]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Document last checkin a bit better.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
c827f760
PE
33This manual is for @acronym{GNU} Bison (version @value{VERSION},
34@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
c827f760 41under the terms of the @acronym{GNU} Free Documentation License,
592fde95 42Version 1.2 or any later version published by the Free Software
c827f760
PE
43Foundation; with no Invariant Sections, with the Front-Cover texts
44being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
45(a) below. A copy of the license is included in the section entitled
46``@acronym{GNU} Free Documentation License.''
47
48(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
49and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
50Copies published by the Free Software Foundation raise funds for
51@acronym{GNU} development.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
c827f760 57* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
c827f760 75@acronym{ISBN} 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
c827f760 91* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
92 how you can copy and share Bison
93
94Tutorial sections:
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
97
98Reference sections:
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
103* Context Dependency:: What to do if your language syntax is too
104 messy for Bison to handle straightforwardly.
ec3bc396 105* Debugging:: Understanding or debugging Bison parsers.
bfa74976 106* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
107* C++ Language Interface:: Creating C++ parser objects.
108* FAQ:: Frequently Asked Questions
bfa74976
RS
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
f2b5126e 111* Copying This Manual:: License for copying this manual.
bfa74976
RS
112* Index:: Cross-references to the text.
113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 126* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 127* Locations Overview:: Tracking Locations.
bfa74976
RS
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
132
fa7e68c3
PE
133Writing @acronym{GLR} Parsers
134
32c29292
JD
135* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
136* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
138* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
bfa74976
RS
150* Exercises:: Ideas for improving the multi-function calculator.
151
152Reverse Polish Notation Calculator
153
75f5aaea 154* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
155* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
156* Lexer: Rpcalc Lexer. The lexical analyzer.
157* Main: Rpcalc Main. The controlling function.
158* Error: Rpcalc Error. The error reporting function.
159* Gen: Rpcalc Gen. Running Bison on the grammar file.
160* Comp: Rpcalc Compile. Run the C compiler on the output code.
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
170* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
171* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
172* Lexer: Ltcalc Lexer. The lexical analyzer.
173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
176* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
177* Rules: Mfcalc Rules. Grammar rules for the calculator.
178* Symtab: Mfcalc Symtab. Symbol table management subroutines.
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
93dd49ab 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
208
93dd49ab
PE
209Tracking Locations
210
211* Location Type:: Specifying a data type for locations.
212* Actions and Locations:: Using locations in actions.
213* Location Default Action:: Defining a general way to compute locations.
214
bfa74976
RS
215Bison Declarations
216
b50d2359 217* Require Decl:: Requiring a Bison version.
bfa74976
RS
218* Token Decl:: Declaring terminal symbols.
219* Precedence Decl:: Declaring terminals with precedence and associativity.
220* Union Decl:: Declaring the set of all semantic value types.
221* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 222* Initial Action Decl:: Code run before parsing starts.
72f889cc 223* Destructor Decl:: Declaring how symbols are freed.
d6328241 224* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
225* Start Decl:: Specifying the start symbol.
226* Pure Decl:: Requesting a reentrant parser.
227* Decl Summary:: Table of all Bison declarations.
228
229Parser C-Language Interface
230
231* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 232* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
233 which reads tokens.
234* Error Reporting:: You must supply a function @code{yyerror}.
235* Action Features:: Special features for use in actions.
f7ab6a50
PE
236* Internationalization:: How to let the parser speak in the user's
237 native language.
bfa74976
RS
238
239The Lexical Analyzer Function @code{yylex}
240
241* Calling Convention:: How @code{yyparse} calls @code{yylex}.
242* Token Values:: How @code{yylex} must return the semantic value
243 of the token it has read.
95923bd6 244* Token Locations:: How @code{yylex} must return the text location
bfa74976 245 (line number, etc.) of the token, if the
93dd49ab 246 actions want that.
bfa74976
RS
247* Pure Calling:: How the calling convention differs
248 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
249
13863333 250The Bison Parser Algorithm
bfa74976 251
742e4900 252* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
253* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
254* Precedence:: Operator precedence works by resolving conflicts.
255* Contextual Precedence:: When an operator's precedence depends on context.
256* Parser States:: The parser is a finite-state-machine with stack.
257* Reduce/Reduce:: When two rules are applicable in the same situation.
258* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 259* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 260* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
261
262Operator Precedence
263
264* Why Precedence:: An example showing why precedence is needed.
265* Using Precedence:: How to specify precedence in Bison grammars.
266* Precedence Examples:: How these features are used in the previous example.
267* How Precedence:: How they work.
268
269Handling Context Dependencies
270
271* Semantic Tokens:: Token parsing can depend on the semantic context.
272* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
273* Tie-in Recovery:: Lexical tie-ins have implications for how
274 error recovery rules must be written.
275
93dd49ab 276Debugging Your Parser
ec3bc396
AD
277
278* Understanding:: Understanding the structure of your parser.
279* Tracing:: Tracing the execution of your parser.
280
bfa74976
RS
281Invoking Bison
282
13863333 283* Bison Options:: All the options described in detail,
c827f760 284 in alphabetical order by short options.
bfa74976 285* Option Cross Key:: Alphabetical list of long options.
93dd49ab 286* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 287
12545799
AD
288C++ Language Interface
289
290* C++ Parsers:: The interface to generate C++ parser classes
291* A Complete C++ Example:: Demonstrating their use
292
293C++ Parsers
294
295* C++ Bison Interface:: Asking for C++ parser generation
296* C++ Semantic Values:: %union vs. C++
297* C++ Location Values:: The position and location classes
298* C++ Parser Interface:: Instantiating and running the parser
299* C++ Scanner Interface:: Exchanges between yylex and parse
300
301A Complete C++ Example
302
303* Calc++ --- C++ Calculator:: The specifications
304* Calc++ Parsing Driver:: An active parsing context
305* Calc++ Parser:: A parser class
306* Calc++ Scanner:: A pure C++ Flex scanner
307* Calc++ Top Level:: Conducting the band
308
d1a1114f
AD
309Frequently Asked Questions
310
1a059451 311* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 312* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 313* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 314* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 315* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
316* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
317* I can't build Bison:: Troubleshooting
318* Where can I find help?:: Troubleshouting
319* Bug Reports:: Troublereporting
320* Other Languages:: Parsers in Java and others
321* Beta Testing:: Experimenting development versions
322* Mailing Lists:: Meeting other Bison users
d1a1114f 323
f2b5126e
PB
324Copying This Manual
325
326* GNU Free Documentation License:: License for copying this manual.
327
342b8b6e 328@end detailmenu
bfa74976
RS
329@end menu
330
342b8b6e 331@node Introduction
bfa74976
RS
332@unnumbered Introduction
333@cindex introduction
334
6077da58
PE
335@dfn{Bison} is a general-purpose parser generator that converts an
336annotated context-free grammar into an @acronym{LALR}(1) or
337@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 338Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
339used in simple desk calculators to complex programming languages.
340
341Bison is upward compatible with Yacc: all properly-written Yacc grammars
342ought to work with Bison with no change. Anyone familiar with Yacc
343should be able to use Bison with little trouble. You need to be fluent in
1e137b71 344C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
345
346We begin with tutorial chapters that explain the basic concepts of using
347Bison and show three explained examples, each building on the last. If you
348don't know Bison or Yacc, start by reading these chapters. Reference
349chapters follow which describe specific aspects of Bison in detail.
350
931c7513
RS
351Bison was written primarily by Robert Corbett; Richard Stallman made it
352Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 353multi-character string literals and other features.
931c7513 354
df1af54c 355This edition corresponds to version @value{VERSION} of Bison.
bfa74976 356
342b8b6e 357@node Conditions
bfa74976
RS
358@unnumbered Conditions for Using Bison
359
193d7c70
PE
360The distribution terms for Bison-generated parsers permit using the
361parsers in nonfree programs. Before Bison version 2.2, these extra
362permissions applied only when Bison was generating @acronym{LALR}(1)
363parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 364parsers could be used only in programs that were free software.
a31239f1 365
c827f760
PE
366The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
367compiler, have never
9ecbd125 368had such a requirement. They could always be used for nonfree
a31239f1
RS
369software. The reason Bison was different was not due to a special
370policy decision; it resulted from applying the usual General Public
371License to all of the Bison source code.
372
373The output of the Bison utility---the Bison parser file---contains a
374verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
375parser's implementation. (The actions from your grammar are inserted
376into this implementation at one point, but most of the rest of the
377implementation is not changed.) When we applied the @acronym{GPL}
378terms to the skeleton code for the parser's implementation,
a31239f1
RS
379the effect was to restrict the use of Bison output to free software.
380
381We didn't change the terms because of sympathy for people who want to
382make software proprietary. @strong{Software should be free.} But we
383concluded that limiting Bison's use to free software was doing little to
384encourage people to make other software free. So we decided to make the
385practical conditions for using Bison match the practical conditions for
c827f760 386using the other @acronym{GNU} tools.
bfa74976 387
193d7c70
PE
388This exception applies when Bison is generating code for a parser.
389You can tell whether the exception applies to a Bison output file by
390inspecting the file for text beginning with ``As a special
391exception@dots{}''. The text spells out the exact terms of the
392exception.
262aa8dd 393
c67a198d 394@include gpl.texi
bfa74976 395
342b8b6e 396@node Concepts
bfa74976
RS
397@chapter The Concepts of Bison
398
399This chapter introduces many of the basic concepts without which the
400details of Bison will not make sense. If you do not already know how to
401use Bison or Yacc, we suggest you start by reading this chapter carefully.
402
403@menu
404* Language and Grammar:: Languages and context-free grammars,
405 as mathematical ideas.
406* Grammar in Bison:: How we represent grammars for Bison's sake.
407* Semantic Values:: Each token or syntactic grouping can have
408 a semantic value (the value of an integer,
409 the name of an identifier, etc.).
410* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 411* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 412* Locations Overview:: Tracking Locations.
bfa74976
RS
413* Bison Parser:: What are Bison's input and output,
414 how is the output used?
415* Stages:: Stages in writing and running Bison grammars.
416* Grammar Layout:: Overall structure of a Bison grammar file.
417@end menu
418
342b8b6e 419@node Language and Grammar
bfa74976
RS
420@section Languages and Context-Free Grammars
421
bfa74976
RS
422@cindex context-free grammar
423@cindex grammar, context-free
424In order for Bison to parse a language, it must be described by a
425@dfn{context-free grammar}. This means that you specify one or more
426@dfn{syntactic groupings} and give rules for constructing them from their
427parts. For example, in the C language, one kind of grouping is called an
428`expression'. One rule for making an expression might be, ``An expression
429can be made of a minus sign and another expression''. Another would be,
430``An expression can be an integer''. As you can see, rules are often
431recursive, but there must be at least one rule which leads out of the
432recursion.
433
c827f760 434@cindex @acronym{BNF}
bfa74976
RS
435@cindex Backus-Naur form
436The most common formal system for presenting such rules for humans to read
c827f760
PE
437is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
438order to specify the language Algol 60. Any grammar expressed in
439@acronym{BNF} is a context-free grammar. The input to Bison is
440essentially machine-readable @acronym{BNF}.
bfa74976 441
c827f760
PE
442@cindex @acronym{LALR}(1) grammars
443@cindex @acronym{LR}(1) grammars
676385e2
PH
444There are various important subclasses of context-free grammar. Although it
445can handle almost all context-free grammars, Bison is optimized for what
c827f760 446are called @acronym{LALR}(1) grammars.
676385e2 447In brief, in these grammars, it must be possible to
bfa74976 448tell how to parse any portion of an input string with just a single
742e4900 449token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
450@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
451restrictions that are
bfa74976 452hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
453@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
454@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
455more information on this.
bfa74976 456
c827f760
PE
457@cindex @acronym{GLR} parsing
458@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 459@cindex ambiguous grammars
9d9b8b70 460@cindex nondeterministic parsing
9501dc6e
AD
461
462Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
463roughly that the next grammar rule to apply at any point in the input is
464uniquely determined by the preceding input and a fixed, finite portion
742e4900 465(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 466grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 467apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 468grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 469lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
470With the proper declarations, Bison is also able to parse these more
471general context-free grammars, using a technique known as @acronym{GLR}
472parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
473are able to handle any context-free grammar for which the number of
474possible parses of any given string is finite.
676385e2 475
bfa74976
RS
476@cindex symbols (abstract)
477@cindex token
478@cindex syntactic grouping
479@cindex grouping, syntactic
9501dc6e
AD
480In the formal grammatical rules for a language, each kind of syntactic
481unit or grouping is named by a @dfn{symbol}. Those which are built by
482grouping smaller constructs according to grammatical rules are called
bfa74976
RS
483@dfn{nonterminal symbols}; those which can't be subdivided are called
484@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
485corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 486corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
487
488We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
489nonterminal, mean. The tokens of C are identifiers, constants (numeric
490and string), and the various keywords, arithmetic operators and
491punctuation marks. So the terminal symbols of a grammar for C include
492`identifier', `number', `string', plus one symbol for each keyword,
493operator or punctuation mark: `if', `return', `const', `static', `int',
494`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
495(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
496lexicography, not grammar.)
497
498Here is a simple C function subdivided into tokens:
499
9edcd895
AD
500@ifinfo
501@example
502int /* @r{keyword `int'} */
14d4662b 503square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
504 @r{identifier, close-paren} */
505@{ /* @r{open-brace} */
aa08666d
AD
506 return x * x; /* @r{keyword `return', identifier, asterisk,}
507 @r{identifier, semicolon} */
9edcd895
AD
508@} /* @r{close-brace} */
509@end example
510@end ifinfo
511@ifnotinfo
bfa74976
RS
512@example
513int /* @r{keyword `int'} */
14d4662b 514square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 515@{ /* @r{open-brace} */
9edcd895 516 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
517@} /* @r{close-brace} */
518@end example
9edcd895 519@end ifnotinfo
bfa74976
RS
520
521The syntactic groupings of C include the expression, the statement, the
522declaration, and the function definition. These are represented in the
523grammar of C by nonterminal symbols `expression', `statement',
524`declaration' and `function definition'. The full grammar uses dozens of
525additional language constructs, each with its own nonterminal symbol, in
526order to express the meanings of these four. The example above is a
527function definition; it contains one declaration, and one statement. In
528the statement, each @samp{x} is an expression and so is @samp{x * x}.
529
530Each nonterminal symbol must have grammatical rules showing how it is made
531out of simpler constructs. For example, one kind of C statement is the
532@code{return} statement; this would be described with a grammar rule which
533reads informally as follows:
534
535@quotation
536A `statement' can be made of a `return' keyword, an `expression' and a
537`semicolon'.
538@end quotation
539
540@noindent
541There would be many other rules for `statement', one for each kind of
542statement in C.
543
544@cindex start symbol
545One nonterminal symbol must be distinguished as the special one which
546defines a complete utterance in the language. It is called the @dfn{start
547symbol}. In a compiler, this means a complete input program. In the C
548language, the nonterminal symbol `sequence of definitions and declarations'
549plays this role.
550
551For example, @samp{1 + 2} is a valid C expression---a valid part of a C
552program---but it is not valid as an @emph{entire} C program. In the
553context-free grammar of C, this follows from the fact that `expression' is
554not the start symbol.
555
556The Bison parser reads a sequence of tokens as its input, and groups the
557tokens using the grammar rules. If the input is valid, the end result is
558that the entire token sequence reduces to a single grouping whose symbol is
559the grammar's start symbol. If we use a grammar for C, the entire input
560must be a `sequence of definitions and declarations'. If not, the parser
561reports a syntax error.
562
342b8b6e 563@node Grammar in Bison
bfa74976
RS
564@section From Formal Rules to Bison Input
565@cindex Bison grammar
566@cindex grammar, Bison
567@cindex formal grammar
568
569A formal grammar is a mathematical construct. To define the language
570for Bison, you must write a file expressing the grammar in Bison syntax:
571a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
572
573A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 574as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
575in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
576
577The Bison representation for a terminal symbol is also called a @dfn{token
578type}. Token types as well can be represented as C-like identifiers. By
579convention, these identifiers should be upper case to distinguish them from
580nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
581@code{RETURN}. A terminal symbol that stands for a particular keyword in
582the language should be named after that keyword converted to upper case.
583The terminal symbol @code{error} is reserved for error recovery.
931c7513 584@xref{Symbols}.
bfa74976
RS
585
586A terminal symbol can also be represented as a character literal, just like
587a C character constant. You should do this whenever a token is just a
588single character (parenthesis, plus-sign, etc.): use that same character in
589a literal as the terminal symbol for that token.
590
931c7513
RS
591A third way to represent a terminal symbol is with a C string constant
592containing several characters. @xref{Symbols}, for more information.
593
bfa74976
RS
594The grammar rules also have an expression in Bison syntax. For example,
595here is the Bison rule for a C @code{return} statement. The semicolon in
596quotes is a literal character token, representing part of the C syntax for
597the statement; the naked semicolon, and the colon, are Bison punctuation
598used in every rule.
599
600@example
601stmt: RETURN expr ';'
602 ;
603@end example
604
605@noindent
606@xref{Rules, ,Syntax of Grammar Rules}.
607
342b8b6e 608@node Semantic Values
bfa74976
RS
609@section Semantic Values
610@cindex semantic value
611@cindex value, semantic
612
613A formal grammar selects tokens only by their classifications: for example,
614if a rule mentions the terminal symbol `integer constant', it means that
615@emph{any} integer constant is grammatically valid in that position. The
616precise value of the constant is irrelevant to how to parse the input: if
617@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 618grammatical.
bfa74976
RS
619
620But the precise value is very important for what the input means once it is
621parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6223989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
623has both a token type and a @dfn{semantic value}. @xref{Semantics,
624,Defining Language Semantics},
bfa74976
RS
625for details.
626
627The token type is a terminal symbol defined in the grammar, such as
628@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
629you need to know to decide where the token may validly appear and how to
630group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 631except their types.
bfa74976
RS
632
633The semantic value has all the rest of the information about the
634meaning of the token, such as the value of an integer, or the name of an
635identifier. (A token such as @code{','} which is just punctuation doesn't
636need to have any semantic value.)
637
638For example, an input token might be classified as token type
639@code{INTEGER} and have the semantic value 4. Another input token might
640have the same token type @code{INTEGER} but value 3989. When a grammar
641rule says that @code{INTEGER} is allowed, either of these tokens is
642acceptable because each is an @code{INTEGER}. When the parser accepts the
643token, it keeps track of the token's semantic value.
644
645Each grouping can also have a semantic value as well as its nonterminal
646symbol. For example, in a calculator, an expression typically has a
647semantic value that is a number. In a compiler for a programming
648language, an expression typically has a semantic value that is a tree
649structure describing the meaning of the expression.
650
342b8b6e 651@node Semantic Actions
bfa74976
RS
652@section Semantic Actions
653@cindex semantic actions
654@cindex actions, semantic
655
656In order to be useful, a program must do more than parse input; it must
657also produce some output based on the input. In a Bison grammar, a grammar
658rule can have an @dfn{action} made up of C statements. Each time the
659parser recognizes a match for that rule, the action is executed.
660@xref{Actions}.
13863333 661
bfa74976
RS
662Most of the time, the purpose of an action is to compute the semantic value
663of the whole construct from the semantic values of its parts. For example,
664suppose we have a rule which says an expression can be the sum of two
665expressions. When the parser recognizes such a sum, each of the
666subexpressions has a semantic value which describes how it was built up.
667The action for this rule should create a similar sort of value for the
668newly recognized larger expression.
669
670For example, here is a rule that says an expression can be the sum of
671two subexpressions:
672
673@example
674expr: expr '+' expr @{ $$ = $1 + $3; @}
675 ;
676@end example
677
678@noindent
679The action says how to produce the semantic value of the sum expression
680from the values of the two subexpressions.
681
676385e2 682@node GLR Parsers
c827f760
PE
683@section Writing @acronym{GLR} Parsers
684@cindex @acronym{GLR} parsing
685@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
686@findex %glr-parser
687@cindex conflicts
688@cindex shift/reduce conflicts
fa7e68c3 689@cindex reduce/reduce conflicts
676385e2 690
fa7e68c3 691In some grammars, Bison's standard
9501dc6e
AD
692@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
693certain grammar rule at a given point. That is, it may not be able to
694decide (on the basis of the input read so far) which of two possible
695reductions (applications of a grammar rule) applies, or whether to apply
696a reduction or read more of the input and apply a reduction later in the
697input. These are known respectively as @dfn{reduce/reduce} conflicts
698(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
699(@pxref{Shift/Reduce}).
700
701To use a grammar that is not easily modified to be @acronym{LALR}(1), a
702more general parsing algorithm is sometimes necessary. If you include
676385e2 703@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 704(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
705(@acronym{GLR}) parser. These parsers handle Bison grammars that
706contain no unresolved conflicts (i.e., after applying precedence
707declarations) identically to @acronym{LALR}(1) parsers. However, when
708faced with unresolved shift/reduce and reduce/reduce conflicts,
709@acronym{GLR} parsers use the simple expedient of doing both,
710effectively cloning the parser to follow both possibilities. Each of
711the resulting parsers can again split, so that at any given time, there
712can be any number of possible parses being explored. The parsers
676385e2
PH
713proceed in lockstep; that is, all of them consume (shift) a given input
714symbol before any of them proceed to the next. Each of the cloned
715parsers eventually meets one of two possible fates: either it runs into
716a parsing error, in which case it simply vanishes, or it merges with
717another parser, because the two of them have reduced the input to an
718identical set of symbols.
719
720During the time that there are multiple parsers, semantic actions are
721recorded, but not performed. When a parser disappears, its recorded
722semantic actions disappear as well, and are never performed. When a
723reduction makes two parsers identical, causing them to merge, Bison
724records both sets of semantic actions. Whenever the last two parsers
725merge, reverting to the single-parser case, Bison resolves all the
726outstanding actions either by precedences given to the grammar rules
727involved, or by performing both actions, and then calling a designated
728user-defined function on the resulting values to produce an arbitrary
729merged result.
730
fa7e68c3 731@menu
32c29292
JD
732* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
733* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
734* GLR Semantic Actions:: Deferred semantic actions have special concerns.
735* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
736@end menu
737
738@node Simple GLR Parsers
739@subsection Using @acronym{GLR} on Unambiguous Grammars
740@cindex @acronym{GLR} parsing, unambiguous grammars
741@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
742@findex %glr-parser
743@findex %expect-rr
744@cindex conflicts
745@cindex reduce/reduce conflicts
746@cindex shift/reduce conflicts
747
748In the simplest cases, you can use the @acronym{GLR} algorithm
749to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 750Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
751or (in rare cases) fall into the category of grammars in which the
752@acronym{LALR}(1) algorithm throws away too much information (they are in
753@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
754
755Consider a problem that
756arises in the declaration of enumerated and subrange types in the
757programming language Pascal. Here are some examples:
758
759@example
760type subrange = lo .. hi;
761type enum = (a, b, c);
762@end example
763
764@noindent
765The original language standard allows only numeric
766literals and constant identifiers for the subrange bounds (@samp{lo}
767and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76810206) and many other
769Pascal implementations allow arbitrary expressions there. This gives
770rise to the following situation, containing a superfluous pair of
771parentheses:
772
773@example
774type subrange = (a) .. b;
775@end example
776
777@noindent
778Compare this to the following declaration of an enumerated
779type with only one value:
780
781@example
782type enum = (a);
783@end example
784
785@noindent
786(These declarations are contrived, but they are syntactically
787valid, and more-complicated cases can come up in practical programs.)
788
789These two declarations look identical until the @samp{..} token.
742e4900 790With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
791possible to decide between the two forms when the identifier
792@samp{a} is parsed. It is, however, desirable
793for a parser to decide this, since in the latter case
794@samp{a} must become a new identifier to represent the enumeration
795value, while in the former case @samp{a} must be evaluated with its
796current meaning, which may be a constant or even a function call.
797
798You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
799to be resolved later, but this typically requires substantial
800contortions in both semantic actions and large parts of the
801grammar, where the parentheses are nested in the recursive rules for
802expressions.
803
804You might think of using the lexer to distinguish between the two
805forms by returning different tokens for currently defined and
806undefined identifiers. But if these declarations occur in a local
807scope, and @samp{a} is defined in an outer scope, then both forms
808are possible---either locally redefining @samp{a}, or using the
809value of @samp{a} from the outer scope. So this approach cannot
810work.
811
e757bb10 812A simple solution to this problem is to declare the parser to
fa7e68c3
PE
813use the @acronym{GLR} algorithm.
814When the @acronym{GLR} parser reaches the critical state, it
815merely splits into two branches and pursues both syntax rules
816simultaneously. Sooner or later, one of them runs into a parsing
817error. If there is a @samp{..} token before the next
818@samp{;}, the rule for enumerated types fails since it cannot
819accept @samp{..} anywhere; otherwise, the subrange type rule
820fails since it requires a @samp{..} token. So one of the branches
821fails silently, and the other one continues normally, performing
822all the intermediate actions that were postponed during the split.
823
824If the input is syntactically incorrect, both branches fail and the parser
825reports a syntax error as usual.
826
827The effect of all this is that the parser seems to ``guess'' the
828correct branch to take, or in other words, it seems to use more
742e4900 829lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
830for. In this example, @acronym{LALR}(2) would suffice, but also some cases
831that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
832
833In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
834and the current Bison parser even takes exponential time and space
835for some grammars. In practice, this rarely happens, and for many
836grammars it is possible to prove that it cannot happen.
837The present example contains only one conflict between two
838rules, and the type-declaration context containing the conflict
839cannot be nested. So the number of
840branches that can exist at any time is limited by the constant 2,
841and the parsing time is still linear.
842
843Here is a Bison grammar corresponding to the example above. It
844parses a vastly simplified form of Pascal type declarations.
845
846@example
847%token TYPE DOTDOT ID
848
849@group
850%left '+' '-'
851%left '*' '/'
852@end group
853
854%%
855
856@group
857type_decl : TYPE ID '=' type ';'
858 ;
859@end group
860
861@group
862type : '(' id_list ')'
863 | expr DOTDOT expr
864 ;
865@end group
866
867@group
868id_list : ID
869 | id_list ',' ID
870 ;
871@end group
872
873@group
874expr : '(' expr ')'
875 | expr '+' expr
876 | expr '-' expr
877 | expr '*' expr
878 | expr '/' expr
879 | ID
880 ;
881@end group
882@end example
883
884When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
885about one reduce/reduce conflict. In the conflicting situation the
886parser chooses one of the alternatives, arbitrarily the one
887declared first. Therefore the following correct input is not
888recognized:
889
890@example
891type t = (a) .. b;
892@end example
893
894The parser can be turned into a @acronym{GLR} parser, while also telling Bison
895to be silent about the one known reduce/reduce conflict, by
e757bb10 896adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
897@samp{%%}):
898
899@example
900%glr-parser
901%expect-rr 1
902@end example
903
904@noindent
905No change in the grammar itself is required. Now the
906parser recognizes all valid declarations, according to the
907limited syntax above, transparently. In fact, the user does not even
908notice when the parser splits.
909
f8e1c9e5
AD
910So here we have a case where we can use the benefits of @acronym{GLR},
911almost without disadvantages. Even in simple cases like this, however,
912there are at least two potential problems to beware. First, always
913analyze the conflicts reported by Bison to make sure that @acronym{GLR}
914splitting is only done where it is intended. A @acronym{GLR} parser
915splitting inadvertently may cause problems less obvious than an
916@acronym{LALR} parser statically choosing the wrong alternative in a
917conflict. Second, consider interactions with the lexer (@pxref{Semantic
918Tokens}) with great care. Since a split parser consumes tokens without
919performing any actions during the split, the lexer cannot obtain
920information via parser actions. Some cases of lexer interactions can be
921eliminated by using @acronym{GLR} to shift the complications from the
922lexer to the parser. You must check the remaining cases for
923correctness.
924
925In our example, it would be safe for the lexer to return tokens based on
926their current meanings in some symbol table, because no new symbols are
927defined in the middle of a type declaration. Though it is possible for
928a parser to define the enumeration constants as they are parsed, before
929the type declaration is completed, it actually makes no difference since
930they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
931
932@node Merging GLR Parses
933@subsection Using @acronym{GLR} to Resolve Ambiguities
934@cindex @acronym{GLR} parsing, ambiguous grammars
935@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
936@findex %dprec
937@findex %merge
938@cindex conflicts
939@cindex reduce/reduce conflicts
940
2a8d363a 941Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
942
943@example
944%@{
38a92d50
PE
945 #include <stdio.h>
946 #define YYSTYPE char const *
947 int yylex (void);
948 void yyerror (char const *);
676385e2
PH
949%@}
950
951%token TYPENAME ID
952
953%right '='
954%left '+'
955
956%glr-parser
957
958%%
959
fae437e8 960prog :
676385e2
PH
961 | prog stmt @{ printf ("\n"); @}
962 ;
963
964stmt : expr ';' %dprec 1
965 | decl %dprec 2
966 ;
967
2a8d363a 968expr : ID @{ printf ("%s ", $$); @}
fae437e8 969 | TYPENAME '(' expr ')'
2a8d363a
AD
970 @{ printf ("%s <cast> ", $1); @}
971 | expr '+' expr @{ printf ("+ "); @}
972 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
973 ;
974
fae437e8 975decl : TYPENAME declarator ';'
2a8d363a 976 @{ printf ("%s <declare> ", $1); @}
676385e2 977 | TYPENAME declarator '=' expr ';'
2a8d363a 978 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
979 ;
980
2a8d363a 981declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
982 | '(' declarator ')'
983 ;
984@end example
985
986@noindent
987This models a problematic part of the C++ grammar---the ambiguity between
988certain declarations and statements. For example,
989
990@example
991T (x) = y+z;
992@end example
993
994@noindent
995parses as either an @code{expr} or a @code{stmt}
c827f760
PE
996(assuming that @samp{T} is recognized as a @code{TYPENAME} and
997@samp{x} as an @code{ID}).
676385e2 998Bison detects this as a reduce/reduce conflict between the rules
fae437e8 999@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1000time it encounters @code{x} in the example above. Since this is a
1001@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1002each choice of resolving the reduce/reduce conflict.
1003Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1004however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1005ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1006the other reduces @code{stmt : decl}, after which both parsers are in an
1007identical state: they've seen @samp{prog stmt} and have the same unprocessed
1008input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1009
1010At this point, the @acronym{GLR} parser requires a specification in the
1011grammar of how to choose between the competing parses.
1012In the example above, the two @code{%dprec}
e757bb10 1013declarations specify that Bison is to give precedence
fa7e68c3 1014to the parse that interprets the example as a
676385e2
PH
1015@code{decl}, which implies that @code{x} is a declarator.
1016The parser therefore prints
1017
1018@example
fae437e8 1019"x" y z + T <init-declare>
676385e2
PH
1020@end example
1021
fa7e68c3
PE
1022The @code{%dprec} declarations only come into play when more than one
1023parse survives. Consider a different input string for this parser:
676385e2
PH
1024
1025@example
1026T (x) + y;
1027@end example
1028
1029@noindent
e757bb10 1030This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1031construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1032Here, there is no ambiguity (this cannot be parsed as a declaration).
1033However, at the time the Bison parser encounters @code{x}, it does not
1034have enough information to resolve the reduce/reduce conflict (again,
1035between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1036case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1037into two, one assuming that @code{x} is an @code{expr}, and the other
1038assuming @code{x} is a @code{declarator}. The second of these parsers
1039then vanishes when it sees @code{+}, and the parser prints
1040
1041@example
fae437e8 1042x T <cast> y +
676385e2
PH
1043@end example
1044
1045Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1046the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1047actions of the two possible parsers, rather than choosing one over the
1048other. To do so, you could change the declaration of @code{stmt} as
1049follows:
1050
1051@example
1052stmt : expr ';' %merge <stmtMerge>
1053 | decl %merge <stmtMerge>
1054 ;
1055@end example
1056
1057@noindent
676385e2
PH
1058and define the @code{stmtMerge} function as:
1059
1060@example
38a92d50
PE
1061static YYSTYPE
1062stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1063@{
1064 printf ("<OR> ");
1065 return "";
1066@}
1067@end example
1068
1069@noindent
1070with an accompanying forward declaration
1071in the C declarations at the beginning of the file:
1072
1073@example
1074%@{
38a92d50 1075 #define YYSTYPE char const *
676385e2
PH
1076 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1077%@}
1078@end example
1079
1080@noindent
fa7e68c3
PE
1081With these declarations, the resulting parser parses the first example
1082as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1083
1084@example
fae437e8 1085"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1086@end example
1087
fa7e68c3 1088Bison requires that all of the
e757bb10 1089productions that participate in any particular merge have identical
fa7e68c3
PE
1090@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1091and the parser will report an error during any parse that results in
1092the offending merge.
9501dc6e 1093
32c29292
JD
1094@node GLR Semantic Actions
1095@subsection GLR Semantic Actions
1096
1097@cindex deferred semantic actions
1098By definition, a deferred semantic action is not performed at the same time as
1099the associated reduction.
1100This raises caveats for several Bison features you might use in a semantic
1101action in a @acronym{GLR} parser.
1102
1103@vindex yychar
1104@cindex @acronym{GLR} parsers and @code{yychar}
1105@vindex yylval
1106@cindex @acronym{GLR} parsers and @code{yylval}
1107@vindex yylloc
1108@cindex @acronym{GLR} parsers and @code{yylloc}
1109In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1110the lookahead token present at the time of the associated reduction.
32c29292
JD
1111After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1112you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1113lookahead token's semantic value and location, if any.
32c29292
JD
1114In a nondeferred semantic action, you can also modify any of these variables to
1115influence syntax analysis.
742e4900 1116@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1117
1118@findex yyclearin
1119@cindex @acronym{GLR} parsers and @code{yyclearin}
1120In a deferred semantic action, it's too late to influence syntax analysis.
1121In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1122shallow copies of the values they had at the time of the associated reduction.
1123For this reason alone, modifying them is dangerous.
1124Moreover, the result of modifying them is undefined and subject to change with
1125future versions of Bison.
1126For example, if a semantic action might be deferred, you should never write it
1127to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1128memory referenced by @code{yylval}.
1129
1130@findex YYERROR
1131@cindex @acronym{GLR} parsers and @code{YYERROR}
1132Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1133(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1134initiate error recovery.
1135During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1136the same as its effect in an @acronym{LALR}(1) parser.
1137In a deferred semantic action, its effect is undefined.
1138@c The effect is probably a syntax error at the split point.
1139
8710fc41
JD
1140Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1141describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1142
fa7e68c3
PE
1143@node Compiler Requirements
1144@subsection Considerations when Compiling @acronym{GLR} Parsers
1145@cindex @code{inline}
9501dc6e 1146@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1147
38a92d50
PE
1148The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1149later. In addition, they use the @code{inline} keyword, which is not
1150C89, but is C99 and is a common extension in pre-C99 compilers. It is
1151up to the user of these parsers to handle
9501dc6e
AD
1152portability issues. For instance, if using Autoconf and the Autoconf
1153macro @code{AC_C_INLINE}, a mere
1154
1155@example
1156%@{
38a92d50 1157 #include <config.h>
9501dc6e
AD
1158%@}
1159@end example
1160
1161@noindent
1162will suffice. Otherwise, we suggest
1163
1164@example
1165%@{
38a92d50
PE
1166 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1167 #define inline
1168 #endif
9501dc6e
AD
1169%@}
1170@end example
676385e2 1171
342b8b6e 1172@node Locations Overview
847bf1f5
AD
1173@section Locations
1174@cindex location
95923bd6
AD
1175@cindex textual location
1176@cindex location, textual
847bf1f5
AD
1177
1178Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1179and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1180the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1181Bison provides a mechanism for handling these locations.
1182
72d2299c 1183Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1184associated location, but the type of locations is the same for all tokens and
72d2299c 1185groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1186structure for storing locations (@pxref{Locations}, for more details).
1187
1188Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1189set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1190is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1191@code{@@3}.
1192
1193When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1194of its left hand side (@pxref{Actions}). In the same way, another default
1195action is used for locations. However, the action for locations is general
847bf1f5 1196enough for most cases, meaning there is usually no need to describe for each
72d2299c 1197rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1198grouping, the default behavior of the output parser is to take the beginning
1199of the first symbol, and the end of the last symbol.
1200
342b8b6e 1201@node Bison Parser
bfa74976
RS
1202@section Bison Output: the Parser File
1203@cindex Bison parser
1204@cindex Bison utility
1205@cindex lexical analyzer, purpose
1206@cindex parser
1207
1208When you run Bison, you give it a Bison grammar file as input. The output
1209is a C source file that parses the language described by the grammar.
1210This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1211utility and the Bison parser are two distinct programs: the Bison utility
1212is a program whose output is the Bison parser that becomes part of your
1213program.
1214
1215The job of the Bison parser is to group tokens into groupings according to
1216the grammar rules---for example, to build identifiers and operators into
1217expressions. As it does this, it runs the actions for the grammar rules it
1218uses.
1219
704a47c4
AD
1220The tokens come from a function called the @dfn{lexical analyzer} that
1221you must supply in some fashion (such as by writing it in C). The Bison
1222parser calls the lexical analyzer each time it wants a new token. It
1223doesn't know what is ``inside'' the tokens (though their semantic values
1224may reflect this). Typically the lexical analyzer makes the tokens by
1225parsing characters of text, but Bison does not depend on this.
1226@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1227
1228The Bison parser file is C code which defines a function named
1229@code{yyparse} which implements that grammar. This function does not make
1230a complete C program: you must supply some additional functions. One is
1231the lexical analyzer. Another is an error-reporting function which the
1232parser calls to report an error. In addition, a complete C program must
1233start with a function called @code{main}; you have to provide this, and
1234arrange for it to call @code{yyparse} or the parser will never run.
1235@xref{Interface, ,Parser C-Language Interface}.
1236
f7ab6a50 1237Aside from the token type names and the symbols in the actions you
7093d0f5 1238write, all symbols defined in the Bison parser file itself
bfa74976
RS
1239begin with @samp{yy} or @samp{YY}. This includes interface functions
1240such as the lexical analyzer function @code{yylex}, the error reporting
1241function @code{yyerror} and the parser function @code{yyparse} itself.
1242This also includes numerous identifiers used for internal purposes.
1243Therefore, you should avoid using C identifiers starting with @samp{yy}
1244or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1245this manual. Also, you should avoid using the C identifiers
1246@samp{malloc} and @samp{free} for anything other than their usual
1247meanings.
bfa74976 1248
7093d0f5
AD
1249In some cases the Bison parser file includes system headers, and in
1250those cases your code should respect the identifiers reserved by those
55289366 1251headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1252@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1253declare memory allocators and related types. @code{<libintl.h>} is
1254included if message translation is in use
1255(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1256be included if you define @code{YYDEBUG} to a nonzero value
1257(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1258
342b8b6e 1259@node Stages
bfa74976
RS
1260@section Stages in Using Bison
1261@cindex stages in using Bison
1262@cindex using Bison
1263
1264The actual language-design process using Bison, from grammar specification
1265to a working compiler or interpreter, has these parts:
1266
1267@enumerate
1268@item
1269Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1270(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1271in the language, describe the action that is to be taken when an
1272instance of that rule is recognized. The action is described by a
1273sequence of C statements.
bfa74976
RS
1274
1275@item
704a47c4
AD
1276Write a lexical analyzer to process input and pass tokens to the parser.
1277The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1278Lexical Analyzer Function @code{yylex}}). It could also be produced
1279using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1280
1281@item
1282Write a controlling function that calls the Bison-produced parser.
1283
1284@item
1285Write error-reporting routines.
1286@end enumerate
1287
1288To turn this source code as written into a runnable program, you
1289must follow these steps:
1290
1291@enumerate
1292@item
1293Run Bison on the grammar to produce the parser.
1294
1295@item
1296Compile the code output by Bison, as well as any other source files.
1297
1298@item
1299Link the object files to produce the finished product.
1300@end enumerate
1301
342b8b6e 1302@node Grammar Layout
bfa74976
RS
1303@section The Overall Layout of a Bison Grammar
1304@cindex grammar file
1305@cindex file format
1306@cindex format of grammar file
1307@cindex layout of Bison grammar
1308
1309The input file for the Bison utility is a @dfn{Bison grammar file}. The
1310general form of a Bison grammar file is as follows:
1311
1312@example
1313%@{
08e49d20 1314@var{Prologue}
bfa74976
RS
1315%@}
1316
1317@var{Bison declarations}
1318
1319%%
1320@var{Grammar rules}
1321%%
08e49d20 1322@var{Epilogue}
bfa74976
RS
1323@end example
1324
1325@noindent
1326The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1327in every Bison grammar file to separate the sections.
1328
72d2299c 1329The prologue may define types and variables used in the actions. You can
342b8b6e 1330also use preprocessor commands to define macros used there, and use
bfa74976 1331@code{#include} to include header files that do any of these things.
38a92d50
PE
1332You need to declare the lexical analyzer @code{yylex} and the error
1333printer @code{yyerror} here, along with any other global identifiers
1334used by the actions in the grammar rules.
bfa74976
RS
1335
1336The Bison declarations declare the names of the terminal and nonterminal
1337symbols, and may also describe operator precedence and the data types of
1338semantic values of various symbols.
1339
1340The grammar rules define how to construct each nonterminal symbol from its
1341parts.
1342
38a92d50
PE
1343The epilogue can contain any code you want to use. Often the
1344definitions of functions declared in the prologue go here. In a
1345simple program, all the rest of the program can go here.
bfa74976 1346
342b8b6e 1347@node Examples
bfa74976
RS
1348@chapter Examples
1349@cindex simple examples
1350@cindex examples, simple
1351
1352Now we show and explain three sample programs written using Bison: a
1353reverse polish notation calculator, an algebraic (infix) notation
1354calculator, and a multi-function calculator. All three have been tested
1355under BSD Unix 4.3; each produces a usable, though limited, interactive
1356desk-top calculator.
1357
1358These examples are simple, but Bison grammars for real programming
aa08666d
AD
1359languages are written the same way. You can copy these examples into a
1360source file to try them.
bfa74976
RS
1361
1362@menu
1363* RPN Calc:: Reverse polish notation calculator;
1364 a first example with no operator precedence.
1365* Infix Calc:: Infix (algebraic) notation calculator.
1366 Operator precedence is introduced.
1367* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1368* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1369* Multi-function Calc:: Calculator with memory and trig functions.
1370 It uses multiple data-types for semantic values.
1371* Exercises:: Ideas for improving the multi-function calculator.
1372@end menu
1373
342b8b6e 1374@node RPN Calc
bfa74976
RS
1375@section Reverse Polish Notation Calculator
1376@cindex reverse polish notation
1377@cindex polish notation calculator
1378@cindex @code{rpcalc}
1379@cindex calculator, simple
1380
1381The first example is that of a simple double-precision @dfn{reverse polish
1382notation} calculator (a calculator using postfix operators). This example
1383provides a good starting point, since operator precedence is not an issue.
1384The second example will illustrate how operator precedence is handled.
1385
1386The source code for this calculator is named @file{rpcalc.y}. The
1387@samp{.y} extension is a convention used for Bison input files.
1388
1389@menu
75f5aaea 1390* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1391* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1392* Lexer: Rpcalc Lexer. The lexical analyzer.
1393* Main: Rpcalc Main. The controlling function.
1394* Error: Rpcalc Error. The error reporting function.
1395* Gen: Rpcalc Gen. Running Bison on the grammar file.
1396* Comp: Rpcalc Compile. Run the C compiler on the output code.
1397@end menu
1398
342b8b6e 1399@node Rpcalc Decls
bfa74976
RS
1400@subsection Declarations for @code{rpcalc}
1401
1402Here are the C and Bison declarations for the reverse polish notation
1403calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1404
1405@example
72d2299c 1406/* Reverse polish notation calculator. */
bfa74976
RS
1407
1408%@{
38a92d50
PE
1409 #define YYSTYPE double
1410 #include <math.h>
1411 int yylex (void);
1412 void yyerror (char const *);
bfa74976
RS
1413%@}
1414
1415%token NUM
1416
72d2299c 1417%% /* Grammar rules and actions follow. */
bfa74976
RS
1418@end example
1419
75f5aaea 1420The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1421preprocessor directives and two forward declarations.
bfa74976
RS
1422
1423The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1424specifying the C data type for semantic values of both tokens and
1425groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1426Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1427don't define it, @code{int} is the default. Because we specify
1428@code{double}, each token and each expression has an associated value,
1429which is a floating point number.
bfa74976
RS
1430
1431The @code{#include} directive is used to declare the exponentiation
1432function @code{pow}.
1433
38a92d50
PE
1434The forward declarations for @code{yylex} and @code{yyerror} are
1435needed because the C language requires that functions be declared
1436before they are used. These functions will be defined in the
1437epilogue, but the parser calls them so they must be declared in the
1438prologue.
1439
704a47c4
AD
1440The second section, Bison declarations, provides information to Bison
1441about the token types (@pxref{Bison Declarations, ,The Bison
1442Declarations Section}). Each terminal symbol that is not a
1443single-character literal must be declared here. (Single-character
bfa74976
RS
1444literals normally don't need to be declared.) In this example, all the
1445arithmetic operators are designated by single-character literals, so the
1446only terminal symbol that needs to be declared is @code{NUM}, the token
1447type for numeric constants.
1448
342b8b6e 1449@node Rpcalc Rules
bfa74976
RS
1450@subsection Grammar Rules for @code{rpcalc}
1451
1452Here are the grammar rules for the reverse polish notation calculator.
1453
1454@example
1455input: /* empty */
1456 | input line
1457;
1458
1459line: '\n'
18b519c0 1460 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1461;
1462
18b519c0
AD
1463exp: NUM @{ $$ = $1; @}
1464 | exp exp '+' @{ $$ = $1 + $2; @}
1465 | exp exp '-' @{ $$ = $1 - $2; @}
1466 | exp exp '*' @{ $$ = $1 * $2; @}
1467 | exp exp '/' @{ $$ = $1 / $2; @}
1468 /* Exponentiation */
1469 | exp exp '^' @{ $$ = pow ($1, $2); @}
1470 /* Unary minus */
1471 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1472;
1473%%
1474@end example
1475
1476The groupings of the rpcalc ``language'' defined here are the expression
1477(given the name @code{exp}), the line of input (@code{line}), and the
1478complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1479symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1480which is read as ``or''. The following sections explain what these rules
1481mean.
1482
1483The semantics of the language is determined by the actions taken when a
1484grouping is recognized. The actions are the C code that appears inside
1485braces. @xref{Actions}.
1486
1487You must specify these actions in C, but Bison provides the means for
1488passing semantic values between the rules. In each action, the
1489pseudo-variable @code{$$} stands for the semantic value for the grouping
1490that the rule is going to construct. Assigning a value to @code{$$} is the
1491main job of most actions. The semantic values of the components of the
1492rule are referred to as @code{$1}, @code{$2}, and so on.
1493
1494@menu
13863333
AD
1495* Rpcalc Input::
1496* Rpcalc Line::
1497* Rpcalc Expr::
bfa74976
RS
1498@end menu
1499
342b8b6e 1500@node Rpcalc Input
bfa74976
RS
1501@subsubsection Explanation of @code{input}
1502
1503Consider the definition of @code{input}:
1504
1505@example
1506input: /* empty */
1507 | input line
1508;
1509@end example
1510
1511This definition reads as follows: ``A complete input is either an empty
1512string, or a complete input followed by an input line''. Notice that
1513``complete input'' is defined in terms of itself. This definition is said
1514to be @dfn{left recursive} since @code{input} appears always as the
1515leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1516
1517The first alternative is empty because there are no symbols between the
1518colon and the first @samp{|}; this means that @code{input} can match an
1519empty string of input (no tokens). We write the rules this way because it
1520is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1521It's conventional to put an empty alternative first and write the comment
1522@samp{/* empty */} in it.
1523
1524The second alternate rule (@code{input line}) handles all nontrivial input.
1525It means, ``After reading any number of lines, read one more line if
1526possible.'' The left recursion makes this rule into a loop. Since the
1527first alternative matches empty input, the loop can be executed zero or
1528more times.
1529
1530The parser function @code{yyparse} continues to process input until a
1531grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1532input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1533
342b8b6e 1534@node Rpcalc Line
bfa74976
RS
1535@subsubsection Explanation of @code{line}
1536
1537Now consider the definition of @code{line}:
1538
1539@example
1540line: '\n'
1541 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1542;
1543@end example
1544
1545The first alternative is a token which is a newline character; this means
1546that rpcalc accepts a blank line (and ignores it, since there is no
1547action). The second alternative is an expression followed by a newline.
1548This is the alternative that makes rpcalc useful. The semantic value of
1549the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1550question is the first symbol in the alternative. The action prints this
1551value, which is the result of the computation the user asked for.
1552
1553This action is unusual because it does not assign a value to @code{$$}. As
1554a consequence, the semantic value associated with the @code{line} is
1555uninitialized (its value will be unpredictable). This would be a bug if
1556that value were ever used, but we don't use it: once rpcalc has printed the
1557value of the user's input line, that value is no longer needed.
1558
342b8b6e 1559@node Rpcalc Expr
bfa74976
RS
1560@subsubsection Explanation of @code{expr}
1561
1562The @code{exp} grouping has several rules, one for each kind of expression.
1563The first rule handles the simplest expressions: those that are just numbers.
1564The second handles an addition-expression, which looks like two expressions
1565followed by a plus-sign. The third handles subtraction, and so on.
1566
1567@example
1568exp: NUM
1569 | exp exp '+' @{ $$ = $1 + $2; @}
1570 | exp exp '-' @{ $$ = $1 - $2; @}
1571 @dots{}
1572 ;
1573@end example
1574
1575We have used @samp{|} to join all the rules for @code{exp}, but we could
1576equally well have written them separately:
1577
1578@example
1579exp: NUM ;
1580exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1581exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1582 @dots{}
1583@end example
1584
1585Most of the rules have actions that compute the value of the expression in
1586terms of the value of its parts. For example, in the rule for addition,
1587@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1588the second one. The third component, @code{'+'}, has no meaningful
1589associated semantic value, but if it had one you could refer to it as
1590@code{$3}. When @code{yyparse} recognizes a sum expression using this
1591rule, the sum of the two subexpressions' values is produced as the value of
1592the entire expression. @xref{Actions}.
1593
1594You don't have to give an action for every rule. When a rule has no
1595action, Bison by default copies the value of @code{$1} into @code{$$}.
1596This is what happens in the first rule (the one that uses @code{NUM}).
1597
1598The formatting shown here is the recommended convention, but Bison does
72d2299c 1599not require it. You can add or change white space as much as you wish.
bfa74976
RS
1600For example, this:
1601
1602@example
99a9344e 1603exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1604@end example
1605
1606@noindent
1607means the same thing as this:
1608
1609@example
1610exp: NUM
1611 | exp exp '+' @{ $$ = $1 + $2; @}
1612 | @dots{}
99a9344e 1613;
bfa74976
RS
1614@end example
1615
1616@noindent
1617The latter, however, is much more readable.
1618
342b8b6e 1619@node Rpcalc Lexer
bfa74976
RS
1620@subsection The @code{rpcalc} Lexical Analyzer
1621@cindex writing a lexical analyzer
1622@cindex lexical analyzer, writing
1623
704a47c4
AD
1624The lexical analyzer's job is low-level parsing: converting characters
1625or sequences of characters into tokens. The Bison parser gets its
1626tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1627Analyzer Function @code{yylex}}.
bfa74976 1628
c827f760
PE
1629Only a simple lexical analyzer is needed for the @acronym{RPN}
1630calculator. This
bfa74976
RS
1631lexical analyzer skips blanks and tabs, then reads in numbers as
1632@code{double} and returns them as @code{NUM} tokens. Any other character
1633that isn't part of a number is a separate token. Note that the token-code
1634for such a single-character token is the character itself.
1635
1636The return value of the lexical analyzer function is a numeric code which
1637represents a token type. The same text used in Bison rules to stand for
1638this token type is also a C expression for the numeric code for the type.
1639This works in two ways. If the token type is a character literal, then its
e966383b 1640numeric code is that of the character; you can use the same
bfa74976
RS
1641character literal in the lexical analyzer to express the number. If the
1642token type is an identifier, that identifier is defined by Bison as a C
1643macro whose definition is the appropriate number. In this example,
1644therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1645
1964ad8c
AD
1646The semantic value of the token (if it has one) is stored into the
1647global variable @code{yylval}, which is where the Bison parser will look
1648for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1649defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1650,Declarations for @code{rpcalc}}.)
bfa74976 1651
72d2299c
PE
1652A token type code of zero is returned if the end-of-input is encountered.
1653(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1654
1655Here is the code for the lexical analyzer:
1656
1657@example
1658@group
72d2299c 1659/* The lexical analyzer returns a double floating point
e966383b 1660 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1661 of the character read if not a number. It skips all blanks
1662 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1663
1664#include <ctype.h>
1665@end group
1666
1667@group
13863333
AD
1668int
1669yylex (void)
bfa74976
RS
1670@{
1671 int c;
1672
72d2299c 1673 /* Skip white space. */
13863333 1674 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1675 ;
1676@end group
1677@group
72d2299c 1678 /* Process numbers. */
13863333 1679 if (c == '.' || isdigit (c))
bfa74976
RS
1680 @{
1681 ungetc (c, stdin);
1682 scanf ("%lf", &yylval);
1683 return NUM;
1684 @}
1685@end group
1686@group
72d2299c 1687 /* Return end-of-input. */
13863333 1688 if (c == EOF)
bfa74976 1689 return 0;
72d2299c 1690 /* Return a single char. */
13863333 1691 return c;
bfa74976
RS
1692@}
1693@end group
1694@end example
1695
342b8b6e 1696@node Rpcalc Main
bfa74976
RS
1697@subsection The Controlling Function
1698@cindex controlling function
1699@cindex main function in simple example
1700
1701In keeping with the spirit of this example, the controlling function is
1702kept to the bare minimum. The only requirement is that it call
1703@code{yyparse} to start the process of parsing.
1704
1705@example
1706@group
13863333
AD
1707int
1708main (void)
bfa74976 1709@{
13863333 1710 return yyparse ();
bfa74976
RS
1711@}
1712@end group
1713@end example
1714
342b8b6e 1715@node Rpcalc Error
bfa74976
RS
1716@subsection The Error Reporting Routine
1717@cindex error reporting routine
1718
1719When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1720function @code{yyerror} to print an error message (usually but not
6e649e65 1721always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1722@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1723here is the definition we will use:
bfa74976
RS
1724
1725@example
1726@group
1727#include <stdio.h>
1728
38a92d50 1729/* Called by yyparse on error. */
13863333 1730void
38a92d50 1731yyerror (char const *s)
bfa74976 1732@{
4e03e201 1733 fprintf (stderr, "%s\n", s);
bfa74976
RS
1734@}
1735@end group
1736@end example
1737
1738After @code{yyerror} returns, the Bison parser may recover from the error
1739and continue parsing if the grammar contains a suitable error rule
1740(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1741have not written any error rules in this example, so any invalid input will
1742cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1743real calculator, but it is adequate for the first example.
bfa74976 1744
342b8b6e 1745@node Rpcalc Gen
bfa74976
RS
1746@subsection Running Bison to Make the Parser
1747@cindex running Bison (introduction)
1748
ceed8467
AD
1749Before running Bison to produce a parser, we need to decide how to
1750arrange all the source code in one or more source files. For such a
1751simple example, the easiest thing is to put everything in one file. The
1752definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1753end, in the epilogue of the file
75f5aaea 1754(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1755
1756For a large project, you would probably have several source files, and use
1757@code{make} to arrange to recompile them.
1758
1759With all the source in a single file, you use the following command to
1760convert it into a parser file:
1761
1762@example
fa4d969f 1763bison @var{file}.y
bfa74976
RS
1764@end example
1765
1766@noindent
1767In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1768@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1769removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1770Bison contains the source code for @code{yyparse}. The additional
1771functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1772are copied verbatim to the output.
1773
342b8b6e 1774@node Rpcalc Compile
bfa74976
RS
1775@subsection Compiling the Parser File
1776@cindex compiling the parser
1777
1778Here is how to compile and run the parser file:
1779
1780@example
1781@group
1782# @r{List files in current directory.}
9edcd895 1783$ @kbd{ls}
bfa74976
RS
1784rpcalc.tab.c rpcalc.y
1785@end group
1786
1787@group
1788# @r{Compile the Bison parser.}
1789# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1790$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1791@end group
1792
1793@group
1794# @r{List files again.}
9edcd895 1795$ @kbd{ls}
bfa74976
RS
1796rpcalc rpcalc.tab.c rpcalc.y
1797@end group
1798@end example
1799
1800The file @file{rpcalc} now contains the executable code. Here is an
1801example session using @code{rpcalc}.
1802
1803@example
9edcd895
AD
1804$ @kbd{rpcalc}
1805@kbd{4 9 +}
bfa74976 180613
9edcd895 1807@kbd{3 7 + 3 4 5 *+-}
bfa74976 1808-13
9edcd895 1809@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 181013
9edcd895 1811@kbd{5 6 / 4 n +}
bfa74976 1812-3.166666667
9edcd895 1813@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181481
9edcd895
AD
1815@kbd{^D} @r{End-of-file indicator}
1816$
bfa74976
RS
1817@end example
1818
342b8b6e 1819@node Infix Calc
bfa74976
RS
1820@section Infix Notation Calculator: @code{calc}
1821@cindex infix notation calculator
1822@cindex @code{calc}
1823@cindex calculator, infix notation
1824
1825We now modify rpcalc to handle infix operators instead of postfix. Infix
1826notation involves the concept of operator precedence and the need for
1827parentheses nested to arbitrary depth. Here is the Bison code for
1828@file{calc.y}, an infix desk-top calculator.
1829
1830@example
38a92d50 1831/* Infix notation calculator. */
bfa74976
RS
1832
1833%@{
38a92d50
PE
1834 #define YYSTYPE double
1835 #include <math.h>
1836 #include <stdio.h>
1837 int yylex (void);
1838 void yyerror (char const *);
bfa74976
RS
1839%@}
1840
38a92d50 1841/* Bison declarations. */
bfa74976
RS
1842%token NUM
1843%left '-' '+'
1844%left '*' '/'
1845%left NEG /* negation--unary minus */
38a92d50 1846%right '^' /* exponentiation */
bfa74976 1847
38a92d50
PE
1848%% /* The grammar follows. */
1849input: /* empty */
bfa74976
RS
1850 | input line
1851;
1852
1853line: '\n'
1854 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1855;
1856
1857exp: NUM @{ $$ = $1; @}
1858 | exp '+' exp @{ $$ = $1 + $3; @}
1859 | exp '-' exp @{ $$ = $1 - $3; @}
1860 | exp '*' exp @{ $$ = $1 * $3; @}
1861 | exp '/' exp @{ $$ = $1 / $3; @}
1862 | '-' exp %prec NEG @{ $$ = -$2; @}
1863 | exp '^' exp @{ $$ = pow ($1, $3); @}
1864 | '(' exp ')' @{ $$ = $2; @}
1865;
1866%%
1867@end example
1868
1869@noindent
ceed8467
AD
1870The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1871same as before.
bfa74976
RS
1872
1873There are two important new features shown in this code.
1874
1875In the second section (Bison declarations), @code{%left} declares token
1876types and says they are left-associative operators. The declarations
1877@code{%left} and @code{%right} (right associativity) take the place of
1878@code{%token} which is used to declare a token type name without
1879associativity. (These tokens are single-character literals, which
1880ordinarily don't need to be declared. We declare them here to specify
1881the associativity.)
1882
1883Operator precedence is determined by the line ordering of the
1884declarations; the higher the line number of the declaration (lower on
1885the page or screen), the higher the precedence. Hence, exponentiation
1886has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1887by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1888Precedence}.
bfa74976 1889
704a47c4
AD
1890The other important new feature is the @code{%prec} in the grammar
1891section for the unary minus operator. The @code{%prec} simply instructs
1892Bison that the rule @samp{| '-' exp} has the same precedence as
1893@code{NEG}---in this case the next-to-highest. @xref{Contextual
1894Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1895
1896Here is a sample run of @file{calc.y}:
1897
1898@need 500
1899@example
9edcd895
AD
1900$ @kbd{calc}
1901@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19026.880952381
9edcd895 1903@kbd{-56 + 2}
bfa74976 1904-54
9edcd895 1905@kbd{3 ^ 2}
bfa74976
RS
19069
1907@end example
1908
342b8b6e 1909@node Simple Error Recovery
bfa74976
RS
1910@section Simple Error Recovery
1911@cindex error recovery, simple
1912
1913Up to this point, this manual has not addressed the issue of @dfn{error
1914recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1915error. All we have handled is error reporting with @code{yyerror}.
1916Recall that by default @code{yyparse} returns after calling
1917@code{yyerror}. This means that an erroneous input line causes the
1918calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1919
1920The Bison language itself includes the reserved word @code{error}, which
1921may be included in the grammar rules. In the example below it has
1922been added to one of the alternatives for @code{line}:
1923
1924@example
1925@group
1926line: '\n'
1927 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1928 | error '\n' @{ yyerrok; @}
1929;
1930@end group
1931@end example
1932
ceed8467 1933This addition to the grammar allows for simple error recovery in the
6e649e65 1934event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1935read, the error will be recognized by the third rule for @code{line},
1936and parsing will continue. (The @code{yyerror} function is still called
1937upon to print its message as well.) The action executes the statement
1938@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1939that error recovery is complete (@pxref{Error Recovery}). Note the
1940difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1941misprint.
bfa74976
RS
1942
1943This form of error recovery deals with syntax errors. There are other
1944kinds of errors; for example, division by zero, which raises an exception
1945signal that is normally fatal. A real calculator program must handle this
1946signal and use @code{longjmp} to return to @code{main} and resume parsing
1947input lines; it would also have to discard the rest of the current line of
1948input. We won't discuss this issue further because it is not specific to
1949Bison programs.
1950
342b8b6e
AD
1951@node Location Tracking Calc
1952@section Location Tracking Calculator: @code{ltcalc}
1953@cindex location tracking calculator
1954@cindex @code{ltcalc}
1955@cindex calculator, location tracking
1956
9edcd895
AD
1957This example extends the infix notation calculator with location
1958tracking. This feature will be used to improve the error messages. For
1959the sake of clarity, this example is a simple integer calculator, since
1960most of the work needed to use locations will be done in the lexical
72d2299c 1961analyzer.
342b8b6e
AD
1962
1963@menu
1964* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1965* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1966* Lexer: Ltcalc Lexer. The lexical analyzer.
1967@end menu
1968
1969@node Ltcalc Decls
1970@subsection Declarations for @code{ltcalc}
1971
9edcd895
AD
1972The C and Bison declarations for the location tracking calculator are
1973the same as the declarations for the infix notation calculator.
342b8b6e
AD
1974
1975@example
1976/* Location tracking calculator. */
1977
1978%@{
38a92d50
PE
1979 #define YYSTYPE int
1980 #include <math.h>
1981 int yylex (void);
1982 void yyerror (char const *);
342b8b6e
AD
1983%@}
1984
1985/* Bison declarations. */
1986%token NUM
1987
1988%left '-' '+'
1989%left '*' '/'
1990%left NEG
1991%right '^'
1992
38a92d50 1993%% /* The grammar follows. */
342b8b6e
AD
1994@end example
1995
9edcd895
AD
1996@noindent
1997Note there are no declarations specific to locations. Defining a data
1998type for storing locations is not needed: we will use the type provided
1999by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2000four member structure with the following integer fields:
2001@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2002@code{last_column}. By conventions, and in accordance with the GNU
2003Coding Standards and common practice, the line and column count both
2004start at 1.
342b8b6e
AD
2005
2006@node Ltcalc Rules
2007@subsection Grammar Rules for @code{ltcalc}
2008
9edcd895
AD
2009Whether handling locations or not has no effect on the syntax of your
2010language. Therefore, grammar rules for this example will be very close
2011to those of the previous example: we will only modify them to benefit
2012from the new information.
342b8b6e 2013
9edcd895
AD
2014Here, we will use locations to report divisions by zero, and locate the
2015wrong expressions or subexpressions.
342b8b6e
AD
2016
2017@example
2018@group
2019input : /* empty */
2020 | input line
2021;
2022@end group
2023
2024@group
2025line : '\n'
2026 | exp '\n' @{ printf ("%d\n", $1); @}
2027;
2028@end group
2029
2030@group
2031exp : NUM @{ $$ = $1; @}
2032 | exp '+' exp @{ $$ = $1 + $3; @}
2033 | exp '-' exp @{ $$ = $1 - $3; @}
2034 | exp '*' exp @{ $$ = $1 * $3; @}
2035@end group
342b8b6e 2036@group
9edcd895 2037 | exp '/' exp
342b8b6e
AD
2038 @{
2039 if ($3)
2040 $$ = $1 / $3;
2041 else
2042 @{
2043 $$ = 1;
9edcd895
AD
2044 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2045 @@3.first_line, @@3.first_column,
2046 @@3.last_line, @@3.last_column);
342b8b6e
AD
2047 @}
2048 @}
2049@end group
2050@group
178e123e 2051 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2052 | exp '^' exp @{ $$ = pow ($1, $3); @}
2053 | '(' exp ')' @{ $$ = $2; @}
2054@end group
2055@end example
2056
2057This code shows how to reach locations inside of semantic actions, by
2058using the pseudo-variables @code{@@@var{n}} for rule components, and the
2059pseudo-variable @code{@@$} for groupings.
2060
9edcd895
AD
2061We don't need to assign a value to @code{@@$}: the output parser does it
2062automatically. By default, before executing the C code of each action,
2063@code{@@$} is set to range from the beginning of @code{@@1} to the end
2064of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2065can be redefined (@pxref{Location Default Action, , Default Action for
2066Locations}), and for very specific rules, @code{@@$} can be computed by
2067hand.
342b8b6e
AD
2068
2069@node Ltcalc Lexer
2070@subsection The @code{ltcalc} Lexical Analyzer.
2071
9edcd895 2072Until now, we relied on Bison's defaults to enable location
72d2299c 2073tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2074able to feed the parser with the token locations, as it already does for
2075semantic values.
342b8b6e 2076
9edcd895
AD
2077To this end, we must take into account every single character of the
2078input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2079
2080@example
2081@group
2082int
2083yylex (void)
2084@{
2085 int c;
18b519c0 2086@end group
342b8b6e 2087
18b519c0 2088@group
72d2299c 2089 /* Skip white space. */
342b8b6e
AD
2090 while ((c = getchar ()) == ' ' || c == '\t')
2091 ++yylloc.last_column;
18b519c0 2092@end group
342b8b6e 2093
18b519c0 2094@group
72d2299c 2095 /* Step. */
342b8b6e
AD
2096 yylloc.first_line = yylloc.last_line;
2097 yylloc.first_column = yylloc.last_column;
2098@end group
2099
2100@group
72d2299c 2101 /* Process numbers. */
342b8b6e
AD
2102 if (isdigit (c))
2103 @{
2104 yylval = c - '0';
2105 ++yylloc.last_column;
2106 while (isdigit (c = getchar ()))
2107 @{
2108 ++yylloc.last_column;
2109 yylval = yylval * 10 + c - '0';
2110 @}
2111 ungetc (c, stdin);
2112 return NUM;
2113 @}
2114@end group
2115
72d2299c 2116 /* Return end-of-input. */
342b8b6e
AD
2117 if (c == EOF)
2118 return 0;
2119
72d2299c 2120 /* Return a single char, and update location. */
342b8b6e
AD
2121 if (c == '\n')
2122 @{
2123 ++yylloc.last_line;
2124 yylloc.last_column = 0;
2125 @}
2126 else
2127 ++yylloc.last_column;
2128 return c;
2129@}
2130@end example
2131
9edcd895
AD
2132Basically, the lexical analyzer performs the same processing as before:
2133it skips blanks and tabs, and reads numbers or single-character tokens.
2134In addition, it updates @code{yylloc}, the global variable (of type
2135@code{YYLTYPE}) containing the token's location.
342b8b6e 2136
9edcd895 2137Now, each time this function returns a token, the parser has its number
72d2299c 2138as well as its semantic value, and its location in the text. The last
9edcd895
AD
2139needed change is to initialize @code{yylloc}, for example in the
2140controlling function:
342b8b6e
AD
2141
2142@example
9edcd895 2143@group
342b8b6e
AD
2144int
2145main (void)
2146@{
2147 yylloc.first_line = yylloc.last_line = 1;
2148 yylloc.first_column = yylloc.last_column = 0;
2149 return yyparse ();
2150@}
9edcd895 2151@end group
342b8b6e
AD
2152@end example
2153
9edcd895
AD
2154Remember that computing locations is not a matter of syntax. Every
2155character must be associated to a location update, whether it is in
2156valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2157
2158@node Multi-function Calc
bfa74976
RS
2159@section Multi-Function Calculator: @code{mfcalc}
2160@cindex multi-function calculator
2161@cindex @code{mfcalc}
2162@cindex calculator, multi-function
2163
2164Now that the basics of Bison have been discussed, it is time to move on to
2165a more advanced problem. The above calculators provided only five
2166functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2167be nice to have a calculator that provides other mathematical functions such
2168as @code{sin}, @code{cos}, etc.
2169
2170It is easy to add new operators to the infix calculator as long as they are
2171only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2172back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2173adding a new operator. But we want something more flexible: built-in
2174functions whose syntax has this form:
2175
2176@example
2177@var{function_name} (@var{argument})
2178@end example
2179
2180@noindent
2181At the same time, we will add memory to the calculator, by allowing you
2182to create named variables, store values in them, and use them later.
2183Here is a sample session with the multi-function calculator:
2184
2185@example
9edcd895
AD
2186$ @kbd{mfcalc}
2187@kbd{pi = 3.141592653589}
bfa74976 21883.1415926536
9edcd895 2189@kbd{sin(pi)}
bfa74976 21900.0000000000
9edcd895 2191@kbd{alpha = beta1 = 2.3}
bfa74976 21922.3000000000
9edcd895 2193@kbd{alpha}
bfa74976 21942.3000000000
9edcd895 2195@kbd{ln(alpha)}
bfa74976 21960.8329091229
9edcd895 2197@kbd{exp(ln(beta1))}
bfa74976 21982.3000000000
9edcd895 2199$
bfa74976
RS
2200@end example
2201
2202Note that multiple assignment and nested function calls are permitted.
2203
2204@menu
2205* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2206* Rules: Mfcalc Rules. Grammar rules for the calculator.
2207* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2208@end menu
2209
342b8b6e 2210@node Mfcalc Decl
bfa74976
RS
2211@subsection Declarations for @code{mfcalc}
2212
2213Here are the C and Bison declarations for the multi-function calculator.
2214
2215@smallexample
18b519c0 2216@group
bfa74976 2217%@{
38a92d50
PE
2218 #include <math.h> /* For math functions, cos(), sin(), etc. */
2219 #include "calc.h" /* Contains definition of `symrec'. */
2220 int yylex (void);
2221 void yyerror (char const *);
bfa74976 2222%@}
18b519c0
AD
2223@end group
2224@group
bfa74976 2225%union @{
38a92d50
PE
2226 double val; /* For returning numbers. */
2227 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2228@}
18b519c0 2229@end group
38a92d50
PE
2230%token <val> NUM /* Simple double precision number. */
2231%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2232%type <val> exp
2233
18b519c0 2234@group
bfa74976
RS
2235%right '='
2236%left '-' '+'
2237%left '*' '/'
38a92d50
PE
2238%left NEG /* negation--unary minus */
2239%right '^' /* exponentiation */
18b519c0 2240@end group
38a92d50 2241%% /* The grammar follows. */
bfa74976
RS
2242@end smallexample
2243
2244The above grammar introduces only two new features of the Bison language.
2245These features allow semantic values to have various data types
2246(@pxref{Multiple Types, ,More Than One Value Type}).
2247
2248The @code{%union} declaration specifies the entire list of possible types;
2249this is instead of defining @code{YYSTYPE}. The allowable types are now
2250double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2251the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2252
2253Since values can now have various types, it is necessary to associate a
2254type with each grammar symbol whose semantic value is used. These symbols
2255are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2256declarations are augmented with information about their data type (placed
2257between angle brackets).
2258
704a47c4
AD
2259The Bison construct @code{%type} is used for declaring nonterminal
2260symbols, just as @code{%token} is used for declaring token types. We
2261have not used @code{%type} before because nonterminal symbols are
2262normally declared implicitly by the rules that define them. But
2263@code{exp} must be declared explicitly so we can specify its value type.
2264@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2265
342b8b6e 2266@node Mfcalc Rules
bfa74976
RS
2267@subsection Grammar Rules for @code{mfcalc}
2268
2269Here are the grammar rules for the multi-function calculator.
2270Most of them are copied directly from @code{calc}; three rules,
2271those which mention @code{VAR} or @code{FNCT}, are new.
2272
2273@smallexample
18b519c0 2274@group
bfa74976
RS
2275input: /* empty */
2276 | input line
2277;
18b519c0 2278@end group
bfa74976 2279
18b519c0 2280@group
bfa74976
RS
2281line:
2282 '\n'
2283 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2284 | error '\n' @{ yyerrok; @}
2285;
18b519c0 2286@end group
bfa74976 2287
18b519c0 2288@group
bfa74976
RS
2289exp: NUM @{ $$ = $1; @}
2290 | VAR @{ $$ = $1->value.var; @}
2291 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2292 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2293 | exp '+' exp @{ $$ = $1 + $3; @}
2294 | exp '-' exp @{ $$ = $1 - $3; @}
2295 | exp '*' exp @{ $$ = $1 * $3; @}
2296 | exp '/' exp @{ $$ = $1 / $3; @}
2297 | '-' exp %prec NEG @{ $$ = -$2; @}
2298 | exp '^' exp @{ $$ = pow ($1, $3); @}
2299 | '(' exp ')' @{ $$ = $2; @}
2300;
18b519c0 2301@end group
38a92d50 2302/* End of grammar. */
bfa74976
RS
2303%%
2304@end smallexample
2305
342b8b6e 2306@node Mfcalc Symtab
bfa74976
RS
2307@subsection The @code{mfcalc} Symbol Table
2308@cindex symbol table example
2309
2310The multi-function calculator requires a symbol table to keep track of the
2311names and meanings of variables and functions. This doesn't affect the
2312grammar rules (except for the actions) or the Bison declarations, but it
2313requires some additional C functions for support.
2314
2315The symbol table itself consists of a linked list of records. Its
2316definition, which is kept in the header @file{calc.h}, is as follows. It
2317provides for either functions or variables to be placed in the table.
2318
2319@smallexample
2320@group
38a92d50 2321/* Function type. */
32dfccf8 2322typedef double (*func_t) (double);
72f889cc 2323@end group
32dfccf8 2324
72f889cc 2325@group
38a92d50 2326/* Data type for links in the chain of symbols. */
bfa74976
RS
2327struct symrec
2328@{
38a92d50 2329 char *name; /* name of symbol */
bfa74976 2330 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2331 union
2332 @{
38a92d50
PE
2333 double var; /* value of a VAR */
2334 func_t fnctptr; /* value of a FNCT */
bfa74976 2335 @} value;
38a92d50 2336 struct symrec *next; /* link field */
bfa74976
RS
2337@};
2338@end group
2339
2340@group
2341typedef struct symrec symrec;
2342
38a92d50 2343/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2344extern symrec *sym_table;
2345
a730d142 2346symrec *putsym (char const *, int);
38a92d50 2347symrec *getsym (char const *);
bfa74976
RS
2348@end group
2349@end smallexample
2350
2351The new version of @code{main} includes a call to @code{init_table}, a
2352function that initializes the symbol table. Here it is, and
2353@code{init_table} as well:
2354
2355@smallexample
bfa74976
RS
2356#include <stdio.h>
2357
18b519c0 2358@group
38a92d50 2359/* Called by yyparse on error. */
13863333 2360void
38a92d50 2361yyerror (char const *s)
bfa74976
RS
2362@{
2363 printf ("%s\n", s);
2364@}
18b519c0 2365@end group
bfa74976 2366
18b519c0 2367@group
bfa74976
RS
2368struct init
2369@{
38a92d50
PE
2370 char const *fname;
2371 double (*fnct) (double);
bfa74976
RS
2372@};
2373@end group
2374
2375@group
38a92d50 2376struct init const arith_fncts[] =
13863333 2377@{
32dfccf8
AD
2378 "sin", sin,
2379 "cos", cos,
13863333 2380 "atan", atan,
32dfccf8
AD
2381 "ln", log,
2382 "exp", exp,
13863333
AD
2383 "sqrt", sqrt,
2384 0, 0
2385@};
18b519c0 2386@end group
bfa74976 2387
18b519c0 2388@group
bfa74976 2389/* The symbol table: a chain of `struct symrec'. */
38a92d50 2390symrec *sym_table;
bfa74976
RS
2391@end group
2392
2393@group
72d2299c 2394/* Put arithmetic functions in table. */
13863333
AD
2395void
2396init_table (void)
bfa74976
RS
2397@{
2398 int i;
2399 symrec *ptr;
2400 for (i = 0; arith_fncts[i].fname != 0; i++)
2401 @{
2402 ptr = putsym (arith_fncts[i].fname, FNCT);
2403 ptr->value.fnctptr = arith_fncts[i].fnct;
2404 @}
2405@}
2406@end group
38a92d50
PE
2407
2408@group
2409int
2410main (void)
2411@{
2412 init_table ();
2413 return yyparse ();
2414@}
2415@end group
bfa74976
RS
2416@end smallexample
2417
2418By simply editing the initialization list and adding the necessary include
2419files, you can add additional functions to the calculator.
2420
2421Two important functions allow look-up and installation of symbols in the
2422symbol table. The function @code{putsym} is passed a name and the type
2423(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2424linked to the front of the list, and a pointer to the object is returned.
2425The function @code{getsym} is passed the name of the symbol to look up. If
2426found, a pointer to that symbol is returned; otherwise zero is returned.
2427
2428@smallexample
2429symrec *
38a92d50 2430putsym (char const *sym_name, int sym_type)
bfa74976
RS
2431@{
2432 symrec *ptr;
2433 ptr = (symrec *) malloc (sizeof (symrec));
2434 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2435 strcpy (ptr->name,sym_name);
2436 ptr->type = sym_type;
72d2299c 2437 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2438 ptr->next = (struct symrec *)sym_table;
2439 sym_table = ptr;
2440 return ptr;
2441@}
2442
2443symrec *
38a92d50 2444getsym (char const *sym_name)
bfa74976
RS
2445@{
2446 symrec *ptr;
2447 for (ptr = sym_table; ptr != (symrec *) 0;
2448 ptr = (symrec *)ptr->next)
2449 if (strcmp (ptr->name,sym_name) == 0)
2450 return ptr;
2451 return 0;
2452@}
2453@end smallexample
2454
2455The function @code{yylex} must now recognize variables, numeric values, and
2456the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2457characters with a leading letter are recognized as either variables or
bfa74976
RS
2458functions depending on what the symbol table says about them.
2459
2460The string is passed to @code{getsym} for look up in the symbol table. If
2461the name appears in the table, a pointer to its location and its type
2462(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2463already in the table, then it is installed as a @code{VAR} using
2464@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2465returned to @code{yyparse}.
bfa74976
RS
2466
2467No change is needed in the handling of numeric values and arithmetic
2468operators in @code{yylex}.
2469
2470@smallexample
2471@group
2472#include <ctype.h>
18b519c0 2473@end group
13863333 2474
18b519c0 2475@group
13863333
AD
2476int
2477yylex (void)
bfa74976
RS
2478@{
2479 int c;
2480
72d2299c 2481 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2482 while ((c = getchar ()) == ' ' || c == '\t');
2483
2484 if (c == EOF)
2485 return 0;
2486@end group
2487
2488@group
2489 /* Char starts a number => parse the number. */
2490 if (c == '.' || isdigit (c))
2491 @{
2492 ungetc (c, stdin);
2493 scanf ("%lf", &yylval.val);
2494 return NUM;
2495 @}
2496@end group
2497
2498@group
2499 /* Char starts an identifier => read the name. */
2500 if (isalpha (c))
2501 @{
2502 symrec *s;
2503 static char *symbuf = 0;
2504 static int length = 0;
2505 int i;
2506@end group
2507
2508@group
2509 /* Initially make the buffer long enough
2510 for a 40-character symbol name. */
2511 if (length == 0)
2512 length = 40, symbuf = (char *)malloc (length + 1);
2513
2514 i = 0;
2515 do
2516@end group
2517@group
2518 @{
2519 /* If buffer is full, make it bigger. */
2520 if (i == length)
2521 @{
2522 length *= 2;
18b519c0 2523 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2524 @}
2525 /* Add this character to the buffer. */
2526 symbuf[i++] = c;
2527 /* Get another character. */
2528 c = getchar ();
2529 @}
2530@end group
2531@group
72d2299c 2532 while (isalnum (c));
bfa74976
RS
2533
2534 ungetc (c, stdin);
2535 symbuf[i] = '\0';
2536@end group
2537
2538@group
2539 s = getsym (symbuf);
2540 if (s == 0)
2541 s = putsym (symbuf, VAR);
2542 yylval.tptr = s;
2543 return s->type;
2544 @}
2545
2546 /* Any other character is a token by itself. */
2547 return c;
2548@}
2549@end group
2550@end smallexample
2551
72d2299c 2552This program is both powerful and flexible. You may easily add new
704a47c4
AD
2553functions, and it is a simple job to modify this code to install
2554predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2555
342b8b6e 2556@node Exercises
bfa74976
RS
2557@section Exercises
2558@cindex exercises
2559
2560@enumerate
2561@item
2562Add some new functions from @file{math.h} to the initialization list.
2563
2564@item
2565Add another array that contains constants and their values. Then
2566modify @code{init_table} to add these constants to the symbol table.
2567It will be easiest to give the constants type @code{VAR}.
2568
2569@item
2570Make the program report an error if the user refers to an
2571uninitialized variable in any way except to store a value in it.
2572@end enumerate
2573
342b8b6e 2574@node Grammar File
bfa74976
RS
2575@chapter Bison Grammar Files
2576
2577Bison takes as input a context-free grammar specification and produces a
2578C-language function that recognizes correct instances of the grammar.
2579
2580The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2581@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2582
2583@menu
2584* Grammar Outline:: Overall layout of the grammar file.
2585* Symbols:: Terminal and nonterminal symbols.
2586* Rules:: How to write grammar rules.
2587* Recursion:: Writing recursive rules.
2588* Semantics:: Semantic values and actions.
847bf1f5 2589* Locations:: Locations and actions.
bfa74976
RS
2590* Declarations:: All kinds of Bison declarations are described here.
2591* Multiple Parsers:: Putting more than one Bison parser in one program.
2592@end menu
2593
342b8b6e 2594@node Grammar Outline
bfa74976
RS
2595@section Outline of a Bison Grammar
2596
2597A Bison grammar file has four main sections, shown here with the
2598appropriate delimiters:
2599
2600@example
2601%@{
38a92d50 2602 @var{Prologue}
bfa74976
RS
2603%@}
2604
2605@var{Bison declarations}
2606
2607%%
2608@var{Grammar rules}
2609%%
2610
75f5aaea 2611@var{Epilogue}
bfa74976
RS
2612@end example
2613
2614Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2615As a @acronym{GNU} extension, @samp{//} introduces a comment that
2616continues until end of line.
bfa74976
RS
2617
2618@menu
75f5aaea 2619* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2620* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
bfa74976
RS
2621* Bison Declarations:: Syntax and usage of the Bison declarations section.
2622* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2623* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2624@end menu
2625
38a92d50 2626@node Prologue
75f5aaea
MA
2627@subsection The prologue
2628@cindex declarations section
2629@cindex Prologue
2630@cindex declarations
bfa74976 2631
f8e1c9e5
AD
2632The @var{Prologue} section contains macro definitions and declarations
2633of functions and variables that are used in the actions in the grammar
2634rules. These are copied to the beginning of the parser file so that
2635they precede the definition of @code{yyparse}. You can use
2636@samp{#include} to get the declarations from a header file. If you
2637don't need any C declarations, you may omit the @samp{%@{} and
2638@samp{%@}} delimiters that bracket this section.
bfa74976 2639
9c437126 2640The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2641of @samp{%@}} that is outside a comment, a string literal, or a
2642character constant.
2643
c732d2c6
AD
2644You may have more than one @var{Prologue} section, intermixed with the
2645@var{Bison declarations}. This allows you to have C and Bison
2646declarations that refer to each other. For example, the @code{%union}
2647declaration may use types defined in a header file, and you may wish to
2648prototype functions that take arguments of type @code{YYSTYPE}. This
2649can be done with two @var{Prologue} blocks, one before and one after the
2650@code{%union} declaration.
2651
2652@smallexample
2653%@{
aef3da86 2654 #define _GNU_SOURCE
38a92d50
PE
2655 #include <stdio.h>
2656 #include "ptypes.h"
c732d2c6
AD
2657%@}
2658
2659%union @{
779e7ceb 2660 long int n;
c732d2c6
AD
2661 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2662@}
2663
2664%@{
38a92d50
PE
2665 static void print_token_value (FILE *, int, YYSTYPE);
2666 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2667%@}
2668
2669@dots{}
2670@end smallexample
2671
aef3da86
PE
2672When in doubt, it is usually safer to put prologue code before all
2673Bison declarations, rather than after. For example, any definitions
2674of feature test macros like @code{_GNU_SOURCE} or
2675@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2676feature test macros can affect the behavior of Bison-generated
2677@code{#include} directives.
2678
2cbe6b7f
JD
2679@node Prologue Alternatives
2680@subsection Prologue Alternatives
2681@cindex Prologue Alternatives
2682
136a0f76 2683@findex %code
2cbe6b7f
JD
2684@findex %requires
2685@findex %provides
2686@findex %code-top
85894313
JD
2687(The prologue alternatives described here are experimental.
2688More user feedback will help to determine whether they should become permanent
2689features.)
2690
2cbe6b7f
JD
2691The functionality of @var{Prologue} sections can often be subtle and
2692inflexible.
2693As an alternative, Bison provides a set of more explicit directives:
a501eca9
JD
2694@code{%code}, @code{%requires}, @code{%provides}, and @code{%code-top}.
2695@xref{Table of Symbols,,Bison Symbols}.
2cbe6b7f
JD
2696
2697Look again at the example of the previous section:
2698
2699@smallexample
2700%@{
2701 #define _GNU_SOURCE
2702 #include <stdio.h>
2703 #include "ptypes.h"
2704%@}
2705
2706%union @{
2707 long int n;
2708 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2709@}
2710
2711%@{
2712 static void print_token_value (FILE *, int, YYSTYPE);
2713 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2714%@}
2715
2716@dots{}
2717@end smallexample
2718
2719@noindent
2720Notice that there are two @var{Prologue} sections here, but there's a subtle
2721distinction between their functionality.
2722For example, if you decide to override Bison's default definition for
2723@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2724definition?
2725You should write it in the first since Bison will insert that code into the
2726parser code file @emph{before} the default @code{YYLTYPE} definition.
2727In which @var{Prologue} section should you prototype an internal function,
2728@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2729arguments?
2730You should prototype it in the second since Bison will insert that code
2731@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2732
2733This distinction in functionality between the two @var{Prologue} sections is
2734established by the appearance of the @code{%union} between them.
a501eca9 2735This behavior raises a few questions.
2cbe6b7f
JD
2736First, why should the position of a @code{%union} affect definitions related to
2737@code{YYLTYPE} and @code{yytokentype}?
2738Second, what if there is no @code{%union}?
2739In that case, the second kind of @var{Prologue} section is not available.
2740This behavior is not intuitive.
2741
2742To avoid this subtle @code{%union} dependency, rewrite the example using
2743@code{%code-top} and @code{%code}.
2744Let's go ahead and add the new @code{YYLTYPE} definition and the
2745@code{trace_token} prototype at the same time:
2746
2747@smallexample
2748%code-top @{
2749 #define _GNU_SOURCE
2750 #include <stdio.h>
2751 /* The following code really belongs in a %requires; see below. */
2752 #include "ptypes.h"
2753 #define YYLTYPE YYLTYPE
2754 typedef struct YYLTYPE
2755 @{
2756 int first_line;
2757 int first_column;
2758 int last_line;
2759 int last_column;
2760 char *filename;
2761 @} YYLTYPE;
2762@}
2763
2764%union @{
2765 long int n;
2766 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2767@}
2768
2769%code @{
2770 static void print_token_value (FILE *, int, YYSTYPE);
2771 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2772 static void trace_token (enum yytokentype token, YYLTYPE loc);
2773@}
2774
2775@dots{}
2776@end smallexample
2777
2778@noindent
2779In this way, @code{%code-top} and @code{%code} achieve the same functionality
2780as the two kinds of @var{Prologue} sections, but it's always explicit which
2781kind you intend.
2782Moreover, both kinds are always available even in the absence of @code{%union}.
2783
a501eca9 2784The @code{%code-top} block above logically contains two parts.
2cbe6b7f
JD
2785The first two lines need to appear in the parser code file.
2786The fourth line is required by @code{YYSTYPE} and thus also needs to appear in
2787the parser code file.
2788However, if you've instructed Bison to generate a parser header file
67a9768e 2789(@pxref{Table of Symbols, ,%defines}), you probably want the fourth line to
2cbe6b7f
JD
2790appear before the @code{YYSTYPE} definition in that header file as well.
2791Also, the @code{YYLTYPE} definition should appear in the parser header file to
2792override the default @code{YYLTYPE} definition there.
2793
a501eca9 2794In other words, in the @code{%code-top} block above, all but the first two
2cbe6b7f
JD
2795lines are dependency code for externally exposed definitions (@code{YYSTYPE}
2796and @code{YYLTYPE}) required by Bison.
2797Thus, they belong in one or more @code{%requires}:
9bc0dd67
JD
2798
2799@smallexample
2cbe6b7f
JD
2800%code-top @{
2801 #define _GNU_SOURCE
2802 #include <stdio.h>
2803@}
2804
136a0f76 2805%requires @{
9bc0dd67
JD
2806 #include "ptypes.h"
2807@}
2808%union @{
2809 long int n;
2810 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2811@}
2812
2cbe6b7f
JD
2813%requires @{
2814 #define YYLTYPE YYLTYPE
2815 typedef struct YYLTYPE
2816 @{
2817 int first_line;
2818 int first_column;
2819 int last_line;
2820 int last_column;
2821 char *filename;
2822 @} YYLTYPE;
2823@}
2824
136a0f76 2825%code @{
2cbe6b7f
JD
2826 static void print_token_value (FILE *, int, YYSTYPE);
2827 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2828 static void trace_token (enum yytokentype token, YYLTYPE loc);
2829@}
2830
2831@dots{}
2832@end smallexample
2833
2834@noindent
2835Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2836definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
2837definitions in both the parser code file and the parser header file.
2838(By the same reasoning, @code{%requires} would also be the appropriate place to
2839write your own definition for @code{YYSTYPE}.)
2840
a501eca9
JD
2841When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
2842should prefer @code{%requires} over @code{%code-top} regardless of whether you
2843instruct Bison to generate a parser header file.
2844When you are writing code that you need Bison to insert only into the parser
2845code file and that has no special need to appear at the top of the code file,
2846you should prefer @code{%code} over @code{%code-top}.
2847These practices will make the purpose of each block of your code explicit to
2848Bison and to other developers reading your grammar file.
2849Following these practices, we expect @code{%code} and @code{%requires} to be
2850the most important of the four @var{Prologue} alternative directives discussed
2851in this section.
2852
2cbe6b7f
JD
2853At some point while developing your parser, you might decide to provide
2854@code{trace_token} to modules that are external to your parser.
2855Thus, you might wish for Bison to insert the prototype into both the parser
2856header file and the parser code file.
2857Since this function is not a dependency of any Bison-required definition (such
2858as @code{YYSTYPE}), it doesn't make sense to move its prototype to a
2859@code{%requires}.
2860More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
2861@code{%requires} is not sufficient.
2862Instead, move its prototype from the @code{%code} to a @code{%provides}:
2863
2864@smallexample
2865%code-top @{
2866 #define _GNU_SOURCE
136a0f76 2867 #include <stdio.h>
2cbe6b7f 2868@}
136a0f76 2869
2cbe6b7f
JD
2870%requires @{
2871 #include "ptypes.h"
2872@}
2873%union @{
2874 long int n;
2875 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2876@}
2877
2878%requires @{
2879 #define YYLTYPE YYLTYPE
2880 typedef struct YYLTYPE
2881 @{
2882 int first_line;
2883 int first_column;
2884 int last_line;
2885 int last_column;
2886 char *filename;
2887 @} YYLTYPE;
2888@}
2889
2890%provides @{
2891 void trace_token (enum yytokentype token, YYLTYPE loc);
2892@}
2893
2894%code @{
9bc0dd67
JD
2895 static void print_token_value (FILE *, int, YYSTYPE);
2896 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2897@}
9bc0dd67
JD
2898
2899@dots{}
2900@end smallexample
2901
2cbe6b7f
JD
2902@noindent
2903Bison will insert the @code{trace_token} prototype into both the parser header
2904file and the parser code file after the definitions for @code{yytokentype},
2905@code{YYLTYPE}, and @code{YYSTYPE}.
2906
2907The above examples are careful to write directives in an order that reflects
2908the layout of the generated parser code and header files:
2909@code{%code-top}, @code{%requires}, @code{%provides}, and then @code{%code}.
a501eca9 2910While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2911this order, Bison does not require it.
2912Instead, Bison lets you choose an organization that makes sense to you.
2913
a501eca9 2914You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2915In that case, Bison concatenates the contained code in declaration order.
2916This is the only way in which the position of one of these directives within
2917the grammar file affects its functionality.
2918
2919The result of the previous two properties is greater flexibility in how you may
2920organize your grammar file.
2921For example, you may organize semantic-type-related directives by semantic
2922type:
2923
2924@smallexample
2925%requires @{ #include "type1.h" @}
2926%union @{ type1 field1; @}
2927%destructor @{ type1_free ($$); @} <field1>
2928%printer @{ type1_print ($$); @} <field1>
2929
2930%requires @{ #include "type2.h" @}
2931%union @{ type2 field2; @}
2932%destructor @{ type2_free ($$); @} <field2>
2933%printer @{ type2_print ($$); @} <field2>
2934@end smallexample
2935
2936@noindent
2937You could even place each of the above directive groups in the rules section of
2938the grammar file next to the set of rules that uses the associated semantic
2939type.
2940And you don't have to worry that some directive (like a @code{%union}) in the
2941definitions section is going to adversely affect their functionality in some
2942counter-intuitive manner just because it comes first.
2943Such an organization is not possible using @var{Prologue} sections.
2944
a501eca9
JD
2945This section has been concerned with explaining the advantages of the four
2946@var{Prologue} alternative directives over the original Yacc @var{Prologue}.
2947However, in most cases when using these directives, you shouldn't need to
2948think about all the low-level ordering issues discussed here.
2949Instead, you should simply use these directives to label each block of your
2950code according to its purpose and let Bison handle the ordering.
2951@code{%code} is the most generic label.
2952Move code to @code{%requires}, @code{%provides}, or @code{%code-top} as needed.
2953
342b8b6e 2954@node Bison Declarations
bfa74976
RS
2955@subsection The Bison Declarations Section
2956@cindex Bison declarations (introduction)
2957@cindex declarations, Bison (introduction)
2958
2959The @var{Bison declarations} section contains declarations that define
2960terminal and nonterminal symbols, specify precedence, and so on.
2961In some simple grammars you may not need any declarations.
2962@xref{Declarations, ,Bison Declarations}.
2963
342b8b6e 2964@node Grammar Rules
bfa74976
RS
2965@subsection The Grammar Rules Section
2966@cindex grammar rules section
2967@cindex rules section for grammar
2968
2969The @dfn{grammar rules} section contains one or more Bison grammar
2970rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2971
2972There must always be at least one grammar rule, and the first
2973@samp{%%} (which precedes the grammar rules) may never be omitted even
2974if it is the first thing in the file.
2975
38a92d50 2976@node Epilogue
75f5aaea 2977@subsection The epilogue
bfa74976 2978@cindex additional C code section
75f5aaea 2979@cindex epilogue
bfa74976
RS
2980@cindex C code, section for additional
2981
08e49d20
PE
2982The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2983the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2984place to put anything that you want to have in the parser file but which need
2985not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2986definitions of @code{yylex} and @code{yyerror} often go here. Because
2987C requires functions to be declared before being used, you often need
2988to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2989even if you define them in the Epilogue.
75f5aaea 2990@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2991
2992If the last section is empty, you may omit the @samp{%%} that separates it
2993from the grammar rules.
2994
f8e1c9e5
AD
2995The Bison parser itself contains many macros and identifiers whose names
2996start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2997any such names (except those documented in this manual) in the epilogue
2998of the grammar file.
bfa74976 2999
342b8b6e 3000@node Symbols
bfa74976
RS
3001@section Symbols, Terminal and Nonterminal
3002@cindex nonterminal symbol
3003@cindex terminal symbol
3004@cindex token type
3005@cindex symbol
3006
3007@dfn{Symbols} in Bison grammars represent the grammatical classifications
3008of the language.
3009
3010A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3011class of syntactically equivalent tokens. You use the symbol in grammar
3012rules to mean that a token in that class is allowed. The symbol is
3013represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3014function returns a token type code to indicate what kind of token has
3015been read. You don't need to know what the code value is; you can use
3016the symbol to stand for it.
bfa74976 3017
f8e1c9e5
AD
3018A @dfn{nonterminal symbol} stands for a class of syntactically
3019equivalent groupings. The symbol name is used in writing grammar rules.
3020By convention, it should be all lower case.
bfa74976
RS
3021
3022Symbol names can contain letters, digits (not at the beginning),
3023underscores and periods. Periods make sense only in nonterminals.
3024
931c7513 3025There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3026
3027@itemize @bullet
3028@item
3029A @dfn{named token type} is written with an identifier, like an
c827f760 3030identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3031such name must be defined with a Bison declaration such as
3032@code{%token}. @xref{Token Decl, ,Token Type Names}.
3033
3034@item
3035@cindex character token
3036@cindex literal token
3037@cindex single-character literal
931c7513
RS
3038A @dfn{character token type} (or @dfn{literal character token}) is
3039written in the grammar using the same syntax used in C for character
3040constants; for example, @code{'+'} is a character token type. A
3041character token type doesn't need to be declared unless you need to
3042specify its semantic value data type (@pxref{Value Type, ,Data Types of
3043Semantic Values}), associativity, or precedence (@pxref{Precedence,
3044,Operator Precedence}).
bfa74976
RS
3045
3046By convention, a character token type is used only to represent a
3047token that consists of that particular character. Thus, the token
3048type @code{'+'} is used to represent the character @samp{+} as a
3049token. Nothing enforces this convention, but if you depart from it,
3050your program will confuse other readers.
3051
3052All the usual escape sequences used in character literals in C can be
3053used in Bison as well, but you must not use the null character as a
72d2299c
PE
3054character literal because its numeric code, zero, signifies
3055end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3056for @code{yylex}}). Also, unlike standard C, trigraphs have no
3057special meaning in Bison character literals, nor is backslash-newline
3058allowed.
931c7513
RS
3059
3060@item
3061@cindex string token
3062@cindex literal string token
9ecbd125 3063@cindex multicharacter literal
931c7513
RS
3064A @dfn{literal string token} is written like a C string constant; for
3065example, @code{"<="} is a literal string token. A literal string token
3066doesn't need to be declared unless you need to specify its semantic
14ded682 3067value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3068(@pxref{Precedence}).
3069
3070You can associate the literal string token with a symbolic name as an
3071alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3072Declarations}). If you don't do that, the lexical analyzer has to
3073retrieve the token number for the literal string token from the
3074@code{yytname} table (@pxref{Calling Convention}).
3075
c827f760 3076@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3077
3078By convention, a literal string token is used only to represent a token
3079that consists of that particular string. Thus, you should use the token
3080type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3081does not enforce this convention, but if you depart from it, people who
931c7513
RS
3082read your program will be confused.
3083
3084All the escape sequences used in string literals in C can be used in
92ac3705
PE
3085Bison as well, except that you must not use a null character within a
3086string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3087meaning in Bison string literals, nor is backslash-newline allowed. A
3088literal string token must contain two or more characters; for a token
3089containing just one character, use a character token (see above).
bfa74976
RS
3090@end itemize
3091
3092How you choose to write a terminal symbol has no effect on its
3093grammatical meaning. That depends only on where it appears in rules and
3094on when the parser function returns that symbol.
3095
72d2299c
PE
3096The value returned by @code{yylex} is always one of the terminal
3097symbols, except that a zero or negative value signifies end-of-input.
3098Whichever way you write the token type in the grammar rules, you write
3099it the same way in the definition of @code{yylex}. The numeric code
3100for a character token type is simply the positive numeric code of the
3101character, so @code{yylex} can use the identical value to generate the
3102requisite code, though you may need to convert it to @code{unsigned
3103char} to avoid sign-extension on hosts where @code{char} is signed.
3104Each named token type becomes a C macro in
bfa74976 3105the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3106(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3107@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3108
3109If @code{yylex} is defined in a separate file, you need to arrange for the
3110token-type macro definitions to be available there. Use the @samp{-d}
3111option when you run Bison, so that it will write these macro definitions
3112into a separate header file @file{@var{name}.tab.h} which you can include
3113in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3114
72d2299c 3115If you want to write a grammar that is portable to any Standard C
9d9b8b70 3116host, you must use only nonnull character tokens taken from the basic
c827f760 3117execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3118digits, the 52 lower- and upper-case English letters, and the
3119characters in the following C-language string:
3120
3121@example
3122"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3123@end example
3124
f8e1c9e5
AD
3125The @code{yylex} function and Bison must use a consistent character set
3126and encoding for character tokens. For example, if you run Bison in an
3127@acronym{ASCII} environment, but then compile and run the resulting
3128program in an environment that uses an incompatible character set like
3129@acronym{EBCDIC}, the resulting program may not work because the tables
3130generated by Bison will assume @acronym{ASCII} numeric values for
3131character tokens. It is standard practice for software distributions to
3132contain C source files that were generated by Bison in an
3133@acronym{ASCII} environment, so installers on platforms that are
3134incompatible with @acronym{ASCII} must rebuild those files before
3135compiling them.
e966383b 3136
bfa74976
RS
3137The symbol @code{error} is a terminal symbol reserved for error recovery
3138(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3139In particular, @code{yylex} should never return this value. The default
3140value of the error token is 256, unless you explicitly assigned 256 to
3141one of your tokens with a @code{%token} declaration.
bfa74976 3142
342b8b6e 3143@node Rules
bfa74976
RS
3144@section Syntax of Grammar Rules
3145@cindex rule syntax
3146@cindex grammar rule syntax
3147@cindex syntax of grammar rules
3148
3149A Bison grammar rule has the following general form:
3150
3151@example
e425e872 3152@group
bfa74976
RS
3153@var{result}: @var{components}@dots{}
3154 ;
e425e872 3155@end group
bfa74976
RS
3156@end example
3157
3158@noindent
9ecbd125 3159where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3160and @var{components} are various terminal and nonterminal symbols that
13863333 3161are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3162
3163For example,
3164
3165@example
3166@group
3167exp: exp '+' exp
3168 ;
3169@end group
3170@end example
3171
3172@noindent
3173says that two groupings of type @code{exp}, with a @samp{+} token in between,
3174can be combined into a larger grouping of type @code{exp}.
3175
72d2299c
PE
3176White space in rules is significant only to separate symbols. You can add
3177extra white space as you wish.
bfa74976
RS
3178
3179Scattered among the components can be @var{actions} that determine
3180the semantics of the rule. An action looks like this:
3181
3182@example
3183@{@var{C statements}@}
3184@end example
3185
3186@noindent
287c78f6
PE
3187@cindex braced code
3188This is an example of @dfn{braced code}, that is, C code surrounded by
3189braces, much like a compound statement in C@. Braced code can contain
3190any sequence of C tokens, so long as its braces are balanced. Bison
3191does not check the braced code for correctness directly; it merely
3192copies the code to the output file, where the C compiler can check it.
3193
3194Within braced code, the balanced-brace count is not affected by braces
3195within comments, string literals, or character constants, but it is
3196affected by the C digraphs @samp{<%} and @samp{%>} that represent
3197braces. At the top level braced code must be terminated by @samp{@}}
3198and not by a digraph. Bison does not look for trigraphs, so if braced
3199code uses trigraphs you should ensure that they do not affect the
3200nesting of braces or the boundaries of comments, string literals, or
3201character constants.
3202
bfa74976
RS
3203Usually there is only one action and it follows the components.
3204@xref{Actions}.
3205
3206@findex |
3207Multiple rules for the same @var{result} can be written separately or can
3208be joined with the vertical-bar character @samp{|} as follows:
3209
bfa74976
RS
3210@example
3211@group
3212@var{result}: @var{rule1-components}@dots{}
3213 | @var{rule2-components}@dots{}
3214 @dots{}
3215 ;
3216@end group
3217@end example
bfa74976
RS
3218
3219@noindent
3220They are still considered distinct rules even when joined in this way.
3221
3222If @var{components} in a rule is empty, it means that @var{result} can
3223match the empty string. For example, here is how to define a
3224comma-separated sequence of zero or more @code{exp} groupings:
3225
3226@example
3227@group
3228expseq: /* empty */
3229 | expseq1
3230 ;
3231@end group
3232
3233@group
3234expseq1: exp
3235 | expseq1 ',' exp
3236 ;
3237@end group
3238@end example
3239
3240@noindent
3241It is customary to write a comment @samp{/* empty */} in each rule
3242with no components.
3243
342b8b6e 3244@node Recursion
bfa74976
RS
3245@section Recursive Rules
3246@cindex recursive rule
3247
f8e1c9e5
AD
3248A rule is called @dfn{recursive} when its @var{result} nonterminal
3249appears also on its right hand side. Nearly all Bison grammars need to
3250use recursion, because that is the only way to define a sequence of any
3251number of a particular thing. Consider this recursive definition of a
9ecbd125 3252comma-separated sequence of one or more expressions:
bfa74976
RS
3253
3254@example
3255@group
3256expseq1: exp
3257 | expseq1 ',' exp
3258 ;
3259@end group
3260@end example
3261
3262@cindex left recursion
3263@cindex right recursion
3264@noindent
3265Since the recursive use of @code{expseq1} is the leftmost symbol in the
3266right hand side, we call this @dfn{left recursion}. By contrast, here
3267the same construct is defined using @dfn{right recursion}:
3268
3269@example
3270@group
3271expseq1: exp
3272 | exp ',' expseq1
3273 ;
3274@end group
3275@end example
3276
3277@noindent
ec3bc396
AD
3278Any kind of sequence can be defined using either left recursion or right
3279recursion, but you should always use left recursion, because it can
3280parse a sequence of any number of elements with bounded stack space.
3281Right recursion uses up space on the Bison stack in proportion to the
3282number of elements in the sequence, because all the elements must be
3283shifted onto the stack before the rule can be applied even once.
3284@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3285of this.
bfa74976
RS
3286
3287@cindex mutual recursion
3288@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3289rule does not appear directly on its right hand side, but does appear
3290in rules for other nonterminals which do appear on its right hand
13863333 3291side.
bfa74976
RS
3292
3293For example:
3294
3295@example
3296@group
3297expr: primary
3298 | primary '+' primary
3299 ;
3300@end group
3301
3302@group
3303primary: constant
3304 | '(' expr ')'
3305 ;
3306@end group
3307@end example
3308
3309@noindent
3310defines two mutually-recursive nonterminals, since each refers to the
3311other.
3312
342b8b6e 3313@node Semantics
bfa74976
RS
3314@section Defining Language Semantics
3315@cindex defining language semantics
13863333 3316@cindex language semantics, defining
bfa74976
RS
3317
3318The grammar rules for a language determine only the syntax. The semantics
3319are determined by the semantic values associated with various tokens and
3320groupings, and by the actions taken when various groupings are recognized.
3321
3322For example, the calculator calculates properly because the value
3323associated with each expression is the proper number; it adds properly
3324because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3325the numbers associated with @var{x} and @var{y}.
3326
3327@menu
3328* Value Type:: Specifying one data type for all semantic values.
3329* Multiple Types:: Specifying several alternative data types.
3330* Actions:: An action is the semantic definition of a grammar rule.
3331* Action Types:: Specifying data types for actions to operate on.
3332* Mid-Rule Actions:: Most actions go at the end of a rule.
3333 This says when, why and how to use the exceptional
3334 action in the middle of a rule.
3335@end menu
3336
342b8b6e 3337@node Value Type
bfa74976
RS
3338@subsection Data Types of Semantic Values
3339@cindex semantic value type
3340@cindex value type, semantic
3341@cindex data types of semantic values
3342@cindex default data type
3343
3344In a simple program it may be sufficient to use the same data type for
3345the semantic values of all language constructs. This was true in the
c827f760 3346@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3347Notation Calculator}).
bfa74976 3348
ddc8ede1
PE
3349Bison normally uses the type @code{int} for semantic values if your
3350program uses the same data type for all language constructs. To
bfa74976
RS
3351specify some other type, define @code{YYSTYPE} as a macro, like this:
3352
3353@example
3354#define YYSTYPE double
3355@end example
3356
3357@noindent
50cce58e
PE
3358@code{YYSTYPE}'s replacement list should be a type name
3359that does not contain parentheses or square brackets.
342b8b6e 3360This macro definition must go in the prologue of the grammar file
75f5aaea 3361(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3362
342b8b6e 3363@node Multiple Types
bfa74976
RS
3364@subsection More Than One Value Type
3365
3366In most programs, you will need different data types for different kinds
3367of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3368@code{int} or @code{long int}, while a string constant needs type
3369@code{char *}, and an identifier might need a pointer to an entry in the
3370symbol table.
bfa74976
RS
3371
3372To use more than one data type for semantic values in one parser, Bison
3373requires you to do two things:
3374
3375@itemize @bullet
3376@item
ddc8ede1 3377Specify the entire collection of possible data types, either by using the
704a47c4 3378@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3379Value Types}), or by using a @code{typedef} or a @code{#define} to
3380define @code{YYSTYPE} to be a union type whose member names are
3381the type tags.
bfa74976
RS
3382
3383@item
14ded682
AD
3384Choose one of those types for each symbol (terminal or nonterminal) for
3385which semantic values are used. This is done for tokens with the
3386@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3387and for groupings with the @code{%type} Bison declaration (@pxref{Type
3388Decl, ,Nonterminal Symbols}).
bfa74976
RS
3389@end itemize
3390
342b8b6e 3391@node Actions
bfa74976
RS
3392@subsection Actions
3393@cindex action
3394@vindex $$
3395@vindex $@var{n}
3396
3397An action accompanies a syntactic rule and contains C code to be executed
3398each time an instance of that rule is recognized. The task of most actions
3399is to compute a semantic value for the grouping built by the rule from the
3400semantic values associated with tokens or smaller groupings.
3401
287c78f6
PE
3402An action consists of braced code containing C statements, and can be
3403placed at any position in the rule;
704a47c4
AD
3404it is executed at that position. Most rules have just one action at the
3405end of the rule, following all the components. Actions in the middle of
3406a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3407Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3408
3409The C code in an action can refer to the semantic values of the components
3410matched by the rule with the construct @code{$@var{n}}, which stands for
3411the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3412being constructed is @code{$$}. Bison translates both of these
3413constructs into expressions of the appropriate type when it copies the
3414actions into the parser file. @code{$$} is translated to a modifiable
3415lvalue, so it can be assigned to.
bfa74976
RS
3416
3417Here is a typical example:
3418
3419@example
3420@group
3421exp: @dots{}
3422 | exp '+' exp
3423 @{ $$ = $1 + $3; @}
3424@end group
3425@end example
3426
3427@noindent
3428This rule constructs an @code{exp} from two smaller @code{exp} groupings
3429connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3430refer to the semantic values of the two component @code{exp} groupings,
3431which are the first and third symbols on the right hand side of the rule.
3432The sum is stored into @code{$$} so that it becomes the semantic value of
3433the addition-expression just recognized by the rule. If there were a
3434useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3435referred to as @code{$2}.
bfa74976 3436
3ded9a63
AD
3437Note that the vertical-bar character @samp{|} is really a rule
3438separator, and actions are attached to a single rule. This is a
3439difference with tools like Flex, for which @samp{|} stands for either
3440``or'', or ``the same action as that of the next rule''. In the
3441following example, the action is triggered only when @samp{b} is found:
3442
3443@example
3444@group
3445a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3446@end group
3447@end example
3448
bfa74976
RS
3449@cindex default action
3450If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3451@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3452becomes the value of the whole rule. Of course, the default action is
3453valid only if the two data types match. There is no meaningful default
3454action for an empty rule; every empty rule must have an explicit action
3455unless the rule's value does not matter.
bfa74976
RS
3456
3457@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3458to tokens and groupings on the stack @emph{before} those that match the
3459current rule. This is a very risky practice, and to use it reliably
3460you must be certain of the context in which the rule is applied. Here
3461is a case in which you can use this reliably:
3462
3463@example
3464@group
3465foo: expr bar '+' expr @{ @dots{} @}
3466 | expr bar '-' expr @{ @dots{} @}
3467 ;
3468@end group
3469
3470@group
3471bar: /* empty */
3472 @{ previous_expr = $0; @}
3473 ;
3474@end group
3475@end example
3476
3477As long as @code{bar} is used only in the fashion shown here, @code{$0}
3478always refers to the @code{expr} which precedes @code{bar} in the
3479definition of @code{foo}.
3480
32c29292 3481@vindex yylval
742e4900 3482It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3483any, from a semantic action.
3484This semantic value is stored in @code{yylval}.
3485@xref{Action Features, ,Special Features for Use in Actions}.
3486
342b8b6e 3487@node Action Types
bfa74976
RS
3488@subsection Data Types of Values in Actions
3489@cindex action data types
3490@cindex data types in actions
3491
3492If you have chosen a single data type for semantic values, the @code{$$}
3493and @code{$@var{n}} constructs always have that data type.
3494
3495If you have used @code{%union} to specify a variety of data types, then you
3496must declare a choice among these types for each terminal or nonterminal
3497symbol that can have a semantic value. Then each time you use @code{$$} or
3498@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3499in the rule. In this example,
bfa74976
RS
3500
3501@example
3502@group
3503exp: @dots{}
3504 | exp '+' exp
3505 @{ $$ = $1 + $3; @}
3506@end group
3507@end example
3508
3509@noindent
3510@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3511have the data type declared for the nonterminal symbol @code{exp}. If
3512@code{$2} were used, it would have the data type declared for the
e0c471a9 3513terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3514
3515Alternatively, you can specify the data type when you refer to the value,
3516by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3517reference. For example, if you have defined types as shown here:
3518
3519@example
3520@group
3521%union @{
3522 int itype;
3523 double dtype;
3524@}
3525@end group
3526@end example
3527
3528@noindent
3529then you can write @code{$<itype>1} to refer to the first subunit of the
3530rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3531
342b8b6e 3532@node Mid-Rule Actions
bfa74976
RS
3533@subsection Actions in Mid-Rule
3534@cindex actions in mid-rule
3535@cindex mid-rule actions
3536
3537Occasionally it is useful to put an action in the middle of a rule.
3538These actions are written just like usual end-of-rule actions, but they
3539are executed before the parser even recognizes the following components.
3540
3541A mid-rule action may refer to the components preceding it using
3542@code{$@var{n}}, but it may not refer to subsequent components because
3543it is run before they are parsed.
3544
3545The mid-rule action itself counts as one of the components of the rule.
3546This makes a difference when there is another action later in the same rule
3547(and usually there is another at the end): you have to count the actions
3548along with the symbols when working out which number @var{n} to use in
3549@code{$@var{n}}.
3550
3551The mid-rule action can also have a semantic value. The action can set
3552its value with an assignment to @code{$$}, and actions later in the rule
3553can refer to the value using @code{$@var{n}}. Since there is no symbol
3554to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3555in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3556specify a data type each time you refer to this value.
bfa74976
RS
3557
3558There is no way to set the value of the entire rule with a mid-rule
3559action, because assignments to @code{$$} do not have that effect. The
3560only way to set the value for the entire rule is with an ordinary action
3561at the end of the rule.
3562
3563Here is an example from a hypothetical compiler, handling a @code{let}
3564statement that looks like @samp{let (@var{variable}) @var{statement}} and
3565serves to create a variable named @var{variable} temporarily for the
3566duration of @var{statement}. To parse this construct, we must put
3567@var{variable} into the symbol table while @var{statement} is parsed, then
3568remove it afterward. Here is how it is done:
3569
3570@example
3571@group
3572stmt: LET '(' var ')'
3573 @{ $<context>$ = push_context ();
3574 declare_variable ($3); @}
3575 stmt @{ $$ = $6;
3576 pop_context ($<context>5); @}
3577@end group
3578@end example
3579
3580@noindent
3581As soon as @samp{let (@var{variable})} has been recognized, the first
3582action is run. It saves a copy of the current semantic context (the
3583list of accessible variables) as its semantic value, using alternative
3584@code{context} in the data-type union. Then it calls
3585@code{declare_variable} to add the new variable to that list. Once the
3586first action is finished, the embedded statement @code{stmt} can be
3587parsed. Note that the mid-rule action is component number 5, so the
3588@samp{stmt} is component number 6.
3589
3590After the embedded statement is parsed, its semantic value becomes the
3591value of the entire @code{let}-statement. Then the semantic value from the
3592earlier action is used to restore the prior list of variables. This
3593removes the temporary @code{let}-variable from the list so that it won't
3594appear to exist while the rest of the program is parsed.
3595
841a7737
JD
3596@findex %destructor
3597@cindex discarded symbols, mid-rule actions
3598@cindex error recovery, mid-rule actions
3599In the above example, if the parser initiates error recovery (@pxref{Error
3600Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3601it might discard the previous semantic context @code{$<context>5} without
3602restoring it.
3603Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3604Discarded Symbols}).
ec5479ce
JD
3605However, Bison currently provides no means to declare a destructor specific to
3606a particular mid-rule action's semantic value.
841a7737
JD
3607
3608One solution is to bury the mid-rule action inside a nonterminal symbol and to
3609declare a destructor for that symbol:
3610
3611@example
3612@group
3613%type <context> let
3614%destructor @{ pop_context ($$); @} let
3615
3616%%
3617
3618stmt: let stmt
3619 @{ $$ = $2;
3620 pop_context ($1); @}
3621 ;
3622
3623let: LET '(' var ')'
3624 @{ $$ = push_context ();
3625 declare_variable ($3); @}
3626 ;
3627
3628@end group
3629@end example
3630
3631@noindent
3632Note that the action is now at the end of its rule.
3633Any mid-rule action can be converted to an end-of-rule action in this way, and
3634this is what Bison actually does to implement mid-rule actions.
3635
bfa74976
RS
3636Taking action before a rule is completely recognized often leads to
3637conflicts since the parser must commit to a parse in order to execute the
3638action. For example, the following two rules, without mid-rule actions,
3639can coexist in a working parser because the parser can shift the open-brace
3640token and look at what follows before deciding whether there is a
3641declaration or not:
3642
3643@example
3644@group
3645compound: '@{' declarations statements '@}'
3646 | '@{' statements '@}'
3647 ;
3648@end group
3649@end example
3650
3651@noindent
3652But when we add a mid-rule action as follows, the rules become nonfunctional:
3653
3654@example
3655@group
3656compound: @{ prepare_for_local_variables (); @}
3657 '@{' declarations statements '@}'
3658@end group
3659@group
3660 | '@{' statements '@}'
3661 ;
3662@end group
3663@end example
3664
3665@noindent
3666Now the parser is forced to decide whether to run the mid-rule action
3667when it has read no farther than the open-brace. In other words, it
3668must commit to using one rule or the other, without sufficient
3669information to do it correctly. (The open-brace token is what is called
742e4900
JD
3670the @dfn{lookahead} token at this time, since the parser is still
3671deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3672
3673You might think that you could correct the problem by putting identical
3674actions into the two rules, like this:
3675
3676@example
3677@group
3678compound: @{ prepare_for_local_variables (); @}
3679 '@{' declarations statements '@}'
3680 | @{ prepare_for_local_variables (); @}
3681 '@{' statements '@}'
3682 ;
3683@end group
3684@end example
3685
3686@noindent
3687But this does not help, because Bison does not realize that the two actions
3688are identical. (Bison never tries to understand the C code in an action.)
3689
3690If the grammar is such that a declaration can be distinguished from a
3691statement by the first token (which is true in C), then one solution which
3692does work is to put the action after the open-brace, like this:
3693
3694@example
3695@group
3696compound: '@{' @{ prepare_for_local_variables (); @}
3697 declarations statements '@}'
3698 | '@{' statements '@}'
3699 ;
3700@end group
3701@end example
3702
3703@noindent
3704Now the first token of the following declaration or statement,
3705which would in any case tell Bison which rule to use, can still do so.
3706
3707Another solution is to bury the action inside a nonterminal symbol which
3708serves as a subroutine:
3709
3710@example
3711@group
3712subroutine: /* empty */
3713 @{ prepare_for_local_variables (); @}
3714 ;
3715
3716@end group
3717
3718@group
3719compound: subroutine
3720 '@{' declarations statements '@}'
3721 | subroutine
3722 '@{' statements '@}'
3723 ;
3724@end group
3725@end example
3726
3727@noindent
3728Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3729deciding which rule for @code{compound} it will eventually use.
bfa74976 3730
342b8b6e 3731@node Locations
847bf1f5
AD
3732@section Tracking Locations
3733@cindex location
95923bd6
AD
3734@cindex textual location
3735@cindex location, textual
847bf1f5
AD
3736
3737Though grammar rules and semantic actions are enough to write a fully
72d2299c 3738functional parser, it can be useful to process some additional information,
3e259915
MA
3739especially symbol locations.
3740
704a47c4
AD
3741The way locations are handled is defined by providing a data type, and
3742actions to take when rules are matched.
847bf1f5
AD
3743
3744@menu
3745* Location Type:: Specifying a data type for locations.
3746* Actions and Locations:: Using locations in actions.
3747* Location Default Action:: Defining a general way to compute locations.
3748@end menu
3749
342b8b6e 3750@node Location Type
847bf1f5
AD
3751@subsection Data Type of Locations
3752@cindex data type of locations
3753@cindex default location type
3754
3755Defining a data type for locations is much simpler than for semantic values,
3756since all tokens and groupings always use the same type.
3757
50cce58e
PE
3758You can specify the type of locations by defining a macro called
3759@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3760defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3761When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3762four members:
3763
3764@example
6273355b 3765typedef struct YYLTYPE
847bf1f5
AD
3766@{
3767 int first_line;
3768 int first_column;
3769 int last_line;
3770 int last_column;
6273355b 3771@} YYLTYPE;
847bf1f5
AD
3772@end example
3773
cd48d21d
AD
3774At the beginning of the parsing, Bison initializes all these fields to 1
3775for @code{yylloc}.
3776
342b8b6e 3777@node Actions and Locations
847bf1f5
AD
3778@subsection Actions and Locations
3779@cindex location actions
3780@cindex actions, location
3781@vindex @@$
3782@vindex @@@var{n}
3783
3784Actions are not only useful for defining language semantics, but also for
3785describing the behavior of the output parser with locations.
3786
3787The most obvious way for building locations of syntactic groupings is very
72d2299c 3788similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3789constructs can be used to access the locations of the elements being matched.
3790The location of the @var{n}th component of the right hand side is
3791@code{@@@var{n}}, while the location of the left hand side grouping is
3792@code{@@$}.
3793
3e259915 3794Here is a basic example using the default data type for locations:
847bf1f5
AD
3795
3796@example
3797@group
3798exp: @dots{}
3e259915 3799 | exp '/' exp
847bf1f5 3800 @{
3e259915
MA
3801 @@$.first_column = @@1.first_column;
3802 @@$.first_line = @@1.first_line;
847bf1f5
AD
3803 @@$.last_column = @@3.last_column;
3804 @@$.last_line = @@3.last_line;
3e259915
MA
3805 if ($3)
3806 $$ = $1 / $3;
3807 else
3808 @{
3809 $$ = 1;
4e03e201
AD
3810 fprintf (stderr,
3811 "Division by zero, l%d,c%d-l%d,c%d",
3812 @@3.first_line, @@3.first_column,
3813 @@3.last_line, @@3.last_column);
3e259915 3814 @}
847bf1f5
AD
3815 @}
3816@end group
3817@end example
3818
3e259915 3819As for semantic values, there is a default action for locations that is
72d2299c 3820run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3821beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3822last symbol.
3e259915 3823
72d2299c 3824With this default action, the location tracking can be fully automatic. The
3e259915
MA
3825example above simply rewrites this way:
3826
3827@example
3828@group
3829exp: @dots{}
3830 | exp '/' exp
3831 @{
3832 if ($3)
3833 $$ = $1 / $3;
3834 else
3835 @{
3836 $$ = 1;
4e03e201
AD
3837 fprintf (stderr,
3838 "Division by zero, l%d,c%d-l%d,c%d",
3839 @@3.first_line, @@3.first_column,
3840 @@3.last_line, @@3.last_column);
3e259915
MA
3841 @}
3842 @}
3843@end group
3844@end example
847bf1f5 3845
32c29292 3846@vindex yylloc
742e4900 3847It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3848from a semantic action.
3849This location is stored in @code{yylloc}.
3850@xref{Action Features, ,Special Features for Use in Actions}.
3851
342b8b6e 3852@node Location Default Action
847bf1f5
AD
3853@subsection Default Action for Locations
3854@vindex YYLLOC_DEFAULT
8710fc41 3855@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3856
72d2299c 3857Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3858locations are much more general than semantic values, there is room in
3859the output parser to redefine the default action to take for each
72d2299c 3860rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3861matched, before the associated action is run. It is also invoked
3862while processing a syntax error, to compute the error's location.
8710fc41
JD
3863Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3864parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3865of that ambiguity.
847bf1f5 3866
3e259915 3867Most of the time, this macro is general enough to suppress location
79282c6c 3868dedicated code from semantic actions.
847bf1f5 3869
72d2299c 3870The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3871the location of the grouping (the result of the computation). When a
766de5eb 3872rule is matched, the second parameter identifies locations of
96b93a3d 3873all right hand side elements of the rule being matched, and the third
8710fc41
JD
3874parameter is the size of the rule's right hand side.
3875When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3876right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3877When processing a syntax error, the second parameter identifies locations
3878of the symbols that were discarded during error processing, and the third
96b93a3d 3879parameter is the number of discarded symbols.
847bf1f5 3880
766de5eb 3881By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3882
766de5eb 3883@smallexample
847bf1f5 3884@group
766de5eb
PE
3885# define YYLLOC_DEFAULT(Current, Rhs, N) \
3886 do \
3887 if (N) \
3888 @{ \
3889 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3890 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3891 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3892 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3893 @} \
3894 else \
3895 @{ \
3896 (Current).first_line = (Current).last_line = \
3897 YYRHSLOC(Rhs, 0).last_line; \
3898 (Current).first_column = (Current).last_column = \
3899 YYRHSLOC(Rhs, 0).last_column; \
3900 @} \
3901 while (0)
847bf1f5 3902@end group
766de5eb 3903@end smallexample
676385e2 3904
766de5eb
PE
3905where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3906in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3907just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3908
3e259915 3909When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3910
3e259915 3911@itemize @bullet
79282c6c 3912@item
72d2299c 3913All arguments are free of side-effects. However, only the first one (the
3e259915 3914result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3915
3e259915 3916@item
766de5eb
PE
3917For consistency with semantic actions, valid indexes within the
3918right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3919valid index, and it refers to the symbol just before the reduction.
3920During error processing @var{n} is always positive.
0ae99356
PE
3921
3922@item
3923Your macro should parenthesize its arguments, if need be, since the
3924actual arguments may not be surrounded by parentheses. Also, your
3925macro should expand to something that can be used as a single
3926statement when it is followed by a semicolon.
3e259915 3927@end itemize
847bf1f5 3928
342b8b6e 3929@node Declarations
bfa74976
RS
3930@section Bison Declarations
3931@cindex declarations, Bison
3932@cindex Bison declarations
3933
3934The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3935used in formulating the grammar and the data types of semantic values.
3936@xref{Symbols}.
3937
3938All token type names (but not single-character literal tokens such as
3939@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3940declared if you need to specify which data type to use for the semantic
3941value (@pxref{Multiple Types, ,More Than One Value Type}).
3942
3943The first rule in the file also specifies the start symbol, by default.
3944If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3945it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3946Grammars}).
bfa74976
RS
3947
3948@menu
b50d2359 3949* Require Decl:: Requiring a Bison version.
bfa74976
RS
3950* Token Decl:: Declaring terminal symbols.
3951* Precedence Decl:: Declaring terminals with precedence and associativity.
3952* Union Decl:: Declaring the set of all semantic value types.
3953* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3954* Initial Action Decl:: Code run before parsing starts.
72f889cc 3955* Destructor Decl:: Declaring how symbols are freed.
d6328241 3956* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3957* Start Decl:: Specifying the start symbol.
3958* Pure Decl:: Requesting a reentrant parser.
3959* Decl Summary:: Table of all Bison declarations.
3960@end menu
3961
b50d2359
AD
3962@node Require Decl
3963@subsection Require a Version of Bison
3964@cindex version requirement
3965@cindex requiring a version of Bison
3966@findex %require
3967
3968You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3969the requirement is not met, @command{bison} exits with an error (exit
3970status 63).
b50d2359
AD
3971
3972@example
3973%require "@var{version}"
3974@end example
3975
342b8b6e 3976@node Token Decl
bfa74976
RS
3977@subsection Token Type Names
3978@cindex declaring token type names
3979@cindex token type names, declaring
931c7513 3980@cindex declaring literal string tokens
bfa74976
RS
3981@findex %token
3982
3983The basic way to declare a token type name (terminal symbol) is as follows:
3984
3985@example
3986%token @var{name}
3987@end example
3988
3989Bison will convert this into a @code{#define} directive in
3990the parser, so that the function @code{yylex} (if it is in this file)
3991can use the name @var{name} to stand for this token type's code.
3992
14ded682
AD
3993Alternatively, you can use @code{%left}, @code{%right}, or
3994@code{%nonassoc} instead of @code{%token}, if you wish to specify
3995associativity and precedence. @xref{Precedence Decl, ,Operator
3996Precedence}.
bfa74976
RS
3997
3998You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3999a decimal or hexadecimal integer value in the field immediately
4000following the token name:
bfa74976
RS
4001
4002@example
4003%token NUM 300
1452af69 4004%token XNUM 0x12d // a GNU extension
bfa74976
RS
4005@end example
4006
4007@noindent
4008It is generally best, however, to let Bison choose the numeric codes for
4009all token types. Bison will automatically select codes that don't conflict
e966383b 4010with each other or with normal characters.
bfa74976
RS
4011
4012In the event that the stack type is a union, you must augment the
4013@code{%token} or other token declaration to include the data type
704a47c4
AD
4014alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4015Than One Value Type}).
bfa74976
RS
4016
4017For example:
4018
4019@example
4020@group
4021%union @{ /* define stack type */
4022 double val;
4023 symrec *tptr;
4024@}
4025%token <val> NUM /* define token NUM and its type */
4026@end group
4027@end example
4028
931c7513
RS
4029You can associate a literal string token with a token type name by
4030writing the literal string at the end of a @code{%token}
4031declaration which declares the name. For example:
4032
4033@example
4034%token arrow "=>"
4035@end example
4036
4037@noindent
4038For example, a grammar for the C language might specify these names with
4039equivalent literal string tokens:
4040
4041@example
4042%token <operator> OR "||"
4043%token <operator> LE 134 "<="
4044%left OR "<="
4045@end example
4046
4047@noindent
4048Once you equate the literal string and the token name, you can use them
4049interchangeably in further declarations or the grammar rules. The
4050@code{yylex} function can use the token name or the literal string to
4051obtain the token type code number (@pxref{Calling Convention}).
4052
342b8b6e 4053@node Precedence Decl
bfa74976
RS
4054@subsection Operator Precedence
4055@cindex precedence declarations
4056@cindex declaring operator precedence
4057@cindex operator precedence, declaring
4058
4059Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4060declare a token and specify its precedence and associativity, all at
4061once. These are called @dfn{precedence declarations}.
704a47c4
AD
4062@xref{Precedence, ,Operator Precedence}, for general information on
4063operator precedence.
bfa74976
RS
4064
4065The syntax of a precedence declaration is the same as that of
4066@code{%token}: either
4067
4068@example
4069%left @var{symbols}@dots{}
4070@end example
4071
4072@noindent
4073or
4074
4075@example
4076%left <@var{type}> @var{symbols}@dots{}
4077@end example
4078
4079And indeed any of these declarations serves the purposes of @code{%token}.
4080But in addition, they specify the associativity and relative precedence for
4081all the @var{symbols}:
4082
4083@itemize @bullet
4084@item
4085The associativity of an operator @var{op} determines how repeated uses
4086of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4087@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4088grouping @var{y} with @var{z} first. @code{%left} specifies
4089left-associativity (grouping @var{x} with @var{y} first) and
4090@code{%right} specifies right-associativity (grouping @var{y} with
4091@var{z} first). @code{%nonassoc} specifies no associativity, which
4092means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4093considered a syntax error.
4094
4095@item
4096The precedence of an operator determines how it nests with other operators.
4097All the tokens declared in a single precedence declaration have equal
4098precedence and nest together according to their associativity.
4099When two tokens declared in different precedence declarations associate,
4100the one declared later has the higher precedence and is grouped first.
4101@end itemize
4102
342b8b6e 4103@node Union Decl
bfa74976
RS
4104@subsection The Collection of Value Types
4105@cindex declaring value types
4106@cindex value types, declaring
4107@findex %union
4108
287c78f6
PE
4109The @code{%union} declaration specifies the entire collection of
4110possible data types for semantic values. The keyword @code{%union} is
4111followed by braced code containing the same thing that goes inside a
4112@code{union} in C@.
bfa74976
RS
4113
4114For example:
4115
4116@example
4117@group
4118%union @{
4119 double val;
4120 symrec *tptr;
4121@}
4122@end group
4123@end example
4124
4125@noindent
4126This says that the two alternative types are @code{double} and @code{symrec
4127*}. They are given names @code{val} and @code{tptr}; these names are used
4128in the @code{%token} and @code{%type} declarations to pick one of the types
4129for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4130
6273355b
PE
4131As an extension to @acronym{POSIX}, a tag is allowed after the
4132@code{union}. For example:
4133
4134@example
4135@group
4136%union value @{
4137 double val;
4138 symrec *tptr;
4139@}
4140@end group
4141@end example
4142
d6ca7905 4143@noindent
6273355b
PE
4144specifies the union tag @code{value}, so the corresponding C type is
4145@code{union value}. If you do not specify a tag, it defaults to
4146@code{YYSTYPE}.
4147
d6ca7905
PE
4148As another extension to @acronym{POSIX}, you may specify multiple
4149@code{%union} declarations; their contents are concatenated. However,
4150only the first @code{%union} declaration can specify a tag.
4151
6273355b 4152Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4153a semicolon after the closing brace.
4154
ddc8ede1
PE
4155Instead of @code{%union}, you can define and use your own union type
4156@code{YYSTYPE} if your grammar contains at least one
4157@samp{<@var{type}>} tag. For example, you can put the following into
4158a header file @file{parser.h}:
4159
4160@example
4161@group
4162union YYSTYPE @{
4163 double val;
4164 symrec *tptr;
4165@};
4166typedef union YYSTYPE YYSTYPE;
4167@end group
4168@end example
4169
4170@noindent
4171and then your grammar can use the following
4172instead of @code{%union}:
4173
4174@example
4175@group
4176%@{
4177#include "parser.h"
4178%@}
4179%type <val> expr
4180%token <tptr> ID
4181@end group
4182@end example
4183
342b8b6e 4184@node Type Decl
bfa74976
RS
4185@subsection Nonterminal Symbols
4186@cindex declaring value types, nonterminals
4187@cindex value types, nonterminals, declaring
4188@findex %type
4189
4190@noindent
4191When you use @code{%union} to specify multiple value types, you must
4192declare the value type of each nonterminal symbol for which values are
4193used. This is done with a @code{%type} declaration, like this:
4194
4195@example
4196%type <@var{type}> @var{nonterminal}@dots{}
4197@end example
4198
4199@noindent
704a47c4
AD
4200Here @var{nonterminal} is the name of a nonterminal symbol, and
4201@var{type} is the name given in the @code{%union} to the alternative
4202that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4203can give any number of nonterminal symbols in the same @code{%type}
4204declaration, if they have the same value type. Use spaces to separate
4205the symbol names.
bfa74976 4206
931c7513
RS
4207You can also declare the value type of a terminal symbol. To do this,
4208use the same @code{<@var{type}>} construction in a declaration for the
4209terminal symbol. All kinds of token declarations allow
4210@code{<@var{type}>}.
4211
18d192f0
AD
4212@node Initial Action Decl
4213@subsection Performing Actions before Parsing
4214@findex %initial-action
4215
4216Sometimes your parser needs to perform some initializations before
4217parsing. The @code{%initial-action} directive allows for such arbitrary
4218code.
4219
4220@deffn {Directive} %initial-action @{ @var{code} @}
4221@findex %initial-action
287c78f6 4222Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4223@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4224@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4225@code{%parse-param}.
18d192f0
AD
4226@end deffn
4227
451364ed
AD
4228For instance, if your locations use a file name, you may use
4229
4230@example
48b16bbc 4231%parse-param @{ char const *file_name @};
451364ed
AD
4232%initial-action
4233@{
4626a15d 4234 @@$.initialize (file_name);
451364ed
AD
4235@};
4236@end example
4237
18d192f0 4238
72f889cc
AD
4239@node Destructor Decl
4240@subsection Freeing Discarded Symbols
4241@cindex freeing discarded symbols
4242@findex %destructor
12e35840 4243@findex <*>
3ebecc24 4244@findex <>
a85284cf
AD
4245During error recovery (@pxref{Error Recovery}), symbols already pushed
4246on the stack and tokens coming from the rest of the file are discarded
4247until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4248or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4249symbols on the stack must be discarded. Even if the parser succeeds, it
4250must discard the start symbol.
258b75ca
PE
4251
4252When discarded symbols convey heap based information, this memory is
4253lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4254in traditional compilers, it is unacceptable for programs like shells or
4255protocol implementations that may parse and execute indefinitely.
258b75ca 4256
a85284cf
AD
4257The @code{%destructor} directive defines code that is called when a
4258symbol is automatically discarded.
72f889cc
AD
4259
4260@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4261@findex %destructor
287c78f6
PE
4262Invoke the braced @var{code} whenever the parser discards one of the
4263@var{symbols}.
4b367315 4264Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4265with the discarded symbol, and @code{@@$} designates its location.
4266The additional parser parameters are also available (@pxref{Parser Function, ,
4267The Parser Function @code{yyparse}}).
ec5479ce 4268
b2a0b7ca
JD
4269When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4270per-symbol @code{%destructor}.
4271You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4272tag among @var{symbols}.
b2a0b7ca 4273In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4274grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4275per-symbol @code{%destructor}.
4276
12e35840 4277Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4278(These default forms are experimental.
4279More user feedback will help to determine whether they should become permanent
4280features.)
3ebecc24 4281You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4282exactly one @code{%destructor} declaration in your grammar file.
4283The parser will invoke the @var{code} associated with one of these whenever it
4284discards any user-defined grammar symbol that has no per-symbol and no per-type
4285@code{%destructor}.
4286The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4287symbol for which you have formally declared a semantic type tag (@code{%type}
4288counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4289The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4290symbol that has no declared semantic type tag.
72f889cc
AD
4291@end deffn
4292
b2a0b7ca 4293@noindent
12e35840 4294For example:
72f889cc
AD
4295
4296@smallexample
ec5479ce
JD
4297%union @{ char *string; @}
4298%token <string> STRING1
4299%token <string> STRING2
4300%type <string> string1
4301%type <string> string2
b2a0b7ca
JD
4302%union @{ char character; @}
4303%token <character> CHR
4304%type <character> chr
12e35840
JD
4305%token TAGLESS
4306
b2a0b7ca 4307%destructor @{ @} <character>
12e35840
JD
4308%destructor @{ free ($$); @} <*>
4309%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4310%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4311@end smallexample
4312
4313@noindent
b2a0b7ca
JD
4314guarantees that, when the parser discards any user-defined symbol that has a
4315semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4316to @code{free} by default.
ec5479ce
JD
4317However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4318prints its line number to @code{stdout}.
4319It performs only the second @code{%destructor} in this case, so it invokes
4320@code{free} only once.
12e35840
JD
4321Finally, the parser merely prints a message whenever it discards any symbol,
4322such as @code{TAGLESS}, that has no semantic type tag.
4323
4324A Bison-generated parser invokes the default @code{%destructor}s only for
4325user-defined as opposed to Bison-defined symbols.
4326For example, the parser will not invoke either kind of default
4327@code{%destructor} for the special Bison-defined symbols @code{$accept},
4328@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4329none of which you can reference in your grammar.
4330It also will not invoke either for the @code{error} token (@pxref{Table of
4331Symbols, ,error}), which is always defined by Bison regardless of whether you
4332reference it in your grammar.
4333However, it may invoke one of them for the end token (token 0) if you
4334redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4335
4336@smallexample
4337%token END 0
4338@end smallexample
4339
12e35840
JD
4340@cindex actions in mid-rule
4341@cindex mid-rule actions
4342Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4343mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4344That is, Bison does not consider a mid-rule to have a semantic value if you do
4345not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4346@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4347rule.
4348However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4349@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4350
3508ce36
JD
4351@ignore
4352@noindent
4353In the future, it may be possible to redefine the @code{error} token as a
4354nonterminal that captures the discarded symbols.
4355In that case, the parser will invoke the default destructor for it as well.
4356@end ignore
4357
e757bb10
AD
4358@sp 1
4359
4360@cindex discarded symbols
4361@dfn{Discarded symbols} are the following:
4362
4363@itemize
4364@item
4365stacked symbols popped during the first phase of error recovery,
4366@item
4367incoming terminals during the second phase of error recovery,
4368@item
742e4900 4369the current lookahead and the entire stack (except the current
9d9b8b70 4370right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4371@item
4372the start symbol, when the parser succeeds.
e757bb10
AD
4373@end itemize
4374
9d9b8b70
PE
4375The parser can @dfn{return immediately} because of an explicit call to
4376@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4377exhaustion.
4378
4379Right-hand size symbols of a rule that explicitly triggers a syntax
4380error via @code{YYERROR} are not discarded automatically. As a rule
4381of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4382the memory.
e757bb10 4383
342b8b6e 4384@node Expect Decl
bfa74976
RS
4385@subsection Suppressing Conflict Warnings
4386@cindex suppressing conflict warnings
4387@cindex preventing warnings about conflicts
4388@cindex warnings, preventing
4389@cindex conflicts, suppressing warnings of
4390@findex %expect
d6328241 4391@findex %expect-rr
bfa74976
RS
4392
4393Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4394(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4395have harmless shift/reduce conflicts which are resolved in a predictable
4396way and would be difficult to eliminate. It is desirable to suppress
4397the warning about these conflicts unless the number of conflicts
4398changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4399
4400The declaration looks like this:
4401
4402@example
4403%expect @var{n}
4404@end example
4405
035aa4a0
PE
4406Here @var{n} is a decimal integer. The declaration says there should
4407be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4408Bison reports an error if the number of shift/reduce conflicts differs
4409from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4410
035aa4a0
PE
4411For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4412serious, and should be eliminated entirely. Bison will always report
4413reduce/reduce conflicts for these parsers. With @acronym{GLR}
4414parsers, however, both kinds of conflicts are routine; otherwise,
4415there would be no need to use @acronym{GLR} parsing. Therefore, it is
4416also possible to specify an expected number of reduce/reduce conflicts
4417in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4418
4419@example
4420%expect-rr @var{n}
4421@end example
4422
bfa74976
RS
4423In general, using @code{%expect} involves these steps:
4424
4425@itemize @bullet
4426@item
4427Compile your grammar without @code{%expect}. Use the @samp{-v} option
4428to get a verbose list of where the conflicts occur. Bison will also
4429print the number of conflicts.
4430
4431@item
4432Check each of the conflicts to make sure that Bison's default
4433resolution is what you really want. If not, rewrite the grammar and
4434go back to the beginning.
4435
4436@item
4437Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4438number which Bison printed. With @acronym{GLR} parsers, add an
4439@code{%expect-rr} declaration as well.
bfa74976
RS
4440@end itemize
4441
035aa4a0
PE
4442Now Bison will warn you if you introduce an unexpected conflict, but
4443will keep silent otherwise.
bfa74976 4444
342b8b6e 4445@node Start Decl
bfa74976
RS
4446@subsection The Start-Symbol
4447@cindex declaring the start symbol
4448@cindex start symbol, declaring
4449@cindex default start symbol
4450@findex %start
4451
4452Bison assumes by default that the start symbol for the grammar is the first
4453nonterminal specified in the grammar specification section. The programmer
4454may override this restriction with the @code{%start} declaration as follows:
4455
4456@example
4457%start @var{symbol}
4458@end example
4459
342b8b6e 4460@node Pure Decl
bfa74976
RS
4461@subsection A Pure (Reentrant) Parser
4462@cindex reentrant parser
4463@cindex pure parser
8c9a50be 4464@findex %pure-parser
bfa74976
RS
4465
4466A @dfn{reentrant} program is one which does not alter in the course of
4467execution; in other words, it consists entirely of @dfn{pure} (read-only)
4468code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4469for example, a nonreentrant program may not be safe to call from a signal
4470handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4471program must be called only within interlocks.
4472
70811b85 4473Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4474suitable for most uses, and it permits compatibility with Yacc. (The
4475standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4476statically allocated variables for communication with @code{yylex},
4477including @code{yylval} and @code{yylloc}.)
bfa74976 4478
70811b85 4479Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4480declaration @code{%pure-parser} says that you want the parser to be
70811b85 4481reentrant. It looks like this:
bfa74976
RS
4482
4483@example
8c9a50be 4484%pure-parser
bfa74976
RS
4485@end example
4486
70811b85
RS
4487The result is that the communication variables @code{yylval} and
4488@code{yylloc} become local variables in @code{yyparse}, and a different
4489calling convention is used for the lexical analyzer function
4490@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4491Parsers}, for the details of this. The variable @code{yynerrs} also
4492becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4493Reporting Function @code{yyerror}}). The convention for calling
4494@code{yyparse} itself is unchanged.
4495
4496Whether the parser is pure has nothing to do with the grammar rules.
4497You can generate either a pure parser or a nonreentrant parser from any
4498valid grammar.
bfa74976 4499
342b8b6e 4500@node Decl Summary
bfa74976
RS
4501@subsection Bison Declaration Summary
4502@cindex Bison declaration summary
4503@cindex declaration summary
4504@cindex summary, Bison declaration
4505
d8988b2f 4506Here is a summary of the declarations used to define a grammar:
bfa74976 4507
18b519c0 4508@deffn {Directive} %union
bfa74976
RS
4509Declare the collection of data types that semantic values may have
4510(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4511@end deffn
bfa74976 4512
18b519c0 4513@deffn {Directive} %token
bfa74976
RS
4514Declare a terminal symbol (token type name) with no precedence
4515or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4516@end deffn
bfa74976 4517
18b519c0 4518@deffn {Directive} %right
bfa74976
RS
4519Declare a terminal symbol (token type name) that is right-associative
4520(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4521@end deffn
bfa74976 4522
18b519c0 4523@deffn {Directive} %left
bfa74976
RS
4524Declare a terminal symbol (token type name) that is left-associative
4525(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4526@end deffn
bfa74976 4527
18b519c0 4528@deffn {Directive} %nonassoc
bfa74976 4529Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4530(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4531Using it in a way that would be associative is a syntax error.
4532@end deffn
4533
91d2c560 4534@ifset defaultprec
39a06c25 4535@deffn {Directive} %default-prec
22fccf95 4536Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4537(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4538@end deffn
91d2c560 4539@end ifset
bfa74976 4540
18b519c0 4541@deffn {Directive} %type
bfa74976
RS
4542Declare the type of semantic values for a nonterminal symbol
4543(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4544@end deffn
bfa74976 4545
18b519c0 4546@deffn {Directive} %start
89cab50d
AD
4547Specify the grammar's start symbol (@pxref{Start Decl, ,The
4548Start-Symbol}).
18b519c0 4549@end deffn
bfa74976 4550
18b519c0 4551@deffn {Directive} %expect
bfa74976
RS
4552Declare the expected number of shift-reduce conflicts
4553(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4554@end deffn
4555
bfa74976 4556
d8988b2f
AD
4557@sp 1
4558@noindent
4559In order to change the behavior of @command{bison}, use the following
4560directives:
4561
18b519c0 4562@deffn {Directive} %debug
4947ebdb
PE
4563In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4564already defined, so that the debugging facilities are compiled.
18b519c0 4565@end deffn
ec3bc396 4566@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4567
18b519c0 4568@deffn {Directive} %defines
4bfd5e4e
PE
4569Write a header file containing macro definitions for the token type
4570names defined in the grammar as well as a few other declarations.
d8988b2f 4571If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4572is named @file{@var{name}.h}.
d8988b2f 4573
b321737f 4574For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
4575@code{YYSTYPE} is already defined as a macro or you have used a
4576@code{<@var{type}>} tag without using @code{%union}.
4577Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4578(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4579require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 4580or type definition
f8e1c9e5
AD
4581(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4582arrange for these definitions to be propagated to all modules, e.g., by
4583putting them in a prerequisite header that is included both by your
4584parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4585
4586Unless your parser is pure, the output header declares @code{yylval}
4587as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4588Parser}.
4589
4590If you have also used locations, the output header declares
4591@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 4592the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
4593Locations}.
4594
f8e1c9e5
AD
4595This output file is normally essential if you wish to put the definition
4596of @code{yylex} in a separate source file, because @code{yylex}
4597typically needs to be able to refer to the above-mentioned declarations
4598and to the token type codes. @xref{Token Values, ,Semantic Values of
4599Tokens}.
9bc0dd67 4600
136a0f76
PB
4601@findex %requires
4602@findex %provides
4603If you have declared @code{%requires} or @code{%provides}, the output
34f98f46 4604header also contains their code.
136a0f76 4605@xref{Table of Symbols, ,%requires}.
18b519c0 4606@end deffn
d8988b2f 4607
02975b9a
JD
4608@deffn {Directive} %defines @var{defines-file}
4609Same as above, but save in the file @var{defines-file}.
4610@end deffn
4611
18b519c0 4612@deffn {Directive} %destructor
258b75ca 4613Specify how the parser should reclaim the memory associated to
fa7e68c3 4614discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4615@end deffn
72f889cc 4616
02975b9a 4617@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
4618Specify a prefix to use for all Bison output file names. The names are
4619chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4620@end deffn
d8988b2f 4621
0e021770
PE
4622@deffn {Directive} %language="@var{language}"
4623Specify the programming language for the generated parser. Currently
4624supported languages include C and C++.
4625@end deffn
4626
18b519c0 4627@deffn {Directive} %locations
89cab50d
AD
4628Generate the code processing the locations (@pxref{Action Features,
4629,Special Features for Use in Actions}). This mode is enabled as soon as
4630the grammar uses the special @samp{@@@var{n}} tokens, but if your
4631grammar does not use it, using @samp{%locations} allows for more
6e649e65 4632accurate syntax error messages.
18b519c0 4633@end deffn
89cab50d 4634
02975b9a 4635@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
4636Rename the external symbols used in the parser so that they start with
4637@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 4638in C parsers
d8988b2f 4639is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a
PE
4640@code{yylval}, @code{yychar}, @code{yydebug}, and
4641(if locations are used) @code{yylloc}. For example, if you use
02975b9a 4642@samp{%name-prefix "c_"}, the names become @code{c_parse}, @code{c_lex},
aa08666d
AD
4643and so on. In C++ parsers, it is only the surrounding namespace which is
4644named @var{prefix} instead of @samp{yy}.
4645@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 4646@end deffn
931c7513 4647
91d2c560 4648@ifset defaultprec
22fccf95
PE
4649@deffn {Directive} %no-default-prec
4650Do not assign a precedence to rules lacking an explicit @code{%prec}
4651modifier (@pxref{Contextual Precedence, ,Context-Dependent
4652Precedence}).
4653@end deffn
91d2c560 4654@end ifset
22fccf95 4655
18b519c0 4656@deffn {Directive} %no-parser
6deb4447
AD
4657Do not include any C code in the parser file; generate tables only. The
4658parser file contains just @code{#define} directives and static variable
4659declarations.
4660
4661This option also tells Bison to write the C code for the grammar actions
fa4d969f 4662into a file named @file{@var{file}.act}, in the form of a
6deb4447 4663brace-surrounded body fit for a @code{switch} statement.
18b519c0 4664@end deffn
6deb4447 4665
18b519c0 4666@deffn {Directive} %no-lines
931c7513
RS
4667Don't generate any @code{#line} preprocessor commands in the parser
4668file. Ordinarily Bison writes these commands in the parser file so that
4669the C compiler and debuggers will associate errors and object code with
4670your source file (the grammar file). This directive causes them to
4671associate errors with the parser file, treating it an independent source
4672file in its own right.
18b519c0 4673@end deffn
931c7513 4674
02975b9a 4675@deffn {Directive} %output "@var{file}"
fa4d969f 4676Specify @var{file} for the parser file.
18b519c0 4677@end deffn
6deb4447 4678
18b519c0 4679@deffn {Directive} %pure-parser
d8988b2f
AD
4680Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4681(Reentrant) Parser}).
18b519c0 4682@end deffn
6deb4447 4683
b50d2359 4684@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4685Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4686Require a Version of Bison}.
b50d2359
AD
4687@end deffn
4688
0e021770
PE
4689@deffn {Directive} %skeleton "@var{file}"
4690Specify the skeleton to use. You probably don't need this option unless
4691you are developing Bison.
4692@end deffn
4693
18b519c0 4694@deffn {Directive} %token-table
931c7513
RS
4695Generate an array of token names in the parser file. The name of the
4696array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4697token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4698three elements of @code{yytname} correspond to the predefined tokens
4699@code{"$end"},
88bce5a2
AD
4700@code{"error"}, and @code{"$undefined"}; after these come the symbols
4701defined in the grammar file.
931c7513 4702
9e0876fb
PE
4703The name in the table includes all the characters needed to represent
4704the token in Bison. For single-character literals and literal
4705strings, this includes the surrounding quoting characters and any
4706escape sequences. For example, the Bison single-character literal
4707@code{'+'} corresponds to a three-character name, represented in C as
4708@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4709corresponds to a five-character name, represented in C as
4710@code{"\"\\\\/\""}.
931c7513 4711
8c9a50be 4712When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4713definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4714@code{YYNRULES}, and @code{YYNSTATES}:
4715
4716@table @code
4717@item YYNTOKENS
4718The highest token number, plus one.
4719@item YYNNTS
9ecbd125 4720The number of nonterminal symbols.
931c7513
RS
4721@item YYNRULES
4722The number of grammar rules,
4723@item YYNSTATES
4724The number of parser states (@pxref{Parser States}).
4725@end table
18b519c0 4726@end deffn
d8988b2f 4727
18b519c0 4728@deffn {Directive} %verbose
d8988b2f 4729Write an extra output file containing verbose descriptions of the
742e4900 4730parser states and what is done for each type of lookahead token in
72d2299c 4731that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4732information.
18b519c0 4733@end deffn
d8988b2f 4734
18b519c0 4735@deffn {Directive} %yacc
d8988b2f
AD
4736Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4737including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4738@end deffn
d8988b2f
AD
4739
4740
342b8b6e 4741@node Multiple Parsers
bfa74976
RS
4742@section Multiple Parsers in the Same Program
4743
4744Most programs that use Bison parse only one language and therefore contain
4745only one Bison parser. But what if you want to parse more than one
4746language with the same program? Then you need to avoid a name conflict
4747between different definitions of @code{yyparse}, @code{yylval}, and so on.
4748
4749The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4750(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4751functions and variables of the Bison parser to start with @var{prefix}
4752instead of @samp{yy}. You can use this to give each parser distinct
4753names that do not conflict.
bfa74976
RS
4754
4755The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4756@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4757@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4758the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4759
4760@strong{All the other variables and macros associated with Bison are not
4761renamed.} These others are not global; there is no conflict if the same
4762name is used in different parsers. For example, @code{YYSTYPE} is not
4763renamed, but defining this in different ways in different parsers causes
4764no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4765
4766The @samp{-p} option works by adding macro definitions to the beginning
4767of the parser source file, defining @code{yyparse} as
4768@code{@var{prefix}parse}, and so on. This effectively substitutes one
4769name for the other in the entire parser file.
4770
342b8b6e 4771@node Interface
bfa74976
RS
4772@chapter Parser C-Language Interface
4773@cindex C-language interface
4774@cindex interface
4775
4776The Bison parser is actually a C function named @code{yyparse}. Here we
4777describe the interface conventions of @code{yyparse} and the other
4778functions that it needs to use.
4779
4780Keep in mind that the parser uses many C identifiers starting with
4781@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4782identifier (aside from those in this manual) in an action or in epilogue
4783in the grammar file, you are likely to run into trouble.
bfa74976
RS
4784
4785@menu
4786* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4787* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4788 which reads tokens.
4789* Error Reporting:: You must supply a function @code{yyerror}.
4790* Action Features:: Special features for use in actions.
f7ab6a50
PE
4791* Internationalization:: How to let the parser speak in the user's
4792 native language.
bfa74976
RS
4793@end menu
4794
342b8b6e 4795@node Parser Function
bfa74976
RS
4796@section The Parser Function @code{yyparse}
4797@findex yyparse
4798
4799You call the function @code{yyparse} to cause parsing to occur. This
4800function reads tokens, executes actions, and ultimately returns when it
4801encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4802write an action which directs @code{yyparse} to return immediately
4803without reading further.
bfa74976 4804
2a8d363a
AD
4805
4806@deftypefun int yyparse (void)
bfa74976
RS
4807The value returned by @code{yyparse} is 0 if parsing was successful (return
4808is due to end-of-input).
4809
b47dbebe
PE
4810The value is 1 if parsing failed because of invalid input, i.e., input
4811that contains a syntax error or that causes @code{YYABORT} to be
4812invoked.
4813
4814The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4815@end deftypefun
bfa74976
RS
4816
4817In an action, you can cause immediate return from @code{yyparse} by using
4818these macros:
4819
2a8d363a 4820@defmac YYACCEPT
bfa74976
RS
4821@findex YYACCEPT
4822Return immediately with value 0 (to report success).
2a8d363a 4823@end defmac
bfa74976 4824
2a8d363a 4825@defmac YYABORT
bfa74976
RS
4826@findex YYABORT
4827Return immediately with value 1 (to report failure).
2a8d363a
AD
4828@end defmac
4829
4830If you use a reentrant parser, you can optionally pass additional
4831parameter information to it in a reentrant way. To do so, use the
4832declaration @code{%parse-param}:
4833
feeb0eda 4834@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4835@findex %parse-param
287c78f6
PE
4836Declare that an argument declared by the braced-code
4837@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 4838The @var{argument-declaration} is used when declaring
feeb0eda
PE
4839functions or prototypes. The last identifier in
4840@var{argument-declaration} must be the argument name.
2a8d363a
AD
4841@end deffn
4842
4843Here's an example. Write this in the parser:
4844
4845@example
feeb0eda
PE
4846%parse-param @{int *nastiness@}
4847%parse-param @{int *randomness@}
2a8d363a
AD
4848@end example
4849
4850@noindent
4851Then call the parser like this:
4852
4853@example
4854@{
4855 int nastiness, randomness;
4856 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4857 value = yyparse (&nastiness, &randomness);
4858 @dots{}
4859@}
4860@end example
4861
4862@noindent
4863In the grammar actions, use expressions like this to refer to the data:
4864
4865@example
4866exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4867@end example
4868
bfa74976 4869
342b8b6e 4870@node Lexical
bfa74976
RS
4871@section The Lexical Analyzer Function @code{yylex}
4872@findex yylex
4873@cindex lexical analyzer
4874
4875The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4876the input stream and returns them to the parser. Bison does not create
4877this function automatically; you must write it so that @code{yyparse} can
4878call it. The function is sometimes referred to as a lexical scanner.
4879
4880In simple programs, @code{yylex} is often defined at the end of the Bison
4881grammar file. If @code{yylex} is defined in a separate source file, you
4882need to arrange for the token-type macro definitions to be available there.
4883To do this, use the @samp{-d} option when you run Bison, so that it will
4884write these macro definitions into a separate header file
4885@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4886that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4887
4888@menu
4889* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4890* Token Values:: How @code{yylex} must return the semantic value
4891 of the token it has read.
95923bd6 4892* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4893 (line number, etc.) of the token, if the
4894 actions want that.
4895* Pure Calling:: How the calling convention differs
4896 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4897@end menu
4898
342b8b6e 4899@node Calling Convention
bfa74976
RS
4900@subsection Calling Convention for @code{yylex}
4901
72d2299c
PE
4902The value that @code{yylex} returns must be the positive numeric code
4903for the type of token it has just found; a zero or negative value
4904signifies end-of-input.
bfa74976
RS
4905
4906When a token is referred to in the grammar rules by a name, that name
4907in the parser file becomes a C macro whose definition is the proper
4908numeric code for that token type. So @code{yylex} can use the name
4909to indicate that type. @xref{Symbols}.
4910
4911When a token is referred to in the grammar rules by a character literal,
4912the numeric code for that character is also the code for the token type.
72d2299c
PE
4913So @code{yylex} can simply return that character code, possibly converted
4914to @code{unsigned char} to avoid sign-extension. The null character
4915must not be used this way, because its code is zero and that
bfa74976
RS
4916signifies end-of-input.
4917
4918Here is an example showing these things:
4919
4920@example
13863333
AD
4921int
4922yylex (void)
bfa74976
RS
4923@{
4924 @dots{}
72d2299c 4925 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4926 return 0;
4927 @dots{}
4928 if (c == '+' || c == '-')
72d2299c 4929 return c; /* Assume token type for `+' is '+'. */
bfa74976 4930 @dots{}
72d2299c 4931 return INT; /* Return the type of the token. */
bfa74976
RS
4932 @dots{}
4933@}
4934@end example
4935
4936@noindent
4937This interface has been designed so that the output from the @code{lex}
4938utility can be used without change as the definition of @code{yylex}.
4939
931c7513
RS
4940If the grammar uses literal string tokens, there are two ways that
4941@code{yylex} can determine the token type codes for them:
4942
4943@itemize @bullet
4944@item
4945If the grammar defines symbolic token names as aliases for the
4946literal string tokens, @code{yylex} can use these symbolic names like
4947all others. In this case, the use of the literal string tokens in
4948the grammar file has no effect on @code{yylex}.
4949
4950@item
9ecbd125 4951@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4952table. The index of the token in the table is the token type's code.
9ecbd125 4953The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4954double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4955token's characters are escaped as necessary to be suitable as input
4956to Bison.
931c7513 4957
9e0876fb
PE
4958Here's code for looking up a multicharacter token in @code{yytname},
4959assuming that the characters of the token are stored in
4960@code{token_buffer}, and assuming that the token does not contain any
4961characters like @samp{"} that require escaping.
931c7513
RS
4962
4963@smallexample
4964for (i = 0; i < YYNTOKENS; i++)
4965 @{
4966 if (yytname[i] != 0
4967 && yytname[i][0] == '"'
68449b3a
PE
4968 && ! strncmp (yytname[i] + 1, token_buffer,
4969 strlen (token_buffer))
931c7513
RS
4970 && yytname[i][strlen (token_buffer) + 1] == '"'
4971 && yytname[i][strlen (token_buffer) + 2] == 0)
4972 break;
4973 @}
4974@end smallexample
4975
4976The @code{yytname} table is generated only if you use the
8c9a50be 4977@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4978@end itemize
4979
342b8b6e 4980@node Token Values
bfa74976
RS
4981@subsection Semantic Values of Tokens
4982
4983@vindex yylval
9d9b8b70 4984In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4985be stored into the global variable @code{yylval}. When you are using
4986just one data type for semantic values, @code{yylval} has that type.
4987Thus, if the type is @code{int} (the default), you might write this in
4988@code{yylex}:
4989
4990@example
4991@group
4992 @dots{}
72d2299c
PE
4993 yylval = value; /* Put value onto Bison stack. */
4994 return INT; /* Return the type of the token. */
bfa74976
RS
4995 @dots{}
4996@end group
4997@end example
4998
4999When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5000made from the @code{%union} declaration (@pxref{Union Decl, ,The
5001Collection of Value Types}). So when you store a token's value, you
5002must use the proper member of the union. If the @code{%union}
5003declaration looks like this:
bfa74976
RS
5004
5005@example
5006@group
5007%union @{
5008 int intval;
5009 double val;
5010 symrec *tptr;
5011@}
5012@end group
5013@end example
5014
5015@noindent
5016then the code in @code{yylex} might look like this:
5017
5018@example
5019@group
5020 @dots{}
72d2299c
PE
5021 yylval.intval = value; /* Put value onto Bison stack. */
5022 return INT; /* Return the type of the token. */
bfa74976
RS
5023 @dots{}
5024@end group
5025@end example
5026
95923bd6
AD
5027@node Token Locations
5028@subsection Textual Locations of Tokens
bfa74976
RS
5029
5030@vindex yylloc
847bf1f5 5031If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5032Tracking Locations}) in actions to keep track of the textual locations
5033of tokens and groupings, then you must provide this information in
5034@code{yylex}. The function @code{yyparse} expects to find the textual
5035location of a token just parsed in the global variable @code{yylloc}.
5036So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5037
5038By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5039initialize the members that are going to be used by the actions. The
5040four members are called @code{first_line}, @code{first_column},
5041@code{last_line} and @code{last_column}. Note that the use of this
5042feature makes the parser noticeably slower.
bfa74976
RS
5043
5044@tindex YYLTYPE
5045The data type of @code{yylloc} has the name @code{YYLTYPE}.
5046
342b8b6e 5047@node Pure Calling
c656404a 5048@subsection Calling Conventions for Pure Parsers
bfa74976 5049
8c9a50be 5050When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
5051pure, reentrant parser, the global communication variables @code{yylval}
5052and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5053Parser}.) In such parsers the two global variables are replaced by
5054pointers passed as arguments to @code{yylex}. You must declare them as
5055shown here, and pass the information back by storing it through those
5056pointers.
bfa74976
RS
5057
5058@example
13863333
AD
5059int
5060yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5061@{
5062 @dots{}
5063 *lvalp = value; /* Put value onto Bison stack. */
5064 return INT; /* Return the type of the token. */
5065 @dots{}
5066@}
5067@end example
5068
5069If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5070textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5071this case, omit the second argument; @code{yylex} will be called with
5072only one argument.
5073
e425e872 5074
2a8d363a
AD
5075If you wish to pass the additional parameter data to @code{yylex}, use
5076@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5077Function}).
e425e872 5078
feeb0eda 5079@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5080@findex %lex-param
287c78f6
PE
5081Declare that the braced-code @var{argument-declaration} is an
5082additional @code{yylex} argument declaration.
2a8d363a 5083@end deffn
e425e872 5084
2a8d363a 5085For instance:
e425e872
RS
5086
5087@example
feeb0eda
PE
5088%parse-param @{int *nastiness@}
5089%lex-param @{int *nastiness@}
5090%parse-param @{int *randomness@}
e425e872
RS
5091@end example
5092
5093@noindent
2a8d363a 5094results in the following signature:
e425e872
RS
5095
5096@example
2a8d363a
AD
5097int yylex (int *nastiness);
5098int yyparse (int *nastiness, int *randomness);
e425e872
RS
5099@end example
5100
2a8d363a 5101If @code{%pure-parser} is added:
c656404a
RS
5102
5103@example
2a8d363a
AD
5104int yylex (YYSTYPE *lvalp, int *nastiness);
5105int yyparse (int *nastiness, int *randomness);
c656404a
RS
5106@end example
5107
2a8d363a
AD
5108@noindent
5109and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 5110
2a8d363a
AD
5111@example
5112int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5113int yyparse (int *nastiness, int *randomness);
5114@end example
931c7513 5115
342b8b6e 5116@node Error Reporting
bfa74976
RS
5117@section The Error Reporting Function @code{yyerror}
5118@cindex error reporting function
5119@findex yyerror
5120@cindex parse error
5121@cindex syntax error
5122
6e649e65 5123The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5124whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5125action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5126macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5127in Actions}).
bfa74976
RS
5128
5129The Bison parser expects to report the error by calling an error
5130reporting function named @code{yyerror}, which you must supply. It is
5131called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5132receives one argument. For a syntax error, the string is normally
5133@w{@code{"syntax error"}}.
bfa74976 5134
2a8d363a
AD
5135@findex %error-verbose
5136If you invoke the directive @code{%error-verbose} in the Bison
5137declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5138Section}), then Bison provides a more verbose and specific error message
6e649e65 5139string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5140
1a059451
PE
5141The parser can detect one other kind of error: memory exhaustion. This
5142can happen when the input contains constructions that are very deeply
bfa74976 5143nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5144parser normally extends its stack automatically up to a very large limit. But
5145if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5146fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5147
5148In some cases diagnostics like @w{@code{"syntax error"}} are
5149translated automatically from English to some other language before
5150they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5151
5152The following definition suffices in simple programs:
5153
5154@example
5155@group
13863333 5156void
38a92d50 5157yyerror (char const *s)
bfa74976
RS
5158@{
5159@end group
5160@group
5161 fprintf (stderr, "%s\n", s);
5162@}
5163@end group
5164@end example
5165
5166After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5167error recovery if you have written suitable error recovery grammar rules
5168(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5169immediately return 1.
5170
93724f13 5171Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5172an access to the current location.
5173This is indeed the case for the @acronym{GLR}
2a8d363a
AD
5174parsers, but not for the Yacc parser, for historical reasons. I.e., if
5175@samp{%locations %pure-parser} is passed then the prototypes for
5176@code{yyerror} are:
5177
5178@example
38a92d50
PE
5179void yyerror (char const *msg); /* Yacc parsers. */
5180void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5181@end example
5182
feeb0eda 5183If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5184
5185@example
b317297e
PE
5186void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5187void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5188@end example
5189
fa7e68c3 5190Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5191convention for absolutely pure parsers, i.e., when the calling
5192convention of @code{yylex} @emph{and} the calling convention of
5193@code{%pure-parser} are pure. I.e.:
5194
5195@example
5196/* Location tracking. */
5197%locations
5198/* Pure yylex. */
5199%pure-parser
feeb0eda 5200%lex-param @{int *nastiness@}
2a8d363a 5201/* Pure yyparse. */
feeb0eda
PE
5202%parse-param @{int *nastiness@}
5203%parse-param @{int *randomness@}
2a8d363a
AD
5204@end example
5205
5206@noindent
5207results in the following signatures for all the parser kinds:
5208
5209@example
5210int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5211int yyparse (int *nastiness, int *randomness);
93724f13
AD
5212void yyerror (YYLTYPE *locp,
5213 int *nastiness, int *randomness,
38a92d50 5214 char const *msg);
2a8d363a
AD
5215@end example
5216
1c0c3e95 5217@noindent
38a92d50
PE
5218The prototypes are only indications of how the code produced by Bison
5219uses @code{yyerror}. Bison-generated code always ignores the returned
5220value, so @code{yyerror} can return any type, including @code{void}.
5221Also, @code{yyerror} can be a variadic function; that is why the
5222message is always passed last.
5223
5224Traditionally @code{yyerror} returns an @code{int} that is always
5225ignored, but this is purely for historical reasons, and @code{void} is
5226preferable since it more accurately describes the return type for
5227@code{yyerror}.
93724f13 5228
bfa74976
RS
5229@vindex yynerrs
5230The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5231reported so far. Normally this variable is global; but if you
704a47c4
AD
5232request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5233then it is a local variable which only the actions can access.
bfa74976 5234
342b8b6e 5235@node Action Features
bfa74976
RS
5236@section Special Features for Use in Actions
5237@cindex summary, action features
5238@cindex action features summary
5239
5240Here is a table of Bison constructs, variables and macros that
5241are useful in actions.
5242
18b519c0 5243@deffn {Variable} $$
bfa74976
RS
5244Acts like a variable that contains the semantic value for the
5245grouping made by the current rule. @xref{Actions}.
18b519c0 5246@end deffn
bfa74976 5247
18b519c0 5248@deffn {Variable} $@var{n}
bfa74976
RS
5249Acts like a variable that contains the semantic value for the
5250@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5251@end deffn
bfa74976 5252
18b519c0 5253@deffn {Variable} $<@var{typealt}>$
bfa74976 5254Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5255specified by the @code{%union} declaration. @xref{Action Types, ,Data
5256Types of Values in Actions}.
18b519c0 5257@end deffn
bfa74976 5258
18b519c0 5259@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5260Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5261union specified by the @code{%union} declaration.
e0c471a9 5262@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5263@end deffn
bfa74976 5264
18b519c0 5265@deffn {Macro} YYABORT;
bfa74976
RS
5266Return immediately from @code{yyparse}, indicating failure.
5267@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5268@end deffn
bfa74976 5269
18b519c0 5270@deffn {Macro} YYACCEPT;
bfa74976
RS
5271Return immediately from @code{yyparse}, indicating success.
5272@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5273@end deffn
bfa74976 5274
18b519c0 5275@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5276@findex YYBACKUP
5277Unshift a token. This macro is allowed only for rules that reduce
742e4900 5278a single value, and only when there is no lookahead token.
c827f760 5279It is also disallowed in @acronym{GLR} parsers.
742e4900 5280It installs a lookahead token with token type @var{token} and
bfa74976
RS
5281semantic value @var{value}; then it discards the value that was
5282going to be reduced by this rule.
5283
5284If the macro is used when it is not valid, such as when there is
742e4900 5285a lookahead token already, then it reports a syntax error with
bfa74976
RS
5286a message @samp{cannot back up} and performs ordinary error
5287recovery.
5288
5289In either case, the rest of the action is not executed.
18b519c0 5290@end deffn
bfa74976 5291
18b519c0 5292@deffn {Macro} YYEMPTY
bfa74976 5293@vindex YYEMPTY
742e4900 5294Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5295@end deffn
bfa74976 5296
32c29292
JD
5297@deffn {Macro} YYEOF
5298@vindex YYEOF
742e4900 5299Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5300stream.
5301@end deffn
5302
18b519c0 5303@deffn {Macro} YYERROR;
bfa74976
RS
5304@findex YYERROR
5305Cause an immediate syntax error. This statement initiates error
5306recovery just as if the parser itself had detected an error; however, it
5307does not call @code{yyerror}, and does not print any message. If you
5308want to print an error message, call @code{yyerror} explicitly before
5309the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5310@end deffn
bfa74976 5311
18b519c0 5312@deffn {Macro} YYRECOVERING
02103984
PE
5313@findex YYRECOVERING
5314The expression @code{YYRECOVERING ()} yields 1 when the parser
5315is recovering from a syntax error, and 0 otherwise.
bfa74976 5316@xref{Error Recovery}.
18b519c0 5317@end deffn
bfa74976 5318
18b519c0 5319@deffn {Variable} yychar
742e4900
JD
5320Variable containing either the lookahead token, or @code{YYEOF} when the
5321lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5322has been performed so the next token is not yet known.
5323Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5324Actions}).
742e4900 5325@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5326@end deffn
bfa74976 5327
18b519c0 5328@deffn {Macro} yyclearin;
742e4900 5329Discard the current lookahead token. This is useful primarily in
32c29292
JD
5330error rules.
5331Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5332Semantic Actions}).
5333@xref{Error Recovery}.
18b519c0 5334@end deffn
bfa74976 5335
18b519c0 5336@deffn {Macro} yyerrok;
bfa74976 5337Resume generating error messages immediately for subsequent syntax
13863333 5338errors. This is useful primarily in error rules.
bfa74976 5339@xref{Error Recovery}.
18b519c0 5340@end deffn
bfa74976 5341
32c29292 5342@deffn {Variable} yylloc
742e4900 5343Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5344to @code{YYEMPTY} or @code{YYEOF}.
5345Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5346Actions}).
5347@xref{Actions and Locations, ,Actions and Locations}.
5348@end deffn
5349
5350@deffn {Variable} yylval
742e4900 5351Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5352not set to @code{YYEMPTY} or @code{YYEOF}.
5353Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5354Actions}).
5355@xref{Actions, ,Actions}.
5356@end deffn
5357
18b519c0 5358@deffn {Value} @@$
847bf1f5 5359@findex @@$
95923bd6 5360Acts like a structure variable containing information on the textual location
847bf1f5
AD
5361of the grouping made by the current rule. @xref{Locations, ,
5362Tracking Locations}.
bfa74976 5363
847bf1f5
AD
5364@c Check if those paragraphs are still useful or not.
5365
5366@c @example
5367@c struct @{
5368@c int first_line, last_line;
5369@c int first_column, last_column;
5370@c @};
5371@c @end example
5372
5373@c Thus, to get the starting line number of the third component, you would
5374@c use @samp{@@3.first_line}.
bfa74976 5375
847bf1f5
AD
5376@c In order for the members of this structure to contain valid information,
5377@c you must make @code{yylex} supply this information about each token.
5378@c If you need only certain members, then @code{yylex} need only fill in
5379@c those members.
bfa74976 5380
847bf1f5 5381@c The use of this feature makes the parser noticeably slower.
18b519c0 5382@end deffn
847bf1f5 5383
18b519c0 5384@deffn {Value} @@@var{n}
847bf1f5 5385@findex @@@var{n}
95923bd6 5386Acts like a structure variable containing information on the textual location
847bf1f5
AD
5387of the @var{n}th component of the current rule. @xref{Locations, ,
5388Tracking Locations}.
18b519c0 5389@end deffn
bfa74976 5390
f7ab6a50
PE
5391@node Internationalization
5392@section Parser Internationalization
5393@cindex internationalization
5394@cindex i18n
5395@cindex NLS
5396@cindex gettext
5397@cindex bison-po
5398
5399A Bison-generated parser can print diagnostics, including error and
5400tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5401also supports outputting diagnostics in the user's native language. To
5402make this work, the user should set the usual environment variables.
5403@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5404For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5405set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5406encoding. The exact set of available locales depends on the user's
5407installation.
5408
5409The maintainer of a package that uses a Bison-generated parser enables
5410the internationalization of the parser's output through the following
5411steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5412@acronym{GNU} Automake.
5413
5414@enumerate
5415@item
30757c8c 5416@cindex bison-i18n.m4
f7ab6a50
PE
5417Into the directory containing the @acronym{GNU} Autoconf macros used
5418by the package---often called @file{m4}---copy the
5419@file{bison-i18n.m4} file installed by Bison under
5420@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5421For example:
5422
5423@example
5424cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5425@end example
5426
5427@item
30757c8c
PE
5428@findex BISON_I18N
5429@vindex BISON_LOCALEDIR
5430@vindex YYENABLE_NLS
f7ab6a50
PE
5431In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5432invocation, add an invocation of @code{BISON_I18N}. This macro is
5433defined in the file @file{bison-i18n.m4} that you copied earlier. It
5434causes @samp{configure} to find the value of the
30757c8c
PE
5435@code{BISON_LOCALEDIR} variable, and it defines the source-language
5436symbol @code{YYENABLE_NLS} to enable translations in the
5437Bison-generated parser.
f7ab6a50
PE
5438
5439@item
5440In the @code{main} function of your program, designate the directory
5441containing Bison's runtime message catalog, through a call to
5442@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5443For example:
5444
5445@example
5446bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5447@end example
5448
5449Typically this appears after any other call @code{bindtextdomain
5450(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5451@samp{BISON_LOCALEDIR} to be defined as a string through the
5452@file{Makefile}.
5453
5454@item
5455In the @file{Makefile.am} that controls the compilation of the @code{main}
5456function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5457either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5458
5459@example
5460DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5461@end example
5462
5463or:
5464
5465@example
5466AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5467@end example
5468
5469@item
5470Finally, invoke the command @command{autoreconf} to generate the build
5471infrastructure.
5472@end enumerate
5473
bfa74976 5474
342b8b6e 5475@node Algorithm
13863333
AD
5476@chapter The Bison Parser Algorithm
5477@cindex Bison parser algorithm
bfa74976
RS
5478@cindex algorithm of parser
5479@cindex shifting
5480@cindex reduction
5481@cindex parser stack
5482@cindex stack, parser
5483
5484As Bison reads tokens, it pushes them onto a stack along with their
5485semantic values. The stack is called the @dfn{parser stack}. Pushing a
5486token is traditionally called @dfn{shifting}.
5487
5488For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5489@samp{3} to come. The stack will have four elements, one for each token
5490that was shifted.
5491
5492But the stack does not always have an element for each token read. When
5493the last @var{n} tokens and groupings shifted match the components of a
5494grammar rule, they can be combined according to that rule. This is called
5495@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5496single grouping whose symbol is the result (left hand side) of that rule.
5497Running the rule's action is part of the process of reduction, because this
5498is what computes the semantic value of the resulting grouping.
5499
5500For example, if the infix calculator's parser stack contains this:
5501
5502@example
55031 + 5 * 3
5504@end example
5505
5506@noindent
5507and the next input token is a newline character, then the last three
5508elements can be reduced to 15 via the rule:
5509
5510@example
5511expr: expr '*' expr;
5512@end example
5513
5514@noindent
5515Then the stack contains just these three elements:
5516
5517@example
55181 + 15
5519@end example
5520
5521@noindent
5522At this point, another reduction can be made, resulting in the single value
552316. Then the newline token can be shifted.
5524
5525The parser tries, by shifts and reductions, to reduce the entire input down
5526to a single grouping whose symbol is the grammar's start-symbol
5527(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5528
5529This kind of parser is known in the literature as a bottom-up parser.
5530
5531@menu
742e4900 5532* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
5533* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5534* Precedence:: Operator precedence works by resolving conflicts.
5535* Contextual Precedence:: When an operator's precedence depends on context.
5536* Parser States:: The parser is a finite-state-machine with stack.
5537* Reduce/Reduce:: When two rules are applicable in the same situation.
5538* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5539* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5540* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5541@end menu
5542
742e4900
JD
5543@node Lookahead
5544@section Lookahead Tokens
5545@cindex lookahead token
bfa74976
RS
5546
5547The Bison parser does @emph{not} always reduce immediately as soon as the
5548last @var{n} tokens and groupings match a rule. This is because such a
5549simple strategy is inadequate to handle most languages. Instead, when a
5550reduction is possible, the parser sometimes ``looks ahead'' at the next
5551token in order to decide what to do.
5552
5553When a token is read, it is not immediately shifted; first it becomes the
742e4900 5554@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 5555perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
5556the lookahead token remains off to the side. When no more reductions
5557should take place, the lookahead token is shifted onto the stack. This
bfa74976 5558does not mean that all possible reductions have been done; depending on the
742e4900 5559token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
5560application.
5561
742e4900 5562Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
5563expressions which contain binary addition operators and postfix unary
5564factorial operators (@samp{!}), and allow parentheses for grouping.
5565
5566@example
5567@group
5568expr: term '+' expr
5569 | term
5570 ;
5571@end group
5572
5573@group
5574term: '(' expr ')'
5575 | term '!'
5576 | NUMBER
5577 ;
5578@end group
5579@end example
5580
5581Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5582should be done? If the following token is @samp{)}, then the first three
5583tokens must be reduced to form an @code{expr}. This is the only valid
5584course, because shifting the @samp{)} would produce a sequence of symbols
5585@w{@code{term ')'}}, and no rule allows this.
5586
5587If the following token is @samp{!}, then it must be shifted immediately so
5588that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5589parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5590@code{expr}. It would then be impossible to shift the @samp{!} because
5591doing so would produce on the stack the sequence of symbols @code{expr
5592'!'}. No rule allows that sequence.
5593
5594@vindex yychar
32c29292
JD
5595@vindex yylval
5596@vindex yylloc
742e4900 5597The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
5598Its semantic value and location, if any, are stored in the variables
5599@code{yylval} and @code{yylloc}.
bfa74976
RS
5600@xref{Action Features, ,Special Features for Use in Actions}.
5601
342b8b6e 5602@node Shift/Reduce
bfa74976
RS
5603@section Shift/Reduce Conflicts
5604@cindex conflicts
5605@cindex shift/reduce conflicts
5606@cindex dangling @code{else}
5607@cindex @code{else}, dangling
5608
5609Suppose we are parsing a language which has if-then and if-then-else
5610statements, with a pair of rules like this:
5611
5612@example
5613@group
5614if_stmt:
5615 IF expr THEN stmt
5616 | IF expr THEN stmt ELSE stmt
5617 ;
5618@end group
5619@end example
5620
5621@noindent
5622Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5623terminal symbols for specific keyword tokens.
5624
742e4900 5625When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
5626contents of the stack (assuming the input is valid) are just right for
5627reduction by the first rule. But it is also legitimate to shift the
5628@code{ELSE}, because that would lead to eventual reduction by the second
5629rule.
5630
5631This situation, where either a shift or a reduction would be valid, is
5632called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5633these conflicts by choosing to shift, unless otherwise directed by
5634operator precedence declarations. To see the reason for this, let's
5635contrast it with the other alternative.
5636
5637Since the parser prefers to shift the @code{ELSE}, the result is to attach
5638the else-clause to the innermost if-statement, making these two inputs
5639equivalent:
5640
5641@example
5642if x then if y then win (); else lose;
5643
5644if x then do; if y then win (); else lose; end;
5645@end example
5646
5647But if the parser chose to reduce when possible rather than shift, the
5648result would be to attach the else-clause to the outermost if-statement,
5649making these two inputs equivalent:
5650
5651@example
5652if x then if y then win (); else lose;
5653
5654if x then do; if y then win (); end; else lose;
5655@end example
5656
5657The conflict exists because the grammar as written is ambiguous: either
5658parsing of the simple nested if-statement is legitimate. The established
5659convention is that these ambiguities are resolved by attaching the
5660else-clause to the innermost if-statement; this is what Bison accomplishes
5661by choosing to shift rather than reduce. (It would ideally be cleaner to
5662write an unambiguous grammar, but that is very hard to do in this case.)
5663This particular ambiguity was first encountered in the specifications of
5664Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5665
5666To avoid warnings from Bison about predictable, legitimate shift/reduce
5667conflicts, use the @code{%expect @var{n}} declaration. There will be no
5668warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5669@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5670
5671The definition of @code{if_stmt} above is solely to blame for the
5672conflict, but the conflict does not actually appear without additional
5673rules. Here is a complete Bison input file that actually manifests the
5674conflict:
5675
5676@example
5677@group
5678%token IF THEN ELSE variable
5679%%
5680@end group
5681@group
5682stmt: expr
5683 | if_stmt
5684 ;
5685@end group
5686
5687@group
5688if_stmt:
5689 IF expr THEN stmt
5690 | IF expr THEN stmt ELSE stmt
5691 ;
5692@end group
5693
5694expr: variable
5695 ;
5696@end example
5697
342b8b6e 5698@node Precedence
bfa74976
RS
5699@section Operator Precedence
5700@cindex operator precedence
5701@cindex precedence of operators
5702
5703Another situation where shift/reduce conflicts appear is in arithmetic
5704expressions. Here shifting is not always the preferred resolution; the
5705Bison declarations for operator precedence allow you to specify when to
5706shift and when to reduce.
5707
5708@menu
5709* Why Precedence:: An example showing why precedence is needed.
5710* Using Precedence:: How to specify precedence in Bison grammars.
5711* Precedence Examples:: How these features are used in the previous example.
5712* How Precedence:: How they work.
5713@end menu
5714
342b8b6e 5715@node Why Precedence
bfa74976
RS
5716@subsection When Precedence is Needed
5717
5718Consider the following ambiguous grammar fragment (ambiguous because the
5719input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5720
5721@example
5722@group
5723expr: expr '-' expr
5724 | expr '*' expr
5725 | expr '<' expr
5726 | '(' expr ')'
5727 @dots{}
5728 ;
5729@end group
5730@end example
5731
5732@noindent
5733Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5734should it reduce them via the rule for the subtraction operator? It
5735depends on the next token. Of course, if the next token is @samp{)}, we
5736must reduce; shifting is invalid because no single rule can reduce the
5737token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5738the next token is @samp{*} or @samp{<}, we have a choice: either
5739shifting or reduction would allow the parse to complete, but with
5740different results.
5741
5742To decide which one Bison should do, we must consider the results. If
5743the next operator token @var{op} is shifted, then it must be reduced
5744first in order to permit another opportunity to reduce the difference.
5745The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5746hand, if the subtraction is reduced before shifting @var{op}, the result
5747is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5748reduce should depend on the relative precedence of the operators
5749@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5750@samp{<}.
bfa74976
RS
5751
5752@cindex associativity
5753What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5754@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5755operators we prefer the former, which is called @dfn{left association}.
5756The latter alternative, @dfn{right association}, is desirable for
5757assignment operators. The choice of left or right association is a
5758matter of whether the parser chooses to shift or reduce when the stack
742e4900 5759contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 5760makes right-associativity.
bfa74976 5761
342b8b6e 5762@node Using Precedence
bfa74976
RS
5763@subsection Specifying Operator Precedence
5764@findex %left
5765@findex %right
5766@findex %nonassoc
5767
5768Bison allows you to specify these choices with the operator precedence
5769declarations @code{%left} and @code{%right}. Each such declaration
5770contains a list of tokens, which are operators whose precedence and
5771associativity is being declared. The @code{%left} declaration makes all
5772those operators left-associative and the @code{%right} declaration makes
5773them right-associative. A third alternative is @code{%nonassoc}, which
5774declares that it is a syntax error to find the same operator twice ``in a
5775row''.
5776
5777The relative precedence of different operators is controlled by the
5778order in which they are declared. The first @code{%left} or
5779@code{%right} declaration in the file declares the operators whose
5780precedence is lowest, the next such declaration declares the operators
5781whose precedence is a little higher, and so on.
5782
342b8b6e 5783@node Precedence Examples
bfa74976
RS
5784@subsection Precedence Examples
5785
5786In our example, we would want the following declarations:
5787
5788@example
5789%left '<'
5790%left '-'
5791%left '*'
5792@end example
5793
5794In a more complete example, which supports other operators as well, we
5795would declare them in groups of equal precedence. For example, @code{'+'} is
5796declared with @code{'-'}:
5797
5798@example
5799%left '<' '>' '=' NE LE GE
5800%left '+' '-'
5801%left '*' '/'
5802@end example
5803
5804@noindent
5805(Here @code{NE} and so on stand for the operators for ``not equal''
5806and so on. We assume that these tokens are more than one character long
5807and therefore are represented by names, not character literals.)
5808
342b8b6e 5809@node How Precedence
bfa74976
RS
5810@subsection How Precedence Works
5811
5812The first effect of the precedence declarations is to assign precedence
5813levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5814precedence levels to certain rules: each rule gets its precedence from
5815the last terminal symbol mentioned in the components. (You can also
5816specify explicitly the precedence of a rule. @xref{Contextual
5817Precedence, ,Context-Dependent Precedence}.)
5818
5819Finally, the resolution of conflicts works by comparing the precedence
742e4900 5820of the rule being considered with that of the lookahead token. If the
704a47c4
AD
5821token's precedence is higher, the choice is to shift. If the rule's
5822precedence is higher, the choice is to reduce. If they have equal
5823precedence, the choice is made based on the associativity of that
5824precedence level. The verbose output file made by @samp{-v}
5825(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5826resolved.
bfa74976
RS
5827
5828Not all rules and not all tokens have precedence. If either the rule or
742e4900 5829the lookahead token has no precedence, then the default is to shift.
bfa74976 5830
342b8b6e 5831@node Contextual Precedence
bfa74976
RS
5832@section Context-Dependent Precedence
5833@cindex context-dependent precedence
5834@cindex unary operator precedence
5835@cindex precedence, context-dependent
5836@cindex precedence, unary operator
5837@findex %prec
5838
5839Often the precedence of an operator depends on the context. This sounds
5840outlandish at first, but it is really very common. For example, a minus
5841sign typically has a very high precedence as a unary operator, and a
5842somewhat lower precedence (lower than multiplication) as a binary operator.
5843
5844The Bison precedence declarations, @code{%left}, @code{%right} and
5845@code{%nonassoc}, can only be used once for a given token; so a token has
5846only one precedence declared in this way. For context-dependent
5847precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5848modifier for rules.
bfa74976
RS
5849
5850The @code{%prec} modifier declares the precedence of a particular rule by
5851specifying a terminal symbol whose precedence should be used for that rule.
5852It's not necessary for that symbol to appear otherwise in the rule. The
5853modifier's syntax is:
5854
5855@example
5856%prec @var{terminal-symbol}
5857@end example
5858
5859@noindent
5860and it is written after the components of the rule. Its effect is to
5861assign the rule the precedence of @var{terminal-symbol}, overriding
5862the precedence that would be deduced for it in the ordinary way. The
5863altered rule precedence then affects how conflicts involving that rule
5864are resolved (@pxref{Precedence, ,Operator Precedence}).
5865
5866Here is how @code{%prec} solves the problem of unary minus. First, declare
5867a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5868are no tokens of this type, but the symbol serves to stand for its
5869precedence:
5870
5871@example
5872@dots{}
5873%left '+' '-'
5874%left '*'
5875%left UMINUS
5876@end example
5877
5878Now the precedence of @code{UMINUS} can be used in specific rules:
5879
5880@example
5881@group
5882exp: @dots{}
5883 | exp '-' exp
5884 @dots{}
5885 | '-' exp %prec UMINUS
5886@end group
5887@end example
5888
91d2c560 5889@ifset defaultprec
39a06c25
PE
5890If you forget to append @code{%prec UMINUS} to the rule for unary
5891minus, Bison silently assumes that minus has its usual precedence.
5892This kind of problem can be tricky to debug, since one typically
5893discovers the mistake only by testing the code.
5894
22fccf95 5895The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5896this kind of problem systematically. It causes rules that lack a
5897@code{%prec} modifier to have no precedence, even if the last terminal
5898symbol mentioned in their components has a declared precedence.
5899
22fccf95 5900If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5901for all rules that participate in precedence conflict resolution.
5902Then you will see any shift/reduce conflict until you tell Bison how
5903to resolve it, either by changing your grammar or by adding an
5904explicit precedence. This will probably add declarations to the
5905grammar, but it helps to protect against incorrect rule precedences.
5906
22fccf95
PE
5907The effect of @code{%no-default-prec;} can be reversed by giving
5908@code{%default-prec;}, which is the default.
91d2c560 5909@end ifset
39a06c25 5910
342b8b6e 5911@node Parser States
bfa74976
RS
5912@section Parser States
5913@cindex finite-state machine
5914@cindex parser state
5915@cindex state (of parser)
5916
5917The function @code{yyparse} is implemented using a finite-state machine.
5918The values pushed on the parser stack are not simply token type codes; they
5919represent the entire sequence of terminal and nonterminal symbols at or
5920near the top of the stack. The current state collects all the information
5921about previous input which is relevant to deciding what to do next.
5922
742e4900
JD
5923Each time a lookahead token is read, the current parser state together
5924with the type of lookahead token are looked up in a table. This table
5925entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
5926specifies the new parser state, which is pushed onto the top of the
5927parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5928This means that a certain number of tokens or groupings are taken off
5929the top of the stack, and replaced by one grouping. In other words,
5930that number of states are popped from the stack, and one new state is
5931pushed.
5932
742e4900 5933There is one other alternative: the table can say that the lookahead token
bfa74976
RS
5934is erroneous in the current state. This causes error processing to begin
5935(@pxref{Error Recovery}).
5936
342b8b6e 5937@node Reduce/Reduce
bfa74976
RS
5938@section Reduce/Reduce Conflicts
5939@cindex reduce/reduce conflict
5940@cindex conflicts, reduce/reduce
5941
5942A reduce/reduce conflict occurs if there are two or more rules that apply
5943to the same sequence of input. This usually indicates a serious error
5944in the grammar.
5945
5946For example, here is an erroneous attempt to define a sequence
5947of zero or more @code{word} groupings.
5948
5949@example
5950sequence: /* empty */
5951 @{ printf ("empty sequence\n"); @}
5952 | maybeword
5953 | sequence word
5954 @{ printf ("added word %s\n", $2); @}
5955 ;
5956
5957maybeword: /* empty */
5958 @{ printf ("empty maybeword\n"); @}
5959 | word
5960 @{ printf ("single word %s\n", $1); @}
5961 ;
5962@end example
5963
5964@noindent
5965The error is an ambiguity: there is more than one way to parse a single
5966@code{word} into a @code{sequence}. It could be reduced to a
5967@code{maybeword} and then into a @code{sequence} via the second rule.
5968Alternatively, nothing-at-all could be reduced into a @code{sequence}
5969via the first rule, and this could be combined with the @code{word}
5970using the third rule for @code{sequence}.
5971
5972There is also more than one way to reduce nothing-at-all into a
5973@code{sequence}. This can be done directly via the first rule,
5974or indirectly via @code{maybeword} and then the second rule.
5975
5976You might think that this is a distinction without a difference, because it
5977does not change whether any particular input is valid or not. But it does
5978affect which actions are run. One parsing order runs the second rule's
5979action; the other runs the first rule's action and the third rule's action.
5980In this example, the output of the program changes.
5981
5982Bison resolves a reduce/reduce conflict by choosing to use the rule that
5983appears first in the grammar, but it is very risky to rely on this. Every
5984reduce/reduce conflict must be studied and usually eliminated. Here is the
5985proper way to define @code{sequence}:
5986
5987@example
5988sequence: /* empty */
5989 @{ printf ("empty sequence\n"); @}
5990 | sequence word
5991 @{ printf ("added word %s\n", $2); @}
5992 ;
5993@end example
5994
5995Here is another common error that yields a reduce/reduce conflict:
5996
5997@example
5998sequence: /* empty */
5999 | sequence words
6000 | sequence redirects
6001 ;
6002
6003words: /* empty */
6004 | words word
6005 ;
6006
6007redirects:/* empty */
6008 | redirects redirect
6009 ;
6010@end example
6011
6012@noindent
6013The intention here is to define a sequence which can contain either
6014@code{word} or @code{redirect} groupings. The individual definitions of
6015@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6016three together make a subtle ambiguity: even an empty input can be parsed
6017in infinitely many ways!
6018
6019Consider: nothing-at-all could be a @code{words}. Or it could be two
6020@code{words} in a row, or three, or any number. It could equally well be a
6021@code{redirects}, or two, or any number. Or it could be a @code{words}
6022followed by three @code{redirects} and another @code{words}. And so on.
6023
6024Here are two ways to correct these rules. First, to make it a single level
6025of sequence:
6026
6027@example
6028sequence: /* empty */
6029 | sequence word
6030 | sequence redirect
6031 ;
6032@end example
6033
6034Second, to prevent either a @code{words} or a @code{redirects}
6035from being empty:
6036
6037@example
6038sequence: /* empty */
6039 | sequence words
6040 | sequence redirects
6041 ;
6042
6043words: word
6044 | words word
6045 ;
6046
6047redirects:redirect
6048 | redirects redirect
6049 ;
6050@end example
6051
342b8b6e 6052@node Mystery Conflicts
bfa74976
RS
6053@section Mysterious Reduce/Reduce Conflicts
6054
6055Sometimes reduce/reduce conflicts can occur that don't look warranted.
6056Here is an example:
6057
6058@example
6059@group
6060%token ID
6061
6062%%
6063def: param_spec return_spec ','
6064 ;
6065param_spec:
6066 type
6067 | name_list ':' type
6068 ;
6069@end group
6070@group
6071return_spec:
6072 type
6073 | name ':' type
6074 ;
6075@end group
6076@group
6077type: ID
6078 ;
6079@end group
6080@group
6081name: ID
6082 ;
6083name_list:
6084 name
6085 | name ',' name_list
6086 ;
6087@end group
6088@end example
6089
6090It would seem that this grammar can be parsed with only a single token
742e4900 6091of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6092a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6093@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6094
c827f760
PE
6095@cindex @acronym{LR}(1)
6096@cindex @acronym{LALR}(1)
bfa74976 6097However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6098@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6099an @code{ID}
bfa74976
RS
6100at the beginning of a @code{param_spec} and likewise at the beginning of
6101a @code{return_spec}, are similar enough that Bison assumes they are the
6102same. They appear similar because the same set of rules would be
6103active---the rule for reducing to a @code{name} and that for reducing to
6104a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6105that the rules would require different lookahead tokens in the two
bfa74976
RS
6106contexts, so it makes a single parser state for them both. Combining
6107the two contexts causes a conflict later. In parser terminology, this
c827f760 6108occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6109
6110In general, it is better to fix deficiencies than to document them. But
6111this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6112generators that can handle @acronym{LR}(1) grammars are hard to write
6113and tend to
bfa74976
RS
6114produce parsers that are very large. In practice, Bison is more useful
6115as it is now.
6116
6117When the problem arises, you can often fix it by identifying the two
a220f555
MA
6118parser states that are being confused, and adding something to make them
6119look distinct. In the above example, adding one rule to
bfa74976
RS
6120@code{return_spec} as follows makes the problem go away:
6121
6122@example
6123@group
6124%token BOGUS
6125@dots{}
6126%%
6127@dots{}
6128return_spec:
6129 type
6130 | name ':' type
6131 /* This rule is never used. */
6132 | ID BOGUS
6133 ;
6134@end group
6135@end example
6136
6137This corrects the problem because it introduces the possibility of an
6138additional active rule in the context after the @code{ID} at the beginning of
6139@code{return_spec}. This rule is not active in the corresponding context
6140in a @code{param_spec}, so the two contexts receive distinct parser states.
6141As long as the token @code{BOGUS} is never generated by @code{yylex},
6142the added rule cannot alter the way actual input is parsed.
6143
6144In this particular example, there is another way to solve the problem:
6145rewrite the rule for @code{return_spec} to use @code{ID} directly
6146instead of via @code{name}. This also causes the two confusing
6147contexts to have different sets of active rules, because the one for
6148@code{return_spec} activates the altered rule for @code{return_spec}
6149rather than the one for @code{name}.
6150
6151@example
6152param_spec:
6153 type
6154 | name_list ':' type
6155 ;
6156return_spec:
6157 type
6158 | ID ':' type
6159 ;
6160@end example
6161
e054b190
PE
6162For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6163generators, please see:
6164Frank DeRemer and Thomas Pennello, Efficient Computation of
6165@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6166Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6167pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6168
fae437e8 6169@node Generalized LR Parsing
c827f760
PE
6170@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6171@cindex @acronym{GLR} parsing
6172@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6173@cindex ambiguous grammars
9d9b8b70 6174@cindex nondeterministic parsing
676385e2 6175
fae437e8
AD
6176Bison produces @emph{deterministic} parsers that choose uniquely
6177when to reduce and which reduction to apply
742e4900 6178based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6179As a result, normal Bison handles a proper subset of the family of
6180context-free languages.
fae437e8 6181Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6182sequence of reductions cannot have deterministic parsers in this sense.
6183The same is true of languages that require more than one symbol of
742e4900 6184lookahead, since the parser lacks the information necessary to make a
676385e2 6185decision at the point it must be made in a shift-reduce parser.
fae437e8 6186Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6187there are languages where Bison's particular choice of how to
6188summarize the input seen so far loses necessary information.
6189
6190When you use the @samp{%glr-parser} declaration in your grammar file,
6191Bison generates a parser that uses a different algorithm, called
c827f760
PE
6192Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6193parser uses the same basic
676385e2
PH
6194algorithm for parsing as an ordinary Bison parser, but behaves
6195differently in cases where there is a shift-reduce conflict that has not
fae437e8 6196been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6197reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6198situation, it
fae437e8 6199effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6200shift or reduction. These parsers then proceed as usual, consuming
6201tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6202and split further, with the result that instead of a sequence of states,
c827f760 6203a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6204
6205In effect, each stack represents a guess as to what the proper parse
6206is. Additional input may indicate that a guess was wrong, in which case
6207the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6208actions generated in each stack are saved, rather than being executed
676385e2 6209immediately. When a stack disappears, its saved semantic actions never
fae437e8 6210get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6211their sets of semantic actions are both saved with the state that
6212results from the reduction. We say that two stacks are equivalent
fae437e8 6213when they both represent the same sequence of states,
676385e2
PH
6214and each pair of corresponding states represents a
6215grammar symbol that produces the same segment of the input token
6216stream.
6217
6218Whenever the parser makes a transition from having multiple
c827f760 6219states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6220algorithm, after resolving and executing the saved-up actions.
6221At this transition, some of the states on the stack will have semantic
6222values that are sets (actually multisets) of possible actions. The
6223parser tries to pick one of the actions by first finding one whose rule
6224has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6225declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6226precedence, but there the same merging function is declared for both
fae437e8 6227rules by the @samp{%merge} declaration,
676385e2
PH
6228Bison resolves and evaluates both and then calls the merge function on
6229the result. Otherwise, it reports an ambiguity.
6230
c827f760
PE
6231It is possible to use a data structure for the @acronym{GLR} parsing tree that
6232permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6233size of the input), any unambiguous (not necessarily
6234@acronym{LALR}(1)) grammar in
fae437e8 6235quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6236context-free grammar in cubic worst-case time. However, Bison currently
6237uses a simpler data structure that requires time proportional to the
6238length of the input times the maximum number of stacks required for any
9d9b8b70 6239prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6240grammars can require exponential time and space to process. Such badly
6241behaving examples, however, are not generally of practical interest.
9d9b8b70 6242Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6243doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6244structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6245grammar, in particular, it is only slightly slower than with the default
6246Bison parser.
6247
fa7e68c3 6248For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6249Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6250Generalised @acronym{LR} Parsers, Royal Holloway, University of
6251London, Department of Computer Science, TR-00-12,
6252@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6253(2000-12-24).
6254
1a059451
PE
6255@node Memory Management
6256@section Memory Management, and How to Avoid Memory Exhaustion
6257@cindex memory exhaustion
6258@cindex memory management
bfa74976
RS
6259@cindex stack overflow
6260@cindex parser stack overflow
6261@cindex overflow of parser stack
6262
1a059451 6263The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6264not reduced. When this happens, the parser function @code{yyparse}
1a059451 6265calls @code{yyerror} and then returns 2.
bfa74976 6266
c827f760 6267Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6268usually results from using a right recursion instead of a left
6269recursion, @xref{Recursion, ,Recursive Rules}.
6270
bfa74976
RS
6271@vindex YYMAXDEPTH
6272By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6273parser stack can become before memory is exhausted. Define the
bfa74976
RS
6274macro with a value that is an integer. This value is the maximum number
6275of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6276
6277The stack space allowed is not necessarily allocated. If you specify a
1a059451 6278large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6279stack at first, and then makes it bigger by stages as needed. This
6280increasing allocation happens automatically and silently. Therefore,
6281you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6282space for ordinary inputs that do not need much stack.
6283
d7e14fc0
PE
6284However, do not allow @code{YYMAXDEPTH} to be a value so large that
6285arithmetic overflow could occur when calculating the size of the stack
6286space. Also, do not allow @code{YYMAXDEPTH} to be less than
6287@code{YYINITDEPTH}.
6288
bfa74976
RS
6289@cindex default stack limit
6290The default value of @code{YYMAXDEPTH}, if you do not define it, is
629110000.
6292
6293@vindex YYINITDEPTH
6294You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6295macro @code{YYINITDEPTH} to a positive integer. For the C
6296@acronym{LALR}(1) parser, this value must be a compile-time constant
6297unless you are assuming C99 or some other target language or compiler
6298that allows variable-length arrays. The default is 200.
6299
1a059451 6300Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6301
d1a1114f 6302@c FIXME: C++ output.
c827f760 6303Because of semantical differences between C and C++, the
1a059451
PE
6304@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6305by C++ compilers. In this precise case (compiling a C parser as C++) you are
6306suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6307this deficiency in a future release.
d1a1114f 6308
342b8b6e 6309@node Error Recovery
bfa74976
RS
6310@chapter Error Recovery
6311@cindex error recovery
6312@cindex recovery from errors
6313
6e649e65 6314It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6315error. For example, a compiler should recover sufficiently to parse the
6316rest of the input file and check it for errors; a calculator should accept
6317another expression.
6318
6319In a simple interactive command parser where each input is one line, it may
6320be sufficient to allow @code{yyparse} to return 1 on error and have the
6321caller ignore the rest of the input line when that happens (and then call
6322@code{yyparse} again). But this is inadequate for a compiler, because it
6323forgets all the syntactic context leading up to the error. A syntax error
6324deep within a function in the compiler input should not cause the compiler
6325to treat the following line like the beginning of a source file.
6326
6327@findex error
6328You can define how to recover from a syntax error by writing rules to
6329recognize the special token @code{error}. This is a terminal symbol that
6330is always defined (you need not declare it) and reserved for error
6331handling. The Bison parser generates an @code{error} token whenever a
6332syntax error happens; if you have provided a rule to recognize this token
13863333 6333in the current context, the parse can continue.
bfa74976
RS
6334
6335For example:
6336
6337@example
6338stmnts: /* empty string */
6339 | stmnts '\n'
6340 | stmnts exp '\n'
6341 | stmnts error '\n'
6342@end example
6343
6344The fourth rule in this example says that an error followed by a newline
6345makes a valid addition to any @code{stmnts}.
6346
6347What happens if a syntax error occurs in the middle of an @code{exp}? The
6348error recovery rule, interpreted strictly, applies to the precise sequence
6349of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6350the middle of an @code{exp}, there will probably be some additional tokens
6351and subexpressions on the stack after the last @code{stmnts}, and there
6352will be tokens to read before the next newline. So the rule is not
6353applicable in the ordinary way.
6354
6355But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6356the semantic context and part of the input. First it discards states
6357and objects from the stack until it gets back to a state in which the
bfa74976 6358@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6359already parsed are discarded, back to the last complete @code{stmnts}.)
6360At this point the @code{error} token can be shifted. Then, if the old
742e4900 6361lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6362tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6363this example, Bison reads and discards input until the next newline so
6364that the fourth rule can apply. Note that discarded symbols are
6365possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6366Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6367
6368The choice of error rules in the grammar is a choice of strategies for
6369error recovery. A simple and useful strategy is simply to skip the rest of
6370the current input line or current statement if an error is detected:
6371
6372@example
72d2299c 6373stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6374@end example
6375
6376It is also useful to recover to the matching close-delimiter of an
6377opening-delimiter that has already been parsed. Otherwise the
6378close-delimiter will probably appear to be unmatched, and generate another,
6379spurious error message:
6380
6381@example
6382primary: '(' expr ')'
6383 | '(' error ')'
6384 @dots{}
6385 ;
6386@end example
6387
6388Error recovery strategies are necessarily guesses. When they guess wrong,
6389one syntax error often leads to another. In the above example, the error
6390recovery rule guesses that an error is due to bad input within one
6391@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6392middle of a valid @code{stmnt}. After the error recovery rule recovers
6393from the first error, another syntax error will be found straightaway,
6394since the text following the spurious semicolon is also an invalid
6395@code{stmnt}.
6396
6397To prevent an outpouring of error messages, the parser will output no error
6398message for another syntax error that happens shortly after the first; only
6399after three consecutive input tokens have been successfully shifted will
6400error messages resume.
6401
6402Note that rules which accept the @code{error} token may have actions, just
6403as any other rules can.
6404
6405@findex yyerrok
6406You can make error messages resume immediately by using the macro
6407@code{yyerrok} in an action. If you do this in the error rule's action, no
6408error messages will be suppressed. This macro requires no arguments;
6409@samp{yyerrok;} is a valid C statement.
6410
6411@findex yyclearin
742e4900 6412The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6413this is unacceptable, then the macro @code{yyclearin} may be used to clear
6414this token. Write the statement @samp{yyclearin;} in the error rule's
6415action.
32c29292 6416@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6417
6e649e65 6418For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6419called that advances the input stream to some point where parsing should
6420once again commence. The next symbol returned by the lexical scanner is
742e4900 6421probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6422with @samp{yyclearin;}.
6423
6424@vindex YYRECOVERING
02103984
PE
6425The expression @code{YYRECOVERING ()} yields 1 when the parser
6426is recovering from a syntax error, and 0 otherwise.
6427Syntax error diagnostics are suppressed while recovering from a syntax
6428error.
bfa74976 6429
342b8b6e 6430@node Context Dependency
bfa74976
RS
6431@chapter Handling Context Dependencies
6432
6433The Bison paradigm is to parse tokens first, then group them into larger
6434syntactic units. In many languages, the meaning of a token is affected by
6435its context. Although this violates the Bison paradigm, certain techniques
6436(known as @dfn{kludges}) may enable you to write Bison parsers for such
6437languages.
6438
6439@menu
6440* Semantic Tokens:: Token parsing can depend on the semantic context.
6441* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6442* Tie-in Recovery:: Lexical tie-ins have implications for how
6443 error recovery rules must be written.
6444@end menu
6445
6446(Actually, ``kludge'' means any technique that gets its job done but is
6447neither clean nor robust.)
6448
342b8b6e 6449@node Semantic Tokens
bfa74976
RS
6450@section Semantic Info in Token Types
6451
6452The C language has a context dependency: the way an identifier is used
6453depends on what its current meaning is. For example, consider this:
6454
6455@example
6456foo (x);
6457@end example
6458
6459This looks like a function call statement, but if @code{foo} is a typedef
6460name, then this is actually a declaration of @code{x}. How can a Bison
6461parser for C decide how to parse this input?
6462
c827f760 6463The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6464@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6465identifier, it looks up the current declaration of the identifier in order
6466to decide which token type to return: @code{TYPENAME} if the identifier is
6467declared as a typedef, @code{IDENTIFIER} otherwise.
6468
6469The grammar rules can then express the context dependency by the choice of
6470token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6471but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6472@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6473is @emph{not} significant, such as in declarations that can shadow a
6474typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6475accepted---there is one rule for each of the two token types.
6476
6477This technique is simple to use if the decision of which kinds of
6478identifiers to allow is made at a place close to where the identifier is
6479parsed. But in C this is not always so: C allows a declaration to
6480redeclare a typedef name provided an explicit type has been specified
6481earlier:
6482
6483@example
3a4f411f
PE
6484typedef int foo, bar;
6485int baz (void)
6486@{
6487 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6488 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6489 return foo (bar);
6490@}
bfa74976
RS
6491@end example
6492
6493Unfortunately, the name being declared is separated from the declaration
6494construct itself by a complicated syntactic structure---the ``declarator''.
6495
9ecbd125 6496As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6497all the nonterminal names changed: once for parsing a declaration in
6498which a typedef name can be redefined, and once for parsing a
6499declaration in which that can't be done. Here is a part of the
6500duplication, with actions omitted for brevity:
bfa74976
RS
6501
6502@example
6503initdcl:
6504 declarator maybeasm '='
6505 init
6506 | declarator maybeasm
6507 ;
6508
6509notype_initdcl:
6510 notype_declarator maybeasm '='
6511 init
6512 | notype_declarator maybeasm
6513 ;
6514@end example
6515
6516@noindent
6517Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6518cannot. The distinction between @code{declarator} and
6519@code{notype_declarator} is the same sort of thing.
6520
6521There is some similarity between this technique and a lexical tie-in
6522(described next), in that information which alters the lexical analysis is
6523changed during parsing by other parts of the program. The difference is
6524here the information is global, and is used for other purposes in the
6525program. A true lexical tie-in has a special-purpose flag controlled by
6526the syntactic context.
6527
342b8b6e 6528@node Lexical Tie-ins
bfa74976
RS
6529@section Lexical Tie-ins
6530@cindex lexical tie-in
6531
6532One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6533which is set by Bison actions, whose purpose is to alter the way tokens are
6534parsed.
6535
6536For example, suppose we have a language vaguely like C, but with a special
6537construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6538an expression in parentheses in which all integers are hexadecimal. In
6539particular, the token @samp{a1b} must be treated as an integer rather than
6540as an identifier if it appears in that context. Here is how you can do it:
6541
6542@example
6543@group
6544%@{
38a92d50
PE
6545 int hexflag;
6546 int yylex (void);
6547 void yyerror (char const *);
bfa74976
RS
6548%@}
6549%%
6550@dots{}
6551@end group
6552@group
6553expr: IDENTIFIER
6554 | constant
6555 | HEX '('
6556 @{ hexflag = 1; @}
6557 expr ')'
6558 @{ hexflag = 0;
6559 $$ = $4; @}
6560 | expr '+' expr
6561 @{ $$ = make_sum ($1, $3); @}
6562 @dots{}
6563 ;
6564@end group
6565
6566@group
6567constant:
6568 INTEGER
6569 | STRING
6570 ;
6571@end group
6572@end example
6573
6574@noindent
6575Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6576it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6577with letters are parsed as integers if possible.
6578
342b8b6e
AD
6579The declaration of @code{hexflag} shown in the prologue of the parser file
6580is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6581You must also write the code in @code{yylex} to obey the flag.
bfa74976 6582
342b8b6e 6583@node Tie-in Recovery
bfa74976
RS
6584@section Lexical Tie-ins and Error Recovery
6585
6586Lexical tie-ins make strict demands on any error recovery rules you have.
6587@xref{Error Recovery}.
6588
6589The reason for this is that the purpose of an error recovery rule is to
6590abort the parsing of one construct and resume in some larger construct.
6591For example, in C-like languages, a typical error recovery rule is to skip
6592tokens until the next semicolon, and then start a new statement, like this:
6593
6594@example
6595stmt: expr ';'
6596 | IF '(' expr ')' stmt @{ @dots{} @}
6597 @dots{}
6598 error ';'
6599 @{ hexflag = 0; @}
6600 ;
6601@end example
6602
6603If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6604construct, this error rule will apply, and then the action for the
6605completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6606remain set for the entire rest of the input, or until the next @code{hex}
6607keyword, causing identifiers to be misinterpreted as integers.
6608
6609To avoid this problem the error recovery rule itself clears @code{hexflag}.
6610
6611There may also be an error recovery rule that works within expressions.
6612For example, there could be a rule which applies within parentheses
6613and skips to the close-parenthesis:
6614
6615@example
6616@group
6617expr: @dots{}
6618 | '(' expr ')'
6619 @{ $$ = $2; @}
6620 | '(' error ')'
6621 @dots{}
6622@end group
6623@end example
6624
6625If this rule acts within the @code{hex} construct, it is not going to abort
6626that construct (since it applies to an inner level of parentheses within
6627the construct). Therefore, it should not clear the flag: the rest of
6628the @code{hex} construct should be parsed with the flag still in effect.
6629
6630What if there is an error recovery rule which might abort out of the
6631@code{hex} construct or might not, depending on circumstances? There is no
6632way you can write the action to determine whether a @code{hex} construct is
6633being aborted or not. So if you are using a lexical tie-in, you had better
6634make sure your error recovery rules are not of this kind. Each rule must
6635be such that you can be sure that it always will, or always won't, have to
6636clear the flag.
6637
ec3bc396
AD
6638@c ================================================== Debugging Your Parser
6639
342b8b6e 6640@node Debugging
bfa74976 6641@chapter Debugging Your Parser
ec3bc396
AD
6642
6643Developing a parser can be a challenge, especially if you don't
6644understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6645Algorithm}). Even so, sometimes a detailed description of the automaton
6646can help (@pxref{Understanding, , Understanding Your Parser}), or
6647tracing the execution of the parser can give some insight on why it
6648behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6649
6650@menu
6651* Understanding:: Understanding the structure of your parser.
6652* Tracing:: Tracing the execution of your parser.
6653@end menu
6654
6655@node Understanding
6656@section Understanding Your Parser
6657
6658As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6659Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6660frequent than one would hope), looking at this automaton is required to
6661tune or simply fix a parser. Bison provides two different
35fe0834 6662representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
6663
6664The textual file is generated when the options @option{--report} or
6665@option{--verbose} are specified, see @xref{Invocation, , Invoking
6666Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6667the parser output file name, and adding @samp{.output} instead.
6668Therefore, if the input file is @file{foo.y}, then the parser file is
6669called @file{foo.tab.c} by default. As a consequence, the verbose
6670output file is called @file{foo.output}.
6671
6672The following grammar file, @file{calc.y}, will be used in the sequel:
6673
6674@example
6675%token NUM STR
6676%left '+' '-'
6677%left '*'
6678%%
6679exp: exp '+' exp
6680 | exp '-' exp
6681 | exp '*' exp
6682 | exp '/' exp
6683 | NUM
6684 ;
6685useless: STR;
6686%%
6687@end example
6688
88bce5a2
AD
6689@command{bison} reports:
6690
6691@example
6692calc.y: warning: 1 useless nonterminal and 1 useless rule
6693calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6694calc.y:11.10-12: warning: useless rule: useless: STR
6695calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6696@end example
6697
6698When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6699creates a file @file{calc.output} with contents detailed below. The
6700order of the output and the exact presentation might vary, but the
6701interpretation is the same.
ec3bc396
AD
6702
6703The first section includes details on conflicts that were solved thanks
6704to precedence and/or associativity:
6705
6706@example
6707Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6708Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6709Conflict in state 8 between rule 2 and token '*' resolved as shift.
6710@exdent @dots{}
6711@end example
6712
6713@noindent
6714The next section lists states that still have conflicts.
6715
6716@example
5a99098d
PE
6717State 8 conflicts: 1 shift/reduce
6718State 9 conflicts: 1 shift/reduce
6719State 10 conflicts: 1 shift/reduce
6720State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6721@end example
6722
6723@noindent
6724@cindex token, useless
6725@cindex useless token
6726@cindex nonterminal, useless
6727@cindex useless nonterminal
6728@cindex rule, useless
6729@cindex useless rule
6730The next section reports useless tokens, nonterminal and rules. Useless
6731nonterminals and rules are removed in order to produce a smaller parser,
6732but useless tokens are preserved, since they might be used by the
6733scanner (note the difference between ``useless'' and ``not used''
6734below):
6735
6736@example
6737Useless nonterminals:
6738 useless
6739
6740Terminals which are not used:
6741 STR
6742
6743Useless rules:
6744#6 useless: STR;
6745@end example
6746
6747@noindent
6748The next section reproduces the exact grammar that Bison used:
6749
6750@example
6751Grammar
6752
6753 Number, Line, Rule
88bce5a2 6754 0 5 $accept -> exp $end
ec3bc396
AD
6755 1 5 exp -> exp '+' exp
6756 2 6 exp -> exp '-' exp
6757 3 7 exp -> exp '*' exp
6758 4 8 exp -> exp '/' exp
6759 5 9 exp -> NUM
6760@end example
6761
6762@noindent
6763and reports the uses of the symbols:
6764
6765@example
6766Terminals, with rules where they appear
6767
88bce5a2 6768$end (0) 0
ec3bc396
AD
6769'*' (42) 3
6770'+' (43) 1
6771'-' (45) 2
6772'/' (47) 4
6773error (256)
6774NUM (258) 5
6775
6776Nonterminals, with rules where they appear
6777
88bce5a2 6778$accept (8)
ec3bc396
AD
6779 on left: 0
6780exp (9)
6781 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6782@end example
6783
6784@noindent
6785@cindex item
6786@cindex pointed rule
6787@cindex rule, pointed
6788Bison then proceeds onto the automaton itself, describing each state
6789with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6790item is a production rule together with a point (marked by @samp{.})
6791that the input cursor.
6792
6793@example
6794state 0
6795
88bce5a2 6796 $accept -> . exp $ (rule 0)
ec3bc396 6797
2a8d363a 6798 NUM shift, and go to state 1
ec3bc396 6799
2a8d363a 6800 exp go to state 2
ec3bc396
AD
6801@end example
6802
6803This reads as follows: ``state 0 corresponds to being at the very
6804beginning of the parsing, in the initial rule, right before the start
6805symbol (here, @code{exp}). When the parser returns to this state right
6806after having reduced a rule that produced an @code{exp}, the control
6807flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 6808symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 6809the parse stack, and the control flow jumps to state 1. Any other
742e4900 6810lookahead triggers a syntax error.''
ec3bc396
AD
6811
6812@cindex core, item set
6813@cindex item set core
6814@cindex kernel, item set
6815@cindex item set core
6816Even though the only active rule in state 0 seems to be rule 0, the
742e4900 6817report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
6818at the beginning of any rule deriving an @code{exp}. By default Bison
6819reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6820you want to see more detail you can invoke @command{bison} with
6821@option{--report=itemset} to list all the items, include those that can
6822be derived:
6823
6824@example
6825state 0
6826
88bce5a2 6827 $accept -> . exp $ (rule 0)
ec3bc396
AD
6828 exp -> . exp '+' exp (rule 1)
6829 exp -> . exp '-' exp (rule 2)
6830 exp -> . exp '*' exp (rule 3)
6831 exp -> . exp '/' exp (rule 4)
6832 exp -> . NUM (rule 5)
6833
6834 NUM shift, and go to state 1
6835
6836 exp go to state 2
6837@end example
6838
6839@noindent
6840In the state 1...
6841
6842@example
6843state 1
6844
6845 exp -> NUM . (rule 5)
6846
2a8d363a 6847 $default reduce using rule 5 (exp)
ec3bc396
AD
6848@end example
6849
6850@noindent
742e4900 6851the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
6852(@samp{$default}), the parser will reduce it. If it was coming from
6853state 0, then, after this reduction it will return to state 0, and will
6854jump to state 2 (@samp{exp: go to state 2}).
6855
6856@example
6857state 2
6858
88bce5a2 6859 $accept -> exp . $ (rule 0)
ec3bc396
AD
6860 exp -> exp . '+' exp (rule 1)
6861 exp -> exp . '-' exp (rule 2)
6862 exp -> exp . '*' exp (rule 3)
6863 exp -> exp . '/' exp (rule 4)
6864
2a8d363a
AD
6865 $ shift, and go to state 3
6866 '+' shift, and go to state 4
6867 '-' shift, and go to state 5
6868 '*' shift, and go to state 6
6869 '/' shift, and go to state 7
ec3bc396
AD
6870@end example
6871
6872@noindent
6873In state 2, the automaton can only shift a symbol. For instance,
742e4900 6874because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
6875@samp{+}, it will be shifted on the parse stack, and the automaton
6876control will jump to state 4, corresponding to the item @samp{exp -> exp
6877'+' . exp}. Since there is no default action, any other token than
6e649e65 6878those listed above will trigger a syntax error.
ec3bc396
AD
6879
6880The state 3 is named the @dfn{final state}, or the @dfn{accepting
6881state}:
6882
6883@example
6884state 3
6885
88bce5a2 6886 $accept -> exp $ . (rule 0)
ec3bc396 6887
2a8d363a 6888 $default accept
ec3bc396
AD
6889@end example
6890
6891@noindent
6892the initial rule is completed (the start symbol and the end
6893of input were read), the parsing exits successfully.
6894
6895The interpretation of states 4 to 7 is straightforward, and is left to
6896the reader.
6897
6898@example
6899state 4
6900
6901 exp -> exp '+' . exp (rule 1)
6902
2a8d363a 6903 NUM shift, and go to state 1
ec3bc396 6904
2a8d363a 6905 exp go to state 8
ec3bc396
AD
6906
6907state 5
6908
6909 exp -> exp '-' . exp (rule 2)
6910
2a8d363a 6911 NUM shift, and go to state 1
ec3bc396 6912
2a8d363a 6913 exp go to state 9
ec3bc396
AD
6914
6915state 6
6916
6917 exp -> exp '*' . exp (rule 3)
6918
2a8d363a 6919 NUM shift, and go to state 1
ec3bc396 6920
2a8d363a 6921 exp go to state 10
ec3bc396
AD
6922
6923state 7
6924
6925 exp -> exp '/' . exp (rule 4)
6926
2a8d363a 6927 NUM shift, and go to state 1
ec3bc396 6928
2a8d363a 6929 exp go to state 11
ec3bc396
AD
6930@end example
6931
5a99098d
PE
6932As was announced in beginning of the report, @samp{State 8 conflicts:
69331 shift/reduce}:
ec3bc396
AD
6934
6935@example
6936state 8
6937
6938 exp -> exp . '+' exp (rule 1)
6939 exp -> exp '+' exp . (rule 1)
6940 exp -> exp . '-' exp (rule 2)
6941 exp -> exp . '*' exp (rule 3)
6942 exp -> exp . '/' exp (rule 4)
6943
2a8d363a
AD
6944 '*' shift, and go to state 6
6945 '/' shift, and go to state 7
ec3bc396 6946
2a8d363a
AD
6947 '/' [reduce using rule 1 (exp)]
6948 $default reduce using rule 1 (exp)
ec3bc396
AD
6949@end example
6950
742e4900 6951Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
6952either shifting (and going to state 7), or reducing rule 1. The
6953conflict means that either the grammar is ambiguous, or the parser lacks
6954information to make the right decision. Indeed the grammar is
6955ambiguous, as, since we did not specify the precedence of @samp{/}, the
6956sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6957NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6958NUM}, which corresponds to reducing rule 1.
6959
c827f760 6960Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6961arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6962Shift/Reduce Conflicts}. Discarded actions are reported in between
6963square brackets.
6964
6965Note that all the previous states had a single possible action: either
6966shifting the next token and going to the corresponding state, or
6967reducing a single rule. In the other cases, i.e., when shifting
6968@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
6969possible, the lookahead is required to select the action. State 8 is
6970one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6971is shifting, otherwise the action is reducing rule 1. In other words,
6972the first two items, corresponding to rule 1, are not eligible when the
742e4900 6973lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 6974precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
6975with some set of possible lookahead tokens. When run with
6976@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
6977
6978@example
6979state 8
6980
6981 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6982 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6983 exp -> exp . '-' exp (rule 2)
6984 exp -> exp . '*' exp (rule 3)
6985 exp -> exp . '/' exp (rule 4)
6986
6987 '*' shift, and go to state 6
6988 '/' shift, and go to state 7
6989
6990 '/' [reduce using rule 1 (exp)]
6991 $default reduce using rule 1 (exp)
6992@end example
6993
6994The remaining states are similar:
6995
6996@example
6997state 9
6998
6999 exp -> exp . '+' exp (rule 1)
7000 exp -> exp . '-' exp (rule 2)
7001 exp -> exp '-' exp . (rule 2)
7002 exp -> exp . '*' exp (rule 3)
7003 exp -> exp . '/' exp (rule 4)
7004
2a8d363a
AD
7005 '*' shift, and go to state 6
7006 '/' shift, and go to state 7
ec3bc396 7007
2a8d363a
AD
7008 '/' [reduce using rule 2 (exp)]
7009 $default reduce using rule 2 (exp)
ec3bc396
AD
7010
7011state 10
7012
7013 exp -> exp . '+' exp (rule 1)
7014 exp -> exp . '-' exp (rule 2)
7015 exp -> exp . '*' exp (rule 3)
7016 exp -> exp '*' exp . (rule 3)
7017 exp -> exp . '/' exp (rule 4)
7018
2a8d363a 7019 '/' shift, and go to state 7
ec3bc396 7020
2a8d363a
AD
7021 '/' [reduce using rule 3 (exp)]
7022 $default reduce using rule 3 (exp)
ec3bc396
AD
7023
7024state 11
7025
7026 exp -> exp . '+' exp (rule 1)
7027 exp -> exp . '-' exp (rule 2)
7028 exp -> exp . '*' exp (rule 3)
7029 exp -> exp . '/' exp (rule 4)
7030 exp -> exp '/' exp . (rule 4)
7031
2a8d363a
AD
7032 '+' shift, and go to state 4
7033 '-' shift, and go to state 5
7034 '*' shift, and go to state 6
7035 '/' shift, and go to state 7
ec3bc396 7036
2a8d363a
AD
7037 '+' [reduce using rule 4 (exp)]
7038 '-' [reduce using rule 4 (exp)]
7039 '*' [reduce using rule 4 (exp)]
7040 '/' [reduce using rule 4 (exp)]
7041 $default reduce using rule 4 (exp)
ec3bc396
AD
7042@end example
7043
7044@noindent
fa7e68c3
PE
7045Observe that state 11 contains conflicts not only due to the lack of
7046precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7047@samp{*}, but also because the
ec3bc396
AD
7048associativity of @samp{/} is not specified.
7049
7050
7051@node Tracing
7052@section Tracing Your Parser
bfa74976
RS
7053@findex yydebug
7054@cindex debugging
7055@cindex tracing the parser
7056
7057If a Bison grammar compiles properly but doesn't do what you want when it
7058runs, the @code{yydebug} parser-trace feature can help you figure out why.
7059
3ded9a63
AD
7060There are several means to enable compilation of trace facilities:
7061
7062@table @asis
7063@item the macro @code{YYDEBUG}
7064@findex YYDEBUG
7065Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7066parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7067@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7068YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7069Prologue}).
7070
7071@item the option @option{-t}, @option{--debug}
7072Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7073,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7074
7075@item the directive @samp{%debug}
7076@findex %debug
7077Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7078Declaration Summary}). This is a Bison extension, which will prove
7079useful when Bison will output parsers for languages that don't use a
c827f760
PE
7080preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7081you, this is
3ded9a63
AD
7082the preferred solution.
7083@end table
7084
7085We suggest that you always enable the debug option so that debugging is
7086always possible.
bfa74976 7087
02a81e05 7088The trace facility outputs messages with macro calls of the form
e2742e46 7089@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 7090@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
7091arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7092define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7093and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7094
7095Once you have compiled the program with trace facilities, the way to
7096request a trace is to store a nonzero value in the variable @code{yydebug}.
7097You can do this by making the C code do it (in @code{main}, perhaps), or
7098you can alter the value with a C debugger.
7099
7100Each step taken by the parser when @code{yydebug} is nonzero produces a
7101line or two of trace information, written on @code{stderr}. The trace
7102messages tell you these things:
7103
7104@itemize @bullet
7105@item
7106Each time the parser calls @code{yylex}, what kind of token was read.
7107
7108@item
7109Each time a token is shifted, the depth and complete contents of the
7110state stack (@pxref{Parser States}).
7111
7112@item
7113Each time a rule is reduced, which rule it is, and the complete contents
7114of the state stack afterward.
7115@end itemize
7116
7117To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7118produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7119Bison}). This file shows the meaning of each state in terms of
7120positions in various rules, and also what each state will do with each
7121possible input token. As you read the successive trace messages, you
7122can see that the parser is functioning according to its specification in
7123the listing file. Eventually you will arrive at the place where
7124something undesirable happens, and you will see which parts of the
7125grammar are to blame.
bfa74976
RS
7126
7127The parser file is a C program and you can use C debuggers on it, but it's
7128not easy to interpret what it is doing. The parser function is a
7129finite-state machine interpreter, and aside from the actions it executes
7130the same code over and over. Only the values of variables show where in
7131the grammar it is working.
7132
7133@findex YYPRINT
7134The debugging information normally gives the token type of each token
7135read, but not its semantic value. You can optionally define a macro
7136named @code{YYPRINT} to provide a way to print the value. If you define
7137@code{YYPRINT}, it should take three arguments. The parser will pass a
7138standard I/O stream, the numeric code for the token type, and the token
7139value (from @code{yylval}).
7140
7141Here is an example of @code{YYPRINT} suitable for the multi-function
7142calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
7143
7144@smallexample
38a92d50
PE
7145%@{
7146 static void print_token_value (FILE *, int, YYSTYPE);
7147 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7148%@}
7149
7150@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7151
7152static void
831d3c99 7153print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7154@{
7155 if (type == VAR)
d3c4e709 7156 fprintf (file, "%s", value.tptr->name);
bfa74976 7157 else if (type == NUM)
d3c4e709 7158 fprintf (file, "%d", value.val);
bfa74976
RS
7159@}
7160@end smallexample
7161
ec3bc396
AD
7162@c ================================================= Invoking Bison
7163
342b8b6e 7164@node Invocation
bfa74976
RS
7165@chapter Invoking Bison
7166@cindex invoking Bison
7167@cindex Bison invocation
7168@cindex options for invoking Bison
7169
7170The usual way to invoke Bison is as follows:
7171
7172@example
7173bison @var{infile}
7174@end example
7175
7176Here @var{infile} is the grammar file name, which usually ends in
7177@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7178with @samp{.tab.c} and removing any leading directory. Thus, the
7179@samp{bison foo.y} file name yields
7180@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7181@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7182C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7183or @file{foo.y++}. Then, the output files will take an extension like
7184the given one as input (respectively @file{foo.tab.cpp} and
7185@file{foo.tab.c++}).
fa4d969f 7186This feature takes effect with all options that manipulate file names like
234a3be3
AD
7187@samp{-o} or @samp{-d}.
7188
7189For example :
7190
7191@example
7192bison -d @var{infile.yxx}
7193@end example
84163231 7194@noindent
72d2299c 7195will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7196
7197@example
b56471a6 7198bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7199@end example
84163231 7200@noindent
234a3be3
AD
7201will produce @file{output.c++} and @file{outfile.h++}.
7202
397ec073
PE
7203For compatibility with @acronym{POSIX}, the standard Bison
7204distribution also contains a shell script called @command{yacc} that
7205invokes Bison with the @option{-y} option.
7206
bfa74976 7207@menu
13863333 7208* Bison Options:: All the options described in detail,
c827f760 7209 in alphabetical order by short options.
bfa74976 7210* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7211* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7212@end menu
7213
342b8b6e 7214@node Bison Options
bfa74976
RS
7215@section Bison Options
7216
7217Bison supports both traditional single-letter options and mnemonic long
7218option names. Long option names are indicated with @samp{--} instead of
7219@samp{-}. Abbreviations for option names are allowed as long as they
7220are unique. When a long option takes an argument, like
7221@samp{--file-prefix}, connect the option name and the argument with
7222@samp{=}.
7223
7224Here is a list of options that can be used with Bison, alphabetized by
7225short option. It is followed by a cross key alphabetized by long
7226option.
7227
89cab50d
AD
7228@c Please, keep this ordered as in `bison --help'.
7229@noindent
7230Operations modes:
7231@table @option
7232@item -h
7233@itemx --help
7234Print a summary of the command-line options to Bison and exit.
bfa74976 7235
89cab50d
AD
7236@item -V
7237@itemx --version
7238Print the version number of Bison and exit.
bfa74976 7239
f7ab6a50
PE
7240@item --print-localedir
7241Print the name of the directory containing locale-dependent data.
7242
89cab50d
AD
7243@item -y
7244@itemx --yacc
54662697
PE
7245Act more like the traditional Yacc command. This can cause
7246different diagnostics to be generated, and may change behavior in
7247other minor ways. Most importantly, imitate Yacc's output
7248file name conventions, so that the parser output file is called
89cab50d 7249@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7250@file{y.tab.h}.
7251Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7252statements in addition to an @code{enum} to associate token numbers with token
7253names.
7254Thus, the following shell script can substitute for Yacc, and the Bison
7255distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7256
89cab50d 7257@example
397ec073 7258#! /bin/sh
26e06a21 7259bison -y "$@@"
89cab50d 7260@end example
54662697
PE
7261
7262The @option{-y}/@option{--yacc} option is intended for use with
7263traditional Yacc grammars. If your grammar uses a Bison extension
7264like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7265this option is specified.
7266
89cab50d
AD
7267@end table
7268
7269@noindent
7270Tuning the parser:
7271
7272@table @option
cd5bd6ac
AD
7273@item -S @var{file}
7274@itemx --skeleton=@var{file}
0e021770
PE
7275Specify the skeleton to use, as if @code{%skeleton} was specified
7276(@pxref{Decl Summary, , Bison Declaration Summary}). You probably
7277don't need this option unless you are developing Bison.
cd5bd6ac 7278
89cab50d
AD
7279@item -t
7280@itemx --debug
4947ebdb
PE
7281In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7282already defined, so that the debugging facilities are compiled.
ec3bc396 7283@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7284
0e021770
PE
7285@item -L @var{language}
7286@itemx --language=@var{language}
7287Specify the programming language for the generated parser, as if
7288@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
7289Summary}). Currently supported languages include C and C++.
7290
89cab50d 7291@item --locations
d8988b2f 7292Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7293
7294@item -p @var{prefix}
7295@itemx --name-prefix=@var{prefix}
02975b9a 7296Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7297@xref{Decl Summary}.
bfa74976
RS
7298
7299@item -l
7300@itemx --no-lines
7301Don't put any @code{#line} preprocessor commands in the parser file.
7302Ordinarily Bison puts them in the parser file so that the C compiler
7303and debuggers will associate errors with your source file, the
7304grammar file. This option causes them to associate errors with the
95e742f7 7305parser file, treating it as an independent source file in its own right.
bfa74976 7306
931c7513
RS
7307@item -n
7308@itemx --no-parser
d8988b2f 7309Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 7310
89cab50d
AD
7311@item -k
7312@itemx --token-table
d8988b2f 7313Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7314@end table
bfa74976 7315
89cab50d
AD
7316@noindent
7317Adjust the output:
bfa74976 7318
89cab50d
AD
7319@table @option
7320@item -d
d8988b2f
AD
7321@itemx --defines
7322Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7323file containing macro definitions for the token type names defined in
4bfd5e4e 7324the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7325
342b8b6e 7326@item --defines=@var{defines-file}
d8988b2f 7327Same as above, but save in the file @var{defines-file}.
342b8b6e 7328
89cab50d
AD
7329@item -b @var{file-prefix}
7330@itemx --file-prefix=@var{prefix}
9c437126 7331Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7332for all Bison output file names. @xref{Decl Summary}.
bfa74976 7333
ec3bc396
AD
7334@item -r @var{things}
7335@itemx --report=@var{things}
7336Write an extra output file containing verbose description of the comma
7337separated list of @var{things} among:
7338
7339@table @code
7340@item state
7341Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7342@acronym{LALR} automaton.
ec3bc396 7343
742e4900 7344@item lookahead
ec3bc396 7345Implies @code{state} and augments the description of the automaton with
742e4900 7346each rule's lookahead set.
ec3bc396
AD
7347
7348@item itemset
7349Implies @code{state} and augments the description of the automaton with
7350the full set of items for each state, instead of its core only.
7351@end table
7352
bfa74976
RS
7353@item -v
7354@itemx --verbose
9c437126 7355Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7356file containing verbose descriptions of the grammar and
72d2299c 7357parser. @xref{Decl Summary}.
bfa74976 7358
fa4d969f
PE
7359@item -o @var{file}
7360@itemx --output=@var{file}
7361Specify the @var{file} for the parser file.
bfa74976 7362
fa4d969f 7363The other output files' names are constructed from @var{file} as
d8988b2f 7364described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
7365
7366@item -g
35fe0834
PE
7367Output a graphical representation of the @acronym{LALR}(1) grammar
7368automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7369@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
7370If the grammar file is @file{foo.y}, the output file will
7371be @file{foo.dot}.
342b8b6e
AD
7372
7373@item --graph=@var{graph-file}
72d2299c
PE
7374The behavior of @var{--graph} is the same than @samp{-g}. The only
7375difference is that it has an optional argument which is the name of
fa4d969f 7376the output graph file.
bfa74976
RS
7377@end table
7378
342b8b6e 7379@node Option Cross Key
bfa74976
RS
7380@section Option Cross Key
7381
aa08666d 7382@c FIXME: How about putting the directives too?
bfa74976
RS
7383Here is a list of options, alphabetized by long option, to help you find
7384the corresponding short option.
7385
aa08666d
AD
7386@multitable {@option{--defines=@var{defines-file}}} {@option{-b @var{file-prefix}XXX}}
7387@headitem Long Option @tab Short Option
7388@item @option{--debug} @tab @option{-t}
7389@item @option{--defines=@var{defines-file}} @tab @option{-d}
7390@item @option{--file-prefix=@var{prefix}} @tab @option{-b @var{file-prefix}}
7391@item @option{--graph=@var{graph-file}} @tab @option{-d}
7392@item @option{--help} @tab @option{-h}
7393@item @option{--name-prefix=@var{prefix}} @tab @option{-p @var{name-prefix}}
7394@item @option{--no-lines} @tab @option{-l}
7395@item @option{--no-parser} @tab @option{-n}
7396@item @option{--output=@var{outfile}} @tab @option{-o @var{outfile}}
7397@item @option{--print-localedir} @tab
7398@item @option{--token-table} @tab @option{-k}
7399@item @option{--verbose} @tab @option{-v}
7400@item @option{--version} @tab @option{-V}
7401@item @option{--yacc} @tab @option{-y}
7402@end multitable
bfa74976 7403
93dd49ab
PE
7404@node Yacc Library
7405@section Yacc Library
7406
7407The Yacc library contains default implementations of the
7408@code{yyerror} and @code{main} functions. These default
7409implementations are normally not useful, but @acronym{POSIX} requires
7410them. To use the Yacc library, link your program with the
7411@option{-ly} option. Note that Bison's implementation of the Yacc
7412library is distributed under the terms of the @acronym{GNU} General
7413Public License (@pxref{Copying}).
7414
7415If you use the Yacc library's @code{yyerror} function, you should
7416declare @code{yyerror} as follows:
7417
7418@example
7419int yyerror (char const *);
7420@end example
7421
7422Bison ignores the @code{int} value returned by this @code{yyerror}.
7423If you use the Yacc library's @code{main} function, your
7424@code{yyparse} function should have the following type signature:
7425
7426@example
7427int yyparse (void);
7428@end example
7429
12545799
AD
7430@c ================================================= C++ Bison
7431
7432@node C++ Language Interface
7433@chapter C++ Language Interface
7434
7435@menu
7436* C++ Parsers:: The interface to generate C++ parser classes
7437* A Complete C++ Example:: Demonstrating their use
7438@end menu
7439
7440@node C++ Parsers
7441@section C++ Parsers
7442
7443@menu
7444* C++ Bison Interface:: Asking for C++ parser generation
7445* C++ Semantic Values:: %union vs. C++
7446* C++ Location Values:: The position and location classes
7447* C++ Parser Interface:: Instantiating and running the parser
7448* C++ Scanner Interface:: Exchanges between yylex and parse
7449@end menu
7450
7451@node C++ Bison Interface
7452@subsection C++ Bison Interface
0e021770 7453@c - %language "C++"
12545799
AD
7454@c - Always pure
7455@c - initial action
7456
0e021770
PE
7457The C++ parser @acronym{LALR}(1) skeleton is selected using a
7458language directive, @samp{%language "C++"}, or the synonymous
7459command-line option @option{--language=c++}@footnote{For both
7460the grammar directive and the command-line option, the
7461language name is case-insensitive}. These were introduced
7462in Bison 2.3b; for compatibility with earlier versions, you
7463may also pass the option @option{--skeleton=lalr1.cc} to Bison
7464or include the directive @samp{%skeleton "lalr1.cc"} in the
7465grammar preamble. Specifying the language is however preferred,
7466because it is clearer and because it will automatically choose the
7467correct skeleton for @acronym{GLR} parsers (the C++ @acronym{GLR}
7468skeleton is still under development).
7469
7470When run, @command{bison} will create several
aa08666d
AD
7471entities in the @samp{yy} namespace. Use the @samp{%name-prefix}
7472directive to change the namespace name, see @ref{Decl Summary}. The
7473various classes are generated in the following files:
7474
12545799
AD
7475@table @file
7476@item position.hh
7477@itemx location.hh
7478The definition of the classes @code{position} and @code{location},
7479used for location tracking. @xref{C++ Location Values}.
7480
7481@item stack.hh
7482An auxiliary class @code{stack} used by the parser.
7483
fa4d969f
PE
7484@item @var{file}.hh
7485@itemx @var{file}.cc
cd8b5791
AD
7486(Assuming the extension of the input file was @samp{.yy}.) The
7487declaration and implementation of the C++ parser class. The basename
7488and extension of these two files follow the same rules as with regular C
7489parsers (@pxref{Invocation}).
12545799 7490
cd8b5791
AD
7491The header is @emph{mandatory}; you must either pass
7492@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
7493@samp{%defines} directive.
7494@end table
7495
7496All these files are documented using Doxygen; run @command{doxygen}
7497for a complete and accurate documentation.
7498
7499@node C++ Semantic Values
7500@subsection C++ Semantic Values
7501@c - No objects in unions
178e123e 7502@c - YYSTYPE
12545799
AD
7503@c - Printer and destructor
7504
7505The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7506Collection of Value Types}. In particular it produces a genuine
7507@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7508within pseudo-unions (similar to Boost variants) might be implemented to
7509alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7510@itemize @minus
7511@item
fb9712a9
AD
7512The type @code{YYSTYPE} is defined but its use is discouraged: rather
7513you should refer to the parser's encapsulated type
7514@code{yy::parser::semantic_type}.
12545799
AD
7515@item
7516Non POD (Plain Old Data) types cannot be used. C++ forbids any
7517instance of classes with constructors in unions: only @emph{pointers}
7518to such objects are allowed.
7519@end itemize
7520
7521Because objects have to be stored via pointers, memory is not
7522reclaimed automatically: using the @code{%destructor} directive is the
7523only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7524Symbols}.
7525
7526
7527@node C++ Location Values
7528@subsection C++ Location Values
7529@c - %locations
7530@c - class Position
7531@c - class Location
b47dbebe 7532@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7533
7534When the directive @code{%locations} is used, the C++ parser supports
7535location tracking, see @ref{Locations, , Locations Overview}. Two
7536auxiliary classes define a @code{position}, a single point in a file,
7537and a @code{location}, a range composed of a pair of
7538@code{position}s (possibly spanning several files).
7539
fa4d969f 7540@deftypemethod {position} {std::string*} file
12545799
AD
7541The name of the file. It will always be handled as a pointer, the
7542parser will never duplicate nor deallocate it. As an experimental
7543feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7544"filename_type" "@var{type}"}.
12545799
AD
7545@end deftypemethod
7546
7547@deftypemethod {position} {unsigned int} line
7548The line, starting at 1.
7549@end deftypemethod
7550
7551@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7552Advance by @var{height} lines, resetting the column number.
7553@end deftypemethod
7554
7555@deftypemethod {position} {unsigned int} column
7556The column, starting at 0.
7557@end deftypemethod
7558
7559@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7560Advance by @var{width} columns, without changing the line number.
7561@end deftypemethod
7562
7563@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7564@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7565@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7566@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7567Various forms of syntactic sugar for @code{columns}.
7568@end deftypemethod
7569
7570@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7571Report @var{p} on @var{o} like this:
fa4d969f
PE
7572@samp{@var{file}:@var{line}.@var{column}}, or
7573@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7574@end deftypemethod
7575
7576@deftypemethod {location} {position} begin
7577@deftypemethodx {location} {position} end
7578The first, inclusive, position of the range, and the first beyond.
7579@end deftypemethod
7580
7581@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7582@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7583Advance the @code{end} position.
7584@end deftypemethod
7585
7586@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7587@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7588@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7589Various forms of syntactic sugar.
7590@end deftypemethod
7591
7592@deftypemethod {location} {void} step ()
7593Move @code{begin} onto @code{end}.
7594@end deftypemethod
7595
7596
7597@node C++ Parser Interface
7598@subsection C++ Parser Interface
7599@c - define parser_class_name
7600@c - Ctor
7601@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7602@c debug_stream.
7603@c - Reporting errors
7604
7605The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7606declare and define the parser class in the namespace @code{yy}. The
7607class name defaults to @code{parser}, but may be changed using
7608@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7609this class is detailed below. It can be extended using the
12545799
AD
7610@code{%parse-param} feature: its semantics is slightly changed since
7611it describes an additional member of the parser class, and an
7612additional argument for its constructor.
7613
8a0adb01
AD
7614@defcv {Type} {parser} {semantic_value_type}
7615@defcvx {Type} {parser} {location_value_type}
12545799 7616The types for semantics value and locations.
8a0adb01 7617@end defcv
12545799
AD
7618
7619@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7620Build a new parser object. There are no arguments by default, unless
7621@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7622@end deftypemethod
7623
7624@deftypemethod {parser} {int} parse ()
7625Run the syntactic analysis, and return 0 on success, 1 otherwise.
7626@end deftypemethod
7627
7628@deftypemethod {parser} {std::ostream&} debug_stream ()
7629@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7630Get or set the stream used for tracing the parsing. It defaults to
7631@code{std::cerr}.
7632@end deftypemethod
7633
7634@deftypemethod {parser} {debug_level_type} debug_level ()
7635@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7636Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7637or nonzero, full tracing.
12545799
AD
7638@end deftypemethod
7639
7640@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7641The definition for this member function must be supplied by the user:
7642the parser uses it to report a parser error occurring at @var{l},
7643described by @var{m}.
7644@end deftypemethod
7645
7646
7647@node C++ Scanner Interface
7648@subsection C++ Scanner Interface
7649@c - prefix for yylex.
7650@c - Pure interface to yylex
7651@c - %lex-param
7652
7653The parser invokes the scanner by calling @code{yylex}. Contrary to C
7654parsers, C++ parsers are always pure: there is no point in using the
7655@code{%pure-parser} directive. Therefore the interface is as follows.
7656
7657@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7658Return the next token. Its type is the return value, its semantic
7659value and location being @var{yylval} and @var{yylloc}. Invocations of
7660@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7661@end deftypemethod
7662
7663
7664@node A Complete C++ Example
7665@section A Complete C++ Example
7666
7667This section demonstrates the use of a C++ parser with a simple but
7668complete example. This example should be available on your system,
7669ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7670focuses on the use of Bison, therefore the design of the various C++
7671classes is very naive: no accessors, no encapsulation of members etc.
7672We will use a Lex scanner, and more precisely, a Flex scanner, to
7673demonstrate the various interaction. A hand written scanner is
7674actually easier to interface with.
7675
7676@menu
7677* Calc++ --- C++ Calculator:: The specifications
7678* Calc++ Parsing Driver:: An active parsing context
7679* Calc++ Parser:: A parser class
7680* Calc++ Scanner:: A pure C++ Flex scanner
7681* Calc++ Top Level:: Conducting the band
7682@end menu
7683
7684@node Calc++ --- C++ Calculator
7685@subsection Calc++ --- C++ Calculator
7686
7687Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7688expression, possibly preceded by variable assignments. An
12545799
AD
7689environment containing possibly predefined variables such as
7690@code{one} and @code{two}, is exchanged with the parser. An example
7691of valid input follows.
7692
7693@example
7694three := 3
7695seven := one + two * three
7696seven * seven
7697@end example
7698
7699@node Calc++ Parsing Driver
7700@subsection Calc++ Parsing Driver
7701@c - An env
7702@c - A place to store error messages
7703@c - A place for the result
7704
7705To support a pure interface with the parser (and the scanner) the
7706technique of the ``parsing context'' is convenient: a structure
7707containing all the data to exchange. Since, in addition to simply
7708launch the parsing, there are several auxiliary tasks to execute (open
7709the file for parsing, instantiate the parser etc.), we recommend
7710transforming the simple parsing context structure into a fully blown
7711@dfn{parsing driver} class.
7712
7713The declaration of this driver class, @file{calc++-driver.hh}, is as
7714follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7715required standard library components, and the declaration of the parser
7716class.
12545799 7717
1c59e0a1 7718@comment file: calc++-driver.hh
12545799
AD
7719@example
7720#ifndef CALCXX_DRIVER_HH
7721# define CALCXX_DRIVER_HH
7722# include <string>
7723# include <map>
fb9712a9 7724# include "calc++-parser.hh"
12545799
AD
7725@end example
7726
12545799
AD
7727
7728@noindent
7729Then comes the declaration of the scanning function. Flex expects
7730the signature of @code{yylex} to be defined in the macro
7731@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7732factor both as follows.
1c59e0a1
AD
7733
7734@comment file: calc++-driver.hh
12545799 7735@example
3dc5e96b
PE
7736// Tell Flex the lexer's prototype ...
7737# define YY_DECL \
c095d689
AD
7738 yy::calcxx_parser::token_type \
7739 yylex (yy::calcxx_parser::semantic_type* yylval, \
7740 yy::calcxx_parser::location_type* yylloc, \
7741 calcxx_driver& driver)
12545799
AD
7742// ... and declare it for the parser's sake.
7743YY_DECL;
7744@end example
7745
7746@noindent
7747The @code{calcxx_driver} class is then declared with its most obvious
7748members.
7749
1c59e0a1 7750@comment file: calc++-driver.hh
12545799
AD
7751@example
7752// Conducting the whole scanning and parsing of Calc++.
7753class calcxx_driver
7754@{
7755public:
7756 calcxx_driver ();
7757 virtual ~calcxx_driver ();
7758
7759 std::map<std::string, int> variables;
7760
7761 int result;
7762@end example
7763
7764@noindent
7765To encapsulate the coordination with the Flex scanner, it is useful to
7766have two members function to open and close the scanning phase.
12545799 7767
1c59e0a1 7768@comment file: calc++-driver.hh
12545799
AD
7769@example
7770 // Handling the scanner.
7771 void scan_begin ();
7772 void scan_end ();
7773 bool trace_scanning;
7774@end example
7775
7776@noindent
7777Similarly for the parser itself.
7778
1c59e0a1 7779@comment file: calc++-driver.hh
12545799
AD
7780@example
7781 // Handling the parser.
7782 void parse (const std::string& f);
7783 std::string file;
7784 bool trace_parsing;
7785@end example
7786
7787@noindent
7788To demonstrate pure handling of parse errors, instead of simply
7789dumping them on the standard error output, we will pass them to the
7790compiler driver using the following two member functions. Finally, we
7791close the class declaration and CPP guard.
7792
1c59e0a1 7793@comment file: calc++-driver.hh
12545799
AD
7794@example
7795 // Error handling.
7796 void error (const yy::location& l, const std::string& m);
7797 void error (const std::string& m);
7798@};
7799#endif // ! CALCXX_DRIVER_HH
7800@end example
7801
7802The implementation of the driver is straightforward. The @code{parse}
7803member function deserves some attention. The @code{error} functions
7804are simple stubs, they should actually register the located error
7805messages and set error state.
7806
1c59e0a1 7807@comment file: calc++-driver.cc
12545799
AD
7808@example
7809#include "calc++-driver.hh"
7810#include "calc++-parser.hh"
7811
7812calcxx_driver::calcxx_driver ()
7813 : trace_scanning (false), trace_parsing (false)
7814@{
7815 variables["one"] = 1;
7816 variables["two"] = 2;
7817@}
7818
7819calcxx_driver::~calcxx_driver ()
7820@{
7821@}
7822
7823void
7824calcxx_driver::parse (const std::string &f)
7825@{
7826 file = f;
7827 scan_begin ();
7828 yy::calcxx_parser parser (*this);
7829 parser.set_debug_level (trace_parsing);
7830 parser.parse ();
7831 scan_end ();
7832@}
7833
7834void
7835calcxx_driver::error (const yy::location& l, const std::string& m)
7836@{
7837 std::cerr << l << ": " << m << std::endl;
7838@}
7839
7840void
7841calcxx_driver::error (const std::string& m)
7842@{
7843 std::cerr << m << std::endl;
7844@}
7845@end example
7846
7847@node Calc++ Parser
7848@subsection Calc++ Parser
7849
b50d2359
AD
7850The parser definition file @file{calc++-parser.yy} starts by asking for
7851the C++ LALR(1) skeleton, the creation of the parser header file, and
7852specifies the name of the parser class. Because the C++ skeleton
7853changed several times, it is safer to require the version you designed
7854the grammar for.
1c59e0a1
AD
7855
7856@comment file: calc++-parser.yy
12545799 7857@example
0e021770
PE
7858%language "C++" /* -*- C++ -*- */
7859%require "2.3b"
12545799 7860%defines
fb9712a9
AD
7861%define "parser_class_name" "calcxx_parser"
7862@end example
7863
7864@noindent
136a0f76 7865@findex %requires
fb9712a9
AD
7866Then come the declarations/inclusions needed to define the
7867@code{%union}. Because the parser uses the parsing driver and
7868reciprocally, both cannot include the header of the other. Because the
7869driver's header needs detailed knowledge about the parser class (in
7870particular its inner types), it is the parser's header which will simply
7871use a forward declaration of the driver.
136a0f76 7872@xref{Table of Symbols, ,%requires}.
fb9712a9
AD
7873
7874@comment file: calc++-parser.yy
7875@example
136a0f76 7876%requires @{
12545799 7877# include <string>
fb9712a9 7878class calcxx_driver;
9bc0dd67 7879@}
12545799
AD
7880@end example
7881
7882@noindent
7883The driver is passed by reference to the parser and to the scanner.
7884This provides a simple but effective pure interface, not relying on
7885global variables.
7886
1c59e0a1 7887@comment file: calc++-parser.yy
12545799
AD
7888@example
7889// The parsing context.
7890%parse-param @{ calcxx_driver& driver @}
7891%lex-param @{ calcxx_driver& driver @}
7892@end example
7893
7894@noindent
7895Then we request the location tracking feature, and initialize the
7896first location's file name. Afterwards new locations are computed
7897relatively to the previous locations: the file name will be
7898automatically propagated.
7899
1c59e0a1 7900@comment file: calc++-parser.yy
12545799
AD
7901@example
7902%locations
7903%initial-action
7904@{
7905 // Initialize the initial location.
b47dbebe 7906 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7907@};
7908@end example
7909
7910@noindent
7911Use the two following directives to enable parser tracing and verbose
7912error messages.
7913
1c59e0a1 7914@comment file: calc++-parser.yy
12545799
AD
7915@example
7916%debug
7917%error-verbose
7918@end example
7919
7920@noindent
7921Semantic values cannot use ``real'' objects, but only pointers to
7922them.
7923
1c59e0a1 7924@comment file: calc++-parser.yy
12545799
AD
7925@example
7926// Symbols.
7927%union
7928@{
7929 int ival;
7930 std::string *sval;
7931@};
7932@end example
7933
fb9712a9 7934@noindent
136a0f76
PB
7935@findex %code
7936The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 7937@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
7938
7939@comment file: calc++-parser.yy
7940@example
136a0f76 7941%code @{
fb9712a9 7942# include "calc++-driver.hh"
34f98f46 7943@}
fb9712a9
AD
7944@end example
7945
7946
12545799
AD
7947@noindent
7948The token numbered as 0 corresponds to end of file; the following line
7949allows for nicer error messages referring to ``end of file'' instead
7950of ``$end''. Similarly user friendly named are provided for each
7951symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7952avoid name clashes.
7953
1c59e0a1 7954@comment file: calc++-parser.yy
12545799 7955@example
fb9712a9
AD
7956%token END 0 "end of file"
7957%token ASSIGN ":="
7958%token <sval> IDENTIFIER "identifier"
7959%token <ival> NUMBER "number"
7960%type <ival> exp "expression"
12545799
AD
7961@end example
7962
7963@noindent
7964To enable memory deallocation during error recovery, use
7965@code{%destructor}.
7966
287c78f6 7967@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 7968@comment file: calc++-parser.yy
12545799
AD
7969@example
7970%printer @{ debug_stream () << *$$; @} "identifier"
7971%destructor @{ delete $$; @} "identifier"
7972
7973%printer @{ debug_stream () << $$; @} "number" "expression"
7974@end example
7975
7976@noindent
7977The grammar itself is straightforward.
7978
1c59e0a1 7979@comment file: calc++-parser.yy
12545799
AD
7980@example
7981%%
7982%start unit;
7983unit: assignments exp @{ driver.result = $2; @};
7984
7985assignments: assignments assignment @{@}
9d9b8b70 7986 | /* Nothing. */ @{@};
12545799 7987
3dc5e96b
PE
7988assignment:
7989 "identifier" ":=" exp
7990 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
7991
7992%left '+' '-';
7993%left '*' '/';
7994exp: exp '+' exp @{ $$ = $1 + $3; @}
7995 | exp '-' exp @{ $$ = $1 - $3; @}
7996 | exp '*' exp @{ $$ = $1 * $3; @}
7997 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 7998 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 7999 | "number" @{ $$ = $1; @};
12545799
AD
8000%%
8001@end example
8002
8003@noindent
8004Finally the @code{error} member function registers the errors to the
8005driver.
8006
1c59e0a1 8007@comment file: calc++-parser.yy
12545799
AD
8008@example
8009void
1c59e0a1
AD
8010yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8011 const std::string& m)
12545799
AD
8012@{
8013 driver.error (l, m);
8014@}
8015@end example
8016
8017@node Calc++ Scanner
8018@subsection Calc++ Scanner
8019
8020The Flex scanner first includes the driver declaration, then the
8021parser's to get the set of defined tokens.
8022
1c59e0a1 8023@comment file: calc++-scanner.ll
12545799
AD
8024@example
8025%@{ /* -*- C++ -*- */
04098407
PE
8026# include <cstdlib>
8027# include <errno.h>
8028# include <limits.h>
12545799
AD
8029# include <string>
8030# include "calc++-driver.hh"
8031# include "calc++-parser.hh"
eaea13f5
PE
8032
8033/* Work around an incompatibility in flex (at least versions
8034 2.5.31 through 2.5.33): it generates code that does
8035 not conform to C89. See Debian bug 333231
8036 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8037# undef yywrap
8038# define yywrap() 1
eaea13f5 8039
c095d689
AD
8040/* By default yylex returns int, we use token_type.
8041 Unfortunately yyterminate by default returns 0, which is
8042 not of token_type. */
8c5b881d 8043#define yyterminate() return token::END
12545799
AD
8044%@}
8045@end example
8046
8047@noindent
8048Because there is no @code{#include}-like feature we don't need
8049@code{yywrap}, we don't need @code{unput} either, and we parse an
8050actual file, this is not an interactive session with the user.
8051Finally we enable the scanner tracing features.
8052
1c59e0a1 8053@comment file: calc++-scanner.ll
12545799
AD
8054@example
8055%option noyywrap nounput batch debug
8056@end example
8057
8058@noindent
8059Abbreviations allow for more readable rules.
8060
1c59e0a1 8061@comment file: calc++-scanner.ll
12545799
AD
8062@example
8063id [a-zA-Z][a-zA-Z_0-9]*
8064int [0-9]+
8065blank [ \t]
8066@end example
8067
8068@noindent
9d9b8b70 8069The following paragraph suffices to track locations accurately. Each
12545799
AD
8070time @code{yylex} is invoked, the begin position is moved onto the end
8071position. Then when a pattern is matched, the end position is
8072advanced of its width. In case it matched ends of lines, the end
8073cursor is adjusted, and each time blanks are matched, the begin cursor
8074is moved onto the end cursor to effectively ignore the blanks
8075preceding tokens. Comments would be treated equally.
8076
1c59e0a1 8077@comment file: calc++-scanner.ll
12545799 8078@example
828c373b
AD
8079%@{
8080# define YY_USER_ACTION yylloc->columns (yyleng);
8081%@}
12545799
AD
8082%%
8083%@{
8084 yylloc->step ();
12545799
AD
8085%@}
8086@{blank@}+ yylloc->step ();
8087[\n]+ yylloc->lines (yyleng); yylloc->step ();
8088@end example
8089
8090@noindent
fb9712a9
AD
8091The rules are simple, just note the use of the driver to report errors.
8092It is convenient to use a typedef to shorten
8093@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8094@code{token::identifier} for instance.
12545799 8095
1c59e0a1 8096@comment file: calc++-scanner.ll
12545799 8097@example
fb9712a9
AD
8098%@{
8099 typedef yy::calcxx_parser::token token;
8100%@}
8c5b881d 8101 /* Convert ints to the actual type of tokens. */
c095d689 8102[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8103":=" return token::ASSIGN;
04098407
PE
8104@{int@} @{
8105 errno = 0;
8106 long n = strtol (yytext, NULL, 10);
8107 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8108 driver.error (*yylloc, "integer is out of range");
8109 yylval->ival = n;
fb9712a9 8110 return token::NUMBER;
04098407 8111@}
fb9712a9 8112@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8113. driver.error (*yylloc, "invalid character");
8114%%
8115@end example
8116
8117@noindent
8118Finally, because the scanner related driver's member function depend
8119on the scanner's data, it is simpler to implement them in this file.
8120
1c59e0a1 8121@comment file: calc++-scanner.ll
12545799
AD
8122@example
8123void
8124calcxx_driver::scan_begin ()
8125@{
8126 yy_flex_debug = trace_scanning;
8127 if (!(yyin = fopen (file.c_str (), "r")))
8128 error (std::string ("cannot open ") + file);
8129@}
8130
8131void
8132calcxx_driver::scan_end ()
8133@{
8134 fclose (yyin);
8135@}
8136@end example
8137
8138@node Calc++ Top Level
8139@subsection Calc++ Top Level
8140
8141The top level file, @file{calc++.cc}, poses no problem.
8142
1c59e0a1 8143@comment file: calc++.cc
12545799
AD
8144@example
8145#include <iostream>
8146#include "calc++-driver.hh"
8147
8148int
fa4d969f 8149main (int argc, char *argv[])
12545799
AD
8150@{
8151 calcxx_driver driver;
8152 for (++argv; argv[0]; ++argv)
8153 if (*argv == std::string ("-p"))
8154 driver.trace_parsing = true;
8155 else if (*argv == std::string ("-s"))
8156 driver.trace_scanning = true;
8157 else
8158 @{
3dc5e96b
PE
8159 driver.parse (*argv);
8160 std::cout << driver.result << std::endl;
12545799
AD
8161 @}
8162@}
8163@end example
8164
8165@c ================================================= FAQ
d1a1114f
AD
8166
8167@node FAQ
8168@chapter Frequently Asked Questions
8169@cindex frequently asked questions
8170@cindex questions
8171
8172Several questions about Bison come up occasionally. Here some of them
8173are addressed.
8174
8175@menu
55ba27be
AD
8176* Memory Exhausted:: Breaking the Stack Limits
8177* How Can I Reset the Parser:: @code{yyparse} Keeps some State
8178* Strings are Destroyed:: @code{yylval} Loses Track of Strings
8179* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 8180* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
8181* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
8182* I can't build Bison:: Troubleshooting
8183* Where can I find help?:: Troubleshouting
8184* Bug Reports:: Troublereporting
8185* Other Languages:: Parsers in Java and others
8186* Beta Testing:: Experimenting development versions
8187* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
8188@end menu
8189
1a059451
PE
8190@node Memory Exhausted
8191@section Memory Exhausted
d1a1114f
AD
8192
8193@display
1a059451 8194My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
8195message. What can I do?
8196@end display
8197
8198This question is already addressed elsewhere, @xref{Recursion,
8199,Recursive Rules}.
8200
e64fec0a
PE
8201@node How Can I Reset the Parser
8202@section How Can I Reset the Parser
5b066063 8203
0e14ad77
PE
8204The following phenomenon has several symptoms, resulting in the
8205following typical questions:
5b066063
AD
8206
8207@display
8208I invoke @code{yyparse} several times, and on correct input it works
8209properly; but when a parse error is found, all the other calls fail
0e14ad77 8210too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
8211@end display
8212
8213@noindent
8214or
8215
8216@display
0e14ad77 8217My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
8218which case I run @code{yyparse} from @code{yyparse}. This fails
8219although I did specify I needed a @code{%pure-parser}.
8220@end display
8221
0e14ad77
PE
8222These problems typically come not from Bison itself, but from
8223Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
8224speed, they might not notice a change of input file. As a
8225demonstration, consider the following source file,
8226@file{first-line.l}:
8227
8228@verbatim
8229%{
8230#include <stdio.h>
8231#include <stdlib.h>
8232%}
8233%%
8234.*\n ECHO; return 1;
8235%%
8236int
0e14ad77 8237yyparse (char const *file)
5b066063
AD
8238{
8239 yyin = fopen (file, "r");
8240 if (!yyin)
8241 exit (2);
fa7e68c3 8242 /* One token only. */
5b066063 8243 yylex ();
0e14ad77 8244 if (fclose (yyin) != 0)
5b066063
AD
8245 exit (3);
8246 return 0;
8247}
8248
8249int
0e14ad77 8250main (void)
5b066063
AD
8251{
8252 yyparse ("input");
8253 yyparse ("input");
8254 return 0;
8255}
8256@end verbatim
8257
8258@noindent
8259If the file @file{input} contains
8260
8261@verbatim
8262input:1: Hello,
8263input:2: World!
8264@end verbatim
8265
8266@noindent
0e14ad77 8267then instead of getting the first line twice, you get:
5b066063
AD
8268
8269@example
8270$ @kbd{flex -ofirst-line.c first-line.l}
8271$ @kbd{gcc -ofirst-line first-line.c -ll}
8272$ @kbd{./first-line}
8273input:1: Hello,
8274input:2: World!
8275@end example
8276
0e14ad77
PE
8277Therefore, whenever you change @code{yyin}, you must tell the
8278Lex-generated scanner to discard its current buffer and switch to the
8279new one. This depends upon your implementation of Lex; see its
8280documentation for more. For Flex, it suffices to call
8281@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
8282Flex-generated scanner needs to read from several input streams to
8283handle features like include files, you might consider using Flex
8284functions like @samp{yy_switch_to_buffer} that manipulate multiple
8285input buffers.
5b066063 8286
b165c324
AD
8287If your Flex-generated scanner uses start conditions (@pxref{Start
8288conditions, , Start conditions, flex, The Flex Manual}), you might
8289also want to reset the scanner's state, i.e., go back to the initial
8290start condition, through a call to @samp{BEGIN (0)}.
8291
fef4cb51
AD
8292@node Strings are Destroyed
8293@section Strings are Destroyed
8294
8295@display
c7e441b4 8296My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
8297them. Instead of reporting @samp{"foo", "bar"}, it reports
8298@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
8299@end display
8300
8301This error is probably the single most frequent ``bug report'' sent to
8302Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 8303of the scanner. Consider the following Lex code:
fef4cb51
AD
8304
8305@verbatim
8306%{
8307#include <stdio.h>
8308char *yylval = NULL;
8309%}
8310%%
8311.* yylval = yytext; return 1;
8312\n /* IGNORE */
8313%%
8314int
8315main ()
8316{
fa7e68c3 8317 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
8318 char *fst = (yylex (), yylval);
8319 char *snd = (yylex (), yylval);
8320 printf ("\"%s\", \"%s\"\n", fst, snd);
8321 return 0;
8322}
8323@end verbatim
8324
8325If you compile and run this code, you get:
8326
8327@example
8328$ @kbd{flex -osplit-lines.c split-lines.l}
8329$ @kbd{gcc -osplit-lines split-lines.c -ll}
8330$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8331"one
8332two", "two"
8333@end example
8334
8335@noindent
8336this is because @code{yytext} is a buffer provided for @emph{reading}
8337in the action, but if you want to keep it, you have to duplicate it
8338(e.g., using @code{strdup}). Note that the output may depend on how
8339your implementation of Lex handles @code{yytext}. For instance, when
8340given the Lex compatibility option @option{-l} (which triggers the
8341option @samp{%array}) Flex generates a different behavior:
8342
8343@example
8344$ @kbd{flex -l -osplit-lines.c split-lines.l}
8345$ @kbd{gcc -osplit-lines split-lines.c -ll}
8346$ @kbd{printf 'one\ntwo\n' | ./split-lines}
8347"two", "two"
8348@end example
8349
8350
2fa09258
AD
8351@node Implementing Gotos/Loops
8352@section Implementing Gotos/Loops
a06ea4aa
AD
8353
8354@display
8355My simple calculator supports variables, assignments, and functions,
2fa09258 8356but how can I implement gotos, or loops?
a06ea4aa
AD
8357@end display
8358
8359Although very pedagogical, the examples included in the document blur
a1c84f45 8360the distinction to make between the parser---whose job is to recover
a06ea4aa 8361the structure of a text and to transmit it to subsequent modules of
a1c84f45 8362the program---and the processing (such as the execution) of this
a06ea4aa
AD
8363structure. This works well with so called straight line programs,
8364i.e., precisely those that have a straightforward execution model:
8365execute simple instructions one after the others.
8366
8367@cindex abstract syntax tree
8368@cindex @acronym{AST}
8369If you want a richer model, you will probably need to use the parser
8370to construct a tree that does represent the structure it has
8371recovered; this tree is usually called the @dfn{abstract syntax tree},
8372or @dfn{@acronym{AST}} for short. Then, walking through this tree,
8373traversing it in various ways, will enable treatments such as its
8374execution or its translation, which will result in an interpreter or a
8375compiler.
8376
8377This topic is way beyond the scope of this manual, and the reader is
8378invited to consult the dedicated literature.
8379
8380
ed2e6384
AD
8381@node Multiple start-symbols
8382@section Multiple start-symbols
8383
8384@display
8385I have several closely related grammars, and I would like to share their
8386implementations. In fact, I could use a single grammar but with
8387multiple entry points.
8388@end display
8389
8390Bison does not support multiple start-symbols, but there is a very
8391simple means to simulate them. If @code{foo} and @code{bar} are the two
8392pseudo start-symbols, then introduce two new tokens, say
8393@code{START_FOO} and @code{START_BAR}, and use them as switches from the
8394real start-symbol:
8395
8396@example
8397%token START_FOO START_BAR;
8398%start start;
8399start: START_FOO foo
8400 | START_BAR bar;
8401@end example
8402
8403These tokens prevents the introduction of new conflicts. As far as the
8404parser goes, that is all that is needed.
8405
8406Now the difficult part is ensuring that the scanner will send these
8407tokens first. If your scanner is hand-written, that should be
8408straightforward. If your scanner is generated by Lex, them there is
8409simple means to do it: recall that anything between @samp{%@{ ... %@}}
8410after the first @code{%%} is copied verbatim in the top of the generated
8411@code{yylex} function. Make sure a variable @code{start_token} is
8412available in the scanner (e.g., a global variable or using
8413@code{%lex-param} etc.), and use the following:
8414
8415@example
8416 /* @r{Prologue.} */
8417%%
8418%@{
8419 if (start_token)
8420 @{
8421 int t = start_token;
8422 start_token = 0;
8423 return t;
8424 @}
8425%@}
8426 /* @r{The rules.} */
8427@end example
8428
8429
55ba27be
AD
8430@node Secure? Conform?
8431@section Secure? Conform?
8432
8433@display
8434Is Bison secure? Does it conform to POSIX?
8435@end display
8436
8437If you're looking for a guarantee or certification, we don't provide it.
8438However, Bison is intended to be a reliable program that conforms to the
8439@acronym{POSIX} specification for Yacc. If you run into problems,
8440please send us a bug report.
8441
8442@node I can't build Bison
8443@section I can't build Bison
8444
8445@display
8c5b881d
PE
8446I can't build Bison because @command{make} complains that
8447@code{msgfmt} is not found.
55ba27be
AD
8448What should I do?
8449@end display
8450
8451Like most GNU packages with internationalization support, that feature
8452is turned on by default. If you have problems building in the @file{po}
8453subdirectory, it indicates that your system's internationalization
8454support is lacking. You can re-configure Bison with
8455@option{--disable-nls} to turn off this support, or you can install GNU
8456gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
8457Bison. See the file @file{ABOUT-NLS} for more information.
8458
8459
8460@node Where can I find help?
8461@section Where can I find help?
8462
8463@display
8464I'm having trouble using Bison. Where can I find help?
8465@end display
8466
8467First, read this fine manual. Beyond that, you can send mail to
8468@email{help-bison@@gnu.org}. This mailing list is intended to be
8469populated with people who are willing to answer questions about using
8470and installing Bison. Please keep in mind that (most of) the people on
8471the list have aspects of their lives which are not related to Bison (!),
8472so you may not receive an answer to your question right away. This can
8473be frustrating, but please try not to honk them off; remember that any
8474help they provide is purely voluntary and out of the kindness of their
8475hearts.
8476
8477@node Bug Reports
8478@section Bug Reports
8479
8480@display
8481I found a bug. What should I include in the bug report?
8482@end display
8483
8484Before you send a bug report, make sure you are using the latest
8485version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
8486mirrors. Be sure to include the version number in your bug report. If
8487the bug is present in the latest version but not in a previous version,
8488try to determine the most recent version which did not contain the bug.
8489
8490If the bug is parser-related, you should include the smallest grammar
8491you can which demonstrates the bug. The grammar file should also be
8492complete (i.e., I should be able to run it through Bison without having
8493to edit or add anything). The smaller and simpler the grammar, the
8494easier it will be to fix the bug.
8495
8496Include information about your compilation environment, including your
8497operating system's name and version and your compiler's name and
8498version. If you have trouble compiling, you should also include a
8499transcript of the build session, starting with the invocation of
8500`configure'. Depending on the nature of the bug, you may be asked to
8501send additional files as well (such as `config.h' or `config.cache').
8502
8503Patches are most welcome, but not required. That is, do not hesitate to
8504send a bug report just because you can not provide a fix.
8505
8506Send bug reports to @email{bug-bison@@gnu.org}.
8507
8508@node Other Languages
8509@section Other Languages
8510
8511@display
8512Will Bison ever have C++ support? How about Java or @var{insert your
8513favorite language here}?
8514@end display
8515
8516C++ support is there now, and is documented. We'd love to add other
8517languages; contributions are welcome.
8518
8519@node Beta Testing
8520@section Beta Testing
8521
8522@display
8523What is involved in being a beta tester?
8524@end display
8525
8526It's not terribly involved. Basically, you would download a test
8527release, compile it, and use it to build and run a parser or two. After
8528that, you would submit either a bug report or a message saying that
8529everything is okay. It is important to report successes as well as
8530failures because test releases eventually become mainstream releases,
8531but only if they are adequately tested. If no one tests, development is
8532essentially halted.
8533
8534Beta testers are particularly needed for operating systems to which the
8535developers do not have easy access. They currently have easy access to
8536recent GNU/Linux and Solaris versions. Reports about other operating
8537systems are especially welcome.
8538
8539@node Mailing Lists
8540@section Mailing Lists
8541
8542@display
8543How do I join the help-bison and bug-bison mailing lists?
8544@end display
8545
8546See @url{http://lists.gnu.org/}.
a06ea4aa 8547
d1a1114f
AD
8548@c ================================================= Table of Symbols
8549
342b8b6e 8550@node Table of Symbols
bfa74976
RS
8551@appendix Bison Symbols
8552@cindex Bison symbols, table of
8553@cindex symbols in Bison, table of
8554
18b519c0 8555@deffn {Variable} @@$
3ded9a63 8556In an action, the location of the left-hand side of the rule.
88bce5a2 8557@xref{Locations, , Locations Overview}.
18b519c0 8558@end deffn
3ded9a63 8559
18b519c0 8560@deffn {Variable} @@@var{n}
3ded9a63
AD
8561In an action, the location of the @var{n}-th symbol of the right-hand
8562side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 8563@end deffn
3ded9a63 8564
18b519c0 8565@deffn {Variable} $$
3ded9a63
AD
8566In an action, the semantic value of the left-hand side of the rule.
8567@xref{Actions}.
18b519c0 8568@end deffn
3ded9a63 8569
18b519c0 8570@deffn {Variable} $@var{n}
3ded9a63
AD
8571In an action, the semantic value of the @var{n}-th symbol of the
8572right-hand side of the rule. @xref{Actions}.
18b519c0 8573@end deffn
3ded9a63 8574
dd8d9022
AD
8575@deffn {Delimiter} %%
8576Delimiter used to separate the grammar rule section from the
8577Bison declarations section or the epilogue.
8578@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 8579@end deffn
bfa74976 8580
dd8d9022
AD
8581@c Don't insert spaces, or check the DVI output.
8582@deffn {Delimiter} %@{@var{code}%@}
8583All code listed between @samp{%@{} and @samp{%@}} is copied directly to
8584the output file uninterpreted. Such code forms the prologue of the input
8585file. @xref{Grammar Outline, ,Outline of a Bison
8586Grammar}.
18b519c0 8587@end deffn
bfa74976 8588
dd8d9022
AD
8589@deffn {Construct} /*@dots{}*/
8590Comment delimiters, as in C.
18b519c0 8591@end deffn
bfa74976 8592
dd8d9022
AD
8593@deffn {Delimiter} :
8594Separates a rule's result from its components. @xref{Rules, ,Syntax of
8595Grammar Rules}.
18b519c0 8596@end deffn
bfa74976 8597
dd8d9022
AD
8598@deffn {Delimiter} ;
8599Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8600@end deffn
bfa74976 8601
dd8d9022
AD
8602@deffn {Delimiter} |
8603Separates alternate rules for the same result nonterminal.
8604@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 8605@end deffn
bfa74976 8606
12e35840
JD
8607@deffn {Directive} <*>
8608Used to define a default tagged @code{%destructor} or default tagged
8609@code{%printer}.
85894313
JD
8610
8611This feature is experimental.
8612More user feedback will help to determine whether it should become a permanent
8613feature.
8614
12e35840
JD
8615@xref{Destructor Decl, , Freeing Discarded Symbols}.
8616@end deffn
8617
3ebecc24 8618@deffn {Directive} <>
12e35840
JD
8619Used to define a default tagless @code{%destructor} or default tagless
8620@code{%printer}.
85894313
JD
8621
8622This feature is experimental.
8623More user feedback will help to determine whether it should become a permanent
8624feature.
8625
12e35840
JD
8626@xref{Destructor Decl, , Freeing Discarded Symbols}.
8627@end deffn
8628
dd8d9022
AD
8629@deffn {Symbol} $accept
8630The predefined nonterminal whose only rule is @samp{$accept: @var{start}
8631$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
8632Start-Symbol}. It cannot be used in the grammar.
18b519c0 8633@end deffn
bfa74976 8634
136a0f76 8635@deffn {Directive} %code @{@var{code}@}
2cbe6b7f
JD
8636Other than semantic actions, this is probably the most common place you should
8637write verbatim code for the parser implementation.
85894313
JD
8638It replaces the traditional Yacc prologue,
8639@comment For C/C++, it replaces the traditional Yacc prologue,
2cbe6b7f 8640@code{%@{@var{code}%@}}, for most purposes.
85894313 8641@comment For Java, it inserts code into the parser class.
9bc0dd67
JD
8642
8643@cindex Prologue
9bc0dd67 8644@findex %union
2cbe6b7f
JD
8645Compare with @code{%@{@var{code}%@}} (@pxref{Prologue, ,The Prologue})
8646appearing after the first @code{%union @{@var{code}@}} in a C/C++ based grammar
8647file.
8648While Bison will continue to support @code{%@{@var{code}%@}} for backward
8649compatibility, @code{%code @{@var{code}@}} is cleaner as its functionality does
8650not depend on its position in the grammar file relative to any
8651@code{%union @{@var{code}@}}.
8652Specifically, @code{%code @{@var{code}@}} always inserts your @var{code} into
8653the parser code file after the usual contents of the parser header file.
8654
85894313
JD
8655(Like all the Yacc prologue alternative directives, this directive is
8656experimental.
8657More user feedback will help to determine whether it should become a permanent
8658feature.)
8659
2cbe6b7f
JD
8660@xref{Prologue Alternatives}.
8661@end deffn
8662
8663@deffn {Directive} %code-top @{@var{code}@}
85894313
JD
8664Occasionally it is desirable to insert code near the top of the
8665@comment Occasionally for C/C++ it is desirable to insert code near the top of the
2cbe6b7f
JD
8666parser code file.
8667For example:
9bc0dd67
JD
8668
8669@smallexample
2cbe6b7f
JD
8670%code-top @{
8671 #define _GNU_SOURCE
8672 #include <stdio.h>
9bc0dd67 8673@}
9bc0dd67
JD
8674@end smallexample
8675
85894313
JD
8676@comment @noindent
8677@comment For Java, @code{%code-top @{@var{code}@}} is currently unused.
2cbe6b7f
JD
8678
8679@cindex Prologue
8680@findex %union
8681Compare with @code{%@{@var{code}%@}} appearing before the first
8682@code{%union @{@var{code}@}} in a C/C++ based grammar file.
8683@code{%code-top @{@var{code}@}} is cleaner as its functionality does not depend
8684on its position in the grammar file relative to any
8685@code{%union @{@var{code}@}}.
34f98f46 8686
85894313
JD
8687(Like all the Yacc prologue alternative directives, this directive is
8688experimental.
8689More user feedback will help to determine whether it should become a permanent
8690feature.)
8691
2cbe6b7f 8692@xref{Prologue Alternatives}.
9bc0dd67
JD
8693@end deffn
8694
8695@deffn {Directive} %debug
8696Equip the parser for debugging. @xref{Decl Summary}.
8697@end deffn
8698
18b519c0 8699@deffn {Directive} %debug
6deb4447 8700Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 8701@end deffn
6deb4447 8702
91d2c560 8703@ifset defaultprec
22fccf95
PE
8704@deffn {Directive} %default-prec
8705Assign a precedence to rules that lack an explicit @samp{%prec}
8706modifier. @xref{Contextual Precedence, ,Context-Dependent
8707Precedence}.
39a06c25 8708@end deffn
91d2c560 8709@end ifset
39a06c25 8710
18b519c0 8711@deffn {Directive} %defines
6deb4447
AD
8712Bison declaration to create a header file meant for the scanner.
8713@xref{Decl Summary}.
18b519c0 8714@end deffn
6deb4447 8715
02975b9a
JD
8716@deffn {Directive} %defines @var{defines-file}
8717Same as above, but save in the file @var{defines-file}.
8718@xref{Decl Summary}.
8719@end deffn
8720
18b519c0 8721@deffn {Directive} %destructor
258b75ca 8722Specify how the parser should reclaim the memory associated to
fa7e68c3 8723discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 8724@end deffn
72f889cc 8725
18b519c0 8726@deffn {Directive} %dprec
676385e2 8727Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
8728time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8729@acronym{GLR} Parsers}.
18b519c0 8730@end deffn
676385e2 8731
dd8d9022
AD
8732@deffn {Symbol} $end
8733The predefined token marking the end of the token stream. It cannot be
8734used in the grammar.
8735@end deffn
8736
8737@deffn {Symbol} error
8738A token name reserved for error recovery. This token may be used in
8739grammar rules so as to allow the Bison parser to recognize an error in
8740the grammar without halting the process. In effect, a sentence
8741containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
8742token @code{error} becomes the current lookahead token. Actions
8743corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
8744token is reset to the token that originally caused the violation.
8745@xref{Error Recovery}.
18d192f0
AD
8746@end deffn
8747
18b519c0 8748@deffn {Directive} %error-verbose
2a8d363a
AD
8749Bison declaration to request verbose, specific error message strings
8750when @code{yyerror} is called.
18b519c0 8751@end deffn
2a8d363a 8752
02975b9a 8753@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 8754Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8755Summary}.
18b519c0 8756@end deffn
d8988b2f 8757
18b519c0 8758@deffn {Directive} %glr-parser
c827f760
PE
8759Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8760Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8761@end deffn
676385e2 8762
dd8d9022
AD
8763@deffn {Directive} %initial-action
8764Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8765@end deffn
8766
18b519c0 8767@deffn {Directive} %left
bfa74976
RS
8768Bison declaration to assign left associativity to token(s).
8769@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8770@end deffn
bfa74976 8771
feeb0eda 8772@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8773Bison declaration to specifying an additional parameter that
8774@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8775for Pure Parsers}.
18b519c0 8776@end deffn
2a8d363a 8777
18b519c0 8778@deffn {Directive} %merge
676385e2 8779Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8780reduce/reduce conflict with a rule having the same merging function, the
676385e2 8781function is applied to the two semantic values to get a single result.
c827f760 8782@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8783@end deffn
676385e2 8784
02975b9a 8785@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 8786Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8787@end deffn
d8988b2f 8788
91d2c560 8789@ifset defaultprec
22fccf95
PE
8790@deffn {Directive} %no-default-prec
8791Do not assign a precedence to rules that lack an explicit @samp{%prec}
8792modifier. @xref{Contextual Precedence, ,Context-Dependent
8793Precedence}.
8794@end deffn
91d2c560 8795@end ifset
22fccf95 8796
18b519c0 8797@deffn {Directive} %no-lines
931c7513
RS
8798Bison declaration to avoid generating @code{#line} directives in the
8799parser file. @xref{Decl Summary}.
18b519c0 8800@end deffn
931c7513 8801
18b519c0 8802@deffn {Directive} %nonassoc
9d9b8b70 8803Bison declaration to assign nonassociativity to token(s).
bfa74976 8804@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8805@end deffn
bfa74976 8806
02975b9a 8807@deffn {Directive} %output "@var{file}"
72d2299c 8808Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8809Summary}.
18b519c0 8810@end deffn
d8988b2f 8811
feeb0eda 8812@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8813Bison declaration to specifying an additional parameter that
8814@code{yyparse} should accept. @xref{Parser Function,, The Parser
8815Function @code{yyparse}}.
18b519c0 8816@end deffn
2a8d363a 8817
18b519c0 8818@deffn {Directive} %prec
bfa74976
RS
8819Bison declaration to assign a precedence to a specific rule.
8820@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8821@end deffn
bfa74976 8822
2cbe6b7f
JD
8823@deffn {Directive} %provides @{@var{code}@}
8824This is the right place to write additional definitions you would like Bison to
8825expose externally.
85894313
JD
8826That is, this directive inserts your @var{code} both into the parser header
8827@comment For C/C++, this directive inserts your @var{code} both into the parser header
2cbe6b7f
JD
8828file (if generated; @pxref{Table of Symbols, ,%defines}) and into the parser
8829code file after Bison's required definitions.
85894313
JD
8830@comment For Java, it inserts your @var{code} into the parser java file after the parser
8831@comment class.
8832
8833(Like all the Yacc prologue alternative directives, this directive is
8834experimental.
8835More user feedback will help to determine whether it should become a permanent
8836feature.)
2cbe6b7f
JD
8837
8838@xref{Prologue Alternatives}.
8839@end deffn
8840
18b519c0 8841@deffn {Directive} %pure-parser
bfa74976
RS
8842Bison declaration to request a pure (reentrant) parser.
8843@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8844@end deffn
bfa74976 8845
b50d2359 8846@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8847Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8848Require a Version of Bison}.
b50d2359
AD
8849@end deffn
8850
2cbe6b7f
JD
8851@deffn {Directive} %requires @{@var{code}@}
8852This is the right place to write dependency code for externally exposed
8853definitions required by Bison.
85894313
JD
8854Such exposed definitions are those usually appearing in the parser
8855@comment For C/C++, such exposed definitions are those usually appearing in the parser
2cbe6b7f
JD
8856header file.
8857Thus, this is the right place to define types referenced in
8858@code{%union @{@var{code}@}} directives, and it is the right place to override
8859Bison's default @code{YYSTYPE} and @code{YYLTYPE} definitions.
85894313 8860@comment For Java, this is the right place to write import directives.
2cbe6b7f
JD
8861
8862@cindex Prologue
8863@findex %union
8864Compare with @code{%@{@var{code}%@}} (@pxref{Prologue, ,The Prologue})
8865appearing before the first @code{%union @{@var{code}@}} in a C/C++ based
8866grammar file.
8867Unlike @code{%@{@var{code}%@}}, @code{%requires @{@var{code}@}} inserts your
8868@var{code} both into the parser code file and into the parser header file (if
8869generated; @pxref{Table of Symbols, ,%defines}) since Bison's required
8870definitions should depend on it in both places.
8871
85894313
JD
8872(Like all the Yacc prologue alternative directives, this directive is
8873experimental.
8874More user feedback will help to determine whether it should become a permanent
8875feature.)
8876
2cbe6b7f
JD
8877@xref{Prologue Alternatives}.
8878@end deffn
8879
18b519c0 8880@deffn {Directive} %right
bfa74976
RS
8881Bison declaration to assign right associativity to token(s).
8882@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8883@end deffn
bfa74976 8884
18b519c0 8885@deffn {Directive} %start
704a47c4
AD
8886Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8887Start-Symbol}.
18b519c0 8888@end deffn
bfa74976 8889
18b519c0 8890@deffn {Directive} %token
bfa74976
RS
8891Bison declaration to declare token(s) without specifying precedence.
8892@xref{Token Decl, ,Token Type Names}.
18b519c0 8893@end deffn
bfa74976 8894
18b519c0 8895@deffn {Directive} %token-table
931c7513
RS
8896Bison declaration to include a token name table in the parser file.
8897@xref{Decl Summary}.
18b519c0 8898@end deffn
931c7513 8899
18b519c0 8900@deffn {Directive} %type
704a47c4
AD
8901Bison declaration to declare nonterminals. @xref{Type Decl,
8902,Nonterminal Symbols}.
18b519c0 8903@end deffn
bfa74976 8904
dd8d9022
AD
8905@deffn {Symbol} $undefined
8906The predefined token onto which all undefined values returned by
8907@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8908@code{error}.
8909@end deffn
8910
18b519c0 8911@deffn {Directive} %union
bfa74976
RS
8912Bison declaration to specify several possible data types for semantic
8913values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8914@end deffn
bfa74976 8915
dd8d9022
AD
8916@deffn {Macro} YYABORT
8917Macro to pretend that an unrecoverable syntax error has occurred, by
8918making @code{yyparse} return 1 immediately. The error reporting
8919function @code{yyerror} is not called. @xref{Parser Function, ,The
8920Parser Function @code{yyparse}}.
8921@end deffn
3ded9a63 8922
dd8d9022
AD
8923@deffn {Macro} YYACCEPT
8924Macro to pretend that a complete utterance of the language has been
8925read, by making @code{yyparse} return 0 immediately.
8926@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8927@end deffn
bfa74976 8928
dd8d9022 8929@deffn {Macro} YYBACKUP
742e4900 8930Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 8931token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8932@end deffn
bfa74976 8933
dd8d9022 8934@deffn {Variable} yychar
32c29292 8935External integer variable that contains the integer value of the
742e4900 8936lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
8937@code{yyparse}.) Error-recovery rule actions may examine this variable.
8938@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8939@end deffn
bfa74976 8940
dd8d9022
AD
8941@deffn {Variable} yyclearin
8942Macro used in error-recovery rule actions. It clears the previous
742e4900 8943lookahead token. @xref{Error Recovery}.
18b519c0 8944@end deffn
bfa74976 8945
dd8d9022
AD
8946@deffn {Macro} YYDEBUG
8947Macro to define to equip the parser with tracing code. @xref{Tracing,
8948,Tracing Your Parser}.
18b519c0 8949@end deffn
bfa74976 8950
dd8d9022
AD
8951@deffn {Variable} yydebug
8952External integer variable set to zero by default. If @code{yydebug}
8953is given a nonzero value, the parser will output information on input
8954symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8955@end deffn
bfa74976 8956
dd8d9022
AD
8957@deffn {Macro} yyerrok
8958Macro to cause parser to recover immediately to its normal mode
8959after a syntax error. @xref{Error Recovery}.
8960@end deffn
8961
8962@deffn {Macro} YYERROR
8963Macro to pretend that a syntax error has just been detected: call
8964@code{yyerror} and then perform normal error recovery if possible
8965(@pxref{Error Recovery}), or (if recovery is impossible) make
8966@code{yyparse} return 1. @xref{Error Recovery}.
8967@end deffn
8968
8969@deffn {Function} yyerror
8970User-supplied function to be called by @code{yyparse} on error.
8971@xref{Error Reporting, ,The Error
8972Reporting Function @code{yyerror}}.
8973@end deffn
8974
8975@deffn {Macro} YYERROR_VERBOSE
8976An obsolete macro that you define with @code{#define} in the prologue
8977to request verbose, specific error message strings
8978when @code{yyerror} is called. It doesn't matter what definition you
8979use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8980@code{%error-verbose} is preferred.
8981@end deffn
8982
8983@deffn {Macro} YYINITDEPTH
8984Macro for specifying the initial size of the parser stack.
1a059451 8985@xref{Memory Management}.
dd8d9022
AD
8986@end deffn
8987
8988@deffn {Function} yylex
8989User-supplied lexical analyzer function, called with no arguments to get
8990the next token. @xref{Lexical, ,The Lexical Analyzer Function
8991@code{yylex}}.
8992@end deffn
8993
8994@deffn {Macro} YYLEX_PARAM
8995An obsolete macro for specifying an extra argument (or list of extra
32c29292 8996arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8997macro is deprecated, and is supported only for Yacc like parsers.
8998@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8999@end deffn
9000
9001@deffn {Variable} yylloc
9002External variable in which @code{yylex} should place the line and column
9003numbers associated with a token. (In a pure parser, it is a local
9004variable within @code{yyparse}, and its address is passed to
32c29292
JD
9005@code{yylex}.)
9006You can ignore this variable if you don't use the @samp{@@} feature in the
9007grammar actions.
9008@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 9009In semantic actions, it stores the location of the lookahead token.
32c29292 9010@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
9011@end deffn
9012
9013@deffn {Type} YYLTYPE
9014Data type of @code{yylloc}; by default, a structure with four
9015members. @xref{Location Type, , Data Types of Locations}.
9016@end deffn
9017
9018@deffn {Variable} yylval
9019External variable in which @code{yylex} should place the semantic
9020value associated with a token. (In a pure parser, it is a local
9021variable within @code{yyparse}, and its address is passed to
32c29292
JD
9022@code{yylex}.)
9023@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 9024In semantic actions, it stores the semantic value of the lookahead token.
32c29292 9025@xref{Actions, ,Actions}.
dd8d9022
AD
9026@end deffn
9027
9028@deffn {Macro} YYMAXDEPTH
1a059451
PE
9029Macro for specifying the maximum size of the parser stack. @xref{Memory
9030Management}.
dd8d9022
AD
9031@end deffn
9032
9033@deffn {Variable} yynerrs
8a2800e7 9034Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
9035(In a pure parser, it is a local variable within @code{yyparse}.)
9036@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
9037@end deffn
9038
9039@deffn {Function} yyparse
9040The parser function produced by Bison; call this function to start
9041parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
9042@end deffn
9043
9044@deffn {Macro} YYPARSE_PARAM
9045An obsolete macro for specifying the name of a parameter that
9046@code{yyparse} should accept. The use of this macro is deprecated, and
9047is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
9048Conventions for Pure Parsers}.
9049@end deffn
9050
9051@deffn {Macro} YYRECOVERING
02103984
PE
9052The expression @code{YYRECOVERING ()} yields 1 when the parser
9053is recovering from a syntax error, and 0 otherwise.
9054@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
9055@end deffn
9056
9057@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
9058Macro used to control the use of @code{alloca} when the C
9059@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
9060the parser will use @code{malloc} to extend its stacks. If defined to
90611, the parser will use @code{alloca}. Values other than 0 and 1 are
9062reserved for future Bison extensions. If not defined,
9063@code{YYSTACK_USE_ALLOCA} defaults to 0.
9064
55289366 9065In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
9066limited stack and with unreliable stack-overflow checking, you should
9067set @code{YYMAXDEPTH} to a value that cannot possibly result in
9068unchecked stack overflow on any of your target hosts when
9069@code{alloca} is called. You can inspect the code that Bison
9070generates in order to determine the proper numeric values. This will
9071require some expertise in low-level implementation details.
dd8d9022
AD
9072@end deffn
9073
9074@deffn {Type} YYSTYPE
9075Data type of semantic values; @code{int} by default.
9076@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 9077@end deffn
bfa74976 9078
342b8b6e 9079@node Glossary
bfa74976
RS
9080@appendix Glossary
9081@cindex glossary
9082
9083@table @asis
c827f760
PE
9084@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
9085Formal method of specifying context-free grammars originally proposed
9086by John Backus, and slightly improved by Peter Naur in his 1960-01-02
9087committee document contributing to what became the Algol 60 report.
9088@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9089
9090@item Context-free grammars
9091Grammars specified as rules that can be applied regardless of context.
9092Thus, if there is a rule which says that an integer can be used as an
9093expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
9094permitted. @xref{Language and Grammar, ,Languages and Context-Free
9095Grammars}.
bfa74976
RS
9096
9097@item Dynamic allocation
9098Allocation of memory that occurs during execution, rather than at
9099compile time or on entry to a function.
9100
9101@item Empty string
9102Analogous to the empty set in set theory, the empty string is a
9103character string of length zero.
9104
9105@item Finite-state stack machine
9106A ``machine'' that has discrete states in which it is said to exist at
9107each instant in time. As input to the machine is processed, the
9108machine moves from state to state as specified by the logic of the
9109machine. In the case of the parser, the input is the language being
9110parsed, and the states correspond to various stages in the grammar
c827f760 9111rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 9112
c827f760 9113@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 9114A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
9115that are not @acronym{LALR}(1). It resolves situations that Bison's
9116usual @acronym{LALR}(1)
676385e2
PH
9117algorithm cannot by effectively splitting off multiple parsers, trying all
9118possible parsers, and discarding those that fail in the light of additional
c827f760
PE
9119right context. @xref{Generalized LR Parsing, ,Generalized
9120@acronym{LR} Parsing}.
676385e2 9121
bfa74976
RS
9122@item Grouping
9123A language construct that is (in general) grammatically divisible;
c827f760 9124for example, `expression' or `declaration' in C@.
bfa74976
RS
9125@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9126
9127@item Infix operator
9128An arithmetic operator that is placed between the operands on which it
9129performs some operation.
9130
9131@item Input stream
9132A continuous flow of data between devices or programs.
9133
9134@item Language construct
9135One of the typical usage schemas of the language. For example, one of
9136the constructs of the C language is the @code{if} statement.
9137@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
9138
9139@item Left associativity
9140Operators having left associativity are analyzed from left to right:
9141@samp{a+b+c} first computes @samp{a+b} and then combines with
9142@samp{c}. @xref{Precedence, ,Operator Precedence}.
9143
9144@item Left recursion
89cab50d
AD
9145A rule whose result symbol is also its first component symbol; for
9146example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
9147Rules}.
bfa74976
RS
9148
9149@item Left-to-right parsing
9150Parsing a sentence of a language by analyzing it token by token from
c827f760 9151left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9152
9153@item Lexical analyzer (scanner)
9154A function that reads an input stream and returns tokens one by one.
9155@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
9156
9157@item Lexical tie-in
9158A flag, set by actions in the grammar rules, which alters the way
9159tokens are parsed. @xref{Lexical Tie-ins}.
9160
931c7513 9161@item Literal string token
14ded682 9162A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 9163
742e4900
JD
9164@item Lookahead token
9165A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 9166Tokens}.
bfa74976 9167
c827f760 9168@item @acronym{LALR}(1)
bfa74976 9169The class of context-free grammars that Bison (like most other parser
c827f760
PE
9170generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
9171Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 9172
c827f760 9173@item @acronym{LR}(1)
bfa74976 9174The class of context-free grammars in which at most one token of
742e4900 9175lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
9176
9177@item Nonterminal symbol
9178A grammar symbol standing for a grammatical construct that can
9179be expressed through rules in terms of smaller constructs; in other
9180words, a construct that is not a token. @xref{Symbols}.
9181
bfa74976
RS
9182@item Parser
9183A function that recognizes valid sentences of a language by analyzing
9184the syntax structure of a set of tokens passed to it from a lexical
9185analyzer.
9186
9187@item Postfix operator
9188An arithmetic operator that is placed after the operands upon which it
9189performs some operation.
9190
9191@item Reduction
9192Replacing a string of nonterminals and/or terminals with a single
89cab50d 9193nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 9194Parser Algorithm}.
bfa74976
RS
9195
9196@item Reentrant
9197A reentrant subprogram is a subprogram which can be in invoked any
9198number of times in parallel, without interference between the various
9199invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
9200
9201@item Reverse polish notation
9202A language in which all operators are postfix operators.
9203
9204@item Right recursion
89cab50d
AD
9205A rule whose result symbol is also its last component symbol; for
9206example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
9207Rules}.
bfa74976
RS
9208
9209@item Semantics
9210In computer languages, the semantics are specified by the actions
9211taken for each instance of the language, i.e., the meaning of
9212each statement. @xref{Semantics, ,Defining Language Semantics}.
9213
9214@item Shift
9215A parser is said to shift when it makes the choice of analyzing
9216further input from the stream rather than reducing immediately some
c827f760 9217already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
9218
9219@item Single-character literal
9220A single character that is recognized and interpreted as is.
9221@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
9222
9223@item Start symbol
9224The nonterminal symbol that stands for a complete valid utterance in
9225the language being parsed. The start symbol is usually listed as the
13863333 9226first nonterminal symbol in a language specification.
bfa74976
RS
9227@xref{Start Decl, ,The Start-Symbol}.
9228
9229@item Symbol table
9230A data structure where symbol names and associated data are stored
9231during parsing to allow for recognition and use of existing
9232information in repeated uses of a symbol. @xref{Multi-function Calc}.
9233
6e649e65
PE
9234@item Syntax error
9235An error encountered during parsing of an input stream due to invalid
9236syntax. @xref{Error Recovery}.
9237
bfa74976
RS
9238@item Token
9239A basic, grammatically indivisible unit of a language. The symbol
9240that describes a token in the grammar is a terminal symbol.
9241The input of the Bison parser is a stream of tokens which comes from
9242the lexical analyzer. @xref{Symbols}.
9243
9244@item Terminal symbol
89cab50d
AD
9245A grammar symbol that has no rules in the grammar and therefore is
9246grammatically indivisible. The piece of text it represents is a token.
9247@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
9248@end table
9249
342b8b6e 9250@node Copying This Manual
f2b5126e 9251@appendix Copying This Manual
f9a8293a 9252
f2b5126e
PB
9253@menu
9254* GNU Free Documentation License:: License for copying this manual.
9255@end menu
f9a8293a 9256
f2b5126e
PB
9257@include fdl.texi
9258
342b8b6e 9259@node Index
bfa74976
RS
9260@unnumbered Index
9261
9262@printindex cp
9263
bfa74976 9264@bye
a06ea4aa
AD
9265
9266@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
9267@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
9268@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
9269@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
9270@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
9271@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
9272@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
9273@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
9274@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
9275@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
9276@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
9277@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 9278@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
9279@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
9280@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
9281@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
9282@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 9283@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
9284@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
9285@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
9286@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 9287@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 9288@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 9289@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 9290@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 9291@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 9292@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 9293@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 9294@c LocalWords: YYSTACK DVI fdl printindex