prints
1081
1082@example
fae437e8 1083x T <cast> y +
676385e2
PH
1084@end example
1085
1086Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1087the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1088actions of the two possible parsers, rather than choosing one over the
1089other. To do so, you could change the declaration of @code{stmt} as
1090follows:
1091
1092@example
1093stmt : expr ';' %merge <stmtMerge>
1094 | decl %merge <stmtMerge>
1095 ;
1096@end example
1097
1098@noindent
676385e2
PH
1099and define the @code{stmtMerge} function as:
1100
1101@example
38a92d50
PE
1102static YYSTYPE
1103stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1104@{
1105 printf ("<OR> ");
1106 return "";
1107@}
1108@end example
1109
1110@noindent
1111with an accompanying forward declaration
1112in the C declarations at the beginning of the file:
1113
1114@example
1115%@{
38a92d50 1116 #define YYSTYPE char const *
676385e2
PH
1117 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1118%@}
1119@end example
1120
1121@noindent
fa7e68c3
PE
1122With these declarations, the resulting parser parses the first example
1123as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1124
1125@example
fae437e8 1126"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1127@end example
1128
fa7e68c3 1129Bison requires that all of the
e757bb10 1130productions that participate in any particular merge have identical
fa7e68c3
PE
1131@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1132and the parser will report an error during any parse that results in
1133the offending merge.
9501dc6e 1134
32c29292
JD
1135@node GLR Semantic Actions
1136@subsection GLR Semantic Actions
1137
8a4281b9 1138The nature of GLR parsing and the structure of the generated
20be2f92
PH
1139parsers give rise to certain restrictions on semantic values and actions.
1140
1141@subsubsection Deferred semantic actions
32c29292
JD
1142@cindex deferred semantic actions
1143By definition, a deferred semantic action is not performed at the same time as
1144the associated reduction.
1145This raises caveats for several Bison features you might use in a semantic
8a4281b9 1146action in a GLR parser.
32c29292
JD
1147
1148@vindex yychar
8a4281b9 1149@cindex GLR parsers and @code{yychar}
32c29292 1150@vindex yylval
8a4281b9 1151@cindex GLR parsers and @code{yylval}
32c29292 1152@vindex yylloc
8a4281b9 1153@cindex GLR parsers and @code{yylloc}
32c29292 1154In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1155the lookahead token present at the time of the associated reduction.
32c29292
JD
1156After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1157you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1158lookahead token's semantic value and location, if any.
32c29292
JD
1159In a nondeferred semantic action, you can also modify any of these variables to
1160influence syntax analysis.
742e4900 1161@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1162
1163@findex yyclearin
8a4281b9 1164@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1165In a deferred semantic action, it's too late to influence syntax analysis.
1166In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1167shallow copies of the values they had at the time of the associated reduction.
1168For this reason alone, modifying them is dangerous.
1169Moreover, the result of modifying them is undefined and subject to change with
1170future versions of Bison.
1171For example, if a semantic action might be deferred, you should never write it
1172to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1173memory referenced by @code{yylval}.
1174
20be2f92 1175@subsubsection YYERROR
32c29292 1176@findex YYERROR
8a4281b9 1177@cindex GLR parsers and @code{YYERROR}
32c29292 1178Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1179(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1180initiate error recovery.
8a4281b9 1181During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1182the same as its effect in a deterministic parser.
411614fa
JM
1183The effect in a deferred action is similar, but the precise point of the
1184error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1185selecting an unspecified stack on which to continue with a syntax error.
1186In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1187parsing, @code{YYERROR} silently prunes
1188the parse that invoked the test.
1189
1190@subsubsection Restrictions on semantic values and locations
8a4281b9 1191GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1192semantic values and location types when using the generated parsers as
1193C++ code.
8710fc41 1194
ca2a6d15
PH
1195@node Semantic Predicates
1196@subsection Controlling a Parse with Arbitrary Predicates
1197@findex %?
8a4281b9 1198@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1199
1200In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1201GLR parsers
ca2a6d15
PH
1202allow you to reject parses on the basis of arbitrary computations executed
1203in user code, without having Bison treat this rejection as an error
1204if there are alternative parses. (This feature is experimental and may
1205evolve. We welcome user feedback.) For example,
1206
1207@smallexample
1208widget :
1209 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1210 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1211 ;
1212@end smallexample
1213
1214@noindent
411614fa 1215is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1216widgets. The clause preceded by @code{%?} is treated like an ordinary
1217action, except that its text is treated as an expression and is always
411614fa 1218evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1219expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1220which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1221to die. In a deterministic parser, it acts like YYERROR.
1222
1223As the example shows, predicates otherwise look like semantic actions, and
1224therefore you must be take them into account when determining the numbers
1225to use for denoting the semantic values of right-hand side symbols.
1226Predicate actions, however, have no defined value, and may not be given
1227labels.
1228
1229There is a subtle difference between semantic predicates and ordinary
1230actions in nondeterministic mode, since the latter are deferred.
411614fa 1231For example, we could try to rewrite the previous example as
ca2a6d15
PH
1232
1233@smallexample
1234widget :
1235 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1236 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1237 ;
1238@end smallexample
1239
1240@noindent
1241(reversing the sense of the predicate tests to cause an error when they are
1242false). However, this
1243does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1244have overlapping syntax.
411614fa 1245Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1246a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1247for cases where @code{new_args} and @code{old_args} recognize the same string
1248@emph{before} performing the tests of @code{new_syntax}. It therefore
1249reports an error.
1250
1251Finally, be careful in writing predicates: deferred actions have not been
1252evaluated, so that using them in a predicate will have undefined effects.
1253
fa7e68c3 1254@node Compiler Requirements
8a4281b9 1255@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1256@cindex @code{inline}
8a4281b9 1257@cindex GLR parsers and @code{inline}
fa7e68c3 1258
8a4281b9 1259The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1260later. In addition, they use the @code{inline} keyword, which is not
1261C89, but is C99 and is a common extension in pre-C99 compilers. It is
1262up to the user of these parsers to handle
9501dc6e
AD
1263portability issues. For instance, if using Autoconf and the Autoconf
1264macro @code{AC_C_INLINE}, a mere
1265
1266@example
1267%@{
38a92d50 1268 #include <config.h>
9501dc6e
AD
1269%@}
1270@end example
1271
1272@noindent
1273will suffice. Otherwise, we suggest
1274
1275@example
1276%@{
38a92d50
PE
1277 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1278 #define inline
1279 #endif
9501dc6e
AD
1280%@}
1281@end example
676385e2 1282
1769eb30 1283@node Locations
847bf1f5
AD
1284@section Locations
1285@cindex location
95923bd6
AD
1286@cindex textual location
1287@cindex location, textual
847bf1f5
AD
1288
1289Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1290and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1291the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1292Bison provides a mechanism for handling these locations.
1293
72d2299c 1294Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1295associated location, but the type of locations is the same for all tokens
1296and groupings. Moreover, the output parser is equipped with a default data
1297structure for storing locations (@pxref{Tracking Locations}, for more
1298details).
847bf1f5
AD
1299
1300Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1301set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1302is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1303@code{@@3}.
1304
1305When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1306of its left hand side (@pxref{Actions}). In the same way, another default
1307action is used for locations. However, the action for locations is general
847bf1f5 1308enough for most cases, meaning there is usually no need to describe for each
72d2299c 1309rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1310grouping, the default behavior of the output parser is to take the beginning
1311of the first symbol, and the end of the last symbol.
1312
342b8b6e 1313@node Bison Parser
ff7571c0 1314@section Bison Output: the Parser Implementation File
bfa74976
RS
1315@cindex Bison parser
1316@cindex Bison utility
1317@cindex lexical analyzer, purpose
1318@cindex parser
1319
ff7571c0
JD
1320When you run Bison, you give it a Bison grammar file as input. The
1321most important output is a C source file that implements a parser for
1322the language described by the grammar. This parser is called a
1323@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1324implementation file}. Keep in mind that the Bison utility and the
1325Bison parser are two distinct programs: the Bison utility is a program
1326whose output is the Bison parser implementation file that becomes part
1327of your program.
bfa74976
RS
1328
1329The job of the Bison parser is to group tokens into groupings according to
1330the grammar rules---for example, to build identifiers and operators into
1331expressions. As it does this, it runs the actions for the grammar rules it
1332uses.
1333
704a47c4
AD
1334The tokens come from a function called the @dfn{lexical analyzer} that
1335you must supply in some fashion (such as by writing it in C). The Bison
1336parser calls the lexical analyzer each time it wants a new token. It
1337doesn't know what is ``inside'' the tokens (though their semantic values
1338may reflect this). Typically the lexical analyzer makes the tokens by
1339parsing characters of text, but Bison does not depend on this.
1340@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1341
ff7571c0
JD
1342The Bison parser implementation file is C code which defines a
1343function named @code{yyparse} which implements that grammar. This
1344function does not make a complete C program: you must supply some
1345additional functions. One is the lexical analyzer. Another is an
1346error-reporting function which the parser calls to report an error.
1347In addition, a complete C program must start with a function called
1348@code{main}; you have to provide this, and arrange for it to call
1349@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1350C-Language Interface}.
bfa74976 1351
f7ab6a50 1352Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1353write, all symbols defined in the Bison parser implementation file
1354itself begin with @samp{yy} or @samp{YY}. This includes interface
1355functions such as the lexical analyzer function @code{yylex}, the
1356error reporting function @code{yyerror} and the parser function
1357@code{yyparse} itself. This also includes numerous identifiers used
1358for internal purposes. Therefore, you should avoid using C
1359identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1360file except for the ones defined in this manual. Also, you should
1361avoid using the C identifiers @samp{malloc} and @samp{free} for
1362anything other than their usual meanings.
1363
1364In some cases the Bison parser implementation file includes system
1365headers, and in those cases your code should respect the identifiers
1366reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1367@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1368included as needed to declare memory allocators and related types.
1369@code{<libintl.h>} is included if message translation is in use
1370(@pxref{Internationalization}). Other system headers may be included
1371if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1372,Tracing Your Parser}).
7093d0f5 1373
342b8b6e 1374@node Stages
bfa74976
RS
1375@section Stages in Using Bison
1376@cindex stages in using Bison
1377@cindex using Bison
1378
1379The actual language-design process using Bison, from grammar specification
1380to a working compiler or interpreter, has these parts:
1381
1382@enumerate
1383@item
1384Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1385(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1386in the language, describe the action that is to be taken when an
1387instance of that rule is recognized. The action is described by a
1388sequence of C statements.
bfa74976
RS
1389
1390@item
704a47c4
AD
1391Write a lexical analyzer to process input and pass tokens to the parser.
1392The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1393Lexical Analyzer Function @code{yylex}}). It could also be produced
1394using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1395
1396@item
1397Write a controlling function that calls the Bison-produced parser.
1398
1399@item
1400Write error-reporting routines.
1401@end enumerate
1402
1403To turn this source code as written into a runnable program, you
1404must follow these steps:
1405
1406@enumerate
1407@item
1408Run Bison on the grammar to produce the parser.
1409
1410@item
1411Compile the code output by Bison, as well as any other source files.
1412
1413@item
1414Link the object files to produce the finished product.
1415@end enumerate
1416
342b8b6e 1417@node Grammar Layout
bfa74976
RS
1418@section The Overall Layout of a Bison Grammar
1419@cindex grammar file
1420@cindex file format
1421@cindex format of grammar file
1422@cindex layout of Bison grammar
1423
1424The input file for the Bison utility is a @dfn{Bison grammar file}. The
1425general form of a Bison grammar file is as follows:
1426
1427@example
1428%@{
08e49d20 1429@var{Prologue}
bfa74976
RS
1430%@}
1431
1432@var{Bison declarations}
1433
1434%%
1435@var{Grammar rules}
1436%%
08e49d20 1437@var{Epilogue}
bfa74976
RS
1438@end example
1439
1440@noindent
1441The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1442in every Bison grammar file to separate the sections.
1443
72d2299c 1444The prologue may define types and variables used in the actions. You can
342b8b6e 1445also use preprocessor commands to define macros used there, and use
bfa74976 1446@code{#include} to include header files that do any of these things.
38a92d50
PE
1447You need to declare the lexical analyzer @code{yylex} and the error
1448printer @code{yyerror} here, along with any other global identifiers
1449used by the actions in the grammar rules.
bfa74976
RS
1450
1451The Bison declarations declare the names of the terminal and nonterminal
1452symbols, and may also describe operator precedence and the data types of
1453semantic values of various symbols.
1454
1455The grammar rules define how to construct each nonterminal symbol from its
1456parts.
1457
38a92d50
PE
1458The epilogue can contain any code you want to use. Often the
1459definitions of functions declared in the prologue go here. In a
1460simple program, all the rest of the program can go here.
bfa74976 1461
342b8b6e 1462@node Examples
bfa74976
RS
1463@chapter Examples
1464@cindex simple examples
1465@cindex examples, simple
1466
1467Now we show and explain three sample programs written using Bison: a
1468reverse polish notation calculator, an algebraic (infix) notation
1469calculator, and a multi-function calculator. All three have been tested
1470under BSD Unix 4.3; each produces a usable, though limited, interactive
1471desk-top calculator.
1472
1473These examples are simple, but Bison grammars for real programming
aa08666d
AD
1474languages are written the same way. You can copy these examples into a
1475source file to try them.
bfa74976
RS
1476
1477@menu
f5f419de
DJ
1478* RPN Calc:: Reverse polish notation calculator;
1479 a first example with no operator precedence.
1480* Infix Calc:: Infix (algebraic) notation calculator.
1481 Operator precedence is introduced.
bfa74976 1482* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1483* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1484* Multi-function Calc:: Calculator with memory and trig functions.
1485 It uses multiple data-types for semantic values.
1486* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1487@end menu
1488
342b8b6e 1489@node RPN Calc
bfa74976
RS
1490@section Reverse Polish Notation Calculator
1491@cindex reverse polish notation
1492@cindex polish notation calculator
1493@cindex @code{rpcalc}
1494@cindex calculator, simple
1495
1496The first example is that of a simple double-precision @dfn{reverse polish
1497notation} calculator (a calculator using postfix operators). This example
1498provides a good starting point, since operator precedence is not an issue.
1499The second example will illustrate how operator precedence is handled.
1500
1501The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1502@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1503
1504@menu
f5f419de
DJ
1505* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1506* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1507* Rpcalc Lexer:: The lexical analyzer.
1508* Rpcalc Main:: The controlling function.
1509* Rpcalc Error:: The error reporting function.
1510* Rpcalc Generate:: Running Bison on the grammar file.
1511* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1512@end menu
1513
f5f419de 1514@node Rpcalc Declarations
bfa74976
RS
1515@subsection Declarations for @code{rpcalc}
1516
1517Here are the C and Bison declarations for the reverse polish notation
1518calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1519
1520@example
72d2299c 1521/* Reverse polish notation calculator. */
bfa74976
RS
1522
1523%@{
38a92d50
PE
1524 #define YYSTYPE double
1525 #include <math.h>
1526 int yylex (void);
1527 void yyerror (char const *);
bfa74976
RS
1528%@}
1529
1530%token NUM
1531
72d2299c 1532%% /* Grammar rules and actions follow. */
bfa74976
RS
1533@end example
1534
75f5aaea 1535The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1536preprocessor directives and two forward declarations.
bfa74976
RS
1537
1538The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1539specifying the C data type for semantic values of both tokens and
1540groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1541Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1542don't define it, @code{int} is the default. Because we specify
1543@code{double}, each token and each expression has an associated value,
1544which is a floating point number.
bfa74976
RS
1545
1546The @code{#include} directive is used to declare the exponentiation
1547function @code{pow}.
1548
38a92d50
PE
1549The forward declarations for @code{yylex} and @code{yyerror} are
1550needed because the C language requires that functions be declared
1551before they are used. These functions will be defined in the
1552epilogue, but the parser calls them so they must be declared in the
1553prologue.
1554
704a47c4
AD
1555The second section, Bison declarations, provides information to Bison
1556about the token types (@pxref{Bison Declarations, ,The Bison
1557Declarations Section}). Each terminal symbol that is not a
1558single-character literal must be declared here. (Single-character
bfa74976
RS
1559literals normally don't need to be declared.) In this example, all the
1560arithmetic operators are designated by single-character literals, so the
1561only terminal symbol that needs to be declared is @code{NUM}, the token
1562type for numeric constants.
1563
342b8b6e 1564@node Rpcalc Rules
bfa74976
RS
1565@subsection Grammar Rules for @code{rpcalc}
1566
1567Here are the grammar rules for the reverse polish notation calculator.
1568
1569@example
1570input: /* empty */
1571 | input line
1572;
1573
1574line: '\n'
18b519c0 1575 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1576;
1577
18b519c0
AD
1578exp: NUM @{ $$ = $1; @}
1579 | exp exp '+' @{ $$ = $1 + $2; @}
1580 | exp exp '-' @{ $$ = $1 - $2; @}
1581 | exp exp '*' @{ $$ = $1 * $2; @}
1582 | exp exp '/' @{ $$ = $1 / $2; @}
1583 /* Exponentiation */
1584 | exp exp '^' @{ $$ = pow ($1, $2); @}
1585 /* Unary minus */
1586 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1587;
1588%%
1589@end example
1590
1591The groupings of the rpcalc ``language'' defined here are the expression
1592(given the name @code{exp}), the line of input (@code{line}), and the
1593complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1594symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1595which is read as ``or''. The following sections explain what these rules
1596mean.
1597
1598The semantics of the language is determined by the actions taken when a
1599grouping is recognized. The actions are the C code that appears inside
1600braces. @xref{Actions}.
1601
1602You must specify these actions in C, but Bison provides the means for
1603passing semantic values between the rules. In each action, the
1604pseudo-variable @code{$$} stands for the semantic value for the grouping
1605that the rule is going to construct. Assigning a value to @code{$$} is the
1606main job of most actions. The semantic values of the components of the
1607rule are referred to as @code{$1}, @code{$2}, and so on.
1608
1609@menu
13863333
AD
1610* Rpcalc Input::
1611* Rpcalc Line::
1612* Rpcalc Expr::
bfa74976
RS
1613@end menu
1614
342b8b6e 1615@node Rpcalc Input
bfa74976
RS
1616@subsubsection Explanation of @code{input}
1617
1618Consider the definition of @code{input}:
1619
1620@example
1621input: /* empty */
1622 | input line
1623;
1624@end example
1625
1626This definition reads as follows: ``A complete input is either an empty
1627string, or a complete input followed by an input line''. Notice that
1628``complete input'' is defined in terms of itself. This definition is said
1629to be @dfn{left recursive} since @code{input} appears always as the
1630leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1631
1632The first alternative is empty because there are no symbols between the
1633colon and the first @samp{|}; this means that @code{input} can match an
1634empty string of input (no tokens). We write the rules this way because it
1635is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1636It's conventional to put an empty alternative first and write the comment
1637@samp{/* empty */} in it.
1638
1639The second alternate rule (@code{input line}) handles all nontrivial input.
1640It means, ``After reading any number of lines, read one more line if
1641possible.'' The left recursion makes this rule into a loop. Since the
1642first alternative matches empty input, the loop can be executed zero or
1643more times.
1644
1645The parser function @code{yyparse} continues to process input until a
1646grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1647input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1648
342b8b6e 1649@node Rpcalc Line
bfa74976
RS
1650@subsubsection Explanation of @code{line}
1651
1652Now consider the definition of @code{line}:
1653
1654@example
1655line: '\n'
1656 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1657;
1658@end example
1659
1660The first alternative is a token which is a newline character; this means
1661that rpcalc accepts a blank line (and ignores it, since there is no
1662action). The second alternative is an expression followed by a newline.
1663This is the alternative that makes rpcalc useful. The semantic value of
1664the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1665question is the first symbol in the alternative. The action prints this
1666value, which is the result of the computation the user asked for.
1667
1668This action is unusual because it does not assign a value to @code{$$}. As
1669a consequence, the semantic value associated with the @code{line} is
1670uninitialized (its value will be unpredictable). This would be a bug if
1671that value were ever used, but we don't use it: once rpcalc has printed the
1672value of the user's input line, that value is no longer needed.
1673
342b8b6e 1674@node Rpcalc Expr
bfa74976
RS
1675@subsubsection Explanation of @code{expr}
1676
1677The @code{exp} grouping has several rules, one for each kind of expression.
1678The first rule handles the simplest expressions: those that are just numbers.
1679The second handles an addition-expression, which looks like two expressions
1680followed by a plus-sign. The third handles subtraction, and so on.
1681
1682@example
1683exp: NUM
1684 | exp exp '+' @{ $$ = $1 + $2; @}
1685 | exp exp '-' @{ $$ = $1 - $2; @}
1686 @dots{}
1687 ;
1688@end example
1689
1690We have used @samp{|} to join all the rules for @code{exp}, but we could
1691equally well have written them separately:
1692
1693@example
1694exp: NUM ;
1695exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1696exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1697 @dots{}
1698@end example
1699
1700Most of the rules have actions that compute the value of the expression in
1701terms of the value of its parts. For example, in the rule for addition,
1702@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1703the second one. The third component, @code{'+'}, has no meaningful
1704associated semantic value, but if it had one you could refer to it as
1705@code{$3}. When @code{yyparse} recognizes a sum expression using this
1706rule, the sum of the two subexpressions' values is produced as the value of
1707the entire expression. @xref{Actions}.
1708
1709You don't have to give an action for every rule. When a rule has no
1710action, Bison by default copies the value of @code{$1} into @code{$$}.
1711This is what happens in the first rule (the one that uses @code{NUM}).
1712
1713The formatting shown here is the recommended convention, but Bison does
72d2299c 1714not require it. You can add or change white space as much as you wish.
bfa74976
RS
1715For example, this:
1716
1717@example
99a9344e 1718exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1719@end example
1720
1721@noindent
1722means the same thing as this:
1723
1724@example
1725exp: NUM
1726 | exp exp '+' @{ $$ = $1 + $2; @}
1727 | @dots{}
99a9344e 1728;
bfa74976
RS
1729@end example
1730
1731@noindent
1732The latter, however, is much more readable.
1733
342b8b6e 1734@node Rpcalc Lexer
bfa74976
RS
1735@subsection The @code{rpcalc} Lexical Analyzer
1736@cindex writing a lexical analyzer
1737@cindex lexical analyzer, writing
1738
704a47c4
AD
1739The lexical analyzer's job is low-level parsing: converting characters
1740or sequences of characters into tokens. The Bison parser gets its
1741tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1742Analyzer Function @code{yylex}}.
bfa74976 1743
8a4281b9 1744Only a simple lexical analyzer is needed for the RPN
c827f760 1745calculator. This
bfa74976
RS
1746lexical analyzer skips blanks and tabs, then reads in numbers as
1747@code{double} and returns them as @code{NUM} tokens. Any other character
1748that isn't part of a number is a separate token. Note that the token-code
1749for such a single-character token is the character itself.
1750
1751The return value of the lexical analyzer function is a numeric code which
1752represents a token type. The same text used in Bison rules to stand for
1753this token type is also a C expression for the numeric code for the type.
1754This works in two ways. If the token type is a character literal, then its
e966383b 1755numeric code is that of the character; you can use the same
bfa74976
RS
1756character literal in the lexical analyzer to express the number. If the
1757token type is an identifier, that identifier is defined by Bison as a C
1758macro whose definition is the appropriate number. In this example,
1759therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1760
1964ad8c
AD
1761The semantic value of the token (if it has one) is stored into the
1762global variable @code{yylval}, which is where the Bison parser will look
1763for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1764defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1765,Declarations for @code{rpcalc}}.)
bfa74976 1766
72d2299c
PE
1767A token type code of zero is returned if the end-of-input is encountered.
1768(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1769
1770Here is the code for the lexical analyzer:
1771
1772@example
1773@group
72d2299c 1774/* The lexical analyzer returns a double floating point
e966383b 1775 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1776 of the character read if not a number. It skips all blanks
1777 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1778
1779#include <ctype.h>
1780@end group
1781
1782@group
13863333
AD
1783int
1784yylex (void)
bfa74976
RS
1785@{
1786 int c;
1787
72d2299c 1788 /* Skip white space. */
13863333 1789 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1790 ;
1791@end group
1792@group
72d2299c 1793 /* Process numbers. */
13863333 1794 if (c == '.' || isdigit (c))
bfa74976
RS
1795 @{
1796 ungetc (c, stdin);
1797 scanf ("%lf", &yylval);
1798 return NUM;
1799 @}
1800@end group
1801@group
72d2299c 1802 /* Return end-of-input. */
13863333 1803 if (c == EOF)
bfa74976 1804 return 0;
72d2299c 1805 /* Return a single char. */
13863333 1806 return c;
bfa74976
RS
1807@}
1808@end group
1809@end example
1810
342b8b6e 1811@node Rpcalc Main
bfa74976
RS
1812@subsection The Controlling Function
1813@cindex controlling function
1814@cindex main function in simple example
1815
1816In keeping with the spirit of this example, the controlling function is
1817kept to the bare minimum. The only requirement is that it call
1818@code{yyparse} to start the process of parsing.
1819
1820@example
1821@group
13863333
AD
1822int
1823main (void)
bfa74976 1824@{
13863333 1825 return yyparse ();
bfa74976
RS
1826@}
1827@end group
1828@end example
1829
342b8b6e 1830@node Rpcalc Error
bfa74976
RS
1831@subsection The Error Reporting Routine
1832@cindex error reporting routine
1833
1834When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1835function @code{yyerror} to print an error message (usually but not
6e649e65 1836always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1837@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1838here is the definition we will use:
bfa74976
RS
1839
1840@example
1841@group
1842#include <stdio.h>
1843
38a92d50 1844/* Called by yyparse on error. */
13863333 1845void
38a92d50 1846yyerror (char const *s)
bfa74976 1847@{
4e03e201 1848 fprintf (stderr, "%s\n", s);
bfa74976
RS
1849@}
1850@end group
1851@end example
1852
1853After @code{yyerror} returns, the Bison parser may recover from the error
1854and continue parsing if the grammar contains a suitable error rule
1855(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1856have not written any error rules in this example, so any invalid input will
1857cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1858real calculator, but it is adequate for the first example.
bfa74976 1859
f5f419de 1860@node Rpcalc Generate
bfa74976
RS
1861@subsection Running Bison to Make the Parser
1862@cindex running Bison (introduction)
1863
ceed8467
AD
1864Before running Bison to produce a parser, we need to decide how to
1865arrange all the source code in one or more source files. For such a
ff7571c0
JD
1866simple example, the easiest thing is to put everything in one file,
1867the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1868@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1869(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1870
1871For a large project, you would probably have several source files, and use
1872@code{make} to arrange to recompile them.
1873
ff7571c0
JD
1874With all the source in the grammar file, you use the following command
1875to convert it into a parser implementation file:
bfa74976
RS
1876
1877@example
fa4d969f 1878bison @var{file}.y
bfa74976
RS
1879@end example
1880
1881@noindent
ff7571c0
JD
1882In this example, the grammar file is called @file{rpcalc.y} (for
1883``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1884implementation file named @file{@var{file}.tab.c}, removing the
1885@samp{.y} from the grammar file name. The parser implementation file
1886contains the source code for @code{yyparse}. The additional functions
1887in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1888copied verbatim to the parser implementation file.
bfa74976 1889
342b8b6e 1890@node Rpcalc Compile
ff7571c0 1891@subsection Compiling the Parser Implementation File
bfa74976
RS
1892@cindex compiling the parser
1893
ff7571c0 1894Here is how to compile and run the parser implementation file:
bfa74976
RS
1895
1896@example
1897@group
1898# @r{List files in current directory.}
9edcd895 1899$ @kbd{ls}
bfa74976
RS
1900rpcalc.tab.c rpcalc.y
1901@end group
1902
1903@group
1904# @r{Compile the Bison parser.}
1905# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1906$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1907@end group
1908
1909@group
1910# @r{List files again.}
9edcd895 1911$ @kbd{ls}
bfa74976
RS
1912rpcalc rpcalc.tab.c rpcalc.y
1913@end group
1914@end example
1915
1916The file @file{rpcalc} now contains the executable code. Here is an
1917example session using @code{rpcalc}.
1918
1919@example
9edcd895
AD
1920$ @kbd{rpcalc}
1921@kbd{4 9 +}
bfa74976 192213
9edcd895 1923@kbd{3 7 + 3 4 5 *+-}
bfa74976 1924-13
9edcd895 1925@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 192613
9edcd895 1927@kbd{5 6 / 4 n +}
bfa74976 1928-3.166666667
9edcd895 1929@kbd{3 4 ^} @r{Exponentiation}
bfa74976 193081
9edcd895
AD
1931@kbd{^D} @r{End-of-file indicator}
1932$
bfa74976
RS
1933@end example
1934
342b8b6e 1935@node Infix Calc
bfa74976
RS
1936@section Infix Notation Calculator: @code{calc}
1937@cindex infix notation calculator
1938@cindex @code{calc}
1939@cindex calculator, infix notation
1940
1941We now modify rpcalc to handle infix operators instead of postfix. Infix
1942notation involves the concept of operator precedence and the need for
1943parentheses nested to arbitrary depth. Here is the Bison code for
1944@file{calc.y}, an infix desk-top calculator.
1945
1946@example
38a92d50 1947/* Infix notation calculator. */
bfa74976
RS
1948
1949%@{
38a92d50
PE
1950 #define YYSTYPE double
1951 #include <math.h>
1952 #include <stdio.h>
1953 int yylex (void);
1954 void yyerror (char const *);
bfa74976
RS
1955%@}
1956
38a92d50 1957/* Bison declarations. */
bfa74976
RS
1958%token NUM
1959%left '-' '+'
1960%left '*' '/'
d78f0ac9
AD
1961%precedence NEG /* negation--unary minus */
1962%right '^' /* exponentiation */
bfa74976 1963
38a92d50
PE
1964%% /* The grammar follows. */
1965input: /* empty */
bfa74976
RS
1966 | input line
1967;
1968
1969line: '\n'
1970 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1971;
1972
1973exp: NUM @{ $$ = $1; @}
1974 | exp '+' exp @{ $$ = $1 + $3; @}
1975 | exp '-' exp @{ $$ = $1 - $3; @}
1976 | exp '*' exp @{ $$ = $1 * $3; @}
1977 | exp '/' exp @{ $$ = $1 / $3; @}
1978 | '-' exp %prec NEG @{ $$ = -$2; @}
1979 | exp '^' exp @{ $$ = pow ($1, $3); @}
1980 | '(' exp ')' @{ $$ = $2; @}
1981;
1982%%
1983@end example
1984
1985@noindent
ceed8467
AD
1986The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1987same as before.
bfa74976
RS
1988
1989There are two important new features shown in this code.
1990
1991In the second section (Bison declarations), @code{%left} declares token
1992types and says they are left-associative operators. The declarations
1993@code{%left} and @code{%right} (right associativity) take the place of
1994@code{%token} which is used to declare a token type name without
d78f0ac9 1995associativity/precedence. (These tokens are single-character literals, which
bfa74976 1996ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1997the associativity/precedence.)
bfa74976
RS
1998
1999Operator precedence is determined by the line ordering of the
2000declarations; the higher the line number of the declaration (lower on
2001the page or screen), the higher the precedence. Hence, exponentiation
2002has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2003by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2004only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2005Precedence}.
bfa74976 2006
704a47c4
AD
2007The other important new feature is the @code{%prec} in the grammar
2008section for the unary minus operator. The @code{%prec} simply instructs
2009Bison that the rule @samp{| '-' exp} has the same precedence as
2010@code{NEG}---in this case the next-to-highest. @xref{Contextual
2011Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2012
2013Here is a sample run of @file{calc.y}:
2014
2015@need 500
2016@example
9edcd895
AD
2017$ @kbd{calc}
2018@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20196.880952381
9edcd895 2020@kbd{-56 + 2}
bfa74976 2021-54
9edcd895 2022@kbd{3 ^ 2}
bfa74976
RS
20239
2024@end example
2025
342b8b6e 2026@node Simple Error Recovery
bfa74976
RS
2027@section Simple Error Recovery
2028@cindex error recovery, simple
2029
2030Up to this point, this manual has not addressed the issue of @dfn{error
2031recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2032error. All we have handled is error reporting with @code{yyerror}.
2033Recall that by default @code{yyparse} returns after calling
2034@code{yyerror}. This means that an erroneous input line causes the
2035calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2036
2037The Bison language itself includes the reserved word @code{error}, which
2038may be included in the grammar rules. In the example below it has
2039been added to one of the alternatives for @code{line}:
2040
2041@example
2042@group
2043line: '\n'
2044 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2045 | error '\n' @{ yyerrok; @}
2046;
2047@end group
2048@end example
2049
ceed8467 2050This addition to the grammar allows for simple error recovery in the
6e649e65 2051event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2052read, the error will be recognized by the third rule for @code{line},
2053and parsing will continue. (The @code{yyerror} function is still called
2054upon to print its message as well.) The action executes the statement
2055@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2056that error recovery is complete (@pxref{Error Recovery}). Note the
2057difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2058misprint.
bfa74976
RS
2059
2060This form of error recovery deals with syntax errors. There are other
2061kinds of errors; for example, division by zero, which raises an exception
2062signal that is normally fatal. A real calculator program must handle this
2063signal and use @code{longjmp} to return to @code{main} and resume parsing
2064input lines; it would also have to discard the rest of the current line of
2065input. We won't discuss this issue further because it is not specific to
2066Bison programs.
2067
342b8b6e
AD
2068@node Location Tracking Calc
2069@section Location Tracking Calculator: @code{ltcalc}
2070@cindex location tracking calculator
2071@cindex @code{ltcalc}
2072@cindex calculator, location tracking
2073
9edcd895
AD
2074This example extends the infix notation calculator with location
2075tracking. This feature will be used to improve the error messages. For
2076the sake of clarity, this example is a simple integer calculator, since
2077most of the work needed to use locations will be done in the lexical
72d2299c 2078analyzer.
342b8b6e
AD
2079
2080@menu
f5f419de
DJ
2081* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2082* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2083* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2084@end menu
2085
f5f419de 2086@node Ltcalc Declarations
342b8b6e
AD
2087@subsection Declarations for @code{ltcalc}
2088
9edcd895
AD
2089The C and Bison declarations for the location tracking calculator are
2090the same as the declarations for the infix notation calculator.
342b8b6e
AD
2091
2092@example
2093/* Location tracking calculator. */
2094
2095%@{
38a92d50
PE
2096 #define YYSTYPE int
2097 #include <math.h>
2098 int yylex (void);
2099 void yyerror (char const *);
342b8b6e
AD
2100%@}
2101
2102/* Bison declarations. */
2103%token NUM
2104
2105%left '-' '+'
2106%left '*' '/'
d78f0ac9 2107%precedence NEG
342b8b6e
AD
2108%right '^'
2109
38a92d50 2110%% /* The grammar follows. */
342b8b6e
AD
2111@end example
2112
9edcd895
AD
2113@noindent
2114Note there are no declarations specific to locations. Defining a data
2115type for storing locations is not needed: we will use the type provided
2116by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2117four member structure with the following integer fields:
2118@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2119@code{last_column}. By conventions, and in accordance with the GNU
2120Coding Standards and common practice, the line and column count both
2121start at 1.
342b8b6e
AD
2122
2123@node Ltcalc Rules
2124@subsection Grammar Rules for @code{ltcalc}
2125
9edcd895
AD
2126Whether handling locations or not has no effect on the syntax of your
2127language. Therefore, grammar rules for this example will be very close
2128to those of the previous example: we will only modify them to benefit
2129from the new information.
342b8b6e 2130
9edcd895
AD
2131Here, we will use locations to report divisions by zero, and locate the
2132wrong expressions or subexpressions.
342b8b6e
AD
2133
2134@example
2135@group
2136input : /* empty */
2137 | input line
2138;
2139@end group
2140
2141@group
2142line : '\n'
2143 | exp '\n' @{ printf ("%d\n", $1); @}
2144;
2145@end group
2146
2147@group
2148exp : NUM @{ $$ = $1; @}
2149 | exp '+' exp @{ $$ = $1 + $3; @}
2150 | exp '-' exp @{ $$ = $1 - $3; @}
2151 | exp '*' exp @{ $$ = $1 * $3; @}
2152@end group
342b8b6e 2153@group
9edcd895 2154 | exp '/' exp
342b8b6e
AD
2155 @{
2156 if ($3)
2157 $$ = $1 / $3;
2158 else
2159 @{
2160 $$ = 1;
9edcd895
AD
2161 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2162 @@3.first_line, @@3.first_column,
2163 @@3.last_line, @@3.last_column);
342b8b6e
AD
2164 @}
2165 @}
2166@end group
2167@group
178e123e 2168 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2169 | exp '^' exp @{ $$ = pow ($1, $3); @}
2170 | '(' exp ')' @{ $$ = $2; @}
2171@end group
2172@end example
2173
2174This code shows how to reach locations inside of semantic actions, by
2175using the pseudo-variables @code{@@@var{n}} for rule components, and the
2176pseudo-variable @code{@@$} for groupings.
2177
9edcd895
AD
2178We don't need to assign a value to @code{@@$}: the output parser does it
2179automatically. By default, before executing the C code of each action,
2180@code{@@$} is set to range from the beginning of @code{@@1} to the end
2181of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2182can be redefined (@pxref{Location Default Action, , Default Action for
2183Locations}), and for very specific rules, @code{@@$} can be computed by
2184hand.
342b8b6e
AD
2185
2186@node Ltcalc Lexer
2187@subsection The @code{ltcalc} Lexical Analyzer.
2188
9edcd895 2189Until now, we relied on Bison's defaults to enable location
72d2299c 2190tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2191able to feed the parser with the token locations, as it already does for
2192semantic values.
342b8b6e 2193
9edcd895
AD
2194To this end, we must take into account every single character of the
2195input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2196
2197@example
2198@group
2199int
2200yylex (void)
2201@{
2202 int c;
18b519c0 2203@end group
342b8b6e 2204
18b519c0 2205@group
72d2299c 2206 /* Skip white space. */
342b8b6e
AD
2207 while ((c = getchar ()) == ' ' || c == '\t')
2208 ++yylloc.last_column;
18b519c0 2209@end group
342b8b6e 2210
18b519c0 2211@group
72d2299c 2212 /* Step. */
342b8b6e
AD
2213 yylloc.first_line = yylloc.last_line;
2214 yylloc.first_column = yylloc.last_column;
2215@end group
2216
2217@group
72d2299c 2218 /* Process numbers. */
342b8b6e
AD
2219 if (isdigit (c))
2220 @{
2221 yylval = c - '0';
2222 ++yylloc.last_column;
2223 while (isdigit (c = getchar ()))
2224 @{
2225 ++yylloc.last_column;
2226 yylval = yylval * 10 + c - '0';
2227 @}
2228 ungetc (c, stdin);
2229 return NUM;
2230 @}
2231@end group
2232
72d2299c 2233 /* Return end-of-input. */
342b8b6e
AD
2234 if (c == EOF)
2235 return 0;
2236
72d2299c 2237 /* Return a single char, and update location. */
342b8b6e
AD
2238 if (c == '\n')
2239 @{
2240 ++yylloc.last_line;
2241 yylloc.last_column = 0;
2242 @}
2243 else
2244 ++yylloc.last_column;
2245 return c;
2246@}
2247@end example
2248
9edcd895
AD
2249Basically, the lexical analyzer performs the same processing as before:
2250it skips blanks and tabs, and reads numbers or single-character tokens.
2251In addition, it updates @code{yylloc}, the global variable (of type
2252@code{YYLTYPE}) containing the token's location.
342b8b6e 2253
9edcd895 2254Now, each time this function returns a token, the parser has its number
72d2299c 2255as well as its semantic value, and its location in the text. The last
9edcd895
AD
2256needed change is to initialize @code{yylloc}, for example in the
2257controlling function:
342b8b6e
AD
2258
2259@example
9edcd895 2260@group
342b8b6e
AD
2261int
2262main (void)
2263@{
2264 yylloc.first_line = yylloc.last_line = 1;
2265 yylloc.first_column = yylloc.last_column = 0;
2266 return yyparse ();
2267@}
9edcd895 2268@end group
342b8b6e
AD
2269@end example
2270
9edcd895
AD
2271Remember that computing locations is not a matter of syntax. Every
2272character must be associated to a location update, whether it is in
2273valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2274
2275@node Multi-function Calc
bfa74976
RS
2276@section Multi-Function Calculator: @code{mfcalc}
2277@cindex multi-function calculator
2278@cindex @code{mfcalc}
2279@cindex calculator, multi-function
2280
2281Now that the basics of Bison have been discussed, it is time to move on to
2282a more advanced problem. The above calculators provided only five
2283functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2284be nice to have a calculator that provides other mathematical functions such
2285as @code{sin}, @code{cos}, etc.
2286
2287It is easy to add new operators to the infix calculator as long as they are
2288only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2289back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2290adding a new operator. But we want something more flexible: built-in
2291functions whose syntax has this form:
2292
2293@example
2294@var{function_name} (@var{argument})
2295@end example
2296
2297@noindent
2298At the same time, we will add memory to the calculator, by allowing you
2299to create named variables, store values in them, and use them later.
2300Here is a sample session with the multi-function calculator:
2301
2302@example
9edcd895
AD
2303$ @kbd{mfcalc}
2304@kbd{pi = 3.141592653589}
f9c75dd0 2305@result{} 3.1415926536
9edcd895 2306@kbd{sin(pi)}
f9c75dd0 2307@result{} 0.0000000000
9edcd895 2308@kbd{alpha = beta1 = 2.3}
f9c75dd0 2309@result{} 2.3000000000
9edcd895 2310@kbd{alpha}
f9c75dd0 2311@result{} 2.3000000000
9edcd895 2312@kbd{ln(alpha)}
f9c75dd0 2313@result{} 0.8329091229
9edcd895 2314@kbd{exp(ln(beta1))}
f9c75dd0 2315@result{} 2.3000000000
9edcd895 2316$
bfa74976
RS
2317@end example
2318
2319Note that multiple assignment and nested function calls are permitted.
2320
2321@menu
f5f419de
DJ
2322* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2323* Mfcalc Rules:: Grammar rules for the calculator.
2324* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2325* Mfcalc Lexer:: The lexical analyzer.
2326* Mfcalc Main:: The controlling function.
bfa74976
RS
2327@end menu
2328
f5f419de 2329@node Mfcalc Declarations
bfa74976
RS
2330@subsection Declarations for @code{mfcalc}
2331
2332Here are the C and Bison declarations for the multi-function calculator.
2333
f9c75dd0 2334@comment file: mfcalc.y
bfa74976 2335@smallexample
18b519c0 2336@group
bfa74976 2337%@{
f9c75dd0 2338 #include <stdio.h> /* For printf, etc. */
578e3413 2339 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2340 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2341 int yylex (void);
2342 void yyerror (char const *);
bfa74976 2343%@}
18b519c0
AD
2344@end group
2345@group
bfa74976 2346%union @{
38a92d50
PE
2347 double val; /* For returning numbers. */
2348 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2349@}
18b519c0 2350@end group
38a92d50
PE
2351%token <val> NUM /* Simple double precision number. */
2352%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2353%type <val> exp
2354
18b519c0 2355@group
bfa74976
RS
2356%right '='
2357%left '-' '+'
2358%left '*' '/'
d78f0ac9
AD
2359%precedence NEG /* negation--unary minus */
2360%right '^' /* exponentiation */
18b519c0 2361@end group
38a92d50 2362%% /* The grammar follows. */
bfa74976
RS
2363@end smallexample
2364
2365The above grammar introduces only two new features of the Bison language.
2366These features allow semantic values to have various data types
2367(@pxref{Multiple Types, ,More Than One Value Type}).
2368
2369The @code{%union} declaration specifies the entire list of possible types;
2370this is instead of defining @code{YYSTYPE}. The allowable types are now
2371double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2372the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2373
2374Since values can now have various types, it is necessary to associate a
2375type with each grammar symbol whose semantic value is used. These symbols
2376are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2377declarations are augmented with information about their data type (placed
2378between angle brackets).
2379
704a47c4
AD
2380The Bison construct @code{%type} is used for declaring nonterminal
2381symbols, just as @code{%token} is used for declaring token types. We
2382have not used @code{%type} before because nonterminal symbols are
2383normally declared implicitly by the rules that define them. But
2384@code{exp} must be declared explicitly so we can specify its value type.
2385@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2386
342b8b6e 2387@node Mfcalc Rules
bfa74976
RS
2388@subsection Grammar Rules for @code{mfcalc}
2389
2390Here are the grammar rules for the multi-function calculator.
2391Most of them are copied directly from @code{calc}; three rules,
2392those which mention @code{VAR} or @code{FNCT}, are new.
2393
f9c75dd0 2394@comment file: mfcalc.y
bfa74976 2395@smallexample
18b519c0 2396@group
bfa74976
RS
2397input: /* empty */
2398 | input line
2399;
18b519c0 2400@end group
bfa74976 2401
18b519c0 2402@group
bfa74976
RS
2403line:
2404 '\n'
f9c75dd0
AD
2405 | exp '\n' @{ printf ("%.10g\n", $1); @}
2406 | error '\n' @{ yyerrok; @}
bfa74976 2407;
18b519c0 2408@end group
bfa74976 2409
18b519c0 2410@group
bfa74976
RS
2411exp: NUM @{ $$ = $1; @}
2412 | VAR @{ $$ = $1->value.var; @}
2413 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2414 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2415 | exp '+' exp @{ $$ = $1 + $3; @}
2416 | exp '-' exp @{ $$ = $1 - $3; @}
2417 | exp '*' exp @{ $$ = $1 * $3; @}
2418 | exp '/' exp @{ $$ = $1 / $3; @}
2419 | '-' exp %prec NEG @{ $$ = -$2; @}
2420 | exp '^' exp @{ $$ = pow ($1, $3); @}
2421 | '(' exp ')' @{ $$ = $2; @}
2422;
18b519c0 2423@end group
38a92d50 2424/* End of grammar. */
bfa74976
RS
2425%%
2426@end smallexample
2427
f5f419de 2428@node Mfcalc Symbol Table
bfa74976
RS
2429@subsection The @code{mfcalc} Symbol Table
2430@cindex symbol table example
2431
2432The multi-function calculator requires a symbol table to keep track of the
2433names and meanings of variables and functions. This doesn't affect the
2434grammar rules (except for the actions) or the Bison declarations, but it
2435requires some additional C functions for support.
2436
2437The symbol table itself consists of a linked list of records. Its
2438definition, which is kept in the header @file{calc.h}, is as follows. It
2439provides for either functions or variables to be placed in the table.
2440
f9c75dd0 2441@comment file: calc.h
bfa74976
RS
2442@smallexample
2443@group
38a92d50 2444/* Function type. */
32dfccf8 2445typedef double (*func_t) (double);
72f889cc 2446@end group
32dfccf8 2447
72f889cc 2448@group
38a92d50 2449/* Data type for links in the chain of symbols. */
bfa74976
RS
2450struct symrec
2451@{
38a92d50 2452 char *name; /* name of symbol */
bfa74976 2453 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2454 union
2455 @{
38a92d50
PE
2456 double var; /* value of a VAR */
2457 func_t fnctptr; /* value of a FNCT */
bfa74976 2458 @} value;
38a92d50 2459 struct symrec *next; /* link field */
bfa74976
RS
2460@};
2461@end group
2462
2463@group
2464typedef struct symrec symrec;
2465
38a92d50 2466/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2467extern symrec *sym_table;
2468
a730d142 2469symrec *putsym (char const *, int);
38a92d50 2470symrec *getsym (char const *);
bfa74976
RS
2471@end group
2472@end smallexample
2473
aeb57fb6
AD
2474The new version of @code{main} will call @code{init_table} to initialize
2475the symbol table:
bfa74976 2476
f9c75dd0 2477@comment file: mfcalc.y
bfa74976 2478@smallexample
18b519c0 2479@group
bfa74976
RS
2480struct init
2481@{
38a92d50
PE
2482 char const *fname;
2483 double (*fnct) (double);
bfa74976
RS
2484@};
2485@end group
2486
2487@group
38a92d50 2488struct init const arith_fncts[] =
13863333 2489@{
f9c75dd0
AD
2490 @{ "atan", atan @},
2491 @{ "cos", cos @},
2492 @{ "exp", exp @},
2493 @{ "ln", log @},
2494 @{ "sin", sin @},
2495 @{ "sqrt", sqrt @},
2496 @{ 0, 0 @},
13863333 2497@};
18b519c0 2498@end group
bfa74976 2499
18b519c0 2500@group
bfa74976 2501/* The symbol table: a chain of `struct symrec'. */
38a92d50 2502symrec *sym_table;
bfa74976
RS
2503@end group
2504
2505@group
72d2299c 2506/* Put arithmetic functions in table. */
f9c75dd0 2507static
13863333
AD
2508void
2509init_table (void)
bfa74976
RS
2510@{
2511 int i;
2512 symrec *ptr;
2513 for (i = 0; arith_fncts[i].fname != 0; i++)
2514 @{
2515 ptr = putsym (arith_fncts[i].fname, FNCT);
2516 ptr->value.fnctptr = arith_fncts[i].fnct;
2517 @}
2518@}
2519@end group
2520@end smallexample
2521
2522By simply editing the initialization list and adding the necessary include
2523files, you can add additional functions to the calculator.
2524
2525Two important functions allow look-up and installation of symbols in the
2526symbol table. The function @code{putsym} is passed a name and the type
2527(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2528linked to the front of the list, and a pointer to the object is returned.
2529The function @code{getsym} is passed the name of the symbol to look up. If
2530found, a pointer to that symbol is returned; otherwise zero is returned.
2531
f9c75dd0 2532@comment file: mfcalc.y
bfa74976 2533@smallexample
f9c75dd0
AD
2534#include <stdlib.h> /* malloc. */
2535#include <string.h> /* strlen. */
2536
bfa74976 2537symrec *
38a92d50 2538putsym (char const *sym_name, int sym_type)
bfa74976
RS
2539@{
2540 symrec *ptr;
2541 ptr = (symrec *) malloc (sizeof (symrec));
2542 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2543 strcpy (ptr->name,sym_name);
2544 ptr->type = sym_type;
72d2299c 2545 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2546 ptr->next = (struct symrec *)sym_table;
2547 sym_table = ptr;
2548 return ptr;
2549@}
2550
2551symrec *
38a92d50 2552getsym (char const *sym_name)
bfa74976
RS
2553@{
2554 symrec *ptr;
2555 for (ptr = sym_table; ptr != (symrec *) 0;
2556 ptr = (symrec *)ptr->next)
2557 if (strcmp (ptr->name,sym_name) == 0)
2558 return ptr;
2559 return 0;
2560@}
2561@end smallexample
2562
aeb57fb6
AD
2563@node Mfcalc Lexer
2564@subsection The @code{mfcalc} Lexer
2565
bfa74976
RS
2566The function @code{yylex} must now recognize variables, numeric values, and
2567the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2568characters with a leading letter are recognized as either variables or
bfa74976
RS
2569functions depending on what the symbol table says about them.
2570
2571The string is passed to @code{getsym} for look up in the symbol table. If
2572the name appears in the table, a pointer to its location and its type
2573(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2574already in the table, then it is installed as a @code{VAR} using
2575@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2576returned to @code{yyparse}.
bfa74976
RS
2577
2578No change is needed in the handling of numeric values and arithmetic
2579operators in @code{yylex}.
2580
f9c75dd0 2581@comment file: mfcalc.y
bfa74976
RS
2582@smallexample
2583@group
2584#include <ctype.h>
18b519c0 2585@end group
13863333 2586
18b519c0 2587@group
13863333
AD
2588int
2589yylex (void)
bfa74976
RS
2590@{
2591 int c;
2592
72d2299c 2593 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2594 while ((c = getchar ()) == ' ' || c == '\t');
2595
2596 if (c == EOF)
2597 return 0;
2598@end group
2599
2600@group
2601 /* Char starts a number => parse the number. */
2602 if (c == '.' || isdigit (c))
2603 @{
2604 ungetc (c, stdin);
2605 scanf ("%lf", &yylval.val);
2606 return NUM;
2607 @}
2608@end group
2609
2610@group
2611 /* Char starts an identifier => read the name. */
2612 if (isalpha (c))
2613 @{
2614 symrec *s;
2615 static char *symbuf = 0;
2616 static int length = 0;
2617 int i;
2618@end group
2619
2620@group
2621 /* Initially make the buffer long enough
2622 for a 40-character symbol name. */
2623 if (length == 0)
f9c75dd0
AD
2624 @{
2625 length = 40;
2626 symbuf = (char *) malloc (length + 1);
2627 @}
bfa74976
RS
2628
2629 i = 0;
2630 do
2631@end group
2632@group
2633 @{
2634 /* If buffer is full, make it bigger. */
2635 if (i == length)
2636 @{
2637 length *= 2;
18b519c0 2638 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2639 @}
2640 /* Add this character to the buffer. */
2641 symbuf[i++] = c;
2642 /* Get another character. */
2643 c = getchar ();
2644 @}
2645@end group
2646@group
72d2299c 2647 while (isalnum (c));
bfa74976
RS
2648
2649 ungetc (c, stdin);
2650 symbuf[i] = '\0';
2651@end group
2652
2653@group
2654 s = getsym (symbuf);
2655 if (s == 0)
2656 s = putsym (symbuf, VAR);
2657 yylval.tptr = s;
2658 return s->type;
2659 @}
2660
2661 /* Any other character is a token by itself. */
2662 return c;
2663@}
2664@end group
2665@end smallexample
2666
aeb57fb6
AD
2667@node Mfcalc Main
2668@subsection The @code{mfcalc} Main
2669
2670The error reporting function is unchanged, and the new version of
2671@code{main} includes a call to @code{init_table}:
2672
2673@comment file: mfcalc.y
2674@smallexample
2675
2676@group
2677@group
2678/* Called by yyparse on error. */
2679void
2680yyerror (char const *s)
2681@{
2682 fprintf (stderr, "%s\n", s);
2683@}
2684@end group
2685
2686int
2687main (int argc, char const* argv[])
2688@{
2689 init_table ();
2690 return yyparse ();
2691@}
2692@end group
2693@end smallexample
2694
72d2299c 2695This program is both powerful and flexible. You may easily add new
704a47c4
AD
2696functions, and it is a simple job to modify this code to install
2697predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2698
342b8b6e 2699@node Exercises
bfa74976
RS
2700@section Exercises
2701@cindex exercises
2702
2703@enumerate
2704@item
2705Add some new functions from @file{math.h} to the initialization list.
2706
2707@item
2708Add another array that contains constants and their values. Then
2709modify @code{init_table} to add these constants to the symbol table.
2710It will be easiest to give the constants type @code{VAR}.
2711
2712@item
2713Make the program report an error if the user refers to an
2714uninitialized variable in any way except to store a value in it.
2715@end enumerate
2716
342b8b6e 2717@node Grammar File
bfa74976
RS
2718@chapter Bison Grammar Files
2719
2720Bison takes as input a context-free grammar specification and produces a
2721C-language function that recognizes correct instances of the grammar.
2722
ff7571c0 2723The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2724@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2725
2726@menu
303834cc
JD
2727* Grammar Outline:: Overall layout of the grammar file.
2728* Symbols:: Terminal and nonterminal symbols.
2729* Rules:: How to write grammar rules.
2730* Recursion:: Writing recursive rules.
2731* Semantics:: Semantic values and actions.
2732* Tracking Locations:: Locations and actions.
2733* Named References:: Using named references in actions.
2734* Declarations:: All kinds of Bison declarations are described here.
2735* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2736@end menu
2737
342b8b6e 2738@node Grammar Outline
bfa74976
RS
2739@section Outline of a Bison Grammar
2740
2741A Bison grammar file has four main sections, shown here with the
2742appropriate delimiters:
2743
2744@example
2745%@{
38a92d50 2746 @var{Prologue}
bfa74976
RS
2747%@}
2748
2749@var{Bison declarations}
2750
2751%%
2752@var{Grammar rules}
2753%%
2754
75f5aaea 2755@var{Epilogue}
bfa74976
RS
2756@end example
2757
2758Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2759As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2760continues until end of line.
bfa74976
RS
2761
2762@menu
f5f419de 2763* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2764* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2765* Bison Declarations:: Syntax and usage of the Bison declarations section.
2766* Grammar Rules:: Syntax and usage of the grammar rules section.
2767* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2768@end menu
2769
38a92d50 2770@node Prologue
75f5aaea
MA
2771@subsection The prologue
2772@cindex declarations section
2773@cindex Prologue
2774@cindex declarations
bfa74976 2775
f8e1c9e5
AD
2776The @var{Prologue} section contains macro definitions and declarations
2777of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2778rules. These are copied to the beginning of the parser implementation
2779file so that they precede the definition of @code{yyparse}. You can
2780use @samp{#include} to get the declarations from a header file. If
2781you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2782@samp{%@}} delimiters that bracket this section.
bfa74976 2783
9c437126 2784The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2785of @samp{%@}} that is outside a comment, a string literal, or a
2786character constant.
2787
c732d2c6
AD
2788You may have more than one @var{Prologue} section, intermixed with the
2789@var{Bison declarations}. This allows you to have C and Bison
2790declarations that refer to each other. For example, the @code{%union}
2791declaration may use types defined in a header file, and you may wish to
2792prototype functions that take arguments of type @code{YYSTYPE}. This
2793can be done with two @var{Prologue} blocks, one before and one after the
2794@code{%union} declaration.
2795
2796@smallexample
2797%@{
aef3da86 2798 #define _GNU_SOURCE
38a92d50
PE
2799 #include <stdio.h>
2800 #include "ptypes.h"
c732d2c6
AD
2801%@}
2802
2803%union @{
779e7ceb 2804 long int n;
c732d2c6
AD
2805 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2806@}
2807
2808%@{
38a92d50
PE
2809 static void print_token_value (FILE *, int, YYSTYPE);
2810 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2811%@}
2812
2813@dots{}
2814@end smallexample
2815
aef3da86
PE
2816When in doubt, it is usually safer to put prologue code before all
2817Bison declarations, rather than after. For example, any definitions
2818of feature test macros like @code{_GNU_SOURCE} or
2819@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2820feature test macros can affect the behavior of Bison-generated
2821@code{#include} directives.
2822
2cbe6b7f
JD
2823@node Prologue Alternatives
2824@subsection Prologue Alternatives
2825@cindex Prologue Alternatives
2826
136a0f76 2827@findex %code
16dc6a9e
JD
2828@findex %code requires
2829@findex %code provides
2830@findex %code top
85894313 2831
2cbe6b7f 2832The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2833inflexible. As an alternative, Bison provides a @code{%code}
2834directive with an explicit qualifier field, which identifies the
2835purpose of the code and thus the location(s) where Bison should
2836generate it. For C/C++, the qualifier can be omitted for the default
2837location, or it can be one of @code{requires}, @code{provides},
e0c07222 2838@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2839
2840Look again at the example of the previous section:
2841
2842@smallexample
2843%@{
2844 #define _GNU_SOURCE
2845 #include <stdio.h>
2846 #include "ptypes.h"
2847%@}
2848
2849%union @{
2850 long int n;
2851 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2852@}
2853
2854%@{
2855 static void print_token_value (FILE *, int, YYSTYPE);
2856 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2857%@}
2858
2859@dots{}
2860@end smallexample
2861
2862@noindent
ff7571c0
JD
2863Notice that there are two @var{Prologue} sections here, but there's a
2864subtle distinction between their functionality. For example, if you
2865decide to override Bison's default definition for @code{YYLTYPE}, in
2866which @var{Prologue} section should you write your new definition?
2867You should write it in the first since Bison will insert that code
2868into the parser implementation file @emph{before} the default
2869@code{YYLTYPE} definition. In which @var{Prologue} section should you
2870prototype an internal function, @code{trace_token}, that accepts
2871@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2872prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2873@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2874
2875This distinction in functionality between the two @var{Prologue} sections is
2876established by the appearance of the @code{%union} between them.
a501eca9 2877This behavior raises a few questions.
2cbe6b7f
JD
2878First, why should the position of a @code{%union} affect definitions related to
2879@code{YYLTYPE} and @code{yytokentype}?
2880Second, what if there is no @code{%union}?
2881In that case, the second kind of @var{Prologue} section is not available.
2882This behavior is not intuitive.
2883
8e0a5e9e 2884To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2885@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2886Let's go ahead and add the new @code{YYLTYPE} definition and the
2887@code{trace_token} prototype at the same time:
2888
2889@smallexample
16dc6a9e 2890%code top @{
2cbe6b7f
JD
2891 #define _GNU_SOURCE
2892 #include <stdio.h>
8e0a5e9e
JD
2893
2894 /* WARNING: The following code really belongs
16dc6a9e 2895 * in a `%code requires'; see below. */
8e0a5e9e 2896
2cbe6b7f
JD
2897 #include "ptypes.h"
2898 #define YYLTYPE YYLTYPE
2899 typedef struct YYLTYPE
2900 @{
2901 int first_line;
2902 int first_column;
2903 int last_line;
2904 int last_column;
2905 char *filename;
2906 @} YYLTYPE;
2907@}
2908
2909%union @{
2910 long int n;
2911 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2912@}
2913
2914%code @{
2915 static void print_token_value (FILE *, int, YYSTYPE);
2916 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2917 static void trace_token (enum yytokentype token, YYLTYPE loc);
2918@}
2919
2920@dots{}
2921@end smallexample
2922
2923@noindent
16dc6a9e
JD
2924In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2925functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2926explicit which kind you intend.
2cbe6b7f
JD
2927Moreover, both kinds are always available even in the absence of @code{%union}.
2928
ff7571c0
JD
2929The @code{%code top} block above logically contains two parts. The
2930first two lines before the warning need to appear near the top of the
2931parser implementation file. The first line after the warning is
2932required by @code{YYSTYPE} and thus also needs to appear in the parser
2933implementation file. However, if you've instructed Bison to generate
2934a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2935want that line to appear before the @code{YYSTYPE} definition in that
2936header file as well. The @code{YYLTYPE} definition should also appear
2937in the parser header file to override the default @code{YYLTYPE}
2938definition there.
2cbe6b7f 2939
16dc6a9e 2940In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2941lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2942definitions.
16dc6a9e 2943Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2944
2945@smallexample
16dc6a9e 2946%code top @{
2cbe6b7f
JD
2947 #define _GNU_SOURCE
2948 #include <stdio.h>
2949@}
2950
16dc6a9e 2951%code requires @{
9bc0dd67
JD
2952 #include "ptypes.h"
2953@}
2954%union @{
2955 long int n;
2956 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2957@}
2958
16dc6a9e 2959%code requires @{
2cbe6b7f
JD
2960 #define YYLTYPE YYLTYPE
2961 typedef struct YYLTYPE
2962 @{
2963 int first_line;
2964 int first_column;
2965 int last_line;
2966 int last_column;
2967 char *filename;
2968 @} YYLTYPE;
2969@}
2970
136a0f76 2971%code @{
2cbe6b7f
JD
2972 static void print_token_value (FILE *, int, YYSTYPE);
2973 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2974 static void trace_token (enum yytokentype token, YYLTYPE loc);
2975@}
2976
2977@dots{}
2978@end smallexample
2979
2980@noindent
ff7571c0
JD
2981Now Bison will insert @code{#include "ptypes.h"} and the new
2982@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2983and @code{YYLTYPE} definitions in both the parser implementation file
2984and the parser header file. (By the same reasoning, @code{%code
2985requires} would also be the appropriate place to write your own
2986definition for @code{YYSTYPE}.)
2987
2988When you are writing dependency code for @code{YYSTYPE} and
2989@code{YYLTYPE}, you should prefer @code{%code requires} over
2990@code{%code top} regardless of whether you instruct Bison to generate
2991a parser header file. When you are writing code that you need Bison
2992to insert only into the parser implementation file and that has no
2993special need to appear at the top of that file, you should prefer the
2994unqualified @code{%code} over @code{%code top}. These practices will
2995make the purpose of each block of your code explicit to Bison and to
2996other developers reading your grammar file. Following these
2997practices, we expect the unqualified @code{%code} and @code{%code
2998requires} to be the most important of the four @var{Prologue}
16dc6a9e 2999alternatives.
a501eca9 3000
ff7571c0
JD
3001At some point while developing your parser, you might decide to
3002provide @code{trace_token} to modules that are external to your
3003parser. Thus, you might wish for Bison to insert the prototype into
3004both the parser header file and the parser implementation file. Since
3005this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3006@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3007@code{%code requires}. More importantly, since it depends upon
3008@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3009sufficient. Instead, move its prototype from the unqualified
3010@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
3011
3012@smallexample
16dc6a9e 3013%code top @{
2cbe6b7f 3014 #define _GNU_SOURCE
136a0f76 3015 #include <stdio.h>
2cbe6b7f 3016@}
136a0f76 3017
16dc6a9e 3018%code requires @{
2cbe6b7f
JD
3019 #include "ptypes.h"
3020@}
3021%union @{
3022 long int n;
3023 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3024@}
3025
16dc6a9e 3026%code requires @{
2cbe6b7f
JD
3027 #define YYLTYPE YYLTYPE
3028 typedef struct YYLTYPE
3029 @{
3030 int first_line;
3031 int first_column;
3032 int last_line;
3033 int last_column;
3034 char *filename;
3035 @} YYLTYPE;
3036@}
3037
16dc6a9e 3038%code provides @{
2cbe6b7f
JD
3039 void trace_token (enum yytokentype token, YYLTYPE loc);
3040@}
3041
3042%code @{
9bc0dd67
JD
3043 static void print_token_value (FILE *, int, YYSTYPE);
3044 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3045@}
9bc0dd67
JD
3046
3047@dots{}
3048@end smallexample
3049
2cbe6b7f 3050@noindent
ff7571c0
JD
3051Bison will insert the @code{trace_token} prototype into both the
3052parser header file and the parser implementation file after the
3053definitions for @code{yytokentype}, @code{YYLTYPE}, and
3054@code{YYSTYPE}.
2cbe6b7f 3055
ff7571c0
JD
3056The above examples are careful to write directives in an order that
3057reflects the layout of the generated parser implementation and header
3058files: @code{%code top}, @code{%code requires}, @code{%code provides},
3059and then @code{%code}. While your grammar files may generally be
3060easier to read if you also follow this order, Bison does not require
3061it. Instead, Bison lets you choose an organization that makes sense
3062to you.
2cbe6b7f 3063
a501eca9 3064You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3065In that case, Bison concatenates the contained code in declaration order.
3066This is the only way in which the position of one of these directives within
3067the grammar file affects its functionality.
3068
3069The result of the previous two properties is greater flexibility in how you may
3070organize your grammar file.
3071For example, you may organize semantic-type-related directives by semantic
3072type:
3073
3074@smallexample
16dc6a9e 3075%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3076%union @{ type1 field1; @}
3077%destructor @{ type1_free ($$); @} <field1>
3078%printer @{ type1_print ($$); @} <field1>
3079
16dc6a9e 3080%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3081%union @{ type2 field2; @}
3082%destructor @{ type2_free ($$); @} <field2>
3083%printer @{ type2_print ($$); @} <field2>
3084@end smallexample
3085
3086@noindent
3087You could even place each of the above directive groups in the rules section of
3088the grammar file next to the set of rules that uses the associated semantic
3089type.
61fee93e
JD
3090(In the rules section, you must terminate each of those directives with a
3091semicolon.)
2cbe6b7f
JD
3092And you don't have to worry that some directive (like a @code{%union}) in the
3093definitions section is going to adversely affect their functionality in some
3094counter-intuitive manner just because it comes first.
3095Such an organization is not possible using @var{Prologue} sections.
3096
a501eca9 3097This section has been concerned with explaining the advantages of the four
8e0a5e9e 3098@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3099However, in most cases when using these directives, you shouldn't need to
3100think about all the low-level ordering issues discussed here.
3101Instead, you should simply use these directives to label each block of your
3102code according to its purpose and let Bison handle the ordering.
3103@code{%code} is the most generic label.
16dc6a9e
JD
3104Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3105as needed.
a501eca9 3106
342b8b6e 3107@node Bison Declarations
bfa74976
RS
3108@subsection The Bison Declarations Section
3109@cindex Bison declarations (introduction)
3110@cindex declarations, Bison (introduction)
3111
3112The @var{Bison declarations} section contains declarations that define
3113terminal and nonterminal symbols, specify precedence, and so on.
3114In some simple grammars you may not need any declarations.
3115@xref{Declarations, ,Bison Declarations}.
3116
342b8b6e 3117@node Grammar Rules
bfa74976
RS
3118@subsection The Grammar Rules Section
3119@cindex grammar rules section
3120@cindex rules section for grammar
3121
3122The @dfn{grammar rules} section contains one or more Bison grammar
3123rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3124
3125There must always be at least one grammar rule, and the first
3126@samp{%%} (which precedes the grammar rules) may never be omitted even
3127if it is the first thing in the file.
3128
38a92d50 3129@node Epilogue
75f5aaea 3130@subsection The epilogue
bfa74976 3131@cindex additional C code section
75f5aaea 3132@cindex epilogue
bfa74976
RS
3133@cindex C code, section for additional
3134
ff7571c0
JD
3135The @var{Epilogue} is copied verbatim to the end of the parser
3136implementation file, just as the @var{Prologue} is copied to the
3137beginning. This is the most convenient place to put anything that you
3138want to have in the parser implementation file but which need not come
3139before the definition of @code{yyparse}. For example, the definitions
3140of @code{yylex} and @code{yyerror} often go here. Because C requires
3141functions to be declared before being used, you often need to declare
3142functions like @code{yylex} and @code{yyerror} in the Prologue, even
3143if you define them in the Epilogue. @xref{Interface, ,Parser
3144C-Language Interface}.
bfa74976
RS
3145
3146If the last section is empty, you may omit the @samp{%%} that separates it
3147from the grammar rules.
3148
f8e1c9e5
AD
3149The Bison parser itself contains many macros and identifiers whose names
3150start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3151any such names (except those documented in this manual) in the epilogue
3152of the grammar file.
bfa74976 3153
342b8b6e 3154@node Symbols
bfa74976
RS
3155@section Symbols, Terminal and Nonterminal
3156@cindex nonterminal symbol
3157@cindex terminal symbol
3158@cindex token type
3159@cindex symbol
3160
3161@dfn{Symbols} in Bison grammars represent the grammatical classifications
3162of the language.
3163
3164A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3165class of syntactically equivalent tokens. You use the symbol in grammar
3166rules to mean that a token in that class is allowed. The symbol is
3167represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3168function returns a token type code to indicate what kind of token has
3169been read. You don't need to know what the code value is; you can use
3170the symbol to stand for it.
bfa74976 3171
f8e1c9e5
AD
3172A @dfn{nonterminal symbol} stands for a class of syntactically
3173equivalent groupings. The symbol name is used in writing grammar rules.
3174By convention, it should be all lower case.
bfa74976 3175
82f3355e
JD
3176Symbol names can contain letters, underscores, periods, and non-initial
3177digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3178with POSIX Yacc. Periods and dashes make symbol names less convenient to
3179use with named references, which require brackets around such names
3180(@pxref{Named References}). Terminal symbols that contain periods or dashes
3181make little sense: since they are not valid symbols (in most programming
3182languages) they are not exported as token names.
bfa74976 3183
931c7513 3184There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3185
3186@itemize @bullet
3187@item
3188A @dfn{named token type} is written with an identifier, like an
c827f760 3189identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3190such name must be defined with a Bison declaration such as
3191@code{%token}. @xref{Token Decl, ,Token Type Names}.
3192
3193@item
3194@cindex character token
3195@cindex literal token
3196@cindex single-character literal
931c7513
RS
3197A @dfn{character token type} (or @dfn{literal character token}) is
3198written in the grammar using the same syntax used in C for character
3199constants; for example, @code{'+'} is a character token type. A
3200character token type doesn't need to be declared unless you need to
3201specify its semantic value data type (@pxref{Value Type, ,Data Types of
3202Semantic Values}), associativity, or precedence (@pxref{Precedence,
3203,Operator Precedence}).
bfa74976
RS
3204
3205By convention, a character token type is used only to represent a
3206token that consists of that particular character. Thus, the token
3207type @code{'+'} is used to represent the character @samp{+} as a
3208token. Nothing enforces this convention, but if you depart from it,
3209your program will confuse other readers.
3210
3211All the usual escape sequences used in character literals in C can be
3212used in Bison as well, but you must not use the null character as a
72d2299c
PE
3213character literal because its numeric code, zero, signifies
3214end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3215for @code{yylex}}). Also, unlike standard C, trigraphs have no
3216special meaning in Bison character literals, nor is backslash-newline
3217allowed.
931c7513
RS
3218
3219@item
3220@cindex string token
3221@cindex literal string token
9ecbd125 3222@cindex multicharacter literal
931c7513
RS
3223A @dfn{literal string token} is written like a C string constant; for
3224example, @code{"<="} is a literal string token. A literal string token
3225doesn't need to be declared unless you need to specify its semantic
14ded682 3226value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3227(@pxref{Precedence}).
3228
3229You can associate the literal string token with a symbolic name as an
3230alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3231Declarations}). If you don't do that, the lexical analyzer has to
3232retrieve the token number for the literal string token from the
3233@code{yytname} table (@pxref{Calling Convention}).
3234
c827f760 3235@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3236
3237By convention, a literal string token is used only to represent a token
3238that consists of that particular string. Thus, you should use the token
3239type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3240does not enforce this convention, but if you depart from it, people who
931c7513
RS
3241read your program will be confused.
3242
3243All the escape sequences used in string literals in C can be used in
92ac3705
PE
3244Bison as well, except that you must not use a null character within a
3245string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3246meaning in Bison string literals, nor is backslash-newline allowed. A
3247literal string token must contain two or more characters; for a token
3248containing just one character, use a character token (see above).
bfa74976
RS
3249@end itemize
3250
3251How you choose to write a terminal symbol has no effect on its
3252grammatical meaning. That depends only on where it appears in rules and
3253on when the parser function returns that symbol.
3254
72d2299c
PE
3255The value returned by @code{yylex} is always one of the terminal
3256symbols, except that a zero or negative value signifies end-of-input.
3257Whichever way you write the token type in the grammar rules, you write
3258it the same way in the definition of @code{yylex}. The numeric code
3259for a character token type is simply the positive numeric code of the
3260character, so @code{yylex} can use the identical value to generate the
3261requisite code, though you may need to convert it to @code{unsigned
3262char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3263Each named token type becomes a C macro in the parser implementation
3264file, so @code{yylex} can use the name to stand for the code. (This
3265is why periods don't make sense in terminal symbols.) @xref{Calling
3266Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3267
3268If @code{yylex} is defined in a separate file, you need to arrange for the
3269token-type macro definitions to be available there. Use the @samp{-d}
3270option when you run Bison, so that it will write these macro definitions
3271into a separate header file @file{@var{name}.tab.h} which you can include
3272in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3273
72d2299c 3274If you want to write a grammar that is portable to any Standard C
9d9b8b70 3275host, you must use only nonnull character tokens taken from the basic
c827f760 3276execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3277digits, the 52 lower- and upper-case English letters, and the
3278characters in the following C-language string:
3279
3280@example
3281"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3282@end example
3283
f8e1c9e5
AD
3284The @code{yylex} function and Bison must use a consistent character set
3285and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3286ASCII environment, but then compile and run the resulting
f8e1c9e5 3287program in an environment that uses an incompatible character set like
8a4281b9
JD
3288EBCDIC, the resulting program may not work because the tables
3289generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3290character tokens. It is standard practice for software distributions to
3291contain C source files that were generated by Bison in an
8a4281b9
JD
3292ASCII environment, so installers on platforms that are
3293incompatible with ASCII must rebuild those files before
f8e1c9e5 3294compiling them.
e966383b 3295
bfa74976
RS
3296The symbol @code{error} is a terminal symbol reserved for error recovery
3297(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3298In particular, @code{yylex} should never return this value. The default
3299value of the error token is 256, unless you explicitly assigned 256 to
3300one of your tokens with a @code{%token} declaration.
bfa74976 3301
342b8b6e 3302@node Rules
bfa74976
RS
3303@section Syntax of Grammar Rules
3304@cindex rule syntax
3305@cindex grammar rule syntax
3306@cindex syntax of grammar rules
3307
3308A Bison grammar rule has the following general form:
3309
3310@example
e425e872 3311@group
bfa74976
RS
3312@var{result}: @var{components}@dots{}
3313 ;
e425e872 3314@end group
bfa74976
RS
3315@end example
3316
3317@noindent
9ecbd125 3318where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3319and @var{components} are various terminal and nonterminal symbols that
13863333 3320are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3321
3322For example,
3323
3324@example
3325@group
3326exp: exp '+' exp
3327 ;
3328@end group
3329@end example
3330
3331@noindent
3332says that two groupings of type @code{exp}, with a @samp{+} token in between,
3333can be combined into a larger grouping of type @code{exp}.
3334
72d2299c
PE
3335White space in rules is significant only to separate symbols. You can add
3336extra white space as you wish.
bfa74976
RS
3337
3338Scattered among the components can be @var{actions} that determine
3339the semantics of the rule. An action looks like this:
3340
3341@example
3342@{@var{C statements}@}
3343@end example
3344
3345@noindent
287c78f6
PE
3346@cindex braced code
3347This is an example of @dfn{braced code}, that is, C code surrounded by
3348braces, much like a compound statement in C@. Braced code can contain
3349any sequence of C tokens, so long as its braces are balanced. Bison
3350does not check the braced code for correctness directly; it merely
ff7571c0
JD
3351copies the code to the parser implementation file, where the C
3352compiler can check it.
287c78f6
PE
3353
3354Within braced code, the balanced-brace count is not affected by braces
3355within comments, string literals, or character constants, but it is
3356affected by the C digraphs @samp{<%} and @samp{%>} that represent
3357braces. At the top level braced code must be terminated by @samp{@}}
3358and not by a digraph. Bison does not look for trigraphs, so if braced
3359code uses trigraphs you should ensure that they do not affect the
3360nesting of braces or the boundaries of comments, string literals, or
3361character constants.
3362
bfa74976
RS
3363Usually there is only one action and it follows the components.
3364@xref{Actions}.
3365
3366@findex |
3367Multiple rules for the same @var{result} can be written separately or can
3368be joined with the vertical-bar character @samp{|} as follows:
3369
bfa74976
RS
3370@example
3371@group
3372@var{result}: @var{rule1-components}@dots{}
3373 | @var{rule2-components}@dots{}
3374 @dots{}
3375 ;
3376@end group
3377@end example
bfa74976
RS
3378
3379@noindent
3380They are still considered distinct rules even when joined in this way.
3381
3382If @var{components} in a rule is empty, it means that @var{result} can
3383match the empty string. For example, here is how to define a
3384comma-separated sequence of zero or more @code{exp} groupings:
3385
3386@example
3387@group
3388expseq: /* empty */
3389 | expseq1
3390 ;
3391@end group
3392
3393@group
3394expseq1: exp
3395 | expseq1 ',' exp
3396 ;
3397@end group
3398@end example
3399
3400@noindent
3401It is customary to write a comment @samp{/* empty */} in each rule
3402with no components.
3403
342b8b6e 3404@node Recursion
bfa74976
RS
3405@section Recursive Rules
3406@cindex recursive rule
3407
f8e1c9e5
AD
3408A rule is called @dfn{recursive} when its @var{result} nonterminal
3409appears also on its right hand side. Nearly all Bison grammars need to
3410use recursion, because that is the only way to define a sequence of any
3411number of a particular thing. Consider this recursive definition of a
9ecbd125 3412comma-separated sequence of one or more expressions:
bfa74976
RS
3413
3414@example
3415@group
3416expseq1: exp
3417 | expseq1 ',' exp
3418 ;
3419@end group
3420@end example
3421
3422@cindex left recursion
3423@cindex right recursion
3424@noindent
3425Since the recursive use of @code{expseq1} is the leftmost symbol in the
3426right hand side, we call this @dfn{left recursion}. By contrast, here
3427the same construct is defined using @dfn{right recursion}:
3428
3429@example
3430@group
3431expseq1: exp
3432 | exp ',' expseq1
3433 ;
3434@end group
3435@end example
3436
3437@noindent
ec3bc396
AD
3438Any kind of sequence can be defined using either left recursion or right
3439recursion, but you should always use left recursion, because it can
3440parse a sequence of any number of elements with bounded stack space.
3441Right recursion uses up space on the Bison stack in proportion to the
3442number of elements in the sequence, because all the elements must be
3443shifted onto the stack before the rule can be applied even once.
3444@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3445of this.
bfa74976
RS
3446
3447@cindex mutual recursion
3448@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3449rule does not appear directly on its right hand side, but does appear
3450in rules for other nonterminals which do appear on its right hand
13863333 3451side.
bfa74976
RS
3452
3453For example:
3454
3455@example
3456@group
3457expr: primary
3458 | primary '+' primary
3459 ;
3460@end group
3461
3462@group
3463primary: constant
3464 | '(' expr ')'
3465 ;
3466@end group
3467@end example
3468
3469@noindent
3470defines two mutually-recursive nonterminals, since each refers to the
3471other.
3472
342b8b6e 3473@node Semantics
bfa74976
RS
3474@section Defining Language Semantics
3475@cindex defining language semantics
13863333 3476@cindex language semantics, defining
bfa74976
RS
3477
3478The grammar rules for a language determine only the syntax. The semantics
3479are determined by the semantic values associated with various tokens and
3480groupings, and by the actions taken when various groupings are recognized.
3481
3482For example, the calculator calculates properly because the value
3483associated with each expression is the proper number; it adds properly
3484because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3485the numbers associated with @var{x} and @var{y}.
3486
3487@menu
3488* Value Type:: Specifying one data type for all semantic values.
3489* Multiple Types:: Specifying several alternative data types.
3490* Actions:: An action is the semantic definition of a grammar rule.
3491* Action Types:: Specifying data types for actions to operate on.
3492* Mid-Rule Actions:: Most actions go at the end of a rule.
3493 This says when, why and how to use the exceptional
3494 action in the middle of a rule.
3495@end menu
3496
342b8b6e 3497@node Value Type
bfa74976
RS
3498@subsection Data Types of Semantic Values
3499@cindex semantic value type
3500@cindex value type, semantic
3501@cindex data types of semantic values
3502@cindex default data type
3503
3504In a simple program it may be sufficient to use the same data type for
3505the semantic values of all language constructs. This was true in the
8a4281b9 3506RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3507Notation Calculator}).
bfa74976 3508
ddc8ede1
PE
3509Bison normally uses the type @code{int} for semantic values if your
3510program uses the same data type for all language constructs. To
bfa74976
RS
3511specify some other type, define @code{YYSTYPE} as a macro, like this:
3512
3513@example
3514#define YYSTYPE double
3515@end example
3516
3517@noindent
50cce58e
PE
3518@code{YYSTYPE}'s replacement list should be a type name
3519that does not contain parentheses or square brackets.
342b8b6e 3520This macro definition must go in the prologue of the grammar file
75f5aaea 3521(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3522
342b8b6e 3523@node Multiple Types
bfa74976
RS
3524@subsection More Than One Value Type
3525
3526In most programs, you will need different data types for different kinds
3527of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3528@code{int} or @code{long int}, while a string constant needs type
3529@code{char *}, and an identifier might need a pointer to an entry in the
3530symbol table.
bfa74976
RS
3531
3532To use more than one data type for semantic values in one parser, Bison
3533requires you to do two things:
3534
3535@itemize @bullet
3536@item
ddc8ede1 3537Specify the entire collection of possible data types, either by using the
704a47c4 3538@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3539Value Types}), or by using a @code{typedef} or a @code{#define} to
3540define @code{YYSTYPE} to be a union type whose member names are
3541the type tags.
bfa74976
RS
3542
3543@item
14ded682
AD
3544Choose one of those types for each symbol (terminal or nonterminal) for
3545which semantic values are used. This is done for tokens with the
3546@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3547and for groupings with the @code{%type} Bison declaration (@pxref{Type
3548Decl, ,Nonterminal Symbols}).
bfa74976
RS
3549@end itemize
3550
342b8b6e 3551@node Actions
bfa74976
RS
3552@subsection Actions
3553@cindex action
3554@vindex $$
3555@vindex $@var{n}
d013372c
AR
3556@vindex $@var{name}
3557@vindex $[@var{name}]
bfa74976
RS
3558
3559An action accompanies a syntactic rule and contains C code to be executed
3560each time an instance of that rule is recognized. The task of most actions
3561is to compute a semantic value for the grouping built by the rule from the
3562semantic values associated with tokens or smaller groupings.
3563
287c78f6
PE
3564An action consists of braced code containing C statements, and can be
3565placed at any position in the rule;
704a47c4
AD
3566it is executed at that position. Most rules have just one action at the
3567end of the rule, following all the components. Actions in the middle of
3568a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3569Actions, ,Actions in Mid-Rule}).
bfa74976 3570
ff7571c0
JD
3571The C code in an action can refer to the semantic values of the
3572components matched by the rule with the construct @code{$@var{n}},
3573which stands for the value of the @var{n}th component. The semantic
3574value for the grouping being constructed is @code{$$}. In addition,
3575the semantic values of symbols can be accessed with the named
3576references construct @code{$@var{name}} or @code{$[@var{name}]}.
3577Bison translates both of these constructs into expressions of the
3578appropriate type when it copies the actions into the parser
3579implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3580for the current grouping) is translated to a modifiable lvalue, so it
3581can be assigned to.
bfa74976
RS
3582
3583Here is a typical example:
3584
3585@example
3586@group
3587exp: @dots{}
3588 | exp '+' exp
3589 @{ $$ = $1 + $3; @}
3590@end group
3591@end example
3592
d013372c
AR
3593Or, in terms of named references:
3594
3595@example
3596@group
3597exp[result]: @dots{}
3598 | exp[left] '+' exp[right]
3599 @{ $result = $left + $right; @}
3600@end group
3601@end example
3602
bfa74976
RS
3603@noindent
3604This rule constructs an @code{exp} from two smaller @code{exp} groupings
3605connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3606(@code{$left} and @code{$right})
bfa74976
RS
3607refer to the semantic values of the two component @code{exp} groupings,
3608which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3609The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3610semantic value of
bfa74976
RS
3611the addition-expression just recognized by the rule. If there were a
3612useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3613referred to as @code{$2}.
bfa74976 3614
a7b15ab9
JD
3615@xref{Named References}, for more information about using the named
3616references construct.
d013372c 3617
3ded9a63
AD
3618Note that the vertical-bar character @samp{|} is really a rule
3619separator, and actions are attached to a single rule. This is a
3620difference with tools like Flex, for which @samp{|} stands for either
3621``or'', or ``the same action as that of the next rule''. In the
3622following example, the action is triggered only when @samp{b} is found:
3623
3624@example
3625@group
3626a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3627@end group
3628@end example
3629
bfa74976
RS
3630@cindex default action
3631If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3632@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3633becomes the value of the whole rule. Of course, the default action is
3634valid only if the two data types match. There is no meaningful default
3635action for an empty rule; every empty rule must have an explicit action
3636unless the rule's value does not matter.
bfa74976
RS
3637
3638@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3639to tokens and groupings on the stack @emph{before} those that match the
3640current rule. This is a very risky practice, and to use it reliably
3641you must be certain of the context in which the rule is applied. Here
3642is a case in which you can use this reliably:
3643
3644@example
3645@group
3646foo: expr bar '+' expr @{ @dots{} @}
3647 | expr bar '-' expr @{ @dots{} @}
3648 ;
3649@end group
3650
3651@group
3652bar: /* empty */
3653 @{ previous_expr = $0; @}
3654 ;
3655@end group
3656@end example
3657
3658As long as @code{bar} is used only in the fashion shown here, @code{$0}
3659always refers to the @code{expr} which precedes @code{bar} in the
3660definition of @code{foo}.
3661
32c29292 3662@vindex yylval
742e4900 3663It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3664any, from a semantic action.
3665This semantic value is stored in @code{yylval}.
3666@xref{Action Features, ,Special Features for Use in Actions}.
3667
342b8b6e 3668@node Action Types
bfa74976
RS
3669@subsection Data Types of Values in Actions
3670@cindex action data types
3671@cindex data types in actions
3672
3673If you have chosen a single data type for semantic values, the @code{$$}
3674and @code{$@var{n}} constructs always have that data type.
3675
3676If you have used @code{%union} to specify a variety of data types, then you
3677must declare a choice among these types for each terminal or nonterminal
3678symbol that can have a semantic value. Then each time you use @code{$$} or
3679@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3680in the rule. In this example,
bfa74976
RS
3681
3682@example
3683@group
3684exp: @dots{}
3685 | exp '+' exp
3686 @{ $$ = $1 + $3; @}
3687@end group
3688@end example
3689
3690@noindent
3691@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3692have the data type declared for the nonterminal symbol @code{exp}. If
3693@code{$2} were used, it would have the data type declared for the
e0c471a9 3694terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3695
3696Alternatively, you can specify the data type when you refer to the value,
3697by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3698reference. For example, if you have defined types as shown here:
3699
3700@example
3701@group
3702%union @{
3703 int itype;
3704 double dtype;
3705@}
3706@end group
3707@end example
3708
3709@noindent
3710then you can write @code{$<itype>1} to refer to the first subunit of the
3711rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3712
342b8b6e 3713@node Mid-Rule Actions
bfa74976
RS
3714@subsection Actions in Mid-Rule
3715@cindex actions in mid-rule
3716@cindex mid-rule actions
3717
3718Occasionally it is useful to put an action in the middle of a rule.
3719These actions are written just like usual end-of-rule actions, but they
3720are executed before the parser even recognizes the following components.
3721
3722A mid-rule action may refer to the components preceding it using
3723@code{$@var{n}}, but it may not refer to subsequent components because
3724it is run before they are parsed.
3725
3726The mid-rule action itself counts as one of the components of the rule.
3727This makes a difference when there is another action later in the same rule
3728(and usually there is another at the end): you have to count the actions
3729along with the symbols when working out which number @var{n} to use in
3730@code{$@var{n}}.
3731
3732The mid-rule action can also have a semantic value. The action can set
3733its value with an assignment to @code{$$}, and actions later in the rule
3734can refer to the value using @code{$@var{n}}. Since there is no symbol
3735to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3736in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3737specify a data type each time you refer to this value.
bfa74976
RS
3738
3739There is no way to set the value of the entire rule with a mid-rule
3740action, because assignments to @code{$$} do not have that effect. The
3741only way to set the value for the entire rule is with an ordinary action
3742at the end of the rule.
3743
3744Here is an example from a hypothetical compiler, handling a @code{let}
3745statement that looks like @samp{let (@var{variable}) @var{statement}} and
3746serves to create a variable named @var{variable} temporarily for the
3747duration of @var{statement}. To parse this construct, we must put
3748@var{variable} into the symbol table while @var{statement} is parsed, then
3749remove it afterward. Here is how it is done:
3750
3751@example
3752@group
3753stmt: LET '(' var ')'
3754 @{ $<context>$ = push_context ();
3755 declare_variable ($3); @}
3756 stmt @{ $$ = $6;
3757 pop_context ($<context>5); @}
3758@end group
3759@end example
3760
3761@noindent
3762As soon as @samp{let (@var{variable})} has been recognized, the first
3763action is run. It saves a copy of the current semantic context (the
3764list of accessible variables) as its semantic value, using alternative
3765@code{context} in the data-type union. Then it calls
3766@code{declare_variable} to add the new variable to that list. Once the
3767first action is finished, the embedded statement @code{stmt} can be
3768parsed. Note that the mid-rule action is component number 5, so the
3769@samp{stmt} is component number 6.
3770
3771After the embedded statement is parsed, its semantic value becomes the
3772value of the entire @code{let}-statement. Then the semantic value from the
3773earlier action is used to restore the prior list of variables. This
3774removes the temporary @code{let}-variable from the list so that it won't
3775appear to exist while the rest of the program is parsed.
3776
841a7737
JD
3777@findex %destructor
3778@cindex discarded symbols, mid-rule actions
3779@cindex error recovery, mid-rule actions
3780In the above example, if the parser initiates error recovery (@pxref{Error
3781Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3782it might discard the previous semantic context @code{$<context>5} without
3783restoring it.
3784Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3785Discarded Symbols}).
ec5479ce
JD
3786However, Bison currently provides no means to declare a destructor specific to
3787a particular mid-rule action's semantic value.
841a7737
JD
3788
3789One solution is to bury the mid-rule action inside a nonterminal symbol and to
3790declare a destructor for that symbol:
3791
3792@example
3793@group
3794%type <context> let
3795%destructor @{ pop_context ($$); @} let
3796
3797%%
3798
3799stmt: let stmt
3800 @{ $$ = $2;
3801 pop_context ($1); @}
3802 ;
3803
3804let: LET '(' var ')'
3805 @{ $$ = push_context ();
3806 declare_variable ($3); @}
3807 ;
3808
3809@end group
3810@end example
3811
3812@noindent
3813Note that the action is now at the end of its rule.
3814Any mid-rule action can be converted to an end-of-rule action in this way, and
3815this is what Bison actually does to implement mid-rule actions.
3816
bfa74976
RS
3817Taking action before a rule is completely recognized often leads to
3818conflicts since the parser must commit to a parse in order to execute the
3819action. For example, the following two rules, without mid-rule actions,
3820can coexist in a working parser because the parser can shift the open-brace
3821token and look at what follows before deciding whether there is a
3822declaration or not:
3823
3824@example
3825@group
3826compound: '@{' declarations statements '@}'
3827 | '@{' statements '@}'
3828 ;
3829@end group
3830@end example
3831
3832@noindent
3833But when we add a mid-rule action as follows, the rules become nonfunctional:
3834
3835@example
3836@group
3837compound: @{ prepare_for_local_variables (); @}
3838 '@{' declarations statements '@}'
3839@end group
3840@group
3841 | '@{' statements '@}'
3842 ;
3843@end group
3844@end example
3845
3846@noindent
3847Now the parser is forced to decide whether to run the mid-rule action
3848when it has read no farther than the open-brace. In other words, it
3849must commit to using one rule or the other, without sufficient
3850information to do it correctly. (The open-brace token is what is called
742e4900
JD
3851the @dfn{lookahead} token at this time, since the parser is still
3852deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3853
3854You might think that you could correct the problem by putting identical
3855actions into the two rules, like this:
3856
3857@example
3858@group
3859compound: @{ prepare_for_local_variables (); @}
3860 '@{' declarations statements '@}'
3861 | @{ prepare_for_local_variables (); @}
3862 '@{' statements '@}'
3863 ;
3864@end group
3865@end example
3866
3867@noindent
3868But this does not help, because Bison does not realize that the two actions
3869are identical. (Bison never tries to understand the C code in an action.)
3870
3871If the grammar is such that a declaration can be distinguished from a
3872statement by the first token (which is true in C), then one solution which
3873does work is to put the action after the open-brace, like this:
3874
3875@example
3876@group
3877compound: '@{' @{ prepare_for_local_variables (); @}
3878 declarations statements '@}'
3879 | '@{' statements '@}'
3880 ;
3881@end group
3882@end example
3883
3884@noindent
3885Now the first token of the following declaration or statement,
3886which would in any case tell Bison which rule to use, can still do so.
3887
3888Another solution is to bury the action inside a nonterminal symbol which
3889serves as a subroutine:
3890
3891@example
3892@group
3893subroutine: /* empty */
3894 @{ prepare_for_local_variables (); @}
3895 ;
3896
3897@end group
3898
3899@group
3900compound: subroutine
3901 '@{' declarations statements '@}'
3902 | subroutine
3903 '@{' statements '@}'
3904 ;
3905@end group
3906@end example
3907
3908@noindent
3909Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3910deciding which rule for @code{compound} it will eventually use.
bfa74976 3911
303834cc 3912@node Tracking Locations
847bf1f5
AD
3913@section Tracking Locations
3914@cindex location
95923bd6
AD
3915@cindex textual location
3916@cindex location, textual
847bf1f5
AD
3917
3918Though grammar rules and semantic actions are enough to write a fully
72d2299c 3919functional parser, it can be useful to process some additional information,
3e259915
MA
3920especially symbol locations.
3921
704a47c4
AD
3922The way locations are handled is defined by providing a data type, and
3923actions to take when rules are matched.
847bf1f5
AD
3924
3925@menu
3926* Location Type:: Specifying a data type for locations.
3927* Actions and Locations:: Using locations in actions.
3928* Location Default Action:: Defining a general way to compute locations.
3929@end menu
3930
342b8b6e 3931@node Location Type
847bf1f5
AD
3932@subsection Data Type of Locations
3933@cindex data type of locations
3934@cindex default location type
3935
3936Defining a data type for locations is much simpler than for semantic values,
3937since all tokens and groupings always use the same type.
3938
50cce58e
PE
3939You can specify the type of locations by defining a macro called
3940@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3941defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3942When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3943four members:
3944
3945@example
6273355b 3946typedef struct YYLTYPE
847bf1f5
AD
3947@{
3948 int first_line;
3949 int first_column;
3950 int last_line;
3951 int last_column;
6273355b 3952@} YYLTYPE;
847bf1f5
AD
3953@end example
3954
d59e456d
AD
3955When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3956initializes all these fields to 1 for @code{yylloc}. To initialize
3957@code{yylloc} with a custom location type (or to chose a different
3958initialization), use the @code{%initial-action} directive. @xref{Initial
3959Action Decl, , Performing Actions before Parsing}.
cd48d21d 3960
342b8b6e 3961@node Actions and Locations
847bf1f5
AD
3962@subsection Actions and Locations
3963@cindex location actions
3964@cindex actions, location
3965@vindex @@$
3966@vindex @@@var{n}
d013372c
AR
3967@vindex @@@var{name}
3968@vindex @@[@var{name}]
847bf1f5
AD
3969
3970Actions are not only useful for defining language semantics, but also for
3971describing the behavior of the output parser with locations.
3972
3973The most obvious way for building locations of syntactic groupings is very
72d2299c 3974similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3975constructs can be used to access the locations of the elements being matched.
3976The location of the @var{n}th component of the right hand side is
3977@code{@@@var{n}}, while the location of the left hand side grouping is
3978@code{@@$}.
3979
d013372c
AR
3980In addition, the named references construct @code{@@@var{name}} and
3981@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
3982@xref{Named References}, for more information about using the named
3983references construct.
d013372c 3984
3e259915 3985Here is a basic example using the default data type for locations:
847bf1f5
AD
3986
3987@example
3988@group
3989exp: @dots{}
3e259915 3990 | exp '/' exp
847bf1f5 3991 @{
3e259915
MA
3992 @@$.first_column = @@1.first_column;
3993 @@$.first_line = @@1.first_line;
847bf1f5
AD
3994 @@$.last_column = @@3.last_column;
3995 @@$.last_line = @@3.last_line;
3e259915
MA
3996 if ($3)
3997 $$ = $1 / $3;
3998 else
3999 @{
4000 $$ = 1;
4e03e201
AD
4001 fprintf (stderr,
4002 "Division by zero, l%d,c%d-l%d,c%d",
4003 @@3.first_line, @@3.first_column,
4004 @@3.last_line, @@3.last_column);
3e259915 4005 @}
847bf1f5
AD
4006 @}
4007@end group
4008@end example
4009
3e259915 4010As for semantic values, there is a default action for locations that is
72d2299c 4011run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4012beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4013last symbol.
3e259915 4014
72d2299c 4015With this default action, the location tracking can be fully automatic. The
3e259915
MA
4016example above simply rewrites this way:
4017
4018@example
4019@group
4020exp: @dots{}
4021 | exp '/' exp
4022 @{
4023 if ($3)
4024 $$ = $1 / $3;
4025 else
4026 @{
4027 $$ = 1;
4e03e201
AD
4028 fprintf (stderr,
4029 "Division by zero, l%d,c%d-l%d,c%d",
4030 @@3.first_line, @@3.first_column,
4031 @@3.last_line, @@3.last_column);
3e259915
MA
4032 @}
4033 @}
4034@end group
4035@end example
847bf1f5 4036
32c29292 4037@vindex yylloc
742e4900 4038It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4039from a semantic action.
4040This location is stored in @code{yylloc}.
4041@xref{Action Features, ,Special Features for Use in Actions}.
4042
342b8b6e 4043@node Location Default Action
847bf1f5
AD
4044@subsection Default Action for Locations
4045@vindex YYLLOC_DEFAULT
8a4281b9 4046@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4047
72d2299c 4048Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4049locations are much more general than semantic values, there is room in
4050the output parser to redefine the default action to take for each
72d2299c 4051rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4052matched, before the associated action is run. It is also invoked
4053while processing a syntax error, to compute the error's location.
8a4281b9 4054Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4055parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4056of that ambiguity.
847bf1f5 4057
3e259915 4058Most of the time, this macro is general enough to suppress location
79282c6c 4059dedicated code from semantic actions.
847bf1f5 4060
72d2299c 4061The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4062the location of the grouping (the result of the computation). When a
766de5eb 4063rule is matched, the second parameter identifies locations of
96b93a3d 4064all right hand side elements of the rule being matched, and the third
8710fc41 4065parameter is the size of the rule's right hand side.
8a4281b9 4066When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4067right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4068When processing a syntax error, the second parameter identifies locations
4069of the symbols that were discarded during error processing, and the third
96b93a3d 4070parameter is the number of discarded symbols.
847bf1f5 4071
766de5eb 4072By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4073
766de5eb 4074@smallexample
847bf1f5 4075@group
766de5eb
PE
4076# define YYLLOC_DEFAULT(Current, Rhs, N) \
4077 do \
4078 if (N) \
4079 @{ \
4080 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4081 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4082 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4083 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4084 @} \
4085 else \
4086 @{ \
4087 (Current).first_line = (Current).last_line = \
4088 YYRHSLOC(Rhs, 0).last_line; \
4089 (Current).first_column = (Current).last_column = \
4090 YYRHSLOC(Rhs, 0).last_column; \
4091 @} \
4092 while (0)
847bf1f5 4093@end group
766de5eb 4094@end smallexample
676385e2 4095
766de5eb
PE
4096where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4097in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4098just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4099
3e259915 4100When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4101
3e259915 4102@itemize @bullet
79282c6c 4103@item
72d2299c 4104All arguments are free of side-effects. However, only the first one (the
3e259915 4105result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4106
3e259915 4107@item
766de5eb
PE
4108For consistency with semantic actions, valid indexes within the
4109right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4110valid index, and it refers to the symbol just before the reduction.
4111During error processing @var{n} is always positive.
0ae99356
PE
4112
4113@item
4114Your macro should parenthesize its arguments, if need be, since the
4115actual arguments may not be surrounded by parentheses. Also, your
4116macro should expand to something that can be used as a single
4117statement when it is followed by a semicolon.
3e259915 4118@end itemize
847bf1f5 4119
378e917c 4120@node Named References
a7b15ab9 4121@section Named References
378e917c
JD
4122@cindex named references
4123
a40e77eb
JD
4124As described in the preceding sections, the traditional way to refer to any
4125semantic value or location is a @dfn{positional reference}, which takes the
4126form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4127such a reference is not very descriptive. Moreover, if you later decide to
4128insert or remove symbols in the right-hand side of a grammar rule, the need
4129to renumber such references can be tedious and error-prone.
4130
4131To avoid these issues, you can also refer to a semantic value or location
4132using a @dfn{named reference}. First of all, original symbol names may be
4133used as named references. For example:
378e917c
JD
4134
4135@example
4136@group
4137invocation: op '(' args ')'
4138 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4139@end group
4140@end example
4141
4142@noindent
a40e77eb 4143Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4144
4145@example
4146@group
4147invocation: op '(' args ')'
4148 @{ $$ = new_invocation ($op, $args, @@$); @}
4149@end group
4150@end example
4151
4152@noindent
4153However, sometimes regular symbol names are not sufficient due to
4154ambiguities:
4155
4156@example
4157@group
4158exp: exp '/' exp
4159 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4160
4161exp: exp '/' exp
4162 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4163
4164exp: exp '/' exp
4165 @{ $$ = $1 / $3; @} // No error.
4166@end group
4167@end example
4168
4169@noindent
4170When ambiguity occurs, explicitly declared names may be used for values and
4171locations. Explicit names are declared as a bracketed name after a symbol
4172appearance in rule definitions. For example:
4173@example
4174@group
4175exp[result]: exp[left] '/' exp[right]
4176 @{ $result = $left / $right; @}
4177@end group
4178@end example
4179
4180@noindent
a7b15ab9
JD
4181In order to access a semantic value generated by a mid-rule action, an
4182explicit name may also be declared by putting a bracketed name after the
4183closing brace of the mid-rule action code:
378e917c
JD
4184@example
4185@group
4186exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4187 @{ $res = $left + $right; @}
4188@end group
4189@end example
4190
4191@noindent
4192
4193In references, in order to specify names containing dots and dashes, an explicit
4194bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4195@example
4196@group
4197if-stmt: IF '(' expr ')' THEN then.stmt ';'
4198 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4199@end group
4200@end example
4201
4202It often happens that named references are followed by a dot, dash or other
4203C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4204@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4205@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4206value. In order to force Bison to recognize @samp{name.suffix} in its
4207entirety as the name of a semantic value, the bracketed syntax
4208@samp{$[name.suffix]} must be used.
4209
4210The named references feature is experimental. More user feedback will help
4211to stabilize it.
378e917c 4212
342b8b6e 4213@node Declarations
bfa74976
RS
4214@section Bison Declarations
4215@cindex declarations, Bison
4216@cindex Bison declarations
4217
4218The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4219used in formulating the grammar and the data types of semantic values.
4220@xref{Symbols}.
4221
4222All token type names (but not single-character literal tokens such as
4223@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4224declared if you need to specify which data type to use for the semantic
4225value (@pxref{Multiple Types, ,More Than One Value Type}).
4226
ff7571c0
JD
4227The first rule in the grammar file also specifies the start symbol, by
4228default. If you want some other symbol to be the start symbol, you
4229must declare it explicitly (@pxref{Language and Grammar, ,Languages
4230and Context-Free Grammars}).
bfa74976
RS
4231
4232@menu
b50d2359 4233* Require Decl:: Requiring a Bison version.
bfa74976
RS
4234* Token Decl:: Declaring terminal symbols.
4235* Precedence Decl:: Declaring terminals with precedence and associativity.
4236* Union Decl:: Declaring the set of all semantic value types.
4237* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4238* Initial Action Decl:: Code run before parsing starts.
72f889cc 4239* Destructor Decl:: Declaring how symbols are freed.
d6328241 4240* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4241* Start Decl:: Specifying the start symbol.
4242* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4243* Push Decl:: Requesting a push parser.
bfa74976 4244* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4245* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4246* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4247@end menu
4248
b50d2359
AD
4249@node Require Decl
4250@subsection Require a Version of Bison
4251@cindex version requirement
4252@cindex requiring a version of Bison
4253@findex %require
4254
4255You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4256the requirement is not met, @command{bison} exits with an error (exit
4257status 63).
b50d2359
AD
4258
4259@example
4260%require "@var{version}"
4261@end example
4262
342b8b6e 4263@node Token Decl
bfa74976
RS
4264@subsection Token Type Names
4265@cindex declaring token type names
4266@cindex token type names, declaring
931c7513 4267@cindex declaring literal string tokens
bfa74976
RS
4268@findex %token
4269
4270The basic way to declare a token type name (terminal symbol) is as follows:
4271
4272@example
4273%token @var{name}
4274@end example
4275
4276Bison will convert this into a @code{#define} directive in
4277the parser, so that the function @code{yylex} (if it is in this file)
4278can use the name @var{name} to stand for this token type's code.
4279
d78f0ac9
AD
4280Alternatively, you can use @code{%left}, @code{%right},
4281@code{%precedence}, or
14ded682
AD
4282@code{%nonassoc} instead of @code{%token}, if you wish to specify
4283associativity and precedence. @xref{Precedence Decl, ,Operator
4284Precedence}.
bfa74976
RS
4285
4286You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4287a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4288following the token name:
bfa74976
RS
4289
4290@example
4291%token NUM 300
1452af69 4292%token XNUM 0x12d // a GNU extension
bfa74976
RS
4293@end example
4294
4295@noindent
4296It is generally best, however, to let Bison choose the numeric codes for
4297all token types. Bison will automatically select codes that don't conflict
e966383b 4298with each other or with normal characters.
bfa74976
RS
4299
4300In the event that the stack type is a union, you must augment the
4301@code{%token} or other token declaration to include the data type
704a47c4
AD
4302alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4303Than One Value Type}).
bfa74976
RS
4304
4305For example:
4306
4307@example
4308@group
4309%union @{ /* define stack type */
4310 double val;
4311 symrec *tptr;
4312@}
4313%token <val> NUM /* define token NUM and its type */
4314@end group
4315@end example
4316
931c7513
RS
4317You can associate a literal string token with a token type name by
4318writing the literal string at the end of a @code{%token}
4319declaration which declares the name. For example:
4320
4321@example
4322%token arrow "=>"
4323@end example
4324
4325@noindent
4326For example, a grammar for the C language might specify these names with
4327equivalent literal string tokens:
4328
4329@example
4330%token <operator> OR "||"
4331%token <operator> LE 134 "<="
4332%left OR "<="
4333@end example
4334
4335@noindent
4336Once you equate the literal string and the token name, you can use them
4337interchangeably in further declarations or the grammar rules. The
4338@code{yylex} function can use the token name or the literal string to
4339obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4340Syntax error messages passed to @code{yyerror} from the parser will reference
4341the literal string instead of the token name.
4342
4343The token numbered as 0 corresponds to end of file; the following line
4344allows for nicer error messages referring to ``end of file'' instead
4345of ``$end'':
4346
4347@example
4348%token END 0 "end of file"
4349@end example
931c7513 4350
342b8b6e 4351@node Precedence Decl
bfa74976
RS
4352@subsection Operator Precedence
4353@cindex precedence declarations
4354@cindex declaring operator precedence
4355@cindex operator precedence, declaring
4356
d78f0ac9
AD
4357Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4358@code{%precedence} declaration to
bfa74976
RS
4359declare a token and specify its precedence and associativity, all at
4360once. These are called @dfn{precedence declarations}.
704a47c4
AD
4361@xref{Precedence, ,Operator Precedence}, for general information on
4362operator precedence.
bfa74976 4363
ab7f29f8 4364The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4365@code{%token}: either
4366
4367@example
4368%left @var{symbols}@dots{}
4369@end example
4370
4371@noindent
4372or
4373
4374@example
4375%left <@var{type}> @var{symbols}@dots{}
4376@end example
4377
4378And indeed any of these declarations serves the purposes of @code{%token}.
4379But in addition, they specify the associativity and relative precedence for
4380all the @var{symbols}:
4381
4382@itemize @bullet
4383@item
4384The associativity of an operator @var{op} determines how repeated uses
4385of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4386@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4387grouping @var{y} with @var{z} first. @code{%left} specifies
4388left-associativity (grouping @var{x} with @var{y} first) and
4389@code{%right} specifies right-associativity (grouping @var{y} with
4390@var{z} first). @code{%nonassoc} specifies no associativity, which
4391means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4392considered a syntax error.
4393
d78f0ac9
AD
4394@code{%precedence} gives only precedence to the @var{symbols}, and
4395defines no associativity at all. Use this to define precedence only,
4396and leave any potential conflict due to associativity enabled.
4397
bfa74976
RS
4398@item
4399The precedence of an operator determines how it nests with other operators.
4400All the tokens declared in a single precedence declaration have equal
4401precedence and nest together according to their associativity.
4402When two tokens declared in different precedence declarations associate,
4403the one declared later has the higher precedence and is grouped first.
4404@end itemize
4405
ab7f29f8
JD
4406For backward compatibility, there is a confusing difference between the
4407argument lists of @code{%token} and precedence declarations.
4408Only a @code{%token} can associate a literal string with a token type name.
4409A precedence declaration always interprets a literal string as a reference to a
4410separate token.
4411For example:
4412
4413@example
4414%left OR "<=" // Does not declare an alias.
4415%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4416@end example
4417
342b8b6e 4418@node Union Decl
bfa74976
RS
4419@subsection The Collection of Value Types
4420@cindex declaring value types
4421@cindex value types, declaring
4422@findex %union
4423
287c78f6
PE
4424The @code{%union} declaration specifies the entire collection of
4425possible data types for semantic values. The keyword @code{%union} is
4426followed by braced code containing the same thing that goes inside a
4427@code{union} in C@.
bfa74976
RS
4428
4429For example:
4430
4431@example
4432@group
4433%union @{
4434 double val;
4435 symrec *tptr;
4436@}
4437@end group
4438@end example
4439
4440@noindent
4441This says that the two alternative types are @code{double} and @code{symrec
4442*}. They are given names @code{val} and @code{tptr}; these names are used
4443in the @code{%token} and @code{%type} declarations to pick one of the types
4444for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4445
8a4281b9 4446As an extension to POSIX, a tag is allowed after the
6273355b
PE
4447@code{union}. For example:
4448
4449@example
4450@group
4451%union value @{
4452 double val;
4453 symrec *tptr;
4454@}
4455@end group
4456@end example
4457
d6ca7905 4458@noindent
6273355b
PE
4459specifies the union tag @code{value}, so the corresponding C type is
4460@code{union value}. If you do not specify a tag, it defaults to
4461@code{YYSTYPE}.
4462
8a4281b9 4463As another extension to POSIX, you may specify multiple
d6ca7905
PE
4464@code{%union} declarations; their contents are concatenated. However,
4465only the first @code{%union} declaration can specify a tag.
4466
6273355b 4467Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4468a semicolon after the closing brace.
4469
ddc8ede1
PE
4470Instead of @code{%union}, you can define and use your own union type
4471@code{YYSTYPE} if your grammar contains at least one
4472@samp{<@var{type}>} tag. For example, you can put the following into
4473a header file @file{parser.h}:
4474
4475@example
4476@group
4477union YYSTYPE @{
4478 double val;
4479 symrec *tptr;
4480@};
4481typedef union YYSTYPE YYSTYPE;
4482@end group
4483@end example
4484
4485@noindent
4486and then your grammar can use the following
4487instead of @code{%union}:
4488
4489@example
4490@group
4491%@{
4492#include "parser.h"
4493%@}
4494%type <val> expr
4495%token <tptr> ID
4496@end group
4497@end example
4498
342b8b6e 4499@node Type Decl
bfa74976
RS
4500@subsection Nonterminal Symbols
4501@cindex declaring value types, nonterminals
4502@cindex value types, nonterminals, declaring
4503@findex %type
4504
4505@noindent
4506When you use @code{%union} to specify multiple value types, you must
4507declare the value type of each nonterminal symbol for which values are
4508used. This is done with a @code{%type} declaration, like this:
4509
4510@example
4511%type <@var{type}> @var{nonterminal}@dots{}
4512@end example
4513
4514@noindent
704a47c4
AD
4515Here @var{nonterminal} is the name of a nonterminal symbol, and
4516@var{type} is the name given in the @code{%union} to the alternative
4517that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4518can give any number of nonterminal symbols in the same @code{%type}
4519declaration, if they have the same value type. Use spaces to separate
4520the symbol names.
bfa74976 4521
931c7513
RS
4522You can also declare the value type of a terminal symbol. To do this,
4523use the same @code{<@var{type}>} construction in a declaration for the
4524terminal symbol. All kinds of token declarations allow
4525@code{<@var{type}>}.
4526
18d192f0
AD
4527@node Initial Action Decl
4528@subsection Performing Actions before Parsing
4529@findex %initial-action
4530
4531Sometimes your parser needs to perform some initializations before
4532parsing. The @code{%initial-action} directive allows for such arbitrary
4533code.
4534
4535@deffn {Directive} %initial-action @{ @var{code} @}
4536@findex %initial-action
287c78f6 4537Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4538@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4539@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4540@code{%parse-param}.
18d192f0
AD
4541@end deffn
4542
451364ed
AD
4543For instance, if your locations use a file name, you may use
4544
4545@example
48b16bbc 4546%parse-param @{ char const *file_name @};
451364ed
AD
4547%initial-action
4548@{
4626a15d 4549 @@$.initialize (file_name);
451364ed
AD
4550@};
4551@end example
4552
18d192f0 4553
72f889cc
AD
4554@node Destructor Decl
4555@subsection Freeing Discarded Symbols
4556@cindex freeing discarded symbols
4557@findex %destructor
12e35840 4558@findex <*>
3ebecc24 4559@findex <>
a85284cf
AD
4560During error recovery (@pxref{Error Recovery}), symbols already pushed
4561on the stack and tokens coming from the rest of the file are discarded
4562until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4563or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4564symbols on the stack must be discarded. Even if the parser succeeds, it
4565must discard the start symbol.
258b75ca
PE
4566
4567When discarded symbols convey heap based information, this memory is
4568lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4569in traditional compilers, it is unacceptable for programs like shells or
4570protocol implementations that may parse and execute indefinitely.
258b75ca 4571
a85284cf
AD
4572The @code{%destructor} directive defines code that is called when a
4573symbol is automatically discarded.
72f889cc
AD
4574
4575@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4576@findex %destructor
287c78f6
PE
4577Invoke the braced @var{code} whenever the parser discards one of the
4578@var{symbols}.
4b367315 4579Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4580with the discarded symbol, and @code{@@$} designates its location.
4581The additional parser parameters are also available (@pxref{Parser Function, ,
4582The Parser Function @code{yyparse}}).
ec5479ce 4583
b2a0b7ca
JD
4584When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4585per-symbol @code{%destructor}.
4586You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4587tag among @var{symbols}.
b2a0b7ca 4588In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4589grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4590per-symbol @code{%destructor}.
4591
12e35840 4592Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4593(These default forms are experimental.
4594More user feedback will help to determine whether they should become permanent
4595features.)
3ebecc24 4596You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4597exactly one @code{%destructor} declaration in your grammar file.
4598The parser will invoke the @var{code} associated with one of these whenever it
4599discards any user-defined grammar symbol that has no per-symbol and no per-type
4600@code{%destructor}.
4601The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4602symbol for which you have formally declared a semantic type tag (@code{%type}
4603counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4604The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4605symbol that has no declared semantic type tag.
72f889cc
AD
4606@end deffn
4607
b2a0b7ca 4608@noindent
12e35840 4609For example:
72f889cc
AD
4610
4611@smallexample
ec5479ce
JD
4612%union @{ char *string; @}
4613%token <string> STRING1
4614%token <string> STRING2
4615%type <string> string1
4616%type <string> string2
b2a0b7ca
JD
4617%union @{ char character; @}
4618%token <character> CHR
4619%type <character> chr
12e35840
JD
4620%token TAGLESS
4621
b2a0b7ca 4622%destructor @{ @} <character>
12e35840
JD
4623%destructor @{ free ($$); @} <*>
4624%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4625%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4626@end smallexample
4627
4628@noindent
b2a0b7ca
JD
4629guarantees that, when the parser discards any user-defined symbol that has a
4630semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4631to @code{free} by default.
ec5479ce
JD
4632However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4633prints its line number to @code{stdout}.
4634It performs only the second @code{%destructor} in this case, so it invokes
4635@code{free} only once.
12e35840
JD
4636Finally, the parser merely prints a message whenever it discards any symbol,
4637such as @code{TAGLESS}, that has no semantic type tag.
4638
4639A Bison-generated parser invokes the default @code{%destructor}s only for
4640user-defined as opposed to Bison-defined symbols.
4641For example, the parser will not invoke either kind of default
4642@code{%destructor} for the special Bison-defined symbols @code{$accept},
4643@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4644none of which you can reference in your grammar.
4645It also will not invoke either for the @code{error} token (@pxref{Table of
4646Symbols, ,error}), which is always defined by Bison regardless of whether you
4647reference it in your grammar.
4648However, it may invoke one of them for the end token (token 0) if you
4649redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4650
4651@smallexample
4652%token END 0
4653@end smallexample
4654
12e35840
JD
4655@cindex actions in mid-rule
4656@cindex mid-rule actions
4657Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4658mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4659That is, Bison does not consider a mid-rule to have a semantic value if you
4660do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4661(where @var{n} is the right-hand side symbol position of the mid-rule) in
4662any later action in that rule. However, if you do reference either, the
4663Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4664it discards the mid-rule symbol.
12e35840 4665
3508ce36
JD
4666@ignore
4667@noindent
4668In the future, it may be possible to redefine the @code{error} token as a
4669nonterminal that captures the discarded symbols.
4670In that case, the parser will invoke the default destructor for it as well.
4671@end ignore
4672
e757bb10
AD
4673@sp 1
4674
4675@cindex discarded symbols
4676@dfn{Discarded symbols} are the following:
4677
4678@itemize
4679@item
4680stacked symbols popped during the first phase of error recovery,
4681@item
4682incoming terminals during the second phase of error recovery,
4683@item
742e4900 4684the current lookahead and the entire stack (except the current
9d9b8b70 4685right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4686@item
4687the start symbol, when the parser succeeds.
e757bb10
AD
4688@end itemize
4689
9d9b8b70
PE
4690The parser can @dfn{return immediately} because of an explicit call to
4691@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4692exhaustion.
4693
29553547 4694Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4695error via @code{YYERROR} are not discarded automatically. As a rule
4696of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4697the memory.
e757bb10 4698
342b8b6e 4699@node Expect Decl
bfa74976
RS
4700@subsection Suppressing Conflict Warnings
4701@cindex suppressing conflict warnings
4702@cindex preventing warnings about conflicts
4703@cindex warnings, preventing
4704@cindex conflicts, suppressing warnings of
4705@findex %expect
d6328241 4706@findex %expect-rr
bfa74976
RS
4707
4708Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4709(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4710have harmless shift/reduce conflicts which are resolved in a predictable
4711way and would be difficult to eliminate. It is desirable to suppress
4712the warning about these conflicts unless the number of conflicts
4713changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4714
4715The declaration looks like this:
4716
4717@example
4718%expect @var{n}
4719@end example
4720
035aa4a0
PE
4721Here @var{n} is a decimal integer. The declaration says there should
4722be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4723Bison reports an error if the number of shift/reduce conflicts differs
4724from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4725
eb45ef3b 4726For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4727serious, and should be eliminated entirely. Bison will always report
8a4281b9 4728reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4729parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4730there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4731also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4732in GLR parsers, using the declaration:
d6328241
PH
4733
4734@example
4735%expect-rr @var{n}
4736@end example
4737
bfa74976
RS
4738In general, using @code{%expect} involves these steps:
4739
4740@itemize @bullet
4741@item
4742Compile your grammar without @code{%expect}. Use the @samp{-v} option
4743to get a verbose list of where the conflicts occur. Bison will also
4744print the number of conflicts.
4745
4746@item
4747Check each of the conflicts to make sure that Bison's default
4748resolution is what you really want. If not, rewrite the grammar and
4749go back to the beginning.
4750
4751@item
4752Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4753number which Bison printed. With GLR parsers, add an
035aa4a0 4754@code{%expect-rr} declaration as well.
bfa74976
RS
4755@end itemize
4756
93d7dde9
JD
4757Now Bison will report an error if you introduce an unexpected conflict,
4758but will keep silent otherwise.
bfa74976 4759
342b8b6e 4760@node Start Decl
bfa74976
RS
4761@subsection The Start-Symbol
4762@cindex declaring the start symbol
4763@cindex start symbol, declaring
4764@cindex default start symbol
4765@findex %start
4766
4767Bison assumes by default that the start symbol for the grammar is the first
4768nonterminal specified in the grammar specification section. The programmer
4769may override this restriction with the @code{%start} declaration as follows:
4770
4771@example
4772%start @var{symbol}
4773@end example
4774
342b8b6e 4775@node Pure Decl
bfa74976
RS
4776@subsection A Pure (Reentrant) Parser
4777@cindex reentrant parser
4778@cindex pure parser
d9df47b6 4779@findex %define api.pure
bfa74976
RS
4780
4781A @dfn{reentrant} program is one which does not alter in the course of
4782execution; in other words, it consists entirely of @dfn{pure} (read-only)
4783code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4784for example, a nonreentrant program may not be safe to call from a signal
4785handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4786program must be called only within interlocks.
4787
70811b85 4788Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4789suitable for most uses, and it permits compatibility with Yacc. (The
4790standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4791statically allocated variables for communication with @code{yylex},
4792including @code{yylval} and @code{yylloc}.)
bfa74976 4793
70811b85 4794Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4795declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4796reentrant. It looks like this:
bfa74976
RS
4797
4798@example
d9df47b6 4799%define api.pure
bfa74976
RS
4800@end example
4801
70811b85
RS
4802The result is that the communication variables @code{yylval} and
4803@code{yylloc} become local variables in @code{yyparse}, and a different
4804calling convention is used for the lexical analyzer function
4805@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4806Parsers}, for the details of this. The variable @code{yynerrs}
4807becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4808of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4809Reporting Function @code{yyerror}}). The convention for calling
4810@code{yyparse} itself is unchanged.
4811
4812Whether the parser is pure has nothing to do with the grammar rules.
4813You can generate either a pure parser or a nonreentrant parser from any
4814valid grammar.
bfa74976 4815
9987d1b3
JD
4816@node Push Decl
4817@subsection A Push Parser
4818@cindex push parser
4819@cindex push parser
67212941 4820@findex %define api.push-pull
9987d1b3 4821
59da312b
JD
4822(The current push parsing interface is experimental and may evolve.
4823More user feedback will help to stabilize it.)
4824
f4101aa6
AD
4825A pull parser is called once and it takes control until all its input
4826is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4827each time a new token is made available.
4828
f4101aa6 4829A push parser is typically useful when the parser is part of a
9987d1b3 4830main event loop in the client's application. This is typically
f4101aa6
AD
4831a requirement of a GUI, when the main event loop needs to be triggered
4832within a certain time period.
9987d1b3 4833
d782395d
JD
4834Normally, Bison generates a pull parser.
4835The following Bison declaration says that you want the parser to be a push
35c1e5f0 4836parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4837
4838@example
cf499cff 4839%define api.push-pull push
9987d1b3
JD
4840@end example
4841
4842In almost all cases, you want to ensure that your push parser is also
4843a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4844time you should create an impure push parser is to have backwards
9987d1b3
JD
4845compatibility with the impure Yacc pull mode interface. Unless you know
4846what you are doing, your declarations should look like this:
4847
4848@example
d9df47b6 4849%define api.pure
cf499cff 4850%define api.push-pull push
9987d1b3
JD
4851@end example
4852
f4101aa6
AD
4853There is a major notable functional difference between the pure push parser
4854and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4855many parser instances, of the same type of parser, in memory at the same time.
4856An impure push parser should only use one parser at a time.
4857
4858When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4859the generated parser. @code{yypstate} is a structure that the generated
4860parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4861function that will create a new parser instance. @code{yypstate_delete}
4862will free the resources associated with the corresponding parser instance.
f4101aa6 4863Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4864token is available to provide the parser. A trivial example
4865of using a pure push parser would look like this:
4866
4867@example
4868int status;
4869yypstate *ps = yypstate_new ();
4870do @{
4871 status = yypush_parse (ps, yylex (), NULL);
4872@} while (status == YYPUSH_MORE);
4873yypstate_delete (ps);
4874@end example
4875
4876If the user decided to use an impure push parser, a few things about
f4101aa6 4877the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4878a global variable instead of a variable in the @code{yypush_parse} function.
4879For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4880changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4881example would thus look like this:
4882
4883@example
4884extern int yychar;
4885int status;
4886yypstate *ps = yypstate_new ();
4887do @{
4888 yychar = yylex ();
4889 status = yypush_parse (ps);
4890@} while (status == YYPUSH_MORE);
4891yypstate_delete (ps);
4892@end example
4893
f4101aa6 4894That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4895for use by the next invocation of the @code{yypush_parse} function.
4896
f4101aa6 4897Bison also supports both the push parser interface along with the pull parser
9987d1b3 4898interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4899you should replace the @samp{%define api.push-pull push} declaration with the
4900@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4901the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4902and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4903would be used. However, the user should note that it is implemented in the
d782395d
JD
4904generated parser by calling @code{yypull_parse}.
4905This makes the @code{yyparse} function that is generated with the
cf499cff 4906@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4907@code{yyparse} function. If the user
4908calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4909stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4910and then @code{yypull_parse} the rest of the input stream. If you would like
4911to switch back and forth between between parsing styles, you would have to
4912write your own @code{yypull_parse} function that knows when to quit looking
4913for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4914like this:
4915
4916@example
4917yypstate *ps = yypstate_new ();
4918yypull_parse (ps); /* Will call the lexer */
4919yypstate_delete (ps);
4920@end example
4921
67501061 4922Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4923the generated parser with @samp{%define api.push-pull both} as it did for
4924@samp{%define api.push-pull push}.
9987d1b3 4925
342b8b6e 4926@node Decl Summary
bfa74976
RS
4927@subsection Bison Declaration Summary
4928@cindex Bison declaration summary
4929@cindex declaration summary
4930@cindex summary, Bison declaration
4931
d8988b2f 4932Here is a summary of the declarations used to define a grammar:
bfa74976 4933
18b519c0 4934@deffn {Directive} %union
bfa74976
RS
4935Declare the collection of data types that semantic values may have
4936(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4937@end deffn
bfa74976 4938
18b519c0 4939@deffn {Directive} %token
bfa74976
RS
4940Declare a terminal symbol (token type name) with no precedence
4941or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4942@end deffn
bfa74976 4943
18b519c0 4944@deffn {Directive} %right
bfa74976
RS
4945Declare a terminal symbol (token type name) that is right-associative
4946(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4947@end deffn
bfa74976 4948
18b519c0 4949@deffn {Directive} %left
bfa74976
RS
4950Declare a terminal symbol (token type name) that is left-associative
4951(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4952@end deffn
bfa74976 4953
18b519c0 4954@deffn {Directive} %nonassoc
bfa74976 4955Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4956(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4957Using it in a way that would be associative is a syntax error.
4958@end deffn
4959
91d2c560 4960@ifset defaultprec
39a06c25 4961@deffn {Directive} %default-prec
22fccf95 4962Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4963(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4964@end deffn
91d2c560 4965@end ifset
bfa74976 4966
18b519c0 4967@deffn {Directive} %type
bfa74976
RS
4968Declare the type of semantic values for a nonterminal symbol
4969(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4970@end deffn
bfa74976 4971
18b519c0 4972@deffn {Directive} %start
89cab50d
AD
4973Specify the grammar's start symbol (@pxref{Start Decl, ,The
4974Start-Symbol}).
18b519c0 4975@end deffn
bfa74976 4976
18b519c0 4977@deffn {Directive} %expect
bfa74976
RS
4978Declare the expected number of shift-reduce conflicts
4979(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4980@end deffn
4981
bfa74976 4982
d8988b2f
AD
4983@sp 1
4984@noindent
4985In order to change the behavior of @command{bison}, use the following
4986directives:
4987
148d66d8 4988@deffn {Directive} %code @{@var{code}@}
e0c07222 4989@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4990@findex %code
e0c07222
JD
4991Insert @var{code} verbatim into the output parser source at the
4992default location or at the location specified by @var{qualifier}.
4993@xref{%code Summary}.
148d66d8
JD
4994@end deffn
4995
18b519c0 4996@deffn {Directive} %debug
fa819509
AD
4997Instrument the output parser for traces. Obsoleted by @samp{%define
4998parse.trace}.
ec3bc396 4999@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5000@end deffn
d8988b2f 5001
35c1e5f0
JD
5002@deffn {Directive} %define @var{variable}
5003@deffnx {Directive} %define @var{variable} @var{value}
5004@deffnx {Directive} %define @var{variable} "@var{value}"
5005Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5006@end deffn
5007
5008@deffn {Directive} %defines
5009Write a parser header file containing macro definitions for the token
5010type names defined in the grammar as well as a few other declarations.
5011If the parser implementation file is named @file{@var{name}.c} then
5012the parser header file is named @file{@var{name}.h}.
5013
5014For C parsers, the parser header file declares @code{YYSTYPE} unless
5015@code{YYSTYPE} is already defined as a macro or you have used a
5016@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5017you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5018Value Type}) with components that require other definitions, or if you
5019have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5020Type, ,Data Types of Semantic Values}), you need to arrange for these
5021definitions to be propagated to all modules, e.g., by putting them in
5022a prerequisite header that is included both by your parser and by any
5023other module that needs @code{YYSTYPE}.
5024
5025Unless your parser is pure, the parser header file declares
5026@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5027(Reentrant) Parser}.
5028
5029If you have also used locations, the parser header file declares
303834cc
JD
5030@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5031@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5032
5033This parser header file is normally essential if you wish to put the
5034definition of @code{yylex} in a separate source file, because
5035@code{yylex} typically needs to be able to refer to the
5036above-mentioned declarations and to the token type codes. @xref{Token
5037Values, ,Semantic Values of Tokens}.
5038
5039@findex %code requires
5040@findex %code provides
5041If you have declared @code{%code requires} or @code{%code provides}, the output
5042header also contains their code.
5043@xref{%code Summary}.
5044@end deffn
5045
5046@deffn {Directive} %defines @var{defines-file}
5047Same as above, but save in the file @var{defines-file}.
5048@end deffn
5049
5050@deffn {Directive} %destructor
5051Specify how the parser should reclaim the memory associated to
5052discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5053@end deffn
5054
5055@deffn {Directive} %file-prefix "@var{prefix}"
5056Specify a prefix to use for all Bison output file names. The names
5057are chosen as if the grammar file were named @file{@var{prefix}.y}.
5058@end deffn
5059
5060@deffn {Directive} %language "@var{language}"
5061Specify the programming language for the generated parser. Currently
5062supported languages include C, C++, and Java.
5063@var{language} is case-insensitive.
5064
5065This directive is experimental and its effect may be modified in future
5066releases.
5067@end deffn
5068
5069@deffn {Directive} %locations
5070Generate the code processing the locations (@pxref{Action Features,
5071,Special Features for Use in Actions}). This mode is enabled as soon as
5072the grammar uses the special @samp{@@@var{n}} tokens, but if your
5073grammar does not use it, using @samp{%locations} allows for more
5074accurate syntax error messages.
5075@end deffn
5076
5077@deffn {Directive} %name-prefix "@var{prefix}"
5078Rename the external symbols used in the parser so that they start with
5079@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5080in C parsers
5081is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5082@code{yylval}, @code{yychar}, @code{yydebug}, and
5083(if locations are used) @code{yylloc}. If you use a push parser,
5084@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5085@code{yypstate_new} and @code{yypstate_delete} will
5086also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5087names become @code{c_parse}, @code{c_lex}, and so on.
5088For C++ parsers, see the @samp{%define api.namespace} documentation in this
5089section.
5090@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5091@end deffn
5092
5093@ifset defaultprec
5094@deffn {Directive} %no-default-prec
5095Do not assign a precedence to rules lacking an explicit @code{%prec}
5096modifier (@pxref{Contextual Precedence, ,Context-Dependent
5097Precedence}).
5098@end deffn
5099@end ifset
5100
5101@deffn {Directive} %no-lines
5102Don't generate any @code{#line} preprocessor commands in the parser
5103implementation file. Ordinarily Bison writes these commands in the
5104parser implementation file so that the C compiler and debuggers will
5105associate errors and object code with your source file (the grammar
5106file). This directive causes them to associate errors with the parser
5107implementation file, treating it as an independent source file in its
5108own right.
5109@end deffn
5110
5111@deffn {Directive} %output "@var{file}"
5112Specify @var{file} for the parser implementation file.
5113@end deffn
5114
5115@deffn {Directive} %pure-parser
5116Deprecated version of @samp{%define api.pure} (@pxref{%define
5117Summary,,api.pure}), for which Bison is more careful to warn about
5118unreasonable usage.
5119@end deffn
5120
5121@deffn {Directive} %require "@var{version}"
5122Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5123Require a Version of Bison}.
5124@end deffn
5125
5126@deffn {Directive} %skeleton "@var{file}"
5127Specify the skeleton to use.
5128
5129@c You probably don't need this option unless you are developing Bison.
5130@c You should use @code{%language} if you want to specify the skeleton for a
5131@c different language, because it is clearer and because it will always choose the
5132@c correct skeleton for non-deterministic or push parsers.
5133
5134If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5135file in the Bison installation directory.
5136If it does, @var{file} is an absolute file name or a file name relative to the
5137directory of the grammar file.
5138This is similar to how most shells resolve commands.
5139@end deffn
5140
5141@deffn {Directive} %token-table
5142Generate an array of token names in the parser implementation file.
5143The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5144the name of the token whose internal Bison token code number is
5145@var{i}. The first three elements of @code{yytname} correspond to the
5146predefined tokens @code{"$end"}, @code{"error"}, and
5147@code{"$undefined"}; after these come the symbols defined in the
5148grammar file.
5149
5150The name in the table includes all the characters needed to represent
5151the token in Bison. For single-character literals and literal
5152strings, this includes the surrounding quoting characters and any
5153escape sequences. For example, the Bison single-character literal
5154@code{'+'} corresponds to a three-character name, represented in C as
5155@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5156corresponds to a five-character name, represented in C as
5157@code{"\"\\\\/\""}.
5158
5159When you specify @code{%token-table}, Bison also generates macro
5160definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5161@code{YYNRULES}, and @code{YYNSTATES}:
5162
5163@table @code
5164@item YYNTOKENS
5165The highest token number, plus one.
5166@item YYNNTS
5167The number of nonterminal symbols.
5168@item YYNRULES
5169The number of grammar rules,
5170@item YYNSTATES
5171The number of parser states (@pxref{Parser States}).
5172@end table
5173@end deffn
5174
5175@deffn {Directive} %verbose
5176Write an extra output file containing verbose descriptions of the
5177parser states and what is done for each type of lookahead token in
5178that state. @xref{Understanding, , Understanding Your Parser}, for more
5179information.
5180@end deffn
5181
5182@deffn {Directive} %yacc
5183Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5184including its naming conventions. @xref{Bison Options}, for more.
5185@end deffn
5186
5187
5188@node %define Summary
5189@subsection %define Summary
51151d91
JD
5190
5191There are many features of Bison's behavior that can be controlled by
5192assigning the feature a single value. For historical reasons, some
5193such features are assigned values by dedicated directives, such as
5194@code{%start}, which assigns the start symbol. However, newer such
5195features are associated with variables, which are assigned by the
5196@code{%define} directive:
5197
c1d19e10 5198@deffn {Directive} %define @var{variable}
cf499cff 5199@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5200@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5201Define @var{variable} to @var{value}.
9611cfa2 5202
51151d91
JD
5203@var{value} must be placed in quotation marks if it contains any
5204character other than a letter, underscore, period, or non-initial dash
5205or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5206to specifying @code{""}.
9611cfa2 5207
51151d91
JD
5208It is an error if a @var{variable} is defined by @code{%define}
5209multiple times, but see @ref{Bison Options,,-D
5210@var{name}[=@var{value}]}.
5211@end deffn
cf499cff 5212
51151d91
JD
5213The rest of this section summarizes variables and values that
5214@code{%define} accepts.
9611cfa2 5215
51151d91
JD
5216Some @var{variable}s take Boolean values. In this case, Bison will
5217complain if the variable definition does not meet one of the following
5218four conditions:
9611cfa2
JD
5219
5220@enumerate
cf499cff 5221@item @code{@var{value}} is @code{true}
9611cfa2 5222
cf499cff
JD
5223@item @code{@var{value}} is omitted (or @code{""} is specified).
5224This is equivalent to @code{true}.
9611cfa2 5225
cf499cff 5226@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5227
5228@item @var{variable} is never defined.
c6abeab1 5229In this case, Bison selects a default value.
9611cfa2 5230@end enumerate
148d66d8 5231
c6abeab1
JD
5232What @var{variable}s are accepted, as well as their meanings and default
5233values, depend on the selected target language and/or the parser
5234skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5235Summary,,%skeleton}).
5236Unaccepted @var{variable}s produce an error.
793fbca5
JD
5237Some of the accepted @var{variable}s are:
5238
fa819509 5239@table @code
6b5a0de9 5240@c ================================================== api.namespace
67501061
AD
5241@item api.namespace
5242@findex %define api.namespace
5243@itemize
5244@item Languages(s): C++
5245
f1b238df 5246@item Purpose: Specify the namespace for the parser class.
67501061
AD
5247For example, if you specify:
5248
5249@smallexample
5250%define api.namespace "foo::bar"
5251@end smallexample
5252
5253Bison uses @code{foo::bar} verbatim in references such as:
5254
5255@smallexample
5256foo::bar::parser::semantic_type
5257@end smallexample
5258
5259However, to open a namespace, Bison removes any leading @code{::} and then
5260splits on any remaining occurrences:
5261
5262@smallexample
5263namespace foo @{ namespace bar @{
5264 class position;
5265 class location;
5266@} @}
5267@end smallexample
5268
5269@item Accepted Values:
5270Any absolute or relative C++ namespace reference without a trailing
5271@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5272
5273@item Default Value:
5274The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5275This usage of @code{%name-prefix} is for backward compatibility and can
5276be confusing since @code{%name-prefix} also specifies the textual prefix
5277for the lexical analyzer function. Thus, if you specify
5278@code{%name-prefix}, it is best to also specify @samp{%define
5279api.namespace} so that @code{%name-prefix} @emph{only} affects the
5280lexical analyzer function. For example, if you specify:
5281
5282@smallexample
5283%define api.namespace "foo"
5284%name-prefix "bar::"
5285@end smallexample
5286
5287The parser namespace is @code{foo} and @code{yylex} is referenced as
5288@code{bar::lex}.
5289@end itemize
5290@c namespace
5291
5292
5293
5294@c ================================================== api.pure
d9df47b6
JD
5295@item api.pure
5296@findex %define api.pure
5297
5298@itemize @bullet
5299@item Language(s): C
5300
5301@item Purpose: Request a pure (reentrant) parser program.
5302@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5303
5304@item Accepted Values: Boolean
5305
cf499cff 5306@item Default Value: @code{false}
d9df47b6 5307@end itemize
71b00ed8 5308@c api.pure
d9df47b6 5309
67501061
AD
5310
5311
5312@c ================================================== api.push-pull
67212941
JD
5313@item api.push-pull
5314@findex %define api.push-pull
793fbca5
JD
5315
5316@itemize @bullet
eb45ef3b 5317@item Language(s): C (deterministic parsers only)
793fbca5 5318
f1b238df 5319@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5320@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5321(The current push parsing interface is experimental and may evolve.
5322More user feedback will help to stabilize it.)
793fbca5 5323
cf499cff 5324@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5325
cf499cff 5326@item Default Value: @code{pull}
793fbca5 5327@end itemize
67212941 5328@c api.push-pull
71b00ed8 5329
6b5a0de9
AD
5330
5331
5332@c ================================================== api.tokens.prefix
4c6622c2
AD
5333@item api.tokens.prefix
5334@findex %define api.tokens.prefix
5335
5336@itemize
5337@item Languages(s): all
5338
5339@item Purpose:
5340Add a prefix to the token names when generating their definition in the
5341target language. For instance
5342
5343@example
5344%token FILE for ERROR
5345%define api.tokens.prefix "TOK_"
5346%%
5347start: FILE for ERROR;
5348@end example
5349
5350@noindent
5351generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5352and @code{TOK_ERROR} in the generated source files. In particular, the
5353scanner must use these prefixed token names, while the grammar itself
5354may still use the short names (as in the sample rule given above). The
5355generated informational files (@file{*.output}, @file{*.xml},
5356@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5357and @ref{Calc++ Scanner}, for a complete example.
5358
5359@item Accepted Values:
5360Any string. Should be a valid identifier prefix in the target language,
5361in other words, it should typically be an identifier itself (sequence of
5362letters, underscores, and ---not at the beginning--- digits).
5363
5364@item Default Value:
5365empty
5366@end itemize
5367@c api.tokens.prefix
5368
5369
3cdc21cf 5370@c ================================================== lex_symbol
84072495 5371@item lex_symbol
3cdc21cf
AD
5372@findex %define lex_symbol
5373
5374@itemize @bullet
5375@item Language(s):
5376C++
5377
5378@item Purpose:
5379When variant-based semantic values are enabled (@pxref{C++ Variants}),
5380request that symbols be handled as a whole (type, value, and possibly
5381location) in the scanner. @xref{Complete Symbols}, for details.
5382
5383@item Accepted Values:
5384Boolean.
5385
5386@item Default Value:
5387@code{false}
5388@end itemize
5389@c lex_symbol
5390
5391
6b5a0de9
AD
5392@c ================================================== lr.default-reductions
5393
5bab9d08 5394@item lr.default-reductions
5bab9d08 5395@findex %define lr.default-reductions
eb45ef3b
JD
5396
5397@itemize @bullet
5398@item Language(s): all
5399
fcf834f9 5400@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5401contain default reductions. @xref{Default Reductions}. (The ability to
5402specify where default reductions should be used is experimental. More user
5403feedback will help to stabilize it.)
eb45ef3b 5404
f0ad1b2f 5405@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5406@item Default Value:
5407@itemize
cf499cff 5408@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5409@item @code{most} otherwise.
eb45ef3b
JD
5410@end itemize
5411@end itemize
5412
6b5a0de9
AD
5413@c ============================================ lr.keep-unreachable-states
5414
67212941
JD
5415@item lr.keep-unreachable-states
5416@findex %define lr.keep-unreachable-states
31984206
JD
5417
5418@itemize @bullet
5419@item Language(s): all
f1b238df 5420@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5421remain in the parser tables. @xref{Unreachable States}.
31984206 5422@item Accepted Values: Boolean
cf499cff 5423@item Default Value: @code{false}
31984206 5424@end itemize
67212941 5425@c lr.keep-unreachable-states
31984206 5426
6b5a0de9
AD
5427@c ================================================== lr.type
5428
eb45ef3b
JD
5429@item lr.type
5430@findex %define lr.type
eb45ef3b
JD
5431
5432@itemize @bullet
5433@item Language(s): all
5434
f1b238df 5435@item Purpose: Specify the type of parser tables within the
7fceb615 5436LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5437More user feedback will help to stabilize it.)
5438
7fceb615 5439@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5440
cf499cff 5441@item Default Value: @code{lalr}
eb45ef3b
JD
5442@end itemize
5443
67501061
AD
5444
5445@c ================================================== namespace
793fbca5
JD
5446@item namespace
5447@findex %define namespace
67501061 5448Obsoleted by @code{api.namespace}
fa819509
AD
5449@c namespace
5450
31b850d2
AD
5451
5452@c ================================================== parse.assert
0c90a1f5
AD
5453@item parse.assert
5454@findex %define parse.assert
5455
5456@itemize
5457@item Languages(s): C++
5458
5459@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5460In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5461constructed and
0c90a1f5
AD
5462destroyed properly. This option checks these constraints.
5463
5464@item Accepted Values: Boolean
5465
5466@item Default Value: @code{false}
5467@end itemize
5468@c parse.assert
5469
31b850d2
AD
5470
5471@c ================================================== parse.error
5472@item parse.error
5473@findex %define parse.error
5474@itemize
5475@item Languages(s):
fcf834f9 5476all
31b850d2
AD
5477@item Purpose:
5478Control the kind of error messages passed to the error reporting
5479function. @xref{Error Reporting, ,The Error Reporting Function
5480@code{yyerror}}.
5481@item Accepted Values:
5482@itemize
cf499cff 5483@item @code{simple}
31b850d2
AD
5484Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5485error"}}.
cf499cff 5486@item @code{verbose}
7fceb615
JD
5487Error messages report the unexpected token, and possibly the expected ones.
5488However, this report can often be incorrect when LAC is not enabled
5489(@pxref{LAC}).
31b850d2
AD
5490@end itemize
5491
5492@item Default Value:
5493@code{simple}
5494@end itemize
5495@c parse.error
5496
5497
fcf834f9
JD
5498@c ================================================== parse.lac
5499@item parse.lac
5500@findex %define parse.lac
fcf834f9
JD
5501
5502@itemize
7fceb615 5503@item Languages(s): C (deterministic parsers only)
fcf834f9 5504
8a4281b9 5505@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5506syntax error handling. @xref{LAC}.
fcf834f9 5507@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5508@item Default Value: @code{none}
5509@end itemize
5510@c parse.lac
5511
31b850d2 5512@c ================================================== parse.trace
fa819509
AD
5513@item parse.trace
5514@findex %define parse.trace
5515
5516@itemize
5517@item Languages(s): C, C++
5518
5519@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5520In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5521file if it is not already defined, so that the debugging facilities are
5522compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5523
fa819509
AD
5524@item Accepted Values: Boolean
5525
5526@item Default Value: @code{false}
5527@end itemize
fa819509 5528@c parse.trace
99c08fb6 5529
3cdc21cf
AD
5530@c ================================================== variant
5531@item variant
5532@findex %define variant
5533
5534@itemize @bullet
5535@item Language(s):
5536C++
5537
5538@item Purpose:
f1b238df 5539Request variant-based semantic values.
3cdc21cf
AD
5540@xref{C++ Variants}.
5541
5542@item Accepted Values:
5543Boolean.
5544
5545@item Default Value:
5546@code{false}
5547@end itemize
5548@c variant
99c08fb6 5549@end table
592d0b1e 5550
d8988b2f 5551
e0c07222
JD
5552@node %code Summary
5553@subsection %code Summary
e0c07222 5554@findex %code
e0c07222 5555@cindex Prologue
51151d91
JD
5556
5557The @code{%code} directive inserts code verbatim into the output
5558parser source at any of a predefined set of locations. It thus serves
5559as a flexible and user-friendly alternative to the traditional Yacc
5560prologue, @code{%@{@var{code}%@}}. This section summarizes the
5561functionality of @code{%code} for the various target languages
5562supported by Bison. For a detailed discussion of how to use
5563@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5564is advantageous to do so, @pxref{Prologue Alternatives}.
5565
5566@deffn {Directive} %code @{@var{code}@}
5567This is the unqualified form of the @code{%code} directive. It
5568inserts @var{code} verbatim at a language-dependent default location
5569in the parser implementation.
5570
e0c07222 5571For C/C++, the default location is the parser implementation file
51151d91
JD
5572after the usual contents of the parser header file. Thus, the
5573unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5574
5575For Java, the default location is inside the parser class.
5576@end deffn
5577
5578@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5579This is the qualified form of the @code{%code} directive.
51151d91
JD
5580@var{qualifier} identifies the purpose of @var{code} and thus the
5581location(s) where Bison should insert it. That is, if you need to
5582specify location-sensitive @var{code} that does not belong at the
5583default location selected by the unqualified @code{%code} form, use
5584this form instead.
5585@end deffn
5586
5587For any particular qualifier or for the unqualified form, if there are
5588multiple occurrences of the @code{%code} directive, Bison concatenates
5589the specified code in the order in which it appears in the grammar
5590file.
e0c07222 5591
51151d91
JD
5592Not all qualifiers are accepted for all target languages. Unaccepted
5593qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5594
84072495 5595@table @code
e0c07222
JD
5596@item requires
5597@findex %code requires
5598
5599@itemize @bullet
5600@item Language(s): C, C++
5601
5602@item Purpose: This is the best place to write dependency code required for
5603@code{YYSTYPE} and @code{YYLTYPE}.
5604In other words, it's the best place to define types referenced in @code{%union}
5605directives, and it's the best place to override Bison's default @code{YYSTYPE}
5606and @code{YYLTYPE} definitions.
5607
5608@item Location(s): The parser header file and the parser implementation file
5609before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5610definitions.
5611@end itemize
5612
5613@item provides
5614@findex %code provides
5615
5616@itemize @bullet
5617@item Language(s): C, C++
5618
5619@item Purpose: This is the best place to write additional definitions and
5620declarations that should be provided to other modules.
5621
5622@item Location(s): The parser header file and the parser implementation
5623file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5624token definitions.
5625@end itemize
5626
5627@item top
5628@findex %code top
5629
5630@itemize @bullet
5631@item Language(s): C, C++
5632
5633@item Purpose: The unqualified @code{%code} or @code{%code requires}
5634should usually be more appropriate than @code{%code top}. However,
5635occasionally it is necessary to insert code much nearer the top of the
5636parser implementation file. For example:
5637
5638@smallexample
5639%code top @{
5640 #define _GNU_SOURCE
5641 #include <stdio.h>
5642@}
5643@end smallexample
5644
5645@item Location(s): Near the top of the parser implementation file.
5646@end itemize
5647
5648@item imports
5649@findex %code imports
5650
5651@itemize @bullet
5652@item Language(s): Java
5653
5654@item Purpose: This is the best place to write Java import directives.
5655
5656@item Location(s): The parser Java file after any Java package directive and
5657before any class definitions.
5658@end itemize
84072495 5659@end table
e0c07222 5660
51151d91
JD
5661Though we say the insertion locations are language-dependent, they are
5662technically skeleton-dependent. Writers of non-standard skeletons
5663however should choose their locations consistently with the behavior
5664of the standard Bison skeletons.
e0c07222 5665
d8988b2f 5666
342b8b6e 5667@node Multiple Parsers
bfa74976
RS
5668@section Multiple Parsers in the Same Program
5669
5670Most programs that use Bison parse only one language and therefore contain
5671only one Bison parser. But what if you want to parse more than one
5672language with the same program? Then you need to avoid a name conflict
5673between different definitions of @code{yyparse}, @code{yylval}, and so on.
5674
5675The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5676(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5677functions and variables of the Bison parser to start with @var{prefix}
5678instead of @samp{yy}. You can use this to give each parser distinct
5679names that do not conflict.
bfa74976
RS
5680
5681The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5682@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5683@code{yychar} and @code{yydebug}. If you use a push parser,
5684@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5685@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5686For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5687@code{clex}, and so on.
bfa74976
RS
5688
5689@strong{All the other variables and macros associated with Bison are not
5690renamed.} These others are not global; there is no conflict if the same
5691name is used in different parsers. For example, @code{YYSTYPE} is not
5692renamed, but defining this in different ways in different parsers causes
5693no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5694
ff7571c0
JD
5695The @samp{-p} option works by adding macro definitions to the
5696beginning of the parser implementation file, defining @code{yyparse}
5697as @code{@var{prefix}parse}, and so on. This effectively substitutes
5698one name for the other in the entire parser implementation file.
bfa74976 5699
342b8b6e 5700@node Interface
bfa74976
RS
5701@chapter Parser C-Language Interface
5702@cindex C-language interface
5703@cindex interface
5704
5705The Bison parser is actually a C function named @code{yyparse}. Here we
5706describe the interface conventions of @code{yyparse} and the other
5707functions that it needs to use.
5708
5709Keep in mind that the parser uses many C identifiers starting with
5710@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5711identifier (aside from those in this manual) in an action or in epilogue
5712in the grammar file, you are likely to run into trouble.
bfa74976
RS
5713
5714@menu
f5f419de
DJ
5715* Parser Function:: How to call @code{yyparse} and what it returns.
5716* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5717* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5718* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5719* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5720* Lexical:: You must supply a function @code{yylex}
5721 which reads tokens.
5722* Error Reporting:: You must supply a function @code{yyerror}.
5723* Action Features:: Special features for use in actions.
5724* Internationalization:: How to let the parser speak in the user's
5725 native language.
bfa74976
RS
5726@end menu
5727
342b8b6e 5728@node Parser Function
bfa74976
RS
5729@section The Parser Function @code{yyparse}
5730@findex yyparse
5731
5732You call the function @code{yyparse} to cause parsing to occur. This
5733function reads tokens, executes actions, and ultimately returns when it
5734encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5735write an action which directs @code{yyparse} to return immediately
5736without reading further.
bfa74976 5737
2a8d363a
AD
5738
5739@deftypefun int yyparse (void)
bfa74976
RS
5740The value returned by @code{yyparse} is 0 if parsing was successful (return
5741is due to end-of-input).
5742
b47dbebe
PE
5743The value is 1 if parsing failed because of invalid input, i.e., input
5744that contains a syntax error or that causes @code{YYABORT} to be
5745invoked.
5746
5747The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5748@end deftypefun
bfa74976
RS
5749
5750In an action, you can cause immediate return from @code{yyparse} by using
5751these macros:
5752
2a8d363a 5753@defmac YYACCEPT
bfa74976
RS
5754@findex YYACCEPT
5755Return immediately with value 0 (to report success).
2a8d363a 5756@end defmac
bfa74976 5757
2a8d363a 5758@defmac YYABORT
bfa74976
RS
5759@findex YYABORT
5760Return immediately with value 1 (to report failure).
2a8d363a
AD
5761@end defmac
5762
5763If you use a reentrant parser, you can optionally pass additional
5764parameter information to it in a reentrant way. To do so, use the
5765declaration @code{%parse-param}:
5766
2055a44e 5767@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5768@findex %parse-param
2055a44e
AD
5769Declare that one or more
5770@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5771The @var{argument-declaration} is used when declaring
feeb0eda
PE
5772functions or prototypes. The last identifier in
5773@var{argument-declaration} must be the argument name.
2a8d363a
AD
5774@end deffn
5775
5776Here's an example. Write this in the parser:
5777
5778@example
2055a44e 5779%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5780@end example
5781
5782@noindent
5783Then call the parser like this:
5784
5785@example
5786@{
5787 int nastiness, randomness;
5788 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5789 value = yyparse (&nastiness, &randomness);
5790 @dots{}
5791@}
5792@end example
5793
5794@noindent
5795In the grammar actions, use expressions like this to refer to the data:
5796
5797@example
5798exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5799@end example
5800
9987d1b3
JD
5801@node Push Parser Function
5802@section The Push Parser Function @code{yypush_parse}
5803@findex yypush_parse
5804
59da312b
JD
5805(The current push parsing interface is experimental and may evolve.
5806More user feedback will help to stabilize it.)
5807
f4101aa6 5808You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5809function is available if either the @samp{%define api.push-pull push} or
5810@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5811@xref{Push Decl, ,A Push Parser}.
5812
5813@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5814The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5815following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5816is required to finish parsing the grammar.
5817@end deftypefun
5818
5819@node Pull Parser Function
5820@section The Pull Parser Function @code{yypull_parse}
5821@findex yypull_parse
5822
59da312b
JD
5823(The current push parsing interface is experimental and may evolve.
5824More user feedback will help to stabilize it.)
5825
f4101aa6 5826You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5827stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5828declaration is used.
9987d1b3
JD
5829@xref{Push Decl, ,A Push Parser}.
5830
5831@deftypefun int yypull_parse (yypstate *yyps)
5832The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5833@end deftypefun
5834
5835@node Parser Create Function
5836@section The Parser Create Function @code{yystate_new}
5837@findex yypstate_new
5838
59da312b
JD
5839(The current push parsing interface is experimental and may evolve.
5840More user feedback will help to stabilize it.)
5841
f4101aa6 5842You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5843This function is available if either the @samp{%define api.push-pull push} or
5844@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5845@xref{Push Decl, ,A Push Parser}.
5846
5847@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5848The function will return a valid parser instance if there was memory available
333e670c
JD
5849or 0 if no memory was available.
5850In impure mode, it will also return 0 if a parser instance is currently
5851allocated.
9987d1b3
JD
5852@end deftypefun
5853
5854@node Parser Delete Function
5855@section The Parser Delete Function @code{yystate_delete}
5856@findex yypstate_delete
5857
59da312b
JD
5858(The current push parsing interface is experimental and may evolve.
5859More user feedback will help to stabilize it.)
5860
9987d1b3 5861You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5862function is available if either the @samp{%define api.push-pull push} or
5863@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5864@xref{Push Decl, ,A Push Parser}.
5865
5866@deftypefun void yypstate_delete (yypstate *yyps)
5867This function will reclaim the memory associated with a parser instance.
5868After this call, you should no longer attempt to use the parser instance.
5869@end deftypefun
bfa74976 5870
342b8b6e 5871@node Lexical
bfa74976
RS
5872@section The Lexical Analyzer Function @code{yylex}
5873@findex yylex
5874@cindex lexical analyzer
5875
5876The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5877the input stream and returns them to the parser. Bison does not create
5878this function automatically; you must write it so that @code{yyparse} can
5879call it. The function is sometimes referred to as a lexical scanner.
5880
ff7571c0
JD
5881In simple programs, @code{yylex} is often defined at the end of the
5882Bison grammar file. If @code{yylex} is defined in a separate source
5883file, you need to arrange for the token-type macro definitions to be
5884available there. To do this, use the @samp{-d} option when you run
5885Bison, so that it will write these macro definitions into the separate
5886parser header file, @file{@var{name}.tab.h}, which you can include in
5887the other source files that need it. @xref{Invocation, ,Invoking
5888Bison}.
bfa74976
RS
5889
5890@menu
5891* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5892* Token Values:: How @code{yylex} must return the semantic value
5893 of the token it has read.
5894* Token Locations:: How @code{yylex} must return the text location
5895 (line number, etc.) of the token, if the
5896 actions want that.
5897* Pure Calling:: How the calling convention differs in a pure parser
5898 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5899@end menu
5900
342b8b6e 5901@node Calling Convention
bfa74976
RS
5902@subsection Calling Convention for @code{yylex}
5903
72d2299c
PE
5904The value that @code{yylex} returns must be the positive numeric code
5905for the type of token it has just found; a zero or negative value
5906signifies end-of-input.
bfa74976
RS
5907
5908When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
5909in the parser implementation file becomes a C macro whose definition
5910is the proper numeric code for that token type. So @code{yylex} can
5911use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5912
5913When a token is referred to in the grammar rules by a character literal,
5914the numeric code for that character is also the code for the token type.
72d2299c
PE
5915So @code{yylex} can simply return that character code, possibly converted
5916to @code{unsigned char} to avoid sign-extension. The null character
5917must not be used this way, because its code is zero and that
bfa74976
RS
5918signifies end-of-input.
5919
5920Here is an example showing these things:
5921
5922@example
13863333
AD
5923int
5924yylex (void)
bfa74976
RS
5925@{
5926 @dots{}
72d2299c 5927 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5928 return 0;
5929 @dots{}
5930 if (c == '+' || c == '-')
72d2299c 5931 return c; /* Assume token type for `+' is '+'. */
bfa74976 5932 @dots{}
72d2299c 5933 return INT; /* Return the type of the token. */
bfa74976
RS
5934 @dots{}
5935@}
5936@end example
5937
5938@noindent
5939This interface has been designed so that the output from the @code{lex}
5940utility can be used without change as the definition of @code{yylex}.
5941
931c7513
RS
5942If the grammar uses literal string tokens, there are two ways that
5943@code{yylex} can determine the token type codes for them:
5944
5945@itemize @bullet
5946@item
5947If the grammar defines symbolic token names as aliases for the
5948literal string tokens, @code{yylex} can use these symbolic names like
5949all others. In this case, the use of the literal string tokens in
5950the grammar file has no effect on @code{yylex}.
5951
5952@item
9ecbd125 5953@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5954table. The index of the token in the table is the token type's code.
9ecbd125 5955The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5956double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5957token's characters are escaped as necessary to be suitable as input
5958to Bison.
931c7513 5959
9e0876fb
PE
5960Here's code for looking up a multicharacter token in @code{yytname},
5961assuming that the characters of the token are stored in
5962@code{token_buffer}, and assuming that the token does not contain any
5963characters like @samp{"} that require escaping.
931c7513
RS
5964
5965@smallexample
5966for (i = 0; i < YYNTOKENS; i++)
5967 @{
5968 if (yytname[i] != 0
5969 && yytname[i][0] == '"'
68449b3a
PE
5970 && ! strncmp (yytname[i] + 1, token_buffer,
5971 strlen (token_buffer))
931c7513
RS
5972 && yytname[i][strlen (token_buffer) + 1] == '"'
5973 && yytname[i][strlen (token_buffer) + 2] == 0)
5974 break;
5975 @}
5976@end smallexample
5977
5978The @code{yytname} table is generated only if you use the
8c9a50be 5979@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5980@end itemize
5981
342b8b6e 5982@node Token Values
bfa74976
RS
5983@subsection Semantic Values of Tokens
5984
5985@vindex yylval
9d9b8b70 5986In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5987be stored into the global variable @code{yylval}. When you are using
5988just one data type for semantic values, @code{yylval} has that type.
5989Thus, if the type is @code{int} (the default), you might write this in
5990@code{yylex}:
5991
5992@example
5993@group
5994 @dots{}
72d2299c
PE
5995 yylval = value; /* Put value onto Bison stack. */
5996 return INT; /* Return the type of the token. */
bfa74976
RS
5997 @dots{}
5998@end group
5999@end example
6000
6001When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6002made from the @code{%union} declaration (@pxref{Union Decl, ,The
6003Collection of Value Types}). So when you store a token's value, you
6004must use the proper member of the union. If the @code{%union}
6005declaration looks like this:
bfa74976
RS
6006
6007@example
6008@group
6009%union @{
6010 int intval;
6011 double val;
6012 symrec *tptr;
6013@}
6014@end group
6015@end example
6016
6017@noindent
6018then the code in @code{yylex} might look like this:
6019
6020@example
6021@group
6022 @dots{}
72d2299c
PE
6023 yylval.intval = value; /* Put value onto Bison stack. */
6024 return INT; /* Return the type of the token. */
bfa74976
RS
6025 @dots{}
6026@end group
6027@end example
6028
95923bd6
AD
6029@node Token Locations
6030@subsection Textual Locations of Tokens
bfa74976
RS
6031
6032@vindex yylloc
303834cc
JD
6033If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6034in actions to keep track of the textual locations of tokens and groupings,
6035then you must provide this information in @code{yylex}. The function
6036@code{yyparse} expects to find the textual location of a token just parsed
6037in the global variable @code{yylloc}. So @code{yylex} must store the proper
6038data in that variable.
847bf1f5
AD
6039
6040By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6041initialize the members that are going to be used by the actions. The
6042four members are called @code{first_line}, @code{first_column},
6043@code{last_line} and @code{last_column}. Note that the use of this
6044feature makes the parser noticeably slower.
bfa74976
RS
6045
6046@tindex YYLTYPE
6047The data type of @code{yylloc} has the name @code{YYLTYPE}.
6048
342b8b6e 6049@node Pure Calling
c656404a 6050@subsection Calling Conventions for Pure Parsers
bfa74976 6051
67501061 6052When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6053pure, reentrant parser, the global communication variables @code{yylval}
6054and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6055Parser}.) In such parsers the two global variables are replaced by
6056pointers passed as arguments to @code{yylex}. You must declare them as
6057shown here, and pass the information back by storing it through those
6058pointers.
bfa74976
RS
6059
6060@example
13863333
AD
6061int
6062yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6063@{
6064 @dots{}
6065 *lvalp = value; /* Put value onto Bison stack. */
6066 return INT; /* Return the type of the token. */
6067 @dots{}
6068@}
6069@end example
6070
6071If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6072textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6073this case, omit the second argument; @code{yylex} will be called with
6074only one argument.
6075
2055a44e 6076If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6077@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6078Function}). To pass additional arguments to both @code{yylex} and
6079@code{yyparse}, use @code{%param}.
e425e872 6080
2055a44e 6081@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6082@findex %lex-param
2055a44e
AD
6083Specify that @var{argument-declaration} are additional @code{yylex} argument
6084declarations. You may pass one or more such declarations, which is
6085equivalent to repeating @code{%lex-param}.
6086@end deffn
6087
6088@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6089@findex %param
6090Specify that @var{argument-declaration} are additional
6091@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6092@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6093@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6094declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6095@end deffn
e425e872 6096
2a8d363a 6097For instance:
e425e872
RS
6098
6099@example
2055a44e
AD
6100%lex-param @{scanner_mode *mode@}
6101%parse-param @{parser_mode *mode@}
6102%param @{environment_type *env@}
e425e872
RS
6103@end example
6104
6105@noindent
2a8d363a 6106results in the following signature:
e425e872
RS
6107
6108@example
2055a44e
AD
6109int yylex (scanner_mode *mode, environment_type *env);
6110int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6111@end example
6112
67501061 6113If @samp{%define api.pure} is added:
c656404a
RS
6114
6115@example
2055a44e
AD
6116int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6117int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6118@end example
6119
2a8d363a 6120@noindent
67501061 6121and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6122
2a8d363a 6123@example
2055a44e
AD
6124int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6125 scanner_mode *mode, environment_type *env);
6126int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6127@end example
931c7513 6128
342b8b6e 6129@node Error Reporting
bfa74976
RS
6130@section The Error Reporting Function @code{yyerror}
6131@cindex error reporting function
6132@findex yyerror
6133@cindex parse error
6134@cindex syntax error
6135
31b850d2 6136The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6137whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6138action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6139macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6140in Actions}).
bfa74976
RS
6141
6142The Bison parser expects to report the error by calling an error
6143reporting function named @code{yyerror}, which you must supply. It is
6144called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6145receives one argument. For a syntax error, the string is normally
6146@w{@code{"syntax error"}}.
bfa74976 6147
31b850d2 6148@findex %define parse.error
7fceb615
JD
6149If you invoke @samp{%define parse.error verbose} in the Bison declarations
6150section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6151Bison provides a more verbose and specific error message string instead of
6152just plain @w{@code{"syntax error"}}. However, that message sometimes
6153contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6154
1a059451
PE
6155The parser can detect one other kind of error: memory exhaustion. This
6156can happen when the input contains constructions that are very deeply
bfa74976 6157nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6158parser normally extends its stack automatically up to a very large limit. But
6159if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6160fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6161
6162In some cases diagnostics like @w{@code{"syntax error"}} are
6163translated automatically from English to some other language before
6164they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6165
6166The following definition suffices in simple programs:
6167
6168@example
6169@group
13863333 6170void
38a92d50 6171yyerror (char const *s)
bfa74976
RS
6172@{
6173@end group
6174@group
6175 fprintf (stderr, "%s\n", s);
6176@}
6177@end group
6178@end example
6179
6180After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6181error recovery if you have written suitable error recovery grammar rules
6182(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6183immediately return 1.
6184
93724f13 6185Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6186an access to the current location.
8a4281b9 6187This is indeed the case for the GLR
2a8d363a 6188parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6189@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6190@code{yyerror} are:
6191
6192@example
38a92d50
PE
6193void yyerror (char const *msg); /* Yacc parsers. */
6194void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6195@end example
6196
feeb0eda 6197If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6198
6199@example
b317297e
PE
6200void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6201void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6202@end example
6203
8a4281b9 6204Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6205convention for absolutely pure parsers, i.e., when the calling
6206convention of @code{yylex} @emph{and} the calling convention of
67501061 6207@samp{%define api.pure} are pure.
d9df47b6 6208I.e.:
2a8d363a
AD
6209
6210@example
6211/* Location tracking. */
6212%locations
6213/* Pure yylex. */
d9df47b6 6214%define api.pure
feeb0eda 6215%lex-param @{int *nastiness@}
2a8d363a 6216/* Pure yyparse. */
feeb0eda
PE
6217%parse-param @{int *nastiness@}
6218%parse-param @{int *randomness@}
2a8d363a
AD
6219@end example
6220
6221@noindent
6222results in the following signatures for all the parser kinds:
6223
6224@example
6225int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6226int yyparse (int *nastiness, int *randomness);
93724f13
AD
6227void yyerror (YYLTYPE *locp,
6228 int *nastiness, int *randomness,
38a92d50 6229 char const *msg);
2a8d363a
AD
6230@end example
6231
1c0c3e95 6232@noindent
38a92d50
PE
6233The prototypes are only indications of how the code produced by Bison
6234uses @code{yyerror}. Bison-generated code always ignores the returned
6235value, so @code{yyerror} can return any type, including @code{void}.
6236Also, @code{yyerror} can be a variadic function; that is why the
6237message is always passed last.
6238
6239Traditionally @code{yyerror} returns an @code{int} that is always
6240ignored, but this is purely for historical reasons, and @code{void} is
6241preferable since it more accurately describes the return type for
6242@code{yyerror}.
93724f13 6243
bfa74976
RS
6244@vindex yynerrs
6245The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6246reported so far. Normally this variable is global; but if you
704a47c4
AD
6247request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6248then it is a local variable which only the actions can access.
bfa74976 6249
342b8b6e 6250@node Action Features
bfa74976
RS
6251@section Special Features for Use in Actions
6252@cindex summary, action features
6253@cindex action features summary
6254
6255Here is a table of Bison constructs, variables and macros that
6256are useful in actions.
6257
18b519c0 6258@deffn {Variable} $$
bfa74976
RS
6259Acts like a variable that contains the semantic value for the
6260grouping made by the current rule. @xref{Actions}.
18b519c0 6261@end deffn
bfa74976 6262
18b519c0 6263@deffn {Variable} $@var{n}
bfa74976
RS
6264Acts like a variable that contains the semantic value for the
6265@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6266@end deffn
bfa74976 6267
18b519c0 6268@deffn {Variable} $<@var{typealt}>$
bfa74976 6269Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6270specified by the @code{%union} declaration. @xref{Action Types, ,Data
6271Types of Values in Actions}.
18b519c0 6272@end deffn
bfa74976 6273
18b519c0 6274@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6275Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6276union specified by the @code{%union} declaration.
e0c471a9 6277@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6278@end deffn
bfa74976 6279
18b519c0 6280@deffn {Macro} YYABORT;
bfa74976
RS
6281Return immediately from @code{yyparse}, indicating failure.
6282@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6283@end deffn
bfa74976 6284
18b519c0 6285@deffn {Macro} YYACCEPT;
bfa74976
RS
6286Return immediately from @code{yyparse}, indicating success.
6287@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6288@end deffn
bfa74976 6289
18b519c0 6290@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6291@findex YYBACKUP
6292Unshift a token. This macro is allowed only for rules that reduce
742e4900 6293a single value, and only when there is no lookahead token.
8a4281b9 6294It is also disallowed in GLR parsers.
742e4900 6295It installs a lookahead token with token type @var{token} and
bfa74976
RS
6296semantic value @var{value}; then it discards the value that was
6297going to be reduced by this rule.
6298
6299If the macro is used when it is not valid, such as when there is
742e4900 6300a lookahead token already, then it reports a syntax error with
bfa74976
RS
6301a message @samp{cannot back up} and performs ordinary error
6302recovery.
6303
6304In either case, the rest of the action is not executed.
18b519c0 6305@end deffn
bfa74976 6306
18b519c0 6307@deffn {Macro} YYEMPTY
bfa74976 6308@vindex YYEMPTY
742e4900 6309Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6310@end deffn
bfa74976 6311
32c29292
JD
6312@deffn {Macro} YYEOF
6313@vindex YYEOF
742e4900 6314Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6315stream.
6316@end deffn
6317
18b519c0 6318@deffn {Macro} YYERROR;
bfa74976
RS
6319@findex YYERROR
6320Cause an immediate syntax error. This statement initiates error
6321recovery just as if the parser itself had detected an error; however, it
6322does not call @code{yyerror}, and does not print any message. If you
6323want to print an error message, call @code{yyerror} explicitly before
6324the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6325@end deffn
bfa74976 6326
18b519c0 6327@deffn {Macro} YYRECOVERING
02103984
PE
6328@findex YYRECOVERING
6329The expression @code{YYRECOVERING ()} yields 1 when the parser
6330is recovering from a syntax error, and 0 otherwise.
bfa74976 6331@xref{Error Recovery}.
18b519c0 6332@end deffn
bfa74976 6333
18b519c0 6334@deffn {Variable} yychar
742e4900
JD
6335Variable containing either the lookahead token, or @code{YYEOF} when the
6336lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6337has been performed so the next token is not yet known.
6338Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6339Actions}).
742e4900 6340@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6341@end deffn
bfa74976 6342
18b519c0 6343@deffn {Macro} yyclearin;
742e4900 6344Discard the current lookahead token. This is useful primarily in
32c29292
JD
6345error rules.
6346Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6347Semantic Actions}).
6348@xref{Error Recovery}.
18b519c0 6349@end deffn
bfa74976 6350
18b519c0 6351@deffn {Macro} yyerrok;
bfa74976 6352Resume generating error messages immediately for subsequent syntax
13863333 6353errors. This is useful primarily in error rules.
bfa74976 6354@xref{Error Recovery}.
18b519c0 6355@end deffn
bfa74976 6356
32c29292 6357@deffn {Variable} yylloc
742e4900 6358Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6359to @code{YYEMPTY} or @code{YYEOF}.
6360Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6361Actions}).
6362@xref{Actions and Locations, ,Actions and Locations}.
6363@end deffn
6364
6365@deffn {Variable} yylval
742e4900 6366Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6367not set to @code{YYEMPTY} or @code{YYEOF}.
6368Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6369Actions}).
6370@xref{Actions, ,Actions}.
6371@end deffn
6372
18b519c0 6373@deffn {Value} @@$
847bf1f5 6374@findex @@$
303834cc
JD
6375Acts like a structure variable containing information on the textual
6376location of the grouping made by the current rule. @xref{Tracking
6377Locations}.
bfa74976 6378
847bf1f5
AD
6379@c Check if those paragraphs are still useful or not.
6380
6381@c @example
6382@c struct @{
6383@c int first_line, last_line;
6384@c int first_column, last_column;
6385@c @};
6386@c @end example
6387
6388@c Thus, to get the starting line number of the third component, you would
6389@c use @samp{@@3.first_line}.
bfa74976 6390
847bf1f5
AD
6391@c In order for the members of this structure to contain valid information,
6392@c you must make @code{yylex} supply this information about each token.
6393@c If you need only certain members, then @code{yylex} need only fill in
6394@c those members.
bfa74976 6395
847bf1f5 6396@c The use of this feature makes the parser noticeably slower.
18b519c0 6397@end deffn
847bf1f5 6398
18b519c0 6399@deffn {Value} @@@var{n}
847bf1f5 6400@findex @@@var{n}
303834cc
JD
6401Acts like a structure variable containing information on the textual
6402location of the @var{n}th component of the current rule. @xref{Tracking
6403Locations}.
18b519c0 6404@end deffn
bfa74976 6405
f7ab6a50
PE
6406@node Internationalization
6407@section Parser Internationalization
6408@cindex internationalization
6409@cindex i18n
6410@cindex NLS
6411@cindex gettext
6412@cindex bison-po
6413
6414A Bison-generated parser can print diagnostics, including error and
6415tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6416also supports outputting diagnostics in the user's native language. To
6417make this work, the user should set the usual environment variables.
6418@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6419For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6420set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6421encoding. The exact set of available locales depends on the user's
6422installation.
6423
6424The maintainer of a package that uses a Bison-generated parser enables
6425the internationalization of the parser's output through the following
8a4281b9
JD
6426steps. Here we assume a package that uses GNU Autoconf and
6427GNU Automake.
f7ab6a50
PE
6428
6429@enumerate
6430@item
30757c8c 6431@cindex bison-i18n.m4
8a4281b9 6432Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6433by the package---often called @file{m4}---copy the
6434@file{bison-i18n.m4} file installed by Bison under
6435@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6436For example:
6437
6438@example
6439cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6440@end example
6441
6442@item
30757c8c
PE
6443@findex BISON_I18N
6444@vindex BISON_LOCALEDIR
6445@vindex YYENABLE_NLS
f7ab6a50
PE
6446In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6447invocation, add an invocation of @code{BISON_I18N}. This macro is
6448defined in the file @file{bison-i18n.m4} that you copied earlier. It
6449causes @samp{configure} to find the value of the
30757c8c
PE
6450@code{BISON_LOCALEDIR} variable, and it defines the source-language
6451symbol @code{YYENABLE_NLS} to enable translations in the
6452Bison-generated parser.
f7ab6a50
PE
6453
6454@item
6455In the @code{main} function of your program, designate the directory
6456containing Bison's runtime message catalog, through a call to
6457@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6458For example:
6459
6460@example
6461bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6462@end example
6463
6464Typically this appears after any other call @code{bindtextdomain
6465(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6466@samp{BISON_LOCALEDIR} to be defined as a string through the
6467@file{Makefile}.
6468
6469@item
6470In the @file{Makefile.am} that controls the compilation of the @code{main}
6471function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6472either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6473
6474@example
6475DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6476@end example
6477
6478or:
6479
6480@example
6481AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6482@end example
6483
6484@item
6485Finally, invoke the command @command{autoreconf} to generate the build
6486infrastructure.
6487@end enumerate
6488
bfa74976 6489
342b8b6e 6490@node Algorithm
13863333
AD
6491@chapter The Bison Parser Algorithm
6492@cindex Bison parser algorithm
bfa74976
RS
6493@cindex algorithm of parser
6494@cindex shifting
6495@cindex reduction
6496@cindex parser stack
6497@cindex stack, parser
6498
6499As Bison reads tokens, it pushes them onto a stack along with their
6500semantic values. The stack is called the @dfn{parser stack}. Pushing a
6501token is traditionally called @dfn{shifting}.
6502
6503For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6504@samp{3} to come. The stack will have four elements, one for each token
6505that was shifted.
6506
6507But the stack does not always have an element for each token read. When
6508the last @var{n} tokens and groupings shifted match the components of a
6509grammar rule, they can be combined according to that rule. This is called
6510@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6511single grouping whose symbol is the result (left hand side) of that rule.
6512Running the rule's action is part of the process of reduction, because this
6513is what computes the semantic value of the resulting grouping.
6514
6515For example, if the infix calculator's parser stack contains this:
6516
6517@example
65181 + 5 * 3
6519@end example
6520
6521@noindent
6522and the next input token is a newline character, then the last three
6523elements can be reduced to 15 via the rule:
6524
6525@example
6526expr: expr '*' expr;
6527@end example
6528
6529@noindent
6530Then the stack contains just these three elements:
6531
6532@example
65331 + 15
6534@end example
6535
6536@noindent
6537At this point, another reduction can be made, resulting in the single value
653816. Then the newline token can be shifted.
6539
6540The parser tries, by shifts and reductions, to reduce the entire input down
6541to a single grouping whose symbol is the grammar's start-symbol
6542(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6543
6544This kind of parser is known in the literature as a bottom-up parser.
6545
6546@menu
742e4900 6547* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6548* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6549* Precedence:: Operator precedence works by resolving conflicts.
6550* Contextual Precedence:: When an operator's precedence depends on context.
6551* Parser States:: The parser is a finite-state-machine with stack.
6552* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6553* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6554* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6555* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6556* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6557@end menu
6558
742e4900
JD
6559@node Lookahead
6560@section Lookahead Tokens
6561@cindex lookahead token
bfa74976
RS
6562
6563The Bison parser does @emph{not} always reduce immediately as soon as the
6564last @var{n} tokens and groupings match a rule. This is because such a
6565simple strategy is inadequate to handle most languages. Instead, when a
6566reduction is possible, the parser sometimes ``looks ahead'' at the next
6567token in order to decide what to do.
6568
6569When a token is read, it is not immediately shifted; first it becomes the
742e4900 6570@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6571perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6572the lookahead token remains off to the side. When no more reductions
6573should take place, the lookahead token is shifted onto the stack. This
bfa74976 6574does not mean that all possible reductions have been done; depending on the
742e4900 6575token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6576application.
6577
742e4900 6578Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6579expressions which contain binary addition operators and postfix unary
6580factorial operators (@samp{!}), and allow parentheses for grouping.
6581
6582@example
6583@group
6584expr: term '+' expr
6585 | term
6586 ;
6587@end group
6588
6589@group
6590term: '(' expr ')'
6591 | term '!'
6592 | NUMBER
6593 ;
6594@end group
6595@end example
6596
6597Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6598should be done? If the following token is @samp{)}, then the first three
6599tokens must be reduced to form an @code{expr}. This is the only valid
6600course, because shifting the @samp{)} would produce a sequence of symbols
6601@w{@code{term ')'}}, and no rule allows this.
6602
6603If the following token is @samp{!}, then it must be shifted immediately so
6604that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6605parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6606@code{expr}. It would then be impossible to shift the @samp{!} because
6607doing so would produce on the stack the sequence of symbols @code{expr
6608'!'}. No rule allows that sequence.
6609
6610@vindex yychar
32c29292
JD
6611@vindex yylval
6612@vindex yylloc
742e4900 6613The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6614Its semantic value and location, if any, are stored in the variables
6615@code{yylval} and @code{yylloc}.
bfa74976
RS
6616@xref{Action Features, ,Special Features for Use in Actions}.
6617
342b8b6e 6618@node Shift/Reduce
bfa74976
RS
6619@section Shift/Reduce Conflicts
6620@cindex conflicts
6621@cindex shift/reduce conflicts
6622@cindex dangling @code{else}
6623@cindex @code{else}, dangling
6624
6625Suppose we are parsing a language which has if-then and if-then-else
6626statements, with a pair of rules like this:
6627
6628@example
6629@group
6630if_stmt:
6631 IF expr THEN stmt
6632 | IF expr THEN stmt ELSE stmt
6633 ;
6634@end group
6635@end example
6636
6637@noindent
6638Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6639terminal symbols for specific keyword tokens.
6640
742e4900 6641When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6642contents of the stack (assuming the input is valid) are just right for
6643reduction by the first rule. But it is also legitimate to shift the
6644@code{ELSE}, because that would lead to eventual reduction by the second
6645rule.
6646
6647This situation, where either a shift or a reduction would be valid, is
6648called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6649these conflicts by choosing to shift, unless otherwise directed by
6650operator precedence declarations. To see the reason for this, let's
6651contrast it with the other alternative.
6652
6653Since the parser prefers to shift the @code{ELSE}, the result is to attach
6654the else-clause to the innermost if-statement, making these two inputs
6655equivalent:
6656
6657@example
6658if x then if y then win (); else lose;
6659
6660if x then do; if y then win (); else lose; end;
6661@end example
6662
6663But if the parser chose to reduce when possible rather than shift, the
6664result would be to attach the else-clause to the outermost if-statement,
6665making these two inputs equivalent:
6666
6667@example
6668if x then if y then win (); else lose;
6669
6670if x then do; if y then win (); end; else lose;
6671@end example
6672
6673The conflict exists because the grammar as written is ambiguous: either
6674parsing of the simple nested if-statement is legitimate. The established
6675convention is that these ambiguities are resolved by attaching the
6676else-clause to the innermost if-statement; this is what Bison accomplishes
6677by choosing to shift rather than reduce. (It would ideally be cleaner to
6678write an unambiguous grammar, but that is very hard to do in this case.)
6679This particular ambiguity was first encountered in the specifications of
6680Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6681
6682To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6683conflicts, use the @code{%expect @var{n}} declaration.
6684There will be no warning as long as the number of shift/reduce conflicts
6685is exactly @var{n}, and Bison will report an error if there is a
6686different number.
bfa74976
RS
6687@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6688
6689The definition of @code{if_stmt} above is solely to blame for the
6690conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6691rules. Here is a complete Bison grammar file that actually manifests
6692the conflict:
bfa74976
RS
6693
6694@example
6695@group
6696%token IF THEN ELSE variable
6697%%
6698@end group
6699@group
6700stmt: expr
6701 | if_stmt
6702 ;
6703@end group
6704
6705@group
6706if_stmt:
6707 IF expr THEN stmt
6708 | IF expr THEN stmt ELSE stmt
6709 ;
6710@end group
6711
6712expr: variable
6713 ;
6714@end example
6715
342b8b6e 6716@node Precedence
bfa74976
RS
6717@section Operator Precedence
6718@cindex operator precedence
6719@cindex precedence of operators
6720
6721Another situation where shift/reduce conflicts appear is in arithmetic
6722expressions. Here shifting is not always the preferred resolution; the
6723Bison declarations for operator precedence allow you to specify when to
6724shift and when to reduce.
6725
6726@menu
6727* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6728* Using Precedence:: How to specify precedence and associativity.
6729* Precedence Only:: How to specify precedence only.
bfa74976
RS
6730* Precedence Examples:: How these features are used in the previous example.
6731* How Precedence:: How they work.
6732@end menu
6733
342b8b6e 6734@node Why Precedence
bfa74976
RS
6735@subsection When Precedence is Needed
6736
6737Consider the following ambiguous grammar fragment (ambiguous because the
6738input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6739
6740@example
6741@group
6742expr: expr '-' expr
6743 | expr '*' expr
6744 | expr '<' expr
6745 | '(' expr ')'
6746 @dots{}
6747 ;
6748@end group
6749@end example
6750
6751@noindent
6752Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6753should it reduce them via the rule for the subtraction operator? It
6754depends on the next token. Of course, if the next token is @samp{)}, we
6755must reduce; shifting is invalid because no single rule can reduce the
6756token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6757the next token is @samp{*} or @samp{<}, we have a choice: either
6758shifting or reduction would allow the parse to complete, but with
6759different results.
6760
6761To decide which one Bison should do, we must consider the results. If
6762the next operator token @var{op} is shifted, then it must be reduced
6763first in order to permit another opportunity to reduce the difference.
6764The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6765hand, if the subtraction is reduced before shifting @var{op}, the result
6766is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6767reduce should depend on the relative precedence of the operators
6768@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6769@samp{<}.
bfa74976
RS
6770
6771@cindex associativity
6772What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6773@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6774operators we prefer the former, which is called @dfn{left association}.
6775The latter alternative, @dfn{right association}, is desirable for
6776assignment operators. The choice of left or right association is a
6777matter of whether the parser chooses to shift or reduce when the stack
742e4900 6778contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6779makes right-associativity.
bfa74976 6780
342b8b6e 6781@node Using Precedence
bfa74976
RS
6782@subsection Specifying Operator Precedence
6783@findex %left
bfa74976 6784@findex %nonassoc
d78f0ac9
AD
6785@findex %precedence
6786@findex %right
bfa74976
RS
6787
6788Bison allows you to specify these choices with the operator precedence
6789declarations @code{%left} and @code{%right}. Each such declaration
6790contains a list of tokens, which are operators whose precedence and
6791associativity is being declared. The @code{%left} declaration makes all
6792those operators left-associative and the @code{%right} declaration makes
6793them right-associative. A third alternative is @code{%nonassoc}, which
6794declares that it is a syntax error to find the same operator twice ``in a
6795row''.
d78f0ac9
AD
6796The last alternative, @code{%precedence}, allows to define only
6797precedence and no associativity at all. As a result, any
6798associativity-related conflict that remains will be reported as an
6799compile-time error. The directive @code{%nonassoc} creates run-time
6800error: using the operator in a associative way is a syntax error. The
6801directive @code{%precedence} creates compile-time errors: an operator
6802@emph{can} be involved in an associativity-related conflict, contrary to
6803what expected the grammar author.
bfa74976
RS
6804
6805The relative precedence of different operators is controlled by the
d78f0ac9
AD
6806order in which they are declared. The first precedence/associativity
6807declaration in the file declares the operators whose
bfa74976
RS
6808precedence is lowest, the next such declaration declares the operators
6809whose precedence is a little higher, and so on.
6810
d78f0ac9
AD
6811@node Precedence Only
6812@subsection Specifying Precedence Only
6813@findex %precedence
6814
8a4281b9 6815Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6816@code{%nonassoc}, which all defines precedence and associativity, little
6817attention is paid to the fact that precedence cannot be defined without
6818defining associativity. Yet, sometimes, when trying to solve a
6819conflict, precedence suffices. In such a case, using @code{%left},
6820@code{%right}, or @code{%nonassoc} might hide future (associativity
6821related) conflicts that would remain hidden.
6822
6823The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6824Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6825in the following situation, where the period denotes the current parsing
6826state:
6827
6828@example
6829if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6830@end example
6831
6832The conflict involves the reduction of the rule @samp{IF expr THEN
6833stmt}, which precedence is by default that of its last token
6834(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6835disambiguation (attach the @code{else} to the closest @code{if}),
6836shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6837higher than that of @code{THEN}. But neither is expected to be involved
6838in an associativity related conflict, which can be specified as follows.
6839
6840@example
6841%precedence THEN
6842%precedence ELSE
6843@end example
6844
6845The unary-minus is another typical example where associativity is
6846usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6847Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6848used to declare the precedence of @code{NEG}, which is more than needed
6849since it also defines its associativity. While this is harmless in the
6850traditional example, who knows how @code{NEG} might be used in future
6851evolutions of the grammar@dots{}
6852
342b8b6e 6853@node Precedence Examples
bfa74976
RS
6854@subsection Precedence Examples
6855
6856In our example, we would want the following declarations:
6857
6858@example
6859%left '<'
6860%left '-'
6861%left '*'
6862@end example
6863
6864In a more complete example, which supports other operators as well, we
6865would declare them in groups of equal precedence. For example, @code{'+'} is
6866declared with @code{'-'}:
6867
6868@example
6869%left '<' '>' '=' NE LE GE
6870%left '+' '-'
6871%left '*' '/'
6872@end example
6873
6874@noindent
6875(Here @code{NE} and so on stand for the operators for ``not equal''
6876and so on. We assume that these tokens are more than one character long
6877and therefore are represented by names, not character literals.)
6878
342b8b6e 6879@node How Precedence
bfa74976
RS
6880@subsection How Precedence Works
6881
6882The first effect of the precedence declarations is to assign precedence
6883levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6884precedence levels to certain rules: each rule gets its precedence from
6885the last terminal symbol mentioned in the components. (You can also
6886specify explicitly the precedence of a rule. @xref{Contextual
6887Precedence, ,Context-Dependent Precedence}.)
6888
6889Finally, the resolution of conflicts works by comparing the precedence
742e4900 6890of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6891token's precedence is higher, the choice is to shift. If the rule's
6892precedence is higher, the choice is to reduce. If they have equal
6893precedence, the choice is made based on the associativity of that
6894precedence level. The verbose output file made by @samp{-v}
6895(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6896resolved.
bfa74976
RS
6897
6898Not all rules and not all tokens have precedence. If either the rule or
742e4900 6899the lookahead token has no precedence, then the default is to shift.
bfa74976 6900
342b8b6e 6901@node Contextual Precedence
bfa74976
RS
6902@section Context-Dependent Precedence
6903@cindex context-dependent precedence
6904@cindex unary operator precedence
6905@cindex precedence, context-dependent
6906@cindex precedence, unary operator
6907@findex %prec
6908
6909Often the precedence of an operator depends on the context. This sounds
6910outlandish at first, but it is really very common. For example, a minus
6911sign typically has a very high precedence as a unary operator, and a
6912somewhat lower precedence (lower than multiplication) as a binary operator.
6913
d78f0ac9
AD
6914The Bison precedence declarations
6915can only be used once for a given token; so a token has
bfa74976
RS
6916only one precedence declared in this way. For context-dependent
6917precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6918modifier for rules.
bfa74976
RS
6919
6920The @code{%prec} modifier declares the precedence of a particular rule by
6921specifying a terminal symbol whose precedence should be used for that rule.
6922It's not necessary for that symbol to appear otherwise in the rule. The
6923modifier's syntax is:
6924
6925@example
6926%prec @var{terminal-symbol}
6927@end example
6928
6929@noindent
6930and it is written after the components of the rule. Its effect is to
6931assign the rule the precedence of @var{terminal-symbol}, overriding
6932the precedence that would be deduced for it in the ordinary way. The
6933altered rule precedence then affects how conflicts involving that rule
6934are resolved (@pxref{Precedence, ,Operator Precedence}).
6935
6936Here is how @code{%prec} solves the problem of unary minus. First, declare
6937a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6938are no tokens of this type, but the symbol serves to stand for its
6939precedence:
6940
6941@example
6942@dots{}
6943%left '+' '-'
6944%left '*'
6945%left UMINUS
6946@end example
6947
6948Now the precedence of @code{UMINUS} can be used in specific rules:
6949
6950@example
6951@group
6952exp: @dots{}
6953 | exp '-' exp
6954 @dots{}
6955 | '-' exp %prec UMINUS
6956@end group
6957@end example
6958
91d2c560 6959@ifset defaultprec
39a06c25
PE
6960If you forget to append @code{%prec UMINUS} to the rule for unary
6961minus, Bison silently assumes that minus has its usual precedence.
6962This kind of problem can be tricky to debug, since one typically
6963discovers the mistake only by testing the code.
6964
22fccf95 6965The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6966this kind of problem systematically. It causes rules that lack a
6967@code{%prec} modifier to have no precedence, even if the last terminal
6968symbol mentioned in their components has a declared precedence.
6969
22fccf95 6970If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6971for all rules that participate in precedence conflict resolution.
6972Then you will see any shift/reduce conflict until you tell Bison how
6973to resolve it, either by changing your grammar or by adding an
6974explicit precedence. This will probably add declarations to the
6975grammar, but it helps to protect against incorrect rule precedences.
6976
22fccf95
PE
6977The effect of @code{%no-default-prec;} can be reversed by giving
6978@code{%default-prec;}, which is the default.
91d2c560 6979@end ifset
39a06c25 6980
342b8b6e 6981@node Parser States
bfa74976
RS
6982@section Parser States
6983@cindex finite-state machine
6984@cindex parser state
6985@cindex state (of parser)
6986
6987The function @code{yyparse} is implemented using a finite-state machine.
6988The values pushed on the parser stack are not simply token type codes; they
6989represent the entire sequence of terminal and nonterminal symbols at or
6990near the top of the stack. The current state collects all the information
6991about previous input which is relevant to deciding what to do next.
6992
742e4900
JD
6993Each time a lookahead token is read, the current parser state together
6994with the type of lookahead token are looked up in a table. This table
6995entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6996specifies the new parser state, which is pushed onto the top of the
6997parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6998This means that a certain number of tokens or groupings are taken off
6999the top of the stack, and replaced by one grouping. In other words,
7000that number of states are popped from the stack, and one new state is
7001pushed.
7002
742e4900 7003There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7004is erroneous in the current state. This causes error processing to begin
7005(@pxref{Error Recovery}).
7006
342b8b6e 7007@node Reduce/Reduce
bfa74976
RS
7008@section Reduce/Reduce Conflicts
7009@cindex reduce/reduce conflict
7010@cindex conflicts, reduce/reduce
7011
7012A reduce/reduce conflict occurs if there are two or more rules that apply
7013to the same sequence of input. This usually indicates a serious error
7014in the grammar.
7015
7016For example, here is an erroneous attempt to define a sequence
7017of zero or more @code{word} groupings.
7018
7019@example
7020sequence: /* empty */
7021 @{ printf ("empty sequence\n"); @}
7022 | maybeword
7023 | sequence word
7024 @{ printf ("added word %s\n", $2); @}
7025 ;
7026
7027maybeword: /* empty */
7028 @{ printf ("empty maybeword\n"); @}
7029 | word
7030 @{ printf ("single word %s\n", $1); @}
7031 ;
7032@end example
7033
7034@noindent
7035The error is an ambiguity: there is more than one way to parse a single
7036@code{word} into a @code{sequence}. It could be reduced to a
7037@code{maybeword} and then into a @code{sequence} via the second rule.
7038Alternatively, nothing-at-all could be reduced into a @code{sequence}
7039via the first rule, and this could be combined with the @code{word}
7040using the third rule for @code{sequence}.
7041
7042There is also more than one way to reduce nothing-at-all into a
7043@code{sequence}. This can be done directly via the first rule,
7044or indirectly via @code{maybeword} and then the second rule.
7045
7046You might think that this is a distinction without a difference, because it
7047does not change whether any particular input is valid or not. But it does
7048affect which actions are run. One parsing order runs the second rule's
7049action; the other runs the first rule's action and the third rule's action.
7050In this example, the output of the program changes.
7051
7052Bison resolves a reduce/reduce conflict by choosing to use the rule that
7053appears first in the grammar, but it is very risky to rely on this. Every
7054reduce/reduce conflict must be studied and usually eliminated. Here is the
7055proper way to define @code{sequence}:
7056
7057@example
7058sequence: /* empty */
7059 @{ printf ("empty sequence\n"); @}
7060 | sequence word
7061 @{ printf ("added word %s\n", $2); @}
7062 ;
7063@end example
7064
7065Here is another common error that yields a reduce/reduce conflict:
7066
7067@example
7068sequence: /* empty */
7069 | sequence words
7070 | sequence redirects
7071 ;
7072
7073words: /* empty */
7074 | words word
7075 ;
7076
7077redirects:/* empty */
7078 | redirects redirect
7079 ;
7080@end example
7081
7082@noindent
7083The intention here is to define a sequence which can contain either
7084@code{word} or @code{redirect} groupings. The individual definitions of
7085@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7086three together make a subtle ambiguity: even an empty input can be parsed
7087in infinitely many ways!
7088
7089Consider: nothing-at-all could be a @code{words}. Or it could be two
7090@code{words} in a row, or three, or any number. It could equally well be a
7091@code{redirects}, or two, or any number. Or it could be a @code{words}
7092followed by three @code{redirects} and another @code{words}. And so on.
7093
7094Here are two ways to correct these rules. First, to make it a single level
7095of sequence:
7096
7097@example
7098sequence: /* empty */
7099 | sequence word
7100 | sequence redirect
7101 ;
7102@end example
7103
7104Second, to prevent either a @code{words} or a @code{redirects}
7105from being empty:
7106
7107@example
7108sequence: /* empty */
7109 | sequence words
7110 | sequence redirects
7111 ;
7112
7113words: word
7114 | words word
7115 ;
7116
7117redirects:redirect
7118 | redirects redirect
7119 ;
7120@end example
7121
cc09e5be
JD
7122@node Mysterious Conflicts
7123@section Mysterious Conflicts
7fceb615 7124@cindex Mysterious Conflicts
bfa74976
RS
7125
7126Sometimes reduce/reduce conflicts can occur that don't look warranted.
7127Here is an example:
7128
7129@example
7130@group
7131%token ID
7132
7133%%
7134def: param_spec return_spec ','
7135 ;
7136param_spec:
7137 type
7138 | name_list ':' type
7139 ;
7140@end group
7141@group
7142return_spec:
7143 type
7144 | name ':' type
7145 ;
7146@end group
7147@group
7148type: ID
7149 ;
7150@end group
7151@group
7152name: ID
7153 ;
7154name_list:
7155 name
7156 | name ',' name_list
7157 ;
7158@end group
7159@end example
7160
7161It would seem that this grammar can be parsed with only a single token
742e4900 7162of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7163a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7164@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7165
7fceb615
JD
7166@cindex LR
7167@cindex LALR
eb45ef3b 7168However, for historical reasons, Bison cannot by default handle all
8a4281b9 7169LR(1) grammars.
eb45ef3b
JD
7170In this grammar, two contexts, that after an @code{ID} at the beginning
7171of a @code{param_spec} and likewise at the beginning of a
7172@code{return_spec}, are similar enough that Bison assumes they are the
7173same.
7174They appear similar because the same set of rules would be
bfa74976
RS
7175active---the rule for reducing to a @code{name} and that for reducing to
7176a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7177that the rules would require different lookahead tokens in the two
bfa74976
RS
7178contexts, so it makes a single parser state for them both. Combining
7179the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7180occurrence means that the grammar is not LALR(1).
bfa74976 7181
7fceb615
JD
7182@cindex IELR
7183@cindex canonical LR
7184For many practical grammars (specifically those that fall into the non-LR(1)
7185class), the limitations of LALR(1) result in difficulties beyond just
7186mysterious reduce/reduce conflicts. The best way to fix all these problems
7187is to select a different parser table construction algorithm. Either
7188IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7189and easier to debug during development. @xref{LR Table Construction}, for
7190details. (Bison's IELR(1) and canonical LR(1) implementations are
7191experimental. More user feedback will help to stabilize them.)
eb45ef3b 7192
8a4281b9 7193If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7194can often fix a mysterious conflict by identifying the two parser states
7195that are being confused, and adding something to make them look
7196distinct. In the above example, adding one rule to
bfa74976
RS
7197@code{return_spec} as follows makes the problem go away:
7198
7199@example
7200@group
7201%token BOGUS
7202@dots{}
7203%%
7204@dots{}
7205return_spec:
7206 type
7207 | name ':' type
7208 /* This rule is never used. */
7209 | ID BOGUS
7210 ;
7211@end group
7212@end example
7213
7214This corrects the problem because it introduces the possibility of an
7215additional active rule in the context after the @code{ID} at the beginning of
7216@code{return_spec}. This rule is not active in the corresponding context
7217in a @code{param_spec}, so the two contexts receive distinct parser states.
7218As long as the token @code{BOGUS} is never generated by @code{yylex},
7219the added rule cannot alter the way actual input is parsed.
7220
7221In this particular example, there is another way to solve the problem:
7222rewrite the rule for @code{return_spec} to use @code{ID} directly
7223instead of via @code{name}. This also causes the two confusing
7224contexts to have different sets of active rules, because the one for
7225@code{return_spec} activates the altered rule for @code{return_spec}
7226rather than the one for @code{name}.
7227
7228@example
7229param_spec:
7230 type
7231 | name_list ':' type
7232 ;
7233return_spec:
7234 type
7235 | ID ':' type
7236 ;
7237@end example
7238
8a4281b9 7239For a more detailed exposition of LALR(1) parsers and parser
5e528941 7240generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7241
7fceb615
JD
7242@node Tuning LR
7243@section Tuning LR
7244
7245The default behavior of Bison's LR-based parsers is chosen mostly for
7246historical reasons, but that behavior is often not robust. For example, in
7247the previous section, we discussed the mysterious conflicts that can be
7248produced by LALR(1), Bison's default parser table construction algorithm.
7249Another example is Bison's @code{%define parse.error verbose} directive,
7250which instructs the generated parser to produce verbose syntax error
7251messages, which can sometimes contain incorrect information.
7252
7253In this section, we explore several modern features of Bison that allow you
7254to tune fundamental aspects of the generated LR-based parsers. Some of
7255these features easily eliminate shortcomings like those mentioned above.
7256Others can be helpful purely for understanding your parser.
7257
7258Most of the features discussed in this section are still experimental. More
7259user feedback will help to stabilize them.
7260
7261@menu
7262* LR Table Construction:: Choose a different construction algorithm.
7263* Default Reductions:: Disable default reductions.
7264* LAC:: Correct lookahead sets in the parser states.
7265* Unreachable States:: Keep unreachable parser states for debugging.
7266@end menu
7267
7268@node LR Table Construction
7269@subsection LR Table Construction
7270@cindex Mysterious Conflict
7271@cindex LALR
7272@cindex IELR
7273@cindex canonical LR
7274@findex %define lr.type
7275
7276For historical reasons, Bison constructs LALR(1) parser tables by default.
7277However, LALR does not possess the full language-recognition power of LR.
7278As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7279mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7280Conflicts}.
7281
7282As we also demonstrated in that example, the traditional approach to
7283eliminating such mysterious behavior is to restructure the grammar.
7284Unfortunately, doing so correctly is often difficult. Moreover, merely
7285discovering that LALR causes mysterious behavior in your parser can be
7286difficult as well.
7287
7288Fortunately, Bison provides an easy way to eliminate the possibility of such
7289mysterious behavior altogether. You simply need to activate a more powerful
7290parser table construction algorithm by using the @code{%define lr.type}
7291directive.
7292
7293@deffn {Directive} {%define lr.type @var{TYPE}}
7294Specify the type of parser tables within the LR(1) family. The accepted
7295values for @var{TYPE} are:
7296
7297@itemize
7298@item @code{lalr} (default)
7299@item @code{ielr}
7300@item @code{canonical-lr}
7301@end itemize
7302
7303(This feature is experimental. More user feedback will help to stabilize
7304it.)
7305@end deffn
7306
7307For example, to activate IELR, you might add the following directive to you
7308grammar file:
7309
7310@example
7311%define lr.type ielr
7312@end example
7313
cc09e5be 7314@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7315conflict is then eliminated, so there is no need to invest time in
7316comprehending the conflict or restructuring the grammar to fix it. If,
7317during future development, the grammar evolves such that all mysterious
7318behavior would have disappeared using just LALR, you need not fear that
7319continuing to use IELR will result in unnecessarily large parser tables.
7320That is, IELR generates LALR tables when LALR (using a deterministic parsing
7321algorithm) is sufficient to support the full language-recognition power of
7322LR. Thus, by enabling IELR at the start of grammar development, you can
7323safely and completely eliminate the need to consider LALR's shortcomings.
7324
7325While IELR is almost always preferable, there are circumstances where LALR
7326or the canonical LR parser tables described by Knuth
7327(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7328relative advantages of each parser table construction algorithm within
7329Bison:
7330
7331@itemize
7332@item LALR
7333
7334There are at least two scenarios where LALR can be worthwhile:
7335
7336@itemize
7337@item GLR without static conflict resolution.
7338
7339@cindex GLR with LALR
7340When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7341conflicts statically (for example, with @code{%left} or @code{%prec}), then
7342the parser explores all potential parses of any given input. In this case,
7343the choice of parser table construction algorithm is guaranteed not to alter
7344the language accepted by the parser. LALR parser tables are the smallest
7345parser tables Bison can currently construct, so they may then be preferable.
7346Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7347more like a deterministic parser in the syntactic contexts where those
7348conflicts appear, and so either IELR or canonical LR can then be helpful to
7349avoid LALR's mysterious behavior.
7350
7351@item Malformed grammars.
7352
7353Occasionally during development, an especially malformed grammar with a
7354major recurring flaw may severely impede the IELR or canonical LR parser
7355table construction algorithm. LALR can be a quick way to construct parser
7356tables in order to investigate such problems while ignoring the more subtle
7357differences from IELR and canonical LR.
7358@end itemize
7359
7360@item IELR
7361
7362IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7363any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7364always accept exactly the same set of sentences. However, like LALR, IELR
7365merges parser states during parser table construction so that the number of
7366parser states is often an order of magnitude less than for canonical LR.
7367More importantly, because canonical LR's extra parser states may contain
7368duplicate conflicts in the case of non-LR grammars, the number of conflicts
7369for IELR is often an order of magnitude less as well. This effect can
7370significantly reduce the complexity of developing a grammar.
7371
7372@item Canonical LR
7373
7374@cindex delayed syntax error detection
7375@cindex LAC
7376@findex %nonassoc
7377While inefficient, canonical LR parser tables can be an interesting means to
7378explore a grammar because they possess a property that IELR and LALR tables
7379do not. That is, if @code{%nonassoc} is not used and default reductions are
7380left disabled (@pxref{Default Reductions}), then, for every left context of
7381every canonical LR state, the set of tokens accepted by that state is
7382guaranteed to be the exact set of tokens that is syntactically acceptable in
7383that left context. It might then seem that an advantage of canonical LR
7384parsers in production is that, under the above constraints, they are
7385guaranteed to detect a syntax error as soon as possible without performing
7386any unnecessary reductions. However, IELR parsers that use LAC are also
7387able to achieve this behavior without sacrificing @code{%nonassoc} or
7388default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7389@end itemize
7390
7391For a more detailed exposition of the mysterious behavior in LALR parsers
7392and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7393@ref{Bibliography,,Denny 2010 November}.
7394
7395@node Default Reductions
7396@subsection Default Reductions
7397@cindex default reductions
7398@findex %define lr.default-reductions
7399@findex %nonassoc
7400
7401After parser table construction, Bison identifies the reduction with the
7402largest lookahead set in each parser state. To reduce the size of the
7403parser state, traditional Bison behavior is to remove that lookahead set and
7404to assign that reduction to be the default parser action. Such a reduction
7405is known as a @dfn{default reduction}.
7406
7407Default reductions affect more than the size of the parser tables. They
7408also affect the behavior of the parser:
7409
7410@itemize
7411@item Delayed @code{yylex} invocations.
7412
7413@cindex delayed yylex invocations
7414@cindex consistent states
7415@cindex defaulted states
7416A @dfn{consistent state} is a state that has only one possible parser
7417action. If that action is a reduction and is encoded as a default
7418reduction, then that consistent state is called a @dfn{defaulted state}.
7419Upon reaching a defaulted state, a Bison-generated parser does not bother to
7420invoke @code{yylex} to fetch the next token before performing the reduction.
7421In other words, whether default reductions are enabled in consistent states
7422determines how soon a Bison-generated parser invokes @code{yylex} for a
7423token: immediately when it @emph{reaches} that token in the input or when it
7424eventually @emph{needs} that token as a lookahead to determine the next
7425parser action. Traditionally, default reductions are enabled, and so the
7426parser exhibits the latter behavior.
7427
7428The presence of defaulted states is an important consideration when
7429designing @code{yylex} and the grammar file. That is, if the behavior of
7430@code{yylex} can influence or be influenced by the semantic actions
7431associated with the reductions in defaulted states, then the delay of the
7432next @code{yylex} invocation until after those reductions is significant.
7433For example, the semantic actions might pop a scope stack that @code{yylex}
7434uses to determine what token to return. Thus, the delay might be necessary
7435to ensure that @code{yylex} does not look up the next token in a scope that
7436should already be considered closed.
7437
7438@item Delayed syntax error detection.
7439
7440@cindex delayed syntax error detection
7441When the parser fetches a new token by invoking @code{yylex}, it checks
7442whether there is an action for that token in the current parser state. The
7443parser detects a syntax error if and only if either (1) there is no action
7444for that token or (2) the action for that token is the error action (due to
7445the use of @code{%nonassoc}). However, if there is a default reduction in
7446that state (which might or might not be a defaulted state), then it is
7447impossible for condition 1 to exist. That is, all tokens have an action.
7448Thus, the parser sometimes fails to detect the syntax error until it reaches
7449a later state.
7450
7451@cindex LAC
7452@c If there's an infinite loop, default reductions can prevent an incorrect
7453@c sentence from being rejected.
7454While default reductions never cause the parser to accept syntactically
7455incorrect sentences, the delay of syntax error detection can have unexpected
7456effects on the behavior of the parser. However, the delay can be caused
7457anyway by parser state merging and the use of @code{%nonassoc}, and it can
7458be fixed by another Bison feature, LAC. We discuss the effects of delayed
7459syntax error detection and LAC more in the next section (@pxref{LAC}).
7460@end itemize
7461
7462For canonical LR, the only default reduction that Bison enables by default
7463is the accept action, which appears only in the accepting state, which has
7464no other action and is thus a defaulted state. However, the default accept
7465action does not delay any @code{yylex} invocation or syntax error detection
7466because the accept action ends the parse.
7467
7468For LALR and IELR, Bison enables default reductions in nearly all states by
7469default. There are only two exceptions. First, states that have a shift
7470action on the @code{error} token do not have default reductions because
7471delayed syntax error detection could then prevent the @code{error} token
7472from ever being shifted in that state. However, parser state merging can
7473cause the same effect anyway, and LAC fixes it in both cases, so future
7474versions of Bison might drop this exception when LAC is activated. Second,
7475GLR parsers do not record the default reduction as the action on a lookahead
7476token for which there is a conflict. The correct action in this case is to
7477split the parse instead.
7478
7479To adjust which states have default reductions enabled, use the
7480@code{%define lr.default-reductions} directive.
7481
7482@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7483Specify the kind of states that are permitted to contain default reductions.
7484The accepted values of @var{WHERE} are:
7485@itemize
f0ad1b2f 7486@item @code{most} (default for LALR and IELR)
7fceb615
JD
7487@item @code{consistent}
7488@item @code{accepting} (default for canonical LR)
7489@end itemize
7490
7491(The ability to specify where default reductions are permitted is
7492experimental. More user feedback will help to stabilize it.)
7493@end deffn
7494
7fceb615
JD
7495@node LAC
7496@subsection LAC
7497@findex %define parse.lac
7498@cindex LAC
7499@cindex lookahead correction
7500
7501Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7502encountering a syntax error. First, the parser might perform additional
7503parser stack reductions before discovering the syntax error. Such
7504reductions can perform user semantic actions that are unexpected because
7505they are based on an invalid token, and they cause error recovery to begin
7506in a different syntactic context than the one in which the invalid token was
7507encountered. Second, when verbose error messages are enabled (@pxref{Error
7508Reporting}), the expected token list in the syntax error message can both
7509contain invalid tokens and omit valid tokens.
7510
7511The culprits for the above problems are @code{%nonassoc}, default reductions
7512in inconsistent states (@pxref{Default Reductions}), and parser state
7513merging. Because IELR and LALR merge parser states, they suffer the most.
7514Canonical LR can suffer only if @code{%nonassoc} is used or if default
7515reductions are enabled for inconsistent states.
7516
7517LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7518that solves these problems for canonical LR, IELR, and LALR without
7519sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7520enable LAC with the @code{%define parse.lac} directive.
7521
7522@deffn {Directive} {%define parse.lac @var{VALUE}}
7523Enable LAC to improve syntax error handling.
7524@itemize
7525@item @code{none} (default)
7526@item @code{full}
7527@end itemize
7528(This feature is experimental. More user feedback will help to stabilize
7529it. Moreover, it is currently only available for deterministic parsers in
7530C.)
7531@end deffn
7532
7533Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7534fetches a new token from the scanner so that it can determine the next
7535parser action, it immediately suspends normal parsing and performs an
7536exploratory parse using a temporary copy of the normal parser state stack.
7537During this exploratory parse, the parser does not perform user semantic
7538actions. If the exploratory parse reaches a shift action, normal parsing
7539then resumes on the normal parser stacks. If the exploratory parse reaches
7540an error instead, the parser reports a syntax error. If verbose syntax
7541error messages are enabled, the parser must then discover the list of
7542expected tokens, so it performs a separate exploratory parse for each token
7543in the grammar.
7544
7545There is one subtlety about the use of LAC. That is, when in a consistent
7546parser state with a default reduction, the parser will not attempt to fetch
7547a token from the scanner because no lookahead is needed to determine the
7548next parser action. Thus, whether default reductions are enabled in
7549consistent states (@pxref{Default Reductions}) affects how soon the parser
7550detects a syntax error: immediately when it @emph{reaches} an erroneous
7551token or when it eventually @emph{needs} that token as a lookahead to
7552determine the next parser action. The latter behavior is probably more
7553intuitive, so Bison currently provides no way to achieve the former behavior
7554while default reductions are enabled in consistent states.
7555
7556Thus, when LAC is in use, for some fixed decision of whether to enable
7557default reductions in consistent states, canonical LR and IELR behave almost
7558exactly the same for both syntactically acceptable and syntactically
7559unacceptable input. While LALR still does not support the full
7560language-recognition power of canonical LR and IELR, LAC at least enables
7561LALR's syntax error handling to correctly reflect LALR's
7562language-recognition power.
7563
7564There are a few caveats to consider when using LAC:
7565
7566@itemize
7567@item Infinite parsing loops.
7568
7569IELR plus LAC does have one shortcoming relative to canonical LR. Some
7570parsers generated by Bison can loop infinitely. LAC does not fix infinite
7571parsing loops that occur between encountering a syntax error and detecting
7572it, but enabling canonical LR or disabling default reductions sometimes
7573does.
7574
7575@item Verbose error message limitations.
7576
7577Because of internationalization considerations, Bison-generated parsers
7578limit the size of the expected token list they are willing to report in a
7579verbose syntax error message. If the number of expected tokens exceeds that
7580limit, the list is simply dropped from the message. Enabling LAC can
7581increase the size of the list and thus cause the parser to drop it. Of
7582course, dropping the list is better than reporting an incorrect list.
7583
7584@item Performance.
7585
7586Because LAC requires many parse actions to be performed twice, it can have a
7587performance penalty. However, not all parse actions must be performed
7588twice. Specifically, during a series of default reductions in consistent
7589states and shift actions, the parser never has to initiate an exploratory
7590parse. Moreover, the most time-consuming tasks in a parse are often the
7591file I/O, the lexical analysis performed by the scanner, and the user's
7592semantic actions, but none of these are performed during the exploratory
7593parse. Finally, the base of the temporary stack used during an exploratory
7594parse is a pointer into the normal parser state stack so that the stack is
7595never physically copied. In our experience, the performance penalty of LAC
7596has proven insignificant for practical grammars.
7597@end itemize
7598
709c7d11
JD
7599While the LAC algorithm shares techniques that have been recognized in the
7600parser community for years, for the publication that introduces LAC,
7601@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7602
7fceb615
JD
7603@node Unreachable States
7604@subsection Unreachable States
7605@findex %define lr.keep-unreachable-states
7606@cindex unreachable states
7607
7608If there exists no sequence of transitions from the parser's start state to
7609some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7610state}. A state can become unreachable during conflict resolution if Bison
7611disables a shift action leading to it from a predecessor state.
7612
7613By default, Bison removes unreachable states from the parser after conflict
7614resolution because they are useless in the generated parser. However,
7615keeping unreachable states is sometimes useful when trying to understand the
7616relationship between the parser and the grammar.
7617
7618@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7619Request that Bison allow unreachable states to remain in the parser tables.
7620@var{VALUE} must be a Boolean. The default is @code{false}.
7621@end deffn
7622
7623There are a few caveats to consider:
7624
7625@itemize @bullet
7626@item Missing or extraneous warnings.
7627
7628Unreachable states may contain conflicts and may use rules not used in any
7629other state. Thus, keeping unreachable states may induce warnings that are
7630irrelevant to your parser's behavior, and it may eliminate warnings that are
7631relevant. Of course, the change in warnings may actually be relevant to a
7632parser table analysis that wants to keep unreachable states, so this
7633behavior will likely remain in future Bison releases.
7634
7635@item Other useless states.
7636
7637While Bison is able to remove unreachable states, it is not guaranteed to
7638remove other kinds of useless states. Specifically, when Bison disables
7639reduce actions during conflict resolution, some goto actions may become
7640useless, and thus some additional states may become useless. If Bison were
7641to compute which goto actions were useless and then disable those actions,
7642it could identify such states as unreachable and then remove those states.
7643However, Bison does not compute which goto actions are useless.
7644@end itemize
7645
fae437e8 7646@node Generalized LR Parsing
8a4281b9
JD
7647@section Generalized LR (GLR) Parsing
7648@cindex GLR parsing
7649@cindex generalized LR (GLR) parsing
676385e2 7650@cindex ambiguous grammars
9d9b8b70 7651@cindex nondeterministic parsing
676385e2 7652
fae437e8
AD
7653Bison produces @emph{deterministic} parsers that choose uniquely
7654when to reduce and which reduction to apply
742e4900 7655based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7656As a result, normal Bison handles a proper subset of the family of
7657context-free languages.
fae437e8 7658Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7659sequence of reductions cannot have deterministic parsers in this sense.
7660The same is true of languages that require more than one symbol of
742e4900 7661lookahead, since the parser lacks the information necessary to make a
676385e2 7662decision at the point it must be made in a shift-reduce parser.
cc09e5be 7663Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7664there are languages where Bison's default choice of how to
676385e2
PH
7665summarize the input seen so far loses necessary information.
7666
7667When you use the @samp{%glr-parser} declaration in your grammar file,
7668Bison generates a parser that uses a different algorithm, called
8a4281b9 7669Generalized LR (or GLR). A Bison GLR
c827f760 7670parser uses the same basic
676385e2
PH
7671algorithm for parsing as an ordinary Bison parser, but behaves
7672differently in cases where there is a shift-reduce conflict that has not
fae437e8 7673been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7674reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7675situation, it
fae437e8 7676effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7677shift or reduction. These parsers then proceed as usual, consuming
7678tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7679and split further, with the result that instead of a sequence of states,
8a4281b9 7680a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7681
7682In effect, each stack represents a guess as to what the proper parse
7683is. Additional input may indicate that a guess was wrong, in which case
7684the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7685actions generated in each stack are saved, rather than being executed
676385e2 7686immediately. When a stack disappears, its saved semantic actions never
fae437e8 7687get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7688their sets of semantic actions are both saved with the state that
7689results from the reduction. We say that two stacks are equivalent
fae437e8 7690when they both represent the same sequence of states,
676385e2
PH
7691and each pair of corresponding states represents a
7692grammar symbol that produces the same segment of the input token
7693stream.
7694
7695Whenever the parser makes a transition from having multiple
eb45ef3b 7696states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7697algorithm, after resolving and executing the saved-up actions.
7698At this transition, some of the states on the stack will have semantic
7699values that are sets (actually multisets) of possible actions. The
7700parser tries to pick one of the actions by first finding one whose rule
7701has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7702declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7703precedence, but there the same merging function is declared for both
fae437e8 7704rules by the @samp{%merge} declaration,
676385e2
PH
7705Bison resolves and evaluates both and then calls the merge function on
7706the result. Otherwise, it reports an ambiguity.
7707
8a4281b9
JD
7708It is possible to use a data structure for the GLR parsing tree that
7709permits the processing of any LR(1) grammar in linear time (in the
c827f760 7710size of the input), any unambiguous (not necessarily
8a4281b9 7711LR(1)) grammar in
fae437e8 7712quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7713context-free grammar in cubic worst-case time. However, Bison currently
7714uses a simpler data structure that requires time proportional to the
7715length of the input times the maximum number of stacks required for any
9d9b8b70 7716prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7717grammars can require exponential time and space to process. Such badly
7718behaving examples, however, are not generally of practical interest.
9d9b8b70 7719Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7720doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7721structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7722grammar, in particular, it is only slightly slower than with the
8a4281b9 7723deterministic LR(1) Bison parser.
676385e2 7724
5e528941
JD
7725For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
77262000}.
f6481e2f 7727
1a059451
PE
7728@node Memory Management
7729@section Memory Management, and How to Avoid Memory Exhaustion
7730@cindex memory exhaustion
7731@cindex memory management
bfa74976
RS
7732@cindex stack overflow
7733@cindex parser stack overflow
7734@cindex overflow of parser stack
7735
1a059451 7736The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7737not reduced. When this happens, the parser function @code{yyparse}
1a059451 7738calls @code{yyerror} and then returns 2.
bfa74976 7739
c827f760 7740Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7741usually results from using a right recursion instead of a left
7742recursion, @xref{Recursion, ,Recursive Rules}.
7743
bfa74976
RS
7744@vindex YYMAXDEPTH
7745By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7746parser stack can become before memory is exhausted. Define the
bfa74976
RS
7747macro with a value that is an integer. This value is the maximum number
7748of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7749
7750The stack space allowed is not necessarily allocated. If you specify a
1a059451 7751large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7752stack at first, and then makes it bigger by stages as needed. This
7753increasing allocation happens automatically and silently. Therefore,
7754you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7755space for ordinary inputs that do not need much stack.
7756
d7e14fc0
PE
7757However, do not allow @code{YYMAXDEPTH} to be a value so large that
7758arithmetic overflow could occur when calculating the size of the stack
7759space. Also, do not allow @code{YYMAXDEPTH} to be less than
7760@code{YYINITDEPTH}.
7761
bfa74976
RS
7762@cindex default stack limit
7763The default value of @code{YYMAXDEPTH}, if you do not define it, is
776410000.
7765
7766@vindex YYINITDEPTH
7767You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7768macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7769parser in C, this value must be a compile-time constant
d7e14fc0
PE
7770unless you are assuming C99 or some other target language or compiler
7771that allows variable-length arrays. The default is 200.
7772
1a059451 7773Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7774
20be2f92 7775You can generate a deterministic parser containing C++ user code from
411614fa 7776the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
7777(@pxref{C++ Parsers}). However, if you do use the default skeleton
7778and want to allow the parsing stack to grow,
7779be careful not to use semantic types or location types that require
7780non-trivial copy constructors.
7781The C skeleton bypasses these constructors when copying data to
7782new, larger stacks.
d1a1114f 7783
342b8b6e 7784@node Error Recovery
bfa74976
RS
7785@chapter Error Recovery
7786@cindex error recovery
7787@cindex recovery from errors
7788
6e649e65 7789It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7790error. For example, a compiler should recover sufficiently to parse the
7791rest of the input file and check it for errors; a calculator should accept
7792another expression.
7793
7794In a simple interactive command parser where each input is one line, it may
7795be sufficient to allow @code{yyparse} to return 1 on error and have the
7796caller ignore the rest of the input line when that happens (and then call
7797@code{yyparse} again). But this is inadequate for a compiler, because it
7798forgets all the syntactic context leading up to the error. A syntax error
7799deep within a function in the compiler input should not cause the compiler
7800to treat the following line like the beginning of a source file.
7801
7802@findex error
7803You can define how to recover from a syntax error by writing rules to
7804recognize the special token @code{error}. This is a terminal symbol that
7805is always defined (you need not declare it) and reserved for error
7806handling. The Bison parser generates an @code{error} token whenever a
7807syntax error happens; if you have provided a rule to recognize this token
13863333 7808in the current context, the parse can continue.
bfa74976
RS
7809
7810For example:
7811
7812@example
7813stmnts: /* empty string */
7814 | stmnts '\n'
7815 | stmnts exp '\n'
7816 | stmnts error '\n'
7817@end example
7818
7819The fourth rule in this example says that an error followed by a newline
7820makes a valid addition to any @code{stmnts}.
7821
7822What happens if a syntax error occurs in the middle of an @code{exp}? The
7823error recovery rule, interpreted strictly, applies to the precise sequence
7824of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7825the middle of an @code{exp}, there will probably be some additional tokens
7826and subexpressions on the stack after the last @code{stmnts}, and there
7827will be tokens to read before the next newline. So the rule is not
7828applicable in the ordinary way.
7829
7830But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7831the semantic context and part of the input. First it discards states
7832and objects from the stack until it gets back to a state in which the
bfa74976 7833@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7834already parsed are discarded, back to the last complete @code{stmnts}.)
7835At this point the @code{error} token can be shifted. Then, if the old
742e4900 7836lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7837tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7838this example, Bison reads and discards input until the next newline so
7839that the fourth rule can apply. Note that discarded symbols are
7840possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7841Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7842
7843The choice of error rules in the grammar is a choice of strategies for
7844error recovery. A simple and useful strategy is simply to skip the rest of
7845the current input line or current statement if an error is detected:
7846
7847@example
72d2299c 7848stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7849@end example
7850
7851It is also useful to recover to the matching close-delimiter of an
7852opening-delimiter that has already been parsed. Otherwise the
7853close-delimiter will probably appear to be unmatched, and generate another,
7854spurious error message:
7855
7856@example
7857primary: '(' expr ')'
7858 | '(' error ')'
7859 @dots{}
7860 ;
7861@end example
7862
7863Error recovery strategies are necessarily guesses. When they guess wrong,
7864one syntax error often leads to another. In the above example, the error
7865recovery rule guesses that an error is due to bad input within one
7866@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7867middle of a valid @code{stmnt}. After the error recovery rule recovers
7868from the first error, another syntax error will be found straightaway,
7869since the text following the spurious semicolon is also an invalid
7870@code{stmnt}.
7871
7872To prevent an outpouring of error messages, the parser will output no error
7873message for another syntax error that happens shortly after the first; only
7874after three consecutive input tokens have been successfully shifted will
7875error messages resume.
7876
7877Note that rules which accept the @code{error} token may have actions, just
7878as any other rules can.
7879
7880@findex yyerrok
7881You can make error messages resume immediately by using the macro
7882@code{yyerrok} in an action. If you do this in the error rule's action, no
7883error messages will be suppressed. This macro requires no arguments;
7884@samp{yyerrok;} is a valid C statement.
7885
7886@findex yyclearin
742e4900 7887The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7888this is unacceptable, then the macro @code{yyclearin} may be used to clear
7889this token. Write the statement @samp{yyclearin;} in the error rule's
7890action.
32c29292 7891@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7892
6e649e65 7893For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7894called that advances the input stream to some point where parsing should
7895once again commence. The next symbol returned by the lexical scanner is
742e4900 7896probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7897with @samp{yyclearin;}.
7898
7899@vindex YYRECOVERING
02103984
PE
7900The expression @code{YYRECOVERING ()} yields 1 when the parser
7901is recovering from a syntax error, and 0 otherwise.
7902Syntax error diagnostics are suppressed while recovering from a syntax
7903error.
bfa74976 7904
342b8b6e 7905@node Context Dependency
bfa74976
RS
7906@chapter Handling Context Dependencies
7907
7908The Bison paradigm is to parse tokens first, then group them into larger
7909syntactic units. In many languages, the meaning of a token is affected by
7910its context. Although this violates the Bison paradigm, certain techniques
7911(known as @dfn{kludges}) may enable you to write Bison parsers for such
7912languages.
7913
7914@menu
7915* Semantic Tokens:: Token parsing can depend on the semantic context.
7916* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7917* Tie-in Recovery:: Lexical tie-ins have implications for how
7918 error recovery rules must be written.
7919@end menu
7920
7921(Actually, ``kludge'' means any technique that gets its job done but is
7922neither clean nor robust.)
7923
342b8b6e 7924@node Semantic Tokens
bfa74976
RS
7925@section Semantic Info in Token Types
7926
7927The C language has a context dependency: the way an identifier is used
7928depends on what its current meaning is. For example, consider this:
7929
7930@example
7931foo (x);
7932@end example
7933
7934This looks like a function call statement, but if @code{foo} is a typedef
7935name, then this is actually a declaration of @code{x}. How can a Bison
7936parser for C decide how to parse this input?
7937
8a4281b9 7938The method used in GNU C is to have two different token types,
bfa74976
RS
7939@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7940identifier, it looks up the current declaration of the identifier in order
7941to decide which token type to return: @code{TYPENAME} if the identifier is
7942declared as a typedef, @code{IDENTIFIER} otherwise.
7943
7944The grammar rules can then express the context dependency by the choice of
7945token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7946but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7947@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7948is @emph{not} significant, such as in declarations that can shadow a
7949typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7950accepted---there is one rule for each of the two token types.
7951
7952This technique is simple to use if the decision of which kinds of
7953identifiers to allow is made at a place close to where the identifier is
7954parsed. But in C this is not always so: C allows a declaration to
7955redeclare a typedef name provided an explicit type has been specified
7956earlier:
7957
7958@example
3a4f411f
PE
7959typedef int foo, bar;
7960int baz (void)
7961@{
7962 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7963 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7964 return foo (bar);
7965@}
bfa74976
RS
7966@end example
7967
7968Unfortunately, the name being declared is separated from the declaration
7969construct itself by a complicated syntactic structure---the ``declarator''.
7970
9ecbd125 7971As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7972all the nonterminal names changed: once for parsing a declaration in
7973which a typedef name can be redefined, and once for parsing a
7974declaration in which that can't be done. Here is a part of the
7975duplication, with actions omitted for brevity:
bfa74976
RS
7976
7977@example
7978initdcl:
7979 declarator maybeasm '='
7980 init
7981 | declarator maybeasm
7982 ;
7983
7984notype_initdcl:
7985 notype_declarator maybeasm '='
7986 init
7987 | notype_declarator maybeasm
7988 ;
7989@end example
7990
7991@noindent
7992Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7993cannot. The distinction between @code{declarator} and
7994@code{notype_declarator} is the same sort of thing.
7995
7996There is some similarity between this technique and a lexical tie-in
7997(described next), in that information which alters the lexical analysis is
7998changed during parsing by other parts of the program. The difference is
7999here the information is global, and is used for other purposes in the
8000program. A true lexical tie-in has a special-purpose flag controlled by
8001the syntactic context.
8002
342b8b6e 8003@node Lexical Tie-ins
bfa74976
RS
8004@section Lexical Tie-ins
8005@cindex lexical tie-in
8006
8007One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8008which is set by Bison actions, whose purpose is to alter the way tokens are
8009parsed.
8010
8011For example, suppose we have a language vaguely like C, but with a special
8012construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8013an expression in parentheses in which all integers are hexadecimal. In
8014particular, the token @samp{a1b} must be treated as an integer rather than
8015as an identifier if it appears in that context. Here is how you can do it:
8016
8017@example
8018@group
8019%@{
38a92d50
PE
8020 int hexflag;
8021 int yylex (void);
8022 void yyerror (char const *);
bfa74976
RS
8023%@}
8024%%
8025@dots{}
8026@end group
8027@group
8028expr: IDENTIFIER
8029 | constant
8030 | HEX '('
8031 @{ hexflag = 1; @}
8032 expr ')'
8033 @{ hexflag = 0;
8034 $$ = $4; @}
8035 | expr '+' expr
8036 @{ $$ = make_sum ($1, $3); @}
8037 @dots{}
8038 ;
8039@end group
8040
8041@group
8042constant:
8043 INTEGER
8044 | STRING
8045 ;
8046@end group
8047@end example
8048
8049@noindent
8050Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8051it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8052with letters are parsed as integers if possible.
8053
ff7571c0
JD
8054The declaration of @code{hexflag} shown in the prologue of the grammar
8055file is needed to make it accessible to the actions (@pxref{Prologue,
8056,The Prologue}). You must also write the code in @code{yylex} to obey
8057the flag.
bfa74976 8058
342b8b6e 8059@node Tie-in Recovery
bfa74976
RS
8060@section Lexical Tie-ins and Error Recovery
8061
8062Lexical tie-ins make strict demands on any error recovery rules you have.
8063@xref{Error Recovery}.
8064
8065The reason for this is that the purpose of an error recovery rule is to
8066abort the parsing of one construct and resume in some larger construct.
8067For example, in C-like languages, a typical error recovery rule is to skip
8068tokens until the next semicolon, and then start a new statement, like this:
8069
8070@example
8071stmt: expr ';'
8072 | IF '(' expr ')' stmt @{ @dots{} @}
8073 @dots{}
8074 error ';'
8075 @{ hexflag = 0; @}
8076 ;
8077@end example
8078
8079If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8080construct, this error rule will apply, and then the action for the
8081completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8082remain set for the entire rest of the input, or until the next @code{hex}
8083keyword, causing identifiers to be misinterpreted as integers.
8084
8085To avoid this problem the error recovery rule itself clears @code{hexflag}.
8086
8087There may also be an error recovery rule that works within expressions.
8088For example, there could be a rule which applies within parentheses
8089and skips to the close-parenthesis:
8090
8091@example
8092@group
8093expr: @dots{}
8094 | '(' expr ')'
8095 @{ $$ = $2; @}
8096 | '(' error ')'
8097 @dots{}
8098@end group
8099@end example
8100
8101If this rule acts within the @code{hex} construct, it is not going to abort
8102that construct (since it applies to an inner level of parentheses within
8103the construct). Therefore, it should not clear the flag: the rest of
8104the @code{hex} construct should be parsed with the flag still in effect.
8105
8106What if there is an error recovery rule which might abort out of the
8107@code{hex} construct or might not, depending on circumstances? There is no
8108way you can write the action to determine whether a @code{hex} construct is
8109being aborted or not. So if you are using a lexical tie-in, you had better
8110make sure your error recovery rules are not of this kind. Each rule must
8111be such that you can be sure that it always will, or always won't, have to
8112clear the flag.
8113
ec3bc396
AD
8114@c ================================================== Debugging Your Parser
8115
342b8b6e 8116@node Debugging
bfa74976 8117@chapter Debugging Your Parser
ec3bc396
AD
8118
8119Developing a parser can be a challenge, especially if you don't
8120understand the algorithm (@pxref{Algorithm, ,The Bison Parser
8121Algorithm}). Even so, sometimes a detailed description of the automaton
8122can help (@pxref{Understanding, , Understanding Your Parser}), or
8123tracing the execution of the parser can give some insight on why it
8124behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
8125
8126@menu
8127* Understanding:: Understanding the structure of your parser.
8128* Tracing:: Tracing the execution of your parser.
8129@end menu
8130
8131@node Understanding
8132@section Understanding Your Parser
8133
8134As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8135Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8136frequent than one would hope), looking at this automaton is required to
8137tune or simply fix a parser. Bison provides two different
35fe0834 8138representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8139
8140The textual file is generated when the options @option{--report} or
8141@option{--verbose} are specified, see @xref{Invocation, , Invoking
8142Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8143the parser implementation file name, and adding @samp{.output}
8144instead. Therefore, if the grammar file is @file{foo.y}, then the
8145parser implementation file is called @file{foo.tab.c} by default. As
8146a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8147
8148The following grammar file, @file{calc.y}, will be used in the sequel:
8149
8150@example
8151%token NUM STR
8152%left '+' '-'
8153%left '*'
8154%%
8155exp: exp '+' exp
8156 | exp '-' exp
8157 | exp '*' exp
8158 | exp '/' exp
8159 | NUM
8160 ;
8161useless: STR;
8162%%
8163@end example
8164
88bce5a2
AD
8165@command{bison} reports:
8166
8167@example
8f0d265e
JD
8168calc.y: warning: 1 nonterminal useless in grammar
8169calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8170calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8171calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8172calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8173@end example
8174
8175When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8176creates a file @file{calc.output} with contents detailed below. The
8177order of the output and the exact presentation might vary, but the
8178interpretation is the same.
ec3bc396
AD
8179
8180The first section includes details on conflicts that were solved thanks
8181to precedence and/or associativity:
8182
8183@example
8184Conflict in state 8 between rule 2 and token '+' resolved as reduce.
8185Conflict in state 8 between rule 2 and token '-' resolved as reduce.
8186Conflict in state 8 between rule 2 and token '*' resolved as shift.
8187@exdent @dots{}
8188@end example
8189
8190@noindent
8191The next section lists states that still have conflicts.
8192
8193@example
5a99098d
PE
8194State 8 conflicts: 1 shift/reduce
8195State 9 conflicts: 1 shift/reduce
8196State 10 conflicts: 1 shift/reduce
8197State 11 conflicts: 4 shift/reduce
ec3bc396
AD
8198@end example
8199
8200@noindent
8201@cindex token, useless
8202@cindex useless token
8203@cindex nonterminal, useless
8204@cindex useless nonterminal
8205@cindex rule, useless
8206@cindex useless rule
8207The next section reports useless tokens, nonterminal and rules. Useless
8208nonterminals and rules are removed in order to produce a smaller parser,
8209but useless tokens are preserved, since they might be used by the
d80fb37a 8210scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
8211below):
8212
8213@example
d80fb37a 8214Nonterminals useless in grammar:
ec3bc396
AD
8215 useless
8216
d80fb37a 8217Terminals unused in grammar:
ec3bc396
AD
8218 STR
8219
cff03fb2 8220Rules useless in grammar:
ec3bc396
AD
8221#6 useless: STR;
8222@end example
8223
8224@noindent
8225The next section reproduces the exact grammar that Bison used:
8226
8227@example
8228Grammar
8229
8230 Number, Line, Rule
88bce5a2 8231 0 5 $accept -> exp $end
ec3bc396
AD
8232 1 5 exp -> exp '+' exp
8233 2 6 exp -> exp '-' exp
8234 3 7 exp -> exp '*' exp
8235 4 8 exp -> exp '/' exp
8236 5 9 exp -> NUM
8237@end example
8238
8239@noindent
8240and reports the uses of the symbols:
8241
8242@example
8243Terminals, with rules where they appear
8244
88bce5a2 8245$end (0) 0
ec3bc396
AD
8246'*' (42) 3
8247'+' (43) 1
8248'-' (45) 2
8249'/' (47) 4
8250error (256)
8251NUM (258) 5
8252
8253Nonterminals, with rules where they appear
8254
88bce5a2 8255$accept (8)
ec3bc396
AD
8256 on left: 0
8257exp (9)
8258 on left: 1 2 3 4 5, on right: 0 1 2 3 4
8259@end example
8260
8261@noindent
8262@cindex item
8263@cindex pointed rule
8264@cindex rule, pointed
8265Bison then proceeds onto the automaton itself, describing each state
8266with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
8267item is a production rule together with a point (marked by @samp{.})
8268that the input cursor.
8269
8270@example
8271state 0
8272
88bce5a2 8273 $accept -> . exp $ (rule 0)
ec3bc396 8274
2a8d363a 8275 NUM shift, and go to state 1
ec3bc396 8276
2a8d363a 8277 exp go to state 2
ec3bc396
AD
8278@end example
8279
8280This reads as follows: ``state 0 corresponds to being at the very
8281beginning of the parsing, in the initial rule, right before the start
8282symbol (here, @code{exp}). When the parser returns to this state right
8283after having reduced a rule that produced an @code{exp}, the control
8284flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 8285symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 8286the parse stack, and the control flow jumps to state 1. Any other
742e4900 8287lookahead triggers a syntax error.''
ec3bc396
AD
8288
8289@cindex core, item set
8290@cindex item set core
8291@cindex kernel, item set
8292@cindex item set core
8293Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8294report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8295at the beginning of any rule deriving an @code{exp}. By default Bison
8296reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8297you want to see more detail you can invoke @command{bison} with
8298@option{--report=itemset} to list all the items, include those that can
8299be derived:
8300
8301@example
8302state 0
8303
88bce5a2 8304 $accept -> . exp $ (rule 0)
ec3bc396
AD
8305 exp -> . exp '+' exp (rule 1)
8306 exp -> . exp '-' exp (rule 2)
8307 exp -> . exp '*' exp (rule 3)
8308 exp -> . exp '/' exp (rule 4)
8309 exp -> . NUM (rule 5)
8310
8311 NUM shift, and go to state 1
8312
8313 exp go to state 2
8314@end example
8315
8316@noindent
8317In the state 1...
8318
8319@example
8320state 1
8321
8322 exp -> NUM . (rule 5)
8323
2a8d363a 8324 $default reduce using rule 5 (exp)
ec3bc396
AD
8325@end example
8326
8327@noindent
742e4900 8328the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8329(@samp{$default}), the parser will reduce it. If it was coming from
8330state 0, then, after this reduction it will return to state 0, and will
8331jump to state 2 (@samp{exp: go to state 2}).
8332
8333@example
8334state 2
8335
88bce5a2 8336 $accept -> exp . $ (rule 0)
ec3bc396
AD
8337 exp -> exp . '+' exp (rule 1)
8338 exp -> exp . '-' exp (rule 2)
8339 exp -> exp . '*' exp (rule 3)
8340 exp -> exp . '/' exp (rule 4)
8341
2a8d363a
AD
8342 $ shift, and go to state 3
8343 '+' shift, and go to state 4
8344 '-' shift, and go to state 5
8345 '*' shift, and go to state 6
8346 '/' shift, and go to state 7
ec3bc396
AD
8347@end example
8348
8349@noindent
8350In state 2, the automaton can only shift a symbol. For instance,
742e4900 8351because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8352@samp{+}, it will be shifted on the parse stack, and the automaton
8353control will jump to state 4, corresponding to the item @samp{exp -> exp
8354'+' . exp}. Since there is no default action, any other token than
6e649e65 8355those listed above will trigger a syntax error.
ec3bc396 8356
eb45ef3b 8357@cindex accepting state
ec3bc396
AD
8358The state 3 is named the @dfn{final state}, or the @dfn{accepting
8359state}:
8360
8361@example
8362state 3
8363
88bce5a2 8364 $accept -> exp $ . (rule 0)
ec3bc396 8365
2a8d363a 8366 $default accept
ec3bc396
AD
8367@end example
8368
8369@noindent
8370the initial rule is completed (the start symbol and the end
8371of input were read), the parsing exits successfully.
8372
8373The interpretation of states 4 to 7 is straightforward, and is left to
8374the reader.
8375
8376@example
8377state 4
8378
8379 exp -> exp '+' . exp (rule 1)
8380
2a8d363a 8381 NUM shift, and go to state 1
ec3bc396 8382
2a8d363a 8383 exp go to state 8
ec3bc396
AD
8384
8385state 5
8386
8387 exp -> exp '-' . exp (rule 2)
8388
2a8d363a 8389 NUM shift, and go to state 1
ec3bc396 8390
2a8d363a 8391 exp go to state 9
ec3bc396
AD
8392
8393state 6
8394
8395 exp -> exp '*' . exp (rule 3)
8396
2a8d363a 8397 NUM shift, and go to state 1
ec3bc396 8398
2a8d363a 8399 exp go to state 10
ec3bc396
AD
8400
8401state 7
8402
8403 exp -> exp '/' . exp (rule 4)
8404
2a8d363a 8405 NUM shift, and go to state 1
ec3bc396 8406
2a8d363a 8407 exp go to state 11
ec3bc396
AD
8408@end example
8409
5a99098d
PE
8410As was announced in beginning of the report, @samp{State 8 conflicts:
84111 shift/reduce}:
ec3bc396
AD
8412
8413@example
8414state 8
8415
8416 exp -> exp . '+' exp (rule 1)
8417 exp -> exp '+' exp . (rule 1)
8418 exp -> exp . '-' exp (rule 2)
8419 exp -> exp . '*' exp (rule 3)
8420 exp -> exp . '/' exp (rule 4)
8421
2a8d363a
AD
8422 '*' shift, and go to state 6
8423 '/' shift, and go to state 7
ec3bc396 8424
2a8d363a
AD
8425 '/' [reduce using rule 1 (exp)]
8426 $default reduce using rule 1 (exp)
ec3bc396
AD
8427@end example
8428
742e4900 8429Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8430either shifting (and going to state 7), or reducing rule 1. The
8431conflict means that either the grammar is ambiguous, or the parser lacks
8432information to make the right decision. Indeed the grammar is
8433ambiguous, as, since we did not specify the precedence of @samp{/}, the
8434sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8435NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8436NUM}, which corresponds to reducing rule 1.
8437
eb45ef3b 8438Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8439arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8440Shift/Reduce Conflicts}. Discarded actions are reported in between
8441square brackets.
8442
8443Note that all the previous states had a single possible action: either
8444shifting the next token and going to the corresponding state, or
8445reducing a single rule. In the other cases, i.e., when shifting
8446@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8447possible, the lookahead is required to select the action. State 8 is
8448one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8449is shifting, otherwise the action is reducing rule 1. In other words,
8450the first two items, corresponding to rule 1, are not eligible when the
742e4900 8451lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8452precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8453with some set of possible lookahead tokens. When run with
8454@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8455
8456@example
8457state 8
8458
88c78747 8459 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8460 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8461 exp -> exp . '-' exp (rule 2)
8462 exp -> exp . '*' exp (rule 3)
8463 exp -> exp . '/' exp (rule 4)
8464
8465 '*' shift, and go to state 6
8466 '/' shift, and go to state 7
8467
8468 '/' [reduce using rule 1 (exp)]
8469 $default reduce using rule 1 (exp)
8470@end example
8471
8472The remaining states are similar:
8473
8474@example
8475state 9
8476
8477 exp -> exp . '+' exp (rule 1)
8478 exp -> exp . '-' exp (rule 2)
8479 exp -> exp '-' exp . (rule 2)
8480 exp -> exp . '*' exp (rule 3)
8481 exp -> exp . '/' exp (rule 4)
8482
2a8d363a
AD
8483 '*' shift, and go to state 6
8484 '/' shift, and go to state 7
ec3bc396 8485
2a8d363a
AD
8486 '/' [reduce using rule 2 (exp)]
8487 $default reduce using rule 2 (exp)
ec3bc396
AD
8488
8489state 10
8490
8491 exp -> exp . '+' exp (rule 1)
8492 exp -> exp . '-' exp (rule 2)
8493 exp -> exp . '*' exp (rule 3)
8494 exp -> exp '*' exp . (rule 3)
8495 exp -> exp . '/' exp (rule 4)
8496
2a8d363a 8497 '/' shift, and go to state 7
ec3bc396 8498
2a8d363a
AD
8499 '/' [reduce using rule 3 (exp)]
8500 $default reduce using rule 3 (exp)
ec3bc396
AD
8501
8502state 11
8503
8504 exp -> exp . '+' exp (rule 1)
8505 exp -> exp . '-' exp (rule 2)
8506 exp -> exp . '*' exp (rule 3)
8507 exp -> exp . '/' exp (rule 4)
8508 exp -> exp '/' exp . (rule 4)
8509
2a8d363a
AD
8510 '+' shift, and go to state 4
8511 '-' shift, and go to state 5
8512 '*' shift, and go to state 6
8513 '/' shift, and go to state 7
ec3bc396 8514
2a8d363a
AD
8515 '+' [reduce using rule 4 (exp)]
8516 '-' [reduce using rule 4 (exp)]
8517 '*' [reduce using rule 4 (exp)]
8518 '/' [reduce using rule 4 (exp)]
8519 $default reduce using rule 4 (exp)
ec3bc396
AD
8520@end example
8521
8522@noindent
fa7e68c3
PE
8523Observe that state 11 contains conflicts not only due to the lack of
8524precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8525@samp{*}, but also because the
ec3bc396
AD
8526associativity of @samp{/} is not specified.
8527
8528
8529@node Tracing
8530@section Tracing Your Parser
bfa74976
RS
8531@findex yydebug
8532@cindex debugging
8533@cindex tracing the parser
8534
8535If a Bison grammar compiles properly but doesn't do what you want when it
8536runs, the @code{yydebug} parser-trace feature can help you figure out why.
8537
3ded9a63
AD
8538There are several means to enable compilation of trace facilities:
8539
8540@table @asis
8541@item the macro @code{YYDEBUG}
8542@findex YYDEBUG
8543Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8544parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8545@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8546YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8547Prologue}).
8548
8549@item the option @option{-t}, @option{--debug}
8550Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8551,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8552
8553@item the directive @samp{%debug}
8554@findex %debug
fa819509
AD
8555Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8556Summary}). This Bison extension is maintained for backward
8557compatibility with previous versions of Bison.
8558
8559@item the variable @samp{parse.trace}
8560@findex %define parse.trace
35c1e5f0
JD
8561Add the @samp{%define parse.trace} directive (@pxref{%define
8562Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8563(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8564useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8565portability matter to you, this is the preferred solution.
3ded9a63
AD
8566@end table
8567
fa819509 8568We suggest that you always enable the trace option so that debugging is
3ded9a63 8569always possible.
bfa74976 8570
02a81e05 8571The trace facility outputs messages with macro calls of the form
e2742e46 8572@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8573@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8574arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8575define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8576and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8577
8578Once you have compiled the program with trace facilities, the way to
8579request a trace is to store a nonzero value in the variable @code{yydebug}.
8580You can do this by making the C code do it (in @code{main}, perhaps), or
8581you can alter the value with a C debugger.
8582
8583Each step taken by the parser when @code{yydebug} is nonzero produces a
8584line or two of trace information, written on @code{stderr}. The trace
8585messages tell you these things:
8586
8587@itemize @bullet
8588@item
8589Each time the parser calls @code{yylex}, what kind of token was read.
8590
8591@item
8592Each time a token is shifted, the depth and complete contents of the
8593state stack (@pxref{Parser States}).
8594
8595@item
8596Each time a rule is reduced, which rule it is, and the complete contents
8597of the state stack afterward.
8598@end itemize
8599
8600To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8601produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8602Bison}). This file shows the meaning of each state in terms of
8603positions in various rules, and also what each state will do with each
8604possible input token. As you read the successive trace messages, you
8605can see that the parser is functioning according to its specification in
8606the listing file. Eventually you will arrive at the place where
8607something undesirable happens, and you will see which parts of the
8608grammar are to blame.
bfa74976 8609
ff7571c0
JD
8610The parser implementation file is a C program and you can use C
8611debuggers on it, but it's not easy to interpret what it is doing. The
8612parser function is a finite-state machine interpreter, and aside from
8613the actions it executes the same code over and over. Only the values
8614of variables show where in the grammar it is working.
bfa74976
RS
8615
8616@findex YYPRINT
8617The debugging information normally gives the token type of each token
8618read, but not its semantic value. You can optionally define a macro
8619named @code{YYPRINT} to provide a way to print the value. If you define
8620@code{YYPRINT}, it should take three arguments. The parser will pass a
8621standard I/O stream, the numeric code for the token type, and the token
8622value (from @code{yylval}).
8623
8624Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8625calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8626
8627@smallexample
38a92d50
PE
8628%@{
8629 static void print_token_value (FILE *, int, YYSTYPE);
8630 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8631%@}
8632
8633@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8634
8635static void
831d3c99 8636print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8637@{
8638 if (type == VAR)
d3c4e709 8639 fprintf (file, "%s", value.tptr->name);
bfa74976 8640 else if (type == NUM)
d3c4e709 8641 fprintf (file, "%d", value.val);
bfa74976
RS
8642@}
8643@end smallexample
8644
ec3bc396
AD
8645@c ================================================= Invoking Bison
8646
342b8b6e 8647@node Invocation
bfa74976
RS
8648@chapter Invoking Bison
8649@cindex invoking Bison
8650@cindex Bison invocation
8651@cindex options for invoking Bison
8652
8653The usual way to invoke Bison is as follows:
8654
8655@example
8656bison @var{infile}
8657@end example
8658
8659Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8660@samp{.y}. The parser implementation file's name is made by replacing
8661the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8662Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8663the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8664also possible, in case you are writing C++ code instead of C in your
8665grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8666output files will take an extension like the given one as input
8667(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8668feature takes effect with all options that manipulate file names like
234a3be3
AD
8669@samp{-o} or @samp{-d}.
8670
8671For example :
8672
8673@example
8674bison -d @var{infile.yxx}
8675@end example
84163231 8676@noindent
72d2299c 8677will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8678
8679@example
b56471a6 8680bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8681@end example
84163231 8682@noindent
234a3be3
AD
8683will produce @file{output.c++} and @file{outfile.h++}.
8684
8a4281b9 8685For compatibility with POSIX, the standard Bison
397ec073
PE
8686distribution also contains a shell script called @command{yacc} that
8687invokes Bison with the @option{-y} option.
8688
bfa74976 8689@menu
13863333 8690* Bison Options:: All the options described in detail,
c827f760 8691 in alphabetical order by short options.
bfa74976 8692* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8693* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8694@end menu
8695
342b8b6e 8696@node Bison Options
bfa74976
RS
8697@section Bison Options
8698
8699Bison supports both traditional single-letter options and mnemonic long
8700option names. Long option names are indicated with @samp{--} instead of
8701@samp{-}. Abbreviations for option names are allowed as long as they
8702are unique. When a long option takes an argument, like
8703@samp{--file-prefix}, connect the option name and the argument with
8704@samp{=}.
8705
8706Here is a list of options that can be used with Bison, alphabetized by
8707short option. It is followed by a cross key alphabetized by long
8708option.
8709
89cab50d
AD
8710@c Please, keep this ordered as in `bison --help'.
8711@noindent
8712Operations modes:
8713@table @option
8714@item -h
8715@itemx --help
8716Print a summary of the command-line options to Bison and exit.
bfa74976 8717
89cab50d
AD
8718@item -V
8719@itemx --version
8720Print the version number of Bison and exit.
bfa74976 8721
f7ab6a50
PE
8722@item --print-localedir
8723Print the name of the directory containing locale-dependent data.
8724
a0de5091
JD
8725@item --print-datadir
8726Print the name of the directory containing skeletons and XSLT.
8727
89cab50d
AD
8728@item -y
8729@itemx --yacc
ff7571c0
JD
8730Act more like the traditional Yacc command. This can cause different
8731diagnostics to be generated, and may change behavior in other minor
8732ways. Most importantly, imitate Yacc's output file name conventions,
8733so that the parser implementation file is called @file{y.tab.c}, and
8734the other outputs are called @file{y.output} and @file{y.tab.h}.
8735Also, if generating a deterministic parser in C, generate
8736@code{#define} statements in addition to an @code{enum} to associate
8737token numbers with token names. Thus, the following shell script can
8738substitute for Yacc, and the Bison distribution contains such a script
8739for compatibility with POSIX:
bfa74976 8740
89cab50d 8741@example
397ec073 8742#! /bin/sh
26e06a21 8743bison -y "$@@"
89cab50d 8744@end example
54662697
PE
8745
8746The @option{-y}/@option{--yacc} option is intended for use with
8747traditional Yacc grammars. If your grammar uses a Bison extension
8748like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8749this option is specified.
8750
1d5b3c08
JD
8751@item -W [@var{category}]
8752@itemx --warnings[=@var{category}]
118d4978
AD
8753Output warnings falling in @var{category}. @var{category} can be one
8754of:
8755@table @code
8756@item midrule-values
8e55b3aa
JD
8757Warn about mid-rule values that are set but not used within any of the actions
8758of the parent rule.
8759For example, warn about unused @code{$2} in:
118d4978
AD
8760
8761@example
8762exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8763@end example
8764
8e55b3aa
JD
8765Also warn about mid-rule values that are used but not set.
8766For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8767
8768@example
8769 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8770@end example
8771
8772These warnings are not enabled by default since they sometimes prove to
8773be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8774@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8775
118d4978 8776@item yacc
8a4281b9 8777Incompatibilities with POSIX Yacc.
118d4978 8778
786743d5
JD
8779@item conflicts-sr
8780@itemx conflicts-rr
8781S/R and R/R conflicts. These warnings are enabled by default. However, if
8782the @code{%expect} or @code{%expect-rr} directive is specified, an
8783unexpected number of conflicts is an error, and an expected number of
8784conflicts is not reported, so @option{-W} and @option{--warning} then have
8785no effect on the conflict report.
8786
c39014ae
JD
8787@item other
8788All warnings not categorized above. These warnings are enabled by default.
8789
8790This category is provided merely for the sake of completeness. Future
8791releases of Bison may move warnings from this category to new, more specific
8792categories.
8793
118d4978 8794@item all
8e55b3aa 8795All the warnings.
118d4978 8796@item none
8e55b3aa 8797Turn off all the warnings.
118d4978 8798@item error
8e55b3aa 8799Treat warnings as errors.
118d4978
AD
8800@end table
8801
8802A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8803instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8804POSIX Yacc incompatibilities.
89cab50d
AD
8805@end table
8806
8807@noindent
8808Tuning the parser:
8809
8810@table @option
8811@item -t
8812@itemx --debug
ff7571c0
JD
8813In the parser implementation file, define the macro @code{YYDEBUG} to
88141 if it is not already defined, so that the debugging facilities are
8815compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8816
58697c6d
AD
8817@item -D @var{name}[=@var{value}]
8818@itemx --define=@var{name}[=@var{value}]
17aed602 8819@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8820@itemx --force-define=@var{name}[=@var{value}]
8821Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 8822(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
8823definitions for the same @var{name} as follows:
8824
8825@itemize
8826@item
0b6d43c5
JD
8827Bison quietly ignores all command-line definitions for @var{name} except
8828the last.
de5ab940 8829@item
0b6d43c5
JD
8830If that command-line definition is specified by a @code{-D} or
8831@code{--define}, Bison reports an error for any @code{%define}
8832definition for @var{name}.
de5ab940 8833@item
0b6d43c5
JD
8834If that command-line definition is specified by a @code{-F} or
8835@code{--force-define} instead, Bison quietly ignores all @code{%define}
8836definitions for @var{name}.
8837@item
8838Otherwise, Bison reports an error if there are multiple @code{%define}
8839definitions for @var{name}.
de5ab940
JD
8840@end itemize
8841
8842You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8843make files unless you are confident that it is safe to quietly ignore
8844any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8845
0e021770
PE
8846@item -L @var{language}
8847@itemx --language=@var{language}
8848Specify the programming language for the generated parser, as if
8849@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8850Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8851@var{language} is case-insensitive.
0e021770 8852
ed4d67dc
JD
8853This option is experimental and its effect may be modified in future
8854releases.
8855
89cab50d 8856@item --locations
d8988b2f 8857Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8858
8859@item -p @var{prefix}
8860@itemx --name-prefix=@var{prefix}
02975b9a 8861Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8862@xref{Decl Summary}.
bfa74976
RS
8863
8864@item -l
8865@itemx --no-lines
ff7571c0
JD
8866Don't put any @code{#line} preprocessor commands in the parser
8867implementation file. Ordinarily Bison puts them in the parser
8868implementation file so that the C compiler and debuggers will
8869associate errors with your source file, the grammar file. This option
8870causes them to associate errors with the parser implementation file,
8871treating it as an independent source file in its own right.
bfa74976 8872
e6e704dc
JD
8873@item -S @var{file}
8874@itemx --skeleton=@var{file}
a7867f53 8875Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8876(@pxref{Decl Summary, , Bison Declaration Summary}).
8877
ed4d67dc
JD
8878@c You probably don't need this option unless you are developing Bison.
8879@c You should use @option{--language} if you want to specify the skeleton for a
8880@c different language, because it is clearer and because it will always
8881@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8882
a7867f53
JD
8883If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8884file in the Bison installation directory.
8885If it does, @var{file} is an absolute file name or a file name relative to the
8886current working directory.
8887This is similar to how most shells resolve commands.
8888
89cab50d
AD
8889@item -k
8890@itemx --token-table
d8988b2f 8891Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8892@end table
bfa74976 8893
89cab50d
AD
8894@noindent
8895Adjust the output:
bfa74976 8896
89cab50d 8897@table @option
8e55b3aa 8898@item --defines[=@var{file}]
d8988b2f 8899Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8900file containing macro definitions for the token type names defined in
4bfd5e4e 8901the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8902
8e55b3aa
JD
8903@item -d
8904This is the same as @code{--defines} except @code{-d} does not accept a
8905@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8906with other short options.
342b8b6e 8907
89cab50d
AD
8908@item -b @var{file-prefix}
8909@itemx --file-prefix=@var{prefix}
9c437126 8910Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8911for all Bison output file names. @xref{Decl Summary}.
bfa74976 8912
ec3bc396
AD
8913@item -r @var{things}
8914@itemx --report=@var{things}
8915Write an extra output file containing verbose description of the comma
8916separated list of @var{things} among:
8917
8918@table @code
8919@item state
8920Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8921parser's automaton.
ec3bc396 8922
742e4900 8923@item lookahead
ec3bc396 8924Implies @code{state} and augments the description of the automaton with
742e4900 8925each rule's lookahead set.
ec3bc396
AD
8926
8927@item itemset
8928Implies @code{state} and augments the description of the automaton with
8929the full set of items for each state, instead of its core only.
8930@end table
8931
1bb2bd75
JD
8932@item --report-file=@var{file}
8933Specify the @var{file} for the verbose description.
8934
bfa74976
RS
8935@item -v
8936@itemx --verbose
9c437126 8937Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8938file containing verbose descriptions of the grammar and
72d2299c 8939parser. @xref{Decl Summary}.
bfa74976 8940
fa4d969f
PE
8941@item -o @var{file}
8942@itemx --output=@var{file}
ff7571c0 8943Specify the @var{file} for the parser implementation file.
bfa74976 8944
fa4d969f 8945The other output files' names are constructed from @var{file} as
d8988b2f 8946described under the @samp{-v} and @samp{-d} options.
342b8b6e 8947
a7c09cba 8948@item -g [@var{file}]
8e55b3aa 8949@itemx --graph[=@var{file}]
eb45ef3b 8950Output a graphical representation of the parser's
35fe0834 8951automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 8952@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8953@code{@var{file}} is optional.
8954If omitted and the grammar file is @file{foo.y}, the output file will be
8955@file{foo.dot}.
59da312b 8956
a7c09cba 8957@item -x [@var{file}]
8e55b3aa 8958@itemx --xml[=@var{file}]
eb45ef3b 8959Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8960@code{@var{file}} is optional.
59da312b
JD
8961If omitted and the grammar file is @file{foo.y}, the output file will be
8962@file{foo.xml}.
8963(The current XML schema is experimental and may evolve.
8964More user feedback will help to stabilize it.)
bfa74976
RS
8965@end table
8966
342b8b6e 8967@node Option Cross Key
bfa74976
RS
8968@section Option Cross Key
8969
8970Here is a list of options, alphabetized by long option, to help you find
de5ab940 8971the corresponding short option and directive.
bfa74976 8972
de5ab940 8973@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8974@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8975@include cross-options.texi
aa08666d 8976@end multitable
bfa74976 8977
93dd49ab
PE
8978@node Yacc Library
8979@section Yacc Library
8980
8981The Yacc library contains default implementations of the
8982@code{yyerror} and @code{main} functions. These default
8a4281b9 8983implementations are normally not useful, but POSIX requires
93dd49ab
PE
8984them. To use the Yacc library, link your program with the
8985@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 8986library is distributed under the terms of the GNU General
93dd49ab
PE
8987Public License (@pxref{Copying}).
8988
8989If you use the Yacc library's @code{yyerror} function, you should
8990declare @code{yyerror} as follows:
8991
8992@example
8993int yyerror (char const *);
8994@end example
8995
8996Bison ignores the @code{int} value returned by this @code{yyerror}.
8997If you use the Yacc library's @code{main} function, your
8998@code{yyparse} function should have the following type signature:
8999
9000@example
9001int yyparse (void);
9002@end example
9003
12545799
AD
9004@c ================================================= C++ Bison
9005
8405b70c
PB
9006@node Other Languages
9007@chapter Parsers Written In Other Languages
12545799
AD
9008
9009@menu
9010* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9011* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9012@end menu
9013
9014@node C++ Parsers
9015@section C++ Parsers
9016
9017@menu
9018* C++ Bison Interface:: Asking for C++ parser generation
9019* C++ Semantic Values:: %union vs. C++
9020* C++ Location Values:: The position and location classes
9021* C++ Parser Interface:: Instantiating and running the parser
9022* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9023* A Complete C++ Example:: Demonstrating their use
12545799
AD
9024@end menu
9025
9026@node C++ Bison Interface
9027@subsection C++ Bison Interface
ed4d67dc 9028@c - %skeleton "lalr1.cc"
12545799
AD
9029@c - Always pure
9030@c - initial action
9031
eb45ef3b 9032The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9033@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9034@option{--skeleton=lalr1.cc}.
e6e704dc 9035@xref{Decl Summary}.
0e021770 9036
793fbca5
JD
9037When run, @command{bison} will create several entities in the @samp{yy}
9038namespace.
67501061 9039@findex %define api.namespace
35c1e5f0
JD
9040Use the @samp{%define api.namespace} directive to change the namespace name,
9041see @ref{%define Summary,,api.namespace}. The various classes are generated
9042in the following files:
aa08666d 9043
12545799
AD
9044@table @file
9045@item position.hh
9046@itemx location.hh
9047The definition of the classes @code{position} and @code{location},
3cdc21cf 9048used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9049
9050@item stack.hh
9051An auxiliary class @code{stack} used by the parser.
9052
fa4d969f
PE
9053@item @var{file}.hh
9054@itemx @var{file}.cc
ff7571c0 9055(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9056declaration and implementation of the C++ parser class. The basename
9057and extension of these two files follow the same rules as with regular C
9058parsers (@pxref{Invocation}).
12545799 9059
cd8b5791
AD
9060The header is @emph{mandatory}; you must either pass
9061@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9062@samp{%defines} directive.
9063@end table
9064
9065All these files are documented using Doxygen; run @command{doxygen}
9066for a complete and accurate documentation.
9067
9068@node C++ Semantic Values
9069@subsection C++ Semantic Values
9070@c - No objects in unions
178e123e 9071@c - YYSTYPE
12545799
AD
9072@c - Printer and destructor
9073
3cdc21cf
AD
9074Bison supports two different means to handle semantic values in C++. One is
9075alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9076practitioners know, unions are inconvenient in C++, therefore another
9077approach is provided, based on variants (@pxref{C++ Variants}).
9078
9079@menu
9080* C++ Unions:: Semantic values cannot be objects
9081* C++ Variants:: Using objects as semantic values
9082@end menu
9083
9084@node C++ Unions
9085@subsubsection C++ Unions
9086
12545799
AD
9087The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9088Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9089@code{union}, which have a few specific features in C++.
12545799
AD
9090@itemize @minus
9091@item
fb9712a9
AD
9092The type @code{YYSTYPE} is defined but its use is discouraged: rather
9093you should refer to the parser's encapsulated type
9094@code{yy::parser::semantic_type}.
12545799
AD
9095@item
9096Non POD (Plain Old Data) types cannot be used. C++ forbids any
9097instance of classes with constructors in unions: only @emph{pointers}
9098to such objects are allowed.
9099@end itemize
9100
9101Because objects have to be stored via pointers, memory is not
9102reclaimed automatically: using the @code{%destructor} directive is the
9103only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9104Symbols}.
9105
3cdc21cf
AD
9106@node C++ Variants
9107@subsubsection C++ Variants
9108
9109Starting with version 2.6, Bison provides a @emph{variant} based
9110implementation of semantic values for C++. This alleviates all the
9111limitations reported in the previous section, and in particular, object
9112types can be used without pointers.
9113
9114To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9115@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9116@code{%union} is ignored, and instead of using the name of the fields of the
9117@code{%union} to ``type'' the symbols, use genuine types.
9118
9119For instance, instead of
9120
9121@example
9122%union
9123@{
9124 int ival;
9125 std::string* sval;
9126@}
9127%token <ival> NUMBER;
9128%token <sval> STRING;
9129@end example
9130
9131@noindent
9132write
9133
9134@example
9135%token <int> NUMBER;
9136%token <std::string> STRING;
9137@end example
9138
9139@code{STRING} is no longer a pointer, which should fairly simplify the user
9140actions in the grammar and in the scanner (in particular the memory
9141management).
9142
9143Since C++ features destructors, and since it is customary to specialize
9144@code{operator<<} to support uniform printing of values, variants also
9145typically simplify Bison printers and destructors.
9146
9147Variants are stricter than unions. When based on unions, you may play any
9148dirty game with @code{yylval}, say storing an @code{int}, reading a
9149@code{char*}, and then storing a @code{double} in it. This is no longer
9150possible with variants: they must be initialized, then assigned to, and
9151eventually, destroyed.
9152
9153@deftypemethod {semantic_type} {T&} build<T> ()
9154Initialize, but leave empty. Returns the address where the actual value may
9155be stored. Requires that the variant was not initialized yet.
9156@end deftypemethod
9157
9158@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9159Initialize, and copy-construct from @var{t}.
9160@end deftypemethod
9161
9162
9163@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9164appeared unacceptable to require Boost on the user's machine (i.e., the
9165machine on which the generated parser will be compiled, not the machine on
9166which @command{bison} was run). Second, for each possible semantic value,
9167Boost.Variant not only stores the value, but also a tag specifying its
9168type. But the parser already ``knows'' the type of the semantic value, so
9169that would be duplicating the information.
9170
9171Therefore we developed light-weight variants whose type tag is external (so
9172they are really like @code{unions} for C++ actually). But our code is much
9173less mature that Boost.Variant. So there is a number of limitations in
9174(the current implementation of) variants:
9175@itemize
9176@item
9177Alignment must be enforced: values should be aligned in memory according to
9178the most demanding type. Computing the smallest alignment possible requires
9179meta-programming techniques that are not currently implemented in Bison, and
9180therefore, since, as far as we know, @code{double} is the most demanding
9181type on all platforms, alignments are enforced for @code{double} whatever
9182types are actually used. This may waste space in some cases.
9183
9184@item
9185Our implementation is not conforming with strict aliasing rules. Alias
9186analysis is a technique used in optimizing compilers to detect when two
9187pointers are disjoint (they cannot ``meet''). Our implementation breaks
9188some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9189alias analysis must be disabled}. Use the option
9190@option{-fno-strict-aliasing} to compile the generated parser.
9191
9192@item
9193There might be portability issues we are not aware of.
9194@end itemize
9195
a6ca4ce2 9196As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9197is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9198
9199@node C++ Location Values
9200@subsection C++ Location Values
9201@c - %locations
9202@c - class Position
9203@c - class Location
16dc6a9e 9204@c - %define filename_type "const symbol::Symbol"
12545799
AD
9205
9206When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9207location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9208define a @code{position}, a single point in a file, and a @code{location}, a
9209range composed of a pair of @code{position}s (possibly spanning several
9210files).
12545799 9211
fa4d969f 9212@deftypemethod {position} {std::string*} file
12545799
AD
9213The name of the file. It will always be handled as a pointer, the
9214parser will never duplicate nor deallocate it. As an experimental
9215feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9216filename_type "@var{type}"}.
12545799
AD
9217@end deftypemethod
9218
9219@deftypemethod {position} {unsigned int} line
9220The line, starting at 1.
9221@end deftypemethod
9222
9223@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
9224Advance by @var{height} lines, resetting the column number.
9225@end deftypemethod
9226
9227@deftypemethod {position} {unsigned int} column
9228The column, starting at 0.
9229@end deftypemethod
9230
9231@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
9232Advance by @var{width} columns, without changing the line number.
9233@end deftypemethod
9234
9235@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
9236@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
9237@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
9238@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
9239Various forms of syntactic sugar for @code{columns}.
9240@end deftypemethod
9241
9242@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
9243Report @var{p} on @var{o} like this:
fa4d969f
PE
9244@samp{@var{file}:@var{line}.@var{column}}, or
9245@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
9246@end deftypemethod
9247
9248@deftypemethod {location} {position} begin
9249@deftypemethodx {location} {position} end
9250The first, inclusive, position of the range, and the first beyond.
9251@end deftypemethod
9252
9253@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
9254@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
9255Advance the @code{end} position.
9256@end deftypemethod
9257
9258@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
9259@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
9260@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
9261Various forms of syntactic sugar.
9262@end deftypemethod
9263
9264@deftypemethod {location} {void} step ()
9265Move @code{begin} onto @code{end}.
9266@end deftypemethod
9267
9268
9269@node C++ Parser Interface
9270@subsection C++ Parser Interface
9271@c - define parser_class_name
9272@c - Ctor
9273@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9274@c debug_stream.
9275@c - Reporting errors
9276
9277The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9278declare and define the parser class in the namespace @code{yy}. The
9279class name defaults to @code{parser}, but may be changed using
16dc6a9e 9280@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9281this class is detailed below. It can be extended using the
12545799
AD
9282@code{%parse-param} feature: its semantics is slightly changed since
9283it describes an additional member of the parser class, and an
9284additional argument for its constructor.
9285
3cdc21cf
AD
9286@defcv {Type} {parser} {semantic_type}
9287@defcvx {Type} {parser} {location_type}
9288The types for semantic values and locations (if enabled).
9289@end defcv
9290
86e5b440
AD
9291@defcv {Type} {parser} {token}
9292A structure that contains (only) the definition of the tokens as the
9293@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
9294scanner should use @code{yy::parser::token::FOO}. The scanner can use
9295@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9296(@pxref{Calc++ Scanner}).
9297@end defcv
9298
3cdc21cf
AD
9299@defcv {Type} {parser} {syntax_error}
9300This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9301from the scanner or from the user actions to raise parse errors. This is
9302equivalent with first
3cdc21cf
AD
9303invoking @code{error} to report the location and message of the syntax
9304error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9305But contrary to @code{YYERROR} which can only be invoked from user actions
9306(i.e., written in the action itself), the exception can be thrown from
9307function invoked from the user action.
8a0adb01 9308@end defcv
12545799
AD
9309
9310@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9311Build a new parser object. There are no arguments by default, unless
9312@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9313@end deftypemethod
9314
3cdc21cf
AD
9315@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9316@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9317Instantiate a syntax-error exception.
9318@end deftypemethod
9319
12545799
AD
9320@deftypemethod {parser} {int} parse ()
9321Run the syntactic analysis, and return 0 on success, 1 otherwise.
9322@end deftypemethod
9323
9324@deftypemethod {parser} {std::ostream&} debug_stream ()
9325@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9326Get or set the stream used for tracing the parsing. It defaults to
9327@code{std::cerr}.
9328@end deftypemethod
9329
9330@deftypemethod {parser} {debug_level_type} debug_level ()
9331@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9332Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9333or nonzero, full tracing.
12545799
AD
9334@end deftypemethod
9335
9336@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9337@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9338The definition for this member function must be supplied by the user:
9339the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9340described by @var{m}. If location tracking is not enabled, the second
9341signature is used.
12545799
AD
9342@end deftypemethod
9343
9344
9345@node C++ Scanner Interface
9346@subsection C++ Scanner Interface
9347@c - prefix for yylex.
9348@c - Pure interface to yylex
9349@c - %lex-param
9350
9351The parser invokes the scanner by calling @code{yylex}. Contrary to C
9352parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9353@samp{%define api.pure} directive. The actual interface with @code{yylex}
9354depends whether you use unions, or variants.
12545799 9355
3cdc21cf
AD
9356@menu
9357* Split Symbols:: Passing symbols as two/three components
9358* Complete Symbols:: Making symbols a whole
9359@end menu
9360
9361@node Split Symbols
9362@subsubsection Split Symbols
9363
9364Therefore the interface is as follows.
9365
86e5b440
AD
9366@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9367@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9368Return the next token. Its type is the return value, its semantic value and
9369location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9370@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9371@end deftypemethod
9372
3cdc21cf
AD
9373Note that when using variants, the interface for @code{yylex} is the same,
9374but @code{yylval} is handled differently.
9375
9376Regular union-based code in Lex scanner typically look like:
9377
9378@example
9379[0-9]+ @{
9380 yylval.ival = text_to_int (yytext);
9381 return yy::parser::INTEGER;
9382 @}
9383[a-z]+ @{
9384 yylval.sval = new std::string (yytext);
9385 return yy::parser::IDENTIFIER;
9386 @}
9387@end example
9388
9389Using variants, @code{yylval} is already constructed, but it is not
9390initialized. So the code would look like:
9391
9392@example
9393[0-9]+ @{
9394 yylval.build<int>() = text_to_int (yytext);
9395 return yy::parser::INTEGER;
9396 @}
9397[a-z]+ @{
9398 yylval.build<std::string> = yytext;
9399 return yy::parser::IDENTIFIER;
9400 @}
9401@end example
9402
9403@noindent
9404or
9405
9406@example
9407[0-9]+ @{
9408 yylval.build(text_to_int (yytext));
9409 return yy::parser::INTEGER;
9410 @}
9411[a-z]+ @{
9412 yylval.build(yytext);
9413 return yy::parser::IDENTIFIER;
9414 @}
9415@end example
9416
9417
9418@node Complete Symbols
9419@subsubsection Complete Symbols
9420
9421If you specified both @code{%define variant} and @code{%define lex_symbol},
9422the @code{parser} class also defines the class @code{parser::symbol_type}
9423which defines a @emph{complete} symbol, aggregating its type (i.e., the
9424traditional value returned by @code{yylex}), its semantic value (i.e., the
9425value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9426
9427@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9428Build a complete terminal symbol which token type is @var{type}, and which
9429semantic value is @var{value}. If location tracking is enabled, also pass
9430the @var{location}.
9431@end deftypemethod
9432
9433This interface is low-level and should not be used for two reasons. First,
9434it is inconvenient, as you still have to build the semantic value, which is
9435a variant, and second, because consistency is not enforced: as with unions,
9436it is still possible to give an integer as semantic value for a string.
9437
9438So for each token type, Bison generates named constructors as follows.
9439
9440@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9441@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9442Build a complete terminal symbol for the token type @var{token} (not
9443including the @code{api.tokens.prefix}) whose possible semantic value is
9444@var{value} of adequate @var{value_type}. If location tracking is enabled,
9445also pass the @var{location}.
9446@end deftypemethod
9447
9448For instance, given the following declarations:
9449
9450@example
9451%define api.tokens.prefix "TOK_"
9452%token <std::string> IDENTIFIER;
9453%token <int> INTEGER;
9454%token COLON;
9455@end example
9456
9457@noindent
9458Bison generates the following functions:
9459
9460@example
9461symbol_type make_IDENTIFIER(const std::string& v,
9462 const location_type& l);
9463symbol_type make_INTEGER(const int& v,
9464 const location_type& loc);
9465symbol_type make_COLON(const location_type& loc);
9466@end example
9467
9468@noindent
9469which should be used in a Lex-scanner as follows.
9470
9471@example
9472[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9473[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9474":" return yy::parser::make_COLON(loc);
9475@end example
9476
9477Tokens that do not have an identifier are not accessible: you cannot simply
9478use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9479
9480@node A Complete C++ Example
8405b70c 9481@subsection A Complete C++ Example
12545799
AD
9482
9483This section demonstrates the use of a C++ parser with a simple but
9484complete example. This example should be available on your system,
3cdc21cf 9485ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9486focuses on the use of Bison, therefore the design of the various C++
9487classes is very naive: no accessors, no encapsulation of members etc.
9488We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9489demonstrate the various interactions. A hand-written scanner is
12545799
AD
9490actually easier to interface with.
9491
9492@menu
9493* Calc++ --- C++ Calculator:: The specifications
9494* Calc++ Parsing Driver:: An active parsing context
9495* Calc++ Parser:: A parser class
9496* Calc++ Scanner:: A pure C++ Flex scanner
9497* Calc++ Top Level:: Conducting the band
9498@end menu
9499
9500@node Calc++ --- C++ Calculator
8405b70c 9501@subsubsection Calc++ --- C++ Calculator
12545799
AD
9502
9503Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9504expression, possibly preceded by variable assignments. An
12545799
AD
9505environment containing possibly predefined variables such as
9506@code{one} and @code{two}, is exchanged with the parser. An example
9507of valid input follows.
9508
9509@example
9510three := 3
9511seven := one + two * three
9512seven * seven
9513@end example
9514
9515@node Calc++ Parsing Driver
8405b70c 9516@subsubsection Calc++ Parsing Driver
12545799
AD
9517@c - An env
9518@c - A place to store error messages
9519@c - A place for the result
9520
9521To support a pure interface with the parser (and the scanner) the
9522technique of the ``parsing context'' is convenient: a structure
9523containing all the data to exchange. Since, in addition to simply
9524launch the parsing, there are several auxiliary tasks to execute (open
9525the file for parsing, instantiate the parser etc.), we recommend
9526transforming the simple parsing context structure into a fully blown
9527@dfn{parsing driver} class.
9528
9529The declaration of this driver class, @file{calc++-driver.hh}, is as
9530follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9531required standard library components, and the declaration of the parser
9532class.
12545799 9533
1c59e0a1 9534@comment file: calc++-driver.hh
12545799
AD
9535@example
9536#ifndef CALCXX_DRIVER_HH
9537# define CALCXX_DRIVER_HH
9538# include <string>
9539# include <map>
fb9712a9 9540# include "calc++-parser.hh"
12545799
AD
9541@end example
9542
12545799
AD
9543
9544@noindent
9545Then comes the declaration of the scanning function. Flex expects
9546the signature of @code{yylex} to be defined in the macro
9547@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9548factor both as follows.
1c59e0a1
AD
9549
9550@comment file: calc++-driver.hh
12545799 9551@example
3dc5e96b 9552// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9553# define YY_DECL \
9554 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9555// ... and declare it for the parser's sake.
9556YY_DECL;
9557@end example
9558
9559@noindent
9560The @code{calcxx_driver} class is then declared with its most obvious
9561members.
9562
1c59e0a1 9563@comment file: calc++-driver.hh
12545799
AD
9564@example
9565// Conducting the whole scanning and parsing of Calc++.
9566class calcxx_driver
9567@{
9568public:
9569 calcxx_driver ();
9570 virtual ~calcxx_driver ();
9571
9572 std::map<std::string, int> variables;
9573
9574 int result;
9575@end example
9576
9577@noindent
3cdc21cf
AD
9578To encapsulate the coordination with the Flex scanner, it is useful to have
9579member functions to open and close the scanning phase.
12545799 9580
1c59e0a1 9581@comment file: calc++-driver.hh
12545799
AD
9582@example
9583 // Handling the scanner.
9584 void scan_begin ();
9585 void scan_end ();
9586 bool trace_scanning;
9587@end example
9588
9589@noindent
9590Similarly for the parser itself.
9591
1c59e0a1 9592@comment file: calc++-driver.hh
12545799 9593@example
3cdc21cf
AD
9594 // Run the parser on file F.
9595 // Return 0 on success.
bb32f4f2 9596 int parse (const std::string& f);
3cdc21cf
AD
9597 // The name of the file being parsed.
9598 // Used later to pass the file name to the location tracker.
12545799 9599 std::string file;
3cdc21cf 9600 // Whether parser traces should be generated.
12545799
AD
9601 bool trace_parsing;
9602@end example
9603
9604@noindent
9605To demonstrate pure handling of parse errors, instead of simply
9606dumping them on the standard error output, we will pass them to the
9607compiler driver using the following two member functions. Finally, we
9608close the class declaration and CPP guard.
9609
1c59e0a1 9610@comment file: calc++-driver.hh
12545799
AD
9611@example
9612 // Error handling.
9613 void error (const yy::location& l, const std::string& m);
9614 void error (const std::string& m);
9615@};
9616#endif // ! CALCXX_DRIVER_HH
9617@end example
9618
9619The implementation of the driver is straightforward. The @code{parse}
9620member function deserves some attention. The @code{error} functions
9621are simple stubs, they should actually register the located error
9622messages and set error state.
9623
1c59e0a1 9624@comment file: calc++-driver.cc
12545799
AD
9625@example
9626#include "calc++-driver.hh"
9627#include "calc++-parser.hh"
9628
9629calcxx_driver::calcxx_driver ()
9630 : trace_scanning (false), trace_parsing (false)
9631@{
9632 variables["one"] = 1;
9633 variables["two"] = 2;
9634@}
9635
9636calcxx_driver::~calcxx_driver ()
9637@{
9638@}
9639
bb32f4f2 9640int
12545799
AD
9641calcxx_driver::parse (const std::string &f)
9642@{
9643 file = f;
9644 scan_begin ();
9645 yy::calcxx_parser parser (*this);
9646 parser.set_debug_level (trace_parsing);
bb32f4f2 9647 int res = parser.parse ();
12545799 9648 scan_end ();
bb32f4f2 9649 return res;
12545799
AD
9650@}
9651
9652void
9653calcxx_driver::error (const yy::location& l, const std::string& m)
9654@{
9655 std::cerr << l << ": " << m << std::endl;
9656@}
9657
9658void
9659calcxx_driver::error (const std::string& m)
9660@{
9661 std::cerr << m << std::endl;
9662@}
9663@end example
9664
9665@node Calc++ Parser
8405b70c 9666@subsubsection Calc++ Parser
12545799 9667
ff7571c0
JD
9668The grammar file @file{calc++-parser.yy} starts by asking for the C++
9669deterministic parser skeleton, the creation of the parser header file,
9670and specifies the name of the parser class. Because the C++ skeleton
9671changed several times, it is safer to require the version you designed
9672the grammar for.
1c59e0a1
AD
9673
9674@comment file: calc++-parser.yy
12545799 9675@example
ed4d67dc 9676%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9677%require "@value{VERSION}"
12545799 9678%defines
16dc6a9e 9679%define parser_class_name "calcxx_parser"
fb9712a9
AD
9680@end example
9681
3cdc21cf
AD
9682@noindent
9683@findex %define variant
9684@findex %define lex_symbol
9685This example will use genuine C++ objects as semantic values, therefore, we
9686require the variant-based interface. To make sure we properly use it, we
9687enable assertions. To fully benefit from type-safety and more natural
9688definition of ``symbol'', we enable @code{lex_symbol}.
9689
9690@comment file: calc++-parser.yy
9691@example
9692%define variant
9693%define parse.assert
9694%define lex_symbol
9695@end example
9696
fb9712a9 9697@noindent
16dc6a9e 9698@findex %code requires
3cdc21cf
AD
9699Then come the declarations/inclusions needed by the semantic values.
9700Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9701to include the header of the other, which is, of course, insane. This
3cdc21cf 9702mutual dependency will be broken using forward declarations. Because the
fb9712a9 9703driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9704particular its inner types), it is the parser's header which will use a
e0c07222 9705forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9706
9707@comment file: calc++-parser.yy
9708@example
3cdc21cf
AD
9709%code requires
9710@{
12545799 9711# include <string>
fb9712a9 9712class calcxx_driver;
9bc0dd67 9713@}
12545799
AD
9714@end example
9715
9716@noindent
9717The driver is passed by reference to the parser and to the scanner.
9718This provides a simple but effective pure interface, not relying on
9719global variables.
9720
1c59e0a1 9721@comment file: calc++-parser.yy
12545799
AD
9722@example
9723// The parsing context.
2055a44e 9724%param @{ calcxx_driver& driver @}
12545799
AD
9725@end example
9726
9727@noindent
2055a44e 9728Then we request location tracking, and initialize the
f50bfcd6 9729first location's file name. Afterward new locations are computed
12545799 9730relatively to the previous locations: the file name will be
2055a44e 9731propagated.
12545799 9732
1c59e0a1 9733@comment file: calc++-parser.yy
12545799
AD
9734@example
9735%locations
9736%initial-action
9737@{
9738 // Initialize the initial location.
b47dbebe 9739 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9740@};
9741@end example
9742
9743@noindent
7fceb615
JD
9744Use the following two directives to enable parser tracing and verbose error
9745messages. However, verbose error messages can contain incorrect information
9746(@pxref{LAC}).
12545799 9747
1c59e0a1 9748@comment file: calc++-parser.yy
12545799 9749@example
fa819509 9750%define parse.trace
cf499cff 9751%define parse.error verbose
12545799
AD
9752@end example
9753
fb9712a9 9754@noindent
136a0f76
PB
9755@findex %code
9756The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9757@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9758
9759@comment file: calc++-parser.yy
9760@example
3cdc21cf
AD
9761%code
9762@{
fb9712a9 9763# include "calc++-driver.hh"
34f98f46 9764@}
fb9712a9
AD
9765@end example
9766
9767
12545799
AD
9768@noindent
9769The token numbered as 0 corresponds to end of file; the following line
99c08fb6 9770allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
9771``$end''. Similarly user friendly names are provided for each symbol. To
9772avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
9773tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 9774
1c59e0a1 9775@comment file: calc++-parser.yy
12545799 9776@example
4c6622c2 9777%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9778%token
9779 END 0 "end of file"
9780 ASSIGN ":="
9781 MINUS "-"
9782 PLUS "+"
9783 STAR "*"
9784 SLASH "/"
9785 LPAREN "("
9786 RPAREN ")"
9787;
12545799
AD
9788@end example
9789
9790@noindent
3cdc21cf
AD
9791Since we use variant-based semantic values, @code{%union} is not used, and
9792both @code{%type} and @code{%token} expect genuine types, as opposed to type
9793tags.
12545799 9794
1c59e0a1 9795@comment file: calc++-parser.yy
12545799 9796@example
3cdc21cf
AD
9797%token <std::string> IDENTIFIER "identifier"
9798%token <int> NUMBER "number"
9799%type <int> exp
9800@end example
9801
9802@noindent
9803No @code{%destructor} is needed to enable memory deallocation during error
9804recovery; the memory, for strings for instance, will be reclaimed by the
9805regular destructors. All the values are printed using their
9806@code{operator<<}.
12545799 9807
3cdc21cf
AD
9808@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9809@comment file: calc++-parser.yy
9810@example
9811%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9812@end example
9813
9814@noindent
3cdc21cf
AD
9815The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9816Location Tracking Calculator: @code{ltcalc}}).
12545799 9817
1c59e0a1 9818@comment file: calc++-parser.yy
12545799
AD
9819@example
9820%%
9821%start unit;
9822unit: assignments exp @{ driver.result = $2; @};
9823
99c08fb6
AD
9824assignments:
9825 assignments assignment @{@}
9826| /* Nothing. */ @{@};
12545799 9827
3dc5e96b 9828assignment:
3cdc21cf 9829 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9830
3cdc21cf
AD
9831%left "+" "-";
9832%left "*" "/";
99c08fb6 9833exp:
3cdc21cf
AD
9834 exp "+" exp @{ $$ = $1 + $3; @}
9835| exp "-" exp @{ $$ = $1 - $3; @}
9836| exp "*" exp @{ $$ = $1 * $3; @}
9837| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9838| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9839| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9840| "number" @{ std::swap ($$, $1); @};
12545799
AD
9841%%
9842@end example
9843
9844@noindent
9845Finally the @code{error} member function registers the errors to the
9846driver.
9847
1c59e0a1 9848@comment file: calc++-parser.yy
12545799
AD
9849@example
9850void
3cdc21cf 9851yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9852 const std::string& m)
12545799
AD
9853@{
9854 driver.error (l, m);
9855@}
9856@end example
9857
9858@node Calc++ Scanner
8405b70c 9859@subsubsection Calc++ Scanner
12545799
AD
9860
9861The Flex scanner first includes the driver declaration, then the
9862parser's to get the set of defined tokens.
9863
1c59e0a1 9864@comment file: calc++-scanner.ll
12545799
AD
9865@example
9866%@{ /* -*- C++ -*- */
3c248d70
AD
9867# include <cerrno>
9868# include <climits>
3cdc21cf 9869# include <cstdlib>
12545799
AD
9870# include <string>
9871# include "calc++-driver.hh"
9872# include "calc++-parser.hh"
eaea13f5 9873
3cdc21cf
AD
9874// Work around an incompatibility in flex (at least versions
9875// 2.5.31 through 2.5.33): it generates code that does
9876// not conform to C89. See Debian bug 333231
9877// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9878# undef yywrap
9879# define yywrap() 1
eaea13f5 9880
3cdc21cf
AD
9881// The location of the current token.
9882static yy::location loc;
12545799
AD
9883%@}
9884@end example
9885
9886@noindent
9887Because there is no @code{#include}-like feature we don't need
9888@code{yywrap}, we don't need @code{unput} either, and we parse an
9889actual file, this is not an interactive session with the user.
3cdc21cf 9890Finally, we enable scanner tracing.
12545799 9891
1c59e0a1 9892@comment file: calc++-scanner.ll
12545799
AD
9893@example
9894%option noyywrap nounput batch debug
9895@end example
9896
9897@noindent
9898Abbreviations allow for more readable rules.
9899
1c59e0a1 9900@comment file: calc++-scanner.ll
12545799
AD
9901@example
9902id [a-zA-Z][a-zA-Z_0-9]*
9903int [0-9]+
9904blank [ \t]
9905@end example
9906
9907@noindent
9d9b8b70 9908The following paragraph suffices to track locations accurately. Each
12545799 9909time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9910position. Then when a pattern is matched, its width is added to the end
9911column. When matching ends of lines, the end
12545799
AD
9912cursor is adjusted, and each time blanks are matched, the begin cursor
9913is moved onto the end cursor to effectively ignore the blanks
9914preceding tokens. Comments would be treated equally.
9915
1c59e0a1 9916@comment file: calc++-scanner.ll
12545799 9917@example
828c373b 9918%@{
3cdc21cf
AD
9919 // Code run each time a pattern is matched.
9920 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9921%@}
12545799
AD
9922%%
9923%@{
3cdc21cf
AD
9924 // Code run each time yylex is called.
9925 loc.step ();
12545799 9926%@}
3cdc21cf
AD
9927@{blank@}+ loc.step ();
9928[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9929@end example
9930
9931@noindent
3cdc21cf 9932The rules are simple. The driver is used to report errors.
12545799 9933
1c59e0a1 9934@comment file: calc++-scanner.ll
12545799 9935@example
3cdc21cf
AD
9936"-" return yy::calcxx_parser::make_MINUS(loc);
9937"+" return yy::calcxx_parser::make_PLUS(loc);
9938"*" return yy::calcxx_parser::make_STAR(loc);
9939"/" return yy::calcxx_parser::make_SLASH(loc);
9940"(" return yy::calcxx_parser::make_LPAREN(loc);
9941")" return yy::calcxx_parser::make_RPAREN(loc);
9942":=" return yy::calcxx_parser::make_ASSIGN(loc);
9943
04098407
PE
9944@{int@} @{
9945 errno = 0;
9946 long n = strtol (yytext, NULL, 10);
9947 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9948 driver.error (loc, "integer is out of range");
9949 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9950@}
3cdc21cf
AD
9951@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9952. driver.error (loc, "invalid character");
9953<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9954%%
9955@end example
9956
9957@noindent
3cdc21cf 9958Finally, because the scanner-related driver's member-functions depend
12545799
AD
9959on the scanner's data, it is simpler to implement them in this file.
9960
1c59e0a1 9961@comment file: calc++-scanner.ll
12545799
AD
9962@example
9963void
9964calcxx_driver::scan_begin ()
9965@{
9966 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9967 if (file == "-")
9968 yyin = stdin;
9969 else if (!(yyin = fopen (file.c_str (), "r")))
9970 @{
3cdc21cf 9971 error (std::string ("cannot open ") + file + ": " + strerror(errno));
d0f2b7f8 9972 exit (EXIT_FAILURE);
bb32f4f2 9973 @}
12545799
AD
9974@}
9975
9976void
9977calcxx_driver::scan_end ()
9978@{
9979 fclose (yyin);
9980@}
9981@end example
9982
9983@node Calc++ Top Level
8405b70c 9984@subsubsection Calc++ Top Level
12545799
AD
9985
9986The top level file, @file{calc++.cc}, poses no problem.
9987
1c59e0a1 9988@comment file: calc++.cc
12545799
AD
9989@example
9990#include <iostream>
9991#include "calc++-driver.hh"
9992
9993int
fa4d969f 9994main (int argc, char *argv[])
12545799 9995@{
414c76a4 9996 int res = 0;
12545799
AD
9997 calcxx_driver driver;
9998 for (++argv; argv[0]; ++argv)
9999 if (*argv == std::string ("-p"))
10000 driver.trace_parsing = true;
10001 else if (*argv == std::string ("-s"))
10002 driver.trace_scanning = true;
bb32f4f2
AD
10003 else if (!driver.parse (*argv))
10004 std::cout << driver.result << std::endl;
414c76a4
AD
10005 else
10006 res = 1;
10007 return res;
12545799
AD
10008@}
10009@end example
10010
8405b70c
PB
10011@node Java Parsers
10012@section Java Parsers
10013
10014@menu
f5f419de
DJ
10015* Java Bison Interface:: Asking for Java parser generation
10016* Java Semantic Values:: %type and %token vs. Java
10017* Java Location Values:: The position and location classes
10018* Java Parser Interface:: Instantiating and running the parser
10019* Java Scanner Interface:: Specifying the scanner for the parser
10020* Java Action Features:: Special features for use in actions
10021* Java Differences:: Differences between C/C++ and Java Grammars
10022* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10023@end menu
10024
10025@node Java Bison Interface
10026@subsection Java Bison Interface
10027@c - %language "Java"
8405b70c 10028
59da312b
JD
10029(The current Java interface is experimental and may evolve.
10030More user feedback will help to stabilize it.)
10031
e254a580
DJ
10032The Java parser skeletons are selected using the @code{%language "Java"}
10033directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10034
e254a580 10035@c FIXME: Documented bug.
ff7571c0
JD
10036When generating a Java parser, @code{bison @var{basename}.y} will
10037create a single Java source file named @file{@var{basename}.java}
10038containing the parser implementation. Using a grammar file without a
10039@file{.y} suffix is currently broken. The basename of the parser
10040implementation file can be changed by the @code{%file-prefix}
10041directive or the @option{-p}/@option{--name-prefix} option. The
10042entire parser implementation file name can be changed by the
10043@code{%output} directive or the @option{-o}/@option{--output} option.
10044The parser implementation file contains a single class for the parser.
8405b70c 10045
e254a580 10046You can create documentation for generated parsers using Javadoc.
8405b70c 10047
e254a580
DJ
10048Contrary to C parsers, Java parsers do not use global variables; the
10049state of the parser is always local to an instance of the parser class.
10050Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10051and @samp{%define api.pure} directives does not do anything when used in
e254a580 10052Java.
8405b70c 10053
e254a580 10054Push parsers are currently unsupported in Java and @code{%define
67212941 10055api.push-pull} have no effect.
01b477c6 10056
8a4281b9 10057GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10058@code{glr-parser} directive.
10059
10060No header file can be generated for Java parsers. Do not use the
10061@code{%defines} directive or the @option{-d}/@option{--defines} options.
10062
10063@c FIXME: Possible code change.
fa819509
AD
10064Currently, support for tracing is always compiled
10065in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10066directives and the
e254a580
DJ
10067@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10068options have no effect. This may change in the future to eliminate
fa819509
AD
10069unused code in the generated parser, so use @samp{%define parse.trace}
10070explicitly
1979121c 10071if needed. Also, in the future the
e254a580
DJ
10072@code{%token-table} directive might enable a public interface to
10073access the token names and codes.
8405b70c 10074
09ccae9b 10075Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10076hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10077Try reducing the amount of code in actions and static initializers;
10078otherwise, report a bug so that the parser skeleton will be improved.
10079
10080
8405b70c
PB
10081@node Java Semantic Values
10082@subsection Java Semantic Values
10083@c - No %union, specify type in %type/%token.
10084@c - YYSTYPE
10085@c - Printer and destructor
10086
10087There is no @code{%union} directive in Java parsers. Instead, the
10088semantic values' types (class names) should be specified in the
10089@code{%type} or @code{%token} directive:
10090
10091@example
10092%type <Expression> expr assignment_expr term factor
10093%type <Integer> number
10094@end example
10095
10096By default, the semantic stack is declared to have @code{Object} members,
10097which means that the class types you specify can be of any class.
10098To improve the type safety of the parser, you can declare the common
67501061 10099superclass of all the semantic values using the @samp{%define stype}
e254a580 10100directive. For example, after the following declaration:
8405b70c
PB
10101
10102@example
e254a580 10103%define stype "ASTNode"
8405b70c
PB
10104@end example
10105
10106@noindent
10107any @code{%type} or @code{%token} specifying a semantic type which
10108is not a subclass of ASTNode, will cause a compile-time error.
10109
e254a580 10110@c FIXME: Documented bug.
8405b70c
PB
10111Types used in the directives may be qualified with a package name.
10112Primitive data types are accepted for Java version 1.5 or later. Note
10113that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10114Generic types may not be used; this is due to a limitation in the
10115implementation of Bison, and may change in future releases.
8405b70c
PB
10116
10117Java parsers do not support @code{%destructor}, since the language
10118adopts garbage collection. The parser will try to hold references
10119to semantic values for as little time as needed.
10120
10121Java parsers do not support @code{%printer}, as @code{toString()}
10122can be used to print the semantic values. This however may change
10123(in a backwards-compatible way) in future versions of Bison.
10124
10125
10126@node Java Location Values
10127@subsection Java Location Values
10128@c - %locations
10129@c - class Position
10130@c - class Location
10131
303834cc
JD
10132When the directive @code{%locations} is used, the Java parser supports
10133location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10134class defines a @dfn{position}, a single point in a file; Bison itself
10135defines a class representing a @dfn{location}, a range composed of a pair of
10136positions (possibly spanning several files). The location class is an inner
10137class of the parser; the name is @code{Location} by default, and may also be
10138renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10139
10140The location class treats the position as a completely opaque value.
10141By default, the class name is @code{Position}, but this can be changed
67501061 10142with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10143be supplied by the user.
8405b70c
PB
10144
10145
e254a580
DJ
10146@deftypeivar {Location} {Position} begin
10147@deftypeivarx {Location} {Position} end
8405b70c 10148The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10149@end deftypeivar
10150
10151@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10152Create a @code{Location} denoting an empty range located at a given point.
e254a580 10153@end deftypeop
8405b70c 10154
e254a580
DJ
10155@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10156Create a @code{Location} from the endpoints of the range.
10157@end deftypeop
10158
10159@deftypemethod {Location} {String} toString ()
8405b70c
PB
10160Prints the range represented by the location. For this to work
10161properly, the position class should override the @code{equals} and
10162@code{toString} methods appropriately.
10163@end deftypemethod
10164
10165
10166@node Java Parser Interface
10167@subsection Java Parser Interface
10168@c - define parser_class_name
10169@c - Ctor
10170@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10171@c debug_stream.
10172@c - Reporting errors
10173
e254a580
DJ
10174The name of the generated parser class defaults to @code{YYParser}. The
10175@code{YY} prefix may be changed using the @code{%name-prefix} directive
10176or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10177@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10178the class. The interface of this class is detailed below.
8405b70c 10179
e254a580 10180By default, the parser class has package visibility. A declaration
67501061 10181@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10182according to the Java language specification, the name of the @file{.java}
10183file should match the name of the class in this case. Similarly, you can
10184use @code{abstract}, @code{final} and @code{strictfp} with the
10185@code{%define} declaration to add other modifiers to the parser class.
67501061 10186A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10187be used to add any number of annotations to the parser class.
e254a580
DJ
10188
10189The Java package name of the parser class can be specified using the
67501061 10190@samp{%define package} directive. The superclass and the implemented
e254a580 10191interfaces of the parser class can be specified with the @code{%define
67501061 10192extends} and @samp{%define implements} directives.
e254a580
DJ
10193
10194The parser class defines an inner class, @code{Location}, that is used
10195for location tracking (see @ref{Java Location Values}), and a inner
10196interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10197these inner class/interface, and the members described in the interface
10198below, all the other members and fields are preceded with a @code{yy} or
10199@code{YY} prefix to avoid clashes with user code.
10200
e254a580
DJ
10201The parser class can be extended using the @code{%parse-param}
10202directive. Each occurrence of the directive will add a @code{protected
10203final} field to the parser class, and an argument to its constructor,
10204which initialize them automatically.
10205
e254a580
DJ
10206@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10207Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10208no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10209@code{%lex-param}s are used.
1979121c
DJ
10210
10211Use @code{%code init} for code added to the start of the constructor
10212body. This is especially useful to initialize superclasses. Use
f50bfcd6 10213@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10214@end deftypeop
10215
10216@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10217Build a new parser object using the specified scanner. There are no
2055a44e
AD
10218additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10219used.
e254a580
DJ
10220
10221If the scanner is defined by @code{%code lexer}, this constructor is
10222declared @code{protected} and is called automatically with a scanner
2055a44e 10223created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10224
10225Use @code{%code init} for code added to the start of the constructor
10226body. This is especially useful to initialize superclasses. Use
67501061 10227@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 10228@end deftypeop
8405b70c
PB
10229
10230@deftypemethod {YYParser} {boolean} parse ()
10231Run the syntactic analysis, and return @code{true} on success,
10232@code{false} otherwise.
10233@end deftypemethod
10234
1979121c
DJ
10235@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10236@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10237Get or set the option to produce verbose error messages. These are only
cf499cff 10238available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10239verbose error messages.
10240@end deftypemethod
10241
10242@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10243@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10244@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10245Print an error message using the @code{yyerror} method of the scanner
10246instance in use. The @code{Location} and @code{Position} parameters are
10247available only if location tracking is active.
10248@end deftypemethod
10249
01b477c6 10250@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10251During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10252from a syntax error.
10253@xref{Error Recovery}.
8405b70c
PB
10254@end deftypemethod
10255
10256@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10257@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10258Get or set the stream used for tracing the parsing. It defaults to
10259@code{System.err}.
10260@end deftypemethod
10261
10262@deftypemethod {YYParser} {int} getDebugLevel ()
10263@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10264Get or set the tracing level. Currently its value is either 0, no trace,
10265or nonzero, full tracing.
10266@end deftypemethod
10267
1979121c
DJ
10268@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10269@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10270Identify the Bison version and skeleton used to generate this parser.
10271@end deftypecv
10272
8405b70c
PB
10273
10274@node Java Scanner Interface
10275@subsection Java Scanner Interface
01b477c6 10276@c - %code lexer
8405b70c 10277@c - %lex-param
01b477c6 10278@c - Lexer interface
8405b70c 10279
e254a580
DJ
10280There are two possible ways to interface a Bison-generated Java parser
10281with a scanner: the scanner may be defined by @code{%code lexer}, or
10282defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10283@code{Lexer} inner interface of the parser class. This interface also
10284contain constants for all user-defined token names and the predefined
10285@code{EOF} token.
e254a580
DJ
10286
10287In the first case, the body of the scanner class is placed in
10288@code{%code lexer} blocks. If you want to pass parameters from the
10289parser constructor to the scanner constructor, specify them with
10290@code{%lex-param}; they are passed before @code{%parse-param}s to the
10291constructor.
01b477c6 10292
59c5ac72 10293In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10294which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10295The constructor of the parser object will then accept an object
10296implementing the interface; @code{%lex-param} is not used in this
10297case.
10298
10299In both cases, the scanner has to implement the following methods.
10300
e254a580
DJ
10301@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10302This method is defined by the user to emit an error message. The first
10303parameter is omitted if location tracking is not active. Its type can be
67501061 10304changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10305@end deftypemethod
10306
e254a580 10307@deftypemethod {Lexer} {int} yylex ()
8405b70c 10308Return the next token. Its type is the return value, its semantic
f50bfcd6 10309value and location are saved and returned by the their methods in the
e254a580
DJ
10310interface.
10311
67501061 10312Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10313Default is @code{java.io.IOException}.
8405b70c
PB
10314@end deftypemethod
10315
10316@deftypemethod {Lexer} {Position} getStartPos ()
10317@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10318Return respectively the first position of the last token that
10319@code{yylex} returned, and the first position beyond it. These
10320methods are not needed unless location tracking is active.
8405b70c 10321
67501061 10322The return type can be changed using @samp{%define position_type
8405b70c
PB
10323"@var{class-name}".}
10324@end deftypemethod
10325
10326@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10327Return the semantic value of the last token that yylex returned.
8405b70c 10328
67501061 10329The return type can be changed using @samp{%define stype
8405b70c
PB
10330"@var{class-name}".}
10331@end deftypemethod
10332
10333
e254a580
DJ
10334@node Java Action Features
10335@subsection Special Features for Use in Java Actions
10336
10337The following special constructs can be uses in Java actions.
10338Other analogous C action features are currently unavailable for Java.
10339
67501061 10340Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10341actions, and initial actions specified by @code{%initial-action}.
10342
10343@defvar $@var{n}
10344The semantic value for the @var{n}th component of the current rule.
10345This may not be assigned to.
10346@xref{Java Semantic Values}.
10347@end defvar
10348
10349@defvar $<@var{typealt}>@var{n}
10350Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10351@xref{Java Semantic Values}.
10352@end defvar
10353
10354@defvar $$
10355The semantic value for the grouping made by the current rule. As a
10356value, this is in the base type (@code{Object} or as specified by
67501061 10357@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10358casts are not allowed on the left-hand side of Java assignments.
10359Use an explicit Java cast if the correct subtype is needed.
10360@xref{Java Semantic Values}.
10361@end defvar
10362
10363@defvar $<@var{typealt}>$
10364Same as @code{$$} since Java always allow assigning to the base type.
10365Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10366for setting the value but there is currently no easy way to distinguish
10367these constructs.
10368@xref{Java Semantic Values}.
10369@end defvar
10370
10371@defvar @@@var{n}
10372The location information of the @var{n}th component of the current rule.
10373This may not be assigned to.
10374@xref{Java Location Values}.
10375@end defvar
10376
10377@defvar @@$
10378The location information of the grouping made by the current rule.
10379@xref{Java Location Values}.
10380@end defvar
10381
10382@deffn {Statement} {return YYABORT;}
10383Return immediately from the parser, indicating failure.
10384@xref{Java Parser Interface}.
10385@end deffn
8405b70c 10386
e254a580
DJ
10387@deffn {Statement} {return YYACCEPT;}
10388Return immediately from the parser, indicating success.
10389@xref{Java Parser Interface}.
10390@end deffn
8405b70c 10391
e254a580 10392@deffn {Statement} {return YYERROR;}
c265fd6b 10393Start error recovery without printing an error message.
e254a580
DJ
10394@xref{Error Recovery}.
10395@end deffn
8405b70c 10396
e254a580
DJ
10397@deftypefn {Function} {boolean} recovering ()
10398Return whether error recovery is being done. In this state, the parser
10399reads token until it reaches a known state, and then restarts normal
10400operation.
10401@xref{Error Recovery}.
10402@end deftypefn
8405b70c 10403
1979121c
DJ
10404@deftypefn {Function} {void} yyerror (String @var{msg})
10405@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10406@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10407Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10408instance in use. The @code{Location} and @code{Position} parameters are
10409available only if location tracking is active.
e254a580 10410@end deftypefn
8405b70c 10411
8405b70c 10412
8405b70c
PB
10413@node Java Differences
10414@subsection Differences between C/C++ and Java Grammars
10415
10416The different structure of the Java language forces several differences
10417between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10418section summarizes these differences.
8405b70c
PB
10419
10420@itemize
10421@item
01b477c6 10422Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10423@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10424macros. Instead, they should be preceded by @code{return} when they
10425appear in an action. The actual definition of these symbols is
8405b70c
PB
10426opaque to the Bison grammar, and it might change in the future. The
10427only meaningful operation that you can do, is to return them.
e254a580 10428See @pxref{Java Action Features}.
8405b70c
PB
10429
10430Note that of these three symbols, only @code{YYACCEPT} and
10431@code{YYABORT} will cause a return from the @code{yyparse}
10432method@footnote{Java parsers include the actions in a separate
10433method than @code{yyparse} in order to have an intuitive syntax that
10434corresponds to these C macros.}.
10435
e254a580
DJ
10436@item
10437Java lacks unions, so @code{%union} has no effect. Instead, semantic
10438values have a common base type: @code{Object} or as specified by
f50bfcd6 10439@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10440@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10441an union. The type of @code{$$}, even with angle brackets, is the base
10442type since Java casts are not allow on the left-hand side of assignments.
10443Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10444left-hand side of assignments. See @pxref{Java Semantic Values} and
10445@pxref{Java Action Features}.
10446
8405b70c 10447@item
f50bfcd6 10448The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10449@table @asis
10450@item @code{%code imports}
10451blocks are placed at the beginning of the Java source code. They may
10452include copyright notices. For a @code{package} declarations, it is
67501061 10453suggested to use @samp{%define package} instead.
8405b70c 10454
01b477c6
PB
10455@item unqualified @code{%code}
10456blocks are placed inside the parser class.
10457
10458@item @code{%code lexer}
10459blocks, if specified, should include the implementation of the
10460scanner. If there is no such block, the scanner can be any class
10461that implements the appropriate interface (see @pxref{Java Scanner
10462Interface}).
29553547 10463@end table
8405b70c
PB
10464
10465Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10466In particular, @code{%@{ @dots{} %@}} blocks should not be used
10467and may give an error in future versions of Bison.
10468
01b477c6 10469The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10470be used to define other classes used by the parser @emph{outside}
10471the parser class.
8405b70c
PB
10472@end itemize
10473
e254a580
DJ
10474
10475@node Java Declarations Summary
10476@subsection Java Declarations Summary
10477
10478This summary only include declarations specific to Java or have special
10479meaning when used in a Java parser.
10480
10481@deffn {Directive} {%language "Java"}
10482Generate a Java class for the parser.
10483@end deffn
10484
10485@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10486A parameter for the lexer class defined by @code{%code lexer}
10487@emph{only}, added as parameters to the lexer constructor and the parser
10488constructor that @emph{creates} a lexer. Default is none.
10489@xref{Java Scanner Interface}.
10490@end deffn
10491
10492@deffn {Directive} %name-prefix "@var{prefix}"
10493The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10494@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10495@xref{Java Bison Interface}.
10496@end deffn
10497
10498@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10499A parameter for the parser class added as parameters to constructor(s)
10500and as fields initialized by the constructor(s). Default is none.
10501@xref{Java Parser Interface}.
10502@end deffn
10503
10504@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10505Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10506@xref{Java Semantic Values}.
10507@end deffn
10508
10509@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10510Declare the type of nonterminals. Note that the angle brackets enclose
10511a Java @emph{type}.
10512@xref{Java Semantic Values}.
10513@end deffn
10514
10515@deffn {Directive} %code @{ @var{code} @dots{} @}
10516Code appended to the inside of the parser class.
10517@xref{Java Differences}.
10518@end deffn
10519
10520@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10521Code inserted just after the @code{package} declaration.
10522@xref{Java Differences}.
10523@end deffn
10524
1979121c
DJ
10525@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10526Code inserted at the beginning of the parser constructor body.
10527@xref{Java Parser Interface}.
10528@end deffn
10529
e254a580
DJ
10530@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10531Code added to the body of a inner lexer class within the parser class.
10532@xref{Java Scanner Interface}.
10533@end deffn
10534
10535@deffn {Directive} %% @var{code} @dots{}
10536Code (after the second @code{%%}) appended to the end of the file,
10537@emph{outside} the parser class.
10538@xref{Java Differences}.
10539@end deffn
10540
10541@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10542Not supported. Use @code{%code imports} instead.
e254a580
DJ
10543@xref{Java Differences}.
10544@end deffn
10545
10546@deffn {Directive} {%define abstract}
10547Whether the parser class is declared @code{abstract}. Default is false.
10548@xref{Java Bison Interface}.
10549@end deffn
10550
1979121c
DJ
10551@deffn {Directive} {%define annotations} "@var{annotations}"
10552The Java annotations for the parser class. Default is none.
10553@xref{Java Bison Interface}.
10554@end deffn
10555
e254a580
DJ
10556@deffn {Directive} {%define extends} "@var{superclass}"
10557The superclass of the parser class. Default is none.
10558@xref{Java Bison Interface}.
10559@end deffn
10560
10561@deffn {Directive} {%define final}
10562Whether the parser class is declared @code{final}. Default is false.
10563@xref{Java Bison Interface}.
10564@end deffn
10565
10566@deffn {Directive} {%define implements} "@var{interfaces}"
10567The implemented interfaces of the parser class, a comma-separated list.
10568Default is none.
10569@xref{Java Bison Interface}.
10570@end deffn
10571
1979121c
DJ
10572@deffn {Directive} {%define init_throws} "@var{exceptions}"
10573The exceptions thrown by @code{%code init} from the parser class
10574constructor. Default is none.
10575@xref{Java Parser Interface}.
10576@end deffn
10577
e254a580
DJ
10578@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10579The exceptions thrown by the @code{yylex} method of the lexer, a
10580comma-separated list. Default is @code{java.io.IOException}.
10581@xref{Java Scanner Interface}.
10582@end deffn
10583
10584@deffn {Directive} {%define location_type} "@var{class}"
10585The name of the class used for locations (a range between two
10586positions). This class is generated as an inner class of the parser
10587class by @command{bison}. Default is @code{Location}.
10588@xref{Java Location Values}.
10589@end deffn
10590
10591@deffn {Directive} {%define package} "@var{package}"
10592The package to put the parser class in. Default is none.
10593@xref{Java Bison Interface}.
10594@end deffn
10595
10596@deffn {Directive} {%define parser_class_name} "@var{name}"
10597The name of the parser class. Default is @code{YYParser} or
10598@code{@var{name-prefix}Parser}.
10599@xref{Java Bison Interface}.
10600@end deffn
10601
10602@deffn {Directive} {%define position_type} "@var{class}"
10603The name of the class used for positions. This class must be supplied by
10604the user. Default is @code{Position}.
10605@xref{Java Location Values}.
10606@end deffn
10607
10608@deffn {Directive} {%define public}
10609Whether the parser class is declared @code{public}. Default is false.
10610@xref{Java Bison Interface}.
10611@end deffn
10612
10613@deffn {Directive} {%define stype} "@var{class}"
10614The base type of semantic values. Default is @code{Object}.
10615@xref{Java Semantic Values}.
10616@end deffn
10617
10618@deffn {Directive} {%define strictfp}
10619Whether the parser class is declared @code{strictfp}. Default is false.
10620@xref{Java Bison Interface}.
10621@end deffn
10622
10623@deffn {Directive} {%define throws} "@var{exceptions}"
10624The exceptions thrown by user-supplied parser actions and
10625@code{%initial-action}, a comma-separated list. Default is none.
10626@xref{Java Parser Interface}.
10627@end deffn
10628
10629
12545799 10630@c ================================================= FAQ
d1a1114f
AD
10631
10632@node FAQ
10633@chapter Frequently Asked Questions
10634@cindex frequently asked questions
10635@cindex questions
10636
10637Several questions about Bison come up occasionally. Here some of them
10638are addressed.
10639
10640@menu
55ba27be
AD
10641* Memory Exhausted:: Breaking the Stack Limits
10642* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10643* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10644* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10645* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10646* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10647* I can't build Bison:: Troubleshooting
10648* Where can I find help?:: Troubleshouting
10649* Bug Reports:: Troublereporting
8405b70c 10650* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10651* Beta Testing:: Experimenting development versions
10652* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10653@end menu
10654
1a059451
PE
10655@node Memory Exhausted
10656@section Memory Exhausted
d1a1114f
AD
10657
10658@display
1a059451 10659My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10660message. What can I do?
10661@end display
10662
10663This question is already addressed elsewhere, @xref{Recursion,
10664,Recursive Rules}.
10665
e64fec0a
PE
10666@node How Can I Reset the Parser
10667@section How Can I Reset the Parser
5b066063 10668
0e14ad77
PE
10669The following phenomenon has several symptoms, resulting in the
10670following typical questions:
5b066063
AD
10671
10672@display
10673I invoke @code{yyparse} several times, and on correct input it works
10674properly; but when a parse error is found, all the other calls fail
0e14ad77 10675too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10676@end display
10677
10678@noindent
10679or
10680
10681@display
0e14ad77 10682My parser includes support for an @samp{#include}-like feature, in
5b066063 10683which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10684although I did specify @samp{%define api.pure}.
5b066063
AD
10685@end display
10686
0e14ad77
PE
10687These problems typically come not from Bison itself, but from
10688Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10689speed, they might not notice a change of input file. As a
10690demonstration, consider the following source file,
10691@file{first-line.l}:
10692
10693@verbatim
10694%{
10695#include <stdio.h>
10696#include <stdlib.h>
10697%}
10698%%
10699.*\n ECHO; return 1;
10700%%
10701int
0e14ad77 10702yyparse (char const *file)
5b066063
AD
10703{
10704 yyin = fopen (file, "r");
10705 if (!yyin)
d0f2b7f8
AD
10706 {
10707 perror ("fopen");
10708 exit (EXIT_FAILURE);
10709 }
fa7e68c3 10710 /* One token only. */
5b066063 10711 yylex ();
0e14ad77 10712 if (fclose (yyin) != 0)
d0f2b7f8
AD
10713 {
10714 perror ("fclose");
10715 exit (EXIT_FAILURE);
10716 }
5b066063
AD
10717 return 0;
10718}
10719
10720int
0e14ad77 10721main (void)
5b066063
AD
10722{
10723 yyparse ("input");
10724 yyparse ("input");
10725 return 0;
10726}
10727@end verbatim
10728
10729@noindent
10730If the file @file{input} contains
10731
10732@verbatim
10733input:1: Hello,
10734input:2: World!
10735@end verbatim
10736
10737@noindent
0e14ad77 10738then instead of getting the first line twice, you get:
5b066063
AD
10739
10740@example
10741$ @kbd{flex -ofirst-line.c first-line.l}
10742$ @kbd{gcc -ofirst-line first-line.c -ll}
10743$ @kbd{./first-line}
10744input:1: Hello,
10745input:2: World!
10746@end example
10747
0e14ad77
PE
10748Therefore, whenever you change @code{yyin}, you must tell the
10749Lex-generated scanner to discard its current buffer and switch to the
10750new one. This depends upon your implementation of Lex; see its
10751documentation for more. For Flex, it suffices to call
10752@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10753Flex-generated scanner needs to read from several input streams to
10754handle features like include files, you might consider using Flex
10755functions like @samp{yy_switch_to_buffer} that manipulate multiple
10756input buffers.
5b066063 10757
b165c324
AD
10758If your Flex-generated scanner uses start conditions (@pxref{Start
10759conditions, , Start conditions, flex, The Flex Manual}), you might
10760also want to reset the scanner's state, i.e., go back to the initial
10761start condition, through a call to @samp{BEGIN (0)}.
10762
fef4cb51
AD
10763@node Strings are Destroyed
10764@section Strings are Destroyed
10765
10766@display
c7e441b4 10767My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10768them. Instead of reporting @samp{"foo", "bar"}, it reports
10769@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10770@end display
10771
10772This error is probably the single most frequent ``bug report'' sent to
10773Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10774of the scanner. Consider the following Lex code:
fef4cb51
AD
10775
10776@verbatim
10777%{
10778#include <stdio.h>
10779char *yylval = NULL;
10780%}
10781%%
10782.* yylval = yytext; return 1;
10783\n /* IGNORE */
10784%%
10785int
10786main ()
10787{
fa7e68c3 10788 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10789 char *fst = (yylex (), yylval);
10790 char *snd = (yylex (), yylval);
10791 printf ("\"%s\", \"%s\"\n", fst, snd);
10792 return 0;
10793}
10794@end verbatim
10795
10796If you compile and run this code, you get:
10797
10798@example
10799$ @kbd{flex -osplit-lines.c split-lines.l}
10800$ @kbd{gcc -osplit-lines split-lines.c -ll}
10801$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10802"one
10803two", "two"
10804@end example
10805
10806@noindent
10807this is because @code{yytext} is a buffer provided for @emph{reading}
10808in the action, but if you want to keep it, you have to duplicate it
10809(e.g., using @code{strdup}). Note that the output may depend on how
10810your implementation of Lex handles @code{yytext}. For instance, when
10811given the Lex compatibility option @option{-l} (which triggers the
10812option @samp{%array}) Flex generates a different behavior:
10813
10814@example
10815$ @kbd{flex -l -osplit-lines.c split-lines.l}
10816$ @kbd{gcc -osplit-lines split-lines.c -ll}
10817$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10818"two", "two"
10819@end example
10820
10821
2fa09258
AD
10822@node Implementing Gotos/Loops
10823@section Implementing Gotos/Loops
a06ea4aa
AD
10824
10825@display
10826My simple calculator supports variables, assignments, and functions,
2fa09258 10827but how can I implement gotos, or loops?
a06ea4aa
AD
10828@end display
10829
10830Although very pedagogical, the examples included in the document blur
a1c84f45 10831the distinction to make between the parser---whose job is to recover
a06ea4aa 10832the structure of a text and to transmit it to subsequent modules of
a1c84f45 10833the program---and the processing (such as the execution) of this
a06ea4aa
AD
10834structure. This works well with so called straight line programs,
10835i.e., precisely those that have a straightforward execution model:
10836execute simple instructions one after the others.
10837
10838@cindex abstract syntax tree
8a4281b9 10839@cindex AST
a06ea4aa
AD
10840If you want a richer model, you will probably need to use the parser
10841to construct a tree that does represent the structure it has
10842recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10843or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10844traversing it in various ways, will enable treatments such as its
10845execution or its translation, which will result in an interpreter or a
10846compiler.
10847
10848This topic is way beyond the scope of this manual, and the reader is
10849invited to consult the dedicated literature.
10850
10851
ed2e6384
AD
10852@node Multiple start-symbols
10853@section Multiple start-symbols
10854
10855@display
10856I have several closely related grammars, and I would like to share their
10857implementations. In fact, I could use a single grammar but with
10858multiple entry points.
10859@end display
10860
10861Bison does not support multiple start-symbols, but there is a very
10862simple means to simulate them. If @code{foo} and @code{bar} are the two
10863pseudo start-symbols, then introduce two new tokens, say
10864@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10865real start-symbol:
10866
10867@example
10868%token START_FOO START_BAR;
10869%start start;
10870start: START_FOO foo
10871 | START_BAR bar;
10872@end example
10873
10874These tokens prevents the introduction of new conflicts. As far as the
10875parser goes, that is all that is needed.
10876
10877Now the difficult part is ensuring that the scanner will send these
10878tokens first. If your scanner is hand-written, that should be
10879straightforward. If your scanner is generated by Lex, them there is
10880simple means to do it: recall that anything between @samp{%@{ ... %@}}
10881after the first @code{%%} is copied verbatim in the top of the generated
10882@code{yylex} function. Make sure a variable @code{start_token} is
10883available in the scanner (e.g., a global variable or using
10884@code{%lex-param} etc.), and use the following:
10885
10886@example
10887 /* @r{Prologue.} */
10888%%
10889%@{
10890 if (start_token)
10891 @{
10892 int t = start_token;
10893 start_token = 0;
10894 return t;
10895 @}
10896%@}
10897 /* @r{The rules.} */
10898@end example
10899
10900
55ba27be
AD
10901@node Secure? Conform?
10902@section Secure? Conform?
10903
10904@display
10905Is Bison secure? Does it conform to POSIX?
10906@end display
10907
10908If you're looking for a guarantee or certification, we don't provide it.
10909However, Bison is intended to be a reliable program that conforms to the
8a4281b9 10910POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10911please send us a bug report.
10912
10913@node I can't build Bison
10914@section I can't build Bison
10915
10916@display
8c5b881d
PE
10917I can't build Bison because @command{make} complains that
10918@code{msgfmt} is not found.
55ba27be
AD
10919What should I do?
10920@end display
10921
10922Like most GNU packages with internationalization support, that feature
10923is turned on by default. If you have problems building in the @file{po}
10924subdirectory, it indicates that your system's internationalization
10925support is lacking. You can re-configure Bison with
10926@option{--disable-nls} to turn off this support, or you can install GNU
10927gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10928Bison. See the file @file{ABOUT-NLS} for more information.
10929
10930
10931@node Where can I find help?
10932@section Where can I find help?
10933
10934@display
10935I'm having trouble using Bison. Where can I find help?
10936@end display
10937
10938First, read this fine manual. Beyond that, you can send mail to
10939@email{help-bison@@gnu.org}. This mailing list is intended to be
10940populated with people who are willing to answer questions about using
10941and installing Bison. Please keep in mind that (most of) the people on
10942the list have aspects of their lives which are not related to Bison (!),
10943so you may not receive an answer to your question right away. This can
10944be frustrating, but please try not to honk them off; remember that any
10945help they provide is purely voluntary and out of the kindness of their
10946hearts.
10947
10948@node Bug Reports
10949@section Bug Reports
10950
10951@display
10952I found a bug. What should I include in the bug report?
10953@end display
10954
10955Before you send a bug report, make sure you are using the latest
10956version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10957mirrors. Be sure to include the version number in your bug report. If
10958the bug is present in the latest version but not in a previous version,
10959try to determine the most recent version which did not contain the bug.
10960
10961If the bug is parser-related, you should include the smallest grammar
10962you can which demonstrates the bug. The grammar file should also be
10963complete (i.e., I should be able to run it through Bison without having
10964to edit or add anything). The smaller and simpler the grammar, the
10965easier it will be to fix the bug.
10966
10967Include information about your compilation environment, including your
10968operating system's name and version and your compiler's name and
10969version. If you have trouble compiling, you should also include a
10970transcript of the build session, starting with the invocation of
10971`configure'. Depending on the nature of the bug, you may be asked to
10972send additional files as well (such as `config.h' or `config.cache').
10973
10974Patches are most welcome, but not required. That is, do not hesitate to
411614fa 10975send a bug report just because you cannot provide a fix.
55ba27be
AD
10976
10977Send bug reports to @email{bug-bison@@gnu.org}.
10978
8405b70c
PB
10979@node More Languages
10980@section More Languages
55ba27be
AD
10981
10982@display
8405b70c 10983Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10984favorite language here}?
10985@end display
10986
8405b70c 10987C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10988languages; contributions are welcome.
10989
10990@node Beta Testing
10991@section Beta Testing
10992
10993@display
10994What is involved in being a beta tester?
10995@end display
10996
10997It's not terribly involved. Basically, you would download a test
10998release, compile it, and use it to build and run a parser or two. After
10999that, you would submit either a bug report or a message saying that
11000everything is okay. It is important to report successes as well as
11001failures because test releases eventually become mainstream releases,
11002but only if they are adequately tested. If no one tests, development is
11003essentially halted.
11004
11005Beta testers are particularly needed for operating systems to which the
11006developers do not have easy access. They currently have easy access to
11007recent GNU/Linux and Solaris versions. Reports about other operating
11008systems are especially welcome.
11009
11010@node Mailing Lists
11011@section Mailing Lists
11012
11013@display
11014How do I join the help-bison and bug-bison mailing lists?
11015@end display
11016
11017See @url{http://lists.gnu.org/}.
a06ea4aa 11018
d1a1114f
AD
11019@c ================================================= Table of Symbols
11020
342b8b6e 11021@node Table of Symbols
bfa74976
RS
11022@appendix Bison Symbols
11023@cindex Bison symbols, table of
11024@cindex symbols in Bison, table of
11025
18b519c0 11026@deffn {Variable} @@$
3ded9a63 11027In an action, the location of the left-hand side of the rule.
303834cc 11028@xref{Tracking Locations}.
18b519c0 11029@end deffn
3ded9a63 11030
18b519c0 11031@deffn {Variable} @@@var{n}
303834cc
JD
11032In an action, the location of the @var{n}-th symbol of the right-hand side
11033of the rule. @xref{Tracking Locations}.
18b519c0 11034@end deffn
3ded9a63 11035
d013372c 11036@deffn {Variable} @@@var{name}
303834cc
JD
11037In an action, the location of a symbol addressed by name. @xref{Tracking
11038Locations}.
d013372c
AR
11039@end deffn
11040
11041@deffn {Variable} @@[@var{name}]
303834cc
JD
11042In an action, the location of a symbol addressed by name. @xref{Tracking
11043Locations}.
d013372c
AR
11044@end deffn
11045
18b519c0 11046@deffn {Variable} $$
3ded9a63
AD
11047In an action, the semantic value of the left-hand side of the rule.
11048@xref{Actions}.
18b519c0 11049@end deffn
3ded9a63 11050
18b519c0 11051@deffn {Variable} $@var{n}
3ded9a63
AD
11052In an action, the semantic value of the @var{n}-th symbol of the
11053right-hand side of the rule. @xref{Actions}.
18b519c0 11054@end deffn
3ded9a63 11055
d013372c
AR
11056@deffn {Variable} $@var{name}
11057In an action, the semantic value of a symbol addressed by name.
11058@xref{Actions}.
11059@end deffn
11060
11061@deffn {Variable} $[@var{name}]
11062In an action, the semantic value of a symbol addressed by name.
11063@xref{Actions}.
11064@end deffn
11065
dd8d9022
AD
11066@deffn {Delimiter} %%
11067Delimiter used to separate the grammar rule section from the
11068Bison declarations section or the epilogue.
11069@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11070@end deffn
bfa74976 11071
dd8d9022
AD
11072@c Don't insert spaces, or check the DVI output.
11073@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11074All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11075to the parser implementation file. Such code forms the prologue of
11076the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11077Grammar}.
18b519c0 11078@end deffn
bfa74976 11079
ca2a6d15
PH
11080@deffn {Directive} %?@{@var{expression}@}
11081Predicate actions. This is a type of action clause that may appear in
11082rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11083GLR parsers during nondeterministic operation,
ca2a6d15
PH
11084this silently causes an alternative parse to die. During deterministic
11085operation, it is the same as the effect of YYERROR.
11086@xref{Semantic Predicates}.
11087
11088This feature is experimental.
11089More user feedback will help to determine whether it should become a permanent
11090feature.
11091@end deffn
11092
dd8d9022
AD
11093@deffn {Construct} /*@dots{}*/
11094Comment delimiters, as in C.
18b519c0 11095@end deffn
bfa74976 11096
dd8d9022
AD
11097@deffn {Delimiter} :
11098Separates a rule's result from its components. @xref{Rules, ,Syntax of
11099Grammar Rules}.
18b519c0 11100@end deffn
bfa74976 11101
dd8d9022
AD
11102@deffn {Delimiter} ;
11103Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11104@end deffn
bfa74976 11105
dd8d9022
AD
11106@deffn {Delimiter} |
11107Separates alternate rules for the same result nonterminal.
11108@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11109@end deffn
bfa74976 11110
12e35840
JD
11111@deffn {Directive} <*>
11112Used to define a default tagged @code{%destructor} or default tagged
11113@code{%printer}.
85894313
JD
11114
11115This feature is experimental.
11116More user feedback will help to determine whether it should become a permanent
11117feature.
11118
12e35840
JD
11119@xref{Destructor Decl, , Freeing Discarded Symbols}.
11120@end deffn
11121
3ebecc24 11122@deffn {Directive} <>
12e35840
JD
11123Used to define a default tagless @code{%destructor} or default tagless
11124@code{%printer}.
85894313
JD
11125
11126This feature is experimental.
11127More user feedback will help to determine whether it should become a permanent
11128feature.
11129
12e35840
JD
11130@xref{Destructor Decl, , Freeing Discarded Symbols}.
11131@end deffn
11132
dd8d9022
AD
11133@deffn {Symbol} $accept
11134The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11135$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11136Start-Symbol}. It cannot be used in the grammar.
18b519c0 11137@end deffn
bfa74976 11138
136a0f76 11139@deffn {Directive} %code @{@var{code}@}
148d66d8 11140@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11141Insert @var{code} verbatim into the output parser source at the
11142default location or at the location specified by @var{qualifier}.
e0c07222 11143@xref{%code Summary}.
9bc0dd67
JD
11144@end deffn
11145
11146@deffn {Directive} %debug
11147Equip the parser for debugging. @xref{Decl Summary}.
11148@end deffn
11149
91d2c560 11150@ifset defaultprec
22fccf95
PE
11151@deffn {Directive} %default-prec
11152Assign a precedence to rules that lack an explicit @samp{%prec}
11153modifier. @xref{Contextual Precedence, ,Context-Dependent
11154Precedence}.
39a06c25 11155@end deffn
91d2c560 11156@end ifset
39a06c25 11157
7fceb615
JD
11158@deffn {Directive} %define @var{variable}
11159@deffnx {Directive} %define @var{variable} @var{value}
11160@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11161Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11162@end deffn
11163
18b519c0 11164@deffn {Directive} %defines
ff7571c0
JD
11165Bison declaration to create a parser header file, which is usually
11166meant for the scanner. @xref{Decl Summary}.
18b519c0 11167@end deffn
6deb4447 11168
02975b9a
JD
11169@deffn {Directive} %defines @var{defines-file}
11170Same as above, but save in the file @var{defines-file}.
11171@xref{Decl Summary}.
11172@end deffn
11173
18b519c0 11174@deffn {Directive} %destructor
258b75ca 11175Specify how the parser should reclaim the memory associated to
fa7e68c3 11176discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11177@end deffn
72f889cc 11178
18b519c0 11179@deffn {Directive} %dprec
676385e2 11180Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11181time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11182GLR Parsers}.
18b519c0 11183@end deffn
676385e2 11184
dd8d9022
AD
11185@deffn {Symbol} $end
11186The predefined token marking the end of the token stream. It cannot be
11187used in the grammar.
11188@end deffn
11189
11190@deffn {Symbol} error
11191A token name reserved for error recovery. This token may be used in
11192grammar rules so as to allow the Bison parser to recognize an error in
11193the grammar without halting the process. In effect, a sentence
11194containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11195token @code{error} becomes the current lookahead token. Actions
11196corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11197token is reset to the token that originally caused the violation.
11198@xref{Error Recovery}.
18d192f0
AD
11199@end deffn
11200
18b519c0 11201@deffn {Directive} %error-verbose
7fceb615
JD
11202An obsolete directive standing for @samp{%define parse.error verbose}
11203(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11204@end deffn
2a8d363a 11205
02975b9a 11206@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11207Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11208Summary}.
18b519c0 11209@end deffn
d8988b2f 11210
18b519c0 11211@deffn {Directive} %glr-parser
8a4281b9
JD
11212Bison declaration to produce a GLR parser. @xref{GLR
11213Parsers, ,Writing GLR Parsers}.
18b519c0 11214@end deffn
676385e2 11215
dd8d9022
AD
11216@deffn {Directive} %initial-action
11217Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11218@end deffn
11219
e6e704dc
JD
11220@deffn {Directive} %language
11221Specify the programming language for the generated parser.
11222@xref{Decl Summary}.
11223@end deffn
11224
18b519c0 11225@deffn {Directive} %left
d78f0ac9 11226Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11227@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11228@end deffn
bfa74976 11229
2055a44e
AD
11230@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11231Bison declaration to specifying additional arguments that
2a8d363a
AD
11232@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11233for Pure Parsers}.
18b519c0 11234@end deffn
2a8d363a 11235
18b519c0 11236@deffn {Directive} %merge
676385e2 11237Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11238reduce/reduce conflict with a rule having the same merging function, the
676385e2 11239function is applied to the two semantic values to get a single result.
8a4281b9 11240@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11241@end deffn
676385e2 11242
02975b9a 11243@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11244Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11245@end deffn
d8988b2f 11246
91d2c560 11247@ifset defaultprec
22fccf95
PE
11248@deffn {Directive} %no-default-prec
11249Do not assign a precedence to rules that lack an explicit @samp{%prec}
11250modifier. @xref{Contextual Precedence, ,Context-Dependent
11251Precedence}.
11252@end deffn
91d2c560 11253@end ifset
22fccf95 11254
18b519c0 11255@deffn {Directive} %no-lines
931c7513 11256Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11257parser implementation file. @xref{Decl Summary}.
18b519c0 11258@end deffn
931c7513 11259
18b519c0 11260@deffn {Directive} %nonassoc
d78f0ac9 11261Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11262@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11263@end deffn
bfa74976 11264
02975b9a 11265@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11266Bison declaration to set the name of the parser implementation file.
11267@xref{Decl Summary}.
18b519c0 11268@end deffn
d8988b2f 11269
2055a44e
AD
11270@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11271Bison declaration to specify additional arguments that both
11272@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11273Parser Function @code{yyparse}}.
11274@end deffn
11275
11276@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11277Bison declaration to specify additional arguments that @code{yyparse}
11278should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11279@end deffn
2a8d363a 11280
18b519c0 11281@deffn {Directive} %prec
bfa74976
RS
11282Bison declaration to assign a precedence to a specific rule.
11283@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11284@end deffn
bfa74976 11285
d78f0ac9
AD
11286@deffn {Directive} %precedence
11287Bison declaration to assign precedence to token(s), but no associativity
11288@xref{Precedence Decl, ,Operator Precedence}.
11289@end deffn
11290
18b519c0 11291@deffn {Directive} %pure-parser
35c1e5f0
JD
11292Deprecated version of @samp{%define api.pure} (@pxref{%define
11293Summary,,api.pure}), for which Bison is more careful to warn about
11294unreasonable usage.
18b519c0 11295@end deffn
bfa74976 11296
b50d2359 11297@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11298Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11299Require a Version of Bison}.
b50d2359
AD
11300@end deffn
11301
18b519c0 11302@deffn {Directive} %right
d78f0ac9 11303Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11304@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11305@end deffn
bfa74976 11306
e6e704dc
JD
11307@deffn {Directive} %skeleton
11308Specify the skeleton to use; usually for development.
11309@xref{Decl Summary}.
11310@end deffn
11311
18b519c0 11312@deffn {Directive} %start
704a47c4
AD
11313Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11314Start-Symbol}.
18b519c0 11315@end deffn
bfa74976 11316
18b519c0 11317@deffn {Directive} %token
bfa74976
RS
11318Bison declaration to declare token(s) without specifying precedence.
11319@xref{Token Decl, ,Token Type Names}.
18b519c0 11320@end deffn
bfa74976 11321
18b519c0 11322@deffn {Directive} %token-table
ff7571c0
JD
11323Bison declaration to include a token name table in the parser
11324implementation file. @xref{Decl Summary}.
18b519c0 11325@end deffn
931c7513 11326
18b519c0 11327@deffn {Directive} %type
704a47c4
AD
11328Bison declaration to declare nonterminals. @xref{Type Decl,
11329,Nonterminal Symbols}.
18b519c0 11330@end deffn
bfa74976 11331
dd8d9022
AD
11332@deffn {Symbol} $undefined
11333The predefined token onto which all undefined values returned by
11334@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11335@code{error}.
11336@end deffn
11337
18b519c0 11338@deffn {Directive} %union
bfa74976
RS
11339Bison declaration to specify several possible data types for semantic
11340values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11341@end deffn
bfa74976 11342
dd8d9022
AD
11343@deffn {Macro} YYABORT
11344Macro to pretend that an unrecoverable syntax error has occurred, by
11345making @code{yyparse} return 1 immediately. The error reporting
11346function @code{yyerror} is not called. @xref{Parser Function, ,The
11347Parser Function @code{yyparse}}.
8405b70c
PB
11348
11349For Java parsers, this functionality is invoked using @code{return YYABORT;}
11350instead.
dd8d9022 11351@end deffn
3ded9a63 11352
dd8d9022
AD
11353@deffn {Macro} YYACCEPT
11354Macro to pretend that a complete utterance of the language has been
11355read, by making @code{yyparse} return 0 immediately.
11356@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11357
11358For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11359instead.
dd8d9022 11360@end deffn
bfa74976 11361
dd8d9022 11362@deffn {Macro} YYBACKUP
742e4900 11363Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11364token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11365@end deffn
bfa74976 11366
dd8d9022 11367@deffn {Variable} yychar
32c29292 11368External integer variable that contains the integer value of the
742e4900 11369lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11370@code{yyparse}.) Error-recovery rule actions may examine this variable.
11371@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11372@end deffn
bfa74976 11373
dd8d9022
AD
11374@deffn {Variable} yyclearin
11375Macro used in error-recovery rule actions. It clears the previous
742e4900 11376lookahead token. @xref{Error Recovery}.
18b519c0 11377@end deffn
bfa74976 11378
dd8d9022
AD
11379@deffn {Macro} YYDEBUG
11380Macro to define to equip the parser with tracing code. @xref{Tracing,
11381,Tracing Your Parser}.
18b519c0 11382@end deffn
bfa74976 11383
dd8d9022
AD
11384@deffn {Variable} yydebug
11385External integer variable set to zero by default. If @code{yydebug}
11386is given a nonzero value, the parser will output information on input
11387symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11388@end deffn
bfa74976 11389
dd8d9022
AD
11390@deffn {Macro} yyerrok
11391Macro to cause parser to recover immediately to its normal mode
11392after a syntax error. @xref{Error Recovery}.
11393@end deffn
11394
11395@deffn {Macro} YYERROR
11396Macro to pretend that a syntax error has just been detected: call
11397@code{yyerror} and then perform normal error recovery if possible
11398(@pxref{Error Recovery}), or (if recovery is impossible) make
11399@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11400
11401For Java parsers, this functionality is invoked using @code{return YYERROR;}
11402instead.
dd8d9022
AD
11403@end deffn
11404
11405@deffn {Function} yyerror
11406User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11407@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11408@end deffn
11409
11410@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11411An obsolete macro used in the @file{yacc.c} skeleton, that you define
11412with @code{#define} in the prologue to request verbose, specific error
11413message strings when @code{yyerror} is called. It doesn't matter what
11414definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11415it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11416(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11417@end deffn
11418
11419@deffn {Macro} YYINITDEPTH
11420Macro for specifying the initial size of the parser stack.
1a059451 11421@xref{Memory Management}.
dd8d9022
AD
11422@end deffn
11423
11424@deffn {Function} yylex
11425User-supplied lexical analyzer function, called with no arguments to get
11426the next token. @xref{Lexical, ,The Lexical Analyzer Function
11427@code{yylex}}.
11428@end deffn
11429
11430@deffn {Macro} YYLEX_PARAM
11431An obsolete macro for specifying an extra argument (or list of extra
32c29292 11432arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11433macro is deprecated, and is supported only for Yacc like parsers.
11434@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11435@end deffn
11436
11437@deffn {Variable} yylloc
11438External variable in which @code{yylex} should place the line and column
11439numbers associated with a token. (In a pure parser, it is a local
11440variable within @code{yyparse}, and its address is passed to
32c29292
JD
11441@code{yylex}.)
11442You can ignore this variable if you don't use the @samp{@@} feature in the
11443grammar actions.
11444@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11445In semantic actions, it stores the location of the lookahead token.
32c29292 11446@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11447@end deffn
11448
11449@deffn {Type} YYLTYPE
11450Data type of @code{yylloc}; by default, a structure with four
11451members. @xref{Location Type, , Data Types of Locations}.
11452@end deffn
11453
11454@deffn {Variable} yylval
11455External variable in which @code{yylex} should place the semantic
11456value associated with a token. (In a pure parser, it is a local
11457variable within @code{yyparse}, and its address is passed to
32c29292
JD
11458@code{yylex}.)
11459@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11460In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11461@xref{Actions, ,Actions}.
dd8d9022
AD
11462@end deffn
11463
11464@deffn {Macro} YYMAXDEPTH
1a059451
PE
11465Macro for specifying the maximum size of the parser stack. @xref{Memory
11466Management}.
dd8d9022
AD
11467@end deffn
11468
11469@deffn {Variable} yynerrs
8a2800e7 11470Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11471(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11472pure push parser, it is a member of yypstate.)
dd8d9022
AD
11473@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11474@end deffn
11475
11476@deffn {Function} yyparse
11477The parser function produced by Bison; call this function to start
11478parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11479@end deffn
11480
9987d1b3 11481@deffn {Function} yypstate_delete
f4101aa6 11482The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11483call this function to delete the memory associated with a parser.
f4101aa6 11484@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11485@code{yypstate_delete}}.
59da312b
JD
11486(The current push parsing interface is experimental and may evolve.
11487More user feedback will help to stabilize it.)
9987d1b3
JD
11488@end deffn
11489
11490@deffn {Function} yypstate_new
f4101aa6 11491The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11492call this function to create a new parser.
f4101aa6 11493@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11494@code{yypstate_new}}.
59da312b
JD
11495(The current push parsing interface is experimental and may evolve.
11496More user feedback will help to stabilize it.)
9987d1b3
JD
11497@end deffn
11498
11499@deffn {Function} yypull_parse
f4101aa6
AD
11500The parser function produced by Bison in push mode; call this function to
11501parse the rest of the input stream.
11502@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11503@code{yypull_parse}}.
59da312b
JD
11504(The current push parsing interface is experimental and may evolve.
11505More user feedback will help to stabilize it.)
9987d1b3
JD
11506@end deffn
11507
11508@deffn {Function} yypush_parse
f4101aa6
AD
11509The parser function produced by Bison in push mode; call this function to
11510parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11511@code{yypush_parse}}.
59da312b
JD
11512(The current push parsing interface is experimental and may evolve.
11513More user feedback will help to stabilize it.)
9987d1b3
JD
11514@end deffn
11515
dd8d9022
AD
11516@deffn {Macro} YYPARSE_PARAM
11517An obsolete macro for specifying the name of a parameter that
11518@code{yyparse} should accept. The use of this macro is deprecated, and
11519is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11520Conventions for Pure Parsers}.
11521@end deffn
11522
11523@deffn {Macro} YYRECOVERING
02103984
PE
11524The expression @code{YYRECOVERING ()} yields 1 when the parser
11525is recovering from a syntax error, and 0 otherwise.
11526@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11527@end deffn
11528
11529@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11530Macro used to control the use of @code{alloca} when the
11531deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11532the parser will use @code{malloc} to extend its stacks. If defined to
115331, the parser will use @code{alloca}. Values other than 0 and 1 are
11534reserved for future Bison extensions. If not defined,
11535@code{YYSTACK_USE_ALLOCA} defaults to 0.
11536
55289366 11537In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11538limited stack and with unreliable stack-overflow checking, you should
11539set @code{YYMAXDEPTH} to a value that cannot possibly result in
11540unchecked stack overflow on any of your target hosts when
11541@code{alloca} is called. You can inspect the code that Bison
11542generates in order to determine the proper numeric values. This will
11543require some expertise in low-level implementation details.
dd8d9022
AD
11544@end deffn
11545
11546@deffn {Type} YYSTYPE
11547Data type of semantic values; @code{int} by default.
11548@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11549@end deffn
bfa74976 11550
342b8b6e 11551@node Glossary
bfa74976
RS
11552@appendix Glossary
11553@cindex glossary
11554
11555@table @asis
7fceb615 11556@item Accepting state
eb45ef3b
JD
11557A state whose only action is the accept action.
11558The accepting state is thus a consistent state.
11559@xref{Understanding,,}.
11560
8a4281b9 11561@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11562Formal method of specifying context-free grammars originally proposed
11563by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11564committee document contributing to what became the Algol 60 report.
11565@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11566
7fceb615
JD
11567@item Consistent state
11568A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 11569
bfa74976
RS
11570@item Context-free grammars
11571Grammars specified as rules that can be applied regardless of context.
11572Thus, if there is a rule which says that an integer can be used as an
11573expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11574permitted. @xref{Language and Grammar, ,Languages and Context-Free
11575Grammars}.
bfa74976 11576
7fceb615 11577@item Default reduction
110ef36a 11578The reduction that a parser should perform if the current parser state
35c1e5f0 11579contains no other action for the lookahead token. In permitted parser
7fceb615
JD
11580states, Bison declares the reduction with the largest lookahead set to be
11581the default reduction and removes that lookahead set. @xref{Default
11582Reductions}.
11583
11584@item Defaulted state
11585A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 11586
bfa74976
RS
11587@item Dynamic allocation
11588Allocation of memory that occurs during execution, rather than at
11589compile time or on entry to a function.
11590
11591@item Empty string
11592Analogous to the empty set in set theory, the empty string is a
11593character string of length zero.
11594
11595@item Finite-state stack machine
11596A ``machine'' that has discrete states in which it is said to exist at
11597each instant in time. As input to the machine is processed, the
11598machine moves from state to state as specified by the logic of the
11599machine. In the case of the parser, the input is the language being
11600parsed, and the states correspond to various stages in the grammar
c827f760 11601rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11602
8a4281b9 11603@item Generalized LR (GLR)
676385e2 11604A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11605that are not LR(1). It resolves situations that Bison's
eb45ef3b 11606deterministic parsing
676385e2
PH
11607algorithm cannot by effectively splitting off multiple parsers, trying all
11608possible parsers, and discarding those that fail in the light of additional
c827f760 11609right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11610LR Parsing}.
676385e2 11611
bfa74976
RS
11612@item Grouping
11613A language construct that is (in general) grammatically divisible;
c827f760 11614for example, `expression' or `declaration' in C@.
bfa74976
RS
11615@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11616
7fceb615
JD
11617@item IELR(1) (Inadequacy Elimination LR(1))
11618A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 11619context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
11620language-recognition power of canonical LR(1) but with nearly the same
11621number of parser states as LALR(1). This reduction in parser states is
11622often an order of magnitude. More importantly, because canonical LR(1)'s
11623extra parser states may contain duplicate conflicts in the case of non-LR(1)
11624grammars, the number of conflicts for IELR(1) is often an order of magnitude
11625less as well. This can significantly reduce the complexity of developing a
11626grammar. @xref{LR Table Construction}.
eb45ef3b 11627
bfa74976
RS
11628@item Infix operator
11629An arithmetic operator that is placed between the operands on which it
11630performs some operation.
11631
11632@item Input stream
11633A continuous flow of data between devices or programs.
11634
8a4281b9 11635@item LAC (Lookahead Correction)
fcf834f9 11636A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
11637detection, which is caused by LR state merging, default reductions, and the
11638use of @code{%nonassoc}. Delayed syntax error detection results in
11639unexpected semantic actions, initiation of error recovery in the wrong
11640syntactic context, and an incorrect list of expected tokens in a verbose
11641syntax error message. @xref{LAC}.
fcf834f9 11642
bfa74976
RS
11643@item Language construct
11644One of the typical usage schemas of the language. For example, one of
11645the constructs of the C language is the @code{if} statement.
11646@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11647
11648@item Left associativity
11649Operators having left associativity are analyzed from left to right:
11650@samp{a+b+c} first computes @samp{a+b} and then combines with
11651@samp{c}. @xref{Precedence, ,Operator Precedence}.
11652
11653@item Left recursion
89cab50d
AD
11654A rule whose result symbol is also its first component symbol; for
11655example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11656Rules}.
bfa74976
RS
11657
11658@item Left-to-right parsing
11659Parsing a sentence of a language by analyzing it token by token from
c827f760 11660left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11661
11662@item Lexical analyzer (scanner)
11663A function that reads an input stream and returns tokens one by one.
11664@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11665
11666@item Lexical tie-in
11667A flag, set by actions in the grammar rules, which alters the way
11668tokens are parsed. @xref{Lexical Tie-ins}.
11669
931c7513 11670@item Literal string token
14ded682 11671A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11672
742e4900
JD
11673@item Lookahead token
11674A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11675Tokens}.
bfa74976 11676
8a4281b9 11677@item LALR(1)
bfa74976 11678The class of context-free grammars that Bison (like most other parser
8a4281b9 11679generators) can handle by default; a subset of LR(1).
cc09e5be 11680@xref{Mysterious Conflicts}.
bfa74976 11681
8a4281b9 11682@item LR(1)
bfa74976 11683The class of context-free grammars in which at most one token of
742e4900 11684lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11685
11686@item Nonterminal symbol
11687A grammar symbol standing for a grammatical construct that can
11688be expressed through rules in terms of smaller constructs; in other
11689words, a construct that is not a token. @xref{Symbols}.
11690
bfa74976
RS
11691@item Parser
11692A function that recognizes valid sentences of a language by analyzing
11693the syntax structure of a set of tokens passed to it from a lexical
11694analyzer.
11695
11696@item Postfix operator
11697An arithmetic operator that is placed after the operands upon which it
11698performs some operation.
11699
11700@item Reduction
11701Replacing a string of nonterminals and/or terminals with a single
89cab50d 11702nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11703Parser Algorithm}.
bfa74976
RS
11704
11705@item Reentrant
11706A reentrant subprogram is a subprogram which can be in invoked any
11707number of times in parallel, without interference between the various
11708invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11709
11710@item Reverse polish notation
11711A language in which all operators are postfix operators.
11712
11713@item Right recursion
89cab50d
AD
11714A rule whose result symbol is also its last component symbol; for
11715example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11716Rules}.
bfa74976
RS
11717
11718@item Semantics
11719In computer languages, the semantics are specified by the actions
11720taken for each instance of the language, i.e., the meaning of
11721each statement. @xref{Semantics, ,Defining Language Semantics}.
11722
11723@item Shift
11724A parser is said to shift when it makes the choice of analyzing
11725further input from the stream rather than reducing immediately some
c827f760 11726already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11727
11728@item Single-character literal
11729A single character that is recognized and interpreted as is.
11730@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11731
11732@item Start symbol
11733The nonterminal symbol that stands for a complete valid utterance in
11734the language being parsed. The start symbol is usually listed as the
13863333 11735first nonterminal symbol in a language specification.
bfa74976
RS
11736@xref{Start Decl, ,The Start-Symbol}.
11737
11738@item Symbol table
11739A data structure where symbol names and associated data are stored
11740during parsing to allow for recognition and use of existing
11741information in repeated uses of a symbol. @xref{Multi-function Calc}.
11742
6e649e65
PE
11743@item Syntax error
11744An error encountered during parsing of an input stream due to invalid
11745syntax. @xref{Error Recovery}.
11746
bfa74976
RS
11747@item Token
11748A basic, grammatically indivisible unit of a language. The symbol
11749that describes a token in the grammar is a terminal symbol.
11750The input of the Bison parser is a stream of tokens which comes from
11751the lexical analyzer. @xref{Symbols}.
11752
11753@item Terminal symbol
89cab50d
AD
11754A grammar symbol that has no rules in the grammar and therefore is
11755grammatically indivisible. The piece of text it represents is a token.
11756@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
11757
11758@item Unreachable state
11759A parser state to which there does not exist a sequence of transitions from
11760the parser's start state. A state can become unreachable during conflict
11761resolution. @xref{Unreachable States}.
bfa74976
RS
11762@end table
11763
342b8b6e 11764@node Copying This Manual
f2b5126e 11765@appendix Copying This Manual
f2b5126e
PB
11766@include fdl.texi
11767
5e528941
JD
11768@node Bibliography
11769@unnumbered Bibliography
11770
11771@table @asis
11772@item [Denny 2008]
11773Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11774for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
117752008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11776pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11777
11778@item [Denny 2010 May]
11779Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11780Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11781University, Clemson, SC, USA (May 2010).
11782@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11783
11784@item [Denny 2010 November]
11785Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11786Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11787in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
117882010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11789
11790@item [DeRemer 1982]
11791Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11792Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11793Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11794615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11795
11796@item [Knuth 1965]
11797Donald E. Knuth, On the Translation of Languages from Left to Right, in
11798@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11799607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11800
11801@item [Scott 2000]
11802Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11803@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11804London, Department of Computer Science, TR-00-12 (December 2000).
11805@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11806@end table
11807
342b8b6e 11808@node Index
bfa74976
RS
11809@unnumbered Index
11810
11811@printindex cp
11812
bfa74976 11813@bye
a06ea4aa 11814
6b5a0de9
AD
11815@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11816@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11817@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11818@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11819@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11820@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11821@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11822@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11823@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11824@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11825@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11826@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11827@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11828@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11829@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11830@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11831@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11832@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11833@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11834@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11835@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11836@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11837@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11838@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11839@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11840@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11841@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11842@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11843@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11844@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9 11845@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
ff7571c0 11846@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
6b5a0de9
AD
11847@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11848@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11849@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11850@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11851@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11852@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11853@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
ff7571c0 11854@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
6b5a0de9
AD
11855@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11856@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11857@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11858@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11859@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11860@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11861@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11862@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11863@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11864@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
679e9935 11865@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
6b5a0de9 11866@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11867
11868@c Local Variables:
11869@c ispell-dictionary: "american"
11870@c fill-column: 76
11871@c End: