]> git.saurik.com Git - bison.git/blame - doc/bison.texi
doc: move the section about "%union" where types are discussed
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
7d6bad19 36Copyright @copyright{} 1988-1993, 1995, 1998-2013 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
303834cc
JD
189* Semantics:: Semantic values and actions.
190* Tracking Locations:: Locations and actions.
191* Named References:: Using named references in actions.
192* Declarations:: All kinds of Bison declarations are described here.
193* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
194
195Outline of a Bison Grammar
196
f5f419de 197* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 198* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
199* Bison Declarations:: Syntax and usage of the Bison declarations section.
200* Grammar Rules:: Syntax and usage of the grammar rules section.
201* Epilogue:: Syntax and usage of the epilogue.
bfa74976 202
09add9c2
AD
203Grammar Rules
204
205* Rules Syntax:: Syntax of the rules.
206* Empty Rules:: Symbols that can match the empty string.
207* Recursion:: Writing recursive rules.
208
209
bfa74976
RS
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
e4d49586
AD
214* Union Decl:: Declaring the set of all semantic value types.
215* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
216* Actions:: An action is the semantic definition of a grammar rule.
217* Action Types:: Specifying data types for actions to operate on.
218* Mid-Rule Actions:: Most actions go at the end of a rule.
219 This says when, why and how to use the exceptional
220 action in the middle of a rule.
221
be22823e
AD
222Actions in Mid-Rule
223
224* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
225* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
226* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
227
93dd49ab
PE
228Tracking Locations
229
230* Location Type:: Specifying a data type for locations.
231* Actions and Locations:: Using locations in actions.
232* Location Default Action:: Defining a general way to compute locations.
233
bfa74976
RS
234Bison Declarations
235
b50d2359 236* Require Decl:: Requiring a Bison version.
bfa74976
RS
237* Token Decl:: Declaring terminal symbols.
238* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 239* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 240* Initial Action Decl:: Code run before parsing starts.
72f889cc 241* Destructor Decl:: Declaring how symbols are freed.
93c150b6 242* Printer Decl:: Declaring how symbol values are displayed.
d6328241 243* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
244* Start Decl:: Specifying the start symbol.
245* Pure Decl:: Requesting a reentrant parser.
9987d1b3 246* Push Decl:: Requesting a push parser.
bfa74976 247* Decl Summary:: Table of all Bison declarations.
35c1e5f0 248* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 249* %code Summary:: Inserting code into the parser source.
bfa74976
RS
250
251Parser C-Language Interface
252
f5f419de
DJ
253* Parser Function:: How to call @code{yyparse} and what it returns.
254* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
255* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
256* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
257* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
258* Lexical:: You must supply a function @code{yylex}
259 which reads tokens.
260* Error Reporting:: You must supply a function @code{yyerror}.
261* Action Features:: Special features for use in actions.
262* Internationalization:: How to let the parser speak in the user's
263 native language.
bfa74976
RS
264
265The Lexical Analyzer Function @code{yylex}
266
267* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
268* Token Values:: How @code{yylex} must return the semantic value
269 of the token it has read.
270* Token Locations:: How @code{yylex} must return the text location
271 (line number, etc.) of the token, if the
272 actions want that.
273* Pure Calling:: How the calling convention differs in a pure parser
274 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 275
13863333 276The Bison Parser Algorithm
bfa74976 277
742e4900 278* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
279* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
280* Precedence:: Operator precedence works by resolving conflicts.
281* Contextual Precedence:: When an operator's precedence depends on context.
282* Parser States:: The parser is a finite-state-machine with stack.
283* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 284* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 285* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 286* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 287* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
288
289Operator Precedence
290
291* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
292* Using Precedence:: How to specify precedence and associativity.
293* Precedence Only:: How to specify precedence only.
bfa74976
RS
294* Precedence Examples:: How these features are used in the previous example.
295* How Precedence:: How they work.
c28cd5dc 296* Non Operators:: Using precedence for general conflicts.
bfa74976 297
7fceb615
JD
298Tuning LR
299
300* LR Table Construction:: Choose a different construction algorithm.
301* Default Reductions:: Disable default reductions.
302* LAC:: Correct lookahead sets in the parser states.
303* Unreachable States:: Keep unreachable parser states for debugging.
304
bfa74976
RS
305Handling Context Dependencies
306
307* Semantic Tokens:: Token parsing can depend on the semantic context.
308* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
309* Tie-in Recovery:: Lexical tie-ins have implications for how
310 error recovery rules must be written.
311
93dd49ab 312Debugging Your Parser
ec3bc396
AD
313
314* Understanding:: Understanding the structure of your parser.
fc4fdd62 315* Graphviz:: Getting a visual representation of the parser.
9c16d399 316* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
317* Tracing:: Tracing the execution of your parser.
318
93c150b6
AD
319Tracing Your Parser
320
321* Enabling Traces:: Activating run-time trace support
322* Mfcalc Traces:: Extending @code{mfcalc} to support traces
323* The YYPRINT Macro:: Obsolete interface for semantic value reports
324
bfa74976
RS
325Invoking Bison
326
13863333 327* Bison Options:: All the options described in detail,
c827f760 328 in alphabetical order by short options.
bfa74976 329* Option Cross Key:: Alphabetical list of long options.
93dd49ab 330* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 331
8405b70c 332Parsers Written In Other Languages
12545799
AD
333
334* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 335* Java Parsers:: The interface to generate Java parser classes
12545799
AD
336
337C++ Parsers
338
339* C++ Bison Interface:: Asking for C++ parser generation
340* C++ Semantic Values:: %union vs. C++
341* C++ Location Values:: The position and location classes
342* C++ Parser Interface:: Instantiating and running the parser
343* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 344* A Complete C++ Example:: Demonstrating their use
12545799 345
936c88d1
AD
346C++ Location Values
347
348* C++ position:: One point in the source file
349* C++ location:: Two points in the source file
db8ab2be 350* User Defined Location Type:: Required interface for locations
936c88d1 351
12545799
AD
352A Complete C++ Example
353
354* Calc++ --- C++ Calculator:: The specifications
355* Calc++ Parsing Driver:: An active parsing context
356* Calc++ Parser:: A parser class
357* Calc++ Scanner:: A pure C++ Flex scanner
358* Calc++ Top Level:: Conducting the band
359
8405b70c
PB
360Java Parsers
361
f5f419de
DJ
362* Java Bison Interface:: Asking for Java parser generation
363* Java Semantic Values:: %type and %token vs. Java
364* Java Location Values:: The position and location classes
365* Java Parser Interface:: Instantiating and running the parser
366* Java Scanner Interface:: Specifying the scanner for the parser
367* Java Action Features:: Special features for use in actions
368* Java Differences:: Differences between C/C++ and Java Grammars
369* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 370
d1a1114f
AD
371Frequently Asked Questions
372
f5f419de
DJ
373* Memory Exhausted:: Breaking the Stack Limits
374* How Can I Reset the Parser:: @code{yyparse} Keeps some State
375* Strings are Destroyed:: @code{yylval} Loses Track of Strings
376* Implementing Gotos/Loops:: Control Flow in the Calculator
377* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 378* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
379* I can't build Bison:: Troubleshooting
380* Where can I find help?:: Troubleshouting
381* Bug Reports:: Troublereporting
382* More Languages:: Parsers in C++, Java, and so on
383* Beta Testing:: Experimenting development versions
384* Mailing Lists:: Meeting other Bison users
d1a1114f 385
f2b5126e
PB
386Copying This Manual
387
f5f419de 388* Copying This Manual:: License for copying this manual.
f2b5126e 389
342b8b6e 390@end detailmenu
bfa74976
RS
391@end menu
392
342b8b6e 393@node Introduction
bfa74976
RS
394@unnumbered Introduction
395@cindex introduction
396
6077da58 397@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
398annotated context-free grammar into a deterministic LR or generalized
399LR (GLR) parser employing LALR(1) parser tables. As an experimental
400feature, Bison can also generate IELR(1) or canonical LR(1) parser
401tables. Once you are proficient with Bison, you can use it to develop
402a wide range of language parsers, from those used in simple desk
403calculators to complex programming languages.
404
405Bison is upward compatible with Yacc: all properly-written Yacc
406grammars ought to work with Bison with no change. Anyone familiar
407with Yacc should be able to use Bison with little trouble. You need
408to be fluent in C or C++ programming in order to use Bison or to
409understand this manual. Java is also supported as an experimental
410feature.
411
412We begin with tutorial chapters that explain the basic concepts of
413using Bison and show three explained examples, each building on the
414last. If you don't know Bison or Yacc, start by reading these
415chapters. Reference chapters follow, which describe specific aspects
416of Bison in detail.
bfa74976 417
679e9935
JD
418Bison was written originally by Robert Corbett. Richard Stallman made
419it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
420added multi-character string literals and other features. Since then,
421Bison has grown more robust and evolved many other new features thanks
422to the hard work of a long list of volunteers. For details, see the
423@file{THANKS} and @file{ChangeLog} files included in the Bison
424distribution.
931c7513 425
df1af54c 426This edition corresponds to version @value{VERSION} of Bison.
bfa74976 427
342b8b6e 428@node Conditions
bfa74976
RS
429@unnumbered Conditions for Using Bison
430
193d7c70
PE
431The distribution terms for Bison-generated parsers permit using the
432parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 433permissions applied only when Bison was generating LALR(1)
193d7c70 434parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 435parsers could be used only in programs that were free software.
a31239f1 436
8a4281b9 437The other GNU programming tools, such as the GNU C
c827f760 438compiler, have never
9ecbd125 439had such a requirement. They could always be used for nonfree
a31239f1
RS
440software. The reason Bison was different was not due to a special
441policy decision; it resulted from applying the usual General Public
442License to all of the Bison source code.
443
ff7571c0
JD
444The main output of the Bison utility---the Bison parser implementation
445file---contains a verbatim copy of a sizable piece of Bison, which is
446the code for the parser's implementation. (The actions from your
447grammar are inserted into this implementation at one point, but most
448of the rest of the implementation is not changed.) When we applied
449the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
450the effect was to restrict the use of Bison output to free software.
451
452We didn't change the terms because of sympathy for people who want to
453make software proprietary. @strong{Software should be free.} But we
454concluded that limiting Bison's use to free software was doing little to
455encourage people to make other software free. So we decided to make the
456practical conditions for using Bison match the practical conditions for
8a4281b9 457using the other GNU tools.
bfa74976 458
193d7c70
PE
459This exception applies when Bison is generating code for a parser.
460You can tell whether the exception applies to a Bison output file by
461inspecting the file for text beginning with ``As a special
462exception@dots{}''. The text spells out the exact terms of the
463exception.
262aa8dd 464
f16b0819
PE
465@node Copying
466@unnumbered GNU GENERAL PUBLIC LICENSE
467@include gpl-3.0.texi
bfa74976 468
342b8b6e 469@node Concepts
bfa74976
RS
470@chapter The Concepts of Bison
471
472This chapter introduces many of the basic concepts without which the
473details of Bison will not make sense. If you do not already know how to
474use Bison or Yacc, we suggest you start by reading this chapter carefully.
475
476@menu
f5f419de
DJ
477* Language and Grammar:: Languages and context-free grammars,
478 as mathematical ideas.
479* Grammar in Bison:: How we represent grammars for Bison's sake.
480* Semantic Values:: Each token or syntactic grouping can have
481 a semantic value (the value of an integer,
482 the name of an identifier, etc.).
483* Semantic Actions:: Each rule can have an action containing C code.
484* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 485* Locations:: Overview of location tracking.
f5f419de
DJ
486* Bison Parser:: What are Bison's input and output,
487 how is the output used?
488* Stages:: Stages in writing and running Bison grammars.
489* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
490@end menu
491
342b8b6e 492@node Language and Grammar
bfa74976
RS
493@section Languages and Context-Free Grammars
494
bfa74976
RS
495@cindex context-free grammar
496@cindex grammar, context-free
497In order for Bison to parse a language, it must be described by a
498@dfn{context-free grammar}. This means that you specify one or more
499@dfn{syntactic groupings} and give rules for constructing them from their
500parts. For example, in the C language, one kind of grouping is called an
501`expression'. One rule for making an expression might be, ``An expression
502can be made of a minus sign and another expression''. Another would be,
503``An expression can be an integer''. As you can see, rules are often
504recursive, but there must be at least one rule which leads out of the
505recursion.
506
8a4281b9 507@cindex BNF
bfa74976
RS
508@cindex Backus-Naur form
509The most common formal system for presenting such rules for humans to read
8a4281b9 510is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 511order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
512BNF is a context-free grammar. The input to Bison is
513essentially machine-readable BNF.
bfa74976 514
7fceb615
JD
515@cindex LALR grammars
516@cindex IELR grammars
517@cindex LR grammars
518There are various important subclasses of context-free grammars. Although
519it can handle almost all context-free grammars, Bison is optimized for what
520are called LR(1) grammars. In brief, in these grammars, it must be possible
521to tell how to parse any portion of an input string with just a single token
522of lookahead. For historical reasons, Bison by default is limited by the
523additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
524@xref{Mysterious Conflicts}, for more information on this. As an
525experimental feature, you can escape these additional restrictions by
526requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
527Construction}, to learn how.
bfa74976 528
8a4281b9
JD
529@cindex GLR parsing
530@cindex generalized LR (GLR) parsing
676385e2 531@cindex ambiguous grammars
9d9b8b70 532@cindex nondeterministic parsing
9501dc6e 533
8a4281b9 534Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
535roughly that the next grammar rule to apply at any point in the input is
536uniquely determined by the preceding input and a fixed, finite portion
742e4900 537(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 538grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 539apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 540grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 541lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 542With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
543general context-free grammars, using a technique known as GLR
544parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
545are able to handle any context-free grammar for which the number of
546possible parses of any given string is finite.
676385e2 547
bfa74976
RS
548@cindex symbols (abstract)
549@cindex token
550@cindex syntactic grouping
551@cindex grouping, syntactic
9501dc6e
AD
552In the formal grammatical rules for a language, each kind of syntactic
553unit or grouping is named by a @dfn{symbol}. Those which are built by
554grouping smaller constructs according to grammatical rules are called
bfa74976
RS
555@dfn{nonterminal symbols}; those which can't be subdivided are called
556@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
557corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 558corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
559
560We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
561nonterminal, mean. The tokens of C are identifiers, constants (numeric
562and string), and the various keywords, arithmetic operators and
563punctuation marks. So the terminal symbols of a grammar for C include
564`identifier', `number', `string', plus one symbol for each keyword,
565operator or punctuation mark: `if', `return', `const', `static', `int',
566`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
567(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
568lexicography, not grammar.)
569
570Here is a simple C function subdivided into tokens:
571
9edcd895
AD
572@example
573int /* @r{keyword `int'} */
14d4662b 574square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
575 @r{identifier, close-paren} */
576@{ /* @r{open-brace} */
aa08666d
AD
577 return x * x; /* @r{keyword `return', identifier, asterisk,}
578 @r{identifier, semicolon} */
9edcd895
AD
579@} /* @r{close-brace} */
580@end example
bfa74976
RS
581
582The syntactic groupings of C include the expression, the statement, the
583declaration, and the function definition. These are represented in the
584grammar of C by nonterminal symbols `expression', `statement',
585`declaration' and `function definition'. The full grammar uses dozens of
586additional language constructs, each with its own nonterminal symbol, in
587order to express the meanings of these four. The example above is a
588function definition; it contains one declaration, and one statement. In
589the statement, each @samp{x} is an expression and so is @samp{x * x}.
590
591Each nonterminal symbol must have grammatical rules showing how it is made
592out of simpler constructs. For example, one kind of C statement is the
593@code{return} statement; this would be described with a grammar rule which
594reads informally as follows:
595
596@quotation
597A `statement' can be made of a `return' keyword, an `expression' and a
598`semicolon'.
599@end quotation
600
601@noindent
602There would be many other rules for `statement', one for each kind of
603statement in C.
604
605@cindex start symbol
606One nonterminal symbol must be distinguished as the special one which
607defines a complete utterance in the language. It is called the @dfn{start
608symbol}. In a compiler, this means a complete input program. In the C
609language, the nonterminal symbol `sequence of definitions and declarations'
610plays this role.
611
612For example, @samp{1 + 2} is a valid C expression---a valid part of a C
613program---but it is not valid as an @emph{entire} C program. In the
614context-free grammar of C, this follows from the fact that `expression' is
615not the start symbol.
616
617The Bison parser reads a sequence of tokens as its input, and groups the
618tokens using the grammar rules. If the input is valid, the end result is
619that the entire token sequence reduces to a single grouping whose symbol is
620the grammar's start symbol. If we use a grammar for C, the entire input
621must be a `sequence of definitions and declarations'. If not, the parser
622reports a syntax error.
623
342b8b6e 624@node Grammar in Bison
bfa74976
RS
625@section From Formal Rules to Bison Input
626@cindex Bison grammar
627@cindex grammar, Bison
628@cindex formal grammar
629
630A formal grammar is a mathematical construct. To define the language
631for Bison, you must write a file expressing the grammar in Bison syntax:
632a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
633
634A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 635as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
636in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
637
638The Bison representation for a terminal symbol is also called a @dfn{token
639type}. Token types as well can be represented as C-like identifiers. By
640convention, these identifiers should be upper case to distinguish them from
641nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
642@code{RETURN}. A terminal symbol that stands for a particular keyword in
643the language should be named after that keyword converted to upper case.
644The terminal symbol @code{error} is reserved for error recovery.
931c7513 645@xref{Symbols}.
bfa74976
RS
646
647A terminal symbol can also be represented as a character literal, just like
648a C character constant. You should do this whenever a token is just a
649single character (parenthesis, plus-sign, etc.): use that same character in
650a literal as the terminal symbol for that token.
651
931c7513
RS
652A third way to represent a terminal symbol is with a C string constant
653containing several characters. @xref{Symbols}, for more information.
654
bfa74976
RS
655The grammar rules also have an expression in Bison syntax. For example,
656here is the Bison rule for a C @code{return} statement. The semicolon in
657quotes is a literal character token, representing part of the C syntax for
658the statement; the naked semicolon, and the colon, are Bison punctuation
659used in every rule.
660
661@example
5e9b6624 662stmt: RETURN expr ';' ;
bfa74976
RS
663@end example
664
665@noindent
666@xref{Rules, ,Syntax of Grammar Rules}.
667
342b8b6e 668@node Semantic Values
bfa74976
RS
669@section Semantic Values
670@cindex semantic value
671@cindex value, semantic
672
673A formal grammar selects tokens only by their classifications: for example,
674if a rule mentions the terminal symbol `integer constant', it means that
675@emph{any} integer constant is grammatically valid in that position. The
676precise value of the constant is irrelevant to how to parse the input: if
677@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 678grammatical.
bfa74976
RS
679
680But the precise value is very important for what the input means once it is
681parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6823989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
683has both a token type and a @dfn{semantic value}. @xref{Semantics,
684,Defining Language Semantics},
bfa74976
RS
685for details.
686
687The token type is a terminal symbol defined in the grammar, such as
688@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
689you need to know to decide where the token may validly appear and how to
690group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 691except their types.
bfa74976
RS
692
693The semantic value has all the rest of the information about the
694meaning of the token, such as the value of an integer, or the name of an
695identifier. (A token such as @code{','} which is just punctuation doesn't
696need to have any semantic value.)
697
698For example, an input token might be classified as token type
699@code{INTEGER} and have the semantic value 4. Another input token might
700have the same token type @code{INTEGER} but value 3989. When a grammar
701rule says that @code{INTEGER} is allowed, either of these tokens is
702acceptable because each is an @code{INTEGER}. When the parser accepts the
703token, it keeps track of the token's semantic value.
704
705Each grouping can also have a semantic value as well as its nonterminal
706symbol. For example, in a calculator, an expression typically has a
707semantic value that is a number. In a compiler for a programming
708language, an expression typically has a semantic value that is a tree
709structure describing the meaning of the expression.
710
342b8b6e 711@node Semantic Actions
bfa74976
RS
712@section Semantic Actions
713@cindex semantic actions
714@cindex actions, semantic
715
716In order to be useful, a program must do more than parse input; it must
717also produce some output based on the input. In a Bison grammar, a grammar
718rule can have an @dfn{action} made up of C statements. Each time the
719parser recognizes a match for that rule, the action is executed.
720@xref{Actions}.
13863333 721
bfa74976
RS
722Most of the time, the purpose of an action is to compute the semantic value
723of the whole construct from the semantic values of its parts. For example,
724suppose we have a rule which says an expression can be the sum of two
725expressions. When the parser recognizes such a sum, each of the
726subexpressions has a semantic value which describes how it was built up.
727The action for this rule should create a similar sort of value for the
728newly recognized larger expression.
729
730For example, here is a rule that says an expression can be the sum of
731two subexpressions:
732
733@example
5e9b6624 734expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
735@end example
736
737@noindent
738The action says how to produce the semantic value of the sum expression
739from the values of the two subexpressions.
740
676385e2 741@node GLR Parsers
8a4281b9
JD
742@section Writing GLR Parsers
743@cindex GLR parsing
744@cindex generalized LR (GLR) parsing
676385e2
PH
745@findex %glr-parser
746@cindex conflicts
747@cindex shift/reduce conflicts
fa7e68c3 748@cindex reduce/reduce conflicts
676385e2 749
eb45ef3b 750In some grammars, Bison's deterministic
8a4281b9 751LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
752certain grammar rule at a given point. That is, it may not be able to
753decide (on the basis of the input read so far) which of two possible
754reductions (applications of a grammar rule) applies, or whether to apply
755a reduction or read more of the input and apply a reduction later in the
756input. These are known respectively as @dfn{reduce/reduce} conflicts
757(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
758(@pxref{Shift/Reduce}).
759
8a4281b9 760To use a grammar that is not easily modified to be LR(1), a
9501dc6e 761more general parsing algorithm is sometimes necessary. If you include
676385e2 762@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
763(@pxref{Grammar Outline}), the result is a Generalized LR
764(GLR) parser. These parsers handle Bison grammars that
9501dc6e 765contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 766declarations) identically to deterministic parsers. However, when
9501dc6e 767faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 768GLR parsers use the simple expedient of doing both,
9501dc6e
AD
769effectively cloning the parser to follow both possibilities. Each of
770the resulting parsers can again split, so that at any given time, there
771can be any number of possible parses being explored. The parsers
676385e2
PH
772proceed in lockstep; that is, all of them consume (shift) a given input
773symbol before any of them proceed to the next. Each of the cloned
774parsers eventually meets one of two possible fates: either it runs into
775a parsing error, in which case it simply vanishes, or it merges with
776another parser, because the two of them have reduced the input to an
777identical set of symbols.
778
779During the time that there are multiple parsers, semantic actions are
780recorded, but not performed. When a parser disappears, its recorded
781semantic actions disappear as well, and are never performed. When a
782reduction makes two parsers identical, causing them to merge, Bison
783records both sets of semantic actions. Whenever the last two parsers
784merge, reverting to the single-parser case, Bison resolves all the
785outstanding actions either by precedences given to the grammar rules
786involved, or by performing both actions, and then calling a designated
787user-defined function on the resulting values to produce an arbitrary
788merged result.
789
fa7e68c3 790@menu
8a4281b9
JD
791* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
792* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 793* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 794* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 795* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
796@end menu
797
798@node Simple GLR Parsers
8a4281b9
JD
799@subsection Using GLR on Unambiguous Grammars
800@cindex GLR parsing, unambiguous grammars
801@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
802@findex %glr-parser
803@findex %expect-rr
804@cindex conflicts
805@cindex reduce/reduce conflicts
806@cindex shift/reduce conflicts
807
8a4281b9
JD
808In the simplest cases, you can use the GLR algorithm
809to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 810Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
811
812Consider a problem that
813arises in the declaration of enumerated and subrange types in the
814programming language Pascal. Here are some examples:
815
816@example
817type subrange = lo .. hi;
818type enum = (a, b, c);
819@end example
820
821@noindent
822The original language standard allows only numeric
823literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 824and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
82510206) and many other
826Pascal implementations allow arbitrary expressions there. This gives
827rise to the following situation, containing a superfluous pair of
828parentheses:
829
830@example
831type subrange = (a) .. b;
832@end example
833
834@noindent
835Compare this to the following declaration of an enumerated
836type with only one value:
837
838@example
839type enum = (a);
840@end example
841
842@noindent
843(These declarations are contrived, but they are syntactically
844valid, and more-complicated cases can come up in practical programs.)
845
846These two declarations look identical until the @samp{..} token.
8a4281b9 847With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
848possible to decide between the two forms when the identifier
849@samp{a} is parsed. It is, however, desirable
850for a parser to decide this, since in the latter case
851@samp{a} must become a new identifier to represent the enumeration
852value, while in the former case @samp{a} must be evaluated with its
853current meaning, which may be a constant or even a function call.
854
855You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
856to be resolved later, but this typically requires substantial
857contortions in both semantic actions and large parts of the
858grammar, where the parentheses are nested in the recursive rules for
859expressions.
860
861You might think of using the lexer to distinguish between the two
862forms by returning different tokens for currently defined and
863undefined identifiers. But if these declarations occur in a local
864scope, and @samp{a} is defined in an outer scope, then both forms
865are possible---either locally redefining @samp{a}, or using the
866value of @samp{a} from the outer scope. So this approach cannot
867work.
868
e757bb10 869A simple solution to this problem is to declare the parser to
8a4281b9
JD
870use the GLR algorithm.
871When the GLR parser reaches the critical state, it
fa7e68c3
PE
872merely splits into two branches and pursues both syntax rules
873simultaneously. Sooner or later, one of them runs into a parsing
874error. If there is a @samp{..} token before the next
875@samp{;}, the rule for enumerated types fails since it cannot
876accept @samp{..} anywhere; otherwise, the subrange type rule
877fails since it requires a @samp{..} token. So one of the branches
878fails silently, and the other one continues normally, performing
879all the intermediate actions that were postponed during the split.
880
881If the input is syntactically incorrect, both branches fail and the parser
882reports a syntax error as usual.
883
884The effect of all this is that the parser seems to ``guess'' the
885correct branch to take, or in other words, it seems to use more
8a4281b9
JD
886lookahead than the underlying LR(1) algorithm actually allows
887for. In this example, LR(2) would suffice, but also some cases
888that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 889
8a4281b9 890In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
891and the current Bison parser even takes exponential time and space
892for some grammars. In practice, this rarely happens, and for many
893grammars it is possible to prove that it cannot happen.
894The present example contains only one conflict between two
895rules, and the type-declaration context containing the conflict
896cannot be nested. So the number of
897branches that can exist at any time is limited by the constant 2,
898and the parsing time is still linear.
899
900Here is a Bison grammar corresponding to the example above. It
901parses a vastly simplified form of Pascal type declarations.
902
903@example
904%token TYPE DOTDOT ID
905
906@group
907%left '+' '-'
908%left '*' '/'
909@end group
910
911%%
5e9b6624 912type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
913
914@group
5e9b6624
AD
915type:
916 '(' id_list ')'
917| expr DOTDOT expr
918;
fa7e68c3
PE
919@end group
920
921@group
5e9b6624
AD
922id_list:
923 ID
924| id_list ',' ID
925;
fa7e68c3
PE
926@end group
927
928@group
5e9b6624
AD
929expr:
930 '(' expr ')'
931| expr '+' expr
932| expr '-' expr
933| expr '*' expr
934| expr '/' expr
935| ID
936;
fa7e68c3
PE
937@end group
938@end example
939
8a4281b9 940When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
941about one reduce/reduce conflict. In the conflicting situation the
942parser chooses one of the alternatives, arbitrarily the one
943declared first. Therefore the following correct input is not
944recognized:
945
946@example
947type t = (a) .. b;
948@end example
949
8a4281b9 950The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
951to be silent about the one known reduce/reduce conflict, by adding
952these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
953@samp{%%}):
954
955@example
956%glr-parser
957%expect-rr 1
958@end example
959
960@noindent
961No change in the grammar itself is required. Now the
962parser recognizes all valid declarations, according to the
963limited syntax above, transparently. In fact, the user does not even
964notice when the parser splits.
965
8a4281b9 966So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
967almost without disadvantages. Even in simple cases like this, however,
968there are at least two potential problems to beware. First, always
8a4281b9
JD
969analyze the conflicts reported by Bison to make sure that GLR
970splitting is only done where it is intended. A GLR parser
f8e1c9e5 971splitting inadvertently may cause problems less obvious than an
8a4281b9 972LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
973conflict. Second, consider interactions with the lexer (@pxref{Semantic
974Tokens}) with great care. Since a split parser consumes tokens without
975performing any actions during the split, the lexer cannot obtain
976information via parser actions. Some cases of lexer interactions can be
8a4281b9 977eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
978lexer to the parser. You must check the remaining cases for
979correctness.
980
981In our example, it would be safe for the lexer to return tokens based on
982their current meanings in some symbol table, because no new symbols are
983defined in the middle of a type declaration. Though it is possible for
984a parser to define the enumeration constants as they are parsed, before
985the type declaration is completed, it actually makes no difference since
986they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
987
988@node Merging GLR Parses
8a4281b9
JD
989@subsection Using GLR to Resolve Ambiguities
990@cindex GLR parsing, ambiguous grammars
991@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
992@findex %dprec
993@findex %merge
994@cindex conflicts
995@cindex reduce/reduce conflicts
996
2a8d363a 997Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
998
999@example
1000%@{
38a92d50
PE
1001 #include <stdio.h>
1002 #define YYSTYPE char const *
1003 int yylex (void);
1004 void yyerror (char const *);
676385e2
PH
1005%@}
1006
1007%token TYPENAME ID
1008
1009%right '='
1010%left '+'
1011
1012%glr-parser
1013
1014%%
1015
5e9b6624 1016prog:
6240346a 1017 %empty
5e9b6624
AD
1018| prog stmt @{ printf ("\n"); @}
1019;
676385e2 1020
5e9b6624
AD
1021stmt:
1022 expr ';' %dprec 1
1023| decl %dprec 2
1024;
676385e2 1025
5e9b6624
AD
1026expr:
1027 ID @{ printf ("%s ", $$); @}
1028| TYPENAME '(' expr ')'
1029 @{ printf ("%s <cast> ", $1); @}
1030| expr '+' expr @{ printf ("+ "); @}
1031| expr '=' expr @{ printf ("= "); @}
1032;
676385e2 1033
5e9b6624
AD
1034decl:
1035 TYPENAME declarator ';'
1036 @{ printf ("%s <declare> ", $1); @}
1037| TYPENAME declarator '=' expr ';'
1038 @{ printf ("%s <init-declare> ", $1); @}
1039;
676385e2 1040
5e9b6624
AD
1041declarator:
1042 ID @{ printf ("\"%s\" ", $1); @}
1043| '(' declarator ')'
1044;
676385e2
PH
1045@end example
1046
1047@noindent
1048This models a problematic part of the C++ grammar---the ambiguity between
1049certain declarations and statements. For example,
1050
1051@example
1052T (x) = y+z;
1053@end example
1054
1055@noindent
1056parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1057(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1058@samp{x} as an @code{ID}).
676385e2 1059Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1060@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1061time it encounters @code{x} in the example above. Since this is a
8a4281b9 1062GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1063each choice of resolving the reduce/reduce conflict.
1064Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1065however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1066ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1067the other reduces @code{stmt : decl}, after which both parsers are in an
1068identical state: they've seen @samp{prog stmt} and have the same unprocessed
1069input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1070
8a4281b9 1071At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1072grammar of how to choose between the competing parses.
1073In the example above, the two @code{%dprec}
e757bb10 1074declarations specify that Bison is to give precedence
fa7e68c3 1075to the parse that interprets the example as a
676385e2
PH
1076@code{decl}, which implies that @code{x} is a declarator.
1077The parser therefore prints
1078
1079@example
fae437e8 1080"x" y z + T <init-declare>
676385e2
PH
1081@end example
1082
fa7e68c3
PE
1083The @code{%dprec} declarations only come into play when more than one
1084parse survives. Consider a different input string for this parser:
676385e2
PH
1085
1086@example
1087T (x) + y;
1088@end example
1089
1090@noindent
8a4281b9 1091This is another example of using GLR to parse an unambiguous
fa7e68c3 1092construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1093Here, there is no ambiguity (this cannot be parsed as a declaration).
1094However, at the time the Bison parser encounters @code{x}, it does not
1095have enough information to resolve the reduce/reduce conflict (again,
1096between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1097case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1098into two, one assuming that @code{x} is an @code{expr}, and the other
1099assuming @code{x} is a @code{declarator}. The second of these parsers
1100then vanishes when it sees @code{+}, and the parser prints
1101
1102@example
fae437e8 1103x T <cast> y +
676385e2
PH
1104@end example
1105
1106Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1107the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1108actions of the two possible parsers, rather than choosing one over the
1109other. To do so, you could change the declaration of @code{stmt} as
1110follows:
1111
1112@example
5e9b6624
AD
1113stmt:
1114 expr ';' %merge <stmtMerge>
1115| decl %merge <stmtMerge>
1116;
676385e2
PH
1117@end example
1118
1119@noindent
676385e2
PH
1120and define the @code{stmtMerge} function as:
1121
1122@example
38a92d50
PE
1123static YYSTYPE
1124stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1125@{
1126 printf ("<OR> ");
1127 return "";
1128@}
1129@end example
1130
1131@noindent
1132with an accompanying forward declaration
1133in the C declarations at the beginning of the file:
1134
1135@example
1136%@{
38a92d50 1137 #define YYSTYPE char const *
676385e2
PH
1138 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1139%@}
1140@end example
1141
1142@noindent
fa7e68c3
PE
1143With these declarations, the resulting parser parses the first example
1144as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1145
1146@example
fae437e8 1147"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1148@end example
1149
fa7e68c3 1150Bison requires that all of the
e757bb10 1151productions that participate in any particular merge have identical
fa7e68c3
PE
1152@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1153and the parser will report an error during any parse that results in
1154the offending merge.
9501dc6e 1155
32c29292
JD
1156@node GLR Semantic Actions
1157@subsection GLR Semantic Actions
1158
8a4281b9 1159The nature of GLR parsing and the structure of the generated
20be2f92
PH
1160parsers give rise to certain restrictions on semantic values and actions.
1161
1162@subsubsection Deferred semantic actions
32c29292
JD
1163@cindex deferred semantic actions
1164By definition, a deferred semantic action is not performed at the same time as
1165the associated reduction.
1166This raises caveats for several Bison features you might use in a semantic
8a4281b9 1167action in a GLR parser.
32c29292
JD
1168
1169@vindex yychar
8a4281b9 1170@cindex GLR parsers and @code{yychar}
32c29292 1171@vindex yylval
8a4281b9 1172@cindex GLR parsers and @code{yylval}
32c29292 1173@vindex yylloc
8a4281b9 1174@cindex GLR parsers and @code{yylloc}
32c29292 1175In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1176the lookahead token present at the time of the associated reduction.
32c29292
JD
1177After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1178you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1179lookahead token's semantic value and location, if any.
32c29292
JD
1180In a nondeferred semantic action, you can also modify any of these variables to
1181influence syntax analysis.
742e4900 1182@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1183
1184@findex yyclearin
8a4281b9 1185@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1186In a deferred semantic action, it's too late to influence syntax analysis.
1187In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1188shallow copies of the values they had at the time of the associated reduction.
1189For this reason alone, modifying them is dangerous.
1190Moreover, the result of modifying them is undefined and subject to change with
1191future versions of Bison.
1192For example, if a semantic action might be deferred, you should never write it
1193to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1194memory referenced by @code{yylval}.
1195
20be2f92 1196@subsubsection YYERROR
32c29292 1197@findex YYERROR
8a4281b9 1198@cindex GLR parsers and @code{YYERROR}
32c29292 1199Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1200(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1201initiate error recovery.
8a4281b9 1202During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1203the same as its effect in a deterministic parser.
411614fa
JM
1204The effect in a deferred action is similar, but the precise point of the
1205error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1206selecting an unspecified stack on which to continue with a syntax error.
1207In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1208parsing, @code{YYERROR} silently prunes
1209the parse that invoked the test.
1210
1211@subsubsection Restrictions on semantic values and locations
8a4281b9 1212GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1213semantic values and location types when using the generated parsers as
1214C++ code.
8710fc41 1215
ca2a6d15
PH
1216@node Semantic Predicates
1217@subsection Controlling a Parse with Arbitrary Predicates
1218@findex %?
8a4281b9 1219@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1220
1221In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1222GLR parsers
ca2a6d15
PH
1223allow you to reject parses on the basis of arbitrary computations executed
1224in user code, without having Bison treat this rejection as an error
1225if there are alternative parses. (This feature is experimental and may
1226evolve. We welcome user feedback.) For example,
1227
c93f22fc
AD
1228@example
1229widget:
5e9b6624
AD
1230 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1231| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1232;
c93f22fc 1233@end example
ca2a6d15
PH
1234
1235@noindent
411614fa 1236is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1237widgets. The clause preceded by @code{%?} is treated like an ordinary
1238action, except that its text is treated as an expression and is always
411614fa 1239evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1240expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1241which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1242to die. In a deterministic parser, it acts like YYERROR.
1243
1244As the example shows, predicates otherwise look like semantic actions, and
1245therefore you must be take them into account when determining the numbers
1246to use for denoting the semantic values of right-hand side symbols.
1247Predicate actions, however, have no defined value, and may not be given
1248labels.
1249
1250There is a subtle difference between semantic predicates and ordinary
1251actions in nondeterministic mode, since the latter are deferred.
411614fa 1252For example, we could try to rewrite the previous example as
ca2a6d15 1253
c93f22fc
AD
1254@example
1255widget:
5e9b6624
AD
1256 @{ if (!new_syntax) YYERROR; @}
1257 "widget" id new_args @{ $$ = f($3, $4); @}
1258| @{ if (new_syntax) YYERROR; @}
1259 "widget" id old_args @{ $$ = f($3, $4); @}
1260;
c93f22fc 1261@end example
ca2a6d15
PH
1262
1263@noindent
1264(reversing the sense of the predicate tests to cause an error when they are
1265false). However, this
1266does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1267have overlapping syntax.
411614fa 1268Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1269a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1270for cases where @code{new_args} and @code{old_args} recognize the same string
1271@emph{before} performing the tests of @code{new_syntax}. It therefore
1272reports an error.
1273
1274Finally, be careful in writing predicates: deferred actions have not been
1275evaluated, so that using them in a predicate will have undefined effects.
1276
fa7e68c3 1277@node Compiler Requirements
8a4281b9 1278@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1279@cindex @code{inline}
8a4281b9 1280@cindex GLR parsers and @code{inline}
fa7e68c3 1281
8a4281b9 1282The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1283later. In addition, they use the @code{inline} keyword, which is not
1284C89, but is C99 and is a common extension in pre-C99 compilers. It is
1285up to the user of these parsers to handle
9501dc6e
AD
1286portability issues. For instance, if using Autoconf and the Autoconf
1287macro @code{AC_C_INLINE}, a mere
1288
1289@example
1290%@{
38a92d50 1291 #include <config.h>
9501dc6e
AD
1292%@}
1293@end example
1294
1295@noindent
1296will suffice. Otherwise, we suggest
1297
1298@example
1299%@{
aaaa2aae
AD
1300 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1301 && ! defined inline)
1302 # define inline
38a92d50 1303 #endif
9501dc6e
AD
1304%@}
1305@end example
676385e2 1306
1769eb30 1307@node Locations
847bf1f5
AD
1308@section Locations
1309@cindex location
95923bd6
AD
1310@cindex textual location
1311@cindex location, textual
847bf1f5
AD
1312
1313Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1314and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1315the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1316Bison provides a mechanism for handling these locations.
1317
72d2299c 1318Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1319associated location, but the type of locations is the same for all tokens
1320and groupings. Moreover, the output parser is equipped with a default data
1321structure for storing locations (@pxref{Tracking Locations}, for more
1322details).
847bf1f5
AD
1323
1324Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1325set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1326is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1327@code{@@3}.
1328
1329When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1330of its left hand side (@pxref{Actions}). In the same way, another default
1331action is used for locations. However, the action for locations is general
847bf1f5 1332enough for most cases, meaning there is usually no need to describe for each
72d2299c 1333rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1334grouping, the default behavior of the output parser is to take the beginning
1335of the first symbol, and the end of the last symbol.
1336
342b8b6e 1337@node Bison Parser
ff7571c0 1338@section Bison Output: the Parser Implementation File
bfa74976
RS
1339@cindex Bison parser
1340@cindex Bison utility
1341@cindex lexical analyzer, purpose
1342@cindex parser
1343
ff7571c0
JD
1344When you run Bison, you give it a Bison grammar file as input. The
1345most important output is a C source file that implements a parser for
1346the language described by the grammar. This parser is called a
1347@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1348implementation file}. Keep in mind that the Bison utility and the
1349Bison parser are two distinct programs: the Bison utility is a program
1350whose output is the Bison parser implementation file that becomes part
1351of your program.
bfa74976
RS
1352
1353The job of the Bison parser is to group tokens into groupings according to
1354the grammar rules---for example, to build identifiers and operators into
1355expressions. As it does this, it runs the actions for the grammar rules it
1356uses.
1357
704a47c4
AD
1358The tokens come from a function called the @dfn{lexical analyzer} that
1359you must supply in some fashion (such as by writing it in C). The Bison
1360parser calls the lexical analyzer each time it wants a new token. It
1361doesn't know what is ``inside'' the tokens (though their semantic values
1362may reflect this). Typically the lexical analyzer makes the tokens by
1363parsing characters of text, but Bison does not depend on this.
1364@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1365
ff7571c0
JD
1366The Bison parser implementation file is C code which defines a
1367function named @code{yyparse} which implements that grammar. This
1368function does not make a complete C program: you must supply some
1369additional functions. One is the lexical analyzer. Another is an
1370error-reporting function which the parser calls to report an error.
1371In addition, a complete C program must start with a function called
1372@code{main}; you have to provide this, and arrange for it to call
1373@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1374C-Language Interface}.
bfa74976 1375
f7ab6a50 1376Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1377write, all symbols defined in the Bison parser implementation file
1378itself begin with @samp{yy} or @samp{YY}. This includes interface
1379functions such as the lexical analyzer function @code{yylex}, the
1380error reporting function @code{yyerror} and the parser function
1381@code{yyparse} itself. This also includes numerous identifiers used
1382for internal purposes. Therefore, you should avoid using C
1383identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1384file except for the ones defined in this manual. Also, you should
1385avoid using the C identifiers @samp{malloc} and @samp{free} for
1386anything other than their usual meanings.
1387
1388In some cases the Bison parser implementation file includes system
1389headers, and in those cases your code should respect the identifiers
1390reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1391@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1392included as needed to declare memory allocators and related types.
1393@code{<libintl.h>} is included if message translation is in use
1394(@pxref{Internationalization}). Other system headers may be included
1395if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1396,Tracing Your Parser}).
7093d0f5 1397
342b8b6e 1398@node Stages
bfa74976
RS
1399@section Stages in Using Bison
1400@cindex stages in using Bison
1401@cindex using Bison
1402
1403The actual language-design process using Bison, from grammar specification
1404to a working compiler or interpreter, has these parts:
1405
1406@enumerate
1407@item
1408Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1409(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1410in the language, describe the action that is to be taken when an
1411instance of that rule is recognized. The action is described by a
1412sequence of C statements.
bfa74976
RS
1413
1414@item
704a47c4
AD
1415Write a lexical analyzer to process input and pass tokens to the parser.
1416The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1417Lexical Analyzer Function @code{yylex}}). It could also be produced
1418using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1419
1420@item
1421Write a controlling function that calls the Bison-produced parser.
1422
1423@item
1424Write error-reporting routines.
1425@end enumerate
1426
1427To turn this source code as written into a runnable program, you
1428must follow these steps:
1429
1430@enumerate
1431@item
1432Run Bison on the grammar to produce the parser.
1433
1434@item
1435Compile the code output by Bison, as well as any other source files.
1436
1437@item
1438Link the object files to produce the finished product.
1439@end enumerate
1440
342b8b6e 1441@node Grammar Layout
bfa74976
RS
1442@section The Overall Layout of a Bison Grammar
1443@cindex grammar file
1444@cindex file format
1445@cindex format of grammar file
1446@cindex layout of Bison grammar
1447
1448The input file for the Bison utility is a @dfn{Bison grammar file}. The
1449general form of a Bison grammar file is as follows:
1450
1451@example
1452%@{
08e49d20 1453@var{Prologue}
bfa74976
RS
1454%@}
1455
1456@var{Bison declarations}
1457
1458%%
1459@var{Grammar rules}
1460%%
08e49d20 1461@var{Epilogue}
bfa74976
RS
1462@end example
1463
1464@noindent
1465The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1466in every Bison grammar file to separate the sections.
1467
72d2299c 1468The prologue may define types and variables used in the actions. You can
342b8b6e 1469also use preprocessor commands to define macros used there, and use
bfa74976 1470@code{#include} to include header files that do any of these things.
38a92d50
PE
1471You need to declare the lexical analyzer @code{yylex} and the error
1472printer @code{yyerror} here, along with any other global identifiers
1473used by the actions in the grammar rules.
bfa74976
RS
1474
1475The Bison declarations declare the names of the terminal and nonterminal
1476symbols, and may also describe operator precedence and the data types of
1477semantic values of various symbols.
1478
1479The grammar rules define how to construct each nonterminal symbol from its
1480parts.
1481
38a92d50
PE
1482The epilogue can contain any code you want to use. Often the
1483definitions of functions declared in the prologue go here. In a
1484simple program, all the rest of the program can go here.
bfa74976 1485
342b8b6e 1486@node Examples
bfa74976
RS
1487@chapter Examples
1488@cindex simple examples
1489@cindex examples, simple
1490
aaaa2aae 1491Now we show and explain several sample programs written using Bison: a
bfa74976 1492reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1493calculator --- later extended to track ``locations'' ---
1494and a multi-function calculator. All
1495produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1496
1497These examples are simple, but Bison grammars for real programming
aa08666d
AD
1498languages are written the same way. You can copy these examples into a
1499source file to try them.
bfa74976
RS
1500
1501@menu
f5f419de
DJ
1502* RPN Calc:: Reverse polish notation calculator;
1503 a first example with no operator precedence.
1504* Infix Calc:: Infix (algebraic) notation calculator.
1505 Operator precedence is introduced.
bfa74976 1506* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1507* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1508* Multi-function Calc:: Calculator with memory and trig functions.
1509 It uses multiple data-types for semantic values.
1510* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1511@end menu
1512
342b8b6e 1513@node RPN Calc
bfa74976
RS
1514@section Reverse Polish Notation Calculator
1515@cindex reverse polish notation
1516@cindex polish notation calculator
1517@cindex @code{rpcalc}
1518@cindex calculator, simple
1519
1520The first example is that of a simple double-precision @dfn{reverse polish
1521notation} calculator (a calculator using postfix operators). This example
1522provides a good starting point, since operator precedence is not an issue.
1523The second example will illustrate how operator precedence is handled.
1524
1525The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1526@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1527
1528@menu
f5f419de
DJ
1529* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1530* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1531* Rpcalc Lexer:: The lexical analyzer.
1532* Rpcalc Main:: The controlling function.
1533* Rpcalc Error:: The error reporting function.
1534* Rpcalc Generate:: Running Bison on the grammar file.
1535* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1536@end menu
1537
f5f419de 1538@node Rpcalc Declarations
bfa74976
RS
1539@subsection Declarations for @code{rpcalc}
1540
1541Here are the C and Bison declarations for the reverse polish notation
1542calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1543
24ec0837 1544@comment file: rpcalc.y
bfa74976 1545@example
72d2299c 1546/* Reverse polish notation calculator. */
bfa74976 1547
efbc95a7 1548@group
bfa74976 1549%@{
24ec0837 1550 #include <stdio.h>
38a92d50
PE
1551 #include <math.h>
1552 int yylex (void);
1553 void yyerror (char const *);
bfa74976 1554%@}
efbc95a7 1555@end group
bfa74976 1556
21e3a2b5 1557%define api.value.type double
bfa74976
RS
1558%token NUM
1559
72d2299c 1560%% /* Grammar rules and actions follow. */
bfa74976
RS
1561@end example
1562
75f5aaea 1563The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1564preprocessor directives and two forward declarations.
bfa74976 1565
bfa74976
RS
1566The @code{#include} directive is used to declare the exponentiation
1567function @code{pow}.
1568
38a92d50
PE
1569The forward declarations for @code{yylex} and @code{yyerror} are
1570needed because the C language requires that functions be declared
1571before they are used. These functions will be defined in the
1572epilogue, but the parser calls them so they must be declared in the
1573prologue.
1574
21e3a2b5
AD
1575The second section, Bison declarations, provides information to Bison about
1576the tokens and their types (@pxref{Bison Declarations, ,The Bison
1577Declarations Section}).
1578
1579The @code{%define} directive defines the variable @code{api.value.type},
1580thus specifying the C data type for semantic values of both tokens and
1581groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The Bison
1582parser will use whatever type @code{api.value.type} is defined as; if you
1583don't define it, @code{int} is the default. Because we specify
1584@code{double}, each token and each expression has an associated value, which
1585is a floating point number. C code can use @code{YYSTYPE} to refer to the
1586value @code{api.value.type}.
1587
1588Each terminal symbol that is not a single-character literal must be
1589declared. (Single-character literals normally don't need to be declared.)
1590In this example, all the arithmetic operators are designated by
1591single-character literals, so the only terminal symbol that needs to be
1592declared is @code{NUM}, the token type for numeric constants.
bfa74976 1593
342b8b6e 1594@node Rpcalc Rules
bfa74976
RS
1595@subsection Grammar Rules for @code{rpcalc}
1596
1597Here are the grammar rules for the reverse polish notation calculator.
1598
24ec0837 1599@comment file: rpcalc.y
bfa74976 1600@example
aaaa2aae 1601@group
5e9b6624 1602input:
6240346a 1603 %empty
5e9b6624 1604| input line
bfa74976 1605;
aaaa2aae 1606@end group
bfa74976 1607
aaaa2aae 1608@group
5e9b6624
AD
1609line:
1610 '\n'
1611| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1612;
aaaa2aae 1613@end group
bfa74976 1614
aaaa2aae 1615@group
5e9b6624
AD
1616exp:
1617 NUM @{ $$ = $1; @}
1618| exp exp '+' @{ $$ = $1 + $2; @}
1619| exp exp '-' @{ $$ = $1 - $2; @}
1620| exp exp '*' @{ $$ = $1 * $2; @}
1621| exp exp '/' @{ $$ = $1 / $2; @}
1622| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1623| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1624;
aaaa2aae 1625@end group
bfa74976
RS
1626%%
1627@end example
1628
1629The groupings of the rpcalc ``language'' defined here are the expression
1630(given the name @code{exp}), the line of input (@code{line}), and the
1631complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1632symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1633which is read as ``or''. The following sections explain what these rules
1634mean.
1635
1636The semantics of the language is determined by the actions taken when a
1637grouping is recognized. The actions are the C code that appears inside
1638braces. @xref{Actions}.
1639
1640You must specify these actions in C, but Bison provides the means for
1641passing semantic values between the rules. In each action, the
1642pseudo-variable @code{$$} stands for the semantic value for the grouping
1643that the rule is going to construct. Assigning a value to @code{$$} is the
1644main job of most actions. The semantic values of the components of the
1645rule are referred to as @code{$1}, @code{$2}, and so on.
1646
1647@menu
24ec0837
AD
1648* Rpcalc Input:: Explanation of the @code{input} nonterminal
1649* Rpcalc Line:: Explanation of the @code{line} nonterminal
1650* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1651@end menu
1652
342b8b6e 1653@node Rpcalc Input
bfa74976
RS
1654@subsubsection Explanation of @code{input}
1655
1656Consider the definition of @code{input}:
1657
1658@example
5e9b6624 1659input:
6240346a 1660 %empty
5e9b6624 1661| input line
bfa74976
RS
1662;
1663@end example
1664
1665This definition reads as follows: ``A complete input is either an empty
1666string, or a complete input followed by an input line''. Notice that
1667``complete input'' is defined in terms of itself. This definition is said
1668to be @dfn{left recursive} since @code{input} appears always as the
1669leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1670
1671The first alternative is empty because there are no symbols between the
1672colon and the first @samp{|}; this means that @code{input} can match an
1673empty string of input (no tokens). We write the rules this way because it
1674is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
6240346a
AD
1675It's conventional to put an empty alternative first and to use the
1676(optional) @code{%empty} directive, or to write the comment @samp{/* empty
1677*/} in it (@pxref{Empty Rules}).
bfa74976
RS
1678
1679The second alternate rule (@code{input line}) handles all nontrivial input.
1680It means, ``After reading any number of lines, read one more line if
1681possible.'' The left recursion makes this rule into a loop. Since the
1682first alternative matches empty input, the loop can be executed zero or
1683more times.
1684
1685The parser function @code{yyparse} continues to process input until a
1686grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1687input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1688
342b8b6e 1689@node Rpcalc Line
bfa74976
RS
1690@subsubsection Explanation of @code{line}
1691
1692Now consider the definition of @code{line}:
1693
1694@example
5e9b6624
AD
1695line:
1696 '\n'
1697| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1698;
1699@end example
1700
1701The first alternative is a token which is a newline character; this means
1702that rpcalc accepts a blank line (and ignores it, since there is no
1703action). The second alternative is an expression followed by a newline.
1704This is the alternative that makes rpcalc useful. The semantic value of
1705the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1706question is the first symbol in the alternative. The action prints this
1707value, which is the result of the computation the user asked for.
1708
1709This action is unusual because it does not assign a value to @code{$$}. As
1710a consequence, the semantic value associated with the @code{line} is
1711uninitialized (its value will be unpredictable). This would be a bug if
1712that value were ever used, but we don't use it: once rpcalc has printed the
1713value of the user's input line, that value is no longer needed.
1714
342b8b6e 1715@node Rpcalc Expr
bfa74976
RS
1716@subsubsection Explanation of @code{expr}
1717
1718The @code{exp} grouping has several rules, one for each kind of expression.
1719The first rule handles the simplest expressions: those that are just numbers.
1720The second handles an addition-expression, which looks like two expressions
1721followed by a plus-sign. The third handles subtraction, and so on.
1722
1723@example
5e9b6624
AD
1724exp:
1725 NUM
1726| exp exp '+' @{ $$ = $1 + $2; @}
1727| exp exp '-' @{ $$ = $1 - $2; @}
1728@dots{}
1729;
bfa74976
RS
1730@end example
1731
1732We have used @samp{|} to join all the rules for @code{exp}, but we could
1733equally well have written them separately:
1734
1735@example
5e9b6624
AD
1736exp: NUM ;
1737exp: exp exp '+' @{ $$ = $1 + $2; @};
1738exp: exp exp '-' @{ $$ = $1 - $2; @};
1739@dots{}
bfa74976
RS
1740@end example
1741
1742Most of the rules have actions that compute the value of the expression in
1743terms of the value of its parts. For example, in the rule for addition,
1744@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1745the second one. The third component, @code{'+'}, has no meaningful
1746associated semantic value, but if it had one you could refer to it as
1747@code{$3}. When @code{yyparse} recognizes a sum expression using this
1748rule, the sum of the two subexpressions' values is produced as the value of
1749the entire expression. @xref{Actions}.
1750
1751You don't have to give an action for every rule. When a rule has no
1752action, Bison by default copies the value of @code{$1} into @code{$$}.
1753This is what happens in the first rule (the one that uses @code{NUM}).
1754
1755The formatting shown here is the recommended convention, but Bison does
72d2299c 1756not require it. You can add or change white space as much as you wish.
bfa74976
RS
1757For example, this:
1758
1759@example
5e9b6624 1760exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1761@end example
1762
1763@noindent
1764means the same thing as this:
1765
1766@example
5e9b6624
AD
1767exp:
1768 NUM
1769| exp exp '+' @{ $$ = $1 + $2; @}
1770| @dots{}
99a9344e 1771;
bfa74976
RS
1772@end example
1773
1774@noindent
1775The latter, however, is much more readable.
1776
342b8b6e 1777@node Rpcalc Lexer
bfa74976
RS
1778@subsection The @code{rpcalc} Lexical Analyzer
1779@cindex writing a lexical analyzer
1780@cindex lexical analyzer, writing
1781
704a47c4
AD
1782The lexical analyzer's job is low-level parsing: converting characters
1783or sequences of characters into tokens. The Bison parser gets its
1784tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1785Analyzer Function @code{yylex}}.
bfa74976 1786
8a4281b9 1787Only a simple lexical analyzer is needed for the RPN
c827f760 1788calculator. This
bfa74976
RS
1789lexical analyzer skips blanks and tabs, then reads in numbers as
1790@code{double} and returns them as @code{NUM} tokens. Any other character
1791that isn't part of a number is a separate token. Note that the token-code
1792for such a single-character token is the character itself.
1793
1794The return value of the lexical analyzer function is a numeric code which
1795represents a token type. The same text used in Bison rules to stand for
1796this token type is also a C expression for the numeric code for the type.
1797This works in two ways. If the token type is a character literal, then its
e966383b 1798numeric code is that of the character; you can use the same
bfa74976
RS
1799character literal in the lexical analyzer to express the number. If the
1800token type is an identifier, that identifier is defined by Bison as a C
1801macro whose definition is the appropriate number. In this example,
1802therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1803
1964ad8c
AD
1804The semantic value of the token (if it has one) is stored into the
1805global variable @code{yylval}, which is where the Bison parser will look
21e3a2b5
AD
1806for it. (The C data type of @code{yylval} is @code{YYSTYPE}, whose value
1807was defined at the beginning of the grammar via @samp{%define api.value.type
1808double}; @pxref{Rpcalc Declarations,,Declarations for @code{rpcalc}}.)
bfa74976 1809
72d2299c
PE
1810A token type code of zero is returned if the end-of-input is encountered.
1811(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1812
1813Here is the code for the lexical analyzer:
1814
24ec0837 1815@comment file: rpcalc.y
bfa74976
RS
1816@example
1817@group
72d2299c 1818/* The lexical analyzer returns a double floating point
e966383b 1819 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1820 of the character read if not a number. It skips all blanks
1821 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1822
1823#include <ctype.h>
1824@end group
1825
1826@group
13863333
AD
1827int
1828yylex (void)
bfa74976
RS
1829@{
1830 int c;
1831
72d2299c 1832 /* Skip white space. */
13863333 1833 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1834 continue;
bfa74976
RS
1835@end group
1836@group
72d2299c 1837 /* Process numbers. */
13863333 1838 if (c == '.' || isdigit (c))
bfa74976
RS
1839 @{
1840 ungetc (c, stdin);
1841 scanf ("%lf", &yylval);
1842 return NUM;
1843 @}
1844@end group
1845@group
72d2299c 1846 /* Return end-of-input. */
13863333 1847 if (c == EOF)
bfa74976 1848 return 0;
72d2299c 1849 /* Return a single char. */
13863333 1850 return c;
bfa74976
RS
1851@}
1852@end group
1853@end example
1854
342b8b6e 1855@node Rpcalc Main
bfa74976
RS
1856@subsection The Controlling Function
1857@cindex controlling function
1858@cindex main function in simple example
1859
1860In keeping with the spirit of this example, the controlling function is
1861kept to the bare minimum. The only requirement is that it call
1862@code{yyparse} to start the process of parsing.
1863
24ec0837 1864@comment file: rpcalc.y
bfa74976
RS
1865@example
1866@group
13863333
AD
1867int
1868main (void)
bfa74976 1869@{
13863333 1870 return yyparse ();
bfa74976
RS
1871@}
1872@end group
1873@end example
1874
342b8b6e 1875@node Rpcalc Error
bfa74976
RS
1876@subsection The Error Reporting Routine
1877@cindex error reporting routine
1878
1879When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1880function @code{yyerror} to print an error message (usually but not
6e649e65 1881always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1882@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1883here is the definition we will use:
bfa74976 1884
24ec0837 1885@comment file: rpcalc.y
bfa74976 1886@example
bfa74976
RS
1887#include <stdio.h>
1888
aaaa2aae 1889@group
38a92d50 1890/* Called by yyparse on error. */
13863333 1891void
38a92d50 1892yyerror (char const *s)
bfa74976 1893@{
4e03e201 1894 fprintf (stderr, "%s\n", s);
bfa74976
RS
1895@}
1896@end group
1897@end example
1898
1899After @code{yyerror} returns, the Bison parser may recover from the error
1900and continue parsing if the grammar contains a suitable error rule
1901(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1902have not written any error rules in this example, so any invalid input will
1903cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1904real calculator, but it is adequate for the first example.
bfa74976 1905
f5f419de 1906@node Rpcalc Generate
bfa74976
RS
1907@subsection Running Bison to Make the Parser
1908@cindex running Bison (introduction)
1909
ceed8467
AD
1910Before running Bison to produce a parser, we need to decide how to
1911arrange all the source code in one or more source files. For such a
ff7571c0
JD
1912simple example, the easiest thing is to put everything in one file,
1913the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1914@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1915(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1916
1917For a large project, you would probably have several source files, and use
1918@code{make} to arrange to recompile them.
1919
ff7571c0
JD
1920With all the source in the grammar file, you use the following command
1921to convert it into a parser implementation file:
bfa74976
RS
1922
1923@example
fa4d969f 1924bison @var{file}.y
bfa74976
RS
1925@end example
1926
1927@noindent
ff7571c0
JD
1928In this example, the grammar file is called @file{rpcalc.y} (for
1929``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1930implementation file named @file{@var{file}.tab.c}, removing the
1931@samp{.y} from the grammar file name. The parser implementation file
1932contains the source code for @code{yyparse}. The additional functions
1933in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1934copied verbatim to the parser implementation file.
bfa74976 1935
342b8b6e 1936@node Rpcalc Compile
ff7571c0 1937@subsection Compiling the Parser Implementation File
bfa74976
RS
1938@cindex compiling the parser
1939
ff7571c0 1940Here is how to compile and run the parser implementation file:
bfa74976
RS
1941
1942@example
1943@group
1944# @r{List files in current directory.}
9edcd895 1945$ @kbd{ls}
bfa74976
RS
1946rpcalc.tab.c rpcalc.y
1947@end group
1948
1949@group
1950# @r{Compile the Bison parser.}
1951# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1952$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1953@end group
1954
1955@group
1956# @r{List files again.}
9edcd895 1957$ @kbd{ls}
bfa74976
RS
1958rpcalc rpcalc.tab.c rpcalc.y
1959@end group
1960@end example
1961
1962The file @file{rpcalc} now contains the executable code. Here is an
1963example session using @code{rpcalc}.
1964
1965@example
9edcd895
AD
1966$ @kbd{rpcalc}
1967@kbd{4 9 +}
24ec0837 1968@result{} 13
9edcd895 1969@kbd{3 7 + 3 4 5 *+-}
24ec0837 1970@result{} -13
9edcd895 1971@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1972@result{} 13
9edcd895 1973@kbd{5 6 / 4 n +}
24ec0837 1974@result{} -3.166666667
9edcd895 1975@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1976@result{} 81
9edcd895
AD
1977@kbd{^D} @r{End-of-file indicator}
1978$
bfa74976
RS
1979@end example
1980
342b8b6e 1981@node Infix Calc
bfa74976
RS
1982@section Infix Notation Calculator: @code{calc}
1983@cindex infix notation calculator
1984@cindex @code{calc}
1985@cindex calculator, infix notation
1986
1987We now modify rpcalc to handle infix operators instead of postfix. Infix
1988notation involves the concept of operator precedence and the need for
1989parentheses nested to arbitrary depth. Here is the Bison code for
1990@file{calc.y}, an infix desk-top calculator.
1991
1992@example
38a92d50 1993/* Infix notation calculator. */
bfa74976 1994
aaaa2aae 1995@group
bfa74976 1996%@{
38a92d50
PE
1997 #include <math.h>
1998 #include <stdio.h>
1999 int yylex (void);
2000 void yyerror (char const *);
bfa74976 2001%@}
aaaa2aae 2002@end group
bfa74976 2003
aaaa2aae 2004@group
38a92d50 2005/* Bison declarations. */
21e3a2b5 2006%define api.value.type double
bfa74976
RS
2007%token NUM
2008%left '-' '+'
2009%left '*' '/'
d78f0ac9
AD
2010%precedence NEG /* negation--unary minus */
2011%right '^' /* exponentiation */
aaaa2aae 2012@end group
bfa74976 2013
38a92d50 2014%% /* The grammar follows. */
aaaa2aae 2015@group
5e9b6624 2016input:
6240346a 2017 %empty
5e9b6624 2018| input line
bfa74976 2019;
aaaa2aae 2020@end group
bfa74976 2021
aaaa2aae 2022@group
5e9b6624
AD
2023line:
2024 '\n'
2025| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2026;
aaaa2aae 2027@end group
bfa74976 2028
aaaa2aae 2029@group
5e9b6624
AD
2030exp:
2031 NUM @{ $$ = $1; @}
2032| exp '+' exp @{ $$ = $1 + $3; @}
2033| exp '-' exp @{ $$ = $1 - $3; @}
2034| exp '*' exp @{ $$ = $1 * $3; @}
2035| exp '/' exp @{ $$ = $1 / $3; @}
2036| '-' exp %prec NEG @{ $$ = -$2; @}
2037| exp '^' exp @{ $$ = pow ($1, $3); @}
2038| '(' exp ')' @{ $$ = $2; @}
bfa74976 2039;
aaaa2aae 2040@end group
bfa74976
RS
2041%%
2042@end example
2043
2044@noindent
ceed8467
AD
2045The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2046same as before.
bfa74976
RS
2047
2048There are two important new features shown in this code.
2049
2050In the second section (Bison declarations), @code{%left} declares token
2051types and says they are left-associative operators. The declarations
2052@code{%left} and @code{%right} (right associativity) take the place of
2053@code{%token} which is used to declare a token type name without
d78f0ac9 2054associativity/precedence. (These tokens are single-character literals, which
bfa74976 2055ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2056the associativity/precedence.)
bfa74976
RS
2057
2058Operator precedence is determined by the line ordering of the
2059declarations; the higher the line number of the declaration (lower on
2060the page or screen), the higher the precedence. Hence, exponentiation
2061has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2062by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2063only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2064Precedence}.
bfa74976 2065
704a47c4
AD
2066The other important new feature is the @code{%prec} in the grammar
2067section for the unary minus operator. The @code{%prec} simply instructs
2068Bison that the rule @samp{| '-' exp} has the same precedence as
2069@code{NEG}---in this case the next-to-highest. @xref{Contextual
2070Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2071
2072Here is a sample run of @file{calc.y}:
2073
2074@need 500
2075@example
9edcd895
AD
2076$ @kbd{calc}
2077@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20786.880952381
9edcd895 2079@kbd{-56 + 2}
bfa74976 2080-54
9edcd895 2081@kbd{3 ^ 2}
bfa74976
RS
20829
2083@end example
2084
342b8b6e 2085@node Simple Error Recovery
bfa74976
RS
2086@section Simple Error Recovery
2087@cindex error recovery, simple
2088
2089Up to this point, this manual has not addressed the issue of @dfn{error
2090recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2091error. All we have handled is error reporting with @code{yyerror}.
2092Recall that by default @code{yyparse} returns after calling
2093@code{yyerror}. This means that an erroneous input line causes the
2094calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2095
2096The Bison language itself includes the reserved word @code{error}, which
2097may be included in the grammar rules. In the example below it has
2098been added to one of the alternatives for @code{line}:
2099
2100@example
2101@group
5e9b6624
AD
2102line:
2103 '\n'
2104| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2105| error '\n' @{ yyerrok; @}
bfa74976
RS
2106;
2107@end group
2108@end example
2109
ceed8467 2110This addition to the grammar allows for simple error recovery in the
6e649e65 2111event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2112read, the error will be recognized by the third rule for @code{line},
2113and parsing will continue. (The @code{yyerror} function is still called
2114upon to print its message as well.) The action executes the statement
2115@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2116that error recovery is complete (@pxref{Error Recovery}). Note the
2117difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2118misprint.
bfa74976
RS
2119
2120This form of error recovery deals with syntax errors. There are other
2121kinds of errors; for example, division by zero, which raises an exception
2122signal that is normally fatal. A real calculator program must handle this
2123signal and use @code{longjmp} to return to @code{main} and resume parsing
2124input lines; it would also have to discard the rest of the current line of
2125input. We won't discuss this issue further because it is not specific to
2126Bison programs.
2127
342b8b6e
AD
2128@node Location Tracking Calc
2129@section Location Tracking Calculator: @code{ltcalc}
2130@cindex location tracking calculator
2131@cindex @code{ltcalc}
2132@cindex calculator, location tracking
2133
9edcd895
AD
2134This example extends the infix notation calculator with location
2135tracking. This feature will be used to improve the error messages. For
2136the sake of clarity, this example is a simple integer calculator, since
2137most of the work needed to use locations will be done in the lexical
72d2299c 2138analyzer.
342b8b6e
AD
2139
2140@menu
f5f419de
DJ
2141* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2142* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2143* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2144@end menu
2145
f5f419de 2146@node Ltcalc Declarations
342b8b6e
AD
2147@subsection Declarations for @code{ltcalc}
2148
9edcd895
AD
2149The C and Bison declarations for the location tracking calculator are
2150the same as the declarations for the infix notation calculator.
342b8b6e
AD
2151
2152@example
2153/* Location tracking calculator. */
2154
2155%@{
38a92d50
PE
2156 #include <math.h>
2157 int yylex (void);
2158 void yyerror (char const *);
342b8b6e
AD
2159%@}
2160
2161/* Bison declarations. */
21e3a2b5 2162%define api.value.type int
342b8b6e
AD
2163%token NUM
2164
2165%left '-' '+'
2166%left '*' '/'
d78f0ac9 2167%precedence NEG
342b8b6e
AD
2168%right '^'
2169
38a92d50 2170%% /* The grammar follows. */
342b8b6e
AD
2171@end example
2172
9edcd895
AD
2173@noindent
2174Note there are no declarations specific to locations. Defining a data
2175type for storing locations is not needed: we will use the type provided
2176by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2177four member structure with the following integer fields:
2178@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2179@code{last_column}. By conventions, and in accordance with the GNU
2180Coding Standards and common practice, the line and column count both
2181start at 1.
342b8b6e
AD
2182
2183@node Ltcalc Rules
2184@subsection Grammar Rules for @code{ltcalc}
2185
9edcd895
AD
2186Whether handling locations or not has no effect on the syntax of your
2187language. Therefore, grammar rules for this example will be very close
2188to those of the previous example: we will only modify them to benefit
2189from the new information.
342b8b6e 2190
9edcd895
AD
2191Here, we will use locations to report divisions by zero, and locate the
2192wrong expressions or subexpressions.
342b8b6e
AD
2193
2194@example
2195@group
5e9b6624 2196input:
6240346a 2197 %empty
5e9b6624 2198| input line
342b8b6e
AD
2199;
2200@end group
2201
2202@group
5e9b6624
AD
2203line:
2204 '\n'
2205| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2206;
2207@end group
2208
2209@group
5e9b6624
AD
2210exp:
2211 NUM @{ $$ = $1; @}
2212| exp '+' exp @{ $$ = $1 + $3; @}
2213| exp '-' exp @{ $$ = $1 - $3; @}
2214| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2215@end group
342b8b6e 2216@group
5e9b6624
AD
2217| exp '/' exp
2218 @{
2219 if ($3)
2220 $$ = $1 / $3;
2221 else
2222 @{
2223 $$ = 1;
2224 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2225 @@3.first_line, @@3.first_column,
2226 @@3.last_line, @@3.last_column);
2227 @}
2228 @}
342b8b6e
AD
2229@end group
2230@group
5e9b6624
AD
2231| '-' exp %prec NEG @{ $$ = -$2; @}
2232| exp '^' exp @{ $$ = pow ($1, $3); @}
2233| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2234@end group
2235@end example
2236
2237This code shows how to reach locations inside of semantic actions, by
2238using the pseudo-variables @code{@@@var{n}} for rule components, and the
2239pseudo-variable @code{@@$} for groupings.
2240
9edcd895
AD
2241We don't need to assign a value to @code{@@$}: the output parser does it
2242automatically. By default, before executing the C code of each action,
2243@code{@@$} is set to range from the beginning of @code{@@1} to the end
2244of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2245can be redefined (@pxref{Location Default Action, , Default Action for
2246Locations}), and for very specific rules, @code{@@$} can be computed by
2247hand.
342b8b6e
AD
2248
2249@node Ltcalc Lexer
2250@subsection The @code{ltcalc} Lexical Analyzer.
2251
9edcd895 2252Until now, we relied on Bison's defaults to enable location
72d2299c 2253tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2254able to feed the parser with the token locations, as it already does for
2255semantic values.
342b8b6e 2256
9edcd895
AD
2257To this end, we must take into account every single character of the
2258input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2259
2260@example
2261@group
2262int
2263yylex (void)
2264@{
2265 int c;
18b519c0 2266@end group
342b8b6e 2267
18b519c0 2268@group
72d2299c 2269 /* Skip white space. */
342b8b6e
AD
2270 while ((c = getchar ()) == ' ' || c == '\t')
2271 ++yylloc.last_column;
18b519c0 2272@end group
342b8b6e 2273
18b519c0 2274@group
72d2299c 2275 /* Step. */
342b8b6e
AD
2276 yylloc.first_line = yylloc.last_line;
2277 yylloc.first_column = yylloc.last_column;
2278@end group
2279
2280@group
72d2299c 2281 /* Process numbers. */
342b8b6e
AD
2282 if (isdigit (c))
2283 @{
2284 yylval = c - '0';
2285 ++yylloc.last_column;
2286 while (isdigit (c = getchar ()))
2287 @{
2288 ++yylloc.last_column;
2289 yylval = yylval * 10 + c - '0';
2290 @}
2291 ungetc (c, stdin);
2292 return NUM;
2293 @}
2294@end group
2295
72d2299c 2296 /* Return end-of-input. */
342b8b6e
AD
2297 if (c == EOF)
2298 return 0;
2299
d4fca427 2300@group
72d2299c 2301 /* Return a single char, and update location. */
342b8b6e
AD
2302 if (c == '\n')
2303 @{
2304 ++yylloc.last_line;
2305 yylloc.last_column = 0;
2306 @}
2307 else
2308 ++yylloc.last_column;
2309 return c;
2310@}
d4fca427 2311@end group
342b8b6e
AD
2312@end example
2313
9edcd895
AD
2314Basically, the lexical analyzer performs the same processing as before:
2315it skips blanks and tabs, and reads numbers or single-character tokens.
2316In addition, it updates @code{yylloc}, the global variable (of type
2317@code{YYLTYPE}) containing the token's location.
342b8b6e 2318
9edcd895 2319Now, each time this function returns a token, the parser has its number
72d2299c 2320as well as its semantic value, and its location in the text. The last
9edcd895
AD
2321needed change is to initialize @code{yylloc}, for example in the
2322controlling function:
342b8b6e
AD
2323
2324@example
9edcd895 2325@group
342b8b6e
AD
2326int
2327main (void)
2328@{
2329 yylloc.first_line = yylloc.last_line = 1;
2330 yylloc.first_column = yylloc.last_column = 0;
2331 return yyparse ();
2332@}
9edcd895 2333@end group
342b8b6e
AD
2334@end example
2335
9edcd895
AD
2336Remember that computing locations is not a matter of syntax. Every
2337character must be associated to a location update, whether it is in
2338valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2339
2340@node Multi-function Calc
bfa74976
RS
2341@section Multi-Function Calculator: @code{mfcalc}
2342@cindex multi-function calculator
2343@cindex @code{mfcalc}
2344@cindex calculator, multi-function
2345
2346Now that the basics of Bison have been discussed, it is time to move on to
2347a more advanced problem. The above calculators provided only five
2348functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2349be nice to have a calculator that provides other mathematical functions such
2350as @code{sin}, @code{cos}, etc.
2351
2352It is easy to add new operators to the infix calculator as long as they are
2353only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2354back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2355adding a new operator. But we want something more flexible: built-in
2356functions whose syntax has this form:
2357
2358@example
2359@var{function_name} (@var{argument})
2360@end example
2361
2362@noindent
2363At the same time, we will add memory to the calculator, by allowing you
2364to create named variables, store values in them, and use them later.
2365Here is a sample session with the multi-function calculator:
2366
2367@example
d4fca427 2368@group
9edcd895
AD
2369$ @kbd{mfcalc}
2370@kbd{pi = 3.141592653589}
f9c75dd0 2371@result{} 3.1415926536
d4fca427
AD
2372@end group
2373@group
9edcd895 2374@kbd{sin(pi)}
f9c75dd0 2375@result{} 0.0000000000
d4fca427 2376@end group
9edcd895 2377@kbd{alpha = beta1 = 2.3}
f9c75dd0 2378@result{} 2.3000000000
9edcd895 2379@kbd{alpha}
f9c75dd0 2380@result{} 2.3000000000
9edcd895 2381@kbd{ln(alpha)}
f9c75dd0 2382@result{} 0.8329091229
9edcd895 2383@kbd{exp(ln(beta1))}
f9c75dd0 2384@result{} 2.3000000000
9edcd895 2385$
bfa74976
RS
2386@end example
2387
2388Note that multiple assignment and nested function calls are permitted.
2389
2390@menu
f5f419de
DJ
2391* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2392* Mfcalc Rules:: Grammar rules for the calculator.
2393* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2394* Mfcalc Lexer:: The lexical analyzer.
2395* Mfcalc Main:: The controlling function.
bfa74976
RS
2396@end menu
2397
f5f419de 2398@node Mfcalc Declarations
bfa74976
RS
2399@subsection Declarations for @code{mfcalc}
2400
2401Here are the C and Bison declarations for the multi-function calculator.
2402
93c150b6 2403@comment file: mfcalc.y: 1
c93f22fc 2404@example
18b519c0 2405@group
bfa74976 2406%@{
f9c75dd0 2407 #include <stdio.h> /* For printf, etc. */
578e3413 2408 #include <math.h> /* For pow, used in the grammar. */
4c9b8f13 2409 #include "calc.h" /* Contains definition of 'symrec'. */
38a92d50
PE
2410 int yylex (void);
2411 void yyerror (char const *);
bfa74976 2412%@}
18b519c0 2413@end group
93c150b6 2414
18b519c0 2415@group
bfa74976 2416%union @{
38a92d50
PE
2417 double val; /* For returning numbers. */
2418 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2419@}
18b519c0 2420@end group
38a92d50 2421%token <val> NUM /* Simple double precision number. */
93c150b6 2422%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2423%type <val> exp
2424
18b519c0 2425@group
e8f7155d 2426%precedence '='
bfa74976
RS
2427%left '-' '+'
2428%left '*' '/'
d78f0ac9
AD
2429%precedence NEG /* negation--unary minus */
2430%right '^' /* exponentiation */
18b519c0 2431@end group
c93f22fc 2432@end example
bfa74976
RS
2433
2434The above grammar introduces only two new features of the Bison language.
2435These features allow semantic values to have various data types
2436(@pxref{Multiple Types, ,More Than One Value Type}).
2437
2438The @code{%union} declaration specifies the entire list of possible types;
21e3a2b5 2439this is instead of defining @code{api.value.type}. The allowable types are now
bfa74976 2440double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
e4d49586 2441the symbol table. @xref{Union Decl, ,The Union Declaration}.
bfa74976
RS
2442
2443Since values can now have various types, it is necessary to associate a
2444type with each grammar symbol whose semantic value is used. These symbols
2445are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2446declarations are augmented with information about their data type (placed
2447between angle brackets).
2448
704a47c4
AD
2449The Bison construct @code{%type} is used for declaring nonterminal
2450symbols, just as @code{%token} is used for declaring token types. We
2451have not used @code{%type} before because nonterminal symbols are
2452normally declared implicitly by the rules that define them. But
2453@code{exp} must be declared explicitly so we can specify its value type.
2454@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2455
342b8b6e 2456@node Mfcalc Rules
bfa74976
RS
2457@subsection Grammar Rules for @code{mfcalc}
2458
2459Here are the grammar rules for the multi-function calculator.
2460Most of them are copied directly from @code{calc}; three rules,
2461those which mention @code{VAR} or @code{FNCT}, are new.
2462
93c150b6 2463@comment file: mfcalc.y: 3
c93f22fc 2464@example
93c150b6 2465%% /* The grammar follows. */
18b519c0 2466@group
5e9b6624 2467input:
6240346a 2468 %empty
5e9b6624 2469| input line
bfa74976 2470;
18b519c0 2471@end group
bfa74976 2472
18b519c0 2473@group
bfa74976 2474line:
5e9b6624
AD
2475 '\n'
2476| exp '\n' @{ printf ("%.10g\n", $1); @}
2477| error '\n' @{ yyerrok; @}
bfa74976 2478;
18b519c0 2479@end group
bfa74976 2480
18b519c0 2481@group
5e9b6624
AD
2482exp:
2483 NUM @{ $$ = $1; @}
2484| VAR @{ $$ = $1->value.var; @}
2485| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2486| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2487| exp '+' exp @{ $$ = $1 + $3; @}
2488| exp '-' exp @{ $$ = $1 - $3; @}
2489| exp '*' exp @{ $$ = $1 * $3; @}
2490| exp '/' exp @{ $$ = $1 / $3; @}
2491| '-' exp %prec NEG @{ $$ = -$2; @}
2492| exp '^' exp @{ $$ = pow ($1, $3); @}
2493| '(' exp ')' @{ $$ = $2; @}
bfa74976 2494;
18b519c0 2495@end group
38a92d50 2496/* End of grammar. */
bfa74976 2497%%
c93f22fc 2498@end example
bfa74976 2499
f5f419de 2500@node Mfcalc Symbol Table
bfa74976
RS
2501@subsection The @code{mfcalc} Symbol Table
2502@cindex symbol table example
2503
2504The multi-function calculator requires a symbol table to keep track of the
2505names and meanings of variables and functions. This doesn't affect the
2506grammar rules (except for the actions) or the Bison declarations, but it
2507requires some additional C functions for support.
2508
2509The symbol table itself consists of a linked list of records. Its
2510definition, which is kept in the header @file{calc.h}, is as follows. It
2511provides for either functions or variables to be placed in the table.
2512
f9c75dd0 2513@comment file: calc.h
c93f22fc 2514@example
bfa74976 2515@group
38a92d50 2516/* Function type. */
32dfccf8 2517typedef double (*func_t) (double);
72f889cc 2518@end group
32dfccf8 2519
72f889cc 2520@group
38a92d50 2521/* Data type for links in the chain of symbols. */
bfa74976
RS
2522struct symrec
2523@{
38a92d50 2524 char *name; /* name of symbol */
bfa74976 2525 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2526 union
2527 @{
38a92d50
PE
2528 double var; /* value of a VAR */
2529 func_t fnctptr; /* value of a FNCT */
bfa74976 2530 @} value;
38a92d50 2531 struct symrec *next; /* link field */
bfa74976
RS
2532@};
2533@end group
2534
2535@group
2536typedef struct symrec symrec;
2537
4c9b8f13 2538/* The symbol table: a chain of 'struct symrec'. */
bfa74976
RS
2539extern symrec *sym_table;
2540
a730d142 2541symrec *putsym (char const *, int);
38a92d50 2542symrec *getsym (char const *);
bfa74976 2543@end group
c93f22fc 2544@end example
bfa74976 2545
aeb57fb6
AD
2546The new version of @code{main} will call @code{init_table} to initialize
2547the symbol table:
bfa74976 2548
93c150b6 2549@comment file: mfcalc.y: 3
c93f22fc 2550@example
18b519c0 2551@group
bfa74976
RS
2552struct init
2553@{
38a92d50
PE
2554 char const *fname;
2555 double (*fnct) (double);
bfa74976
RS
2556@};
2557@end group
2558
2559@group
38a92d50 2560struct init const arith_fncts[] =
13863333 2561@{
f9c75dd0
AD
2562 @{ "atan", atan @},
2563 @{ "cos", cos @},
2564 @{ "exp", exp @},
2565 @{ "ln", log @},
2566 @{ "sin", sin @},
2567 @{ "sqrt", sqrt @},
2568 @{ 0, 0 @},
13863333 2569@};
18b519c0 2570@end group
bfa74976 2571
18b519c0 2572@group
4c9b8f13 2573/* The symbol table: a chain of 'struct symrec'. */
38a92d50 2574symrec *sym_table;
bfa74976
RS
2575@end group
2576
2577@group
72d2299c 2578/* Put arithmetic functions in table. */
f9c75dd0 2579static
13863333
AD
2580void
2581init_table (void)
bfa74976
RS
2582@{
2583 int i;
bfa74976
RS
2584 for (i = 0; arith_fncts[i].fname != 0; i++)
2585 @{
aaaa2aae 2586 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2587 ptr->value.fnctptr = arith_fncts[i].fnct;
2588 @}
2589@}
2590@end group
c93f22fc 2591@end example
bfa74976
RS
2592
2593By simply editing the initialization list and adding the necessary include
2594files, you can add additional functions to the calculator.
2595
2596Two important functions allow look-up and installation of symbols in the
2597symbol table. The function @code{putsym} is passed a name and the type
2598(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2599linked to the front of the list, and a pointer to the object is returned.
2600The function @code{getsym} is passed the name of the symbol to look up. If
2601found, a pointer to that symbol is returned; otherwise zero is returned.
2602
93c150b6 2603@comment file: mfcalc.y: 3
c93f22fc 2604@example
f9c75dd0
AD
2605#include <stdlib.h> /* malloc. */
2606#include <string.h> /* strlen. */
2607
d4fca427 2608@group
bfa74976 2609symrec *
38a92d50 2610putsym (char const *sym_name, int sym_type)
bfa74976 2611@{
aaaa2aae 2612 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2613 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2614 strcpy (ptr->name,sym_name);
2615 ptr->type = sym_type;
72d2299c 2616 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2617 ptr->next = (struct symrec *)sym_table;
2618 sym_table = ptr;
2619 return ptr;
2620@}
d4fca427 2621@end group
bfa74976 2622
d4fca427 2623@group
bfa74976 2624symrec *
38a92d50 2625getsym (char const *sym_name)
bfa74976
RS
2626@{
2627 symrec *ptr;
2628 for (ptr = sym_table; ptr != (symrec *) 0;
2629 ptr = (symrec *)ptr->next)
f518dbaf 2630 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2631 return ptr;
2632 return 0;
2633@}
d4fca427 2634@end group
c93f22fc 2635@end example
bfa74976 2636
aeb57fb6
AD
2637@node Mfcalc Lexer
2638@subsection The @code{mfcalc} Lexer
2639
bfa74976
RS
2640The function @code{yylex} must now recognize variables, numeric values, and
2641the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2642characters with a leading letter are recognized as either variables or
bfa74976
RS
2643functions depending on what the symbol table says about them.
2644
2645The string is passed to @code{getsym} for look up in the symbol table. If
2646the name appears in the table, a pointer to its location and its type
2647(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2648already in the table, then it is installed as a @code{VAR} using
2649@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2650returned to @code{yyparse}.
bfa74976
RS
2651
2652No change is needed in the handling of numeric values and arithmetic
2653operators in @code{yylex}.
2654
93c150b6 2655@comment file: mfcalc.y: 3
c93f22fc 2656@example
bfa74976 2657#include <ctype.h>
13863333 2658
18b519c0 2659@group
13863333
AD
2660int
2661yylex (void)
bfa74976
RS
2662@{
2663 int c;
2664
72d2299c 2665 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2666 while ((c = getchar ()) == ' ' || c == '\t')
2667 continue;
bfa74976
RS
2668
2669 if (c == EOF)
2670 return 0;
2671@end group
2672
2673@group
2674 /* Char starts a number => parse the number. */
2675 if (c == '.' || isdigit (c))
2676 @{
2677 ungetc (c, stdin);
2678 scanf ("%lf", &yylval.val);
2679 return NUM;
2680 @}
2681@end group
2682
2683@group
2684 /* Char starts an identifier => read the name. */
2685 if (isalpha (c))
2686 @{
aaaa2aae
AD
2687 /* Initially make the buffer long enough
2688 for a 40-character symbol name. */
2689 static size_t length = 40;
bfa74976 2690 static char *symbuf = 0;
aaaa2aae 2691 symrec *s;
bfa74976
RS
2692 int i;
2693@end group
aaaa2aae
AD
2694 if (!symbuf)
2695 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2696
2697 i = 0;
2698 do
bfa74976
RS
2699@group
2700 @{
2701 /* If buffer is full, make it bigger. */
2702 if (i == length)
2703 @{
2704 length *= 2;
18b519c0 2705 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2706 @}
2707 /* Add this character to the buffer. */
2708 symbuf[i++] = c;
2709 /* Get another character. */
2710 c = getchar ();
2711 @}
2712@end group
2713@group
72d2299c 2714 while (isalnum (c));
bfa74976
RS
2715
2716 ungetc (c, stdin);
2717 symbuf[i] = '\0';
2718@end group
2719
2720@group
2721 s = getsym (symbuf);
2722 if (s == 0)
2723 s = putsym (symbuf, VAR);
2724 yylval.tptr = s;
2725 return s->type;
2726 @}
2727
2728 /* Any other character is a token by itself. */
2729 return c;
2730@}
2731@end group
c93f22fc 2732@end example
bfa74976 2733
aeb57fb6
AD
2734@node Mfcalc Main
2735@subsection The @code{mfcalc} Main
2736
2737The error reporting function is unchanged, and the new version of
93c150b6
AD
2738@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2739on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2740
93c150b6 2741@comment file: mfcalc.y: 3
c93f22fc 2742@example
aeb57fb6
AD
2743@group
2744/* Called by yyparse on error. */
2745void
2746yyerror (char const *s)
2747@{
2748 fprintf (stderr, "%s\n", s);
2749@}
2750@end group
2751
aaaa2aae 2752@group
aeb57fb6
AD
2753int
2754main (int argc, char const* argv[])
2755@{
93c150b6
AD
2756 int i;
2757 /* Enable parse traces on option -p. */
2758 for (i = 1; i < argc; ++i)
2759 if (!strcmp(argv[i], "-p"))
2760 yydebug = 1;
aeb57fb6
AD
2761 init_table ();
2762 return yyparse ();
2763@}
2764@end group
c93f22fc 2765@end example
aeb57fb6 2766
72d2299c 2767This program is both powerful and flexible. You may easily add new
704a47c4
AD
2768functions, and it is a simple job to modify this code to install
2769predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2770
342b8b6e 2771@node Exercises
bfa74976
RS
2772@section Exercises
2773@cindex exercises
2774
2775@enumerate
2776@item
2777Add some new functions from @file{math.h} to the initialization list.
2778
2779@item
2780Add another array that contains constants and their values. Then
2781modify @code{init_table} to add these constants to the symbol table.
2782It will be easiest to give the constants type @code{VAR}.
2783
2784@item
2785Make the program report an error if the user refers to an
2786uninitialized variable in any way except to store a value in it.
2787@end enumerate
2788
342b8b6e 2789@node Grammar File
bfa74976
RS
2790@chapter Bison Grammar Files
2791
2792Bison takes as input a context-free grammar specification and produces a
2793C-language function that recognizes correct instances of the grammar.
2794
ff7571c0 2795The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2796@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2797
2798@menu
303834cc
JD
2799* Grammar Outline:: Overall layout of the grammar file.
2800* Symbols:: Terminal and nonterminal symbols.
2801* Rules:: How to write grammar rules.
303834cc
JD
2802* Semantics:: Semantic values and actions.
2803* Tracking Locations:: Locations and actions.
2804* Named References:: Using named references in actions.
2805* Declarations:: All kinds of Bison declarations are described here.
2806* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2807@end menu
2808
342b8b6e 2809@node Grammar Outline
bfa74976 2810@section Outline of a Bison Grammar
c949ada3
AD
2811@cindex comment
2812@findex // @dots{}
2813@findex /* @dots{} */
bfa74976
RS
2814
2815A Bison grammar file has four main sections, shown here with the
2816appropriate delimiters:
2817
2818@example
2819%@{
38a92d50 2820 @var{Prologue}
bfa74976
RS
2821%@}
2822
2823@var{Bison declarations}
2824
2825%%
2826@var{Grammar rules}
2827%%
2828
75f5aaea 2829@var{Epilogue}
bfa74976
RS
2830@end example
2831
2832Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2833As a GNU extension, @samp{//} introduces a comment that continues until end
2834of line.
bfa74976
RS
2835
2836@menu
f5f419de 2837* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2838* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2839* Bison Declarations:: Syntax and usage of the Bison declarations section.
2840* Grammar Rules:: Syntax and usage of the grammar rules section.
2841* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2842@end menu
2843
38a92d50 2844@node Prologue
75f5aaea
MA
2845@subsection The prologue
2846@cindex declarations section
2847@cindex Prologue
2848@cindex declarations
bfa74976 2849
f8e1c9e5
AD
2850The @var{Prologue} section contains macro definitions and declarations
2851of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2852rules. These are copied to the beginning of the parser implementation
2853file so that they precede the definition of @code{yyparse}. You can
2854use @samp{#include} to get the declarations from a header file. If
2855you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2856@samp{%@}} delimiters that bracket this section.
bfa74976 2857
9c437126 2858The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2859of @samp{%@}} that is outside a comment, a string literal, or a
2860character constant.
2861
c732d2c6
AD
2862You may have more than one @var{Prologue} section, intermixed with the
2863@var{Bison declarations}. This allows you to have C and Bison
2864declarations that refer to each other. For example, the @code{%union}
2865declaration may use types defined in a header file, and you may wish to
2866prototype functions that take arguments of type @code{YYSTYPE}. This
2867can be done with two @var{Prologue} blocks, one before and one after the
2868@code{%union} declaration.
2869
c93f22fc 2870@example
efbc95a7 2871@group
c732d2c6 2872%@{
aef3da86 2873 #define _GNU_SOURCE
38a92d50
PE
2874 #include <stdio.h>
2875 #include "ptypes.h"
c732d2c6 2876%@}
efbc95a7 2877@end group
c732d2c6 2878
efbc95a7 2879@group
c732d2c6 2880%union @{
779e7ceb 2881 long int n;
c732d2c6
AD
2882 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2883@}
efbc95a7 2884@end group
c732d2c6 2885
efbc95a7 2886@group
c732d2c6 2887%@{
38a92d50
PE
2888 static void print_token_value (FILE *, int, YYSTYPE);
2889 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6 2890%@}
efbc95a7 2891@end group
c732d2c6
AD
2892
2893@dots{}
c93f22fc 2894@end example
c732d2c6 2895
aef3da86
PE
2896When in doubt, it is usually safer to put prologue code before all
2897Bison declarations, rather than after. For example, any definitions
2898of feature test macros like @code{_GNU_SOURCE} or
2899@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2900feature test macros can affect the behavior of Bison-generated
2901@code{#include} directives.
2902
2cbe6b7f
JD
2903@node Prologue Alternatives
2904@subsection Prologue Alternatives
2905@cindex Prologue Alternatives
2906
136a0f76 2907@findex %code
16dc6a9e
JD
2908@findex %code requires
2909@findex %code provides
2910@findex %code top
85894313 2911
2cbe6b7f 2912The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2913inflexible. As an alternative, Bison provides a @code{%code}
2914directive with an explicit qualifier field, which identifies the
2915purpose of the code and thus the location(s) where Bison should
2916generate it. For C/C++, the qualifier can be omitted for the default
2917location, or it can be one of @code{requires}, @code{provides},
e0c07222 2918@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2919
2920Look again at the example of the previous section:
2921
c93f22fc 2922@example
efbc95a7 2923@group
2cbe6b7f
JD
2924%@{
2925 #define _GNU_SOURCE
2926 #include <stdio.h>
2927 #include "ptypes.h"
2928%@}
efbc95a7 2929@end group
2cbe6b7f 2930
efbc95a7 2931@group
2cbe6b7f
JD
2932%union @{
2933 long int n;
2934 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2935@}
efbc95a7 2936@end group
2cbe6b7f 2937
efbc95a7 2938@group
2cbe6b7f
JD
2939%@{
2940 static void print_token_value (FILE *, int, YYSTYPE);
2941 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2942%@}
efbc95a7 2943@end group
2cbe6b7f
JD
2944
2945@dots{}
c93f22fc 2946@end example
2cbe6b7f
JD
2947
2948@noindent
ff7571c0
JD
2949Notice that there are two @var{Prologue} sections here, but there's a
2950subtle distinction between their functionality. For example, if you
2951decide to override Bison's default definition for @code{YYLTYPE}, in
2952which @var{Prologue} section should you write your new definition?
2953You should write it in the first since Bison will insert that code
2954into the parser implementation file @emph{before} the default
2955@code{YYLTYPE} definition. In which @var{Prologue} section should you
2956prototype an internal function, @code{trace_token}, that accepts
2957@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2958prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2959@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2960
2961This distinction in functionality between the two @var{Prologue} sections is
2962established by the appearance of the @code{%union} between them.
a501eca9 2963This behavior raises a few questions.
2cbe6b7f
JD
2964First, why should the position of a @code{%union} affect definitions related to
2965@code{YYLTYPE} and @code{yytokentype}?
2966Second, what if there is no @code{%union}?
2967In that case, the second kind of @var{Prologue} section is not available.
2968This behavior is not intuitive.
2969
8e0a5e9e 2970To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2971@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2972Let's go ahead and add the new @code{YYLTYPE} definition and the
2973@code{trace_token} prototype at the same time:
2974
c93f22fc 2975@example
16dc6a9e 2976%code top @{
2cbe6b7f
JD
2977 #define _GNU_SOURCE
2978 #include <stdio.h>
8e0a5e9e
JD
2979
2980 /* WARNING: The following code really belongs
4c9b8f13 2981 * in a '%code requires'; see below. */
8e0a5e9e 2982
2cbe6b7f
JD
2983 #include "ptypes.h"
2984 #define YYLTYPE YYLTYPE
2985 typedef struct YYLTYPE
2986 @{
2987 int first_line;
2988 int first_column;
2989 int last_line;
2990 int last_column;
2991 char *filename;
2992 @} YYLTYPE;
2993@}
2994
efbc95a7 2995@group
2cbe6b7f
JD
2996%union @{
2997 long int n;
2998 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2999@}
efbc95a7 3000@end group
2cbe6b7f 3001
efbc95a7 3002@group
2cbe6b7f
JD
3003%code @{
3004 static void print_token_value (FILE *, int, YYSTYPE);
3005 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3006 static void trace_token (enum yytokentype token, YYLTYPE loc);
3007@}
efbc95a7 3008@end group
2cbe6b7f
JD
3009
3010@dots{}
c93f22fc 3011@end example
2cbe6b7f
JD
3012
3013@noindent
16dc6a9e
JD
3014In this way, @code{%code top} and the unqualified @code{%code} achieve the same
3015functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 3016explicit which kind you intend.
2cbe6b7f
JD
3017Moreover, both kinds are always available even in the absence of @code{%union}.
3018
ff7571c0
JD
3019The @code{%code top} block above logically contains two parts. The
3020first two lines before the warning need to appear near the top of the
3021parser implementation file. The first line after the warning is
3022required by @code{YYSTYPE} and thus also needs to appear in the parser
3023implementation file. However, if you've instructed Bison to generate
3024a parser header file (@pxref{Decl Summary, ,%defines}), you probably
3025want that line to appear before the @code{YYSTYPE} definition in that
3026header file as well. The @code{YYLTYPE} definition should also appear
3027in the parser header file to override the default @code{YYLTYPE}
3028definition there.
2cbe6b7f 3029
16dc6a9e 3030In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3031lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3032definitions.
16dc6a9e 3033Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3034
c93f22fc 3035@example
d4fca427 3036@group
16dc6a9e 3037%code top @{
2cbe6b7f
JD
3038 #define _GNU_SOURCE
3039 #include <stdio.h>
3040@}
d4fca427 3041@end group
2cbe6b7f 3042
d4fca427 3043@group
16dc6a9e 3044%code requires @{
9bc0dd67
JD
3045 #include "ptypes.h"
3046@}
d4fca427
AD
3047@end group
3048@group
9bc0dd67
JD
3049%union @{
3050 long int n;
3051 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3052@}
d4fca427 3053@end group
9bc0dd67 3054
d4fca427 3055@group
16dc6a9e 3056%code requires @{
2cbe6b7f
JD
3057 #define YYLTYPE YYLTYPE
3058 typedef struct YYLTYPE
3059 @{
3060 int first_line;
3061 int first_column;
3062 int last_line;
3063 int last_column;
3064 char *filename;
3065 @} YYLTYPE;
3066@}
d4fca427 3067@end group
2cbe6b7f 3068
d4fca427 3069@group
136a0f76 3070%code @{
2cbe6b7f
JD
3071 static void print_token_value (FILE *, int, YYSTYPE);
3072 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3073 static void trace_token (enum yytokentype token, YYLTYPE loc);
3074@}
d4fca427 3075@end group
2cbe6b7f
JD
3076
3077@dots{}
c93f22fc 3078@end example
2cbe6b7f
JD
3079
3080@noindent
ff7571c0
JD
3081Now Bison will insert @code{#include "ptypes.h"} and the new
3082@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3083and @code{YYLTYPE} definitions in both the parser implementation file
3084and the parser header file. (By the same reasoning, @code{%code
3085requires} would also be the appropriate place to write your own
3086definition for @code{YYSTYPE}.)
3087
3088When you are writing dependency code for @code{YYSTYPE} and
3089@code{YYLTYPE}, you should prefer @code{%code requires} over
3090@code{%code top} regardless of whether you instruct Bison to generate
3091a parser header file. When you are writing code that you need Bison
3092to insert only into the parser implementation file and that has no
3093special need to appear at the top of that file, you should prefer the
3094unqualified @code{%code} over @code{%code top}. These practices will
3095make the purpose of each block of your code explicit to Bison and to
3096other developers reading your grammar file. Following these
3097practices, we expect the unqualified @code{%code} and @code{%code
3098requires} to be the most important of the four @var{Prologue}
16dc6a9e 3099alternatives.
a501eca9 3100
ff7571c0
JD
3101At some point while developing your parser, you might decide to
3102provide @code{trace_token} to modules that are external to your
3103parser. Thus, you might wish for Bison to insert the prototype into
3104both the parser header file and the parser implementation file. Since
3105this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3106@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3107@code{%code requires}. More importantly, since it depends upon
3108@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3109sufficient. Instead, move its prototype from the unqualified
3110@code{%code} to a @code{%code provides}:
2cbe6b7f 3111
c93f22fc 3112@example
d4fca427 3113@group
16dc6a9e 3114%code top @{
2cbe6b7f 3115 #define _GNU_SOURCE
136a0f76 3116 #include <stdio.h>
2cbe6b7f 3117@}
d4fca427 3118@end group
136a0f76 3119
d4fca427 3120@group
16dc6a9e 3121%code requires @{
2cbe6b7f
JD
3122 #include "ptypes.h"
3123@}
d4fca427
AD
3124@end group
3125@group
2cbe6b7f
JD
3126%union @{
3127 long int n;
3128 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3129@}
d4fca427 3130@end group
2cbe6b7f 3131
d4fca427 3132@group
16dc6a9e 3133%code requires @{
2cbe6b7f
JD
3134 #define YYLTYPE YYLTYPE
3135 typedef struct YYLTYPE
3136 @{
3137 int first_line;
3138 int first_column;
3139 int last_line;
3140 int last_column;
3141 char *filename;
3142 @} YYLTYPE;
3143@}
d4fca427 3144@end group
2cbe6b7f 3145
d4fca427 3146@group
16dc6a9e 3147%code provides @{
2cbe6b7f
JD
3148 void trace_token (enum yytokentype token, YYLTYPE loc);
3149@}
d4fca427 3150@end group
2cbe6b7f 3151
d4fca427 3152@group
2cbe6b7f 3153%code @{
9bc0dd67
JD
3154 static void print_token_value (FILE *, int, YYSTYPE);
3155 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3156@}
d4fca427 3157@end group
9bc0dd67
JD
3158
3159@dots{}
c93f22fc 3160@end example
9bc0dd67 3161
2cbe6b7f 3162@noindent
ff7571c0
JD
3163Bison will insert the @code{trace_token} prototype into both the
3164parser header file and the parser implementation file after the
3165definitions for @code{yytokentype}, @code{YYLTYPE}, and
3166@code{YYSTYPE}.
2cbe6b7f 3167
ff7571c0
JD
3168The above examples are careful to write directives in an order that
3169reflects the layout of the generated parser implementation and header
3170files: @code{%code top}, @code{%code requires}, @code{%code provides},
3171and then @code{%code}. While your grammar files may generally be
3172easier to read if you also follow this order, Bison does not require
3173it. Instead, Bison lets you choose an organization that makes sense
3174to you.
2cbe6b7f 3175
a501eca9 3176You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3177In that case, Bison concatenates the contained code in declaration order.
3178This is the only way in which the position of one of these directives within
3179the grammar file affects its functionality.
3180
3181The result of the previous two properties is greater flexibility in how you may
3182organize your grammar file.
3183For example, you may organize semantic-type-related directives by semantic
3184type:
3185
c93f22fc 3186@example
d4fca427 3187@group
16dc6a9e 3188%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3189%union @{ type1 field1; @}
3190%destructor @{ type1_free ($$); @} <field1>
c5026327 3191%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3192@end group
2cbe6b7f 3193
d4fca427 3194@group
16dc6a9e 3195%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3196%union @{ type2 field2; @}
3197%destructor @{ type2_free ($$); @} <field2>
c5026327 3198%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3199@end group
c93f22fc 3200@end example
2cbe6b7f
JD
3201
3202@noindent
3203You could even place each of the above directive groups in the rules section of
3204the grammar file next to the set of rules that uses the associated semantic
3205type.
61fee93e
JD
3206(In the rules section, you must terminate each of those directives with a
3207semicolon.)
2cbe6b7f
JD
3208And you don't have to worry that some directive (like a @code{%union}) in the
3209definitions section is going to adversely affect their functionality in some
3210counter-intuitive manner just because it comes first.
3211Such an organization is not possible using @var{Prologue} sections.
3212
a501eca9 3213This section has been concerned with explaining the advantages of the four
8e0a5e9e 3214@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3215However, in most cases when using these directives, you shouldn't need to
3216think about all the low-level ordering issues discussed here.
3217Instead, you should simply use these directives to label each block of your
3218code according to its purpose and let Bison handle the ordering.
3219@code{%code} is the most generic label.
16dc6a9e
JD
3220Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3221as needed.
a501eca9 3222
342b8b6e 3223@node Bison Declarations
bfa74976
RS
3224@subsection The Bison Declarations Section
3225@cindex Bison declarations (introduction)
3226@cindex declarations, Bison (introduction)
3227
3228The @var{Bison declarations} section contains declarations that define
3229terminal and nonterminal symbols, specify precedence, and so on.
3230In some simple grammars you may not need any declarations.
3231@xref{Declarations, ,Bison Declarations}.
3232
342b8b6e 3233@node Grammar Rules
bfa74976
RS
3234@subsection The Grammar Rules Section
3235@cindex grammar rules section
3236@cindex rules section for grammar
3237
3238The @dfn{grammar rules} section contains one or more Bison grammar
3239rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3240
3241There must always be at least one grammar rule, and the first
3242@samp{%%} (which precedes the grammar rules) may never be omitted even
3243if it is the first thing in the file.
3244
38a92d50 3245@node Epilogue
75f5aaea 3246@subsection The epilogue
bfa74976 3247@cindex additional C code section
75f5aaea 3248@cindex epilogue
bfa74976
RS
3249@cindex C code, section for additional
3250
ff7571c0
JD
3251The @var{Epilogue} is copied verbatim to the end of the parser
3252implementation file, just as the @var{Prologue} is copied to the
3253beginning. This is the most convenient place to put anything that you
3254want to have in the parser implementation file but which need not come
3255before the definition of @code{yyparse}. For example, the definitions
3256of @code{yylex} and @code{yyerror} often go here. Because C requires
3257functions to be declared before being used, you often need to declare
3258functions like @code{yylex} and @code{yyerror} in the Prologue, even
3259if you define them in the Epilogue. @xref{Interface, ,Parser
3260C-Language Interface}.
bfa74976
RS
3261
3262If the last section is empty, you may omit the @samp{%%} that separates it
3263from the grammar rules.
3264
f8e1c9e5
AD
3265The Bison parser itself contains many macros and identifiers whose names
3266start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3267any such names (except those documented in this manual) in the epilogue
3268of the grammar file.
bfa74976 3269
342b8b6e 3270@node Symbols
bfa74976
RS
3271@section Symbols, Terminal and Nonterminal
3272@cindex nonterminal symbol
3273@cindex terminal symbol
3274@cindex token type
3275@cindex symbol
3276
3277@dfn{Symbols} in Bison grammars represent the grammatical classifications
3278of the language.
3279
3280A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3281class of syntactically equivalent tokens. You use the symbol in grammar
3282rules to mean that a token in that class is allowed. The symbol is
3283represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3284function returns a token type code to indicate what kind of token has
3285been read. You don't need to know what the code value is; you can use
3286the symbol to stand for it.
bfa74976 3287
f8e1c9e5
AD
3288A @dfn{nonterminal symbol} stands for a class of syntactically
3289equivalent groupings. The symbol name is used in writing grammar rules.
3290By convention, it should be all lower case.
bfa74976 3291
82f3355e
JD
3292Symbol names can contain letters, underscores, periods, and non-initial
3293digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3294with POSIX Yacc. Periods and dashes make symbol names less convenient to
3295use with named references, which require brackets around such names
3296(@pxref{Named References}). Terminal symbols that contain periods or dashes
3297make little sense: since they are not valid symbols (in most programming
3298languages) they are not exported as token names.
bfa74976 3299
931c7513 3300There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3301
3302@itemize @bullet
3303@item
3304A @dfn{named token type} is written with an identifier, like an
c827f760 3305identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3306such name must be defined with a Bison declaration such as
3307@code{%token}. @xref{Token Decl, ,Token Type Names}.
3308
3309@item
3310@cindex character token
3311@cindex literal token
3312@cindex single-character literal
931c7513
RS
3313A @dfn{character token type} (or @dfn{literal character token}) is
3314written in the grammar using the same syntax used in C for character
3315constants; for example, @code{'+'} is a character token type. A
3316character token type doesn't need to be declared unless you need to
3317specify its semantic value data type (@pxref{Value Type, ,Data Types of
3318Semantic Values}), associativity, or precedence (@pxref{Precedence,
3319,Operator Precedence}).
bfa74976
RS
3320
3321By convention, a character token type is used only to represent a
3322token that consists of that particular character. Thus, the token
3323type @code{'+'} is used to represent the character @samp{+} as a
3324token. Nothing enforces this convention, but if you depart from it,
3325your program will confuse other readers.
3326
3327All the usual escape sequences used in character literals in C can be
3328used in Bison as well, but you must not use the null character as a
72d2299c
PE
3329character literal because its numeric code, zero, signifies
3330end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3331for @code{yylex}}). Also, unlike standard C, trigraphs have no
3332special meaning in Bison character literals, nor is backslash-newline
3333allowed.
931c7513
RS
3334
3335@item
3336@cindex string token
3337@cindex literal string token
9ecbd125 3338@cindex multicharacter literal
931c7513
RS
3339A @dfn{literal string token} is written like a C string constant; for
3340example, @code{"<="} is a literal string token. A literal string token
3341doesn't need to be declared unless you need to specify its semantic
14ded682 3342value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3343(@pxref{Precedence}).
3344
3345You can associate the literal string token with a symbolic name as an
3346alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3347Declarations}). If you don't do that, the lexical analyzer has to
3348retrieve the token number for the literal string token from the
3349@code{yytname} table (@pxref{Calling Convention}).
3350
c827f760 3351@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3352
3353By convention, a literal string token is used only to represent a token
3354that consists of that particular string. Thus, you should use the token
3355type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3356does not enforce this convention, but if you depart from it, people who
931c7513
RS
3357read your program will be confused.
3358
3359All the escape sequences used in string literals in C can be used in
92ac3705
PE
3360Bison as well, except that you must not use a null character within a
3361string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3362meaning in Bison string literals, nor is backslash-newline allowed. A
3363literal string token must contain two or more characters; for a token
3364containing just one character, use a character token (see above).
bfa74976
RS
3365@end itemize
3366
3367How you choose to write a terminal symbol has no effect on its
3368grammatical meaning. That depends only on where it appears in rules and
3369on when the parser function returns that symbol.
3370
72d2299c
PE
3371The value returned by @code{yylex} is always one of the terminal
3372symbols, except that a zero or negative value signifies end-of-input.
3373Whichever way you write the token type in the grammar rules, you write
3374it the same way in the definition of @code{yylex}. The numeric code
3375for a character token type is simply the positive numeric code of the
3376character, so @code{yylex} can use the identical value to generate the
3377requisite code, though you may need to convert it to @code{unsigned
3378char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3379Each named token type becomes a C macro in the parser implementation
3380file, so @code{yylex} can use the name to stand for the code. (This
3381is why periods don't make sense in terminal symbols.) @xref{Calling
3382Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3383
3384If @code{yylex} is defined in a separate file, you need to arrange for the
3385token-type macro definitions to be available there. Use the @samp{-d}
3386option when you run Bison, so that it will write these macro definitions
3387into a separate header file @file{@var{name}.tab.h} which you can include
3388in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3389
72d2299c 3390If you want to write a grammar that is portable to any Standard C
9d9b8b70 3391host, you must use only nonnull character tokens taken from the basic
c827f760 3392execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3393digits, the 52 lower- and upper-case English letters, and the
3394characters in the following C-language string:
3395
3396@example
3397"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3398@end example
3399
f8e1c9e5
AD
3400The @code{yylex} function and Bison must use a consistent character set
3401and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3402ASCII environment, but then compile and run the resulting
f8e1c9e5 3403program in an environment that uses an incompatible character set like
8a4281b9
JD
3404EBCDIC, the resulting program may not work because the tables
3405generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3406character tokens. It is standard practice for software distributions to
3407contain C source files that were generated by Bison in an
8a4281b9
JD
3408ASCII environment, so installers on platforms that are
3409incompatible with ASCII must rebuild those files before
f8e1c9e5 3410compiling them.
e966383b 3411
bfa74976
RS
3412The symbol @code{error} is a terminal symbol reserved for error recovery
3413(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3414In particular, @code{yylex} should never return this value. The default
3415value of the error token is 256, unless you explicitly assigned 256 to
3416one of your tokens with a @code{%token} declaration.
bfa74976 3417
342b8b6e 3418@node Rules
09add9c2
AD
3419@section Grammar Rules
3420
3421A Bison grammar is a list of rules.
3422
3423@menu
3424* Rules Syntax:: Syntax of the rules.
3425* Empty Rules:: Symbols that can match the empty string.
3426* Recursion:: Writing recursive rules.
3427@end menu
3428
3429@node Rules Syntax
3430@subsection Syntax of Grammar Rules
bfa74976
RS
3431@cindex rule syntax
3432@cindex grammar rule syntax
3433@cindex syntax of grammar rules
3434
3435A Bison grammar rule has the following general form:
3436
3437@example
5e9b6624 3438@var{result}: @var{components}@dots{};
bfa74976
RS
3439@end example
3440
3441@noindent
9ecbd125 3442where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3443and @var{components} are various terminal and nonterminal symbols that
13863333 3444are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3445
3446For example,
3447
3448@example
5e9b6624 3449exp: exp '+' exp;
bfa74976
RS
3450@end example
3451
3452@noindent
3453says that two groupings of type @code{exp}, with a @samp{+} token in between,
3454can be combined into a larger grouping of type @code{exp}.
3455
72d2299c
PE
3456White space in rules is significant only to separate symbols. You can add
3457extra white space as you wish.
bfa74976
RS
3458
3459Scattered among the components can be @var{actions} that determine
3460the semantics of the rule. An action looks like this:
3461
3462@example
3463@{@var{C statements}@}
3464@end example
3465
3466@noindent
287c78f6
PE
3467@cindex braced code
3468This is an example of @dfn{braced code}, that is, C code surrounded by
3469braces, much like a compound statement in C@. Braced code can contain
3470any sequence of C tokens, so long as its braces are balanced. Bison
3471does not check the braced code for correctness directly; it merely
ff7571c0
JD
3472copies the code to the parser implementation file, where the C
3473compiler can check it.
287c78f6
PE
3474
3475Within braced code, the balanced-brace count is not affected by braces
3476within comments, string literals, or character constants, but it is
3477affected by the C digraphs @samp{<%} and @samp{%>} that represent
3478braces. At the top level braced code must be terminated by @samp{@}}
3479and not by a digraph. Bison does not look for trigraphs, so if braced
3480code uses trigraphs you should ensure that they do not affect the
3481nesting of braces or the boundaries of comments, string literals, or
3482character constants.
3483
bfa74976
RS
3484Usually there is only one action and it follows the components.
3485@xref{Actions}.
3486
3487@findex |
3488Multiple rules for the same @var{result} can be written separately or can
3489be joined with the vertical-bar character @samp{|} as follows:
3490
bfa74976
RS
3491@example
3492@group
5e9b6624
AD
3493@var{result}:
3494 @var{rule1-components}@dots{}
3495| @var{rule2-components}@dots{}
3496@dots{}
3497;
bfa74976
RS
3498@end group
3499@end example
bfa74976
RS
3500
3501@noindent
3502They are still considered distinct rules even when joined in this way.
3503
09add9c2
AD
3504@node Empty Rules
3505@subsection Empty Rules
3506@cindex empty rule
3507@cindex rule, empty
3508@findex %empty
3509
3510A rule is said to be @dfn{empty} if its right-hand side (@var{components})
3511is empty. It means that @var{result} can match the empty string. For
3512example, here is how to define an optional semicolon:
3513
3514@example
3515semicolon.opt: | ";";
3516@end example
3517
3518@noindent
3519It is easy not to see an empty rule, especially when @code{|} is used. The
3520@code{%empty} directive allows to make explicit that a rule is empty on
3521purpose:
bfa74976
RS
3522
3523@example
3524@group
09add9c2
AD
3525semicolon.opt:
3526 %empty
3527| ";"
5e9b6624 3528;
bfa74976 3529@end group
09add9c2 3530@end example
bfa74976 3531
09add9c2
AD
3532Flagging a non-empty rule with @code{%empty} is an error. If run with
3533@option{-Wempty-rule}, @command{bison} will report empty rules without
3534@code{%empty}. Using @code{%empty} enables this warning, unless
3535@option{-Wno-empty-rule} was specified.
3536
3537The @code{%empty} directive is a Bison extension, it does not work with
3538Yacc. To remain compatible with POSIX Yacc, it is customary to write a
3539comment @samp{/* empty */} in each rule with no components:
3540
3541@example
bfa74976 3542@group
09add9c2
AD
3543semicolon.opt:
3544 /* empty */
3545| ";"
5e9b6624 3546;
bfa74976
RS
3547@end group
3548@end example
3549
bfa74976 3550
342b8b6e 3551@node Recursion
09add9c2 3552@subsection Recursive Rules
bfa74976 3553@cindex recursive rule
09add9c2 3554@cindex rule, recursive
bfa74976 3555
f8e1c9e5
AD
3556A rule is called @dfn{recursive} when its @var{result} nonterminal
3557appears also on its right hand side. Nearly all Bison grammars need to
3558use recursion, because that is the only way to define a sequence of any
3559number of a particular thing. Consider this recursive definition of a
9ecbd125 3560comma-separated sequence of one or more expressions:
bfa74976
RS
3561
3562@example
3563@group
5e9b6624
AD
3564expseq1:
3565 exp
3566| expseq1 ',' exp
3567;
bfa74976
RS
3568@end group
3569@end example
3570
3571@cindex left recursion
3572@cindex right recursion
3573@noindent
3574Since the recursive use of @code{expseq1} is the leftmost symbol in the
3575right hand side, we call this @dfn{left recursion}. By contrast, here
3576the same construct is defined using @dfn{right recursion}:
3577
3578@example
3579@group
5e9b6624
AD
3580expseq1:
3581 exp
3582| exp ',' expseq1
3583;
bfa74976
RS
3584@end group
3585@end example
3586
3587@noindent
ec3bc396
AD
3588Any kind of sequence can be defined using either left recursion or right
3589recursion, but you should always use left recursion, because it can
3590parse a sequence of any number of elements with bounded stack space.
3591Right recursion uses up space on the Bison stack in proportion to the
3592number of elements in the sequence, because all the elements must be
3593shifted onto the stack before the rule can be applied even once.
3594@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3595of this.
bfa74976
RS
3596
3597@cindex mutual recursion
3598@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3599rule does not appear directly on its right hand side, but does appear
3600in rules for other nonterminals which do appear on its right hand
13863333 3601side.
bfa74976
RS
3602
3603For example:
3604
3605@example
3606@group
5e9b6624
AD
3607expr:
3608 primary
3609| primary '+' primary
3610;
bfa74976
RS
3611@end group
3612
3613@group
5e9b6624
AD
3614primary:
3615 constant
3616| '(' expr ')'
3617;
bfa74976
RS
3618@end group
3619@end example
3620
3621@noindent
3622defines two mutually-recursive nonterminals, since each refers to the
3623other.
3624
342b8b6e 3625@node Semantics
bfa74976
RS
3626@section Defining Language Semantics
3627@cindex defining language semantics
13863333 3628@cindex language semantics, defining
bfa74976
RS
3629
3630The grammar rules for a language determine only the syntax. The semantics
3631are determined by the semantic values associated with various tokens and
3632groupings, and by the actions taken when various groupings are recognized.
3633
3634For example, the calculator calculates properly because the value
3635associated with each expression is the proper number; it adds properly
3636because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3637the numbers associated with @var{x} and @var{y}.
3638
3639@menu
3640* Value Type:: Specifying one data type for all semantic values.
3641* Multiple Types:: Specifying several alternative data types.
e4d49586
AD
3642* Union Decl:: Declaring the set of all semantic value types.
3643* Structured Value Type:: Providing a structured semantic value type.
bfa74976
RS
3644* Actions:: An action is the semantic definition of a grammar rule.
3645* Action Types:: Specifying data types for actions to operate on.
3646* Mid-Rule Actions:: Most actions go at the end of a rule.
3647 This says when, why and how to use the exceptional
3648 action in the middle of a rule.
3649@end menu
3650
342b8b6e 3651@node Value Type
bfa74976
RS
3652@subsection Data Types of Semantic Values
3653@cindex semantic value type
3654@cindex value type, semantic
3655@cindex data types of semantic values
3656@cindex default data type
3657
3658In a simple program it may be sufficient to use the same data type for
3659the semantic values of all language constructs. This was true in the
8a4281b9 3660RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3661Notation Calculator}).
bfa74976 3662
ddc8ede1
PE
3663Bison normally uses the type @code{int} for semantic values if your
3664program uses the same data type for all language constructs. To
21e3a2b5
AD
3665specify some other type, define the @code{%define} variable
3666@code{api.value.type} like this:
3667
3668@example
3669%define api.value.type double
3670@end example
3671
3672@noindent
3673or
3674
3675@example
3676%define api.value.type "struct semantic_type"
3677@end example
3678
3679The value of @code{api.value.type} should be a type name that does not
3680contain parentheses or square brackets.
3681
3682Alternatively, instead of relying of Bison's @code{%define} support, you may
3683rely on the C/C++ preprocessor and define @code{YYSTYPE} as a macro, like
3684this:
bfa74976
RS
3685
3686@example
3687#define YYSTYPE double
3688@end example
3689
3690@noindent
342b8b6e 3691This macro definition must go in the prologue of the grammar file
21e3a2b5
AD
3692(@pxref{Grammar Outline, ,Outline of a Bison Grammar}). If compatibility
3693with POSIX Yacc matters to you, use this. Note however that Bison cannot
3694know @code{YYSTYPE}'s value, not even whether it is defined, so there are
3695services it cannot provide. Besides this works only for languages that have
3696a preprocessor.
bfa74976 3697
342b8b6e 3698@node Multiple Types
bfa74976
RS
3699@subsection More Than One Value Type
3700
3701In most programs, you will need different data types for different kinds
3702of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3703@code{int} or @code{long int}, while a string constant needs type
3704@code{char *}, and an identifier might need a pointer to an entry in the
3705symbol table.
bfa74976
RS
3706
3707To use more than one data type for semantic values in one parser, Bison
3708requires you to do two things:
3709
3710@itemize @bullet
3711@item
e4d49586
AD
3712Specify the entire collection of possible data types. There are several
3713options:
3714@itemize @bullet
3715@item
3716use the @code{%union} Bison declaration (@pxref{Union Decl, ,The Union
3717Declaration});
3718
3719@item
3720define the @code{%define} variable @code{api.value.type} to be a union type
3721whose members are the type tags (@pxref{Structured Value Type,, Providing a
3722Structured Semantic Value Type});
3723
3724@item
3725use a @code{typedef} or a @code{#define} to define @code{YYSTYPE} to be a
3726union type whose member names are the type tags.
3727@end itemize
bfa74976
RS
3728
3729@item
14ded682
AD
3730Choose one of those types for each symbol (terminal or nonterminal) for
3731which semantic values are used. This is done for tokens with the
3732@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3733and for groupings with the @code{%type} Bison declaration (@pxref{Type
3734Decl, ,Nonterminal Symbols}).
bfa74976
RS
3735@end itemize
3736
e4d49586
AD
3737@node Union Decl
3738@subsection The Union Declaration
3739@cindex declaring value types
3740@cindex value types, declaring
3741@findex %union
3742
3743The @code{%union} declaration specifies the entire collection of possible
3744data types for semantic values. The keyword @code{%union} is followed by
3745braced code containing the same thing that goes inside a @code{union} in C@.
3746
3747For example:
3748
3749@example
3750@group
3751%union @{
3752 double val;
3753 symrec *tptr;
3754@}
3755@end group
3756@end example
3757
3758@noindent
3759This says that the two alternative types are @code{double} and @code{symrec
3760*}. They are given names @code{val} and @code{tptr}; these names are used
3761in the @code{%token} and @code{%type} declarations to pick one of the types
3762for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3763
3764As an extension to POSIX, a tag is allowed after the @code{%union}. For
3765example:
3766
3767@example
3768@group
3769%union value @{
3770 double val;
3771 symrec *tptr;
3772@}
3773@end group
3774@end example
3775
3776@noindent
3777specifies the union tag @code{value}, so the corresponding C type is
3778@code{union value}. If you do not specify a tag, it defaults to
3779@code{YYSTYPE}.
3780
3781As another extension to POSIX, you may specify multiple @code{%union}
3782declarations; their contents are concatenated. However, only the first
3783@code{%union} declaration can specify a tag.
3784
3785Note that, unlike making a @code{union} declaration in C, you need not write
3786a semicolon after the closing brace.
3787
3788@node Structured Value Type
3789@subsection Providing a Structured Semantic Value Type
3790@cindex declaring value types
3791@cindex value types, declaring
3792@findex %union
3793
3794Instead of @code{%union}, you can define and use your own union type
3795@code{YYSTYPE} if your grammar contains at least one @samp{<@var{type}>}
3796tag. For example, you can put the following into a header file
3797@file{parser.h}:
3798
3799@example
3800@group
3801union YYSTYPE @{
3802 double val;
3803 symrec *tptr;
3804@};
3805@end group
3806@end example
3807
3808@noindent
3809and then your grammar can use the following instead of @code{%union}:
3810
3811@example
3812@group
3813%@{
3814#include "parser.h"
3815%@}
3816%define api.value.type "union YYSTYPE"
3817%type <val> expr
3818%token <tptr> ID
3819@end group
3820@end example
3821
3822Actually, you may also provide a @code{struct} rather that a @code{union},
3823which may be handy if you want to track information for every symbol (such
3824as preceding comments).
3825
3826The type you provide may even be structured and include pointers, in which
3827case the type tags you provide may be composite, with @samp{.} and @samp{->}
3828operators.
3829
342b8b6e 3830@node Actions
bfa74976
RS
3831@subsection Actions
3832@cindex action
3833@vindex $$
3834@vindex $@var{n}
d013372c
AR
3835@vindex $@var{name}
3836@vindex $[@var{name}]
bfa74976
RS
3837
3838An action accompanies a syntactic rule and contains C code to be executed
3839each time an instance of that rule is recognized. The task of most actions
3840is to compute a semantic value for the grouping built by the rule from the
3841semantic values associated with tokens or smaller groupings.
3842
287c78f6
PE
3843An action consists of braced code containing C statements, and can be
3844placed at any position in the rule;
704a47c4
AD
3845it is executed at that position. Most rules have just one action at the
3846end of the rule, following all the components. Actions in the middle of
3847a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3848Actions, ,Actions in Mid-Rule}).
bfa74976 3849
ff7571c0
JD
3850The C code in an action can refer to the semantic values of the
3851components matched by the rule with the construct @code{$@var{n}},
3852which stands for the value of the @var{n}th component. The semantic
3853value for the grouping being constructed is @code{$$}. In addition,
3854the semantic values of symbols can be accessed with the named
3855references construct @code{$@var{name}} or @code{$[@var{name}]}.
3856Bison translates both of these constructs into expressions of the
3857appropriate type when it copies the actions into the parser
3858implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3859for the current grouping) is translated to a modifiable lvalue, so it
3860can be assigned to.
bfa74976
RS
3861
3862Here is a typical example:
3863
3864@example
3865@group
5e9b6624
AD
3866exp:
3867@dots{}
3868| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3869@end group
3870@end example
3871
d013372c
AR
3872Or, in terms of named references:
3873
3874@example
3875@group
5e9b6624
AD
3876exp[result]:
3877@dots{}
3878| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3879@end group
3880@end example
3881
bfa74976
RS
3882@noindent
3883This rule constructs an @code{exp} from two smaller @code{exp} groupings
3884connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3885(@code{$left} and @code{$right})
bfa74976
RS
3886refer to the semantic values of the two component @code{exp} groupings,
3887which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3888The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3889semantic value of
bfa74976
RS
3890the addition-expression just recognized by the rule. If there were a
3891useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3892referred to as @code{$2}.
bfa74976 3893
a7b15ab9
JD
3894@xref{Named References}, for more information about using the named
3895references construct.
d013372c 3896
3ded9a63
AD
3897Note that the vertical-bar character @samp{|} is really a rule
3898separator, and actions are attached to a single rule. This is a
3899difference with tools like Flex, for which @samp{|} stands for either
3900``or'', or ``the same action as that of the next rule''. In the
3901following example, the action is triggered only when @samp{b} is found:
3902
3903@example
3ded9a63 3904a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3905@end example
3906
bfa74976
RS
3907@cindex default action
3908If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3909@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3910becomes the value of the whole rule. Of course, the default action is
3911valid only if the two data types match. There is no meaningful default
3912action for an empty rule; every empty rule must have an explicit action
3913unless the rule's value does not matter.
bfa74976
RS
3914
3915@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3916to tokens and groupings on the stack @emph{before} those that match the
3917current rule. This is a very risky practice, and to use it reliably
3918you must be certain of the context in which the rule is applied. Here
3919is a case in which you can use this reliably:
3920
3921@example
3922@group
5e9b6624
AD
3923foo:
3924 expr bar '+' expr @{ @dots{} @}
3925| expr bar '-' expr @{ @dots{} @}
3926;
bfa74976
RS
3927@end group
3928
3929@group
5e9b6624 3930bar:
6240346a 3931 %empty @{ previous_expr = $0; @}
5e9b6624 3932;
bfa74976
RS
3933@end group
3934@end example
3935
3936As long as @code{bar} is used only in the fashion shown here, @code{$0}
3937always refers to the @code{expr} which precedes @code{bar} in the
3938definition of @code{foo}.
3939
32c29292 3940@vindex yylval
742e4900 3941It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3942any, from a semantic action.
3943This semantic value is stored in @code{yylval}.
3944@xref{Action Features, ,Special Features for Use in Actions}.
3945
342b8b6e 3946@node Action Types
bfa74976
RS
3947@subsection Data Types of Values in Actions
3948@cindex action data types
3949@cindex data types in actions
3950
3951If you have chosen a single data type for semantic values, the @code{$$}
3952and @code{$@var{n}} constructs always have that data type.
3953
3954If you have used @code{%union} to specify a variety of data types, then you
3955must declare a choice among these types for each terminal or nonterminal
3956symbol that can have a semantic value. Then each time you use @code{$$} or
3957@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3958in the rule. In this example,
bfa74976
RS
3959
3960@example
3961@group
5e9b6624
AD
3962exp:
3963 @dots{}
3964| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3965@end group
3966@end example
3967
3968@noindent
3969@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3970have the data type declared for the nonterminal symbol @code{exp}. If
3971@code{$2} were used, it would have the data type declared for the
e0c471a9 3972terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3973
3974Alternatively, you can specify the data type when you refer to the value,
3975by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3976reference. For example, if you have defined types as shown here:
3977
3978@example
3979@group
3980%union @{
3981 int itype;
3982 double dtype;
3983@}
3984@end group
3985@end example
3986
3987@noindent
3988then you can write @code{$<itype>1} to refer to the first subunit of the
3989rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3990
342b8b6e 3991@node Mid-Rule Actions
bfa74976
RS
3992@subsection Actions in Mid-Rule
3993@cindex actions in mid-rule
3994@cindex mid-rule actions
3995
3996Occasionally it is useful to put an action in the middle of a rule.
3997These actions are written just like usual end-of-rule actions, but they
3998are executed before the parser even recognizes the following components.
3999
be22823e
AD
4000@menu
4001* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
4002* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
4003* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
4004@end menu
4005
4006@node Using Mid-Rule Actions
4007@subsubsection Using Mid-Rule Actions
4008
bfa74976
RS
4009A mid-rule action may refer to the components preceding it using
4010@code{$@var{n}}, but it may not refer to subsequent components because
4011it is run before they are parsed.
4012
4013The mid-rule action itself counts as one of the components of the rule.
4014This makes a difference when there is another action later in the same rule
4015(and usually there is another at the end): you have to count the actions
4016along with the symbols when working out which number @var{n} to use in
4017@code{$@var{n}}.
4018
4019The mid-rule action can also have a semantic value. The action can set
4020its value with an assignment to @code{$$}, and actions later in the rule
4021can refer to the value using @code{$@var{n}}. Since there is no symbol
4022to name the action, there is no way to declare a data type for the value
fdc6758b
MA
4023in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
4024specify a data type each time you refer to this value.
bfa74976
RS
4025
4026There is no way to set the value of the entire rule with a mid-rule
4027action, because assignments to @code{$$} do not have that effect. The
4028only way to set the value for the entire rule is with an ordinary action
4029at the end of the rule.
4030
4031Here is an example from a hypothetical compiler, handling a @code{let}
4032statement that looks like @samp{let (@var{variable}) @var{statement}} and
4033serves to create a variable named @var{variable} temporarily for the
4034duration of @var{statement}. To parse this construct, we must put
4035@var{variable} into the symbol table while @var{statement} is parsed, then
4036remove it afterward. Here is how it is done:
4037
4038@example
4039@group
5e9b6624 4040stmt:
c949ada3
AD
4041 "let" '(' var ')'
4042 @{
4043 $<context>$ = push_context ();
4044 declare_variable ($3);
4045 @}
5e9b6624 4046 stmt
c949ada3
AD
4047 @{
4048 $$ = $6;
4049 pop_context ($<context>5);
4050 @}
bfa74976
RS
4051@end group
4052@end example
4053
4054@noindent
4055As soon as @samp{let (@var{variable})} has been recognized, the first
4056action is run. It saves a copy of the current semantic context (the
4057list of accessible variables) as its semantic value, using alternative
4058@code{context} in the data-type union. Then it calls
4059@code{declare_variable} to add the new variable to that list. Once the
4060first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
4061parsed.
4062
4063Note that the mid-rule action is component number 5, so the @samp{stmt} is
4064component number 6. Named references can be used to improve the readability
4065and maintainability (@pxref{Named References}):
4066
4067@example
4068@group
4069stmt:
4070 "let" '(' var ')'
4071 @{
4072 $<context>let = push_context ();
4073 declare_variable ($3);
4074 @}[let]
4075 stmt
4076 @{
4077 $$ = $6;
4078 pop_context ($<context>let);
4079 @}
4080@end group
4081@end example
bfa74976
RS
4082
4083After the embedded statement is parsed, its semantic value becomes the
4084value of the entire @code{let}-statement. Then the semantic value from the
4085earlier action is used to restore the prior list of variables. This
4086removes the temporary @code{let}-variable from the list so that it won't
4087appear to exist while the rest of the program is parsed.
4088
841a7737
JD
4089@findex %destructor
4090@cindex discarded symbols, mid-rule actions
4091@cindex error recovery, mid-rule actions
4092In the above example, if the parser initiates error recovery (@pxref{Error
4093Recovery}) while parsing the tokens in the embedded statement @code{stmt},
4094it might discard the previous semantic context @code{$<context>5} without
4095restoring it.
4096Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
4097Discarded Symbols}).
ec5479ce
JD
4098However, Bison currently provides no means to declare a destructor specific to
4099a particular mid-rule action's semantic value.
841a7737
JD
4100
4101One solution is to bury the mid-rule action inside a nonterminal symbol and to
4102declare a destructor for that symbol:
4103
4104@example
4105@group
4106%type <context> let
4107%destructor @{ pop_context ($$); @} let
09add9c2 4108@end group
841a7737
JD
4109
4110%%
4111
09add9c2 4112@group
5e9b6624
AD
4113stmt:
4114 let stmt
4115 @{
4116 $$ = $2;
be22823e 4117 pop_context ($let);
5e9b6624 4118 @};
09add9c2 4119@end group
841a7737 4120
09add9c2 4121@group
5e9b6624 4122let:
c949ada3 4123 "let" '(' var ')'
5e9b6624 4124 @{
be22823e 4125 $let = push_context ();
5e9b6624
AD
4126 declare_variable ($3);
4127 @};
841a7737
JD
4128
4129@end group
4130@end example
4131
4132@noindent
4133Note that the action is now at the end of its rule.
4134Any mid-rule action can be converted to an end-of-rule action in this way, and
4135this is what Bison actually does to implement mid-rule actions.
4136
be22823e
AD
4137@node Mid-Rule Action Translation
4138@subsubsection Mid-Rule Action Translation
4139@vindex $@@@var{n}
4140@vindex @@@var{n}
4141
4142As hinted earlier, mid-rule actions are actually transformed into regular
4143rules and actions. The various reports generated by Bison (textual,
4144graphical, etc., see @ref{Understanding, , Understanding Your Parser})
4145reveal this translation, best explained by means of an example. The
4146following rule:
4147
4148@example
4149exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
4150@end example
4151
4152@noindent
4153is translated into:
4154
4155@example
6240346a
AD
4156$@@1: %empty @{ a(); @};
4157$@@2: %empty @{ c(); @};
4158$@@3: %empty @{ d(); @};
be22823e
AD
4159exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
4160@end example
4161
4162@noindent
4163with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
4164
4165A mid-rule action is expected to generate a value if it uses @code{$$}, or
4166the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
4167action. In that case its nonterminal is rather named @code{@@@var{n}}:
4168
4169@example
4170exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4171@end example
4172
4173@noindent
4174is translated into
4175
4176@example
6240346a
AD
4177@@1: %empty @{ a(); @};
4178@@2: %empty @{ $$ = c(); @};
4179$@@3: %empty @{ d(); @};
be22823e
AD
4180exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
4181@end example
4182
4183There are probably two errors in the above example: the first mid-rule
4184action does not generate a value (it does not use @code{$$} although the
4185final action uses it), and the value of the second one is not used (the
4186final action does not use @code{$3}). Bison reports these errors when the
4187@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
4188Bison}):
4189
4190@example
4191$ bison -fcaret -Wmidrule-value mid.y
4192@group
4193mid.y:2.6-13: warning: unset value: $$
4194 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4195 ^^^^^^^^
4196@end group
4197@group
4198mid.y:2.19-31: warning: unused value: $3
4199 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4200 ^^^^^^^^^^^^^
4201@end group
4202@end example
4203
4204
4205@node Mid-Rule Conflicts
4206@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4207Taking action before a rule is completely recognized often leads to
4208conflicts since the parser must commit to a parse in order to execute the
4209action. For example, the following two rules, without mid-rule actions,
4210can coexist in a working parser because the parser can shift the open-brace
4211token and look at what follows before deciding whether there is a
4212declaration or not:
4213
4214@example
4215@group
5e9b6624
AD
4216compound:
4217 '@{' declarations statements '@}'
4218| '@{' statements '@}'
4219;
bfa74976
RS
4220@end group
4221@end example
4222
4223@noindent
4224But when we add a mid-rule action as follows, the rules become nonfunctional:
4225
4226@example
4227@group
5e9b6624
AD
4228compound:
4229 @{ prepare_for_local_variables (); @}
4230 '@{' declarations statements '@}'
bfa74976
RS
4231@end group
4232@group
5e9b6624
AD
4233| '@{' statements '@}'
4234;
bfa74976
RS
4235@end group
4236@end example
4237
4238@noindent
4239Now the parser is forced to decide whether to run the mid-rule action
4240when it has read no farther than the open-brace. In other words, it
4241must commit to using one rule or the other, without sufficient
4242information to do it correctly. (The open-brace token is what is called
742e4900
JD
4243the @dfn{lookahead} token at this time, since the parser is still
4244deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4245
4246You might think that you could correct the problem by putting identical
4247actions into the two rules, like this:
4248
4249@example
4250@group
5e9b6624
AD
4251compound:
4252 @{ prepare_for_local_variables (); @}
4253 '@{' declarations statements '@}'
4254| @{ prepare_for_local_variables (); @}
4255 '@{' statements '@}'
4256;
bfa74976
RS
4257@end group
4258@end example
4259
4260@noindent
4261But this does not help, because Bison does not realize that the two actions
4262are identical. (Bison never tries to understand the C code in an action.)
4263
4264If the grammar is such that a declaration can be distinguished from a
4265statement by the first token (which is true in C), then one solution which
4266does work is to put the action after the open-brace, like this:
4267
4268@example
4269@group
5e9b6624
AD
4270compound:
4271 '@{' @{ prepare_for_local_variables (); @}
4272 declarations statements '@}'
4273| '@{' statements '@}'
4274;
bfa74976
RS
4275@end group
4276@end example
4277
4278@noindent
4279Now the first token of the following declaration or statement,
4280which would in any case tell Bison which rule to use, can still do so.
4281
4282Another solution is to bury the action inside a nonterminal symbol which
4283serves as a subroutine:
4284
4285@example
4286@group
5e9b6624 4287subroutine:
6240346a 4288 %empty @{ prepare_for_local_variables (); @}
5e9b6624 4289;
bfa74976
RS
4290@end group
4291
4292@group
5e9b6624
AD
4293compound:
4294 subroutine '@{' declarations statements '@}'
4295| subroutine '@{' statements '@}'
4296;
bfa74976
RS
4297@end group
4298@end example
4299
4300@noindent
4301Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4302deciding which rule for @code{compound} it will eventually use.
bfa74976 4303
be22823e 4304
303834cc 4305@node Tracking Locations
847bf1f5
AD
4306@section Tracking Locations
4307@cindex location
95923bd6
AD
4308@cindex textual location
4309@cindex location, textual
847bf1f5
AD
4310
4311Though grammar rules and semantic actions are enough to write a fully
72d2299c 4312functional parser, it can be useful to process some additional information,
3e259915
MA
4313especially symbol locations.
4314
704a47c4
AD
4315The way locations are handled is defined by providing a data type, and
4316actions to take when rules are matched.
847bf1f5
AD
4317
4318@menu
4319* Location Type:: Specifying a data type for locations.
4320* Actions and Locations:: Using locations in actions.
4321* Location Default Action:: Defining a general way to compute locations.
4322@end menu
4323
342b8b6e 4324@node Location Type
847bf1f5
AD
4325@subsection Data Type of Locations
4326@cindex data type of locations
4327@cindex default location type
4328
4329Defining a data type for locations is much simpler than for semantic values,
4330since all tokens and groupings always use the same type.
4331
50cce58e
PE
4332You can specify the type of locations by defining a macro called
4333@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4334defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4335When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4336four members:
4337
4338@example
6273355b 4339typedef struct YYLTYPE
847bf1f5
AD
4340@{
4341 int first_line;
4342 int first_column;
4343 int last_line;
4344 int last_column;
6273355b 4345@} YYLTYPE;
847bf1f5
AD
4346@end example
4347
d59e456d
AD
4348When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4349initializes all these fields to 1 for @code{yylloc}. To initialize
4350@code{yylloc} with a custom location type (or to chose a different
4351initialization), use the @code{%initial-action} directive. @xref{Initial
4352Action Decl, , Performing Actions before Parsing}.
cd48d21d 4353
342b8b6e 4354@node Actions and Locations
847bf1f5
AD
4355@subsection Actions and Locations
4356@cindex location actions
4357@cindex actions, location
4358@vindex @@$
4359@vindex @@@var{n}
d013372c
AR
4360@vindex @@@var{name}
4361@vindex @@[@var{name}]
847bf1f5
AD
4362
4363Actions are not only useful for defining language semantics, but also for
4364describing the behavior of the output parser with locations.
4365
4366The most obvious way for building locations of syntactic groupings is very
72d2299c 4367similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4368constructs can be used to access the locations of the elements being matched.
4369The location of the @var{n}th component of the right hand side is
4370@code{@@@var{n}}, while the location of the left hand side grouping is
4371@code{@@$}.
4372
d013372c
AR
4373In addition, the named references construct @code{@@@var{name}} and
4374@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4375@xref{Named References}, for more information about using the named
4376references construct.
d013372c 4377
3e259915 4378Here is a basic example using the default data type for locations:
847bf1f5
AD
4379
4380@example
4381@group
5e9b6624
AD
4382exp:
4383 @dots{}
4384| exp '/' exp
4385 @{
4386 @@$.first_column = @@1.first_column;
4387 @@$.first_line = @@1.first_line;
4388 @@$.last_column = @@3.last_column;
4389 @@$.last_line = @@3.last_line;
4390 if ($3)
4391 $$ = $1 / $3;
4392 else
4393 @{
4394 $$ = 1;
4395 fprintf (stderr,
4396 "Division by zero, l%d,c%d-l%d,c%d",
4397 @@3.first_line, @@3.first_column,
4398 @@3.last_line, @@3.last_column);
4399 @}
4400 @}
847bf1f5
AD
4401@end group
4402@end example
4403
3e259915 4404As for semantic values, there is a default action for locations that is
72d2299c 4405run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4406beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4407last symbol.
3e259915 4408
72d2299c 4409With this default action, the location tracking can be fully automatic. The
3e259915
MA
4410example above simply rewrites this way:
4411
4412@example
4413@group
5e9b6624
AD
4414exp:
4415 @dots{}
4416| exp '/' exp
4417 @{
4418 if ($3)
4419 $$ = $1 / $3;
4420 else
4421 @{
4422 $$ = 1;
4423 fprintf (stderr,
4424 "Division by zero, l%d,c%d-l%d,c%d",
4425 @@3.first_line, @@3.first_column,
4426 @@3.last_line, @@3.last_column);
4427 @}
4428 @}
3e259915
MA
4429@end group
4430@end example
847bf1f5 4431
32c29292 4432@vindex yylloc
742e4900 4433It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4434from a semantic action.
4435This location is stored in @code{yylloc}.
4436@xref{Action Features, ,Special Features for Use in Actions}.
4437
342b8b6e 4438@node Location Default Action
847bf1f5
AD
4439@subsection Default Action for Locations
4440@vindex YYLLOC_DEFAULT
8a4281b9 4441@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4442
72d2299c 4443Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4444locations are much more general than semantic values, there is room in
4445the output parser to redefine the default action to take for each
72d2299c 4446rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4447matched, before the associated action is run. It is also invoked
4448while processing a syntax error, to compute the error's location.
8a4281b9 4449Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4450parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4451of that ambiguity.
847bf1f5 4452
3e259915 4453Most of the time, this macro is general enough to suppress location
79282c6c 4454dedicated code from semantic actions.
847bf1f5 4455
72d2299c 4456The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4457the location of the grouping (the result of the computation). When a
766de5eb 4458rule is matched, the second parameter identifies locations of
96b93a3d 4459all right hand side elements of the rule being matched, and the third
8710fc41 4460parameter is the size of the rule's right hand side.
8a4281b9 4461When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4462right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4463When processing a syntax error, the second parameter identifies locations
4464of the symbols that were discarded during error processing, and the third
96b93a3d 4465parameter is the number of discarded symbols.
847bf1f5 4466
766de5eb 4467By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4468
c93f22fc
AD
4469@example
4470@group
4471# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4472do \
4473 if (N) \
4474 @{ \
4475 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4476 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4477 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4478 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4479 @} \
4480 else \
4481 @{ \
4482 (Cur).first_line = (Cur).last_line = \
4483 YYRHSLOC(Rhs, 0).last_line; \
4484 (Cur).first_column = (Cur).last_column = \
4485 YYRHSLOC(Rhs, 0).last_column; \
4486 @} \
4487while (0)
4488@end group
4489@end example
676385e2 4490
aaaa2aae 4491@noindent
766de5eb
PE
4492where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4493in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4494just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4495
3e259915 4496When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4497
3e259915 4498@itemize @bullet
79282c6c 4499@item
72d2299c 4500All arguments are free of side-effects. However, only the first one (the
3e259915 4501result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4502
3e259915 4503@item
766de5eb
PE
4504For consistency with semantic actions, valid indexes within the
4505right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4506valid index, and it refers to the symbol just before the reduction.
4507During error processing @var{n} is always positive.
0ae99356
PE
4508
4509@item
4510Your macro should parenthesize its arguments, if need be, since the
4511actual arguments may not be surrounded by parentheses. Also, your
4512macro should expand to something that can be used as a single
4513statement when it is followed by a semicolon.
3e259915 4514@end itemize
847bf1f5 4515
378e917c 4516@node Named References
a7b15ab9 4517@section Named References
378e917c
JD
4518@cindex named references
4519
a40e77eb
JD
4520As described in the preceding sections, the traditional way to refer to any
4521semantic value or location is a @dfn{positional reference}, which takes the
4522form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4523such a reference is not very descriptive. Moreover, if you later decide to
4524insert or remove symbols in the right-hand side of a grammar rule, the need
4525to renumber such references can be tedious and error-prone.
4526
4527To avoid these issues, you can also refer to a semantic value or location
4528using a @dfn{named reference}. First of all, original symbol names may be
4529used as named references. For example:
378e917c
JD
4530
4531@example
4532@group
4533invocation: op '(' args ')'
4534 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4535@end group
4536@end example
4537
4538@noindent
a40e77eb 4539Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4540
4541@example
4542@group
4543invocation: op '(' args ')'
4544 @{ $$ = new_invocation ($op, $args, @@$); @}
4545@end group
4546@end example
4547
4548@noindent
4549However, sometimes regular symbol names are not sufficient due to
4550ambiguities:
4551
4552@example
4553@group
4554exp: exp '/' exp
4555 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4556
4557exp: exp '/' exp
4558 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4559
4560exp: exp '/' exp
4561 @{ $$ = $1 / $3; @} // No error.
4562@end group
4563@end example
4564
4565@noindent
4566When ambiguity occurs, explicitly declared names may be used for values and
4567locations. Explicit names are declared as a bracketed name after a symbol
4568appearance in rule definitions. For example:
4569@example
4570@group
4571exp[result]: exp[left] '/' exp[right]
4572 @{ $result = $left / $right; @}
4573@end group
4574@end example
4575
4576@noindent
a7b15ab9
JD
4577In order to access a semantic value generated by a mid-rule action, an
4578explicit name may also be declared by putting a bracketed name after the
4579closing brace of the mid-rule action code:
378e917c
JD
4580@example
4581@group
4582exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4583 @{ $res = $left + $right; @}
4584@end group
4585@end example
4586
4587@noindent
4588
4589In references, in order to specify names containing dots and dashes, an explicit
4590bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4591@example
4592@group
762caaf6 4593if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4594 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4595@end group
4596@end example
4597
4598It often happens that named references are followed by a dot, dash or other
4599C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4600@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4601@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4602value. In order to force Bison to recognize @samp{name.suffix} in its
4603entirety as the name of a semantic value, the bracketed syntax
4604@samp{$[name.suffix]} must be used.
4605
4606The named references feature is experimental. More user feedback will help
4607to stabilize it.
378e917c 4608
342b8b6e 4609@node Declarations
bfa74976
RS
4610@section Bison Declarations
4611@cindex declarations, Bison
4612@cindex Bison declarations
4613
4614The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4615used in formulating the grammar and the data types of semantic values.
4616@xref{Symbols}.
4617
4618All token type names (but not single-character literal tokens such as
4619@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4620declared if you need to specify which data type to use for the semantic
4621value (@pxref{Multiple Types, ,More Than One Value Type}).
4622
ff7571c0
JD
4623The first rule in the grammar file also specifies the start symbol, by
4624default. If you want some other symbol to be the start symbol, you
4625must declare it explicitly (@pxref{Language and Grammar, ,Languages
4626and Context-Free Grammars}).
bfa74976
RS
4627
4628@menu
b50d2359 4629* Require Decl:: Requiring a Bison version.
bfa74976
RS
4630* Token Decl:: Declaring terminal symbols.
4631* Precedence Decl:: Declaring terminals with precedence and associativity.
bfa74976 4632* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4633* Initial Action Decl:: Code run before parsing starts.
72f889cc 4634* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4635* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4636* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4637* Start Decl:: Specifying the start symbol.
4638* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4639* Push Decl:: Requesting a push parser.
bfa74976 4640* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4641* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4642* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4643@end menu
4644
b50d2359
AD
4645@node Require Decl
4646@subsection Require a Version of Bison
4647@cindex version requirement
4648@cindex requiring a version of Bison
4649@findex %require
4650
4651You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4652the requirement is not met, @command{bison} exits with an error (exit
4653status 63).
b50d2359
AD
4654
4655@example
4656%require "@var{version}"
4657@end example
4658
342b8b6e 4659@node Token Decl
bfa74976
RS
4660@subsection Token Type Names
4661@cindex declaring token type names
4662@cindex token type names, declaring
931c7513 4663@cindex declaring literal string tokens
bfa74976
RS
4664@findex %token
4665
4666The basic way to declare a token type name (terminal symbol) is as follows:
4667
4668@example
4669%token @var{name}
4670@end example
4671
4672Bison will convert this into a @code{#define} directive in
4673the parser, so that the function @code{yylex} (if it is in this file)
4674can use the name @var{name} to stand for this token type's code.
4675
d78f0ac9
AD
4676Alternatively, you can use @code{%left}, @code{%right},
4677@code{%precedence}, or
14ded682
AD
4678@code{%nonassoc} instead of @code{%token}, if you wish to specify
4679associativity and precedence. @xref{Precedence Decl, ,Operator
4680Precedence}.
bfa74976
RS
4681
4682You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4683a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4684following the token name:
bfa74976
RS
4685
4686@example
4687%token NUM 300
1452af69 4688%token XNUM 0x12d // a GNU extension
bfa74976
RS
4689@end example
4690
4691@noindent
4692It is generally best, however, to let Bison choose the numeric codes for
4693all token types. Bison will automatically select codes that don't conflict
e966383b 4694with each other or with normal characters.
bfa74976
RS
4695
4696In the event that the stack type is a union, you must augment the
4697@code{%token} or other token declaration to include the data type
704a47c4
AD
4698alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4699Than One Value Type}).
bfa74976
RS
4700
4701For example:
4702
4703@example
4704@group
4705%union @{ /* define stack type */
4706 double val;
4707 symrec *tptr;
4708@}
4709%token <val> NUM /* define token NUM and its type */
4710@end group
4711@end example
4712
931c7513
RS
4713You can associate a literal string token with a token type name by
4714writing the literal string at the end of a @code{%token}
4715declaration which declares the name. For example:
4716
4717@example
4718%token arrow "=>"
4719@end example
4720
4721@noindent
4722For example, a grammar for the C language might specify these names with
4723equivalent literal string tokens:
4724
4725@example
4726%token <operator> OR "||"
4727%token <operator> LE 134 "<="
4728%left OR "<="
4729@end example
4730
4731@noindent
4732Once you equate the literal string and the token name, you can use them
4733interchangeably in further declarations or the grammar rules. The
4734@code{yylex} function can use the token name or the literal string to
4735obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4736Syntax error messages passed to @code{yyerror} from the parser will reference
4737the literal string instead of the token name.
4738
4739The token numbered as 0 corresponds to end of file; the following line
4740allows for nicer error messages referring to ``end of file'' instead
4741of ``$end'':
4742
4743@example
4744%token END 0 "end of file"
4745@end example
931c7513 4746
342b8b6e 4747@node Precedence Decl
bfa74976
RS
4748@subsection Operator Precedence
4749@cindex precedence declarations
4750@cindex declaring operator precedence
4751@cindex operator precedence, declaring
4752
d78f0ac9
AD
4753Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4754@code{%precedence} declaration to
bfa74976
RS
4755declare a token and specify its precedence and associativity, all at
4756once. These are called @dfn{precedence declarations}.
704a47c4
AD
4757@xref{Precedence, ,Operator Precedence}, for general information on
4758operator precedence.
bfa74976 4759
ab7f29f8 4760The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4761@code{%token}: either
4762
4763@example
4764%left @var{symbols}@dots{}
4765@end example
4766
4767@noindent
4768or
4769
4770@example
4771%left <@var{type}> @var{symbols}@dots{}
4772@end example
4773
4774And indeed any of these declarations serves the purposes of @code{%token}.
4775But in addition, they specify the associativity and relative precedence for
4776all the @var{symbols}:
4777
4778@itemize @bullet
4779@item
4780The associativity of an operator @var{op} determines how repeated uses
4781of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4782@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4783grouping @var{y} with @var{z} first. @code{%left} specifies
4784left-associativity (grouping @var{x} with @var{y} first) and
4785@code{%right} specifies right-associativity (grouping @var{y} with
4786@var{z} first). @code{%nonassoc} specifies no associativity, which
4787means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4788considered a syntax error.
4789
d78f0ac9
AD
4790@code{%precedence} gives only precedence to the @var{symbols}, and
4791defines no associativity at all. Use this to define precedence only,
4792and leave any potential conflict due to associativity enabled.
4793
bfa74976
RS
4794@item
4795The precedence of an operator determines how it nests with other operators.
4796All the tokens declared in a single precedence declaration have equal
4797precedence and nest together according to their associativity.
4798When two tokens declared in different precedence declarations associate,
4799the one declared later has the higher precedence and is grouped first.
4800@end itemize
4801
ab7f29f8
JD
4802For backward compatibility, there is a confusing difference between the
4803argument lists of @code{%token} and precedence declarations.
4804Only a @code{%token} can associate a literal string with a token type name.
4805A precedence declaration always interprets a literal string as a reference to a
4806separate token.
4807For example:
4808
4809@example
4810%left OR "<=" // Does not declare an alias.
4811%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4812@end example
4813
342b8b6e 4814@node Type Decl
bfa74976
RS
4815@subsection Nonterminal Symbols
4816@cindex declaring value types, nonterminals
4817@cindex value types, nonterminals, declaring
4818@findex %type
4819
4820@noindent
4821When you use @code{%union} to specify multiple value types, you must
4822declare the value type of each nonterminal symbol for which values are
4823used. This is done with a @code{%type} declaration, like this:
4824
4825@example
4826%type <@var{type}> @var{nonterminal}@dots{}
4827@end example
4828
4829@noindent
704a47c4
AD
4830Here @var{nonterminal} is the name of a nonterminal symbol, and
4831@var{type} is the name given in the @code{%union} to the alternative
e4d49586 4832that you want (@pxref{Union Decl, ,The Union Declaration}). You
704a47c4
AD
4833can give any number of nonterminal symbols in the same @code{%type}
4834declaration, if they have the same value type. Use spaces to separate
4835the symbol names.
bfa74976 4836
931c7513
RS
4837You can also declare the value type of a terminal symbol. To do this,
4838use the same @code{<@var{type}>} construction in a declaration for the
4839terminal symbol. All kinds of token declarations allow
4840@code{<@var{type}>}.
4841
18d192f0
AD
4842@node Initial Action Decl
4843@subsection Performing Actions before Parsing
4844@findex %initial-action
4845
4846Sometimes your parser needs to perform some initializations before
4847parsing. The @code{%initial-action} directive allows for such arbitrary
4848code.
4849
4850@deffn {Directive} %initial-action @{ @var{code} @}
4851@findex %initial-action
287c78f6 4852Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4853@code{yyparse} is called. The @var{code} may use @code{$$} (or
4854@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4855lookahead --- and the @code{%parse-param}.
18d192f0
AD
4856@end deffn
4857
451364ed
AD
4858For instance, if your locations use a file name, you may use
4859
4860@example
48b16bbc 4861%parse-param @{ char const *file_name @};
451364ed
AD
4862%initial-action
4863@{
4626a15d 4864 @@$.initialize (file_name);
451364ed
AD
4865@};
4866@end example
4867
18d192f0 4868
72f889cc
AD
4869@node Destructor Decl
4870@subsection Freeing Discarded Symbols
4871@cindex freeing discarded symbols
4872@findex %destructor
12e35840 4873@findex <*>
3ebecc24 4874@findex <>
a85284cf
AD
4875During error recovery (@pxref{Error Recovery}), symbols already pushed
4876on the stack and tokens coming from the rest of the file are discarded
4877until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4878or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4879symbols on the stack must be discarded. Even if the parser succeeds, it
4880must discard the start symbol.
258b75ca
PE
4881
4882When discarded symbols convey heap based information, this memory is
4883lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4884in traditional compilers, it is unacceptable for programs like shells or
4885protocol implementations that may parse and execute indefinitely.
258b75ca 4886
a85284cf
AD
4887The @code{%destructor} directive defines code that is called when a
4888symbol is automatically discarded.
72f889cc
AD
4889
4890@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4891@findex %destructor
287c78f6 4892Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4893@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4894designates the semantic value associated with the discarded symbol, and
4895@code{@@$} designates its location. The additional parser parameters are
4896also available (@pxref{Parser Function, , The Parser Function
4897@code{yyparse}}).
ec5479ce 4898
b2a0b7ca
JD
4899When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4900per-symbol @code{%destructor}.
4901You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4902tag among @var{symbols}.
b2a0b7ca 4903In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4904grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4905per-symbol @code{%destructor}.
4906
12e35840 4907Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4908(These default forms are experimental.
4909More user feedback will help to determine whether they should become permanent
4910features.)
3ebecc24 4911You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4912exactly one @code{%destructor} declaration in your grammar file.
4913The parser will invoke the @var{code} associated with one of these whenever it
4914discards any user-defined grammar symbol that has no per-symbol and no per-type
4915@code{%destructor}.
4916The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4917symbol for which you have formally declared a semantic type tag (@code{%type}
4918counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4919The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4920symbol that has no declared semantic type tag.
72f889cc
AD
4921@end deffn
4922
b2a0b7ca 4923@noindent
12e35840 4924For example:
72f889cc 4925
c93f22fc 4926@example
ec5479ce
JD
4927%union @{ char *string; @}
4928%token <string> STRING1
4929%token <string> STRING2
4930%type <string> string1
4931%type <string> string2
b2a0b7ca
JD
4932%union @{ char character; @}
4933%token <character> CHR
4934%type <character> chr
12e35840
JD
4935%token TAGLESS
4936
b2a0b7ca 4937%destructor @{ @} <character>
12e35840
JD
4938%destructor @{ free ($$); @} <*>
4939%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4940%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4941@end example
72f889cc
AD
4942
4943@noindent
b2a0b7ca
JD
4944guarantees that, when the parser discards any user-defined symbol that has a
4945semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4946to @code{free} by default.
ec5479ce
JD
4947However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4948prints its line number to @code{stdout}.
4949It performs only the second @code{%destructor} in this case, so it invokes
4950@code{free} only once.
12e35840
JD
4951Finally, the parser merely prints a message whenever it discards any symbol,
4952such as @code{TAGLESS}, that has no semantic type tag.
4953
4954A Bison-generated parser invokes the default @code{%destructor}s only for
4955user-defined as opposed to Bison-defined symbols.
4956For example, the parser will not invoke either kind of default
4957@code{%destructor} for the special Bison-defined symbols @code{$accept},
4958@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4959none of which you can reference in your grammar.
4960It also will not invoke either for the @code{error} token (@pxref{Table of
4961Symbols, ,error}), which is always defined by Bison regardless of whether you
4962reference it in your grammar.
4963However, it may invoke one of them for the end token (token 0) if you
4964redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4965
c93f22fc 4966@example
3508ce36 4967%token END 0
c93f22fc 4968@end example
3508ce36 4969
12e35840
JD
4970@cindex actions in mid-rule
4971@cindex mid-rule actions
4972Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4973mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4974That is, Bison does not consider a mid-rule to have a semantic value if you
4975do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4976(where @var{n} is the right-hand side symbol position of the mid-rule) in
4977any later action in that rule. However, if you do reference either, the
4978Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4979it discards the mid-rule symbol.
12e35840 4980
3508ce36
JD
4981@ignore
4982@noindent
4983In the future, it may be possible to redefine the @code{error} token as a
4984nonterminal that captures the discarded symbols.
4985In that case, the parser will invoke the default destructor for it as well.
4986@end ignore
4987
e757bb10
AD
4988@sp 1
4989
4990@cindex discarded symbols
4991@dfn{Discarded symbols} are the following:
4992
4993@itemize
4994@item
4995stacked symbols popped during the first phase of error recovery,
4996@item
4997incoming terminals during the second phase of error recovery,
4998@item
742e4900 4999the current lookahead and the entire stack (except the current
9d9b8b70 5000right-hand side symbols) when the parser returns immediately, and
258b75ca 5001@item
d3e4409a
AD
5002the current lookahead and the entire stack (including the current right-hand
5003side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
5004@code{parse},
5005@item
258b75ca 5006the start symbol, when the parser succeeds.
e757bb10
AD
5007@end itemize
5008
9d9b8b70
PE
5009The parser can @dfn{return immediately} because of an explicit call to
5010@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
5011exhaustion.
5012
29553547 5013Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
5014error via @code{YYERROR} are not discarded automatically. As a rule
5015of thumb, destructors are invoked only when user actions cannot manage
a85284cf 5016the memory.
e757bb10 5017
93c150b6
AD
5018@node Printer Decl
5019@subsection Printing Semantic Values
5020@cindex printing semantic values
5021@findex %printer
5022@findex <*>
5023@findex <>
5024When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
5025the parser reports its actions, such as reductions. When a symbol involved
5026in an action is reported, only its kind is displayed, as the parser cannot
5027know how semantic values should be formatted.
5028
5029The @code{%printer} directive defines code that is called when a symbol is
5030reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
5031Decl, , Freeing Discarded Symbols}).
5032
5033@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
5034@findex %printer
5035@vindex yyoutput
5036@c This is the same text as for %destructor.
5037Invoke the braced @var{code} whenever the parser displays one of the
5038@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
5039(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
5040@code{$<@var{tag}>$}) designates the semantic value associated with the
5041symbol, and @code{@@$} its location. The additional parser parameters are
5042also available (@pxref{Parser Function, , The Parser Function
5043@code{yyparse}}).
93c150b6
AD
5044
5045The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
5046Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
5047@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
5048typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
5049@samp{<>}).
5050@end deffn
5051
5052@noindent
5053For example:
5054
5055@example
5056%union @{ char *string; @}
5057%token <string> STRING1
5058%token <string> STRING2
5059%type <string> string1
5060%type <string> string2
5061%union @{ char character; @}
5062%token <character> CHR
5063%type <character> chr
5064%token TAGLESS
5065
5066%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
5067%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
5068%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
5069%printer @{ fprintf (yyoutput, "<>"); @} <>
5070@end example
5071
5072@noindent
5073guarantees that, when the parser print any symbol that has a semantic type
5074tag other than @code{<character>}, it display the address of the semantic
5075value by default. However, when the parser displays a @code{STRING1} or a
5076@code{string1}, it formats it as a string in double quotes. It performs
5077only the second @code{%printer} in this case, so it prints only once.
5078Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
5079that has no semantic type tag. See also
5080
5081
342b8b6e 5082@node Expect Decl
bfa74976
RS
5083@subsection Suppressing Conflict Warnings
5084@cindex suppressing conflict warnings
5085@cindex preventing warnings about conflicts
5086@cindex warnings, preventing
5087@cindex conflicts, suppressing warnings of
5088@findex %expect
d6328241 5089@findex %expect-rr
bfa74976
RS
5090
5091Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
5092(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
5093have harmless shift/reduce conflicts which are resolved in a predictable
5094way and would be difficult to eliminate. It is desirable to suppress
5095the warning about these conflicts unless the number of conflicts
5096changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
5097
5098The declaration looks like this:
5099
5100@example
5101%expect @var{n}
5102@end example
5103
035aa4a0
PE
5104Here @var{n} is a decimal integer. The declaration says there should
5105be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
5106Bison reports an error if the number of shift/reduce conflicts differs
5107from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 5108
eb45ef3b 5109For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 5110serious, and should be eliminated entirely. Bison will always report
8a4281b9 5111reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5112parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5113there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5114also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5115in GLR parsers, using the declaration:
d6328241
PH
5116
5117@example
5118%expect-rr @var{n}
5119@end example
5120
bfa74976
RS
5121In general, using @code{%expect} involves these steps:
5122
5123@itemize @bullet
5124@item
5125Compile your grammar without @code{%expect}. Use the @samp{-v} option
5126to get a verbose list of where the conflicts occur. Bison will also
5127print the number of conflicts.
5128
5129@item
5130Check each of the conflicts to make sure that Bison's default
5131resolution is what you really want. If not, rewrite the grammar and
5132go back to the beginning.
5133
5134@item
5135Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5136number which Bison printed. With GLR parsers, add an
035aa4a0 5137@code{%expect-rr} declaration as well.
bfa74976
RS
5138@end itemize
5139
93d7dde9
JD
5140Now Bison will report an error if you introduce an unexpected conflict,
5141but will keep silent otherwise.
bfa74976 5142
342b8b6e 5143@node Start Decl
bfa74976
RS
5144@subsection The Start-Symbol
5145@cindex declaring the start symbol
5146@cindex start symbol, declaring
5147@cindex default start symbol
5148@findex %start
5149
5150Bison assumes by default that the start symbol for the grammar is the first
5151nonterminal specified in the grammar specification section. The programmer
5152may override this restriction with the @code{%start} declaration as follows:
5153
5154@example
5155%start @var{symbol}
5156@end example
5157
342b8b6e 5158@node Pure Decl
bfa74976
RS
5159@subsection A Pure (Reentrant) Parser
5160@cindex reentrant parser
5161@cindex pure parser
d9df47b6 5162@findex %define api.pure
bfa74976
RS
5163
5164A @dfn{reentrant} program is one which does not alter in the course of
5165execution; in other words, it consists entirely of @dfn{pure} (read-only)
5166code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5167for example, a nonreentrant program may not be safe to call from a signal
5168handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5169program must be called only within interlocks.
5170
70811b85 5171Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5172suitable for most uses, and it permits compatibility with Yacc. (The
5173standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5174statically allocated variables for communication with @code{yylex},
5175including @code{yylval} and @code{yylloc}.)
bfa74976 5176
70811b85 5177Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5178declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5179reentrant. It looks like this:
bfa74976
RS
5180
5181@example
1f1bd572 5182%define api.pure full
bfa74976
RS
5183@end example
5184
70811b85
RS
5185The result is that the communication variables @code{yylval} and
5186@code{yylloc} become local variables in @code{yyparse}, and a different
5187calling convention is used for the lexical analyzer function
5188@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5189Parsers}, for the details of this. The variable @code{yynerrs}
5190becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5191of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5192Reporting Function @code{yyerror}}). The convention for calling
5193@code{yyparse} itself is unchanged.
5194
5195Whether the parser is pure has nothing to do with the grammar rules.
5196You can generate either a pure parser or a nonreentrant parser from any
5197valid grammar.
bfa74976 5198
9987d1b3
JD
5199@node Push Decl
5200@subsection A Push Parser
5201@cindex push parser
5202@cindex push parser
67212941 5203@findex %define api.push-pull
9987d1b3 5204
59da312b
JD
5205(The current push parsing interface is experimental and may evolve.
5206More user feedback will help to stabilize it.)
5207
f4101aa6
AD
5208A pull parser is called once and it takes control until all its input
5209is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5210each time a new token is made available.
5211
f4101aa6 5212A push parser is typically useful when the parser is part of a
9987d1b3 5213main event loop in the client's application. This is typically
f4101aa6
AD
5214a requirement of a GUI, when the main event loop needs to be triggered
5215within a certain time period.
9987d1b3 5216
d782395d
JD
5217Normally, Bison generates a pull parser.
5218The following Bison declaration says that you want the parser to be a push
35c1e5f0 5219parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5220
5221@example
cf499cff 5222%define api.push-pull push
9987d1b3
JD
5223@end example
5224
5225In almost all cases, you want to ensure that your push parser is also
5226a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5227time you should create an impure push parser is to have backwards
9987d1b3
JD
5228compatibility with the impure Yacc pull mode interface. Unless you know
5229what you are doing, your declarations should look like this:
5230
5231@example
1f1bd572 5232%define api.pure full
cf499cff 5233%define api.push-pull push
9987d1b3
JD
5234@end example
5235
f4101aa6
AD
5236There is a major notable functional difference between the pure push parser
5237and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5238many parser instances, of the same type of parser, in memory at the same time.
5239An impure push parser should only use one parser at a time.
5240
5241When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5242the generated parser. @code{yypstate} is a structure that the generated
5243parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5244function that will create a new parser instance. @code{yypstate_delete}
5245will free the resources associated with the corresponding parser instance.
f4101aa6 5246Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5247token is available to provide the parser. A trivial example
5248of using a pure push parser would look like this:
5249
5250@example
5251int status;
5252yypstate *ps = yypstate_new ();
5253do @{
5254 status = yypush_parse (ps, yylex (), NULL);
5255@} while (status == YYPUSH_MORE);
5256yypstate_delete (ps);
5257@end example
5258
5259If the user decided to use an impure push parser, a few things about
f4101aa6 5260the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5261a global variable instead of a variable in the @code{yypush_parse} function.
5262For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5263changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5264example would thus look like this:
5265
5266@example
5267extern int yychar;
5268int status;
5269yypstate *ps = yypstate_new ();
5270do @{
5271 yychar = yylex ();
5272 status = yypush_parse (ps);
5273@} while (status == YYPUSH_MORE);
5274yypstate_delete (ps);
5275@end example
5276
f4101aa6 5277That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5278for use by the next invocation of the @code{yypush_parse} function.
5279
f4101aa6 5280Bison also supports both the push parser interface along with the pull parser
9987d1b3 5281interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5282you should replace the @samp{%define api.push-pull push} declaration with the
5283@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5284the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5285and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5286would be used. However, the user should note that it is implemented in the
d782395d
JD
5287generated parser by calling @code{yypull_parse}.
5288This makes the @code{yyparse} function that is generated with the
cf499cff 5289@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5290@code{yyparse} function. If the user
5291calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5292stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5293and then @code{yypull_parse} the rest of the input stream. If you would like
5294to switch back and forth between between parsing styles, you would have to
5295write your own @code{yypull_parse} function that knows when to quit looking
5296for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5297like this:
5298
5299@example
5300yypstate *ps = yypstate_new ();
5301yypull_parse (ps); /* Will call the lexer */
5302yypstate_delete (ps);
5303@end example
5304
67501061 5305Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5306the generated parser with @samp{%define api.push-pull both} as it did for
5307@samp{%define api.push-pull push}.
9987d1b3 5308
342b8b6e 5309@node Decl Summary
bfa74976
RS
5310@subsection Bison Declaration Summary
5311@cindex Bison declaration summary
5312@cindex declaration summary
5313@cindex summary, Bison declaration
5314
d8988b2f 5315Here is a summary of the declarations used to define a grammar:
bfa74976 5316
18b519c0 5317@deffn {Directive} %union
bfa74976 5318Declare the collection of data types that semantic values may have
e4d49586 5319(@pxref{Union Decl, ,The Union Declaration}).
18b519c0 5320@end deffn
bfa74976 5321
18b519c0 5322@deffn {Directive} %token
bfa74976
RS
5323Declare a terminal symbol (token type name) with no precedence
5324or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5325@end deffn
bfa74976 5326
18b519c0 5327@deffn {Directive} %right
bfa74976
RS
5328Declare a terminal symbol (token type name) that is right-associative
5329(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5330@end deffn
bfa74976 5331
18b519c0 5332@deffn {Directive} %left
bfa74976
RS
5333Declare a terminal symbol (token type name) that is left-associative
5334(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5335@end deffn
bfa74976 5336
18b519c0 5337@deffn {Directive} %nonassoc
bfa74976 5338Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5339(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5340Using it in a way that would be associative is a syntax error.
5341@end deffn
5342
91d2c560 5343@ifset defaultprec
39a06c25 5344@deffn {Directive} %default-prec
22fccf95 5345Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5346(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5347@end deffn
91d2c560 5348@end ifset
bfa74976 5349
18b519c0 5350@deffn {Directive} %type
bfa74976
RS
5351Declare the type of semantic values for a nonterminal symbol
5352(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5353@end deffn
bfa74976 5354
18b519c0 5355@deffn {Directive} %start
89cab50d
AD
5356Specify the grammar's start symbol (@pxref{Start Decl, ,The
5357Start-Symbol}).
18b519c0 5358@end deffn
bfa74976 5359
18b519c0 5360@deffn {Directive} %expect
bfa74976
RS
5361Declare the expected number of shift-reduce conflicts
5362(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5363@end deffn
5364
bfa74976 5365
d8988b2f
AD
5366@sp 1
5367@noindent
5368In order to change the behavior of @command{bison}, use the following
5369directives:
5370
148d66d8 5371@deffn {Directive} %code @{@var{code}@}
e0c07222 5372@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5373@findex %code
e0c07222
JD
5374Insert @var{code} verbatim into the output parser source at the
5375default location or at the location specified by @var{qualifier}.
5376@xref{%code Summary}.
148d66d8
JD
5377@end deffn
5378
18b519c0 5379@deffn {Directive} %debug
60aa04a2 5380Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5381parse.trace}.
ec3bc396 5382@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5383@end deffn
d8988b2f 5384
35c1e5f0
JD
5385@deffn {Directive} %define @var{variable}
5386@deffnx {Directive} %define @var{variable} @var{value}
5387@deffnx {Directive} %define @var{variable} "@var{value}"
5388Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5389@end deffn
5390
5391@deffn {Directive} %defines
5392Write a parser header file containing macro definitions for the token
5393type names defined in the grammar as well as a few other declarations.
5394If the parser implementation file is named @file{@var{name}.c} then
5395the parser header file is named @file{@var{name}.h}.
5396
5397For C parsers, the parser header file declares @code{YYSTYPE} unless
5398@code{YYSTYPE} is already defined as a macro or you have used a
5399@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5400you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5401Value Type}) with components that require other definitions, or if you
5402have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5403Type, ,Data Types of Semantic Values}), you need to arrange for these
5404definitions to be propagated to all modules, e.g., by putting them in
5405a prerequisite header that is included both by your parser and by any
5406other module that needs @code{YYSTYPE}.
5407
5408Unless your parser is pure, the parser header file declares
5409@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5410(Reentrant) Parser}.
5411
5412If you have also used locations, the parser header file declares
303834cc
JD
5413@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5414@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5415
5416This parser header file is normally essential if you wish to put the
5417definition of @code{yylex} in a separate source file, because
5418@code{yylex} typically needs to be able to refer to the
5419above-mentioned declarations and to the token type codes. @xref{Token
5420Values, ,Semantic Values of Tokens}.
5421
5422@findex %code requires
5423@findex %code provides
5424If you have declared @code{%code requires} or @code{%code provides}, the output
5425header also contains their code.
5426@xref{%code Summary}.
c9d5bcc9
AD
5427
5428@cindex Header guard
5429The generated header is protected against multiple inclusions with a C
5430preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5431@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5432,Multiple Parsers in the Same Program}) and generated file name turned
5433uppercase, with each series of non alphanumerical characters converted to a
5434single underscore.
5435
5436For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5437"lib/parse.h"}, the header will be guarded as follows.
5438@example
5439#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5440# define YY_CALC_LIB_PARSE_H_INCLUDED
5441...
5442#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5443@end example
35c1e5f0
JD
5444@end deffn
5445
5446@deffn {Directive} %defines @var{defines-file}
fe65b144 5447Same as above, but save in the file @file{@var{defines-file}}.
35c1e5f0
JD
5448@end deffn
5449
5450@deffn {Directive} %destructor
5451Specify how the parser should reclaim the memory associated to
5452discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5453@end deffn
5454
5455@deffn {Directive} %file-prefix "@var{prefix}"
5456Specify a prefix to use for all Bison output file names. The names
5457are chosen as if the grammar file were named @file{@var{prefix}.y}.
5458@end deffn
5459
5460@deffn {Directive} %language "@var{language}"
5461Specify the programming language for the generated parser. Currently
5462supported languages include C, C++, and Java.
5463@var{language} is case-insensitive.
5464
35c1e5f0
JD
5465@end deffn
5466
5467@deffn {Directive} %locations
5468Generate the code processing the locations (@pxref{Action Features,
5469,Special Features for Use in Actions}). This mode is enabled as soon as
5470the grammar uses the special @samp{@@@var{n}} tokens, but if your
5471grammar does not use it, using @samp{%locations} allows for more
5472accurate syntax error messages.
5473@end deffn
5474
5475@deffn {Directive} %name-prefix "@var{prefix}"
5476Rename the external symbols used in the parser so that they start with
5477@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5478in C parsers
5479is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5480@code{yylval}, @code{yychar}, @code{yydebug}, and
5481(if locations are used) @code{yylloc}. If you use a push parser,
5482@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5483@code{yypstate_new} and @code{yypstate_delete} will
5484also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5485names become @code{c_parse}, @code{c_lex}, and so on.
5486For C++ parsers, see the @samp{%define api.namespace} documentation in this
5487section.
5488@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5489@end deffn
5490
5491@ifset defaultprec
5492@deffn {Directive} %no-default-prec
5493Do not assign a precedence to rules lacking an explicit @code{%prec}
5494modifier (@pxref{Contextual Precedence, ,Context-Dependent
5495Precedence}).
5496@end deffn
5497@end ifset
5498
5499@deffn {Directive} %no-lines
5500Don't generate any @code{#line} preprocessor commands in the parser
5501implementation file. Ordinarily Bison writes these commands in the
5502parser implementation file so that the C compiler and debuggers will
5503associate errors and object code with your source file (the grammar
5504file). This directive causes them to associate errors with the parser
5505implementation file, treating it as an independent source file in its
5506own right.
5507@end deffn
5508
5509@deffn {Directive} %output "@var{file}"
fe65b144 5510Generate the parser implementation in @file{@var{file}}.
35c1e5f0
JD
5511@end deffn
5512
5513@deffn {Directive} %pure-parser
5514Deprecated version of @samp{%define api.pure} (@pxref{%define
5515Summary,,api.pure}), for which Bison is more careful to warn about
5516unreasonable usage.
5517@end deffn
5518
5519@deffn {Directive} %require "@var{version}"
5520Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5521Require a Version of Bison}.
5522@end deffn
5523
5524@deffn {Directive} %skeleton "@var{file}"
5525Specify the skeleton to use.
5526
5527@c You probably don't need this option unless you are developing Bison.
5528@c You should use @code{%language} if you want to specify the skeleton for a
5529@c different language, because it is clearer and because it will always choose the
5530@c correct skeleton for non-deterministic or push parsers.
5531
5532If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5533file in the Bison installation directory.
5534If it does, @var{file} is an absolute file name or a file name relative to the
5535directory of the grammar file.
5536This is similar to how most shells resolve commands.
5537@end deffn
5538
5539@deffn {Directive} %token-table
5540Generate an array of token names in the parser implementation file.
5541The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5542the name of the token whose internal Bison token code number is
5543@var{i}. The first three elements of @code{yytname} correspond to the
5544predefined tokens @code{"$end"}, @code{"error"}, and
5545@code{"$undefined"}; after these come the symbols defined in the
5546grammar file.
5547
5548The name in the table includes all the characters needed to represent
5549the token in Bison. For single-character literals and literal
5550strings, this includes the surrounding quoting characters and any
5551escape sequences. For example, the Bison single-character literal
5552@code{'+'} corresponds to a three-character name, represented in C as
5553@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5554corresponds to a five-character name, represented in C as
5555@code{"\"\\\\/\""}.
5556
5557When you specify @code{%token-table}, Bison also generates macro
5558definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5559@code{YYNRULES}, and @code{YYNSTATES}:
5560
5561@table @code
5562@item YYNTOKENS
5563The highest token number, plus one.
5564@item YYNNTS
5565The number of nonterminal symbols.
5566@item YYNRULES
5567The number of grammar rules,
5568@item YYNSTATES
5569The number of parser states (@pxref{Parser States}).
5570@end table
5571@end deffn
5572
5573@deffn {Directive} %verbose
5574Write an extra output file containing verbose descriptions of the
5575parser states and what is done for each type of lookahead token in
5576that state. @xref{Understanding, , Understanding Your Parser}, for more
5577information.
5578@end deffn
5579
5580@deffn {Directive} %yacc
5581Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5582including its naming conventions. @xref{Bison Options}, for more.
5583@end deffn
5584
5585
5586@node %define Summary
5587@subsection %define Summary
51151d91
JD
5588
5589There are many features of Bison's behavior that can be controlled by
5590assigning the feature a single value. For historical reasons, some
5591such features are assigned values by dedicated directives, such as
5592@code{%start}, which assigns the start symbol. However, newer such
5593features are associated with variables, which are assigned by the
5594@code{%define} directive:
5595
c1d19e10 5596@deffn {Directive} %define @var{variable}
cf499cff 5597@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5598@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5599Define @var{variable} to @var{value}.
9611cfa2 5600
51151d91
JD
5601@var{value} must be placed in quotation marks if it contains any
5602character other than a letter, underscore, period, or non-initial dash
5603or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5604to specifying @code{""}.
9611cfa2 5605
51151d91
JD
5606It is an error if a @var{variable} is defined by @code{%define}
5607multiple times, but see @ref{Bison Options,,-D
5608@var{name}[=@var{value}]}.
5609@end deffn
cf499cff 5610
51151d91
JD
5611The rest of this section summarizes variables and values that
5612@code{%define} accepts.
9611cfa2 5613
51151d91
JD
5614Some @var{variable}s take Boolean values. In this case, Bison will
5615complain if the variable definition does not meet one of the following
5616four conditions:
9611cfa2
JD
5617
5618@enumerate
cf499cff 5619@item @code{@var{value}} is @code{true}
9611cfa2 5620
cf499cff
JD
5621@item @code{@var{value}} is omitted (or @code{""} is specified).
5622This is equivalent to @code{true}.
9611cfa2 5623
cf499cff 5624@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5625
5626@item @var{variable} is never defined.
c6abeab1 5627In this case, Bison selects a default value.
9611cfa2 5628@end enumerate
148d66d8 5629
c6abeab1
JD
5630What @var{variable}s are accepted, as well as their meanings and default
5631values, depend on the selected target language and/or the parser
5632skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5633Summary,,%skeleton}).
5634Unaccepted @var{variable}s produce an error.
dbf3962c 5635Some of the accepted @var{variable}s are described below.
793fbca5 5636
6574576c 5637@c ================================================== api.namespace
eb0e86ac 5638@deffn Directive {%define api.namespace} @{@var{namespace}@}
67501061
AD
5639@itemize
5640@item Languages(s): C++
5641
f1b238df 5642@item Purpose: Specify the namespace for the parser class.
67501061
AD
5643For example, if you specify:
5644
c93f22fc 5645@example
eb0e86ac 5646%define api.namespace @{foo::bar@}
c93f22fc 5647@end example
67501061
AD
5648
5649Bison uses @code{foo::bar} verbatim in references such as:
5650
c93f22fc 5651@example
67501061 5652foo::bar::parser::semantic_type
c93f22fc 5653@end example
67501061
AD
5654
5655However, to open a namespace, Bison removes any leading @code{::} and then
5656splits on any remaining occurrences:
5657
c93f22fc 5658@example
67501061
AD
5659namespace foo @{ namespace bar @{
5660 class position;
5661 class location;
5662@} @}
c93f22fc 5663@end example
67501061
AD
5664
5665@item Accepted Values:
5666Any absolute or relative C++ namespace reference without a trailing
5667@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5668
5669@item Default Value:
5670The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5671This usage of @code{%name-prefix} is for backward compatibility and can
5672be confusing since @code{%name-prefix} also specifies the textual prefix
5673for the lexical analyzer function. Thus, if you specify
5674@code{%name-prefix}, it is best to also specify @samp{%define
5675api.namespace} so that @code{%name-prefix} @emph{only} affects the
5676lexical analyzer function. For example, if you specify:
5677
c93f22fc 5678@example
eb0e86ac 5679%define api.namespace @{foo@}
67501061 5680%name-prefix "bar::"
c93f22fc 5681@end example
67501061
AD
5682
5683The parser namespace is @code{foo} and @code{yylex} is referenced as
5684@code{bar::lex}.
5685@end itemize
dbf3962c
AD
5686@end deffn
5687@c api.namespace
67501061 5688
db8ab2be 5689@c ================================================== api.location.type
dbf3962c 5690@deffn {Directive} {%define api.location.type} @var{type}
db8ab2be
AD
5691
5692@itemize @bullet
7287be84 5693@item Language(s): C++, Java
db8ab2be
AD
5694
5695@item Purpose: Define the location type.
5696@xref{User Defined Location Type}.
5697
5698@item Accepted Values: String
5699
5700@item Default Value: none
5701
a256496a
AD
5702@item History:
5703Introduced in Bison 2.7 for C, C++ and Java. Introduced under the name
5704@code{location_type} for C++ in Bison 2.5 and for Java in Bison 2.4.
db8ab2be 5705@end itemize
dbf3962c 5706@end deffn
67501061 5707
4b3847c3 5708@c ================================================== api.prefix
dbf3962c 5709@deffn {Directive} {%define api.prefix} @var{prefix}
4b3847c3
AD
5710
5711@itemize @bullet
5712@item Language(s): All
5713
db8ab2be 5714@item Purpose: Rename exported symbols.
4b3847c3
AD
5715@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5716
5717@item Accepted Values: String
5718
5719@item Default Value: @code{yy}
e358222b
AD
5720
5721@item History: introduced in Bison 2.6
4b3847c3 5722@end itemize
dbf3962c 5723@end deffn
67501061
AD
5724
5725@c ================================================== api.pure
dbf3962c 5726@deffn Directive {%define api.pure}
d9df47b6
JD
5727
5728@itemize @bullet
5729@item Language(s): C
5730
5731@item Purpose: Request a pure (reentrant) parser program.
5732@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5733
1f1bd572
TR
5734@item Accepted Values: @code{true}, @code{false}, @code{full}
5735
5736The value may be omitted: this is equivalent to specifying @code{true}, as is
5737the case for Boolean values.
5738
5739When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5740changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5741@code{yyerror} when the tracking of locations has been activated, as shown
5742below.
1f1bd572
TR
5743
5744The @code{true} value is very similar to the @code{full} value, the only
5745difference is in the signature of @code{yyerror} on Yacc parsers without
5746@code{%parse-param}, for historical reasons.
5747
5748I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5749@code{yyerror} are:
5750
5751@example
c949ada3
AD
5752void yyerror (char const *msg); // Yacc parsers.
5753void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5754@end example
5755
5756But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5757used, then both parsers have the same signature:
5758
5759@example
5760void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5761@end example
5762
5763(@pxref{Error Reporting, ,The Error
5764Reporting Function @code{yyerror}})
d9df47b6 5765
cf499cff 5766@item Default Value: @code{false}
1f1bd572 5767
a256496a
AD
5768@item History:
5769the @code{full} value was introduced in Bison 2.7
d9df47b6 5770@end itemize
dbf3962c 5771@end deffn
71b00ed8 5772@c api.pure
d9df47b6 5773
67501061
AD
5774
5775
5776@c ================================================== api.push-pull
dbf3962c 5777@deffn Directive {%define api.push-pull} @var{kind}
793fbca5
JD
5778
5779@itemize @bullet
eb45ef3b 5780@item Language(s): C (deterministic parsers only)
793fbca5 5781
f1b238df 5782@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5783@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5784(The current push parsing interface is experimental and may evolve.
5785More user feedback will help to stabilize it.)
793fbca5 5786
cf499cff 5787@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5788
cf499cff 5789@item Default Value: @code{pull}
793fbca5 5790@end itemize
dbf3962c 5791@end deffn
67212941 5792@c api.push-pull
71b00ed8 5793
6b5a0de9
AD
5794
5795
e36ec1f4 5796@c ================================================== api.token.constructor
dbf3962c 5797@deffn Directive {%define api.token.constructor}
e36ec1f4
AD
5798
5799@itemize @bullet
5800@item Language(s):
5801C++
5802
5803@item Purpose:
5804When variant-based semantic values are enabled (@pxref{C++ Variants}),
5805request that symbols be handled as a whole (type, value, and possibly
5806location) in the scanner. @xref{Complete Symbols}, for details.
5807
5808@item Accepted Values:
5809Boolean.
5810
5811@item Default Value:
5812@code{false}
5813@item History:
5814introduced in Bison 2.8
5815@end itemize
dbf3962c 5816@end deffn
e36ec1f4
AD
5817@c api.token.constructor
5818
5819
2a6b66c5 5820@c ================================================== api.token.prefix
dbf3962c 5821@deffn Directive {%define api.token.prefix} @var{prefix}
4c6622c2
AD
5822
5823@itemize
5824@item Languages(s): all
5825
5826@item Purpose:
5827Add a prefix to the token names when generating their definition in the
5828target language. For instance
5829
5830@example
5831%token FILE for ERROR
2a6b66c5 5832%define api.token.prefix "TOK_"
4c6622c2
AD
5833%%
5834start: FILE for ERROR;
5835@end example
5836
5837@noindent
5838generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5839and @code{TOK_ERROR} in the generated source files. In particular, the
5840scanner must use these prefixed token names, while the grammar itself
5841may still use the short names (as in the sample rule given above). The
5842generated informational files (@file{*.output}, @file{*.xml},
5843@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5844and @ref{Calc++ Scanner}, for a complete example.
5845
5846@item Accepted Values:
5847Any string. Should be a valid identifier prefix in the target language,
5848in other words, it should typically be an identifier itself (sequence of
5849letters, underscores, and ---not at the beginning--- digits).
5850
5851@item Default Value:
5852empty
2a6b66c5
AD
5853@item History:
5854introduced in Bison 2.8
4c6622c2 5855@end itemize
dbf3962c 5856@end deffn
2a6b66c5 5857@c api.token.prefix
4c6622c2
AD
5858
5859
ae8880de 5860@c ================================================== api.value.type
dbf3962c 5861@deffn Directive {%define api.value.type} @var{type}
ae8880de
AD
5862@itemize @bullet
5863@item Language(s):
6574576c 5864all
ae8880de
AD
5865
5866@item Purpose:
6574576c
AD
5867The type for semantic values.
5868
5869@item Accepted Values:
5870@table @asis
5871@item @code{""}
5872This grammar has no semantic value at all. This is not properly supported
5873yet.
5874@item @code{%union} (C, C++)
5875The type is defined thanks to the @code{%union} directive. You don't have
5876to define @code{api.value.type} in that case, using @code{%union} suffices.
e4d49586 5877@xref{Union Decl, ,The Union Declaration}.
6574576c
AD
5878For instance:
5879@example
5880%define api.value.type "%union"
5881%union
5882@{
5883 int ival;
5884 char *sval;
5885@}
5886%token <ival> INT "integer"
5887%token <sval> STR "string"
5888@end example
5889
5890@item @code{union} (C, C++)
5891The symbols are defined with type names, from which Bison will generate a
5892@code{union}. For instance:
5893@example
5894%define api.value.type "union"
5895%token <int> INT "integer"
5896%token <char *> STR "string"
5897@end example
5898This feature needs user feedback to stabilize. Note that most C++ objects
5899cannot be stored in a @code{union}.
5900
5901@item @code{variant} (C++)
5902This is similar to @code{union}, but special storage techniques are used to
5903allow any kind of C++ object to be used. For instance:
5904@example
5905%define api.value.type "variant"
5906%token <int> INT "integer"
5907%token <std::string> STR "string"
5908@end example
5909This feature needs user feedback to stabilize.
ae8880de
AD
5910@xref{C++ Variants}.
5911
6574576c
AD
5912@item any other identifier
5913Use this name as semantic value.
5914@example
5915%code requires
5916@{
5917 struct my_value
5918 @{
5919 enum
5920 @{
5921 is_int, is_str
5922 @} kind;
5923 union
5924 @{
5925 int ival;
5926 char *sval;
5927 @} u;
5928 @};
5929@}
5930%define api.value.type "struct my_value"
5931%token <u.ival> INT "integer"
5932%token <u.sval> STR "string"
5933@end example
5934@end table
5935
dbf3962c 5936@item Default Value:
6574576c
AD
5937@itemize @minus
5938@item
5939@code{%union} if @code{%union} is used, otherwise @dots{}
5940@item
5941@code{int} if type tags are used (i.e., @samp{%token <@var{type}>@dots{}} or
5942@samp{%token <@var{type}>@dots{}} is used), otherwise @dots{}
5943@item
5944@code{""}
5945@end itemize
5946
dbf3962c
AD
5947@item History:
5948introduced in Bison 2.8. Was introduced for Java only in 2.3b as
5949@code{stype}.
5950@end itemize
5951@end deffn
ae8880de
AD
5952@c api.value.type
5953
a256496a
AD
5954
5955@c ================================================== location_type
dbf3962c 5956@deffn Directive {%define location_type}
a256496a 5957Obsoleted by @code{api.location.type} since Bison 2.7.
dbf3962c 5958@end deffn
a256496a
AD
5959
5960
f3bc3386 5961@c ================================================== lr.default-reduction
6b5a0de9 5962
dbf3962c 5963@deffn Directive {%define lr.default-reduction} @var{when}
eb45ef3b
JD
5964
5965@itemize @bullet
5966@item Language(s): all
5967
fcf834f9 5968@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5969contain default reductions. @xref{Default Reductions}. (The ability to
5970specify where default reductions should be used is experimental. More user
5971feedback will help to stabilize it.)
eb45ef3b 5972
f0ad1b2f 5973@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5974@item Default Value:
5975@itemize
cf499cff 5976@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5977@item @code{most} otherwise.
eb45ef3b 5978@end itemize
f3bc3386
AD
5979@item History:
5980introduced as @code{lr.default-reduction} in 2.5, renamed as
5981@code{lr.default-reduction} in 2.8.
eb45ef3b 5982@end itemize
dbf3962c 5983@end deffn
eb45ef3b 5984
f3bc3386 5985@c ============================================ lr.keep-unreachable-state
6b5a0de9 5986
dbf3962c 5987@deffn Directive {%define lr.keep-unreachable-state}
31984206
JD
5988
5989@itemize @bullet
5990@item Language(s): all
f1b238df 5991@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5992remain in the parser tables. @xref{Unreachable States}.
31984206 5993@item Accepted Values: Boolean
cf499cff 5994@item Default Value: @code{false}
a256496a 5995@item History:
f3bc3386 5996introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 5997@code{lr.keep-unreachable-states} in 2.5, and as
f3bc3386 5998@code{lr.keep-unreachable-state} in 2.8.
dbf3962c
AD
5999@end itemize
6000@end deffn
f3bc3386 6001@c lr.keep-unreachable-state
31984206 6002
6b5a0de9
AD
6003@c ================================================== lr.type
6004
dbf3962c 6005@deffn Directive {%define lr.type} @var{type}
eb45ef3b
JD
6006
6007@itemize @bullet
6008@item Language(s): all
6009
f1b238df 6010@item Purpose: Specify the type of parser tables within the
7fceb615 6011LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
6012More user feedback will help to stabilize it.)
6013
7fceb615 6014@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 6015
cf499cff 6016@item Default Value: @code{lalr}
eb45ef3b 6017@end itemize
dbf3962c 6018@end deffn
67501061
AD
6019
6020@c ================================================== namespace
eb0e86ac 6021@deffn Directive %define namespace @{@var{namespace}@}
67501061 6022Obsoleted by @code{api.namespace}
fa819509 6023@c namespace
dbf3962c 6024@end deffn
31b850d2
AD
6025
6026@c ================================================== parse.assert
dbf3962c 6027@deffn Directive {%define parse.assert}
0c90a1f5
AD
6028
6029@itemize
6030@item Languages(s): C++
6031
6032@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
6033In C++, when variants are used (@pxref{C++ Variants}), symbols must be
6034constructed and
0c90a1f5
AD
6035destroyed properly. This option checks these constraints.
6036
6037@item Accepted Values: Boolean
6038
6039@item Default Value: @code{false}
6040@end itemize
dbf3962c 6041@end deffn
0c90a1f5
AD
6042@c parse.assert
6043
31b850d2
AD
6044
6045@c ================================================== parse.error
dbf3962c 6046@deffn Directive {%define parse.error}
31b850d2
AD
6047@itemize
6048@item Languages(s):
fcf834f9 6049all
31b850d2
AD
6050@item Purpose:
6051Control the kind of error messages passed to the error reporting
6052function. @xref{Error Reporting, ,The Error Reporting Function
6053@code{yyerror}}.
6054@item Accepted Values:
6055@itemize
cf499cff 6056@item @code{simple}
31b850d2
AD
6057Error messages passed to @code{yyerror} are simply @w{@code{"syntax
6058error"}}.
cf499cff 6059@item @code{verbose}
7fceb615
JD
6060Error messages report the unexpected token, and possibly the expected ones.
6061However, this report can often be incorrect when LAC is not enabled
6062(@pxref{LAC}).
31b850d2
AD
6063@end itemize
6064
6065@item Default Value:
6066@code{simple}
6067@end itemize
dbf3962c 6068@end deffn
31b850d2
AD
6069@c parse.error
6070
6071
fcf834f9 6072@c ================================================== parse.lac
dbf3962c 6073@deffn Directive {%define parse.lac}
fcf834f9
JD
6074
6075@itemize
7fceb615 6076@item Languages(s): C (deterministic parsers only)
fcf834f9 6077
8a4281b9 6078@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 6079syntax error handling. @xref{LAC}.
fcf834f9 6080@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
6081@item Default Value: @code{none}
6082@end itemize
dbf3962c 6083@end deffn
fcf834f9
JD
6084@c parse.lac
6085
31b850d2 6086@c ================================================== parse.trace
dbf3962c 6087@deffn Directive {%define parse.trace}
fa819509
AD
6088
6089@itemize
60aa04a2 6090@item Languages(s): C, C++, Java
fa819509
AD
6091
6092@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
6093@xref{Tracing, ,Tracing Your Parser}.
6094
6095In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
6096@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
6097,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 6098file if it is not already defined, so that the debugging facilities are
60aa04a2 6099compiled.
793fbca5 6100
fa819509
AD
6101@item Accepted Values: Boolean
6102
6103@item Default Value: @code{false}
6104@end itemize
dbf3962c 6105@end deffn
fa819509 6106@c parse.trace
592d0b1e 6107
e0c07222
JD
6108@node %code Summary
6109@subsection %code Summary
e0c07222 6110@findex %code
e0c07222 6111@cindex Prologue
51151d91
JD
6112
6113The @code{%code} directive inserts code verbatim into the output
6114parser source at any of a predefined set of locations. It thus serves
6115as a flexible and user-friendly alternative to the traditional Yacc
6116prologue, @code{%@{@var{code}%@}}. This section summarizes the
6117functionality of @code{%code} for the various target languages
6118supported by Bison. For a detailed discussion of how to use
6119@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
6120is advantageous to do so, @pxref{Prologue Alternatives}.
6121
6122@deffn {Directive} %code @{@var{code}@}
6123This is the unqualified form of the @code{%code} directive. It
6124inserts @var{code} verbatim at a language-dependent default location
6125in the parser implementation.
6126
e0c07222 6127For C/C++, the default location is the parser implementation file
51151d91
JD
6128after the usual contents of the parser header file. Thus, the
6129unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
6130
6131For Java, the default location is inside the parser class.
6132@end deffn
6133
6134@deffn {Directive} %code @var{qualifier} @{@var{code}@}
6135This is the qualified form of the @code{%code} directive.
51151d91
JD
6136@var{qualifier} identifies the purpose of @var{code} and thus the
6137location(s) where Bison should insert it. That is, if you need to
6138specify location-sensitive @var{code} that does not belong at the
6139default location selected by the unqualified @code{%code} form, use
6140this form instead.
6141@end deffn
6142
6143For any particular qualifier or for the unqualified form, if there are
6144multiple occurrences of the @code{%code} directive, Bison concatenates
6145the specified code in the order in which it appears in the grammar
6146file.
e0c07222 6147
51151d91
JD
6148Not all qualifiers are accepted for all target languages. Unaccepted
6149qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 6150
84072495 6151@table @code
e0c07222
JD
6152@item requires
6153@findex %code requires
6154
6155@itemize @bullet
6156@item Language(s): C, C++
6157
6158@item Purpose: This is the best place to write dependency code required for
21e3a2b5
AD
6159@code{YYSTYPE} and @code{YYLTYPE}. In other words, it's the best place to
6160define types referenced in @code{%union} directives. If you use
6161@code{#define} to override Bison's default @code{YYSTYPE} and @code{YYLTYPE}
6162definitions, then it is also the best place. However you should rather
6163@code{%define} @code{api.value.type} and @code{api.location.type}.
e0c07222
JD
6164
6165@item Location(s): The parser header file and the parser implementation file
6166before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
6167definitions.
6168@end itemize
6169
6170@item provides
6171@findex %code provides
6172
6173@itemize @bullet
6174@item Language(s): C, C++
6175
6176@item Purpose: This is the best place to write additional definitions and
6177declarations that should be provided to other modules.
6178
6179@item Location(s): The parser header file and the parser implementation
6180file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
6181token definitions.
6182@end itemize
6183
6184@item top
6185@findex %code top
6186
6187@itemize @bullet
6188@item Language(s): C, C++
6189
6190@item Purpose: The unqualified @code{%code} or @code{%code requires}
6191should usually be more appropriate than @code{%code top}. However,
6192occasionally it is necessary to insert code much nearer the top of the
6193parser implementation file. For example:
6194
c93f22fc 6195@example
e0c07222
JD
6196%code top @{
6197 #define _GNU_SOURCE
6198 #include <stdio.h>
6199@}
c93f22fc 6200@end example
e0c07222
JD
6201
6202@item Location(s): Near the top of the parser implementation file.
6203@end itemize
6204
6205@item imports
6206@findex %code imports
6207
6208@itemize @bullet
6209@item Language(s): Java
6210
6211@item Purpose: This is the best place to write Java import directives.
6212
6213@item Location(s): The parser Java file after any Java package directive and
6214before any class definitions.
6215@end itemize
84072495 6216@end table
e0c07222 6217
51151d91
JD
6218Though we say the insertion locations are language-dependent, they are
6219technically skeleton-dependent. Writers of non-standard skeletons
6220however should choose their locations consistently with the behavior
6221of the standard Bison skeletons.
e0c07222 6222
d8988b2f 6223
342b8b6e 6224@node Multiple Parsers
bfa74976
RS
6225@section Multiple Parsers in the Same Program
6226
6227Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6228only one Bison parser. But what if you want to parse more than one language
6229with the same program? Then you need to avoid name conflicts between
6230different definitions of functions and variables such as @code{yyparse},
6231@code{yylval}. To use different parsers from the same compilation unit, you
6232also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6233exported in the generated header.
6234
6235The easy way to do this is to define the @code{%define} variable
e358222b
AD
6236@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6237headers do not conflict when included together, and that compiled objects
6238can be linked together too. Specifying @samp{%define api.prefix
6239@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
6240@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6241variables of the Bison parser to start with @var{prefix} instead of
6242@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6243upper-cased) instead of @samp{YY}.
4b3847c3
AD
6244
6245The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6246@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6247@code{yydebug}. If you use a push parser, @code{yypush_parse},
6248@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6249@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6250@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6251specifically --- more about this below.
4b3847c3
AD
6252
6253For example, if you use @samp{%define api.prefix c}, the names become
6254@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6255on.
6256
6257The @code{%define} variable @code{api.prefix} works in two different ways.
6258In the implementation file, it works by adding macro definitions to the
6259beginning of the parser implementation file, defining @code{yyparse} as
6260@code{@var{prefix}parse}, and so on:
6261
6262@example
6263#define YYSTYPE CTYPE
6264#define yyparse cparse
6265#define yylval clval
6266...
6267YYSTYPE yylval;
6268int yyparse (void);
6269@end example
6270
6271This effectively substitutes one name for the other in the entire parser
6272implementation file, thus the ``original'' names (@code{yylex},
6273@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6274
6275However, in the parser header file, the symbols are defined renamed, for
6276instance:
bfa74976 6277
4b3847c3
AD
6278@example
6279extern CSTYPE clval;
6280int cparse (void);
6281@end example
bfa74976 6282
e358222b
AD
6283The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6284parsers. To comply with this tradition, when @code{api.prefix} is used,
6285@code{YYDEBUG} (not renamed) is used as a default value:
6286
6287@example
4d9bdbe3 6288/* Debug traces. */
e358222b
AD
6289#ifndef CDEBUG
6290# if defined YYDEBUG
6291# if YYDEBUG
6292# define CDEBUG 1
6293# else
6294# define CDEBUG 0
6295# endif
6296# else
6297# define CDEBUG 0
6298# endif
6299#endif
6300#if CDEBUG
6301extern int cdebug;
6302#endif
6303@end example
6304
6305@sp 2
6306
6307Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6308the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6309Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6310
342b8b6e 6311@node Interface
bfa74976
RS
6312@chapter Parser C-Language Interface
6313@cindex C-language interface
6314@cindex interface
6315
6316The Bison parser is actually a C function named @code{yyparse}. Here we
6317describe the interface conventions of @code{yyparse} and the other
6318functions that it needs to use.
6319
6320Keep in mind that the parser uses many C identifiers starting with
6321@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6322identifier (aside from those in this manual) in an action or in epilogue
6323in the grammar file, you are likely to run into trouble.
bfa74976
RS
6324
6325@menu
f5f419de
DJ
6326* Parser Function:: How to call @code{yyparse} and what it returns.
6327* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6328* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6329* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6330* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6331* Lexical:: You must supply a function @code{yylex}
6332 which reads tokens.
6333* Error Reporting:: You must supply a function @code{yyerror}.
6334* Action Features:: Special features for use in actions.
6335* Internationalization:: How to let the parser speak in the user's
6336 native language.
bfa74976
RS
6337@end menu
6338
342b8b6e 6339@node Parser Function
bfa74976
RS
6340@section The Parser Function @code{yyparse}
6341@findex yyparse
6342
6343You call the function @code{yyparse} to cause parsing to occur. This
6344function reads tokens, executes actions, and ultimately returns when it
6345encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6346write an action which directs @code{yyparse} to return immediately
6347without reading further.
bfa74976 6348
2a8d363a
AD
6349
6350@deftypefun int yyparse (void)
bfa74976
RS
6351The value returned by @code{yyparse} is 0 if parsing was successful (return
6352is due to end-of-input).
6353
b47dbebe
PE
6354The value is 1 if parsing failed because of invalid input, i.e., input
6355that contains a syntax error or that causes @code{YYABORT} to be
6356invoked.
6357
6358The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6359@end deftypefun
bfa74976
RS
6360
6361In an action, you can cause immediate return from @code{yyparse} by using
6362these macros:
6363
2a8d363a 6364@defmac YYACCEPT
bfa74976
RS
6365@findex YYACCEPT
6366Return immediately with value 0 (to report success).
2a8d363a 6367@end defmac
bfa74976 6368
2a8d363a 6369@defmac YYABORT
bfa74976
RS
6370@findex YYABORT
6371Return immediately with value 1 (to report failure).
2a8d363a
AD
6372@end defmac
6373
6374If you use a reentrant parser, you can optionally pass additional
6375parameter information to it in a reentrant way. To do so, use the
6376declaration @code{%parse-param}:
6377
2055a44e 6378@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6379@findex %parse-param
2055a44e
AD
6380Declare that one or more
6381@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6382The @var{argument-declaration} is used when declaring
feeb0eda
PE
6383functions or prototypes. The last identifier in
6384@var{argument-declaration} must be the argument name.
2a8d363a
AD
6385@end deffn
6386
6387Here's an example. Write this in the parser:
6388
6389@example
2055a44e 6390%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6391@end example
6392
6393@noindent
6394Then call the parser like this:
6395
6396@example
6397@{
6398 int nastiness, randomness;
6399 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6400 value = yyparse (&nastiness, &randomness);
6401 @dots{}
6402@}
6403@end example
6404
6405@noindent
6406In the grammar actions, use expressions like this to refer to the data:
6407
6408@example
6409exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6410@end example
6411
1f1bd572
TR
6412@noindent
6413Using the following:
6414@example
6415%parse-param @{int *randomness@}
6416@end example
6417
6418Results in these signatures:
6419@example
6420void yyerror (int *randomness, const char *msg);
6421int yyparse (int *randomness);
6422@end example
6423
6424@noindent
6425Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6426and @code{%locations} are used:
6427
6428@example
6429void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6430int yyparse (int *randomness);
6431@end example
6432
9987d1b3
JD
6433@node Push Parser Function
6434@section The Push Parser Function @code{yypush_parse}
6435@findex yypush_parse
6436
59da312b
JD
6437(The current push parsing interface is experimental and may evolve.
6438More user feedback will help to stabilize it.)
6439
f4101aa6 6440You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6441function is available if either the @samp{%define api.push-pull push} or
6442@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6443@xref{Push Decl, ,A Push Parser}.
6444
a73aa764 6445@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6446The value returned by @code{yypush_parse} is the same as for yyparse with
6447the following exception: it returns @code{YYPUSH_MORE} if more input is
6448required to finish parsing the grammar.
9987d1b3
JD
6449@end deftypefun
6450
6451@node Pull Parser Function
6452@section The Pull Parser Function @code{yypull_parse}
6453@findex yypull_parse
6454
59da312b
JD
6455(The current push parsing interface is experimental and may evolve.
6456More user feedback will help to stabilize it.)
6457
f4101aa6 6458You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6459stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6460declaration is used.
9987d1b3
JD
6461@xref{Push Decl, ,A Push Parser}.
6462
a73aa764 6463@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6464The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6465@end deftypefun
6466
6467@node Parser Create Function
6468@section The Parser Create Function @code{yystate_new}
6469@findex yypstate_new
6470
59da312b
JD
6471(The current push parsing interface is experimental and may evolve.
6472More user feedback will help to stabilize it.)
6473
f4101aa6 6474You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6475This function is available if either the @samp{%define api.push-pull push} or
6476@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6477@xref{Push Decl, ,A Push Parser}.
6478
34a41a93 6479@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6480The function will return a valid parser instance if there was memory available
333e670c
JD
6481or 0 if no memory was available.
6482In impure mode, it will also return 0 if a parser instance is currently
6483allocated.
9987d1b3
JD
6484@end deftypefun
6485
6486@node Parser Delete Function
6487@section The Parser Delete Function @code{yystate_delete}
6488@findex yypstate_delete
6489
59da312b
JD
6490(The current push parsing interface is experimental and may evolve.
6491More user feedback will help to stabilize it.)
6492
9987d1b3 6493You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6494function is available if either the @samp{%define api.push-pull push} or
6495@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6496@xref{Push Decl, ,A Push Parser}.
6497
a73aa764 6498@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6499This function will reclaim the memory associated with a parser instance.
6500After this call, you should no longer attempt to use the parser instance.
6501@end deftypefun
bfa74976 6502
342b8b6e 6503@node Lexical
bfa74976
RS
6504@section The Lexical Analyzer Function @code{yylex}
6505@findex yylex
6506@cindex lexical analyzer
6507
6508The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6509the input stream and returns them to the parser. Bison does not create
6510this function automatically; you must write it so that @code{yyparse} can
6511call it. The function is sometimes referred to as a lexical scanner.
6512
ff7571c0
JD
6513In simple programs, @code{yylex} is often defined at the end of the
6514Bison grammar file. If @code{yylex} is defined in a separate source
6515file, you need to arrange for the token-type macro definitions to be
6516available there. To do this, use the @samp{-d} option when you run
6517Bison, so that it will write these macro definitions into the separate
6518parser header file, @file{@var{name}.tab.h}, which you can include in
6519the other source files that need it. @xref{Invocation, ,Invoking
6520Bison}.
bfa74976
RS
6521
6522@menu
6523* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6524* Token Values:: How @code{yylex} must return the semantic value
6525 of the token it has read.
6526* Token Locations:: How @code{yylex} must return the text location
6527 (line number, etc.) of the token, if the
6528 actions want that.
6529* Pure Calling:: How the calling convention differs in a pure parser
6530 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6531@end menu
6532
342b8b6e 6533@node Calling Convention
bfa74976
RS
6534@subsection Calling Convention for @code{yylex}
6535
72d2299c
PE
6536The value that @code{yylex} returns must be the positive numeric code
6537for the type of token it has just found; a zero or negative value
6538signifies end-of-input.
bfa74976
RS
6539
6540When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6541in the parser implementation file becomes a C macro whose definition
6542is the proper numeric code for that token type. So @code{yylex} can
6543use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6544
6545When a token is referred to in the grammar rules by a character literal,
6546the numeric code for that character is also the code for the token type.
72d2299c
PE
6547So @code{yylex} can simply return that character code, possibly converted
6548to @code{unsigned char} to avoid sign-extension. The null character
6549must not be used this way, because its code is zero and that
bfa74976
RS
6550signifies end-of-input.
6551
6552Here is an example showing these things:
6553
6554@example
13863333
AD
6555int
6556yylex (void)
bfa74976
RS
6557@{
6558 @dots{}
72d2299c 6559 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6560 return 0;
6561 @dots{}
6562 if (c == '+' || c == '-')
4c9b8f13 6563 return c; /* Assume token type for '+' is '+'. */
bfa74976 6564 @dots{}
72d2299c 6565 return INT; /* Return the type of the token. */
bfa74976
RS
6566 @dots{}
6567@}
6568@end example
6569
6570@noindent
6571This interface has been designed so that the output from the @code{lex}
6572utility can be used without change as the definition of @code{yylex}.
6573
931c7513
RS
6574If the grammar uses literal string tokens, there are two ways that
6575@code{yylex} can determine the token type codes for them:
6576
6577@itemize @bullet
6578@item
6579If the grammar defines symbolic token names as aliases for the
6580literal string tokens, @code{yylex} can use these symbolic names like
6581all others. In this case, the use of the literal string tokens in
6582the grammar file has no effect on @code{yylex}.
6583
6584@item
9ecbd125 6585@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6586table. The index of the token in the table is the token type's code.
9ecbd125 6587The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6588double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6589token's characters are escaped as necessary to be suitable as input
6590to Bison.
931c7513 6591
9e0876fb
PE
6592Here's code for looking up a multicharacter token in @code{yytname},
6593assuming that the characters of the token are stored in
6594@code{token_buffer}, and assuming that the token does not contain any
6595characters like @samp{"} that require escaping.
931c7513 6596
c93f22fc 6597@example
931c7513
RS
6598for (i = 0; i < YYNTOKENS; i++)
6599 @{
6600 if (yytname[i] != 0
6601 && yytname[i][0] == '"'
68449b3a
PE
6602 && ! strncmp (yytname[i] + 1, token_buffer,
6603 strlen (token_buffer))
931c7513
RS
6604 && yytname[i][strlen (token_buffer) + 1] == '"'
6605 && yytname[i][strlen (token_buffer) + 2] == 0)
6606 break;
6607 @}
c93f22fc 6608@end example
931c7513
RS
6609
6610The @code{yytname} table is generated only if you use the
8c9a50be 6611@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6612@end itemize
6613
342b8b6e 6614@node Token Values
bfa74976
RS
6615@subsection Semantic Values of Tokens
6616
6617@vindex yylval
9d9b8b70 6618In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6619be stored into the global variable @code{yylval}. When you are using
6620just one data type for semantic values, @code{yylval} has that type.
6621Thus, if the type is @code{int} (the default), you might write this in
6622@code{yylex}:
6623
6624@example
6625@group
6626 @dots{}
72d2299c
PE
6627 yylval = value; /* Put value onto Bison stack. */
6628 return INT; /* Return the type of the token. */
bfa74976
RS
6629 @dots{}
6630@end group
6631@end example
6632
6633When you are using multiple data types, @code{yylval}'s type is a union
704a47c4 6634made from the @code{%union} declaration (@pxref{Union Decl, ,The
e4d49586 6635Union Declaration}). So when you store a token's value, you
704a47c4
AD
6636must use the proper member of the union. If the @code{%union}
6637declaration looks like this:
bfa74976
RS
6638
6639@example
6640@group
6641%union @{
6642 int intval;
6643 double val;
6644 symrec *tptr;
6645@}
6646@end group
6647@end example
6648
6649@noindent
6650then the code in @code{yylex} might look like this:
6651
6652@example
6653@group
6654 @dots{}
72d2299c
PE
6655 yylval.intval = value; /* Put value onto Bison stack. */
6656 return INT; /* Return the type of the token. */
bfa74976
RS
6657 @dots{}
6658@end group
6659@end example
6660
95923bd6
AD
6661@node Token Locations
6662@subsection Textual Locations of Tokens
bfa74976
RS
6663
6664@vindex yylloc
303834cc
JD
6665If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6666in actions to keep track of the textual locations of tokens and groupings,
6667then you must provide this information in @code{yylex}. The function
6668@code{yyparse} expects to find the textual location of a token just parsed
6669in the global variable @code{yylloc}. So @code{yylex} must store the proper
6670data in that variable.
847bf1f5
AD
6671
6672By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6673initialize the members that are going to be used by the actions. The
6674four members are called @code{first_line}, @code{first_column},
6675@code{last_line} and @code{last_column}. Note that the use of this
6676feature makes the parser noticeably slower.
bfa74976
RS
6677
6678@tindex YYLTYPE
6679The data type of @code{yylloc} has the name @code{YYLTYPE}.
6680
342b8b6e 6681@node Pure Calling
c656404a 6682@subsection Calling Conventions for Pure Parsers
bfa74976 6683
1f1bd572 6684When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6685pure, reentrant parser, the global communication variables @code{yylval}
6686and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6687Parser}.) In such parsers the two global variables are replaced by
6688pointers passed as arguments to @code{yylex}. You must declare them as
6689shown here, and pass the information back by storing it through those
6690pointers.
bfa74976
RS
6691
6692@example
13863333
AD
6693int
6694yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6695@{
6696 @dots{}
6697 *lvalp = value; /* Put value onto Bison stack. */
6698 return INT; /* Return the type of the token. */
6699 @dots{}
6700@}
6701@end example
6702
6703If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6704textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6705this case, omit the second argument; @code{yylex} will be called with
6706only one argument.
6707
2055a44e 6708If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6709@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6710Function}). To pass additional arguments to both @code{yylex} and
6711@code{yyparse}, use @code{%param}.
e425e872 6712
2055a44e 6713@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6714@findex %lex-param
2055a44e
AD
6715Specify that @var{argument-declaration} are additional @code{yylex} argument
6716declarations. You may pass one or more such declarations, which is
6717equivalent to repeating @code{%lex-param}.
6718@end deffn
6719
6720@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6721@findex %param
6722Specify that @var{argument-declaration} are additional
6723@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6724@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6725@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6726declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6727@end deffn
e425e872 6728
1f1bd572 6729@noindent
2a8d363a 6730For instance:
e425e872
RS
6731
6732@example
2055a44e
AD
6733%lex-param @{scanner_mode *mode@}
6734%parse-param @{parser_mode *mode@}
6735%param @{environment_type *env@}
e425e872
RS
6736@end example
6737
6738@noindent
18ad57b3 6739results in the following signatures:
e425e872
RS
6740
6741@example
2055a44e
AD
6742int yylex (scanner_mode *mode, environment_type *env);
6743int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6744@end example
6745
5807bb91 6746If @samp{%define api.pure full} is added:
c656404a
RS
6747
6748@example
2055a44e
AD
6749int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6750int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6751@end example
6752
2a8d363a 6753@noindent
5807bb91
AD
6754and finally, if both @samp{%define api.pure full} and @code{%locations} are
6755used:
c656404a 6756
2a8d363a 6757@example
2055a44e
AD
6758int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6759 scanner_mode *mode, environment_type *env);
6760int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6761@end example
931c7513 6762
342b8b6e 6763@node Error Reporting
bfa74976
RS
6764@section The Error Reporting Function @code{yyerror}
6765@cindex error reporting function
6766@findex yyerror
6767@cindex parse error
6768@cindex syntax error
6769
31b850d2 6770The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6771whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6772action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6773macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6774in Actions}).
bfa74976
RS
6775
6776The Bison parser expects to report the error by calling an error
6777reporting function named @code{yyerror}, which you must supply. It is
6778called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6779receives one argument. For a syntax error, the string is normally
6780@w{@code{"syntax error"}}.
bfa74976 6781
31b850d2 6782@findex %define parse.error
7fceb615
JD
6783If you invoke @samp{%define parse.error verbose} in the Bison declarations
6784section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6785Bison provides a more verbose and specific error message string instead of
6786just plain @w{@code{"syntax error"}}. However, that message sometimes
6787contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6788
1a059451
PE
6789The parser can detect one other kind of error: memory exhaustion. This
6790can happen when the input contains constructions that are very deeply
bfa74976 6791nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6792parser normally extends its stack automatically up to a very large limit. But
6793if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6794fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6795
6796In some cases diagnostics like @w{@code{"syntax error"}} are
6797translated automatically from English to some other language before
6798they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6799
6800The following definition suffices in simple programs:
6801
6802@example
6803@group
13863333 6804void
38a92d50 6805yyerror (char const *s)
bfa74976
RS
6806@{
6807@end group
6808@group
6809 fprintf (stderr, "%s\n", s);
6810@}
6811@end group
6812@end example
6813
6814After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6815error recovery if you have written suitable error recovery grammar rules
6816(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6817immediately return 1.
6818
93724f13 6819Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6820an access to the current location. With @code{%define api.pure}, this is
6821indeed the case for the GLR parsers, but not for the Yacc parser, for
6822historical reasons, and this is the why @code{%define api.pure full} should be
6823prefered over @code{%define api.pure}.
2a8d363a 6824
1f1bd572
TR
6825When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6826following signature:
2a8d363a
AD
6827
6828@example
1f1bd572 6829void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6830@end example
6831
1c0c3e95 6832@noindent
38a92d50
PE
6833The prototypes are only indications of how the code produced by Bison
6834uses @code{yyerror}. Bison-generated code always ignores the returned
6835value, so @code{yyerror} can return any type, including @code{void}.
6836Also, @code{yyerror} can be a variadic function; that is why the
6837message is always passed last.
6838
6839Traditionally @code{yyerror} returns an @code{int} that is always
6840ignored, but this is purely for historical reasons, and @code{void} is
6841preferable since it more accurately describes the return type for
6842@code{yyerror}.
93724f13 6843
bfa74976
RS
6844@vindex yynerrs
6845The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6846reported so far. Normally this variable is global; but if you
704a47c4
AD
6847request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6848then it is a local variable which only the actions can access.
bfa74976 6849
342b8b6e 6850@node Action Features
bfa74976
RS
6851@section Special Features for Use in Actions
6852@cindex summary, action features
6853@cindex action features summary
6854
6855Here is a table of Bison constructs, variables and macros that
6856are useful in actions.
6857
18b519c0 6858@deffn {Variable} $$
bfa74976
RS
6859Acts like a variable that contains the semantic value for the
6860grouping made by the current rule. @xref{Actions}.
18b519c0 6861@end deffn
bfa74976 6862
18b519c0 6863@deffn {Variable} $@var{n}
bfa74976
RS
6864Acts like a variable that contains the semantic value for the
6865@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6866@end deffn
bfa74976 6867
18b519c0 6868@deffn {Variable} $<@var{typealt}>$
bfa74976 6869Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6870specified by the @code{%union} declaration. @xref{Action Types, ,Data
6871Types of Values in Actions}.
18b519c0 6872@end deffn
bfa74976 6873
18b519c0 6874@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6875Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6876union specified by the @code{%union} declaration.
e0c471a9 6877@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6878@end deffn
bfa74976 6879
34a41a93 6880@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6881Return immediately from @code{yyparse}, indicating failure.
6882@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6883@end deffn
bfa74976 6884
34a41a93 6885@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6886Return immediately from @code{yyparse}, indicating success.
6887@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6888@end deffn
bfa74976 6889
34a41a93 6890@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6891@findex YYBACKUP
6892Unshift a token. This macro is allowed only for rules that reduce
742e4900 6893a single value, and only when there is no lookahead token.
8a4281b9 6894It is also disallowed in GLR parsers.
742e4900 6895It installs a lookahead token with token type @var{token} and
bfa74976
RS
6896semantic value @var{value}; then it discards the value that was
6897going to be reduced by this rule.
6898
6899If the macro is used when it is not valid, such as when there is
742e4900 6900a lookahead token already, then it reports a syntax error with
bfa74976
RS
6901a message @samp{cannot back up} and performs ordinary error
6902recovery.
6903
6904In either case, the rest of the action is not executed.
18b519c0 6905@end deffn
bfa74976 6906
18b519c0 6907@deffn {Macro} YYEMPTY
742e4900 6908Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6909@end deffn
bfa74976 6910
32c29292 6911@deffn {Macro} YYEOF
742e4900 6912Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6913stream.
6914@end deffn
6915
34a41a93 6916@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6917Cause an immediate syntax error. This statement initiates error
6918recovery just as if the parser itself had detected an error; however, it
6919does not call @code{yyerror}, and does not print any message. If you
6920want to print an error message, call @code{yyerror} explicitly before
6921the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6922@end deffn
bfa74976 6923
18b519c0 6924@deffn {Macro} YYRECOVERING
02103984
PE
6925@findex YYRECOVERING
6926The expression @code{YYRECOVERING ()} yields 1 when the parser
6927is recovering from a syntax error, and 0 otherwise.
bfa74976 6928@xref{Error Recovery}.
18b519c0 6929@end deffn
bfa74976 6930
18b519c0 6931@deffn {Variable} yychar
742e4900
JD
6932Variable containing either the lookahead token, or @code{YYEOF} when the
6933lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6934has been performed so the next token is not yet known.
6935Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6936Actions}).
742e4900 6937@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6938@end deffn
bfa74976 6939
34a41a93 6940@deffn {Macro} yyclearin @code{;}
742e4900 6941Discard the current lookahead token. This is useful primarily in
32c29292
JD
6942error rules.
6943Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6944Semantic Actions}).
6945@xref{Error Recovery}.
18b519c0 6946@end deffn
bfa74976 6947
34a41a93 6948@deffn {Macro} yyerrok @code{;}
bfa74976 6949Resume generating error messages immediately for subsequent syntax
13863333 6950errors. This is useful primarily in error rules.
bfa74976 6951@xref{Error Recovery}.
18b519c0 6952@end deffn
bfa74976 6953
32c29292 6954@deffn {Variable} yylloc
742e4900 6955Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6956to @code{YYEMPTY} or @code{YYEOF}.
6957Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6958Actions}).
6959@xref{Actions and Locations, ,Actions and Locations}.
6960@end deffn
6961
6962@deffn {Variable} yylval
742e4900 6963Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6964not set to @code{YYEMPTY} or @code{YYEOF}.
6965Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6966Actions}).
6967@xref{Actions, ,Actions}.
6968@end deffn
6969
18b519c0 6970@deffn {Value} @@$
303834cc
JD
6971Acts like a structure variable containing information on the textual
6972location of the grouping made by the current rule. @xref{Tracking
6973Locations}.
bfa74976 6974
847bf1f5
AD
6975@c Check if those paragraphs are still useful or not.
6976
6977@c @example
6978@c struct @{
6979@c int first_line, last_line;
6980@c int first_column, last_column;
6981@c @};
6982@c @end example
6983
6984@c Thus, to get the starting line number of the third component, you would
6985@c use @samp{@@3.first_line}.
bfa74976 6986
847bf1f5
AD
6987@c In order for the members of this structure to contain valid information,
6988@c you must make @code{yylex} supply this information about each token.
6989@c If you need only certain members, then @code{yylex} need only fill in
6990@c those members.
bfa74976 6991
847bf1f5 6992@c The use of this feature makes the parser noticeably slower.
18b519c0 6993@end deffn
847bf1f5 6994
18b519c0 6995@deffn {Value} @@@var{n}
847bf1f5 6996@findex @@@var{n}
303834cc
JD
6997Acts like a structure variable containing information on the textual
6998location of the @var{n}th component of the current rule. @xref{Tracking
6999Locations}.
18b519c0 7000@end deffn
bfa74976 7001
f7ab6a50
PE
7002@node Internationalization
7003@section Parser Internationalization
7004@cindex internationalization
7005@cindex i18n
7006@cindex NLS
7007@cindex gettext
7008@cindex bison-po
7009
7010A Bison-generated parser can print diagnostics, including error and
7011tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
7012also supports outputting diagnostics in the user's native language. To
7013make this work, the user should set the usual environment variables.
7014@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
7015For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 7016set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
7017encoding. The exact set of available locales depends on the user's
7018installation.
7019
7020The maintainer of a package that uses a Bison-generated parser enables
7021the internationalization of the parser's output through the following
8a4281b9
JD
7022steps. Here we assume a package that uses GNU Autoconf and
7023GNU Automake.
f7ab6a50
PE
7024
7025@enumerate
7026@item
30757c8c 7027@cindex bison-i18n.m4
8a4281b9 7028Into the directory containing the GNU Autoconf macros used
c949ada3 7029by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
7030@file{bison-i18n.m4} file installed by Bison under
7031@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
7032For example:
7033
7034@example
7035cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
7036@end example
7037
7038@item
30757c8c
PE
7039@findex BISON_I18N
7040@vindex BISON_LOCALEDIR
7041@vindex YYENABLE_NLS
f7ab6a50
PE
7042In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
7043invocation, add an invocation of @code{BISON_I18N}. This macro is
7044defined in the file @file{bison-i18n.m4} that you copied earlier. It
7045causes @samp{configure} to find the value of the
30757c8c
PE
7046@code{BISON_LOCALEDIR} variable, and it defines the source-language
7047symbol @code{YYENABLE_NLS} to enable translations in the
7048Bison-generated parser.
f7ab6a50
PE
7049
7050@item
7051In the @code{main} function of your program, designate the directory
7052containing Bison's runtime message catalog, through a call to
7053@samp{bindtextdomain} with domain name @samp{bison-runtime}.
7054For example:
7055
7056@example
7057bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
7058@end example
7059
7060Typically this appears after any other call @code{bindtextdomain
7061(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
7062@samp{BISON_LOCALEDIR} to be defined as a string through the
7063@file{Makefile}.
7064
7065@item
7066In the @file{Makefile.am} that controls the compilation of the @code{main}
7067function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
7068either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
7069
7070@example
7071DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7072@end example
7073
7074or:
7075
7076@example
7077AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
7078@end example
7079
7080@item
7081Finally, invoke the command @command{autoreconf} to generate the build
7082infrastructure.
7083@end enumerate
7084
bfa74976 7085
342b8b6e 7086@node Algorithm
13863333
AD
7087@chapter The Bison Parser Algorithm
7088@cindex Bison parser algorithm
bfa74976
RS
7089@cindex algorithm of parser
7090@cindex shifting
7091@cindex reduction
7092@cindex parser stack
7093@cindex stack, parser
7094
7095As Bison reads tokens, it pushes them onto a stack along with their
7096semantic values. The stack is called the @dfn{parser stack}. Pushing a
7097token is traditionally called @dfn{shifting}.
7098
7099For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
7100@samp{3} to come. The stack will have four elements, one for each token
7101that was shifted.
7102
7103But the stack does not always have an element for each token read. When
7104the last @var{n} tokens and groupings shifted match the components of a
7105grammar rule, they can be combined according to that rule. This is called
7106@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
7107single grouping whose symbol is the result (left hand side) of that rule.
7108Running the rule's action is part of the process of reduction, because this
7109is what computes the semantic value of the resulting grouping.
7110
7111For example, if the infix calculator's parser stack contains this:
7112
7113@example
71141 + 5 * 3
7115@end example
7116
7117@noindent
7118and the next input token is a newline character, then the last three
7119elements can be reduced to 15 via the rule:
7120
7121@example
7122expr: expr '*' expr;
7123@end example
7124
7125@noindent
7126Then the stack contains just these three elements:
7127
7128@example
71291 + 15
7130@end example
7131
7132@noindent
7133At this point, another reduction can be made, resulting in the single value
713416. Then the newline token can be shifted.
7135
7136The parser tries, by shifts and reductions, to reduce the entire input down
7137to a single grouping whose symbol is the grammar's start-symbol
7138(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
7139
7140This kind of parser is known in the literature as a bottom-up parser.
7141
7142@menu
742e4900 7143* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
7144* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
7145* Precedence:: Operator precedence works by resolving conflicts.
7146* Contextual Precedence:: When an operator's precedence depends on context.
7147* Parser States:: The parser is a finite-state-machine with stack.
7148* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 7149* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 7150* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 7151* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 7152* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
7153@end menu
7154
742e4900
JD
7155@node Lookahead
7156@section Lookahead Tokens
7157@cindex lookahead token
bfa74976
RS
7158
7159The Bison parser does @emph{not} always reduce immediately as soon as the
7160last @var{n} tokens and groupings match a rule. This is because such a
7161simple strategy is inadequate to handle most languages. Instead, when a
7162reduction is possible, the parser sometimes ``looks ahead'' at the next
7163token in order to decide what to do.
7164
7165When a token is read, it is not immediately shifted; first it becomes the
742e4900 7166@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 7167perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
7168the lookahead token remains off to the side. When no more reductions
7169should take place, the lookahead token is shifted onto the stack. This
bfa74976 7170does not mean that all possible reductions have been done; depending on the
742e4900 7171token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
7172application.
7173
742e4900 7174Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
7175expressions which contain binary addition operators and postfix unary
7176factorial operators (@samp{!}), and allow parentheses for grouping.
7177
7178@example
7179@group
5e9b6624
AD
7180expr:
7181 term '+' expr
7182| term
7183;
bfa74976
RS
7184@end group
7185
7186@group
5e9b6624
AD
7187term:
7188 '(' expr ')'
7189| term '!'
534cee7a 7190| "number"
5e9b6624 7191;
bfa74976
RS
7192@end group
7193@end example
7194
7195Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7196should be done? If the following token is @samp{)}, then the first three
7197tokens must be reduced to form an @code{expr}. This is the only valid
7198course, because shifting the @samp{)} would produce a sequence of symbols
7199@w{@code{term ')'}}, and no rule allows this.
7200
7201If the following token is @samp{!}, then it must be shifted immediately so
7202that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7203parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7204@code{expr}. It would then be impossible to shift the @samp{!} because
7205doing so would produce on the stack the sequence of symbols @code{expr
7206'!'}. No rule allows that sequence.
7207
7208@vindex yychar
32c29292
JD
7209@vindex yylval
7210@vindex yylloc
742e4900 7211The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7212Its semantic value and location, if any, are stored in the variables
7213@code{yylval} and @code{yylloc}.
bfa74976
RS
7214@xref{Action Features, ,Special Features for Use in Actions}.
7215
342b8b6e 7216@node Shift/Reduce
bfa74976
RS
7217@section Shift/Reduce Conflicts
7218@cindex conflicts
7219@cindex shift/reduce conflicts
7220@cindex dangling @code{else}
7221@cindex @code{else}, dangling
7222
7223Suppose we are parsing a language which has if-then and if-then-else
7224statements, with a pair of rules like this:
7225
7226@example
7227@group
7228if_stmt:
534cee7a
AD
7229 "if" expr "then" stmt
7230| "if" expr "then" stmt "else" stmt
5e9b6624 7231;
bfa74976
RS
7232@end group
7233@end example
7234
7235@noindent
534cee7a
AD
7236Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7237specific keyword tokens.
bfa74976 7238
534cee7a 7239When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7240contents of the stack (assuming the input is valid) are just right for
7241reduction by the first rule. But it is also legitimate to shift the
534cee7a 7242@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7243rule.
7244
7245This situation, where either a shift or a reduction would be valid, is
7246called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7247these conflicts by choosing to shift, unless otherwise directed by
7248operator precedence declarations. To see the reason for this, let's
7249contrast it with the other alternative.
7250
534cee7a 7251Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7252the else-clause to the innermost if-statement, making these two inputs
7253equivalent:
7254
7255@example
534cee7a 7256if x then if y then win; else lose;
bfa74976 7257
534cee7a 7258if x then do; if y then win; else lose; end;
bfa74976
RS
7259@end example
7260
7261But if the parser chose to reduce when possible rather than shift, the
7262result would be to attach the else-clause to the outermost if-statement,
7263making these two inputs equivalent:
7264
7265@example
534cee7a 7266if x then if y then win; else lose;
bfa74976 7267
534cee7a 7268if x then do; if y then win; end; else lose;
bfa74976
RS
7269@end example
7270
7271The conflict exists because the grammar as written is ambiguous: either
7272parsing of the simple nested if-statement is legitimate. The established
7273convention is that these ambiguities are resolved by attaching the
7274else-clause to the innermost if-statement; this is what Bison accomplishes
7275by choosing to shift rather than reduce. (It would ideally be cleaner to
7276write an unambiguous grammar, but that is very hard to do in this case.)
7277This particular ambiguity was first encountered in the specifications of
7278Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7279
7280To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7281conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7282There will be no warning as long as the number of shift/reduce conflicts
7283is exactly @var{n}, and Bison will report an error if there is a
7284different number.
c28cd5dc
AD
7285@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7286recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7287number of conflicts does not mean that they are the @emph{same}. When
7288possible, you should rather use precedence directives to @emph{fix} the
7289conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7290Operators}).
bfa74976
RS
7291
7292The definition of @code{if_stmt} above is solely to blame for the
7293conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7294rules. Here is a complete Bison grammar file that actually manifests
7295the conflict:
bfa74976
RS
7296
7297@example
bfa74976 7298%%
bfa74976 7299@group
5e9b6624
AD
7300stmt:
7301 expr
7302| if_stmt
7303;
bfa74976
RS
7304@end group
7305
7306@group
7307if_stmt:
534cee7a
AD
7308 "if" expr "then" stmt
7309| "if" expr "then" stmt "else" stmt
5e9b6624 7310;
bfa74976
RS
7311@end group
7312
5e9b6624 7313expr:
534cee7a 7314 "identifier"
5e9b6624 7315;
bfa74976
RS
7316@end example
7317
342b8b6e 7318@node Precedence
bfa74976
RS
7319@section Operator Precedence
7320@cindex operator precedence
7321@cindex precedence of operators
7322
7323Another situation where shift/reduce conflicts appear is in arithmetic
7324expressions. Here shifting is not always the preferred resolution; the
7325Bison declarations for operator precedence allow you to specify when to
7326shift and when to reduce.
7327
7328@menu
7329* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7330* Using Precedence:: How to specify precedence and associativity.
7331* Precedence Only:: How to specify precedence only.
bfa74976
RS
7332* Precedence Examples:: How these features are used in the previous example.
7333* How Precedence:: How they work.
c28cd5dc 7334* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7335@end menu
7336
342b8b6e 7337@node Why Precedence
bfa74976
RS
7338@subsection When Precedence is Needed
7339
7340Consider the following ambiguous grammar fragment (ambiguous because the
7341input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7342
7343@example
7344@group
5e9b6624
AD
7345expr:
7346 expr '-' expr
7347| expr '*' expr
7348| expr '<' expr
7349| '(' expr ')'
7350@dots{}
7351;
bfa74976
RS
7352@end group
7353@end example
7354
7355@noindent
7356Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7357should it reduce them via the rule for the subtraction operator? It
7358depends on the next token. Of course, if the next token is @samp{)}, we
7359must reduce; shifting is invalid because no single rule can reduce the
7360token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7361the next token is @samp{*} or @samp{<}, we have a choice: either
7362shifting or reduction would allow the parse to complete, but with
7363different results.
7364
7365To decide which one Bison should do, we must consider the results. If
7366the next operator token @var{op} is shifted, then it must be reduced
7367first in order to permit another opportunity to reduce the difference.
7368The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7369hand, if the subtraction is reduced before shifting @var{op}, the result
7370is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7371reduce should depend on the relative precedence of the operators
7372@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7373@samp{<}.
bfa74976
RS
7374
7375@cindex associativity
7376What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7377@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7378operators we prefer the former, which is called @dfn{left association}.
7379The latter alternative, @dfn{right association}, is desirable for
7380assignment operators. The choice of left or right association is a
7381matter of whether the parser chooses to shift or reduce when the stack
742e4900 7382contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7383makes right-associativity.
bfa74976 7384
342b8b6e 7385@node Using Precedence
bfa74976
RS
7386@subsection Specifying Operator Precedence
7387@findex %left
bfa74976 7388@findex %nonassoc
d78f0ac9
AD
7389@findex %precedence
7390@findex %right
bfa74976
RS
7391
7392Bison allows you to specify these choices with the operator precedence
7393declarations @code{%left} and @code{%right}. Each such declaration
7394contains a list of tokens, which are operators whose precedence and
7395associativity is being declared. The @code{%left} declaration makes all
7396those operators left-associative and the @code{%right} declaration makes
7397them right-associative. A third alternative is @code{%nonassoc}, which
7398declares that it is a syntax error to find the same operator twice ``in a
7399row''.
d78f0ac9
AD
7400The last alternative, @code{%precedence}, allows to define only
7401precedence and no associativity at all. As a result, any
7402associativity-related conflict that remains will be reported as an
7403compile-time error. The directive @code{%nonassoc} creates run-time
7404error: using the operator in a associative way is a syntax error. The
7405directive @code{%precedence} creates compile-time errors: an operator
7406@emph{can} be involved in an associativity-related conflict, contrary to
7407what expected the grammar author.
bfa74976
RS
7408
7409The relative precedence of different operators is controlled by the
d78f0ac9
AD
7410order in which they are declared. The first precedence/associativity
7411declaration in the file declares the operators whose
bfa74976
RS
7412precedence is lowest, the next such declaration declares the operators
7413whose precedence is a little higher, and so on.
7414
d78f0ac9
AD
7415@node Precedence Only
7416@subsection Specifying Precedence Only
7417@findex %precedence
7418
8a4281b9 7419Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7420@code{%nonassoc}, which all defines precedence and associativity, little
7421attention is paid to the fact that precedence cannot be defined without
7422defining associativity. Yet, sometimes, when trying to solve a
7423conflict, precedence suffices. In such a case, using @code{%left},
7424@code{%right}, or @code{%nonassoc} might hide future (associativity
7425related) conflicts that would remain hidden.
7426
7427The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7428Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7429in the following situation, where the period denotes the current parsing
7430state:
7431
7432@example
7433if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7434@end example
7435
7436The conflict involves the reduction of the rule @samp{IF expr THEN
7437stmt}, which precedence is by default that of its last token
7438(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7439disambiguation (attach the @code{else} to the closest @code{if}),
7440shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7441higher than that of @code{THEN}. But neither is expected to be involved
7442in an associativity related conflict, which can be specified as follows.
7443
7444@example
7445%precedence THEN
7446%precedence ELSE
7447@end example
7448
7449The unary-minus is another typical example where associativity is
7450usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7451Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7452used to declare the precedence of @code{NEG}, which is more than needed
7453since it also defines its associativity. While this is harmless in the
7454traditional example, who knows how @code{NEG} might be used in future
7455evolutions of the grammar@dots{}
7456
342b8b6e 7457@node Precedence Examples
bfa74976
RS
7458@subsection Precedence Examples
7459
7460In our example, we would want the following declarations:
7461
7462@example
7463%left '<'
7464%left '-'
7465%left '*'
7466@end example
7467
7468In a more complete example, which supports other operators as well, we
7469would declare them in groups of equal precedence. For example, @code{'+'} is
7470declared with @code{'-'}:
7471
7472@example
534cee7a 7473%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7474%left '+' '-'
7475%left '*' '/'
7476@end example
7477
342b8b6e 7478@node How Precedence
bfa74976
RS
7479@subsection How Precedence Works
7480
7481The first effect of the precedence declarations is to assign precedence
7482levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7483precedence levels to certain rules: each rule gets its precedence from
7484the last terminal symbol mentioned in the components. (You can also
7485specify explicitly the precedence of a rule. @xref{Contextual
7486Precedence, ,Context-Dependent Precedence}.)
7487
7488Finally, the resolution of conflicts works by comparing the precedence
742e4900 7489of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7490token's precedence is higher, the choice is to shift. If the rule's
7491precedence is higher, the choice is to reduce. If they have equal
7492precedence, the choice is made based on the associativity of that
7493precedence level. The verbose output file made by @samp{-v}
7494(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7495resolved.
bfa74976
RS
7496
7497Not all rules and not all tokens have precedence. If either the rule or
742e4900 7498the lookahead token has no precedence, then the default is to shift.
bfa74976 7499
c28cd5dc
AD
7500@node Non Operators
7501@subsection Using Precedence For Non Operators
7502
7503Using properly precedence and associativity directives can help fixing
7504shift/reduce conflicts that do not involve arithmetics-like operators. For
7505instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7506Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7507
7508In the present case, the conflict is between the token @code{"else"} willing
7509to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7510for reduction. By default, the precedence of a rule is that of its last
7511token, here @code{"then"}, so the conflict will be solved appropriately
7512by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7513instance as follows:
7514
7515@example
7516@group
589149dc
AD
7517%precedence "then"
7518%precedence "else"
c28cd5dc
AD
7519@end group
7520@end example
7521
7522Alternatively, you may give both tokens the same precedence, in which case
7523associativity is used to solve the conflict. To preserve the shift action,
7524use right associativity:
7525
7526@example
7527%right "then" "else"
7528@end example
7529
7530Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7531``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7532of these keywords with respect to the other operators your grammar.
7533Therefore, instead of being warned about new conflicts you would be unaware
7534of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7535being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7536else 2) + 3}?), the conflict will be already ``fixed''.
7537
342b8b6e 7538@node Contextual Precedence
bfa74976
RS
7539@section Context-Dependent Precedence
7540@cindex context-dependent precedence
7541@cindex unary operator precedence
7542@cindex precedence, context-dependent
7543@cindex precedence, unary operator
7544@findex %prec
7545
7546Often the precedence of an operator depends on the context. This sounds
7547outlandish at first, but it is really very common. For example, a minus
7548sign typically has a very high precedence as a unary operator, and a
7549somewhat lower precedence (lower than multiplication) as a binary operator.
7550
d78f0ac9
AD
7551The Bison precedence declarations
7552can only be used once for a given token; so a token has
bfa74976
RS
7553only one precedence declared in this way. For context-dependent
7554precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7555modifier for rules.
bfa74976
RS
7556
7557The @code{%prec} modifier declares the precedence of a particular rule by
7558specifying a terminal symbol whose precedence should be used for that rule.
7559It's not necessary for that symbol to appear otherwise in the rule. The
7560modifier's syntax is:
7561
7562@example
7563%prec @var{terminal-symbol}
7564@end example
7565
7566@noindent
7567and it is written after the components of the rule. Its effect is to
7568assign the rule the precedence of @var{terminal-symbol}, overriding
7569the precedence that would be deduced for it in the ordinary way. The
7570altered rule precedence then affects how conflicts involving that rule
7571are resolved (@pxref{Precedence, ,Operator Precedence}).
7572
7573Here is how @code{%prec} solves the problem of unary minus. First, declare
7574a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7575are no tokens of this type, but the symbol serves to stand for its
7576precedence:
7577
7578@example
7579@dots{}
7580%left '+' '-'
7581%left '*'
7582%left UMINUS
7583@end example
7584
7585Now the precedence of @code{UMINUS} can be used in specific rules:
7586
7587@example
7588@group
5e9b6624
AD
7589exp:
7590 @dots{}
7591| exp '-' exp
7592 @dots{}
7593| '-' exp %prec UMINUS
bfa74976
RS
7594@end group
7595@end example
7596
91d2c560 7597@ifset defaultprec
39a06c25
PE
7598If you forget to append @code{%prec UMINUS} to the rule for unary
7599minus, Bison silently assumes that minus has its usual precedence.
7600This kind of problem can be tricky to debug, since one typically
7601discovers the mistake only by testing the code.
7602
22fccf95 7603The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7604this kind of problem systematically. It causes rules that lack a
7605@code{%prec} modifier to have no precedence, even if the last terminal
7606symbol mentioned in their components has a declared precedence.
7607
22fccf95 7608If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7609for all rules that participate in precedence conflict resolution.
7610Then you will see any shift/reduce conflict until you tell Bison how
7611to resolve it, either by changing your grammar or by adding an
7612explicit precedence. This will probably add declarations to the
7613grammar, but it helps to protect against incorrect rule precedences.
7614
22fccf95
PE
7615The effect of @code{%no-default-prec;} can be reversed by giving
7616@code{%default-prec;}, which is the default.
91d2c560 7617@end ifset
39a06c25 7618
342b8b6e 7619@node Parser States
bfa74976
RS
7620@section Parser States
7621@cindex finite-state machine
7622@cindex parser state
7623@cindex state (of parser)
7624
7625The function @code{yyparse} is implemented using a finite-state machine.
7626The values pushed on the parser stack are not simply token type codes; they
7627represent the entire sequence of terminal and nonterminal symbols at or
7628near the top of the stack. The current state collects all the information
7629about previous input which is relevant to deciding what to do next.
7630
742e4900
JD
7631Each time a lookahead token is read, the current parser state together
7632with the type of lookahead token are looked up in a table. This table
7633entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7634specifies the new parser state, which is pushed onto the top of the
7635parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7636This means that a certain number of tokens or groupings are taken off
7637the top of the stack, and replaced by one grouping. In other words,
7638that number of states are popped from the stack, and one new state is
7639pushed.
7640
742e4900 7641There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7642is erroneous in the current state. This causes error processing to begin
7643(@pxref{Error Recovery}).
7644
342b8b6e 7645@node Reduce/Reduce
bfa74976
RS
7646@section Reduce/Reduce Conflicts
7647@cindex reduce/reduce conflict
7648@cindex conflicts, reduce/reduce
7649
7650A reduce/reduce conflict occurs if there are two or more rules that apply
7651to the same sequence of input. This usually indicates a serious error
7652in the grammar.
7653
7654For example, here is an erroneous attempt to define a sequence
7655of zero or more @code{word} groupings.
7656
7657@example
d4fca427 7658@group
5e9b6624 7659sequence:
6240346a 7660 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7661| maybeword
7662| sequence word @{ printf ("added word %s\n", $2); @}
7663;
d4fca427 7664@end group
bfa74976 7665
d4fca427 7666@group
5e9b6624 7667maybeword:
6240346a
AD
7668 %empty @{ printf ("empty maybeword\n"); @}
7669| word @{ printf ("single word %s\n", $1); @}
5e9b6624 7670;
d4fca427 7671@end group
bfa74976
RS
7672@end example
7673
7674@noindent
7675The error is an ambiguity: there is more than one way to parse a single
7676@code{word} into a @code{sequence}. It could be reduced to a
7677@code{maybeword} and then into a @code{sequence} via the second rule.
7678Alternatively, nothing-at-all could be reduced into a @code{sequence}
7679via the first rule, and this could be combined with the @code{word}
7680using the third rule for @code{sequence}.
7681
7682There is also more than one way to reduce nothing-at-all into a
7683@code{sequence}. This can be done directly via the first rule,
7684or indirectly via @code{maybeword} and then the second rule.
7685
7686You might think that this is a distinction without a difference, because it
7687does not change whether any particular input is valid or not. But it does
7688affect which actions are run. One parsing order runs the second rule's
7689action; the other runs the first rule's action and the third rule's action.
7690In this example, the output of the program changes.
7691
7692Bison resolves a reduce/reduce conflict by choosing to use the rule that
7693appears first in the grammar, but it is very risky to rely on this. Every
7694reduce/reduce conflict must be studied and usually eliminated. Here is the
7695proper way to define @code{sequence}:
7696
7697@example
51356dd2 7698@group
5e9b6624 7699sequence:
6240346a 7700 %empty @{ printf ("empty sequence\n"); @}
5e9b6624
AD
7701| sequence word @{ printf ("added word %s\n", $2); @}
7702;
51356dd2 7703@end group
bfa74976
RS
7704@end example
7705
7706Here is another common error that yields a reduce/reduce conflict:
7707
7708@example
51356dd2 7709@group
589149dc 7710sequence:
6240346a 7711 %empty
5e9b6624
AD
7712| sequence words
7713| sequence redirects
7714;
51356dd2 7715@end group
bfa74976 7716
51356dd2 7717@group
5e9b6624 7718words:
6240346a 7719 %empty
5e9b6624
AD
7720| words word
7721;
51356dd2 7722@end group
bfa74976 7723
51356dd2 7724@group
5e9b6624 7725redirects:
6240346a 7726 %empty
5e9b6624
AD
7727| redirects redirect
7728;
51356dd2 7729@end group
bfa74976
RS
7730@end example
7731
7732@noindent
7733The intention here is to define a sequence which can contain either
7734@code{word} or @code{redirect} groupings. The individual definitions of
7735@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7736three together make a subtle ambiguity: even an empty input can be parsed
7737in infinitely many ways!
7738
7739Consider: nothing-at-all could be a @code{words}. Or it could be two
7740@code{words} in a row, or three, or any number. It could equally well be a
7741@code{redirects}, or two, or any number. Or it could be a @code{words}
7742followed by three @code{redirects} and another @code{words}. And so on.
7743
7744Here are two ways to correct these rules. First, to make it a single level
7745of sequence:
7746
7747@example
5e9b6624 7748sequence:
6240346a 7749 %empty
5e9b6624
AD
7750| sequence word
7751| sequence redirect
7752;
bfa74976
RS
7753@end example
7754
7755Second, to prevent either a @code{words} or a @code{redirects}
7756from being empty:
7757
7758@example
d4fca427 7759@group
5e9b6624 7760sequence:
6240346a 7761 %empty
5e9b6624
AD
7762| sequence words
7763| sequence redirects
7764;
d4fca427 7765@end group
bfa74976 7766
d4fca427 7767@group
5e9b6624
AD
7768words:
7769 word
7770| words word
7771;
d4fca427 7772@end group
bfa74976 7773
d4fca427 7774@group
5e9b6624
AD
7775redirects:
7776 redirect
7777| redirects redirect
7778;
d4fca427 7779@end group
bfa74976
RS
7780@end example
7781
53e2cd1e
AD
7782Yet this proposal introduces another kind of ambiguity! The input
7783@samp{word word} can be parsed as a single @code{words} composed of two
7784@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7785@code{redirect}/@code{redirects}). However this ambiguity is now a
7786shift/reduce conflict, and therefore it can now be addressed with precedence
7787directives.
7788
7789To simplify the matter, we will proceed with @code{word} and @code{redirect}
7790being tokens: @code{"word"} and @code{"redirect"}.
7791
7792To prefer the longest @code{words}, the conflict between the token
7793@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7794as a shift. To this end, we use the same techniques as exposed above, see
7795@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7796relies on precedences: use @code{%prec} to give a lower precedence to the
7797rule:
7798
7799@example
589149dc
AD
7800%precedence "word"
7801%precedence "sequence"
53e2cd1e
AD
7802%%
7803@group
7804sequence:
6240346a 7805 %empty
53e2cd1e
AD
7806| sequence word %prec "sequence"
7807| sequence redirect %prec "sequence"
7808;
7809@end group
7810
7811@group
7812words:
7813 word
7814| words "word"
7815;
7816@end group
7817@end example
7818
7819Another solution relies on associativity: provide both the token and the
7820rule with the same precedence, but make them right-associative:
7821
7822@example
7823%right "word" "redirect"
7824%%
7825@group
7826sequence:
6240346a 7827 %empty
53e2cd1e
AD
7828| sequence word %prec "word"
7829| sequence redirect %prec "redirect"
7830;
7831@end group
7832@end example
7833
cc09e5be
JD
7834@node Mysterious Conflicts
7835@section Mysterious Conflicts
7fceb615 7836@cindex Mysterious Conflicts
bfa74976
RS
7837
7838Sometimes reduce/reduce conflicts can occur that don't look warranted.
7839Here is an example:
7840
7841@example
7842@group
bfa74976 7843%%
5e9b6624 7844def: param_spec return_spec ',';
bfa74976 7845param_spec:
5e9b6624
AD
7846 type
7847| name_list ':' type
7848;
bfa74976 7849@end group
589149dc 7850
bfa74976
RS
7851@group
7852return_spec:
5e9b6624
AD
7853 type
7854| name ':' type
7855;
bfa74976 7856@end group
589149dc 7857
534cee7a 7858type: "id";
589149dc 7859
bfa74976 7860@group
534cee7a 7861name: "id";
bfa74976 7862name_list:
5e9b6624
AD
7863 name
7864| name ',' name_list
7865;
bfa74976
RS
7866@end group
7867@end example
7868
534cee7a
AD
7869It would seem that this grammar can be parsed with only a single token of
7870lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7871@code{name} if a comma or colon follows, or a @code{type} if another
7872@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7873
7fceb615
JD
7874@cindex LR
7875@cindex LALR
eb45ef3b 7876However, for historical reasons, Bison cannot by default handle all
8a4281b9 7877LR(1) grammars.
534cee7a 7878In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7879of a @code{param_spec} and likewise at the beginning of a
7880@code{return_spec}, are similar enough that Bison assumes they are the
7881same.
7882They appear similar because the same set of rules would be
bfa74976
RS
7883active---the rule for reducing to a @code{name} and that for reducing to
7884a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7885that the rules would require different lookahead tokens in the two
bfa74976
RS
7886contexts, so it makes a single parser state for them both. Combining
7887the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7888occurrence means that the grammar is not LALR(1).
bfa74976 7889
7fceb615
JD
7890@cindex IELR
7891@cindex canonical LR
7892For many practical grammars (specifically those that fall into the non-LR(1)
7893class), the limitations of LALR(1) result in difficulties beyond just
7894mysterious reduce/reduce conflicts. The best way to fix all these problems
7895is to select a different parser table construction algorithm. Either
7896IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7897and easier to debug during development. @xref{LR Table Construction}, for
7898details. (Bison's IELR(1) and canonical LR(1) implementations are
7899experimental. More user feedback will help to stabilize them.)
eb45ef3b 7900
8a4281b9 7901If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7902can often fix a mysterious conflict by identifying the two parser states
7903that are being confused, and adding something to make them look
7904distinct. In the above example, adding one rule to
bfa74976
RS
7905@code{return_spec} as follows makes the problem go away:
7906
7907@example
7908@group
bfa74976
RS
7909@dots{}
7910return_spec:
5e9b6624
AD
7911 type
7912| name ':' type
534cee7a 7913| "id" "bogus" /* This rule is never used. */
5e9b6624 7914;
bfa74976
RS
7915@end group
7916@end example
7917
7918This corrects the problem because it introduces the possibility of an
534cee7a 7919additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7920@code{return_spec}. This rule is not active in the corresponding context
7921in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7922As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7923the added rule cannot alter the way actual input is parsed.
7924
7925In this particular example, there is another way to solve the problem:
534cee7a 7926rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7927instead of via @code{name}. This also causes the two confusing
7928contexts to have different sets of active rules, because the one for
7929@code{return_spec} activates the altered rule for @code{return_spec}
7930rather than the one for @code{name}.
7931
7932@example
589149dc 7933@group
bfa74976 7934param_spec:
5e9b6624
AD
7935 type
7936| name_list ':' type
7937;
589149dc
AD
7938@end group
7939
7940@group
bfa74976 7941return_spec:
5e9b6624 7942 type
534cee7a 7943| "id" ':' type
5e9b6624 7944;
589149dc 7945@end group
bfa74976
RS
7946@end example
7947
8a4281b9 7948For a more detailed exposition of LALR(1) parsers and parser
5e528941 7949generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7950
7fceb615
JD
7951@node Tuning LR
7952@section Tuning LR
7953
7954The default behavior of Bison's LR-based parsers is chosen mostly for
7955historical reasons, but that behavior is often not robust. For example, in
7956the previous section, we discussed the mysterious conflicts that can be
7957produced by LALR(1), Bison's default parser table construction algorithm.
7958Another example is Bison's @code{%define parse.error verbose} directive,
7959which instructs the generated parser to produce verbose syntax error
7960messages, which can sometimes contain incorrect information.
7961
7962In this section, we explore several modern features of Bison that allow you
7963to tune fundamental aspects of the generated LR-based parsers. Some of
7964these features easily eliminate shortcomings like those mentioned above.
7965Others can be helpful purely for understanding your parser.
7966
7967Most of the features discussed in this section are still experimental. More
7968user feedback will help to stabilize them.
7969
7970@menu
7971* LR Table Construction:: Choose a different construction algorithm.
7972* Default Reductions:: Disable default reductions.
7973* LAC:: Correct lookahead sets in the parser states.
7974* Unreachable States:: Keep unreachable parser states for debugging.
7975@end menu
7976
7977@node LR Table Construction
7978@subsection LR Table Construction
7979@cindex Mysterious Conflict
7980@cindex LALR
7981@cindex IELR
7982@cindex canonical LR
7983@findex %define lr.type
7984
7985For historical reasons, Bison constructs LALR(1) parser tables by default.
7986However, LALR does not possess the full language-recognition power of LR.
7987As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7988mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7989Conflicts}.
7990
7991As we also demonstrated in that example, the traditional approach to
7992eliminating such mysterious behavior is to restructure the grammar.
7993Unfortunately, doing so correctly is often difficult. Moreover, merely
7994discovering that LALR causes mysterious behavior in your parser can be
7995difficult as well.
7996
7997Fortunately, Bison provides an easy way to eliminate the possibility of such
7998mysterious behavior altogether. You simply need to activate a more powerful
7999parser table construction algorithm by using the @code{%define lr.type}
8000directive.
8001
511dd971 8002@deffn {Directive} {%define lr.type} @var{type}
7fceb615 8003Specify the type of parser tables within the LR(1) family. The accepted
511dd971 8004values for @var{type} are:
7fceb615
JD
8005
8006@itemize
8007@item @code{lalr} (default)
8008@item @code{ielr}
8009@item @code{canonical-lr}
8010@end itemize
8011
8012(This feature is experimental. More user feedback will help to stabilize
8013it.)
8014@end deffn
8015
8016For example, to activate IELR, you might add the following directive to you
8017grammar file:
8018
8019@example
8020%define lr.type ielr
8021@end example
8022
cc09e5be 8023@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
8024conflict is then eliminated, so there is no need to invest time in
8025comprehending the conflict or restructuring the grammar to fix it. If,
8026during future development, the grammar evolves such that all mysterious
8027behavior would have disappeared using just LALR, you need not fear that
8028continuing to use IELR will result in unnecessarily large parser tables.
8029That is, IELR generates LALR tables when LALR (using a deterministic parsing
8030algorithm) is sufficient to support the full language-recognition power of
8031LR. Thus, by enabling IELR at the start of grammar development, you can
8032safely and completely eliminate the need to consider LALR's shortcomings.
8033
8034While IELR is almost always preferable, there are circumstances where LALR
8035or the canonical LR parser tables described by Knuth
8036(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
8037relative advantages of each parser table construction algorithm within
8038Bison:
8039
8040@itemize
8041@item LALR
8042
8043There are at least two scenarios where LALR can be worthwhile:
8044
8045@itemize
8046@item GLR without static conflict resolution.
8047
8048@cindex GLR with LALR
8049When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
8050conflicts statically (for example, with @code{%left} or @code{%precedence}),
8051then
7fceb615
JD
8052the parser explores all potential parses of any given input. In this case,
8053the choice of parser table construction algorithm is guaranteed not to alter
8054the language accepted by the parser. LALR parser tables are the smallest
8055parser tables Bison can currently construct, so they may then be preferable.
8056Nevertheless, once you begin to resolve conflicts statically, GLR behaves
8057more like a deterministic parser in the syntactic contexts where those
8058conflicts appear, and so either IELR or canonical LR can then be helpful to
8059avoid LALR's mysterious behavior.
8060
8061@item Malformed grammars.
8062
8063Occasionally during development, an especially malformed grammar with a
8064major recurring flaw may severely impede the IELR or canonical LR parser
8065table construction algorithm. LALR can be a quick way to construct parser
8066tables in order to investigate such problems while ignoring the more subtle
8067differences from IELR and canonical LR.
8068@end itemize
8069
8070@item IELR
8071
8072IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
8073any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
8074always accept exactly the same set of sentences. However, like LALR, IELR
8075merges parser states during parser table construction so that the number of
8076parser states is often an order of magnitude less than for canonical LR.
8077More importantly, because canonical LR's extra parser states may contain
8078duplicate conflicts in the case of non-LR grammars, the number of conflicts
8079for IELR is often an order of magnitude less as well. This effect can
8080significantly reduce the complexity of developing a grammar.
8081
8082@item Canonical LR
8083
8084@cindex delayed syntax error detection
8085@cindex LAC
8086@findex %nonassoc
8087While inefficient, canonical LR parser tables can be an interesting means to
8088explore a grammar because they possess a property that IELR and LALR tables
8089do not. That is, if @code{%nonassoc} is not used and default reductions are
8090left disabled (@pxref{Default Reductions}), then, for every left context of
8091every canonical LR state, the set of tokens accepted by that state is
8092guaranteed to be the exact set of tokens that is syntactically acceptable in
8093that left context. It might then seem that an advantage of canonical LR
8094parsers in production is that, under the above constraints, they are
8095guaranteed to detect a syntax error as soon as possible without performing
8096any unnecessary reductions. However, IELR parsers that use LAC are also
8097able to achieve this behavior without sacrificing @code{%nonassoc} or
8098default reductions. For details and a few caveats of LAC, @pxref{LAC}.
8099@end itemize
8100
8101For a more detailed exposition of the mysterious behavior in LALR parsers
8102and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
8103@ref{Bibliography,,Denny 2010 November}.
8104
8105@node Default Reductions
8106@subsection Default Reductions
8107@cindex default reductions
f3bc3386 8108@findex %define lr.default-reduction
7fceb615
JD
8109@findex %nonassoc
8110
8111After parser table construction, Bison identifies the reduction with the
8112largest lookahead set in each parser state. To reduce the size of the
8113parser state, traditional Bison behavior is to remove that lookahead set and
8114to assign that reduction to be the default parser action. Such a reduction
8115is known as a @dfn{default reduction}.
8116
8117Default reductions affect more than the size of the parser tables. They
8118also affect the behavior of the parser:
8119
8120@itemize
8121@item Delayed @code{yylex} invocations.
8122
8123@cindex delayed yylex invocations
8124@cindex consistent states
8125@cindex defaulted states
8126A @dfn{consistent state} is a state that has only one possible parser
8127action. If that action is a reduction and is encoded as a default
8128reduction, then that consistent state is called a @dfn{defaulted state}.
8129Upon reaching a defaulted state, a Bison-generated parser does not bother to
8130invoke @code{yylex} to fetch the next token before performing the reduction.
8131In other words, whether default reductions are enabled in consistent states
8132determines how soon a Bison-generated parser invokes @code{yylex} for a
8133token: immediately when it @emph{reaches} that token in the input or when it
8134eventually @emph{needs} that token as a lookahead to determine the next
8135parser action. Traditionally, default reductions are enabled, and so the
8136parser exhibits the latter behavior.
8137
8138The presence of defaulted states is an important consideration when
8139designing @code{yylex} and the grammar file. That is, if the behavior of
8140@code{yylex} can influence or be influenced by the semantic actions
8141associated with the reductions in defaulted states, then the delay of the
8142next @code{yylex} invocation until after those reductions is significant.
8143For example, the semantic actions might pop a scope stack that @code{yylex}
8144uses to determine what token to return. Thus, the delay might be necessary
8145to ensure that @code{yylex} does not look up the next token in a scope that
8146should already be considered closed.
8147
8148@item Delayed syntax error detection.
8149
8150@cindex delayed syntax error detection
8151When the parser fetches a new token by invoking @code{yylex}, it checks
8152whether there is an action for that token in the current parser state. The
8153parser detects a syntax error if and only if either (1) there is no action
8154for that token or (2) the action for that token is the error action (due to
8155the use of @code{%nonassoc}). However, if there is a default reduction in
8156that state (which might or might not be a defaulted state), then it is
8157impossible for condition 1 to exist. That is, all tokens have an action.
8158Thus, the parser sometimes fails to detect the syntax error until it reaches
8159a later state.
8160
8161@cindex LAC
8162@c If there's an infinite loop, default reductions can prevent an incorrect
8163@c sentence from being rejected.
8164While default reductions never cause the parser to accept syntactically
8165incorrect sentences, the delay of syntax error detection can have unexpected
8166effects on the behavior of the parser. However, the delay can be caused
8167anyway by parser state merging and the use of @code{%nonassoc}, and it can
8168be fixed by another Bison feature, LAC. We discuss the effects of delayed
8169syntax error detection and LAC more in the next section (@pxref{LAC}).
8170@end itemize
8171
8172For canonical LR, the only default reduction that Bison enables by default
8173is the accept action, which appears only in the accepting state, which has
8174no other action and is thus a defaulted state. However, the default accept
8175action does not delay any @code{yylex} invocation or syntax error detection
8176because the accept action ends the parse.
8177
8178For LALR and IELR, Bison enables default reductions in nearly all states by
8179default. There are only two exceptions. First, states that have a shift
8180action on the @code{error} token do not have default reductions because
8181delayed syntax error detection could then prevent the @code{error} token
8182from ever being shifted in that state. However, parser state merging can
8183cause the same effect anyway, and LAC fixes it in both cases, so future
8184versions of Bison might drop this exception when LAC is activated. Second,
8185GLR parsers do not record the default reduction as the action on a lookahead
8186token for which there is a conflict. The correct action in this case is to
8187split the parse instead.
8188
8189To adjust which states have default reductions enabled, use the
f3bc3386 8190@code{%define lr.default-reduction} directive.
7fceb615 8191
5807bb91 8192@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8193Specify the kind of states that are permitted to contain default reductions.
511dd971 8194The accepted values of @var{where} are:
7fceb615 8195@itemize
f0ad1b2f 8196@item @code{most} (default for LALR and IELR)
7fceb615
JD
8197@item @code{consistent}
8198@item @code{accepting} (default for canonical LR)
8199@end itemize
8200
8201(The ability to specify where default reductions are permitted is
8202experimental. More user feedback will help to stabilize it.)
8203@end deffn
8204
7fceb615
JD
8205@node LAC
8206@subsection LAC
8207@findex %define parse.lac
8208@cindex LAC
8209@cindex lookahead correction
8210
8211Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8212encountering a syntax error. First, the parser might perform additional
8213parser stack reductions before discovering the syntax error. Such
8214reductions can perform user semantic actions that are unexpected because
8215they are based on an invalid token, and they cause error recovery to begin
8216in a different syntactic context than the one in which the invalid token was
8217encountered. Second, when verbose error messages are enabled (@pxref{Error
8218Reporting}), the expected token list in the syntax error message can both
8219contain invalid tokens and omit valid tokens.
8220
8221The culprits for the above problems are @code{%nonassoc}, default reductions
8222in inconsistent states (@pxref{Default Reductions}), and parser state
8223merging. Because IELR and LALR merge parser states, they suffer the most.
8224Canonical LR can suffer only if @code{%nonassoc} is used or if default
8225reductions are enabled for inconsistent states.
8226
8227LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8228that solves these problems for canonical LR, IELR, and LALR without
8229sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8230enable LAC with the @code{%define parse.lac} directive.
8231
511dd971 8232@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8233Enable LAC to improve syntax error handling.
8234@itemize
8235@item @code{none} (default)
8236@item @code{full}
8237@end itemize
8238(This feature is experimental. More user feedback will help to stabilize
8239it. Moreover, it is currently only available for deterministic parsers in
8240C.)
8241@end deffn
8242
8243Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8244fetches a new token from the scanner so that it can determine the next
8245parser action, it immediately suspends normal parsing and performs an
8246exploratory parse using a temporary copy of the normal parser state stack.
8247During this exploratory parse, the parser does not perform user semantic
8248actions. If the exploratory parse reaches a shift action, normal parsing
8249then resumes on the normal parser stacks. If the exploratory parse reaches
8250an error instead, the parser reports a syntax error. If verbose syntax
8251error messages are enabled, the parser must then discover the list of
8252expected tokens, so it performs a separate exploratory parse for each token
8253in the grammar.
8254
8255There is one subtlety about the use of LAC. That is, when in a consistent
8256parser state with a default reduction, the parser will not attempt to fetch
8257a token from the scanner because no lookahead is needed to determine the
8258next parser action. Thus, whether default reductions are enabled in
8259consistent states (@pxref{Default Reductions}) affects how soon the parser
8260detects a syntax error: immediately when it @emph{reaches} an erroneous
8261token or when it eventually @emph{needs} that token as a lookahead to
8262determine the next parser action. The latter behavior is probably more
8263intuitive, so Bison currently provides no way to achieve the former behavior
8264while default reductions are enabled in consistent states.
8265
8266Thus, when LAC is in use, for some fixed decision of whether to enable
8267default reductions in consistent states, canonical LR and IELR behave almost
8268exactly the same for both syntactically acceptable and syntactically
8269unacceptable input. While LALR still does not support the full
8270language-recognition power of canonical LR and IELR, LAC at least enables
8271LALR's syntax error handling to correctly reflect LALR's
8272language-recognition power.
8273
8274There are a few caveats to consider when using LAC:
8275
8276@itemize
8277@item Infinite parsing loops.
8278
8279IELR plus LAC does have one shortcoming relative to canonical LR. Some
8280parsers generated by Bison can loop infinitely. LAC does not fix infinite
8281parsing loops that occur between encountering a syntax error and detecting
8282it, but enabling canonical LR or disabling default reductions sometimes
8283does.
8284
8285@item Verbose error message limitations.
8286
8287Because of internationalization considerations, Bison-generated parsers
8288limit the size of the expected token list they are willing to report in a
8289verbose syntax error message. If the number of expected tokens exceeds that
8290limit, the list is simply dropped from the message. Enabling LAC can
8291increase the size of the list and thus cause the parser to drop it. Of
8292course, dropping the list is better than reporting an incorrect list.
8293
8294@item Performance.
8295
8296Because LAC requires many parse actions to be performed twice, it can have a
8297performance penalty. However, not all parse actions must be performed
8298twice. Specifically, during a series of default reductions in consistent
8299states and shift actions, the parser never has to initiate an exploratory
8300parse. Moreover, the most time-consuming tasks in a parse are often the
8301file I/O, the lexical analysis performed by the scanner, and the user's
8302semantic actions, but none of these are performed during the exploratory
8303parse. Finally, the base of the temporary stack used during an exploratory
8304parse is a pointer into the normal parser state stack so that the stack is
8305never physically copied. In our experience, the performance penalty of LAC
5a321748 8306has proved insignificant for practical grammars.
7fceb615
JD
8307@end itemize
8308
709c7d11
JD
8309While the LAC algorithm shares techniques that have been recognized in the
8310parser community for years, for the publication that introduces LAC,
8311@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8312
7fceb615
JD
8313@node Unreachable States
8314@subsection Unreachable States
f3bc3386 8315@findex %define lr.keep-unreachable-state
7fceb615
JD
8316@cindex unreachable states
8317
8318If there exists no sequence of transitions from the parser's start state to
8319some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8320state}. A state can become unreachable during conflict resolution if Bison
8321disables a shift action leading to it from a predecessor state.
8322
8323By default, Bison removes unreachable states from the parser after conflict
8324resolution because they are useless in the generated parser. However,
8325keeping unreachable states is sometimes useful when trying to understand the
8326relationship between the parser and the grammar.
8327
5807bb91 8328@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8329Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8330@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8331@end deffn
8332
8333There are a few caveats to consider:
8334
8335@itemize @bullet
8336@item Missing or extraneous warnings.
8337
8338Unreachable states may contain conflicts and may use rules not used in any
8339other state. Thus, keeping unreachable states may induce warnings that are
8340irrelevant to your parser's behavior, and it may eliminate warnings that are
8341relevant. Of course, the change in warnings may actually be relevant to a
8342parser table analysis that wants to keep unreachable states, so this
8343behavior will likely remain in future Bison releases.
8344
8345@item Other useless states.
8346
8347While Bison is able to remove unreachable states, it is not guaranteed to
8348remove other kinds of useless states. Specifically, when Bison disables
8349reduce actions during conflict resolution, some goto actions may become
8350useless, and thus some additional states may become useless. If Bison were
8351to compute which goto actions were useless and then disable those actions,
8352it could identify such states as unreachable and then remove those states.
8353However, Bison does not compute which goto actions are useless.
8354@end itemize
8355
fae437e8 8356@node Generalized LR Parsing
8a4281b9
JD
8357@section Generalized LR (GLR) Parsing
8358@cindex GLR parsing
8359@cindex generalized LR (GLR) parsing
676385e2 8360@cindex ambiguous grammars
9d9b8b70 8361@cindex nondeterministic parsing
676385e2 8362
fae437e8
AD
8363Bison produces @emph{deterministic} parsers that choose uniquely
8364when to reduce and which reduction to apply
742e4900 8365based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8366As a result, normal Bison handles a proper subset of the family of
8367context-free languages.
fae437e8 8368Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8369sequence of reductions cannot have deterministic parsers in this sense.
8370The same is true of languages that require more than one symbol of
742e4900 8371lookahead, since the parser lacks the information necessary to make a
676385e2 8372decision at the point it must be made in a shift-reduce parser.
cc09e5be 8373Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8374there are languages where Bison's default choice of how to
676385e2
PH
8375summarize the input seen so far loses necessary information.
8376
8377When you use the @samp{%glr-parser} declaration in your grammar file,
8378Bison generates a parser that uses a different algorithm, called
8a4281b9 8379Generalized LR (or GLR). A Bison GLR
c827f760 8380parser uses the same basic
676385e2
PH
8381algorithm for parsing as an ordinary Bison parser, but behaves
8382differently in cases where there is a shift-reduce conflict that has not
fae437e8 8383been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8384reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8385situation, it
fae437e8 8386effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8387shift or reduction. These parsers then proceed as usual, consuming
8388tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8389and split further, with the result that instead of a sequence of states,
8a4281b9 8390a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8391
8392In effect, each stack represents a guess as to what the proper parse
8393is. Additional input may indicate that a guess was wrong, in which case
8394the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8395actions generated in each stack are saved, rather than being executed
676385e2 8396immediately. When a stack disappears, its saved semantic actions never
fae437e8 8397get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8398their sets of semantic actions are both saved with the state that
8399results from the reduction. We say that two stacks are equivalent
fae437e8 8400when they both represent the same sequence of states,
676385e2
PH
8401and each pair of corresponding states represents a
8402grammar symbol that produces the same segment of the input token
8403stream.
8404
8405Whenever the parser makes a transition from having multiple
eb45ef3b 8406states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8407algorithm, after resolving and executing the saved-up actions.
8408At this transition, some of the states on the stack will have semantic
8409values that are sets (actually multisets) of possible actions. The
8410parser tries to pick one of the actions by first finding one whose rule
8411has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8412declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8413precedence, but there the same merging function is declared for both
fae437e8 8414rules by the @samp{%merge} declaration,
676385e2
PH
8415Bison resolves and evaluates both and then calls the merge function on
8416the result. Otherwise, it reports an ambiguity.
8417
8a4281b9
JD
8418It is possible to use a data structure for the GLR parsing tree that
8419permits the processing of any LR(1) grammar in linear time (in the
c827f760 8420size of the input), any unambiguous (not necessarily
8a4281b9 8421LR(1)) grammar in
fae437e8 8422quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8423context-free grammar in cubic worst-case time. However, Bison currently
8424uses a simpler data structure that requires time proportional to the
8425length of the input times the maximum number of stacks required for any
9d9b8b70 8426prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8427grammars can require exponential time and space to process. Such badly
8428behaving examples, however, are not generally of practical interest.
9d9b8b70 8429Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8430doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8431structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8432grammar, in particular, it is only slightly slower than with the
8a4281b9 8433deterministic LR(1) Bison parser.
676385e2 8434
5e528941
JD
8435For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
84362000}.
f6481e2f 8437
1a059451
PE
8438@node Memory Management
8439@section Memory Management, and How to Avoid Memory Exhaustion
8440@cindex memory exhaustion
8441@cindex memory management
bfa74976
RS
8442@cindex stack overflow
8443@cindex parser stack overflow
8444@cindex overflow of parser stack
8445
1a059451 8446The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8447not reduced. When this happens, the parser function @code{yyparse}
1a059451 8448calls @code{yyerror} and then returns 2.
bfa74976 8449
c827f760 8450Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8451usually results from using a right recursion instead of a left
188867ac 8452recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8453
bfa74976
RS
8454@vindex YYMAXDEPTH
8455By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8456parser stack can become before memory is exhausted. Define the
bfa74976
RS
8457macro with a value that is an integer. This value is the maximum number
8458of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8459
8460The stack space allowed is not necessarily allocated. If you specify a
1a059451 8461large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8462stack at first, and then makes it bigger by stages as needed. This
8463increasing allocation happens automatically and silently. Therefore,
8464you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8465space for ordinary inputs that do not need much stack.
8466
d7e14fc0
PE
8467However, do not allow @code{YYMAXDEPTH} to be a value so large that
8468arithmetic overflow could occur when calculating the size of the stack
8469space. Also, do not allow @code{YYMAXDEPTH} to be less than
8470@code{YYINITDEPTH}.
8471
bfa74976
RS
8472@cindex default stack limit
8473The default value of @code{YYMAXDEPTH}, if you do not define it, is
847410000.
8475
8476@vindex YYINITDEPTH
8477You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8478macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8479parser in C, this value must be a compile-time constant
d7e14fc0
PE
8480unless you are assuming C99 or some other target language or compiler
8481that allows variable-length arrays. The default is 200.
8482
1a059451 8483Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8484
20be2f92 8485You can generate a deterministic parser containing C++ user code from
411614fa 8486the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8487(@pxref{C++ Parsers}). However, if you do use the default skeleton
8488and want to allow the parsing stack to grow,
8489be careful not to use semantic types or location types that require
8490non-trivial copy constructors.
8491The C skeleton bypasses these constructors when copying data to
8492new, larger stacks.
d1a1114f 8493
342b8b6e 8494@node Error Recovery
bfa74976
RS
8495@chapter Error Recovery
8496@cindex error recovery
8497@cindex recovery from errors
8498
6e649e65 8499It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8500error. For example, a compiler should recover sufficiently to parse the
8501rest of the input file and check it for errors; a calculator should accept
8502another expression.
8503
8504In a simple interactive command parser where each input is one line, it may
8505be sufficient to allow @code{yyparse} to return 1 on error and have the
8506caller ignore the rest of the input line when that happens (and then call
8507@code{yyparse} again). But this is inadequate for a compiler, because it
8508forgets all the syntactic context leading up to the error. A syntax error
8509deep within a function in the compiler input should not cause the compiler
8510to treat the following line like the beginning of a source file.
8511
8512@findex error
8513You can define how to recover from a syntax error by writing rules to
8514recognize the special token @code{error}. This is a terminal symbol that
8515is always defined (you need not declare it) and reserved for error
8516handling. The Bison parser generates an @code{error} token whenever a
8517syntax error happens; if you have provided a rule to recognize this token
13863333 8518in the current context, the parse can continue.
bfa74976
RS
8519
8520For example:
8521
8522@example
0860e383 8523stmts:
6240346a 8524 %empty
0860e383
AD
8525| stmts '\n'
8526| stmts exp '\n'
8527| stmts error '\n'
bfa74976
RS
8528@end example
8529
8530The fourth rule in this example says that an error followed by a newline
0860e383 8531makes a valid addition to any @code{stmts}.
bfa74976
RS
8532
8533What happens if a syntax error occurs in the middle of an @code{exp}? The
8534error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8535of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8536the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8537and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8538will be tokens to read before the next newline. So the rule is not
8539applicable in the ordinary way.
8540
8541But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8542the semantic context and part of the input. First it discards states
8543and objects from the stack until it gets back to a state in which the
bfa74976 8544@code{error} token is acceptable. (This means that the subexpressions
0860e383 8545already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8546At this point the @code{error} token can be shifted. Then, if the old
742e4900 8547lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8548tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8549this example, Bison reads and discards input until the next newline so
8550that the fourth rule can apply. Note that discarded symbols are
8551possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8552Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8553
8554The choice of error rules in the grammar is a choice of strategies for
8555error recovery. A simple and useful strategy is simply to skip the rest of
8556the current input line or current statement if an error is detected:
8557
8558@example
0860e383 8559stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8560@end example
8561
8562It is also useful to recover to the matching close-delimiter of an
8563opening-delimiter that has already been parsed. Otherwise the
8564close-delimiter will probably appear to be unmatched, and generate another,
8565spurious error message:
8566
8567@example
5e9b6624
AD
8568primary:
8569 '(' expr ')'
8570| '(' error ')'
8571@dots{}
8572;
bfa74976
RS
8573@end example
8574
8575Error recovery strategies are necessarily guesses. When they guess wrong,
8576one syntax error often leads to another. In the above example, the error
8577recovery rule guesses that an error is due to bad input within one
0860e383
AD
8578@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8579middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8580from the first error, another syntax error will be found straightaway,
8581since the text following the spurious semicolon is also an invalid
0860e383 8582@code{stmt}.
bfa74976
RS
8583
8584To prevent an outpouring of error messages, the parser will output no error
8585message for another syntax error that happens shortly after the first; only
8586after three consecutive input tokens have been successfully shifted will
8587error messages resume.
8588
8589Note that rules which accept the @code{error} token may have actions, just
8590as any other rules can.
8591
8592@findex yyerrok
8593You can make error messages resume immediately by using the macro
8594@code{yyerrok} in an action. If you do this in the error rule's action, no
8595error messages will be suppressed. This macro requires no arguments;
8596@samp{yyerrok;} is a valid C statement.
8597
8598@findex yyclearin
742e4900 8599The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8600this is unacceptable, then the macro @code{yyclearin} may be used to clear
8601this token. Write the statement @samp{yyclearin;} in the error rule's
8602action.
32c29292 8603@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8604
6e649e65 8605For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8606called that advances the input stream to some point where parsing should
8607once again commence. The next symbol returned by the lexical scanner is
742e4900 8608probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8609with @samp{yyclearin;}.
8610
8611@vindex YYRECOVERING
02103984
PE
8612The expression @code{YYRECOVERING ()} yields 1 when the parser
8613is recovering from a syntax error, and 0 otherwise.
8614Syntax error diagnostics are suppressed while recovering from a syntax
8615error.
bfa74976 8616
342b8b6e 8617@node Context Dependency
bfa74976
RS
8618@chapter Handling Context Dependencies
8619
8620The Bison paradigm is to parse tokens first, then group them into larger
8621syntactic units. In many languages, the meaning of a token is affected by
8622its context. Although this violates the Bison paradigm, certain techniques
8623(known as @dfn{kludges}) may enable you to write Bison parsers for such
8624languages.
8625
8626@menu
8627* Semantic Tokens:: Token parsing can depend on the semantic context.
8628* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8629* Tie-in Recovery:: Lexical tie-ins have implications for how
8630 error recovery rules must be written.
8631@end menu
8632
8633(Actually, ``kludge'' means any technique that gets its job done but is
8634neither clean nor robust.)
8635
342b8b6e 8636@node Semantic Tokens
bfa74976
RS
8637@section Semantic Info in Token Types
8638
8639The C language has a context dependency: the way an identifier is used
8640depends on what its current meaning is. For example, consider this:
8641
8642@example
8643foo (x);
8644@end example
8645
8646This looks like a function call statement, but if @code{foo} is a typedef
8647name, then this is actually a declaration of @code{x}. How can a Bison
8648parser for C decide how to parse this input?
8649
8a4281b9 8650The method used in GNU C is to have two different token types,
bfa74976
RS
8651@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8652identifier, it looks up the current declaration of the identifier in order
8653to decide which token type to return: @code{TYPENAME} if the identifier is
8654declared as a typedef, @code{IDENTIFIER} otherwise.
8655
8656The grammar rules can then express the context dependency by the choice of
8657token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8658but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8659@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8660is @emph{not} significant, such as in declarations that can shadow a
8661typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8662accepted---there is one rule for each of the two token types.
8663
8664This technique is simple to use if the decision of which kinds of
8665identifiers to allow is made at a place close to where the identifier is
8666parsed. But in C this is not always so: C allows a declaration to
8667redeclare a typedef name provided an explicit type has been specified
8668earlier:
8669
8670@example
3a4f411f
PE
8671typedef int foo, bar;
8672int baz (void)
d4fca427 8673@group
3a4f411f
PE
8674@{
8675 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8676 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8677 return foo (bar);
8678@}
d4fca427 8679@end group
bfa74976
RS
8680@end example
8681
8682Unfortunately, the name being declared is separated from the declaration
8683construct itself by a complicated syntactic structure---the ``declarator''.
8684
9ecbd125 8685As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8686all the nonterminal names changed: once for parsing a declaration in
8687which a typedef name can be redefined, and once for parsing a
8688declaration in which that can't be done. Here is a part of the
8689duplication, with actions omitted for brevity:
bfa74976
RS
8690
8691@example
d4fca427 8692@group
bfa74976 8693initdcl:
5e9b6624
AD
8694 declarator maybeasm '=' init
8695| declarator maybeasm
8696;
d4fca427 8697@end group
bfa74976 8698
d4fca427 8699@group
bfa74976 8700notype_initdcl:
5e9b6624
AD
8701 notype_declarator maybeasm '=' init
8702| notype_declarator maybeasm
8703;
d4fca427 8704@end group
bfa74976
RS
8705@end example
8706
8707@noindent
8708Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8709cannot. The distinction between @code{declarator} and
8710@code{notype_declarator} is the same sort of thing.
8711
8712There is some similarity between this technique and a lexical tie-in
8713(described next), in that information which alters the lexical analysis is
8714changed during parsing by other parts of the program. The difference is
8715here the information is global, and is used for other purposes in the
8716program. A true lexical tie-in has a special-purpose flag controlled by
8717the syntactic context.
8718
342b8b6e 8719@node Lexical Tie-ins
bfa74976
RS
8720@section Lexical Tie-ins
8721@cindex lexical tie-in
8722
8723One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8724which is set by Bison actions, whose purpose is to alter the way tokens are
8725parsed.
8726
8727For example, suppose we have a language vaguely like C, but with a special
8728construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8729an expression in parentheses in which all integers are hexadecimal. In
8730particular, the token @samp{a1b} must be treated as an integer rather than
8731as an identifier if it appears in that context. Here is how you can do it:
8732
8733@example
8734@group
8735%@{
38a92d50
PE
8736 int hexflag;
8737 int yylex (void);
8738 void yyerror (char const *);
bfa74976
RS
8739%@}
8740%%
8741@dots{}
8742@end group
8743@group
5e9b6624
AD
8744expr:
8745 IDENTIFIER
8746| constant
8747| HEX '(' @{ hexflag = 1; @}
8748 expr ')' @{ hexflag = 0; $$ = $4; @}
8749| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8750@dots{}
8751;
bfa74976
RS
8752@end group
8753
8754@group
8755constant:
5e9b6624
AD
8756 INTEGER
8757| STRING
8758;
bfa74976
RS
8759@end group
8760@end example
8761
8762@noindent
8763Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8764it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8765with letters are parsed as integers if possible.
8766
ff7571c0
JD
8767The declaration of @code{hexflag} shown in the prologue of the grammar
8768file is needed to make it accessible to the actions (@pxref{Prologue,
8769,The Prologue}). You must also write the code in @code{yylex} to obey
8770the flag.
bfa74976 8771
342b8b6e 8772@node Tie-in Recovery
bfa74976
RS
8773@section Lexical Tie-ins and Error Recovery
8774
8775Lexical tie-ins make strict demands on any error recovery rules you have.
8776@xref{Error Recovery}.
8777
8778The reason for this is that the purpose of an error recovery rule is to
8779abort the parsing of one construct and resume in some larger construct.
8780For example, in C-like languages, a typical error recovery rule is to skip
8781tokens until the next semicolon, and then start a new statement, like this:
8782
8783@example
5e9b6624
AD
8784stmt:
8785 expr ';'
8786| IF '(' expr ')' stmt @{ @dots{} @}
8787@dots{}
8788| error ';' @{ hexflag = 0; @}
8789;
bfa74976
RS
8790@end example
8791
8792If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8793construct, this error rule will apply, and then the action for the
8794completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8795remain set for the entire rest of the input, or until the next @code{hex}
8796keyword, causing identifiers to be misinterpreted as integers.
8797
8798To avoid this problem the error recovery rule itself clears @code{hexflag}.
8799
8800There may also be an error recovery rule that works within expressions.
8801For example, there could be a rule which applies within parentheses
8802and skips to the close-parenthesis:
8803
8804@example
8805@group
5e9b6624
AD
8806expr:
8807 @dots{}
8808| '(' expr ')' @{ $$ = $2; @}
8809| '(' error ')'
8810@dots{}
bfa74976
RS
8811@end group
8812@end example
8813
8814If this rule acts within the @code{hex} construct, it is not going to abort
8815that construct (since it applies to an inner level of parentheses within
8816the construct). Therefore, it should not clear the flag: the rest of
8817the @code{hex} construct should be parsed with the flag still in effect.
8818
8819What if there is an error recovery rule which might abort out of the
8820@code{hex} construct or might not, depending on circumstances? There is no
8821way you can write the action to determine whether a @code{hex} construct is
8822being aborted or not. So if you are using a lexical tie-in, you had better
8823make sure your error recovery rules are not of this kind. Each rule must
8824be such that you can be sure that it always will, or always won't, have to
8825clear the flag.
8826
ec3bc396
AD
8827@c ================================================== Debugging Your Parser
8828
342b8b6e 8829@node Debugging
bfa74976 8830@chapter Debugging Your Parser
ec3bc396 8831
93c150b6
AD
8832Developing a parser can be a challenge, especially if you don't understand
8833the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8834chapter explains how understand and debug a parser.
8835
8836The first sections focus on the static part of the parser: its structure.
8837They explain how to generate and read the detailed description of the
8838automaton. There are several formats available:
8839@itemize @minus
8840@item
8841as text, see @ref{Understanding, , Understanding Your Parser};
8842
8843@item
8844as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8845
8846@item
8847or as a markup report that can be turned, for instance, into HTML, see
8848@ref{Xml,, Visualizing your parser in multiple formats}.
8849@end itemize
8850
8851The last section focuses on the dynamic part of the parser: how to enable
8852and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8853Parser}).
ec3bc396
AD
8854
8855@menu
8856* Understanding:: Understanding the structure of your parser.
fc4fdd62 8857* Graphviz:: Getting a visual representation of the parser.
9c16d399 8858* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8859* Tracing:: Tracing the execution of your parser.
8860@end menu
8861
8862@node Understanding
8863@section Understanding Your Parser
8864
8865As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8866Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8867frequent than one would hope), looking at this automaton is required to
c949ada3 8868tune or simply fix a parser.
ec3bc396
AD
8869
8870The textual file is generated when the options @option{--report} or
e3fd1dcb 8871@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8872Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8873the parser implementation file name, and adding @samp{.output}
8874instead. Therefore, if the grammar file is @file{foo.y}, then the
8875parser implementation file is called @file{foo.tab.c} by default. As
8876a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8877
8878The following grammar file, @file{calc.y}, will be used in the sequel:
8879
8880@example
8881%token NUM STR
c949ada3 8882@group
ec3bc396
AD
8883%left '+' '-'
8884%left '*'
c949ada3 8885@end group
ec3bc396 8886%%
c949ada3 8887@group
5e9b6624
AD
8888exp:
8889 exp '+' exp
8890| exp '-' exp
8891| exp '*' exp
8892| exp '/' exp
8893| NUM
8894;
c949ada3 8895@end group
ec3bc396
AD
8896useless: STR;
8897%%
8898@end example
8899
88bce5a2
AD
8900@command{bison} reports:
8901
8902@example
8f0d265e
JD
8903calc.y: warning: 1 nonterminal useless in grammar
8904calc.y: warning: 1 rule useless in grammar
c949ada3
AD
8905calc.y:12.1-7: warning: nonterminal useless in grammar: useless
8906calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8907calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8908@end example
8909
8910When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8911creates a file @file{calc.output} with contents detailed below. The
8912order of the output and the exact presentation might vary, but the
8913interpretation is the same.
ec3bc396 8914
ec3bc396
AD
8915@noindent
8916@cindex token, useless
8917@cindex useless token
8918@cindex nonterminal, useless
8919@cindex useless nonterminal
8920@cindex rule, useless
8921@cindex useless rule
62243aa5 8922The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8923nonterminals and rules are removed in order to produce a smaller parser, but
8924useless tokens are preserved, since they might be used by the scanner (note
8925the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8926
8927@example
29e20e22 8928Nonterminals useless in grammar
ec3bc396
AD
8929 useless
8930
29e20e22 8931Terminals unused in grammar
ec3bc396
AD
8932 STR
8933
29e20e22
AD
8934Rules useless in grammar
8935 6 useless: STR
ec3bc396
AD
8936@end example
8937
8938@noindent
29e20e22
AD
8939The next section lists states that still have conflicts.
8940
8941@example
8942State 8 conflicts: 1 shift/reduce
8943State 9 conflicts: 1 shift/reduce
8944State 10 conflicts: 1 shift/reduce
8945State 11 conflicts: 4 shift/reduce
8946@end example
8947
8948@noindent
8949Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8950
8951@example
8952Grammar
8953
29e20e22
AD
8954 0 $accept: exp $end
8955
8956 1 exp: exp '+' exp
8957 2 | exp '-' exp
8958 3 | exp '*' exp
8959 4 | exp '/' exp
8960 5 | NUM
ec3bc396
AD
8961@end example
8962
8963@noindent
8964and reports the uses of the symbols:
8965
8966@example
d4fca427 8967@group
ec3bc396
AD
8968Terminals, with rules where they appear
8969
88bce5a2 8970$end (0) 0
ec3bc396
AD
8971'*' (42) 3
8972'+' (43) 1
8973'-' (45) 2
8974'/' (47) 4
8975error (256)
8976NUM (258) 5
29e20e22 8977STR (259)
d4fca427 8978@end group
ec3bc396 8979
d4fca427 8980@group
ec3bc396
AD
8981Nonterminals, with rules where they appear
8982
29e20e22 8983$accept (9)
ec3bc396 8984 on left: 0
29e20e22 8985exp (10)
ec3bc396 8986 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8987@end group
ec3bc396
AD
8988@end example
8989
8990@noindent
8991@cindex item
8992@cindex pointed rule
8993@cindex rule, pointed
8994Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8995with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8996item is a production rule together with a point (@samp{.}) marking
8997the location of the input cursor.
ec3bc396
AD
8998
8999@example
c949ada3 9000State 0
ec3bc396 9001
29e20e22 9002 0 $accept: . exp $end
ec3bc396 9003
29e20e22 9004 NUM shift, and go to state 1
ec3bc396 9005
29e20e22 9006 exp go to state 2
ec3bc396
AD
9007@end example
9008
9009This reads as follows: ``state 0 corresponds to being at the very
9010beginning of the parsing, in the initial rule, right before the start
9011symbol (here, @code{exp}). When the parser returns to this state right
9012after having reduced a rule that produced an @code{exp}, the control
9013flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 9014symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 9015the parse stack, and the control flow jumps to state 1. Any other
742e4900 9016lookahead triggers a syntax error.''
ec3bc396
AD
9017
9018@cindex core, item set
9019@cindex item set core
9020@cindex kernel, item set
9021@cindex item set core
9022Even though the only active rule in state 0 seems to be rule 0, the
742e4900 9023report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
9024at the beginning of any rule deriving an @code{exp}. By default Bison
9025reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
9026you want to see more detail you can invoke @command{bison} with
35880c82 9027@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
9028
9029@example
c949ada3 9030State 0
ec3bc396 9031
29e20e22
AD
9032 0 $accept: . exp $end
9033 1 exp: . exp '+' exp
9034 2 | . exp '-' exp
9035 3 | . exp '*' exp
9036 4 | . exp '/' exp
9037 5 | . NUM
ec3bc396 9038
29e20e22 9039 NUM shift, and go to state 1
ec3bc396 9040
29e20e22 9041 exp go to state 2
ec3bc396
AD
9042@end example
9043
9044@noindent
29e20e22 9045In the state 1@dots{}
ec3bc396
AD
9046
9047@example
c949ada3 9048State 1
ec3bc396 9049
29e20e22 9050 5 exp: NUM .
ec3bc396 9051
29e20e22 9052 $default reduce using rule 5 (exp)
ec3bc396
AD
9053@end example
9054
9055@noindent
742e4900 9056the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 9057(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 9058State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
9059jump to state 2 (@samp{exp: go to state 2}).
9060
9061@example
c949ada3 9062State 2
ec3bc396 9063
29e20e22
AD
9064 0 $accept: exp . $end
9065 1 exp: exp . '+' exp
9066 2 | exp . '-' exp
9067 3 | exp . '*' exp
9068 4 | exp . '/' exp
ec3bc396 9069
29e20e22
AD
9070 $end shift, and go to state 3
9071 '+' shift, and go to state 4
9072 '-' shift, and go to state 5
9073 '*' shift, and go to state 6
9074 '/' shift, and go to state 7
ec3bc396
AD
9075@end example
9076
9077@noindent
9078In state 2, the automaton can only shift a symbol. For instance,
29e20e22 9079because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 9080@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 9081jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
9082Since there is no default action, any lookahead not listed triggers a syntax
9083error.
ec3bc396 9084
eb45ef3b 9085@cindex accepting state
ec3bc396
AD
9086The state 3 is named the @dfn{final state}, or the @dfn{accepting
9087state}:
9088
9089@example
c949ada3 9090State 3
ec3bc396 9091
29e20e22 9092 0 $accept: exp $end .
ec3bc396 9093
29e20e22 9094 $default accept
ec3bc396
AD
9095@end example
9096
9097@noindent
29e20e22
AD
9098the initial rule is completed (the start symbol and the end-of-input were
9099read), the parsing exits successfully.
ec3bc396
AD
9100
9101The interpretation of states 4 to 7 is straightforward, and is left to
9102the reader.
9103
9104@example
c949ada3 9105State 4
ec3bc396 9106
29e20e22 9107 1 exp: exp '+' . exp
ec3bc396 9108
29e20e22
AD
9109 NUM shift, and go to state 1
9110
9111 exp go to state 8
ec3bc396 9112
ec3bc396 9113
c949ada3 9114State 5
ec3bc396 9115
29e20e22
AD
9116 2 exp: exp '-' . exp
9117
9118 NUM shift, and go to state 1
ec3bc396 9119
29e20e22 9120 exp go to state 9
ec3bc396 9121
ec3bc396 9122
c949ada3 9123State 6
ec3bc396 9124
29e20e22 9125 3 exp: exp '*' . exp
ec3bc396 9126
29e20e22
AD
9127 NUM shift, and go to state 1
9128
9129 exp go to state 10
ec3bc396 9130
ec3bc396 9131
c949ada3 9132State 7
ec3bc396 9133
29e20e22 9134 4 exp: exp '/' . exp
ec3bc396 9135
29e20e22 9136 NUM shift, and go to state 1
ec3bc396 9137
29e20e22 9138 exp go to state 11
ec3bc396
AD
9139@end example
9140
5a99098d
PE
9141As was announced in beginning of the report, @samp{State 8 conflicts:
91421 shift/reduce}:
ec3bc396
AD
9143
9144@example
c949ada3 9145State 8
ec3bc396 9146
29e20e22
AD
9147 1 exp: exp . '+' exp
9148 1 | exp '+' exp .
9149 2 | exp . '-' exp
9150 3 | exp . '*' exp
9151 4 | exp . '/' exp
ec3bc396 9152
29e20e22
AD
9153 '*' shift, and go to state 6
9154 '/' shift, and go to state 7
ec3bc396 9155
29e20e22
AD
9156 '/' [reduce using rule 1 (exp)]
9157 $default reduce using rule 1 (exp)
ec3bc396
AD
9158@end example
9159
742e4900 9160Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
9161either shifting (and going to state 7), or reducing rule 1. The
9162conflict means that either the grammar is ambiguous, or the parser lacks
9163information to make the right decision. Indeed the grammar is
9164ambiguous, as, since we did not specify the precedence of @samp{/}, the
9165sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
9166NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
9167NUM}, which corresponds to reducing rule 1.
9168
eb45ef3b 9169Because in deterministic parsing a single decision can be made, Bison
ec3bc396 9170arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 9171Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
9172square brackets.
9173
9174Note that all the previous states had a single possible action: either
9175shifting the next token and going to the corresponding state, or
9176reducing a single rule. In the other cases, i.e., when shifting
9177@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
9178possible, the lookahead is required to select the action. State 8 is
9179one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
9180is shifting, otherwise the action is reducing rule 1. In other words,
9181the first two items, corresponding to rule 1, are not eligible when the
742e4900 9182lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 9183precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
9184with some set of possible lookahead tokens. When run with
9185@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
9186
9187@example
c949ada3 9188State 8
ec3bc396 9189
29e20e22
AD
9190 1 exp: exp . '+' exp
9191 1 | exp '+' exp . [$end, '+', '-', '/']
9192 2 | exp . '-' exp
9193 3 | exp . '*' exp
9194 4 | exp . '/' exp
9195
9196 '*' shift, and go to state 6
9197 '/' shift, and go to state 7
ec3bc396 9198
29e20e22
AD
9199 '/' [reduce using rule 1 (exp)]
9200 $default reduce using rule 1 (exp)
9201@end example
9202
9203Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9204the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9205solved thanks to associativity and precedence directives. If invoked with
9206@option{--report=solved}, Bison includes information about the solved
9207conflicts in the report:
ec3bc396 9208
29e20e22
AD
9209@example
9210Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9211Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9212Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9213@end example
9214
29e20e22 9215
ec3bc396
AD
9216The remaining states are similar:
9217
9218@example
d4fca427 9219@group
c949ada3 9220State 9
ec3bc396 9221
29e20e22
AD
9222 1 exp: exp . '+' exp
9223 2 | exp . '-' exp
9224 2 | exp '-' exp .
9225 3 | exp . '*' exp
9226 4 | exp . '/' exp
ec3bc396 9227
29e20e22
AD
9228 '*' shift, and go to state 6
9229 '/' shift, and go to state 7
ec3bc396 9230
29e20e22
AD
9231 '/' [reduce using rule 2 (exp)]
9232 $default reduce using rule 2 (exp)
d4fca427 9233@end group
ec3bc396 9234
d4fca427 9235@group
c949ada3 9236State 10
ec3bc396 9237
29e20e22
AD
9238 1 exp: exp . '+' exp
9239 2 | exp . '-' exp
9240 3 | exp . '*' exp
9241 3 | exp '*' exp .
9242 4 | exp . '/' exp
ec3bc396 9243
29e20e22 9244 '/' shift, and go to state 7
ec3bc396 9245
29e20e22
AD
9246 '/' [reduce using rule 3 (exp)]
9247 $default reduce using rule 3 (exp)
d4fca427 9248@end group
ec3bc396 9249
d4fca427 9250@group
c949ada3 9251State 11
ec3bc396 9252
29e20e22
AD
9253 1 exp: exp . '+' exp
9254 2 | exp . '-' exp
9255 3 | exp . '*' exp
9256 4 | exp . '/' exp
9257 4 | exp '/' exp .
9258
9259 '+' shift, and go to state 4
9260 '-' shift, and go to state 5
9261 '*' shift, and go to state 6
9262 '/' shift, and go to state 7
9263
9264 '+' [reduce using rule 4 (exp)]
9265 '-' [reduce using rule 4 (exp)]
9266 '*' [reduce using rule 4 (exp)]
9267 '/' [reduce using rule 4 (exp)]
9268 $default reduce using rule 4 (exp)
d4fca427 9269@end group
ec3bc396
AD
9270@end example
9271
9272@noindent
fa7e68c3 9273Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9274precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9275also because the associativity of @samp{/} is not specified.
ec3bc396 9276
c949ada3
AD
9277Bison may also produce an HTML version of this output, via an XML file and
9278XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9279
fc4fdd62
TR
9280@c ================================================= Graphical Representation
9281
9282@node Graphviz
9283@section Visualizing Your Parser
9284@cindex dot
9285
9286As another means to gain better understanding of the shift/reduce
9287automaton corresponding to the Bison parser, a DOT file can be generated. Note
9288that debugging a real grammar with this is tedious at best, and impractical
9289most of the times, because the generated files are huge (the generation of
9290a PDF or PNG file from it will take very long, and more often than not it will
9291fail due to memory exhaustion). This option was rather designed for beginners,
9292to help them understand LR parsers.
9293
bfdcc3a0
AD
9294This file is generated when the @option{--graph} option is specified
9295(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9296@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9297adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9298Graphviz output file is called @file{foo.dot}. A DOT file may also be
9299produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9300parser in multiple formats}).
9301
fc4fdd62
TR
9302
9303The following grammar file, @file{rr.y}, will be used in the sequel:
9304
9305@example
9306%%
9307@group
9308exp: a ";" | b ".";
9309a: "0";
9310b: "0";
9311@end group
9312@end example
9313
c949ada3
AD
9314The graphical output
9315@ifnotinfo
9316(see @ref{fig:graph})
9317@end ifnotinfo
9318is very similar to the textual one, and as such it is easier understood by
9319making direct comparisons between them. @xref{Debugging, , Debugging Your
9320Parser}, for a detailled analysis of the textual report.
9321
9322@ifnotinfo
9323@float Figure,fig:graph
9324@image{figs/example, 430pt}
9325@caption{A graphical rendering of the parser.}
9326@end float
9327@end ifnotinfo
fc4fdd62
TR
9328
9329@subheading Graphical Representation of States
9330
9331The items (pointed rules) for each state are grouped together in graph nodes.
9332Their numbering is the same as in the verbose file. See the following points,
9333about transitions, for examples
9334
9335When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9336needed, are shown next to the relevant rule between square brackets as a
9337comma separated list. This is the case in the figure for the representation of
9338reductions, below.
9339
9340@sp 1
9341
9342The transitions are represented as directed edges between the current and
9343the target states.
9344
9345@subheading Graphical Representation of Shifts
9346
9347Shifts are shown as solid arrows, labelled with the lookahead token for that
9348shift. The following describes a reduction in the @file{rr.output} file:
9349
9350@example
9351@group
c949ada3 9352State 3
fc4fdd62
TR
9353
9354 1 exp: a . ";"
9355
9356 ";" shift, and go to state 6
9357@end group
9358@end example
9359
9360A Graphviz rendering of this portion of the graph could be:
9361
9362@center @image{figs/example-shift, 100pt}
9363
9364@subheading Graphical Representation of Reductions
9365
9366Reductions are shown as solid arrows, leading to a diamond-shaped node
9367bearing the number of the reduction rule. The arrow is labelled with the
9368appropriate comma separated lookahead tokens. If the reduction is the default
9369action for the given state, there is no such label.
9370
9371This is how reductions are represented in the verbose file @file{rr.output}:
9372@example
c949ada3 9373State 1
fc4fdd62
TR
9374
9375 3 a: "0" . [";"]
9376 4 b: "0" . ["."]
9377
9378 "." reduce using rule 4 (b)
9379 $default reduce using rule 3 (a)
9380@end example
9381
9382A Graphviz rendering of this portion of the graph could be:
9383
9384@center @image{figs/example-reduce, 120pt}
9385
9386When unresolved conflicts are present, because in deterministic parsing
9387a single decision can be made, Bison can arbitrarily choose to disable a
9388reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9389are distinguished by a red filling color on these nodes, just like how they are
9390reported between square brackets in the verbose file.
9391
c949ada3
AD
9392The reduction corresponding to the rule number 0 is the acceptation
9393state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9394
9395@subheading Graphical representation of go tos
9396
9397The @samp{go to} jump transitions are represented as dotted lines bearing
9398the name of the rule being jumped to.
9399
9c16d399
TR
9400@c ================================================= XML
9401
9402@node Xml
9403@section Visualizing your parser in multiple formats
9404@cindex xml
9405
9406Bison supports two major report formats: textual output
c949ada3
AD
9407(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9408with option @option{--verbose}, and DOT
9409(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9410option @option{--graph}. However,
9c16d399
TR
9411another alternative is to output an XML file that may then be, with
9412@command{xsltproc}, rendered as either a raw text format equivalent to the
9413verbose file, or as an HTML version of the same file, with clickable
9414transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9415XSLT have no difference whatsoever with those obtained by invoking
9416@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9417
c949ada3 9418The XML file is generated when the options @option{-x} or
9c16d399
TR
9419@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9420If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9421from the parser implementation file name, and adding @samp{.xml} instead.
9422For instance, if the grammar file is @file{foo.y}, the default XML output
9423file is @file{foo.xml}.
9424
9425Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9426files to apply to the XML file. Their names are non-ambiguous:
9427
9428@table @file
9429@item xml2dot.xsl
be3517b0 9430Used to output a copy of the DOT visualization of the automaton.
9c16d399 9431@item xml2text.xsl
c949ada3 9432Used to output a copy of the @samp{.output} file.
9c16d399 9433@item xml2xhtml.xsl
c949ada3 9434Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9435@end table
9436
c949ada3 9437Sample usage (requires @command{xsltproc}):
9c16d399 9438@example
c949ada3 9439$ bison -x gr.y
9c16d399
TR
9440@group
9441$ bison --print-datadir
9442/usr/local/share/bison
9443@end group
c949ada3 9444$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9445@end example
9446
fc4fdd62 9447@c ================================================= Tracing
ec3bc396
AD
9448
9449@node Tracing
9450@section Tracing Your Parser
bfa74976
RS
9451@findex yydebug
9452@cindex debugging
9453@cindex tracing the parser
9454
93c150b6
AD
9455When a Bison grammar compiles properly but parses ``incorrectly'', the
9456@code{yydebug} parser-trace feature helps figuring out why.
9457
9458@menu
9459* Enabling Traces:: Activating run-time trace support
9460* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9461* The YYPRINT Macro:: Obsolete interface for semantic value reports
9462@end menu
bfa74976 9463
93c150b6
AD
9464@node Enabling Traces
9465@subsection Enabling Traces
3ded9a63
AD
9466There are several means to enable compilation of trace facilities:
9467
9468@table @asis
9469@item the macro @code{YYDEBUG}
9470@findex YYDEBUG
9471Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9472parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9473@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9474YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9475Prologue}).
9476
e6ae99fe 9477If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9478Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9479api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9480tracing feature (enabled if and only if nonzero); otherwise tracing is
9481enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9482
9483@item the option @option{-t} (POSIX Yacc compliant)
9484@itemx the option @option{--debug} (Bison extension)
9485Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
9486Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
9487otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9488
9489@item the directive @samp{%debug}
9490@findex %debug
fa819509
AD
9491Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9492Summary}). This Bison extension is maintained for backward
9493compatibility with previous versions of Bison.
9494
9495@item the variable @samp{parse.trace}
9496@findex %define parse.trace
35c1e5f0
JD
9497Add the @samp{%define parse.trace} directive (@pxref{%define
9498Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9499(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9500useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9501portability matter to you, this is the preferred solution.
3ded9a63
AD
9502@end table
9503
fa819509 9504We suggest that you always enable the trace option so that debugging is
3ded9a63 9505always possible.
bfa74976 9506
93c150b6 9507@findex YYFPRINTF
02a81e05 9508The trace facility outputs messages with macro calls of the form
e2742e46 9509@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9510@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9511arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9512define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9513and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9514
9515Once you have compiled the program with trace facilities, the way to
9516request a trace is to store a nonzero value in the variable @code{yydebug}.
9517You can do this by making the C code do it (in @code{main}, perhaps), or
9518you can alter the value with a C debugger.
9519
9520Each step taken by the parser when @code{yydebug} is nonzero produces a
9521line or two of trace information, written on @code{stderr}. The trace
9522messages tell you these things:
9523
9524@itemize @bullet
9525@item
9526Each time the parser calls @code{yylex}, what kind of token was read.
9527
9528@item
9529Each time a token is shifted, the depth and complete contents of the
9530state stack (@pxref{Parser States}).
9531
9532@item
9533Each time a rule is reduced, which rule it is, and the complete contents
9534of the state stack afterward.
9535@end itemize
9536
93c150b6
AD
9537To make sense of this information, it helps to refer to the automaton
9538description file (@pxref{Understanding, ,Understanding Your Parser}).
9539This file shows the meaning of each state in terms of
704a47c4
AD
9540positions in various rules, and also what each state will do with each
9541possible input token. As you read the successive trace messages, you
9542can see that the parser is functioning according to its specification in
9543the listing file. Eventually you will arrive at the place where
9544something undesirable happens, and you will see which parts of the
9545grammar are to blame.
bfa74976 9546
93c150b6 9547The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9548debuggers on it, but it's not easy to interpret what it is doing. The
9549parser function is a finite-state machine interpreter, and aside from
9550the actions it executes the same code over and over. Only the values
9551of variables show where in the grammar it is working.
bfa74976 9552
93c150b6
AD
9553@node Mfcalc Traces
9554@subsection Enabling Debug Traces for @code{mfcalc}
9555
9556The debugging information normally gives the token type of each token read,
9557but not its semantic value. The @code{%printer} directive allows specify
9558how semantic values are reported, see @ref{Printer Decl, , Printing
9559Semantic Values}. For backward compatibility, Yacc like C parsers may also
9560use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9561Macro}), but its use is discouraged.
9562
9563As a demonstration of @code{%printer}, consider the multi-function
9564calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9565traces, and semantic value reports, insert the following directives in its
9566prologue:
9567
9568@comment file: mfcalc.y: 2
9569@example
9570/* Generate the parser description file. */
9571%verbose
9572/* Enable run-time traces (yydebug). */
9573%define parse.trace
9574
9575/* Formatting semantic values. */
9576%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9577%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
9578%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
9579@end example
9580
9581The @code{%define} directive instructs Bison to generate run-time trace
9582support. Then, activation of these traces is controlled at run-time by the
9583@code{yydebug} variable, which is disabled by default. Because these traces
9584will refer to the ``states'' of the parser, it is helpful to ask for the
9585creation of a description of that parser; this is the purpose of (admittedly
9586ill-named) @code{%verbose} directive.
9587
9588The set of @code{%printer} directives demonstrates how to format the
9589semantic value in the traces. Note that the specification can be done
9590either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
9591tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
9592printer will be used for them.
9593
9594Here is a sample of the information provided by run-time traces. The traces
9595are sent onto standard error.
9596
9597@example
9598$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9599Starting parse
9600Entering state 0
9601Reducing stack by rule 1 (line 34):
9602-> $$ = nterm input ()
9603Stack now 0
9604Entering state 1
9605@end example
9606
9607@noindent
9608This first batch shows a specific feature of this grammar: the first rule
9609(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9610to look for the first token. The resulting left-hand symbol (@code{$$}) is
9611a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9612
9613Then the parser calls the scanner.
9614@example
9615Reading a token: Next token is token FNCT (sin())
9616Shifting token FNCT (sin())
9617Entering state 6
9618@end example
9619
9620@noindent
9621That token (@code{token}) is a function (@code{FNCT}) whose value is
9622@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9623The parser stores (@code{Shifting}) that token, and others, until it can do
9624something about it.
9625
9626@example
9627Reading a token: Next token is token '(' ()
9628Shifting token '(' ()
9629Entering state 14
9630Reading a token: Next token is token NUM (1.000000)
9631Shifting token NUM (1.000000)
9632Entering state 4
9633Reducing stack by rule 6 (line 44):
9634 $1 = token NUM (1.000000)
9635-> $$ = nterm exp (1.000000)
9636Stack now 0 1 6 14
9637Entering state 24
9638@end example
9639
9640@noindent
9641The previous reduction demonstrates the @code{%printer} directive for
c949ada3 9642@code{<val>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9643@code{exp} have @samp{1} as value.
9644
9645@example
9646Reading a token: Next token is token '-' ()
9647Shifting token '-' ()
9648Entering state 17
9649Reading a token: Next token is token NUM (1.000000)
9650Shifting token NUM (1.000000)
9651Entering state 4
9652Reducing stack by rule 6 (line 44):
9653 $1 = token NUM (1.000000)
9654-> $$ = nterm exp (1.000000)
9655Stack now 0 1 6 14 24 17
9656Entering state 26
9657Reading a token: Next token is token ')' ()
9658Reducing stack by rule 11 (line 49):
9659 $1 = nterm exp (1.000000)
9660 $2 = token '-' ()
9661 $3 = nterm exp (1.000000)
9662-> $$ = nterm exp (0.000000)
9663Stack now 0 1 6 14
9664Entering state 24
9665@end example
9666
9667@noindent
9668The rule for the subtraction was just reduced. The parser is about to
9669discover the end of the call to @code{sin}.
9670
9671@example
9672Next token is token ')' ()
9673Shifting token ')' ()
9674Entering state 31
9675Reducing stack by rule 9 (line 47):
9676 $1 = token FNCT (sin())
9677 $2 = token '(' ()
9678 $3 = nterm exp (0.000000)
9679 $4 = token ')' ()
9680-> $$ = nterm exp (0.000000)
9681Stack now 0 1
9682Entering state 11
9683@end example
9684
9685@noindent
9686Finally, the end-of-line allow the parser to complete the computation, and
9687display its result.
9688
9689@example
9690Reading a token: Next token is token '\n' ()
9691Shifting token '\n' ()
9692Entering state 22
9693Reducing stack by rule 4 (line 40):
9694 $1 = nterm exp (0.000000)
9695 $2 = token '\n' ()
9696@result{} 0
9697-> $$ = nterm line ()
9698Stack now 0 1
9699Entering state 10
9700Reducing stack by rule 2 (line 35):
9701 $1 = nterm input ()
9702 $2 = nterm line ()
9703-> $$ = nterm input ()
9704Stack now 0
9705Entering state 1
9706@end example
9707
9708The parser has returned into state 1, in which it is waiting for the next
9709expression to evaluate, or for the end-of-file token, which causes the
9710completion of the parsing.
9711
9712@example
9713Reading a token: Now at end of input.
9714Shifting token $end ()
9715Entering state 2
9716Stack now 0 1 2
9717Cleanup: popping token $end ()
9718Cleanup: popping nterm input ()
9719@end example
9720
9721
9722@node The YYPRINT Macro
9723@subsection The @code{YYPRINT} Macro
9724
bfa74976 9725@findex YYPRINT
93c150b6
AD
9726Before @code{%printer} support, semantic values could be displayed using the
9727@code{YYPRINT} macro, which works only for terminal symbols and only with
9728the @file{yacc.c} skeleton.
9729
9730@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9731@findex YYPRINT
9732If you define @code{YYPRINT}, it should take three arguments. The parser
9733will pass a standard I/O stream, the numeric code for the token type, and
9734the token value (from @code{yylval}).
9735
9736For @file{yacc.c} only. Obsoleted by @code{%printer}.
9737@end deffn
bfa74976
RS
9738
9739Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9740calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9741
c93f22fc 9742@example
38a92d50
PE
9743%@{
9744 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9745 #define YYPRINT(File, Type, Value) \
9746 print_token_value (File, Type, Value)
38a92d50
PE
9747%@}
9748
9749@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9750
9751static void
831d3c99 9752print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9753@{
9754 if (type == VAR)
d3c4e709 9755 fprintf (file, "%s", value.tptr->name);
bfa74976 9756 else if (type == NUM)
d3c4e709 9757 fprintf (file, "%d", value.val);
bfa74976 9758@}
c93f22fc 9759@end example
bfa74976 9760
ec3bc396
AD
9761@c ================================================= Invoking Bison
9762
342b8b6e 9763@node Invocation
bfa74976
RS
9764@chapter Invoking Bison
9765@cindex invoking Bison
9766@cindex Bison invocation
9767@cindex options for invoking Bison
9768
9769The usual way to invoke Bison is as follows:
9770
9771@example
9772bison @var{infile}
9773@end example
9774
9775Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9776@samp{.y}. The parser implementation file's name is made by replacing
9777the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9778Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9779the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9780also possible, in case you are writing C++ code instead of C in your
9781grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9782output files will take an extension like the given one as input
9783(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9784feature takes effect with all options that manipulate file names like
234a3be3
AD
9785@samp{-o} or @samp{-d}.
9786
9787For example :
9788
9789@example
9790bison -d @var{infile.yxx}
9791@end example
84163231 9792@noindent
72d2299c 9793will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9794
9795@example
b56471a6 9796bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9797@end example
84163231 9798@noindent
234a3be3
AD
9799will produce @file{output.c++} and @file{outfile.h++}.
9800
8a4281b9 9801For compatibility with POSIX, the standard Bison
397ec073
PE
9802distribution also contains a shell script called @command{yacc} that
9803invokes Bison with the @option{-y} option.
9804
bfa74976 9805@menu
13863333 9806* Bison Options:: All the options described in detail,
c827f760 9807 in alphabetical order by short options.
bfa74976 9808* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9809* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9810@end menu
9811
342b8b6e 9812@node Bison Options
bfa74976
RS
9813@section Bison Options
9814
9815Bison supports both traditional single-letter options and mnemonic long
9816option names. Long option names are indicated with @samp{--} instead of
9817@samp{-}. Abbreviations for option names are allowed as long as they
9818are unique. When a long option takes an argument, like
9819@samp{--file-prefix}, connect the option name and the argument with
9820@samp{=}.
9821
9822Here is a list of options that can be used with Bison, alphabetized by
9823short option. It is followed by a cross key alphabetized by long
9824option.
9825
4c9b8f13 9826@c Please, keep this ordered as in 'bison --help'.
89cab50d
AD
9827@noindent
9828Operations modes:
9829@table @option
9830@item -h
9831@itemx --help
9832Print a summary of the command-line options to Bison and exit.
bfa74976 9833
89cab50d
AD
9834@item -V
9835@itemx --version
9836Print the version number of Bison and exit.
bfa74976 9837
f7ab6a50
PE
9838@item --print-localedir
9839Print the name of the directory containing locale-dependent data.
9840
a0de5091
JD
9841@item --print-datadir
9842Print the name of the directory containing skeletons and XSLT.
9843
89cab50d
AD
9844@item -y
9845@itemx --yacc
ff7571c0
JD
9846Act more like the traditional Yacc command. This can cause different
9847diagnostics to be generated, and may change behavior in other minor
9848ways. Most importantly, imitate Yacc's output file name conventions,
9849so that the parser implementation file is called @file{y.tab.c}, and
9850the other outputs are called @file{y.output} and @file{y.tab.h}.
9851Also, if generating a deterministic parser in C, generate
9852@code{#define} statements in addition to an @code{enum} to associate
9853token numbers with token names. Thus, the following shell script can
9854substitute for Yacc, and the Bison distribution contains such a script
9855for compatibility with POSIX:
bfa74976 9856
89cab50d 9857@example
397ec073 9858#! /bin/sh
26e06a21 9859bison -y "$@@"
89cab50d 9860@end example
54662697
PE
9861
9862The @option{-y}/@option{--yacc} option is intended for use with
9863traditional Yacc grammars. If your grammar uses a Bison extension
9864like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9865this option is specified.
9866
1d5b3c08
JD
9867@item -W [@var{category}]
9868@itemx --warnings[=@var{category}]
118d4978
AD
9869Output warnings falling in @var{category}. @var{category} can be one
9870of:
9871@table @code
9872@item midrule-values
8e55b3aa
JD
9873Warn about mid-rule values that are set but not used within any of the actions
9874of the parent rule.
9875For example, warn about unused @code{$2} in:
118d4978
AD
9876
9877@example
9878exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9879@end example
9880
8e55b3aa
JD
9881Also warn about mid-rule values that are used but not set.
9882For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9883
9884@example
5e9b6624 9885exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9886@end example
9887
9888These warnings are not enabled by default since they sometimes prove to
9889be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9890@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9891
118d4978 9892@item yacc
8a4281b9 9893Incompatibilities with POSIX Yacc.
118d4978 9894
786743d5
JD
9895@item conflicts-sr
9896@itemx conflicts-rr
9897S/R and R/R conflicts. These warnings are enabled by default. However, if
9898the @code{%expect} or @code{%expect-rr} directive is specified, an
9899unexpected number of conflicts is an error, and an expected number of
9900conflicts is not reported, so @option{-W} and @option{--warning} then have
9901no effect on the conflict report.
9902
518e8830
AD
9903@item deprecated
9904Deprecated constructs whose support will be removed in future versions of
9905Bison.
9906
09add9c2
AD
9907@item empty-rule
9908Empty rules without @code{%empty}. @xref{Empty Rules}. Disabled by
9909default, but enabled by uses of @code{%empty}, unless
9910@option{-Wno-empty-rule} was specified.
9911
cc2235ac
VT
9912@item precedence
9913Useless precedence and associativity directives. Disabled by default.
9914
9915Consider for instance the following grammar:
9916
9917@example
9918@group
9919%nonassoc "="
9920%left "+"
9921%left "*"
9922%precedence "("
9923@end group
9924%%
9925@group
9926stmt:
9927 exp
9928| "var" "=" exp
9929;
9930@end group
9931
9932@group
9933exp:
9934 exp "+" exp
9935| exp "*" "num"
9936| "(" exp ")"
9937| "num"
9938;
9939@end group
9940@end example
9941
9942Bison reports:
9943
9944@c cannot leave the location and the [-Wprecedence] for lack of
9945@c width in PDF.
9946@example
9947@group
9948warning: useless precedence and associativity for "="
9949 %nonassoc "="
9950 ^^^
9951@end group
9952@group
9953warning: useless associativity for "*", use %precedence
9954 %left "*"
9955 ^^^
9956@end group
9957@group
9958warning: useless precedence for "("
9959 %precedence "("
9960 ^^^
9961@end group
9962@end example
9963
9964One would get the exact same parser with the following directives instead:
9965
9966@example
9967@group
9968%left "+"
9969%precedence "*"
9970@end group
9971@end example
9972
c39014ae
JD
9973@item other
9974All warnings not categorized above. These warnings are enabled by default.
9975
9976This category is provided merely for the sake of completeness. Future
9977releases of Bison may move warnings from this category to new, more specific
9978categories.
9979
118d4978 9980@item all
f24695ef
AD
9981All the warnings except @code{yacc}.
9982
118d4978 9983@item none
8e55b3aa 9984Turn off all the warnings.
f24695ef 9985
118d4978 9986@item error
1048a1c9 9987See @option{-Werror}, below.
118d4978
AD
9988@end table
9989
9990A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9991instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9992POSIX Yacc incompatibilities.
1048a1c9
AD
9993
9994@item -Werror[=@var{category}]
9995@itemx -Wno-error[=@var{category}]
9996Enable warnings falling in @var{category}, and treat them as errors. If no
9997@var{category} is given, it defaults to making all enabled warnings into errors.
9998
9999@var{category} is the same as for @option{--warnings}, with the exception that
10000it may not be prefixed with @samp{no-} (see above).
10001
10002Prefixed with @samp{no}, it deactivates the error treatment for this
10003@var{category}. However, the warning itself won't be disabled, or enabled, by
10004this option.
10005
10006Note that the precedence of the @samp{=} and @samp{,} operators is such that
10007the following commands are @emph{not} equivalent, as the first will not treat
10008S/R conflicts as errors.
10009
10010@example
10011$ bison -Werror=yacc,conflicts-sr input.y
10012$ bison -Werror=yacc,error=conflicts-sr input.y
10013@end example
f3ead217 10014
7bada535
TR
10015@item -f [@var{feature}]
10016@itemx --feature[=@var{feature}]
10017Activate miscellaneous @var{feature}. @var{feature} can be one of:
10018@table @code
10019@item caret
10020@itemx diagnostics-show-caret
10021Show caret errors, in a manner similar to GCC's
10022@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
10023location provided with the message is used to quote the corresponding line of
10024the source file, underlining the important part of it with carets (^). Here is
c949ada3 10025an example, using the following file @file{in.y}:
7bada535
TR
10026
10027@example
10028%type <ival> exp
10029%%
10030exp: exp '+' exp @{ $exp = $1 + $2; @};
10031@end example
10032
016426c1 10033When invoked with @option{-fcaret} (or nothing), Bison will report:
7bada535
TR
10034
10035@example
10036@group
c949ada3 10037in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
10038 exp: exp '+' exp @{ $exp = $1 + $2; @};
10039 ^^^^
10040@end group
10041@group
c949ada3 10042in.y:3.1-3: refers to: $exp at $$
7bada535
TR
10043 exp: exp '+' exp @{ $exp = $1 + $2; @};
10044 ^^^
10045@end group
10046@group
c949ada3 10047in.y:3.6-8: refers to: $exp at $1
7bada535
TR
10048 exp: exp '+' exp @{ $exp = $1 + $2; @};
10049 ^^^
10050@end group
10051@group
c949ada3 10052in.y:3.14-16: refers to: $exp at $3
7bada535
TR
10053 exp: exp '+' exp @{ $exp = $1 + $2; @};
10054 ^^^
10055@end group
10056@group
c949ada3 10057in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
10058 exp: exp '+' exp @{ $exp = $1 + $2; @};
10059 ^^
10060@end group
10061@end example
10062
016426c1
TR
10063Whereas, when invoked with @option{-fno-caret}, Bison will only report:
10064
10065@example
10066@group
10067in.y:3.20-23: error: ambiguous reference: ‘$exp’
10068in.y:3.1-3: refers to: $exp at $$
10069in.y:3.6-8: refers to: $exp at $1
10070in.y:3.14-16: refers to: $exp at $3
10071in.y:3.32-33: error: $2 of ‘exp’ has no declared type
10072@end group
10073@end example
10074
10075This option is activated by default.
10076
7bada535 10077@end table
89cab50d
AD
10078@end table
10079
10080@noindent
10081Tuning the parser:
10082
10083@table @option
10084@item -t
10085@itemx --debug
ff7571c0
JD
10086In the parser implementation file, define the macro @code{YYDEBUG} to
100871 if it is not already defined, so that the debugging facilities are
10088compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 10089
58697c6d
AD
10090@item -D @var{name}[=@var{value}]
10091@itemx --define=@var{name}[=@var{value}]
17aed602 10092@itemx -F @var{name}[=@var{value}]
de5ab940
JD
10093@itemx --force-define=@var{name}[=@var{value}]
10094Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 10095(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
10096definitions for the same @var{name} as follows:
10097
10098@itemize
10099@item
0b6d43c5
JD
10100Bison quietly ignores all command-line definitions for @var{name} except
10101the last.
de5ab940 10102@item
0b6d43c5
JD
10103If that command-line definition is specified by a @code{-D} or
10104@code{--define}, Bison reports an error for any @code{%define}
10105definition for @var{name}.
de5ab940 10106@item
0b6d43c5
JD
10107If that command-line definition is specified by a @code{-F} or
10108@code{--force-define} instead, Bison quietly ignores all @code{%define}
10109definitions for @var{name}.
10110@item
10111Otherwise, Bison reports an error if there are multiple @code{%define}
10112definitions for @var{name}.
de5ab940
JD
10113@end itemize
10114
10115You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
10116make files unless you are confident that it is safe to quietly ignore
10117any conflicting @code{%define} that may be added to the grammar file.
58697c6d 10118
0e021770
PE
10119@item -L @var{language}
10120@itemx --language=@var{language}
10121Specify the programming language for the generated parser, as if
10122@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 10123Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 10124@var{language} is case-insensitive.
0e021770 10125
89cab50d 10126@item --locations
d8988b2f 10127Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
10128
10129@item -p @var{prefix}
10130@itemx --name-prefix=@var{prefix}
4b3847c3
AD
10131Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
10132Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
10133Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
10134
10135@item -l
10136@itemx --no-lines
ff7571c0
JD
10137Don't put any @code{#line} preprocessor commands in the parser
10138implementation file. Ordinarily Bison puts them in the parser
10139implementation file so that the C compiler and debuggers will
10140associate errors with your source file, the grammar file. This option
10141causes them to associate errors with the parser implementation file,
10142treating it as an independent source file in its own right.
bfa74976 10143
e6e704dc
JD
10144@item -S @var{file}
10145@itemx --skeleton=@var{file}
a7867f53 10146Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
10147(@pxref{Decl Summary, , Bison Declaration Summary}).
10148
ed4d67dc
JD
10149@c You probably don't need this option unless you are developing Bison.
10150@c You should use @option{--language} if you want to specify the skeleton for a
10151@c different language, because it is clearer and because it will always
10152@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 10153
a7867f53
JD
10154If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
10155file in the Bison installation directory.
10156If it does, @var{file} is an absolute file name or a file name relative to the
10157current working directory.
10158This is similar to how most shells resolve commands.
10159
89cab50d
AD
10160@item -k
10161@itemx --token-table
d8988b2f 10162Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 10163@end table
bfa74976 10164
89cab50d
AD
10165@noindent
10166Adjust the output:
bfa74976 10167
89cab50d 10168@table @option
8e55b3aa 10169@item --defines[=@var{file}]
d8988b2f 10170Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 10171file containing macro definitions for the token type names defined in
4bfd5e4e 10172the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 10173
8e55b3aa
JD
10174@item -d
10175This is the same as @code{--defines} except @code{-d} does not accept a
10176@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
10177with other short options.
342b8b6e 10178
89cab50d
AD
10179@item -b @var{file-prefix}
10180@itemx --file-prefix=@var{prefix}
9c437126 10181Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 10182for all Bison output file names. @xref{Decl Summary}.
bfa74976 10183
ec3bc396
AD
10184@item -r @var{things}
10185@itemx --report=@var{things}
10186Write an extra output file containing verbose description of the comma
10187separated list of @var{things} among:
10188
10189@table @code
10190@item state
10191Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 10192parser's automaton.
ec3bc396 10193
57f8bd8d
AD
10194@item itemset
10195Implies @code{state} and augments the description of the automaton with
10196the full set of items for each state, instead of its core only.
10197
742e4900 10198@item lookahead
ec3bc396 10199Implies @code{state} and augments the description of the automaton with
742e4900 10200each rule's lookahead set.
ec3bc396 10201
57f8bd8d
AD
10202@item solved
10203Implies @code{state}. Explain how conflicts were solved thanks to
10204precedence and associativity directives.
10205
10206@item all
10207Enable all the items.
10208
10209@item none
10210Do not generate the report.
ec3bc396
AD
10211@end table
10212
1bb2bd75
JD
10213@item --report-file=@var{file}
10214Specify the @var{file} for the verbose description.
10215
bfa74976
RS
10216@item -v
10217@itemx --verbose
9c437126 10218Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 10219file containing verbose descriptions of the grammar and
72d2299c 10220parser. @xref{Decl Summary}.
bfa74976 10221
fa4d969f
PE
10222@item -o @var{file}
10223@itemx --output=@var{file}
ff7571c0 10224Specify the @var{file} for the parser implementation file.
bfa74976 10225
fa4d969f 10226The other output files' names are constructed from @var{file} as
d8988b2f 10227described under the @samp{-v} and @samp{-d} options.
342b8b6e 10228
a7c09cba 10229@item -g [@var{file}]
8e55b3aa 10230@itemx --graph[=@var{file}]
eb45ef3b 10231Output a graphical representation of the parser's
35fe0834 10232automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 10233@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
10234@code{@var{file}} is optional.
10235If omitted and the grammar file is @file{foo.y}, the output file will be
10236@file{foo.dot}.
59da312b 10237
a7c09cba 10238@item -x [@var{file}]
8e55b3aa 10239@itemx --xml[=@var{file}]
eb45ef3b 10240Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 10241@code{@var{file}} is optional.
59da312b
JD
10242If omitted and the grammar file is @file{foo.y}, the output file will be
10243@file{foo.xml}.
10244(The current XML schema is experimental and may evolve.
10245More user feedback will help to stabilize it.)
bfa74976
RS
10246@end table
10247
342b8b6e 10248@node Option Cross Key
bfa74976
RS
10249@section Option Cross Key
10250
10251Here is a list of options, alphabetized by long option, to help you find
de5ab940 10252the corresponding short option and directive.
bfa74976 10253
de5ab940 10254@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 10255@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 10256@include cross-options.texi
aa08666d 10257@end multitable
bfa74976 10258
93dd49ab
PE
10259@node Yacc Library
10260@section Yacc Library
10261
10262The Yacc library contains default implementations of the
10263@code{yyerror} and @code{main} functions. These default
8a4281b9 10264implementations are normally not useful, but POSIX requires
93dd49ab
PE
10265them. To use the Yacc library, link your program with the
10266@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 10267library is distributed under the terms of the GNU General
93dd49ab
PE
10268Public License (@pxref{Copying}).
10269
10270If you use the Yacc library's @code{yyerror} function, you should
10271declare @code{yyerror} as follows:
10272
10273@example
10274int yyerror (char const *);
10275@end example
10276
10277Bison ignores the @code{int} value returned by this @code{yyerror}.
10278If you use the Yacc library's @code{main} function, your
10279@code{yyparse} function should have the following type signature:
10280
10281@example
10282int yyparse (void);
10283@end example
10284
12545799
AD
10285@c ================================================= C++ Bison
10286
8405b70c
PB
10287@node Other Languages
10288@chapter Parsers Written In Other Languages
12545799
AD
10289
10290@menu
10291* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10292* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10293@end menu
10294
10295@node C++ Parsers
10296@section C++ Parsers
10297
10298@menu
10299* C++ Bison Interface:: Asking for C++ parser generation
10300* C++ Semantic Values:: %union vs. C++
10301* C++ Location Values:: The position and location classes
10302* C++ Parser Interface:: Instantiating and running the parser
10303* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10304* A Complete C++ Example:: Demonstrating their use
12545799
AD
10305@end menu
10306
10307@node C++ Bison Interface
10308@subsection C++ Bison Interface
ed4d67dc 10309@c - %skeleton "lalr1.cc"
12545799
AD
10310@c - Always pure
10311@c - initial action
10312
eb45ef3b 10313The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10314@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10315@option{--skeleton=lalr1.cc}.
e6e704dc 10316@xref{Decl Summary}.
0e021770 10317
793fbca5
JD
10318When run, @command{bison} will create several entities in the @samp{yy}
10319namespace.
67501061 10320@findex %define api.namespace
35c1e5f0
JD
10321Use the @samp{%define api.namespace} directive to change the namespace name,
10322see @ref{%define Summary,,api.namespace}. The various classes are generated
10323in the following files:
aa08666d 10324
12545799
AD
10325@table @file
10326@item position.hh
10327@itemx location.hh
db8ab2be 10328The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10329location tracking when enabled. These files are not generated if the
10330@code{%define} variable @code{api.location.type} is defined. @xref{C++
10331Location Values}.
12545799
AD
10332
10333@item stack.hh
10334An auxiliary class @code{stack} used by the parser.
10335
fa4d969f
PE
10336@item @var{file}.hh
10337@itemx @var{file}.cc
ff7571c0 10338(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10339declaration and implementation of the C++ parser class. The basename
10340and extension of these two files follow the same rules as with regular C
10341parsers (@pxref{Invocation}).
12545799 10342
cd8b5791
AD
10343The header is @emph{mandatory}; you must either pass
10344@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10345@samp{%defines} directive.
10346@end table
10347
10348All these files are documented using Doxygen; run @command{doxygen}
10349for a complete and accurate documentation.
10350
10351@node C++ Semantic Values
10352@subsection C++ Semantic Values
10353@c - No objects in unions
178e123e 10354@c - YYSTYPE
12545799
AD
10355@c - Printer and destructor
10356
3cdc21cf
AD
10357Bison supports two different means to handle semantic values in C++. One is
10358alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10359practitioners know, unions are inconvenient in C++, therefore another
10360approach is provided, based on variants (@pxref{C++ Variants}).
10361
10362@menu
10363* C++ Unions:: Semantic values cannot be objects
10364* C++ Variants:: Using objects as semantic values
10365@end menu
10366
10367@node C++ Unions
10368@subsubsection C++ Unions
10369
12545799 10370The @code{%union} directive works as for C, see @ref{Union Decl, ,The
e4d49586 10371Union Declaration}. In particular it produces a genuine
3cdc21cf 10372@code{union}, which have a few specific features in C++.
12545799
AD
10373@itemize @minus
10374@item
fb9712a9
AD
10375The type @code{YYSTYPE} is defined but its use is discouraged: rather
10376you should refer to the parser's encapsulated type
10377@code{yy::parser::semantic_type}.
12545799
AD
10378@item
10379Non POD (Plain Old Data) types cannot be used. C++ forbids any
10380instance of classes with constructors in unions: only @emph{pointers}
10381to such objects are allowed.
10382@end itemize
10383
10384Because objects have to be stored via pointers, memory is not
10385reclaimed automatically: using the @code{%destructor} directive is the
10386only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10387Symbols}.
10388
3cdc21cf
AD
10389@node C++ Variants
10390@subsubsection C++ Variants
10391
ae8880de
AD
10392Bison provides a @emph{variant} based implementation of semantic values for
10393C++. This alleviates all the limitations reported in the previous section,
10394and in particular, object types can be used without pointers.
3cdc21cf
AD
10395
10396To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10397@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10398@code{%union} is ignored, and instead of using the name of the fields of the
10399@code{%union} to ``type'' the symbols, use genuine types.
10400
10401For instance, instead of
10402
10403@example
10404%union
10405@{
10406 int ival;
10407 std::string* sval;
10408@}
10409%token <ival> NUMBER;
10410%token <sval> STRING;
10411@end example
10412
10413@noindent
10414write
10415
10416@example
10417%token <int> NUMBER;
10418%token <std::string> STRING;
10419@end example
10420
10421@code{STRING} is no longer a pointer, which should fairly simplify the user
10422actions in the grammar and in the scanner (in particular the memory
10423management).
10424
10425Since C++ features destructors, and since it is customary to specialize
10426@code{operator<<} to support uniform printing of values, variants also
10427typically simplify Bison printers and destructors.
10428
10429Variants are stricter than unions. When based on unions, you may play any
10430dirty game with @code{yylval}, say storing an @code{int}, reading a
10431@code{char*}, and then storing a @code{double} in it. This is no longer
10432possible with variants: they must be initialized, then assigned to, and
10433eventually, destroyed.
10434
10435@deftypemethod {semantic_type} {T&} build<T> ()
10436Initialize, but leave empty. Returns the address where the actual value may
10437be stored. Requires that the variant was not initialized yet.
10438@end deftypemethod
10439
10440@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10441Initialize, and copy-construct from @var{t}.
10442@end deftypemethod
10443
10444
10445@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10446appeared unacceptable to require Boost on the user's machine (i.e., the
10447machine on which the generated parser will be compiled, not the machine on
10448which @command{bison} was run). Second, for each possible semantic value,
10449Boost.Variant not only stores the value, but also a tag specifying its
10450type. But the parser already ``knows'' the type of the semantic value, so
10451that would be duplicating the information.
10452
10453Therefore we developed light-weight variants whose type tag is external (so
10454they are really like @code{unions} for C++ actually). But our code is much
10455less mature that Boost.Variant. So there is a number of limitations in
10456(the current implementation of) variants:
10457@itemize
10458@item
10459Alignment must be enforced: values should be aligned in memory according to
10460the most demanding type. Computing the smallest alignment possible requires
10461meta-programming techniques that are not currently implemented in Bison, and
10462therefore, since, as far as we know, @code{double} is the most demanding
10463type on all platforms, alignments are enforced for @code{double} whatever
10464types are actually used. This may waste space in some cases.
10465
3cdc21cf
AD
10466@item
10467There might be portability issues we are not aware of.
10468@end itemize
10469
a6ca4ce2 10470As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10471is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10472
10473@node C++ Location Values
10474@subsection C++ Location Values
10475@c - %locations
10476@c - class Position
10477@c - class Location
16dc6a9e 10478@c - %define filename_type "const symbol::Symbol"
12545799
AD
10479
10480When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10481location tracking, see @ref{Tracking Locations}.
10482
10483By default, two auxiliary classes define a @code{position}, a single point
10484in a file, and a @code{location}, a range composed of a pair of
10485@code{position}s (possibly spanning several files). But if the
10486@code{%define} variable @code{api.location.type} is defined, then these
10487classes will not be generated, and the user defined type will be used.
12545799 10488
936c88d1
AD
10489@tindex uint
10490In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10491genuine code only the latter is used.
10492
10493@menu
10494* C++ position:: One point in the source file
10495* C++ location:: Two points in the source file
db8ab2be 10496* User Defined Location Type:: Required interface for locations
936c88d1
AD
10497@end menu
10498
10499@node C++ position
10500@subsubsection C++ @code{position}
10501
10502@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10503Create a @code{position} denoting a given point. Note that @code{file} is
10504not reclaimed when the @code{position} is destroyed: memory managed must be
10505handled elsewhere.
10506@end deftypeop
10507
10508@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10509Reset the position to the given values.
10510@end deftypemethod
10511
10512@deftypeivar {position} {std::string*} file
12545799
AD
10513The name of the file. It will always be handled as a pointer, the
10514parser will never duplicate nor deallocate it. As an experimental
10515feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10516filename_type "@var{type}"}.
936c88d1 10517@end deftypeivar
12545799 10518
936c88d1 10519@deftypeivar {position} {uint} line
12545799 10520The line, starting at 1.
936c88d1 10521@end deftypeivar
12545799 10522
936c88d1 10523@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
10524Advance by @var{height} lines, resetting the column number.
10525@end deftypemethod
10526
936c88d1
AD
10527@deftypeivar {position} {uint} column
10528The column, starting at 1.
10529@end deftypeivar
12545799 10530
936c88d1 10531@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
10532Advance by @var{width} columns, without changing the line number.
10533@end deftypemethod
10534
936c88d1
AD
10535@deftypemethod {position} {position&} operator+= (int @var{width})
10536@deftypemethodx {position} {position} operator+ (int @var{width})
10537@deftypemethodx {position} {position&} operator-= (int @var{width})
10538@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10539Various forms of syntactic sugar for @code{columns}.
10540@end deftypemethod
10541
936c88d1
AD
10542@deftypemethod {position} {bool} operator== (const position& @var{that})
10543@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10544Whether @code{*this} and @code{that} denote equal/different positions.
10545@end deftypemethod
10546
10547@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10548Report @var{p} on @var{o} like this:
fa4d969f
PE
10549@samp{@var{file}:@var{line}.@var{column}}, or
10550@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10551@end deftypefun
10552
10553@node C++ location
10554@subsubsection C++ @code{location}
10555
10556@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10557Create a @code{Location} from the endpoints of the range.
10558@end deftypeop
10559
10560@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10561@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10562Create a @code{Location} denoting an empty range located at a given point.
10563@end deftypeop
10564
10565@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10566Reset the location to an empty range at the given values.
12545799
AD
10567@end deftypemethod
10568
936c88d1
AD
10569@deftypeivar {location} {position} begin
10570@deftypeivarx {location} {position} end
12545799 10571The first, inclusive, position of the range, and the first beyond.
936c88d1 10572@end deftypeivar
12545799 10573
936c88d1
AD
10574@deftypemethod {location} {uint} columns (int @var{width} = 1)
10575@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
10576Advance the @code{end} position.
10577@end deftypemethod
10578
936c88d1
AD
10579@deftypemethod {location} {location} operator+ (const location& @var{end})
10580@deftypemethodx {location} {location} operator+ (int @var{width})
10581@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
10582Various forms of syntactic sugar.
10583@end deftypemethod
10584
10585@deftypemethod {location} {void} step ()
10586Move @code{begin} onto @code{end}.
10587@end deftypemethod
10588
936c88d1
AD
10589@deftypemethod {location} {bool} operator== (const location& @var{that})
10590@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10591Whether @code{*this} and @code{that} denote equal/different ranges of
10592positions.
10593@end deftypemethod
10594
10595@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10596Report @var{p} on @var{o}, taking care of special cases such as: no
10597@code{filename} defined, or equal filename/line or column.
10598@end deftypefun
12545799 10599
db8ab2be
AD
10600@node User Defined Location Type
10601@subsubsection User Defined Location Type
10602@findex %define api.location.type
10603
10604Instead of using the built-in types you may use the @code{%define} variable
10605@code{api.location.type} to specify your own type:
10606
10607@example
10608%define api.location.type @var{LocationType}
10609@end example
10610
10611The requirements over your @var{LocationType} are:
10612@itemize
10613@item
10614it must be copyable;
10615
10616@item
10617in order to compute the (default) value of @code{@@$} in a reduction, the
10618parser basically runs
10619@example
10620@@$.begin = @@$1.begin;
10621@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10622@end example
10623@noindent
10624so there must be copyable @code{begin} and @code{end} members;
10625
10626@item
10627alternatively you may redefine the computation of the default location, in
10628which case these members are not required (@pxref{Location Default Action});
10629
10630@item
10631if traces are enabled, then there must exist an @samp{std::ostream&
10632 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10633@end itemize
10634
10635@sp 1
10636
10637In programs with several C++ parsers, you may also use the @code{%define}
10638variable @code{api.location.type} to share a common set of built-in
10639definitions for @code{position} and @code{location}. For instance, one
10640parser @file{master/parser.yy} might use:
10641
10642@example
10643%defines
10644%locations
10645%define namespace "master::"
10646@end example
10647
10648@noindent
10649to generate the @file{master/position.hh} and @file{master/location.hh}
10650files, reused by other parsers as follows:
10651
10652@example
7287be84 10653%define api.location.type "master::location"
db8ab2be
AD
10654%code requires @{ #include <master/location.hh> @}
10655@end example
10656
12545799
AD
10657@node C++ Parser Interface
10658@subsection C++ Parser Interface
10659@c - define parser_class_name
10660@c - Ctor
10661@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10662@c debug_stream.
10663@c - Reporting errors
10664
10665The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10666declare and define the parser class in the namespace @code{yy}. The
10667class name defaults to @code{parser}, but may be changed using
16dc6a9e 10668@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 10669this class is detailed below. It can be extended using the
12545799
AD
10670@code{%parse-param} feature: its semantics is slightly changed since
10671it describes an additional member of the parser class, and an
10672additional argument for its constructor.
10673
3cdc21cf
AD
10674@defcv {Type} {parser} {semantic_type}
10675@defcvx {Type} {parser} {location_type}
10676The types for semantic values and locations (if enabled).
10677@end defcv
10678
86e5b440 10679@defcv {Type} {parser} {token}
aaaa2aae
AD
10680A structure that contains (only) the @code{yytokentype} enumeration, which
10681defines the tokens. To refer to the token @code{FOO},
10682use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10683@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10684(@pxref{Calc++ Scanner}).
10685@end defcv
10686
3cdc21cf
AD
10687@defcv {Type} {parser} {syntax_error}
10688This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10689from the scanner or from the user actions to raise parse errors. This is
10690equivalent with first
3cdc21cf
AD
10691invoking @code{error} to report the location and message of the syntax
10692error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10693But contrary to @code{YYERROR} which can only be invoked from user actions
10694(i.e., written in the action itself), the exception can be thrown from
10695function invoked from the user action.
8a0adb01 10696@end defcv
12545799
AD
10697
10698@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10699Build a new parser object. There are no arguments by default, unless
10700@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10701@end deftypemethod
10702
3cdc21cf
AD
10703@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10704@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10705Instantiate a syntax-error exception.
10706@end deftypemethod
10707
12545799
AD
10708@deftypemethod {parser} {int} parse ()
10709Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10710
10711@cindex exceptions
10712The whole function is wrapped in a @code{try}/@code{catch} block, so that
10713when an exception is thrown, the @code{%destructor}s are called to release
10714the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10715@end deftypemethod
10716
10717@deftypemethod {parser} {std::ostream&} debug_stream ()
10718@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10719Get or set the stream used for tracing the parsing. It defaults to
10720@code{std::cerr}.
10721@end deftypemethod
10722
10723@deftypemethod {parser} {debug_level_type} debug_level ()
10724@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10725Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10726or nonzero, full tracing.
12545799
AD
10727@end deftypemethod
10728
10729@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10730@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10731The definition for this member function must be supplied by the user:
10732the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10733described by @var{m}. If location tracking is not enabled, the second
10734signature is used.
12545799
AD
10735@end deftypemethod
10736
10737
10738@node C++ Scanner Interface
10739@subsection C++ Scanner Interface
10740@c - prefix for yylex.
10741@c - Pure interface to yylex
10742@c - %lex-param
10743
10744The parser invokes the scanner by calling @code{yylex}. Contrary to C
10745parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10746@samp{%define api.pure} directive. The actual interface with @code{yylex}
10747depends whether you use unions, or variants.
12545799 10748
3cdc21cf
AD
10749@menu
10750* Split Symbols:: Passing symbols as two/three components
10751* Complete Symbols:: Making symbols a whole
10752@end menu
10753
10754@node Split Symbols
10755@subsubsection Split Symbols
10756
5807bb91 10757The interface is as follows.
3cdc21cf 10758
86e5b440
AD
10759@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10760@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10761Return the next token. Its type is the return value, its semantic value and
10762location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10763@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10764@end deftypemethod
10765
3cdc21cf
AD
10766Note that when using variants, the interface for @code{yylex} is the same,
10767but @code{yylval} is handled differently.
10768
10769Regular union-based code in Lex scanner typically look like:
10770
10771@example
10772[0-9]+ @{
10773 yylval.ival = text_to_int (yytext);
10774 return yy::parser::INTEGER;
10775 @}
10776[a-z]+ @{
10777 yylval.sval = new std::string (yytext);
10778 return yy::parser::IDENTIFIER;
10779 @}
10780@end example
10781
10782Using variants, @code{yylval} is already constructed, but it is not
10783initialized. So the code would look like:
10784
10785@example
10786[0-9]+ @{
10787 yylval.build<int>() = text_to_int (yytext);
10788 return yy::parser::INTEGER;
10789 @}
10790[a-z]+ @{
10791 yylval.build<std::string> = yytext;
10792 return yy::parser::IDENTIFIER;
10793 @}
10794@end example
10795
10796@noindent
10797or
10798
10799@example
10800[0-9]+ @{
10801 yylval.build(text_to_int (yytext));
10802 return yy::parser::INTEGER;
10803 @}
10804[a-z]+ @{
10805 yylval.build(yytext);
10806 return yy::parser::IDENTIFIER;
10807 @}
10808@end example
10809
10810
10811@node Complete Symbols
10812@subsubsection Complete Symbols
10813
ae8880de 10814If you specified both @code{%define api.value.type variant} and
e36ec1f4 10815@code{%define api.token.constructor},
3cdc21cf
AD
10816the @code{parser} class also defines the class @code{parser::symbol_type}
10817which defines a @emph{complete} symbol, aggregating its type (i.e., the
10818traditional value returned by @code{yylex}), its semantic value (i.e., the
10819value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10820
10821@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10822Build a complete terminal symbol which token type is @var{type}, and which
10823semantic value is @var{value}. If location tracking is enabled, also pass
10824the @var{location}.
10825@end deftypemethod
10826
10827This interface is low-level and should not be used for two reasons. First,
10828it is inconvenient, as you still have to build the semantic value, which is
10829a variant, and second, because consistency is not enforced: as with unions,
10830it is still possible to give an integer as semantic value for a string.
10831
10832So for each token type, Bison generates named constructors as follows.
10833
10834@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10835@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10836Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10837including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10838@var{value} of adequate @var{value_type}. If location tracking is enabled,
10839also pass the @var{location}.
10840@end deftypemethod
10841
10842For instance, given the following declarations:
10843
10844@example
2a6b66c5 10845%define api.token.prefix "TOK_"
3cdc21cf
AD
10846%token <std::string> IDENTIFIER;
10847%token <int> INTEGER;
10848%token COLON;
10849@end example
10850
10851@noindent
10852Bison generates the following functions:
10853
10854@example
10855symbol_type make_IDENTIFIER(const std::string& v,
10856 const location_type& l);
10857symbol_type make_INTEGER(const int& v,
10858 const location_type& loc);
10859symbol_type make_COLON(const location_type& loc);
10860@end example
10861
10862@noindent
10863which should be used in a Lex-scanner as follows.
10864
10865@example
10866[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10867[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10868":" return yy::parser::make_COLON(loc);
10869@end example
10870
10871Tokens that do not have an identifier are not accessible: you cannot simply
10872use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10873
10874@node A Complete C++ Example
8405b70c 10875@subsection A Complete C++ Example
12545799
AD
10876
10877This section demonstrates the use of a C++ parser with a simple but
10878complete example. This example should be available on your system,
3cdc21cf 10879ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10880focuses on the use of Bison, therefore the design of the various C++
10881classes is very naive: no accessors, no encapsulation of members etc.
10882We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10883demonstrate the various interactions. A hand-written scanner is
12545799
AD
10884actually easier to interface with.
10885
10886@menu
10887* Calc++ --- C++ Calculator:: The specifications
10888* Calc++ Parsing Driver:: An active parsing context
10889* Calc++ Parser:: A parser class
10890* Calc++ Scanner:: A pure C++ Flex scanner
10891* Calc++ Top Level:: Conducting the band
10892@end menu
10893
10894@node Calc++ --- C++ Calculator
8405b70c 10895@subsubsection Calc++ --- C++ Calculator
12545799
AD
10896
10897Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10898expression, possibly preceded by variable assignments. An
12545799
AD
10899environment containing possibly predefined variables such as
10900@code{one} and @code{two}, is exchanged with the parser. An example
10901of valid input follows.
10902
10903@example
10904three := 3
10905seven := one + two * three
10906seven * seven
10907@end example
10908
10909@node Calc++ Parsing Driver
8405b70c 10910@subsubsection Calc++ Parsing Driver
12545799
AD
10911@c - An env
10912@c - A place to store error messages
10913@c - A place for the result
10914
10915To support a pure interface with the parser (and the scanner) the
10916technique of the ``parsing context'' is convenient: a structure
10917containing all the data to exchange. Since, in addition to simply
10918launch the parsing, there are several auxiliary tasks to execute (open
10919the file for parsing, instantiate the parser etc.), we recommend
10920transforming the simple parsing context structure into a fully blown
10921@dfn{parsing driver} class.
10922
10923The declaration of this driver class, @file{calc++-driver.hh}, is as
10924follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10925required standard library components, and the declaration of the parser
10926class.
12545799 10927
1c59e0a1 10928@comment file: calc++-driver.hh
12545799
AD
10929@example
10930#ifndef CALCXX_DRIVER_HH
10931# define CALCXX_DRIVER_HH
10932# include <string>
10933# include <map>
fb9712a9 10934# include "calc++-parser.hh"
12545799
AD
10935@end example
10936
12545799
AD
10937
10938@noindent
10939Then comes the declaration of the scanning function. Flex expects
10940the signature of @code{yylex} to be defined in the macro
10941@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10942factor both as follows.
1c59e0a1
AD
10943
10944@comment file: calc++-driver.hh
12545799 10945@example
3dc5e96b 10946// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10947# define YY_DECL \
10948 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10949// ... and declare it for the parser's sake.
10950YY_DECL;
10951@end example
10952
10953@noindent
10954The @code{calcxx_driver} class is then declared with its most obvious
10955members.
10956
1c59e0a1 10957@comment file: calc++-driver.hh
12545799
AD
10958@example
10959// Conducting the whole scanning and parsing of Calc++.
10960class calcxx_driver
10961@{
10962public:
10963 calcxx_driver ();
10964 virtual ~calcxx_driver ();
10965
10966 std::map<std::string, int> variables;
10967
10968 int result;
10969@end example
10970
10971@noindent
3cdc21cf
AD
10972To encapsulate the coordination with the Flex scanner, it is useful to have
10973member functions to open and close the scanning phase.
12545799 10974
1c59e0a1 10975@comment file: calc++-driver.hh
12545799
AD
10976@example
10977 // Handling the scanner.
10978 void scan_begin ();
10979 void scan_end ();
10980 bool trace_scanning;
10981@end example
10982
10983@noindent
10984Similarly for the parser itself.
10985
1c59e0a1 10986@comment file: calc++-driver.hh
12545799 10987@example
3cdc21cf
AD
10988 // Run the parser on file F.
10989 // Return 0 on success.
bb32f4f2 10990 int parse (const std::string& f);
3cdc21cf
AD
10991 // The name of the file being parsed.
10992 // Used later to pass the file name to the location tracker.
12545799 10993 std::string file;
3cdc21cf 10994 // Whether parser traces should be generated.
12545799
AD
10995 bool trace_parsing;
10996@end example
10997
10998@noindent
10999To demonstrate pure handling of parse errors, instead of simply
11000dumping them on the standard error output, we will pass them to the
11001compiler driver using the following two member functions. Finally, we
11002close the class declaration and CPP guard.
11003
1c59e0a1 11004@comment file: calc++-driver.hh
12545799
AD
11005@example
11006 // Error handling.
11007 void error (const yy::location& l, const std::string& m);
11008 void error (const std::string& m);
11009@};
11010#endif // ! CALCXX_DRIVER_HH
11011@end example
11012
11013The implementation of the driver is straightforward. The @code{parse}
11014member function deserves some attention. The @code{error} functions
11015are simple stubs, they should actually register the located error
11016messages and set error state.
11017
1c59e0a1 11018@comment file: calc++-driver.cc
12545799
AD
11019@example
11020#include "calc++-driver.hh"
11021#include "calc++-parser.hh"
11022
11023calcxx_driver::calcxx_driver ()
11024 : trace_scanning (false), trace_parsing (false)
11025@{
11026 variables["one"] = 1;
11027 variables["two"] = 2;
11028@}
11029
11030calcxx_driver::~calcxx_driver ()
11031@{
11032@}
11033
bb32f4f2 11034int
12545799
AD
11035calcxx_driver::parse (const std::string &f)
11036@{
11037 file = f;
11038 scan_begin ();
11039 yy::calcxx_parser parser (*this);
11040 parser.set_debug_level (trace_parsing);
bb32f4f2 11041 int res = parser.parse ();
12545799 11042 scan_end ();
bb32f4f2 11043 return res;
12545799
AD
11044@}
11045
11046void
11047calcxx_driver::error (const yy::location& l, const std::string& m)
11048@{
11049 std::cerr << l << ": " << m << std::endl;
11050@}
11051
11052void
11053calcxx_driver::error (const std::string& m)
11054@{
11055 std::cerr << m << std::endl;
11056@}
11057@end example
11058
11059@node Calc++ Parser
8405b70c 11060@subsubsection Calc++ Parser
12545799 11061
ff7571c0
JD
11062The grammar file @file{calc++-parser.yy} starts by asking for the C++
11063deterministic parser skeleton, the creation of the parser header file,
11064and specifies the name of the parser class. Because the C++ skeleton
11065changed several times, it is safer to require the version you designed
11066the grammar for.
1c59e0a1
AD
11067
11068@comment file: calc++-parser.yy
12545799 11069@example
c93f22fc 11070%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 11071%require "@value{VERSION}"
12545799 11072%defines
16dc6a9e 11073%define parser_class_name "calcxx_parser"
fb9712a9
AD
11074@end example
11075
3cdc21cf 11076@noindent
e36ec1f4 11077@findex %define api.token.constructor
ae8880de 11078@findex %define api.value.type variant
3cdc21cf
AD
11079This example will use genuine C++ objects as semantic values, therefore, we
11080require the variant-based interface. To make sure we properly use it, we
11081enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 11082definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
11083
11084@comment file: calc++-parser.yy
11085@example
e36ec1f4 11086%define api.token.constructor
ae8880de 11087%define api.value.type variant
3cdc21cf 11088%define parse.assert
3cdc21cf
AD
11089@end example
11090
fb9712a9 11091@noindent
16dc6a9e 11092@findex %code requires
3cdc21cf
AD
11093Then come the declarations/inclusions needed by the semantic values.
11094Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 11095to include the header of the other, which is, of course, insane. This
3cdc21cf 11096mutual dependency will be broken using forward declarations. Because the
fb9712a9 11097driver's header needs detailed knowledge about the parser class (in
3cdc21cf 11098particular its inner types), it is the parser's header which will use a
e0c07222 11099forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
11100
11101@comment file: calc++-parser.yy
11102@example
3cdc21cf
AD
11103%code requires
11104@{
12545799 11105# include <string>
fb9712a9 11106class calcxx_driver;
9bc0dd67 11107@}
12545799
AD
11108@end example
11109
11110@noindent
11111The driver is passed by reference to the parser and to the scanner.
11112This provides a simple but effective pure interface, not relying on
11113global variables.
11114
1c59e0a1 11115@comment file: calc++-parser.yy
12545799
AD
11116@example
11117// The parsing context.
2055a44e 11118%param @{ calcxx_driver& driver @}
12545799
AD
11119@end example
11120
11121@noindent
2055a44e 11122Then we request location tracking, and initialize the
f50bfcd6 11123first location's file name. Afterward new locations are computed
12545799 11124relatively to the previous locations: the file name will be
2055a44e 11125propagated.
12545799 11126
1c59e0a1 11127@comment file: calc++-parser.yy
12545799
AD
11128@example
11129%locations
11130%initial-action
11131@{
11132 // Initialize the initial location.
b47dbebe 11133 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
11134@};
11135@end example
11136
11137@noindent
7fceb615
JD
11138Use the following two directives to enable parser tracing and verbose error
11139messages. However, verbose error messages can contain incorrect information
11140(@pxref{LAC}).
12545799 11141
1c59e0a1 11142@comment file: calc++-parser.yy
12545799 11143@example
fa819509 11144%define parse.trace
cf499cff 11145%define parse.error verbose
12545799
AD
11146@end example
11147
fb9712a9 11148@noindent
136a0f76
PB
11149@findex %code
11150The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 11151@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
11152
11153@comment file: calc++-parser.yy
11154@example
3cdc21cf
AD
11155%code
11156@{
fb9712a9 11157# include "calc++-driver.hh"
34f98f46 11158@}
fb9712a9
AD
11159@end example
11160
11161
12545799
AD
11162@noindent
11163The token numbered as 0 corresponds to end of file; the following line
99c08fb6 11164allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
11165``$end''. Similarly user friendly names are provided for each symbol. To
11166avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 11167tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 11168
1c59e0a1 11169@comment file: calc++-parser.yy
12545799 11170@example
2a6b66c5 11171%define api.token.prefix "TOK_"
3cdc21cf
AD
11172%token
11173 END 0 "end of file"
11174 ASSIGN ":="
11175 MINUS "-"
11176 PLUS "+"
11177 STAR "*"
11178 SLASH "/"
11179 LPAREN "("
11180 RPAREN ")"
11181;
12545799
AD
11182@end example
11183
11184@noindent
3cdc21cf
AD
11185Since we use variant-based semantic values, @code{%union} is not used, and
11186both @code{%type} and @code{%token} expect genuine types, as opposed to type
11187tags.
12545799 11188
1c59e0a1 11189@comment file: calc++-parser.yy
12545799 11190@example
3cdc21cf
AD
11191%token <std::string> IDENTIFIER "identifier"
11192%token <int> NUMBER "number"
11193%type <int> exp
11194@end example
11195
11196@noindent
11197No @code{%destructor} is needed to enable memory deallocation during error
11198recovery; the memory, for strings for instance, will be reclaimed by the
11199regular destructors. All the values are printed using their
a76c741d 11200@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 11201
3cdc21cf
AD
11202@comment file: calc++-parser.yy
11203@example
c5026327 11204%printer @{ yyoutput << $$; @} <*>;
12545799
AD
11205@end example
11206
11207@noindent
3cdc21cf
AD
11208The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
11209Location Tracking Calculator: @code{ltcalc}}).
12545799 11210
1c59e0a1 11211@comment file: calc++-parser.yy
12545799
AD
11212@example
11213%%
11214%start unit;
11215unit: assignments exp @{ driver.result = $2; @};
11216
99c08fb6 11217assignments:
6240346a 11218 %empty @{@}
5e9b6624 11219| assignments assignment @{@};
12545799 11220
3dc5e96b 11221assignment:
3cdc21cf 11222 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 11223
3cdc21cf
AD
11224%left "+" "-";
11225%left "*" "/";
99c08fb6 11226exp:
3cdc21cf
AD
11227 exp "+" exp @{ $$ = $1 + $3; @}
11228| exp "-" exp @{ $$ = $1 - $3; @}
11229| exp "*" exp @{ $$ = $1 * $3; @}
11230| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 11231| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 11232| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 11233| "number" @{ std::swap ($$, $1); @};
12545799
AD
11234%%
11235@end example
11236
11237@noindent
11238Finally the @code{error} member function registers the errors to the
11239driver.
11240
1c59e0a1 11241@comment file: calc++-parser.yy
12545799
AD
11242@example
11243void
3cdc21cf 11244yy::calcxx_parser::error (const location_type& l,
1c59e0a1 11245 const std::string& m)
12545799
AD
11246@{
11247 driver.error (l, m);
11248@}
11249@end example
11250
11251@node Calc++ Scanner
8405b70c 11252@subsubsection Calc++ Scanner
12545799
AD
11253
11254The Flex scanner first includes the driver declaration, then the
11255parser's to get the set of defined tokens.
11256
1c59e0a1 11257@comment file: calc++-scanner.ll
12545799 11258@example
c93f22fc 11259%@{ /* -*- C++ -*- */
3c248d70
AD
11260# include <cerrno>
11261# include <climits>
3cdc21cf 11262# include <cstdlib>
12545799
AD
11263# include <string>
11264# include "calc++-driver.hh"
11265# include "calc++-parser.hh"
eaea13f5 11266
3cdc21cf
AD
11267// Work around an incompatibility in flex (at least versions
11268// 2.5.31 through 2.5.33): it generates code that does
11269// not conform to C89. See Debian bug 333231
11270// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11271# undef yywrap
11272# define yywrap() 1
eaea13f5 11273
3cdc21cf
AD
11274// The location of the current token.
11275static yy::location loc;
12545799
AD
11276%@}
11277@end example
11278
11279@noindent
11280Because there is no @code{#include}-like feature we don't need
11281@code{yywrap}, we don't need @code{unput} either, and we parse an
11282actual file, this is not an interactive session with the user.
3cdc21cf 11283Finally, we enable scanner tracing.
12545799 11284
1c59e0a1 11285@comment file: calc++-scanner.ll
12545799 11286@example
6908c2e1 11287%option noyywrap nounput batch debug noinput
12545799
AD
11288@end example
11289
11290@noindent
11291Abbreviations allow for more readable rules.
11292
1c59e0a1 11293@comment file: calc++-scanner.ll
12545799
AD
11294@example
11295id [a-zA-Z][a-zA-Z_0-9]*
11296int [0-9]+
11297blank [ \t]
11298@end example
11299
11300@noindent
9d9b8b70 11301The following paragraph suffices to track locations accurately. Each
12545799 11302time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11303position. Then when a pattern is matched, its width is added to the end
11304column. When matching ends of lines, the end
12545799
AD
11305cursor is adjusted, and each time blanks are matched, the begin cursor
11306is moved onto the end cursor to effectively ignore the blanks
11307preceding tokens. Comments would be treated equally.
11308
1c59e0a1 11309@comment file: calc++-scanner.ll
12545799 11310@example
d4fca427 11311@group
828c373b 11312%@{
3cdc21cf
AD
11313 // Code run each time a pattern is matched.
11314 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11315%@}
d4fca427 11316@end group
12545799 11317%%
d4fca427 11318@group
12545799 11319%@{
3cdc21cf
AD
11320 // Code run each time yylex is called.
11321 loc.step ();
12545799 11322%@}
d4fca427 11323@end group
3cdc21cf
AD
11324@{blank@}+ loc.step ();
11325[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11326@end example
11327
11328@noindent
3cdc21cf 11329The rules are simple. The driver is used to report errors.
12545799 11330
1c59e0a1 11331@comment file: calc++-scanner.ll
12545799 11332@example
3cdc21cf
AD
11333"-" return yy::calcxx_parser::make_MINUS(loc);
11334"+" return yy::calcxx_parser::make_PLUS(loc);
11335"*" return yy::calcxx_parser::make_STAR(loc);
11336"/" return yy::calcxx_parser::make_SLASH(loc);
11337"(" return yy::calcxx_parser::make_LPAREN(loc);
11338")" return yy::calcxx_parser::make_RPAREN(loc);
11339":=" return yy::calcxx_parser::make_ASSIGN(loc);
11340
d4fca427 11341@group
04098407
PE
11342@{int@} @{
11343 errno = 0;
11344 long n = strtol (yytext, NULL, 10);
11345 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11346 driver.error (loc, "integer is out of range");
11347 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11348@}
d4fca427 11349@end group
3cdc21cf
AD
11350@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11351. driver.error (loc, "invalid character");
11352<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11353%%
11354@end example
11355
11356@noindent
3cdc21cf 11357Finally, because the scanner-related driver's member-functions depend
12545799
AD
11358on the scanner's data, it is simpler to implement them in this file.
11359
1c59e0a1 11360@comment file: calc++-scanner.ll
12545799 11361@example
d4fca427 11362@group
12545799
AD
11363void
11364calcxx_driver::scan_begin ()
11365@{
11366 yy_flex_debug = trace_scanning;
93c150b6 11367 if (file.empty () || file == "-")
bb32f4f2
AD
11368 yyin = stdin;
11369 else if (!(yyin = fopen (file.c_str (), "r")))
11370 @{
aaaa2aae 11371 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11372 exit (EXIT_FAILURE);
bb32f4f2 11373 @}
12545799 11374@}
d4fca427 11375@end group
12545799 11376
d4fca427 11377@group
12545799
AD
11378void
11379calcxx_driver::scan_end ()
11380@{
11381 fclose (yyin);
11382@}
d4fca427 11383@end group
12545799
AD
11384@end example
11385
11386@node Calc++ Top Level
8405b70c 11387@subsubsection Calc++ Top Level
12545799
AD
11388
11389The top level file, @file{calc++.cc}, poses no problem.
11390
1c59e0a1 11391@comment file: calc++.cc
12545799
AD
11392@example
11393#include <iostream>
11394#include "calc++-driver.hh"
11395
d4fca427 11396@group
12545799 11397int
fa4d969f 11398main (int argc, char *argv[])
12545799 11399@{
414c76a4 11400 int res = 0;
12545799 11401 calcxx_driver driver;
93c150b6
AD
11402 for (int i = 1; i < argc; ++i)
11403 if (argv[i] == std::string ("-p"))
12545799 11404 driver.trace_parsing = true;
93c150b6 11405 else if (argv[i] == std::string ("-s"))
12545799 11406 driver.trace_scanning = true;
93c150b6 11407 else if (!driver.parse (argv[i]))
bb32f4f2 11408 std::cout << driver.result << std::endl;
414c76a4
AD
11409 else
11410 res = 1;
11411 return res;
12545799 11412@}
d4fca427 11413@end group
12545799
AD
11414@end example
11415
8405b70c
PB
11416@node Java Parsers
11417@section Java Parsers
11418
11419@menu
f5f419de
DJ
11420* Java Bison Interface:: Asking for Java parser generation
11421* Java Semantic Values:: %type and %token vs. Java
11422* Java Location Values:: The position and location classes
11423* Java Parser Interface:: Instantiating and running the parser
11424* Java Scanner Interface:: Specifying the scanner for the parser
11425* Java Action Features:: Special features for use in actions
11426* Java Differences:: Differences between C/C++ and Java Grammars
11427* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11428@end menu
11429
11430@node Java Bison Interface
11431@subsection Java Bison Interface
11432@c - %language "Java"
8405b70c 11433
59da312b
JD
11434(The current Java interface is experimental and may evolve.
11435More user feedback will help to stabilize it.)
11436
e254a580
DJ
11437The Java parser skeletons are selected using the @code{%language "Java"}
11438directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11439
e254a580 11440@c FIXME: Documented bug.
ff7571c0
JD
11441When generating a Java parser, @code{bison @var{basename}.y} will
11442create a single Java source file named @file{@var{basename}.java}
11443containing the parser implementation. Using a grammar file without a
11444@file{.y} suffix is currently broken. The basename of the parser
11445implementation file can be changed by the @code{%file-prefix}
11446directive or the @option{-p}/@option{--name-prefix} option. The
11447entire parser implementation file name can be changed by the
11448@code{%output} directive or the @option{-o}/@option{--output} option.
11449The parser implementation file contains a single class for the parser.
8405b70c 11450
e254a580 11451You can create documentation for generated parsers using Javadoc.
8405b70c 11452
e254a580
DJ
11453Contrary to C parsers, Java parsers do not use global variables; the
11454state of the parser is always local to an instance of the parser class.
11455Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11456and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11457
e254a580 11458Push parsers are currently unsupported in Java and @code{%define
67212941 11459api.push-pull} have no effect.
01b477c6 11460
8a4281b9 11461GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11462@code{glr-parser} directive.
11463
11464No header file can be generated for Java parsers. Do not use the
11465@code{%defines} directive or the @option{-d}/@option{--defines} options.
11466
11467@c FIXME: Possible code change.
fa819509
AD
11468Currently, support for tracing is always compiled
11469in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11470directives and the
e254a580
DJ
11471@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11472options have no effect. This may change in the future to eliminate
fa819509
AD
11473unused code in the generated parser, so use @samp{%define parse.trace}
11474explicitly
1979121c 11475if needed. Also, in the future the
e254a580
DJ
11476@code{%token-table} directive might enable a public interface to
11477access the token names and codes.
8405b70c 11478
09ccae9b 11479Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11480hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11481Try reducing the amount of code in actions and static initializers;
11482otherwise, report a bug so that the parser skeleton will be improved.
11483
11484
8405b70c
PB
11485@node Java Semantic Values
11486@subsection Java Semantic Values
11487@c - No %union, specify type in %type/%token.
11488@c - YYSTYPE
11489@c - Printer and destructor
11490
11491There is no @code{%union} directive in Java parsers. Instead, the
11492semantic values' types (class names) should be specified in the
11493@code{%type} or @code{%token} directive:
11494
11495@example
11496%type <Expression> expr assignment_expr term factor
11497%type <Integer> number
11498@end example
11499
11500By default, the semantic stack is declared to have @code{Object} members,
11501which means that the class types you specify can be of any class.
11502To improve the type safety of the parser, you can declare the common
4119d1ea 11503superclass of all the semantic values using the @samp{%define api.value.type}
e254a580 11504directive. For example, after the following declaration:
8405b70c
PB
11505
11506@example
4119d1ea 11507%define api.value.type "ASTNode"
8405b70c
PB
11508@end example
11509
11510@noindent
11511any @code{%type} or @code{%token} specifying a semantic type which
11512is not a subclass of ASTNode, will cause a compile-time error.
11513
e254a580 11514@c FIXME: Documented bug.
8405b70c
PB
11515Types used in the directives may be qualified with a package name.
11516Primitive data types are accepted for Java version 1.5 or later. Note
11517that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11518Generic types may not be used; this is due to a limitation in the
11519implementation of Bison, and may change in future releases.
8405b70c
PB
11520
11521Java parsers do not support @code{%destructor}, since the language
11522adopts garbage collection. The parser will try to hold references
11523to semantic values for as little time as needed.
11524
11525Java parsers do not support @code{%printer}, as @code{toString()}
11526can be used to print the semantic values. This however may change
11527(in a backwards-compatible way) in future versions of Bison.
11528
11529
11530@node Java Location Values
11531@subsection Java Location Values
11532@c - %locations
11533@c - class Position
11534@c - class Location
11535
303834cc
JD
11536When the directive @code{%locations} is used, the Java parser supports
11537location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11538class defines a @dfn{position}, a single point in a file; Bison itself
11539defines a class representing a @dfn{location}, a range composed of a pair of
11540positions (possibly spanning several files). The location class is an inner
11541class of the parser; the name is @code{Location} by default, and may also be
7287be84 11542renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
11543
11544The location class treats the position as a completely opaque value.
11545By default, the class name is @code{Position}, but this can be changed
7287be84 11546with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 11547be supplied by the user.
8405b70c
PB
11548
11549
e254a580
DJ
11550@deftypeivar {Location} {Position} begin
11551@deftypeivarx {Location} {Position} end
8405b70c 11552The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11553@end deftypeivar
11554
11555@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11556Create a @code{Location} denoting an empty range located at a given point.
e254a580 11557@end deftypeop
8405b70c 11558
e254a580
DJ
11559@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11560Create a @code{Location} from the endpoints of the range.
11561@end deftypeop
11562
11563@deftypemethod {Location} {String} toString ()
8405b70c
PB
11564Prints the range represented by the location. For this to work
11565properly, the position class should override the @code{equals} and
11566@code{toString} methods appropriately.
11567@end deftypemethod
11568
11569
11570@node Java Parser Interface
11571@subsection Java Parser Interface
11572@c - define parser_class_name
11573@c - Ctor
11574@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11575@c debug_stream.
11576@c - Reporting errors
11577
e254a580
DJ
11578The name of the generated parser class defaults to @code{YYParser}. The
11579@code{YY} prefix may be changed using the @code{%name-prefix} directive
11580or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 11581@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 11582the class. The interface of this class is detailed below.
8405b70c 11583
e254a580 11584By default, the parser class has package visibility. A declaration
67501061 11585@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11586according to the Java language specification, the name of the @file{.java}
11587file should match the name of the class in this case. Similarly, you can
11588use @code{abstract}, @code{final} and @code{strictfp} with the
11589@code{%define} declaration to add other modifiers to the parser class.
67501061 11590A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 11591be used to add any number of annotations to the parser class.
e254a580
DJ
11592
11593The Java package name of the parser class can be specified using the
67501061 11594@samp{%define package} directive. The superclass and the implemented
e254a580 11595interfaces of the parser class can be specified with the @code{%define
67501061 11596extends} and @samp{%define implements} directives.
e254a580
DJ
11597
11598The parser class defines an inner class, @code{Location}, that is used
11599for location tracking (see @ref{Java Location Values}), and a inner
11600interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11601these inner class/interface, and the members described in the interface
11602below, all the other members and fields are preceded with a @code{yy} or
11603@code{YY} prefix to avoid clashes with user code.
11604
e254a580
DJ
11605The parser class can be extended using the @code{%parse-param}
11606directive. Each occurrence of the directive will add a @code{protected
11607final} field to the parser class, and an argument to its constructor,
11608which initialize them automatically.
11609
e254a580
DJ
11610@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11611Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11612no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11613@code{%lex-param}s are used.
1979121c
DJ
11614
11615Use @code{%code init} for code added to the start of the constructor
11616body. This is especially useful to initialize superclasses. Use
f50bfcd6 11617@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11618@end deftypeop
11619
11620@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11621Build a new parser object using the specified scanner. There are no
2055a44e
AD
11622additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11623used.
e254a580
DJ
11624
11625If the scanner is defined by @code{%code lexer}, this constructor is
11626declared @code{protected} and is called automatically with a scanner
2055a44e 11627created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11628
11629Use @code{%code init} for code added to the start of the constructor
11630body. This is especially useful to initialize superclasses. Use
5a321748 11631@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11632@end deftypeop
8405b70c
PB
11633
11634@deftypemethod {YYParser} {boolean} parse ()
11635Run the syntactic analysis, and return @code{true} on success,
11636@code{false} otherwise.
11637@end deftypemethod
11638
1979121c
DJ
11639@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11640@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11641Get or set the option to produce verbose error messages. These are only
cf499cff 11642available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11643verbose error messages.
11644@end deftypemethod
11645
11646@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11647@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11648@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11649Print an error message using the @code{yyerror} method of the scanner
11650instance in use. The @code{Location} and @code{Position} parameters are
11651available only if location tracking is active.
11652@end deftypemethod
11653
01b477c6 11654@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11655During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11656from a syntax error.
11657@xref{Error Recovery}.
8405b70c
PB
11658@end deftypemethod
11659
11660@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11661@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11662Get or set the stream used for tracing the parsing. It defaults to
11663@code{System.err}.
11664@end deftypemethod
11665
11666@deftypemethod {YYParser} {int} getDebugLevel ()
11667@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11668Get or set the tracing level. Currently its value is either 0, no trace,
11669or nonzero, full tracing.
11670@end deftypemethod
11671
1979121c
DJ
11672@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11673@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11674Identify the Bison version and skeleton used to generate this parser.
11675@end deftypecv
11676
8405b70c
PB
11677
11678@node Java Scanner Interface
11679@subsection Java Scanner Interface
01b477c6 11680@c - %code lexer
8405b70c 11681@c - %lex-param
01b477c6 11682@c - Lexer interface
8405b70c 11683
e254a580
DJ
11684There are two possible ways to interface a Bison-generated Java parser
11685with a scanner: the scanner may be defined by @code{%code lexer}, or
11686defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11687@code{Lexer} inner interface of the parser class. This interface also
11688contain constants for all user-defined token names and the predefined
11689@code{EOF} token.
e254a580
DJ
11690
11691In the first case, the body of the scanner class is placed in
11692@code{%code lexer} blocks. If you want to pass parameters from the
11693parser constructor to the scanner constructor, specify them with
11694@code{%lex-param}; they are passed before @code{%parse-param}s to the
11695constructor.
01b477c6 11696
59c5ac72 11697In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11698which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11699The constructor of the parser object will then accept an object
11700implementing the interface; @code{%lex-param} is not used in this
11701case.
11702
11703In both cases, the scanner has to implement the following methods.
11704
e254a580
DJ
11705@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11706This method is defined by the user to emit an error message. The first
11707parameter is omitted if location tracking is not active. Its type can be
7287be84 11708changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
11709@end deftypemethod
11710
e254a580 11711@deftypemethod {Lexer} {int} yylex ()
8405b70c 11712Return the next token. Its type is the return value, its semantic
f50bfcd6 11713value and location are saved and returned by the their methods in the
e254a580
DJ
11714interface.
11715
67501061 11716Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11717Default is @code{java.io.IOException}.
8405b70c
PB
11718@end deftypemethod
11719
11720@deftypemethod {Lexer} {Position} getStartPos ()
11721@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11722Return respectively the first position of the last token that
11723@code{yylex} returned, and the first position beyond it. These
11724methods are not needed unless location tracking is active.
8405b70c 11725
7287be84 11726The return type can be changed using @code{%define api.position.type
8405b70c
PB
11727"@var{class-name}".}
11728@end deftypemethod
11729
11730@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11731Return the semantic value of the last token that yylex returned.
8405b70c 11732
4119d1ea 11733The return type can be changed using @samp{%define api.value.type
8405b70c
PB
11734"@var{class-name}".}
11735@end deftypemethod
11736
11737
e254a580
DJ
11738@node Java Action Features
11739@subsection Special Features for Use in Java Actions
11740
11741The following special constructs can be uses in Java actions.
11742Other analogous C action features are currently unavailable for Java.
11743
67501061 11744Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11745actions, and initial actions specified by @code{%initial-action}.
11746
11747@defvar $@var{n}
11748The semantic value for the @var{n}th component of the current rule.
11749This may not be assigned to.
11750@xref{Java Semantic Values}.
11751@end defvar
11752
11753@defvar $<@var{typealt}>@var{n}
11754Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11755@xref{Java Semantic Values}.
11756@end defvar
11757
11758@defvar $$
11759The semantic value for the grouping made by the current rule. As a
11760value, this is in the base type (@code{Object} or as specified by
4119d1ea 11761@samp{%define api.value.type}) as in not cast to the declared subtype because
e254a580
DJ
11762casts are not allowed on the left-hand side of Java assignments.
11763Use an explicit Java cast if the correct subtype is needed.
11764@xref{Java Semantic Values}.
11765@end defvar
11766
11767@defvar $<@var{typealt}>$
11768Same as @code{$$} since Java always allow assigning to the base type.
11769Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11770for setting the value but there is currently no easy way to distinguish
11771these constructs.
11772@xref{Java Semantic Values}.
11773@end defvar
11774
11775@defvar @@@var{n}
11776The location information of the @var{n}th component of the current rule.
11777This may not be assigned to.
11778@xref{Java Location Values}.
11779@end defvar
11780
11781@defvar @@$
11782The location information of the grouping made by the current rule.
11783@xref{Java Location Values}.
11784@end defvar
11785
34a41a93 11786@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11787Return immediately from the parser, indicating failure.
11788@xref{Java Parser Interface}.
34a41a93 11789@end deftypefn
8405b70c 11790
34a41a93 11791@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11792Return immediately from the parser, indicating success.
11793@xref{Java Parser Interface}.
34a41a93 11794@end deftypefn
8405b70c 11795
34a41a93 11796@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11797Start error recovery (without printing an error message).
e254a580 11798@xref{Error Recovery}.
34a41a93 11799@end deftypefn
8405b70c 11800
e254a580
DJ
11801@deftypefn {Function} {boolean} recovering ()
11802Return whether error recovery is being done. In this state, the parser
11803reads token until it reaches a known state, and then restarts normal
11804operation.
11805@xref{Error Recovery}.
11806@end deftypefn
8405b70c 11807
1979121c
DJ
11808@deftypefn {Function} {void} yyerror (String @var{msg})
11809@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11810@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11811Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11812instance in use. The @code{Location} and @code{Position} parameters are
11813available only if location tracking is active.
e254a580 11814@end deftypefn
8405b70c 11815
8405b70c 11816
8405b70c
PB
11817@node Java Differences
11818@subsection Differences between C/C++ and Java Grammars
11819
11820The different structure of the Java language forces several differences
11821between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11822section summarizes these differences.
8405b70c
PB
11823
11824@itemize
11825@item
01b477c6 11826Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11827@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11828macros. Instead, they should be preceded by @code{return} when they
11829appear in an action. The actual definition of these symbols is
8405b70c
PB
11830opaque to the Bison grammar, and it might change in the future. The
11831only meaningful operation that you can do, is to return them.
e3fd1dcb 11832@xref{Java Action Features}.
8405b70c
PB
11833
11834Note that of these three symbols, only @code{YYACCEPT} and
11835@code{YYABORT} will cause a return from the @code{yyparse}
11836method@footnote{Java parsers include the actions in a separate
11837method than @code{yyparse} in order to have an intuitive syntax that
11838corresponds to these C macros.}.
11839
e254a580
DJ
11840@item
11841Java lacks unions, so @code{%union} has no effect. Instead, semantic
11842values have a common base type: @code{Object} or as specified by
4119d1ea 11843@samp{%define api.value.type}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11844@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11845an union. The type of @code{$$}, even with angle brackets, is the base
11846type since Java casts are not allow on the left-hand side of assignments.
11847Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11848left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11849@ref{Java Action Features}.
e254a580 11850
8405b70c 11851@item
f50bfcd6 11852The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11853@table @asis
11854@item @code{%code imports}
11855blocks are placed at the beginning of the Java source code. They may
11856include copyright notices. For a @code{package} declarations, it is
67501061 11857suggested to use @samp{%define package} instead.
8405b70c 11858
01b477c6
PB
11859@item unqualified @code{%code}
11860blocks are placed inside the parser class.
11861
11862@item @code{%code lexer}
11863blocks, if specified, should include the implementation of the
11864scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11865that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11866Interface}).
29553547 11867@end table
8405b70c
PB
11868
11869Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11870In particular, @code{%@{ @dots{} %@}} blocks should not be used
11871and may give an error in future versions of Bison.
11872
01b477c6 11873The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11874be used to define other classes used by the parser @emph{outside}
11875the parser class.
8405b70c
PB
11876@end itemize
11877
e254a580
DJ
11878
11879@node Java Declarations Summary
11880@subsection Java Declarations Summary
11881
11882This summary only include declarations specific to Java or have special
11883meaning when used in a Java parser.
11884
11885@deffn {Directive} {%language "Java"}
11886Generate a Java class for the parser.
11887@end deffn
11888
11889@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11890A parameter for the lexer class defined by @code{%code lexer}
11891@emph{only}, added as parameters to the lexer constructor and the parser
11892constructor that @emph{creates} a lexer. Default is none.
11893@xref{Java Scanner Interface}.
11894@end deffn
11895
11896@deffn {Directive} %name-prefix "@var{prefix}"
11897The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11898@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11899@xref{Java Bison Interface}.
11900@end deffn
11901
11902@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11903A parameter for the parser class added as parameters to constructor(s)
11904and as fields initialized by the constructor(s). Default is none.
11905@xref{Java Parser Interface}.
11906@end deffn
11907
11908@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11909Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11910@xref{Java Semantic Values}.
11911@end deffn
11912
11913@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11914Declare the type of nonterminals. Note that the angle brackets enclose
11915a Java @emph{type}.
11916@xref{Java Semantic Values}.
11917@end deffn
11918
11919@deffn {Directive} %code @{ @var{code} @dots{} @}
11920Code appended to the inside of the parser class.
11921@xref{Java Differences}.
11922@end deffn
11923
11924@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11925Code inserted just after the @code{package} declaration.
11926@xref{Java Differences}.
11927@end deffn
11928
1979121c
DJ
11929@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11930Code inserted at the beginning of the parser constructor body.
11931@xref{Java Parser Interface}.
11932@end deffn
11933
e254a580
DJ
11934@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11935Code added to the body of a inner lexer class within the parser class.
11936@xref{Java Scanner Interface}.
11937@end deffn
11938
11939@deffn {Directive} %% @var{code} @dots{}
11940Code (after the second @code{%%}) appended to the end of the file,
11941@emph{outside} the parser class.
11942@xref{Java Differences}.
11943@end deffn
11944
11945@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11946Not supported. Use @code{%code imports} instead.
e254a580
DJ
11947@xref{Java Differences}.
11948@end deffn
11949
11950@deffn {Directive} {%define abstract}
11951Whether the parser class is declared @code{abstract}. Default is false.
11952@xref{Java Bison Interface}.
11953@end deffn
11954
1979121c
DJ
11955@deffn {Directive} {%define annotations} "@var{annotations}"
11956The Java annotations for the parser class. Default is none.
11957@xref{Java Bison Interface}.
11958@end deffn
11959
e254a580
DJ
11960@deffn {Directive} {%define extends} "@var{superclass}"
11961The superclass of the parser class. Default is none.
11962@xref{Java Bison Interface}.
11963@end deffn
11964
11965@deffn {Directive} {%define final}
11966Whether the parser class is declared @code{final}. Default is false.
11967@xref{Java Bison Interface}.
11968@end deffn
11969
11970@deffn {Directive} {%define implements} "@var{interfaces}"
11971The implemented interfaces of the parser class, a comma-separated list.
11972Default is none.
11973@xref{Java Bison Interface}.
11974@end deffn
11975
1979121c
DJ
11976@deffn {Directive} {%define init_throws} "@var{exceptions}"
11977The exceptions thrown by @code{%code init} from the parser class
11978constructor. Default is none.
11979@xref{Java Parser Interface}.
11980@end deffn
11981
e254a580
DJ
11982@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11983The exceptions thrown by the @code{yylex} method of the lexer, a
11984comma-separated list. Default is @code{java.io.IOException}.
11985@xref{Java Scanner Interface}.
11986@end deffn
11987
7287be84 11988@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
11989The name of the class used for locations (a range between two
11990positions). This class is generated as an inner class of the parser
11991class by @command{bison}. Default is @code{Location}.
7287be84 11992Formerly named @code{location_type}.
e254a580
DJ
11993@xref{Java Location Values}.
11994@end deffn
11995
11996@deffn {Directive} {%define package} "@var{package}"
11997The package to put the parser class in. Default is none.
11998@xref{Java Bison Interface}.
11999@end deffn
12000
12001@deffn {Directive} {%define parser_class_name} "@var{name}"
12002The name of the parser class. Default is @code{YYParser} or
12003@code{@var{name-prefix}Parser}.
12004@xref{Java Bison Interface}.
12005@end deffn
12006
7287be84 12007@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
12008The name of the class used for positions. This class must be supplied by
12009the user. Default is @code{Position}.
7287be84 12010Formerly named @code{position_type}.
e254a580
DJ
12011@xref{Java Location Values}.
12012@end deffn
12013
12014@deffn {Directive} {%define public}
12015Whether the parser class is declared @code{public}. Default is false.
12016@xref{Java Bison Interface}.
12017@end deffn
12018
4119d1ea 12019@deffn {Directive} {%define api.value.type} "@var{class}"
e254a580
DJ
12020The base type of semantic values. Default is @code{Object}.
12021@xref{Java Semantic Values}.
12022@end deffn
12023
12024@deffn {Directive} {%define strictfp}
12025Whether the parser class is declared @code{strictfp}. Default is false.
12026@xref{Java Bison Interface}.
12027@end deffn
12028
12029@deffn {Directive} {%define throws} "@var{exceptions}"
12030The exceptions thrown by user-supplied parser actions and
12031@code{%initial-action}, a comma-separated list. Default is none.
12032@xref{Java Parser Interface}.
12033@end deffn
12034
12035
12545799 12036@c ================================================= FAQ
d1a1114f
AD
12037
12038@node FAQ
12039@chapter Frequently Asked Questions
12040@cindex frequently asked questions
12041@cindex questions
12042
12043Several questions about Bison come up occasionally. Here some of them
12044are addressed.
12045
12046@menu
55ba27be
AD
12047* Memory Exhausted:: Breaking the Stack Limits
12048* How Can I Reset the Parser:: @code{yyparse} Keeps some State
12049* Strings are Destroyed:: @code{yylval} Loses Track of Strings
12050* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 12051* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 12052* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
12053* I can't build Bison:: Troubleshooting
12054* Where can I find help?:: Troubleshouting
12055* Bug Reports:: Troublereporting
8405b70c 12056* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
12057* Beta Testing:: Experimenting development versions
12058* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
12059@end menu
12060
1a059451
PE
12061@node Memory Exhausted
12062@section Memory Exhausted
d1a1114f 12063
71b52b13 12064@quotation
1a059451 12065My parser returns with error with a @samp{memory exhausted}
d1a1114f 12066message. What can I do?
71b52b13 12067@end quotation
d1a1114f 12068
188867ac
AD
12069This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
12070Rules}.
d1a1114f 12071
e64fec0a
PE
12072@node How Can I Reset the Parser
12073@section How Can I Reset the Parser
5b066063 12074
0e14ad77
PE
12075The following phenomenon has several symptoms, resulting in the
12076following typical questions:
5b066063 12077
71b52b13 12078@quotation
5b066063
AD
12079I invoke @code{yyparse} several times, and on correct input it works
12080properly; but when a parse error is found, all the other calls fail
0e14ad77 12081too. How can I reset the error flag of @code{yyparse}?
71b52b13 12082@end quotation
5b066063
AD
12083
12084@noindent
12085or
12086
71b52b13 12087@quotation
0e14ad77 12088My parser includes support for an @samp{#include}-like feature, in
5b066063 12089which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 12090although I did specify @samp{%define api.pure full}.
71b52b13 12091@end quotation
5b066063 12092
0e14ad77
PE
12093These problems typically come not from Bison itself, but from
12094Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
12095speed, they might not notice a change of input file. As a
12096demonstration, consider the following source file,
12097@file{first-line.l}:
12098
d4fca427
AD
12099@example
12100@group
12101%@{
5b066063
AD
12102#include <stdio.h>
12103#include <stdlib.h>
d4fca427
AD
12104%@}
12105@end group
5b066063
AD
12106%%
12107.*\n ECHO; return 1;
12108%%
d4fca427 12109@group
5b066063 12110int
0e14ad77 12111yyparse (char const *file)
d4fca427 12112@{
5b066063
AD
12113 yyin = fopen (file, "r");
12114 if (!yyin)
d4fca427
AD
12115 @{
12116 perror ("fopen");
12117 exit (EXIT_FAILURE);
12118 @}
12119@end group
12120@group
fa7e68c3 12121 /* One token only. */
5b066063 12122 yylex ();
0e14ad77 12123 if (fclose (yyin) != 0)
d4fca427
AD
12124 @{
12125 perror ("fclose");
12126 exit (EXIT_FAILURE);
12127 @}
5b066063 12128 return 0;
d4fca427
AD
12129@}
12130@end group
5b066063 12131
d4fca427 12132@group
5b066063 12133int
0e14ad77 12134main (void)
d4fca427 12135@{
5b066063
AD
12136 yyparse ("input");
12137 yyparse ("input");
12138 return 0;
d4fca427
AD
12139@}
12140@end group
12141@end example
5b066063
AD
12142
12143@noindent
12144If the file @file{input} contains
12145
71b52b13 12146@example
5b066063
AD
12147input:1: Hello,
12148input:2: World!
71b52b13 12149@end example
5b066063
AD
12150
12151@noindent
0e14ad77 12152then instead of getting the first line twice, you get:
5b066063
AD
12153
12154@example
12155$ @kbd{flex -ofirst-line.c first-line.l}
12156$ @kbd{gcc -ofirst-line first-line.c -ll}
12157$ @kbd{./first-line}
12158input:1: Hello,
12159input:2: World!
12160@end example
12161
0e14ad77
PE
12162Therefore, whenever you change @code{yyin}, you must tell the
12163Lex-generated scanner to discard its current buffer and switch to the
12164new one. This depends upon your implementation of Lex; see its
12165documentation for more. For Flex, it suffices to call
12166@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
12167Flex-generated scanner needs to read from several input streams to
12168handle features like include files, you might consider using Flex
12169functions like @samp{yy_switch_to_buffer} that manipulate multiple
12170input buffers.
5b066063 12171
b165c324
AD
12172If your Flex-generated scanner uses start conditions (@pxref{Start
12173conditions, , Start conditions, flex, The Flex Manual}), you might
12174also want to reset the scanner's state, i.e., go back to the initial
12175start condition, through a call to @samp{BEGIN (0)}.
12176
fef4cb51
AD
12177@node Strings are Destroyed
12178@section Strings are Destroyed
12179
71b52b13 12180@quotation
c7e441b4 12181My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
12182them. Instead of reporting @samp{"foo", "bar"}, it reports
12183@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 12184@end quotation
fef4cb51
AD
12185
12186This error is probably the single most frequent ``bug report'' sent to
12187Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 12188of the scanner. Consider the following Lex code:
fef4cb51 12189
71b52b13 12190@example
d4fca427 12191@group
71b52b13 12192%@{
fef4cb51
AD
12193#include <stdio.h>
12194char *yylval = NULL;
71b52b13 12195%@}
d4fca427
AD
12196@end group
12197@group
fef4cb51
AD
12198%%
12199.* yylval = yytext; return 1;
12200\n /* IGNORE */
12201%%
d4fca427
AD
12202@end group
12203@group
fef4cb51
AD
12204int
12205main ()
71b52b13 12206@{
fa7e68c3 12207 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
12208 char *fst = (yylex (), yylval);
12209 char *snd = (yylex (), yylval);
12210 printf ("\"%s\", \"%s\"\n", fst, snd);
12211 return 0;
71b52b13 12212@}
d4fca427 12213@end group
71b52b13 12214@end example
fef4cb51
AD
12215
12216If you compile and run this code, you get:
12217
12218@example
12219$ @kbd{flex -osplit-lines.c split-lines.l}
12220$ @kbd{gcc -osplit-lines split-lines.c -ll}
12221$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12222"one
12223two", "two"
12224@end example
12225
12226@noindent
12227this is because @code{yytext} is a buffer provided for @emph{reading}
12228in the action, but if you want to keep it, you have to duplicate it
12229(e.g., using @code{strdup}). Note that the output may depend on how
12230your implementation of Lex handles @code{yytext}. For instance, when
12231given the Lex compatibility option @option{-l} (which triggers the
12232option @samp{%array}) Flex generates a different behavior:
12233
12234@example
12235$ @kbd{flex -l -osplit-lines.c split-lines.l}
12236$ @kbd{gcc -osplit-lines split-lines.c -ll}
12237$ @kbd{printf 'one\ntwo\n' | ./split-lines}
12238"two", "two"
12239@end example
12240
12241
2fa09258
AD
12242@node Implementing Gotos/Loops
12243@section Implementing Gotos/Loops
a06ea4aa 12244
71b52b13 12245@quotation
a06ea4aa 12246My simple calculator supports variables, assignments, and functions,
2fa09258 12247but how can I implement gotos, or loops?
71b52b13 12248@end quotation
a06ea4aa
AD
12249
12250Although very pedagogical, the examples included in the document blur
a1c84f45 12251the distinction to make between the parser---whose job is to recover
a06ea4aa 12252the structure of a text and to transmit it to subsequent modules of
a1c84f45 12253the program---and the processing (such as the execution) of this
a06ea4aa
AD
12254structure. This works well with so called straight line programs,
12255i.e., precisely those that have a straightforward execution model:
12256execute simple instructions one after the others.
12257
12258@cindex abstract syntax tree
8a4281b9 12259@cindex AST
a06ea4aa
AD
12260If you want a richer model, you will probably need to use the parser
12261to construct a tree that does represent the structure it has
12262recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 12263or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
12264traversing it in various ways, will enable treatments such as its
12265execution or its translation, which will result in an interpreter or a
12266compiler.
12267
12268This topic is way beyond the scope of this manual, and the reader is
12269invited to consult the dedicated literature.
12270
12271
ed2e6384
AD
12272@node Multiple start-symbols
12273@section Multiple start-symbols
12274
71b52b13 12275@quotation
ed2e6384
AD
12276I have several closely related grammars, and I would like to share their
12277implementations. In fact, I could use a single grammar but with
12278multiple entry points.
71b52b13 12279@end quotation
ed2e6384
AD
12280
12281Bison does not support multiple start-symbols, but there is a very
12282simple means to simulate them. If @code{foo} and @code{bar} are the two
12283pseudo start-symbols, then introduce two new tokens, say
12284@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12285real start-symbol:
12286
12287@example
12288%token START_FOO START_BAR;
12289%start start;
5e9b6624
AD
12290start:
12291 START_FOO foo
12292| START_BAR bar;
ed2e6384
AD
12293@end example
12294
12295These tokens prevents the introduction of new conflicts. As far as the
12296parser goes, that is all that is needed.
12297
12298Now the difficult part is ensuring that the scanner will send these
12299tokens first. If your scanner is hand-written, that should be
12300straightforward. If your scanner is generated by Lex, them there is
12301simple means to do it: recall that anything between @samp{%@{ ... %@}}
12302after the first @code{%%} is copied verbatim in the top of the generated
12303@code{yylex} function. Make sure a variable @code{start_token} is
12304available in the scanner (e.g., a global variable or using
12305@code{%lex-param} etc.), and use the following:
12306
12307@example
12308 /* @r{Prologue.} */
12309%%
12310%@{
12311 if (start_token)
12312 @{
12313 int t = start_token;
12314 start_token = 0;
12315 return t;
12316 @}
12317%@}
12318 /* @r{The rules.} */
12319@end example
12320
12321
55ba27be
AD
12322@node Secure? Conform?
12323@section Secure? Conform?
12324
71b52b13 12325@quotation
55ba27be 12326Is Bison secure? Does it conform to POSIX?
71b52b13 12327@end quotation
55ba27be
AD
12328
12329If you're looking for a guarantee or certification, we don't provide it.
12330However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12331POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12332please send us a bug report.
12333
12334@node I can't build Bison
12335@section I can't build Bison
12336
71b52b13 12337@quotation
8c5b881d
PE
12338I can't build Bison because @command{make} complains that
12339@code{msgfmt} is not found.
55ba27be 12340What should I do?
71b52b13 12341@end quotation
55ba27be
AD
12342
12343Like most GNU packages with internationalization support, that feature
12344is turned on by default. If you have problems building in the @file{po}
12345subdirectory, it indicates that your system's internationalization
12346support is lacking. You can re-configure Bison with
12347@option{--disable-nls} to turn off this support, or you can install GNU
12348gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12349Bison. See the file @file{ABOUT-NLS} for more information.
12350
12351
12352@node Where can I find help?
12353@section Where can I find help?
12354
71b52b13 12355@quotation
55ba27be 12356I'm having trouble using Bison. Where can I find help?
71b52b13 12357@end quotation
55ba27be
AD
12358
12359First, read this fine manual. Beyond that, you can send mail to
12360@email{help-bison@@gnu.org}. This mailing list is intended to be
12361populated with people who are willing to answer questions about using
12362and installing Bison. Please keep in mind that (most of) the people on
12363the list have aspects of their lives which are not related to Bison (!),
12364so you may not receive an answer to your question right away. This can
12365be frustrating, but please try not to honk them off; remember that any
12366help they provide is purely voluntary and out of the kindness of their
12367hearts.
12368
12369@node Bug Reports
12370@section Bug Reports
12371
71b52b13 12372@quotation
55ba27be 12373I found a bug. What should I include in the bug report?
71b52b13 12374@end quotation
55ba27be
AD
12375
12376Before you send a bug report, make sure you are using the latest
12377version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12378mirrors. Be sure to include the version number in your bug report. If
12379the bug is present in the latest version but not in a previous version,
12380try to determine the most recent version which did not contain the bug.
12381
12382If the bug is parser-related, you should include the smallest grammar
12383you can which demonstrates the bug. The grammar file should also be
12384complete (i.e., I should be able to run it through Bison without having
12385to edit or add anything). The smaller and simpler the grammar, the
12386easier it will be to fix the bug.
12387
12388Include information about your compilation environment, including your
12389operating system's name and version and your compiler's name and
12390version. If you have trouble compiling, you should also include a
12391transcript of the build session, starting with the invocation of
12392`configure'. Depending on the nature of the bug, you may be asked to
4c9b8f13 12393send additional files as well (such as @file{config.h} or @file{config.cache}).
55ba27be
AD
12394
12395Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12396send a bug report just because you cannot provide a fix.
55ba27be
AD
12397
12398Send bug reports to @email{bug-bison@@gnu.org}.
12399
8405b70c
PB
12400@node More Languages
12401@section More Languages
55ba27be 12402
71b52b13 12403@quotation
8405b70c 12404Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12405favorite language here}?
71b52b13 12406@end quotation
55ba27be 12407
8405b70c 12408C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12409languages; contributions are welcome.
12410
12411@node Beta Testing
12412@section Beta Testing
12413
71b52b13 12414@quotation
55ba27be 12415What is involved in being a beta tester?
71b52b13 12416@end quotation
55ba27be
AD
12417
12418It's not terribly involved. Basically, you would download a test
12419release, compile it, and use it to build and run a parser or two. After
12420that, you would submit either a bug report or a message saying that
12421everything is okay. It is important to report successes as well as
12422failures because test releases eventually become mainstream releases,
12423but only if they are adequately tested. If no one tests, development is
12424essentially halted.
12425
12426Beta testers are particularly needed for operating systems to which the
12427developers do not have easy access. They currently have easy access to
12428recent GNU/Linux and Solaris versions. Reports about other operating
12429systems are especially welcome.
12430
12431@node Mailing Lists
12432@section Mailing Lists
12433
71b52b13 12434@quotation
55ba27be 12435How do I join the help-bison and bug-bison mailing lists?
71b52b13 12436@end quotation
55ba27be
AD
12437
12438See @url{http://lists.gnu.org/}.
a06ea4aa 12439
d1a1114f
AD
12440@c ================================================= Table of Symbols
12441
342b8b6e 12442@node Table of Symbols
bfa74976
RS
12443@appendix Bison Symbols
12444@cindex Bison symbols, table of
12445@cindex symbols in Bison, table of
12446
18b519c0 12447@deffn {Variable} @@$
3ded9a63 12448In an action, the location of the left-hand side of the rule.
303834cc 12449@xref{Tracking Locations}.
18b519c0 12450@end deffn
3ded9a63 12451
18b519c0 12452@deffn {Variable} @@@var{n}
be22823e 12453@deffnx {Symbol} @@@var{n}
303834cc
JD
12454In an action, the location of the @var{n}-th symbol of the right-hand side
12455of the rule. @xref{Tracking Locations}.
be22823e
AD
12456
12457In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12458with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12459@end deffn
3ded9a63 12460
d013372c 12461@deffn {Variable} @@@var{name}
c949ada3
AD
12462@deffnx {Variable} @@[@var{name}]
12463In an action, the location of a symbol addressed by @var{name}.
12464@xref{Tracking Locations}.
d013372c
AR
12465@end deffn
12466
be22823e
AD
12467@deffn {Symbol} $@@@var{n}
12468In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12469with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12470@end deffn
12471
18b519c0 12472@deffn {Variable} $$
3ded9a63
AD
12473In an action, the semantic value of the left-hand side of the rule.
12474@xref{Actions}.
18b519c0 12475@end deffn
3ded9a63 12476
18b519c0 12477@deffn {Variable} $@var{n}
3ded9a63
AD
12478In an action, the semantic value of the @var{n}-th symbol of the
12479right-hand side of the rule. @xref{Actions}.
18b519c0 12480@end deffn
3ded9a63 12481
d013372c 12482@deffn {Variable} $@var{name}
c949ada3
AD
12483@deffnx {Variable} $[@var{name}]
12484In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12485@xref{Actions}.
12486@end deffn
12487
dd8d9022
AD
12488@deffn {Delimiter} %%
12489Delimiter used to separate the grammar rule section from the
12490Bison declarations section or the epilogue.
12491@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12492@end deffn
bfa74976 12493
dd8d9022
AD
12494@c Don't insert spaces, or check the DVI output.
12495@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12496All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12497to the parser implementation file. Such code forms the prologue of
12498the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12499Grammar}.
18b519c0 12500@end deffn
bfa74976 12501
ca2a6d15
PH
12502@deffn {Directive} %?@{@var{expression}@}
12503Predicate actions. This is a type of action clause that may appear in
12504rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12505GLR parsers during nondeterministic operation,
ca2a6d15
PH
12506this silently causes an alternative parse to die. During deterministic
12507operation, it is the same as the effect of YYERROR.
12508@xref{Semantic Predicates}.
12509
12510This feature is experimental.
12511More user feedback will help to determine whether it should become a permanent
12512feature.
12513@end deffn
12514
c949ada3
AD
12515@deffn {Construct} /* @dots{} */
12516@deffnx {Construct} // @dots{}
12517Comments, as in C/C++.
18b519c0 12518@end deffn
bfa74976 12519
dd8d9022
AD
12520@deffn {Delimiter} :
12521Separates a rule's result from its components. @xref{Rules, ,Syntax of
12522Grammar Rules}.
18b519c0 12523@end deffn
bfa74976 12524
dd8d9022
AD
12525@deffn {Delimiter} ;
12526Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12527@end deffn
bfa74976 12528
dd8d9022
AD
12529@deffn {Delimiter} |
12530Separates alternate rules for the same result nonterminal.
12531@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12532@end deffn
bfa74976 12533
12e35840
JD
12534@deffn {Directive} <*>
12535Used to define a default tagged @code{%destructor} or default tagged
12536@code{%printer}.
85894313
JD
12537
12538This feature is experimental.
12539More user feedback will help to determine whether it should become a permanent
12540feature.
12541
12e35840
JD
12542@xref{Destructor Decl, , Freeing Discarded Symbols}.
12543@end deffn
12544
3ebecc24 12545@deffn {Directive} <>
12e35840
JD
12546Used to define a default tagless @code{%destructor} or default tagless
12547@code{%printer}.
85894313
JD
12548
12549This feature is experimental.
12550More user feedback will help to determine whether it should become a permanent
12551feature.
12552
12e35840
JD
12553@xref{Destructor Decl, , Freeing Discarded Symbols}.
12554@end deffn
12555
dd8d9022
AD
12556@deffn {Symbol} $accept
12557The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12558$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12559Start-Symbol}. It cannot be used in the grammar.
18b519c0 12560@end deffn
bfa74976 12561
136a0f76 12562@deffn {Directive} %code @{@var{code}@}
148d66d8 12563@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12564Insert @var{code} verbatim into the output parser source at the
12565default location or at the location specified by @var{qualifier}.
e0c07222 12566@xref{%code Summary}.
9bc0dd67
JD
12567@end deffn
12568
12569@deffn {Directive} %debug
12570Equip the parser for debugging. @xref{Decl Summary}.
12571@end deffn
12572
91d2c560 12573@ifset defaultprec
22fccf95
PE
12574@deffn {Directive} %default-prec
12575Assign a precedence to rules that lack an explicit @samp{%prec}
12576modifier. @xref{Contextual Precedence, ,Context-Dependent
12577Precedence}.
39a06c25 12578@end deffn
91d2c560 12579@end ifset
39a06c25 12580
7fceb615
JD
12581@deffn {Directive} %define @var{variable}
12582@deffnx {Directive} %define @var{variable} @var{value}
12583@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12584Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12585@end deffn
12586
18b519c0 12587@deffn {Directive} %defines
ff7571c0
JD
12588Bison declaration to create a parser header file, which is usually
12589meant for the scanner. @xref{Decl Summary}.
18b519c0 12590@end deffn
6deb4447 12591
02975b9a
JD
12592@deffn {Directive} %defines @var{defines-file}
12593Same as above, but save in the file @var{defines-file}.
12594@xref{Decl Summary}.
12595@end deffn
12596
18b519c0 12597@deffn {Directive} %destructor
258b75ca 12598Specify how the parser should reclaim the memory associated to
fa7e68c3 12599discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12600@end deffn
72f889cc 12601
18b519c0 12602@deffn {Directive} %dprec
676385e2 12603Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12604time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12605GLR Parsers}.
18b519c0 12606@end deffn
676385e2 12607
09add9c2
AD
12608@deffn {Directive} %empty
12609Bison declaration to declare make explicit that a rule has an empty
12610right-hand side. @xref{Empty Rules}.
12611@end deffn
12612
dd8d9022
AD
12613@deffn {Symbol} $end
12614The predefined token marking the end of the token stream. It cannot be
12615used in the grammar.
12616@end deffn
12617
12618@deffn {Symbol} error
12619A token name reserved for error recovery. This token may be used in
12620grammar rules so as to allow the Bison parser to recognize an error in
12621the grammar without halting the process. In effect, a sentence
12622containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12623token @code{error} becomes the current lookahead token. Actions
12624corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12625token is reset to the token that originally caused the violation.
12626@xref{Error Recovery}.
18d192f0
AD
12627@end deffn
12628
18b519c0 12629@deffn {Directive} %error-verbose
7fceb615
JD
12630An obsolete directive standing for @samp{%define parse.error verbose}
12631(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12632@end deffn
2a8d363a 12633
02975b9a 12634@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12635Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12636Summary}.
18b519c0 12637@end deffn
d8988b2f 12638
18b519c0 12639@deffn {Directive} %glr-parser
8a4281b9
JD
12640Bison declaration to produce a GLR parser. @xref{GLR
12641Parsers, ,Writing GLR Parsers}.
18b519c0 12642@end deffn
676385e2 12643
dd8d9022
AD
12644@deffn {Directive} %initial-action
12645Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12646@end deffn
12647
e6e704dc
JD
12648@deffn {Directive} %language
12649Specify the programming language for the generated parser.
12650@xref{Decl Summary}.
12651@end deffn
12652
18b519c0 12653@deffn {Directive} %left
d78f0ac9 12654Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12655@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12656@end deffn
bfa74976 12657
2055a44e
AD
12658@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12659Bison declaration to specifying additional arguments that
2a8d363a
AD
12660@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12661for Pure Parsers}.
18b519c0 12662@end deffn
2a8d363a 12663
18b519c0 12664@deffn {Directive} %merge
676385e2 12665Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12666reduce/reduce conflict with a rule having the same merging function, the
676385e2 12667function is applied to the two semantic values to get a single result.
8a4281b9 12668@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12669@end deffn
676385e2 12670
02975b9a 12671@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12672Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12673Parsers, ,Multiple Parsers in the Same Program}).
12674
12675Rename the external symbols (variables and functions) used in the parser so
12676that they start with @var{prefix} instead of @samp{yy}. Contrary to
12677@code{api.prefix}, do no rename types and macros.
12678
12679The precise list of symbols renamed in C parsers is @code{yyparse},
12680@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12681@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12682push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12683@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12684example, if you use @samp{%name-prefix "c_"}, the names become
12685@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
12686@code{%define namespace} documentation in this section.
18b519c0 12687@end deffn
d8988b2f 12688
4b3847c3 12689
91d2c560 12690@ifset defaultprec
22fccf95
PE
12691@deffn {Directive} %no-default-prec
12692Do not assign a precedence to rules that lack an explicit @samp{%prec}
12693modifier. @xref{Contextual Precedence, ,Context-Dependent
12694Precedence}.
12695@end deffn
91d2c560 12696@end ifset
22fccf95 12697
18b519c0 12698@deffn {Directive} %no-lines
931c7513 12699Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12700parser implementation file. @xref{Decl Summary}.
18b519c0 12701@end deffn
931c7513 12702
18b519c0 12703@deffn {Directive} %nonassoc
d78f0ac9 12704Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12705@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12706@end deffn
bfa74976 12707
02975b9a 12708@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12709Bison declaration to set the name of the parser implementation file.
12710@xref{Decl Summary}.
18b519c0 12711@end deffn
d8988b2f 12712
2055a44e
AD
12713@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12714Bison declaration to specify additional arguments that both
12715@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12716Parser Function @code{yyparse}}.
12717@end deffn
12718
12719@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12720Bison declaration to specify additional arguments that @code{yyparse}
12721should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12722@end deffn
2a8d363a 12723
18b519c0 12724@deffn {Directive} %prec
bfa74976
RS
12725Bison declaration to assign a precedence to a specific rule.
12726@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12727@end deffn
bfa74976 12728
d78f0ac9
AD
12729@deffn {Directive} %precedence
12730Bison declaration to assign precedence to token(s), but no associativity
12731@xref{Precedence Decl, ,Operator Precedence}.
12732@end deffn
12733
18b519c0 12734@deffn {Directive} %pure-parser
35c1e5f0
JD
12735Deprecated version of @samp{%define api.pure} (@pxref{%define
12736Summary,,api.pure}), for which Bison is more careful to warn about
12737unreasonable usage.
18b519c0 12738@end deffn
bfa74976 12739
b50d2359 12740@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12741Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12742Require a Version of Bison}.
b50d2359
AD
12743@end deffn
12744
18b519c0 12745@deffn {Directive} %right
d78f0ac9 12746Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12747@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12748@end deffn
bfa74976 12749
e6e704dc
JD
12750@deffn {Directive} %skeleton
12751Specify the skeleton to use; usually for development.
12752@xref{Decl Summary}.
12753@end deffn
12754
18b519c0 12755@deffn {Directive} %start
704a47c4
AD
12756Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12757Start-Symbol}.
18b519c0 12758@end deffn
bfa74976 12759
18b519c0 12760@deffn {Directive} %token
bfa74976
RS
12761Bison declaration to declare token(s) without specifying precedence.
12762@xref{Token Decl, ,Token Type Names}.
18b519c0 12763@end deffn
bfa74976 12764
18b519c0 12765@deffn {Directive} %token-table
ff7571c0
JD
12766Bison declaration to include a token name table in the parser
12767implementation file. @xref{Decl Summary}.
18b519c0 12768@end deffn
931c7513 12769
18b519c0 12770@deffn {Directive} %type
704a47c4
AD
12771Bison declaration to declare nonterminals. @xref{Type Decl,
12772,Nonterminal Symbols}.
18b519c0 12773@end deffn
bfa74976 12774
dd8d9022
AD
12775@deffn {Symbol} $undefined
12776The predefined token onto which all undefined values returned by
12777@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12778@code{error}.
12779@end deffn
12780
18b519c0 12781@deffn {Directive} %union
bfa74976 12782Bison declaration to specify several possible data types for semantic
e4d49586 12783values. @xref{Union Decl, ,The Union Declaration}.
18b519c0 12784@end deffn
bfa74976 12785
dd8d9022
AD
12786@deffn {Macro} YYABORT
12787Macro to pretend that an unrecoverable syntax error has occurred, by
12788making @code{yyparse} return 1 immediately. The error reporting
12789function @code{yyerror} is not called. @xref{Parser Function, ,The
12790Parser Function @code{yyparse}}.
8405b70c
PB
12791
12792For Java parsers, this functionality is invoked using @code{return YYABORT;}
12793instead.
dd8d9022 12794@end deffn
3ded9a63 12795
dd8d9022
AD
12796@deffn {Macro} YYACCEPT
12797Macro to pretend that a complete utterance of the language has been
12798read, by making @code{yyparse} return 0 immediately.
12799@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12800
12801For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12802instead.
dd8d9022 12803@end deffn
bfa74976 12804
dd8d9022 12805@deffn {Macro} YYBACKUP
742e4900 12806Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12807token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12808@end deffn
bfa74976 12809
dd8d9022 12810@deffn {Variable} yychar
32c29292 12811External integer variable that contains the integer value of the
742e4900 12812lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12813@code{yyparse}.) Error-recovery rule actions may examine this variable.
12814@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12815@end deffn
bfa74976 12816
dd8d9022
AD
12817@deffn {Variable} yyclearin
12818Macro used in error-recovery rule actions. It clears the previous
742e4900 12819lookahead token. @xref{Error Recovery}.
18b519c0 12820@end deffn
bfa74976 12821
dd8d9022
AD
12822@deffn {Macro} YYDEBUG
12823Macro to define to equip the parser with tracing code. @xref{Tracing,
12824,Tracing Your Parser}.
18b519c0 12825@end deffn
bfa74976 12826
dd8d9022
AD
12827@deffn {Variable} yydebug
12828External integer variable set to zero by default. If @code{yydebug}
12829is given a nonzero value, the parser will output information on input
12830symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12831@end deffn
bfa74976 12832
dd8d9022
AD
12833@deffn {Macro} yyerrok
12834Macro to cause parser to recover immediately to its normal mode
12835after a syntax error. @xref{Error Recovery}.
12836@end deffn
12837
12838@deffn {Macro} YYERROR
4a11b852
AD
12839Cause an immediate syntax error. This statement initiates error
12840recovery just as if the parser itself had detected an error; however, it
12841does not call @code{yyerror}, and does not print any message. If you
12842want to print an error message, call @code{yyerror} explicitly before
12843the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12844
12845For Java parsers, this functionality is invoked using @code{return YYERROR;}
12846instead.
dd8d9022
AD
12847@end deffn
12848
12849@deffn {Function} yyerror
12850User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12851@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12852@end deffn
12853
12854@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12855An obsolete macro used in the @file{yacc.c} skeleton, that you define
12856with @code{#define} in the prologue to request verbose, specific error
12857message strings when @code{yyerror} is called. It doesn't matter what
12858definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12859it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12860(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12861@end deffn
12862
93c150b6
AD
12863@deffn {Macro} YYFPRINTF
12864Macro used to output run-time traces.
12865@xref{Enabling Traces}.
12866@end deffn
12867
dd8d9022
AD
12868@deffn {Macro} YYINITDEPTH
12869Macro for specifying the initial size of the parser stack.
1a059451 12870@xref{Memory Management}.
dd8d9022
AD
12871@end deffn
12872
12873@deffn {Function} yylex
12874User-supplied lexical analyzer function, called with no arguments to get
12875the next token. @xref{Lexical, ,The Lexical Analyzer Function
12876@code{yylex}}.
12877@end deffn
12878
dd8d9022
AD
12879@deffn {Variable} yylloc
12880External variable in which @code{yylex} should place the line and column
12881numbers associated with a token. (In a pure parser, it is a local
12882variable within @code{yyparse}, and its address is passed to
32c29292
JD
12883@code{yylex}.)
12884You can ignore this variable if you don't use the @samp{@@} feature in the
12885grammar actions.
12886@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12887In semantic actions, it stores the location of the lookahead token.
32c29292 12888@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12889@end deffn
12890
12891@deffn {Type} YYLTYPE
12892Data type of @code{yylloc}; by default, a structure with four
12893members. @xref{Location Type, , Data Types of Locations}.
12894@end deffn
12895
12896@deffn {Variable} yylval
12897External variable in which @code{yylex} should place the semantic
12898value associated with a token. (In a pure parser, it is a local
12899variable within @code{yyparse}, and its address is passed to
32c29292
JD
12900@code{yylex}.)
12901@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12902In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12903@xref{Actions, ,Actions}.
dd8d9022
AD
12904@end deffn
12905
12906@deffn {Macro} YYMAXDEPTH
1a059451
PE
12907Macro for specifying the maximum size of the parser stack. @xref{Memory
12908Management}.
dd8d9022
AD
12909@end deffn
12910
12911@deffn {Variable} yynerrs
8a2800e7 12912Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12913(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 12914pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
12915@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12916@end deffn
12917
12918@deffn {Function} yyparse
12919The parser function produced by Bison; call this function to start
12920parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12921@end deffn
12922
93c150b6
AD
12923@deffn {Macro} YYPRINT
12924Macro used to output token semantic values. For @file{yacc.c} only.
12925Obsoleted by @code{%printer}.
12926@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12927@end deffn
12928
9987d1b3 12929@deffn {Function} yypstate_delete
f4101aa6 12930The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12931call this function to delete the memory associated with a parser.
f4101aa6 12932@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12933@code{yypstate_delete}}.
59da312b
JD
12934(The current push parsing interface is experimental and may evolve.
12935More user feedback will help to stabilize it.)
9987d1b3
JD
12936@end deffn
12937
12938@deffn {Function} yypstate_new
f4101aa6 12939The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12940call this function to create a new parser.
f4101aa6 12941@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12942@code{yypstate_new}}.
59da312b
JD
12943(The current push parsing interface is experimental and may evolve.
12944More user feedback will help to stabilize it.)
9987d1b3
JD
12945@end deffn
12946
12947@deffn {Function} yypull_parse
f4101aa6
AD
12948The parser function produced by Bison in push mode; call this function to
12949parse the rest of the input stream.
12950@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12951@code{yypull_parse}}.
59da312b
JD
12952(The current push parsing interface is experimental and may evolve.
12953More user feedback will help to stabilize it.)
9987d1b3
JD
12954@end deffn
12955
12956@deffn {Function} yypush_parse
f4101aa6
AD
12957The parser function produced by Bison in push mode; call this function to
12958parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12959@code{yypush_parse}}.
59da312b
JD
12960(The current push parsing interface is experimental and may evolve.
12961More user feedback will help to stabilize it.)
9987d1b3
JD
12962@end deffn
12963
dd8d9022 12964@deffn {Macro} YYRECOVERING
02103984
PE
12965The expression @code{YYRECOVERING ()} yields 1 when the parser
12966is recovering from a syntax error, and 0 otherwise.
12967@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12968@end deffn
12969
12970@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12971Macro used to control the use of @code{alloca} when the
12972deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12973the parser will use @code{malloc} to extend its stacks. If defined to
129741, the parser will use @code{alloca}. Values other than 0 and 1 are
12975reserved for future Bison extensions. If not defined,
12976@code{YYSTACK_USE_ALLOCA} defaults to 0.
12977
55289366 12978In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12979limited stack and with unreliable stack-overflow checking, you should
12980set @code{YYMAXDEPTH} to a value that cannot possibly result in
12981unchecked stack overflow on any of your target hosts when
12982@code{alloca} is called. You can inspect the code that Bison
12983generates in order to determine the proper numeric values. This will
12984require some expertise in low-level implementation details.
dd8d9022
AD
12985@end deffn
12986
12987@deffn {Type} YYSTYPE
21e3a2b5 12988Deprecated in favor of the @code{%define} variable @code{api.value.type}.
dd8d9022
AD
12989Data type of semantic values; @code{int} by default.
12990@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12991@end deffn
bfa74976 12992
342b8b6e 12993@node Glossary
bfa74976
RS
12994@appendix Glossary
12995@cindex glossary
12996
12997@table @asis
7fceb615 12998@item Accepting state
eb45ef3b
JD
12999A state whose only action is the accept action.
13000The accepting state is thus a consistent state.
c949ada3 13001@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 13002
8a4281b9 13003@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
13004Formal method of specifying context-free grammars originally proposed
13005by John Backus, and slightly improved by Peter Naur in his 1960-01-02
13006committee document contributing to what became the Algol 60 report.
13007@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 13008
7fceb615
JD
13009@item Consistent state
13010A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 13011
bfa74976
RS
13012@item Context-free grammars
13013Grammars specified as rules that can be applied regardless of context.
13014Thus, if there is a rule which says that an integer can be used as an
13015expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
13016permitted. @xref{Language and Grammar, ,Languages and Context-Free
13017Grammars}.
bfa74976 13018
7fceb615 13019@item Default reduction
110ef36a 13020The reduction that a parser should perform if the current parser state
35c1e5f0 13021contains no other action for the lookahead token. In permitted parser
7fceb615
JD
13022states, Bison declares the reduction with the largest lookahead set to be
13023the default reduction and removes that lookahead set. @xref{Default
13024Reductions}.
13025
13026@item Defaulted state
13027A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 13028
bfa74976
RS
13029@item Dynamic allocation
13030Allocation of memory that occurs during execution, rather than at
13031compile time or on entry to a function.
13032
13033@item Empty string
13034Analogous to the empty set in set theory, the empty string is a
13035character string of length zero.
13036
13037@item Finite-state stack machine
13038A ``machine'' that has discrete states in which it is said to exist at
13039each instant in time. As input to the machine is processed, the
13040machine moves from state to state as specified by the logic of the
13041machine. In the case of the parser, the input is the language being
13042parsed, and the states correspond to various stages in the grammar
c827f760 13043rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 13044
8a4281b9 13045@item Generalized LR (GLR)
676385e2 13046A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 13047that are not LR(1). It resolves situations that Bison's
eb45ef3b 13048deterministic parsing
676385e2
PH
13049algorithm cannot by effectively splitting off multiple parsers, trying all
13050possible parsers, and discarding those that fail in the light of additional
c827f760 13051right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 13052LR Parsing}.
676385e2 13053
bfa74976
RS
13054@item Grouping
13055A language construct that is (in general) grammatically divisible;
c827f760 13056for example, `expression' or `declaration' in C@.
bfa74976
RS
13057@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13058
7fceb615
JD
13059@item IELR(1) (Inadequacy Elimination LR(1))
13060A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 13061context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
13062language-recognition power of canonical LR(1) but with nearly the same
13063number of parser states as LALR(1). This reduction in parser states is
13064often an order of magnitude. More importantly, because canonical LR(1)'s
13065extra parser states may contain duplicate conflicts in the case of non-LR(1)
13066grammars, the number of conflicts for IELR(1) is often an order of magnitude
13067less as well. This can significantly reduce the complexity of developing a
13068grammar. @xref{LR Table Construction}.
eb45ef3b 13069
bfa74976
RS
13070@item Infix operator
13071An arithmetic operator that is placed between the operands on which it
13072performs some operation.
13073
13074@item Input stream
13075A continuous flow of data between devices or programs.
13076
8a4281b9 13077@item LAC (Lookahead Correction)
fcf834f9 13078A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
13079detection, which is caused by LR state merging, default reductions, and the
13080use of @code{%nonassoc}. Delayed syntax error detection results in
13081unexpected semantic actions, initiation of error recovery in the wrong
13082syntactic context, and an incorrect list of expected tokens in a verbose
13083syntax error message. @xref{LAC}.
fcf834f9 13084
bfa74976
RS
13085@item Language construct
13086One of the typical usage schemas of the language. For example, one of
13087the constructs of the C language is the @code{if} statement.
13088@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
13089
13090@item Left associativity
13091Operators having left associativity are analyzed from left to right:
13092@samp{a+b+c} first computes @samp{a+b} and then combines with
13093@samp{c}. @xref{Precedence, ,Operator Precedence}.
13094
13095@item Left recursion
89cab50d
AD
13096A rule whose result symbol is also its first component symbol; for
13097example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
13098Rules}.
bfa74976
RS
13099
13100@item Left-to-right parsing
13101Parsing a sentence of a language by analyzing it token by token from
c827f760 13102left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13103
13104@item Lexical analyzer (scanner)
13105A function that reads an input stream and returns tokens one by one.
13106@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
13107
13108@item Lexical tie-in
13109A flag, set by actions in the grammar rules, which alters the way
13110tokens are parsed. @xref{Lexical Tie-ins}.
13111
931c7513 13112@item Literal string token
14ded682 13113A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 13114
742e4900
JD
13115@item Lookahead token
13116A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 13117Tokens}.
bfa74976 13118
8a4281b9 13119@item LALR(1)
bfa74976 13120The class of context-free grammars that Bison (like most other parser
8a4281b9 13121generators) can handle by default; a subset of LR(1).
cc09e5be 13122@xref{Mysterious Conflicts}.
bfa74976 13123
8a4281b9 13124@item LR(1)
bfa74976 13125The class of context-free grammars in which at most one token of
742e4900 13126lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
13127
13128@item Nonterminal symbol
13129A grammar symbol standing for a grammatical construct that can
13130be expressed through rules in terms of smaller constructs; in other
13131words, a construct that is not a token. @xref{Symbols}.
13132
bfa74976
RS
13133@item Parser
13134A function that recognizes valid sentences of a language by analyzing
13135the syntax structure of a set of tokens passed to it from a lexical
13136analyzer.
13137
13138@item Postfix operator
13139An arithmetic operator that is placed after the operands upon which it
13140performs some operation.
13141
13142@item Reduction
13143Replacing a string of nonterminals and/or terminals with a single
89cab50d 13144nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 13145Parser Algorithm}.
bfa74976
RS
13146
13147@item Reentrant
13148A reentrant subprogram is a subprogram which can be in invoked any
13149number of times in parallel, without interference between the various
13150invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
13151
13152@item Reverse polish notation
13153A language in which all operators are postfix operators.
13154
13155@item Right recursion
89cab50d
AD
13156A rule whose result symbol is also its last component symbol; for
13157example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
13158Rules}.
bfa74976
RS
13159
13160@item Semantics
13161In computer languages, the semantics are specified by the actions
13162taken for each instance of the language, i.e., the meaning of
13163each statement. @xref{Semantics, ,Defining Language Semantics}.
13164
13165@item Shift
13166A parser is said to shift when it makes the choice of analyzing
13167further input from the stream rather than reducing immediately some
c827f760 13168already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
13169
13170@item Single-character literal
13171A single character that is recognized and interpreted as is.
13172@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
13173
13174@item Start symbol
13175The nonterminal symbol that stands for a complete valid utterance in
13176the language being parsed. The start symbol is usually listed as the
13863333 13177first nonterminal symbol in a language specification.
bfa74976
RS
13178@xref{Start Decl, ,The Start-Symbol}.
13179
13180@item Symbol table
13181A data structure where symbol names and associated data are stored
13182during parsing to allow for recognition and use of existing
13183information in repeated uses of a symbol. @xref{Multi-function Calc}.
13184
6e649e65
PE
13185@item Syntax error
13186An error encountered during parsing of an input stream due to invalid
13187syntax. @xref{Error Recovery}.
13188
bfa74976
RS
13189@item Token
13190A basic, grammatically indivisible unit of a language. The symbol
13191that describes a token in the grammar is a terminal symbol.
13192The input of the Bison parser is a stream of tokens which comes from
13193the lexical analyzer. @xref{Symbols}.
13194
13195@item Terminal symbol
89cab50d
AD
13196A grammar symbol that has no rules in the grammar and therefore is
13197grammatically indivisible. The piece of text it represents is a token.
13198@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
13199
13200@item Unreachable state
13201A parser state to which there does not exist a sequence of transitions from
13202the parser's start state. A state can become unreachable during conflict
13203resolution. @xref{Unreachable States}.
bfa74976
RS
13204@end table
13205
342b8b6e 13206@node Copying This Manual
f2b5126e 13207@appendix Copying This Manual
f2b5126e
PB
13208@include fdl.texi
13209
5e528941
JD
13210@node Bibliography
13211@unnumbered Bibliography
13212
13213@table @asis
13214@item [Denny 2008]
13215Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
13216for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
132172008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
13218pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
13219
13220@item [Denny 2010 May]
13221Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
13222Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
13223University, Clemson, SC, USA (May 2010).
13224@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
13225
13226@item [Denny 2010 November]
13227Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
13228Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
13229in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
132302010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
13231
13232@item [DeRemer 1982]
13233Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
13234Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
13235Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
13236615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
13237
13238@item [Knuth 1965]
13239Donald E. Knuth, On the Translation of Languages from Left to Right, in
13240@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
13241607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
13242
13243@item [Scott 2000]
13244Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
13245@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
13246London, Department of Computer Science, TR-00-12 (December 2000).
13247@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
13248@end table
13249
f9b86351
AD
13250@node Index of Terms
13251@unnumbered Index of Terms
bfa74976
RS
13252
13253@printindex cp
13254
bfa74976 13255@bye
a06ea4aa 13256
6b5a0de9
AD
13257@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
13258@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
13259@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
13260@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
13261@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
13262@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
13263@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
13264@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
13265@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
13266@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
13267@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
13268@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
13269@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 13270@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
13271@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
13272@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13273@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13274@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13275@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13276@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13277@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13278@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13279@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13280@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13281@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13282@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13283@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13284@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13285@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13286@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13287@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13288@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13289@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13290@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13291@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13292@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13293@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13294@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13295@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13296@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13297@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13298@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13299@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13300@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13301@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13302@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13303@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13304@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13305@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13306@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13307@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13308@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13309@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13310@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13311@c LocalWords: parsers parser's
13312@c LocalWords: associativity subclasses precedences unresolvable runnable
13313@c LocalWords: allocators subunit initializations unreferenced untyped
13314@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13315
13316@c Local Variables:
13317@c ispell-dictionary: "american"
13318@c fill-column: 76
13319@c End: